1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/LLVMContext.h" 116 #include "llvm/IR/Metadata.h" 117 #include "llvm/IR/Module.h" 118 #include "llvm/IR/Operator.h" 119 #include "llvm/IR/PatternMatch.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/InstructionCost.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 142 #include "llvm/Transforms/Utils/SizeOpts.h" 143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 144 #include <algorithm> 145 #include <cassert> 146 #include <cstdint> 147 #include <cstdlib> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 202 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 203 cl::desc("The maximum allowed number of runtime memory checks with a " 204 "vectorize(enable) pragma.")); 205 206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 207 // that predication is preferred, and this lists all options. I.e., the 208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 209 // and predicate the instructions accordingly. If tail-folding fails, there are 210 // different fallback strategies depending on these values: 211 namespace PreferPredicateTy { 212 enum Option { 213 ScalarEpilogue = 0, 214 PredicateElseScalarEpilogue, 215 PredicateOrDontVectorize 216 }; 217 } // namespace PreferPredicateTy 218 219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 220 "prefer-predicate-over-epilogue", 221 cl::init(PreferPredicateTy::ScalarEpilogue), 222 cl::Hidden, 223 cl::desc("Tail-folding and predication preferences over creating a scalar " 224 "epilogue loop."), 225 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 226 "scalar-epilogue", 227 "Don't tail-predicate loops, create scalar epilogue"), 228 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 229 "predicate-else-scalar-epilogue", 230 "prefer tail-folding, create scalar epilogue if tail " 231 "folding fails."), 232 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 233 "predicate-dont-vectorize", 234 "prefers tail-folding, don't attempt vectorization if " 235 "tail-folding fails."))); 236 237 static cl::opt<bool> MaximizeBandwidth( 238 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 239 cl::desc("Maximize bandwidth when selecting vectorization factor which " 240 "will be determined by the smallest type in loop.")); 241 242 static cl::opt<bool> EnableInterleavedMemAccesses( 243 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 244 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 245 246 /// An interleave-group may need masking if it resides in a block that needs 247 /// predication, or in order to mask away gaps. 248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 249 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 250 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 251 252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 253 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 254 cl::desc("We don't interleave loops with a estimated constant trip count " 255 "below this number")); 256 257 static cl::opt<unsigned> ForceTargetNumScalarRegs( 258 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 259 cl::desc("A flag that overrides the target's number of scalar registers.")); 260 261 static cl::opt<unsigned> ForceTargetNumVectorRegs( 262 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 263 cl::desc("A flag that overrides the target's number of vector registers.")); 264 265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 266 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 267 cl::desc("A flag that overrides the target's max interleave factor for " 268 "scalar loops.")); 269 270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 271 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 272 cl::desc("A flag that overrides the target's max interleave factor for " 273 "vectorized loops.")); 274 275 static cl::opt<unsigned> ForceTargetInstructionCost( 276 "force-target-instruction-cost", cl::init(0), cl::Hidden, 277 cl::desc("A flag that overrides the target's expected cost for " 278 "an instruction to a single constant value. Mostly " 279 "useful for getting consistent testing.")); 280 281 static cl::opt<bool> ForceTargetSupportsScalableVectors( 282 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 283 cl::desc( 284 "Pretend that scalable vectors are supported, even if the target does " 285 "not support them. This flag should only be used for testing.")); 286 287 static cl::opt<unsigned> SmallLoopCost( 288 "small-loop-cost", cl::init(20), cl::Hidden, 289 cl::desc( 290 "The cost of a loop that is considered 'small' by the interleaver.")); 291 292 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 293 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 294 cl::desc("Enable the use of the block frequency analysis to access PGO " 295 "heuristics minimizing code growth in cold regions and being more " 296 "aggressive in hot regions.")); 297 298 // Runtime interleave loops for load/store throughput. 299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 300 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 301 cl::desc( 302 "Enable runtime interleaving until load/store ports are saturated")); 303 304 /// Interleave small loops with scalar reductions. 305 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 306 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 307 cl::desc("Enable interleaving for loops with small iteration counts that " 308 "contain scalar reductions to expose ILP.")); 309 310 /// The number of stores in a loop that are allowed to need predication. 311 static cl::opt<unsigned> NumberOfStoresToPredicate( 312 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 313 cl::desc("Max number of stores to be predicated behind an if.")); 314 315 static cl::opt<bool> EnableIndVarRegisterHeur( 316 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 317 cl::desc("Count the induction variable only once when interleaving")); 318 319 static cl::opt<bool> EnableCondStoresVectorization( 320 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 321 cl::desc("Enable if predication of stores during vectorization.")); 322 323 static cl::opt<unsigned> MaxNestedScalarReductionIC( 324 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 325 cl::desc("The maximum interleave count to use when interleaving a scalar " 326 "reduction in a nested loop.")); 327 328 static cl::opt<bool> 329 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 330 cl::Hidden, 331 cl::desc("Prefer in-loop vector reductions, " 332 "overriding the targets preference.")); 333 334 static cl::opt<bool> ForceOrderedReductions( 335 "force-ordered-reductions", cl::init(false), cl::Hidden, 336 cl::desc("Enable the vectorisation of loops with in-order (strict) " 337 "FP reductions")); 338 339 static cl::opt<bool> PreferPredicatedReductionSelect( 340 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 341 cl::desc( 342 "Prefer predicating a reduction operation over an after loop select.")); 343 344 cl::opt<bool> EnableVPlanNativePath( 345 "enable-vplan-native-path", cl::init(false), cl::Hidden, 346 cl::desc("Enable VPlan-native vectorization path with " 347 "support for outer loop vectorization.")); 348 349 // FIXME: Remove this switch once we have divergence analysis. Currently we 350 // assume divergent non-backedge branches when this switch is true. 351 cl::opt<bool> EnableVPlanPredication( 352 "enable-vplan-predication", cl::init(false), cl::Hidden, 353 cl::desc("Enable VPlan-native vectorization path predicator with " 354 "support for outer loop vectorization.")); 355 356 // This flag enables the stress testing of the VPlan H-CFG construction in the 357 // VPlan-native vectorization path. It must be used in conjuction with 358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 359 // verification of the H-CFGs built. 360 static cl::opt<bool> VPlanBuildStressTest( 361 "vplan-build-stress-test", cl::init(false), cl::Hidden, 362 cl::desc( 363 "Build VPlan for every supported loop nest in the function and bail " 364 "out right after the build (stress test the VPlan H-CFG construction " 365 "in the VPlan-native vectorization path).")); 366 367 cl::opt<bool> llvm::EnableLoopInterleaving( 368 "interleave-loops", cl::init(true), cl::Hidden, 369 cl::desc("Enable loop interleaving in Loop vectorization passes")); 370 cl::opt<bool> llvm::EnableLoopVectorization( 371 "vectorize-loops", cl::init(true), cl::Hidden, 372 cl::desc("Run the Loop vectorization passes")); 373 374 cl::opt<bool> PrintVPlansInDotFormat( 375 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 376 cl::desc("Use dot format instead of plain text when dumping VPlans")); 377 378 /// A helper function that returns true if the given type is irregular. The 379 /// type is irregular if its allocated size doesn't equal the store size of an 380 /// element of the corresponding vector type. 381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 382 // Determine if an array of N elements of type Ty is "bitcast compatible" 383 // with a <N x Ty> vector. 384 // This is only true if there is no padding between the array elements. 385 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 386 } 387 388 /// A helper function that returns the reciprocal of the block probability of 389 /// predicated blocks. If we return X, we are assuming the predicated block 390 /// will execute once for every X iterations of the loop header. 391 /// 392 /// TODO: We should use actual block probability here, if available. Currently, 393 /// we always assume predicated blocks have a 50% chance of executing. 394 static unsigned getReciprocalPredBlockProb() { return 2; } 395 396 /// A helper function that returns an integer or floating-point constant with 397 /// value C. 398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 399 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 400 : ConstantFP::get(Ty, C); 401 } 402 403 /// Returns "best known" trip count for the specified loop \p L as defined by 404 /// the following procedure: 405 /// 1) Returns exact trip count if it is known. 406 /// 2) Returns expected trip count according to profile data if any. 407 /// 3) Returns upper bound estimate if it is known. 408 /// 4) Returns None if all of the above failed. 409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 410 // Check if exact trip count is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 412 return ExpectedTC; 413 414 // Check if there is an expected trip count available from profile data. 415 if (LoopVectorizeWithBlockFrequency) 416 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 417 return EstimatedTC; 418 419 // Check if upper bound estimate is known. 420 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 421 return ExpectedTC; 422 423 return None; 424 } 425 426 // Forward declare GeneratedRTChecks. 427 class GeneratedRTChecks; 428 429 namespace llvm { 430 431 AnalysisKey ShouldRunExtraVectorPasses::Key; 432 433 /// InnerLoopVectorizer vectorizes loops which contain only one basic 434 /// block to a specified vectorization factor (VF). 435 /// This class performs the widening of scalars into vectors, or multiple 436 /// scalars. This class also implements the following features: 437 /// * It inserts an epilogue loop for handling loops that don't have iteration 438 /// counts that are known to be a multiple of the vectorization factor. 439 /// * It handles the code generation for reduction variables. 440 /// * Scalarization (implementation using scalars) of un-vectorizable 441 /// instructions. 442 /// InnerLoopVectorizer does not perform any vectorization-legality 443 /// checks, and relies on the caller to check for the different legality 444 /// aspects. The InnerLoopVectorizer relies on the 445 /// LoopVectorizationLegality class to provide information about the induction 446 /// and reduction variables that were found to a given vectorization factor. 447 class InnerLoopVectorizer { 448 public: 449 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 450 LoopInfo *LI, DominatorTree *DT, 451 const TargetLibraryInfo *TLI, 452 const TargetTransformInfo *TTI, AssumptionCache *AC, 453 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 454 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 455 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 456 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 457 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 458 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 459 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 460 PSI(PSI), RTChecks(RTChecks) { 461 // Query this against the original loop and save it here because the profile 462 // of the original loop header may change as the transformation happens. 463 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 464 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 465 } 466 467 virtual ~InnerLoopVectorizer() = default; 468 469 /// Create a new empty loop that will contain vectorized instructions later 470 /// on, while the old loop will be used as the scalar remainder. Control flow 471 /// is generated around the vectorized (and scalar epilogue) loops consisting 472 /// of various checks and bypasses. Return the pre-header block of the new 473 /// loop and the start value for the canonical induction, if it is != 0. The 474 /// latter is the case when vectorizing the epilogue loop. In the case of 475 /// epilogue vectorization, this function is overriden to handle the more 476 /// complex control flow around the loops. 477 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 478 479 /// Widen a single call instruction within the innermost loop. 480 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 481 VPTransformState &State); 482 483 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 484 void fixVectorizedLoop(VPTransformState &State); 485 486 // Return true if any runtime check is added. 487 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 488 489 /// A type for vectorized values in the new loop. Each value from the 490 /// original loop, when vectorized, is represented by UF vector values in the 491 /// new unrolled loop, where UF is the unroll factor. 492 using VectorParts = SmallVector<Value *, 2>; 493 494 /// Vectorize a single first-order recurrence or pointer induction PHINode in 495 /// a block. This method handles the induction variable canonicalization. It 496 /// supports both VF = 1 for unrolled loops and arbitrary length vectors. 497 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 498 VPTransformState &State); 499 500 /// A helper function to scalarize a single Instruction in the innermost loop. 501 /// Generates a sequence of scalar instances for each lane between \p MinLane 502 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 503 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 504 /// Instr's operands. 505 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 506 const VPIteration &Instance, bool IfPredicateInstr, 507 VPTransformState &State); 508 509 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 510 /// is provided, the integer induction variable will first be truncated to 511 /// the corresponding type. \p CanonicalIV is the scalar value generated for 512 /// the canonical induction variable. 513 void widenIntOrFpInduction(PHINode *IV, VPWidenIntOrFpInductionRecipe *Def, 514 VPTransformState &State, Value *CanonicalIV); 515 516 /// Construct the vector value of a scalarized value \p V one lane at a time. 517 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 518 VPTransformState &State); 519 520 /// Try to vectorize interleaved access group \p Group with the base address 521 /// given in \p Addr, optionally masking the vector operations if \p 522 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 523 /// values in the vectorized loop. 524 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 525 ArrayRef<VPValue *> VPDefs, 526 VPTransformState &State, VPValue *Addr, 527 ArrayRef<VPValue *> StoredValues, 528 VPValue *BlockInMask = nullptr); 529 530 /// Set the debug location in the builder \p Ptr using the debug location in 531 /// \p V. If \p Ptr is None then it uses the class member's Builder. 532 void setDebugLocFromInst(const Value *V, 533 Optional<IRBuilder<> *> CustomBuilder = None); 534 535 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 536 void fixNonInductionPHIs(VPTransformState &State); 537 538 /// Returns true if the reordering of FP operations is not allowed, but we are 539 /// able to vectorize with strict in-order reductions for the given RdxDesc. 540 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 541 542 /// Create a broadcast instruction. This method generates a broadcast 543 /// instruction (shuffle) for loop invariant values and for the induction 544 /// value. If this is the induction variable then we extend it to N, N+1, ... 545 /// this is needed because each iteration in the loop corresponds to a SIMD 546 /// element. 547 virtual Value *getBroadcastInstrs(Value *V); 548 549 /// Add metadata from one instruction to another. 550 /// 551 /// This includes both the original MDs from \p From and additional ones (\see 552 /// addNewMetadata). Use this for *newly created* instructions in the vector 553 /// loop. 554 void addMetadata(Instruction *To, Instruction *From); 555 556 /// Similar to the previous function but it adds the metadata to a 557 /// vector of instructions. 558 void addMetadata(ArrayRef<Value *> To, Instruction *From); 559 560 // Returns the resume value (bc.merge.rdx) for a reduction as 561 // generated by fixReduction. 562 PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc); 563 564 protected: 565 friend class LoopVectorizationPlanner; 566 567 /// A small list of PHINodes. 568 using PhiVector = SmallVector<PHINode *, 4>; 569 570 /// A type for scalarized values in the new loop. Each value from the 571 /// original loop, when scalarized, is represented by UF x VF scalar values 572 /// in the new unrolled loop, where UF is the unroll factor and VF is the 573 /// vectorization factor. 574 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 575 576 /// Set up the values of the IVs correctly when exiting the vector loop. 577 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 578 Value *CountRoundDown, Value *EndValue, 579 BasicBlock *MiddleBlock); 580 581 /// Introduce a conditional branch (on true, condition to be set later) at the 582 /// end of the header=latch connecting it to itself (across the backedge) and 583 /// to the exit block of \p L. 584 void createHeaderBranch(Loop *L); 585 586 /// Handle all cross-iteration phis in the header. 587 void fixCrossIterationPHIs(VPTransformState &State); 588 589 /// Create the exit value of first order recurrences in the middle block and 590 /// update their users. 591 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 592 VPTransformState &State); 593 594 /// Create code for the loop exit value of the reduction. 595 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 596 597 /// Clear NSW/NUW flags from reduction instructions if necessary. 598 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 599 VPTransformState &State); 600 601 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 602 /// means we need to add the appropriate incoming value from the middle 603 /// block as exiting edges from the scalar epilogue loop (if present) are 604 /// already in place, and we exit the vector loop exclusively to the middle 605 /// block. 606 void fixLCSSAPHIs(VPTransformState &State); 607 608 /// Iteratively sink the scalarized operands of a predicated instruction into 609 /// the block that was created for it. 610 void sinkScalarOperands(Instruction *PredInst); 611 612 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 613 /// represented as. 614 void truncateToMinimalBitwidths(VPTransformState &State); 615 616 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 617 /// variable on which to base the steps, \p Step is the size of the step, and 618 /// \p EntryVal is the value from the original loop that maps to the steps. 619 /// Note that \p EntryVal doesn't have to be an induction variable - it 620 /// can also be a truncate instruction. 621 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 622 const InductionDescriptor &ID, VPValue *Def, 623 VPTransformState &State); 624 625 /// Create a vector induction phi node based on an existing scalar one. \p 626 /// EntryVal is the value from the original loop that maps to the vector phi 627 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 628 /// truncate instruction, instead of widening the original IV, we widen a 629 /// version of the IV truncated to \p EntryVal's type. 630 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 631 Value *Step, Value *Start, 632 Instruction *EntryVal, VPValue *Def, 633 VPTransformState &State); 634 635 /// Returns (and creates if needed) the original loop trip count. 636 Value *getOrCreateTripCount(Loop *NewLoop); 637 638 /// Returns (and creates if needed) the trip count of the widened loop. 639 Value *getOrCreateVectorTripCount(Loop *NewLoop); 640 641 /// Returns a bitcasted value to the requested vector type. 642 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 643 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 644 const DataLayout &DL); 645 646 /// Emit a bypass check to see if the vector trip count is zero, including if 647 /// it overflows. 648 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 649 650 /// Emit a bypass check to see if all of the SCEV assumptions we've 651 /// had to make are correct. Returns the block containing the checks or 652 /// nullptr if no checks have been added. 653 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 654 655 /// Emit bypass checks to check any memory assumptions we may have made. 656 /// Returns the block containing the checks or nullptr if no checks have been 657 /// added. 658 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 659 660 /// Compute the transformed value of Index at offset StartValue using step 661 /// StepValue. 662 /// For integer induction, returns StartValue + Index * StepValue. 663 /// For pointer induction, returns StartValue[Index * StepValue]. 664 /// FIXME: The newly created binary instructions should contain nsw/nuw 665 /// flags, which can be found from the original scalar operations. 666 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 667 const DataLayout &DL, 668 const InductionDescriptor &ID, 669 BasicBlock *VectorHeader) const; 670 671 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 672 /// vector loop preheader, middle block and scalar preheader. Also 673 /// allocate a loop object for the new vector loop and return it. 674 Loop *createVectorLoopSkeleton(StringRef Prefix); 675 676 /// Create new phi nodes for the induction variables to resume iteration count 677 /// in the scalar epilogue, from where the vectorized loop left off. 678 /// In cases where the loop skeleton is more complicated (eg. epilogue 679 /// vectorization) and the resume values can come from an additional bypass 680 /// block, the \p AdditionalBypass pair provides information about the bypass 681 /// block and the end value on the edge from bypass to this loop. 682 void createInductionResumeValues( 683 Loop *L, 684 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 685 686 /// Complete the loop skeleton by adding debug MDs, creating appropriate 687 /// conditional branches in the middle block, preparing the builder and 688 /// running the verifier. Take in the vector loop \p L as argument, and return 689 /// the preheader of the completed vector loop. 690 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 691 692 /// Add additional metadata to \p To that was not present on \p Orig. 693 /// 694 /// Currently this is used to add the noalias annotations based on the 695 /// inserted memchecks. Use this for instructions that are *cloned* into the 696 /// vector loop. 697 void addNewMetadata(Instruction *To, const Instruction *Orig); 698 699 /// Collect poison-generating recipes that may generate a poison value that is 700 /// used after vectorization, even when their operands are not poison. Those 701 /// recipes meet the following conditions: 702 /// * Contribute to the address computation of a recipe generating a widen 703 /// memory load/store (VPWidenMemoryInstructionRecipe or 704 /// VPInterleaveRecipe). 705 /// * Such a widen memory load/store has at least one underlying Instruction 706 /// that is in a basic block that needs predication and after vectorization 707 /// the generated instruction won't be predicated. 708 void collectPoisonGeneratingRecipes(VPTransformState &State); 709 710 /// Allow subclasses to override and print debug traces before/after vplan 711 /// execution, when trace information is requested. 712 virtual void printDebugTracesAtStart(){}; 713 virtual void printDebugTracesAtEnd(){}; 714 715 /// The original loop. 716 Loop *OrigLoop; 717 718 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 719 /// dynamic knowledge to simplify SCEV expressions and converts them to a 720 /// more usable form. 721 PredicatedScalarEvolution &PSE; 722 723 /// Loop Info. 724 LoopInfo *LI; 725 726 /// Dominator Tree. 727 DominatorTree *DT; 728 729 /// Alias Analysis. 730 AAResults *AA; 731 732 /// Target Library Info. 733 const TargetLibraryInfo *TLI; 734 735 /// Target Transform Info. 736 const TargetTransformInfo *TTI; 737 738 /// Assumption Cache. 739 AssumptionCache *AC; 740 741 /// Interface to emit optimization remarks. 742 OptimizationRemarkEmitter *ORE; 743 744 /// LoopVersioning. It's only set up (non-null) if memchecks were 745 /// used. 746 /// 747 /// This is currently only used to add no-alias metadata based on the 748 /// memchecks. The actually versioning is performed manually. 749 std::unique_ptr<LoopVersioning> LVer; 750 751 /// The vectorization SIMD factor to use. Each vector will have this many 752 /// vector elements. 753 ElementCount VF; 754 755 /// The vectorization unroll factor to use. Each scalar is vectorized to this 756 /// many different vector instructions. 757 unsigned UF; 758 759 /// The builder that we use 760 IRBuilder<> Builder; 761 762 // --- Vectorization state --- 763 764 /// The vector-loop preheader. 765 BasicBlock *LoopVectorPreHeader; 766 767 /// The scalar-loop preheader. 768 BasicBlock *LoopScalarPreHeader; 769 770 /// Middle Block between the vector and the scalar. 771 BasicBlock *LoopMiddleBlock; 772 773 /// The unique ExitBlock of the scalar loop if one exists. Note that 774 /// there can be multiple exiting edges reaching this block. 775 BasicBlock *LoopExitBlock; 776 777 /// The vector loop body. 778 BasicBlock *LoopVectorBody; 779 780 /// The scalar loop body. 781 BasicBlock *LoopScalarBody; 782 783 /// A list of all bypass blocks. The first block is the entry of the loop. 784 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 785 786 /// Store instructions that were predicated. 787 SmallVector<Instruction *, 4> PredicatedInstructions; 788 789 /// Trip count of the original loop. 790 Value *TripCount = nullptr; 791 792 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 793 Value *VectorTripCount = nullptr; 794 795 /// The legality analysis. 796 LoopVectorizationLegality *Legal; 797 798 /// The profitablity analysis. 799 LoopVectorizationCostModel *Cost; 800 801 // Record whether runtime checks are added. 802 bool AddedSafetyChecks = false; 803 804 // Holds the end values for each induction variable. We save the end values 805 // so we can later fix-up the external users of the induction variables. 806 DenseMap<PHINode *, Value *> IVEndValues; 807 808 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 809 // fixed up at the end of vector code generation. 810 SmallVector<PHINode *, 8> OrigPHIsToFix; 811 812 /// BFI and PSI are used to check for profile guided size optimizations. 813 BlockFrequencyInfo *BFI; 814 ProfileSummaryInfo *PSI; 815 816 // Whether this loop should be optimized for size based on profile guided size 817 // optimizatios. 818 bool OptForSizeBasedOnProfile; 819 820 /// Structure to hold information about generated runtime checks, responsible 821 /// for cleaning the checks, if vectorization turns out unprofitable. 822 GeneratedRTChecks &RTChecks; 823 824 // Holds the resume values for reductions in the loops, used to set the 825 // correct start value of reduction PHIs when vectorizing the epilogue. 826 SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4> 827 ReductionResumeValues; 828 }; 829 830 class InnerLoopUnroller : public InnerLoopVectorizer { 831 public: 832 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 833 LoopInfo *LI, DominatorTree *DT, 834 const TargetLibraryInfo *TLI, 835 const TargetTransformInfo *TTI, AssumptionCache *AC, 836 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 837 LoopVectorizationLegality *LVL, 838 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 839 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 840 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 841 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 842 BFI, PSI, Check) {} 843 844 private: 845 Value *getBroadcastInstrs(Value *V) override; 846 }; 847 848 /// Encapsulate information regarding vectorization of a loop and its epilogue. 849 /// This information is meant to be updated and used across two stages of 850 /// epilogue vectorization. 851 struct EpilogueLoopVectorizationInfo { 852 ElementCount MainLoopVF = ElementCount::getFixed(0); 853 unsigned MainLoopUF = 0; 854 ElementCount EpilogueVF = ElementCount::getFixed(0); 855 unsigned EpilogueUF = 0; 856 BasicBlock *MainLoopIterationCountCheck = nullptr; 857 BasicBlock *EpilogueIterationCountCheck = nullptr; 858 BasicBlock *SCEVSafetyCheck = nullptr; 859 BasicBlock *MemSafetyCheck = nullptr; 860 Value *TripCount = nullptr; 861 Value *VectorTripCount = nullptr; 862 863 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 864 ElementCount EVF, unsigned EUF) 865 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 866 assert(EUF == 1 && 867 "A high UF for the epilogue loop is likely not beneficial."); 868 } 869 }; 870 871 /// An extension of the inner loop vectorizer that creates a skeleton for a 872 /// vectorized loop that has its epilogue (residual) also vectorized. 873 /// The idea is to run the vplan on a given loop twice, firstly to setup the 874 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 875 /// from the first step and vectorize the epilogue. This is achieved by 876 /// deriving two concrete strategy classes from this base class and invoking 877 /// them in succession from the loop vectorizer planner. 878 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 879 public: 880 InnerLoopAndEpilogueVectorizer( 881 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 882 DominatorTree *DT, const TargetLibraryInfo *TLI, 883 const TargetTransformInfo *TTI, AssumptionCache *AC, 884 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 885 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 886 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 887 GeneratedRTChecks &Checks) 888 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 889 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 890 Checks), 891 EPI(EPI) {} 892 893 // Override this function to handle the more complex control flow around the 894 // three loops. 895 std::pair<BasicBlock *, Value *> 896 createVectorizedLoopSkeleton() final override { 897 return createEpilogueVectorizedLoopSkeleton(); 898 } 899 900 /// The interface for creating a vectorized skeleton using one of two 901 /// different strategies, each corresponding to one execution of the vplan 902 /// as described above. 903 virtual std::pair<BasicBlock *, Value *> 904 createEpilogueVectorizedLoopSkeleton() = 0; 905 906 /// Holds and updates state information required to vectorize the main loop 907 /// and its epilogue in two separate passes. This setup helps us avoid 908 /// regenerating and recomputing runtime safety checks. It also helps us to 909 /// shorten the iteration-count-check path length for the cases where the 910 /// iteration count of the loop is so small that the main vector loop is 911 /// completely skipped. 912 EpilogueLoopVectorizationInfo &EPI; 913 }; 914 915 /// A specialized derived class of inner loop vectorizer that performs 916 /// vectorization of *main* loops in the process of vectorizing loops and their 917 /// epilogues. 918 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 919 public: 920 EpilogueVectorizerMainLoop( 921 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 922 DominatorTree *DT, const TargetLibraryInfo *TLI, 923 const TargetTransformInfo *TTI, AssumptionCache *AC, 924 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 925 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 926 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 927 GeneratedRTChecks &Check) 928 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 929 EPI, LVL, CM, BFI, PSI, Check) {} 930 /// Implements the interface for creating a vectorized skeleton using the 931 /// *main loop* strategy (ie the first pass of vplan execution). 932 std::pair<BasicBlock *, Value *> 933 createEpilogueVectorizedLoopSkeleton() final override; 934 935 protected: 936 /// Emits an iteration count bypass check once for the main loop (when \p 937 /// ForEpilogue is false) and once for the epilogue loop (when \p 938 /// ForEpilogue is true). 939 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 940 bool ForEpilogue); 941 void printDebugTracesAtStart() override; 942 void printDebugTracesAtEnd() override; 943 }; 944 945 // A specialized derived class of inner loop vectorizer that performs 946 // vectorization of *epilogue* loops in the process of vectorizing loops and 947 // their epilogues. 948 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 949 public: 950 EpilogueVectorizerEpilogueLoop( 951 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 952 DominatorTree *DT, const TargetLibraryInfo *TLI, 953 const TargetTransformInfo *TTI, AssumptionCache *AC, 954 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 955 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 956 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 957 GeneratedRTChecks &Checks) 958 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 959 EPI, LVL, CM, BFI, PSI, Checks) {} 960 /// Implements the interface for creating a vectorized skeleton using the 961 /// *epilogue loop* strategy (ie the second pass of vplan execution). 962 std::pair<BasicBlock *, Value *> 963 createEpilogueVectorizedLoopSkeleton() final override; 964 965 protected: 966 /// Emits an iteration count bypass check after the main vector loop has 967 /// finished to see if there are any iterations left to execute by either 968 /// the vector epilogue or the scalar epilogue. 969 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 970 BasicBlock *Bypass, 971 BasicBlock *Insert); 972 void printDebugTracesAtStart() override; 973 void printDebugTracesAtEnd() override; 974 }; 975 } // end namespace llvm 976 977 /// Look for a meaningful debug location on the instruction or it's 978 /// operands. 979 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 980 if (!I) 981 return I; 982 983 DebugLoc Empty; 984 if (I->getDebugLoc() != Empty) 985 return I; 986 987 for (Use &Op : I->operands()) { 988 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 989 if (OpInst->getDebugLoc() != Empty) 990 return OpInst; 991 } 992 993 return I; 994 } 995 996 void InnerLoopVectorizer::setDebugLocFromInst( 997 const Value *V, Optional<IRBuilder<> *> CustomBuilder) { 998 IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 999 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 1000 const DILocation *DIL = Inst->getDebugLoc(); 1001 1002 // When a FSDiscriminator is enabled, we don't need to add the multiply 1003 // factors to the discriminators. 1004 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1005 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 1006 // FIXME: For scalable vectors, assume vscale=1. 1007 auto NewDIL = 1008 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1009 if (NewDIL) 1010 B->SetCurrentDebugLocation(NewDIL.getValue()); 1011 else 1012 LLVM_DEBUG(dbgs() 1013 << "Failed to create new discriminator: " 1014 << DIL->getFilename() << " Line: " << DIL->getLine()); 1015 } else 1016 B->SetCurrentDebugLocation(DIL); 1017 } else 1018 B->SetCurrentDebugLocation(DebugLoc()); 1019 } 1020 1021 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1022 /// is passed, the message relates to that particular instruction. 1023 #ifndef NDEBUG 1024 static void debugVectorizationMessage(const StringRef Prefix, 1025 const StringRef DebugMsg, 1026 Instruction *I) { 1027 dbgs() << "LV: " << Prefix << DebugMsg; 1028 if (I != nullptr) 1029 dbgs() << " " << *I; 1030 else 1031 dbgs() << '.'; 1032 dbgs() << '\n'; 1033 } 1034 #endif 1035 1036 /// Create an analysis remark that explains why vectorization failed 1037 /// 1038 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1039 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1040 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1041 /// the location of the remark. \return the remark object that can be 1042 /// streamed to. 1043 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1044 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1045 Value *CodeRegion = TheLoop->getHeader(); 1046 DebugLoc DL = TheLoop->getStartLoc(); 1047 1048 if (I) { 1049 CodeRegion = I->getParent(); 1050 // If there is no debug location attached to the instruction, revert back to 1051 // using the loop's. 1052 if (I->getDebugLoc()) 1053 DL = I->getDebugLoc(); 1054 } 1055 1056 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1057 } 1058 1059 namespace llvm { 1060 1061 /// Return a value for Step multiplied by VF. 1062 Value *createStepForVF(IRBuilder<> &B, Type *Ty, ElementCount VF, 1063 int64_t Step) { 1064 assert(Ty->isIntegerTy() && "Expected an integer step"); 1065 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 1066 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1067 } 1068 1069 /// Return the runtime value for VF. 1070 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1071 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1072 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1073 } 1074 1075 static Value *getRuntimeVFAsFloat(IRBuilder<> &B, Type *FTy, ElementCount VF) { 1076 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 1077 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 1078 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 1079 return B.CreateUIToFP(RuntimeVF, FTy); 1080 } 1081 1082 void reportVectorizationFailure(const StringRef DebugMsg, 1083 const StringRef OREMsg, const StringRef ORETag, 1084 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1085 Instruction *I) { 1086 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1087 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1088 ORE->emit( 1089 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1090 << "loop not vectorized: " << OREMsg); 1091 } 1092 1093 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1094 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1095 Instruction *I) { 1096 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1097 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1098 ORE->emit( 1099 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1100 << Msg); 1101 } 1102 1103 } // end namespace llvm 1104 1105 #ifndef NDEBUG 1106 /// \return string containing a file name and a line # for the given loop. 1107 static std::string getDebugLocString(const Loop *L) { 1108 std::string Result; 1109 if (L) { 1110 raw_string_ostream OS(Result); 1111 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1112 LoopDbgLoc.print(OS); 1113 else 1114 // Just print the module name. 1115 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1116 OS.flush(); 1117 } 1118 return Result; 1119 } 1120 #endif 1121 1122 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1123 const Instruction *Orig) { 1124 // If the loop was versioned with memchecks, add the corresponding no-alias 1125 // metadata. 1126 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1127 LVer->annotateInstWithNoAlias(To, Orig); 1128 } 1129 1130 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1131 VPTransformState &State) { 1132 1133 // Collect recipes in the backward slice of `Root` that may generate a poison 1134 // value that is used after vectorization. 1135 SmallPtrSet<VPRecipeBase *, 16> Visited; 1136 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1137 SmallVector<VPRecipeBase *, 16> Worklist; 1138 Worklist.push_back(Root); 1139 1140 // Traverse the backward slice of Root through its use-def chain. 1141 while (!Worklist.empty()) { 1142 VPRecipeBase *CurRec = Worklist.back(); 1143 Worklist.pop_back(); 1144 1145 if (!Visited.insert(CurRec).second) 1146 continue; 1147 1148 // Prune search if we find another recipe generating a widen memory 1149 // instruction. Widen memory instructions involved in address computation 1150 // will lead to gather/scatter instructions, which don't need to be 1151 // handled. 1152 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1153 isa<VPInterleaveRecipe>(CurRec) || 1154 isa<VPCanonicalIVPHIRecipe>(CurRec)) 1155 continue; 1156 1157 // This recipe contributes to the address computation of a widen 1158 // load/store. Collect recipe if its underlying instruction has 1159 // poison-generating flags. 