1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/Metadata.h"
116 #include "llvm/IR/Module.h"
117 #include "llvm/IR/Operator.h"
118 #include "llvm/IR/PatternMatch.h"
119 #include "llvm/IR/Type.h"
120 #include "llvm/IR/Use.h"
121 #include "llvm/IR/User.h"
122 #include "llvm/IR/Value.h"
123 #include "llvm/IR/ValueHandle.h"
124 #include "llvm/IR/Verifier.h"
125 #include "llvm/InitializePasses.h"
126 #include "llvm/Pass.h"
127 #include "llvm/Support/Casting.h"
128 #include "llvm/Support/CommandLine.h"
129 #include "llvm/Support/Compiler.h"
130 #include "llvm/Support/Debug.h"
131 #include "llvm/Support/ErrorHandling.h"
132 #include "llvm/Support/InstructionCost.h"
133 #include "llvm/Support/MathExtras.h"
134 #include "llvm/Support/raw_ostream.h"
135 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
136 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
137 #include "llvm/Transforms/Utils/LoopSimplify.h"
138 #include "llvm/Transforms/Utils/LoopUtils.h"
139 #include "llvm/Transforms/Utils/LoopVersioning.h"
140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
141 #include "llvm/Transforms/Utils/SizeOpts.h"
142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
143 #include <algorithm>
144 #include <cassert>
145 #include <cstdint>
146 #include <functional>
147 #include <iterator>
148 #include <limits>
149 #include <map>
150 #include <memory>
151 #include <string>
152 #include <tuple>
153 #include <utility>
154 
155 using namespace llvm;
156 
157 #define LV_NAME "loop-vectorize"
158 #define DEBUG_TYPE LV_NAME
159 
160 #ifndef NDEBUG
161 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
162 #endif
163 
164 /// @{
165 /// Metadata attribute names
166 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
167 const char LLVMLoopVectorizeFollowupVectorized[] =
168     "llvm.loop.vectorize.followup_vectorized";
169 const char LLVMLoopVectorizeFollowupEpilogue[] =
170     "llvm.loop.vectorize.followup_epilogue";
171 /// @}
172 
173 STATISTIC(LoopsVectorized, "Number of loops vectorized");
174 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
175 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
176 
177 static cl::opt<bool> EnableEpilogueVectorization(
178     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
179     cl::desc("Enable vectorization of epilogue loops."));
180 
181 static cl::opt<unsigned> EpilogueVectorizationForceVF(
182     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
183     cl::desc("When epilogue vectorization is enabled, and a value greater than "
184              "1 is specified, forces the given VF for all applicable epilogue "
185              "loops."));
186 
187 static cl::opt<unsigned> EpilogueVectorizationMinVF(
188     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
189     cl::desc("Only loops with vectorization factor equal to or larger than "
190              "the specified value are considered for epilogue vectorization."));
191 
192 /// Loops with a known constant trip count below this number are vectorized only
193 /// if no scalar iteration overheads are incurred.
194 static cl::opt<unsigned> TinyTripCountVectorThreshold(
195     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
196     cl::desc("Loops with a constant trip count that is smaller than this "
197              "value are vectorized only if no scalar iteration overheads "
198              "are incurred."));
199 
200 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
201     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
202     cl::desc("The maximum allowed number of runtime memory checks with a "
203              "vectorize(enable) pragma."));
204 
205 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
206 // that predication is preferred, and this lists all options. I.e., the
207 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
208 // and predicate the instructions accordingly. If tail-folding fails, there are
209 // different fallback strategies depending on these values:
210 namespace PreferPredicateTy {
211   enum Option {
212     ScalarEpilogue = 0,
213     PredicateElseScalarEpilogue,
214     PredicateOrDontVectorize
215   };
216 } // namespace PreferPredicateTy
217 
218 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
219     "prefer-predicate-over-epilogue",
220     cl::init(PreferPredicateTy::ScalarEpilogue),
221     cl::Hidden,
222     cl::desc("Tail-folding and predication preferences over creating a scalar "
223              "epilogue loop."),
224     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
225                          "scalar-epilogue",
226                          "Don't tail-predicate loops, create scalar epilogue"),
227               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
228                          "predicate-else-scalar-epilogue",
229                          "prefer tail-folding, create scalar epilogue if tail "
230                          "folding fails."),
231               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
232                          "predicate-dont-vectorize",
233                          "prefers tail-folding, don't attempt vectorization if "
234                          "tail-folding fails.")));
235 
236 static cl::opt<bool> MaximizeBandwidth(
237     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
238     cl::desc("Maximize bandwidth when selecting vectorization factor which "
239              "will be determined by the smallest type in loop."));
240 
241 static cl::opt<bool> EnableInterleavedMemAccesses(
242     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
243     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
244 
245 /// An interleave-group may need masking if it resides in a block that needs
246 /// predication, or in order to mask away gaps.
247 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
248     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
249     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
250 
251 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
252     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
253     cl::desc("We don't interleave loops with a estimated constant trip count "
254              "below this number"));
255 
256 static cl::opt<unsigned> ForceTargetNumScalarRegs(
257     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
258     cl::desc("A flag that overrides the target's number of scalar registers."));
259 
260 static cl::opt<unsigned> ForceTargetNumVectorRegs(
261     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
262     cl::desc("A flag that overrides the target's number of vector registers."));
263 
264 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
265     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
266     cl::desc("A flag that overrides the target's max interleave factor for "
267              "scalar loops."));
268 
269 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
270     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
271     cl::desc("A flag that overrides the target's max interleave factor for "
272              "vectorized loops."));
273 
274 static cl::opt<unsigned> ForceTargetInstructionCost(
275     "force-target-instruction-cost", cl::init(0), cl::Hidden,
276     cl::desc("A flag that overrides the target's expected cost for "
277              "an instruction to a single constant value. Mostly "
278              "useful for getting consistent testing."));
279 
280 static cl::opt<bool> ForceTargetSupportsScalableVectors(
281     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
282     cl::desc(
283         "Pretend that scalable vectors are supported, even if the target does "
284         "not support them. This flag should only be used for testing."));
285 
286 static cl::opt<unsigned> SmallLoopCost(
287     "small-loop-cost", cl::init(20), cl::Hidden,
288     cl::desc(
289         "The cost of a loop that is considered 'small' by the interleaver."));
290 
291 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
292     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
293     cl::desc("Enable the use of the block frequency analysis to access PGO "
294              "heuristics minimizing code growth in cold regions and being more "
295              "aggressive in hot regions."));
296 
297 // Runtime interleave loops for load/store throughput.
298 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
299     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
300     cl::desc(
301         "Enable runtime interleaving until load/store ports are saturated"));
302 
303 /// Interleave small loops with scalar reductions.
304 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
305     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
306     cl::desc("Enable interleaving for loops with small iteration counts that "
307              "contain scalar reductions to expose ILP."));
308 
309 /// The number of stores in a loop that are allowed to need predication.
310 static cl::opt<unsigned> NumberOfStoresToPredicate(
311     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
312     cl::desc("Max number of stores to be predicated behind an if."));
313 
314 static cl::opt<bool> EnableIndVarRegisterHeur(
315     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
316     cl::desc("Count the induction variable only once when interleaving"));
317 
318 static cl::opt<bool> EnableCondStoresVectorization(
319     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
320     cl::desc("Enable if predication of stores during vectorization."));
321 
322 static cl::opt<unsigned> MaxNestedScalarReductionIC(
323     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
324     cl::desc("The maximum interleave count to use when interleaving a scalar "
325              "reduction in a nested loop."));
326 
327 static cl::opt<bool>
328     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
329                            cl::Hidden,
330                            cl::desc("Prefer in-loop vector reductions, "
331                                     "overriding the targets preference."));
332 
333 static cl::opt<bool> ForceOrderedReductions(
334     "force-ordered-reductions", cl::init(false), cl::Hidden,
335     cl::desc("Enable the vectorisation of loops with in-order (strict) "
336              "FP reductions"));
337 
338 static cl::opt<bool> PreferPredicatedReductionSelect(
339     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
340     cl::desc(
341         "Prefer predicating a reduction operation over an after loop select."));
342 
343 cl::opt<bool> EnableVPlanNativePath(
344     "enable-vplan-native-path", cl::init(false), cl::Hidden,
345     cl::desc("Enable VPlan-native vectorization path with "
346              "support for outer loop vectorization."));
347 
348 // FIXME: Remove this switch once we have divergence analysis. Currently we
349 // assume divergent non-backedge branches when this switch is true.
350 cl::opt<bool> EnableVPlanPredication(
351     "enable-vplan-predication", cl::init(false), cl::Hidden,
352     cl::desc("Enable VPlan-native vectorization path predicator with "
353              "support for outer loop vectorization."));
354 
355 // This flag enables the stress testing of the VPlan H-CFG construction in the
356 // VPlan-native vectorization path. It must be used in conjuction with
357 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
358 // verification of the H-CFGs built.
359 static cl::opt<bool> VPlanBuildStressTest(
360     "vplan-build-stress-test", cl::init(false), cl::Hidden,
361     cl::desc(
362         "Build VPlan for every supported loop nest in the function and bail "
363         "out right after the build (stress test the VPlan H-CFG construction "
364         "in the VPlan-native vectorization path)."));
365 
366 cl::opt<bool> llvm::EnableLoopInterleaving(
367     "interleave-loops", cl::init(true), cl::Hidden,
368     cl::desc("Enable loop interleaving in Loop vectorization passes"));
369 cl::opt<bool> llvm::EnableLoopVectorization(
370     "vectorize-loops", cl::init(true), cl::Hidden,
371     cl::desc("Run the Loop vectorization passes"));
372 
373 cl::opt<bool> PrintVPlansInDotFormat(
374     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
375     cl::desc("Use dot format instead of plain text when dumping VPlans"));
376 
377 /// A helper function that returns true if the given type is irregular. The
378 /// type is irregular if its allocated size doesn't equal the store size of an
379 /// element of the corresponding vector type.
380 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
381   // Determine if an array of N elements of type Ty is "bitcast compatible"
382   // with a <N x Ty> vector.
383   // This is only true if there is no padding between the array elements.
384   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
385 }
386 
387 /// A helper function that returns the reciprocal of the block probability of
388 /// predicated blocks. If we return X, we are assuming the predicated block
389 /// will execute once for every X iterations of the loop header.
390 ///
391 /// TODO: We should use actual block probability here, if available. Currently,
392 ///       we always assume predicated blocks have a 50% chance of executing.
393 static unsigned getReciprocalPredBlockProb() { return 2; }
394 
395 /// A helper function that returns an integer or floating-point constant with
396 /// value C.
397 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
398   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
399                            : ConstantFP::get(Ty, C);
400 }
401 
402 /// Returns "best known" trip count for the specified loop \p L as defined by
403 /// the following procedure:
404 ///   1) Returns exact trip count if it is known.
405 ///   2) Returns expected trip count according to profile data if any.
406 ///   3) Returns upper bound estimate if it is known.
407 ///   4) Returns None if all of the above failed.
408 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
409   // Check if exact trip count is known.
410   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
411     return ExpectedTC;
412 
413   // Check if there is an expected trip count available from profile data.
414   if (LoopVectorizeWithBlockFrequency)
415     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
416       return EstimatedTC;
417 
418   // Check if upper bound estimate is known.
419   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
420     return ExpectedTC;
421 
422   return None;
423 }
424 
425 // Forward declare GeneratedRTChecks.
426 class GeneratedRTChecks;
427 
428 namespace llvm {
429 
430 AnalysisKey ShouldRunExtraVectorPasses::Key;
431 
432 /// InnerLoopVectorizer vectorizes loops which contain only one basic
433 /// block to a specified vectorization factor (VF).
434 /// This class performs the widening of scalars into vectors, or multiple
435 /// scalars. This class also implements the following features:
436 /// * It inserts an epilogue loop for handling loops that don't have iteration
437 ///   counts that are known to be a multiple of the vectorization factor.
438 /// * It handles the code generation for reduction variables.
439 /// * Scalarization (implementation using scalars) of un-vectorizable
440 ///   instructions.
441 /// InnerLoopVectorizer does not perform any vectorization-legality
442 /// checks, and relies on the caller to check for the different legality
443 /// aspects. The InnerLoopVectorizer relies on the
444 /// LoopVectorizationLegality class to provide information about the induction
445 /// and reduction variables that were found to a given vectorization factor.
446 class InnerLoopVectorizer {
447 public:
448   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
449                       LoopInfo *LI, DominatorTree *DT,
450                       const TargetLibraryInfo *TLI,
451                       const TargetTransformInfo *TTI, AssumptionCache *AC,
452                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
453                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
454                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
455                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
456       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
457         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
458         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
459         PSI(PSI), RTChecks(RTChecks) {
460     // Query this against the original loop and save it here because the profile
461     // of the original loop header may change as the transformation happens.
462     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
463         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
464   }
465 
466   virtual ~InnerLoopVectorizer() = default;
467 
468   /// Create a new empty loop that will contain vectorized instructions later
469   /// on, while the old loop will be used as the scalar remainder. Control flow
470   /// is generated around the vectorized (and scalar epilogue) loops consisting
471   /// of various checks and bypasses. Return the pre-header block of the new
472   /// loop and the start value for the canonical induction, if it is != 0. The
473   /// latter is the case when vectorizing the epilogue loop. In the case of
474   /// epilogue vectorization, this function is overriden to handle the more
475   /// complex control flow around the loops.
476   virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton();
477 
478   /// Widen a single call instruction within the innermost loop.
479   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
480                             VPTransformState &State);
481 
482   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
483   void fixVectorizedLoop(VPTransformState &State);
484 
485   // Return true if any runtime check is added.
486   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
487 
488   /// A type for vectorized values in the new loop. Each value from the
489   /// original loop, when vectorized, is represented by UF vector values in the
490   /// new unrolled loop, where UF is the unroll factor.
491   using VectorParts = SmallVector<Value *, 2>;
492 
493   /// Vectorize a single vector PHINode in a block in the VPlan-native path
494   /// only.
495   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
496                            VPTransformState &State);
497 
498   /// A helper function to scalarize a single Instruction in the innermost loop.
499   /// Generates a sequence of scalar instances for each lane between \p MinLane
500   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
501   /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
502   /// Instr's operands.
503   void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe,
504                             const VPIteration &Instance, bool IfPredicateInstr,
505                             VPTransformState &State);
506 
507   /// Construct the vector value of a scalarized value \p V one lane at a time.
508   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
509                                  VPTransformState &State);
510 
511   /// Try to vectorize interleaved access group \p Group with the base address
512   /// given in \p Addr, optionally masking the vector operations if \p
513   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
514   /// values in the vectorized loop.
515   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
516                                 ArrayRef<VPValue *> VPDefs,
517                                 VPTransformState &State, VPValue *Addr,
518                                 ArrayRef<VPValue *> StoredValues,
519                                 VPValue *BlockInMask = nullptr);
520 
521   /// Set the debug location in the builder \p Ptr using the debug location in
522   /// \p V. If \p Ptr is None then it uses the class member's Builder.
523   void setDebugLocFromInst(const Value *V,
524                            Optional<IRBuilderBase *> CustomBuilder = None);
525 
526   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
527   void fixNonInductionPHIs(VPTransformState &State);
528 
529   /// Returns true if the reordering of FP operations is not allowed, but we are
530   /// able to vectorize with strict in-order reductions for the given RdxDesc.
531   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc);
532 
533   /// Create a broadcast instruction. This method generates a broadcast
534   /// instruction (shuffle) for loop invariant values and for the induction
535   /// value. If this is the induction variable then we extend it to N, N+1, ...
536   /// this is needed because each iteration in the loop corresponds to a SIMD
537   /// element.
538   virtual Value *getBroadcastInstrs(Value *V);
539 
540   /// Add metadata from one instruction to another.
541   ///
542   /// This includes both the original MDs from \p From and additional ones (\see
543   /// addNewMetadata).  Use this for *newly created* instructions in the vector
544   /// loop.
545   void addMetadata(Instruction *To, Instruction *From);
546 
547   /// Similar to the previous function but it adds the metadata to a
548   /// vector of instructions.
549   void addMetadata(ArrayRef<Value *> To, Instruction *From);
550 
551   // Returns the resume value (bc.merge.rdx) for a reduction as
552   // generated by fixReduction.
553   PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc);
554 
555 protected:
556   friend class LoopVectorizationPlanner;
557 
558   /// A small list of PHINodes.
559   using PhiVector = SmallVector<PHINode *, 4>;
560 
561   /// A type for scalarized values in the new loop. Each value from the
562   /// original loop, when scalarized, is represented by UF x VF scalar values
563   /// in the new unrolled loop, where UF is the unroll factor and VF is the
564   /// vectorization factor.
565   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
566 
567   /// Set up the values of the IVs correctly when exiting the vector loop.
568   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
569                     Value *CountRoundDown, Value *EndValue,
570                     BasicBlock *MiddleBlock, BasicBlock *VectorHeader);
571 
572   /// Handle all cross-iteration phis in the header.
573   void fixCrossIterationPHIs(VPTransformState &State);
574 
575   /// Create the exit value of first order recurrences in the middle block and
576   /// update their users.
577   void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR,
578                                VPTransformState &State);
579 
580   /// Create code for the loop exit value of the reduction.
581   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
582 
583   /// Clear NSW/NUW flags from reduction instructions if necessary.
584   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
585                                VPTransformState &State);
586 
587   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
588   /// means we need to add the appropriate incoming value from the middle
589   /// block as exiting edges from the scalar epilogue loop (if present) are
590   /// already in place, and we exit the vector loop exclusively to the middle
591   /// block.
592   void fixLCSSAPHIs(VPTransformState &State);
593 
594   /// Iteratively sink the scalarized operands of a predicated instruction into
595   /// the block that was created for it.
596   void sinkScalarOperands(Instruction *PredInst);
597 
598   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
599   /// represented as.
600   void truncateToMinimalBitwidths(VPTransformState &State);
601 
602   /// Returns (and creates if needed) the original loop trip count.
603   Value *getOrCreateTripCount(BasicBlock *InsertBlock);
604 
605   /// Returns (and creates if needed) the trip count of the widened loop.
606   Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock);
607 
608   /// Returns a bitcasted value to the requested vector type.
609   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
610   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
611                                 const DataLayout &DL);
612 
613   /// Emit a bypass check to see if the vector trip count is zero, including if
614   /// it overflows.
615   void emitMinimumIterationCountCheck(BasicBlock *Bypass);
616 
617   /// Emit a bypass check to see if all of the SCEV assumptions we've
618   /// had to make are correct. Returns the block containing the checks or
619   /// nullptr if no checks have been added.
620   BasicBlock *emitSCEVChecks(BasicBlock *Bypass);
621 
622   /// Emit bypass checks to check any memory assumptions we may have made.
623   /// Returns the block containing the checks or nullptr if no checks have been
624   /// added.
625   BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass);
626 
627   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
628   /// vector loop preheader, middle block and scalar preheader.
629   void createVectorLoopSkeleton(StringRef Prefix);
630 
631   /// Create new phi nodes for the induction variables to resume iteration count
632   /// in the scalar epilogue, from where the vectorized loop left off.
633   /// In cases where the loop skeleton is more complicated (eg. epilogue
634   /// vectorization) and the resume values can come from an additional bypass
635   /// block, the \p AdditionalBypass pair provides information about the bypass
636   /// block and the end value on the edge from bypass to this loop.
637   void createInductionResumeValues(
638       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
639 
640   /// Complete the loop skeleton by adding debug MDs, creating appropriate
641   /// conditional branches in the middle block, preparing the builder and
642   /// running the verifier. Return the preheader of the completed vector loop.
643   BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID);
644 
645   /// Add additional metadata to \p To that was not present on \p Orig.
646   ///
647   /// Currently this is used to add the noalias annotations based on the
648   /// inserted memchecks.  Use this for instructions that are *cloned* into the
649   /// vector loop.
650   void addNewMetadata(Instruction *To, const Instruction *Orig);
651 
652   /// Collect poison-generating recipes that may generate a poison value that is
653   /// used after vectorization, even when their operands are not poison. Those
654   /// recipes meet the following conditions:
655   ///  * Contribute to the address computation of a recipe generating a widen
656   ///    memory load/store (VPWidenMemoryInstructionRecipe or
657   ///    VPInterleaveRecipe).
658   ///  * Such a widen memory load/store has at least one underlying Instruction
659   ///    that is in a basic block that needs predication and after vectorization
660   ///    the generated instruction won't be predicated.
661   void collectPoisonGeneratingRecipes(VPTransformState &State);
662 
663   /// Allow subclasses to override and print debug traces before/after vplan
664   /// execution, when trace information is requested.
665   virtual void printDebugTracesAtStart(){};
666   virtual void printDebugTracesAtEnd(){};
667 
668   /// The original loop.
669   Loop *OrigLoop;
670 
671   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
672   /// dynamic knowledge to simplify SCEV expressions and converts them to a
673   /// more usable form.
674   PredicatedScalarEvolution &PSE;
675 
676   /// Loop Info.
677   LoopInfo *LI;
678 
679   /// Dominator Tree.
680   DominatorTree *DT;
681 
682   /// Alias Analysis.
683   AAResults *AA;
684 
685   /// Target Library Info.
686   const TargetLibraryInfo *TLI;
687 
688   /// Target Transform Info.
689   const TargetTransformInfo *TTI;
690 
691   /// Assumption Cache.
692   AssumptionCache *AC;
693 
694   /// Interface to emit optimization remarks.
695   OptimizationRemarkEmitter *ORE;
696 
697   /// LoopVersioning.  It's only set up (non-null) if memchecks were
698   /// used.
699   ///
700   /// This is currently only used to add no-alias metadata based on the
701   /// memchecks.  The actually versioning is performed manually.
702   std::unique_ptr<LoopVersioning> LVer;
703 
704   /// The vectorization SIMD factor to use. Each vector will have this many
705   /// vector elements.
706   ElementCount VF;
707 
708   /// The vectorization unroll factor to use. Each scalar is vectorized to this
709   /// many different vector instructions.
710   unsigned UF;
711 
712   /// The builder that we use
713   IRBuilder<> Builder;
714 
715   // --- Vectorization state ---
716 
717   /// The vector-loop preheader.
718   BasicBlock *LoopVectorPreHeader;
719 
720   /// The scalar-loop preheader.
721   BasicBlock *LoopScalarPreHeader;
722 
723   /// Middle Block between the vector and the scalar.
724   BasicBlock *LoopMiddleBlock;
725 
726   /// The unique ExitBlock of the scalar loop if one exists.  Note that
727   /// there can be multiple exiting edges reaching this block.
728   BasicBlock *LoopExitBlock;
729 
730   /// The scalar loop body.
731   BasicBlock *LoopScalarBody;
732 
733   /// A list of all bypass blocks. The first block is the entry of the loop.
734   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
735 
736   /// Store instructions that were predicated.
737   SmallVector<Instruction *, 4> PredicatedInstructions;
738 
739   /// Trip count of the original loop.
740   Value *TripCount = nullptr;
741 
742   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
743   Value *VectorTripCount = nullptr;
744 
745   /// The legality analysis.
746   LoopVectorizationLegality *Legal;
747 
748   /// The profitablity analysis.
749   LoopVectorizationCostModel *Cost;
750 
751   // Record whether runtime checks are added.
752   bool AddedSafetyChecks = false;
753 
754   // Holds the end values for each induction variable. We save the end values
755   // so we can later fix-up the external users of the induction variables.
756   DenseMap<PHINode *, Value *> IVEndValues;
757 
758   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
759   // fixed up at the end of vector code generation.
760   SmallVector<PHINode *, 8> OrigPHIsToFix;
761 
762   /// BFI and PSI are used to check for profile guided size optimizations.
763   BlockFrequencyInfo *BFI;
764   ProfileSummaryInfo *PSI;
765 
766   // Whether this loop should be optimized for size based on profile guided size
767   // optimizatios.
768   bool OptForSizeBasedOnProfile;
769 
770   /// Structure to hold information about generated runtime checks, responsible
771   /// for cleaning the checks, if vectorization turns out unprofitable.
772   GeneratedRTChecks &RTChecks;
773 
774   // Holds the resume values for reductions in the loops, used to set the
775   // correct start value of reduction PHIs when vectorizing the epilogue.
776   SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4>
777       ReductionResumeValues;
778 };
779 
780 class InnerLoopUnroller : public InnerLoopVectorizer {
781 public:
782   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
783                     LoopInfo *LI, DominatorTree *DT,
784                     const TargetLibraryInfo *TLI,
785                     const TargetTransformInfo *TTI, AssumptionCache *AC,
786                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
787                     LoopVectorizationLegality *LVL,
788                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
789                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
790       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
791                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
792                             BFI, PSI, Check) {}
793 
794 private:
795   Value *getBroadcastInstrs(Value *V) override;
796 };
797 
798 /// Encapsulate information regarding vectorization of a loop and its epilogue.
799 /// This information is meant to be updated and used across two stages of
800 /// epilogue vectorization.
801 struct EpilogueLoopVectorizationInfo {
802   ElementCount MainLoopVF = ElementCount::getFixed(0);
803   unsigned MainLoopUF = 0;
804   ElementCount EpilogueVF = ElementCount::getFixed(0);
805   unsigned EpilogueUF = 0;
806   BasicBlock *MainLoopIterationCountCheck = nullptr;
807   BasicBlock *EpilogueIterationCountCheck = nullptr;
808   BasicBlock *SCEVSafetyCheck = nullptr;
809   BasicBlock *MemSafetyCheck = nullptr;
810   Value *TripCount = nullptr;
811   Value *VectorTripCount = nullptr;
812 
813   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
814                                 ElementCount EVF, unsigned EUF)
815       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
816     assert(EUF == 1 &&
817            "A high UF for the epilogue loop is likely not beneficial.");
818   }
819 };
820 
821 /// An extension of the inner loop vectorizer that creates a skeleton for a
822 /// vectorized loop that has its epilogue (residual) also vectorized.
823 /// The idea is to run the vplan on a given loop twice, firstly to setup the
824 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
825 /// from the first step and vectorize the epilogue.  This is achieved by
826 /// deriving two concrete strategy classes from this base class and invoking
827 /// them in succession from the loop vectorizer planner.
828 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
829 public:
830   InnerLoopAndEpilogueVectorizer(
831       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
832       DominatorTree *DT, const TargetLibraryInfo *TLI,
833       const TargetTransformInfo *TTI, AssumptionCache *AC,
834       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
835       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
836       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
837       GeneratedRTChecks &Checks)
838       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
839                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
840                             Checks),
841         EPI(EPI) {}
842 
843   // Override this function to handle the more complex control flow around the
844   // three loops.
845   std::pair<BasicBlock *, Value *>
846   createVectorizedLoopSkeleton() final override {
847     return createEpilogueVectorizedLoopSkeleton();
848   }
849 
850   /// The interface for creating a vectorized skeleton using one of two
851   /// different strategies, each corresponding to one execution of the vplan
852   /// as described above.
853   virtual std::pair<BasicBlock *, Value *>
854   createEpilogueVectorizedLoopSkeleton() = 0;
855 
856   /// Holds and updates state information required to vectorize the main loop
857   /// and its epilogue in two separate passes. This setup helps us avoid
858   /// regenerating and recomputing runtime safety checks. It also helps us to
859   /// shorten the iteration-count-check path length for the cases where the
860   /// iteration count of the loop is so small that the main vector loop is
861   /// completely skipped.
862   EpilogueLoopVectorizationInfo &EPI;
863 };
864 
865 /// A specialized derived class of inner loop vectorizer that performs
866 /// vectorization of *main* loops in the process of vectorizing loops and their
867 /// epilogues.
868 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
869 public:
870   EpilogueVectorizerMainLoop(
871       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
872       DominatorTree *DT, const TargetLibraryInfo *TLI,
873       const TargetTransformInfo *TTI, AssumptionCache *AC,
874       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
875       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
876       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
877       GeneratedRTChecks &Check)
878       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
879                                        EPI, LVL, CM, BFI, PSI, Check) {}
880   /// Implements the interface for creating a vectorized skeleton using the
881   /// *main loop* strategy (ie the first pass of vplan execution).
882   std::pair<BasicBlock *, Value *>
883   createEpilogueVectorizedLoopSkeleton() final override;
884 
885 protected:
886   /// Emits an iteration count bypass check once for the main loop (when \p
887   /// ForEpilogue is false) and once for the epilogue loop (when \p
888   /// ForEpilogue is true).
889   BasicBlock *emitMinimumIterationCountCheck(BasicBlock *Bypass,
890                                              bool ForEpilogue);
891   void printDebugTracesAtStart() override;
892   void printDebugTracesAtEnd() override;
893 };
894 
895 // A specialized derived class of inner loop vectorizer that performs
896 // vectorization of *epilogue* loops in the process of vectorizing loops and
897 // their epilogues.
898 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
899 public:
900   EpilogueVectorizerEpilogueLoop(
901       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
902       DominatorTree *DT, const TargetLibraryInfo *TLI,
903       const TargetTransformInfo *TTI, AssumptionCache *AC,
904       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
905       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
906       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
907       GeneratedRTChecks &Checks)
908       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
909                                        EPI, LVL, CM, BFI, PSI, Checks) {
910     TripCount = EPI.TripCount;
911   }
912   /// Implements the interface for creating a vectorized skeleton using the
913   /// *epilogue loop* strategy (ie the second pass of vplan execution).
914   std::pair<BasicBlock *, Value *>
915   createEpilogueVectorizedLoopSkeleton() final override;
916 
917 protected:
918   /// Emits an iteration count bypass check after the main vector loop has
919   /// finished to see if there are any iterations left to execute by either
920   /// the vector epilogue or the scalar epilogue.
921   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(
922                                                       BasicBlock *Bypass,
923                                                       BasicBlock *Insert);
924   void printDebugTracesAtStart() override;
925   void printDebugTracesAtEnd() override;
926 };
927 } // end namespace llvm
928 
929 /// Look for a meaningful debug location on the instruction or it's
930 /// operands.
931 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
932   if (!I)
933     return I;
934 
935   DebugLoc Empty;
936   if (I->getDebugLoc() != Empty)
937     return I;
938 
939   for (Use &Op : I->operands()) {
940     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
941       if (OpInst->getDebugLoc() != Empty)
942         return OpInst;
943   }
944 
945   return I;
946 }
947 
948 void InnerLoopVectorizer::setDebugLocFromInst(
949     const Value *V, Optional<IRBuilderBase *> CustomBuilder) {
950   IRBuilderBase *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
951   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
952     const DILocation *DIL = Inst->getDebugLoc();
953 
954     // When a FSDiscriminator is enabled, we don't need to add the multiply
955     // factors to the discriminators.
956     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
957         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
958       // FIXME: For scalable vectors, assume vscale=1.
959       auto NewDIL =
960           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
961       if (NewDIL)
962         B->SetCurrentDebugLocation(NewDIL.getValue());
963       else
964         LLVM_DEBUG(dbgs()
965                    << "Failed to create new discriminator: "
966                    << DIL->getFilename() << " Line: " << DIL->getLine());
967     } else
968       B->SetCurrentDebugLocation(DIL);
969   } else
970     B->SetCurrentDebugLocation(DebugLoc());
971 }
972 
973 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
974 /// is passed, the message relates to that particular instruction.
975 #ifndef NDEBUG
976 static void debugVectorizationMessage(const StringRef Prefix,
977                                       const StringRef DebugMsg,
978                                       Instruction *I) {
979   dbgs() << "LV: " << Prefix << DebugMsg;
980   if (I != nullptr)
981     dbgs() << " " << *I;
982   else
983     dbgs() << '.';
984   dbgs() << '\n';
985 }
986 #endif
987 
988 /// Create an analysis remark that explains why vectorization failed
989 ///
990 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
991 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
992 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
993 /// the location of the remark.  \return the remark object that can be
994 /// streamed to.
995 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
996     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
997   Value *CodeRegion = TheLoop->getHeader();
998   DebugLoc DL = TheLoop->getStartLoc();
999 
1000   if (I) {
1001     CodeRegion = I->getParent();
1002     // If there is no debug location attached to the instruction, revert back to
1003     // using the loop's.
1004     if (I->getDebugLoc())
1005       DL = I->getDebugLoc();
1006   }
1007 
1008   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1009 }
1010 
1011 namespace llvm {
1012 
1013 /// Return a value for Step multiplied by VF.
1014 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF,
1015                        int64_t Step) {
1016   assert(Ty->isIntegerTy() && "Expected an integer step");
1017   Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
1018   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1019 }
1020 
1021 /// Return the runtime value for VF.
1022 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) {
1023   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1024   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1025 }
1026 
1027 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy,
1028                                   ElementCount VF) {
1029   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
1030   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
1031   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
1032   return B.CreateUIToFP(RuntimeVF, FTy);
1033 }
1034 
1035 void reportVectorizationFailure(const StringRef DebugMsg,
1036                                 const StringRef OREMsg, const StringRef ORETag,
1037                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1038                                 Instruction *I) {
1039   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1040   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1041   ORE->emit(
1042       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1043       << "loop not vectorized: " << OREMsg);
1044 }
1045 
1046 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1047                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1048                              Instruction *I) {
1049   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1050   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1051   ORE->emit(
1052       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1053       << Msg);
1054 }
1055 
1056 } // end namespace llvm
1057 
1058 #ifndef NDEBUG
1059 /// \return string containing a file name and a line # for the given loop.
1060 static std::string getDebugLocString(const Loop *L) {
1061   std::string Result;
1062   if (L) {
1063     raw_string_ostream OS(Result);
1064     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1065       LoopDbgLoc.print(OS);
1066     else
1067       // Just print the module name.
1068       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1069     OS.flush();
1070   }
1071   return Result;
1072 }
1073 #endif
1074 
1075 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1076                                          const Instruction *Orig) {
1077   // If the loop was versioned with memchecks, add the corresponding no-alias
1078   // metadata.
1079   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1080     LVer->annotateInstWithNoAlias(To, Orig);
1081 }
1082 
1083 void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
1084     VPTransformState &State) {
1085 
1086   // Collect recipes in the backward slice of `Root` that may generate a poison
1087   // value that is used after vectorization.
1088   SmallPtrSet<VPRecipeBase *, 16> Visited;
1089   auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
1090     SmallVector<VPRecipeBase *, 16> Worklist;
1091     Worklist.push_back(Root);
1092 
1093     // Traverse the backward slice of Root through its use-def chain.
1094     while (!Worklist.empty()) {
1095       VPRecipeBase *CurRec = Worklist.back();
1096       Worklist.pop_back();
1097 
1098       if (!Visited.insert(CurRec).second)
1099         continue;
1100 
1101       // Prune search if we find another recipe generating a widen memory
1102       // instruction. Widen memory instructions involved in address computation
1103       // will lead to gather/scatter instructions, which don't need to be
1104       // handled.
1105       if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
1106           isa<VPInterleaveRecipe>(CurRec) ||
1107           isa<VPScalarIVStepsRecipe>(CurRec) ||
1108           isa<VPCanonicalIVPHIRecipe>(CurRec))
1109         continue;
1110 
1111       // This recipe contributes to the address computation of a widen
1112       // load/store. Collect recipe if its underlying instruction has
1113       // poison-generating flags.
1114       Instruction *Instr = CurRec->getUnderlyingInstr();
1115       if (Instr && Instr->hasPoisonGeneratingFlags())
1116         State.MayGeneratePoisonRecipes.insert(CurRec);
1117 
1118       // Add new definitions to the worklist.
1119       for (VPValue *operand : CurRec->operands())
1120         if (VPDef *OpDef = operand->getDef())
1121           Worklist.push_back(cast<VPRecipeBase>(OpDef));
1122     }
1123   });
1124 
1125   // Traverse all the recipes in the VPlan and collect the poison-generating
1126   // recipes in the backward slice starting at the address of a VPWidenRecipe or
1127   // VPInterleaveRecipe.
1128   auto Iter = depth_first(
1129       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry()));
1130   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
1131     for (VPRecipeBase &Recipe : *VPBB) {
1132       if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
1133         Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr();
1134         VPDef *AddrDef = WidenRec->getAddr()->getDef();
1135         if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr &&
1136             Legal->blockNeedsPredication(UnderlyingInstr->getParent()))
1137           collectPoisonGeneratingInstrsInBackwardSlice(
1138               cast<VPRecipeBase>(AddrDef));
1139       } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
1140         VPDef *AddrDef = InterleaveRec->getAddr()->getDef();
1141         if (AddrDef) {
1142           // Check if any member of the interleave group needs predication.
1143           const InterleaveGroup<Instruction> *InterGroup =
1144               InterleaveRec->getInterleaveGroup();
1145           bool NeedPredication = false;
1146           for (int I = 0, NumMembers = InterGroup->getNumMembers();
1147                I < NumMembers; ++I) {
1148             Instruction *Member = InterGroup->getMember(I);
1149             if (Member)
1150               NeedPredication |=
1151                   Legal->blockNeedsPredication(Member->getParent());
1152           }
1153 
1154           if (NeedPredication)
1155             collectPoisonGeneratingInstrsInBackwardSlice(
1156                 cast<VPRecipeBase>(AddrDef));
1157         }
1158       }
1159     }
1160   }
1161 }
1162 
1163 void InnerLoopVectorizer::addMetadata(Instruction *To,
1164                                       Instruction *From) {
1165   propagateMetadata(To, From);
1166   addNewMetadata(To, From);
1167 }
1168 
1169 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1170                                       Instruction *From) {
1171   for (Value *V : To) {
1172     if (Instruction *I = dyn_cast<Instruction>(V))
1173       addMetadata(I, From);
1174   }
1175 }
1176 
1177 PHINode *InnerLoopVectorizer::getReductionResumeValue(
1178     const RecurrenceDescriptor &RdxDesc) {
1179   auto It = ReductionResumeValues.find(&RdxDesc);
1180   assert(It != ReductionResumeValues.end() &&
1181          "Expected to find a resume value for the reduction.");
1182   return It->second;
1183 }
1184 
1185 namespace llvm {
1186 
1187 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1188 // lowered.
1189 enum ScalarEpilogueLowering {
1190 
1191   // The default: allowing scalar epilogues.
1192   CM_ScalarEpilogueAllowed,
1193 
1194   // Vectorization with OptForSize: don't allow epilogues.
1195   CM_ScalarEpilogueNotAllowedOptSize,
1196 
1197   // A special case of vectorisation with OptForSize: loops with a very small
1198   // trip count are considered for vectorization under OptForSize, thereby
1199   // making sure the cost of their loop body is dominant, free of runtime
1200   // guards and scalar iteration overheads.
1201   CM_ScalarEpilogueNotAllowedLowTripLoop,
1202 
1203   // Loop hint predicate indicating an epilogue is undesired.
1204   CM_ScalarEpilogueNotNeededUsePredicate,
1205 
1206   // Directive indicating we must either tail fold or not vectorize
1207   CM_ScalarEpilogueNotAllowedUsePredicate
1208 };
1209 
1210 /// ElementCountComparator creates a total ordering for ElementCount
1211 /// for the purposes of using it in a set structure.
1212 struct ElementCountComparator {
1213   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1214     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1215            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1216   }
1217 };
1218 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1219 
1220 /// LoopVectorizationCostModel - estimates the expected speedups due to
1221 /// vectorization.
1222 /// In many cases vectorization is not profitable. This can happen because of
1223 /// a number of reasons. In this class we mainly attempt to predict the
1224 /// expected speedup/slowdowns due to the supported instruction set. We use the
1225 /// TargetTransformInfo to query the different backends for the cost of
1226 /// different operations.
1227 class LoopVectorizationCostModel {
1228 public:
1229   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1230                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1231                              LoopVectorizationLegality *Legal,
1232                              const TargetTransformInfo &TTI,
1233                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1234                              AssumptionCache *AC,
1235                              OptimizationRemarkEmitter *ORE, const Function *F,
1236                              const LoopVectorizeHints *Hints,
1237                              InterleavedAccessInfo &IAI)
1238       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1239         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1240         Hints(Hints), InterleaveInfo(IAI) {}
1241 
1242   /// \return An upper bound for the vectorization factors (both fixed and
1243   /// scalable). If the factors are 0, vectorization and interleaving should be
1244   /// avoided up front.
1245   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1246 
1247   /// \return True if runtime checks are required for vectorization, and false
1248   /// otherwise.
1249   bool runtimeChecksRequired();
1250 
1251   /// \return The most profitable vectorization factor and the cost of that VF.
1252   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1253   /// then this vectorization factor will be selected if vectorization is
1254   /// possible.
1255   VectorizationFactor
1256   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1257 
1258   VectorizationFactor
1259   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1260                                     const LoopVectorizationPlanner &LVP);
1261 
1262   /// Setup cost-based decisions for user vectorization factor.
1263   /// \return true if the UserVF is a feasible VF to be chosen.
1264   bool selectUserVectorizationFactor(ElementCount UserVF) {
1265     collectUniformsAndScalars(UserVF);
1266     collectInstsToScalarize(UserVF);
1267     return expectedCost(UserVF).first.isValid();
1268   }
1269 
1270   /// \return The size (in bits) of the smallest and widest types in the code
1271   /// that needs to be vectorized. We ignore values that remain scalar such as
1272   /// 64 bit loop indices.
1273   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1274 
1275   /// \return The desired interleave count.
1276   /// If interleave count has been specified by metadata it will be returned.
1277   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1278   /// are the selected vectorization factor and the cost of the selected VF.
1279   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1280 
1281   /// Memory access instruction may be vectorized in more than one way.
1282   /// Form of instruction after vectorization depends on cost.
1283   /// This function takes cost-based decisions for Load/Store instructions
1284   /// and collects them in a map. This decisions map is used for building
1285   /// the lists of loop-uniform and loop-scalar instructions.
1286   /// The calculated cost is saved with widening decision in order to
1287   /// avoid redundant calculations.
1288   void setCostBasedWideningDecision(ElementCount VF);
1289 
1290   /// A struct that represents some properties of the register usage
1291   /// of a loop.
1292   struct RegisterUsage {
1293     /// Holds the number of loop invariant values that are used in the loop.
1294     /// The key is ClassID of target-provided register class.
1295     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1296     /// Holds the maximum number of concurrent live intervals in the loop.
1297     /// The key is ClassID of target-provided register class.
1298     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1299   };
1300 
1301   /// \return Returns information about the register usages of the loop for the
1302   /// given vectorization factors.
1303   SmallVector<RegisterUsage, 8>
1304   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1305 
1306   /// Collect values we want to ignore in the cost model.
1307   void collectValuesToIgnore();
1308 
1309   /// Collect all element types in the loop for which widening is needed.
1310   void collectElementTypesForWidening();
1311 
1312   /// Split reductions into those that happen in the loop, and those that happen
1313   /// outside. In loop reductions are collected into InLoopReductionChains.
1314   void collectInLoopReductions();
1315 
1316   /// Returns true if we should use strict in-order reductions for the given
1317   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1318   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1319   /// of FP operations.
1320   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1321     return !Hints->allowReordering() && RdxDesc.isOrdered();
1322   }
1323 
1324   /// \returns The smallest bitwidth each instruction can be represented with.
1325   /// The vector equivalents of these instructions should be truncated to this
1326   /// type.
1327   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1328     return MinBWs;
1329   }
1330 
1331   /// \returns True if it is more profitable to scalarize instruction \p I for
1332   /// vectorization factor \p VF.
1333   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1334     assert(VF.isVector() &&
1335            "Profitable to scalarize relevant only for VF > 1.");
1336 
1337     // Cost model is not run in the VPlan-native path - return conservative
1338     // result until this changes.
1339     if (EnableVPlanNativePath)
1340       return false;
1341 
1342     auto Scalars = InstsToScalarize.find(VF);
1343     assert(Scalars != InstsToScalarize.end() &&
1344            "VF not yet analyzed for scalarization profitability");
1345     return Scalars->second.find(I) != Scalars->second.end();
1346   }
1347 
1348   /// Returns true if \p I is known to be uniform after vectorization.
1349   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1350     if (VF.isScalar())
1351       return true;
1352 
1353     // Cost model is not run in the VPlan-native path - return conservative
1354     // result until this changes.
1355     if (EnableVPlanNativePath)
1356       return false;
1357 
1358     auto UniformsPerVF = Uniforms.find(VF);
1359     assert(UniformsPerVF != Uniforms.end() &&
1360            "VF not yet analyzed for uniformity");
1361     return UniformsPerVF->second.count(I);
1362   }
1363 
1364   /// Returns true if \p I is known to be scalar after vectorization.
1365   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1366     if (VF.isScalar())
1367       return true;
1368 
1369     // Cost model is not run in the VPlan-native path - return conservative
1370     // result until this changes.
1371     if (EnableVPlanNativePath)
1372       return false;
1373 
1374     auto ScalarsPerVF = Scalars.find(VF);
1375     assert(ScalarsPerVF != Scalars.end() &&
1376            "Scalar values are not calculated for VF");
1377     return ScalarsPerVF->second.count(I);
1378   }
1379 
1380   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1381   /// for vectorization factor \p VF.
1382   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1383     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1384            !isProfitableToScalarize(I, VF) &&
1385            !isScalarAfterVectorization(I, VF);
1386   }
1387 
1388   /// Decision that was taken during cost calculation for memory instruction.
1389   enum InstWidening {
1390     CM_Unknown,
1391     CM_Widen,         // For consecutive accesses with stride +1.
1392     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1393     CM_Interleave,
1394     CM_GatherScatter,
1395     CM_Scalarize
1396   };
1397 
1398   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1399   /// instruction \p I and vector width \p VF.
1400   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1401                            InstructionCost Cost) {
1402     assert(VF.isVector() && "Expected VF >=2");
1403     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1404   }
1405 
1406   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1407   /// interleaving group \p Grp and vector width \p VF.
1408   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1409                            ElementCount VF, InstWidening W,
1410                            InstructionCost Cost) {
1411     assert(VF.isVector() && "Expected VF >=2");
1412     /// Broadcast this decicion to all instructions inside the group.
1413     /// But the cost will be assigned to one instruction only.
1414     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1415       if (auto *I = Grp->getMember(i)) {
1416         if (Grp->getInsertPos() == I)
1417           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1418         else
1419           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1420       }
1421     }
1422   }
1423 
1424   /// Return the cost model decision for the given instruction \p I and vector
1425   /// width \p VF. Return CM_Unknown if this instruction did not pass
1426   /// through the cost modeling.
1427   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1428     assert(VF.isVector() && "Expected VF to be a vector VF");
1429     // Cost model is not run in the VPlan-native path - return conservative
1430     // result until this changes.
1431     if (EnableVPlanNativePath)
1432       return CM_GatherScatter;
1433 
1434     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1435     auto Itr = WideningDecisions.find(InstOnVF);
1436     if (Itr == WideningDecisions.end())
1437       return CM_Unknown;
1438     return Itr->second.first;
1439   }
1440 
1441   /// Return the vectorization cost for the given instruction \p I and vector
1442   /// width \p VF.