1160 Instruction *Instr = CurRec->getUnderlyingInstr(); 1161 if (Instr && Instr->hasPoisonGeneratingFlags()) 1162 State.MayGeneratePoisonRecipes.insert(CurRec); 1163 1164 // Add new definitions to the worklist. 1165 for (VPValue *operand : CurRec->operands()) 1166 if (VPDef *OpDef = operand->getDef()) 1167 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1168 } 1169 }); 1170 1171 // Traverse all the recipes in the VPlan and collect the poison-generating 1172 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1173 // VPInterleaveRecipe. 1174 auto Iter = depth_first( 1175 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1176 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1177 for (VPRecipeBase &Recipe : *VPBB) { 1178 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1179 Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr(); 1180 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1181 if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr && 1182 Legal->blockNeedsPredication(UnderlyingInstr->getParent())) 1183 collectPoisonGeneratingInstrsInBackwardSlice( 1184 cast<VPRecipeBase>(AddrDef)); 1185 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1186 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1187 if (AddrDef) { 1188 // Check if any member of the interleave group needs predication. 1189 const InterleaveGroup<Instruction> *InterGroup = 1190 InterleaveRec->getInterleaveGroup(); 1191 bool NeedPredication = false; 1192 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1193 I < NumMembers; ++I) { 1194 Instruction *Member = InterGroup->getMember(I); 1195 if (Member) 1196 NeedPredication |= 1197 Legal->blockNeedsPredication(Member->getParent()); 1198 } 1199 1200 if (NeedPredication) 1201 collectPoisonGeneratingInstrsInBackwardSlice( 1202 cast<VPRecipeBase>(AddrDef)); 1203 } 1204 } 1205 } 1206 } 1207 } 1208 1209 void InnerLoopVectorizer::addMetadata(Instruction *To, 1210 Instruction *From) { 1211 propagateMetadata(To, From); 1212 addNewMetadata(To, From); 1213 } 1214 1215 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1216 Instruction *From) { 1217 for (Value *V : To) { 1218 if (Instruction *I = dyn_cast<Instruction>(V)) 1219 addMetadata(I, From); 1220 } 1221 } 1222 1223 PHINode *InnerLoopVectorizer::getReductionResumeValue( 1224 const RecurrenceDescriptor &RdxDesc) { 1225 auto It = ReductionResumeValues.find(&RdxDesc); 1226 assert(It != ReductionResumeValues.end() && 1227 "Expected to find a resume value for the reduction."); 1228 return It->second; 1229 } 1230 1231 namespace llvm { 1232 1233 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1234 // lowered. 1235 enum ScalarEpilogueLowering { 1236 1237 // The default: allowing scalar epilogues. 1238 CM_ScalarEpilogueAllowed, 1239 1240 // Vectorization with OptForSize: don't allow epilogues. 1241 CM_ScalarEpilogueNotAllowedOptSize, 1242 1243 // A special case of vectorisation with OptForSize: loops with a very small 1244 // trip count are considered for vectorization under OptForSize, thereby 1245 // making sure the cost of their loop body is dominant, free of runtime 1246 // guards and scalar iteration overheads. 1247 CM_ScalarEpilogueNotAllowedLowTripLoop, 1248 1249 // Loop hint predicate indicating an epilogue is undesired. 1250 CM_ScalarEpilogueNotNeededUsePredicate, 1251 1252 // Directive indicating we must either tail fold or not vectorize 1253 CM_ScalarEpilogueNotAllowedUsePredicate 1254 }; 1255 1256 /// ElementCountComparator creates a total ordering for ElementCount 1257 /// for the purposes of using it in a set structure. 1258 struct ElementCountComparator { 1259 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1260 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1261 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1262 } 1263 }; 1264 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1265 1266 /// LoopVectorizationCostModel - estimates the expected speedups due to 1267 /// vectorization. 1268 /// In many cases vectorization is not profitable. This can happen because of 1269 /// a number of reasons. In this class we mainly attempt to predict the 1270 /// expected speedup/slowdowns due to the supported instruction set. We use the 1271 /// TargetTransformInfo to query the different backends for the cost of 1272 /// different operations. 1273 class LoopVectorizationCostModel { 1274 public: 1275 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1276 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1277 LoopVectorizationLegality *Legal, 1278 const TargetTransformInfo &TTI, 1279 const TargetLibraryInfo *TLI, DemandedBits *DB, 1280 AssumptionCache *AC, 1281 OptimizationRemarkEmitter *ORE, const Function *F, 1282 const LoopVectorizeHints *Hints, 1283 InterleavedAccessInfo &IAI) 1284 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1285 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1286 Hints(Hints), InterleaveInfo(IAI) {} 1287 1288 /// \return An upper bound for the vectorization factors (both fixed and 1289 /// scalable). If the factors are 0, vectorization and interleaving should be 1290 /// avoided up front. 1291 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1292 1293 /// \return True if runtime checks are required for vectorization, and false 1294 /// otherwise. 1295 bool runtimeChecksRequired(); 1296 1297 /// \return The most profitable vectorization factor and the cost of that VF. 1298 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1299 /// then this vectorization factor will be selected if vectorization is 1300 /// possible. 1301 VectorizationFactor 1302 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1303 1304 VectorizationFactor 1305 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1306 const LoopVectorizationPlanner &LVP); 1307 1308 /// Setup cost-based decisions for user vectorization factor. 1309 /// \return true if the UserVF is a feasible VF to be chosen. 1310 bool selectUserVectorizationFactor(ElementCount UserVF) { 1311 collectUniformsAndScalars(UserVF); 1312 collectInstsToScalarize(UserVF); 1313 return expectedCost(UserVF).first.isValid(); 1314 } 1315 1316 /// \return The size (in bits) of the smallest and widest types in the code 1317 /// that needs to be vectorized. We ignore values that remain scalar such as 1318 /// 64 bit loop indices. 1319 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1320 1321 /// \return The desired interleave count. 1322 /// If interleave count has been specified by metadata it will be returned. 1323 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1324 /// are the selected vectorization factor and the cost of the selected VF. 1325 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1326 1327 /// Memory access instruction may be vectorized in more than one way. 1328 /// Form of instruction after vectorization depends on cost. 1329 /// This function takes cost-based decisions for Load/Store instructions 1330 /// and collects them in a map. This decisions map is used for building 1331 /// the lists of loop-uniform and loop-scalar instructions. 1332 /// The calculated cost is saved with widening decision in order to 1333 /// avoid redundant calculations. 1334 void setCostBasedWideningDecision(ElementCount VF); 1335 1336 /// A struct that represents some properties of the register usage 1337 /// of a loop. 1338 struct RegisterUsage { 1339 /// Holds the number of loop invariant values that are used in the loop. 1340 /// The key is ClassID of target-provided register class. 1341 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1342 /// Holds the maximum number of concurrent live intervals in the loop. 1343 /// The key is ClassID of target-provided register class. 1344 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1345 }; 1346 1347 /// \return Returns information about the register usages of the loop for the 1348 /// given vectorization factors. 1349 SmallVector<RegisterUsage, 8> 1350 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1351 1352 /// Collect values we want to ignore in the cost model. 1353 void collectValuesToIgnore(); 1354 1355 /// Collect all element types in the loop for which widening is needed. 1356 void collectElementTypesForWidening(); 1357 1358 /// Split reductions into those that happen in the loop, and those that happen 1359 /// outside. In loop reductions are collected into InLoopReductionChains. 1360 void collectInLoopReductions(); 1361 1362 /// Returns true if we should use strict in-order reductions for the given 1363 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1364 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1365 /// of FP operations. 1366 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1367 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1368 } 1369 1370 /// \returns The smallest bitwidth each instruction can be represented with. 1371 /// The vector equivalents of these instructions should be truncated to this 1372 /// type. 1373 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1374 return MinBWs; 1375 } 1376 1377 /// \returns True if it is more profitable to scalarize instruction \p I for 1378 /// vectorization factor \p VF. 1379 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1380 assert(VF.isVector() && 1381 "Profitable to scalarize relevant only for VF > 1."); 1382 1383 // Cost model is not run in the VPlan-native path - return conservative 1384 // result until this changes. 1385 if (EnableVPlanNativePath) 1386 return false; 1387 1388 auto Scalars = InstsToScalarize.find(VF); 1389 assert(Scalars != InstsToScalarize.end() && 1390 "VF not yet analyzed for scalarization profitability"); 1391 return Scalars->second.find(I) != Scalars->second.end(); 1392 } 1393 1394 /// Returns true if \p I is known to be uniform after vectorization. 1395 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1396 if (VF.isScalar()) 1397 return true; 1398 1399 // Cost model is not run in the VPlan-native path - return conservative 1400 // result until this changes. 1401 if (EnableVPlanNativePath) 1402 return false; 1403 1404 auto UniformsPerVF = Uniforms.find(VF); 1405 assert(UniformsPerVF != Uniforms.end() && 1406 "VF not yet analyzed for uniformity"); 1407 return UniformsPerVF->second.count(I); 1408 } 1409 1410 /// Returns true if \p I is known to be scalar after vectorization. 1411 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1412 if (VF.isScalar()) 1413 return true; 1414 1415 // Cost model is not run in the VPlan-native path - return conservative 1416 // result until this changes. 1417 if (EnableVPlanNativePath) 1418 return false; 1419 1420 auto ScalarsPerVF = Scalars.find(VF); 1421 assert(ScalarsPerVF != Scalars.end() && 1422 "Scalar values are not calculated for VF"); 1423 return ScalarsPerVF->second.count(I); 1424 } 1425 1426 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1427 /// for vectorization factor \p VF. 1428 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1429 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1430 !isProfitableToScalarize(I, VF) && 1431 !isScalarAfterVectorization(I, VF); 1432 } 1433 1434 /// Decision that was taken during cost calculation for memory instruction. 1435 enum InstWidening { 1436 CM_Unknown, 1437 CM_Widen, // For consecutive accesses with stride +1. 1438 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1439 CM_Interleave, 1440 CM_GatherScatter, 1441 CM_Scalarize 1442 }; 1443 1444 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1445 /// instruction \p I and vector width \p VF. 1446 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1447 InstructionCost Cost) { 1448 assert(VF.isVector() && "Expected VF >=2"); 1449 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1450 } 1451 1452 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1453 /// interleaving group \p Grp and vector width \p VF. 1454 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1455 ElementCount VF, InstWidening W, 1456 InstructionCost Cost) { 1457 assert(VF.isVector() && "Expected VF >=2"); 1458 /// Broadcast this decicion to all instructions inside the group. 1459 /// But the cost will be assigned to one instruction only. 1460 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1461 if (auto *I = Grp->getMember(i)) { 1462 if (Grp->getInsertPos() == I) 1463 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1464 else 1465 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1466 } 1467 } 1468 } 1469 1470 /// Return the cost model decision for the given instruction \p I and vector 1471 /// width \p VF. Return CM_Unknown if this instruction did not pass 1472 /// through the cost modeling. 1473 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1474 assert(VF.isVector() && "Expected VF to be a vector VF"); 1475 // Cost model is not run in the VPlan-native path - return conservative 1476 // result until this changes. 1477 if (EnableVPlanNativePath) 1478 return CM_GatherScatter; 1479 1480 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1481 auto Itr = WideningDecisions.find(InstOnVF); 1482 if (Itr == WideningDecisions.end()) 1483 return CM_Unknown; 1484 return Itr->second.first; 1485 } 1486 1487 /// Return the vectorization cost for the given instruction \p I and vector 1488 /// width \p VF. 1489 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1490 assert(VF.isVector() && "Expected VF >=2"); 1491 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1492 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1493 "The cost is not calculated"); 1494 return WideningDecisions[InstOnVF].second; 1495 } 1496 1497 /// Return True if instruction \p I is an optimizable truncate whose operand 1498 /// is an induction variable. Such a truncate will be removed by adding a new 1499 /// induction variable with the destination type. 1500 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1501 // If the instruction is not a truncate, return false. 1502 auto *Trunc = dyn_cast<TruncInst>(I); 1503 if (!Trunc) 1504 return false; 1505 1506 // Get the source and destination types of the truncate. 1507 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1508 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1509 1510 // If the truncate is free for the given types, return false. Replacing a 1511 // free truncate with an induction variable would add an induction variable 1512 // update instruction to each iteration of the loop. We exclude from this 1513 // check the primary induction variable since it will need an update 1514 // instruction regardless. 1515 Value *Op = Trunc->getOperand(0); 1516 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1517 return false; 1518 1519 // If the truncated value is not an induction variable, return false. 1520 return Legal->isInductionPhi(Op); 1521 } 1522 1523 /// Collects the instructions to scalarize for each predicated instruction in 1524 /// the loop. 1525 void collectInstsToScalarize(ElementCount VF); 1526 1527 /// Collect Uniform and Scalar values for the given \p VF. 1528 /// The sets depend on CM decision for Load/Store instructions 1529 /// that may be vectorized as interleave, gather-scatter or scalarized. 1530 void collectUniformsAndScalars(ElementCount VF) { 1531 // Do the analysis once. 1532 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1533 return; 1534 setCostBasedWideningDecision(VF); 1535 collectLoopUniforms(VF); 1536 collectLoopScalars(VF); 1537 } 1538 1539 /// Returns true if the target machine supports masked store operation 1540 /// for the given \p DataType and kind of access to \p Ptr. 1541 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1542 return Legal->isConsecutivePtr(DataType, Ptr) && 1543 TTI.isLegalMaskedStore(DataType, Alignment); 1544 } 1545 1546 /// Returns true if the target machine supports masked load operation 1547 /// for the given \p DataType and kind of access to \p Ptr. 1548 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1549 return Legal->isConsecutivePtr(DataType, Ptr) && 1550 TTI.isLegalMaskedLoad(DataType, Alignment); 1551 } 1552 1553 /// Returns true if the target machine can represent \p V as a masked gather 1554 /// or scatter operation. 1555 bool isLegalGatherOrScatter(Value *V, 1556 ElementCount VF = ElementCount::getFixed(1)) { 1557 bool LI = isa<LoadInst>(V); 1558 bool SI = isa<StoreInst>(V); 1559 if (!LI && !SI) 1560 return false; 1561 auto *Ty = getLoadStoreType(V); 1562 Align Align = getLoadStoreAlignment(V); 1563 if (VF.isVector()) 1564 Ty = VectorType::get(Ty, VF); 1565 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1566 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1567 } 1568 1569 /// Returns true if the target machine supports all of the reduction 1570 /// variables found for the given VF. 1571 bool canVectorizeReductions(ElementCount VF) const { 1572 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1573 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1574 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1575 })); 1576 } 1577 1578 /// Returns true if \p I is an instruction that will be scalarized with 1579 /// predication when vectorizing \p I with vectorization factor \p VF. Such 1580 /// instructions include conditional stores and instructions that may divide 1581 /// by zero. 1582 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1583 1584 // Returns true if \p I is an instruction that will be predicated either 1585 // through scalar predication or masked load/store or masked gather/scatter. 1586 // \p VF is the vectorization factor that will be used to vectorize \p I. 1587 // Superset of instructions that return true for isScalarWithPredication. 1588 bool isPredicatedInst(Instruction *I, ElementCount VF, 1589 bool IsKnownUniform = false) { 1590 // When we know the load is uniform and the original scalar loop was not 1591 // predicated we don't need to mark it as a predicated instruction. Any 1592 // vectorised blocks created when tail-folding are something artificial we 1593 // have introduced and we know there is always at least one active lane. 1594 // That's why we call Legal->blockNeedsPredication here because it doesn't 1595 // query tail-folding. 1596 if (IsKnownUniform && isa<LoadInst>(I) && 1597 !Legal->blockNeedsPredication(I->getParent())) 1598 return false; 1599 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1600 return false; 1601 // Loads and stores that need some form of masked operation are predicated 1602 // instructions. 1603 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1604 return Legal->isMaskRequired(I); 1605 return isScalarWithPredication(I, VF); 1606 } 1607 1608 /// Returns true if \p I is a memory instruction with consecutive memory 1609 /// access that can be widened. 1610 bool 1611 memoryInstructionCanBeWidened(Instruction *I, 1612 ElementCount VF = ElementCount::getFixed(1)); 1613 1614 /// Returns true if \p I is a memory instruction in an interleaved-group 1615 /// of memory accesses that can be vectorized with wide vector loads/stores 1616 /// and shuffles. 1617 bool 1618 interleavedAccessCanBeWidened(Instruction *I, 1619 ElementCount VF = ElementCount::getFixed(1)); 1620 1621 /// Check if \p Instr belongs to any interleaved access group. 1622 bool isAccessInterleaved(Instruction *Instr) { 1623 return InterleaveInfo.isInterleaved(Instr); 1624 } 1625 1626 /// Get the interleaved access group that \p Instr belongs to. 1627 const InterleaveGroup<Instruction> * 1628 getInterleavedAccessGroup(Instruction *Instr) { 1629 return InterleaveInfo.getInterleaveGroup(Instr); 1630 } 1631 1632 /// Returns true if we're required to use a scalar epilogue for at least 1633 /// the final iteration of the original loop. 1634 bool requiresScalarEpilogue(ElementCount VF) const { 1635 if (!isScalarEpilogueAllowed()) 1636 return false; 1637 // If we might exit from anywhere but the latch, must run the exiting 1638 // iteration in scalar form. 1639 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1640 return true; 1641 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1642 } 1643 1644 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1645 /// loop hint annotation. 1646 bool isScalarEpilogueAllowed() const { 1647 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1648 } 1649 1650 /// Returns true if all loop blocks should be masked to fold tail loop. 1651 bool foldTailByMasking() const { return FoldTailByMasking; } 1652 1653 /// Returns true if the instructions in this block requires predication 1654 /// for any reason, e.g. because tail folding now requires a predicate 1655 /// or because the block in the original loop was predicated. 1656 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1657 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1658 } 1659 1660 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1661 /// nodes to the chain of instructions representing the reductions. Uses a 1662 /// MapVector to ensure deterministic iteration order. 1663 using ReductionChainMap = 1664 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1665 1666 /// Return the chain of instructions representing an inloop reduction. 1667 const ReductionChainMap &getInLoopReductionChains() const { 1668 return InLoopReductionChains; 1669 } 1670 1671 /// Returns true if the Phi is part of an inloop reduction. 1672 bool isInLoopReduction(PHINode *Phi) const { 1673 return InLoopReductionChains.count(Phi); 1674 } 1675 1676 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1677 /// with factor VF. Return the cost of the instruction, including 1678 /// scalarization overhead if it's needed. 1679 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1680 1681 /// Estimate cost of a call instruction CI if it were vectorized with factor 1682 /// VF. Return the cost of the instruction, including scalarization overhead 1683 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1684 /// scalarized - 1685 /// i.e. either vector version isn't available, or is too expensive. 1686 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1687 bool &NeedToScalarize) const; 1688 1689 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1690 /// that of B. 1691 bool isMoreProfitable(const VectorizationFactor &A, 1692 const VectorizationFactor &B) const; 1693 1694 /// Invalidates decisions already taken by the cost model. 1695 void invalidateCostModelingDecisions() { 1696 WideningDecisions.clear(); 1697 Uniforms.clear(); 1698 Scalars.clear(); 1699 } 1700 1701 private: 1702 unsigned NumPredStores = 0; 1703 1704 /// Convenience function that returns the value of vscale_range iff 1705 /// vscale_range.min == vscale_range.max or otherwise returns the value 1706 /// returned by the corresponding TLI method. 1707 Optional<unsigned> getVScaleForTuning() const; 1708 1709 /// \return An upper bound for the vectorization factors for both 1710 /// fixed and scalable vectorization, where the minimum-known number of 1711 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1712 /// disabled or unsupported, then the scalable part will be equal to 1713 /// ElementCount::getScalable(0). 1714 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1715 ElementCount UserVF, 1716 bool FoldTailByMasking); 1717 1718 /// \return the maximized element count based on the targets vector 1719 /// registers and the loop trip-count, but limited to a maximum safe VF. 1720 /// This is a helper function of computeFeasibleMaxVF. 1721 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1722 /// issue that occurred on one of the buildbots which cannot be reproduced 1723 /// without having access to the properietary compiler (see comments on 1724 /// D98509). The issue is currently under investigation and this workaround 1725 /// will be removed as soon as possible. 1726 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1727 unsigned SmallestType, 1728 unsigned WidestType, 1729 const ElementCount &MaxSafeVF, 1730 bool FoldTailByMasking); 1731 1732 /// \return the maximum legal scalable VF, based on the safe max number 1733 /// of elements. 1734 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1735 1736 /// The vectorization cost is a combination of the cost itself and a boolean 1737 /// indicating whether any of the contributing operations will actually 1738 /// operate on vector values after type legalization in the backend. If this 1739 /// latter value is false, then all operations will be scalarized (i.e. no 1740 /// vectorization has actually taken place). 1741 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1742 1743 /// Returns the expected execution cost. The unit of the cost does 1744 /// not matter because we use the 'cost' units to compare different 1745 /// vector widths. The cost that is returned is *not* normalized by 1746 /// the factor width. If \p Invalid is not nullptr, this function 1747 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1748 /// each instruction that has an Invalid cost for the given VF. 1749 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1750 VectorizationCostTy 1751 expectedCost(ElementCount VF, 1752 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1753 1754 /// Returns the execution time cost of an instruction for a given vector 1755 /// width. Vector width of one means scalar. 1756 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1757 1758 /// The cost-computation logic from getInstructionCost which provides 1759 /// the vector type as an output parameter. 1760 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1761 Type *&VectorTy); 1762 1763 /// Return the cost of instructions in an inloop reduction pattern, if I is 1764 /// part of that pattern. 1765 Optional<InstructionCost> 1766 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1767 TTI::TargetCostKind CostKind); 1768 1769 /// Calculate vectorization cost of memory instruction \p I. 1770 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1771 1772 /// The cost computation for scalarized memory instruction. 1773 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1774 1775 /// The cost computation for interleaving group of memory instructions. 1776 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1777 1778 /// The cost computation for Gather/Scatter instruction. 1779 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1780 1781 /// The cost computation for widening instruction \p I with consecutive 1782 /// memory access. 1783 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1784 1785 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1786 /// Load: scalar load + broadcast. 1787 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1788 /// element) 1789 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1790 1791 /// Estimate the overhead of scalarizing an instruction. This is a 1792 /// convenience wrapper for the type-based getScalarizationOverhead API. 1793 InstructionCost getScalarizationOverhead(Instruction *I, 1794 ElementCount VF) const; 1795 1796 /// Returns whether the instruction is a load or store and will be a emitted 1797 /// as a vector operation. 1798 bool isConsecutiveLoadOrStore(Instruction *I); 1799 1800 /// Returns true if an artificially high cost for emulated masked memrefs 1801 /// should be used. 1802 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); 1803 1804 /// Map of scalar integer values to the smallest bitwidth they can be legally 1805 /// represented as. The vector equivalents of these values should be truncated 1806 /// to this type. 1807 MapVector<Instruction *, uint64_t> MinBWs; 1808 1809 /// A type representing the costs for instructions if they were to be 1810 /// scalarized rather than vectorized. The entries are Instruction-Cost 1811 /// pairs. 1812 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1813 1814 /// A set containing all BasicBlocks that are known to present after 1815 /// vectorization as a predicated block. 1816 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1817 1818 /// Records whether it is allowed to have the original scalar loop execute at 1819 /// least once. This may be needed as a fallback loop in case runtime 1820 /// aliasing/dependence checks fail, or to handle the tail/remainder 1821 /// iterations when the trip count is unknown or doesn't divide by the VF, 1822 /// or as a peel-loop to handle gaps in interleave-groups. 1823 /// Under optsize and when the trip count is very small we don't allow any 1824 /// iterations to execute in the scalar loop. 1825 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1826 1827 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1828 bool FoldTailByMasking = false; 1829 1830 /// A map holding scalar costs for different vectorization factors. The 1831 /// presence of a cost for an instruction in the mapping indicates that the 1832 /// instruction will be scalarized when vectorizing with the associated 1833 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1834 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1835 1836 /// Holds the instructions known to be uniform after vectorization. 1837 /// The data is collected per VF. 1838 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1839 1840 /// Holds the instructions known to be scalar after vectorization. 1841 /// The data is collected per VF. 1842 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1843 1844 /// Holds the instructions (address computations) that are forced to be 1845 /// scalarized. 1846 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1847 1848 /// PHINodes of the reductions that should be expanded in-loop along with 1849 /// their associated chains of reduction operations, in program order from top 1850 /// (PHI) to bottom 1851 ReductionChainMap InLoopReductionChains; 1852 1853 /// A Map of inloop reduction operations and their immediate chain operand. 1854 /// FIXME: This can be removed once reductions can be costed correctly in 1855 /// vplan. This was added to allow quick lookup to the inloop operations, 1856 /// without having to loop through InLoopReductionChains. 1857 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1858 1859 /// Returns the expected difference in cost from scalarizing the expression 1860 /// feeding a predicated instruction \p PredInst. The instructions to 1861 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1862 /// non-negative return value implies the expression will be scalarized. 1863 /// Currently, only single-use chains are considered for scalarization. 1864 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1865 ElementCount VF); 1866 1867 /// Collect the instructions that are uniform after vectorization. An 1868 /// instruction is uniform if we represent it with a single scalar value in 1869 /// the vectorized loop corresponding to each vector iteration. Examples of 1870 /// uniform instructions include pointer operands of consecutive or 1871 /// interleaved memory accesses. Note that although uniformity implies an 1872 /// instruction will be scalar, the reverse is not true. In general, a 1873 /// scalarized instruction will be represented by VF scalar values in the 1874 /// vectorized loop, each corresponding to an iteration of the original 1875 /// scalar loop. 1876 void collectLoopUniforms(ElementCount VF); 1877 1878 /// Collect the instructions that are scalar after vectorization. An 1879 /// instruction is scalar if it is known to be uniform or will be scalarized 1880 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1881 /// to the list if they are used by a load/store instruction that is marked as 1882 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1883 /// VF values in the vectorized loop, each corresponding to an iteration of 1884 /// the original scalar loop. 1885 void collectLoopScalars(ElementCount VF); 1886 1887 /// Keeps cost model vectorization decision and cost for instructions. 1888 /// Right now it is used for memory instructions only. 1889 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1890 std::pair<InstWidening, InstructionCost>>; 1891 1892 DecisionList WideningDecisions; 1893 1894 /// Returns true if \p V is expected to be vectorized and it needs to be 1895 /// extracted. 1896 bool needsExtract(Value *V, ElementCount VF) const { 1897 Instruction *I = dyn_cast<Instruction>(V); 1898 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1899 TheLoop->isLoopInvariant(I)) 1900 return false; 1901 1902 // Assume we can vectorize V (and hence we need extraction) if the 1903 // scalars are not computed yet. This can happen, because it is called 1904 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1905 // the scalars are collected. That should be a safe assumption in most 1906 // cases, because we check if the operands have vectorizable types 1907 // beforehand in LoopVectorizationLegality. 1908 return Scalars.find(VF) == Scalars.end() || 1909 !isScalarAfterVectorization(I, VF); 1910 }; 1911 1912 /// Returns a range containing only operands needing to be extracted. 1913 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1914 ElementCount VF) const { 1915 return SmallVector<Value *, 4>(make_filter_range( 1916 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1917 } 1918 1919 /// Determines if we have the infrastructure to vectorize loop \p L and its 1920 /// epilogue, assuming the main loop is vectorized by \p VF. 1921 bool isCandidateForEpilogueVectorization(const Loop &L, 1922 const ElementCount VF) const; 1923 1924 /// Returns true if epilogue vectorization is considered profitable, and 1925 /// false otherwise. 1926 /// \p VF is the vectorization factor chosen for the original loop. 1927 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1928 1929 public: 1930 /// The loop that we evaluate. 1931 Loop *TheLoop; 1932 1933 /// Predicated scalar evolution analysis. 1934 PredicatedScalarEvolution &PSE; 1935 1936 /// Loop Info analysis. 1937 LoopInfo *LI; 1938 1939 /// Vectorization legality. 1940 LoopVectorizationLegality *Legal; 1941 1942 /// Vector target information. 1943 const TargetTransformInfo &TTI; 1944 1945 /// Target Library Info. 1946 const TargetLibraryInfo *TLI; 1947 1948 /// Demanded bits analysis. 1949 DemandedBits *DB; 1950 1951 /// Assumption cache. 1952 AssumptionCache *AC; 1953 1954 /// Interface to emit optimization remarks. 1955 OptimizationRemarkEmitter *ORE; 1956 1957 const Function *TheFunction; 1958 1959 /// Loop Vectorize Hint. 1960 const LoopVectorizeHints *Hints; 1961 1962 /// The interleave access information contains groups of interleaved accesses 1963 /// with the same stride and close to each other. 1964 InterleavedAccessInfo &InterleaveInfo; 1965 1966 /// Values to ignore in the cost model. 1967 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1968 1969 /// Values to ignore in the cost model when VF > 1. 1970 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1971 1972 /// All element types found in the loop. 1973 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1974 1975 /// Profitable vector factors. 1976 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1977 }; 1978 } // end namespace llvm 1979 1980 /// Helper struct to manage generating runtime checks for vectorization. 1981 /// 1982 /// The runtime checks are created up-front in temporary blocks to allow better 1983 /// estimating the cost and un-linked from the existing IR. After deciding to 1984 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1985 /// temporary blocks are completely removed. 1986 class GeneratedRTChecks { 1987 /// Basic block which contains the generated SCEV checks, if any. 1988 BasicBlock *SCEVCheckBlock = nullptr; 1989 1990 /// The value representing the result of the generated SCEV checks. If it is 1991 /// nullptr, either no SCEV checks have been generated or they have been used. 1992 Value *SCEVCheckCond = nullptr; 1993 1994 /// Basic block which contains the generated memory runtime checks, if any. 1995 BasicBlock *MemCheckBlock = nullptr; 1996 1997 /// The value representing the result of the generated memory runtime checks. 1998 /// If it is nullptr, either no memory runtime checks have been generated or 1999 /// they have been used. 2000 Value *MemRuntimeCheckCond = nullptr; 2001 2002 DominatorTree *DT; 2003 LoopInfo *LI; 2004 2005 SCEVExpander SCEVExp; 2006 SCEVExpander MemCheckExp; 2007 2008 public: 2009 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 2010 const DataLayout &DL) 2011 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 2012 MemCheckExp(SE, DL, "scev.check") {} 2013 2014 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 2015 /// accurately estimate the cost of the runtime checks. The blocks are 2016 /// un-linked from the IR and is added back during vector code generation. If 2017 /// there is no vector code generation, the check blocks are removed 2018 /// completely. 2019 void Create(Loop *L, const LoopAccessInfo &LAI, 2020 const SCEVUnionPredicate &UnionPred) { 2021 2022 BasicBlock *LoopHeader = L->getHeader(); 2023 BasicBlock *Preheader = L->getLoopPreheader(); 2024 2025 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 2026 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 2027 // may be used by SCEVExpander. The blocks will be un-linked from their 2028 // predecessors and removed from LI & DT at the end of the function. 2029 if (!UnionPred.isAlwaysTrue()) { 2030 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 2031 nullptr, "vector.scevcheck"); 2032 2033 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 2034 &UnionPred, SCEVCheckBlock->getTerminator()); 2035 } 2036 2037 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 2038 if (RtPtrChecking.Need) { 2039 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 2040 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 2041 "vector.memcheck"); 2042 2043 MemRuntimeCheckCond = 2044 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 2045 RtPtrChecking.getChecks(), MemCheckExp); 2046 assert(MemRuntimeCheckCond && 2047 "no RT checks generated although RtPtrChecking " 2048 "claimed checks are required"); 2049 } 2050 2051 if (!MemCheckBlock && !SCEVCheckBlock) 2052 return; 2053 2054 // Unhook the temporary block with the checks, update various places 2055 // accordingly. 2056 if (SCEVCheckBlock) 2057 SCEVCheckBlock->replaceAllUsesWith(Preheader); 2058 if (MemCheckBlock) 2059 MemCheckBlock->replaceAllUsesWith(Preheader); 2060 2061 if (SCEVCheckBlock) { 2062 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2063 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 2064 Preheader->getTerminator()->eraseFromParent(); 2065 } 2066 if (MemCheckBlock) { 2067 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2068 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 2069 Preheader->getTerminator()->eraseFromParent(); 2070 } 2071 2072 DT->changeImmediateDominator(LoopHeader, Preheader); 2073 if (MemCheckBlock) { 2074 DT->eraseNode(MemCheckBlock); 2075 LI->removeBlock(MemCheckBlock); 2076 } 2077 if (SCEVCheckBlock) { 2078 DT->eraseNode(SCEVCheckBlock); 2079 LI->removeBlock(SCEVCheckBlock); 2080 } 2081 } 2082 2083 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2084 /// unused. 2085 ~GeneratedRTChecks() { 2086 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2087 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2088 if (!SCEVCheckCond) 2089 SCEVCleaner.markResultUsed(); 2090 2091 if (!MemRuntimeCheckCond) 2092 MemCheckCleaner.markResultUsed(); 2093 2094 if (MemRuntimeCheckCond) { 2095 auto &SE = *MemCheckExp.getSE(); 2096 // Memory runtime check generation creates compares that use expanded 2097 // values. Remove them before running the SCEVExpanderCleaners. 2098 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2099 if (MemCheckExp.isInsertedInstruction(&I)) 2100 continue; 2101 SE.forgetValue(&I); 2102 I.eraseFromParent(); 2103 } 2104 } 2105 MemCheckCleaner.cleanup(); 2106 SCEVCleaner.cleanup(); 2107 2108 if (SCEVCheckCond) 2109 SCEVCheckBlock->eraseFromParent(); 2110 if (MemRuntimeCheckCond) 2111 MemCheckBlock->eraseFromParent(); 2112 } 2113 2114 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2115 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2116 /// depending on the generated condition. 2117 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2118 BasicBlock *LoopVectorPreHeader, 2119 BasicBlock *LoopExitBlock) { 2120 if (!SCEVCheckCond) 2121 return nullptr; 2122 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2123 if (C->isZero()) 2124 return nullptr; 2125 2126 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2127 2128 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2129 // Create new preheader for vector loop. 2130 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2131 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2132 2133 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2134 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2135 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2136 SCEVCheckBlock); 2137 2138 DT->addNewBlock(SCEVCheckBlock, Pred); 2139 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2140 2141 ReplaceInstWithInst( 2142 SCEVCheckBlock->getTerminator(), 2143 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2144 // Mark the check as used, to prevent it from being removed during cleanup. 2145 SCEVCheckCond = nullptr; 2146 return SCEVCheckBlock; 2147 } 2148 2149 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2150 /// the branches to branch to the vector preheader or \p Bypass, depending on 2151 /// the generated condition. 2152 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2153 BasicBlock *LoopVectorPreHeader) { 2154 // Check if we generated code that checks in runtime if arrays overlap. 2155 if (!MemRuntimeCheckCond) 2156 return nullptr; 2157 2158 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2159 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2160 MemCheckBlock); 2161 2162 DT->addNewBlock(MemCheckBlock, Pred); 2163 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2164 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2165 2166 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2167 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2168 2169 ReplaceInstWithInst( 2170 MemCheckBlock->getTerminator(), 2171 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2172 MemCheckBlock->getTerminator()->setDebugLoc( 2173 Pred->getTerminator()->getDebugLoc()); 2174 2175 // Mark the check as used, to prevent it from being removed during cleanup. 2176 MemRuntimeCheckCond = nullptr; 2177 return MemCheckBlock; 2178 } 2179 }; 2180 2181 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2182 // vectorization. The loop needs to be annotated with #pragma omp simd 2183 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2184 // vector length information is not provided, vectorization is not considered 2185 // explicit. Interleave hints are not allowed either. These limitations will be 2186 // relaxed in the future. 2187 // Please, note that we are currently forced to abuse the pragma 'clang 2188 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2189 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2190 // provides *explicit vectorization hints* (LV can bypass legal checks and 2191 // assume that vectorization is legal). However, both hints are implemented 2192 // using the same metadata (llvm.loop.vectorize, processed by 2193 // LoopVectorizeHints). This will be fixed in the future when the native IR 2194 // representation for pragma 'omp simd' is introduced. 2195 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2196 OptimizationRemarkEmitter *ORE) { 2197 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2198 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2199 2200 // Only outer loops with an explicit vectorization hint are supported. 2201 // Unannotated outer loops are ignored. 2202 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2203 return false; 2204 2205 Function *Fn = OuterLp->getHeader()->getParent(); 2206 if (!Hints.allowVectorization(Fn, OuterLp, 2207 true /*VectorizeOnlyWhenForced*/)) { 2208 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2209 return false; 2210 } 2211 2212 if (Hints.getInterleave() > 1) { 2213 // TODO: Interleave support is future work. 2214 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2215 "outer loops.\n"); 2216 Hints.emitRemarkWithHints(); 2217 return false; 2218 } 2219 2220 return true; 2221 } 2222 2223 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2224 OptimizationRemarkEmitter *ORE, 2225 SmallVectorImpl<Loop *> &V) { 2226 // Collect inner loops and outer loops without irreducible control flow. For 2227 // now, only collect outer loops that have explicit vectorization hints. If we 2228 // are stress testing the VPlan H-CFG construction, we collect the outermost 2229 // loop of every loop nest. 2230 if (L.isInnermost() || VPlanBuildStressTest || 2231 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2232 LoopBlocksRPO RPOT(&L); 2233 RPOT.perform(LI); 2234 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2235 V.push_back(&L); 2236 // TODO: Collect inner loops inside marked outer loops in case 2237 // vectorization fails for the outer loop. Do not invoke 2238 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2239 // already known to be reducible. We can use an inherited attribute for 2240 // that. 2241 return; 2242 } 2243 } 2244 for (Loop *InnerL : L) 2245 collectSupportedLoops(*InnerL, LI, ORE, V); 2246 } 2247 2248 namespace { 2249 2250 /// The LoopVectorize Pass. 2251 struct LoopVectorize : public FunctionPass { 2252 /// Pass identification, replacement for typeid 2253 static char ID; 2254 2255 LoopVectorizePass Impl; 2256 2257 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2258 bool VectorizeOnlyWhenForced = false) 2259 : FunctionPass(ID), 2260 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2261 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2262 } 2263 2264 bool runOnFunction(Function &F) override { 2265 if (skipFunction(F)) 2266 return false; 2267 2268 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2269 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2270 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2271 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2272 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2273 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2274 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2275 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2276 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2277 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2278 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2279 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2280 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2281 2282 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2283 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2284 2285 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2286 GetLAA, *ORE, PSI).MadeAnyChange; 2287 } 2288 2289 void getAnalysisUsage(AnalysisUsage &AU) const override { 2290 AU.addRequired<AssumptionCacheTracker>(); 2291 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2292 AU.addRequired<DominatorTreeWrapperPass>(); 2293 AU.addRequired<LoopInfoWrapperPass>(); 2294 AU.addRequired<ScalarEvolutionWrapperPass>(); 2295 AU.addRequired<TargetTransformInfoWrapperPass>(); 2296 AU.addRequired<AAResultsWrapperPass>(); 2297 AU.addRequired<LoopAccessLegacyAnalysis>(); 2298 AU.addRequired<DemandedBitsWrapperPass>(); 2299 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2300 AU.addRequired<InjectTLIMappingsLegacy>(); 2301 2302 // We currently do not preserve loopinfo/dominator analyses with outer loop 2303 // vectorization. Until this is addressed, mark these analyses as preserved 2304 // only for non-VPlan-native path. 2305 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2306 if (!EnableVPlanNativePath) { 2307 AU.addPreserved<LoopInfoWrapperPass>(); 2308 AU.addPreserved<DominatorTreeWrapperPass>(); 2309 } 2310 2311 AU.addPreserved<BasicAAWrapperPass>(); 2312 AU.addPreserved<GlobalsAAWrapperPass>(); 2313 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2314 } 2315 }; 2316 2317 } // end anonymous namespace 2318 2319 //===----------------------------------------------------------------------===// 2320 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2321 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2322 //===----------------------------------------------------------------------===// 2323 2324 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2325 // We need to place the broadcast of invariant variables outside the loop, 2326 // but only if it's proven safe to do so. Else, broadcast will be inside 2327 // vector loop body. 2328 Instruction *Instr = dyn_cast<Instruction>(V); 2329 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2330 (!Instr || 2331 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2332 // Place the code for broadcasting invariant variables in the new preheader. 2333 IRBuilder<>::InsertPointGuard Guard(Builder); 2334 if (SafeToHoist) 2335 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2336 2337 // Broadcast the scalar into all locations in the vector. 2338 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2339 2340 return Shuf; 2341 } 2342 2343 /// This function adds 2344 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2345 /// to each vector element of Val. The sequence starts at StartIndex. 2346 /// \p Opcode is relevant for FP induction variable. 2347 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2348 Instruction::BinaryOps BinOp, ElementCount VF, 2349 IRBuilder<> &Builder) { 2350 assert(VF.isVector() && "only vector VFs are supported"); 2351 2352 // Create and check the types. 2353 auto *ValVTy = cast<VectorType>(Val->getType()); 2354 ElementCount VLen = ValVTy->getElementCount(); 2355 2356 Type *STy = Val->getType()->getScalarType(); 2357 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2358 "Induction Step must be an integer or FP"); 2359 assert(Step->getType() == STy && "Step has wrong type"); 2360 2361 SmallVector<Constant *, 8> Indices; 2362 2363 // Create a vector of consecutive numbers from zero to VF. 2364 VectorType *InitVecValVTy = ValVTy; 2365 Type *InitVecValSTy = STy; 2366 if (STy->isFloatingPointTy()) { 2367 InitVecValSTy = 2368 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2369 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2370 } 2371 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2372 2373 // Splat the StartIdx 2374 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2375 2376 if (STy->isIntegerTy()) { 2377 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2378 Step = Builder.CreateVectorSplat(VLen, Step); 2379 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2380 // FIXME: The newly created binary instructions should contain nsw/nuw 2381 // flags, which can be found from the original scalar operations. 2382 Step = Builder.CreateMul(InitVec, Step); 2383 return Builder.CreateAdd(Val, Step, "induction"); 2384 } 2385 2386 // Floating point induction. 2387 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2388 "Binary Opcode should be specified for FP induction"); 2389 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2390 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2391 2392 Step = Builder.CreateVectorSplat(VLen, Step); 2393 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2394 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2395 } 2396 2397 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2398 const InductionDescriptor &II, Value *Step, Value *Start, 2399 Instruction *EntryVal, VPValue *Def, VPTransformState &State) { 2400 IRBuilder<> &Builder = State.Builder; 2401 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2402 "Expected either an induction phi-node or a truncate of it!"); 2403 2404 // Construct the initial value of the vector IV in the vector loop preheader 2405 auto CurrIP = Builder.saveIP(); 2406 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2407 if (isa<TruncInst>(EntryVal)) { 2408 assert(Start->getType()->isIntegerTy() && 2409 "Truncation requires an integer type"); 2410 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2411 Step = Builder.CreateTrunc(Step, TruncType); 2412 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2413 } 2414 2415 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 2416 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 2417 Value *SteppedStart = getStepVector( 2418 SplatStart, Zero, Step, II.getInductionOpcode(), State.VF, State.Builder); 2419 2420 // We create vector phi nodes for both integer and floating-point induction 2421 // variables. Here, we determine the kind of arithmetic we will perform. 2422 Instruction::BinaryOps AddOp; 2423 Instruction::BinaryOps MulOp; 2424 if (Step->getType()->isIntegerTy()) { 2425 AddOp = Instruction::Add; 2426 MulOp = Instruction::Mul; 2427 } else { 2428 AddOp = II.getInductionOpcode(); 2429 MulOp = Instruction::FMul; 2430 } 2431 2432 // Multiply the vectorization factor by the step using integer or 2433 // floating-point arithmetic as appropriate. 2434 Type *StepType = Step->getType(); 2435 Value *RuntimeVF; 2436 if (Step->getType()->isFloatingPointTy()) 2437 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 2438 else 2439 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 2440 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2441 2442 // Create a vector splat to use in the induction update. 2443 // 2444 // FIXME: If the step is non-constant, we create the vector splat with 2445 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2446 // handle a constant vector splat. 2447 Value *SplatVF = isa<Constant>(Mul) 2448 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 2449 : Builder.CreateVectorSplat(State.VF, Mul); 2450 Builder.restoreIP(CurrIP); 2451 2452 // We may need to add the step a number of times, depending on the unroll 2453 // factor. The last of those goes into the PHI. 2454 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2455 &*LoopVectorBody->getFirstInsertionPt()); 2456 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2457 Instruction *LastInduction = VecInd; 2458 for (unsigned Part = 0; Part < UF; ++Part) { 2459 State.set(Def, LastInduction, Part); 2460 2461 if (isa<TruncInst>(EntryVal)) 2462 addMetadata(LastInduction, EntryVal); 2463 2464 LastInduction = cast<Instruction>( 2465 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2466 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2467 } 2468 2469 // Move the last step to the end of the latch block. This ensures consistent 2470 // placement of all induction updates. 2471 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2472 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2473 LastInduction->moveBefore(Br); 2474 LastInduction->setName("vec.ind.next"); 2475 2476 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2477 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2478 } 2479 2480 void InnerLoopVectorizer::widenIntOrFpInduction( 2481 PHINode *IV, VPWidenIntOrFpInductionRecipe *Def, VPTransformState &State, 2482 Value *CanonicalIV) { 2483 Value *Start = Def->getStartValue()->getLiveInIRValue(); 2484 const InductionDescriptor &ID = Def->getInductionDescriptor(); 2485 TruncInst *Trunc = Def->getTruncInst(); 2486 IRBuilder<> &Builder = State.Builder; 2487 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2488 assert(!State.VF.isZero() && "VF must be non-zero"); 2489 2490 // The value from the original loop to which we are mapping the new induction 2491 // variable. 2492 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2493 2494 auto &DL = EntryVal->getModule()->getDataLayout(); 2495 2496 // Generate code for the induction step. Note that induction steps are 2497 // required to be loop-invariant 2498 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2499 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2500 "Induction step should be loop invariant"); 2501 if (PSE.getSE()->isSCEVable(IV->getType())) { 2502 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2503 return Exp.expandCodeFor(Step, Step->getType(), 2504 State.CFG.VectorPreHeader->getTerminator()); 2505 } 2506 return cast<SCEVUnknown>(Step)->getValue(); 2507 }; 2508 2509 // The scalar value to broadcast. This is derived from the canonical 2510 // induction variable. If a truncation type is given, truncate the canonical 2511 // induction variable and step. Otherwise, derive these values from the 2512 // induction descriptor. 2513 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2514 Value *ScalarIV = CanonicalIV; 2515 Type *NeededType = IV->getType(); 2516 if (!Def->isCanonical() || ScalarIV->getType() != NeededType) { 2517 ScalarIV = 2518 NeededType->isIntegerTy() 2519 ? Builder.CreateSExtOrTrunc(ScalarIV, NeededType) 2520 : Builder.CreateCast(Instruction::SIToFP, ScalarIV, NeededType); 2521 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID, 2522 State.CFG.PrevBB); 2523 ScalarIV->setName("offset.idx"); 2524 } 2525 if (Trunc) { 2526 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2527 assert(Step->getType()->isIntegerTy() && 2528 "Truncation requires an integer step"); 2529 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2530 Step = Builder.CreateTrunc(Step, TruncType); 2531 } 2532 return ScalarIV; 2533 }; 2534 2535 // Fast-math-flags propagate from the original induction instruction. 2536 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2537 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2538 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2539 2540 // Now do the actual transformations, and start with creating the step value. 2541 Value *Step = CreateStepValue(ID.getStep()); 2542 if (State.VF.isScalar()) { 2543 Value *ScalarIV = CreateScalarIV(Step); 2544 Type *ScalarTy = IntegerType::get(ScalarIV->getContext(), 2545 Step->getType()->getScalarSizeInBits()); 2546 2547 Instruction::BinaryOps IncOp = ID.getInductionOpcode(); 2548 if (IncOp == Instruction::BinaryOpsEnd) 2549 IncOp = Instruction::Add; 2550 for (unsigned Part = 0; Part < UF; ++Part) { 2551 Value *StartIdx = ConstantInt::get(ScalarTy, Part); 2552 Instruction::BinaryOps MulOp = Instruction::Mul; 2553 if (Step->getType()->isFloatingPointTy()) { 2554 StartIdx = Builder.CreateUIToFP(StartIdx, Step->getType()); 2555 MulOp = Instruction::FMul; 2556 } 2557 2558 Value *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2559 Value *EntryPart = Builder.CreateBinOp(IncOp, ScalarIV, Mul, "induction"); 2560 State.set(Def, EntryPart, Part); 2561 if (Trunc) { 2562 assert(!Step->getType()->isFloatingPointTy() && 2563 "fp inductions shouldn't be truncated"); 2564 addMetadata(EntryPart, Trunc); 2565 } 2566 } 2567 return; 2568 } 2569 2570 // Create a new independent vector induction variable, if one is needed. 2571 if (Def->needsVectorIV()) 2572 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, State); 2573 2574 if (Def->needsScalarIV()) { 2575 // Create scalar steps that can be used by instructions we will later 2576 // scalarize. Note that the addition of the scalar steps will not increase 2577 // the number of instructions in the loop in the common case prior to 2578 // InstCombine. We will be trading one vector extract for each scalar step. 2579 Value *ScalarIV = CreateScalarIV(Step); 2580 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, State); 2581 } 2582 } 2583 2584 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2585 Instruction *EntryVal, 2586 const InductionDescriptor &ID, 2587 VPValue *Def, 2588 VPTransformState &State) { 2589 IRBuilder<> &Builder = State.Builder; 2590 // We shouldn't have to build scalar steps if we aren't vectorizing. 2591 assert(State.VF.isVector() && "VF should be greater than one"); 2592 // Get the value type and ensure it and the step have the same integer type. 2593 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2594 assert(ScalarIVTy == Step->getType() && 2595 "Val and Step should have the same type"); 2596 2597 // We build scalar steps for both integer and floating-point induction 2598 // variables. Here, we determine the kind of arithmetic we will perform. 2599 Instruction::BinaryOps AddOp; 2600 Instruction::BinaryOps MulOp; 2601 if (ScalarIVTy->isIntegerTy()) { 2602 AddOp = Instruction::Add; 2603 MulOp = Instruction::Mul; 2604 } else { 2605 AddOp = ID.getInductionOpcode(); 2606 MulOp = Instruction::FMul; 2607 } 2608 2609 // Determine the number of scalars we need to generate for each unroll 2610 // iteration. 2611 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def); 2612 unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue(); 2613 // Compute the scalar steps and save the results in State. 2614 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2615 ScalarIVTy->getScalarSizeInBits()); 2616 Type *VecIVTy = nullptr; 2617 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2618 if (!FirstLaneOnly && State.VF.isScalable()) { 2619 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2620 UnitStepVec = 2621 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2622 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2623 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2624 } 2625 2626 for (unsigned Part = 0; Part < State.UF; ++Part) { 2627 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2628 2629 if (!FirstLaneOnly && State.VF.isScalable()) { 2630 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2631 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2632 if (ScalarIVTy->isFloatingPointTy()) 2633 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2634 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2635 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2636 State.set(Def, Add, Part); 2637 // It's useful to record the lane values too for the known minimum number 2638 // of elements so we do those below. This improves the code quality when 2639 // trying to extract the first element, for example. 2640 } 2641 2642 if (ScalarIVTy->isFloatingPointTy()) 2643 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2644 2645 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2646 Value *StartIdx = Builder.CreateBinOp( 2647 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2648 // The step returned by `createStepForVF` is a runtime-evaluated value 2649 // when VF is scalable. Otherwise, it should be folded into a Constant. 2650 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2651 "Expected StartIdx to be folded to a constant when VF is not " 2652 "scalable"); 2653 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2654 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2655 State.set(Def, Add, VPIteration(Part, Lane)); 2656 } 2657 } 2658 } 2659 2660 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2661 const VPIteration &Instance, 2662 VPTransformState &State) { 2663 Value *ScalarInst = State.get(Def, Instance); 2664 Value *VectorValue = State.get(Def, Instance.Part); 2665 VectorValue = Builder.CreateInsertElement( 2666 VectorValue, ScalarInst, 2667 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2668 State.set(Def, VectorValue, Instance.Part); 2669 } 2670 2671 // Return whether we allow using masked interleave-groups (for dealing with 2672 // strided loads/stores that reside in predicated blocks, or for dealing 2673 // with gaps). 2674 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2675 // If an override option has been passed in for interleaved accesses, use it. 2676 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2677 return EnableMaskedInterleavedMemAccesses; 2678 2679 return TTI.enableMaskedInterleavedAccessVectorization(); 2680 } 2681 2682 // Try to vectorize the interleave group that \p Instr belongs to. 2683 // 2684 // E.g. Translate following interleaved load group (factor = 3): 2685 // for (i = 0; i < N; i+=3) { 2686 // R = Pic[i]; // Member of index 0 2687 // G = Pic[i+1]; // Member of index 1 2688 // B = Pic[i+2]; // Member of index 2 2689 // ... // do something to R, G, B 2690 // } 2691 // To: 2692 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2693 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2694 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2695 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2696 // 2697 // Or translate following interleaved store group (factor = 3): 2698 // for (i = 0; i < N; i+=3) { 2699 // ... do something to R, G, B 2700 // Pic[i] = R; // Member of index 0 2701 // Pic[i+1] = G; // Member of index 1 2702 // Pic[i+2] = B; // Member of index 2 2703 // } 2704 // To: 2705 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2706 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2707 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2708 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2709 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2710 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2711 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2712 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2713 VPValue *BlockInMask) { 2714 Instruction *Instr = Group->getInsertPos(); 2715 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2716 2717 // Prepare for the vector type of the interleaved load/store. 2718 Type *ScalarTy = getLoadStoreType(Instr); 2719 unsigned InterleaveFactor = Group->getFactor(); 2720 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2721 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2722 2723 // Prepare for the new pointers. 2724 SmallVector<Value *, 2> AddrParts; 2725 unsigned Index = Group->getIndex(Instr); 2726 2727 // TODO: extend the masked interleaved-group support to reversed access. 2728 assert((!BlockInMask || !Group->isReverse()) && 2729 "Reversed masked interleave-group not supported."); 2730 2731 // If the group is reverse, adjust the index to refer to the last vector lane 2732 // instead of the first. We adjust the index from the first vector lane, 2733 // rather than directly getting the pointer for lane VF - 1, because the 2734 // pointer operand of the interleaved access is supposed to be uniform. For 2735 // uniform instructions, we're only required to generate a value for the 2736 // first vector lane in each unroll iteration. 2737 if (Group->isReverse()) 2738 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2739 2740 for (unsigned Part = 0; Part < UF; Part++) { 2741 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2742 setDebugLocFromInst(AddrPart); 2743 2744 // Notice current instruction could be any index. Need to adjust the address 2745 // to the member of index 0. 2746 // 2747 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2748 // b = A[i]; // Member of index 0 2749 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2750 // 2751 // E.g. A[i+1] = a; // Member of index 1 2752 // A[i] = b; // Member of index 0 2753 // A[i+2] = c; // Member of index 2 (Current instruction) 2754 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2755 2756 bool InBounds = false; 2757 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2758 InBounds = gep->isInBounds(); 2759 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2760 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2761 2762 // Cast to the vector pointer type. 2763 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2764 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2765 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2766 } 2767 2768 setDebugLocFromInst(Instr); 2769 Value *PoisonVec = PoisonValue::get(VecTy); 2770 2771 Value *MaskForGaps = nullptr; 2772 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2773 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2774 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2775 } 2776 2777 // Vectorize the interleaved load group. 2778 if (isa<LoadInst>(Instr)) { 2779 // For each unroll part, create a wide load for the group. 2780 SmallVector<Value *, 2> NewLoads; 2781 for (unsigned Part = 0; Part < UF; Part++) { 2782 Instruction *NewLoad; 2783 if (BlockInMask || MaskForGaps) { 2784 assert(useMaskedInterleavedAccesses(*TTI) && 2785 "masked interleaved groups are not allowed."); 2786 Value *GroupMask = MaskForGaps; 2787 if (BlockInMask) { 2788 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2789 Value *ShuffledMask = Builder.CreateShuffleVector( 2790 BlockInMaskPart, 2791 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2792 "interleaved.mask"); 2793 GroupMask = MaskForGaps 2794 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2795 MaskForGaps) 2796 : ShuffledMask; 2797 } 2798 NewLoad = 2799 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2800 GroupMask, PoisonVec, "wide.masked.vec"); 2801 } 2802 else 2803 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2804 Group->getAlign(), "wide.vec"); 2805 Group->addMetadata(NewLoad); 2806 NewLoads.push_back(NewLoad); 2807 } 2808 2809 // For each member in the group, shuffle out the appropriate data from the 2810 // wide loads. 2811 unsigned J = 0; 2812 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2813 Instruction *Member = Group->getMember(I); 2814 2815 // Skip the gaps in the group. 2816 if (!Member) 2817 continue; 2818 2819 auto StrideMask = 2820 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2821 for (unsigned Part = 0; Part < UF; Part++) { 2822 Value *StridedVec = Builder.CreateShuffleVector( 2823 NewLoads[Part], StrideMask, "strided.vec"); 2824 2825 // If this member has different type, cast the result type. 2826 if (Member->getType() != ScalarTy) { 2827 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2828 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2829 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2830 } 2831 2832 if (Group->isReverse()) 2833 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2834 2835 State.set(VPDefs[J], StridedVec, Part); 2836 } 2837 ++J; 2838 } 2839 return; 2840 } 2841 2842 // The sub vector type for current instruction. 2843 auto *SubVT = VectorType::get(ScalarTy, VF); 2844 2845 // Vectorize the interleaved store group. 2846 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2847 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2848 "masked interleaved groups are not allowed."); 2849 assert((!MaskForGaps || !VF.isScalable()) && 2850 "masking gaps for scalable vectors is not yet supported."); 2851 for (unsigned Part = 0; Part < UF; Part++) { 2852 // Collect the stored vector from each member. 2853 SmallVector<Value *, 4> StoredVecs; 2854 for (unsigned i = 0; i < InterleaveFactor; i++) { 2855 assert((Group->getMember(i) || MaskForGaps) && 2856 "Fail to get a member from an interleaved store group"); 2857 Instruction *Member = Group->getMember(i); 2858 2859 // Skip the gaps in the group. 2860 if (!Member) { 2861 Value *Undef = PoisonValue::get(SubVT); 2862 StoredVecs.push_back(Undef); 2863 continue; 2864 } 2865 2866 Value *StoredVec = State.get(StoredValues[i], Part); 2867 2868 if (Group->isReverse()) 2869 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2870 2871 // If this member has different type, cast it to a unified type. 2872 2873 if (StoredVec->getType() != SubVT) 2874 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2875 2876 StoredVecs.push_back(StoredVec); 2877 } 2878 2879 // Concatenate all vectors into a wide vector. 2880 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2881 2882 // Interleave the elements in the wide vector. 2883 Value *IVec = Builder.CreateShuffleVector( 2884 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2885 "interleaved.vec"); 2886 2887 Instruction *NewStoreInstr; 2888 if (BlockInMask || MaskForGaps) { 2889 Value *GroupMask = MaskForGaps; 2890 if (BlockInMask) { 2891 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2892 Value *ShuffledMask = Builder.CreateShuffleVector( 2893 BlockInMaskPart, 2894 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2895 "interleaved.mask"); 2896 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2897 ShuffledMask, MaskForGaps) 2898 : ShuffledMask; 2899 } 2900 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2901 Group->getAlign(), GroupMask); 2902 } else 2903 NewStoreInstr = 2904 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2905 2906 Group->addMetadata(NewStoreInstr); 2907 } 2908 } 2909 2910 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2911 VPReplicateRecipe *RepRecipe, 2912 const VPIteration &Instance, 2913 bool IfPredicateInstr, 2914 VPTransformState &State) { 2915 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2916 2917 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2918 // the first lane and part. 2919 if (isa<NoAliasScopeDeclInst>(Instr)) 2920 if (!Instance.isFirstIteration()) 2921 return; 2922 2923 setDebugLocFromInst(Instr); 2924 2925 // Does this instruction return a value ? 2926 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2927 2928 Instruction *Cloned = Instr->clone(); 2929 if (!IsVoidRetTy) 2930 Cloned->setName(Instr->getName() + ".cloned"); 2931 2932 // If the scalarized instruction contributes to the address computation of a 2933 // widen masked load/store which was in a basic block that needed predication 2934 // and is not predicated after vectorization, we can't propagate 2935 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 2936 // instruction could feed a poison value to the base address of the widen 2937 // load/store. 2938 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 2939 Cloned->dropPoisonGeneratingFlags(); 2940 2941 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 2942 Builder.GetInsertPoint()); 2943 // Replace the operands of the cloned instructions with their scalar 2944 // equivalents in the new loop. 2945 for (auto &I : enumerate(RepRecipe->operands())) { 2946 auto InputInstance = Instance; 2947 VPValue *Operand = I.value(); 2948 VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand); 2949 if (OperandR && OperandR->isUniform()) 2950 InputInstance.Lane = VPLane::getFirstLane(); 2951 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 2952 } 2953 addNewMetadata(Cloned, Instr); 2954 2955 // Place the cloned scalar in the new loop. 2956 Builder.Insert(Cloned); 2957 2958 State.set(RepRecipe, Cloned, Instance); 2959 2960 // If we just cloned a new assumption, add it the assumption cache. 2961 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 2962 AC->registerAssumption(II); 2963 2964 // End if-block. 2965 if (IfPredicateInstr) 2966 PredicatedInstructions.push_back(Cloned); 2967 } 2968 2969 void InnerLoopVectorizer::createHeaderBranch(Loop *L) { 2970 BasicBlock *Header = L->getHeader(); 2971 assert(!L->getLoopLatch() && "loop should not have a latch at this point"); 2972 2973 IRBuilder<> B(Header->getTerminator()); 2974 Instruction *OldInst = 2975 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 2976 setDebugLocFromInst(OldInst, &B); 2977 2978 // Connect the header to the exit and header blocks and replace the old 2979 // terminator. 2980 B.CreateCondBr(B.getTrue(), L->getUniqueExitBlock(), Header); 2981 2982 // Now we have two terminators. Remove the old one from the block. 2983 Header->getTerminator()->eraseFromParent(); 2984 } 2985 2986 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2987 if (TripCount) 2988 return TripCount; 2989 2990 assert(L && "Create Trip Count for null loop."); 2991 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2992 // Find the loop boundaries. 2993 ScalarEvolution *SE = PSE.getSE(); 2994 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2995 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2996 "Invalid loop count"); 2997 2998 Type *IdxTy = Legal->getWidestInductionType(); 2999 assert(IdxTy && "No type for induction"); 3000 3001 // The exit count might have the type of i64 while the phi is i32. This can 3002 // happen if we have an induction variable that is sign extended before the 3003 // compare. The only way that we get a backedge taken count is that the 3004 // induction variable was signed and as such will not overflow. In such a case 3005 // truncation is legal. 3006 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3007 IdxTy->getPrimitiveSizeInBits()) 3008 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3009 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3010 3011 // Get the total trip count from the count by adding 1. 3012 const SCEV *ExitCount = SE->getAddExpr( 3013 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3014 3015 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3016 3017 // Expand the trip count and place the new instructions in the preheader. 3018 // Notice that the pre-header does not change, only the loop body. 3019 SCEVExpander Exp(*SE, DL, "induction"); 3020 3021 // Count holds the overall loop count (N). 3022 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3023 L->getLoopPreheader()->getTerminator()); 3024 3025 if (TripCount->getType()->isPointerTy()) 3026 TripCount = 3027 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3028 L->getLoopPreheader()->getTerminator()); 3029 3030 return TripCount; 3031 } 3032 3033 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3034 if (VectorTripCount) 3035 return VectorTripCount; 3036 3037 Value *TC = getOrCreateTripCount(L); 3038 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3039 3040 Type *Ty = TC->getType(); 3041 // This is where we can make the step a runtime constant. 3042 Value *Step = createStepForVF(Builder, Ty, VF, UF); 3043 3044 // If the tail is to be folded by masking, round the number of iterations N 3045 // up to a multiple of Step instead of rounding down. This is done by first 3046 // adding Step-1 and then rounding down. Note that it's ok if this addition 3047 // overflows: the vector induction variable will eventually wrap to zero given 3048 // that it starts at zero and its Step is a power of two; the loop will then 3049 // exit, with the last early-exit vector comparison also producing all-true. 3050 if (Cost->foldTailByMasking()) { 3051 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3052 "VF*UF must be a power of 2 when folding tail by masking"); 3053 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 3054 TC = Builder.CreateAdd( 3055 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 3056 } 3057 3058 // Now we need to generate the expression for the part of the loop that the 3059 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3060 // iterations are not required for correctness, or N - Step, otherwise. Step 3061 // is equal to the vectorization factor (number of SIMD elements) times the 3062 // unroll factor (number of SIMD instructions). 3063 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3064 3065 // There are cases where we *must* run at least one iteration in the remainder 3066 // loop. See the cost model for when this can happen. If the step evenly 3067 // divides the trip count, we set the remainder to be equal to the step. If 3068 // the step does not evenly divide the trip count, no adjustment is necessary 3069 // since there will already be scalar iterations. Note that the minimum 3070 // iterations check ensures that N >= Step. 3071 if (Cost->requiresScalarEpilogue(VF)) { 3072 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3073 R = Builder.CreateSelect(IsZero, Step, R); 3074 } 3075 3076 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3077 3078 return VectorTripCount; 3079 } 3080 3081 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3082 const DataLayout &DL) { 3083 // Verify that V is a vector type with same number of elements as DstVTy. 3084 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3085 unsigned VF = DstFVTy->getNumElements(); 3086 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3087 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3088 Type *SrcElemTy = SrcVecTy->getElementType(); 3089 Type *DstElemTy = DstFVTy->getElementType(); 3090 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3091 "Vector elements must have same size"); 3092 3093 // Do a direct cast if element types are castable. 3094 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3095 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3096 } 3097 // V cannot be directly casted to desired vector type. 3098 // May happen when V is a floating point vector but DstVTy is a vector of 3099 // pointers or vice-versa. Handle this using a two-step bitcast using an 3100 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3101 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3102 "Only one type should be a pointer type"); 3103 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3104 "Only one type should be a floating point type"); 3105 Type *IntTy = 3106 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3107 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3108 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3109 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3110 } 3111 3112 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3113 BasicBlock *Bypass) { 3114 Value *Count = getOrCreateTripCount(L); 3115 // Reuse existing vector loop preheader for TC checks. 3116 // Note that new preheader block is generated for vector loop. 3117 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3118 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3119 3120 // Generate code to check if the loop's trip count is less than VF * UF, or 3121 // equal to it in case a scalar epilogue is required; this implies that the 3122 // vector trip count is zero. This check also covers the case where adding one 3123 // to the backedge-taken count overflowed leading to an incorrect trip count 3124 // of zero. In this case we will also jump to the scalar loop. 3125 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 3126 : ICmpInst::ICMP_ULT; 3127 3128 // If tail is to be folded, vector loop takes care of all iterations. 3129 Value *CheckMinIters = Builder.getFalse(); 3130 if (!Cost->foldTailByMasking()) { 3131 Value *Step = createStepForVF(Builder, Count->getType(), VF, UF); 3132 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3133 } 3134 // Create new preheader for vector loop. 3135 LoopVectorPreHeader = 3136 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3137 "vector.ph"); 3138 3139 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3140 DT->getNode(Bypass)->getIDom()) && 3141 "TC check is expected to dominate Bypass"); 3142 3143 // Update dominator for Bypass & LoopExit (if needed). 3144 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3145 if (!Cost->requiresScalarEpilogue(VF)) 3146 // If there is an epilogue which must run, there's no edge from the 3147 // middle block to exit blocks and thus no need to update the immediate 3148 // dominator of the exit blocks. 