1443   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1444     assert(VF.isVector() && "Expected VF >=2");
1445     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1446     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1447            "The cost is not calculated");
1448     return WideningDecisions[InstOnVF].second;
1449   }
1450 
1451   /// Return True if instruction \p I is an optimizable truncate whose operand
1452   /// is an induction variable. Such a truncate will be removed by adding a new
1453   /// induction variable with the destination type.
1454   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1455     // If the instruction is not a truncate, return false.
1456     auto *Trunc = dyn_cast<TruncInst>(I);
1457     if (!Trunc)
1458       return false;
1459 
1460     // Get the source and destination types of the truncate.
1461     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1462     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1463 
1464     // If the truncate is free for the given types, return false. Replacing a
1465     // free truncate with an induction variable would add an induction variable
1466     // update instruction to each iteration of the loop. We exclude from this
1467     // check the primary induction variable since it will need an update
1468     // instruction regardless.
1469     Value *Op = Trunc->getOperand(0);
1470     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1471       return false;
1472 
1473     // If the truncated value is not an induction variable, return false.
1474     return Legal->isInductionPhi(Op);
1475   }
1476 
1477   /// Collects the instructions to scalarize for each predicated instruction in
1478   /// the loop.
1479   void collectInstsToScalarize(ElementCount VF);
1480 
1481   /// Collect Uniform and Scalar values for the given \p VF.
1482   /// The sets depend on CM decision for Load/Store instructions
1483   /// that may be vectorized as interleave, gather-scatter or scalarized.
1484   void collectUniformsAndScalars(ElementCount VF) {
1485     // Do the analysis once.
1486     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1487       return;
1488     setCostBasedWideningDecision(VF);
1489     collectLoopUniforms(VF);
1490     collectLoopScalars(VF);
1491   }
1492 
1493   /// Returns true if the target machine supports masked store operation
1494   /// for the given \p DataType and kind of access to \p Ptr.
1495   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1496     return Legal->isConsecutivePtr(DataType, Ptr) &&
1497            TTI.isLegalMaskedStore(DataType, Alignment);
1498   }
1499 
1500   /// Returns true if the target machine supports masked load operation
1501   /// for the given \p DataType and kind of access to \p Ptr.
1502   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1503     return Legal->isConsecutivePtr(DataType, Ptr) &&
1504            TTI.isLegalMaskedLoad(DataType, Alignment);
1505   }
1506 
1507   /// Returns true if the target machine can represent \p V as a masked gather
1508   /// or scatter operation.
1509   bool isLegalGatherOrScatter(Value *V,
1510                               ElementCount VF = ElementCount::getFixed(1)) {
1511     bool LI = isa<LoadInst>(V);
1512     bool SI = isa<StoreInst>(V);
1513     if (!LI && !SI)
1514       return false;
1515     auto *Ty = getLoadStoreType(V);
1516     Align Align = getLoadStoreAlignment(V);
1517     if (VF.isVector())
1518       Ty = VectorType::get(Ty, VF);
1519     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1520            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1521   }
1522 
1523   /// Returns true if the target machine supports all of the reduction
1524   /// variables found for the given VF.
1525   bool canVectorizeReductions(ElementCount VF) const {
1526     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1527       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1528       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1529     }));
1530   }
1531 
1532   /// Returns true if \p I is an instruction that will be scalarized with
1533   /// predication when vectorizing \p I with vectorization factor \p VF. Such
1534   /// instructions include conditional stores and instructions that may divide
1535   /// by zero.
1536   bool isScalarWithPredication(Instruction *I, ElementCount VF) const;
1537 
1538   // Returns true if \p I is an instruction that will be predicated either
1539   // through scalar predication or masked load/store or masked gather/scatter.
1540   // \p VF is the vectorization factor that will be used to vectorize \p I.
1541   // Superset of instructions that return true for isScalarWithPredication.
1542   bool isPredicatedInst(Instruction *I, ElementCount VF,
1543                         bool IsKnownUniform = false) {
1544     // When we know the load is uniform and the original scalar loop was not
1545     // predicated we don't need to mark it as a predicated instruction. Any
1546     // vectorised blocks created when tail-folding are something artificial we
1547     // have introduced and we know there is always at least one active lane.
1548     // That's why we call Legal->blockNeedsPredication here because it doesn't
1549     // query tail-folding.
1550     if (IsKnownUniform && isa<LoadInst>(I) &&
1551         !Legal->blockNeedsPredication(I->getParent()))
1552       return false;
1553     if (!blockNeedsPredicationForAnyReason(I->getParent()))
1554       return false;
1555     // Loads and stores that need some form of masked operation are predicated
1556     // instructions.
1557     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1558       return Legal->isMaskRequired(I);
1559     return isScalarWithPredication(I, VF);
1560   }
1561 
1562   /// Returns true if \p I is a memory instruction with consecutive memory
1563   /// access that can be widened.
1564   bool
1565   memoryInstructionCanBeWidened(Instruction *I,
1566                                 ElementCount VF = ElementCount::getFixed(1));
1567 
1568   /// Returns true if \p I is a memory instruction in an interleaved-group
1569   /// of memory accesses that can be vectorized with wide vector loads/stores
1570   /// and shuffles.
1571   bool
1572   interleavedAccessCanBeWidened(Instruction *I,
1573                                 ElementCount VF = ElementCount::getFixed(1));
1574 
1575   /// Check if \p Instr belongs to any interleaved access group.
1576   bool isAccessInterleaved(Instruction *Instr) {
1577     return InterleaveInfo.isInterleaved(Instr);
1578   }
1579 
1580   /// Get the interleaved access group that \p Instr belongs to.
1581   const InterleaveGroup<Instruction> *
1582   getInterleavedAccessGroup(Instruction *Instr) {
1583     return InterleaveInfo.getInterleaveGroup(Instr);
1584   }
1585 
1586   /// Returns true if we're required to use a scalar epilogue for at least
1587   /// the final iteration of the original loop.
1588   bool requiresScalarEpilogue(ElementCount VF) const {
1589     if (!isScalarEpilogueAllowed())
1590       return false;
1591     // If we might exit from anywhere but the latch, must run the exiting
1592     // iteration in scalar form.
1593     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1594       return true;
1595     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1596   }
1597 
1598   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1599   /// loop hint annotation.
1600   bool isScalarEpilogueAllowed() const {
1601     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1602   }
1603 
1604   /// Returns true if all loop blocks should be masked to fold tail loop.
1605   bool foldTailByMasking() const { return FoldTailByMasking; }
1606 
1607   /// Returns true if the instructions in this block requires predication
1608   /// for any reason, e.g. because tail folding now requires a predicate
1609   /// or because the block in the original loop was predicated.
1610   bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
1611     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1612   }
1613 
1614   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1615   /// nodes to the chain of instructions representing the reductions. Uses a
1616   /// MapVector to ensure deterministic iteration order.
1617   using ReductionChainMap =
1618       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1619 
1620   /// Return the chain of instructions representing an inloop reduction.
1621   const ReductionChainMap &getInLoopReductionChains() const {
1622     return InLoopReductionChains;
1623   }
1624 
1625   /// Returns true if the Phi is part of an inloop reduction.
1626   bool isInLoopReduction(PHINode *Phi) const {
1627     return InLoopReductionChains.count(Phi);
1628   }
1629 
1630   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1631   /// with factor VF.  Return the cost of the instruction, including
1632   /// scalarization overhead if it's needed.
1633   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1634 
1635   /// Estimate cost of a call instruction CI if it were vectorized with factor
1636   /// VF. Return the cost of the instruction, including scalarization overhead
1637   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1638   /// scalarized -
1639   /// i.e. either vector version isn't available, or is too expensive.
1640   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1641                                     bool &NeedToScalarize) const;
1642 
1643   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1644   /// that of B.
1645   bool isMoreProfitable(const VectorizationFactor &A,
1646                         const VectorizationFactor &B) const;
1647 
1648   /// Invalidates decisions already taken by the cost model.
1649   void invalidateCostModelingDecisions() {
1650     WideningDecisions.clear();
1651     Uniforms.clear();
1652     Scalars.clear();
1653   }
1654 
1655 private:
1656   unsigned NumPredStores = 0;
1657 
1658   /// Convenience function that returns the value of vscale_range iff
1659   /// vscale_range.min == vscale_range.max or otherwise returns the value
1660   /// returned by the corresponding TLI method.
1661   Optional<unsigned> getVScaleForTuning() const;
1662 
1663   /// \return An upper bound for the vectorization factors for both
1664   /// fixed and scalable vectorization, where the minimum-known number of
1665   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1666   /// disabled or unsupported, then the scalable part will be equal to
1667   /// ElementCount::getScalable(0).
1668   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1669                                            ElementCount UserVF,
1670                                            bool FoldTailByMasking);
1671 
1672   /// \return the maximized element count based on the targets vector
1673   /// registers and the loop trip-count, but limited to a maximum safe VF.
1674   /// This is a helper function of computeFeasibleMaxVF.
1675   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1676   /// issue that occurred on one of the buildbots which cannot be reproduced
1677   /// without having access to the properietary compiler (see comments on
1678   /// D98509). The issue is currently under investigation and this workaround
1679   /// will be removed as soon as possible.
1680   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1681                                        unsigned SmallestType,
1682                                        unsigned WidestType,
1683                                        const ElementCount &MaxSafeVF,
1684                                        bool FoldTailByMasking);
1685 
1686   /// \return the maximum legal scalable VF, based on the safe max number
1687   /// of elements.
1688   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1689 
1690   /// The vectorization cost is a combination of the cost itself and a boolean
1691   /// indicating whether any of the contributing operations will actually
1692   /// operate on vector values after type legalization in the backend. If this
1693   /// latter value is false, then all operations will be scalarized (i.e. no
1694   /// vectorization has actually taken place).
1695   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1696 
1697   /// Returns the expected execution cost. The unit of the cost does
1698   /// not matter because we use the 'cost' units to compare different
1699   /// vector widths. The cost that is returned is *not* normalized by
1700   /// the factor width. If \p Invalid is not nullptr, this function
1701   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1702   /// each instruction that has an Invalid cost for the given VF.
1703   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1704   VectorizationCostTy
1705   expectedCost(ElementCount VF,
1706                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1707 
1708   /// Returns the execution time cost of an instruction for a given vector
1709   /// width. Vector width of one means scalar.
1710   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1711 
1712   /// The cost-computation logic from getInstructionCost which provides
1713   /// the vector type as an output parameter.
1714   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1715                                      Type *&VectorTy);
1716 
1717   /// Return the cost of instructions in an inloop reduction pattern, if I is
1718   /// part of that pattern.
1719   Optional<InstructionCost>
1720   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1721                           TTI::TargetCostKind CostKind);
1722 
1723   /// Calculate vectorization cost of memory instruction \p I.
1724   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1725 
1726   /// The cost computation for scalarized memory instruction.
1727   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1728 
1729   /// The cost computation for interleaving group of memory instructions.
1730   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1731 
1732   /// The cost computation for Gather/Scatter instruction.
1733   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1734 
1735   /// The cost computation for widening instruction \p I with consecutive
1736   /// memory access.
1737   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1738 
1739   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1740   /// Load: scalar load + broadcast.
1741   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1742   /// element)
1743   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1744 
1745   /// Estimate the overhead of scalarizing an instruction. This is a
1746   /// convenience wrapper for the type-based getScalarizationOverhead API.
1747   InstructionCost getScalarizationOverhead(Instruction *I,
1748                                            ElementCount VF) const;
1749 
1750   /// Returns whether the instruction is a load or store and will be a emitted
1751   /// as a vector operation.
1752   bool isConsecutiveLoadOrStore(Instruction *I);
1753 
1754   /// Returns true if an artificially high cost for emulated masked memrefs
1755   /// should be used.
1756   bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1757 
1758   /// Map of scalar integer values to the smallest bitwidth they can be legally
1759   /// represented as. The vector equivalents of these values should be truncated
1760   /// to this type.
1761   MapVector<Instruction *, uint64_t> MinBWs;
1762 
1763   /// A type representing the costs for instructions if they were to be
1764   /// scalarized rather than vectorized. The entries are Instruction-Cost
1765   /// pairs.
1766   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1767 
1768   /// A set containing all BasicBlocks that are known to present after
1769   /// vectorization as a predicated block.
1770   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1771 
1772   /// Records whether it is allowed to have the original scalar loop execute at
1773   /// least once. This may be needed as a fallback loop in case runtime
1774   /// aliasing/dependence checks fail, or to handle the tail/remainder
1775   /// iterations when the trip count is unknown or doesn't divide by the VF,
1776   /// or as a peel-loop to handle gaps in interleave-groups.
1777   /// Under optsize and when the trip count is very small we don't allow any
1778   /// iterations to execute in the scalar loop.
1779   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1780 
1781   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1782   bool FoldTailByMasking = false;
1783 
1784   /// A map holding scalar costs for different vectorization factors. The
1785   /// presence of a cost for an instruction in the mapping indicates that the
1786   /// instruction will be scalarized when vectorizing with the associated
1787   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1788   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1789 
1790   /// Holds the instructions known to be uniform after vectorization.
1791   /// The data is collected per VF.
1792   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1793 
1794   /// Holds the instructions known to be scalar after vectorization.
1795   /// The data is collected per VF.
1796   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1797 
1798   /// Holds the instructions (address computations) that are forced to be
1799   /// scalarized.
1800   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1801 
1802   /// PHINodes of the reductions that should be expanded in-loop along with
1803   /// their associated chains of reduction operations, in program order from top
1804   /// (PHI) to bottom
1805   ReductionChainMap InLoopReductionChains;
1806 
1807   /// A Map of inloop reduction operations and their immediate chain operand.
1808   /// FIXME: This can be removed once reductions can be costed correctly in
1809   /// vplan. This was added to allow quick lookup to the inloop operations,
1810   /// without having to loop through InLoopReductionChains.
1811   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1812 
1813   /// Returns the expected difference in cost from scalarizing the expression
1814   /// feeding a predicated instruction \p PredInst. The instructions to
1815   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1816   /// non-negative return value implies the expression will be scalarized.
1817   /// Currently, only single-use chains are considered for scalarization.
1818   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1819                               ElementCount VF);
1820 
1821   /// Collect the instructions that are uniform after vectorization. An
1822   /// instruction is uniform if we represent it with a single scalar value in
1823   /// the vectorized loop corresponding to each vector iteration. Examples of
1824   /// uniform instructions include pointer operands of consecutive or
1825   /// interleaved memory accesses. Note that although uniformity implies an
1826   /// instruction will be scalar, the reverse is not true. In general, a
1827   /// scalarized instruction will be represented by VF scalar values in the
1828   /// vectorized loop, each corresponding to an iteration of the original
1829   /// scalar loop.
1830   void collectLoopUniforms(ElementCount VF);
1831 
1832   /// Collect the instructions that are scalar after vectorization. An
1833   /// instruction is scalar if it is known to be uniform or will be scalarized
1834   /// during vectorization. collectLoopScalars should only add non-uniform nodes
1835   /// to the list if they are used by a load/store instruction that is marked as
1836   /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1837   /// VF values in the vectorized loop, each corresponding to an iteration of
1838   /// the original scalar loop.
1839   void collectLoopScalars(ElementCount VF);
1840 
1841   /// Keeps cost model vectorization decision and cost for instructions.
1842   /// Right now it is used for memory instructions only.
1843   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1844                                 std::pair<InstWidening, InstructionCost>>;
1845 
1846   DecisionList WideningDecisions;
1847 
1848   /// Returns true if \p V is expected to be vectorized and it needs to be
1849   /// extracted.
1850   bool needsExtract(Value *V, ElementCount VF) const {
1851     Instruction *I = dyn_cast<Instruction>(V);
1852     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1853         TheLoop->isLoopInvariant(I))
1854       return false;
1855 
1856     // Assume we can vectorize V (and hence we need extraction) if the
1857     // scalars are not computed yet. This can happen, because it is called
1858     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1859     // the scalars are collected. That should be a safe assumption in most
1860     // cases, because we check if the operands have vectorizable types
1861     // beforehand in LoopVectorizationLegality.
1862     return Scalars.find(VF) == Scalars.end() ||
1863            !isScalarAfterVectorization(I, VF);
1864   };
1865 
1866   /// Returns a range containing only operands needing to be extracted.
1867   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1868                                                    ElementCount VF) const {
1869     return SmallVector<Value *, 4>(make_filter_range(
1870         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1871   }
1872 
1873   /// Determines if we have the infrastructure to vectorize loop \p L and its
1874   /// epilogue, assuming the main loop is vectorized by \p VF.
1875   bool isCandidateForEpilogueVectorization(const Loop &L,
1876                                            const ElementCount VF) const;
1877 
1878   /// Returns true if epilogue vectorization is considered profitable, and
1879   /// false otherwise.
1880   /// \p VF is the vectorization factor chosen for the original loop.
1881   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1882 
1883 public:
1884   /// The loop that we evaluate.
1885   Loop *TheLoop;
1886 
1887   /// Predicated scalar evolution analysis.
1888   PredicatedScalarEvolution &PSE;
1889 
1890   /// Loop Info analysis.
1891   LoopInfo *LI;
1892 
1893   /// Vectorization legality.
1894   LoopVectorizationLegality *Legal;
1895 
1896   /// Vector target information.
1897   const TargetTransformInfo &TTI;
1898 
1899   /// Target Library Info.
1900   const TargetLibraryInfo *TLI;
1901 
1902   /// Demanded bits analysis.
1903   DemandedBits *DB;
1904 
1905   /// Assumption cache.
1906   AssumptionCache *AC;
1907 
1908   /// Interface to emit optimization remarks.
1909   OptimizationRemarkEmitter *ORE;
1910 
1911   const Function *TheFunction;
1912 
1913   /// Loop Vectorize Hint.
1914   const LoopVectorizeHints *Hints;
1915 
1916   /// The interleave access information contains groups of interleaved accesses
1917   /// with the same stride and close to each other.
1918   InterleavedAccessInfo &InterleaveInfo;
1919 
1920   /// Values to ignore in the cost model.
1921   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1922 
1923   /// Values to ignore in the cost model when VF > 1.
1924   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1925 
1926   /// All element types found in the loop.
1927   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1928 
1929   /// Profitable vector factors.
1930   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1931 };
1932 } // end namespace llvm
1933 
1934 /// Helper struct to manage generating runtime checks for vectorization.
1935 ///
1936 /// The runtime checks are created up-front in temporary blocks to allow better
1937 /// estimating the cost and un-linked from the existing IR. After deciding to
1938 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1939 /// temporary blocks are completely removed.
1940 class GeneratedRTChecks {
1941   /// Basic block which contains the generated SCEV checks, if any.
1942   BasicBlock *SCEVCheckBlock = nullptr;
1943 
1944   /// The value representing the result of the generated SCEV checks. If it is
1945   /// nullptr, either no SCEV checks have been generated or they have been used.
1946   Value *SCEVCheckCond = nullptr;
1947 
1948   /// Basic block which contains the generated memory runtime checks, if any.
1949   BasicBlock *MemCheckBlock = nullptr;
1950 
1951   /// The value representing the result of the generated memory runtime checks.
1952   /// If it is nullptr, either no memory runtime checks have been generated or
1953   /// they have been used.
1954   Value *MemRuntimeCheckCond = nullptr;
1955 
1956   DominatorTree *DT;
1957   LoopInfo *LI;
1958 
1959   SCEVExpander SCEVExp;
1960   SCEVExpander MemCheckExp;
1961 
1962 public:
1963   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1964                     const DataLayout &DL)
1965       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1966         MemCheckExp(SE, DL, "scev.check") {}
1967 
1968   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1969   /// accurately estimate the cost of the runtime checks. The blocks are
1970   /// un-linked from the IR and is added back during vector code generation. If
1971   /// there is no vector code generation, the check blocks are removed
1972   /// completely.
1973   void Create(Loop *L, const LoopAccessInfo &LAI,
1974               const SCEVPredicate &Pred) {
1975 
1976     BasicBlock *LoopHeader = L->getHeader();
1977     BasicBlock *Preheader = L->getLoopPreheader();
1978 
1979     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1980     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1981     // may be used by SCEVExpander. The blocks will be un-linked from their
1982     // predecessors and removed from LI & DT at the end of the function.
1983     if (!Pred.isAlwaysTrue()) {
1984       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1985                                   nullptr, "vector.scevcheck");
1986 
1987       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1988           &Pred, SCEVCheckBlock->getTerminator());
1989     }
1990 
1991     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1992     if (RtPtrChecking.Need) {
1993       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1994       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1995                                  "vector.memcheck");
1996 
1997       MemRuntimeCheckCond =
1998           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1999                            RtPtrChecking.getChecks(), MemCheckExp);
2000       assert(MemRuntimeCheckCond &&
2001              "no RT checks generated although RtPtrChecking "
2002              "claimed checks are required");
2003     }
2004 
2005     if (!MemCheckBlock && !SCEVCheckBlock)
2006       return;
2007 
2008     // Unhook the temporary block with the checks, update various places
2009     // accordingly.
2010     if (SCEVCheckBlock)
2011       SCEVCheckBlock->replaceAllUsesWith(Preheader);
2012     if (MemCheckBlock)
2013       MemCheckBlock->replaceAllUsesWith(Preheader);
2014 
2015     if (SCEVCheckBlock) {
2016       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2017       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
2018       Preheader->getTerminator()->eraseFromParent();
2019     }
2020     if (MemCheckBlock) {
2021       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2022       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2023       Preheader->getTerminator()->eraseFromParent();
2024     }
2025 
2026     DT->changeImmediateDominator(LoopHeader, Preheader);
2027     if (MemCheckBlock) {
2028       DT->eraseNode(MemCheckBlock);
2029       LI->removeBlock(MemCheckBlock);
2030     }
2031     if (SCEVCheckBlock) {
2032       DT->eraseNode(SCEVCheckBlock);
2033       LI->removeBlock(SCEVCheckBlock);
2034     }
2035   }
2036 
2037   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2038   /// unused.
2039   ~GeneratedRTChecks() {
2040     SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2041     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2042     if (!SCEVCheckCond)
2043       SCEVCleaner.markResultUsed();
2044 
2045     if (!MemRuntimeCheckCond)
2046       MemCheckCleaner.markResultUsed();
2047 
2048     if (MemRuntimeCheckCond) {
2049       auto &SE = *MemCheckExp.getSE();
2050       // Memory runtime check generation creates compares that use expanded
2051       // values. Remove them before running the SCEVExpanderCleaners.
2052       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2053         if (MemCheckExp.isInsertedInstruction(&I))
2054           continue;
2055         SE.forgetValue(&I);
2056         I.eraseFromParent();
2057       }
2058     }
2059     MemCheckCleaner.cleanup();
2060     SCEVCleaner.cleanup();
2061 
2062     if (SCEVCheckCond)
2063       SCEVCheckBlock->eraseFromParent();
2064     if (MemRuntimeCheckCond)
2065       MemCheckBlock->eraseFromParent();
2066   }
2067 
2068   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2069   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2070   /// depending on the generated condition.
2071   BasicBlock *emitSCEVChecks(BasicBlock *Bypass,
2072                              BasicBlock *LoopVectorPreHeader,
2073                              BasicBlock *LoopExitBlock) {
2074     if (!SCEVCheckCond)
2075       return nullptr;
2076     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2077       if (C->isZero())
2078         return nullptr;
2079 
2080     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2081 
2082     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2083     // Create new preheader for vector loop.
2084     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2085       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2086 
2087     SCEVCheckBlock->getTerminator()->eraseFromParent();
2088     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2089     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2090                                                 SCEVCheckBlock);
2091 
2092     DT->addNewBlock(SCEVCheckBlock, Pred);
2093     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2094 
2095     ReplaceInstWithInst(
2096         SCEVCheckBlock->getTerminator(),
2097         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2098     // Mark the check as used, to prevent it from being removed during cleanup.
2099     SCEVCheckCond = nullptr;
2100     return SCEVCheckBlock;
2101   }
2102 
2103   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2104   /// the branches to branch to the vector preheader or \p Bypass, depending on
2105   /// the generated condition.
2106   BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass,
2107                                    BasicBlock *LoopVectorPreHeader) {
2108     // Check if we generated code that checks in runtime if arrays overlap.
2109     if (!MemRuntimeCheckCond)
2110       return nullptr;
2111 
2112     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2113     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2114                                                 MemCheckBlock);
2115 
2116     DT->addNewBlock(MemCheckBlock, Pred);
2117     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2118     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2119 
2120     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2121       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2122 
2123     ReplaceInstWithInst(
2124         MemCheckBlock->getTerminator(),
2125         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2126     MemCheckBlock->getTerminator()->setDebugLoc(
2127         Pred->getTerminator()->getDebugLoc());
2128 
2129     // Mark the check as used, to prevent it from being removed during cleanup.
2130     MemRuntimeCheckCond = nullptr;
2131     return MemCheckBlock;
2132   }
2133 };
2134 
2135 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2136 // vectorization. The loop needs to be annotated with #pragma omp simd
2137 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2138 // vector length information is not provided, vectorization is not considered
2139 // explicit. Interleave hints are not allowed either. These limitations will be
2140 // relaxed in the future.
2141 // Please, note that we are currently forced to abuse the pragma 'clang
2142 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2143 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2144 // provides *explicit vectorization hints* (LV can bypass legal checks and
2145 // assume that vectorization is legal). However, both hints are implemented
2146 // using the same metadata (llvm.loop.vectorize, processed by
2147 // LoopVectorizeHints). This will be fixed in the future when the native IR
2148 // representation for pragma 'omp simd' is introduced.
2149 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2150                                    OptimizationRemarkEmitter *ORE) {
2151   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2152   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2153 
2154   // Only outer loops with an explicit vectorization hint are supported.
2155   // Unannotated outer loops are ignored.
2156   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2157     return false;
2158 
2159   Function *Fn = OuterLp->getHeader()->getParent();
2160   if (!Hints.allowVectorization(Fn, OuterLp,
2161                                 true /*VectorizeOnlyWhenForced*/)) {
2162     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2163     return false;
2164   }
2165 
2166   if (Hints.getInterleave() > 1) {
2167     // TODO: Interleave support is future work.
2168     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2169                          "outer loops.\n");
2170     Hints.emitRemarkWithHints();
2171     return false;
2172   }
2173 
2174   return true;
2175 }
2176 
2177 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2178                                   OptimizationRemarkEmitter *ORE,
2179                                   SmallVectorImpl<Loop *> &V) {
2180   // Collect inner loops and outer loops without irreducible control flow. For
2181   // now, only collect outer loops that have explicit vectorization hints. If we
2182   // are stress testing the VPlan H-CFG construction, we collect the outermost
2183   // loop of every loop nest.
2184   if (L.isInnermost() || VPlanBuildStressTest ||
2185       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2186     LoopBlocksRPO RPOT(&L);
2187     RPOT.perform(LI);
2188     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2189       V.push_back(&L);
2190       // TODO: Collect inner loops inside marked outer loops in case
2191       // vectorization fails for the outer loop. Do not invoke
2192       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2193       // already known to be reducible. We can use an inherited attribute for
2194       // that.
2195       return;
2196     }
2197   }
2198   for (Loop *InnerL : L)
2199     collectSupportedLoops(*InnerL, LI, ORE, V);
2200 }
2201 
2202 namespace {
2203 
2204 /// The LoopVectorize Pass.
2205 struct LoopVectorize : public FunctionPass {
2206   /// Pass identification, replacement for typeid
2207   static char ID;
2208 
2209   LoopVectorizePass Impl;
2210 
2211   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2212                          bool VectorizeOnlyWhenForced = false)
2213       : FunctionPass(ID),
2214         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2215     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2216   }
2217 
2218   bool runOnFunction(Function &F) override {
2219     if (skipFunction(F))
2220       return false;
2221 
2222     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2223     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2224     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2225     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2226     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2227     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2228     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2229     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2230     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2231     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2232     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2233     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2234     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2235 
2236     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2237         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2238 
2239     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2240                         GetLAA, *ORE, PSI).MadeAnyChange;
2241   }
2242 
2243   void getAnalysisUsage(AnalysisUsage &AU) const override {
2244     AU.addRequired<AssumptionCacheTracker>();
2245     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2246     AU.addRequired<DominatorTreeWrapperPass>();
2247     AU.addRequired<LoopInfoWrapperPass>();
2248     AU.addRequired<ScalarEvolutionWrapperPass>();
2249     AU.addRequired<TargetTransformInfoWrapperPass>();
2250     AU.addRequired<AAResultsWrapperPass>();
2251     AU.addRequired<LoopAccessLegacyAnalysis>();
2252     AU.addRequired<DemandedBitsWrapperPass>();
2253     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2254     AU.addRequired<InjectTLIMappingsLegacy>();
2255 
2256     // We currently do not preserve loopinfo/dominator analyses with outer loop
2257     // vectorization. Until this is addressed, mark these analyses as preserved
2258     // only for non-VPlan-native path.
2259     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2260     if (!EnableVPlanNativePath) {
2261       AU.addPreserved<LoopInfoWrapperPass>();
2262       AU.addPreserved<DominatorTreeWrapperPass>();
2263     }
2264 
2265     AU.addPreserved<BasicAAWrapperPass>();
2266     AU.addPreserved<GlobalsAAWrapperPass>();
2267     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2268   }
2269 };
2270 
2271 } // end anonymous namespace
2272 
2273 //===----------------------------------------------------------------------===//
2274 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2275 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2276 //===----------------------------------------------------------------------===//
2277 
2278 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2279   // We need to place the broadcast of invariant variables outside the loop,
2280   // but only if it's proven safe to do so. Else, broadcast will be inside
2281   // vector loop body.
2282   Instruction *Instr = dyn_cast<Instruction>(V);
2283   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2284                      (!Instr ||
2285                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2286   // Place the code for broadcasting invariant variables in the new preheader.
2287   IRBuilder<>::InsertPointGuard Guard(Builder);
2288   if (SafeToHoist)
2289     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2290 
2291   // Broadcast the scalar into all locations in the vector.
2292   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2293 
2294   return Shuf;
2295 }
2296 
2297 /// This function adds
2298 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
2299 /// to each vector element of Val. The sequence starts at StartIndex.
2300 /// \p Opcode is relevant for FP induction variable.
2301 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step,
2302                             Instruction::BinaryOps BinOp, ElementCount VF,
2303                             IRBuilderBase &Builder) {
2304   assert(VF.isVector() && "only vector VFs are supported");
2305 
2306   // Create and check the types.
2307   auto *ValVTy = cast<VectorType>(Val->getType());
2308   ElementCount VLen = ValVTy->getElementCount();
2309 
2310   Type *STy = Val->getType()->getScalarType();
2311   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2312          "Induction Step must be an integer or FP");
2313   assert(Step->getType() == STy && "Step has wrong type");
2314 
2315   SmallVector<Constant *, 8> Indices;
2316 
2317   // Create a vector of consecutive numbers from zero to VF.
2318   VectorType *InitVecValVTy = ValVTy;
2319   if (STy->isFloatingPointTy()) {
2320     Type *InitVecValSTy =
2321         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2322     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2323   }
2324   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2325 
2326   // Splat the StartIdx
2327   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2328 
2329   if (STy->isIntegerTy()) {
2330     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2331     Step = Builder.CreateVectorSplat(VLen, Step);
2332     assert(Step->getType() == Val->getType() && "Invalid step vec");
2333     // FIXME: The newly created binary instructions should contain nsw/nuw
2334     // flags, which can be found from the original scalar operations.
2335     Step = Builder.CreateMul(InitVec, Step);
2336     return Builder.CreateAdd(Val, Step, "induction");
2337   }
2338 
2339   // Floating point induction.
2340   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2341          "Binary Opcode should be specified for FP induction");
2342   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2343   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2344 
2345   Step = Builder.CreateVectorSplat(VLen, Step);
2346   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2347   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2348 }
2349 
2350 /// Compute scalar induction steps. \p ScalarIV is the scalar induction
2351 /// variable on which to base the steps, \p Step is the size of the step.
2352 static void buildScalarSteps(Value *ScalarIV, Value *Step,
2353                              const InductionDescriptor &ID, VPValue *Def,
2354                              VPTransformState &State) {
2355   IRBuilderBase &Builder = State.Builder;
2356   // We shouldn't have to build scalar steps if we aren't vectorizing.
2357   assert(State.VF.isVector() && "VF should be greater than one");
2358   // Get the value type and ensure it and the step have the same integer type.
2359   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2360   assert(ScalarIVTy == Step->getType() &&
2361          "Val and Step should have the same type");
2362 
2363   // We build scalar steps for both integer and floating-point induction
2364   // variables. Here, we determine the kind of arithmetic we will perform.
2365   Instruction::BinaryOps AddOp;
2366   Instruction::BinaryOps MulOp;
2367   if (ScalarIVTy->isIntegerTy()) {
2368     AddOp = Instruction::Add;
2369     MulOp = Instruction::Mul;
2370   } else {
2371     AddOp = ID.getInductionOpcode();
2372     MulOp = Instruction::FMul;
2373   }
2374 
2375   // Determine the number of scalars we need to generate for each unroll
2376   // iteration.
2377   bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def);
2378   unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2379   // Compute the scalar steps and save the results in State.
2380   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2381                                      ScalarIVTy->getScalarSizeInBits());
2382   Type *VecIVTy = nullptr;
2383   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2384   if (!FirstLaneOnly && State.VF.isScalable()) {
2385     VecIVTy = VectorType::get(ScalarIVTy, State.VF);
2386     UnitStepVec =
2387         Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
2388     SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2389     SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV);
2390   }
2391 
2392   for (unsigned Part = 0; Part < State.UF; ++Part) {
2393     Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part);
2394 
2395     if (!FirstLaneOnly && State.VF.isScalable()) {
2396       auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2397       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2398       if (ScalarIVTy->isFloatingPointTy())
2399         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2400       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2401       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2402       State.set(Def, Add, Part);
2403       // It's useful to record the lane values too for the known minimum number
2404       // of elements so we do those below. This improves the code quality when
2405       // trying to extract the first element, for example.
2406     }
2407 
2408     if (ScalarIVTy->isFloatingPointTy())
2409       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2410 
2411     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2412       Value *StartIdx = Builder.CreateBinOp(
2413           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2414       // The step returned by `createStepForVF` is a runtime-evaluated value
2415       // when VF is scalable. Otherwise, it should be folded into a Constant.
2416       assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
2417              "Expected StartIdx to be folded to a constant when VF is not "
2418              "scalable");
2419       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2420       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2421       State.set(Def, Add, VPIteration(Part, Lane));
2422     }
2423   }
2424 }
2425 
2426 // Generate code for the induction step. Note that induction steps are
2427 // required to be loop-invariant
2428 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE,
2429                               Instruction *InsertBefore,
2430                               Loop *OrigLoop = nullptr) {
2431   const DataLayout &DL = SE.getDataLayout();
2432   assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) &&
2433          "Induction step should be loop invariant");
2434   if (auto *E = dyn_cast<SCEVUnknown>(Step))
2435     return E->getValue();
2436 
2437   SCEVExpander Exp(SE, DL, "induction");
2438   return Exp.expandCodeFor(Step, Step->getType(), InsertBefore);
2439 }
2440 
2441 /// Compute the transformed value of Index at offset StartValue using step
2442 /// StepValue.
2443 /// For integer induction, returns StartValue + Index * StepValue.
2444 /// For pointer induction, returns StartValue[Index * StepValue].
2445 /// FIXME: The newly created binary instructions should contain nsw/nuw
2446 /// flags, which can be found from the original scalar operations.
2447 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index,
2448                                    Value *StartValue, Value *Step,
2449                                    const InductionDescriptor &ID) {
2450   assert(Index->getType()->getScalarType() == Step->getType() &&
2451          "Index scalar type does not match StepValue type");
2452 
2453   // Note: the IR at this point is broken. We cannot use SE to create any new
2454   // SCEV and then expand it, hoping that SCEV's simplification will give us
2455   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2456   // lead to various SCEV crashes. So all we can do is to use builder and rely
2457   // on InstCombine for future simplifications. Here we handle some trivial
2458   // cases only.
2459   auto CreateAdd = [&B](Value *X, Value *Y) {
2460     assert(X->getType() == Y->getType() && "Types don't match!");
2461     if (auto *CX = dyn_cast<ConstantInt>(X))
2462       if (CX->isZero())
2463         return Y;
2464     if (auto *CY = dyn_cast<ConstantInt>(Y))
2465       if (CY->isZero())
2466         return X;
2467     return B.CreateAdd(X, Y);
2468   };
2469 
2470   // We allow X to be a vector type, in which case Y will potentially be
2471   // splatted into a vector with the same element count.
2472   auto CreateMul = [&B](Value *X, Value *Y) {
2473     assert(X->getType()->getScalarType() == Y->getType() &&
2474            "Types don't match!");
2475     if (auto *CX = dyn_cast<ConstantInt>(X))
2476       if (CX->isOne())
2477         return Y;
2478     if (auto *CY = dyn_cast<ConstantInt>(Y))
2479       if (CY->isOne())
2480         return X;
2481     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
2482     if (XVTy && !isa<VectorType>(Y->getType()))
2483       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
2484     return B.CreateMul(X, Y);
2485   };
2486 
2487   switch (ID.getKind()) {
2488   case InductionDescriptor::IK_IntInduction: {
2489     assert(!isa<VectorType>(Index->getType()) &&
2490            "Vector indices not supported for integer inductions yet");
2491     assert(Index->getType() == StartValue->getType() &&
2492            "Index type does not match StartValue type");
2493     if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2494       return B.CreateSub(StartValue, Index);
2495     auto *Offset = CreateMul(Index, Step);
2496     return CreateAdd(StartValue, Offset);
2497   }
2498   case InductionDescriptor::IK_PtrInduction: {
2499     assert(isa<Constant>(Step) &&
2500            "Expected constant step for pointer induction");
2501     return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step));
2502   }
2503   case InductionDescriptor::IK_FpInduction: {
2504     assert(!isa<VectorType>(Index->getType()) &&
2505            "Vector indices not supported for FP inductions yet");
2506     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2507     auto InductionBinOp = ID.getInductionBinOp();
2508     assert(InductionBinOp &&
2509            (InductionBinOp->getOpcode() == Instruction::FAdd ||
2510             InductionBinOp->getOpcode() == Instruction::FSub) &&
2511            "Original bin op should be defined for FP induction");
2512 
2513     Value *MulExp = B.CreateFMul(Step, Index);
2514     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2515                          "induction");
2516   }
2517   case InductionDescriptor::IK_NoInduction:
2518     return nullptr;
2519   }
2520   llvm_unreachable("invalid enum");
2521 }
2522 
2523 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2524                                                     const VPIteration &Instance,
2525                                                     VPTransformState &State) {
2526   Value *ScalarInst = State.get(Def, Instance);
2527   Value *VectorValue = State.get(Def, Instance.Part);
2528   VectorValue = Builder.CreateInsertElement(
2529       VectorValue, ScalarInst,
2530       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2531   State.set(Def, VectorValue, Instance.Part);
2532 }
2533 
2534 // Return whether we allow using masked interleave-groups (for dealing with
2535 // strided loads/stores that reside in predicated blocks, or for dealing
2536 // with gaps).
2537 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2538   // If an override option has been passed in for interleaved accesses, use it.
2539   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2540     return EnableMaskedInterleavedMemAccesses;
2541 
2542   return TTI.enableMaskedInterleavedAccessVectorization();
2543 }
2544 
2545 // Try to vectorize the interleave group that \p Instr belongs to.
2546 //
2547 // E.g. Translate following interleaved load group (factor = 3):
2548 //   for (i = 0; i < N; i+=3) {
2549 //     R = Pic[i];             // Member of index 0
2550 //     G = Pic[i+1];           // Member of index 1
2551 //     B = Pic[i+2];           // Member of index 2
2552 //     ... // do something to R, G, B
2553 //   }
2554 // To:
2555 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2556 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2557 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2558 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2559 //
2560 // Or translate following interleaved store group (factor = 3):
2561 //   for (i = 0; i < N; i+=3) {
2562 //     ... do something to R, G, B
2563 //     Pic[i]   = R;           // Member of index 0
2564 //     Pic[i+1] = G;           // Member of index 1
2565 //     Pic[i+2] = B;           // Member of index 2
2566 //   }
2567 // To:
2568 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2569 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2570 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2571 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2572 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2573 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2574     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2575     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2576     VPValue *BlockInMask) {
2577   Instruction *Instr = Group->getInsertPos();
2578   const DataLayout &DL = Instr->getModule()->getDataLayout();
2579 
2580   // Prepare for the vector type of the interleaved load/store.
2581   Type *ScalarTy = getLoadStoreType(Instr);
2582   unsigned InterleaveFactor = Group->getFactor();
2583   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2584   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2585 
2586   // Prepare for the new pointers.
2587   SmallVector<Value *, 2> AddrParts;
2588   unsigned Index = Group->getIndex(Instr);
2589 
2590   // TODO: extend the masked interleaved-group support to reversed access.
2591   assert((!BlockInMask || !Group->isReverse()) &&
2592          "Reversed masked interleave-group not supported.");
2593 
2594   // If the group is reverse, adjust the index to refer to the last vector lane
2595   // instead of the first. We adjust the index from the first vector lane,
2596   // rather than directly getting the pointer for lane VF - 1, because the
2597   // pointer operand of the interleaved access is supposed to be uniform. For
2598   // uniform instructions, we're only required to generate a value for the
2599   // first vector lane in each unroll iteration.
2600   if (Group->isReverse())
2601     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2602 
2603   for (unsigned Part = 0; Part < UF; Part++) {
2604     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2605     setDebugLocFromInst(AddrPart);
2606 
2607     // Notice current instruction could be any index. Need to adjust the address
2608     // to the member of index 0.
2609     //
2610     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2611     //       b = A[i];       // Member of index 0
2612     // Current pointer is pointed to A[i+1], adjust it to A[i].
2613     //
2614     // E.g.  A[i+1] = a;     // Member of index 1
2615     //       A[i]   = b;     // Member of index 0
2616     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2617     // Current pointer is pointed to A[i+2], adjust it to A[i].
2618 
2619     bool InBounds = false;
2620     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2621       InBounds = gep->isInBounds();
2622     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2623     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2624 
2625     // Cast to the vector pointer type.
2626     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2627     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2628     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2629   }
2630 
2631   setDebugLocFromInst(Instr);
2632   Value *PoisonVec = PoisonValue::get(VecTy);
2633 
2634   Value *MaskForGaps = nullptr;
2635   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2636     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2637     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2638   }
2639 
2640   // Vectorize the interleaved load group.
2641   if (isa<LoadInst>(Instr)) {
2642     // For each unroll part, create a wide load for the group.
2643     SmallVector<Value *, 2> NewLoads;
2644     for (unsigned Part = 0; Part < UF; Part++) {
2645       Instruction *NewLoad;
2646       if (BlockInMask || MaskForGaps) {
2647         assert(useMaskedInterleavedAccesses(*TTI) &&
2648                "masked interleaved groups are not allowed.");
2649         Value *GroupMask = MaskForGaps;
2650         if (BlockInMask) {
2651           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2652           Value *ShuffledMask = Builder.CreateShuffleVector(
2653               BlockInMaskPart,
2654               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2655               "interleaved.mask");
2656           GroupMask = MaskForGaps
2657                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2658                                                 MaskForGaps)
2659                           : ShuffledMask;
2660         }
2661         NewLoad =
2662             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2663                                      GroupMask, PoisonVec, "wide.masked.vec");
2664       }
2665       else
2666         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2667                                             Group->getAlign(), "wide.vec");
2668       Group->addMetadata(NewLoad);
2669       NewLoads.push_back(NewLoad);
2670     }
2671 
2672     // For each member in the group, shuffle out the appropriate data from the
2673     // wide loads.
2674     unsigned J = 0;
2675     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2676       Instruction *Member = Group->getMember(I);
2677 
2678       // Skip the gaps in the group.
2679       if (!Member)
2680         continue;
2681 
2682       auto StrideMask =
2683           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2684       for (unsigned Part = 0; Part < UF; Part++) {
2685         Value *StridedVec = Builder.CreateShuffleVector(
2686             NewLoads[Part], StrideMask, "strided.vec");
2687 
2688         // If this member has different type, cast the result type.
2689         if (Member->getType() != ScalarTy) {
2690           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2691           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2692           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2693         }
2694 
2695         if (Group->isReverse())
2696           StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse");
2697 
2698         State.set(VPDefs[J], StridedVec, Part);
2699       }
2700       ++J;
2701     }
2702     return;
2703   }
2704 
2705   // The sub vector type for current instruction.
2706   auto *SubVT = VectorType::get(ScalarTy, VF);
2707 
2708   // Vectorize the interleaved store group.
2709   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2710   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2711          "masked interleaved groups are not allowed.");
2712   assert((!MaskForGaps || !VF.isScalable()) &&
2713          "masking gaps for scalable vectors is not yet supported.");
2714   for (unsigned Part = 0; Part < UF; Part++) {
2715     // Collect the stored vector from each member.
2716     SmallVector<Value *, 4> StoredVecs;
2717     for (unsigned i = 0; i < InterleaveFactor; i++) {
2718       assert((Group->getMember(i) || MaskForGaps) &&
2719              "Fail to get a member from an interleaved store group");
2720       Instruction *Member = Group->getMember(i);
2721 
2722       // Skip the gaps in the group.
2723       if (!Member) {
2724         Value *Undef = PoisonValue::get(SubVT);
2725         StoredVecs.push_back(Undef);
2726         continue;
2727       }
2728 
2729       Value *StoredVec = State.get(StoredValues[i], Part);
2730 
2731       if (Group->isReverse())
2732         StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse");
2733 
2734       // If this member has different type, cast it to a unified type.
2735 
2736       if (StoredVec->getType() != SubVT)
2737         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2738 
2739       StoredVecs.push_back(StoredVec);
2740     }
2741 
2742     // Concatenate all vectors into a wide vector.
2743     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2744 
2745     // Interleave the elements in the wide vector.
2746     Value *IVec = Builder.CreateShuffleVector(
2747         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2748         "interleaved.vec");
2749 
2750     Instruction *NewStoreInstr;
2751     if (BlockInMask || MaskForGaps) {
2752       Value *GroupMask = MaskForGaps;
2753       if (BlockInMask) {
2754         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2755         Value *ShuffledMask = Builder.CreateShuffleVector(
2756             BlockInMaskPart,
2757             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2758             "interleaved.mask");
2759         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2760                                                       ShuffledMask, MaskForGaps)
2761                                 : ShuffledMask;
2762       }
2763       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2764                                                 Group->getAlign(), GroupMask);
2765     } else
2766       NewStoreInstr =
2767           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2768 
2769     Group->addMetadata(NewStoreInstr);
2770   }
2771 }
2772 
2773 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2774                                                VPReplicateRecipe *RepRecipe,
2775                                                const VPIteration &Instance,
2776                                                bool IfPredicateInstr,
2777                                                VPTransformState &State) {
2778   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2779 
2780   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
2781   // the first lane and part.