3149 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3150 3151 ReplaceInstWithInst( 3152 TCCheckBlock->getTerminator(), 3153 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3154 LoopBypassBlocks.push_back(TCCheckBlock); 3155 } 3156 3157 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3158 3159 BasicBlock *const SCEVCheckBlock = 3160 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3161 if (!SCEVCheckBlock) 3162 return nullptr; 3163 3164 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3165 (OptForSizeBasedOnProfile && 3166 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3167 "Cannot SCEV check stride or overflow when optimizing for size"); 3168 3169 3170 // Update dominator only if this is first RT check. 3171 if (LoopBypassBlocks.empty()) { 3172 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3173 if (!Cost->requiresScalarEpilogue(VF)) 3174 // If there is an epilogue which must run, there's no edge from the 3175 // middle block to exit blocks and thus no need to update the immediate 3176 // dominator of the exit blocks. 3177 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3178 } 3179 3180 LoopBypassBlocks.push_back(SCEVCheckBlock); 3181 AddedSafetyChecks = true; 3182 return SCEVCheckBlock; 3183 } 3184 3185 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3186 BasicBlock *Bypass) { 3187 // VPlan-native path does not do any analysis for runtime checks currently. 3188 if (EnableVPlanNativePath) 3189 return nullptr; 3190 3191 BasicBlock *const MemCheckBlock = 3192 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3193 3194 // Check if we generated code that checks in runtime if arrays overlap. We put 3195 // the checks into a separate block to make the more common case of few 3196 // elements faster. 3197 if (!MemCheckBlock) 3198 return nullptr; 3199 3200 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3201 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3202 "Cannot emit memory checks when optimizing for size, unless forced " 3203 "to vectorize."); 3204 ORE->emit([&]() { 3205 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3206 L->getStartLoc(), L->getHeader()) 3207 << "Code-size may be reduced by not forcing " 3208 "vectorization, or by source-code modifications " 3209 "eliminating the need for runtime checks " 3210 "(e.g., adding 'restrict')."; 3211 }); 3212 } 3213 3214 LoopBypassBlocks.push_back(MemCheckBlock); 3215 3216 AddedSafetyChecks = true; 3217 3218 // We currently don't use LoopVersioning for the actual loop cloning but we 3219 // still use it to add the noalias metadata. 3220 LVer = std::make_unique<LoopVersioning>( 3221 *Legal->getLAI(), 3222 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3223 DT, PSE.getSE()); 3224 LVer->prepareNoAliasMetadata(); 3225 return MemCheckBlock; 3226 } 3227 3228 Value *InnerLoopVectorizer::emitTransformedIndex( 3229 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3230 const InductionDescriptor &ID, BasicBlock *VectorHeader) const { 3231 3232 SCEVExpander Exp(*SE, DL, "induction"); 3233 auto Step = ID.getStep(); 3234 auto StartValue = ID.getStartValue(); 3235 assert(Index->getType()->getScalarType() == Step->getType() && 3236 "Index scalar type does not match StepValue type"); 3237 3238 // Note: the IR at this point is broken. We cannot use SE to create any new 3239 // SCEV and then expand it, hoping that SCEV's simplification will give us 3240 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3241 // lead to various SCEV crashes. So all we can do is to use builder and rely 3242 // on InstCombine for future simplifications. Here we handle some trivial 3243 // cases only. 3244 auto CreateAdd = [&B](Value *X, Value *Y) { 3245 assert(X->getType() == Y->getType() && "Types don't match!"); 3246 if (auto *CX = dyn_cast<ConstantInt>(X)) 3247 if (CX->isZero()) 3248 return Y; 3249 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3250 if (CY->isZero()) 3251 return X; 3252 return B.CreateAdd(X, Y); 3253 }; 3254 3255 // We allow X to be a vector type, in which case Y will potentially be 3256 // splatted into a vector with the same element count. 3257 auto CreateMul = [&B](Value *X, Value *Y) { 3258 assert(X->getType()->getScalarType() == Y->getType() && 3259 "Types don't match!"); 3260 if (auto *CX = dyn_cast<ConstantInt>(X)) 3261 if (CX->isOne()) 3262 return Y; 3263 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3264 if (CY->isOne()) 3265 return X; 3266 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 3267 if (XVTy && !isa<VectorType>(Y->getType())) 3268 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 3269 return B.CreateMul(X, Y); 3270 }; 3271 3272 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3273 // loop, choose the end of the vector loop header (=VectorHeader), because 3274 // the DomTree is not kept up-to-date for additional blocks generated in the 3275 // vector loop. By using the header as insertion point, we guarantee that the 3276 // expanded instructions dominate all their uses. 3277 auto GetInsertPoint = [this, &B, VectorHeader]() { 3278 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3279 if (InsertBB != LoopVectorBody && 3280 LI->getLoopFor(VectorHeader) == LI->getLoopFor(InsertBB)) 3281 return VectorHeader->getTerminator(); 3282 return &*B.GetInsertPoint(); 3283 }; 3284 3285 switch (ID.getKind()) { 3286 case InductionDescriptor::IK_IntInduction: { 3287 assert(!isa<VectorType>(Index->getType()) && 3288 "Vector indices not supported for integer inductions yet"); 3289 assert(Index->getType() == StartValue->getType() && 3290 "Index type does not match StartValue type"); 3291 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3292 return B.CreateSub(StartValue, Index); 3293 auto *Offset = CreateMul( 3294 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3295 return CreateAdd(StartValue, Offset); 3296 } 3297 case InductionDescriptor::IK_PtrInduction: { 3298 assert(isa<SCEVConstant>(Step) && 3299 "Expected constant step for pointer induction"); 3300 return B.CreateGEP( 3301 ID.getElementType(), StartValue, 3302 CreateMul(Index, 3303 Exp.expandCodeFor(Step, Index->getType()->getScalarType(), 3304 GetInsertPoint()))); 3305 } 3306 case InductionDescriptor::IK_FpInduction: { 3307 assert(!isa<VectorType>(Index->getType()) && 3308 "Vector indices not supported for FP inductions yet"); 3309 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3310 auto InductionBinOp = ID.getInductionBinOp(); 3311 assert(InductionBinOp && 3312 (InductionBinOp->getOpcode() == Instruction::FAdd || 3313 InductionBinOp->getOpcode() == Instruction::FSub) && 3314 "Original bin op should be defined for FP induction"); 3315 3316 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3317 Value *MulExp = B.CreateFMul(StepValue, Index); 3318 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3319 "induction"); 3320 } 3321 case InductionDescriptor::IK_NoInduction: 3322 return nullptr; 3323 } 3324 llvm_unreachable("invalid enum"); 3325 } 3326 3327 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3328 LoopScalarBody = OrigLoop->getHeader(); 3329 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3330 assert(LoopVectorPreHeader && "Invalid loop structure"); 3331 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3332 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3333 "multiple exit loop without required epilogue?"); 3334 3335 LoopMiddleBlock = 3336 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3337 LI, nullptr, Twine(Prefix) + "middle.block"); 3338 LoopScalarPreHeader = 3339 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3340 nullptr, Twine(Prefix) + "scalar.ph"); 3341 3342 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3343 3344 // Set up the middle block terminator. Two cases: 3345 // 1) If we know that we must execute the scalar epilogue, emit an 3346 // unconditional branch. 3347 // 2) Otherwise, we must have a single unique exit block (due to how we 3348 // implement the multiple exit case). In this case, set up a conditonal 3349 // branch from the middle block to the loop scalar preheader, and the 3350 // exit block. completeLoopSkeleton will update the condition to use an 3351 // iteration check, if required to decide whether to execute the remainder. 3352 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3353 BranchInst::Create(LoopScalarPreHeader) : 3354 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3355 Builder.getTrue()); 3356 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3357 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3358 3359 // We intentionally don't let SplitBlock to update LoopInfo since 3360 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3361 // LoopVectorBody is explicitly added to the correct place few lines later. 3362 LoopVectorBody = 3363 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3364 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3365 3366 // Update dominator for loop exit. 3367 if (!Cost->requiresScalarEpilogue(VF)) 3368 // If there is an epilogue which must run, there's no edge from the 3369 // middle block to exit blocks and thus no need to update the immediate 3370 // dominator of the exit blocks. 3371 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3372 3373 // Create and register the new vector loop. 3374 Loop *Lp = LI->AllocateLoop(); 3375 Loop *ParentLoop = OrigLoop->getParentLoop(); 3376 3377 // Insert the new loop into the loop nest and register the new basic blocks 3378 // before calling any utilities such as SCEV that require valid LoopInfo. 3379 if (ParentLoop) { 3380 ParentLoop->addChildLoop(Lp); 3381 } else { 3382 LI->addTopLevelLoop(Lp); 3383 } 3384 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3385 return Lp; 3386 } 3387 3388 void InnerLoopVectorizer::createInductionResumeValues( 3389 Loop *L, std::pair<BasicBlock *, Value *> AdditionalBypass) { 3390 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3391 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3392 "Inconsistent information about additional bypass."); 3393 3394 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3395 assert(VectorTripCount && L && "Expected valid arguments"); 3396 // We are going to resume the execution of the scalar loop. 3397 // Go over all of the induction variables that we found and fix the 3398 // PHIs that are left in the scalar version of the loop. 3399 // The starting values of PHI nodes depend on the counter of the last 3400 // iteration in the vectorized loop. 3401 // If we come from a bypass edge then we need to start from the original 3402 // start value. 3403 Instruction *OldInduction = Legal->getPrimaryInduction(); 3404 for (auto &InductionEntry : Legal->getInductionVars()) { 3405 PHINode *OrigPhi = InductionEntry.first; 3406 InductionDescriptor II = InductionEntry.second; 3407 3408 // Create phi nodes to merge from the backedge-taken check block. 3409 PHINode *BCResumeVal = 3410 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3411 LoopScalarPreHeader->getTerminator()); 3412 // Copy original phi DL over to the new one. 3413 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3414 Value *&EndValue = IVEndValues[OrigPhi]; 3415 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3416 if (OrigPhi == OldInduction) { 3417 // We know what the end value is. 3418 EndValue = VectorTripCount; 3419 } else { 3420 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3421 3422 // Fast-math-flags propagate from the original induction instruction. 3423 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3424 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3425 3426 Type *StepType = II.getStep()->getType(); 3427 Instruction::CastOps CastOp = 3428 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3429 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3430 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3431 EndValue = 3432 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody); 3433 EndValue->setName("ind.end"); 3434 3435 // Compute the end value for the additional bypass (if applicable). 3436 if (AdditionalBypass.first) { 3437 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3438 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3439 StepType, true); 3440 CRD = 3441 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3442 EndValueFromAdditionalBypass = 3443 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody); 3444 EndValueFromAdditionalBypass->setName("ind.end"); 3445 } 3446 } 3447 // The new PHI merges the original incoming value, in case of a bypass, 3448 // or the value at the end of the vectorized loop. 3449 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3450 3451 // Fix the scalar body counter (PHI node). 3452 // The old induction's phi node in the scalar body needs the truncated 3453 // value. 3454 for (BasicBlock *BB : LoopBypassBlocks) 3455 BCResumeVal->addIncoming(II.getStartValue(), BB); 3456 3457 if (AdditionalBypass.first) 3458 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3459 EndValueFromAdditionalBypass); 3460 3461 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3462 } 3463 } 3464 3465 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3466 MDNode *OrigLoopID) { 3467 assert(L && "Expected valid loop."); 3468 3469 // The trip counts should be cached by now. 3470 Value *Count = getOrCreateTripCount(L); 3471 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3472 3473 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3474 3475 // Add a check in the middle block to see if we have completed 3476 // all of the iterations in the first vector loop. Three cases: 3477 // 1) If we require a scalar epilogue, there is no conditional branch as 3478 // we unconditionally branch to the scalar preheader. Do nothing. 3479 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3480 // Thus if tail is to be folded, we know we don't need to run the 3481 // remainder and we can use the previous value for the condition (true). 3482 // 3) Otherwise, construct a runtime check. 3483 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3484 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3485 Count, VectorTripCount, "cmp.n", 3486 LoopMiddleBlock->getTerminator()); 3487 3488 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3489 // of the corresponding compare because they may have ended up with 3490 // different line numbers and we want to avoid awkward line stepping while 3491 // debugging. Eg. if the compare has got a line number inside the loop. 3492 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3493 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3494 } 3495 3496 // Get ready to start creating new instructions into the vectorized body. 3497 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3498 "Inconsistent vector loop preheader"); 3499 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3500 3501 #ifdef EXPENSIVE_CHECKS 3502 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3503 LI->verify(*DT); 3504 #endif 3505 3506 return LoopVectorPreHeader; 3507 } 3508 3509 std::pair<BasicBlock *, Value *> 3510 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3511 /* 3512 In this function we generate a new loop. The new loop will contain 3513 the vectorized instructions while the old loop will continue to run the 3514 scalar remainder. 3515 3516 [ ] <-- loop iteration number check. 3517 / | 3518 / v 3519 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3520 | / | 3521 | / v 3522 || [ ] <-- vector pre header. 3523 |/ | 3524 | v 3525 | [ ] \ 3526 | [ ]_| <-- vector loop. 3527 | | 3528 | v 3529 \ -[ ] <--- middle-block. 3530 \/ | 3531 /\ v 3532 | ->[ ] <--- new preheader. 3533 | | 3534 (opt) v <-- edge from middle to exit iff epilogue is not required. 3535 | [ ] \ 3536 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3537 \ | 3538 \ v 3539 >[ ] <-- exit block(s). 3540 ... 3541 */ 3542 3543 // Get the metadata of the original loop before it gets modified. 3544 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3545 3546 // Workaround! Compute the trip count of the original loop and cache it 3547 // before we start modifying the CFG. This code has a systemic problem 3548 // wherein it tries to run analysis over partially constructed IR; this is 3549 // wrong, and not simply for SCEV. The trip count of the original loop 3550 // simply happens to be prone to hitting this in practice. In theory, we 3551 // can hit the same issue for any SCEV, or ValueTracking query done during 3552 // mutation. See PR49900. 3553 getOrCreateTripCount(OrigLoop); 3554 3555 // Create an empty vector loop, and prepare basic blocks for the runtime 3556 // checks. 3557 Loop *Lp = createVectorLoopSkeleton(""); 3558 3559 // Now, compare the new count to zero. If it is zero skip the vector loop and 3560 // jump to the scalar loop. This check also covers the case where the 3561 // backedge-taken count is uint##_max: adding one to it will overflow leading 3562 // to an incorrect trip count of zero. In this (rare) case we will also jump 3563 // to the scalar loop. 3564 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3565 3566 // Generate the code to check any assumptions that we've made for SCEV 3567 // expressions. 3568 emitSCEVChecks(Lp, LoopScalarPreHeader); 3569 3570 // Generate the code that checks in runtime if arrays overlap. We put the 3571 // checks into a separate block to make the more common case of few elements 3572 // faster. 3573 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3574 3575 createHeaderBranch(Lp); 3576 3577 // Emit phis for the new starting index of the scalar loop. 3578 createInductionResumeValues(Lp); 3579 3580 return {completeLoopSkeleton(Lp, OrigLoopID), nullptr}; 3581 } 3582 3583 // Fix up external users of the induction variable. At this point, we are 3584 // in LCSSA form, with all external PHIs that use the IV having one input value, 3585 // coming from the remainder loop. We need those PHIs to also have a correct 3586 // value for the IV when arriving directly from the middle block. 3587 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3588 const InductionDescriptor &II, 3589 Value *CountRoundDown, Value *EndValue, 3590 BasicBlock *MiddleBlock) { 3591 // There are two kinds of external IV usages - those that use the value 3592 // computed in the last iteration (the PHI) and those that use the penultimate 3593 // value (the value that feeds into the phi from the loop latch). 3594 // We allow both, but they, obviously, have different values. 3595 3596 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3597 3598 DenseMap<Value *, Value *> MissingVals; 3599 3600 // An external user of the last iteration's value should see the value that 3601 // the remainder loop uses to initialize its own IV. 3602 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3603 for (User *U : PostInc->users()) { 3604 Instruction *UI = cast<Instruction>(U); 3605 if (!OrigLoop->contains(UI)) { 3606 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3607 MissingVals[UI] = EndValue; 3608 } 3609 } 3610 3611 // An external user of the penultimate value need to see EndValue - Step. 3612 // The simplest way to get this is to recompute it from the constituent SCEVs, 3613 // that is Start + (Step * (CRD - 1)). 3614 for (User *U : OrigPhi->users()) { 3615 auto *UI = cast<Instruction>(U); 3616 if (!OrigLoop->contains(UI)) { 3617 const DataLayout &DL = 3618 OrigLoop->getHeader()->getModule()->getDataLayout(); 3619 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3620 3621 IRBuilder<> B(MiddleBlock->getTerminator()); 3622 3623 // Fast-math-flags propagate from the original induction instruction. 3624 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3625 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3626 3627 Value *CountMinusOne = B.CreateSub( 3628 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3629 Value *CMO = 3630 !II.getStep()->getType()->isIntegerTy() 3631 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3632 II.getStep()->getType()) 3633 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3634 CMO->setName("cast.cmo"); 3635 Value *Escape = 3636 emitTransformedIndex(B, CMO, PSE.getSE(), DL, II, LoopVectorBody); 3637 Escape->setName("ind.escape"); 3638 MissingVals[UI] = Escape; 3639 } 3640 } 3641 3642 for (auto &I : MissingVals) { 3643 PHINode *PHI = cast<PHINode>(I.first); 3644 // One corner case we have to handle is two IVs "chasing" each-other, 3645 // that is %IV2 = phi [...], [ %IV1, %latch ] 3646 // In this case, if IV1 has an external use, we need to avoid adding both 3647 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3648 // don't already have an incoming value for the middle block. 3649 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3650 PHI->addIncoming(I.second, MiddleBlock); 3651 } 3652 } 3653 3654 namespace { 3655 3656 struct CSEDenseMapInfo { 3657 static bool canHandle(const Instruction *I) { 3658 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3659 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3660 } 3661 3662 static inline Instruction *getEmptyKey() { 3663 return DenseMapInfo<Instruction *>::getEmptyKey(); 3664 } 3665 3666 static inline Instruction *getTombstoneKey() { 3667 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3668 } 3669 3670 static unsigned getHashValue(const Instruction *I) { 3671 assert(canHandle(I) && "Unknown instruction!"); 3672 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3673 I->value_op_end())); 3674 } 3675 3676 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3677 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3678 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3679 return LHS == RHS; 3680 return LHS->isIdenticalTo(RHS); 3681 } 3682 }; 3683 3684 } // end anonymous namespace 3685 3686 ///Perform cse of induction variable instructions. 3687 static void cse(BasicBlock *BB) { 3688 // Perform simple cse. 3689 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3690 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3691 if (!CSEDenseMapInfo::canHandle(&In)) 3692 continue; 3693 3694 // Check if we can replace this instruction with any of the 3695 // visited instructions. 3696 if (Instruction *V = CSEMap.lookup(&In)) { 3697 In.replaceAllUsesWith(V); 3698 In.eraseFromParent(); 3699 continue; 3700 } 3701 3702 CSEMap[&In] = &In; 3703 } 3704 } 3705 3706 InstructionCost 3707 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3708 bool &NeedToScalarize) const { 3709 Function *F = CI->getCalledFunction(); 3710 Type *ScalarRetTy = CI->getType(); 3711 SmallVector<Type *, 4> Tys, ScalarTys; 3712 for (auto &ArgOp : CI->args()) 3713 ScalarTys.push_back(ArgOp->getType()); 3714 3715 // Estimate cost of scalarized vector call. The source operands are assumed 3716 // to be vectors, so we need to extract individual elements from there, 3717 // execute VF scalar calls, and then gather the result into the vector return 3718 // value. 3719 InstructionCost ScalarCallCost = 3720 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3721 if (VF.isScalar()) 3722 return ScalarCallCost; 3723 3724 // Compute corresponding vector type for return value and arguments. 3725 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3726 for (Type *ScalarTy : ScalarTys) 3727 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3728 3729 // Compute costs of unpacking argument values for the scalar calls and 3730 // packing the return values to a vector. 3731 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3732 3733 InstructionCost Cost = 3734 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3735 3736 // If we can't emit a vector call for this function, then the currently found 3737 // cost is the cost we need to return. 3738 NeedToScalarize = true; 3739 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3740 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3741 3742 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3743 return Cost; 3744 3745 // If the corresponding vector cost is cheaper, return its cost. 3746 InstructionCost VectorCallCost = 3747 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3748 if (VectorCallCost < Cost) { 3749 NeedToScalarize = false; 3750 Cost = VectorCallCost; 3751 } 3752 return Cost; 3753 } 3754 3755 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3756 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3757 return Elt; 3758 return VectorType::get(Elt, VF); 3759 } 3760 3761 InstructionCost 3762 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3763 ElementCount VF) const { 3764 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3765 assert(ID && "Expected intrinsic call!"); 3766 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3767 FastMathFlags FMF; 3768 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3769 FMF = FPMO->getFastMathFlags(); 3770 3771 SmallVector<const Value *> Arguments(CI->args()); 3772 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3773 SmallVector<Type *> ParamTys; 3774 std::transform(FTy->param_begin(), FTy->param_end(), 3775 std::back_inserter(ParamTys), 3776 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3777 3778 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3779 dyn_cast<IntrinsicInst>(CI)); 3780 return TTI.getIntrinsicInstrCost(CostAttrs, 3781 TargetTransformInfo::TCK_RecipThroughput); 3782 } 3783 3784 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3785 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3786 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3787 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3788 } 3789 3790 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3791 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3792 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3793 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3794 } 3795 3796 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3797 // For every instruction `I` in MinBWs, truncate the operands, create a 3798 // truncated version of `I` and reextend its result. InstCombine runs 3799 // later and will remove any ext/trunc pairs. 3800 SmallPtrSet<Value *, 4> Erased; 3801 for (const auto &KV : Cost->getMinimalBitwidths()) { 3802 // If the value wasn't vectorized, we must maintain the original scalar 3803 // type. The absence of the value from State indicates that it 3804 // wasn't vectorized. 3805 // FIXME: Should not rely on getVPValue at this point. 3806 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3807 if (!State.hasAnyVectorValue(Def)) 3808 continue; 3809 for (unsigned Part = 0; Part < UF; ++Part) { 3810 Value *I = State.get(Def, Part); 3811 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3812 continue; 3813 Type *OriginalTy = I->getType(); 3814 Type *ScalarTruncatedTy = 3815 IntegerType::get(OriginalTy->getContext(), KV.second); 3816 auto *TruncatedTy = VectorType::get( 3817 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3818 if (TruncatedTy == OriginalTy) 3819 continue; 3820 3821 IRBuilder<> B(cast<Instruction>(I)); 3822 auto ShrinkOperand = [&](Value *V) -> Value * { 3823 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3824 if (ZI->getSrcTy() == TruncatedTy) 3825 return ZI->getOperand(0); 3826 return B.CreateZExtOrTrunc(V, TruncatedTy); 3827 }; 3828 3829 // The actual instruction modification depends on the instruction type, 3830 // unfortunately. 3831 Value *NewI = nullptr; 3832 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3833 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3834 ShrinkOperand(BO->getOperand(1))); 3835 3836 // Any wrapping introduced by shrinking this operation shouldn't be 3837 // considered undefined behavior. So, we can't unconditionally copy 3838 // arithmetic wrapping flags to NewI. 3839 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3840 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3841 NewI = 3842 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3843 ShrinkOperand(CI->getOperand(1))); 3844 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3845 NewI = B.CreateSelect(SI->getCondition(), 3846 ShrinkOperand(SI->getTrueValue()), 3847 ShrinkOperand(SI->getFalseValue())); 3848 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3849 switch (CI->getOpcode()) { 3850 default: 3851 llvm_unreachable("Unhandled cast!"); 3852 case Instruction::Trunc: 3853 NewI = ShrinkOperand(CI->getOperand(0)); 3854 break; 3855 case Instruction::SExt: 3856 NewI = B.CreateSExtOrTrunc( 3857 CI->getOperand(0), 3858 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3859 break; 3860 case Instruction::ZExt: 3861 NewI = B.CreateZExtOrTrunc( 3862 CI->getOperand(0), 3863 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3864 break; 3865 } 3866 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3867 auto Elements0 = 3868 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3869 auto *O0 = B.CreateZExtOrTrunc( 3870 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3871 auto Elements1 = 3872 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3873 auto *O1 = B.CreateZExtOrTrunc( 3874 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3875 3876 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3877 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3878 // Don't do anything with the operands, just extend the result. 3879 continue; 3880 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3881 auto Elements = 3882 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3883 auto *O0 = B.CreateZExtOrTrunc( 3884 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3885 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3886 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3887 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3888 auto Elements = 3889 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3890 auto *O0 = B.CreateZExtOrTrunc( 3891 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3892 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3893 } else { 3894 // If we don't know what to do, be conservative and don't do anything. 3895 continue; 3896 } 3897 3898 // Lastly, extend the result. 3899 NewI->takeName(cast<Instruction>(I)); 3900 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3901 I->replaceAllUsesWith(Res); 3902 cast<Instruction>(I)->eraseFromParent(); 3903 Erased.insert(I); 3904 State.reset(Def, Res, Part); 3905 } 3906 } 3907 3908 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3909 for (const auto &KV : Cost->getMinimalBitwidths()) { 3910 // If the value wasn't vectorized, we must maintain the original scalar 3911 // type. The absence of the value from State indicates that it 3912 // wasn't vectorized. 3913 // FIXME: Should not rely on getVPValue at this point. 3914 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3915 if (!State.hasAnyVectorValue(Def)) 3916 continue; 3917 for (unsigned Part = 0; Part < UF; ++Part) { 3918 Value *I = State.get(Def, Part); 3919 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3920 if (Inst && Inst->use_empty()) { 3921 Value *NewI = Inst->getOperand(0); 3922 Inst->eraseFromParent(); 3923 State.reset(Def, NewI, Part); 3924 } 3925 } 3926 } 3927 } 3928 3929 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 3930 // Insert truncates and extends for any truncated instructions as hints to 3931 // InstCombine. 3932 if (VF.isVector()) 3933 truncateToMinimalBitwidths(State); 3934 3935 // Fix widened non-induction PHIs by setting up the PHI operands. 3936 if (OrigPHIsToFix.size()) { 3937 assert(EnableVPlanNativePath && 3938 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3939 fixNonInductionPHIs(State); 3940 } 3941 3942 // At this point every instruction in the original loop is widened to a 3943 // vector form. Now we need to fix the recurrences in the loop. These PHI 3944 // nodes are currently empty because we did not want to introduce cycles. 3945 // This is the second stage of vectorizing recurrences. 3946 fixCrossIterationPHIs(State); 3947 3948 // Forget the original basic block. 3949 PSE.getSE()->forgetLoop(OrigLoop); 3950 3951 // If we inserted an edge from the middle block to the unique exit block, 3952 // update uses outside the loop (phis) to account for the newly inserted 3953 // edge. 3954 if (!Cost->requiresScalarEpilogue(VF)) { 3955 // Fix-up external users of the induction variables. 3956 for (auto &Entry : Legal->getInductionVars()) 3957 fixupIVUsers(Entry.first, Entry.second, 3958 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3959 IVEndValues[Entry.first], LoopMiddleBlock); 3960 3961 fixLCSSAPHIs(State); 3962 } 3963 3964 for (Instruction *PI : PredicatedInstructions) 3965 sinkScalarOperands(&*PI); 3966 3967 // Remove redundant induction instructions. 3968 cse(LoopVectorBody); 3969 3970 // Set/update profile weights for the vector and remainder loops as original 3971 // loop iterations are now distributed among them. Note that original loop 3972 // represented by LoopScalarBody becomes remainder loop after vectorization. 3973 // 3974 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3975 // end up getting slightly roughened result but that should be OK since 3976 // profile is not inherently precise anyway. Note also possible bypass of 3977 // vector code caused by legality checks is ignored, assigning all the weight 3978 // to the vector loop, optimistically. 3979 // 3980 // For scalable vectorization we can't know at compile time how many iterations 3981 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3982 // vscale of '1'. 3983 setProfileInfoAfterUnrolling( 3984 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 3985 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 3986 } 3987 3988 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 3989 // In order to support recurrences we need to be able to vectorize Phi nodes. 3990 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3991 // stage #2: We now need to fix the recurrences by adding incoming edges to 3992 // the currently empty PHI nodes. At this point every instruction in the 3993 // original loop is widened to a vector form so we can use them to construct 3994 // the incoming edges. 3995 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 3996 for (VPRecipeBase &R : Header->phis()) { 3997 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 3998 fixReduction(ReductionPhi, State); 3999 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 4000 fixFirstOrderRecurrence(FOR, State); 4001 } 4002 } 4003 4004 void InnerLoopVectorizer::fixFirstOrderRecurrence( 4005 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 4006 // This is the second phase of vectorizing first-order recurrences. An 4007 // overview of the transformation is described below. Suppose we have the 4008 // following loop. 4009 // 4010 // for (int i = 0; i < n; ++i) 4011 // b[i] = a[i] - a[i - 1]; 4012 // 4013 // There is a first-order recurrence on "a". For this loop, the shorthand 4014 // scalar IR looks like: 4015 // 4016 // scalar.ph: 4017 // s_init = a[-1] 4018 // br scalar.body 4019 // 4020 // scalar.body: 4021 // i = phi [0, scalar.ph], [i+1, scalar.body] 4022 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4023 // s2 = a[i] 4024 // b[i] = s2 - s1 4025 // br cond, scalar.body, ... 4026 // 4027 // In this example, s1 is a recurrence because it's value depends on the 4028 // previous iteration. In the first phase of vectorization, we created a 4029 // vector phi v1 for s1. We now complete the vectorization and produce the 4030 // shorthand vector IR shown below (for VF = 4, UF = 1). 4031 // 4032 // vector.ph: 4033 // v_init = vector(..., ..., ..., a[-1]) 4034 // br vector.body 4035 // 4036 // vector.body 4037 // i = phi [0, vector.ph], [i+4, vector.body] 4038 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4039 // v2 = a[i, i+1, i+2, i+3]; 4040 // v3 = vector(v1(3), v2(0, 1, 2)) 4041 // b[i, i+1, i+2, i+3] = v2 - v3 4042 // br cond, vector.body, middle.block 4043 // 4044 // middle.block: 4045 // x = v2(3) 4046 // br scalar.ph 4047 // 4048 // scalar.ph: 4049 // s_init = phi [x, middle.block], [a[-1], otherwise] 4050 // br scalar.body 4051 // 4052 // After execution completes the vector loop, we extract the next value of 4053 // the recurrence (x) to use as the initial value in the scalar loop. 4054 4055 // Extract the last vector element in the middle block. This will be the 4056 // initial value for the recurrence when jumping to the scalar loop. 4057 VPValue *PreviousDef = PhiR->getBackedgeValue(); 4058 Value *Incoming = State.get(PreviousDef, UF - 1); 4059 auto *ExtractForScalar = Incoming; 4060 auto *IdxTy = Builder.getInt32Ty(); 4061 if (VF.isVector()) { 4062 auto *One = ConstantInt::get(IdxTy, 1); 4063 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4064 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4065 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4066 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4067 "vector.recur.extract"); 4068 } 4069 // Extract the second last element in the middle block if the 4070 // Phi is used outside the loop. We need to extract the phi itself 4071 // and not the last element (the phi update in the current iteration). This 4072 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4073 // when the scalar loop is not run at all. 4074 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4075 if (VF.isVector()) { 4076 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4077 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4078 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4079 Incoming, Idx, "vector.recur.extract.for.phi"); 4080 } else if (UF > 1) 4081 // When loop is unrolled without vectorizing, initialize 4082 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4083 // of `Incoming`. This is analogous to the vectorized case above: extracting 4084 // the second last element when VF > 1. 4085 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4086 4087 // Fix the initial value of the original recurrence in the scalar loop. 4088 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4089 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 4090 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4091 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 4092 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4093 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4094 Start->addIncoming(Incoming, BB); 4095 } 4096 4097 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4098 Phi->setName("scalar.recur"); 4099 4100 // Finally, fix users of the recurrence outside the loop. The users will need 4101 // either the last value of the scalar recurrence or the last value of the 4102 // vector recurrence we extracted in the middle block. Since the loop is in 4103 // LCSSA form, we just need to find all the phi nodes for the original scalar 4104 // recurrence in the exit block, and then add an edge for the middle block. 4105 // Note that LCSSA does not imply single entry when the original scalar loop 4106 // had multiple exiting edges (as we always run the last iteration in the 4107 // scalar epilogue); in that case, there is no edge from middle to exit and 4108 // and thus no phis which needed updated. 4109 if (!Cost->requiresScalarEpilogue(VF)) 4110 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4111 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) 4112 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4113 } 4114 4115 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 4116 VPTransformState &State) { 4117 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4118 // Get it's reduction variable descriptor. 4119 assert(Legal->isReductionVariable(OrigPhi) && 4120 "Unable to find the reduction variable"); 4121 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4122 4123 RecurKind RK = RdxDesc.getRecurrenceKind(); 4124 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4125 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4126 setDebugLocFromInst(ReductionStartValue); 4127 4128 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 4129 // This is the vector-clone of the value that leaves the loop. 4130 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4131 4132 // Wrap flags are in general invalid after vectorization, clear them. 4133 clearReductionWrapFlags(RdxDesc, State); 4134 4135 // Before each round, move the insertion point right between 4136 // the PHIs and the values we are going to write. 4137 // This allows us to write both PHINodes and the extractelement 4138 // instructions. 4139 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4140 4141 setDebugLocFromInst(LoopExitInst); 4142 4143 Type *PhiTy = OrigPhi->getType(); 4144 // If tail is folded by masking, the vector value to leave the loop should be 4145 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4146 // instead of the former. For an inloop reduction the reduction will already 4147 // be predicated, and does not need to be handled here. 4148 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 4149 for (unsigned Part = 0; Part < UF; ++Part) { 4150 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4151 Value *Sel = nullptr; 4152 for (User *U : VecLoopExitInst->users()) { 4153 if (isa<SelectInst>(U)) { 4154 assert(!Sel && "Reduction exit feeding two selects"); 4155 Sel = U; 4156 } else 4157 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4158 } 4159 assert(Sel && "Reduction exit feeds no select"); 4160 State.reset(LoopExitInstDef, Sel, Part); 4161 4162 // If the target can create a predicated operator for the reduction at no 4163 // extra cost in the loop (for example a predicated vadd), it can be 4164 // cheaper for the select to remain in the loop than be sunk out of it, 4165 // and so use the select value for the phi instead of the old 4166 // LoopExitValue. 4167 if (PreferPredicatedReductionSelect || 4168 TTI->preferPredicatedReductionSelect( 4169 RdxDesc.getOpcode(), PhiTy, 4170 TargetTransformInfo::ReductionFlags())) { 4171 auto *VecRdxPhi = 4172 cast<PHINode>(State.get(PhiR, Part)); 4173 VecRdxPhi->setIncomingValueForBlock( 4174 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4175 } 4176 } 4177 } 4178 4179 // If the vector reduction can be performed in a smaller type, we truncate 4180 // then extend the loop exit value to enable InstCombine to evaluate the 4181 // entire expression in the smaller type. 4182 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4183 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 4184 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4185 Builder.SetInsertPoint( 4186 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4187 VectorParts RdxParts(UF); 4188 for (unsigned Part = 0; Part < UF; ++Part) { 4189 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4190 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4191 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4192 : Builder.CreateZExt(Trunc, VecTy); 4193 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 4194 if (U != Trunc) { 4195 U->replaceUsesOfWith(RdxParts[Part], Extnd); 4196 RdxParts[Part] = Extnd; 4197 } 4198 } 4199 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4200 for (unsigned Part = 0; Part < UF; ++Part) { 4201 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4202 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4203 } 4204 } 4205 4206 // Reduce all of the unrolled parts into a single vector. 4207 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4208 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4209 4210 // The middle block terminator has already been assigned a DebugLoc here (the 4211 // OrigLoop's single latch terminator). We want the whole middle block to 4212 // appear to execute on this line because: (a) it is all compiler generated, 4213 // (b) these instructions are always executed after evaluating the latch 4214 // conditional branch, and (c) other passes may add new predecessors which 4215 // terminate on this line. This is the easiest way to ensure we don't 4216 // accidentally cause an extra step back into the loop while debugging. 4217 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 4218 if (PhiR->isOrdered()) 4219 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4220 else { 4221 // Floating-point operations should have some FMF to enable the reduction. 4222 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4223 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4224 for (unsigned Part = 1; Part < UF; ++Part) { 4225 Value *RdxPart = State.get(LoopExitInstDef, Part); 4226 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4227 ReducedPartRdx = Builder.CreateBinOp( 4228 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4229 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 4230 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 4231 ReducedPartRdx, RdxPart); 4232 else 4233 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4234 } 4235 } 4236 4237 // Create the reduction after the loop. Note that inloop reductions create the 4238 // target reduction in the loop using a Reduction recipe. 4239 if (VF.isVector() && !PhiR->isInLoop()) { 4240 ReducedPartRdx = 4241 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 4242 // If the reduction can be performed in a smaller type, we need to extend 4243 // the reduction to the wider type before we branch to the original loop. 4244 if (PhiTy != RdxDesc.getRecurrenceType()) 4245 ReducedPartRdx = RdxDesc.isSigned() 4246 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4247 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4248 } 4249 4250 PHINode *ResumePhi = 4251 dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue()); 4252 4253 // Create a phi node that merges control-flow from the backedge-taken check 4254 // block and the middle block. 4255 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4256 LoopScalarPreHeader->getTerminator()); 4257 4258 // If we are fixing reductions in the epilogue loop then we should already 4259 // have created a bc.merge.rdx Phi after the main vector body. Ensure that 4260 // we carry over the incoming values correctly. 4261 for (auto *Incoming : predecessors(LoopScalarPreHeader)) { 4262 if (Incoming == LoopMiddleBlock) 4263 BCBlockPhi->addIncoming(ReducedPartRdx, Incoming); 4264 else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming)) 4265 BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming), 4266 Incoming); 4267 else 4268 BCBlockPhi->addIncoming(ReductionStartValue, Incoming); 4269 } 4270 4271 // Set the resume value for this reduction 4272 ReductionResumeValues.insert({&RdxDesc, BCBlockPhi}); 4273 4274 // Now, we need to fix the users of the reduction variable 4275 // inside and outside of the scalar remainder loop. 4276 4277 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4278 // in the exit blocks. See comment on analogous loop in 4279 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4280 if (!Cost->requiresScalarEpilogue(VF)) 4281 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4282 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) 4283 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4284 4285 // Fix the scalar loop reduction variable with the incoming reduction sum 4286 // from the vector body and from the backedge value. 4287 int IncomingEdgeBlockIdx = 4288 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4289 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4290 // Pick the other block. 4291 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4292 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4293 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4294 } 4295 4296 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4297 VPTransformState &State) { 4298 RecurKind RK = RdxDesc.getRecurrenceKind(); 4299 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4300 return; 4301 4302 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4303 assert(LoopExitInstr && "null loop exit instruction"); 4304 SmallVector<Instruction *, 8> Worklist; 4305 SmallPtrSet<Instruction *, 8> Visited; 4306 Worklist.push_back(LoopExitInstr); 4307 Visited.insert(LoopExitInstr); 4308 4309 while (!Worklist.empty()) { 4310 Instruction *Cur = Worklist.pop_back_val(); 4311 if (isa<OverflowingBinaryOperator>(Cur)) 4312 for (unsigned Part = 0; Part < UF; ++Part) { 4313 // FIXME: Should not rely on getVPValue at this point. 4314 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4315 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4316 } 4317 4318 for (User *U : Cur->users()) { 4319 Instruction *UI = cast<Instruction>(U); 4320 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4321 Visited.insert(UI).second) 4322 Worklist.push_back(UI); 4323 } 4324 } 4325 } 4326 4327 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4328 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4329 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4330 // Some phis were already hand updated by the reduction and recurrence 4331 // code above, leave them alone. 4332 continue; 4333 4334 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4335 // Non-instruction incoming values will have only one value. 4336 4337 VPLane Lane = VPLane::getFirstLane(); 4338 if (isa<Instruction>(IncomingValue) && 4339 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4340 VF)) 4341 Lane = VPLane::getLastLaneForVF(VF); 4342 4343 // Can be a loop invariant incoming value or the last scalar value to be 4344 // extracted from the vectorized loop. 4345 // FIXME: Should not rely on getVPValue at this point. 4346 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4347 Value *lastIncomingValue = 4348 OrigLoop->isLoopInvariant(IncomingValue) 4349 ? IncomingValue 4350 : State.get(State.Plan->getVPValue(IncomingValue, true), 4351 VPIteration(UF - 1, Lane)); 4352 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4353 } 4354 } 4355 4356 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4357 // The basic block and loop containing the predicated instruction. 4358 auto *PredBB = PredInst->getParent(); 4359 auto *VectorLoop = LI->getLoopFor(PredBB); 4360 4361 // Initialize a worklist with the operands of the predicated instruction. 4362 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4363 4364 // Holds instructions that we need to analyze again. An instruction may be 4365 // reanalyzed if we don't yet know if we can sink it or not. 4366 SmallVector<Instruction *, 8> InstsToReanalyze; 4367 4368 // Returns true if a given use occurs in the predicated block. Phi nodes use 4369 // their operands in their corresponding predecessor blocks. 4370 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4371 auto *I = cast<Instruction>(U.getUser()); 4372 BasicBlock *BB = I->getParent(); 4373 if (auto *Phi = dyn_cast<PHINode>(I)) 4374 BB = Phi->getIncomingBlock( 4375 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4376 return BB == PredBB; 4377 }; 4378 4379 // Iteratively sink the scalarized operands of the predicated instruction 4380 // into the block we created for it. When an instruction is sunk, it's 4381 // operands are then added to the worklist. The algorithm ends after one pass 4382 // through the worklist doesn't sink a single instruction. 4383 bool Changed; 4384 do { 4385 // Add the instructions that need to be reanalyzed to the worklist, and 4386 // reset the changed indicator. 4387 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4388 InstsToReanalyze.clear(); 4389 Changed = false; 4390 4391 while (!Worklist.empty()) { 4392 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4393 4394 // We can't sink an instruction if it is a phi node, is not in the loop, 4395 // or may have side effects. 4396 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4397 I->mayHaveSideEffects()) 4398 continue; 4399 4400 // If the instruction is already in PredBB, check if we can sink its 4401 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4402 // sinking the scalar instruction I, hence it appears in PredBB; but it 4403 // may have failed to sink I's operands (recursively), which we try 4404 // (again) here. 4405 if (I->getParent() == PredBB) { 4406 Worklist.insert(I->op_begin(), I->op_end()); 4407 continue; 4408 } 4409 4410 // It's legal to sink the instruction if all its uses occur in the 4411 // predicated block. Otherwise, there's nothing to do yet, and we may 4412 // need to reanalyze the instruction. 4413 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4414 InstsToReanalyze.push_back(I); 4415 continue; 4416 } 4417 4418 // Move the instruction to the beginning of the predicated block, and add 4419 // it's operands to the worklist. 4420 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4421 Worklist.insert(I->op_begin(), I->op_end()); 4422 4423 // The sinking may have enabled other instructions to be sunk, so we will 4424 // need to iterate. 4425 Changed = true; 4426 } 4427 } while (Changed); 4428 } 4429 4430 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4431 for (PHINode *OrigPhi : OrigPHIsToFix) { 4432 VPWidenPHIRecipe *VPPhi = 4433 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4434 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4435 // Make sure the builder has a valid insert point. 4436 Builder.SetInsertPoint(NewPhi); 4437 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4438 VPValue *Inc = VPPhi->getIncomingValue(i); 4439 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4440 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4441 } 4442 } 4443 } 4444 4445 bool InnerLoopVectorizer::useOrderedReductions( 4446 const RecurrenceDescriptor &RdxDesc) { 4447 return Cost->useOrderedReductions(RdxDesc); 4448 } 4449 4450 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4451 VPWidenPHIRecipe *PhiR, 4452 VPTransformState &State) { 4453 PHINode *P = cast<PHINode>(PN); 4454 if (EnableVPlanNativePath) { 4455 // Currently we enter here in the VPlan-native path for non-induction 4456 // PHIs where all control flow is uniform. We simply widen these PHIs. 4457 // Create a vector phi with no operands - the vector phi operands will be 4458 // set at the end of vector code generation. 4459 Type *VecTy = (State.VF.isScalar()) 4460 ? PN->getType() 4461 : VectorType::get(PN->getType(), State.VF); 4462 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4463 State.set(PhiR, VecPhi, 0); 4464 OrigPHIsToFix.push_back(P); 4465 4466 return; 4467 } 4468 4469 assert(PN->getParent() == OrigLoop->getHeader() && 4470 "Non-header phis should have been handled elsewhere"); 4471 4472 // In order to support recurrences we need to be able to vectorize Phi nodes. 4473 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4474 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4475 // this value when we vectorize all of the instructions that use the PHI. 4476 4477 assert(!Legal->isReductionVariable(P) && 4478 "reductions should be handled elsewhere"); 4479 4480 setDebugLocFromInst(P); 4481 4482 // This PHINode must be an induction variable. 4483 // Make sure that we know about it. 4484 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4485 4486 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4487 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4488 4489 auto *IVR = PhiR->getParent()->getPlan()->getCanonicalIV(); 4490 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 4491 4492 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4493 // which can be found from the original scalar operations. 4494 switch (II.getKind()) { 4495 case InductionDescriptor::IK_NoInduction: 4496 llvm_unreachable("Unknown induction"); 4497 case InductionDescriptor::IK_IntInduction: 4498 case InductionDescriptor::IK_FpInduction: 4499 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4500 case InductionDescriptor::IK_PtrInduction: { 4501 // Handle the pointer induction variable case. 4502 assert(P->getType()->isPointerTy() && "Unexpected type."); 4503 4504 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4505 // This is the normalized GEP that starts counting at zero. 4506 Value *PtrInd = 4507 Builder.CreateSExtOrTrunc(CanonicalIV, II.getStep()->getType()); 4508 // Determine the number of scalars we need to generate for each unroll 4509 // iteration. If the instruction is uniform, we only need to generate the 4510 // first lane. Otherwise, we generate all VF values. 4511 bool IsUniform = vputils::onlyFirstLaneUsed(PhiR); 4512 assert((IsUniform || !State.VF.isScalable()) && 4513 "Cannot scalarize a scalable VF"); 4514 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 4515 4516 for (unsigned Part = 0; Part < UF; ++Part) { 4517 Value *PartStart = 4518 createStepForVF(Builder, PtrInd->getType(), VF, Part); 4519 4520 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4521 Value *Idx = Builder.CreateAdd( 4522 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4523 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4524 Value *SclrGep = emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), 4525 DL, II, State.CFG.PrevBB); 4526 SclrGep->setName("next.gep"); 4527 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4528 } 4529 } 4530 return; 4531 } 4532 assert(isa<SCEVConstant>(II.getStep()) && 4533 "Induction step not a SCEV constant!"); 4534 Type *PhiType = II.getStep()->getType(); 4535 4536 // Build a pointer phi 4537 Value *ScalarStartValue = PhiR->getStartValue()->getLiveInIRValue(); 4538 Type *ScStValueType = ScalarStartValue->getType(); 4539 PHINode *NewPointerPhi = 4540 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 4541 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4542 4543 // A pointer induction, performed by using a gep 4544 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4545 Instruction *InductionLoc = LoopLatch->getTerminator(); 4546 const SCEV *ScalarStep = II.getStep(); 4547 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4548 Value *ScalarStepValue = 4549 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4550 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4551 Value *NumUnrolledElems = 4552 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4553 Value *InductionGEP = GetElementPtrInst::Create( 4554 II.getElementType(), NewPointerPhi, 4555 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4556 InductionLoc); 4557 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4558 4559 // Create UF many actual address geps that use the pointer 4560 // phi as base and a vectorized version of the step value 4561 // (<step*0, ..., step*N>) as offset. 4562 for (unsigned Part = 0; Part < State.UF; ++Part) { 4563 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4564 Value *StartOffsetScalar = 4565 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4566 Value *StartOffset = 4567 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4568 // Create a vector of consecutive numbers from zero to VF. 4569 StartOffset = 4570 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4571 4572 Value *GEP = Builder.CreateGEP( 4573 II.getElementType(), NewPointerPhi, 4574 Builder.CreateMul( 4575 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4576 "vector.gep")); 4577 State.set(PhiR, GEP, Part); 4578 } 4579 } 4580 } 4581 } 4582 4583 /// A helper function for checking whether an integer division-related 4584 /// instruction may divide by zero (in which case it must be predicated if 4585 /// executed conditionally in the scalar code). 4586 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4587 /// Non-zero divisors that are non compile-time constants will not be 4588 /// converted into multiplication, so we will still end up scalarizing 4589 /// the division, but can do so w/o predication. 4590 static bool mayDivideByZero(Instruction &I) { 4591 assert((I.getOpcode() == Instruction::UDiv || 4592 I.getOpcode() == Instruction::SDiv || 4593 I.getOpcode() == Instruction::URem || 4594 I.getOpcode() == Instruction::SRem) && 4595 "Unexpected instruction"); 4596 Value *Divisor = I.getOperand(1); 4597 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4598 return !CInt || CInt->isZero(); 4599 } 4600 4601 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4602 VPUser &ArgOperands, 4603 VPTransformState &State) { 4604 assert(!isa<DbgInfoIntrinsic>(I) && 4605 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4606 setDebugLocFromInst(&I); 4607 4608 Module *M = I.getParent()->getParent()->getParent(); 4609 auto *CI = cast<CallInst>(&I); 4610 4611 SmallVector<Type *, 4> Tys; 4612 for (Value *ArgOperand : CI->args()) 4613 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4614 4615 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4616 4617 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4618 // version of the instruction. 4619 // Is it beneficial to perform intrinsic call compared to lib call? 4620 bool NeedToScalarize = false; 4621 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4622 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4623 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4624 assert((UseVectorIntrinsic || !NeedToScalarize) && 4625 "Instruction should be scalarized elsewhere."); 4626 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4627 "Either the intrinsic cost or vector call cost must be valid"); 4628 4629 for (unsigned Part = 0; Part < UF; ++Part) { 4630 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4631 SmallVector<Value *, 4> Args; 4632 for (auto &I : enumerate(ArgOperands.operands())) { 4633 // Some intrinsics have a scalar argument - don't replace it with a 4634 // vector. 4635 Value *Arg; 4636 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4637 Arg = State.get(I.value(), Part); 4638 else { 4639 Arg = State.get(I.value(), VPIteration(0, 0)); 4640 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 4641 TysForDecl.push_back(Arg->getType()); 4642 } 4643 Args.push_back(Arg); 4644 } 4645 4646 Function *VectorF; 4647 if (UseVectorIntrinsic) { 4648 // Use vector version of the intrinsic. 4649 if (VF.isVector()) 4650 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4651 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4652 assert(VectorF && "Can't retrieve vector intrinsic."); 4653 } else { 4654 // Use vector version of the function call. 4655 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4656 #ifndef NDEBUG 4657 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4658 "Can't create vector function."); 4659 #endif 4660 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4661 } 4662 SmallVector<OperandBundleDef, 1> OpBundles; 4663 CI->getOperandBundlesAsDefs(OpBundles); 4664 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4665 4666 if (isa<FPMathOperator>(V)) 4667 V->copyFastMathFlags(CI); 4668 4669 State.set(Def, V, Part); 4670 addMetadata(V, &I); 4671 } 4672 } 4673 4674 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4675 // We should not collect Scalars more than once per VF. Right now, this 4676 // function is called from collectUniformsAndScalars(), which already does 4677 // this check. Collecting Scalars for VF=1 does not make any sense. 4678 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4679 "This function should not be visited twice for the same VF"); 4680 4681 SmallSetVector<Instruction *, 8> Worklist; 4682 4683 // These sets are used to seed the analysis with pointers used by memory 4684 // accesses that will remain scalar. 4685 SmallSetVector<Instruction *, 8> ScalarPtrs; 4686 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4687 auto *Latch = TheLoop->getLoopLatch(); 4688 4689 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4690 // The pointer operands of loads and stores will be scalar as long as the 4691 // memory access is not a gather or scatter operation. The value operand of a 4692 // store will remain scalar if the store is scalarized. 4693 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4694 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4695 assert(WideningDecision != CM_Unknown && 4696 "Widening decision should be ready at this moment"); 4697 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4698 if (Ptr == Store->getValueOperand()) 4699 return WideningDecision == CM_Scalarize; 4700 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4701 "Ptr is neither a value or pointer operand"); 4702 return WideningDecision != CM_GatherScatter; 4703 }; 4704 4705 // A helper that returns true if the given value is a bitcast or 4706 // getelementptr instruction contained in the loop. 4707 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4708 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4709 isa<GetElementPtrInst>(V)) && 4710 !TheLoop->isLoopInvariant(V); 4711 }; 4712 4713 // A helper that evaluates a memory access's use of a pointer. If the use will 4714 // be a scalar use and the pointer is only used by memory accesses, we place 4715 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4716 // PossibleNonScalarPtrs. 4717 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4718 // We only care about bitcast and getelementptr instructions contained in 4719 // the loop. 4720 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4721 return; 4722 4723 // If the pointer has already been identified as scalar (e.g., if it was 4724 // also identified as uniform), there's nothing to do. 4725 auto *I = cast<Instruction>(Ptr); 4726 if (Worklist.count(I)) 4727 return; 4728 4729 // If the use of the pointer will be a scalar use, and all users of the 4730 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4731 // place the pointer in PossibleNonScalarPtrs. 4732 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4733 return isa<LoadInst>(U) || isa<StoreInst>(U); 4734 })) 4735 ScalarPtrs.insert(I); 4736 else 4737 PossibleNonScalarPtrs.insert(I); 4738 }; 4739 4740 // We seed the scalars analysis with three classes of instructions: (1) 4741 // instructions marked uniform-after-vectorization and (2) bitcast, 4742 // getelementptr and (pointer) phi instructions used by memory accesses 4743 // requiring a scalar use. 4744 // 4745 // (1) Add to the worklist all instructions that have been identified as 4746 // uniform-after-vectorization. 4747 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4748 4749 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4750 // memory accesses requiring a scalar use. The pointer operands of loads and 4751 // stores will be scalar as long as the memory accesses is not a gather or 4752 // scatter operation. The value operand of a store will remain scalar if the 4753 // store is scalarized. 4754 for (auto *BB : TheLoop->blocks()) 4755 for (auto &I : *BB) { 4756 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4757 evaluatePtrUse(Load, Load->getPointerOperand()); 4758 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4759 evaluatePtrUse(Store, Store->getPointerOperand()); 4760 evaluatePtrUse(Store, Store->getValueOperand()); 4761 } 4762 } 4763 for (auto *I : ScalarPtrs) 4764 if (!PossibleNonScalarPtrs.count(I)) { 4765 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4766 Worklist.insert(I); 4767 } 4768 4769 // Insert the forced scalars. 4770 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4771 // induction variable when the PHI user is scalarized. 4772 auto ForcedScalar = ForcedScalars.find(VF); 4773 if (ForcedScalar != ForcedScalars.end()) 4774 for (auto *I : ForcedScalar->second) 4775 Worklist.insert(I); 4776 4777 // Expand the worklist by looking through any bitcasts and getelementptr 4778 // instructions we've already identified as scalar. This is similar to the 4779 // expansion step in collectLoopUniforms(); however, here we're only 4780 // expanding to include additional bitcasts and getelementptr instructions. 4781 unsigned Idx = 0; 4782 while (Idx != Worklist.size()) { 4783 Instruction *Dst = Worklist[Idx++]; 4784 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4785 continue; 4786 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4787 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4788 auto *J = cast<Instruction>(U); 4789 return !TheLoop->contains(J) || Worklist.count(J) || 4790 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4791 isScalarUse(J, Src)); 4792 })) { 4793 Worklist.insert(Src); 4794 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4795 } 4796 } 4797 4798 // An induction variable will remain scalar if all users of the induction 4799 // variable and induction variable update remain scalar. 4800 for (auto &Induction : Legal->getInductionVars()) { 4801 auto *Ind = Induction.first; 4802 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4803 4804 // If tail-folding is applied, the primary induction variable will be used 4805 // to feed a vector compare. 4806 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4807 continue; 4808 4809 // Returns true if \p Indvar is a pointer induction that is used directly by 4810 // load/store instruction \p I. 4811 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4812 Instruction *I) { 4813 return Induction.second.getKind() == 4814 InductionDescriptor::IK_PtrInduction && 4815 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4816 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4817 }; 4818 4819 // Determine if all users of the induction variable are scalar after 4820 // vectorization. 4821 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4822 auto *I = cast<Instruction>(U); 4823 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4824 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4825 }); 4826 if (!ScalarInd) 4827 continue; 4828 4829 // Determine if all users of the induction variable update instruction are 4830 // scalar after vectorization. 4831 auto ScalarIndUpdate = 4832 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4833 auto *I = cast<Instruction>(U); 4834 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4835 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4836 }); 4837 if (!ScalarIndUpdate) 4838 continue; 4839 4840 // The induction variable and its update instruction will remain scalar. 4841 Worklist.insert(Ind); 4842 Worklist.insert(IndUpdate); 4843 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4844 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4845 << "\n"); 4846 } 4847 4848 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4849 } 4850 4851 bool LoopVectorizationCostModel::isScalarWithPredication( 4852 Instruction *I, ElementCount VF) const { 4853 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4854 return false; 4855 switch(I->getOpcode()) { 4856 default: 4857 break; 4858 case Instruction::Load: 4859 case Instruction::Store: { 4860 if (!Legal->isMaskRequired(I)) 4861 return false; 4862 auto *Ptr = getLoadStorePointerOperand(I); 4863 auto *Ty = getLoadStoreType(I); 4864 Type *VTy = Ty; 4865 if (VF.isVector()) 4866 VTy = VectorType::get(Ty, VF); 4867 const Align Alignment = getLoadStoreAlignment(I); 4868 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4869 TTI.isLegalMaskedGather(VTy, Alignment)) 4870 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4871 TTI.isLegalMaskedScatter(VTy, Alignment)); 4872 } 4873 case Instruction::UDiv: 4874 case Instruction::SDiv: 4875 case Instruction::SRem: 4876 case Instruction::URem: 4877 return mayDivideByZero(*I); 4878 } 4879 return false; 4880 } 4881 4882 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4883 Instruction *I, ElementCount VF) { 4884 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4885 assert(getWideningDecision(I, VF) == CM_Unknown && 4886 "Decision should not be set yet."); 4887 auto *Group = getInterleavedAccessGroup(I); 4888 assert(Group && "Must have a group."); 4889 4890 // If the instruction's allocated size doesn't equal it's type size, it 4891 // requires padding and will be scalarized. 4892 auto &DL = I->getModule()->getDataLayout(); 4893 auto *ScalarTy = getLoadStoreType(I); 4894 if (hasIrregularType(ScalarTy, DL)) 4895 return false; 4896 4897 // Check if masking is required. 4898 // A Group may need masking for one of two reasons: it resides in a block that 4899 // needs predication, or it was decided to use masking to deal with gaps 4900 // (either a gap at the end of a load-access that may result in a speculative 4901 // load, or any gaps in a store-access). 4902 bool PredicatedAccessRequiresMasking = 4903 blockNeedsPredicationForAnyReason(I->getParent()) && 4904 Legal->isMaskRequired(I); 4905 bool LoadAccessWithGapsRequiresEpilogMasking = 4906 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4907 !isScalarEpilogueAllowed(); 4908 bool StoreAccessWithGapsRequiresMasking = 4909 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4910 if (!PredicatedAccessRequiresMasking && 4911 !LoadAccessWithGapsRequiresEpilogMasking && 4912 !StoreAccessWithGapsRequiresMasking) 4913 return true; 4914 4915 // If masked interleaving is required, we expect that the user/target had 4916 // enabled it, because otherwise it either wouldn't have been created or 4917 // it should have been invalidated by the CostModel. 4918 assert(useMaskedInterleavedAccesses(TTI) && 4919 "Masked interleave-groups for predicated accesses are not enabled."); 4920 4921 if (Group->isReverse()) 4922 return false; 4923 4924 auto *Ty = getLoadStoreType(I); 4925 const Align Alignment = getLoadStoreAlignment(I); 4926 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4927 : TTI.isLegalMaskedStore(Ty, Alignment); 4928 } 4929 4930 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4931 Instruction *I, ElementCount VF) { 4932 // Get and ensure we have a valid memory instruction. 4933 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4934 4935 auto *Ptr = getLoadStorePointerOperand(I); 4936 auto *ScalarTy = getLoadStoreType(I); 4937 4938 // In order to be widened, the pointer should be consecutive, first of all. 4939 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4940 return false; 4941 4942 // If the instruction is a store located in a predicated block, it will be 4943 // scalarized. 4944 if (isScalarWithPredication(I, VF)) 4945 return false; 4946 4947 // If the instruction's allocated size doesn't equal it's type size, it 4948 // requires padding and will be scalarized. 4949 auto &DL = I->getModule()->getDataLayout(); 4950 if (hasIrregularType(ScalarTy, DL)) 4951 return false; 4952 4953 return true; 4954 } 4955 4956 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4957 // We should not collect Uniforms more than once per VF. Right now, 4958 // this function is called from collectUniformsAndScalars(), which 4959 // already does this check. Collecting Uniforms for VF=1 does not make any 4960 // sense. 4961 4962 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 4963 "This function should not be visited twice for the same VF"); 4964 4965 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4966 // not analyze again. Uniforms.count(VF) will return 1. 4967 Uniforms[VF].clear(); 4968 4969 // We now know that the loop is vectorizable! 4970 // Collect instructions inside the loop that will remain uniform after 4971 // vectorization. 4972 4973 // Global values, params and instructions outside of current loop are out of 4974 // scope. 4975 auto isOutOfScope = [&](Value *V) -> bool { 4976 Instruction *I = dyn_cast<Instruction>(V); 4977 return (!I || !TheLoop->contains(I)); 4978 }; 4979 4980 // Worklist containing uniform instructions demanding lane 0. 4981 SetVector<Instruction *> Worklist; 4982 BasicBlock *Latch = TheLoop->getLoopLatch(); 4983 4984 // Add uniform instructions demanding lane 0 to the worklist. Instructions 4985 // that are scalar with predication must not be considered uniform after 4986 // vectorization, because that would create an erroneous replicating region 4987 // where only a single instance out of VF should be formed. 4988 // TODO: optimize such seldom cases if found important, see PR40816. 4989 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4990 if (isOutOfScope(I)) { 4991 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 4992 << *I << "\n"); 4993 return; 4994 } 4995 if (isScalarWithPredication(I, VF)) { 4996 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4997 << *I << "\n"); 4998 return; 4999 } 5000 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5001 Worklist.insert(I); 5002 }; 5003 5004 // Start with the conditional branch. If the branch condition is an 5005 // instruction contained in the loop that is only used by the branch, it is 5006 // uniform. 5007 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5008 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5009 addToWorklistIfAllowed(Cmp); 5010 5011 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5012 InstWidening WideningDecision = getWideningDecision(I, VF); 5013 assert(WideningDecision != CM_Unknown && 5014 "Widening decision should be ready at this moment"); 5015 5016 // A uniform memory op is itself uniform. We exclude uniform stores 5017 // here as they demand the last lane, not the first one. 5018 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5019 assert(WideningDecision == CM_Scalarize); 5020 return true; 5021 } 5022 5023 return (WideningDecision == CM_Widen || 5024 WideningDecision == CM_Widen_Reverse || 5025 WideningDecision == CM_Interleave); 5026 }; 5027 5028 5029 // Returns true if Ptr is the pointer operand of a memory access instruction 5030 // I, and I is known to not require scalarization. 5031 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5032 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5033 }; 5034 5035 // Holds a list of values which are known to have at least one uniform use. 5036 // Note that there may be other uses which aren't uniform. A "uniform use" 5037 // here is something which only demands lane 0 of the unrolled iterations; 5038 // it does not imply that all lanes produce the same value (e.g. this is not 5039 // the usual meaning of uniform) 5040 SetVector<Value *> HasUniformUse; 5041 5042 // Scan the loop for instructions which are either a) known to have only 5043 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5044 for (auto *BB : TheLoop->blocks()) 5045 for (auto &I : *BB) { 5046 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 5047 switch (II->getIntrinsicID()) { 5048 case Intrinsic::sideeffect: 5049 case Intrinsic::experimental_noalias_scope_decl: 5050 case Intrinsic::assume: 5051 case Intrinsic::lifetime_start: 5052 case Intrinsic::lifetime_end: 5053 if (TheLoop->hasLoopInvariantOperands(&I)) 5054 addToWorklistIfAllowed(&I); 5055 break; 5056 default: 5057 break; 5058 } 5059 } 5060 5061 // ExtractValue instructions must be uniform, because the operands are 5062 // known to be loop-invariant. 5063 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 5064 assert(isOutOfScope(EVI->getAggregateOperand()) && 5065 "Expected aggregate value to be loop invariant"); 5066 addToWorklistIfAllowed(EVI); 5067 continue; 5068 } 5069 5070 // If there's no pointer operand, there's nothing to do. 5071 auto *Ptr = getLoadStorePointerOperand(&I); 5072 if (!Ptr) 5073 continue; 5074 5075 // A uniform memory op is itself uniform. We exclude uniform stores 5076 // here as they demand the last lane, not the first one. 5077 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5078 addToWorklistIfAllowed(&I); 5079 5080 if (isUniformDecision(&I, VF)) { 5081 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5082 HasUniformUse.insert(Ptr); 5083 } 5084 } 5085 5086 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5087 // demanding) users. Since loops are assumed to be in LCSSA form, this 5088 // disallows uses outside the loop as well. 5089 for (auto *V : HasUniformUse) { 5090 if (isOutOfScope(V)) 5091 continue; 5092 auto *I = cast<Instruction>(V); 5093 auto UsersAreMemAccesses = 5094 llvm::all_of(I->users(), [&](User *U) -> bool { 5095 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5096 }); 5097 if (UsersAreMemAccesses) 5098 addToWorklistIfAllowed(I); 5099 } 5100 5101 // Expand Worklist in topological order: whenever a new instruction 5102 // is added , its users should be already inside Worklist. It ensures 5103 // a uniform instruction will only be used by uniform instructions. 5104 unsigned idx = 0; 5105 while (idx != Worklist.size()) { 5106 Instruction *I = Worklist[idx++]; 5107 5108 for (auto OV : I->operand_values()) { 5109 // isOutOfScope operands cannot be uniform instructions. 5110 if (isOutOfScope(OV)) 5111 continue; 5112 // First order recurrence Phi's should typically be considered 5113 // non-uniform. 5114 auto *OP = dyn_cast<PHINode>(OV); 5115 if (OP && Legal->isFirstOrderRecurrence(OP)) 5116 continue; 5117 // If all the users of the operand are uniform, then add the 5118 // operand into the uniform worklist. 5119 auto *OI = cast<Instruction>(OV); 5120 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5121 auto *J = cast<Instruction>(U); 5122 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5123 })) 5124 addToWorklistIfAllowed(OI); 5125 } 5126 } 5127 5128 // For an instruction to be added into Worklist above, all its users inside 5129 // the loop should also be in Worklist. However, this condition cannot be 5130 // true for phi nodes that form a cyclic dependence. We must process phi 5131 // nodes separately. An induction variable will remain uniform if all users 5132 // of the induction variable and induction variable update remain uniform. 5133 // The code below handles both pointer and non-pointer induction variables. 5134 for (auto &Induction : Legal->getInductionVars()) { 5135 auto *Ind = Induction.first; 5136 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5137 5138 // Determine if all users of the induction variable are uniform after 5139 // vectorization. 5140 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5141 auto *I = cast<Instruction>(U); 5142 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5143 isVectorizedMemAccessUse(I, Ind); 5144 }); 5145 if (!UniformInd) 5146 continue; 5147 5148 // Determine if all users of the induction variable update instruction are 5149 // uniform after vectorization. 5150 auto UniformIndUpdate = 5151 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5152 auto *I = cast<Instruction>(U); 5153 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5154 isVectorizedMemAccessUse(I, IndUpdate); 5155 }); 5156 if (!UniformIndUpdate) 5157 continue; 5158 5159 // The induction variable and its update instruction will remain uniform. 