2782   if (isa<NoAliasScopeDeclInst>(Instr))
2783     if (!Instance.isFirstIteration())
2784       return;
2785 
2786   // Does this instruction return a value ?
2787   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2788 
2789   Instruction *Cloned = Instr->clone();
2790   if (!IsVoidRetTy)
2791     Cloned->setName(Instr->getName() + ".cloned");
2792 
2793   // If the scalarized instruction contributes to the address computation of a
2794   // widen masked load/store which was in a basic block that needed predication
2795   // and is not predicated after vectorization, we can't propagate
2796   // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized
2797   // instruction could feed a poison value to the base address of the widen
2798   // load/store.
2799   if (State.MayGeneratePoisonRecipes.contains(RepRecipe))
2800     Cloned->dropPoisonGeneratingFlags();
2801 
2802   if (Instr->getDebugLoc())
2803     setDebugLocFromInst(Instr);
2804 
2805   // Replace the operands of the cloned instructions with their scalar
2806   // equivalents in the new loop.
2807   for (auto &I : enumerate(RepRecipe->operands())) {
2808     auto InputInstance = Instance;
2809     VPValue *Operand = I.value();
2810     VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand);
2811     if (OperandR && OperandR->isUniform())
2812       InputInstance.Lane = VPLane::getFirstLane();
2813     Cloned->setOperand(I.index(), State.get(Operand, InputInstance));
2814   }
2815   addNewMetadata(Cloned, Instr);
2816 
2817   // Place the cloned scalar in the new loop.
2818   State.Builder.Insert(Cloned);
2819 
2820   State.set(RepRecipe, Cloned, Instance);
2821 
2822   // If we just cloned a new assumption, add it the assumption cache.
2823   if (auto *II = dyn_cast<AssumeInst>(Cloned))
2824     AC->registerAssumption(II);
2825 
2826   // End if-block.
2827   if (IfPredicateInstr)
2828     PredicatedInstructions.push_back(Cloned);
2829 }
2830 
2831 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) {
2832   if (TripCount)
2833     return TripCount;
2834 
2835   assert(InsertBlock);
2836   IRBuilder<> Builder(InsertBlock->getTerminator());
2837   // Find the loop boundaries.
2838   ScalarEvolution *SE = PSE.getSE();
2839   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2840   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
2841          "Invalid loop count");
2842 
2843   Type *IdxTy = Legal->getWidestInductionType();
2844   assert(IdxTy && "No type for induction");
2845 
2846   // The exit count might have the type of i64 while the phi is i32. This can
2847   // happen if we have an induction variable that is sign extended before the
2848   // compare. The only way that we get a backedge taken count is that the
2849   // induction variable was signed and as such will not overflow. In such a case
2850   // truncation is legal.
2851   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
2852       IdxTy->getPrimitiveSizeInBits())
2853     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2854   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2855 
2856   // Get the total trip count from the count by adding 1.
2857   const SCEV *ExitCount = SE->getAddExpr(
2858       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2859 
2860   const DataLayout &DL = InsertBlock->getModule()->getDataLayout();
2861 
2862   // Expand the trip count and place the new instructions in the preheader.
2863   // Notice that the pre-header does not change, only the loop body.
2864   SCEVExpander Exp(*SE, DL, "induction");
2865 
2866   // Count holds the overall loop count (N).
2867   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2868                                 InsertBlock->getTerminator());
2869 
2870   if (TripCount->getType()->isPointerTy())
2871     TripCount =
2872         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
2873                                     InsertBlock->getTerminator());
2874 
2875   return TripCount;
2876 }
2877 
2878 Value *
2879 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) {
2880   if (VectorTripCount)
2881     return VectorTripCount;
2882 
2883   Value *TC = getOrCreateTripCount(InsertBlock);
2884   IRBuilder<> Builder(InsertBlock->getTerminator());
2885 
2886   Type *Ty = TC->getType();
2887   // This is where we can make the step a runtime constant.
2888   Value *Step = createStepForVF(Builder, Ty, VF, UF);
2889 
2890   // If the tail is to be folded by masking, round the number of iterations N
2891   // up to a multiple of Step instead of rounding down. This is done by first
2892   // adding Step-1 and then rounding down. Note that it's ok if this addition
2893   // overflows: the vector induction variable will eventually wrap to zero given
2894   // that it starts at zero and its Step is a power of two; the loop will then
2895   // exit, with the last early-exit vector comparison also producing all-true.
2896   if (Cost->foldTailByMasking()) {
2897     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
2898            "VF*UF must be a power of 2 when folding tail by masking");
2899     Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF);
2900     TC = Builder.CreateAdd(
2901         TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up");
2902   }
2903 
2904   // Now we need to generate the expression for the part of the loop that the
2905   // vectorized body will execute. This is equal to N - (N % Step) if scalar
2906   // iterations are not required for correctness, or N - Step, otherwise. Step
2907   // is equal to the vectorization factor (number of SIMD elements) times the
2908   // unroll factor (number of SIMD instructions).
2909   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2910 
2911   // There are cases where we *must* run at least one iteration in the remainder
2912   // loop.  See the cost model for when this can happen.  If the step evenly
2913   // divides the trip count, we set the remainder to be equal to the step. If
2914   // the step does not evenly divide the trip count, no adjustment is necessary
2915   // since there will already be scalar iterations. Note that the minimum
2916   // iterations check ensures that N >= Step.
2917   if (Cost->requiresScalarEpilogue(VF)) {
2918     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
2919     R = Builder.CreateSelect(IsZero, Step, R);
2920   }
2921 
2922   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2923 
2924   return VectorTripCount;
2925 }
2926 
2927 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
2928                                                    const DataLayout &DL) {
2929   // Verify that V is a vector type with same number of elements as DstVTy.
2930   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
2931   unsigned VF = DstFVTy->getNumElements();
2932   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
2933   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
2934   Type *SrcElemTy = SrcVecTy->getElementType();
2935   Type *DstElemTy = DstFVTy->getElementType();
2936   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
2937          "Vector elements must have same size");
2938 
2939   // Do a direct cast if element types are castable.
2940   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
2941     return Builder.CreateBitOrPointerCast(V, DstFVTy);
2942   }
2943   // V cannot be directly casted to desired vector type.
2944   // May happen when V is a floating point vector but DstVTy is a vector of
2945   // pointers or vice-versa. Handle this using a two-step bitcast using an
2946   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
2947   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
2948          "Only one type should be a pointer type");
2949   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
2950          "Only one type should be a floating point type");
2951   Type *IntTy =
2952       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
2953   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
2954   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
2955   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
2956 }
2957 
2958 void InnerLoopVectorizer::emitMinimumIterationCountCheck(BasicBlock *Bypass) {
2959   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
2960   // Reuse existing vector loop preheader for TC checks.
2961   // Note that new preheader block is generated for vector loop.
2962   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
2963   IRBuilder<> Builder(TCCheckBlock->getTerminator());
2964 
2965   // Generate code to check if the loop's trip count is less than VF * UF, or
2966   // equal to it in case a scalar epilogue is required; this implies that the
2967   // vector trip count is zero. This check also covers the case where adding one
2968   // to the backedge-taken count overflowed leading to an incorrect trip count
2969   // of zero. In this case we will also jump to the scalar loop.
2970   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
2971                                             : ICmpInst::ICMP_ULT;
2972 
2973   // If tail is to be folded, vector loop takes care of all iterations.
2974   Value *CheckMinIters = Builder.getFalse();
2975   if (!Cost->foldTailByMasking()) {
2976     Value *Step = createStepForVF(Builder, Count->getType(), VF, UF);
2977     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
2978   }
2979   // Create new preheader for vector loop.
2980   LoopVectorPreHeader =
2981       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
2982                  "vector.ph");
2983 
2984   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
2985                                DT->getNode(Bypass)->getIDom()) &&
2986          "TC check is expected to dominate Bypass");
2987 
2988   // Update dominator for Bypass & LoopExit (if needed).
2989   DT->changeImmediateDominator(Bypass, TCCheckBlock);
2990   if (!Cost->requiresScalarEpilogue(VF))
2991     // If there is an epilogue which must run, there's no edge from the
2992     // middle block to exit blocks  and thus no need to update the immediate
2993     // dominator of the exit blocks.
2994     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
2995 
2996   ReplaceInstWithInst(
2997       TCCheckBlock->getTerminator(),
2998       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
2999   LoopBypassBlocks.push_back(TCCheckBlock);
3000 }
3001 
3002 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) {
3003 
3004   BasicBlock *const SCEVCheckBlock =
3005       RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock);
3006   if (!SCEVCheckBlock)
3007     return nullptr;
3008 
3009   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3010            (OptForSizeBasedOnProfile &&
3011             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3012          "Cannot SCEV check stride or overflow when optimizing for size");
3013 
3014 
3015   // Update dominator only if this is first RT check.
3016   if (LoopBypassBlocks.empty()) {
3017     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3018     if (!Cost->requiresScalarEpilogue(VF))
3019       // If there is an epilogue which must run, there's no edge from the
3020       // middle block to exit blocks  and thus no need to update the immediate
3021       // dominator of the exit blocks.
3022       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3023   }
3024 
3025   LoopBypassBlocks.push_back(SCEVCheckBlock);
3026   AddedSafetyChecks = true;
3027   return SCEVCheckBlock;
3028 }
3029 
3030 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) {
3031   // VPlan-native path does not do any analysis for runtime checks currently.
3032   if (EnableVPlanNativePath)
3033     return nullptr;
3034 
3035   BasicBlock *const MemCheckBlock =
3036       RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader);
3037 
3038   // Check if we generated code that checks in runtime if arrays overlap. We put
3039   // the checks into a separate block to make the more common case of few
3040   // elements faster.
3041   if (!MemCheckBlock)
3042     return nullptr;
3043 
3044   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3045     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3046            "Cannot emit memory checks when optimizing for size, unless forced "
3047            "to vectorize.");
3048     ORE->emit([&]() {
3049       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3050                                         OrigLoop->getStartLoc(),
3051                                         OrigLoop->getHeader())
3052              << "Code-size may be reduced by not forcing "
3053                 "vectorization, or by source-code modifications "
3054                 "eliminating the need for runtime checks "
3055                 "(e.g., adding 'restrict').";
3056     });
3057   }
3058 
3059   LoopBypassBlocks.push_back(MemCheckBlock);
3060 
3061   AddedSafetyChecks = true;
3062 
3063   // We currently don't use LoopVersioning for the actual loop cloning but we
3064   // still use it to add the noalias metadata.
3065   LVer = std::make_unique<LoopVersioning>(
3066       *Legal->getLAI(),
3067       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3068       DT, PSE.getSE());
3069   LVer->prepareNoAliasMetadata();
3070   return MemCheckBlock;
3071 }
3072 
3073 void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3074   LoopScalarBody = OrigLoop->getHeader();
3075   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3076   assert(LoopVectorPreHeader && "Invalid loop structure");
3077   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3078   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3079          "multiple exit loop without required epilogue?");
3080 
3081   LoopMiddleBlock =
3082       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3083                  LI, nullptr, Twine(Prefix) + "middle.block");
3084   LoopScalarPreHeader =
3085       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3086                  nullptr, Twine(Prefix) + "scalar.ph");
3087 
3088   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3089 
3090   // Set up the middle block terminator.  Two cases:
3091   // 1) If we know that we must execute the scalar epilogue, emit an
3092   //    unconditional branch.
3093   // 2) Otherwise, we must have a single unique exit block (due to how we
3094   //    implement the multiple exit case).  In this case, set up a conditonal
3095   //    branch from the middle block to the loop scalar preheader, and the
3096   //    exit block.  completeLoopSkeleton will update the condition to use an
3097   //    iteration check, if required to decide whether to execute the remainder.
3098   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3099     BranchInst::Create(LoopScalarPreHeader) :
3100     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3101                        Builder.getTrue());
3102   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3103   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3104 
3105   // Update dominator for loop exit. During skeleton creation, only the vector
3106   // pre-header and the middle block are created. The vector loop is entirely
3107   // created during VPlan exection.
3108   if (!Cost->requiresScalarEpilogue(VF))
3109     // If there is an epilogue which must run, there's no edge from the
3110     // middle block to exit blocks  and thus no need to update the immediate
3111     // dominator of the exit blocks.
3112     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3113 }
3114 
3115 void InnerLoopVectorizer::createInductionResumeValues(
3116     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3117   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3118           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3119          "Inconsistent information about additional bypass.");
3120 
3121   Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
3122   assert(VectorTripCount && "Expected valid arguments");
3123   // We are going to resume the execution of the scalar loop.
3124   // Go over all of the induction variables that we found and fix the
3125   // PHIs that are left in the scalar version of the loop.
3126   // The starting values of PHI nodes depend on the counter of the last
3127   // iteration in the vectorized loop.
3128   // If we come from a bypass edge then we need to start from the original
3129   // start value.
3130   Instruction *OldInduction = Legal->getPrimaryInduction();
3131   for (auto &InductionEntry : Legal->getInductionVars()) {
3132     PHINode *OrigPhi = InductionEntry.first;
3133     InductionDescriptor II = InductionEntry.second;
3134 
3135     // Create phi nodes to merge from the  backedge-taken check block.
3136     PHINode *BCResumeVal =
3137         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3138                         LoopScalarPreHeader->getTerminator());
3139     // Copy original phi DL over to the new one.
3140     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3141     Value *&EndValue = IVEndValues[OrigPhi];
3142     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3143     if (OrigPhi == OldInduction) {
3144       // We know what the end value is.
3145       EndValue = VectorTripCount;
3146     } else {
3147       IRBuilder<> B(LoopVectorPreHeader->getTerminator());
3148 
3149       // Fast-math-flags propagate from the original induction instruction.
3150       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3151         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3152 
3153       Type *StepType = II.getStep()->getType();
3154       Instruction::CastOps CastOp =
3155           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3156       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3157       Value *Step =
3158           CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3159       EndValue = emitTransformedIndex(B, CRD, II.getStartValue(), Step, II);
3160       EndValue->setName("ind.end");
3161 
3162       // Compute the end value for the additional bypass (if applicable).
3163       if (AdditionalBypass.first) {
3164         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3165         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3166                                          StepType, true);
3167         Value *Step =
3168             CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3169         CRD =
3170             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3171         EndValueFromAdditionalBypass =
3172             emitTransformedIndex(B, CRD, II.getStartValue(), Step, II);
3173         EndValueFromAdditionalBypass->setName("ind.end");
3174       }
3175     }
3176     // The new PHI merges the original incoming value, in case of a bypass,
3177     // or the value at the end of the vectorized loop.
3178     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3179 
3180     // Fix the scalar body counter (PHI node).
3181     // The old induction's phi node in the scalar body needs the truncated
3182     // value.
3183     for (BasicBlock *BB : LoopBypassBlocks)
3184       BCResumeVal->addIncoming(II.getStartValue(), BB);
3185 
3186     if (AdditionalBypass.first)
3187       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3188                                             EndValueFromAdditionalBypass);
3189 
3190     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3191   }
3192 }
3193 
3194 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) {
3195   // The trip counts should be cached by now.
3196   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
3197   Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
3198 
3199   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3200 
3201   // Add a check in the middle block to see if we have completed
3202   // all of the iterations in the first vector loop.  Three cases:
3203   // 1) If we require a scalar epilogue, there is no conditional branch as
3204   //    we unconditionally branch to the scalar preheader.  Do nothing.
3205   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3206   //    Thus if tail is to be folded, we know we don't need to run the
3207   //    remainder and we can use the previous value for the condition (true).
3208   // 3) Otherwise, construct a runtime check.
3209   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3210     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3211                                         Count, VectorTripCount, "cmp.n",
3212                                         LoopMiddleBlock->getTerminator());
3213 
3214     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3215     // of the corresponding compare because they may have ended up with
3216     // different line numbers and we want to avoid awkward line stepping while
3217     // debugging. Eg. if the compare has got a line number inside the loop.
3218     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3219     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3220   }
3221 
3222 #ifdef EXPENSIVE_CHECKS
3223   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3224 #endif
3225 
3226   return LoopVectorPreHeader;
3227 }
3228 
3229 std::pair<BasicBlock *, Value *>
3230 InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3231   /*
3232    In this function we generate a new loop. The new loop will contain
3233    the vectorized instructions while the old loop will continue to run the
3234    scalar remainder.
3235 
3236        [ ] <-- loop iteration number check.
3237     /   |
3238    /    v
3239   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3240   |  /  |
3241   | /   v
3242   ||   [ ]     <-- vector pre header.
3243   |/    |
3244   |     v
3245   |    [  ] \
3246   |    [  ]_|   <-- vector loop (created during VPlan execution).
3247   |     |
3248   |     v
3249   \   -[ ]   <--- middle-block.
3250    \/   |
3251    /\   v
3252    | ->[ ]     <--- new preheader.
3253    |    |
3254  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3255    |   [ ] \
3256    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3257     \   |
3258      \  v
3259       >[ ]     <-- exit block(s).
3260    ...
3261    */
3262 
3263   // Get the metadata of the original loop before it gets modified.
3264   MDNode *OrigLoopID = OrigLoop->getLoopID();
3265 
3266   // Workaround!  Compute the trip count of the original loop and cache it
3267   // before we start modifying the CFG.  This code has a systemic problem
3268   // wherein it tries to run analysis over partially constructed IR; this is
3269   // wrong, and not simply for SCEV.  The trip count of the original loop
3270   // simply happens to be prone to hitting this in practice.  In theory, we
3271   // can hit the same issue for any SCEV, or ValueTracking query done during
3272   // mutation.  See PR49900.
3273   getOrCreateTripCount(OrigLoop->getLoopPreheader());
3274 
3275   // Create an empty vector loop, and prepare basic blocks for the runtime
3276   // checks.
3277   createVectorLoopSkeleton("");
3278 
3279   // Now, compare the new count to zero. If it is zero skip the vector loop and
3280   // jump to the scalar loop. This check also covers the case where the
3281   // backedge-taken count is uint##_max: adding one to it will overflow leading
3282   // to an incorrect trip count of zero. In this (rare) case we will also jump
3283   // to the scalar loop.
3284   emitMinimumIterationCountCheck(LoopScalarPreHeader);
3285 
3286   // Generate the code to check any assumptions that we've made for SCEV
3287   // expressions.
3288   emitSCEVChecks(LoopScalarPreHeader);
3289 
3290   // Generate the code that checks in runtime if arrays overlap. We put the
3291   // checks into a separate block to make the more common case of few elements
3292   // faster.
3293   emitMemRuntimeChecks(LoopScalarPreHeader);
3294 
3295   // Emit phis for the new starting index of the scalar loop.
3296   createInductionResumeValues();
3297 
3298   return {completeLoopSkeleton(OrigLoopID), nullptr};
3299 }
3300 
3301 // Fix up external users of the induction variable. At this point, we are
3302 // in LCSSA form, with all external PHIs that use the IV having one input value,
3303 // coming from the remainder loop. We need those PHIs to also have a correct
3304 // value for the IV when arriving directly from the middle block.
3305 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3306                                        const InductionDescriptor &II,
3307                                        Value *CountRoundDown, Value *EndValue,
3308                                        BasicBlock *MiddleBlock,
3309                                        BasicBlock *VectorHeader) {
3310   // There are two kinds of external IV usages - those that use the value
3311   // computed in the last iteration (the PHI) and those that use the penultimate
3312   // value (the value that feeds into the phi from the loop latch).
3313   // We allow both, but they, obviously, have different values.
3314 
3315   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3316 
3317   DenseMap<Value *, Value *> MissingVals;
3318 
3319   // An external user of the last iteration's value should see the value that
3320   // the remainder loop uses to initialize its own IV.
3321   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3322   for (User *U : PostInc->users()) {
3323     Instruction *UI = cast<Instruction>(U);
3324     if (!OrigLoop->contains(UI)) {
3325       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3326       MissingVals[UI] = EndValue;
3327     }
3328   }
3329 
3330   // An external user of the penultimate value need to see EndValue - Step.
3331   // The simplest way to get this is to recompute it from the constituent SCEVs,
3332   // that is Start + (Step * (CRD - 1)).
3333   for (User *U : OrigPhi->users()) {
3334     auto *UI = cast<Instruction>(U);
3335     if (!OrigLoop->contains(UI)) {
3336       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3337 
3338       IRBuilder<> B(MiddleBlock->getTerminator());
3339 
3340       // Fast-math-flags propagate from the original induction instruction.
3341       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3342         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3343 
3344       Value *CountMinusOne = B.CreateSub(
3345           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3346       Value *CMO =
3347           !II.getStep()->getType()->isIntegerTy()
3348               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3349                              II.getStep()->getType())
3350               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3351       CMO->setName("cast.cmo");
3352 
3353       Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(),
3354                                     VectorHeader->getTerminator());
3355       Value *Escape =
3356           emitTransformedIndex(B, CMO, II.getStartValue(), Step, II);
3357       Escape->setName("ind.escape");
3358       MissingVals[UI] = Escape;
3359     }
3360   }
3361 
3362   for (auto &I : MissingVals) {
3363     PHINode *PHI = cast<PHINode>(I.first);
3364     // One corner case we have to handle is two IVs "chasing" each-other,
3365     // that is %IV2 = phi [...], [ %IV1, %latch ]
3366     // In this case, if IV1 has an external use, we need to avoid adding both
3367     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3368     // don't already have an incoming value for the middle block.
3369     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3370       PHI->addIncoming(I.second, MiddleBlock);
3371   }
3372 }
3373 
3374 namespace {
3375 
3376 struct CSEDenseMapInfo {
3377   static bool canHandle(const Instruction *I) {
3378     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3379            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3380   }
3381 
3382   static inline Instruction *getEmptyKey() {
3383     return DenseMapInfo<Instruction *>::getEmptyKey();
3384   }
3385 
3386   static inline Instruction *getTombstoneKey() {
3387     return DenseMapInfo<Instruction *>::getTombstoneKey();
3388   }
3389 
3390   static unsigned getHashValue(const Instruction *I) {
3391     assert(canHandle(I) && "Unknown instruction!");
3392     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3393                                                            I->value_op_end()));
3394   }
3395 
3396   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3397     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3398         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3399       return LHS == RHS;
3400     return LHS->isIdenticalTo(RHS);
3401   }
3402 };
3403 
3404 } // end anonymous namespace
3405 
3406 ///Perform cse of induction variable instructions.
3407 static void cse(BasicBlock *BB) {
3408   // Perform simple cse.
3409   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3410   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3411     if (!CSEDenseMapInfo::canHandle(&In))
3412       continue;
3413 
3414     // Check if we can replace this instruction with any of the
3415     // visited instructions.
3416     if (Instruction *V = CSEMap.lookup(&In)) {
3417       In.replaceAllUsesWith(V);
3418       In.eraseFromParent();
3419       continue;
3420     }
3421 
3422     CSEMap[&In] = &In;
3423   }
3424 }
3425 
3426 InstructionCost
3427 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3428                                               bool &NeedToScalarize) const {
3429   Function *F = CI->getCalledFunction();
3430   Type *ScalarRetTy = CI->getType();
3431   SmallVector<Type *, 4> Tys, ScalarTys;
3432   for (auto &ArgOp : CI->args())
3433     ScalarTys.push_back(ArgOp->getType());
3434 
3435   // Estimate cost of scalarized vector call. The source operands are assumed
3436   // to be vectors, so we need to extract individual elements from there,
3437   // execute VF scalar calls, and then gather the result into the vector return
3438   // value.
3439   InstructionCost ScalarCallCost =
3440       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3441   if (VF.isScalar())
3442     return ScalarCallCost;
3443 
3444   // Compute corresponding vector type for return value and arguments.
3445   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3446   for (Type *ScalarTy : ScalarTys)
3447     Tys.push_back(ToVectorTy(ScalarTy, VF));
3448 
3449   // Compute costs of unpacking argument values for the scalar calls and
3450   // packing the return values to a vector.
3451   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3452 
3453   InstructionCost Cost =
3454       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3455 
3456   // If we can't emit a vector call for this function, then the currently found
3457   // cost is the cost we need to return.
3458   NeedToScalarize = true;
3459   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3460   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3461 
3462   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3463     return Cost;
3464 
3465   // If the corresponding vector cost is cheaper, return its cost.
3466   InstructionCost VectorCallCost =
3467       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3468   if (VectorCallCost < Cost) {
3469     NeedToScalarize = false;
3470     Cost = VectorCallCost;
3471   }
3472   return Cost;
3473 }
3474 
3475 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3476   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3477     return Elt;
3478   return VectorType::get(Elt, VF);
3479 }
3480 
3481 InstructionCost
3482 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3483                                                    ElementCount VF) const {
3484   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3485   assert(ID && "Expected intrinsic call!");
3486   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3487   FastMathFlags FMF;
3488   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3489     FMF = FPMO->getFastMathFlags();
3490 
3491   SmallVector<const Value *> Arguments(CI->args());
3492   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3493   SmallVector<Type *> ParamTys;
3494   std::transform(FTy->param_begin(), FTy->param_end(),
3495                  std::back_inserter(ParamTys),
3496                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3497 
3498   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3499                                     dyn_cast<IntrinsicInst>(CI));
3500   return TTI.getIntrinsicInstrCost(CostAttrs,
3501                                    TargetTransformInfo::TCK_RecipThroughput);
3502 }
3503 
3504 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3505   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3506   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3507   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3508 }
3509 
3510 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3511   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3512   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3513   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3514 }
3515 
3516 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3517   // For every instruction `I` in MinBWs, truncate the operands, create a
3518   // truncated version of `I` and reextend its result. InstCombine runs
3519   // later and will remove any ext/trunc pairs.
3520   SmallPtrSet<Value *, 4> Erased;
3521   for (const auto &KV : Cost->getMinimalBitwidths()) {
3522     // If the value wasn't vectorized, we must maintain the original scalar
3523     // type. The absence of the value from State indicates that it
3524     // wasn't vectorized.
3525     // FIXME: Should not rely on getVPValue at this point.
3526     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3527     if (!State.hasAnyVectorValue(Def))
3528       continue;
3529     for (unsigned Part = 0; Part < UF; ++Part) {
3530       Value *I = State.get(Def, Part);
3531       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3532         continue;
3533       Type *OriginalTy = I->getType();
3534       Type *ScalarTruncatedTy =
3535           IntegerType::get(OriginalTy->getContext(), KV.second);
3536       auto *TruncatedTy = VectorType::get(
3537           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3538       if (TruncatedTy == OriginalTy)
3539         continue;
3540 
3541       IRBuilder<> B(cast<Instruction>(I));
3542       auto ShrinkOperand = [&](Value *V) -> Value * {
3543         if (auto *ZI = dyn_cast<ZExtInst>(V))
3544           if (ZI->getSrcTy() == TruncatedTy)
3545             return ZI->getOperand(0);
3546         return B.CreateZExtOrTrunc(V, TruncatedTy);
3547       };
3548 
3549       // The actual instruction modification depends on the instruction type,
3550       // unfortunately.
3551       Value *NewI = nullptr;
3552       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3553         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3554                              ShrinkOperand(BO->getOperand(1)));
3555 
3556         // Any wrapping introduced by shrinking this operation shouldn't be
3557         // considered undefined behavior. So, we can't unconditionally copy
3558         // arithmetic wrapping flags to NewI.
3559         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3560       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3561         NewI =
3562             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3563                          ShrinkOperand(CI->getOperand(1)));
3564       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3565         NewI = B.CreateSelect(SI->getCondition(),
3566                               ShrinkOperand(SI->getTrueValue()),
3567                               ShrinkOperand(SI->getFalseValue()));
3568       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3569         switch (CI->getOpcode()) {
3570         default:
3571           llvm_unreachable("Unhandled cast!");
3572         case Instruction::Trunc:
3573           NewI = ShrinkOperand(CI->getOperand(0));
3574           break;
3575         case Instruction::SExt:
3576           NewI = B.CreateSExtOrTrunc(
3577               CI->getOperand(0),
3578               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3579           break;
3580         case Instruction::ZExt:
3581           NewI = B.CreateZExtOrTrunc(
3582               CI->getOperand(0),
3583               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3584           break;
3585         }
3586       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3587         auto Elements0 =
3588             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
3589         auto *O0 = B.CreateZExtOrTrunc(
3590             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3591         auto Elements1 =
3592             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
3593         auto *O1 = B.CreateZExtOrTrunc(
3594             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3595 
3596         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3597       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3598         // Don't do anything with the operands, just extend the result.
3599         continue;
3600       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3601         auto Elements =
3602             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
3603         auto *O0 = B.CreateZExtOrTrunc(
3604             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3605         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3606         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3607       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3608         auto Elements =
3609             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
3610         auto *O0 = B.CreateZExtOrTrunc(
3611             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3612         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3613       } else {
3614         // If we don't know what to do, be conservative and don't do anything.
3615         continue;
3616       }
3617 
3618       // Lastly, extend the result.
3619       NewI->takeName(cast<Instruction>(I));
3620       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3621       I->replaceAllUsesWith(Res);
3622       cast<Instruction>(I)->eraseFromParent();
3623       Erased.insert(I);
3624       State.reset(Def, Res, Part);
3625     }
3626   }
3627 
3628   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3629   for (const auto &KV : Cost->getMinimalBitwidths()) {
3630     // If the value wasn't vectorized, we must maintain the original scalar
3631     // type. The absence of the value from State indicates that it
3632     // wasn't vectorized.
3633     // FIXME: Should not rely on getVPValue at this point.
3634     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3635     if (!State.hasAnyVectorValue(Def))
3636       continue;
3637     for (unsigned Part = 0; Part < UF; ++Part) {
3638       Value *I = State.get(Def, Part);
3639       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3640       if (Inst && Inst->use_empty()) {
3641         Value *NewI = Inst->getOperand(0);
3642         Inst->eraseFromParent();
3643         State.reset(Def, NewI, Part);
3644       }
3645     }
3646   }
3647 }
3648 
3649 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
3650   // Insert truncates and extends for any truncated instructions as hints to
3651   // InstCombine.
3652   if (VF.isVector())
3653     truncateToMinimalBitwidths(State);
3654 
3655   // Fix widened non-induction PHIs by setting up the PHI operands.
3656   if (OrigPHIsToFix.size()) {
3657     assert(EnableVPlanNativePath &&
3658            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
3659     fixNonInductionPHIs(State);
3660   }
3661 
3662   // At this point every instruction in the original loop is widened to a
3663   // vector form. Now we need to fix the recurrences in the loop. These PHI
3664   // nodes are currently empty because we did not want to introduce cycles.
3665   // This is the second stage of vectorizing recurrences.
3666   fixCrossIterationPHIs(State);
3667 
3668   // Forget the original basic block.
3669   PSE.getSE()->forgetLoop(OrigLoop);
3670 
3671   Loop *VectorLoop = LI->getLoopFor(State.CFG.PrevBB);
3672   // If we inserted an edge from the middle block to the unique exit block,
3673   // update uses outside the loop (phis) to account for the newly inserted
3674   // edge.
3675   if (!Cost->requiresScalarEpilogue(VF)) {
3676     // Fix-up external users of the induction variables.
3677     for (auto &Entry : Legal->getInductionVars())
3678       fixupIVUsers(Entry.first, Entry.second,
3679                    getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()),
3680                    IVEndValues[Entry.first], LoopMiddleBlock,
3681                    VectorLoop->getHeader());
3682 
3683     fixLCSSAPHIs(State);
3684   }
3685 
3686   for (Instruction *PI : PredicatedInstructions)
3687     sinkScalarOperands(&*PI);
3688 
3689   // Remove redundant induction instructions.
3690   cse(VectorLoop->getHeader());
3691 
3692   // Set/update profile weights for the vector and remainder loops as original
3693   // loop iterations are now distributed among them. Note that original loop
3694   // represented by LoopScalarBody becomes remainder loop after vectorization.
3695   //
3696   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3697   // end up getting slightly roughened result but that should be OK since
3698   // profile is not inherently precise anyway. Note also possible bypass of
3699   // vector code caused by legality checks is ignored, assigning all the weight
3700   // to the vector loop, optimistically.
3701   //
3702   // For scalable vectorization we can't know at compile time how many iterations
3703   // of the loop are handled in one vector iteration, so instead assume a pessimistic
3704   // vscale of '1'.
3705   setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop,
3706                                LI->getLoopFor(LoopScalarBody),
3707                                VF.getKnownMinValue() * UF);
3708 }
3709 
3710 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
3711   // In order to support recurrences we need to be able to vectorize Phi nodes.
3712   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3713   // stage #2: We now need to fix the recurrences by adding incoming edges to
3714   // the currently empty PHI nodes. At this point every instruction in the
3715   // original loop is widened to a vector form so we can use them to construct
3716   // the incoming edges.
3717   VPBasicBlock *Header =
3718       State.Plan->getVectorLoopRegion()->getEntryBasicBlock();
3719   for (VPRecipeBase &R : Header->phis()) {
3720     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
3721       fixReduction(ReductionPhi, State);
3722     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
3723       fixFirstOrderRecurrence(FOR, State);
3724   }
3725 }
3726 
3727 void InnerLoopVectorizer::fixFirstOrderRecurrence(
3728     VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) {
3729   // This is the second phase of vectorizing first-order recurrences. An
3730   // overview of the transformation is described below. Suppose we have the
3731   // following loop.
3732   //
3733   //   for (int i = 0; i < n; ++i)
3734   //     b[i] = a[i] - a[i - 1];
3735   //
3736   // There is a first-order recurrence on "a". For this loop, the shorthand
3737   // scalar IR looks like:
3738   //
3739   //   scalar.ph:
3740   //     s_init = a[-1]
3741   //     br scalar.body
3742   //
3743   //   scalar.body:
3744   //     i = phi [0, scalar.ph], [i+1, scalar.body]
3745   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3746   //     s2 = a[i]
3747   //     b[i] = s2 - s1
3748   //     br cond, scalar.body, ...
3749   //
3750   // In this example, s1 is a recurrence because it's value depends on the
3751   // previous iteration. In the first phase of vectorization, we created a
3752   // vector phi v1 for s1. We now complete the vectorization and produce the
3753   // shorthand vector IR shown below (for VF = 4, UF = 1).
3754   //
3755   //   vector.ph:
3756   //     v_init = vector(..., ..., ..., a[-1])
3757   //     br vector.body
3758   //
3759   //   vector.body
3760   //     i = phi [0, vector.ph], [i+4, vector.body]
3761   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
3762   //     v2 = a[i, i+1, i+2, i+3];
3763   //     v3 = vector(v1(3), v2(0, 1, 2))
3764   //     b[i, i+1, i+2, i+3] = v2 - v3
3765   //     br cond, vector.body, middle.block
3766   //
3767   //   middle.block:
3768   //     x = v2(3)
3769   //     br scalar.ph
3770   //
3771   //   scalar.ph:
3772   //     s_init = phi [x, middle.block], [a[-1], otherwise]
3773   //     br scalar.body
3774   //
3775   // After execution completes the vector loop, we extract the next value of
3776   // the recurrence (x) to use as the initial value in the scalar loop.
3777 
3778   // Extract the last vector element in the middle block. This will be the
3779   // initial value for the recurrence when jumping to the scalar loop.
3780   VPValue *PreviousDef = PhiR->getBackedgeValue();
3781   Value *Incoming = State.get(PreviousDef, UF - 1);
3782   auto *ExtractForScalar = Incoming;
3783   auto *IdxTy = Builder.getInt32Ty();
3784   if (VF.isVector()) {
3785     auto *One = ConstantInt::get(IdxTy, 1);
3786     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3787     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
3788     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
3789     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
3790                                                     "vector.recur.extract");
3791   }
3792   // Extract the second last element in the middle block if the
3793   // Phi is used outside the loop. We need to extract the phi itself
3794   // and not the last element (the phi update in the current iteration). This
3795   // will be the value when jumping to the exit block from the LoopMiddleBlock,
3796   // when the scalar loop is not run at all.
3797   Value *ExtractForPhiUsedOutsideLoop = nullptr;
3798   if (VF.isVector()) {
3799     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
3800     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
3801     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
3802         Incoming, Idx, "vector.recur.extract.for.phi");
3803   } else if (UF > 1)
3804     // When loop is unrolled without vectorizing, initialize
3805     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
3806     // of `Incoming`. This is analogous to the vectorized case above: extracting
3807     // the second last element when VF > 1.
3808     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
3809 
3810   // Fix the initial value of the original recurrence in the scalar loop.
3811   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
3812   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
3813   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
3814   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
3815   for (auto *BB : predecessors(LoopScalarPreHeader)) {
3816     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
3817     Start->addIncoming(Incoming, BB);
3818   }
3819 
3820   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
3821   Phi->setName("scalar.recur");
3822 
3823   // Finally, fix users of the recurrence outside the loop. The users will need
3824   // either the last value of the scalar recurrence or the last value of the
3825   // vector recurrence we extracted in the middle block. Since the loop is in
3826   // LCSSA form, we just need to find all the phi nodes for the original scalar
3827   // recurrence in the exit block, and then add an edge for the middle block.
3828   // Note that LCSSA does not imply single entry when the original scalar loop
3829   // had multiple exiting edges (as we always run the last iteration in the
3830   // scalar epilogue); in that case, there is no edge from middle to exit and
3831   // and thus no phis which needed updated.
3832   if (!Cost->requiresScalarEpilogue(VF))
3833     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
3834       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi))
3835         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
3836 }
3837 
3838 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
3839                                        VPTransformState &State) {
3840   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
3841   // Get it's reduction variable descriptor.
3842   assert(Legal->isReductionVariable(OrigPhi) &&
3843          "Unable to find the reduction variable");
3844   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
3845 
3846   RecurKind RK = RdxDesc.getRecurrenceKind();
3847   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3848   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3849   setDebugLocFromInst(ReductionStartValue);
3850 
3851   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
3852   // This is the vector-clone of the value that leaves the loop.
3853   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
3854 
3855   // Wrap flags are in general invalid after vectorization, clear them.
3856   clearReductionWrapFlags(RdxDesc, State);
3857 
3858   // Before each round, move the insertion point right between
3859   // the PHIs and the values we are going to write.
3860   // This allows us to write both PHINodes and the extractelement
3861   // instructions.
3862   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3863 
3864   setDebugLocFromInst(LoopExitInst);
3865 
3866   Type *PhiTy = OrigPhi->getType();
3867   BasicBlock *VectorLoopLatch =
3868       LI->getLoopFor(State.CFG.PrevBB)->getLoopLatch();
3869   // If tail is folded by masking, the vector value to leave the loop should be
3870   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
3871   // instead of the former. For an inloop reduction the reduction will already
3872   // be predicated, and does not need to be handled here.
3873   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
3874     for (unsigned Part = 0; Part < UF; ++Part) {
3875       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
3876       Value *Sel = nullptr;
3877       for (User *U : VecLoopExitInst->users()) {
3878         if (isa<SelectInst>(U)) {
3879           assert(!Sel && "Reduction exit feeding two selects");
3880           Sel = U;
3881         } else
3882           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
3883       }
3884       assert(Sel && "Reduction exit feeds no select");
3885       State.reset(LoopExitInstDef, Sel, Part);
3886 
3887       // If the target can create a predicated operator for the reduction at no
3888       // extra cost in the loop (for example a predicated vadd), it can be
3889       // cheaper for the select to remain in the loop than be sunk out of it,
3890       // and so use the select value for the phi instead of the old
3891       // LoopExitValue.
3892       if (PreferPredicatedReductionSelect ||
3893           TTI->preferPredicatedReductionSelect(
3894               RdxDesc.getOpcode(), PhiTy,
3895               TargetTransformInfo::ReductionFlags())) {
3896         auto *VecRdxPhi =
3897             cast<PHINode>(State.get(PhiR, Part));
3898         VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel);
3899       }
3900     }
3901   }
3902 
3903   // If the vector reduction can be performed in a smaller type, we truncate
3904   // then extend the loop exit value to enable InstCombine to evaluate the
3905   // entire expression in the smaller type.
3906   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
3907     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
3908     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
3909     Builder.SetInsertPoint(VectorLoopLatch->getTerminator());
3910     VectorParts RdxParts(UF);
3911     for (unsigned Part = 0; Part < UF; ++Part) {
3912       RdxParts[Part] = State.get(LoopExitInstDef, Part);
3913       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3914       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
3915                                         : Builder.CreateZExt(Trunc, VecTy);
3916       for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
3917         if (U != Trunc) {
3918           U->replaceUsesOfWith(RdxParts[Part], Extnd);
3919           RdxParts[Part] = Extnd;
3920         }
3921     }
3922     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3923     for (unsigned Part = 0; Part < UF; ++Part) {
3924       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3925       State.reset(LoopExitInstDef, RdxParts[Part], Part);
3926     }
3927   }
3928 
3929   // Reduce all of the unrolled parts into a single vector.
3930   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
3931   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
3932 
3933   // The middle block terminator has already been assigned a DebugLoc here (the
3934   // OrigLoop's single latch terminator). We want the whole middle block to
3935   // appear to execute on this line because: (a) it is all compiler generated,
3936   // (b) these instructions are always executed after evaluating the latch
3937   // conditional branch, and (c) other passes may add new predecessors which
3938   // terminate on this line. This is the easiest way to ensure we don't
3939   // accidentally cause an extra step back into the loop while debugging.
3940   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
3941   if (PhiR->isOrdered())
3942     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
3943   else {
3944     // Floating-point operations should have some FMF to enable the reduction.
3945     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
3946     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
3947     for (unsigned Part = 1; Part < UF; ++Part) {
3948       Value *RdxPart = State.get(LoopExitInstDef, Part);
3949       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
3950         ReducedPartRdx = Builder.CreateBinOp(
3951             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
3952       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
3953         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
3954                                            ReducedPartRdx, RdxPart);
3955       else
3956         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
3957     }
3958   }
3959 
3960   // Create the reduction after the loop. Note that inloop reductions create the
3961   // target reduction in the loop using a Reduction recipe.
3962   if (VF.isVector() && !PhiR->isInLoop()) {
3963     ReducedPartRdx =
3964         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
3965     // If the reduction can be performed in a smaller type, we need to extend
3966     // the reduction to the wider type before we branch to the original loop.
3967     if (PhiTy != RdxDesc.getRecurrenceType())
3968       ReducedPartRdx = RdxDesc.isSigned()
3969                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
3970                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
3971   }
3972 
3973   PHINode *ResumePhi =
3974       dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue());
3975 
3976   // Create a phi node that merges control-flow from the backedge-taken check
3977   // block and the middle block.
3978   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
3979                                         LoopScalarPreHeader->getTerminator());
3980 
3981   // If we are fixing reductions in the epilogue loop then we should already
3982   // have created a bc.merge.rdx Phi after the main vector body. Ensure that
3983   // we carry over the incoming values correctly.
3984   for (auto *Incoming : predecessors(LoopScalarPreHeader)) {
3985     if (Incoming == LoopMiddleBlock)
3986       BCBlockPhi->addIncoming(ReducedPartRdx, Incoming);
3987     else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming))
3988       BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming),
3989                               Incoming);
3990     else
3991       BCBlockPhi->addIncoming(ReductionStartValue, Incoming);
3992   }
3993 
3994   // Set the resume value for this reduction
3995   ReductionResumeValues.insert({&RdxDesc, BCBlockPhi});
3996 
3997   // Now, we need to fix the users of the reduction variable
3998   // inside and outside of the scalar remainder loop.
3999 
4000   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4001   // in the exit blocks.  See comment on analogous loop in
4002   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4003   if (!Cost->requiresScalarEpilogue(VF))
4004     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4005       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst))
4006         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4007 
4008   // Fix the scalar loop reduction variable with the incoming reduction sum
4009   // from the vector body and from the backedge value.
4010   int IncomingEdgeBlockIdx =
4011       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4012   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4013   // Pick the other block.
4014   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4015   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4016   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4017 }
4018 
4019 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4020                                                   VPTransformState &State) {
4021   RecurKind RK = RdxDesc.getRecurrenceKind();
4022   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4023     return;
4024 
4025   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4026   assert(LoopExitInstr && "null loop exit instruction");
4027   SmallVector<Instruction *, 8> Worklist;
4028   SmallPtrSet<Instruction *, 8> Visited;
4029   Worklist.push_back(LoopExitInstr);
4030   Visited.insert(LoopExitInstr);
4031 
4032   while (!Worklist.empty()) {
4033     Instruction *Cur = Worklist.pop_back_val();
4034     if (isa<OverflowingBinaryOperator>(Cur))
4035       for (unsigned Part = 0; Part < UF; ++Part) {
4036         // FIXME: Should not rely on getVPValue at this point.
4037         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4038         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4039       }
4040 
4041     for (User *U : Cur->users()) {
4042       Instruction *UI = cast<Instruction>(U);
4043       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4044           Visited.insert(UI).second)
4045         Worklist.push_back(UI);
4046     }
4047   }
4048 }
4049 
4050 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4051   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4052     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4053       // Some phis were already hand updated by the reduction and recurrence
4054       // code above, leave them alone.
4055       continue;
4056 
4057     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4058     // Non-instruction incoming values will have only one value.
4059 
4060     VPLane Lane = VPLane::getFirstLane();
4061     if (isa<Instruction>(IncomingValue) &&
4062         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4063                                            VF))
4064       Lane = VPLane::getLastLaneForVF(VF);
4065 
4066     // Can be a loop invariant incoming value or the last scalar value to be
4067     // extracted from the vectorized loop.
4068     // FIXME: Should not rely on getVPValue at this point.
4069     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4070     Value *lastIncomingValue =
4071         OrigLoop->isLoopInvariant(IncomingValue)
4072             ? IncomingValue
4073             : State.get(State.Plan->getVPValue(IncomingValue, true),
4074                         VPIteration(UF - 1, Lane));
4075     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4076   }
4077 }
4078 
4079 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4080   // The basic block and loop containing the predicated instruction.
4081   auto *PredBB = PredInst->getParent();
4082   auto *VectorLoop = LI->getLoopFor(PredBB);
4083 
4084   // Initialize a worklist with the operands of the predicated instruction.
4085   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4086 
4087   // Holds instructions that we need to analyze again. An instruction may be
4088   // reanalyzed if we don't yet know if we can sink it or not.
4089   SmallVector<Instruction *, 8> InstsToReanalyze;
4090 
4091   // Returns true if a given use occurs in the predicated block. Phi nodes use
4092   // their operands in their corresponding predecessor blocks.
4093   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4094     auto *I = cast<Instruction>(U.getUser());
4095     BasicBlock *BB = I->getParent();
4096     if (auto *Phi = dyn_cast<PHINode>(I))
4097       BB = Phi->getIncomingBlock(
4098           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4099     return BB == PredBB;
4100   };
4101 
4102   // Iteratively sink the scalarized operands of the predicated instruction
4103   // into the block we created for it. When an instruction is sunk, it's
4104   // operands are then added to the worklist. The algorithm ends after one pass
4105   // through the worklist doesn't sink a single instruction.