5160 addToWorklistIfAllowed(Ind); 5161 addToWorklistIfAllowed(IndUpdate); 5162 } 5163 5164 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5165 } 5166 5167 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5168 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5169 5170 if (Legal->getRuntimePointerChecking()->Need) { 5171 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5172 "runtime pointer checks needed. Enable vectorization of this " 5173 "loop with '#pragma clang loop vectorize(enable)' when " 5174 "compiling with -Os/-Oz", 5175 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5176 return true; 5177 } 5178 5179 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5180 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5181 "runtime SCEV checks needed. Enable vectorization of this " 5182 "loop with '#pragma clang loop vectorize(enable)' when " 5183 "compiling with -Os/-Oz", 5184 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5185 return true; 5186 } 5187 5188 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5189 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5190 reportVectorizationFailure("Runtime stride check for small trip count", 5191 "runtime stride == 1 checks needed. Enable vectorization of " 5192 "this loop without such check by compiling with -Os/-Oz", 5193 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5194 return true; 5195 } 5196 5197 return false; 5198 } 5199 5200 ElementCount 5201 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5202 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 5203 return ElementCount::getScalable(0); 5204 5205 if (Hints->isScalableVectorizationDisabled()) { 5206 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5207 "ScalableVectorizationDisabled", ORE, TheLoop); 5208 return ElementCount::getScalable(0); 5209 } 5210 5211 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 5212 5213 auto MaxScalableVF = ElementCount::getScalable( 5214 std::numeric_limits<ElementCount::ScalarTy>::max()); 5215 5216 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5217 // FIXME: While for scalable vectors this is currently sufficient, this should 5218 // be replaced by a more detailed mechanism that filters out specific VFs, 5219 // instead of invalidating vectorization for a whole set of VFs based on the 5220 // MaxVF. 5221 5222 // Disable scalable vectorization if the loop contains unsupported reductions. 5223 if (!canVectorizeReductions(MaxScalableVF)) { 5224 reportVectorizationInfo( 5225 "Scalable vectorization not supported for the reduction " 5226 "operations found in this loop.", 5227 "ScalableVFUnfeasible", ORE, TheLoop); 5228 return ElementCount::getScalable(0); 5229 } 5230 5231 // Disable scalable vectorization if the loop contains any instructions 5232 // with element types not supported for scalable vectors. 5233 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 5234 return !Ty->isVoidTy() && 5235 !this->TTI.isElementTypeLegalForScalableVector(Ty); 5236 })) { 5237 reportVectorizationInfo("Scalable vectorization is not supported " 5238 "for all element types found in this loop.", 5239 "ScalableVFUnfeasible", ORE, TheLoop); 5240 return ElementCount::getScalable(0); 5241 } 5242 5243 if (Legal->isSafeForAnyVectorWidth()) 5244 return MaxScalableVF; 5245 5246 // Limit MaxScalableVF by the maximum safe dependence distance. 5247 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5248 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 5249 MaxVScale = 5250 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 5251 MaxScalableVF = ElementCount::getScalable( 5252 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5253 if (!MaxScalableVF) 5254 reportVectorizationInfo( 5255 "Max legal vector width too small, scalable vectorization " 5256 "unfeasible.", 5257 "ScalableVFUnfeasible", ORE, TheLoop); 5258 5259 return MaxScalableVF; 5260 } 5261 5262 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 5263 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 5264 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5265 unsigned SmallestType, WidestType; 5266 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5267 5268 // Get the maximum safe dependence distance in bits computed by LAA. 5269 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5270 // the memory accesses that is most restrictive (involved in the smallest 5271 // dependence distance). 5272 unsigned MaxSafeElements = 5273 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5274 5275 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5276 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5277 5278 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5279 << ".\n"); 5280 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5281 << ".\n"); 5282 5283 // First analyze the UserVF, fall back if the UserVF should be ignored. 5284 if (UserVF) { 5285 auto MaxSafeUserVF = 5286 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5287 5288 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 5289 // If `VF=vscale x N` is safe, then so is `VF=N` 5290 if (UserVF.isScalable()) 5291 return FixedScalableVFPair( 5292 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 5293 else 5294 return UserVF; 5295 } 5296 5297 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5298 5299 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5300 // is better to ignore the hint and let the compiler choose a suitable VF. 5301 if (!UserVF.isScalable()) { 5302 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5303 << " is unsafe, clamping to max safe VF=" 5304 << MaxSafeFixedVF << ".\n"); 5305 ORE->emit([&]() { 5306 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5307 TheLoop->getStartLoc(), 5308 TheLoop->getHeader()) 5309 << "User-specified vectorization factor " 5310 << ore::NV("UserVectorizationFactor", UserVF) 5311 << " is unsafe, clamping to maximum safe vectorization factor " 5312 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5313 }); 5314 return MaxSafeFixedVF; 5315 } 5316 5317 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5318 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5319 << " is ignored because scalable vectors are not " 5320 "available.\n"); 5321 ORE->emit([&]() { 5322 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5323 TheLoop->getStartLoc(), 5324 TheLoop->getHeader()) 5325 << "User-specified vectorization factor " 5326 << ore::NV("UserVectorizationFactor", UserVF) 5327 << " is ignored because the target does not support scalable " 5328 "vectors. The compiler will pick a more suitable value."; 5329 }); 5330 } else { 5331 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5332 << " is unsafe. Ignoring scalable UserVF.\n"); 5333 ORE->emit([&]() { 5334 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5335 TheLoop->getStartLoc(), 5336 TheLoop->getHeader()) 5337 << "User-specified vectorization factor " 5338 << ore::NV("UserVectorizationFactor", UserVF) 5339 << " is unsafe. Ignoring the hint to let the compiler pick a " 5340 "more suitable value."; 5341 }); 5342 } 5343 } 5344 5345 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5346 << " / " << WidestType << " bits.\n"); 5347 5348 FixedScalableVFPair Result(ElementCount::getFixed(1), 5349 ElementCount::getScalable(0)); 5350 if (auto MaxVF = 5351 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5352 MaxSafeFixedVF, FoldTailByMasking)) 5353 Result.FixedVF = MaxVF; 5354 5355 if (auto MaxVF = 5356 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5357 MaxSafeScalableVF, FoldTailByMasking)) 5358 if (MaxVF.isScalable()) { 5359 Result.ScalableVF = MaxVF; 5360 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5361 << "\n"); 5362 } 5363 5364 return Result; 5365 } 5366 5367 FixedScalableVFPair 5368 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5369 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5370 // TODO: It may by useful to do since it's still likely to be dynamically 5371 // uniform if the target can skip. 5372 reportVectorizationFailure( 5373 "Not inserting runtime ptr check for divergent target", 5374 "runtime pointer checks needed. Not enabled for divergent target", 5375 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5376 return FixedScalableVFPair::getNone(); 5377 } 5378 5379 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5380 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5381 if (TC == 1) { 5382 reportVectorizationFailure("Single iteration (non) loop", 5383 "loop trip count is one, irrelevant for vectorization", 5384 "SingleIterationLoop", ORE, TheLoop); 5385 return FixedScalableVFPair::getNone(); 5386 } 5387 5388 switch (ScalarEpilogueStatus) { 5389 case CM_ScalarEpilogueAllowed: 5390 return computeFeasibleMaxVF(TC, UserVF, false); 5391 case CM_ScalarEpilogueNotAllowedUsePredicate: 5392 LLVM_FALLTHROUGH; 5393 case CM_ScalarEpilogueNotNeededUsePredicate: 5394 LLVM_DEBUG( 5395 dbgs() << "LV: vector predicate hint/switch found.\n" 5396 << "LV: Not allowing scalar epilogue, creating predicated " 5397 << "vector loop.\n"); 5398 break; 5399 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5400 // fallthrough as a special case of OptForSize 5401 case CM_ScalarEpilogueNotAllowedOptSize: 5402 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5403 LLVM_DEBUG( 5404 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5405 else 5406 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5407 << "count.\n"); 5408 5409 // Bail if runtime checks are required, which are not good when optimising 5410 // for size. 5411 if (runtimeChecksRequired()) 5412 return FixedScalableVFPair::getNone(); 5413 5414 break; 5415 } 5416 5417 // The only loops we can vectorize without a scalar epilogue, are loops with 5418 // a bottom-test and a single exiting block. We'd have to handle the fact 5419 // that not every instruction executes on the last iteration. This will 5420 // require a lane mask which varies through the vector loop body. (TODO) 5421 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5422 // If there was a tail-folding hint/switch, but we can't fold the tail by 5423 // masking, fallback to a vectorization with a scalar epilogue. 5424 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5425 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5426 "scalar epilogue instead.\n"); 5427 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5428 return computeFeasibleMaxVF(TC, UserVF, false); 5429 } 5430 return FixedScalableVFPair::getNone(); 5431 } 5432 5433 // Now try the tail folding 5434 5435 // Invalidate interleave groups that require an epilogue if we can't mask 5436 // the interleave-group. 5437 if (!useMaskedInterleavedAccesses(TTI)) { 5438 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5439 "No decisions should have been taken at this point"); 5440 // Note: There is no need to invalidate any cost modeling decisions here, as 5441 // non where taken so far. 5442 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5443 } 5444 5445 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5446 // Avoid tail folding if the trip count is known to be a multiple of any VF 5447 // we chose. 5448 // FIXME: The condition below pessimises the case for fixed-width vectors, 5449 // when scalable VFs are also candidates for vectorization. 5450 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5451 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5452 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5453 "MaxFixedVF must be a power of 2"); 5454 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5455 : MaxFixedVF.getFixedValue(); 5456 ScalarEvolution *SE = PSE.getSE(); 5457 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5458 const SCEV *ExitCount = SE->getAddExpr( 5459 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5460 const SCEV *Rem = SE->getURemExpr( 5461 SE->applyLoopGuards(ExitCount, TheLoop), 5462 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5463 if (Rem->isZero()) { 5464 // Accept MaxFixedVF if we do not have a tail. 5465 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5466 return MaxFactors; 5467 } 5468 } 5469 5470 // For scalable vectors don't use tail folding for low trip counts or 5471 // optimizing for code size. We only permit this if the user has explicitly 5472 // requested it. 5473 if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate && 5474 ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate && 5475 MaxFactors.ScalableVF.isVector()) 5476 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5477 5478 // If we don't know the precise trip count, or if the trip count that we 5479 // found modulo the vectorization factor is not zero, try to fold the tail 5480 // by masking. 5481 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5482 if (Legal->prepareToFoldTailByMasking()) { 5483 FoldTailByMasking = true; 5484 return MaxFactors; 5485 } 5486 5487 // If there was a tail-folding hint/switch, but we can't fold the tail by 5488 // masking, fallback to a vectorization with a scalar epilogue. 5489 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5490 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5491 "scalar epilogue instead.\n"); 5492 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5493 return MaxFactors; 5494 } 5495 5496 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5497 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5498 return FixedScalableVFPair::getNone(); 5499 } 5500 5501 if (TC == 0) { 5502 reportVectorizationFailure( 5503 "Unable to calculate the loop count due to complex control flow", 5504 "unable to calculate the loop count due to complex control flow", 5505 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5506 return FixedScalableVFPair::getNone(); 5507 } 5508 5509 reportVectorizationFailure( 5510 "Cannot optimize for size and vectorize at the same time.", 5511 "cannot optimize for size and vectorize at the same time. " 5512 "Enable vectorization of this loop with '#pragma clang loop " 5513 "vectorize(enable)' when compiling with -Os/-Oz", 5514 "NoTailLoopWithOptForSize", ORE, TheLoop); 5515 return FixedScalableVFPair::getNone(); 5516 } 5517 5518 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5519 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5520 const ElementCount &MaxSafeVF, bool FoldTailByMasking) { 5521 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5522 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5523 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5524 : TargetTransformInfo::RGK_FixedWidthVector); 5525 5526 // Convenience function to return the minimum of two ElementCounts. 5527 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5528 assert((LHS.isScalable() == RHS.isScalable()) && 5529 "Scalable flags must match"); 5530 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5531 }; 5532 5533 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5534 // Note that both WidestRegister and WidestType may not be a powers of 2. 5535 auto MaxVectorElementCount = ElementCount::get( 5536 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5537 ComputeScalableMaxVF); 5538 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5539 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5540 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5541 5542 if (!MaxVectorElementCount) { 5543 LLVM_DEBUG(dbgs() << "LV: The target has no " 5544 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5545 << " vector registers.\n"); 5546 return ElementCount::getFixed(1); 5547 } 5548 5549 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5550 if (ConstTripCount && 5551 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5552 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5553 // If loop trip count (TC) is known at compile time there is no point in 5554 // choosing VF greater than TC (as done in the loop below). Select maximum 5555 // power of two which doesn't exceed TC. 5556 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5557 // when the TC is less than or equal to the known number of lanes. 5558 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5559 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5560 "exceeding the constant trip count: " 5561 << ClampedConstTripCount << "\n"); 5562 return ElementCount::getFixed(ClampedConstTripCount); 5563 } 5564 5565 ElementCount MaxVF = MaxVectorElementCount; 5566 if (TTI.shouldMaximizeVectorBandwidth() || 5567 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5568 auto MaxVectorElementCountMaxBW = ElementCount::get( 5569 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5570 ComputeScalableMaxVF); 5571 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5572 5573 // Collect all viable vectorization factors larger than the default MaxVF 5574 // (i.e. MaxVectorElementCount). 5575 SmallVector<ElementCount, 8> VFs; 5576 for (ElementCount VS = MaxVectorElementCount * 2; 5577 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5578 VFs.push_back(VS); 5579 5580 // For each VF calculate its register usage. 5581 auto RUs = calculateRegisterUsage(VFs); 5582 5583 // Select the largest VF which doesn't require more registers than existing 5584 // ones. 5585 for (int i = RUs.size() - 1; i >= 0; --i) { 5586 bool Selected = true; 5587 for (auto &pair : RUs[i].MaxLocalUsers) { 5588 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5589 if (pair.second > TargetNumRegisters) 5590 Selected = false; 5591 } 5592 if (Selected) { 5593 MaxVF = VFs[i]; 5594 break; 5595 } 5596 } 5597 if (ElementCount MinVF = 5598 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5599 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5600 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5601 << ") with target's minimum: " << MinVF << '\n'); 5602 MaxVF = MinVF; 5603 } 5604 } 5605 } 5606 return MaxVF; 5607 } 5608 5609 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const { 5610 if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5611 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); 5612 auto Min = Attr.getVScaleRangeMin(); 5613 auto Max = Attr.getVScaleRangeMax(); 5614 if (Max && Min == Max) 5615 return Max; 5616 } 5617 5618 return TTI.getVScaleForTuning(); 5619 } 5620 5621 bool LoopVectorizationCostModel::isMoreProfitable( 5622 const VectorizationFactor &A, const VectorizationFactor &B) const { 5623 InstructionCost CostA = A.Cost; 5624 InstructionCost CostB = B.Cost; 5625 5626 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5627 5628 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5629 MaxTripCount) { 5630 // If we are folding the tail and the trip count is a known (possibly small) 5631 // constant, the trip count will be rounded up to an integer number of 5632 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5633 // which we compare directly. When not folding the tail, the total cost will 5634 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5635 // approximated with the per-lane cost below instead of using the tripcount 5636 // as here. 5637 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5638 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5639 return RTCostA < RTCostB; 5640 } 5641 5642 // Improve estimate for the vector width if it is scalable. 5643 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5644 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5645 if (Optional<unsigned> VScale = getVScaleForTuning()) { 5646 if (A.Width.isScalable()) 5647 EstimatedWidthA *= VScale.getValue(); 5648 if (B.Width.isScalable()) 5649 EstimatedWidthB *= VScale.getValue(); 5650 } 5651 5652 // Assume vscale may be larger than 1 (or the value being tuned for), 5653 // so that scalable vectorization is slightly favorable over fixed-width 5654 // vectorization. 5655 if (A.Width.isScalable() && !B.Width.isScalable()) 5656 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5657 5658 // To avoid the need for FP division: 5659 // (CostA / A.Width) < (CostB / B.Width) 5660 // <=> (CostA * B.Width) < (CostB * A.Width) 5661 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5662 } 5663 5664 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5665 const ElementCountSet &VFCandidates) { 5666 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5667 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5668 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5669 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5670 "Expected Scalar VF to be a candidate"); 5671 5672 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 5673 VectorizationFactor ChosenFactor = ScalarCost; 5674 5675 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5676 if (ForceVectorization && VFCandidates.size() > 1) { 5677 // Ignore scalar width, because the user explicitly wants vectorization. 5678 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5679 // evaluation. 5680 ChosenFactor.Cost = InstructionCost::getMax(); 5681 } 5682 5683 SmallVector<InstructionVFPair> InvalidCosts; 5684 for (const auto &i : VFCandidates) { 5685 // The cost for scalar VF=1 is already calculated, so ignore it. 5686 if (i.isScalar()) 5687 continue; 5688 5689 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5690 VectorizationFactor Candidate(i, C.first); 5691 5692 #ifndef NDEBUG 5693 unsigned AssumedMinimumVscale = 1; 5694 if (Optional<unsigned> VScale = getVScaleForTuning()) 5695 AssumedMinimumVscale = VScale.getValue(); 5696 unsigned Width = 5697 Candidate.Width.isScalable() 5698 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5699 : Candidate.Width.getFixedValue(); 5700 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5701 << " costs: " << (Candidate.Cost / Width)); 5702 if (i.isScalable()) 5703 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5704 << AssumedMinimumVscale << ")"); 5705 LLVM_DEBUG(dbgs() << ".\n"); 5706 #endif 5707 5708 if (!C.second && !ForceVectorization) { 5709 LLVM_DEBUG( 5710 dbgs() << "LV: Not considering vector loop of width " << i 5711 << " because it will not generate any vector instructions.\n"); 5712 continue; 5713 } 5714 5715 // If profitable add it to ProfitableVF list. 5716 if (isMoreProfitable(Candidate, ScalarCost)) 5717 ProfitableVFs.push_back(Candidate); 5718 5719 if (isMoreProfitable(Candidate, ChosenFactor)) 5720 ChosenFactor = Candidate; 5721 } 5722 5723 // Emit a report of VFs with invalid costs in the loop. 5724 if (!InvalidCosts.empty()) { 5725 // Group the remarks per instruction, keeping the instruction order from 5726 // InvalidCosts. 5727 std::map<Instruction *, unsigned> Numbering; 5728 unsigned I = 0; 5729 for (auto &Pair : InvalidCosts) 5730 if (!Numbering.count(Pair.first)) 5731 Numbering[Pair.first] = I++; 5732 5733 // Sort the list, first on instruction(number) then on VF. 5734 llvm::sort(InvalidCosts, 5735 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5736 if (Numbering[A.first] != Numbering[B.first]) 5737 return Numbering[A.first] < Numbering[B.first]; 5738 ElementCountComparator ECC; 5739 return ECC(A.second, B.second); 5740 }); 5741 5742 // For a list of ordered instruction-vf pairs: 5743 // [(load, vf1), (load, vf2), (store, vf1)] 5744 // Group the instructions together to emit separate remarks for: 5745 // load (vf1, vf2) 5746 // store (vf1) 5747 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5748 auto Subset = ArrayRef<InstructionVFPair>(); 5749 do { 5750 if (Subset.empty()) 5751 Subset = Tail.take_front(1); 5752 5753 Instruction *I = Subset.front().first; 5754 5755 // If the next instruction is different, or if there are no other pairs, 5756 // emit a remark for the collated subset. e.g. 5757 // [(load, vf1), (load, vf2))] 5758 // to emit: 5759 // remark: invalid costs for 'load' at VF=(vf, vf2) 5760 if (Subset == Tail || Tail[Subset.size()].first != I) { 5761 std::string OutString; 5762 raw_string_ostream OS(OutString); 5763 assert(!Subset.empty() && "Unexpected empty range"); 5764 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5765 for (auto &Pair : Subset) 5766 OS << (Pair.second == Subset.front().second ? "" : ", ") 5767 << Pair.second; 5768 OS << "):"; 5769 if (auto *CI = dyn_cast<CallInst>(I)) 5770 OS << " call to " << CI->getCalledFunction()->getName(); 5771 else 5772 OS << " " << I->getOpcodeName(); 5773 OS.flush(); 5774 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5775 Tail = Tail.drop_front(Subset.size()); 5776 Subset = {}; 5777 } else 5778 // Grow the subset by one element 5779 Subset = Tail.take_front(Subset.size() + 1); 5780 } while (!Tail.empty()); 5781 } 5782 5783 if (!EnableCondStoresVectorization && NumPredStores) { 5784 reportVectorizationFailure("There are conditional stores.", 5785 "store that is conditionally executed prevents vectorization", 5786 "ConditionalStore", ORE, TheLoop); 5787 ChosenFactor = ScalarCost; 5788 } 5789 5790 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5791 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 5792 << "LV: Vectorization seems to be not beneficial, " 5793 << "but was forced by a user.\n"); 5794 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5795 return ChosenFactor; 5796 } 5797 5798 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5799 const Loop &L, ElementCount VF) const { 5800 // Cross iteration phis such as reductions need special handling and are 5801 // currently unsupported. 5802 if (any_of(L.getHeader()->phis(), 5803 [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); })) 5804 return false; 5805 5806 // Phis with uses outside of the loop require special handling and are 5807 // currently unsupported. 5808 for (auto &Entry : Legal->getInductionVars()) { 5809 // Look for uses of the value of the induction at the last iteration. 5810 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5811 for (User *U : PostInc->users()) 5812 if (!L.contains(cast<Instruction>(U))) 5813 return false; 5814 // Look for uses of penultimate value of the induction. 5815 for (User *U : Entry.first->users()) 5816 if (!L.contains(cast<Instruction>(U))) 5817 return false; 5818 } 5819 5820 // Induction variables that are widened require special handling that is 5821 // currently not supported. 5822 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5823 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5824 this->isProfitableToScalarize(Entry.first, VF)); 5825 })) 5826 return false; 5827 5828 // Epilogue vectorization code has not been auditted to ensure it handles 5829 // non-latch exits properly. It may be fine, but it needs auditted and 5830 // tested. 5831 if (L.getExitingBlock() != L.getLoopLatch()) 5832 return false; 5833 5834 return true; 5835 } 5836 5837 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5838 const ElementCount VF) const { 5839 // FIXME: We need a much better cost-model to take different parameters such 5840 // as register pressure, code size increase and cost of extra branches into 5841 // account. For now we apply a very crude heuristic and only consider loops 5842 // with vectorization factors larger than a certain value. 5843 // We also consider epilogue vectorization unprofitable for targets that don't 5844 // consider interleaving beneficial (eg. MVE). 5845 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5846 return false; 5847 // FIXME: We should consider changing the threshold for scalable 5848 // vectors to take VScaleForTuning into account. 5849 if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF) 5850 return true; 5851 return false; 5852 } 5853 5854 VectorizationFactor 5855 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5856 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5857 VectorizationFactor Result = VectorizationFactor::Disabled(); 5858 if (!EnableEpilogueVectorization) { 5859 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5860 return Result; 5861 } 5862 5863 if (!isScalarEpilogueAllowed()) { 5864 LLVM_DEBUG( 5865 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5866 "allowed.\n";); 5867 return Result; 5868 } 5869 5870 // Not really a cost consideration, but check for unsupported cases here to 5871 // simplify the logic. 5872 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5873 LLVM_DEBUG( 5874 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5875 "not a supported candidate.\n";); 5876 return Result; 5877 } 5878 5879 if (EpilogueVectorizationForceVF > 1) { 5880 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5881 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5882 if (LVP.hasPlanWithVF(ForcedEC)) 5883 return {ForcedEC, 0}; 5884 else { 5885 LLVM_DEBUG( 5886 dbgs() 5887 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5888 return Result; 5889 } 5890 } 5891 5892 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5893 TheLoop->getHeader()->getParent()->hasMinSize()) { 5894 LLVM_DEBUG( 5895 dbgs() 5896 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5897 return Result; 5898 } 5899 5900 if (!isEpilogueVectorizationProfitable(MainLoopVF)) { 5901 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5902 "this loop\n"); 5903 return Result; 5904 } 5905 5906 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know 5907 // the main loop handles 8 lanes per iteration. We could still benefit from 5908 // vectorizing the epilogue loop with VF=4. 5909 ElementCount EstimatedRuntimeVF = MainLoopVF; 5910 if (MainLoopVF.isScalable()) { 5911 EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 5912 if (Optional<unsigned> VScale = getVScaleForTuning()) 5913 EstimatedRuntimeVF *= VScale.getValue(); 5914 } 5915 5916 for (auto &NextVF : ProfitableVFs) 5917 if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() && 5918 ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) || 5919 ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) && 5920 (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) && 5921 LVP.hasPlanWithVF(NextVF.Width)) 5922 Result = NextVF; 5923 5924 if (Result != VectorizationFactor::Disabled()) 5925 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5926 << Result.Width << "\n";); 5927 return Result; 5928 } 5929 5930 std::pair<unsigned, unsigned> 5931 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5932 unsigned MinWidth = -1U; 5933 unsigned MaxWidth = 8; 5934 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5935 // For in-loop reductions, no element types are added to ElementTypesInLoop 5936 // if there are no loads/stores in the loop. In this case, check through the 5937 // reduction variables to determine the maximum width. 5938 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5939 // Reset MaxWidth so that we can find the smallest type used by recurrences 5940 // in the loop. 5941 MaxWidth = -1U; 5942 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5943 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5944 // When finding the min width used by the recurrence we need to account 5945 // for casts on the input operands of the recurrence. 5946 MaxWidth = std::min<unsigned>( 5947 MaxWidth, std::min<unsigned>( 5948 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5949 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5950 } 5951 } else { 5952 for (Type *T : ElementTypesInLoop) { 5953 MinWidth = std::min<unsigned>( 5954 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5955 MaxWidth = std::max<unsigned>( 5956 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5957 } 5958 } 5959 return {MinWidth, MaxWidth}; 5960 } 5961 5962 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5963 ElementTypesInLoop.clear(); 5964 // For each block. 5965 for (BasicBlock *BB : TheLoop->blocks()) { 5966 // For each instruction in the loop. 5967 for (Instruction &I : BB->instructionsWithoutDebug()) { 5968 Type *T = I.getType(); 5969 5970 // Skip ignored values. 5971 if (ValuesToIgnore.count(&I)) 5972 continue; 5973 5974 // Only examine Loads, Stores and PHINodes. 5975 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5976 continue; 5977 5978 // Examine PHI nodes that are reduction variables. Update the type to 5979 // account for the recurrence type. 5980 if (auto *PN = dyn_cast<PHINode>(&I)) { 5981 if (!Legal->isReductionVariable(PN)) 5982 continue; 5983 const RecurrenceDescriptor &RdxDesc = 5984 Legal->getReductionVars().find(PN)->second; 5985 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 5986 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5987 RdxDesc.getRecurrenceType(), 5988 TargetTransformInfo::ReductionFlags())) 5989 continue; 5990 T = RdxDesc.getRecurrenceType(); 5991 } 5992 5993 // Examine the stored values. 5994 if (auto *ST = dyn_cast<StoreInst>(&I)) 5995 T = ST->getValueOperand()->getType(); 5996 5997 assert(T->isSized() && 5998 "Expected the load/store/recurrence type to be sized"); 5999 6000 ElementTypesInLoop.insert(T); 6001 } 6002 } 6003 } 6004 6005 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6006 unsigned LoopCost) { 6007 // -- The interleave heuristics -- 6008 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6009 // There are many micro-architectural considerations that we can't predict 6010 // at this level. For example, frontend pressure (on decode or fetch) due to 6011 // code size, or the number and capabilities of the execution ports. 6012 // 6013 // We use the following heuristics to select the interleave count: 6014 // 1. If the code has reductions, then we interleave to break the cross 6015 // iteration dependency. 6016 // 2. If the loop is really small, then we interleave to reduce the loop 6017 // overhead. 6018 // 3. We don't interleave if we think that we will spill registers to memory 6019 // due to the increased register pressure. 6020 6021 if (!isScalarEpilogueAllowed()) 6022 return 1; 6023 6024 // We used the distance for the interleave count. 6025 if (Legal->getMaxSafeDepDistBytes() != -1U) 6026 return 1; 6027 6028 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6029 const bool HasReductions = !Legal->getReductionVars().empty(); 6030 // Do not interleave loops with a relatively small known or estimated trip 6031 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6032 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6033 // because with the above conditions interleaving can expose ILP and break 6034 // cross iteration dependences for reductions. 6035 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6036 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6037 return 1; 6038 6039 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6040 // We divide by these constants so assume that we have at least one 6041 // instruction that uses at least one register. 6042 for (auto& pair : R.MaxLocalUsers) { 6043 pair.second = std::max(pair.second, 1U); 6044 } 6045 6046 // We calculate the interleave count using the following formula. 6047 // Subtract the number of loop invariants from the number of available 6048 // registers. These registers are used by all of the interleaved instances. 6049 // Next, divide the remaining registers by the number of registers that is 6050 // required by the loop, in order to estimate how many parallel instances 6051 // fit without causing spills. All of this is rounded down if necessary to be 6052 // a power of two. We want power of two interleave count to simplify any 6053 // addressing operations or alignment considerations. 6054 // We also want power of two interleave counts to ensure that the induction 6055 // variable of the vector loop wraps to zero, when tail is folded by masking; 6056 // this currently happens when OptForSize, in which case IC is set to 1 above. 6057 unsigned IC = UINT_MAX; 6058 6059 for (auto& pair : R.MaxLocalUsers) { 6060 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6061 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6062 << " registers of " 6063 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6064 if (VF.isScalar()) { 6065 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6066 TargetNumRegisters = ForceTargetNumScalarRegs; 6067 } else { 6068 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6069 TargetNumRegisters = ForceTargetNumVectorRegs; 6070 } 6071 unsigned MaxLocalUsers = pair.second; 6072 unsigned LoopInvariantRegs = 0; 6073 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6074 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6075 6076 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6077 // Don't count the induction variable as interleaved. 6078 if (EnableIndVarRegisterHeur) { 6079 TmpIC = 6080 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6081 std::max(1U, (MaxLocalUsers - 1))); 6082 } 6083 6084 IC = std::min(IC, TmpIC); 6085 } 6086 6087 // Clamp the interleave ranges to reasonable counts. 6088 unsigned MaxInterleaveCount = 6089 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6090 6091 // Check if the user has overridden the max. 6092 if (VF.isScalar()) { 6093 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6094 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6095 } else { 6096 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6097 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6098 } 6099 6100 // If trip count is known or estimated compile time constant, limit the 6101 // interleave count to be less than the trip count divided by VF, provided it 6102 // is at least 1. 6103 // 6104 // For scalable vectors we can't know if interleaving is beneficial. It may 6105 // not be beneficial for small loops if none of the lanes in the second vector 6106 // iterations is enabled. However, for larger loops, there is likely to be a 6107 // similar benefit as for fixed-width vectors. For now, we choose to leave 6108 // the InterleaveCount as if vscale is '1', although if some information about 6109 // the vector is known (e.g. min vector size), we can make a better decision. 6110 if (BestKnownTC) { 6111 MaxInterleaveCount = 6112 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6113 // Make sure MaxInterleaveCount is greater than 0. 6114 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6115 } 6116 6117 assert(MaxInterleaveCount > 0 && 6118 "Maximum interleave count must be greater than 0"); 6119 6120 // Clamp the calculated IC to be between the 1 and the max interleave count 6121 // that the target and trip count allows. 6122 if (IC > MaxInterleaveCount) 6123 IC = MaxInterleaveCount; 6124 else 6125 // Make sure IC is greater than 0. 6126 IC = std::max(1u, IC); 6127 6128 assert(IC > 0 && "Interleave count must be greater than 0."); 6129 6130 // If we did not calculate the cost for VF (because the user selected the VF) 6131 // then we calculate the cost of VF here. 6132 if (LoopCost == 0) { 6133 InstructionCost C = expectedCost(VF).first; 6134 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 6135 LoopCost = *C.getValue(); 6136 } 6137 6138 assert(LoopCost && "Non-zero loop cost expected"); 6139 6140 // Interleave if we vectorized this loop and there is a reduction that could 6141 // benefit from interleaving. 6142 if (VF.isVector() && HasReductions) { 6143 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6144 return IC; 6145 } 6146 6147 // Note that if we've already vectorized the loop we will have done the 6148 // runtime check and so interleaving won't require further checks. 6149 bool InterleavingRequiresRuntimePointerCheck = 6150 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6151 6152 // We want to interleave small loops in order to reduce the loop overhead and 6153 // potentially expose ILP opportunities. 6154 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6155 << "LV: IC is " << IC << '\n' 6156 << "LV: VF is " << VF << '\n'); 6157 const bool AggressivelyInterleaveReductions = 6158 TTI.enableAggressiveInterleaving(HasReductions); 6159 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6160 // We assume that the cost overhead is 1 and we use the cost model 6161 // to estimate the cost of the loop and interleave until the cost of the 6162 // loop overhead is about 5% of the cost of the loop. 6163 unsigned SmallIC = 6164 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6165 6166 // Interleave until store/load ports (estimated by max interleave count) are 6167 // saturated. 6168 unsigned NumStores = Legal->getNumStores(); 6169 unsigned NumLoads = Legal->getNumLoads(); 6170 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6171 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6172 6173 // There is little point in interleaving for reductions containing selects 6174 // and compares when VF=1 since it may just create more overhead than it's 6175 // worth for loops with small trip counts. This is because we still have to 6176 // do the final reduction after the loop. 6177 bool HasSelectCmpReductions = 6178 HasReductions && 6179 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6180 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6181 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 6182 RdxDesc.getRecurrenceKind()); 6183 }); 6184 if (HasSelectCmpReductions) { 6185 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 6186 return 1; 6187 } 6188 6189 // If we have a scalar reduction (vector reductions are already dealt with 6190 // by this point), we can increase the critical path length if the loop 6191 // we're interleaving is inside another loop. For tree-wise reductions 6192 // set the limit to 2, and for ordered reductions it's best to disable 6193 // interleaving entirely. 6194 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6195 bool HasOrderedReductions = 6196 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6197 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6198 return RdxDesc.isOrdered(); 6199 }); 6200 if (HasOrderedReductions) { 6201 LLVM_DEBUG( 6202 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 6203 return 1; 6204 } 6205 6206 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6207 SmallIC = std::min(SmallIC, F); 6208 StoresIC = std::min(StoresIC, F); 6209 LoadsIC = std::min(LoadsIC, F); 6210 } 6211 6212 if (EnableLoadStoreRuntimeInterleave && 6213 std::max(StoresIC, LoadsIC) > SmallIC) { 6214 LLVM_DEBUG( 6215 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6216 return std::max(StoresIC, LoadsIC); 6217 } 6218 6219 // If there are scalar reductions and TTI has enabled aggressive 6220 // interleaving for reductions, we will interleave to expose ILP. 6221 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6222 AggressivelyInterleaveReductions) { 6223 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6224 // Interleave no less than SmallIC but not as aggressive as the normal IC 6225 // to satisfy the rare situation when resources are too limited. 