4106   bool Changed;
4107   do {
4108     // Add the instructions that need to be reanalyzed to the worklist, and
4109     // reset the changed indicator.
4110     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4111     InstsToReanalyze.clear();
4112     Changed = false;
4113 
4114     while (!Worklist.empty()) {
4115       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4116 
4117       // We can't sink an instruction if it is a phi node, is not in the loop,
4118       // or may have side effects.
4119       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4120           I->mayHaveSideEffects())
4121         continue;
4122 
4123       // If the instruction is already in PredBB, check if we can sink its
4124       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4125       // sinking the scalar instruction I, hence it appears in PredBB; but it
4126       // may have failed to sink I's operands (recursively), which we try
4127       // (again) here.
4128       if (I->getParent() == PredBB) {
4129         Worklist.insert(I->op_begin(), I->op_end());
4130         continue;
4131       }
4132 
4133       // It's legal to sink the instruction if all its uses occur in the
4134       // predicated block. Otherwise, there's nothing to do yet, and we may
4135       // need to reanalyze the instruction.
4136       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4137         InstsToReanalyze.push_back(I);
4138         continue;
4139       }
4140 
4141       // Move the instruction to the beginning of the predicated block, and add
4142       // it's operands to the worklist.
4143       I->moveBefore(&*PredBB->getFirstInsertionPt());
4144       Worklist.insert(I->op_begin(), I->op_end());
4145 
4146       // The sinking may have enabled other instructions to be sunk, so we will
4147       // need to iterate.
4148       Changed = true;
4149     }
4150   } while (Changed);
4151 }
4152 
4153 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4154   for (PHINode *OrigPhi : OrigPHIsToFix) {
4155     VPWidenPHIRecipe *VPPhi =
4156         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4157     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4158     // Make sure the builder has a valid insert point.
4159     Builder.SetInsertPoint(NewPhi);
4160     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4161       VPValue *Inc = VPPhi->getIncomingValue(i);
4162       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4163       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4164     }
4165   }
4166 }
4167 
4168 bool InnerLoopVectorizer::useOrderedReductions(
4169     const RecurrenceDescriptor &RdxDesc) {
4170   return Cost->useOrderedReductions(RdxDesc);
4171 }
4172 
4173 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4174                                               VPWidenPHIRecipe *PhiR,
4175                                               VPTransformState &State) {
4176   assert(EnableVPlanNativePath &&
4177          "Non-native vplans are not expected to have VPWidenPHIRecipes.");
4178   // Currently we enter here in the VPlan-native path for non-induction
4179   // PHIs where all control flow is uniform. We simply widen these PHIs.
4180   // Create a vector phi with no operands - the vector phi operands will be
4181   // set at the end of vector code generation.
4182   Type *VecTy = (State.VF.isScalar())
4183                     ? PN->getType()
4184                     : VectorType::get(PN->getType(), State.VF);
4185   Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4186   State.set(PhiR, VecPhi, 0);
4187   OrigPHIsToFix.push_back(cast<PHINode>(PN));
4188 }
4189 
4190 /// A helper function for checking whether an integer division-related
4191 /// instruction may divide by zero (in which case it must be predicated if
4192 /// executed conditionally in the scalar code).
4193 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4194 /// Non-zero divisors that are non compile-time constants will not be
4195 /// converted into multiplication, so we will still end up scalarizing
4196 /// the division, but can do so w/o predication.
4197 static bool mayDivideByZero(Instruction &I) {
4198   assert((I.getOpcode() == Instruction::UDiv ||
4199           I.getOpcode() == Instruction::SDiv ||
4200           I.getOpcode() == Instruction::URem ||
4201           I.getOpcode() == Instruction::SRem) &&
4202          "Unexpected instruction");
4203   Value *Divisor = I.getOperand(1);
4204   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4205   return !CInt || CInt->isZero();
4206 }
4207 
4208 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4209                                                VPUser &ArgOperands,
4210                                                VPTransformState &State) {
4211   assert(!isa<DbgInfoIntrinsic>(I) &&
4212          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4213   setDebugLocFromInst(&I);
4214 
4215   Module *M = I.getParent()->getParent()->getParent();
4216   auto *CI = cast<CallInst>(&I);
4217 
4218   SmallVector<Type *, 4> Tys;
4219   for (Value *ArgOperand : CI->args())
4220     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4221 
4222   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4223 
4224   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4225   // version of the instruction.
4226   // Is it beneficial to perform intrinsic call compared to lib call?
4227   bool NeedToScalarize = false;
4228   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4229   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4230   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4231   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4232          "Instruction should be scalarized elsewhere.");
4233   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4234          "Either the intrinsic cost or vector call cost must be valid");
4235 
4236   for (unsigned Part = 0; Part < UF; ++Part) {
4237     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4238     SmallVector<Value *, 4> Args;
4239     for (auto &I : enumerate(ArgOperands.operands())) {
4240       // Some intrinsics have a scalar argument - don't replace it with a
4241       // vector.
4242       Value *Arg;
4243       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
4244         Arg = State.get(I.value(), Part);
4245       else {
4246         Arg = State.get(I.value(), VPIteration(0, 0));
4247         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
4248           TysForDecl.push_back(Arg->getType());
4249       }
4250       Args.push_back(Arg);
4251     }
4252 
4253     Function *VectorF;
4254     if (UseVectorIntrinsic) {
4255       // Use vector version of the intrinsic.
4256       if (VF.isVector())
4257         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4258       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4259       assert(VectorF && "Can't retrieve vector intrinsic.");
4260     } else {
4261       // Use vector version of the function call.
4262       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
4263 #ifndef NDEBUG
4264       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4265              "Can't create vector function.");
4266 #endif
4267         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4268     }
4269       SmallVector<OperandBundleDef, 1> OpBundles;
4270       CI->getOperandBundlesAsDefs(OpBundles);
4271       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4272 
4273       if (isa<FPMathOperator>(V))
4274         V->copyFastMathFlags(CI);
4275 
4276       State.set(Def, V, Part);
4277       addMetadata(V, &I);
4278   }
4279 }
4280 
4281 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
4282   // We should not collect Scalars more than once per VF. Right now, this
4283   // function is called from collectUniformsAndScalars(), which already does
4284   // this check. Collecting Scalars for VF=1 does not make any sense.
4285   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
4286          "This function should not be visited twice for the same VF");
4287 
4288   // This avoids any chances of creating a REPLICATE recipe during planning
4289   // since that would result in generation of scalarized code during execution,
4290   // which is not supported for scalable vectors.
4291   if (VF.isScalable()) {
4292     Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end());
4293     return;
4294   }
4295 
4296   SmallSetVector<Instruction *, 8> Worklist;
4297 
4298   // These sets are used to seed the analysis with pointers used by memory
4299   // accesses that will remain scalar.
4300   SmallSetVector<Instruction *, 8> ScalarPtrs;
4301   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4302   auto *Latch = TheLoop->getLoopLatch();
4303 
4304   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4305   // The pointer operands of loads and stores will be scalar as long as the
4306   // memory access is not a gather or scatter operation. The value operand of a
4307   // store will remain scalar if the store is scalarized.
4308   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4309     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4310     assert(WideningDecision != CM_Unknown &&
4311            "Widening decision should be ready at this moment");
4312     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4313       if (Ptr == Store->getValueOperand())
4314         return WideningDecision == CM_Scalarize;
4315     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4316            "Ptr is neither a value or pointer operand");
4317     return WideningDecision != CM_GatherScatter;
4318   };
4319 
4320   // A helper that returns true if the given value is a bitcast or
4321   // getelementptr instruction contained in the loop.
4322   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4323     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4324             isa<GetElementPtrInst>(V)) &&
4325            !TheLoop->isLoopInvariant(V);
4326   };
4327 
4328   // A helper that evaluates a memory access's use of a pointer. If the use will
4329   // be a scalar use and the pointer is only used by memory accesses, we place
4330   // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4331   // PossibleNonScalarPtrs.
4332   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4333     // We only care about bitcast and getelementptr instructions contained in
4334     // the loop.
4335     if (!isLoopVaryingBitCastOrGEP(Ptr))
4336       return;
4337 
4338     // If the pointer has already been identified as scalar (e.g., if it was
4339     // also identified as uniform), there's nothing to do.
4340     auto *I = cast<Instruction>(Ptr);
4341     if (Worklist.count(I))
4342       return;
4343 
4344     // If the use of the pointer will be a scalar use, and all users of the
4345     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4346     // place the pointer in PossibleNonScalarPtrs.
4347     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4348           return isa<LoadInst>(U) || isa<StoreInst>(U);
4349         }))
4350       ScalarPtrs.insert(I);
4351     else
4352       PossibleNonScalarPtrs.insert(I);
4353   };
4354 
4355   // We seed the scalars analysis with three classes of instructions: (1)
4356   // instructions marked uniform-after-vectorization and (2) bitcast,
4357   // getelementptr and (pointer) phi instructions used by memory accesses
4358   // requiring a scalar use.
4359   //
4360   // (1) Add to the worklist all instructions that have been identified as
4361   // uniform-after-vectorization.
4362   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4363 
4364   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4365   // memory accesses requiring a scalar use. The pointer operands of loads and
4366   // stores will be scalar as long as the memory accesses is not a gather or
4367   // scatter operation. The value operand of a store will remain scalar if the
4368   // store is scalarized.
4369   for (auto *BB : TheLoop->blocks())
4370     for (auto &I : *BB) {
4371       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4372         evaluatePtrUse(Load, Load->getPointerOperand());
4373       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4374         evaluatePtrUse(Store, Store->getPointerOperand());
4375         evaluatePtrUse(Store, Store->getValueOperand());
4376       }
4377     }
4378   for (auto *I : ScalarPtrs)
4379     if (!PossibleNonScalarPtrs.count(I)) {
4380       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4381       Worklist.insert(I);
4382     }
4383 
4384   // Insert the forced scalars.
4385   // FIXME: Currently widenPHIInstruction() often creates a dead vector
4386   // induction variable when the PHI user is scalarized.
4387   auto ForcedScalar = ForcedScalars.find(VF);
4388   if (ForcedScalar != ForcedScalars.end())
4389     for (auto *I : ForcedScalar->second)
4390       Worklist.insert(I);
4391 
4392   // Expand the worklist by looking through any bitcasts and getelementptr
4393   // instructions we've already identified as scalar. This is similar to the
4394   // expansion step in collectLoopUniforms(); however, here we're only
4395   // expanding to include additional bitcasts and getelementptr instructions.
4396   unsigned Idx = 0;
4397   while (Idx != Worklist.size()) {
4398     Instruction *Dst = Worklist[Idx++];
4399     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4400       continue;
4401     auto *Src = cast<Instruction>(Dst->getOperand(0));
4402     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4403           auto *J = cast<Instruction>(U);
4404           return !TheLoop->contains(J) || Worklist.count(J) ||
4405                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4406                   isScalarUse(J, Src));
4407         })) {
4408       Worklist.insert(Src);
4409       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4410     }
4411   }
4412 
4413   // An induction variable will remain scalar if all users of the induction
4414   // variable and induction variable update remain scalar.
4415   for (auto &Induction : Legal->getInductionVars()) {
4416     auto *Ind = Induction.first;
4417     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4418 
4419     // If tail-folding is applied, the primary induction variable will be used
4420     // to feed a vector compare.
4421     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4422       continue;
4423 
4424     // Returns true if \p Indvar is a pointer induction that is used directly by
4425     // load/store instruction \p I.
4426     auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
4427                                               Instruction *I) {
4428       return Induction.second.getKind() ==
4429                  InductionDescriptor::IK_PtrInduction &&
4430              (isa<LoadInst>(I) || isa<StoreInst>(I)) &&
4431              Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar);
4432     };
4433 
4434     // Determine if all users of the induction variable are scalar after
4435     // vectorization.
4436     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4437       auto *I = cast<Instruction>(U);
4438       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4439              IsDirectLoadStoreFromPtrIndvar(Ind, I);
4440     });
4441     if (!ScalarInd)
4442       continue;
4443 
4444     // Determine if all users of the induction variable update instruction are
4445     // scalar after vectorization.
4446     auto ScalarIndUpdate =
4447         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4448           auto *I = cast<Instruction>(U);
4449           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4450                  IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
4451         });
4452     if (!ScalarIndUpdate)
4453       continue;
4454 
4455     // The induction variable and its update instruction will remain scalar.
4456     Worklist.insert(Ind);
4457     Worklist.insert(IndUpdate);
4458     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4459     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4460                       << "\n");
4461   }
4462 
4463   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4464 }
4465 
4466 bool LoopVectorizationCostModel::isScalarWithPredication(
4467     Instruction *I, ElementCount VF) const {
4468   if (!blockNeedsPredicationForAnyReason(I->getParent()))
4469     return false;
4470   switch(I->getOpcode()) {
4471   default:
4472     break;
4473   case Instruction::Load:
4474   case Instruction::Store: {
4475     if (!Legal->isMaskRequired(I))
4476       return false;
4477     auto *Ptr = getLoadStorePointerOperand(I);
4478     auto *Ty = getLoadStoreType(I);
4479     Type *VTy = Ty;
4480     if (VF.isVector())
4481       VTy = VectorType::get(Ty, VF);
4482     const Align Alignment = getLoadStoreAlignment(I);
4483     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4484                                 TTI.isLegalMaskedGather(VTy, Alignment))
4485                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4486                                 TTI.isLegalMaskedScatter(VTy, Alignment));
4487   }
4488   case Instruction::UDiv:
4489   case Instruction::SDiv:
4490   case Instruction::SRem:
4491   case Instruction::URem:
4492     return mayDivideByZero(*I);
4493   }
4494   return false;
4495 }
4496 
4497 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
4498     Instruction *I, ElementCount VF) {
4499   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4500   assert(getWideningDecision(I, VF) == CM_Unknown &&
4501          "Decision should not be set yet.");
4502   auto *Group = getInterleavedAccessGroup(I);
4503   assert(Group && "Must have a group.");
4504 
4505   // If the instruction's allocated size doesn't equal it's type size, it
4506   // requires padding and will be scalarized.
4507   auto &DL = I->getModule()->getDataLayout();
4508   auto *ScalarTy = getLoadStoreType(I);
4509   if (hasIrregularType(ScalarTy, DL))
4510     return false;
4511 
4512   // If the group involves a non-integral pointer, we may not be able to
4513   // losslessly cast all values to a common type.
4514   unsigned InterleaveFactor = Group->getFactor();
4515   bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy);
4516   for (unsigned i = 0; i < InterleaveFactor; i++) {
4517     Instruction *Member = Group->getMember(i);
4518     if (!Member)
4519       continue;
4520     auto *MemberTy = getLoadStoreType(Member);
4521     bool MemberNI = DL.isNonIntegralPointerType(MemberTy);
4522     // Don't coerce non-integral pointers to integers or vice versa.
4523     if (MemberNI != ScalarNI) {
4524       // TODO: Consider adding special nullptr value case here
4525       return false;
4526     } else if (MemberNI && ScalarNI &&
4527                ScalarTy->getPointerAddressSpace() !=
4528                MemberTy->getPointerAddressSpace()) {
4529       return false;
4530     }
4531   }
4532 
4533   // Check if masking is required.
4534   // A Group may need masking for one of two reasons: it resides in a block that
4535   // needs predication, or it was decided to use masking to deal with gaps
4536   // (either a gap at the end of a load-access that may result in a speculative
4537   // load, or any gaps in a store-access).
4538   bool PredicatedAccessRequiresMasking =
4539       blockNeedsPredicationForAnyReason(I->getParent()) &&
4540       Legal->isMaskRequired(I);
4541   bool LoadAccessWithGapsRequiresEpilogMasking =
4542       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
4543       !isScalarEpilogueAllowed();
4544   bool StoreAccessWithGapsRequiresMasking =
4545       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
4546   if (!PredicatedAccessRequiresMasking &&
4547       !LoadAccessWithGapsRequiresEpilogMasking &&
4548       !StoreAccessWithGapsRequiresMasking)
4549     return true;
4550 
4551   // If masked interleaving is required, we expect that the user/target had
4552   // enabled it, because otherwise it either wouldn't have been created or
4553   // it should have been invalidated by the CostModel.
4554   assert(useMaskedInterleavedAccesses(TTI) &&
4555          "Masked interleave-groups for predicated accesses are not enabled.");
4556 
4557   if (Group->isReverse())
4558     return false;
4559 
4560   auto *Ty = getLoadStoreType(I);
4561   const Align Alignment = getLoadStoreAlignment(I);
4562   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4563                           : TTI.isLegalMaskedStore(Ty, Alignment);
4564 }
4565 
4566 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
4567     Instruction *I, ElementCount VF) {
4568   // Get and ensure we have a valid memory instruction.
4569   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
4570 
4571   auto *Ptr = getLoadStorePointerOperand(I);
4572   auto *ScalarTy = getLoadStoreType(I);
4573 
4574   // In order to be widened, the pointer should be consecutive, first of all.
4575   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
4576     return false;
4577 
4578   // If the instruction is a store located in a predicated block, it will be
4579   // scalarized.
4580   if (isScalarWithPredication(I, VF))
4581     return false;
4582 
4583   // If the instruction's allocated size doesn't equal it's type size, it
4584   // requires padding and will be scalarized.
4585   auto &DL = I->getModule()->getDataLayout();
4586   if (hasIrregularType(ScalarTy, DL))
4587     return false;
4588 
4589   return true;
4590 }
4591 
4592 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
4593   // We should not collect Uniforms more than once per VF. Right now,
4594   // this function is called from collectUniformsAndScalars(), which
4595   // already does this check. Collecting Uniforms for VF=1 does not make any
4596   // sense.
4597 
4598   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
4599          "This function should not be visited twice for the same VF");
4600 
4601   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4602   // not analyze again.  Uniforms.count(VF) will return 1.
4603   Uniforms[VF].clear();
4604 
4605   // We now know that the loop is vectorizable!
4606   // Collect instructions inside the loop that will remain uniform after
4607   // vectorization.
4608 
4609   // Global values, params and instructions outside of current loop are out of
4610   // scope.
4611   auto isOutOfScope = [&](Value *V) -> bool {
4612     Instruction *I = dyn_cast<Instruction>(V);
4613     return (!I || !TheLoop->contains(I));
4614   };
4615 
4616   // Worklist containing uniform instructions demanding lane 0.
4617   SetVector<Instruction *> Worklist;
4618   BasicBlock *Latch = TheLoop->getLoopLatch();
4619 
4620   // Add uniform instructions demanding lane 0 to the worklist. Instructions
4621   // that are scalar with predication must not be considered uniform after
4622   // vectorization, because that would create an erroneous replicating region
4623   // where only a single instance out of VF should be formed.
4624   // TODO: optimize such seldom cases if found important, see PR40816.
4625   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
4626     if (isOutOfScope(I)) {
4627       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
4628                         << *I << "\n");
4629       return;
4630     }
4631     if (isScalarWithPredication(I, VF)) {
4632       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
4633                         << *I << "\n");
4634       return;
4635     }
4636     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
4637     Worklist.insert(I);
4638   };
4639 
4640   // Start with the conditional branch. If the branch condition is an
4641   // instruction contained in the loop that is only used by the branch, it is
4642   // uniform.
4643   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
4644   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
4645     addToWorklistIfAllowed(Cmp);
4646 
4647   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
4648     InstWidening WideningDecision = getWideningDecision(I, VF);
4649     assert(WideningDecision != CM_Unknown &&
4650            "Widening decision should be ready at this moment");
4651 
4652     // A uniform memory op is itself uniform.  We exclude uniform stores
4653     // here as they demand the last lane, not the first one.
4654     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
4655       assert(WideningDecision == CM_Scalarize);
4656       return true;
4657     }
4658 
4659     return (WideningDecision == CM_Widen ||
4660             WideningDecision == CM_Widen_Reverse ||
4661             WideningDecision == CM_Interleave);
4662   };
4663 
4664 
4665   // Returns true if Ptr is the pointer operand of a memory access instruction
4666   // I, and I is known to not require scalarization.
4667   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
4668     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
4669   };
4670 
4671   // Holds a list of values which are known to have at least one uniform use.
4672   // Note that there may be other uses which aren't uniform.  A "uniform use"
4673   // here is something which only demands lane 0 of the unrolled iterations;
4674   // it does not imply that all lanes produce the same value (e.g. this is not
4675   // the usual meaning of uniform)
4676   SetVector<Value *> HasUniformUse;
4677 
4678   // Scan the loop for instructions which are either a) known to have only
4679   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
4680   for (auto *BB : TheLoop->blocks())
4681     for (auto &I : *BB) {
4682       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
4683         switch (II->getIntrinsicID()) {
4684         case Intrinsic::sideeffect:
4685         case Intrinsic::experimental_noalias_scope_decl:
4686         case Intrinsic::assume:
4687         case Intrinsic::lifetime_start:
4688         case Intrinsic::lifetime_end:
4689           if (TheLoop->hasLoopInvariantOperands(&I))
4690             addToWorklistIfAllowed(&I);
4691           break;
4692         default:
4693           break;
4694         }
4695       }
4696 
4697       // ExtractValue instructions must be uniform, because the operands are
4698       // known to be loop-invariant.
4699       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
4700         assert(isOutOfScope(EVI->getAggregateOperand()) &&
4701                "Expected aggregate value to be loop invariant");
4702         addToWorklistIfAllowed(EVI);
4703         continue;
4704       }
4705 
4706       // If there's no pointer operand, there's nothing to do.
4707       auto *Ptr = getLoadStorePointerOperand(&I);
4708       if (!Ptr)
4709         continue;
4710 
4711       // A uniform memory op is itself uniform.  We exclude uniform stores
4712       // here as they demand the last lane, not the first one.
4713       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
4714         addToWorklistIfAllowed(&I);
4715 
4716       if (isUniformDecision(&I, VF)) {
4717         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
4718         HasUniformUse.insert(Ptr);
4719       }
4720     }
4721 
4722   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
4723   // demanding) users.  Since loops are assumed to be in LCSSA form, this
4724   // disallows uses outside the loop as well.
4725   for (auto *V : HasUniformUse) {
4726     if (isOutOfScope(V))
4727       continue;
4728     auto *I = cast<Instruction>(V);
4729     auto UsersAreMemAccesses =
4730       llvm::all_of(I->users(), [&](User *U) -> bool {
4731         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
4732       });
4733     if (UsersAreMemAccesses)
4734       addToWorklistIfAllowed(I);
4735   }
4736 
4737   // Expand Worklist in topological order: whenever a new instruction
4738   // is added , its users should be already inside Worklist.  It ensures
4739   // a uniform instruction will only be used by uniform instructions.
4740   unsigned idx = 0;
4741   while (idx != Worklist.size()) {
4742     Instruction *I = Worklist[idx++];
4743 
4744     for (auto OV : I->operand_values()) {
4745       // isOutOfScope operands cannot be uniform instructions.
4746       if (isOutOfScope(OV))
4747         continue;
4748       // First order recurrence Phi's should typically be considered
4749       // non-uniform.
4750       auto *OP = dyn_cast<PHINode>(OV);
4751       if (OP && Legal->isFirstOrderRecurrence(OP))
4752         continue;
4753       // If all the users of the operand are uniform, then add the
4754       // operand into the uniform worklist.
4755       auto *OI = cast<Instruction>(OV);
4756       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
4757             auto *J = cast<Instruction>(U);
4758             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
4759           }))
4760         addToWorklistIfAllowed(OI);
4761     }
4762   }
4763 
4764   // For an instruction to be added into Worklist above, all its users inside
4765   // the loop should also be in Worklist. However, this condition cannot be
4766   // true for phi nodes that form a cyclic dependence. We must process phi
4767   // nodes separately. An induction variable will remain uniform if all users
4768   // of the induction variable and induction variable update remain uniform.
4769   // The code below handles both pointer and non-pointer induction variables.
4770   for (auto &Induction : Legal->getInductionVars()) {
4771     auto *Ind = Induction.first;
4772     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4773 
4774     // Determine if all users of the induction variable are uniform after
4775     // vectorization.
4776     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4777       auto *I = cast<Instruction>(U);
4778       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4779              isVectorizedMemAccessUse(I, Ind);
4780     });
4781     if (!UniformInd)
4782       continue;
4783 
4784     // Determine if all users of the induction variable update instruction are
4785     // uniform after vectorization.
4786     auto UniformIndUpdate =
4787         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4788           auto *I = cast<Instruction>(U);
4789           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4790                  isVectorizedMemAccessUse(I, IndUpdate);
4791         });
4792     if (!UniformIndUpdate)
4793       continue;
4794 
4795     // The induction variable and its update instruction will remain uniform.
4796     addToWorklistIfAllowed(Ind);
4797     addToWorklistIfAllowed(IndUpdate);
4798   }
4799 
4800   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
4801 }
4802 
4803 bool LoopVectorizationCostModel::runtimeChecksRequired() {
4804   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
4805 
4806   if (Legal->getRuntimePointerChecking()->Need) {
4807     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
4808         "runtime pointer checks needed. Enable vectorization of this "
4809         "loop with '#pragma clang loop vectorize(enable)' when "
4810         "compiling with -Os/-Oz",
4811         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4812     return true;
4813   }
4814 
4815   if (!PSE.getPredicate().isAlwaysTrue()) {
4816     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
4817         "runtime SCEV checks needed. Enable vectorization of this "
4818         "loop with '#pragma clang loop vectorize(enable)' when "
4819         "compiling with -Os/-Oz",
4820         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4821     return true;
4822   }
4823 
4824   // FIXME: Avoid specializing for stride==1 instead of bailing out.
4825   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
4826     reportVectorizationFailure("Runtime stride check for small trip count",
4827         "runtime stride == 1 checks needed. Enable vectorization of "
4828         "this loop without such check by compiling with -Os/-Oz",
4829         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4830     return true;
4831   }
4832 
4833   return false;
4834 }
4835 
4836 ElementCount
4837 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
4838   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
4839     return ElementCount::getScalable(0);
4840 
4841   if (Hints->isScalableVectorizationDisabled()) {
4842     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
4843                             "ScalableVectorizationDisabled", ORE, TheLoop);
4844     return ElementCount::getScalable(0);
4845   }
4846 
4847   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
4848 
4849   auto MaxScalableVF = ElementCount::getScalable(
4850       std::numeric_limits<ElementCount::ScalarTy>::max());
4851 
4852   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
4853   // FIXME: While for scalable vectors this is currently sufficient, this should
4854   // be replaced by a more detailed mechanism that filters out specific VFs,
4855   // instead of invalidating vectorization for a whole set of VFs based on the
4856   // MaxVF.
4857 
4858   // Disable scalable vectorization if the loop contains unsupported reductions.
4859   if (!canVectorizeReductions(MaxScalableVF)) {
4860     reportVectorizationInfo(
4861         "Scalable vectorization not supported for the reduction "
4862         "operations found in this loop.",
4863         "ScalableVFUnfeasible", ORE, TheLoop);
4864     return ElementCount::getScalable(0);
4865   }
4866 
4867   // Disable scalable vectorization if the loop contains any instructions
4868   // with element types not supported for scalable vectors.
4869   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
4870         return !Ty->isVoidTy() &&
4871                !this->TTI.isElementTypeLegalForScalableVector(Ty);
4872       })) {
4873     reportVectorizationInfo("Scalable vectorization is not supported "
4874                             "for all element types found in this loop.",
4875                             "ScalableVFUnfeasible", ORE, TheLoop);
4876     return ElementCount::getScalable(0);
4877   }
4878 
4879   if (Legal->isSafeForAnyVectorWidth())
4880     return MaxScalableVF;
4881 
4882   // Limit MaxScalableVF by the maximum safe dependence distance.
4883   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
4884   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange))
4885     MaxVScale =
4886         TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
4887   MaxScalableVF = ElementCount::getScalable(
4888       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
4889   if (!MaxScalableVF)
4890     reportVectorizationInfo(
4891         "Max legal vector width too small, scalable vectorization "
4892         "unfeasible.",
4893         "ScalableVFUnfeasible", ORE, TheLoop);
4894 
4895   return MaxScalableVF;
4896 }
4897 
4898 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
4899     unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) {
4900   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
4901   unsigned SmallestType, WidestType;
4902   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
4903 
4904   // Get the maximum safe dependence distance in bits computed by LAA.
4905   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
4906   // the memory accesses that is most restrictive (involved in the smallest
4907   // dependence distance).
4908   unsigned MaxSafeElements =
4909       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
4910 
4911   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
4912   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
4913 
4914   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
4915                     << ".\n");
4916   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
4917                     << ".\n");
4918 
4919   // First analyze the UserVF, fall back if the UserVF should be ignored.
4920   if (UserVF) {
4921     auto MaxSafeUserVF =
4922         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
4923 
4924     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
4925       // If `VF=vscale x N` is safe, then so is `VF=N`
4926       if (UserVF.isScalable())
4927         return FixedScalableVFPair(
4928             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
4929       else
4930         return UserVF;
4931     }
4932 
4933     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
4934 
4935     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
4936     // is better to ignore the hint and let the compiler choose a suitable VF.
4937     if (!UserVF.isScalable()) {
4938       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4939                         << " is unsafe, clamping to max safe VF="
4940                         << MaxSafeFixedVF << ".\n");
4941       ORE->emit([&]() {
4942         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4943                                           TheLoop->getStartLoc(),
4944                                           TheLoop->getHeader())
4945                << "User-specified vectorization factor "
4946                << ore::NV("UserVectorizationFactor", UserVF)
4947                << " is unsafe, clamping to maximum safe vectorization factor "
4948                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
4949       });
4950       return MaxSafeFixedVF;
4951     }
4952 
4953     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
4954       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4955                         << " is ignored because scalable vectors are not "
4956                            "available.\n");
4957       ORE->emit([&]() {
4958         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4959                                           TheLoop->getStartLoc(),
4960                                           TheLoop->getHeader())
4961                << "User-specified vectorization factor "
4962                << ore::NV("UserVectorizationFactor", UserVF)
4963                << " is ignored because the target does not support scalable "
4964                   "vectors. The compiler will pick a more suitable value.";
4965       });
4966     } else {
4967       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4968                         << " is unsafe. Ignoring scalable UserVF.\n");
4969       ORE->emit([&]() {
4970         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4971                                           TheLoop->getStartLoc(),
4972                                           TheLoop->getHeader())
4973                << "User-specified vectorization factor "
4974                << ore::NV("UserVectorizationFactor", UserVF)
4975                << " is unsafe. Ignoring the hint to let the compiler pick a "
4976                   "more suitable value.";
4977       });
4978     }
4979   }
4980 
4981   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
4982                     << " / " << WidestType << " bits.\n");
4983 
4984   FixedScalableVFPair Result(ElementCount::getFixed(1),
4985                              ElementCount::getScalable(0));
4986   if (auto MaxVF =
4987           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
4988                                   MaxSafeFixedVF, FoldTailByMasking))
4989     Result.FixedVF = MaxVF;
4990 
4991   if (auto MaxVF =
4992           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
4993                                   MaxSafeScalableVF, FoldTailByMasking))
4994     if (MaxVF.isScalable()) {
4995       Result.ScalableVF = MaxVF;
4996       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
4997                         << "\n");
4998     }
4999 
5000   return Result;
5001 }
5002 
5003 FixedScalableVFPair
5004 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5005   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5006     // TODO: It may by useful to do since it's still likely to be dynamically
5007     // uniform if the target can skip.
5008     reportVectorizationFailure(
5009         "Not inserting runtime ptr check for divergent target",
5010         "runtime pointer checks needed. Not enabled for divergent target",
5011         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5012     return FixedScalableVFPair::getNone();
5013   }
5014 
5015   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5016   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5017   if (TC == 1) {
5018     reportVectorizationFailure("Single iteration (non) loop",
5019         "loop trip count is one, irrelevant for vectorization",
5020         "SingleIterationLoop", ORE, TheLoop);
5021     return FixedScalableVFPair::getNone();
5022   }
5023 
5024   switch (ScalarEpilogueStatus) {
5025   case CM_ScalarEpilogueAllowed:
5026     return computeFeasibleMaxVF(TC, UserVF, false);
5027   case CM_ScalarEpilogueNotAllowedUsePredicate:
5028     LLVM_FALLTHROUGH;
5029   case CM_ScalarEpilogueNotNeededUsePredicate:
5030     LLVM_DEBUG(
5031         dbgs() << "LV: vector predicate hint/switch found.\n"
5032                << "LV: Not allowing scalar epilogue, creating predicated "
5033                << "vector loop.\n");
5034     break;
5035   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5036     // fallthrough as a special case of OptForSize
5037   case CM_ScalarEpilogueNotAllowedOptSize:
5038     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5039       LLVM_DEBUG(
5040           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5041     else
5042       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5043                         << "count.\n");
5044 
5045     // Bail if runtime checks are required, which are not good when optimising
5046     // for size.
5047     if (runtimeChecksRequired())
5048       return FixedScalableVFPair::getNone();
5049 
5050     break;
5051   }
5052 
5053   // The only loops we can vectorize without a scalar epilogue, are loops with
5054   // a bottom-test and a single exiting block. We'd have to handle the fact
5055   // that not every instruction executes on the last iteration.  This will
5056   // require a lane mask which varies through the vector loop body.  (TODO)
5057   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5058     // If there was a tail-folding hint/switch, but we can't fold the tail by
5059     // masking, fallback to a vectorization with a scalar epilogue.
5060     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5061       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5062                            "scalar epilogue instead.\n");
5063       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5064       return computeFeasibleMaxVF(TC, UserVF, false);
5065     }
5066     return FixedScalableVFPair::getNone();
5067   }
5068 
5069   // Now try the tail folding
5070 
5071   // Invalidate interleave groups that require an epilogue if we can't mask
5072   // the interleave-group.
5073   if (!useMaskedInterleavedAccesses(TTI)) {
5074     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5075            "No decisions should have been taken at this point");
5076     // Note: There is no need to invalidate any cost modeling decisions here, as
5077     // non where taken so far.
5078     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5079   }
5080 
5081   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true);
5082   // Avoid tail folding if the trip count is known to be a multiple of any VF
5083   // we chose.
5084   // FIXME: The condition below pessimises the case for fixed-width vectors,
5085   // when scalable VFs are also candidates for vectorization.
5086   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5087     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5088     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5089            "MaxFixedVF must be a power of 2");
5090     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5091                                    : MaxFixedVF.getFixedValue();
5092     ScalarEvolution *SE = PSE.getSE();
5093     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5094     const SCEV *ExitCount = SE->getAddExpr(
5095         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5096     const SCEV *Rem = SE->getURemExpr(
5097         SE->applyLoopGuards(ExitCount, TheLoop),
5098         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5099     if (Rem->isZero()) {
5100       // Accept MaxFixedVF if we do not have a tail.
5101       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5102       return MaxFactors;
5103     }
5104   }
5105 
5106   // For scalable vectors don't use tail folding for low trip counts or
5107   // optimizing for code size. We only permit this if the user has explicitly
5108   // requested it.
5109   if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate &&
5110       ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate &&
5111       MaxFactors.ScalableVF.isVector())
5112     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5113 
5114   // If we don't know the precise trip count, or if the trip count that we
5115   // found modulo the vectorization factor is not zero, try to fold the tail
5116   // by masking.
5117   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5118   if (Legal->prepareToFoldTailByMasking()) {
5119     FoldTailByMasking = true;
5120     return MaxFactors;
5121   }
5122 
5123   // If there was a tail-folding hint/switch, but we can't fold the tail by
5124   // masking, fallback to a vectorization with a scalar epilogue.
5125   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5126     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5127                          "scalar epilogue instead.\n");
5128     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5129     return MaxFactors;
5130   }
5131 
5132   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5133     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5134     return FixedScalableVFPair::getNone();
5135   }
5136 
5137   if (TC == 0) {
5138     reportVectorizationFailure(
5139         "Unable to calculate the loop count due to complex control flow",
5140         "unable to calculate the loop count due to complex control flow",
5141         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5142     return FixedScalableVFPair::getNone();
5143   }
5144 
5145   reportVectorizationFailure(
5146       "Cannot optimize for size and vectorize at the same time.",
5147       "cannot optimize for size and vectorize at the same time. "
5148       "Enable vectorization of this loop with '#pragma clang loop "
5149       "vectorize(enable)' when compiling with -Os/-Oz",
5150       "NoTailLoopWithOptForSize", ORE, TheLoop);
5151   return FixedScalableVFPair::getNone();
5152 }
5153 
5154 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5155     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5156     const ElementCount &MaxSafeVF, bool FoldTailByMasking) {
5157   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5158   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5159       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5160                            : TargetTransformInfo::RGK_FixedWidthVector);
5161 
5162   // Convenience function to return the minimum of two ElementCounts.
5163   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5164     assert((LHS.isScalable() == RHS.isScalable()) &&
5165            "Scalable flags must match");
5166     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5167   };
5168 
5169   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5170   // Note that both WidestRegister and WidestType may not be a powers of 2.
5171   auto MaxVectorElementCount = ElementCount::get(
5172       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5173       ComputeScalableMaxVF);
5174   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5175   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5176                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5177 
5178   if (!MaxVectorElementCount) {
5179     LLVM_DEBUG(dbgs() << "LV: The target has no "
5180                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5181                       << " vector registers.\n");
5182     return ElementCount::getFixed(1);
5183   }
5184 
5185   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5186   if (ConstTripCount &&
5187       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5188       (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) {
5189     // If loop trip count (TC) is known at compile time there is no point in
5190     // choosing VF greater than TC (as done in the loop below). Select maximum
5191     // power of two which doesn't exceed TC.
5192     // If MaxVectorElementCount is scalable, we only fall back on a fixed VF
5193     // when the TC is less than or equal to the known number of lanes.
5194     auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount);
5195     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
5196                          "exceeding the constant trip count: "
5197                       << ClampedConstTripCount << "\n");
5198     return ElementCount::getFixed(ClampedConstTripCount);
5199   }
5200 
5201   ElementCount MaxVF = MaxVectorElementCount;
5202   if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 &&
5203                             TTI.shouldMaximizeVectorBandwidth())) {
5204     auto MaxVectorElementCountMaxBW = ElementCount::get(
5205         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5206         ComputeScalableMaxVF);
5207     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5208 
5209     // Collect all viable vectorization factors larger than the default MaxVF
5210     // (i.e. MaxVectorElementCount).
5211     SmallVector<ElementCount, 8> VFs;
5212     for (ElementCount VS = MaxVectorElementCount * 2;
5213          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5214       VFs.push_back(VS);
5215 
5216     // For each VF calculate its register usage.
5217     auto RUs = calculateRegisterUsage(VFs);
5218 
5219     // Select the largest VF which doesn't require more registers than existing
5220     // ones.
5221     for (int i = RUs.size() - 1; i >= 0; --i) {
5222       bool Selected = true;
5223       for (auto &pair : RUs[i].MaxLocalUsers) {
5224         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5225         if (pair.second > TargetNumRegisters)
5226           Selected = false;
5227       }
5228       if (Selected) {
5229         MaxVF = VFs[i];
5230         break;
5231       }
5232     }
5233     if (ElementCount MinVF =
5234             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5235       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5236         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5237                           << ") with target's minimum: " << MinVF << '\n');
5238         MaxVF = MinVF;
5239       }
5240     }
5241 
5242     // Invalidate any widening decisions we might have made, in case the loop
5243     // requires prediction (decided later), but we have already made some
5244     // load/store widening decisions.
5245     invalidateCostModelingDecisions();
5246   }
5247   return MaxVF;
5248 }
5249 
5250 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const {
5251   if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5252     auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
5253     auto Min = Attr.getVScaleRangeMin();
5254     auto Max = Attr.getVScaleRangeMax();
5255     if (Max && Min == Max)
5256       return Max;
5257   }
5258 
5259   return TTI.getVScaleForTuning();
5260 }
5261 
5262 bool LoopVectorizationCostModel::isMoreProfitable(
5263     const VectorizationFactor &A, const VectorizationFactor &B) const {
5264   InstructionCost CostA = A.Cost;
5265   InstructionCost CostB = B.Cost;
5266 
5267   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5268 
5269   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5270       MaxTripCount) {
5271     // If we are folding the tail and the trip count is a known (possibly small)
5272     // constant, the trip count will be rounded up to an integer number of
5273     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
5274     // which we compare directly. When not folding the tail, the total cost will
5275     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
5276     // approximated with the per-lane cost below instead of using the tripcount
5277     // as here.
5278     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
5279     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
5280     return RTCostA < RTCostB;
5281   }
5282 
5283   // Improve estimate for the vector width if it is scalable.
5284   unsigned EstimatedWidthA = A.Width.getKnownMinValue();
5285   unsigned EstimatedWidthB = B.Width.getKnownMinValue();
5286   if (Optional<unsigned> VScale = getVScaleForTuning()) {
5287     if (A.Width.isScalable())
5288       EstimatedWidthA *= VScale.getValue();
5289     if (B.Width.isScalable())
5290       EstimatedWidthB *= VScale.getValue();
5291   }
5292 
5293   // Assume vscale may be larger than 1 (or the value being tuned for),
5294   // so that scalable vectorization is slightly favorable over fixed-width
5295   // vectorization.
5296   if (A.Width.isScalable() && !B.Width.isScalable())
5297     return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
5298 
5299   // To avoid the need for FP division:
5300   //      (CostA / A.Width) < (CostB / B.Width)
5301   // <=>  (CostA * B.Width) < (CostB * A.Width)
5302   return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
5303 }
5304 
5305 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
5306     const ElementCountSet &VFCandidates) {
5307   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5308   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5309   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5310   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
5311          "Expected Scalar VF to be a candidate");
5312 
5313   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
5314   VectorizationFactor ChosenFactor = ScalarCost;
5315 
5316   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5317   if (ForceVectorization && VFCandidates.size() > 1) {
5318     // Ignore scalar width, because the user explicitly wants vectorization.
5319     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5320     // evaluation.
5321     ChosenFactor.Cost = InstructionCost::getMax();
5322   }
5323 
5324   SmallVector<InstructionVFPair> InvalidCosts;
5325   for (const auto &i : VFCandidates) {
5326     // The cost for scalar VF=1 is already calculated, so ignore it.
5327     if (i.isScalar())
5328       continue;
5329 
5330     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
5331     VectorizationFactor Candidate(i, C.first);
5332 
5333 #ifndef NDEBUG
5334     unsigned AssumedMinimumVscale = 1;
5335     if (Optional<unsigned> VScale = getVScaleForTuning())
5336       AssumedMinimumVscale = VScale.getValue();
5337     unsigned Width =
5338         Candidate.Width.isScalable()
5339             ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
5340             : Candidate.Width.getFixedValue();
5341     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5342                       << " costs: " << (Candidate.Cost / Width));
5343     if (i.isScalable())
5344       LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
5345                         << AssumedMinimumVscale << ")");
5346     LLVM_DEBUG(dbgs() << ".\n");
5347 #endif
5348 
5349     if (!C.second && !ForceVectorization) {
5350       LLVM_DEBUG(
5351           dbgs() << "LV: Not considering vector loop of width " << i
5352                  << " because it will not generate any vector instructions.\n");
5353       continue;
5354     }
5355 
5356     // If profitable add it to ProfitableVF list.
5357     if (isMoreProfitable(Candidate, ScalarCost))
5358       ProfitableVFs.push_back(Candidate);
5359 
5360     if (isMoreProfitable(Candidate, ChosenFactor))
5361       ChosenFactor = Candidate;
5362   }
5363 
5364   // Emit a report of VFs with invalid costs in the loop.
5365   if (!InvalidCosts.empty()) {
5366     // Group the remarks per instruction, keeping the instruction order from
5367     // InvalidCosts.
5368     std::map<Instruction *, unsigned> Numbering;
5369     unsigned I = 0;
5370     for (auto &Pair : InvalidCosts)
5371       if (!Numbering.count(Pair.first))
5372         Numbering[Pair.first] = I++;
5373 
5374     // Sort the list, first on instruction(number) then on VF.
5375     llvm::sort(InvalidCosts,
5376                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
5377                  if (Numbering[A.first] != Numbering[B.first])
5378                    return Numbering[A.first] < Numbering[B.first];
5379                  ElementCountComparator ECC;
5380                  return ECC(A.second, B.second);
5381                });
5382 
5383     // For a list of ordered instruction-vf pairs:
5384     //   [(load, vf1), (load, vf2), (store, vf1)]
5385     // Group the instructions together to emit separate remarks for:
5386     //   load  (vf1, vf2)
5387     //   store (vf1)
5388     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
5389     auto Subset = ArrayRef<InstructionVFPair>();
5390     do {
5391       if (Subset.empty())
5392         Subset = Tail.take_front(1);
5393 
5394       Instruction *I = Subset.front().first;
5395 
5396       // If the next instruction is different, or if there are no other pairs,
5397       // emit a remark for the collated subset. e.g.
5398       //   [(load, vf1), (load, vf2))]
5399       // to emit:
5400       //  remark: invalid costs for 'load' at VF=(vf, vf2)
5401       if (Subset == Tail || Tail[Subset.size()].first != I) {
5402         std::string OutString;
5403         raw_string_ostream OS(OutString);
5404         assert(!Subset.empty() && "Unexpected empty range");
5405         OS << "Instruction with invalid costs prevented vectorization at VF=(";
5406         for (auto &Pair : Subset)
5407           OS << (Pair.second == Subset.front().second ? "" : ", ")
5408              << Pair.second;
5409         OS << "):";
5410         if (auto *CI = dyn_cast<CallInst>(I))
5411           OS << " call to " << CI->getCalledFunction()->getName();
5412         else
5413           OS << " " << I->getOpcodeName();
5414         OS.flush();
5415         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
5416         Tail = Tail.drop_front(Subset.size());
5417         Subset = {};
5418       } else
5419         // Grow the subset by one element
5420         Subset = Tail.take_front(Subset.size() + 1);
5421     } while (!Tail.empty());
5422   }
5423 
5424   if (!EnableCondStoresVectorization && NumPredStores) {
5425     reportVectorizationFailure("There are conditional stores.",
5426         "store that is conditionally executed prevents vectorization",
5427         "ConditionalStore", ORE, TheLoop);
5428     ChosenFactor = ScalarCost;
5429   }
5430 
5431   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
5432                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
5433              << "LV: Vectorization seems to be not beneficial, "
5434              << "but was forced by a user.\n");
5435   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
5436   return ChosenFactor;
5437 }
5438 
5439 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
5440     const Loop &L, ElementCount VF) const {
5441   // Cross iteration phis such as reductions need special handling and are
5442   // currently unsupported.
5443   if (any_of(L.getHeader()->phis(),
5444              [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); }))
5445     return false;
5446 
5447   // Phis with uses outside of the loop require special handling and are
5448   // currently unsupported.
5449   for (auto &Entry : Legal->getInductionVars()) {
5450     // Look for uses of the value of the induction at the last iteration.
5451     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
5452     for (User *U : PostInc->users())
5453       if (!L.contains(cast<Instruction>(U)))
5454         return false;
5455     // Look for uses of penultimate value of the induction.
5456     for (User *U : Entry.first->users())
5457       if (!L.contains(cast<Instruction>(U)))
5458         return false;
5459   }
5460 
5461   // Induction variables that are widened require special handling that is
5462   // currently not supported.
5463   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
5464         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
5465                  this->isProfitableToScalarize(Entry.first, VF));
5466       }))
5467     return false;
5468 
5469   // Epilogue vectorization code has not been auditted to ensure it handles
5470   // non-latch exits properly.  It may be fine, but it needs auditted and
5471   // tested.
5472   if (L.getExitingBlock() != L.getLoopLatch())
5473     return false;
5474 
5475   return true;
5476 }
5477 
5478 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
5479     const ElementCount VF) const {
5480   // FIXME: We need a much better cost-model to take different parameters such
5481   // as register pressure, code size increase and cost of extra branches into
5482   // account. For now we apply a very crude heuristic and only consider loops
5483   // with vectorization factors larger than a certain value.
5484   // We also consider epilogue vectorization unprofitable for targets that don't
5485   // consider interleaving beneficial (eg. MVE).
5486   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
5487     return false;
5488   // FIXME: We should consider changing the threshold for scalable
5489   // vectors to take VScaleForTuning into account.
5490   if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF)
5491     return true;
5492   return false;
5493 }
5494 
5495 VectorizationFactor
5496 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
5497     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
5498   VectorizationFactor Result = VectorizationFactor::Disabled();
5499   if (!EnableEpilogueVectorization) {
5500     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
5501     return Result;
5502   }
5503 
5504   if (!isScalarEpilogueAllowed()) {
5505     LLVM_DEBUG(
5506         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
5507                   "allowed.\n";);
5508     return Result;
5509   }
5510 
5511   // Not really a cost consideration, but check for unsupported cases here to
5512   // simplify the logic.
5513   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
5514     LLVM_DEBUG(
5515         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
5516                   "not a supported candidate.\n";);
5517     return Result;
5518   }
5519 
5520   if (EpilogueVectorizationForceVF > 1) {
5521     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
5522     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
5523     if (LVP.hasPlanWithVF(ForcedEC))
5524       return {ForcedEC, 0};
5525     else {
5526       LLVM_DEBUG(
5527           dbgs()
5528               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
5529       return Result;
5530     }
5531   }
5532 
5533   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
5534       TheLoop->getHeader()->getParent()->hasMinSize()) {
5535     LLVM_DEBUG(
5536         dbgs()
5537             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
5538     return Result;
5539   }
5540 
5541   if (!isEpilogueVectorizationProfitable(MainLoopVF)) {
5542     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
5543                          "this loop\n");
5544     return Result;
5545   }
5546 
5547   // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
5548   // the main loop handles 8 lanes per iteration. We could still benefit from
5549   // vectorizing the epilogue loop with VF=4.
5550   ElementCount EstimatedRuntimeVF = MainLoopVF;
5551   if (MainLoopVF.isScalable()) {
5552     EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
5553     if (Optional<unsigned> VScale = getVScaleForTuning())
5554       EstimatedRuntimeVF *= VScale.getValue();
5555   }
5556 
5557   for (auto &NextVF : ProfitableVFs)
5558     if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
5559           ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) ||
5560          ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) &&
5561         (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) &&
5562         LVP.hasPlanWithVF(NextVF.Width))
5563       Result = NextVF;
5564 
5565   if (Result != VectorizationFactor::Disabled())
5566     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
5567                       << Result.Width << "\n";);
5568   return Result;
5569 }
5570 
5571 std::pair<unsigned, unsigned>
5572 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5573   unsigned MinWidth = -1U;
5574   unsigned MaxWidth = 8;
5575   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5576   // For in-loop reductions, no element types are added to ElementTypesInLoop
5577   // if there are no loads/stores in the loop. In this case, check through the
5578   // reduction variables to determine the maximum width.
5579   if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
5580     // Reset MaxWidth so that we can find the smallest type used by recurrences
5581     // in the loop.
5582     MaxWidth = -1U;
5583     for (auto &PhiDescriptorPair : Legal->getReductionVars()) {
5584       const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
5585       // When finding the min width used by the recurrence we need to account
5586       // for casts on the input operands of the recurrence.
5587       MaxWidth = std::min<unsigned>(
5588           MaxWidth, std::min<unsigned>(
5589                         RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
5590                         RdxDesc.getRecurrenceType()->getScalarSizeInBits()));
5591     }
5592   } else {
5593     for (Type *T : ElementTypesInLoop) {
5594       MinWidth = std::min<unsigned>(
5595           MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5596       MaxWidth = std::max<unsigned>(
5597           MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5598     }
5599   }
5600   return {MinWidth, MaxWidth};
5601 }
5602 
5603 void LoopVectorizationCostModel::collectElementTypesForWidening() {
5604   ElementTypesInLoop.clear();
5605   // For each block.
5606   for (BasicBlock *BB : TheLoop->blocks()) {
5607     // For each instruction in the loop.
5608     for (Instruction &I : BB->instructionsWithoutDebug()) {
5609       Type *T = I.getType();
5610 
5611       // Skip ignored values.
5612       if (ValuesToIgnore.count(&I))
5613         continue;
5614 
5615       // Only examine Loads, Stores and PHINodes.
5616       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5617         continue;
5618 
5619       // Examine PHI nodes that are reduction variables. Update the type to
5620       // account for the recurrence type.
5621       if (auto *PN = dyn_cast<PHINode>(&I)) {
5622         if (!Legal->isReductionVariable(PN))
5623           continue;
5624         const RecurrenceDescriptor &RdxDesc =
5625             Legal->getReductionVars().find(PN)->second;
5626         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
5627             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
5628                                       RdxDesc.getRecurrenceType(),
5629                                       TargetTransformInfo::ReductionFlags()))
5630           continue;
5631         T = RdxDesc.getRecurrenceType();
5632       }
5633 
5634       // Examine the stored values.
5635       if (auto *ST = dyn_cast<StoreInst>(&I))
5636         T = ST->getValueOperand()->getType();
5637 
5638       assert(T->isSized() &&
5639              "Expected the load/store/recurrence type to be sized");
5640 
5641       ElementTypesInLoop.insert(T);
5642     }
5643   }
5644 }
5645 
5646 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
5647                                                            unsigned LoopCost) {
5648   // -- The interleave heuristics --
5649   // We interleave the loop in order to expose ILP and reduce the loop overhead.
5650   // There are many micro-architectural considerations that we can't predict
5651   // at this level. For example, frontend pressure (on decode or fetch) due to
5652   // code size, or the number and capabilities of the execution ports.
5653   //
5654   // We use the following heuristics to select the interleave count:
5655   // 1. If the code has reductions, then we interleave to break the cross
5656   // iteration dependency.
5657   // 2. If the loop is really small, then we interleave to reduce the loop
5658   // overhead.
5659   // 3. We don't interleave if we think that we will spill registers to memory
5660   // due to the increased register pressure.
5661 
5662   if (!isScalarEpilogueAllowed())
5663     return 1;
5664 
5665   // We used the distance for the interleave count.
5666   if (Legal->getMaxSafeDepDistBytes() != -1U)
5667     return 1;
5668 
5669   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
5670   const bool HasReductions = !Legal->getReductionVars().empty();
5671   // Do not interleave loops with a relatively small known or estimated trip
5672   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
5673   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
5674   // because with the above conditions interleaving can expose ILP and break
5675   // cross iteration dependences for reductions.
5676   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
5677       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
5678     return 1;
5679 
5680   // If we did not calculate the cost for VF (because the user selected the VF)
5681   // then we calculate the cost of VF here.
5682   if (LoopCost == 0) {
5683     InstructionCost C = expectedCost(VF).first;
5684     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
5685     LoopCost = *C.getValue();
5686 
5687     // Loop body is free and there is no need for interleaving.
5688     if (LoopCost == 0)
5689       return 1;
5690   }
5691 
5692   RegisterUsage R = calculateRegisterUsage({VF})[0];
5693   // We divide by these constants so assume that we have at least one
5694   // instruction that uses at least one register.
5695   for (auto& pair : R.MaxLocalUsers) {
5696     pair.second = std::max(pair.second, 1U);
5697   }
5698 
5699   // We calculate the interleave count using the following formula.
5700   // Subtract the number of loop invariants from the number of available
5701   // registers. These registers are used by all of the interleaved instances.
5702   // Next, divide the remaining registers by the number of registers that is
5703   // required by the loop, in order to estimate how many parallel instances
5704   // fit without causing spills. All of this is rounded down if necessary to be
5705   // a power of two. We want power of two interleave count to simplify any
5706   // addressing operations or alignment considerations.
5707   // We also want power of two interleave counts to ensure that the induction
5708   // variable of the vector loop wraps to zero, when tail is folded by masking;
5709   // this currently happens when OptForSize, in which case IC is set to 1 above.
5710   unsigned IC = UINT_MAX;
5711 
5712   for (auto& pair : R.MaxLocalUsers) {
5713     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5714     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
5715                       << " registers of "
5716                       << TTI.getRegisterClassName(pair.first) << " register class\n");
5717     if (VF.isScalar()) {
5718       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5719         TargetNumRegisters = ForceTargetNumScalarRegs;
5720     } else {
5721       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5722         TargetNumRegisters = ForceTargetNumVectorRegs;
5723     }
5724     unsigned MaxLocalUsers = pair.second;
5725     unsigned LoopInvariantRegs = 0;
5726     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
5727       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
5728 
5729     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
5730     // Don't count the induction variable as interleaved.
5731     if (EnableIndVarRegisterHeur) {
5732       TmpIC =
5733           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
5734                         std::max(1U, (MaxLocalUsers - 1)));
5735     }
5736 
5737     IC = std::min(IC, TmpIC);
5738   }
5739 
5740   // Clamp the interleave ranges to reasonable counts.
5741   unsigned MaxInterleaveCount =
5742       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
5743 
5744   // Check if the user has overridden the max.
5745   if (VF.isScalar()) {
5746     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5747       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
5748   } else {
5749     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5750       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
5751   }
5752 
5753   // If trip count is known or estimated compile time constant, limit the
5754   // interleave count to be less than the trip count divided by VF, provided it
5755   // is at least 1.
5756   //
5757   // For scalable vectors we can't know if interleaving is beneficial. It may
5758   // not be beneficial for small loops if none of the lanes in the second vector
5759   // iterations is enabled. However, for larger loops, there is likely to be a
5760   // similar benefit as for fixed-width vectors. For now, we choose to leave
5761   // the InterleaveCount as if vscale is '1', although if some information about
5762   // the vector is known (e.g. min vector size), we can make a better decision.
5763   if (BestKnownTC) {
5764     MaxInterleaveCount =
5765         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
5766     // Make sure MaxInterleaveCount is greater than 0.
5767     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
5768   }
5769 
5770   assert(MaxInterleaveCount > 0 &&
5771          "Maximum interleave count must be greater than 0");
5772 
5773   // Clamp the calculated IC to be between the 1 and the max interleave count
5774   // that the target and trip count allows.
5775   if (IC > MaxInterleaveCount)
5776     IC = MaxInterleaveCount;
5777   else
5778     // Make sure IC is greater than 0.
5779     IC = std::max(1u, IC);
5780 
5781   assert(IC > 0 && "Interleave count must be greater than 0.");
5782 
5783   // Interleave if we vectorized this loop and there is a reduction that could
5784   // benefit from interleaving.
5785   if (VF.isVector() && HasReductions) {
5786     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5787     return IC;
5788   }
5789 
5790   // For any scalar loop that either requires runtime checks or predication we
5791   // are better off leaving this to the unroller. Note that if we've already
5792   // vectorized the loop we will have done the runtime check and so interleaving
5793   // won't require further checks.
5794   bool ScalarInterleavingRequiresPredication =
5795       (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) {
5796          return Legal->blockNeedsPredication(BB);
5797        }));
5798   bool ScalarInterleavingRequiresRuntimePointerCheck =
5799       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
5800 
5801   // We want to interleave small loops in order to reduce the loop overhead and
5802   // potentially expose ILP opportunities.
5803   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
5804                     << "LV: IC is " << IC << '\n'
5805                     << "LV: VF is " << VF << '\n');
5806   const bool AggressivelyInterleaveReductions =
5807       TTI.enableAggressiveInterleaving(HasReductions);
5808   if (!ScalarInterleavingRequiresRuntimePointerCheck &&
5809       !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
5810     // We assume that the cost overhead is 1 and we use the cost model
5811     // to estimate the cost of the loop and interleave until the cost of the
5812     // loop overhead is about 5% of the cost of the loop.
5813     unsigned SmallIC =
5814         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5815 
5816     // Interleave until store/load ports (estimated by max interleave count) are
5817     // saturated.
5818     unsigned NumStores = Legal->getNumStores();
5819     unsigned NumLoads = Legal->getNumLoads();
5820     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5821     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5822 
5823     // There is little point in interleaving for reductions containing selects
5824     // and compares when VF=1 since it may just create more overhead than it's
5825     // worth for loops with small trip counts. This is because we still have to
5826     // do the final reduction after the loop.
5827     bool HasSelectCmpReductions =
5828         HasReductions &&
5829         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
5830           const RecurrenceDescriptor &RdxDesc = Reduction.second;
5831           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
5832               RdxDesc.getRecurrenceKind());
5833         });
5834     if (HasSelectCmpReductions) {
5835       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
5836       return 1;
5837     }
5838 
5839     // If we have a scalar reduction (vector reductions are already dealt with
5840     // by this point), we can increase the critical path length if the loop
5841     // we're interleaving is inside another loop. For tree-wise reductions
5842     // set the limit to 2, and for ordered reductions it's best to disable
5843     // interleaving entirely.
5844     if (HasReductions && TheLoop->getLoopDepth() > 1) {
5845       bool HasOrderedReductions =
5846           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
5847             const RecurrenceDescriptor &RdxDesc = Reduction.second;
5848             return RdxDesc.isOrdered();
5849           });
5850       if (HasOrderedReductions) {
5851         LLVM_DEBUG(
5852             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
5853         return 1;
5854       }
5855 
5856       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5857       SmallIC = std::min(SmallIC, F);
5858       StoresIC = std::min(StoresIC, F);
5859       LoadsIC = std::min(LoadsIC, F);
5860     }
5861 
5862     if (EnableLoadStoreRuntimeInterleave &&
5863         std::max(StoresIC, LoadsIC) > SmallIC) {
5864       LLVM_DEBUG(
5865           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
5866       return std::max(StoresIC, LoadsIC);
5867     }
5868 
5869     // If there are scalar reductions and TTI has enabled aggressive
5870     // interleaving for reductions, we will interleave to expose ILP.
5871     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
5872         AggressivelyInterleaveReductions) {
5873       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5874       // Interleave no less than SmallIC but not as aggressive as the normal IC
5875       // to satisfy the rare situation when resources are too limited.
5876       return std::max(IC / 2, SmallIC);
5877     } else {
5878       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
5879       return SmallIC;
5880     }
5881   }
5882 
5883   // Interleave if this is a large loop (small loops are already dealt with by
5884   // this point) that could benefit from interleaving.
5885   if (AggressivelyInterleaveReductions) {
5886     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5887     return IC;
5888   }
5889 
5890   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
5891   return 1;
5892 }
5893 
5894 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
5895 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
5896   // This function calculates the register usage by measuring the highest number
5897   // of values that are alive at a single location. Obviously, this is a very
5898   // rough estimation. We scan the loop in a topological order in order and
5899   // assign a number to each instruction. We use RPO to ensure that defs are
5900   // met before their users. We assume that each instruction that has in-loop
5901   // users starts an interval. We record every time that an in-loop value is
5902   // used, so we have a list of the first and last occurrences of each
5903   // instruction. Next, we transpose this data structure into a multi map that
5904   // holds the list of intervals that *end* at a specific location. This multi
5905   // map allows us to perform a linear search. We scan the instructions linearly
5906   // and record each time that a new interval starts, by placing it in a set.
5907   // If we find this value in the multi-map then we remove it from the set.
5908   // The max register usage is the maximum size of the set.
5909   // We also search for instructions that are defined outside the loop, but are
5910   // used inside the loop. We need this number separately from the max-interval
5911   // usage number because when we unroll, loop-invariant values do not take
5912   // more register.
5913   LoopBlocksDFS DFS(TheLoop);
5914   DFS.perform(LI);
5915 
5916   RegisterUsage RU;
5917 
5918   // Each 'key' in the map opens a new interval. The values
5919   // of the map are the index of the 'last seen' usage of the
5920   // instruction that is the key.
5921   using IntervalMap = DenseMap<Instruction *, unsigned>;
5922 
5923   // Maps instruction to its index.
5924   SmallVector<Instruction *, 64> IdxToInstr;
5925   // Marks the end of each interval.
5926   IntervalMap EndPoint;
5927   // Saves the list of instruction indices that are used in the loop.
5928   SmallPtrSet<Instruction *, 8> Ends;
5929   // Saves the list of values that are used in the loop but are
5930   // defined outside the loop, such as arguments and constants.
5931   SmallPtrSet<Value *, 8> LoopInvariants;
5932 
5933   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
5934     for (Instruction &I : BB->instructionsWithoutDebug()) {
5935       IdxToInstr.push_back(&I);
5936 
5937       // Save the end location of each USE.
5938       for (Value *U : I.operands()) {
5939         auto *Instr = dyn_cast<Instruction>(U);
5940 
5941         // Ignore non-instruction values such as arguments, constants, etc.
5942         if (!Instr)
5943           continue;
5944 
5945         // If this instruction is outside the loop then record it and continue.
5946         if (!TheLoop->contains(Instr)) {
5947           LoopInvariants.insert(Instr);
5948           continue;
5949         }
5950 
5951         // Overwrite previous end points.
5952         EndPoint[Instr] = IdxToInstr.size();
5953         Ends.insert(Instr);
5954       }
5955     }
5956   }
5957 
5958   // Saves the list of intervals that end with the index in 'key'.
5959   using InstrList = SmallVector<Instruction *, 2>;
5960   DenseMap<unsigned, InstrList> TransposeEnds;
5961 
5962   // Transpose the EndPoints to a list of values that end at each index.
5963   for (auto &Interval : EndPoint)
5964     TransposeEnds[Interval.second].push_back(Interval.first);
5965 
5966   SmallPtrSet<Instruction *, 8> OpenIntervals;
5967   SmallVector<RegisterUsage, 8> RUs(VFs.size());
5968   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
5969 
5970   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5971 
5972   // A lambda that gets the register usage for the given type and VF.
5973   const auto &TTICapture = TTI;
5974   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
5975     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
5976       return 0;
5977     InstructionCost::CostType RegUsage =
5978         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
5979     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
5980            "Nonsensical values for register usage.");
5981     return RegUsage;
5982   };
5983 
5984   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
5985     Instruction *I = IdxToInstr[i];
5986 
5987     // Remove all of the instructions that end at this location.
5988     InstrList &List = TransposeEnds[i];
5989     for (Instruction *ToRemove : List)
5990       OpenIntervals.erase(ToRemove);
5991 
5992     // Ignore instructions that are never used within the loop.
5993     if (!Ends.count(I))
5994       continue;
5995 
5996     // Skip ignored values.
5997     if (ValuesToIgnore.count(I))
5998       continue;
5999 
6000     // For each VF find the maximum usage of registers.
6001     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6002       // Count the number of live intervals.
6003       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6004 
6005       if (VFs[j].isScalar()) {
6006         for (auto Inst : OpenIntervals) {
6007           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6008           if (RegUsage.find(ClassID) == RegUsage.end())
6009             RegUsage[ClassID] = 1;
6010           else
6011             RegUsage[ClassID] += 1;
6012         }
6013       } else {
6014         collectUniformsAndScalars(VFs[j]);
6015         for (auto Inst : OpenIntervals) {
6016           // Skip ignored values for VF > 1.
6017           if (VecValuesToIgnore.count(Inst))
6018             continue;
6019           if (isScalarAfterVectorization(Inst, VFs[j])) {
6020             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6021             if (RegUsage.find(ClassID) == RegUsage.end())
6022               RegUsage[ClassID] = 1;
6023             else
6024               RegUsage[ClassID] += 1;
6025           } else {
6026             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6027             if (RegUsage.find(ClassID) == RegUsage.end())
6028               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6029             else
6030               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6031           }
6032         }
6033       }
6034 
6035       for (auto& pair : RegUsage) {
6036         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6037           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6038         else
6039           MaxUsages[j][pair.first] = pair.second;
6040       }
6041     }
6042 
6043     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6044                       << OpenIntervals.size() << '\n');
6045 
6046     // Add the current instruction to the list of open intervals.
6047     OpenIntervals.insert(I);
6048   }
6049 
6050   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6051     SmallMapVector<unsigned, unsigned, 4> Invariant;
6052 
6053     for (auto Inst : LoopInvariants) {
6054       unsigned Usage =
6055           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6056       unsigned ClassID =
6057           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6058       if (Invariant.find(ClassID) == Invariant.end())
6059         Invariant[ClassID] = Usage;
6060       else
6061         Invariant[ClassID] += Usage;
6062     }
6063 
6064     LLVM_DEBUG({
6065       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6066       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6067              << " item\n";
6068       for (const auto &pair : MaxUsages[i]) {
6069         dbgs() << "LV(REG): RegisterClass: "
6070                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6071                << " registers\n";
6072       }
6073       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6074              << " item\n";
6075       for (const auto &pair : Invariant) {
6076         dbgs() << "LV(REG): RegisterClass: "
6077                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6078                << " registers\n";
6079       }
6080     });
6081 
6082     RU.LoopInvariantRegs = Invariant;
6083     RU.MaxLocalUsers = MaxUsages[i];
6084     RUs[i] = RU;
6085   }
6086 
6087   return RUs;
6088 }
6089 
6090 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
6091                                                            ElementCount VF) {
6092   // TODO: Cost model for emulated masked load/store is completely
6093   // broken. This hack guides the cost model to use an artificially
6094   // high enough value to practically disable vectorization with such
6095   // operations, except where previously deployed legality hack allowed
6096   // using very low cost values. This is to avoid regressions coming simply
6097   // from moving "masked load/store" check from legality to cost model.
6098   // Masked Load/Gather emulation was previously never allowed.
6099   // Limited number of Masked Store/Scatter emulation was allowed.
6100   assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction");
6101   return isa<LoadInst>(I) ||
6102          (isa<StoreInst>(I) &&
6103           NumPredStores > NumberOfStoresToPredicate);
6104 }
6105 
6106 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6107   // If we aren't vectorizing the loop, or if we've already collected the
6108   // instructions to scalarize, there's nothing to do. Collection may already
6109   // have occurred if we have a user-selected VF and are now computing the
6110   // expected cost for interleaving.
6111   if (VF.isScalar() || VF.isZero() ||
6112       InstsToScalarize.find(VF) != InstsToScalarize.end())
6113     return;
6114 
6115   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6116   // not profitable to scalarize any instructions, the presence of VF in the
6117   // map will indicate that we've analyzed it already.
6118   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6119 
6120   // Find all the instructions that are scalar with predication in the loop and
6121   // determine if it would be better to not if-convert the blocks they are in.
6122   // If so, we also record the instructions to scalarize.
6123   for (BasicBlock *BB : TheLoop->blocks()) {
6124     if (!blockNeedsPredicationForAnyReason(BB))
6125       continue;
6126     for (Instruction &I : *BB)
6127       if (isScalarWithPredication(&I, VF)) {
6128         ScalarCostsTy ScalarCosts;
6129         // Do not apply discount if scalable, because that would lead to
6130         // invalid scalarization costs.
6131         // Do not apply discount logic if hacked cost is needed
6132         // for emulated masked memrefs.
6133         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) &&
6134             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6135           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6136         // Remember that BB will remain after vectorization.
6137         PredicatedBBsAfterVectorization.insert(BB);
6138       }
6139   }
6140 }
6141 
6142 int LoopVectorizationCostModel::computePredInstDiscount(
6143     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6144   assert(!isUniformAfterVectorization(PredInst, VF) &&
6145          "Instruction marked uniform-after-vectorization will be predicated");
6146 
6147   // Initialize the discount to zero, meaning that the scalar version and the
6148   // vector version cost the same.
6149   InstructionCost Discount = 0;
6150 
6151   // Holds instructions to analyze. The instructions we visit are mapped in
6152   // ScalarCosts. Those instructions are the ones that would be scalarized if
6153   // we find that the scalar version costs less.
6154   SmallVector<Instruction *, 8> Worklist;
6155 
6156   // Returns true if the given instruction can be scalarized.
6157   auto canBeScalarized = [&](Instruction *I) -> bool {
6158     // We only attempt to scalarize instructions forming a single-use chain
6159     // from the original predicated block that would otherwise be vectorized.
6160     // Although not strictly necessary, we give up on instructions we know will
6161     // already be scalar to avoid traversing chains that are unlikely to be
6162     // beneficial.
6163     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6164         isScalarAfterVectorization(I, VF))
6165       return false;
6166 
6167     // If the instruction is scalar with predication, it will be analyzed
6168     // separately. We ignore it within the context of PredInst.
6169     if (isScalarWithPredication(I, VF))
6170       return false;
6171 
6172     // If any of the instruction's operands are uniform after vectorization,
6173     // the instruction cannot be scalarized. This prevents, for example, a
6174     // masked load from being scalarized.
6175     //
6176     // We assume we will only emit a value for lane zero of an instruction
6177     // marked uniform after vectorization, rather than VF identical values.
6178     // Thus, if we scalarize an instruction that uses a uniform, we would
6179     // create uses of values corresponding to the lanes we aren't emitting code
6180     // for. This behavior can be changed by allowing getScalarValue to clone
6181     // the lane zero values for uniforms rather than asserting.
6182     for (Use &U : I->operands())
6183       if (auto *J = dyn_cast<Instruction>(U.get()))
6184         if (isUniformAfterVectorization(J, VF))
6185           return false;
6186 
6187     // Otherwise, we can scalarize the instruction.
6188     return true;
6189   };
6190 
6191   // Compute the expected cost discount from scalarizing the entire expression
6192   // feeding the predicated instruction. We currently only consider expressions
6193   // that are single-use instruction chains.
6194   Worklist.push_back(PredInst);
6195   while (!Worklist.empty()) {
6196     Instruction *I = Worklist.pop_back_val();
6197 
6198     // If we've already analyzed the instruction, there's nothing to do.
6199     if (ScalarCosts.find(I) != ScalarCosts.end())
6200       continue;
6201 
6202     // Compute the cost of the vector instruction. Note that this cost already
6203     // includes the scalarization overhead of the predicated instruction.
6204     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6205 
6206     // Compute the cost of the scalarized instruction. This cost is the cost of
6207     // the instruction as if it wasn't if-converted and instead remained in the
6208     // predicated block. We will scale this cost by block probability after
6209     // computing the scalarization overhead.
6210     InstructionCost ScalarCost =
6211         VF.getFixedValue() *
6212         getInstructionCost(I, ElementCount::getFixed(1)).first;
6213 
6214     // Compute the scalarization overhead of needed insertelement instructions
6215     // and phi nodes.
6216     if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
6217       ScalarCost += TTI.getScalarizationOverhead(
6218           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6219           APInt::getAllOnes(VF.getFixedValue()), true, false);
6220       ScalarCost +=
6221           VF.getFixedValue() *
6222           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6223     }
6224 
6225     // Compute the scalarization overhead of needed extractelement
6226     // instructions. For each of the instruction's operands, if the operand can
6227     // be scalarized, add it to the worklist; otherwise, account for the
6228     // overhead.
6229     for (Use &U : I->operands())
6230       if (auto *J = dyn_cast<Instruction>(U.get())) {
6231         assert(VectorType::isValidElementType(J->getType()) &&
6232                "Instruction has non-scalar type");
6233         if (canBeScalarized(J))
6234           Worklist.push_back(J);
6235         else if (needsExtract(J, VF)) {
6236           ScalarCost += TTI.getScalarizationOverhead(
6237               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6238               APInt::getAllOnes(VF.getFixedValue()), false, true);
6239         }
6240       }
6241 
6242     // Scale the total scalar cost by block probability.
6243     ScalarCost /= getReciprocalPredBlockProb();
6244 
6245     // Compute the discount. A non-negative discount means the vector version
6246     // of the instruction costs more, and scalarizing would be beneficial.
6247     Discount += VectorCost - ScalarCost;
6248     ScalarCosts[I] = ScalarCost;
6249   }
6250 
6251   return *Discount.getValue();
6252 }
6253 
6254 LoopVectorizationCostModel::VectorizationCostTy
6255 LoopVectorizationCostModel::expectedCost(
6256     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6257   VectorizationCostTy Cost;
6258 
6259   // For each block.
6260   for (BasicBlock *BB : TheLoop->blocks()) {
6261     VectorizationCostTy BlockCost;
6262 
6263     // For each instruction in the old loop.
6264     for (Instruction &I : BB->instructionsWithoutDebug()) {
6265       // Skip ignored values.
6266       if (ValuesToIgnore.count(&I) ||
6267           (VF.isVector() && VecValuesToIgnore.count(&I)))
6268         continue;
6269 
6270       VectorizationCostTy C = getInstructionCost(&I, VF);
6271 
6272       // Check if we should override the cost.
6273       if (C.first.isValid() &&
6274           ForceTargetInstructionCost.getNumOccurrences() > 0)
6275         C.first = InstructionCost(ForceTargetInstructionCost);
6276 
6277       // Keep a list of instructions with invalid costs.
6278       if (Invalid && !C.first.isValid())
6279         Invalid->emplace_back(&I, VF);
6280 
6281       BlockCost.first += C.first;
6282       BlockCost.second |= C.second;
6283       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6284                         << " for VF " << VF << " For instruction: " << I
6285                         << '\n');
6286     }
6287 
6288     // If we are vectorizing a predicated block, it will have been
6289     // if-converted. This means that the block's instructions (aside from
6290     // stores and instructions that may divide by zero) will now be
6291     // unconditionally executed. For the scalar case, we may not always execute
6292     // the predicated block, if it is an if-else block. Thus, scale the block's
6293     // cost by the probability of executing it. blockNeedsPredication from
6294     // Legal is used so as to not include all blocks in tail folded loops.
6295     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6296       BlockCost.first /= getReciprocalPredBlockProb();
6297 
6298     Cost.first += BlockCost.first;
6299     Cost.second |= BlockCost.second;
6300   }
6301 
6302   return Cost;
6303 }
6304 
6305 /// Gets Address Access SCEV after verifying that the access pattern
6306 /// is loop invariant except the induction variable dependence.
6307 ///
6308 /// This SCEV can be sent to the Target in order to estimate the address
6309 /// calculation cost.
6310 static const SCEV *getAddressAccessSCEV(
6311               Value *Ptr,
6312               LoopVectorizationLegality *Legal,
6313               PredicatedScalarEvolution &PSE,
6314               const Loop *TheLoop) {
6315 
6316   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6317   if (!Gep)
6318     return nullptr;
6319 
6320   // We are looking for a gep with all loop invariant indices except for one
6321   // which should be an induction variable.
6322   auto SE = PSE.getSE();
6323   unsigned NumOperands = Gep->getNumOperands();
6324   for (unsigned i = 1; i < NumOperands; ++i) {
6325     Value *Opd = Gep->getOperand(i);
6326     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6327         !Legal->isInductionVariable(Opd))
6328       return nullptr;
6329   }
6330 
6331   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6332   return PSE.getSCEV(Ptr);
6333 }
6334 
6335 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6336   return Legal->hasStride(I->getOperand(0)) ||
6337          Legal->hasStride(I->getOperand(1));
6338 }
6339 
6340 InstructionCost
6341 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6342                                                         ElementCount VF) {
6343   assert(VF.isVector() &&
6344          "Scalarization cost of instruction implies vectorization.");
6345   if (VF.isScalable())
6346     return InstructionCost::getInvalid();
6347 
6348   Type *ValTy = getLoadStoreType(I);
6349   auto SE = PSE.getSE();
6350 
6351   unsigned AS = getLoadStoreAddressSpace(I);
6352   Value *Ptr = getLoadStorePointerOperand(I);
6353   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6354   // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
6355   //       that it is being called from this specific place.
6356 
6357   // Figure out whether the access is strided and get the stride value
6358   // if it's known in compile time
6359   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6360 
6361   // Get the cost of the scalar memory instruction and address computation.
6362   InstructionCost Cost =
6363       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6364 
6365   // Don't pass *I here, since it is scalar but will actually be part of a
6366   // vectorized loop where the user of it is a vectorized instruction.
6367   const Align Alignment = getLoadStoreAlignment(I);
6368   Cost += VF.getKnownMinValue() *
6369           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6370                               AS, TTI::TCK_RecipThroughput);
6371 
6372   // Get the overhead of the extractelement and insertelement instructions
6373   // we might create due to scalarization.
6374   Cost += getScalarizationOverhead(I, VF);
6375 
6376   // If we have a predicated load/store, it will need extra i1 extracts and
6377   // conditional branches, but may not be executed for each vector lane. Scale
6378   // the cost by the probability of executing the predicated block.
6379   if (isPredicatedInst(I, VF)) {
6380     Cost /= getReciprocalPredBlockProb();
6381 
6382     // Add the cost of an i1 extract and a branch
6383     auto *Vec_i1Ty =
6384         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6385     Cost += TTI.getScalarizationOverhead(
6386         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
6387         /*Insert=*/false, /*Extract=*/true);
6388     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6389 
6390     if (useEmulatedMaskMemRefHack(I, VF))
6391       // Artificially setting to a high enough value to practically disable
6392       // vectorization with such operations.
6393       Cost = 3000000;
6394   }
6395 
6396   return Cost;
6397 }
6398 
6399 InstructionCost
6400 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6401                                                     ElementCount VF) {
6402   Type *ValTy = getLoadStoreType(I);
6403   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6404   Value *Ptr = getLoadStorePointerOperand(I);
6405   unsigned AS = getLoadStoreAddressSpace(I);
6406   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
6407   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6408 
6409   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6410          "Stride should be 1 or -1 for consecutive memory access");
6411   const Align Alignment = getLoadStoreAlignment(I);
6412   InstructionCost Cost = 0;
6413   if (Legal->isMaskRequired(I))
6414     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6415                                       CostKind);
6416   else
6417     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6418                                 CostKind, I);
6419 
6420   bool Reverse = ConsecutiveStride < 0;
6421   if (Reverse)
6422     Cost +=
6423         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6424   return Cost;
6425 }
6426 
6427 InstructionCost
6428 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6429                                                 ElementCount VF) {
6430   assert(Legal->isUniformMemOp(*I));
6431 
6432   Type *ValTy = getLoadStoreType(I);
6433   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6434   const Align Alignment = getLoadStoreAlignment(I);
6435   unsigned AS = getLoadStoreAddressSpace(I);
6436   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6437   if (isa<LoadInst>(I)) {
6438     return TTI.getAddressComputationCost(ValTy) +
6439            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6440                                CostKind) +
6441            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6442   }
6443   StoreInst *SI = cast<StoreInst>(I);
6444 
6445   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6446   return TTI.getAddressComputationCost(ValTy) +
6447          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6448                              CostKind) +
6449          (isLoopInvariantStoreValue
6450               ? 0
6451               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6452                                        VF.getKnownMinValue() - 1));
6453 }
6454 
6455 InstructionCost
6456 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6457                                                  ElementCount VF) {
6458   Type *ValTy = getLoadStoreType(I);
6459   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6460   const Align Alignment = getLoadStoreAlignment(I);
6461   const Value *Ptr = getLoadStorePointerOperand(I);
6462 
6463   return TTI.getAddressComputationCost(VectorTy) +
6464          TTI.getGatherScatterOpCost(
6465              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6466              TargetTransformInfo::TCK_RecipThroughput, I);
6467 }
6468 
6469 InstructionCost
6470 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6471                                                    ElementCount VF) {
6472   // TODO: Once we have support for interleaving with scalable vectors
6473   // we can calculate the cost properly here.
6474   if (VF.isScalable())
6475     return InstructionCost::getInvalid();
6476 
6477   Type *ValTy = getLoadStoreType(I);
6478   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6479   unsigned AS = getLoadStoreAddressSpace(I);
6480 
6481   auto Group = getInterleavedAccessGroup(I);
6482   assert(Group && "Fail to get an interleaved access group.");
6483 
6484   unsigned InterleaveFactor = Group->getFactor();
6485   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6486 
6487   // Holds the indices of existing members in the interleaved group.
6488   SmallVector<unsigned, 4> Indices;
6489   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
6490     if (Group->getMember(IF))
6491       Indices.push_back(IF);
6492 
6493   // Calculate the cost of the whole interleaved group.
6494   bool UseMaskForGaps =
6495       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
6496       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
6497   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
6498       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6499       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6500 
6501   if (Group->isReverse()) {
6502     // TODO: Add support for reversed masked interleaved access.
6503     assert(!Legal->isMaskRequired(I) &&
6504            "Reverse masked interleaved access not supported.");
6505     Cost +=
6506         Group->getNumMembers() *
6507         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6508   }
6509   return Cost;
6510 }
6511 
6512 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
6513     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
6514   using namespace llvm::PatternMatch;
6515   // Early exit for no inloop reductions
6516   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
6517     return None;
6518   auto *VectorTy = cast<VectorType>(Ty);
6519 
6520   // We are looking for a pattern of, and finding the minimal acceptable cost:
6521   //  reduce(mul(ext(A), ext(B))) or
6522   //  reduce(mul(A, B)) or
6523   //  reduce(ext(A)) or
6524   //  reduce(A).
6525   // The basic idea is that we walk down the tree to do that, finding the root
6526   // reduction instruction in InLoopReductionImmediateChains. From there we find
6527   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
6528   // of the components. If the reduction cost is lower then we return it for the
6529   // reduction instruction and 0 for the other instructions in the pattern. If
6530   // it is not we return an invalid cost specifying the orignal cost method
6531   // should be used.
6532   Instruction *RetI = I;
6533   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
6534     if (!RetI->hasOneUser())
6535       return None;
6536     RetI = RetI->user_back();
6537   }
6538   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
6539       RetI->user_back()->getOpcode() == Instruction::Add) {
6540     if (!RetI->hasOneUser())
6541       return None;
6542     RetI = RetI->user_back();
6543   }
6544 
6545   // Test if the found instruction is a reduction, and if not return an invalid
6546   // cost specifying the parent to use the original cost modelling.
6547   if (!InLoopReductionImmediateChains.count(RetI))
6548     return None;
6549 
6550   // Find the reduction this chain is a part of and calculate the basic cost of
6551   // the reduction on its own.
6552   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
6553   Instruction *ReductionPhi = LastChain;
6554   while (!isa<PHINode>(ReductionPhi))
6555     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
6556 
6557   const RecurrenceDescriptor &RdxDesc =
6558       Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second;
6559 
6560   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
6561       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
6562 
6563   // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
6564   // normal fmul instruction to the cost of the fadd reduction.
6565   if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd)
6566     BaseCost +=
6567         TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
6568 
6569   // If we're using ordered reductions then we can just return the base cost
6570   // here, since getArithmeticReductionCost calculates the full ordered
6571   // reduction cost when FP reassociation is not allowed.
6572   if (useOrderedReductions(RdxDesc))
6573     return BaseCost;
6574 
6575   // Get the operand that was not the reduction chain and match it to one of the
6576   // patterns, returning the better cost if it is found.
6577   Instruction *RedOp = RetI->getOperand(1) == LastChain
6578                            ? dyn_cast<Instruction>(RetI->getOperand(0))
6579                            : dyn_cast<Instruction>(RetI->getOperand(1));
6580 
6581   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
6582 
6583   Instruction *Op0, *Op1;
6584   if (RedOp &&
6585       match(RedOp,
6586             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
6587       match(Op0, m_ZExtOrSExt(m_Value())) &&
6588       Op0->getOpcode() == Op1->getOpcode() &&
6589       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
6590       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
6591       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
6592 
6593     // Matched reduce(ext(mul(ext(A), ext(B)))
6594     // Note that the extend opcodes need to all match, or if A==B they will have
6595     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
6596     // which is equally fine.
6597     bool IsUnsigned = isa<ZExtInst>(Op0);
6598     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
6599     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
6600 
6601     InstructionCost ExtCost =
6602         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
6603                              TTI::CastContextHint::None, CostKind, Op0);
6604     InstructionCost MulCost =
6605         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
6606     InstructionCost Ext2Cost =
6607         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
6608                              TTI::CastContextHint::None, CostKind, RedOp);
6609 
6610     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6611         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6612         CostKind);
6613 
6614     if (RedCost.isValid() &&
6615         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
6616       return I == RetI ? RedCost : 0;
6617   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
6618              !TheLoop->isLoopInvariant(RedOp)) {
6619     // Matched reduce(ext(A))
6620     bool IsUnsigned = isa<ZExtInst>(RedOp);
6621     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
6622     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6623         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6624         CostKind);
6625 
6626     InstructionCost ExtCost =
6627         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
6628                              TTI::CastContextHint::None, CostKind, RedOp);
6629     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
6630       return I == RetI ? RedCost : 0;
6631   } else if (RedOp &&
6632              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
6633     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
6634         Op0->getOpcode() == Op1->getOpcode() &&
6635         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
6636       bool IsUnsigned = isa<ZExtInst>(Op0);
6637       Type *Op0Ty = Op0->getOperand(0)->getType();
6638       Type *Op1Ty = Op1->getOperand(0)->getType();
6639       Type *LargestOpTy =
6640           Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
6641                                                                     : Op0Ty;
6642       auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
6643 
6644       // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of
6645       // different sizes. We take the largest type as the ext to reduce, and add
6646       // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
6647       InstructionCost ExtCost0 = TTI.getCastInstrCost(
6648           Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
6649           TTI::CastContextHint::None, CostKind, Op0);
6650       InstructionCost ExtCost1 = TTI.getCastInstrCost(
6651           Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
6652           TTI::CastContextHint::None, CostKind, Op1);
6653       InstructionCost MulCost =
6654           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6655 
6656       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6657           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6658           CostKind);
6659       InstructionCost ExtraExtCost = 0;
6660       if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
6661         Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
6662         ExtraExtCost = TTI.getCastInstrCost(
6663             ExtraExtOp->getOpcode(), ExtType,
6664             VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
6665             TTI::CastContextHint::None, CostKind, ExtraExtOp);
6666       }
6667 
6668       if (RedCost.isValid() &&
6669           (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
6670         return I == RetI ? RedCost : 0;
6671     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
6672       // Matched reduce(mul())
6673       InstructionCost MulCost =
6674           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6675 
6676       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6677           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
6678           CostKind);
6679 
6680       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
6681         return I == RetI ? RedCost : 0;
6682     }
6683   }
6684 
6685   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
6686 }
6687 
6688 InstructionCost
6689 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
6690                                                      ElementCount VF) {
6691   // Calculate scalar cost only. Vectorization cost should be ready at this
6692   // moment.
6693   if (VF.isScalar()) {
6694     Type *ValTy = getLoadStoreType(I);
6695     const Align Alignment = getLoadStoreAlignment(I);
6696     unsigned AS = getLoadStoreAddressSpace(I);
6697 
6698     return TTI.getAddressComputationCost(ValTy) +
6699            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
6700                                TTI::TCK_RecipThroughput, I);
6701   }
6702   return getWideningCost(I, VF);
6703 }
6704 
6705 LoopVectorizationCostModel::VectorizationCostTy
6706 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
6707                                                ElementCount VF) {
6708   // If we know that this instruction will remain uniform, check the cost of
6709   // the scalar version.
6710   if (isUniformAfterVectorization(I, VF))
6711     VF = ElementCount::getFixed(1);
6712 
6713   if (VF.isVector() && isProfitableToScalarize(I, VF))
6714     return VectorizationCostTy(InstsToScalarize[VF][I], false);
6715 
6716   // Forced scalars do not have any scalarization overhead.
6717   auto ForcedScalar = ForcedScalars.find(VF);
6718   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
6719     auto InstSet = ForcedScalar->second;
6720     if (InstSet.count(I))
6721       return VectorizationCostTy(
6722           (getInstructionCost(I, ElementCount::getFixed(1)).first *
6723            VF.getKnownMinValue()),
6724           false);
6725   }
6726 
6727   Type *VectorTy;
6728   InstructionCost C = getInstructionCost(I, VF, VectorTy);
6729 
6730   bool TypeNotScalarized = false;
6731   if (VF.isVector() && VectorTy->isVectorTy()) {
6732     unsigned NumParts = TTI.getNumberOfParts(VectorTy);
6733     if (NumParts)
6734       TypeNotScalarized = NumParts < VF.getKnownMinValue();
6735     else
6736       C = InstructionCost::getInvalid();
6737   }
6738   return VectorizationCostTy(C, TypeNotScalarized);
6739 }
6740 
6741 InstructionCost
6742 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
6743                                                      ElementCount VF) const {
6744 
6745   // There is no mechanism yet to create a scalable scalarization loop,
6746   // so this is currently Invalid.
6747   if (VF.isScalable())
6748     return InstructionCost::getInvalid();
6749 
6750   if (VF.isScalar())
6751     return 0;
6752 
6753   InstructionCost Cost = 0;
6754   Type *RetTy = ToVectorTy(I->getType(), VF);
6755   if (!RetTy->isVoidTy() &&
6756       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
6757     Cost += TTI.getScalarizationOverhead(
6758         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
6759         false);
6760 
6761   // Some targets keep addresses scalar.
6762   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
6763     return Cost;
6764 
6765   // Some targets support efficient element stores.
6766   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
6767     return Cost;
6768 
6769   // Collect operands to consider.
6770   CallInst *CI = dyn_cast<CallInst>(I);
6771   Instruction::op_range Ops = CI ? CI->args() : I->operands();
6772 
6773   // Skip operands that do not require extraction/scalarization and do not incur
6774   // any overhead.
6775   SmallVector<Type *> Tys;
6776   for (auto *V : filterExtractingOperands(Ops, VF))
6777     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
6778   return Cost + TTI.getOperandsScalarizationOverhead(
6779                     filterExtractingOperands(Ops, VF), Tys);
6780 }
6781 
6782 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
6783   if (VF.isScalar())
6784     return;
6785   NumPredStores = 0;
6786   for (BasicBlock *BB : TheLoop->blocks()) {
6787     // For each instruction in the old loop.
6788     for (Instruction &I : *BB) {
6789       Value *Ptr =  getLoadStorePointerOperand(&I);
6790       if (!Ptr)
6791         continue;
6792 
6793       // TODO: We should generate better code and update the cost model for
6794       // predicated uniform stores. Today they are treated as any other
6795       // predicated store (see added test cases in
6796       // invariant-store-vectorization.ll).
6797       if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF))
6798         NumPredStores++;
6799 
6800       if (Legal->isUniformMemOp(I)) {
6801         // TODO: Avoid replicating loads and stores instead of
6802         // relying on instcombine to remove them.