6226 return std::max(IC / 2, SmallIC); 6227 } else { 6228 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6229 return SmallIC; 6230 } 6231 } 6232 6233 // Interleave if this is a large loop (small loops are already dealt with by 6234 // this point) that could benefit from interleaving. 6235 if (AggressivelyInterleaveReductions) { 6236 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6237 return IC; 6238 } 6239 6240 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6241 return 1; 6242 } 6243 6244 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6245 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6246 // This function calculates the register usage by measuring the highest number 6247 // of values that are alive at a single location. Obviously, this is a very 6248 // rough estimation. We scan the loop in a topological order in order and 6249 // assign a number to each instruction. We use RPO to ensure that defs are 6250 // met before their users. We assume that each instruction that has in-loop 6251 // users starts an interval. We record every time that an in-loop value is 6252 // used, so we have a list of the first and last occurrences of each 6253 // instruction. Next, we transpose this data structure into a multi map that 6254 // holds the list of intervals that *end* at a specific location. This multi 6255 // map allows us to perform a linear search. We scan the instructions linearly 6256 // and record each time that a new interval starts, by placing it in a set. 6257 // If we find this value in the multi-map then we remove it from the set. 6258 // The max register usage is the maximum size of the set. 6259 // We also search for instructions that are defined outside the loop, but are 6260 // used inside the loop. We need this number separately from the max-interval 6261 // usage number because when we unroll, loop-invariant values do not take 6262 // more register. 6263 LoopBlocksDFS DFS(TheLoop); 6264 DFS.perform(LI); 6265 6266 RegisterUsage RU; 6267 6268 // Each 'key' in the map opens a new interval. The values 6269 // of the map are the index of the 'last seen' usage of the 6270 // instruction that is the key. 6271 using IntervalMap = DenseMap<Instruction *, unsigned>; 6272 6273 // Maps instruction to its index. 6274 SmallVector<Instruction *, 64> IdxToInstr; 6275 // Marks the end of each interval. 6276 IntervalMap EndPoint; 6277 // Saves the list of instruction indices that are used in the loop. 6278 SmallPtrSet<Instruction *, 8> Ends; 6279 // Saves the list of values that are used in the loop but are 6280 // defined outside the loop, such as arguments and constants. 6281 SmallPtrSet<Value *, 8> LoopInvariants; 6282 6283 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6284 for (Instruction &I : BB->instructionsWithoutDebug()) { 6285 IdxToInstr.push_back(&I); 6286 6287 // Save the end location of each USE. 6288 for (Value *U : I.operands()) { 6289 auto *Instr = dyn_cast<Instruction>(U); 6290 6291 // Ignore non-instruction values such as arguments, constants, etc. 6292 if (!Instr) 6293 continue; 6294 6295 // If this instruction is outside the loop then record it and continue. 6296 if (!TheLoop->contains(Instr)) { 6297 LoopInvariants.insert(Instr); 6298 continue; 6299 } 6300 6301 // Overwrite previous end points. 6302 EndPoint[Instr] = IdxToInstr.size(); 6303 Ends.insert(Instr); 6304 } 6305 } 6306 } 6307 6308 // Saves the list of intervals that end with the index in 'key'. 6309 using InstrList = SmallVector<Instruction *, 2>; 6310 DenseMap<unsigned, InstrList> TransposeEnds; 6311 6312 // Transpose the EndPoints to a list of values that end at each index. 6313 for (auto &Interval : EndPoint) 6314 TransposeEnds[Interval.second].push_back(Interval.first); 6315 6316 SmallPtrSet<Instruction *, 8> OpenIntervals; 6317 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6318 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6319 6320 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6321 6322 // A lambda that gets the register usage for the given type and VF. 6323 const auto &TTICapture = TTI; 6324 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 6325 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6326 return 0; 6327 InstructionCost::CostType RegUsage = 6328 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6329 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 6330 "Nonsensical values for register usage."); 6331 return RegUsage; 6332 }; 6333 6334 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6335 Instruction *I = IdxToInstr[i]; 6336 6337 // Remove all of the instructions that end at this location. 6338 InstrList &List = TransposeEnds[i]; 6339 for (Instruction *ToRemove : List) 6340 OpenIntervals.erase(ToRemove); 6341 6342 // Ignore instructions that are never used within the loop. 6343 if (!Ends.count(I)) 6344 continue; 6345 6346 // Skip ignored values. 6347 if (ValuesToIgnore.count(I)) 6348 continue; 6349 6350 // For each VF find the maximum usage of registers. 6351 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6352 // Count the number of live intervals. 6353 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6354 6355 if (VFs[j].isScalar()) { 6356 for (auto Inst : OpenIntervals) { 6357 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6358 if (RegUsage.find(ClassID) == RegUsage.end()) 6359 RegUsage[ClassID] = 1; 6360 else 6361 RegUsage[ClassID] += 1; 6362 } 6363 } else { 6364 collectUniformsAndScalars(VFs[j]); 6365 for (auto Inst : OpenIntervals) { 6366 // Skip ignored values for VF > 1. 6367 if (VecValuesToIgnore.count(Inst)) 6368 continue; 6369 if (isScalarAfterVectorization(Inst, VFs[j])) { 6370 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6371 if (RegUsage.find(ClassID) == RegUsage.end()) 6372 RegUsage[ClassID] = 1; 6373 else 6374 RegUsage[ClassID] += 1; 6375 } else { 6376 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6377 if (RegUsage.find(ClassID) == RegUsage.end()) 6378 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6379 else 6380 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6381 } 6382 } 6383 } 6384 6385 for (auto& pair : RegUsage) { 6386 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6387 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6388 else 6389 MaxUsages[j][pair.first] = pair.second; 6390 } 6391 } 6392 6393 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6394 << OpenIntervals.size() << '\n'); 6395 6396 // Add the current instruction to the list of open intervals. 6397 OpenIntervals.insert(I); 6398 } 6399 6400 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6401 SmallMapVector<unsigned, unsigned, 4> Invariant; 6402 6403 for (auto Inst : LoopInvariants) { 6404 unsigned Usage = 6405 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6406 unsigned ClassID = 6407 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6408 if (Invariant.find(ClassID) == Invariant.end()) 6409 Invariant[ClassID] = Usage; 6410 else 6411 Invariant[ClassID] += Usage; 6412 } 6413 6414 LLVM_DEBUG({ 6415 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6416 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6417 << " item\n"; 6418 for (const auto &pair : MaxUsages[i]) { 6419 dbgs() << "LV(REG): RegisterClass: " 6420 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6421 << " registers\n"; 6422 } 6423 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6424 << " item\n"; 6425 for (const auto &pair : Invariant) { 6426 dbgs() << "LV(REG): RegisterClass: " 6427 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6428 << " registers\n"; 6429 } 6430 }); 6431 6432 RU.LoopInvariantRegs = Invariant; 6433 RU.MaxLocalUsers = MaxUsages[i]; 6434 RUs[i] = RU; 6435 } 6436 6437 return RUs; 6438 } 6439 6440 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, 6441 ElementCount VF) { 6442 // TODO: Cost model for emulated masked load/store is completely 6443 // broken. This hack guides the cost model to use an artificially 6444 // high enough value to practically disable vectorization with such 6445 // operations, except where previously deployed legality hack allowed 6446 // using very low cost values. This is to avoid regressions coming simply 6447 // from moving "masked load/store" check from legality to cost model. 6448 // Masked Load/Gather emulation was previously never allowed. 6449 // Limited number of Masked Store/Scatter emulation was allowed. 6450 assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction"); 6451 return isa<LoadInst>(I) || 6452 (isa<StoreInst>(I) && 6453 NumPredStores > NumberOfStoresToPredicate); 6454 } 6455 6456 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6457 // If we aren't vectorizing the loop, or if we've already collected the 6458 // instructions to scalarize, there's nothing to do. Collection may already 6459 // have occurred if we have a user-selected VF and are now computing the 6460 // expected cost for interleaving. 6461 if (VF.isScalar() || VF.isZero() || 6462 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6463 return; 6464 6465 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6466 // not profitable to scalarize any instructions, the presence of VF in the 6467 // map will indicate that we've analyzed it already. 6468 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6469 6470 // Find all the instructions that are scalar with predication in the loop and 6471 // determine if it would be better to not if-convert the blocks they are in. 6472 // If so, we also record the instructions to scalarize. 6473 for (BasicBlock *BB : TheLoop->blocks()) { 6474 if (!blockNeedsPredicationForAnyReason(BB)) 6475 continue; 6476 for (Instruction &I : *BB) 6477 if (isScalarWithPredication(&I, VF)) { 6478 ScalarCostsTy ScalarCosts; 6479 // Do not apply discount if scalable, because that would lead to 6480 // invalid scalarization costs. 6481 // Do not apply discount logic if hacked cost is needed 6482 // for emulated masked memrefs. 6483 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) && 6484 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6485 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6486 // Remember that BB will remain after vectorization. 6487 PredicatedBBsAfterVectorization.insert(BB); 6488 } 6489 } 6490 } 6491 6492 int LoopVectorizationCostModel::computePredInstDiscount( 6493 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6494 assert(!isUniformAfterVectorization(PredInst, VF) && 6495 "Instruction marked uniform-after-vectorization will be predicated"); 6496 6497 // Initialize the discount to zero, meaning that the scalar version and the 6498 // vector version cost the same. 6499 InstructionCost Discount = 0; 6500 6501 // Holds instructions to analyze. The instructions we visit are mapped in 6502 // ScalarCosts. Those instructions are the ones that would be scalarized if 6503 // we find that the scalar version costs less. 6504 SmallVector<Instruction *, 8> Worklist; 6505 6506 // Returns true if the given instruction can be scalarized. 6507 auto canBeScalarized = [&](Instruction *I) -> bool { 6508 // We only attempt to scalarize instructions forming a single-use chain 6509 // from the original predicated block that would otherwise be vectorized. 6510 // Although not strictly necessary, we give up on instructions we know will 6511 // already be scalar to avoid traversing chains that are unlikely to be 6512 // beneficial. 6513 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6514 isScalarAfterVectorization(I, VF)) 6515 return false; 6516 6517 // If the instruction is scalar with predication, it will be analyzed 6518 // separately. We ignore it within the context of PredInst. 6519 if (isScalarWithPredication(I, VF)) 6520 return false; 6521 6522 // If any of the instruction's operands are uniform after vectorization, 6523 // the instruction cannot be scalarized. This prevents, for example, a 6524 // masked load from being scalarized. 6525 // 6526 // We assume we will only emit a value for lane zero of an instruction 6527 // marked uniform after vectorization, rather than VF identical values. 6528 // Thus, if we scalarize an instruction that uses a uniform, we would 6529 // create uses of values corresponding to the lanes we aren't emitting code 6530 // for. This behavior can be changed by allowing getScalarValue to clone 6531 // the lane zero values for uniforms rather than asserting. 6532 for (Use &U : I->operands()) 6533 if (auto *J = dyn_cast<Instruction>(U.get())) 6534 if (isUniformAfterVectorization(J, VF)) 6535 return false; 6536 6537 // Otherwise, we can scalarize the instruction. 6538 return true; 6539 }; 6540 6541 // Compute the expected cost discount from scalarizing the entire expression 6542 // feeding the predicated instruction. We currently only consider expressions 6543 // that are single-use instruction chains. 6544 Worklist.push_back(PredInst); 6545 while (!Worklist.empty()) { 6546 Instruction *I = Worklist.pop_back_val(); 6547 6548 // If we've already analyzed the instruction, there's nothing to do. 6549 if (ScalarCosts.find(I) != ScalarCosts.end()) 6550 continue; 6551 6552 // Compute the cost of the vector instruction. Note that this cost already 6553 // includes the scalarization overhead of the predicated instruction. 6554 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6555 6556 // Compute the cost of the scalarized instruction. This cost is the cost of 6557 // the instruction as if it wasn't if-converted and instead remained in the 6558 // predicated block. We will scale this cost by block probability after 6559 // computing the scalarization overhead. 6560 InstructionCost ScalarCost = 6561 VF.getFixedValue() * 6562 getInstructionCost(I, ElementCount::getFixed(1)).first; 6563 6564 // Compute the scalarization overhead of needed insertelement instructions 6565 // and phi nodes. 6566 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 6567 ScalarCost += TTI.getScalarizationOverhead( 6568 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6569 APInt::getAllOnes(VF.getFixedValue()), true, false); 6570 ScalarCost += 6571 VF.getFixedValue() * 6572 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6573 } 6574 6575 // Compute the scalarization overhead of needed extractelement 6576 // instructions. For each of the instruction's operands, if the operand can 6577 // be scalarized, add it to the worklist; otherwise, account for the 6578 // overhead. 6579 for (Use &U : I->operands()) 6580 if (auto *J = dyn_cast<Instruction>(U.get())) { 6581 assert(VectorType::isValidElementType(J->getType()) && 6582 "Instruction has non-scalar type"); 6583 if (canBeScalarized(J)) 6584 Worklist.push_back(J); 6585 else if (needsExtract(J, VF)) { 6586 ScalarCost += TTI.getScalarizationOverhead( 6587 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6588 APInt::getAllOnes(VF.getFixedValue()), false, true); 6589 } 6590 } 6591 6592 // Scale the total scalar cost by block probability. 6593 ScalarCost /= getReciprocalPredBlockProb(); 6594 6595 // Compute the discount. A non-negative discount means the vector version 6596 // of the instruction costs more, and scalarizing would be beneficial. 6597 Discount += VectorCost - ScalarCost; 6598 ScalarCosts[I] = ScalarCost; 6599 } 6600 6601 return *Discount.getValue(); 6602 } 6603 6604 LoopVectorizationCostModel::VectorizationCostTy 6605 LoopVectorizationCostModel::expectedCost( 6606 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6607 VectorizationCostTy Cost; 6608 6609 // For each block. 6610 for (BasicBlock *BB : TheLoop->blocks()) { 6611 VectorizationCostTy BlockCost; 6612 6613 // For each instruction in the old loop. 6614 for (Instruction &I : BB->instructionsWithoutDebug()) { 6615 // Skip ignored values. 6616 if (ValuesToIgnore.count(&I) || 6617 (VF.isVector() && VecValuesToIgnore.count(&I))) 6618 continue; 6619 6620 VectorizationCostTy C = getInstructionCost(&I, VF); 6621 6622 // Check if we should override the cost. 6623 if (C.first.isValid() && 6624 ForceTargetInstructionCost.getNumOccurrences() > 0) 6625 C.first = InstructionCost(ForceTargetInstructionCost); 6626 6627 // Keep a list of instructions with invalid costs. 6628 if (Invalid && !C.first.isValid()) 6629 Invalid->emplace_back(&I, VF); 6630 6631 BlockCost.first += C.first; 6632 BlockCost.second |= C.second; 6633 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6634 << " for VF " << VF << " For instruction: " << I 6635 << '\n'); 6636 } 6637 6638 // If we are vectorizing a predicated block, it will have been 6639 // if-converted. This means that the block's instructions (aside from 6640 // stores and instructions that may divide by zero) will now be 6641 // unconditionally executed. For the scalar case, we may not always execute 6642 // the predicated block, if it is an if-else block. Thus, scale the block's 6643 // cost by the probability of executing it. blockNeedsPredication from 6644 // Legal is used so as to not include all blocks in tail folded loops. 6645 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6646 BlockCost.first /= getReciprocalPredBlockProb(); 6647 6648 Cost.first += BlockCost.first; 6649 Cost.second |= BlockCost.second; 6650 } 6651 6652 return Cost; 6653 } 6654 6655 /// Gets Address Access SCEV after verifying that the access pattern 6656 /// is loop invariant except the induction variable dependence. 6657 /// 6658 /// This SCEV can be sent to the Target in order to estimate the address 6659 /// calculation cost. 6660 static const SCEV *getAddressAccessSCEV( 6661 Value *Ptr, 6662 LoopVectorizationLegality *Legal, 6663 PredicatedScalarEvolution &PSE, 6664 const Loop *TheLoop) { 6665 6666 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6667 if (!Gep) 6668 return nullptr; 6669 6670 // We are looking for a gep with all loop invariant indices except for one 6671 // which should be an induction variable. 6672 auto SE = PSE.getSE(); 6673 unsigned NumOperands = Gep->getNumOperands(); 6674 for (unsigned i = 1; i < NumOperands; ++i) { 6675 Value *Opd = Gep->getOperand(i); 6676 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6677 !Legal->isInductionVariable(Opd)) 6678 return nullptr; 6679 } 6680 6681 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6682 return PSE.getSCEV(Ptr); 6683 } 6684 6685 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6686 return Legal->hasStride(I->getOperand(0)) || 6687 Legal->hasStride(I->getOperand(1)); 6688 } 6689 6690 InstructionCost 6691 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6692 ElementCount VF) { 6693 assert(VF.isVector() && 6694 "Scalarization cost of instruction implies vectorization."); 6695 if (VF.isScalable()) 6696 return InstructionCost::getInvalid(); 6697 6698 Type *ValTy = getLoadStoreType(I); 6699 auto SE = PSE.getSE(); 6700 6701 unsigned AS = getLoadStoreAddressSpace(I); 6702 Value *Ptr = getLoadStorePointerOperand(I); 6703 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6704 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6705 // that it is being called from this specific place. 6706 6707 // Figure out whether the access is strided and get the stride value 6708 // if it's known in compile time 6709 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6710 6711 // Get the cost of the scalar memory instruction and address computation. 6712 InstructionCost Cost = 6713 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6714 6715 // Don't pass *I here, since it is scalar but will actually be part of a 6716 // vectorized loop where the user of it is a vectorized instruction. 6717 const Align Alignment = getLoadStoreAlignment(I); 6718 Cost += VF.getKnownMinValue() * 6719 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6720 AS, TTI::TCK_RecipThroughput); 6721 6722 // Get the overhead of the extractelement and insertelement instructions 6723 // we might create due to scalarization. 6724 Cost += getScalarizationOverhead(I, VF); 6725 6726 // If we have a predicated load/store, it will need extra i1 extracts and 6727 // conditional branches, but may not be executed for each vector lane. Scale 6728 // the cost by the probability of executing the predicated block. 6729 if (isPredicatedInst(I, VF)) { 6730 Cost /= getReciprocalPredBlockProb(); 6731 6732 // Add the cost of an i1 extract and a branch 6733 auto *Vec_i1Ty = 6734 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6735 Cost += TTI.getScalarizationOverhead( 6736 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6737 /*Insert=*/false, /*Extract=*/true); 6738 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6739 6740 if (useEmulatedMaskMemRefHack(I, VF)) 6741 // Artificially setting to a high enough value to practically disable 6742 // vectorization with such operations. 6743 Cost = 3000000; 6744 } 6745 6746 return Cost; 6747 } 6748 6749 InstructionCost 6750 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6751 ElementCount VF) { 6752 Type *ValTy = getLoadStoreType(I); 6753 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6754 Value *Ptr = getLoadStorePointerOperand(I); 6755 unsigned AS = getLoadStoreAddressSpace(I); 6756 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6757 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6758 6759 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6760 "Stride should be 1 or -1 for consecutive memory access"); 6761 const Align Alignment = getLoadStoreAlignment(I); 6762 InstructionCost Cost = 0; 6763 if (Legal->isMaskRequired(I)) 6764 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6765 CostKind); 6766 else 6767 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6768 CostKind, I); 6769 6770 bool Reverse = ConsecutiveStride < 0; 6771 if (Reverse) 6772 Cost += 6773 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6774 return Cost; 6775 } 6776 6777 InstructionCost 6778 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6779 ElementCount VF) { 6780 assert(Legal->isUniformMemOp(*I)); 6781 6782 Type *ValTy = getLoadStoreType(I); 6783 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6784 const Align Alignment = getLoadStoreAlignment(I); 6785 unsigned AS = getLoadStoreAddressSpace(I); 6786 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6787 if (isa<LoadInst>(I)) { 6788 return TTI.getAddressComputationCost(ValTy) + 6789 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6790 CostKind) + 6791 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6792 } 6793 StoreInst *SI = cast<StoreInst>(I); 6794 6795 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6796 return TTI.getAddressComputationCost(ValTy) + 6797 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6798 CostKind) + 6799 (isLoopInvariantStoreValue 6800 ? 0 6801 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6802 VF.getKnownMinValue() - 1)); 6803 } 6804 6805 InstructionCost 6806 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6807 ElementCount VF) { 6808 Type *ValTy = getLoadStoreType(I); 6809 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6810 const Align Alignment = getLoadStoreAlignment(I); 6811 const Value *Ptr = getLoadStorePointerOperand(I); 6812 6813 return TTI.getAddressComputationCost(VectorTy) + 6814 TTI.getGatherScatterOpCost( 6815 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6816 TargetTransformInfo::TCK_RecipThroughput, I); 6817 } 6818 6819 InstructionCost 6820 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6821 ElementCount VF) { 6822 // TODO: Once we have support for interleaving with scalable vectors 6823 // we can calculate the cost properly here. 6824 if (VF.isScalable()) 6825 return InstructionCost::getInvalid(); 6826 6827 Type *ValTy = getLoadStoreType(I); 6828 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6829 unsigned AS = getLoadStoreAddressSpace(I); 6830 6831 auto Group = getInterleavedAccessGroup(I); 6832 assert(Group && "Fail to get an interleaved access group."); 6833 6834 unsigned InterleaveFactor = Group->getFactor(); 6835 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6836 6837 // Holds the indices of existing members in the interleaved group. 6838 SmallVector<unsigned, 4> Indices; 6839 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6840 if (Group->getMember(IF)) 6841 Indices.push_back(IF); 6842 6843 // Calculate the cost of the whole interleaved group. 6844 bool UseMaskForGaps = 6845 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6846 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6847 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6848 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6849 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6850 6851 if (Group->isReverse()) { 6852 // TODO: Add support for reversed masked interleaved access. 6853 assert(!Legal->isMaskRequired(I) && 6854 "Reverse masked interleaved access not supported."); 6855 Cost += 6856 Group->getNumMembers() * 6857 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6858 } 6859 return Cost; 6860 } 6861 6862 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6863 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6864 using namespace llvm::PatternMatch; 6865 // Early exit for no inloop reductions 6866 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6867 return None; 6868 auto *VectorTy = cast<VectorType>(Ty); 6869 6870 // We are looking for a pattern of, and finding the minimal acceptable cost: 6871 // reduce(mul(ext(A), ext(B))) or 6872 // reduce(mul(A, B)) or 6873 // reduce(ext(A)) or 6874 // reduce(A). 6875 // The basic idea is that we walk down the tree to do that, finding the root 6876 // reduction instruction in InLoopReductionImmediateChains. From there we find 6877 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6878 // of the components. If the reduction cost is lower then we return it for the 6879 // reduction instruction and 0 for the other instructions in the pattern. If 6880 // it is not we return an invalid cost specifying the orignal cost method 6881 // should be used. 6882 Instruction *RetI = I; 6883 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6884 if (!RetI->hasOneUser()) 6885 return None; 6886 RetI = RetI->user_back(); 6887 } 6888 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6889 RetI->user_back()->getOpcode() == Instruction::Add) { 6890 if (!RetI->hasOneUser()) 6891 return None; 6892 RetI = RetI->user_back(); 6893 } 6894 6895 // Test if the found instruction is a reduction, and if not return an invalid 6896 // cost specifying the parent to use the original cost modelling. 6897 if (!InLoopReductionImmediateChains.count(RetI)) 6898 return None; 6899 6900 // Find the reduction this chain is a part of and calculate the basic cost of 6901 // the reduction on its own. 6902 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6903 Instruction *ReductionPhi = LastChain; 6904 while (!isa<PHINode>(ReductionPhi)) 6905 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6906 6907 const RecurrenceDescriptor &RdxDesc = 6908 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6909 6910 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6911 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6912 6913 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6914 // normal fmul instruction to the cost of the fadd reduction. 6915 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6916 BaseCost += 6917 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6918 6919 // If we're using ordered reductions then we can just return the base cost 6920 // here, since getArithmeticReductionCost calculates the full ordered 6921 // reduction cost when FP reassociation is not allowed. 6922 if (useOrderedReductions(RdxDesc)) 6923 return BaseCost; 6924 6925 // Get the operand that was not the reduction chain and match it to one of the 6926 // patterns, returning the better cost if it is found. 6927 Instruction *RedOp = RetI->getOperand(1) == LastChain 6928 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6929 : dyn_cast<Instruction>(RetI->getOperand(1)); 6930 6931 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6932 6933 Instruction *Op0, *Op1; 6934 if (RedOp && 6935 match(RedOp, 6936 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6937 match(Op0, m_ZExtOrSExt(m_Value())) && 6938 Op0->getOpcode() == Op1->getOpcode() && 6939 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6940 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6941 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6942 6943 // Matched reduce(ext(mul(ext(A), ext(B))) 6944 // Note that the extend opcodes need to all match, or if A==B they will have 6945 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6946 // which is equally fine. 6947 bool IsUnsigned = isa<ZExtInst>(Op0); 6948 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6949 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6950 6951 InstructionCost ExtCost = 6952 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6953 TTI::CastContextHint::None, CostKind, Op0); 6954 InstructionCost MulCost = 6955 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6956 InstructionCost Ext2Cost = 6957 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6958 TTI::CastContextHint::None, CostKind, RedOp); 6959 6960 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6961 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6962 CostKind); 6963 6964 if (RedCost.isValid() && 6965 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6966 return I == RetI ? RedCost : 0; 6967 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6968 !TheLoop->isLoopInvariant(RedOp)) { 6969 // Matched reduce(ext(A)) 6970 bool IsUnsigned = isa<ZExtInst>(RedOp); 6971 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6972 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6973 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6974 CostKind); 6975 6976 InstructionCost ExtCost = 6977 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6978 TTI::CastContextHint::None, CostKind, RedOp); 6979 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6980 return I == RetI ? RedCost : 0; 6981 } else if (RedOp && 6982 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6983 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6984 Op0->getOpcode() == Op1->getOpcode() && 6985 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6986 bool IsUnsigned = isa<ZExtInst>(Op0); 6987 Type *Op0Ty = Op0->getOperand(0)->getType(); 6988 Type *Op1Ty = Op1->getOperand(0)->getType(); 6989 Type *LargestOpTy = 6990 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 6991 : Op0Ty; 6992 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 6993 6994 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 6995 // different sizes. We take the largest type as the ext to reduce, and add 6996 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 6997 InstructionCost ExtCost0 = TTI.getCastInstrCost( 6998 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 6999 TTI::CastContextHint::None, CostKind, Op0); 7000 InstructionCost ExtCost1 = TTI.getCastInstrCost( 7001 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 7002 TTI::CastContextHint::None, CostKind, Op1); 7003 InstructionCost MulCost = 7004 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7005 7006 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7007 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7008 CostKind); 7009 InstructionCost ExtraExtCost = 0; 7010 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 7011 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 7012 ExtraExtCost = TTI.getCastInstrCost( 7013 ExtraExtOp->getOpcode(), ExtType, 7014 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 7015 TTI::CastContextHint::None, CostKind, ExtraExtOp); 7016 } 7017 7018 if (RedCost.isValid() && 7019 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 7020 return I == RetI ? RedCost : 0; 7021 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 7022 // Matched reduce(mul()) 7023 InstructionCost MulCost = 7024 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7025 7026 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7027 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7028 CostKind); 7029 7030 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7031 return I == RetI ? RedCost : 0; 7032 } 7033 } 7034 7035 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 7036 } 7037 7038 InstructionCost 7039 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7040 ElementCount VF) { 7041 // Calculate scalar cost only. Vectorization cost should be ready at this 7042 // moment. 7043 if (VF.isScalar()) { 7044 Type *ValTy = getLoadStoreType(I); 7045 const Align Alignment = getLoadStoreAlignment(I); 7046 unsigned AS = getLoadStoreAddressSpace(I); 7047 7048 return TTI.getAddressComputationCost(ValTy) + 7049 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7050 TTI::TCK_RecipThroughput, I); 7051 } 7052 return getWideningCost(I, VF); 7053 } 7054 7055 LoopVectorizationCostModel::VectorizationCostTy 7056 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7057 ElementCount VF) { 7058 // If we know that this instruction will remain uniform, check the cost of 7059 // the scalar version. 7060 if (isUniformAfterVectorization(I, VF)) 7061 VF = ElementCount::getFixed(1); 7062 7063 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7064 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7065 7066 // Forced scalars do not have any scalarization overhead. 7067 auto ForcedScalar = ForcedScalars.find(VF); 7068 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7069 auto InstSet = ForcedScalar->second; 7070 if (InstSet.count(I)) 7071 return VectorizationCostTy( 7072 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7073 VF.getKnownMinValue()), 7074 false); 7075 } 7076 7077 Type *VectorTy; 7078 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7079 7080 bool TypeNotScalarized = false; 7081 if (VF.isVector() && VectorTy->isVectorTy()) { 7082 unsigned NumParts = TTI.getNumberOfParts(VectorTy); 7083 if (NumParts) 7084 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 7085 else 7086 C = InstructionCost::getInvalid(); 7087 } 7088 return VectorizationCostTy(C, TypeNotScalarized); 7089 } 7090 7091 InstructionCost 7092 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7093 ElementCount VF) const { 7094 7095 // There is no mechanism yet to create a scalable scalarization loop, 7096 // so this is currently Invalid. 7097 if (VF.isScalable()) 7098 return InstructionCost::getInvalid(); 7099 7100 if (VF.isScalar()) 7101 return 0; 7102 7103 InstructionCost Cost = 0; 7104 Type *RetTy = ToVectorTy(I->getType(), VF); 7105 if (!RetTy->isVoidTy() && 7106 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7107 Cost += TTI.getScalarizationOverhead( 7108 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 7109 false); 7110 7111 // Some targets keep addresses scalar. 7112 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7113 return Cost; 7114 7115 // Some targets support efficient element stores. 7116 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7117 return Cost; 7118 7119 // Collect operands to consider. 7120 CallInst *CI = dyn_cast<CallInst>(I); 7121 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 7122 7123 // Skip operands that do not require extraction/scalarization and do not incur 7124 // any overhead. 7125 SmallVector<Type *> Tys; 7126 for (auto *V : filterExtractingOperands(Ops, VF)) 7127 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7128 return Cost + TTI.getOperandsScalarizationOverhead( 7129 filterExtractingOperands(Ops, VF), Tys); 7130 } 7131 7132 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7133 if (VF.isScalar()) 7134 return; 7135 NumPredStores = 0; 7136 for (BasicBlock *BB : TheLoop->blocks()) { 7137 // For each instruction in the old loop. 7138 for (Instruction &I : *BB) { 7139 Value *Ptr = getLoadStorePointerOperand(&I); 7140 if (!Ptr) 7141 continue; 7142 7143 // TODO: We should generate better code and update the cost model for 7144 // predicated uniform stores. Today they are treated as any other 7145 // predicated store (see added test cases in 7146 // invariant-store-vectorization.ll). 7147 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 7148 NumPredStores++; 7149 7150 if (Legal->isUniformMemOp(I)) { 7151 // TODO: Avoid replicating loads and stores instead of 7152 // relying on instcombine to remove them. 7153 // Load: Scalar load + broadcast 7154 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7155 InstructionCost Cost; 7156 if (isa<StoreInst>(&I) && VF.isScalable() && 7157 isLegalGatherOrScatter(&I, VF)) { 7158 Cost = getGatherScatterCost(&I, VF); 7159 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 7160 } else { 7161 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 7162 "Cannot yet scalarize uniform stores"); 7163 Cost = getUniformMemOpCost(&I, VF); 7164 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7165 } 7166 continue; 7167 } 7168 7169 // We assume that widening is the best solution when possible. 7170 if (memoryInstructionCanBeWidened(&I, VF)) { 7171 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7172 int ConsecutiveStride = Legal->isConsecutivePtr( 7173 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 7174 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7175 "Expected consecutive stride."); 7176 InstWidening Decision = 7177 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7178 setWideningDecision(&I, VF, Decision, Cost); 7179 continue; 7180 } 7181 7182 // Choose between Interleaving, Gather/Scatter or Scalarization. 7183 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7184 unsigned NumAccesses = 1; 7185 if (isAccessInterleaved(&I)) { 7186 auto Group = getInterleavedAccessGroup(&I); 7187 assert(Group && "Fail to get an interleaved access group."); 7188 7189 // Make one decision for the whole group. 7190 if (getWideningDecision(&I, VF) != CM_Unknown) 7191 continue; 7192 7193 NumAccesses = Group->getNumMembers(); 7194 if (interleavedAccessCanBeWidened(&I, VF)) 7195 InterleaveCost = getInterleaveGroupCost(&I, VF); 7196 } 7197 7198 InstructionCost GatherScatterCost = 7199 isLegalGatherOrScatter(&I, VF) 7200 ? getGatherScatterCost(&I, VF) * NumAccesses 7201 : InstructionCost::getInvalid(); 7202 7203 InstructionCost ScalarizationCost = 7204 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7205 7206 // Choose better solution for the current VF, 7207 // write down this decision and use it during vectorization. 7208 InstructionCost Cost; 7209 InstWidening Decision; 7210 if (InterleaveCost <= GatherScatterCost && 7211 InterleaveCost < ScalarizationCost) { 7212 Decision = CM_Interleave; 7213 Cost = InterleaveCost; 7214 } else if (GatherScatterCost < ScalarizationCost) { 7215 Decision = CM_GatherScatter; 7216 Cost = GatherScatterCost; 7217 } else { 7218 Decision = CM_Scalarize; 7219 Cost = ScalarizationCost; 7220 } 7221 // If the instructions belongs to an interleave group, the whole group 7222 // receives the same decision. The whole group receives the cost, but 7223 // the cost will actually be assigned to one instruction. 7224 if (auto Group = getInterleavedAccessGroup(&I)) 7225 setWideningDecision(Group, VF, Decision, Cost); 7226 else 7227 setWideningDecision(&I, VF, Decision, Cost); 7228 } 7229 } 7230 7231 // Make sure that any load of address and any other address computation 7232 // remains scalar unless there is gather/scatter support. This avoids 7233 // inevitable extracts into address registers, and also has the benefit of 7234 // activating LSR more, since that pass can't optimize vectorized 7235 // addresses. 7236 if (TTI.prefersVectorizedAddressing()) 7237 return; 7238 7239 // Start with all scalar pointer uses. 7240 SmallPtrSet<Instruction *, 8> AddrDefs; 7241 for (BasicBlock *BB : TheLoop->blocks()) 7242 for (Instruction &I : *BB) { 7243 Instruction *PtrDef = 7244 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7245 if (PtrDef && TheLoop->contains(PtrDef) && 7246 getWideningDecision(&I, VF) != CM_GatherScatter) 7247 AddrDefs.insert(PtrDef); 7248 } 7249 7250 // Add all instructions used to generate the addresses. 7251 SmallVector<Instruction *, 4> Worklist; 7252 append_range(Worklist, AddrDefs); 7253 while (!Worklist.empty()) { 7254 Instruction *I = Worklist.pop_back_val(); 7255 for (auto &Op : I->operands()) 7256 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7257 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7258 AddrDefs.insert(InstOp).second) 7259 Worklist.push_back(InstOp); 7260 } 7261 7262 for (auto *I : AddrDefs) { 7263 if (isa<LoadInst>(I)) { 7264 // Setting the desired widening decision should ideally be handled in 7265 // by cost functions, but since this involves the task of finding out 7266 // if the loaded register is involved in an address computation, it is 7267 // instead changed here when we know this is the case. 7268 InstWidening Decision = getWideningDecision(I, VF); 7269 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7270 // Scalarize a widened load of address. 7271 setWideningDecision( 7272 I, VF, CM_Scalarize, 7273 (VF.getKnownMinValue() * 7274 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7275 else if (auto Group = getInterleavedAccessGroup(I)) { 7276 // Scalarize an interleave group of address loads. 