6803         // Load: Scalar load + broadcast
6804         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
6805         InstructionCost Cost;
6806         if (isa<StoreInst>(&I) && VF.isScalable() &&
6807             isLegalGatherOrScatter(&I, VF)) {
6808           Cost = getGatherScatterCost(&I, VF);
6809           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
6810         } else {
6811           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
6812                  "Cannot yet scalarize uniform stores");
6813           Cost = getUniformMemOpCost(&I, VF);
6814           setWideningDecision(&I, VF, CM_Scalarize, Cost);
6815         }
6816         continue;
6817       }
6818 
6819       // We assume that widening is the best solution when possible.
6820       if (memoryInstructionCanBeWidened(&I, VF)) {
6821         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
6822         int ConsecutiveStride = Legal->isConsecutivePtr(
6823             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
6824         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6825                "Expected consecutive stride.");
6826         InstWidening Decision =
6827             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
6828         setWideningDecision(&I, VF, Decision, Cost);
6829         continue;
6830       }
6831 
6832       // Choose between Interleaving, Gather/Scatter or Scalarization.
6833       InstructionCost InterleaveCost = InstructionCost::getInvalid();
6834       unsigned NumAccesses = 1;
6835       if (isAccessInterleaved(&I)) {
6836         auto Group = getInterleavedAccessGroup(&I);
6837         assert(Group && "Fail to get an interleaved access group.");
6838 
6839         // Make one decision for the whole group.
6840         if (getWideningDecision(&I, VF) != CM_Unknown)
6841           continue;
6842 
6843         NumAccesses = Group->getNumMembers();
6844         if (interleavedAccessCanBeWidened(&I, VF))
6845           InterleaveCost = getInterleaveGroupCost(&I, VF);
6846       }
6847 
6848       InstructionCost GatherScatterCost =
6849           isLegalGatherOrScatter(&I, VF)
6850               ? getGatherScatterCost(&I, VF) * NumAccesses
6851               : InstructionCost::getInvalid();
6852 
6853       InstructionCost ScalarizationCost =
6854           getMemInstScalarizationCost(&I, VF) * NumAccesses;
6855 
6856       // Choose better solution for the current VF,
6857       // write down this decision and use it during vectorization.
6858       InstructionCost Cost;
6859       InstWidening Decision;
6860       if (InterleaveCost <= GatherScatterCost &&
6861           InterleaveCost < ScalarizationCost) {
6862         Decision = CM_Interleave;
6863         Cost = InterleaveCost;
6864       } else if (GatherScatterCost < ScalarizationCost) {
6865         Decision = CM_GatherScatter;
6866         Cost = GatherScatterCost;
6867       } else {
6868         Decision = CM_Scalarize;
6869         Cost = ScalarizationCost;
6870       }
6871       // If the instructions belongs to an interleave group, the whole group
6872       // receives the same decision. The whole group receives the cost, but
6873       // the cost will actually be assigned to one instruction.
6874       if (auto Group = getInterleavedAccessGroup(&I))
6875         setWideningDecision(Group, VF, Decision, Cost);
6876       else
6877         setWideningDecision(&I, VF, Decision, Cost);
6878     }
6879   }
6880 
6881   // Make sure that any load of address and any other address computation
6882   // remains scalar unless there is gather/scatter support. This avoids
6883   // inevitable extracts into address registers, and also has the benefit of
6884   // activating LSR more, since that pass can't optimize vectorized
6885   // addresses.
6886   if (TTI.prefersVectorizedAddressing())
6887     return;
6888 
6889   // Start with all scalar pointer uses.
6890   SmallPtrSet<Instruction *, 8> AddrDefs;
6891   for (BasicBlock *BB : TheLoop->blocks())
6892     for (Instruction &I : *BB) {
6893       Instruction *PtrDef =
6894         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
6895       if (PtrDef && TheLoop->contains(PtrDef) &&
6896           getWideningDecision(&I, VF) != CM_GatherScatter)
6897         AddrDefs.insert(PtrDef);
6898     }
6899 
6900   // Add all instructions used to generate the addresses.
6901   SmallVector<Instruction *, 4> Worklist;
6902   append_range(Worklist, AddrDefs);
6903   while (!Worklist.empty()) {
6904     Instruction *I = Worklist.pop_back_val();
6905     for (auto &Op : I->operands())
6906       if (auto *InstOp = dyn_cast<Instruction>(Op))
6907         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
6908             AddrDefs.insert(InstOp).second)
6909           Worklist.push_back(InstOp);
6910   }
6911 
6912   for (auto *I : AddrDefs) {
6913     if (isa<LoadInst>(I)) {
6914       // Setting the desired widening decision should ideally be handled in
6915       // by cost functions, but since this involves the task of finding out
6916       // if the loaded register is involved in an address computation, it is
6917       // instead changed here when we know this is the case.
6918       InstWidening Decision = getWideningDecision(I, VF);
6919       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
6920         // Scalarize a widened load of address.
6921         setWideningDecision(
6922             I, VF, CM_Scalarize,
6923             (VF.getKnownMinValue() *
6924              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
6925       else if (auto Group = getInterleavedAccessGroup(I)) {
6926         // Scalarize an interleave group of address loads.
6927         for (unsigned I = 0; I < Group->getFactor(); ++I) {
6928           if (Instruction *Member = Group->getMember(I))
6929             setWideningDecision(
6930                 Member, VF, CM_Scalarize,
6931                 (VF.getKnownMinValue() *
6932                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
6933         }
6934       }
6935     } else
6936       // Make sure I gets scalarized and a cost estimate without
6937       // scalarization overhead.
6938       ForcedScalars[VF].insert(I);
6939   }
6940 }
6941 
6942 InstructionCost
6943 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
6944                                                Type *&VectorTy) {
6945   Type *RetTy = I->getType();
6946   if (canTruncateToMinimalBitwidth(I, VF))
6947     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6948   auto SE = PSE.getSE();
6949   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6950 
6951   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
6952                                                 ElementCount VF) -> bool {
6953     if (VF.isScalar())
6954       return true;
6955 
6956     auto Scalarized = InstsToScalarize.find(VF);
6957     assert(Scalarized != InstsToScalarize.end() &&
6958            "VF not yet analyzed for scalarization profitability");
6959     return !Scalarized->second.count(I) &&
6960            llvm::all_of(I->users(), [&](User *U) {
6961              auto *UI = cast<Instruction>(U);
6962              return !Scalarized->second.count(UI);
6963            });
6964   };
6965   (void) hasSingleCopyAfterVectorization;
6966 
6967   if (isScalarAfterVectorization(I, VF)) {
6968     // With the exception of GEPs and PHIs, after scalarization there should
6969     // only be one copy of the instruction generated in the loop. This is
6970     // because the VF is either 1, or any instructions that need scalarizing
6971     // have already been dealt with by the the time we get here. As a result,
6972     // it means we don't have to multiply the instruction cost by VF.
6973     assert(I->getOpcode() == Instruction::GetElementPtr ||
6974            I->getOpcode() == Instruction::PHI ||
6975            (I->getOpcode() == Instruction::BitCast &&
6976             I->getType()->isPointerTy()) ||
6977            hasSingleCopyAfterVectorization(I, VF));
6978     VectorTy = RetTy;
6979   } else
6980     VectorTy = ToVectorTy(RetTy, VF);
6981 
6982   // TODO: We need to estimate the cost of intrinsic calls.
6983   switch (I->getOpcode()) {
6984   case Instruction::GetElementPtr:
6985     // We mark this instruction as zero-cost because the cost of GEPs in
6986     // vectorized code depends on whether the corresponding memory instruction
6987     // is scalarized or not. Therefore, we handle GEPs with the memory
6988     // instruction cost.
6989     return 0;
6990   case Instruction::Br: {
6991     // In cases of scalarized and predicated instructions, there will be VF
6992     // predicated blocks in the vectorized loop. Each branch around these
6993     // blocks requires also an extract of its vector compare i1 element.
6994     bool ScalarPredicatedBB = false;
6995     BranchInst *BI = cast<BranchInst>(I);
6996     if (VF.isVector() && BI->isConditional() &&
6997         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
6998          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
6999       ScalarPredicatedBB = true;
7000 
7001     if (ScalarPredicatedBB) {
7002       // Not possible to scalarize scalable vector with predicated instructions.
7003       if (VF.isScalable())
7004         return InstructionCost::getInvalid();
7005       // Return cost for branches around scalarized and predicated blocks.
7006       auto *Vec_i1Ty =
7007           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7008       return (
7009           TTI.getScalarizationOverhead(
7010               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7011           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7012     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7013       // The back-edge branch will remain, as will all scalar branches.
7014       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7015     else
7016       // This branch will be eliminated by if-conversion.
7017       return 0;
7018     // Note: We currently assume zero cost for an unconditional branch inside
7019     // a predicated block since it will become a fall-through, although we
7020     // may decide in the future to call TTI for all branches.
7021   }
7022   case Instruction::PHI: {
7023     auto *Phi = cast<PHINode>(I);
7024 
7025     // First-order recurrences are replaced by vector shuffles inside the loop.
7026     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7027     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7028       return TTI.getShuffleCost(
7029           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7030           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7031 
7032     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7033     // converted into select instructions. We require N - 1 selects per phi
7034     // node, where N is the number of incoming values.
7035     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7036       return (Phi->getNumIncomingValues() - 1) *
7037              TTI.getCmpSelInstrCost(
7038                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7039                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7040                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7041 
7042     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7043   }
7044   case Instruction::UDiv:
7045   case Instruction::SDiv:
7046   case Instruction::URem:
7047   case Instruction::SRem:
7048     // If we have a predicated instruction, it may not be executed for each
7049     // vector lane. Get the scalarization cost and scale this amount by the
7050     // probability of executing the predicated block. If the instruction is not
7051     // predicated, we fall through to the next case.
7052     if (VF.isVector() && isScalarWithPredication(I, VF)) {
7053       InstructionCost Cost = 0;
7054 
7055       // These instructions have a non-void type, so account for the phi nodes
7056       // that we will create. This cost is likely to be zero. The phi node
7057       // cost, if any, should be scaled by the block probability because it
7058       // models a copy at the end of each predicated block.
7059       Cost += VF.getKnownMinValue() *
7060               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7061 
7062       // The cost of the non-predicated instruction.
7063       Cost += VF.getKnownMinValue() *
7064               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7065 
7066       // The cost of insertelement and extractelement instructions needed for
7067       // scalarization.
7068       Cost += getScalarizationOverhead(I, VF);
7069 
7070       // Scale the cost by the probability of executing the predicated blocks.
7071       // This assumes the predicated block for each vector lane is equally
7072       // likely.
7073       return Cost / getReciprocalPredBlockProb();
7074     }
7075     LLVM_FALLTHROUGH;
7076   case Instruction::Add:
7077   case Instruction::FAdd:
7078   case Instruction::Sub:
7079   case Instruction::FSub:
7080   case Instruction::Mul:
7081   case Instruction::FMul:
7082   case Instruction::FDiv:
7083   case Instruction::FRem:
7084   case Instruction::Shl:
7085   case Instruction::LShr:
7086   case Instruction::AShr:
7087   case Instruction::And:
7088   case Instruction::Or:
7089   case Instruction::Xor: {
7090     // Since we will replace the stride by 1 the multiplication should go away.
7091     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7092       return 0;
7093 
7094     // Detect reduction patterns
7095     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7096       return *RedCost;
7097 
7098     // Certain instructions can be cheaper to vectorize if they have a constant
7099     // second vector operand. One example of this are shifts on x86.
7100     Value *Op2 = I->getOperand(1);
7101     TargetTransformInfo::OperandValueProperties Op2VP;
7102     TargetTransformInfo::OperandValueKind Op2VK =
7103         TTI.getOperandInfo(Op2, Op2VP);
7104     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7105       Op2VK = TargetTransformInfo::OK_UniformValue;
7106 
7107     SmallVector<const Value *, 4> Operands(I->operand_values());
7108     return TTI.getArithmeticInstrCost(
7109         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7110         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7111   }
7112   case Instruction::FNeg: {
7113     return TTI.getArithmeticInstrCost(
7114         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7115         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7116         TargetTransformInfo::OP_None, I->getOperand(0), I);
7117   }
7118   case Instruction::Select: {
7119     SelectInst *SI = cast<SelectInst>(I);
7120     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7121     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7122 
7123     const Value *Op0, *Op1;
7124     using namespace llvm::PatternMatch;
7125     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7126                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7127       // select x, y, false --> x & y
7128       // select x, true, y --> x | y
7129       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7130       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7131       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7132       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7133       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7134               Op1->getType()->getScalarSizeInBits() == 1);
7135 
7136       SmallVector<const Value *, 2> Operands{Op0, Op1};
7137       return TTI.getArithmeticInstrCost(
7138           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7139           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7140     }
7141 
7142     Type *CondTy = SI->getCondition()->getType();
7143     if (!ScalarCond)
7144       CondTy = VectorType::get(CondTy, VF);
7145 
7146     CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
7147     if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
7148       Pred = Cmp->getPredicate();
7149     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
7150                                   CostKind, I);
7151   }
7152   case Instruction::ICmp:
7153   case Instruction::FCmp: {
7154     Type *ValTy = I->getOperand(0)->getType();
7155     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7156     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7157       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7158     VectorTy = ToVectorTy(ValTy, VF);
7159     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7160                                   cast<CmpInst>(I)->getPredicate(), CostKind,
7161                                   I);
7162   }
7163   case Instruction::Store:
7164   case Instruction::Load: {
7165     ElementCount Width = VF;
7166     if (Width.isVector()) {
7167       InstWidening Decision = getWideningDecision(I, Width);
7168       assert(Decision != CM_Unknown &&
7169              "CM decision should be taken at this point");
7170       if (Decision == CM_Scalarize)
7171         Width = ElementCount::getFixed(1);
7172     }
7173     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7174     return getMemoryInstructionCost(I, VF);
7175   }
7176   case Instruction::BitCast:
7177     if (I->getType()->isPointerTy())
7178       return 0;
7179     LLVM_FALLTHROUGH;
7180   case Instruction::ZExt:
7181   case Instruction::SExt:
7182   case Instruction::FPToUI:
7183   case Instruction::FPToSI:
7184   case Instruction::FPExt:
7185   case Instruction::PtrToInt:
7186   case Instruction::IntToPtr:
7187   case Instruction::SIToFP:
7188   case Instruction::UIToFP:
7189   case Instruction::Trunc:
7190   case Instruction::FPTrunc: {
7191     // Computes the CastContextHint from a Load/Store instruction.
7192     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7193       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7194              "Expected a load or a store!");
7195 
7196       if (VF.isScalar() || !TheLoop->contains(I))
7197         return TTI::CastContextHint::Normal;
7198 
7199       switch (getWideningDecision(I, VF)) {
7200       case LoopVectorizationCostModel::CM_GatherScatter:
7201         return TTI::CastContextHint::GatherScatter;
7202       case LoopVectorizationCostModel::CM_Interleave:
7203         return TTI::CastContextHint::Interleave;
7204       case LoopVectorizationCostModel::CM_Scalarize:
7205       case LoopVectorizationCostModel::CM_Widen:
7206         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7207                                         : TTI::CastContextHint::Normal;
7208       case LoopVectorizationCostModel::CM_Widen_Reverse:
7209         return TTI::CastContextHint::Reversed;
7210       case LoopVectorizationCostModel::CM_Unknown:
7211         llvm_unreachable("Instr did not go through cost modelling?");
7212       }
7213 
7214       llvm_unreachable("Unhandled case!");
7215     };
7216 
7217     unsigned Opcode = I->getOpcode();
7218     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7219     // For Trunc, the context is the only user, which must be a StoreInst.
7220     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7221       if (I->hasOneUse())
7222         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7223           CCH = ComputeCCH(Store);
7224     }
7225     // For Z/Sext, the context is the operand, which must be a LoadInst.
7226     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7227              Opcode == Instruction::FPExt) {
7228       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7229         CCH = ComputeCCH(Load);
7230     }
7231 
7232     // We optimize the truncation of induction variables having constant
7233     // integer steps. The cost of these truncations is the same as the scalar
7234     // operation.
7235     if (isOptimizableIVTruncate(I, VF)) {
7236       auto *Trunc = cast<TruncInst>(I);
7237       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7238                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7239     }
7240 
7241     // Detect reduction patterns
7242     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7243       return *RedCost;
7244 
7245     Type *SrcScalarTy = I->getOperand(0)->getType();
7246     Type *SrcVecTy =
7247         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7248     if (canTruncateToMinimalBitwidth(I, VF)) {
7249       // This cast is going to be shrunk. This may remove the cast or it might
7250       // turn it into slightly different cast. For example, if MinBW == 16,
7251       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7252       //
7253       // Calculate the modified src and dest types.
7254       Type *MinVecTy = VectorTy;
7255       if (Opcode == Instruction::Trunc) {
7256         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7257         VectorTy =
7258             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7259       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7260         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7261         VectorTy =
7262             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7263       }
7264     }
7265 
7266     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7267   }
7268   case Instruction::Call: {
7269     if (RecurrenceDescriptor::isFMulAddIntrinsic(I))
7270       if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7271         return *RedCost;
7272     bool NeedToScalarize;
7273     CallInst *CI = cast<CallInst>(I);
7274     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7275     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7276       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7277       return std::min(CallCost, IntrinsicCost);
7278     }
7279     return CallCost;
7280   }
7281   case Instruction::ExtractValue:
7282     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7283   case Instruction::Alloca:
7284     // We cannot easily widen alloca to a scalable alloca, as
7285     // the result would need to be a vector of pointers.
7286     if (VF.isScalable())
7287       return InstructionCost::getInvalid();
7288     LLVM_FALLTHROUGH;
7289   default:
7290     // This opcode is unknown. Assume that it is the same as 'mul'.
7291     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7292   } // end of switch.
7293 }
7294 
7295 char LoopVectorize::ID = 0;
7296 
7297 static const char lv_name[] = "Loop Vectorization";
7298 
7299 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7300 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7301 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7302 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7303 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7304 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7305 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7306 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7307 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7308 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7309 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7310 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7311 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7312 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7313 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7314 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7315 
7316 namespace llvm {
7317 
7318 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7319 
7320 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7321                               bool VectorizeOnlyWhenForced) {
7322   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7323 }
7324 
7325 } // end namespace llvm
7326 
7327 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7328   // Check if the pointer operand of a load or store instruction is
7329   // consecutive.
7330   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7331     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7332   return false;
7333 }
7334 
7335 void LoopVectorizationCostModel::collectValuesToIgnore() {
7336   // Ignore ephemeral values.
7337   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7338 
7339   // Ignore type-promoting instructions we identified during reduction
7340   // detection.
7341   for (auto &Reduction : Legal->getReductionVars()) {
7342     const RecurrenceDescriptor &RedDes = Reduction.second;
7343     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7344     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7345   }
7346   // Ignore type-casting instructions we identified during induction
7347   // detection.
7348   for (auto &Induction : Legal->getInductionVars()) {
7349     const InductionDescriptor &IndDes = Induction.second;
7350     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7351     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7352   }
7353 }
7354 
7355 void LoopVectorizationCostModel::collectInLoopReductions() {
7356   for (auto &Reduction : Legal->getReductionVars()) {
7357     PHINode *Phi = Reduction.first;
7358     const RecurrenceDescriptor &RdxDesc = Reduction.second;
7359 
7360     // We don't collect reductions that are type promoted (yet).
7361     if (RdxDesc.getRecurrenceType() != Phi->getType())
7362       continue;
7363 
7364     // If the target would prefer this reduction to happen "in-loop", then we
7365     // want to record it as such.
7366     unsigned Opcode = RdxDesc.getOpcode();
7367     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7368         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7369                                    TargetTransformInfo::ReductionFlags()))
7370       continue;
7371 
7372     // Check that we can correctly put the reductions into the loop, by
7373     // finding the chain of operations that leads from the phi to the loop
7374     // exit value.
7375     SmallVector<Instruction *, 4> ReductionOperations =
7376         RdxDesc.getReductionOpChain(Phi, TheLoop);
7377     bool InLoop = !ReductionOperations.empty();
7378     if (InLoop) {
7379       InLoopReductionChains[Phi] = ReductionOperations;
7380       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7381       Instruction *LastChain = Phi;
7382       for (auto *I : ReductionOperations) {
7383         InLoopReductionImmediateChains[I] = LastChain;
7384         LastChain = I;
7385       }
7386     }
7387     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7388                       << " reduction for phi: " << *Phi << "\n");
7389   }
7390 }
7391 
7392 // TODO: we could return a pair of values that specify the max VF and
7393 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7394 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7395 // doesn't have a cost model that can choose which plan to execute if
7396 // more than one is generated.
7397 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7398                                  LoopVectorizationCostModel &CM) {
7399   unsigned WidestType;
7400   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7401   return WidestVectorRegBits / WidestType;
7402 }
7403 
7404 VectorizationFactor
7405 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7406   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7407   ElementCount VF = UserVF;
7408   // Outer loop handling: They may require CFG and instruction level
7409   // transformations before even evaluating whether vectorization is profitable.
7410   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7411   // the vectorization pipeline.
7412   if (!OrigLoop->isInnermost()) {
7413     // If the user doesn't provide a vectorization factor, determine a
7414     // reasonable one.
7415     if (UserVF.isZero()) {
7416       VF = ElementCount::getFixed(determineVPlanVF(
7417           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7418               .getFixedSize(),
7419           CM));
7420       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7421 
7422       // Make sure we have a VF > 1 for stress testing.
7423       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7424         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7425                           << "overriding computed VF.\n");
7426         VF = ElementCount::getFixed(4);
7427       }
7428     }
7429     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7430     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7431            "VF needs to be a power of two");
7432     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7433                       << "VF " << VF << " to build VPlans.\n");
7434     buildVPlans(VF, VF);
7435 
7436     // For VPlan build stress testing, we bail out after VPlan construction.
7437     if (VPlanBuildStressTest)
7438       return VectorizationFactor::Disabled();
7439 
7440     return {VF, 0 /*Cost*/};
7441   }
7442 
7443   LLVM_DEBUG(
7444       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7445                 "VPlan-native path.\n");
7446   return VectorizationFactor::Disabled();
7447 }
7448 
7449 Optional<VectorizationFactor>
7450 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7451   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7452   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
7453   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
7454     return None;
7455 
7456   // Invalidate interleave groups if all blocks of loop will be predicated.
7457   if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
7458       !useMaskedInterleavedAccesses(*TTI)) {
7459     LLVM_DEBUG(
7460         dbgs()
7461         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7462            "which requires masked-interleaved support.\n");
7463     if (CM.InterleaveInfo.invalidateGroups())
7464       // Invalidating interleave groups also requires invalidating all decisions
7465       // based on them, which includes widening decisions and uniform and scalar
7466       // values.
7467       CM.invalidateCostModelingDecisions();
7468   }
7469 
7470   ElementCount MaxUserVF =
7471       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
7472   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
7473   if (!UserVF.isZero() && UserVFIsLegal) {
7474     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
7475            "VF needs to be a power of two");
7476     // Collect the instructions (and their associated costs) that will be more
7477     // profitable to scalarize.
7478     if (CM.selectUserVectorizationFactor(UserVF)) {
7479       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7480       CM.collectInLoopReductions();
7481       buildVPlansWithVPRecipes(UserVF, UserVF);
7482       LLVM_DEBUG(printPlans(dbgs()));
7483       return {{UserVF, 0}};
7484     } else
7485       reportVectorizationInfo("UserVF ignored because of invalid costs.",
7486                               "InvalidCost", ORE, OrigLoop);
7487   }
7488 
7489   // Populate the set of Vectorization Factor Candidates.
7490   ElementCountSet VFCandidates;
7491   for (auto VF = ElementCount::getFixed(1);
7492        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
7493     VFCandidates.insert(VF);
7494   for (auto VF = ElementCount::getScalable(1);
7495        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
7496     VFCandidates.insert(VF);
7497 
7498   for (const auto &VF : VFCandidates) {
7499     // Collect Uniform and Scalar instructions after vectorization with VF.
7500     CM.collectUniformsAndScalars(VF);
7501 
7502     // Collect the instructions (and their associated costs) that will be more
7503     // profitable to scalarize.
7504     if (VF.isVector())
7505       CM.collectInstsToScalarize(VF);
7506   }
7507 
7508   CM.collectInLoopReductions();
7509   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
7510   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
7511 
7512   LLVM_DEBUG(printPlans(dbgs()));
7513   if (!MaxFactors.hasVector())
7514     return VectorizationFactor::Disabled();
7515 
7516   // Select the optimal vectorization factor.
7517   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
7518 
7519   // Check if it is profitable to vectorize with runtime checks.
7520   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
7521   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
7522     bool PragmaThresholdReached =
7523         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
7524     bool ThresholdReached =
7525         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
7526     if ((ThresholdReached && !Hints.allowReordering()) ||
7527         PragmaThresholdReached) {
7528       ORE->emit([&]() {
7529         return OptimizationRemarkAnalysisAliasing(
7530                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
7531                    OrigLoop->getHeader())
7532                << "loop not vectorized: cannot prove it is safe to reorder "
7533                   "memory operations";
7534       });
7535       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
7536       Hints.emitRemarkWithHints();
7537       return VectorizationFactor::Disabled();
7538     }
7539   }
7540   return SelectedVF;
7541 }
7542 
7543 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
7544   assert(count_if(VPlans,
7545                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
7546              1 &&
7547          "Best VF has not a single VPlan.");
7548 
7549   for (const VPlanPtr &Plan : VPlans) {
7550     if (Plan->hasVF(VF))
7551       return *Plan.get();
7552   }
7553   llvm_unreachable("No plan found!");
7554 }
7555 
7556 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7557   SmallVector<Metadata *, 4> MDs;
7558   // Reserve first location for self reference to the LoopID metadata node.
7559   MDs.push_back(nullptr);
7560   bool IsUnrollMetadata = false;
7561   MDNode *LoopID = L->getLoopID();
7562   if (LoopID) {
7563     // First find existing loop unrolling disable metadata.
7564     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7565       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7566       if (MD) {
7567         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7568         IsUnrollMetadata =
7569             S && S->getString().startswith("llvm.loop.unroll.disable");
7570       }
7571       MDs.push_back(LoopID->getOperand(i));
7572     }
7573   }
7574 
7575   if (!IsUnrollMetadata) {
7576     // Add runtime unroll disable metadata.
7577     LLVMContext &Context = L->getHeader()->getContext();
7578     SmallVector<Metadata *, 1> DisableOperands;
7579     DisableOperands.push_back(
7580         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7581     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7582     MDs.push_back(DisableNode);
7583     MDNode *NewLoopID = MDNode::get(Context, MDs);
7584     // Set operand 0 to refer to the loop id itself.
7585     NewLoopID->replaceOperandWith(0, NewLoopID);
7586     L->setLoopID(NewLoopID);
7587   }
7588 }
7589 
7590 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
7591                                            VPlan &BestVPlan,
7592                                            InnerLoopVectorizer &ILV,
7593                                            DominatorTree *DT) {
7594   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
7595                     << '\n');
7596 
7597   // Perform the actual loop transformation.
7598 
7599   // 1. Set up the skeleton for vectorization, including vector pre-header and
7600   // middle block. The vector loop is created during VPlan execution.
7601   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
7602   Value *CanonicalIVStartValue;
7603   std::tie(State.CFG.PrevBB, CanonicalIVStartValue) =
7604       ILV.createVectorizedLoopSkeleton();
7605   ILV.collectPoisonGeneratingRecipes(State);
7606 
7607   ILV.printDebugTracesAtStart();
7608 
7609   //===------------------------------------------------===//
7610   //
7611   // Notice: any optimization or new instruction that go
7612   // into the code below should also be implemented in
7613   // the cost-model.
7614   //
7615   //===------------------------------------------------===//
7616 
7617   // 2. Copy and widen instructions from the old loop into the new loop.
7618   BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr),
7619                              ILV.getOrCreateVectorTripCount(nullptr),
7620                              CanonicalIVStartValue, State);
7621   BestVPlan.execute(&State);
7622 
7623   // Keep all loop hints from the original loop on the vector loop (we'll
7624   // replace the vectorizer-specific hints below).
7625   MDNode *OrigLoopID = OrigLoop->getLoopID();
7626 
7627   Optional<MDNode *> VectorizedLoopID =
7628       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7629                                       LLVMLoopVectorizeFollowupVectorized});
7630 
7631   Loop *L = LI->getLoopFor(State.CFG.PrevBB);
7632   if (VectorizedLoopID.hasValue())
7633     L->setLoopID(VectorizedLoopID.getValue());
7634   else {
7635     // Keep all loop hints from the original loop on the vector loop (we'll
7636     // replace the vectorizer-specific hints below).
7637     if (MDNode *LID = OrigLoop->getLoopID())
7638       L->setLoopID(LID);
7639 
7640     LoopVectorizeHints Hints(L, true, *ORE);
7641     Hints.setAlreadyVectorized();
7642   }
7643   // Disable runtime unrolling when vectorizing the epilogue loop.
7644   if (CanonicalIVStartValue)
7645     AddRuntimeUnrollDisableMetaData(L);
7646 
7647   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7648   //    predication, updating analyses.
7649   ILV.fixVectorizedLoop(State);
7650 
7651   ILV.printDebugTracesAtEnd();
7652 }
7653 
7654 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
7655 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
7656   for (const auto &Plan : VPlans)
7657     if (PrintVPlansInDotFormat)
7658       Plan->printDOT(O);
7659     else
7660       Plan->print(O);
7661 }
7662 #endif
7663 
7664 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
7665     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
7666 
7667   // We create new control-flow for the vectorized loop, so the original exit
7668   // conditions will be dead after vectorization if it's only used by the
7669   // terminator
7670   SmallVector<BasicBlock*> ExitingBlocks;
7671   OrigLoop->getExitingBlocks(ExitingBlocks);
7672   for (auto *BB : ExitingBlocks) {
7673     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
7674     if (!Cmp || !Cmp->hasOneUse())
7675       continue;
7676 
7677     // TODO: we should introduce a getUniqueExitingBlocks on Loop
7678     if (!DeadInstructions.insert(Cmp).second)
7679       continue;
7680 
7681     // The operands of the icmp is often a dead trunc, used by IndUpdate.
7682     // TODO: can recurse through operands in general
7683     for (Value *Op : Cmp->operands()) {
7684       if (isa<TruncInst>(Op) && Op->hasOneUse())
7685           DeadInstructions.insert(cast<Instruction>(Op));
7686     }
7687   }
7688 
7689   // We create new "steps" for induction variable updates to which the original
7690   // induction variables map. An original update instruction will be dead if
7691   // all its users except the induction variable are dead.
7692   auto *Latch = OrigLoop->getLoopLatch();
7693   for (auto &Induction : Legal->getInductionVars()) {
7694     PHINode *Ind = Induction.first;
7695     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
7696 
7697     // If the tail is to be folded by masking, the primary induction variable,
7698     // if exists, isn't dead: it will be used for masking. Don't kill it.
7699     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
7700       continue;
7701 
7702     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
7703           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
7704         }))
7705       DeadInstructions.insert(IndUpdate);
7706   }
7707 }
7708 
7709 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
7710 
7711 //===--------------------------------------------------------------------===//
7712 // EpilogueVectorizerMainLoop
7713 //===--------------------------------------------------------------------===//
7714 
7715 /// This function is partially responsible for generating the control flow
7716 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7717 std::pair<BasicBlock *, Value *>
7718 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
7719   MDNode *OrigLoopID = OrigLoop->getLoopID();
7720 
7721   // Workaround!  Compute the trip count of the original loop and cache it
7722   // before we start modifying the CFG.  This code has a systemic problem
7723   // wherein it tries to run analysis over partially constructed IR; this is
7724   // wrong, and not simply for SCEV.  The trip count of the original loop
7725   // simply happens to be prone to hitting this in practice.  In theory, we
7726   // can hit the same issue for any SCEV, or ValueTracking query done during
7727   // mutation.  See PR49900.
7728   getOrCreateTripCount(OrigLoop->getLoopPreheader());
7729   createVectorLoopSkeleton("");
7730 
7731   // Generate the code to check the minimum iteration count of the vector
7732   // epilogue (see below).
7733   EPI.EpilogueIterationCountCheck =
7734       emitMinimumIterationCountCheck(LoopScalarPreHeader, true);
7735   EPI.EpilogueIterationCountCheck->setName("iter.check");
7736 
7737   // Generate the code to check any assumptions that we've made for SCEV
7738   // expressions.
7739   EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader);
7740 
7741   // Generate the code that checks at runtime if arrays overlap. We put the
7742   // checks into a separate block to make the more common case of few elements
7743   // faster.
7744   EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader);
7745 
7746   // Generate the iteration count check for the main loop, *after* the check
7747   // for the epilogue loop, so that the path-length is shorter for the case
7748   // that goes directly through the vector epilogue. The longer-path length for
7749   // the main loop is compensated for, by the gain from vectorizing the larger
7750   // trip count. Note: the branch will get updated later on when we vectorize
7751   // the epilogue.
7752   EPI.MainLoopIterationCountCheck =
7753       emitMinimumIterationCountCheck(LoopScalarPreHeader, false);
7754 
7755   // Generate the induction variable.
7756   Value *CountRoundDown = getOrCreateVectorTripCount(LoopVectorPreHeader);
7757   EPI.VectorTripCount = CountRoundDown;
7758 
7759   // Skip induction resume value creation here because they will be created in
7760   // the second pass. If we created them here, they wouldn't be used anyway,
7761   // because the vplan in the second pass still contains the inductions from the
7762   // original loop.
7763 
7764   return {completeLoopSkeleton(OrigLoopID), nullptr};
7765 }
7766 
7767 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
7768   LLVM_DEBUG({
7769     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
7770            << "Main Loop VF:" << EPI.MainLoopVF
7771            << ", Main Loop UF:" << EPI.MainLoopUF
7772            << ", Epilogue Loop VF:" << EPI.EpilogueVF
7773            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7774   });
7775 }
7776 
7777 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
7778   DEBUG_WITH_TYPE(VerboseDebug, {
7779     dbgs() << "intermediate fn:\n"
7780            << *OrigLoop->getHeader()->getParent() << "\n";
7781   });
7782 }
7783 
7784 BasicBlock *
7785 EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(BasicBlock *Bypass,
7786                                                            bool ForEpilogue) {
7787   assert(Bypass && "Expected valid bypass basic block.");
7788   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
7789   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
7790   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
7791   // Reuse existing vector loop preheader for TC checks.
7792   // Note that new preheader block is generated for vector loop.
7793   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
7794   IRBuilder<> Builder(TCCheckBlock->getTerminator());
7795 
7796   // Generate code to check if the loop's trip count is less than VF * UF of the
7797   // main vector loop.
7798   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
7799       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
7800 
7801   Value *CheckMinIters = Builder.CreateICmp(
7802       P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
7803       "min.iters.check");
7804 
7805   if (!ForEpilogue)
7806     TCCheckBlock->setName("vector.main.loop.iter.check");
7807 
7808   // Create new preheader for vector loop.
7809   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
7810                                    DT, LI, nullptr, "vector.ph");
7811 
7812   if (ForEpilogue) {
7813     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
7814                                  DT->getNode(Bypass)->getIDom()) &&
7815            "TC check is expected to dominate Bypass");
7816 
7817     // Update dominator for Bypass & LoopExit.
7818     DT->changeImmediateDominator(Bypass, TCCheckBlock);
7819     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
7820       // For loops with multiple exits, there's no edge from the middle block
7821       // to exit blocks (as the epilogue must run) and thus no need to update
7822       // the immediate dominator of the exit blocks.
7823       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
7824 
7825     LoopBypassBlocks.push_back(TCCheckBlock);
7826 
7827     // Save the trip count so we don't have to regenerate it in the
7828     // vec.epilog.iter.check. This is safe to do because the trip count
7829     // generated here dominates the vector epilog iter check.
7830     EPI.TripCount = Count;
7831   }
7832 
7833   ReplaceInstWithInst(
7834       TCCheckBlock->getTerminator(),
7835       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
7836 
7837   return TCCheckBlock;
7838 }
7839 
7840 //===--------------------------------------------------------------------===//
7841 // EpilogueVectorizerEpilogueLoop
7842 //===--------------------------------------------------------------------===//
7843 
7844 /// This function is partially responsible for generating the control flow
7845 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7846 std::pair<BasicBlock *, Value *>
7847 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
7848   MDNode *OrigLoopID = OrigLoop->getLoopID();
7849   createVectorLoopSkeleton("vec.epilog.");
7850 
7851   // Now, compare the remaining count and if there aren't enough iterations to
7852   // execute the vectorized epilogue skip to the scalar part.
7853   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
7854   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
7855   LoopVectorPreHeader =
7856       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
7857                  LI, nullptr, "vec.epilog.ph");
7858   emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader,
7859                                           VecEpilogueIterationCountCheck);
7860 
7861   // Adjust the control flow taking the state info from the main loop
7862   // vectorization into account.
7863   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
7864          "expected this to be saved from the previous pass.");
7865   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
7866       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
7867 
7868   DT->changeImmediateDominator(LoopVectorPreHeader,
7869                                EPI.MainLoopIterationCountCheck);
7870 
7871   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
7872       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7873 
7874   if (EPI.SCEVSafetyCheck)
7875     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
7876         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7877   if (EPI.MemSafetyCheck)
7878     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
7879         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7880 
7881   DT->changeImmediateDominator(
7882       VecEpilogueIterationCountCheck,
7883       VecEpilogueIterationCountCheck->getSinglePredecessor());
7884 
7885   DT->changeImmediateDominator(LoopScalarPreHeader,
7886                                EPI.EpilogueIterationCountCheck);
7887   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
7888     // If there is an epilogue which must run, there's no edge from the
7889     // middle block to exit blocks  and thus no need to update the immediate
7890     // dominator of the exit blocks.
7891     DT->changeImmediateDominator(LoopExitBlock,
7892                                  EPI.EpilogueIterationCountCheck);
7893 
7894   // Keep track of bypass blocks, as they feed start values to the induction
7895   // phis in the scalar loop preheader.
7896   if (EPI.SCEVSafetyCheck)
7897     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
7898   if (EPI.MemSafetyCheck)
7899     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
7900   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
7901 
7902   // The vec.epilog.iter.check block may contain Phi nodes from reductions which
7903   // merge control-flow from the latch block and the middle block. Update the
7904   // incoming values here and move the Phi into the preheader.
7905   SmallVector<PHINode *, 4> PhisInBlock;
7906   for (PHINode &Phi : VecEpilogueIterationCountCheck->phis())
7907     PhisInBlock.push_back(&Phi);
7908 
7909   for (PHINode *Phi : PhisInBlock) {
7910     Phi->replaceIncomingBlockWith(
7911         VecEpilogueIterationCountCheck->getSinglePredecessor(),
7912         VecEpilogueIterationCountCheck);
7913     Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
7914     if (EPI.SCEVSafetyCheck)
7915       Phi->removeIncomingValue(EPI.SCEVSafetyCheck);
7916     if (EPI.MemSafetyCheck)
7917       Phi->removeIncomingValue(EPI.MemSafetyCheck);
7918     Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI());
7919   }
7920 
7921   // Generate a resume induction for the vector epilogue and put it in the
7922   // vector epilogue preheader
7923   Type *IdxTy = Legal->getWidestInductionType();
7924   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
7925                                          LoopVectorPreHeader->getFirstNonPHI());
7926   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
7927   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
7928                            EPI.MainLoopIterationCountCheck);
7929 
7930   // Generate induction resume values. These variables save the new starting
7931   // indexes for the scalar loop. They are used to test if there are any tail
7932   // iterations left once the vector loop has completed.
7933   // Note that when the vectorized epilogue is skipped due to iteration count
7934   // check, then the resume value for the induction variable comes from
7935   // the trip count of the main vector loop, hence passing the AdditionalBypass
7936   // argument.
7937   createInductionResumeValues({VecEpilogueIterationCountCheck,
7938                                EPI.VectorTripCount} /* AdditionalBypass */);
7939 
7940   return {completeLoopSkeleton(OrigLoopID), EPResumeVal};
7941 }
7942 
7943 BasicBlock *
7944 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
7945     BasicBlock *Bypass, BasicBlock *Insert) {
7946 
7947   assert(EPI.TripCount &&
7948          "Expected trip count to have been safed in the first pass.");
7949   assert(
7950       (!isa<Instruction>(EPI.TripCount) ||
7951        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
7952       "saved trip count does not dominate insertion point.");
7953   Value *TC = EPI.TripCount;
7954   IRBuilder<> Builder(Insert->getTerminator());
7955   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
7956 
7957   // Generate code to check if the loop's trip count is less than VF * UF of the
7958   // vector epilogue loop.
7959   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
7960       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
7961 
7962   Value *CheckMinIters =
7963       Builder.CreateICmp(P, Count,
7964                          createStepForVF(Builder, Count->getType(),
7965                                          EPI.EpilogueVF, EPI.EpilogueUF),
7966                          "min.epilog.iters.check");
7967 
7968   ReplaceInstWithInst(
7969       Insert->getTerminator(),
7970       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
7971 
7972   LoopBypassBlocks.push_back(Insert);
7973   return Insert;
7974 }
7975 
7976 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
7977   LLVM_DEBUG({
7978     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
7979            << "Epilogue Loop VF:" << EPI.EpilogueVF
7980            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7981   });
7982 }
7983 
7984 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
7985   DEBUG_WITH_TYPE(VerboseDebug, {
7986     dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
7987   });
7988 }
7989 
7990 bool LoopVectorizationPlanner::getDecisionAndClampRange(
7991     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
7992   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
7993   bool PredicateAtRangeStart = Predicate(Range.Start);
7994 
7995   for (ElementCount TmpVF = Range.Start * 2;
7996        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
7997     if (Predicate(TmpVF) != PredicateAtRangeStart) {
7998       Range.End = TmpVF;
7999       break;
8000     }
8001 
8002   return PredicateAtRangeStart;
8003 }
8004 
8005 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8006 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8007 /// of VF's starting at a given VF and extending it as much as possible. Each
8008 /// vectorization decision can potentially shorten this sub-range during
8009 /// buildVPlan().
8010 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8011                                            ElementCount MaxVF) {
8012   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8013   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8014     VFRange SubRange = {VF, MaxVFPlusOne};
8015     VPlans.push_back(buildVPlan(SubRange));
8016     VF = SubRange.End;
8017   }
8018 }
8019 
8020 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8021                                          VPlanPtr &Plan) {
8022   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8023 
8024   // Look for cached value.
8025   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8026   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8027   if (ECEntryIt != EdgeMaskCache.end())
8028     return ECEntryIt->second;
8029 
8030   VPValue *SrcMask = createBlockInMask(Src, Plan);
8031 
8032   // The terminator has to be a branch inst!
8033   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8034   assert(BI && "Unexpected terminator found");
8035 
8036   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8037     return EdgeMaskCache[Edge] = SrcMask;
8038 
8039   // If source is an exiting block, we know the exit edge is dynamically dead
8040   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8041   // adding uses of an otherwise potentially dead instruction.
8042   if (OrigLoop->isLoopExiting(Src))
8043     return EdgeMaskCache[Edge] = SrcMask;
8044 
8045   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8046   assert(EdgeMask && "No Edge Mask found for condition");
8047 
8048   if (BI->getSuccessor(0) != Dst)
8049     EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc());
8050 
8051   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8052     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8053     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8054     // The select version does not introduce new UB if SrcMask is false and
8055     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8056     VPValue *False = Plan->getOrAddVPValue(
8057         ConstantInt::getFalse(BI->getCondition()->getType()));
8058     EdgeMask =
8059         Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc());
8060   }
8061 
8062   return EdgeMaskCache[Edge] = EdgeMask;
8063 }
8064 
8065 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8066   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8067 
8068   // Look for cached value.
8069   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8070   if (BCEntryIt != BlockMaskCache.end())
8071     return BCEntryIt->second;
8072 
8073   // All-one mask is modelled as no-mask following the convention for masked
8074   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8075   VPValue *BlockMask = nullptr;
8076 
8077   if (OrigLoop->getHeader() == BB) {
8078     if (!CM.blockNeedsPredicationForAnyReason(BB))
8079       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8080 
8081     // Introduce the early-exit compare IV <= BTC to form header block mask.
8082     // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by
8083     // constructing the desired canonical IV in the header block as its first
8084     // non-phi instructions.
8085     assert(CM.foldTailByMasking() && "must fold the tail");
8086     VPBasicBlock *HeaderVPBB =
8087         Plan->getVectorLoopRegion()->getEntryBasicBlock();
8088     auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi();
8089     auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV());
8090     HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi());
8091 
8092     VPBuilder::InsertPointGuard Guard(Builder);
8093     Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint);
8094     if (CM.TTI.emitGetActiveLaneMask()) {
8095       VPValue *TC = Plan->getOrCreateTripCount();
8096       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC});
8097     } else {
8098       VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8099       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8100     }
8101     return BlockMaskCache[BB] = BlockMask;
8102   }
8103 
8104   // This is the block mask. We OR all incoming edges.
8105   for (auto *Predecessor : predecessors(BB)) {
8106     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8107     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8108       return BlockMaskCache[BB] = EdgeMask;
8109 
8110     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8111       BlockMask = EdgeMask;
8112       continue;
8113     }
8114 
8115     BlockMask = Builder.createOr(BlockMask, EdgeMask, {});
8116   }
8117 
8118   return BlockMaskCache[BB] = BlockMask;
8119 }
8120 
8121 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8122                                                 ArrayRef<VPValue *> Operands,
8123                                                 VFRange &Range,
8124                                                 VPlanPtr &Plan) {
8125   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8126          "Must be called with either a load or store");
8127 
8128   auto willWiden = [&](ElementCount VF) -> bool {
8129     if (VF.isScalar())
8130       return false;
8131     LoopVectorizationCostModel::InstWidening Decision =
8132         CM.getWideningDecision(I, VF);
8133     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8134            "CM decision should be taken at this point.");
8135     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8136       return true;
8137     if (CM.isScalarAfterVectorization(I, VF) ||
8138         CM.isProfitableToScalarize(I, VF))
8139       return false;
8140     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8141   };
8142 
8143   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8144     return nullptr;
8145 
8146   VPValue *Mask = nullptr;
8147   if (Legal->isMaskRequired(I))
8148     Mask = createBlockInMask(I->getParent(), Plan);
8149 
8150   // Determine if the pointer operand of the access is either consecutive or
8151   // reverse consecutive.
8152   LoopVectorizationCostModel::InstWidening Decision =
8153       CM.getWideningDecision(I, Range.Start);
8154   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8155   bool Consecutive =
8156       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8157 
8158   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8159     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8160                                               Consecutive, Reverse);
8161 
8162   StoreInst *Store = cast<StoreInst>(I);
8163   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8164                                             Mask, Consecutive, Reverse);
8165 }
8166 
8167 static VPWidenIntOrFpInductionRecipe *
8168 createWidenInductionRecipe(PHINode *Phi, Instruction *PhiOrTrunc,
8169                            VPValue *Start, const InductionDescriptor &IndDesc,
8170                            LoopVectorizationCostModel &CM, ScalarEvolution &SE,
8171                            Loop &OrigLoop, VFRange &Range) {
8172   // Returns true if an instruction \p I should be scalarized instead of
8173   // vectorized for the chosen vectorization factor.
8174   auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) {
8175     return CM.isScalarAfterVectorization(I, VF) ||
8176            CM.isProfitableToScalarize(I, VF);
8177   };
8178 
8179   bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange(
8180       [&](ElementCount VF) {
8181         // Returns true if we should generate a scalar version of \p IV.
8182         if (ShouldScalarizeInstruction(PhiOrTrunc, VF))
8183           return true;
8184         auto isScalarInst = [&](User *U) -> bool {
8185           auto *I = cast<Instruction>(U);
8186           return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF);
8187         };
8188         return any_of(PhiOrTrunc->users(), isScalarInst);
8189       },
8190       Range);
8191   bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange(
8192       [&](ElementCount VF) {
8193         return ShouldScalarizeInstruction(PhiOrTrunc, VF);
8194       },
8195       Range);
8196   assert(IndDesc.getStartValue() ==
8197          Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()));
8198   assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) &&
8199          "step must be loop invariant");
8200   if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
8201     return new VPWidenIntOrFpInductionRecipe(
8202         Phi, Start, IndDesc, TruncI, NeedsScalarIV, !NeedsScalarIVOnly, SE);
8203   }
8204   assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here");
8205   return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, NeedsScalarIV,
8206                                            !NeedsScalarIVOnly, SE);
8207 }
8208 
8209 VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI(
8210     PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) const {
8211 
8212   // Check if this is an integer or fp induction. If so, build the recipe that
8213   // produces its scalar and vector values.
8214   if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
8215     return createWidenInductionRecipe(Phi, Phi, Operands[0], *II, CM,
8216                                       *PSE.getSE(), *OrigLoop, Range);
8217 
8218   // Check if this is pointer induction. If so, build the recipe for it.
8219   if (auto *II = Legal->getPointerInductionDescriptor(Phi))
8220     return new VPWidenPointerInductionRecipe(Phi, Operands[0], *II,
8221                                              *PSE.getSE());
8222   return nullptr;
8223 }
8224 
8225 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8226     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8227     VPlan &Plan) const {
8228   // Optimize the special case where the source is a constant integer
8229   // induction variable. Notice that we can only optimize the 'trunc' case
8230   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8231   // (c) other casts depend on pointer size.
8232 
8233   // Determine whether \p K is a truncation based on an induction variable that
8234   // can be optimized.
8235   auto isOptimizableIVTruncate =
8236       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8237     return [=](ElementCount VF) -> bool {
8238       return CM.isOptimizableIVTruncate(K, VF);
8239     };
8240   };
8241 
8242   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8243           isOptimizableIVTruncate(I), Range)) {
8244 
8245     auto *Phi = cast<PHINode>(I->getOperand(0));
8246     const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
8247     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8248     return createWidenInductionRecipe(Phi, I, Start, II, CM, *PSE.getSE(),
8249                                       *OrigLoop, Range);
8250   }
8251   return nullptr;
8252 }
8253 
8254 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8255                                                 ArrayRef<VPValue *> Operands,
8256                                                 VPlanPtr &Plan) {
8257   // If all incoming values are equal, the incoming VPValue can be used directly
8258   // instead of creating a new VPBlendRecipe.
8259   VPValue *FirstIncoming = Operands[0];
8260   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8261         return FirstIncoming == Inc;
8262       })) {
8263     return Operands[0];
8264   }
8265 
8266   unsigned NumIncoming = Phi->getNumIncomingValues();
8267   // For in-loop reductions, we do not need to create an additional select.
8268   VPValue *InLoopVal = nullptr;
8269   for (unsigned In = 0; In < NumIncoming; In++) {
8270     PHINode *PhiOp =
8271         dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue());
8272     if (PhiOp && CM.isInLoopReduction(PhiOp)) {
8273       assert(!InLoopVal && "Found more than one in-loop reduction!");
8274       InLoopVal = Operands[In];
8275     }
8276   }
8277 
8278   assert((!InLoopVal || NumIncoming == 2) &&
8279          "Found an in-loop reduction for PHI with unexpected number of "
8280          "incoming values");
8281   if (InLoopVal)
8282     return Operands[Operands[0] == InLoopVal ? 1 : 0];
8283 
8284   // We know that all PHIs in non-header blocks are converted into selects, so
8285   // we don't have to worry about the insertion order and we can just use the
8286   // builder. At this point we generate the predication tree. There may be
8287   // duplications since this is a simple recursive scan, but future
8288   // optimizations will clean it up.
8289   SmallVector<VPValue *, 2> OperandsWithMask;
8290 
8291   for (unsigned In = 0; In < NumIncoming; In++) {
8292     VPValue *EdgeMask =
8293       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8294     assert((EdgeMask || NumIncoming == 1) &&
8295            "Multiple predecessors with one having a full mask");
8296     OperandsWithMask.push_back(Operands[In]);
8297     if (EdgeMask)
8298       OperandsWithMask.push_back(EdgeMask);
8299   }
8300   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8301 }
8302 
8303 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8304                                                    ArrayRef<VPValue *> Operands,
8305                                                    VFRange &Range) const {
8306 
8307   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8308       [this, CI](ElementCount VF) {
8309         return CM.isScalarWithPredication(CI, VF);
8310       },
8311       Range);
8312 
8313   if (IsPredicated)
8314     return nullptr;
8315 
8316   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8317   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8318              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8319              ID == Intrinsic::pseudoprobe ||
8320              ID == Intrinsic::experimental_noalias_scope_decl))
8321     return nullptr;
8322 
8323   auto willWiden = [&](ElementCount VF) -> bool {
8324     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8325     // The following case may be scalarized depending on the VF.
8326     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8327     // version of the instruction.
8328     // Is it beneficial to perform intrinsic call compared to lib call?
8329     bool NeedToScalarize = false;
8330     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8331     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8332     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8333     return UseVectorIntrinsic || !NeedToScalarize;
8334   };
8335 
8336   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8337     return nullptr;
8338 
8339   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8340   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8341 }
8342 
8343 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8344   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8345          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8346   // Instruction should be widened, unless it is scalar after vectorization,
8347   // scalarization is profitable or it is predicated.
8348   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8349     return CM.isScalarAfterVectorization(I, VF) ||
8350            CM.isProfitableToScalarize(I, VF) ||
8351            CM.isScalarWithPredication(I, VF);
8352   };
8353   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8354                                                              Range);
8355 }
8356 
8357 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8358                                            ArrayRef<VPValue *> Operands) const {
8359   auto IsVectorizableOpcode = [](unsigned Opcode) {
8360     switch (Opcode) {
8361     case Instruction::Add:
8362     case Instruction::And:
8363     case Instruction::AShr:
8364     case Instruction::BitCast:
8365     case Instruction::FAdd:
8366     case Instruction::FCmp:
8367     case Instruction::FDiv:
8368     case Instruction::FMul:
8369     case Instruction::FNeg:
8370     case Instruction::FPExt:
8371     case Instruction::FPToSI:
8372     case Instruction::FPToUI:
8373     case Instruction::FPTrunc:
8374     case Instruction::FRem:
8375     case Instruction::FSub:
8376     case Instruction::ICmp:
8377     case Instruction::IntToPtr:
8378     case Instruction::LShr:
8379     case Instruction::Mul:
8380     case Instruction::Or:
8381     case Instruction::PtrToInt:
8382     case Instruction::SDiv:
8383     case Instruction::Select:
8384     case Instruction::SExt:
8385     case Instruction::Shl:
8386     case Instruction::SIToFP:
8387     case Instruction::SRem:
8388     case Instruction::Sub:
8389     case Instruction::Trunc:
8390     case Instruction::UDiv:
8391     case Instruction::UIToFP:
8392     case Instruction::URem:
8393     case Instruction::Xor:
8394     case Instruction::ZExt:
8395       return true;
8396     }
8397     return false;
8398   };
8399 
8400   if (!IsVectorizableOpcode(I->getOpcode()))
8401     return nullptr;
8402 
8403   // Success: widen this instruction.
8404   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8405 }
8406 
8407 void VPRecipeBuilder::fixHeaderPhis() {
8408   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8409   for (VPHeaderPHIRecipe *R : PhisToFix) {
8410     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8411     VPRecipeBase *IncR =
8412         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8413     R->addOperand(IncR->getVPSingleValue());
8414   }
8415 }
8416 
8417 VPBasicBlock *VPRecipeBuilder::handleReplication(
8418     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8419     VPlanPtr &Plan) {
8420   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8421       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8422       Range);
8423 
8424   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8425       [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); },
8426       Range);
8427 
8428   // Even if the instruction is not marked as uniform, there are certain
8429   // intrinsic calls that can be effectively treated as such, so we check for
8430   // them here. Conservatively, we only do this for scalable vectors, since
8431   // for fixed-width VFs we can always fall back on full scalarization.
8432   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
8433     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
8434     case Intrinsic::assume:
8435     case Intrinsic::lifetime_start:
8436     case Intrinsic::lifetime_end:
8437       // For scalable vectors if one of the operands is variant then we still
8438       // want to mark as uniform, which will generate one instruction for just
8439       // the first lane of the vector. We can't scalarize the call in the same
8440       // way as for fixed-width vectors because we don't know how many lanes
8441       // there are.
8442       //
8443       // The reasons for doing it this way for scalable vectors are:
8444       //   1. For the assume intrinsic generating the instruction for the first
8445       //      lane is still be better than not generating any at all. For
8446       //      example, the input may be a splat across all lanes.
8447       //   2. For the lifetime start/end intrinsics the pointer operand only
8448       //      does anything useful when the input comes from a stack object,
8449       //      which suggests it should always be uniform. For non-stack objects
8450       //      the effect is to poison the object, which still allows us to
8451       //      remove the call.
8452       IsUniform = true;
8453       break;
8454     default:
8455       break;
8456     }
8457   }
8458 
8459   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8460                                        IsUniform, IsPredicated);
8461   setRecipe(I, Recipe);
8462   Plan->addVPValue(I, Recipe);
8463 
8464   // Find if I uses a predicated instruction. If so, it will use its scalar
8465   // value. Avoid hoisting the insert-element which packs the scalar value into
8466   // a vector value, as that happens iff all users use the vector value.
8467   for (VPValue *Op : Recipe->operands()) {
8468     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8469     if (!PredR)
8470       continue;
8471     auto *RepR =
8472         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8473     assert(RepR->isPredicated() &&
8474            "expected Replicate recipe to be predicated");
8475     RepR->setAlsoPack(false);
8476   }
8477 
8478   // Finalize the recipe for Instr, first if it is not predicated.
8479   if (!IsPredicated) {
8480     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8481     VPBB->appendRecipe(Recipe);
8482     return VPBB;
8483   }
8484   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8485 
8486   VPBlockBase *SingleSucc = VPBB->getSingleSuccessor();
8487   assert(SingleSucc && "VPBB must have a single successor when handling "
8488                        "predicated replication.");
8489   VPBlockUtils::disconnectBlocks(VPBB, SingleSucc);
8490   // Record predicated instructions for above packing optimizations.
8491   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8492   VPBlockUtils::insertBlockAfter(Region, VPBB);
8493   auto *RegSucc = new VPBasicBlock();
8494   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8495   VPBlockUtils::connectBlocks(RegSucc, SingleSucc);
8496   return RegSucc;
8497 }
8498 
8499 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8500                                                       VPRecipeBase *PredRecipe,
8501                                                       VPlanPtr &Plan) {
8502   // Instructions marked for predication are replicated and placed under an
8503   // if-then construct to prevent side-effects.
8504 
8505   // Generate recipes to compute the block mask for this region.
8506   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8507 
8508   // Build the triangular if-then region.
8509   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8510   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8511   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8512   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8513   auto *PHIRecipe = Instr->getType()->isVoidTy()
8514                         ? nullptr
8515                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8516   if (PHIRecipe) {
8517     Plan->removeVPValueFor(Instr);
8518     Plan->addVPValue(Instr, PHIRecipe);
8519   }
8520   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8521   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8522   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
8523 
8524   // Note: first set Entry as region entry and then connect successors starting
8525   // from it in order, to propagate the "parent" of each VPBasicBlock.
8526   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
8527   VPBlockUtils::connectBlocks(Pred, Exit);
8528 
8529   return Region;
8530 }
8531 
8532 VPRecipeOrVPValueTy
8533 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8534                                         ArrayRef<VPValue *> Operands,
8535                                         VFRange &Range, VPlanPtr &Plan) {
8536   // First, check for specific widening recipes that deal with calls, memory
8537   // operations, inductions and Phi nodes.
8538   if (auto *CI = dyn_cast<CallInst>(Instr))
8539     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8540 
8541   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8542     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8543 
8544   VPRecipeBase *Recipe;
8545   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8546     if (Phi->getParent() != OrigLoop->getHeader())
8547       return tryToBlend(Phi, Operands, Plan);
8548     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range)))
8549       return toVPRecipeResult(Recipe);
8550 
8551     VPHeaderPHIRecipe *PhiRecipe = nullptr;
8552     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
8553       VPValue *StartV = Operands[0];
8554       if (Legal->isReductionVariable(Phi)) {
8555         const RecurrenceDescriptor &RdxDesc =
8556             Legal->getReductionVars().find(Phi)->second;
8557         assert(RdxDesc.getRecurrenceStartValue() ==
8558                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8559         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
8560                                              CM.isInLoopReduction(Phi),
8561                                              CM.useOrderedReductions(RdxDesc));
8562       } else {
8563         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8564       }
8565 
8566       // Record the incoming value from the backedge, so we can add the incoming
8567       // value from the backedge after all recipes have been created.
8568       recordRecipeOf(cast<Instruction>(
8569           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
8570       PhisToFix.push_back(PhiRecipe);
8571     } else {
8572       // TODO: record backedge value for remaining pointer induction phis.
8573       assert(Phi->getType()->isPointerTy() &&
8574              "only pointer phis should be handled here");
8575       assert(Legal->getInductionVars().count(Phi) &&
8576              "Not an induction variable");
8577       InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8578       VPValue *Start = Plan->getOrAddVPValue(II.getStartValue());
8579       PhiRecipe = new VPWidenPHIRecipe(Phi, Start);
8580     }
8581 
8582     return toVPRecipeResult(PhiRecipe);
8583   }
8584 
8585   if (isa<TruncInst>(Instr) &&
8586       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8587                                                Range, *Plan)))
8588     return toVPRecipeResult(Recipe);
8589 
8590   if (!shouldWiden(Instr, Range))
8591     return nullptr;
8592 
8593   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8594     return toVPRecipeResult(new VPWidenGEPRecipe(
8595         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8596 
8597   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8598     bool InvariantCond =
8599         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8600     return toVPRecipeResult(new VPWidenSelectRecipe(
8601         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
8602   }
8603 
8604   return toVPRecipeResult(tryToWiden(Instr, Operands));
8605 }
8606 
8607 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8608                                                         ElementCount MaxVF) {
8609   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8610 
8611   // Collect instructions from the original loop that will become trivially dead
8612   // in the vectorized loop. We don't need to vectorize these instructions. For
8613   // example, original induction update instructions can become dead because we
8614   // separately emit induction "steps" when generating code for the new loop.
8615   // Similarly, we create a new latch condition when setting up the structure
8616   // of the new loop, so the old one can become dead.
8617   SmallPtrSet<Instruction *, 4> DeadInstructions;
8618   collectTriviallyDeadInstructions(DeadInstructions);
8619 
8620   // Add assume instructions we need to drop to DeadInstructions, to prevent
8621   // them from being added to the VPlan.
8622   // TODO: We only need to drop assumes in blocks that get flattend. If the
8623   // control flow is preserved, we should keep them.
8624   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8625   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8626 
8627   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8628   // Dead instructions do not need sinking. Remove them from SinkAfter.
8629   for (Instruction *I : DeadInstructions)
8630     SinkAfter.erase(I);
8631 
8632   // Cannot sink instructions after dead instructions (there won't be any
8633   // recipes for them). Instead, find the first non-dead previous instruction.
8634   for (auto &P : Legal->getSinkAfter()) {
8635     Instruction *SinkTarget = P.second;
8636     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
8637     (void)FirstInst;
8638     while (DeadInstructions.contains(SinkTarget)) {
8639       assert(
8640           SinkTarget != FirstInst &&
8641           "Must find a live instruction (at least the one feeding the "
8642           "first-order recurrence PHI) before reaching beginning of the block");
8643       SinkTarget = SinkTarget->getPrevNode();
8644       assert(SinkTarget != P.first &&
8645              "sink source equals target, no sinking required");
8646     }
8647     P.second = SinkTarget;
8648   }
8649 
8650   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8651   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8652     VFRange SubRange = {VF, MaxVFPlusOne};
8653     VPlans.push_back(
8654         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8655     VF = SubRange.End;
8656   }
8657 }
8658 
8659 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a
8660 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a
8661 // BranchOnCount VPInstruction to the latch.
8662 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL,
8663                                   bool HasNUW, bool IsVPlanNative) {
8664   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8665   auto *StartV = Plan.getOrAddVPValue(StartIdx);
8666 
8667   auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
8668   VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
8669   VPBasicBlock *Header = TopRegion->getEntryBasicBlock();
8670   Header->insert(CanonicalIVPHI, Header->begin());
8671 
8672   auto *CanonicalIVIncrement =
8673       new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW
8674                                : VPInstruction::CanonicalIVIncrement,
8675                         {CanonicalIVPHI}, DL);
8676   CanonicalIVPHI->addOperand(CanonicalIVIncrement);
8677 
8678   VPBasicBlock *EB = TopRegion->getExitBasicBlock();
8679   if (IsVPlanNative)
8680     EB->setCondBit(nullptr);
8681   EB->appendRecipe(CanonicalIVIncrement);
8682 
8683   auto *BranchOnCount =
8684       new VPInstruction(VPInstruction::BranchOnCount,
8685                         {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL);
8686   EB->appendRecipe(BranchOnCount);
8687 }
8688 
8689 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
8690     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
8691     const MapVector<Instruction *, Instruction *> &SinkAfter) {
8692 
8693   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8694 
8695   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
8696 
8697   // ---------------------------------------------------------------------------
8698   // Pre-construction: record ingredients whose recipes we'll need to further
8699   // process after constructing the initial VPlan.
8700   // ---------------------------------------------------------------------------
8701 
8702   // Mark instructions we'll need to sink later and their targets as
8703   // ingredients whose recipe we'll need to record.
8704   for (auto &Entry : SinkAfter) {
8705     RecipeBuilder.recordRecipeOf(Entry.first);
8706     RecipeBuilder.recordRecipeOf(Entry.second);
8707   }
8708   for (auto &Reduction : CM.getInLoopReductionChains()) {
8709     PHINode *Phi = Reduction.first;
8710     RecurKind Kind =
8711         Legal->getReductionVars().find(Phi)->second.getRecurrenceKind();
8712     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
8713 
8714     RecipeBuilder.recordRecipeOf(Phi);
8715     for (auto &R : ReductionOperations) {
8716       RecipeBuilder.recordRecipeOf(R);
8717       // For min/max reductions, where we have a pair of icmp/select, we also
8718       // need to record the ICmp recipe, so it can be removed later.
8719       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
8720              "Only min/max recurrences allowed for inloop reductions");
8721       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
8722         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
8723     }
8724   }
8725 
8726   // For each interleave group which is relevant for this (possibly trimmed)
8727   // Range, add it to the set of groups to be later applied to the VPlan and add
8728   // placeholders for its members' Recipes which we'll be replacing with a
8729   // single VPInterleaveRecipe.
8730   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8731     auto applyIG = [IG, this](ElementCount VF) -> bool {
8732       return (VF.isVector() && // Query is illegal for VF == 1
8733               CM.getWideningDecision(IG->getInsertPos(), VF) ==
8734                   LoopVectorizationCostModel::CM_Interleave);
8735     };
8736     if (!getDecisionAndClampRange(applyIG, Range))
8737       continue;
8738     InterleaveGroups.insert(IG);
8739     for (unsigned i = 0; i < IG->getFactor(); i++)
8740       if (Instruction *Member = IG->getMember(i))
8741         RecipeBuilder.recordRecipeOf(Member);
8742   };
8743 
8744   // ---------------------------------------------------------------------------
8745   // Build initial VPlan: Scan the body of the loop in a topological order to
8746   // visit each basic block after having visited its predecessor basic blocks.
8747   // ---------------------------------------------------------------------------
8748 
8749   // Create initial VPlan skeleton, starting with a block for the pre-header,
8750   // followed by a region for the vector loop. The skeleton vector loop region
8751   // contains a header and latch block.
8752   VPBasicBlock *Preheader = new VPBasicBlock("vector.ph");
8753   auto Plan = std::make_unique<VPlan>(Preheader);
8754 
8755   VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body");
8756   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
8757   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
8758   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop");
8759   VPBlockUtils::insertBlockAfter(TopRegion, Preheader);
8760 
8761   Instruction *DLInst =
8762       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
8763   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(),
8764                         DLInst ? DLInst->getDebugLoc() : DebugLoc(),
8765                         !CM.foldTailByMasking(), false);
8766 
8767   // Scan the body of the loop in a topological order to visit each basic block
8768   // after having visited its predecessor basic blocks.
8769   LoopBlocksDFS DFS(OrigLoop);
8770   DFS.perform(LI);
8771 
8772   VPBasicBlock *VPBB = HeaderVPBB;
8773   SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove;
8774   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
8775     // Relevant instructions from basic block BB will be grouped into VPRecipe
8776     // ingredients and fill a new VPBasicBlock.
8777     unsigned VPBBsForBB = 0;
8778     if (VPBB != HeaderVPBB)
8779       VPBB->setName(BB->getName());
8780     Builder.setInsertPoint(VPBB);
8781 
8782     // Introduce each ingredient into VPlan.
8783     // TODO: Model and preserve debug instrinsics in VPlan.
8784     for (Instruction &I : BB->instructionsWithoutDebug()) {
8785       Instruction *Instr = &I;
8786 
8787       // First filter out irrelevant instructions, to ensure no recipes are
8788       // built for them.
8789       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
8790         continue;
8791 
8792       SmallVector<VPValue *, 4> Operands;
8793       auto *Phi = dyn_cast<PHINode>(Instr);
8794       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
8795         Operands.push_back(Plan->getOrAddVPValue(
8796             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
8797       } else {
8798         auto OpRange = Plan->mapToVPValues(Instr->operands());
8799         Operands = {OpRange.begin(), OpRange.end()};
8800       }
8801       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
8802               Instr, Operands, Range, Plan)) {
8803         // If Instr can be simplified to an existing VPValue, use it.
8804         if (RecipeOrValue.is<VPValue *>()) {
8805           auto *VPV = RecipeOrValue.get<VPValue *>();
8806           Plan->addVPValue(Instr, VPV);
8807           // If the re-used value is a recipe, register the recipe for the
8808           // instruction, in case the recipe for Instr needs to be recorded.
8809           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
8810             RecipeBuilder.setRecipe(Instr, R);
8811           continue;
8812         }
8813         // Otherwise, add the new recipe.
8814         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
8815         for (auto *Def : Recipe->definedValues()) {
8816           auto *UV = Def->getUnderlyingValue();
8817           Plan->addVPValue(UV, Def);
8818         }
8819 
8820         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
8821             HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
8822           // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section
8823           // of the header block. That can happen for truncates of induction
8824           // variables. Those recipes are moved to the phi section of the header
8825           // block after applying SinkAfter, which relies on the original
8826           // position of the trunc.
8827           assert(isa<TruncInst>(Instr));
8828           InductionsToMove.push_back(
8829               cast<VPWidenIntOrFpInductionRecipe>(Recipe));
8830         }
8831         RecipeBuilder.setRecipe(Instr, Recipe);
8832         VPBB->appendRecipe(Recipe);
8833         continue;
8834       }
8835 
8836       // Otherwise, if all widening options failed, Instruction is to be
8837       // replicated. This may create a successor for VPBB.
8838       VPBasicBlock *NextVPBB =
8839           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
8840       if (NextVPBB != VPBB) {
8841         VPBB = NextVPBB;
8842         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
8843                                     : "");
8844       }
8845     }
8846 
8847     VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB);
8848     VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor());
8849   }
8850 
8851   HeaderVPBB->setName("vector.body");
8852 
8853   // Fold the last, empty block into its predecessor.
8854   VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB);
8855   assert(VPBB && "expected to fold last (empty) block");
8856   // After here, VPBB should not be used.
8857   VPBB = nullptr;
8858 
8859   assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) &&
8860          !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
8861          "entry block must be set to a VPRegionBlock having a non-empty entry "
8862          "VPBasicBlock");
8863   RecipeBuilder.fixHeaderPhis();
8864 
8865   // ---------------------------------------------------------------------------
8866   // Transform initial VPlan: Apply previously taken decisions, in order, to
8867   // bring the VPlan to its final state.
8868   // ---------------------------------------------------------------------------
8869 
8870   // Apply Sink-After legal constraints.
8871   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
8872     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
8873     if (Region && Region->isReplicator()) {
8874       assert(Region->getNumSuccessors() == 1 &&
8875              Region->getNumPredecessors() == 1 && "Expected SESE region!");
8876       assert(R->getParent()->size() == 1 &&
8877              "A recipe in an original replicator region must be the only "
8878              "recipe in its block");
8879       return Region;
8880     }
8881     return nullptr;
8882   };
8883   for (auto &Entry : SinkAfter) {
8884     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
8885     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
8886 
8887     auto *TargetRegion = GetReplicateRegion(Target);
8888     auto *SinkRegion = GetReplicateRegion(Sink);
8889     if (!SinkRegion) {
8890       // If the sink source is not a replicate region, sink the recipe directly.
8891       if (TargetRegion) {
8892         // The target is in a replication region, make sure to move Sink to
8893         // the block after it, not into the replication region itself.
8894         VPBasicBlock *NextBlock =
8895             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
8896         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
8897       } else
8898         Sink->moveAfter(Target);
8899       continue;
8900     }
8901 
8902     // The sink source is in a replicate region. Unhook the region from the CFG.
8903     auto *SinkPred = SinkRegion->getSinglePredecessor();
8904     auto *SinkSucc = SinkRegion->getSingleSuccessor();
8905     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
8906     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
8907     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
8908 
8909     if (TargetRegion) {
8910       // The target recipe is also in a replicate region, move the sink region
8911       // after the target region.
8912       auto *TargetSucc = TargetRegion->getSingleSuccessor();
8913       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
8914       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
8915       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
8916     } else {
8917       // The sink source is in a replicate region, we need to move the whole
8918       // replicate region, which should only contain a single recipe in the
8919       // main block.
8920       auto *SplitBlock =
8921           Target->getParent()->splitAt(std::next(Target->getIterator()));
8922 
8923       auto *SplitPred = SplitBlock->getSinglePredecessor();
8924 
8925       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
8926       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
8927       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
8928     }
8929   }
8930 
8931   VPlanTransforms::removeRedundantCanonicalIVs(*Plan);
8932   VPlanTransforms::removeRedundantInductionCasts(*Plan);
8933 
8934   // Now that sink-after is done, move induction recipes for optimized truncates
8935   // to the phi section of the header block.
8936   for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove)
8937     Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
8938 
8939   // Adjust the recipes for any inloop reductions.
8940   adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan,
8941                              RecipeBuilder, Range.Start);
8942 
8943   // Introduce a recipe to combine the incoming and previous values of a
8944   // first-order recurrence.
8945   for (VPRecipeBase &R :
8946        Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8947     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
8948     if (!RecurPhi)
8949       continue;
8950 
8951     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
8952     VPBasicBlock *InsertBlock = PrevRecipe->getParent();
8953     auto *Region = GetReplicateRegion(PrevRecipe);
8954     if (Region)
8955       InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor());
8956     if (Region || PrevRecipe->isPhi())
8957       Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
8958     else
8959       Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator()));
8960 
8961     auto *RecurSplice = cast<VPInstruction>(
8962         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
8963                              {RecurPhi, RecurPhi->getBackedgeValue()}));
8964 
8965     RecurPhi->replaceAllUsesWith(RecurSplice);
8966     // Set the first operand of RecurSplice to RecurPhi again, after replacing
8967     // all users.
8968     RecurSplice->setOperand(0, RecurPhi);
8969   }
8970 
8971   // Interleave memory: for each Interleave Group we marked earlier as relevant
8972   // for this VPlan, replace the Recipes widening its memory instructions with a
8973   // single VPInterleaveRecipe at its insertion point.
8974   for (auto IG : InterleaveGroups) {
8975     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
8976         RecipeBuilder.getRecipe(IG->getInsertPos()));
8977     SmallVector<VPValue *, 4> StoredValues;
8978     for (unsigned i = 0; i < IG->getFactor(); ++i)
8979       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
8980         auto *StoreR =
8981             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
8982         StoredValues.push_back(StoreR->getStoredValue());
8983       }
8984 
8985     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
8986                                         Recipe->getMask());
8987     VPIG->insertBefore(Recipe);
8988     unsigned J = 0;
8989     for (unsigned i = 0; i < IG->getFactor(); ++i)
8990       if (Instruction *Member = IG->getMember(i)) {
8991         if (!Member->getType()->isVoidTy()) {
8992           VPValue *OriginalV = Plan->getVPValue(Member);
8993           Plan->removeVPValueFor(Member);
8994           Plan->addVPValue(Member, VPIG->getVPValue(J));
8995           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
8996           J++;
8997         }
8998         RecipeBuilder.getRecipe(Member)->eraseFromParent();
8999       }
9000   }
9001 
9002   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9003   // in ways that accessing values using original IR values is incorrect.
9004   Plan->disableValue2VPValue();
9005 
9006   VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE());
9007   VPlanTransforms::sinkScalarOperands(*Plan);
9008   VPlanTransforms::mergeReplicateRegions(*Plan);
9009   VPlanTransforms::removeDeadRecipes(*Plan, *OrigLoop);
9010 
9011   std::string PlanName;
9012   raw_string_ostream RSO(PlanName);
9013   ElementCount VF = Range.Start;
9014   Plan->addVF(VF);
9015   RSO << "Initial VPlan for VF={" << VF;
9016   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9017     Plan->addVF(VF);
9018     RSO << "," << VF;
9019   }
9020   RSO << "},UF>=1";
9021   RSO.flush();
9022   Plan->setName(PlanName);
9023 
9024   // Fold Exit block into its predecessor if possible.
9025   // TODO: Fold block earlier once all VPlan transforms properly maintain a
9026   // VPBasicBlock as exit.
9027   VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit());
9028 
9029   assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
9030   return Plan;
9031 }
9032 
9033 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9034   // Outer loop handling: They may require CFG and instruction level
9035   // transformations before even evaluating whether vectorization is profitable.
9036   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9037   // the vectorization pipeline.
9038   assert(!OrigLoop->isInnermost());
9039   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9040 
9041   // Create new empty VPlan
9042   auto Plan = std::make_unique<VPlan>();
9043 
9044   // Build hierarchical CFG
9045   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9046   HCFGBuilder.buildHierarchicalCFG();
9047 
9048   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9049        VF *= 2)
9050     Plan->addVF(VF);
9051 
9052   if (EnableVPlanPredication) {
9053     VPlanPredicator VPP(*Plan);
9054     VPP.predicate();
9055 
9056     // Avoid running transformation to recipes until masked code generation in
9057     // VPlan-native path is in place.
9058     return Plan;
9059   }
9060 
9061   SmallPtrSet<Instruction *, 1> DeadInstructions;
9062   VPlanTransforms::VPInstructionsToVPRecipes(
9063       OrigLoop, Plan,
9064       [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); },
9065       DeadInstructions, *PSE.getSE());
9066 
9067   // Update plan to be compatible with the inner loop vectorizer for
9068   // code-generation.
9069   VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
9070   VPBasicBlock *Preheader = LoopRegion->getEntryBasicBlock();
9071   VPBasicBlock *Exit = LoopRegion->getExitBasicBlock();
9072   VPBlockBase *Latch = Exit->getSinglePredecessor();
9073   VPBlockBase *Header = Preheader->getSingleSuccessor();
9074 
9075   // 1. Move preheader block out of main vector loop.
9076   Preheader->setParent(LoopRegion->getParent());
9077   VPBlockUtils::disconnectBlocks(Preheader, Header);
9078   VPBlockUtils::connectBlocks(Preheader, LoopRegion);
9079   Plan->setEntry(Preheader);
9080 
9081   // 2. Disconnect backedge and exit block.
9082   VPBlockUtils::disconnectBlocks(Latch, Header);
9083   VPBlockUtils::disconnectBlocks(Latch, Exit);
9084 
9085   // 3. Update entry and exit of main vector loop region.
9086   LoopRegion->setEntry(Header);
9087   LoopRegion->setExit(Latch);
9088 
9089   // 4. Remove exit block.
9090   delete Exit;
9091 
9092   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(),
9093                         true, true);
9094   return Plan;
9095 }
9096 
9097 // Adjust the recipes for reductions. For in-loop reductions the chain of
9098 // instructions leading from the loop exit instr to the phi need to be converted
9099 // to reductions, with one operand being vector and the other being the scalar
9100 // reduction chain. For other reductions, a select is introduced between the phi
9101 // and live-out recipes when folding the tail.
9102 void LoopVectorizationPlanner::adjustRecipesForReductions(
9103     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9104     ElementCount MinVF) {
9105   for (auto &Reduction : CM.getInLoopReductionChains()) {
9106     PHINode *Phi = Reduction.first;
9107     const RecurrenceDescriptor &RdxDesc =
9108         Legal->getReductionVars().find(Phi)->second;
9109     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9110 
9111     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9112       continue;
9113 
9114     // ReductionOperations are orders top-down from the phi's use to the
9115     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9116     // which of the two operands will remain scalar and which will be reduced.
9117     // For minmax the chain will be the select instructions.
9118     Instruction *Chain = Phi;
9119     for (Instruction *R : ReductionOperations) {
9120       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9121       RecurKind Kind = RdxDesc.getRecurrenceKind();
9122 
9123       VPValue *ChainOp = Plan->getVPValue(Chain);
9124       unsigned FirstOpId;
9125       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9126              "Only min/max recurrences allowed for inloop reductions");
9127       // Recognize a call to the llvm.fmuladd intrinsic.
9128       bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
9129       assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) &&
9130              "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9131       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9132         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9133                "Expected to replace a VPWidenSelectSC");
9134         FirstOpId = 1;
9135       } else {
9136         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) ||
9137                 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) &&
9138                "Expected to replace a VPWidenSC");
9139         FirstOpId = 0;
9140       }
9141       unsigned VecOpId =
9142           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9143       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9144 
9145       auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent())
9146                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9147                          : nullptr;
9148 
9149       if (IsFMulAdd) {
9150         // If the instruction is a call to the llvm.fmuladd intrinsic then we
9151         // need to create an fmul recipe to use as the vector operand for the
9152         // fadd reduction.
9153         VPInstruction *FMulRecipe = new VPInstruction(
9154             Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))});
9155         FMulRecipe->setFastMathFlags(R->getFastMathFlags());
9156         WidenRecipe->getParent()->insert(FMulRecipe,
9157                                          WidenRecipe->getIterator());
9158         VecOp = FMulRecipe;
9159       }
9160       VPReductionRecipe *RedRecipe =
9161           new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9162       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9163       Plan->removeVPValueFor(R);
9164       Plan->addVPValue(R, RedRecipe);
9165       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9166       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9167       WidenRecipe->eraseFromParent();
9168 
9169       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9170         VPRecipeBase *CompareRecipe =
9171             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9172         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9173                "Expected to replace a VPWidenSC");
9174         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9175                "Expected no remaining users");
9176         CompareRecipe->eraseFromParent();
9177       }
9178       Chain = R;
9179     }
9180   }
9181 
9182   // If tail is folded by masking, introduce selects between the phi
9183   // and the live-out instruction of each reduction, at the beginning of the
9184   // dedicated latch block.
9185   if (CM.foldTailByMasking()) {
9186     Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin());
9187     for (VPRecipeBase &R :
9188          Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
9189       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9190       if (!PhiR || PhiR->isInLoop())
9191         continue;
9192       VPValue *Cond =
9193           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9194       VPValue *Red = PhiR->getBackedgeValue();
9195       assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB &&
9196              "reduction recipe must be defined before latch");
9197       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9198     }
9199   }
9200 }
9201 
9202 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9203 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9204                                VPSlotTracker &SlotTracker) const {
9205   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9206   IG->getInsertPos()->printAsOperand(O, false);
9207   O << ", ";
9208   getAddr()->printAsOperand(O, SlotTracker);
9209   VPValue *Mask = getMask();
9210   if (Mask) {
9211     O << ", ";
9212     Mask->printAsOperand(O, SlotTracker);
9213   }
9214 
9215   unsigned OpIdx = 0;
9216   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9217     if (!IG->getMember(i))
9218       continue;
9219     if (getNumStoreOperands() > 0) {
9220       O << "\n" << Indent << "  store ";
9221       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9222       O << " to index " << i;
9223     } else {
9224       O << "\n" << Indent << "  ";
9225       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9226       O << " = load from index " << i;
9227     }
9228     ++OpIdx;
9229   }
9230 }
9231 #endif
9232 
9233 void VPWidenCallRecipe::execute(VPTransformState &State) {
9234   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9235                                   *this, State);
9236 }
9237 
9238 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9239   auto &I = *cast<SelectInst>(getUnderlyingInstr());
9240   State.ILV->setDebugLocFromInst(&I);
9241 
9242   // The condition can be loop invariant  but still defined inside the
9243   // loop. This means that we can't just use the original 'cond' value.
9244   // We have to take the 'vectorized' value and pick the first lane.
9245   // Instcombine will make this a no-op.
9246   auto *InvarCond =
9247       InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr;
9248 
9249   for (unsigned Part = 0; Part < State.UF; ++Part) {
9250     Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part);
9251     Value *Op0 = State.get(getOperand(1), Part);
9252     Value *Op1 = State.get(getOperand(2), Part);
9253     Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
9254     State.set(this, Sel, Part);
9255     State.ILV->addMetadata(Sel, &I);
9256   }
9257 }
9258 
9259 void VPWidenRecipe::execute(VPTransformState &State) {
9260   auto &I = *cast<Instruction>(getUnderlyingValue());
9261   auto &Builder = State.Builder;
9262   switch (I.getOpcode()) {
9263   case Instruction::Call:
9264   case Instruction::Br:
9265   case Instruction::PHI:
9266   case Instruction::GetElementPtr:
9267   case Instruction::Select:
9268     llvm_unreachable("This instruction is handled by a different recipe.");
9269   case Instruction::UDiv:
9270   case Instruction::SDiv:
9271   case Instruction::SRem:
9272   case Instruction::URem:
9273   case Instruction::Add:
9274   case Instruction::FAdd:
9275   case Instruction::Sub:
9276   case Instruction::FSub:
9277   case Instruction::FNeg:
9278   case Instruction::Mul:
9279   case Instruction::FMul:
9280   case Instruction::FDiv:
9281   case Instruction::FRem:
9282   case Instruction::Shl:
9283   case Instruction::LShr:
9284   case Instruction::AShr:
9285   case Instruction::And:
9286   case Instruction::Or:
9287   case Instruction::Xor: {
9288     // Just widen unops and binops.
9289     State.ILV->setDebugLocFromInst(&I);
9290 
9291     for (unsigned Part = 0; Part < State.UF; ++Part) {
9292       SmallVector<Value *, 2> Ops;
9293       for (VPValue *VPOp : operands())
9294         Ops.push_back(State.get(VPOp, Part));
9295 
9296       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
9297 
9298       if (auto *VecOp = dyn_cast<Instruction>(V)) {
9299         VecOp->copyIRFlags(&I);
9300 
9301         // If the instruction is vectorized and was in a basic block that needed
9302         // predication, we can't propagate poison-generating flags (nuw/nsw,
9303         // exact, etc.). The control flow has been linearized and the
9304         // instruction is no longer guarded by the predicate, which could make
9305         // the flag properties to no longer hold.
9306         if (State.MayGeneratePoisonRecipes.contains(this))
9307           VecOp->dropPoisonGeneratingFlags();
9308       }
9309 
9310       // Use this vector value for all users of the original instruction.
9311       State.set(this, V, Part);
9312       State.ILV->addMetadata(V, &I);
9313     }
9314 
9315     break;
9316   }
9317   case Instruction::ICmp:
9318   case Instruction::FCmp: {
9319     // Widen compares. Generate vector compares.
9320     bool FCmp = (I.getOpcode() == Instruction::FCmp);
9321     auto *Cmp = cast<CmpInst>(&I);
9322     State.ILV->setDebugLocFromInst(Cmp);
9323     for (unsigned Part = 0; Part < State.UF; ++Part) {
9324       Value *A = State.get(getOperand(0), Part);
9325       Value *B = State.get(getOperand(1), Part);
9326       Value *C = nullptr;
9327       if (FCmp) {
9328         // Propagate fast math flags.
9329         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9330         Builder.setFastMathFlags(Cmp->getFastMathFlags());
9331         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
9332       } else {
9333         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
9334       }
9335       State.set(this, C, Part);
9336       State.ILV->addMetadata(C, &I);
9337     }
9338 
9339     break;
9340   }
9341 
9342   case Instruction::ZExt:
9343   case Instruction::SExt:
9344   case Instruction::FPToUI:
9345   case Instruction::FPToSI:
9346   case Instruction::FPExt:
9347   case Instruction::PtrToInt:
9348   case Instruction::IntToPtr:
9349   case Instruction::SIToFP:
9350   case Instruction::UIToFP:
9351   case Instruction::Trunc:
9352   case Instruction::FPTrunc:
9353   case Instruction::BitCast: {
9354     auto *CI = cast<CastInst>(&I);
9355     State.ILV->setDebugLocFromInst(CI);
9356 
9357     /// Vectorize casts.
9358     Type *DestTy = (State.VF.isScalar())
9359                        ? CI->getType()
9360                        : VectorType::get(CI->getType(), State.VF);
9361 
9362     for (unsigned Part = 0; Part < State.UF; ++Part) {
9363       Value *A = State.get(getOperand(0), Part);
9364       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
9365       State.set(this, Cast, Part);
9366       State.ILV->addMetadata(Cast, &I);
9367     }
9368     break;
9369   }
9370   default:
9371     // This instruction is not vectorized by simple widening.
9372     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
9373     llvm_unreachable("Unhandled instruction!");
9374   } // end of switch.
9375 }
9376 
9377 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9378   auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr());
9379   // Construct a vector GEP by widening the operands of the scalar GEP as
9380   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
9381   // results in a vector of pointers when at least one operand of the GEP
9382   // is vector-typed. Thus, to keep the representation compact, we only use
9383   // vector-typed operands for loop-varying values.
9384 
9385   if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
9386     // If we are vectorizing, but the GEP has only loop-invariant operands,
9387     // the GEP we build (by only using vector-typed operands for
9388     // loop-varying values) would be a scalar pointer. Thus, to ensure we
9389     // produce a vector of pointers, we need to either arbitrarily pick an
9390     // operand to broadcast, or broadcast a clone of the original GEP.
9391     // Here, we broadcast a clone of the original.
9392     //
9393     // TODO: If at some point we decide to scalarize instructions having
9394     //       loop-invariant operands, this special case will no longer be
9395     //       required. We would add the scalarization decision to
9396     //       collectLoopScalars() and teach getVectorValue() to broadcast
9397     //       the lane-zero scalar value.
9398     auto *Clone = State.Builder.Insert(GEP->clone());
9399     for (unsigned Part = 0; Part < State.UF; ++Part) {
9400       Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone);
9401       State.set(this, EntryPart, Part);
9402       State.ILV->addMetadata(EntryPart, GEP);
9403     }
9404   } else {
9405     // If the GEP has at least one loop-varying operand, we are sure to
9406     // produce a vector of pointers. But if we are only unrolling, we want
9407     // to produce a scalar GEP for each unroll part. Thus, the GEP we
9408     // produce with the code below will be scalar (if VF == 1) or vector
9409     // (otherwise). Note that for the unroll-only case, we still maintain
9410     // values in the vector mapping with initVector, as we do for other
9411     // instructions.
9412     for (unsigned Part = 0; Part < State.UF; ++Part) {
9413       // The pointer operand of the new GEP. If it's loop-invariant, we
9414       // won't broadcast it.
9415       auto *Ptr = IsPtrLoopInvariant
9416                       ? State.get(getOperand(0), VPIteration(0, 0))
9417                       : State.get(getOperand(0), Part);
9418 
9419       // Collect all the indices for the new GEP. If any index is
9420       // loop-invariant, we won't broadcast it.
9421       SmallVector<Value *, 4> Indices;
9422       for (unsigned I = 1, E = getNumOperands(); I < E; I++) {
9423         VPValue *Operand = getOperand(I);
9424         if (IsIndexLoopInvariant[I - 1])
9425           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
9426         else
9427           Indices.push_back(State.get(Operand, Part));
9428       }
9429 
9430       // If the GEP instruction is vectorized and was in a basic block that
9431       // needed predication, we can't propagate the poison-generating 'inbounds'
9432       // flag. The control flow has been linearized and the GEP is no longer
9433       // guarded by the predicate, which could make the 'inbounds' properties to
9434       // no longer hold.
9435       bool IsInBounds =
9436           GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0;
9437 
9438       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
9439       // but it should be a vector, otherwise.
9440       auto *NewGEP = IsInBounds
9441                          ? State.Builder.CreateInBoundsGEP(
9442                                GEP->getSourceElementType(), Ptr, Indices)
9443                          : State.Builder.CreateGEP(GEP->getSourceElementType(),
9444                                                    Ptr, Indices);
9445       assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
9446              "NewGEP is not a pointer vector");
9447       State.set(this, NewGEP, Part);
9448       State.ILV->addMetadata(NewGEP, GEP);
9449     }
9450   }
9451 }
9452 
9453 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9454   assert(!State.Instance && "Int or FP induction being replicated.");
9455 
9456   Value *Start = getStartValue()->getLiveInIRValue();
9457   const InductionDescriptor &ID = getInductionDescriptor();
9458   TruncInst *Trunc = getTruncInst();
9459   IRBuilderBase &Builder = State.Builder;
9460   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
9461   assert(State.VF.isVector() && "must have vector VF");
9462 
9463   // The value from the original loop to which we are mapping the new induction
9464   // variable.
9465   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
9466 
9467   auto &DL = EntryVal->getModule()->getDataLayout();
9468 
9469   BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
9470   // Generate code for the induction step. Note that induction steps are
9471   // required to be loop-invariant
9472   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
9473     if (SE.isSCEVable(IV->getType())) {
9474       SCEVExpander Exp(SE, DL, "induction");
9475       return Exp.expandCodeFor(Step, Step->getType(),
9476                                VectorPH->getTerminator());
9477     }
9478     return cast<SCEVUnknown>(Step)->getValue();
9479   };
9480 
9481   // Fast-math-flags propagate from the original induction instruction.
9482   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9483   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
9484     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
9485 
9486   // Now do the actual transformations, and start with creating the step value.
9487   Value *Step = CreateStepValue(ID.getStep());
9488 
9489   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
9490          "Expected either an induction phi-node or a truncate of it!");
9491 
9492   // Construct the initial value of the vector IV in the vector loop preheader
9493   auto CurrIP = Builder.saveIP();
9494   Builder.SetInsertPoint(VectorPH->getTerminator());
9495   if (isa<TruncInst>(EntryVal)) {
9496     assert(Start->getType()->isIntegerTy() &&
9497            "Truncation requires an integer type");
9498     auto *TruncType = cast<IntegerType>(EntryVal->getType());
9499     Step = Builder.CreateTrunc(Step, TruncType);
9500     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
9501   }
9502 
9503   Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
9504   Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start);
9505   Value *SteppedStart = getStepVector(
9506       SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder);
9507 
9508   // We create vector phi nodes for both integer and floating-point induction
9509   // variables. Here, we determine the kind of arithmetic we will perform.
9510   Instruction::BinaryOps AddOp;
9511   Instruction::BinaryOps MulOp;
9512   if (Step->getType()->isIntegerTy()) {
9513     AddOp = Instruction::Add;
9514     MulOp = Instruction::Mul;
9515   } else {
9516     AddOp = ID.getInductionOpcode();
9517     MulOp = Instruction::FMul;
9518   }
9519 
9520   // Multiply the vectorization factor by the step using integer or
9521   // floating-point arithmetic as appropriate.
9522   Type *StepType = Step->getType();
9523   Value *RuntimeVF;
9524   if (Step->getType()->isFloatingPointTy())
9525     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF);
9526   else
9527     RuntimeVF = getRuntimeVF(Builder, StepType, State.VF);
9528   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
9529 
9530   // Create a vector splat to use in the induction update.
9531   //
9532   // FIXME: If the step is non-constant, we create the vector splat with
9533   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
9534   //        handle a constant vector splat.
9535   Value *SplatVF = isa<Constant>(Mul)
9536                        ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul))
9537                        : Builder.CreateVectorSplat(State.VF, Mul);
9538   Builder.restoreIP(CurrIP);
9539 
9540   // We may need to add the step a number of times, depending on the unroll
9541   // factor. The last of those goes into the PHI.
9542   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
9543                                     &*State.CFG.PrevBB->getFirstInsertionPt());
9544   VecInd->setDebugLoc(EntryVal->getDebugLoc());
9545   Instruction *LastInduction = VecInd;
9546   for (unsigned Part = 0; Part < State.UF; ++Part) {
9547     State.set(this, LastInduction, Part);
9548 
9549     if (isa<TruncInst>(EntryVal))
9550       State.ILV->addMetadata(LastInduction, EntryVal);
9551 
9552     LastInduction = cast<Instruction>(
9553         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
9554     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
9555   }
9556 
9557   LastInduction->setName("vec.ind.next");
9558   VecInd->addIncoming(SteppedStart, VectorPH);
9559   // Add induction update using an incorrect block temporarily. The phi node
9560   // will be fixed after VPlan execution. Note that at this point the latch
9561   // block cannot be used, as it does not exist yet.
9562   // TODO: Model increment value in VPlan, by turning the recipe into a
9563   // multi-def and a subclass of VPHeaderPHIRecipe.
9564   VecInd->addIncoming(LastInduction, VectorPH);
9565 }
9566 
9567 void VPWidenPointerInductionRecipe::execute(VPTransformState &State) {
9568   assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction &&
9569          "Not a pointer induction according to InductionDescriptor!");
9570   assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() &&
9571          "Unexpected type.");
9572 
9573   auto *IVR = getParent()->getPlan()->getCanonicalIV();
9574   PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0));
9575 
9576   if (all_of(users(), [this](const VPUser *U) {
9577         return cast<VPRecipeBase>(U)->usesScalars(this);
9578       })) {
9579     // This is the normalized GEP that starts counting at zero.
9580     Value *PtrInd = State.Builder.CreateSExtOrTrunc(
9581         CanonicalIV, IndDesc.getStep()->getType());
9582     // Determine the number of scalars we need to generate for each unroll
9583     // iteration. If the instruction is uniform, we only need to generate the
9584     // first lane. Otherwise, we generate all VF values.
9585     bool IsUniform = vputils::onlyFirstLaneUsed(this);
9586     assert((IsUniform || !State.VF.isScalable()) &&
9587            "Cannot scalarize a scalable VF");
9588     unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
9589 
9590     for (unsigned Part = 0; Part < State.UF; ++Part) {
9591       Value *PartStart =
9592           createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part);
9593 
9594       for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
9595         Value *Idx = State.Builder.CreateAdd(
9596             PartStart, ConstantInt::get(PtrInd->getType(), Lane));
9597         Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx);
9598 
9599         Value *Step = CreateStepValue(IndDesc.getStep(), SE,
9600                                       State.CFG.PrevBB->getTerminator());
9601         Value *SclrGep = emitTransformedIndex(
9602             State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc);
9603         SclrGep->setName("next.gep");
9604         State.set(this, SclrGep, VPIteration(Part, Lane));
9605       }
9606     }
9607     return;
9608   }
9609 
9610   assert(isa<SCEVConstant>(IndDesc.getStep()) &&
9611          "Induction step not a SCEV constant!");
9612   Type *PhiType = IndDesc.getStep()->getType();
9613 
9614   // Build a pointer phi
9615   Value *ScalarStartValue = getStartValue()->getLiveInIRValue();
9616   Type *ScStValueType = ScalarStartValue->getType();
9617   PHINode *NewPointerPhi =
9618       PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV);
9619 
9620   BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
9621   NewPointerPhi->addIncoming(ScalarStartValue, VectorPH);
9622 
9623   // A pointer induction, performed by using a gep
9624   const DataLayout &DL = NewPointerPhi->getModule()->getDataLayout();
9625   Instruction *InductionLoc = &*State.Builder.GetInsertPoint();
9626 
9627   const SCEV *ScalarStep = IndDesc.getStep();
9628   SCEVExpander Exp(SE, DL, "induction");
9629   Value *ScalarStepValue = Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
9630   Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF);
9631   Value *NumUnrolledElems =
9632       State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
9633   Value *InductionGEP = GetElementPtrInst::Create(
9634       IndDesc.getElementType(), NewPointerPhi,
9635       State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
9636       InductionLoc);
9637   // Add induction update using an incorrect block temporarily. The phi node
9638   // will be fixed after VPlan execution. Note that at this point the latch
9639   // block cannot be used, as it does not exist yet.
9640   // TODO: Model increment value in VPlan, by turning the recipe into a
9641   // multi-def and a subclass of VPHeaderPHIRecipe.
9642   NewPointerPhi->addIncoming(InductionGEP, VectorPH);
9643 
9644   // Create UF many actual address geps that use the pointer
9645   // phi as base and a vectorized version of the step value
9646   // (<step*0, ..., step*N>) as offset.
9647   for (unsigned Part = 0; Part < State.UF; ++Part) {
9648     Type *VecPhiType = VectorType::get(PhiType, State.VF);
9649     Value *StartOffsetScalar =
9650         State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
9651     Value *StartOffset =
9652         State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
9653     // Create a vector of consecutive numbers from zero to VF.
9654     StartOffset = State.Builder.CreateAdd(
9655         StartOffset, State.Builder.CreateStepVector(VecPhiType));
9656 
9657     Value *GEP = State.Builder.CreateGEP(
9658         IndDesc.getElementType(), NewPointerPhi,
9659         State.Builder.CreateMul(
9660             StartOffset,
9661             State.Builder.CreateVectorSplat(State.VF, ScalarStepValue),
9662             "vector.gep"));
9663     State.set(this, GEP, Part);
9664   }
9665 }
9666 
9667 void VPScalarIVStepsRecipe::execute(VPTransformState &State) {
9668   assert(!State.Instance && "VPScalarIVStepsRecipe being replicated.");
9669 
9670   // Fast-math-flags propagate from the original induction instruction.
9671   IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
9672   if (IndDesc.getInductionBinOp() &&
9673       isa<FPMathOperator>(IndDesc.getInductionBinOp()))
9674     State.Builder.setFastMathFlags(
9675         IndDesc.getInductionBinOp()->getFastMathFlags());
9676 
9677   Value *Step = State.get(getStepValue(), VPIteration(0, 0));
9678   auto CreateScalarIV = [&](Value *&Step) -> Value * {
9679     Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0));
9680     auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0);
9681     if (!isCanonical() || CanonicalIV->getType() != Ty) {
9682       ScalarIV =
9683           Ty->isIntegerTy()
9684               ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty)
9685               : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty);
9686       ScalarIV = emitTransformedIndex(State.Builder, ScalarIV,
9687                                       getStartValue()->getLiveInIRValue(), Step,
9688                                       IndDesc);
9689       ScalarIV->setName("offset.idx");
9690     }
9691     if (TruncToTy) {
9692       assert(Step->getType()->isIntegerTy() &&
9693              "Truncation requires an integer step");
9694       ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy);
9695       Step = State.Builder.CreateTrunc(Step, TruncToTy);
9696     }
9697     return ScalarIV;
9698   };
9699 
9700   Value *ScalarIV = CreateScalarIV(Step);
9701   if (State.VF.isVector()) {
9702     buildScalarSteps(ScalarIV, Step, IndDesc, this, State);
9703     return;
9704   }
9705 
9706   for (unsigned Part = 0; Part < State.UF; ++Part) {
9707     assert(!State.VF.isScalable() && "scalable vectors not yet supported.");
9708     Value *EntryPart;
9709     if (Step->getType()->isFloatingPointTy()) {
9710       Value *StartIdx =
9711           getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part);
9712       // Floating-point operations inherit FMF via the builder's flags.
9713       Value *MulOp = State.Builder.CreateFMul(StartIdx, Step);
9714       EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(),
9715                                             ScalarIV, MulOp);
9716     } else {
9717       Value *StartIdx =
9718           getRuntimeVF(State.Builder, Step->getType(), State.VF * Part);
9719       EntryPart = State.Builder.CreateAdd(
9720           ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction");
9721     }
9722     State.set(this, EntryPart, Part);
9723   }
9724 }
9725 
9726 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9727   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9728                                  State);
9729 }
9730 
9731 void VPBlendRecipe::execute(VPTransformState &State) {
9732   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9733   // We know that all PHIs in non-header blocks are converted into
9734   // selects, so we don't have to worry about the insertion order and we
9735   // can just use the builder.
9736   // At this point we generate the predication tree. There may be
9737   // duplications since this is a simple recursive scan, but future
9738   // optimizations will clean it up.
9739 
9740   unsigned NumIncoming = getNumIncomingValues();
9741 
9742   // Generate a sequence of selects of the form:
9743   // SELECT(Mask3, In3,
9744   //        SELECT(Mask2, In2,
9745   //               SELECT(Mask1, In1,
9746   //                      In0)))
9747   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9748   // are essentially undef are taken from In0.
9749   InnerLoopVectorizer::VectorParts Entry(State.UF);
9750   for (unsigned In = 0; In < NumIncoming; ++In) {
9751     for (unsigned Part = 0; Part < State.UF; ++Part) {
9752       // We might have single edge PHIs (blocks) - use an identity
9753       // 'select' for the first PHI operand.
9754       Value *In0 = State.get(getIncomingValue(In), Part);
9755       if (In == 0)
9756         Entry[Part] = In0; // Initialize with the first incoming value.
9757       else {
9758         // Select between the current value and the previous incoming edge
9759         // based on the incoming mask.
9760         Value *Cond = State.get(getMask(In), Part);
9761         Entry[Part] =
9762             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9763       }
9764     }
9765   }
9766   for (unsigned Part = 0; Part < State.UF; ++Part)
9767     State.set(this, Entry[Part], Part);
9768 }
9769 
9770 void VPInterleaveRecipe::execute(VPTransformState &State) {
9771   assert(!State.Instance && "Interleave group being replicated.");
9772   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9773                                       getStoredValues(), getMask());
9774 }
9775 
9776 void VPReductionRecipe::execute(VPTransformState &State) {
9777   assert(!State.Instance && "Reduction being replicated.");
9778   Value *PrevInChain = State.get(getChainOp(), 0);
9779   RecurKind Kind = RdxDesc->getRecurrenceKind();
9780   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9781   // Propagate the fast-math flags carried by the underlying instruction.
9782   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
9783   State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
9784   for (unsigned Part = 0; Part < State.UF; ++Part) {
9785     Value *NewVecOp = State.get(getVecOp(), Part);
9786     if (VPValue *Cond = getCondOp()) {
9787       Value *NewCond = State.get(Cond, Part);
9788       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9789       Value *Iden = RdxDesc->getRecurrenceIdentity(
9790           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9791       Value *IdenVec =
9792           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9793       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9794       NewVecOp = Select;
9795     }
9796     Value *NewRed;
9797     Value *NextInChain;
9798     if (IsOrdered) {
9799       if (State.VF.isVector())
9800         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9801                                         PrevInChain);
9802       else
9803         NewRed = State.Builder.CreateBinOp(
9804             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9805             NewVecOp);
9806       PrevInChain = NewRed;
9807     } else {
9808       PrevInChain = State.get(getChainOp(), Part);
9809       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9810     }
9811     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9812       NextInChain =
9813           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9814                          NewRed, PrevInChain);
9815     } else if (IsOrdered)
9816       NextInChain = NewRed;
9817     else
9818       NextInChain = State.Builder.CreateBinOp(
9819           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
9820           PrevInChain);
9821     State.set(this, NextInChain, Part);
9822   }
9823 }
9824 
9825 void VPReplicateRecipe::execute(VPTransformState &State) {
9826   if (State.Instance) { // Generate a single instance.
9827     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9828     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance,
9829                                     IsPredicated, State);
9830     // Insert scalar instance packing it into a vector.
9831     if (AlsoPack && State.VF.isVector()) {
9832       // If we're constructing lane 0, initialize to start from poison.
9833       if (State.Instance->Lane.isFirstLane()) {
9834         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9835         Value *Poison = PoisonValue::get(
9836             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9837         State.set(this, Poison, State.Instance->Part);
9838       }
9839       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9840     }
9841     return;
9842   }
9843 
9844   // Generate scalar instances for all VF lanes of all UF parts, unless the
9845   // instruction is uniform inwhich case generate only the first lane for each
9846   // of the UF parts.
9847   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9848   assert((!State.VF.isScalable() || IsUniform) &&
9849          "Can't scalarize a scalable vector");
9850   for (unsigned Part = 0; Part < State.UF; ++Part)
9851     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9852       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this,
9853                                       VPIteration(Part, Lane), IsPredicated,
9854                                       State);
9855 }
9856 
9857 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9858   assert(State.Instance && "Branch on Mask works only on single instance.");
9859 
9860   unsigned Part = State.Instance->Part;
9861   unsigned Lane = State.Instance->Lane.getKnownLane();
9862 
9863   Value *ConditionBit = nullptr;
9864   VPValue *BlockInMask = getMask();
9865   if (BlockInMask) {
9866     ConditionBit = State.get(BlockInMask, Part);
9867     if (ConditionBit->getType()->isVectorTy())
9868       ConditionBit = State.Builder.CreateExtractElement(
9869           ConditionBit, State.Builder.getInt32(Lane));
9870   } else // Block in mask is all-one.
9871     ConditionBit = State.Builder.getTrue();
9872 
9873   // Replace the temporary unreachable terminator with a new conditional branch,
9874   // whose two destinations will be set later when they are created.
9875   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9876   assert(isa<UnreachableInst>(CurrentTerminator) &&
9877          "Expected to replace unreachable terminator with conditional branch.");
9878   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9879   CondBr->setSuccessor(0, nullptr);
9880   ReplaceInstWithInst(CurrentTerminator, CondBr);
9881 }
9882 
9883 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9884   assert(State.Instance && "Predicated instruction PHI works per instance.");
9885   Instruction *ScalarPredInst =
9886       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9887   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9888   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9889   assert(PredicatingBB && "Predicated block has no single predecessor.");
9890   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9891          "operand must be VPReplicateRecipe");
9892 
9893   // By current pack/unpack logic we need to generate only a single phi node: if
9894   // a vector value for the predicated instruction exists at this point it means
9895   // the instruction has vector users only, and a phi for the vector value is
9896   // needed. In this case the recipe of the predicated instruction is marked to
9897   // also do that packing, thereby "hoisting" the insert-element sequence.
9898   // Otherwise, a phi node for the scalar value is needed.
9899   unsigned Part = State.Instance->Part;
9900   if (State.hasVectorValue(getOperand(0), Part)) {
9901     Value *VectorValue = State.get(getOperand(0), Part);
9902     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9903     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9904     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9905     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9906     if (State.hasVectorValue(this, Part))
9907       State.reset(this, VPhi, Part);
9908     else
9909       State.set(this, VPhi, Part);
9910     // NOTE: Currently we need to update the value of the operand, so the next
9911     // predicated iteration inserts its generated value in the correct vector.
9912     State.reset(getOperand(0), VPhi, Part);
9913   } else {
9914     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9915     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9916     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9917                      PredicatingBB);
9918     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9919     if (State.hasScalarValue(this, *State.Instance))
9920       State.reset(this, Phi, *State.Instance);
9921     else
9922       State.set(this, Phi, *State.Instance);
9923     // NOTE: Currently we need to update the value of the operand, so the next
9924     // predicated iteration inserts its generated value in the correct vector.
9925     State.reset(getOperand(0), Phi, *State.Instance);
9926   }
9927 }
9928 
9929 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9930   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9931 
9932   // Attempt to issue a wide load.
9933   LoadInst *LI = dyn_cast<LoadInst>(&Ingredient);
9934   StoreInst *SI = dyn_cast<StoreInst>(&Ingredient);
9935 
9936   assert((LI || SI) && "Invalid Load/Store instruction");
9937   assert((!SI || StoredValue) && "No stored value provided for widened store");
9938   assert((!LI || !StoredValue) && "Stored value provided for widened load");
9939 
9940   Type *ScalarDataTy = getLoadStoreType(&Ingredient);
9941 
9942   auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
9943   const Align Alignment = getLoadStoreAlignment(&Ingredient);
9944   bool CreateGatherScatter = !Consecutive;
9945 
9946   auto &Builder = State.Builder;
9947   InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF);
9948   bool isMaskRequired = getMask();
9949   if (isMaskRequired)
9950     for (unsigned Part = 0; Part < State.UF; ++Part)
9951       BlockInMaskParts[Part] = State.get(getMask(), Part);
9952 
9953   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
9954     // Calculate the pointer for the specific unroll-part.
9955     GetElementPtrInst *PartPtr = nullptr;
9956 
9957     bool InBounds = false;
9958     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
9959       InBounds = gep->isInBounds();
9960     if (Reverse) {
9961       // If the address is consecutive but reversed, then the
9962       // wide store needs to start at the last vector element.
9963       // RunTimeVF =  VScale * VF.getKnownMinValue()
9964       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
9965       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF);
9966       // NumElt = -Part * RunTimeVF
9967       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
9968       // LastLane = 1 - RunTimeVF
9969       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
9970       PartPtr =
9971           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
9972       PartPtr->setIsInBounds(InBounds);
9973       PartPtr = cast<GetElementPtrInst>(
9974           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
9975       PartPtr->setIsInBounds(InBounds);
9976       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
9977         BlockInMaskParts[Part] =
9978             Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse");
9979     } else {
9980       Value *Increment =
9981           createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part);
9982       PartPtr = cast<GetElementPtrInst>(
9983           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
9984       PartPtr->setIsInBounds(InBounds);
9985     }
9986 
9987     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
9988     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
9989   };
9990 
9991   // Handle Stores:
9992   if (SI) {
9993     State.ILV->setDebugLocFromInst(SI);
9994 
9995     for (unsigned Part = 0; Part < State.UF; ++Part) {
9996       Instruction *NewSI = nullptr;
9997       Value *StoredVal = State.get(StoredValue, Part);
9998       if (CreateGatherScatter) {
9999         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
10000         Value *VectorGep = State.get(getAddr(), Part);
10001         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
10002                                             MaskPart);
10003       } else {
10004         if (Reverse) {
10005           // If we store to reverse consecutive memory locations, then we need
10006           // to reverse the order of elements in the stored value.
10007           StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
10008           // We don't want to update the value in the map as it might be used in
10009           // another expression. So don't call resetVectorValue(StoredVal).
10010         }
10011         auto *VecPtr =
10012             CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10013         if (isMaskRequired)
10014           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
10015                                             BlockInMaskParts[Part]);
10016         else
10017           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
10018       }
10019       State.ILV->addMetadata(NewSI, SI);
10020     }
10021     return;
10022   }
10023 
10024   // Handle loads.
10025   assert(LI && "Must have a load instruction");
10026   State.ILV->setDebugLocFromInst(LI);
10027   for (unsigned Part = 0; Part < State.UF; ++Part) {
10028     Value *NewLI;
10029     if (CreateGatherScatter) {
10030       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
10031       Value *VectorGep = State.get(getAddr(), Part);
10032       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
10033                                          nullptr, "wide.masked.gather");
10034       State.ILV->addMetadata(NewLI, LI);
10035     } else {
10036       auto *VecPtr =
10037           CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10038       if (isMaskRequired)
10039         NewLI = Builder.CreateMaskedLoad(
10040             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
10041             PoisonValue::get(DataTy), "wide.masked.load");
10042       else
10043         NewLI =
10044             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
10045 
10046       // Add metadata to the load, but setVectorValue to the reverse shuffle.
10047       State.ILV->addMetadata(NewLI, LI);
10048       if (Reverse)
10049         NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
10050     }
10051 
10052     State.set(this, NewLI, Part);
10053   }
10054 }
10055 
10056 // Determine how to lower the scalar epilogue, which depends on 1) optimising
10057 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
10058 // predication, and 4) a TTI hook that analyses whether the loop is suitable
10059 // for predication.
10060 static ScalarEpilogueLowering getScalarEpilogueLowering(
10061     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
10062     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
10063     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
10064     LoopVectorizationLegality &LVL) {
10065   // 1) OptSize takes precedence over all other options, i.e. if this is set,
10066   // don't look at hints or options, and don't request a scalar epilogue.
10067   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
10068   // LoopAccessInfo (due to code dependency and not being able to reliably get
10069   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
10070   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
10071   // versioning when the vectorization is forced, unlike hasOptSize. So revert
10072   // back to the old way and vectorize with versioning when forced. See D81345.)
10073   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
10074                                                       PGSOQueryType::IRPass) &&
10075                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
10076     return CM_ScalarEpilogueNotAllowedOptSize;
10077 
10078   // 2) If set, obey the directives
10079   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
10080     switch (PreferPredicateOverEpilogue) {
10081     case PreferPredicateTy::ScalarEpilogue:
10082       return CM_ScalarEpilogueAllowed;
10083     case PreferPredicateTy::PredicateElseScalarEpilogue:
10084       return CM_ScalarEpilogueNotNeededUsePredicate;
10085     case PreferPredicateTy::PredicateOrDontVectorize:
10086       return CM_ScalarEpilogueNotAllowedUsePredicate;
10087     };
10088   }
10089 
10090   // 3) If set, obey the hints
10091   switch (Hints.getPredicate()) {
10092   case LoopVectorizeHints::FK_Enabled:
10093     return CM_ScalarEpilogueNotNeededUsePredicate;
10094   case LoopVectorizeHints::FK_Disabled:
10095     return CM_ScalarEpilogueAllowed;
10096   };
10097 
10098   // 4) if the TTI hook indicates this is profitable, request predication.
10099   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
10100                                        LVL.getLAI()))
10101     return CM_ScalarEpilogueNotNeededUsePredicate;
10102 
10103   return CM_ScalarEpilogueAllowed;
10104 }
10105 
10106 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
10107   // If Values have been set for this Def return the one relevant for \p Part.
10108   if (hasVectorValue(Def, Part))
10109     return Data.PerPartOutput[Def][Part];
10110 
10111   if (!hasScalarValue(Def, {Part, 0})) {
10112     Value *IRV = Def->getLiveInIRValue();
10113     Value *B = ILV->getBroadcastInstrs(IRV);
10114     set(Def, B, Part);
10115     return B;
10116   }
10117 
10118   Value *ScalarValue = get(Def, {Part, 0});
10119   // If we aren't vectorizing, we can just copy the scalar map values over
10120   // to the vector map.
10121   if (VF.isScalar()) {
10122     set(Def, ScalarValue, Part);
10123     return ScalarValue;
10124   }
10125 
10126   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
10127   bool IsUniform = RepR && RepR->isUniform();
10128 
10129   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
10130   // Check if there is a scalar value for the selected lane.
10131   if (!hasScalarValue(Def, {Part, LastLane})) {
10132     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
10133     assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) ||
10134             isa<VPScalarIVStepsRecipe>(Def->getDef())) &&
10135            "unexpected recipe found to be invariant");
10136     IsUniform = true;
10137     LastLane = 0;
10138   }
10139 
10140   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
10141   // Set the insert point after the last scalarized instruction or after the
10142   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
10143   // will directly follow the scalar definitions.
10144   auto OldIP = Builder.saveIP();
10145   auto NewIP =
10146       isa<PHINode>(LastInst)
10147           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10148           : std::next(BasicBlock::iterator(LastInst));
10149   Builder.SetInsertPoint(&*NewIP);
10150 
10151   // However, if we are vectorizing, we need to construct the vector values.
10152   // If the value is known to be uniform after vectorization, we can just
10153   // broadcast the scalar value corresponding to lane zero for each unroll
10154   // iteration. Otherwise, we construct the vector values using
10155   // insertelement instructions. Since the resulting vectors are stored in
10156   // State, we will only generate the insertelements once.
10157   Value *VectorValue = nullptr;
10158   if (IsUniform) {
10159     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10160     set(Def, VectorValue, Part);
10161   } else {
10162     // Initialize packing with insertelements to start from undef.
10163     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10164     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10165     set(Def, Undef, Part);
10166     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10167       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10168     VectorValue = get(Def, Part);
10169   }
10170   Builder.restoreIP(OldIP);
10171   return VectorValue;
10172 }
10173 
10174 // Process the loop in the VPlan-native vectorization path. This path builds
10175 // VPlan upfront in the vectorization pipeline, which allows to apply
10176 // VPlan-to-VPlan transformations from the very beginning without modifying the
10177 // input LLVM IR.
10178 static bool processLoopInVPlanNativePath(
10179     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10180     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10181     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10182     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10183     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10184     LoopVectorizationRequirements &Requirements) {
10185 
10186   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10187     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10188     return false;
10189   }
10190   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10191   Function *F = L->getHeader()->getParent();
10192   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10193 
10194   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10195       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10196 
10197   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10198                                 &Hints, IAI);
10199   // Use the planner for outer loop vectorization.
10200   // TODO: CM is not used at this point inside the planner. Turn CM into an
10201   // optional argument if we don't need it in the future.
10202   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10203                                Requirements, ORE);
10204 
10205   // Get user vectorization factor.
10206   ElementCount UserVF = Hints.getWidth();
10207 
10208   CM.collectElementTypesForWidening();
10209 
10210   // Plan how to best vectorize, return the best VF and its cost.
10211   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10212 
10213   // If we are stress testing VPlan builds, do not attempt to generate vector
10214   // code. Masked vector code generation support will follow soon.
10215   // Also, do not attempt to vectorize if no vector code will be produced.
10216   if (VPlanBuildStressTest || EnableVPlanPredication ||
10217       VectorizationFactor::Disabled() == VF)
10218     return false;
10219 
10220   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10221 
10222   {
10223     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10224                              F->getParent()->getDataLayout());
10225     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10226                            &CM, BFI, PSI, Checks);
10227     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10228                       << L->getHeader()->getParent()->getName() << "\"\n");
10229     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT);
10230   }
10231 
10232   // Mark the loop as already vectorized to avoid vectorizing again.
10233   Hints.setAlreadyVectorized();
10234   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10235   return true;
10236 }
10237 
10238 // Emit a remark if there are stores to floats that required a floating point
10239 // extension. If the vectorized loop was generated with floating point there
10240 // will be a performance penalty from the conversion overhead and the change in
10241 // the vector width.
10242 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10243   SmallVector<Instruction *, 4> Worklist;
10244   for (BasicBlock *BB : L->getBlocks()) {
10245     for (Instruction &Inst : *BB) {
10246       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10247         if (S->getValueOperand()->getType()->isFloatTy())
10248           Worklist.push_back(S);
10249       }
10250     }
10251   }
10252 
10253   // Traverse the floating point stores upwards searching, for floating point
10254   // conversions.
10255   SmallPtrSet<const Instruction *, 4> Visited;
10256   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10257   while (!Worklist.empty()) {
10258     auto *I = Worklist.pop_back_val();
10259     if (!L->contains(I))
10260       continue;
10261     if (!Visited.insert(I).second)
10262       continue;
10263 
10264     // Emit a remark if the floating point store required a floating
10265     // point conversion.
10266     // TODO: More work could be done to identify the root cause such as a
10267     // constant or a function return type and point the user to it.
10268     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10269       ORE->emit([&]() {
10270         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10271                                           I->getDebugLoc(), L->getHeader())
10272                << "floating point conversion changes vector width. "
10273                << "Mixed floating point precision requires an up/down "
10274                << "cast that will negatively impact performance.";
10275       });
10276 
10277     for (Use &Op : I->operands())
10278       if (auto *OpI = dyn_cast<Instruction>(Op))
10279         Worklist.push_back(OpI);
10280   }
10281 }
10282 
10283 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10284     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10285                                !EnableLoopInterleaving),
10286       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10287                               !EnableLoopVectorization) {}
10288 
10289 bool LoopVectorizePass::processLoop(Loop *L) {
10290   assert((EnableVPlanNativePath || L->isInnermost()) &&
10291          "VPlan-native path is not enabled. Only process inner loops.");
10292 
10293 #ifndef NDEBUG
10294   const std::string DebugLocStr = getDebugLocString(L);
10295 #endif /* NDEBUG */
10296 
10297   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '"
10298                     << L->getHeader()->getParent()->getName() << "' from "
10299                     << DebugLocStr << "\n");
10300 
10301   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
10302 
10303   LLVM_DEBUG(
10304       dbgs() << "LV: Loop hints:"
10305              << " force="
10306              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10307                      ? "disabled"
10308                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10309                             ? "enabled"
10310                             : "?"))
10311              << " width=" << Hints.getWidth()
10312              << " interleave=" << Hints.getInterleave() << "\n");
10313 
10314   // Function containing loop
10315   Function *F = L->getHeader()->getParent();
10316 
10317   // Looking at the diagnostic output is the only way to determine if a loop
10318   // was vectorized (other than looking at the IR or machine code), so it
10319   // is important to generate an optimization remark for each loop. Most of
10320   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10321   // generated as OptimizationRemark and OptimizationRemarkMissed are
10322   // less verbose reporting vectorized loops and unvectorized loops that may
10323   // benefit from vectorization, respectively.
10324 
10325   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10326     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10327     return false;
10328   }
10329 
10330   PredicatedScalarEvolution PSE(*SE, *L);
10331 
10332   // Check if it is legal to vectorize the loop.
10333   LoopVectorizationRequirements Requirements;
10334   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10335                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10336   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10337     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10338     Hints.emitRemarkWithHints();
10339     return false;
10340   }
10341 
10342   // Check the function attributes and profiles to find out if this function
10343   // should be optimized for size.
10344   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10345       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10346 
10347   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10348   // here. They may require CFG and instruction level transformations before
10349   // even evaluating whether vectorization is profitable. Since we cannot modify
10350   // the incoming IR, we need to build VPlan upfront in the vectorization
10351   // pipeline.
10352   if (!L->isInnermost())
10353     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10354                                         ORE, BFI, PSI, Hints, Requirements);
10355 
10356   assert(L->isInnermost() && "Inner loop expected.");
10357 
10358   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10359   // count by optimizing for size, to minimize overheads.
10360   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10361   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10362     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10363                       << "This loop is worth vectorizing only if no scalar "
10364                       << "iteration overheads are incurred.");
10365     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10366       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10367     else {
10368       LLVM_DEBUG(dbgs() << "\n");
10369       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10370     }
10371   }
10372 
10373   // Check the function attributes to see if implicit floats are allowed.
10374   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10375   // an integer loop and the vector instructions selected are purely integer
10376   // vector instructions?
10377   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10378     reportVectorizationFailure(
10379         "Can't vectorize when the NoImplicitFloat attribute is used",
10380         "loop not vectorized due to NoImplicitFloat attribute",
10381         "NoImplicitFloat", ORE, L);
10382     Hints.emitRemarkWithHints();
10383     return false;
10384   }
10385 
10386   // Check if the target supports potentially unsafe FP vectorization.
10387   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10388   // for the target we're vectorizing for, to make sure none of the
10389   // additional fp-math flags can help.
10390   if (Hints.isPotentiallyUnsafe() &&
10391       TTI->isFPVectorizationPotentiallyUnsafe()) {
10392     reportVectorizationFailure(
10393         "Potentially unsafe FP op prevents vectorization",
10394         "loop not vectorized due to unsafe FP support.",
10395         "UnsafeFP", ORE, L);
10396     Hints.emitRemarkWithHints();
10397     return false;
10398   }
10399 
10400   bool AllowOrderedReductions;
10401   // If the flag is set, use that instead and override the TTI behaviour.
10402   if (ForceOrderedReductions.getNumOccurrences() > 0)
10403     AllowOrderedReductions = ForceOrderedReductions;
10404   else
10405     AllowOrderedReductions = TTI->enableOrderedReductions();
10406   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10407     ORE->emit([&]() {
10408       auto *ExactFPMathInst = Requirements.getExactFPInst();
10409       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10410                                                  ExactFPMathInst->getDebugLoc(),
10411                                                  ExactFPMathInst->getParent())
10412              << "loop not vectorized: cannot prove it is safe to reorder "
10413                 "floating-point operations";
10414     });
10415     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10416                          "reorder floating-point operations\n");
10417     Hints.emitRemarkWithHints();
10418     return false;
10419   }
10420 
10421   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10422   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10423 
10424   // If an override option has been passed in for interleaved accesses, use it.
10425   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10426     UseInterleaved = EnableInterleavedMemAccesses;
10427 
10428   // Analyze interleaved memory accesses.
10429   if (UseInterleaved) {
10430     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10431   }
10432 
10433   // Use the cost model.
10434   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10435                                 F, &Hints, IAI);
10436   CM.collectValuesToIgnore();
10437   CM.collectElementTypesForWidening();
10438 
10439   // Use the planner for vectorization.
10440   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10441                                Requirements, ORE);
10442 
10443   // Get user vectorization factor and interleave count.
10444   ElementCount UserVF = Hints.getWidth();
10445   unsigned UserIC = Hints.getInterleave();
10446 
10447   // Plan how to best vectorize, return the best VF and its cost.
10448   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10449 
10450   VectorizationFactor VF = VectorizationFactor::Disabled();
10451   unsigned IC = 1;
10452 
10453   if (MaybeVF) {
10454     VF = *MaybeVF;
10455     // Select the interleave count.
10456     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10457   }
10458 
10459   // Identify the diagnostic messages that should be produced.
10460   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10461   bool VectorizeLoop = true, InterleaveLoop = true;
10462   if (VF.Width.isScalar()) {
10463     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10464     VecDiagMsg = std::make_pair(
10465         "VectorizationNotBeneficial",
10466         "the cost-model indicates that vectorization is not beneficial");
10467     VectorizeLoop = false;
10468   }
10469 
10470   if (!MaybeVF && UserIC > 1) {
10471     // Tell the user interleaving was avoided up-front, despite being explicitly
10472     // requested.
10473     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10474                          "interleaving should be avoided up front\n");
10475     IntDiagMsg = std::make_pair(
10476         "InterleavingAvoided",
10477         "Ignoring UserIC, because interleaving was avoided up front");
10478     InterleaveLoop = false;
10479   } else if (IC == 1 && UserIC <= 1) {
10480     // Tell the user interleaving is not beneficial.
10481     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10482     IntDiagMsg = std::make_pair(
10483         "InterleavingNotBeneficial",
10484         "the cost-model indicates that interleaving is not beneficial");
10485     InterleaveLoop = false;
10486     if (UserIC == 1) {
10487       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10488       IntDiagMsg.second +=
10489           " and is explicitly disabled or interleave count is set to 1";
10490     }
10491   } else if (IC > 1 && UserIC == 1) {
10492     // Tell the user interleaving is beneficial, but it explicitly disabled.
10493     LLVM_DEBUG(
10494         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10495     IntDiagMsg = std::make_pair(
10496         "InterleavingBeneficialButDisabled",
10497         "the cost-model indicates that interleaving is beneficial "
10498         "but is explicitly disabled or interleave count is set to 1");
10499     InterleaveLoop = false;
10500   }
10501 
10502   // Override IC if user provided an interleave count.
10503   IC = UserIC > 0 ? UserIC : IC;
10504 
10505   // Emit diagnostic messages, if any.
10506   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10507   if (!VectorizeLoop && !InterleaveLoop) {
10508     // Do not vectorize or interleaving the loop.
10509     ORE->emit([&]() {
10510       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10511                                       L->getStartLoc(), L->getHeader())
10512              << VecDiagMsg.second;
10513     });
10514     ORE->emit([&]() {
10515       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10516                                       L->getStartLoc(), L->getHeader())
10517              << IntDiagMsg.second;
10518     });
10519     return false;
10520   } else if (!VectorizeLoop && InterleaveLoop) {
10521     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10522     ORE->emit([&]() {
10523       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10524                                         L->getStartLoc(), L->getHeader())
10525              << VecDiagMsg.second;
10526     });
10527   } else if (VectorizeLoop && !InterleaveLoop) {
10528     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10529                       << ") in " << DebugLocStr << '\n');
10530     ORE->emit([&]() {
10531       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10532                                         L->getStartLoc(), L->getHeader())
10533              << IntDiagMsg.second;
10534     });
10535   } else if (VectorizeLoop && InterleaveLoop) {
10536     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10537                       << ") in " << DebugLocStr << '\n');
10538     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10539   }
10540 
10541   bool DisableRuntimeUnroll = false;
10542   MDNode *OrigLoopID = L->getLoopID();
10543   {
10544     // Optimistically generate runtime checks. Drop them if they turn out to not
10545     // be profitable. Limit the scope of Checks, so the cleanup happens
10546     // immediately after vector codegeneration is done.
10547     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10548                              F->getParent()->getDataLayout());
10549     if (!VF.Width.isScalar() || IC > 1)
10550       Checks.Create(L, *LVL.getLAI(), PSE.getPredicate());
10551 
10552     using namespace ore;
10553     if (!VectorizeLoop) {
10554       assert(IC > 1 && "interleave count should not be 1 or 0");
10555       // If we decided that it is not legal to vectorize the loop, then
10556       // interleave it.
10557       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10558                                  &CM, BFI, PSI, Checks);
10559 
10560       VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10561       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT);
10562 
10563       ORE->emit([&]() {
10564         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10565                                   L->getHeader())
10566                << "interleaved loop (interleaved count: "
10567                << NV("InterleaveCount", IC) << ")";
10568       });
10569     } else {
10570       // If we decided that it is *legal* to vectorize the loop, then do it.
10571 
10572       // Consider vectorizing the epilogue too if it's profitable.
10573       VectorizationFactor EpilogueVF =
10574           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10575       if (EpilogueVF.Width.isVector()) {
10576 
10577         // The first pass vectorizes the main loop and creates a scalar epilogue
10578         // to be vectorized by executing the plan (potentially with a different
10579         // factor) again shortly afterwards.
10580         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10581         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10582                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10583 
10584         VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
10585         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV,
10586                         DT);
10587         ++LoopsVectorized;
10588 
10589         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10590         formLCSSARecursively(*L, *DT, LI, SE);
10591 
10592         // Second pass vectorizes the epilogue and adjusts the control flow
10593         // edges from the first pass.
10594         EPI.MainLoopVF = EPI.EpilogueVF;
10595         EPI.MainLoopUF = EPI.EpilogueUF;
10596         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10597                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10598                                                  Checks);
10599 
10600         VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
10601         BestEpiPlan.getVectorLoopRegion()->getEntryBasicBlock()->setName(
10602             "vec.epilog.vector.body");
10603 
10604         // Ensure that the start values for any VPReductionPHIRecipes are
10605         // updated before vectorising the epilogue loop.
10606         VPBasicBlock *Header =
10607             BestEpiPlan.getVectorLoopRegion()->getEntryBasicBlock();
10608         for (VPRecipeBase &R : Header->phis()) {
10609           if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
10610             if (auto *Resume = MainILV.getReductionResumeValue(
10611                     ReductionPhi->getRecurrenceDescriptor())) {
10612               VPValue *StartVal = new VPValue(Resume);
10613               BestEpiPlan.addExternalDef(StartVal);
10614               ReductionPhi->setOperand(0, StartVal);
10615             }
10616           }
10617         }
10618 
10619         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
10620                         DT);
10621         ++LoopsEpilogueVectorized;
10622 
10623         if (!MainILV.areSafetyChecksAdded())
10624           DisableRuntimeUnroll = true;
10625       } else {
10626         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10627                                &LVL, &CM, BFI, PSI, Checks);
10628 
10629         VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10630         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT);
10631         ++LoopsVectorized;
10632 
10633         // Add metadata to disable runtime unrolling a scalar loop when there
10634         // are no runtime checks about strides and memory. A scalar loop that is
10635         // rarely used is not worth unrolling.
10636         if (!LB.areSafetyChecksAdded())
10637           DisableRuntimeUnroll = true;
10638       }
10639       // Report the vectorization decision.
10640       ORE->emit([&]() {
10641         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10642                                   L->getHeader())
10643                << "vectorized loop (vectorization width: "
10644                << NV("VectorizationFactor", VF.Width)
10645                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10646       });
10647     }
10648 
10649     if (ORE->allowExtraAnalysis(LV_NAME))
10650       checkMixedPrecision(L, ORE);
10651   }
10652 
10653   Optional<MDNode *> RemainderLoopID =
10654       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10655                                       LLVMLoopVectorizeFollowupEpilogue});
10656   if (RemainderLoopID.hasValue()) {
10657     L->setLoopID(RemainderLoopID.getValue());
10658   } else {
10659     if (DisableRuntimeUnroll)
10660       AddRuntimeUnrollDisableMetaData(L);
10661 
10662     // Mark the loop as already vectorized to avoid vectorizing again.
10663     Hints.setAlreadyVectorized();
10664   }
10665 
10666   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10667   return true;
10668 }
10669 
10670 LoopVectorizeResult LoopVectorizePass::runImpl(
10671     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10672     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10673     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10674     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10675     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10676   SE = &SE_;
10677   LI = &LI_;
10678   TTI = &TTI_;
10679   DT = &DT_;
10680   BFI = &BFI_;
10681   TLI = TLI_;
10682   AA = &AA_;
10683   AC = &AC_;
10684   GetLAA = &GetLAA_;
10685   DB = &DB_;
10686   ORE = &ORE_;
10687   PSI = PSI_;
10688 
10689   // Don't attempt if
10690   // 1. the target claims to have no vector registers, and
10691   // 2. interleaving won't help ILP.
10692   //
10693   // The second condition is necessary because, even if the target has no
10694   // vector registers, loop vectorization may still enable scalar
10695   // interleaving.
10696   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10697       TTI->getMaxInterleaveFactor(1) < 2)
10698     return LoopVectorizeResult(false, false);
10699 
10700   bool Changed = false, CFGChanged = false;
10701 
10702   // The vectorizer requires loops to be in simplified form.
10703   // Since simplification may add new inner loops, it has to run before the
10704   // legality and profitability checks. This means running the loop vectorizer
10705   // will simplify all loops, regardless of whether anything end up being
10706   // vectorized.
10707   for (auto &L : *LI)
10708     Changed |= CFGChanged |=
10709         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10710 
10711   // Build up a worklist of inner-loops to vectorize. This is necessary as
10712   // the act of vectorizing or partially unrolling a loop creates new loops
10713   // and can invalidate iterators across the loops.
10714   SmallVector<Loop *, 8> Worklist;
10715 
10716   for (Loop *L : *LI)
10717     collectSupportedLoops(*L, LI, ORE, Worklist);
10718 
10719   LoopsAnalyzed += Worklist.size();
10720 
10721   // Now walk the identified inner loops.
10722   while (!Worklist.empty()) {
10723     Loop *L = Worklist.pop_back_val();
10724 
10725     // For the inner loops we actually process, form LCSSA to simplify the
10726     // transform.
10727     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10728 
10729     Changed |= CFGChanged |= processLoop(L);
10730   }
10731 
10732   // Process each loop nest in the function.
10733   return LoopVectorizeResult(Changed, CFGChanged);
10734 }
10735 
10736 PreservedAnalyses LoopVectorizePass::run(Function &F,
10737                                          FunctionAnalysisManager &AM) {
10738     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10739     auto &LI = AM.getResult<LoopAnalysis>(F);
10740     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10741     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10742     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10743     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10744     auto &AA = AM.getResult<AAManager>(F);
10745     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10746     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10747     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10748 
10749     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10750     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10751         [&](Loop &L) -> const LoopAccessInfo & {
10752       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10753                                         TLI, TTI, nullptr, nullptr, nullptr};
10754       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10755     };
10756     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10757     ProfileSummaryInfo *PSI =
10758         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10759     LoopVectorizeResult Result =
10760         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10761     if (!Result.MadeAnyChange)
10762       return PreservedAnalyses::all();
10763     PreservedAnalyses PA;
10764 
10765     // We currently do not preserve loopinfo/dominator analyses with outer loop
10766     // vectorization. Until this is addressed, mark these analyses as preserved
10767     // only for non-VPlan-native path.
10768     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10769     if (!EnableVPlanNativePath) {
10770       PA.preserve<LoopAnalysis>();
10771       PA.preserve<DominatorTreeAnalysis>();
10772     }
10773 
10774     if (Result.MadeCFGChange) {
10775       // Making CFG changes likely means a loop got vectorized. Indicate that
10776       // extra simplification passes should be run.
10777       // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10778       // be run if runtime checks have been added.
10779       AM.getResult<ShouldRunExtraVectorPasses>(F);
10780       PA.preserve<ShouldRunExtraVectorPasses>();
10781     } else {
10782       PA.preserveSet<CFGAnalyses>();
10783     }
10784     return PA;
10785 }
10786 
10787 void LoopVectorizePass::printPipeline(
10788     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10789   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10790       OS, MapClassName2PassName);
10791 
10792   OS << "<";
10793   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10794   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10795   OS << ">";
10796 }
10797