7277 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7278 if (Instruction *Member = Group->getMember(I)) 7279 setWideningDecision( 7280 Member, VF, CM_Scalarize, 7281 (VF.getKnownMinValue() * 7282 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7283 } 7284 } 7285 } else 7286 // Make sure I gets scalarized and a cost estimate without 7287 // scalarization overhead. 7288 ForcedScalars[VF].insert(I); 7289 } 7290 } 7291 7292 InstructionCost 7293 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7294 Type *&VectorTy) { 7295 Type *RetTy = I->getType(); 7296 if (canTruncateToMinimalBitwidth(I, VF)) 7297 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7298 auto SE = PSE.getSE(); 7299 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7300 7301 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7302 ElementCount VF) -> bool { 7303 if (VF.isScalar()) 7304 return true; 7305 7306 auto Scalarized = InstsToScalarize.find(VF); 7307 assert(Scalarized != InstsToScalarize.end() && 7308 "VF not yet analyzed for scalarization profitability"); 7309 return !Scalarized->second.count(I) && 7310 llvm::all_of(I->users(), [&](User *U) { 7311 auto *UI = cast<Instruction>(U); 7312 return !Scalarized->second.count(UI); 7313 }); 7314 }; 7315 (void) hasSingleCopyAfterVectorization; 7316 7317 if (isScalarAfterVectorization(I, VF)) { 7318 // With the exception of GEPs and PHIs, after scalarization there should 7319 // only be one copy of the instruction generated in the loop. This is 7320 // because the VF is either 1, or any instructions that need scalarizing 7321 // have already been dealt with by the the time we get here. As a result, 7322 // it means we don't have to multiply the instruction cost by VF. 7323 assert(I->getOpcode() == Instruction::GetElementPtr || 7324 I->getOpcode() == Instruction::PHI || 7325 (I->getOpcode() == Instruction::BitCast && 7326 I->getType()->isPointerTy()) || 7327 hasSingleCopyAfterVectorization(I, VF)); 7328 VectorTy = RetTy; 7329 } else 7330 VectorTy = ToVectorTy(RetTy, VF); 7331 7332 // TODO: We need to estimate the cost of intrinsic calls. 7333 switch (I->getOpcode()) { 7334 case Instruction::GetElementPtr: 7335 // We mark this instruction as zero-cost because the cost of GEPs in 7336 // vectorized code depends on whether the corresponding memory instruction 7337 // is scalarized or not. Therefore, we handle GEPs with the memory 7338 // instruction cost. 7339 return 0; 7340 case Instruction::Br: { 7341 // In cases of scalarized and predicated instructions, there will be VF 7342 // predicated blocks in the vectorized loop. Each branch around these 7343 // blocks requires also an extract of its vector compare i1 element. 7344 bool ScalarPredicatedBB = false; 7345 BranchInst *BI = cast<BranchInst>(I); 7346 if (VF.isVector() && BI->isConditional() && 7347 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7348 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7349 ScalarPredicatedBB = true; 7350 7351 if (ScalarPredicatedBB) { 7352 // Not possible to scalarize scalable vector with predicated instructions. 7353 if (VF.isScalable()) 7354 return InstructionCost::getInvalid(); 7355 // Return cost for branches around scalarized and predicated blocks. 7356 auto *Vec_i1Ty = 7357 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7358 return ( 7359 TTI.getScalarizationOverhead( 7360 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7361 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7362 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7363 // The back-edge branch will remain, as will all scalar branches. 7364 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7365 else 7366 // This branch will be eliminated by if-conversion. 7367 return 0; 7368 // Note: We currently assume zero cost for an unconditional branch inside 7369 // a predicated block since it will become a fall-through, although we 7370 // may decide in the future to call TTI for all branches. 7371 } 7372 case Instruction::PHI: { 7373 auto *Phi = cast<PHINode>(I); 7374 7375 // First-order recurrences are replaced by vector shuffles inside the loop. 7376 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7377 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7378 return TTI.getShuffleCost( 7379 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7380 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7381 7382 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7383 // converted into select instructions. We require N - 1 selects per phi 7384 // node, where N is the number of incoming values. 7385 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7386 return (Phi->getNumIncomingValues() - 1) * 7387 TTI.getCmpSelInstrCost( 7388 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7389 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7390 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7391 7392 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7393 } 7394 case Instruction::UDiv: 7395 case Instruction::SDiv: 7396 case Instruction::URem: 7397 case Instruction::SRem: 7398 // If we have a predicated instruction, it may not be executed for each 7399 // vector lane. Get the scalarization cost and scale this amount by the 7400 // probability of executing the predicated block. If the instruction is not 7401 // predicated, we fall through to the next case. 7402 if (VF.isVector() && isScalarWithPredication(I, VF)) { 7403 InstructionCost Cost = 0; 7404 7405 // These instructions have a non-void type, so account for the phi nodes 7406 // that we will create. This cost is likely to be zero. The phi node 7407 // cost, if any, should be scaled by the block probability because it 7408 // models a copy at the end of each predicated block. 7409 Cost += VF.getKnownMinValue() * 7410 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7411 7412 // The cost of the non-predicated instruction. 7413 Cost += VF.getKnownMinValue() * 7414 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7415 7416 // The cost of insertelement and extractelement instructions needed for 7417 // scalarization. 7418 Cost += getScalarizationOverhead(I, VF); 7419 7420 // Scale the cost by the probability of executing the predicated blocks. 7421 // This assumes the predicated block for each vector lane is equally 7422 // likely. 7423 return Cost / getReciprocalPredBlockProb(); 7424 } 7425 LLVM_FALLTHROUGH; 7426 case Instruction::Add: 7427 case Instruction::FAdd: 7428 case Instruction::Sub: 7429 case Instruction::FSub: 7430 case Instruction::Mul: 7431 case Instruction::FMul: 7432 case Instruction::FDiv: 7433 case Instruction::FRem: 7434 case Instruction::Shl: 7435 case Instruction::LShr: 7436 case Instruction::AShr: 7437 case Instruction::And: 7438 case Instruction::Or: 7439 case Instruction::Xor: { 7440 // Since we will replace the stride by 1 the multiplication should go away. 7441 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7442 return 0; 7443 7444 // Detect reduction patterns 7445 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7446 return *RedCost; 7447 7448 // Certain instructions can be cheaper to vectorize if they have a constant 7449 // second vector operand. One example of this are shifts on x86. 7450 Value *Op2 = I->getOperand(1); 7451 TargetTransformInfo::OperandValueProperties Op2VP; 7452 TargetTransformInfo::OperandValueKind Op2VK = 7453 TTI.getOperandInfo(Op2, Op2VP); 7454 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7455 Op2VK = TargetTransformInfo::OK_UniformValue; 7456 7457 SmallVector<const Value *, 4> Operands(I->operand_values()); 7458 return TTI.getArithmeticInstrCost( 7459 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7460 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7461 } 7462 case Instruction::FNeg: { 7463 return TTI.getArithmeticInstrCost( 7464 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7465 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7466 TargetTransformInfo::OP_None, I->getOperand(0), I); 7467 } 7468 case Instruction::Select: { 7469 SelectInst *SI = cast<SelectInst>(I); 7470 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7471 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7472 7473 const Value *Op0, *Op1; 7474 using namespace llvm::PatternMatch; 7475 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7476 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7477 // select x, y, false --> x & y 7478 // select x, true, y --> x | y 7479 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7480 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7481 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7482 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7483 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7484 Op1->getType()->getScalarSizeInBits() == 1); 7485 7486 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7487 return TTI.getArithmeticInstrCost( 7488 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7489 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7490 } 7491 7492 Type *CondTy = SI->getCondition()->getType(); 7493 if (!ScalarCond) 7494 CondTy = VectorType::get(CondTy, VF); 7495 7496 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7497 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7498 Pred = Cmp->getPredicate(); 7499 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7500 CostKind, I); 7501 } 7502 case Instruction::ICmp: 7503 case Instruction::FCmp: { 7504 Type *ValTy = I->getOperand(0)->getType(); 7505 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7506 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7507 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7508 VectorTy = ToVectorTy(ValTy, VF); 7509 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7510 cast<CmpInst>(I)->getPredicate(), CostKind, 7511 I); 7512 } 7513 case Instruction::Store: 7514 case Instruction::Load: { 7515 ElementCount Width = VF; 7516 if (Width.isVector()) { 7517 InstWidening Decision = getWideningDecision(I, Width); 7518 assert(Decision != CM_Unknown && 7519 "CM decision should be taken at this point"); 7520 if (Decision == CM_Scalarize) 7521 Width = ElementCount::getFixed(1); 7522 } 7523 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7524 return getMemoryInstructionCost(I, VF); 7525 } 7526 case Instruction::BitCast: 7527 if (I->getType()->isPointerTy()) 7528 return 0; 7529 LLVM_FALLTHROUGH; 7530 case Instruction::ZExt: 7531 case Instruction::SExt: 7532 case Instruction::FPToUI: 7533 case Instruction::FPToSI: 7534 case Instruction::FPExt: 7535 case Instruction::PtrToInt: 7536 case Instruction::IntToPtr: 7537 case Instruction::SIToFP: 7538 case Instruction::UIToFP: 7539 case Instruction::Trunc: 7540 case Instruction::FPTrunc: { 7541 // Computes the CastContextHint from a Load/Store instruction. 7542 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7543 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7544 "Expected a load or a store!"); 7545 7546 if (VF.isScalar() || !TheLoop->contains(I)) 7547 return TTI::CastContextHint::Normal; 7548 7549 switch (getWideningDecision(I, VF)) { 7550 case LoopVectorizationCostModel::CM_GatherScatter: 7551 return TTI::CastContextHint::GatherScatter; 7552 case LoopVectorizationCostModel::CM_Interleave: 7553 return TTI::CastContextHint::Interleave; 7554 case LoopVectorizationCostModel::CM_Scalarize: 7555 case LoopVectorizationCostModel::CM_Widen: 7556 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7557 : TTI::CastContextHint::Normal; 7558 case LoopVectorizationCostModel::CM_Widen_Reverse: 7559 return TTI::CastContextHint::Reversed; 7560 case LoopVectorizationCostModel::CM_Unknown: 7561 llvm_unreachable("Instr did not go through cost modelling?"); 7562 } 7563 7564 llvm_unreachable("Unhandled case!"); 7565 }; 7566 7567 unsigned Opcode = I->getOpcode(); 7568 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7569 // For Trunc, the context is the only user, which must be a StoreInst. 7570 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7571 if (I->hasOneUse()) 7572 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7573 CCH = ComputeCCH(Store); 7574 } 7575 // For Z/Sext, the context is the operand, which must be a LoadInst. 7576 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7577 Opcode == Instruction::FPExt) { 7578 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7579 CCH = ComputeCCH(Load); 7580 } 7581 7582 // We optimize the truncation of induction variables having constant 7583 // integer steps. The cost of these truncations is the same as the scalar 7584 // operation. 7585 if (isOptimizableIVTruncate(I, VF)) { 7586 auto *Trunc = cast<TruncInst>(I); 7587 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7588 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7589 } 7590 7591 // Detect reduction patterns 7592 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7593 return *RedCost; 7594 7595 Type *SrcScalarTy = I->getOperand(0)->getType(); 7596 Type *SrcVecTy = 7597 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7598 if (canTruncateToMinimalBitwidth(I, VF)) { 7599 // This cast is going to be shrunk. This may remove the cast or it might 7600 // turn it into slightly different cast. For example, if MinBW == 16, 7601 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7602 // 7603 // Calculate the modified src and dest types. 7604 Type *MinVecTy = VectorTy; 7605 if (Opcode == Instruction::Trunc) { 7606 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7607 VectorTy = 7608 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7609 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7610 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7611 VectorTy = 7612 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7613 } 7614 } 7615 7616 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7617 } 7618 case Instruction::Call: { 7619 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7620 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7621 return *RedCost; 7622 bool NeedToScalarize; 7623 CallInst *CI = cast<CallInst>(I); 7624 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7625 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7626 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7627 return std::min(CallCost, IntrinsicCost); 7628 } 7629 return CallCost; 7630 } 7631 case Instruction::ExtractValue: 7632 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7633 case Instruction::Alloca: 7634 // We cannot easily widen alloca to a scalable alloca, as 7635 // the result would need to be a vector of pointers. 7636 if (VF.isScalable()) 7637 return InstructionCost::getInvalid(); 7638 LLVM_FALLTHROUGH; 7639 default: 7640 // This opcode is unknown. Assume that it is the same as 'mul'. 7641 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7642 } // end of switch. 7643 } 7644 7645 char LoopVectorize::ID = 0; 7646 7647 static const char lv_name[] = "Loop Vectorization"; 7648 7649 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7650 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7651 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7652 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7653 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7654 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7655 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7656 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7657 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7658 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7659 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7660 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7661 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7662 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7663 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7664 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7665 7666 namespace llvm { 7667 7668 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7669 7670 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7671 bool VectorizeOnlyWhenForced) { 7672 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7673 } 7674 7675 } // end namespace llvm 7676 7677 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7678 // Check if the pointer operand of a load or store instruction is 7679 // consecutive. 7680 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7681 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7682 return false; 7683 } 7684 7685 void LoopVectorizationCostModel::collectValuesToIgnore() { 7686 // Ignore ephemeral values. 7687 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7688 7689 // Ignore type-promoting instructions we identified during reduction 7690 // detection. 7691 for (auto &Reduction : Legal->getReductionVars()) { 7692 const RecurrenceDescriptor &RedDes = Reduction.second; 7693 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7694 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7695 } 7696 // Ignore type-casting instructions we identified during induction 7697 // detection. 7698 for (auto &Induction : Legal->getInductionVars()) { 7699 const InductionDescriptor &IndDes = Induction.second; 7700 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7701 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7702 } 7703 } 7704 7705 void LoopVectorizationCostModel::collectInLoopReductions() { 7706 for (auto &Reduction : Legal->getReductionVars()) { 7707 PHINode *Phi = Reduction.first; 7708 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7709 7710 // We don't collect reductions that are type promoted (yet). 7711 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7712 continue; 7713 7714 // If the target would prefer this reduction to happen "in-loop", then we 7715 // want to record it as such. 7716 unsigned Opcode = RdxDesc.getOpcode(); 7717 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7718 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7719 TargetTransformInfo::ReductionFlags())) 7720 continue; 7721 7722 // Check that we can correctly put the reductions into the loop, by 7723 // finding the chain of operations that leads from the phi to the loop 7724 // exit value. 7725 SmallVector<Instruction *, 4> ReductionOperations = 7726 RdxDesc.getReductionOpChain(Phi, TheLoop); 7727 bool InLoop = !ReductionOperations.empty(); 7728 if (InLoop) { 7729 InLoopReductionChains[Phi] = ReductionOperations; 7730 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7731 Instruction *LastChain = Phi; 7732 for (auto *I : ReductionOperations) { 7733 InLoopReductionImmediateChains[I] = LastChain; 7734 LastChain = I; 7735 } 7736 } 7737 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7738 << " reduction for phi: " << *Phi << "\n"); 7739 } 7740 } 7741 7742 // TODO: we could return a pair of values that specify the max VF and 7743 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7744 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7745 // doesn't have a cost model that can choose which plan to execute if 7746 // more than one is generated. 7747 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7748 LoopVectorizationCostModel &CM) { 7749 unsigned WidestType; 7750 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7751 return WidestVectorRegBits / WidestType; 7752 } 7753 7754 VectorizationFactor 7755 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7756 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7757 ElementCount VF = UserVF; 7758 // Outer loop handling: They may require CFG and instruction level 7759 // transformations before even evaluating whether vectorization is profitable. 7760 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7761 // the vectorization pipeline. 7762 if (!OrigLoop->isInnermost()) { 7763 // If the user doesn't provide a vectorization factor, determine a 7764 // reasonable one. 7765 if (UserVF.isZero()) { 7766 VF = ElementCount::getFixed(determineVPlanVF( 7767 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7768 .getFixedSize(), 7769 CM)); 7770 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7771 7772 // Make sure we have a VF > 1 for stress testing. 7773 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7774 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7775 << "overriding computed VF.\n"); 7776 VF = ElementCount::getFixed(4); 7777 } 7778 } 7779 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7780 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7781 "VF needs to be a power of two"); 7782 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7783 << "VF " << VF << " to build VPlans.\n"); 7784 buildVPlans(VF, VF); 7785 7786 // For VPlan build stress testing, we bail out after VPlan construction. 7787 if (VPlanBuildStressTest) 7788 return VectorizationFactor::Disabled(); 7789 7790 return {VF, 0 /*Cost*/}; 7791 } 7792 7793 LLVM_DEBUG( 7794 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7795 "VPlan-native path.\n"); 7796 return VectorizationFactor::Disabled(); 7797 } 7798 7799 Optional<VectorizationFactor> 7800 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7801 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7802 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7803 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7804 return None; 7805 7806 // Invalidate interleave groups if all blocks of loop will be predicated. 7807 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7808 !useMaskedInterleavedAccesses(*TTI)) { 7809 LLVM_DEBUG( 7810 dbgs() 7811 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7812 "which requires masked-interleaved support.\n"); 7813 if (CM.InterleaveInfo.invalidateGroups()) 7814 // Invalidating interleave groups also requires invalidating all decisions 7815 // based on them, which includes widening decisions and uniform and scalar 7816 // values. 7817 CM.invalidateCostModelingDecisions(); 7818 } 7819 7820 ElementCount MaxUserVF = 7821 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7822 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7823 if (!UserVF.isZero() && UserVFIsLegal) { 7824 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7825 "VF needs to be a power of two"); 7826 // Collect the instructions (and their associated costs) that will be more 7827 // profitable to scalarize. 7828 if (CM.selectUserVectorizationFactor(UserVF)) { 7829 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7830 CM.collectInLoopReductions(); 7831 buildVPlansWithVPRecipes(UserVF, UserVF); 7832 LLVM_DEBUG(printPlans(dbgs())); 7833 return {{UserVF, 0}}; 7834 } else 7835 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7836 "InvalidCost", ORE, OrigLoop); 7837 } 7838 7839 // Populate the set of Vectorization Factor Candidates. 7840 ElementCountSet VFCandidates; 7841 for (auto VF = ElementCount::getFixed(1); 7842 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7843 VFCandidates.insert(VF); 7844 for (auto VF = ElementCount::getScalable(1); 7845 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7846 VFCandidates.insert(VF); 7847 7848 for (const auto &VF : VFCandidates) { 7849 // Collect Uniform and Scalar instructions after vectorization with VF. 7850 CM.collectUniformsAndScalars(VF); 7851 7852 // Collect the instructions (and their associated costs) that will be more 7853 // profitable to scalarize. 7854 if (VF.isVector()) 7855 CM.collectInstsToScalarize(VF); 7856 } 7857 7858 CM.collectInLoopReductions(); 7859 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7860 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7861 7862 LLVM_DEBUG(printPlans(dbgs())); 7863 if (!MaxFactors.hasVector()) 7864 return VectorizationFactor::Disabled(); 7865 7866 // Select the optimal vectorization factor. 7867 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 7868 7869 // Check if it is profitable to vectorize with runtime checks. 7870 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 7871 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 7872 bool PragmaThresholdReached = 7873 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 7874 bool ThresholdReached = 7875 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 7876 if ((ThresholdReached && !Hints.allowReordering()) || 7877 PragmaThresholdReached) { 7878 ORE->emit([&]() { 7879 return OptimizationRemarkAnalysisAliasing( 7880 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 7881 OrigLoop->getHeader()) 7882 << "loop not vectorized: cannot prove it is safe to reorder " 7883 "memory operations"; 7884 }); 7885 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 7886 Hints.emitRemarkWithHints(); 7887 return VectorizationFactor::Disabled(); 7888 } 7889 } 7890 return SelectedVF; 7891 } 7892 7893 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7894 assert(count_if(VPlans, 7895 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7896 1 && 7897 "Best VF has not a single VPlan."); 7898 7899 for (const VPlanPtr &Plan : VPlans) { 7900 if (Plan->hasVF(VF)) 7901 return *Plan.get(); 7902 } 7903 llvm_unreachable("No plan found!"); 7904 } 7905 7906 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7907 SmallVector<Metadata *, 4> MDs; 7908 // Reserve first location for self reference to the LoopID metadata node. 7909 MDs.push_back(nullptr); 7910 bool IsUnrollMetadata = false; 7911 MDNode *LoopID = L->getLoopID(); 7912 if (LoopID) { 7913 // First find existing loop unrolling disable metadata. 7914 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7915 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7916 if (MD) { 7917 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7918 IsUnrollMetadata = 7919 S && S->getString().startswith("llvm.loop.unroll.disable"); 7920 } 7921 MDs.push_back(LoopID->getOperand(i)); 7922 } 7923 } 7924 7925 if (!IsUnrollMetadata) { 7926 // Add runtime unroll disable metadata. 7927 LLVMContext &Context = L->getHeader()->getContext(); 7928 SmallVector<Metadata *, 1> DisableOperands; 7929 DisableOperands.push_back( 7930 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7931 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7932 MDs.push_back(DisableNode); 7933 MDNode *NewLoopID = MDNode::get(Context, MDs); 7934 // Set operand 0 to refer to the loop id itself. 7935 NewLoopID->replaceOperandWith(0, NewLoopID); 7936 L->setLoopID(NewLoopID); 7937 } 7938 } 7939 7940 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7941 VPlan &BestVPlan, 7942 InnerLoopVectorizer &ILV, 7943 DominatorTree *DT) { 7944 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7945 << '\n'); 7946 7947 // Perform the actual loop transformation. 7948 7949 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7950 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7951 Value *CanonicalIVStartValue; 7952 std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = 7953 ILV.createVectorizedLoopSkeleton(); 7954 ILV.collectPoisonGeneratingRecipes(State); 7955 7956 ILV.printDebugTracesAtStart(); 7957 7958 //===------------------------------------------------===// 7959 // 7960 // Notice: any optimization or new instruction that go 7961 // into the code below should also be implemented in 7962 // the cost-model. 7963 // 7964 //===------------------------------------------------===// 7965 7966 // 2. Copy and widen instructions from the old loop into the new loop. 7967 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7968 ILV.getOrCreateVectorTripCount(nullptr), 7969 CanonicalIVStartValue, State); 7970 BestVPlan.execute(&State); 7971 7972 // Keep all loop hints from the original loop on the vector loop (we'll 7973 // replace the vectorizer-specific hints below). 7974 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7975 7976 Optional<MDNode *> VectorizedLoopID = 7977 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7978 LLVMLoopVectorizeFollowupVectorized}); 7979 7980 Loop *L = LI->getLoopFor(State.CFG.PrevBB); 7981 if (VectorizedLoopID.hasValue()) 7982 L->setLoopID(VectorizedLoopID.getValue()); 7983 else { 7984 // Keep all loop hints from the original loop on the vector loop (we'll 7985 // replace the vectorizer-specific hints below). 7986 if (MDNode *LID = OrigLoop->getLoopID()) 7987 L->setLoopID(LID); 7988 7989 LoopVectorizeHints Hints(L, true, *ORE); 7990 Hints.setAlreadyVectorized(); 7991 } 7992 // Disable runtime unrolling when vectorizing the epilogue loop. 7993 if (CanonicalIVStartValue) 7994 AddRuntimeUnrollDisableMetaData(L); 7995 7996 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7997 // predication, updating analyses. 7998 ILV.fixVectorizedLoop(State); 7999 8000 ILV.printDebugTracesAtEnd(); 8001 } 8002 8003 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 8004 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 8005 for (const auto &Plan : VPlans) 8006 if (PrintVPlansInDotFormat) 8007 Plan->printDOT(O); 8008 else 8009 Plan->print(O); 8010 } 8011 #endif 8012 8013 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 8014 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 8015 8016 // We create new control-flow for the vectorized loop, so the original exit 8017 // conditions will be dead after vectorization if it's only used by the 8018 // terminator 8019 SmallVector<BasicBlock*> ExitingBlocks; 8020 OrigLoop->getExitingBlocks(ExitingBlocks); 8021 for (auto *BB : ExitingBlocks) { 8022 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 8023 if (!Cmp || !Cmp->hasOneUse()) 8024 continue; 8025 8026 // TODO: we should introduce a getUniqueExitingBlocks on Loop 8027 if (!DeadInstructions.insert(Cmp).second) 8028 continue; 8029 8030 // The operands of the icmp is often a dead trunc, used by IndUpdate. 8031 // TODO: can recurse through operands in general 8032 for (Value *Op : Cmp->operands()) { 8033 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8034 DeadInstructions.insert(cast<Instruction>(Op)); 8035 } 8036 } 8037 8038 // We create new "steps" for induction variable updates to which the original 8039 // induction variables map. An original update instruction will be dead if 8040 // all its users except the induction variable are dead. 8041 auto *Latch = OrigLoop->getLoopLatch(); 8042 for (auto &Induction : Legal->getInductionVars()) { 8043 PHINode *Ind = Induction.first; 8044 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8045 8046 // If the tail is to be folded by masking, the primary induction variable, 8047 // if exists, isn't dead: it will be used for masking. Don't kill it. 8048 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8049 continue; 8050 8051 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8052 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8053 })) 8054 DeadInstructions.insert(IndUpdate); 8055 } 8056 } 8057 8058 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8059 8060 //===--------------------------------------------------------------------===// 8061 // EpilogueVectorizerMainLoop 8062 //===--------------------------------------------------------------------===// 8063 8064 /// This function is partially responsible for generating the control flow 8065 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8066 std::pair<BasicBlock *, Value *> 8067 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8068 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8069 Loop *Lp = createVectorLoopSkeleton(""); 8070 8071 // Generate the code to check the minimum iteration count of the vector 8072 // epilogue (see below). 8073 EPI.EpilogueIterationCountCheck = 8074 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8075 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8076 8077 // Generate the code to check any assumptions that we've made for SCEV 8078 // expressions. 8079 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8080 8081 // Generate the code that checks at runtime if arrays overlap. We put the 8082 // checks into a separate block to make the more common case of few elements 8083 // faster. 8084 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8085 8086 // Generate the iteration count check for the main loop, *after* the check 8087 // for the epilogue loop, so that the path-length is shorter for the case 8088 // that goes directly through the vector epilogue. The longer-path length for 8089 // the main loop is compensated for, by the gain from vectorizing the larger 8090 // trip count. Note: the branch will get updated later on when we vectorize 8091 // the epilogue. 8092 EPI.MainLoopIterationCountCheck = 8093 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8094 8095 // Generate the induction variable. 8096 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8097 EPI.VectorTripCount = CountRoundDown; 8098 createHeaderBranch(Lp); 8099 8100 // Skip induction resume value creation here because they will be created in 8101 // the second pass. If we created them here, they wouldn't be used anyway, 8102 // because the vplan in the second pass still contains the inductions from the 8103 // original loop. 8104 8105 return {completeLoopSkeleton(Lp, OrigLoopID), nullptr}; 8106 } 8107 8108 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8109 LLVM_DEBUG({ 8110 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8111 << "Main Loop VF:" << EPI.MainLoopVF 8112 << ", Main Loop UF:" << EPI.MainLoopUF 8113 << ", Epilogue Loop VF:" << EPI.EpilogueVF 8114 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8115 }); 8116 } 8117 8118 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8119 DEBUG_WITH_TYPE(VerboseDebug, { 8120 dbgs() << "intermediate fn:\n" 8121 << *OrigLoop->getHeader()->getParent() << "\n"; 8122 }); 8123 } 8124 8125 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8126 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8127 assert(L && "Expected valid Loop."); 8128 assert(Bypass && "Expected valid bypass basic block."); 8129 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 8130 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8131 Value *Count = getOrCreateTripCount(L); 8132 // Reuse existing vector loop preheader for TC checks. 8133 // Note that new preheader block is generated for vector loop. 8134 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8135 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8136 8137 // Generate code to check if the loop's trip count is less than VF * UF of the 8138 // main vector loop. 8139 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 8140 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8141 8142 Value *CheckMinIters = Builder.CreateICmp( 8143 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 8144 "min.iters.check"); 8145 8146 if (!ForEpilogue) 8147 TCCheckBlock->setName("vector.main.loop.iter.check"); 8148 8149 // Create new preheader for vector loop. 8150 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8151 DT, LI, nullptr, "vector.ph"); 8152 8153 if (ForEpilogue) { 8154 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8155 DT->getNode(Bypass)->getIDom()) && 8156 "TC check is expected to dominate Bypass"); 8157 8158 // Update dominator for Bypass & LoopExit. 8159 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8160 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8161 // For loops with multiple exits, there's no edge from the middle block 8162 // to exit blocks (as the epilogue must run) and thus no need to update 8163 // the immediate dominator of the exit blocks. 8164 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8165 8166 LoopBypassBlocks.push_back(TCCheckBlock); 8167 8168 // Save the trip count so we don't have to regenerate it in the 8169 // vec.epilog.iter.check. This is safe to do because the trip count 8170 // generated here dominates the vector epilog iter check. 8171 EPI.TripCount = Count; 8172 } 8173 8174 ReplaceInstWithInst( 8175 TCCheckBlock->getTerminator(), 8176 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8177 8178 return TCCheckBlock; 8179 } 8180 8181 //===--------------------------------------------------------------------===// 8182 // EpilogueVectorizerEpilogueLoop 8183 //===--------------------------------------------------------------------===// 8184 8185 /// This function is partially responsible for generating the control flow 8186 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8187 std::pair<BasicBlock *, Value *> 8188 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8189 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8190 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8191 8192 // Now, compare the remaining count and if there aren't enough iterations to 8193 // execute the vectorized epilogue skip to the scalar part. 8194 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8195 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8196 LoopVectorPreHeader = 8197 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8198 LI, nullptr, "vec.epilog.ph"); 8199 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8200 VecEpilogueIterationCountCheck); 8201 8202 // Adjust the control flow taking the state info from the main loop 8203 // vectorization into account. 8204 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8205 "expected this to be saved from the previous pass."); 8206 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8207 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8208 8209 DT->changeImmediateDominator(LoopVectorPreHeader, 8210 EPI.MainLoopIterationCountCheck); 8211 8212 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8213 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8214 8215 if (EPI.SCEVSafetyCheck) 8216 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8217 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8218 if (EPI.MemSafetyCheck) 8219 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8220 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8221 8222 DT->changeImmediateDominator( 8223 VecEpilogueIterationCountCheck, 8224 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8225 8226 DT->changeImmediateDominator(LoopScalarPreHeader, 8227 EPI.EpilogueIterationCountCheck); 8228 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8229 // If there is an epilogue which must run, there's no edge from the 8230 // middle block to exit blocks and thus no need to update the immediate 8231 // dominator of the exit blocks. 8232 DT->changeImmediateDominator(LoopExitBlock, 8233 EPI.EpilogueIterationCountCheck); 8234 8235 // Keep track of bypass blocks, as they feed start values to the induction 8236 // phis in the scalar loop preheader. 8237 if (EPI.SCEVSafetyCheck) 8238 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8239 if (EPI.MemSafetyCheck) 8240 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8241 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8242 8243 // The vec.epilog.iter.check block may contain Phi nodes from reductions which 8244 // merge control-flow from the latch block and the middle block. Update the 8245 // incoming values here and move the Phi into the preheader. 8246 SmallVector<PHINode *, 4> PhisInBlock; 8247 for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) 8248 PhisInBlock.push_back(&Phi); 8249 8250 for (PHINode *Phi : PhisInBlock) { 8251 Phi->replaceIncomingBlockWith( 8252 VecEpilogueIterationCountCheck->getSinglePredecessor(), 8253 VecEpilogueIterationCountCheck); 8254 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); 8255 if (EPI.SCEVSafetyCheck) 8256 Phi->removeIncomingValue(EPI.SCEVSafetyCheck); 8257 if (EPI.MemSafetyCheck) 8258 Phi->removeIncomingValue(EPI.MemSafetyCheck); 8259 Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); 8260 } 8261 8262 // Generate a resume induction for the vector epilogue and put it in the 8263 // vector epilogue preheader 8264 Type *IdxTy = Legal->getWidestInductionType(); 8265 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8266 LoopVectorPreHeader->getFirstNonPHI()); 8267 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8268 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8269 EPI.MainLoopIterationCountCheck); 8270 8271 // Generate the induction variable. 8272 createHeaderBranch(Lp); 8273 8274 // Generate induction resume values. These variables save the new starting 8275 // indexes for the scalar loop. They are used to test if there are any tail 8276 // iterations left once the vector loop has completed. 8277 // Note that when the vectorized epilogue is skipped due to iteration count 8278 // check, then the resume value for the induction variable comes from 8279 // the trip count of the main vector loop, hence passing the AdditionalBypass 8280 // argument. 8281 createInductionResumeValues(Lp, {VecEpilogueIterationCountCheck, 8282 EPI.VectorTripCount} /* AdditionalBypass */); 8283 8284 return {completeLoopSkeleton(Lp, OrigLoopID), EPResumeVal}; 8285 } 8286 8287 BasicBlock * 8288 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8289 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8290 8291 assert(EPI.TripCount && 8292 "Expected trip count to have been safed in the first pass."); 8293 assert( 8294 (!isa<Instruction>(EPI.TripCount) || 8295 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8296 "saved trip count does not dominate insertion point."); 8297 Value *TC = EPI.TripCount; 8298 IRBuilder<> Builder(Insert->getTerminator()); 8299 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8300 8301 // Generate code to check if the loop's trip count is less than VF * UF of the 8302 // vector epilogue loop. 8303 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8304 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8305 8306 Value *CheckMinIters = 8307 Builder.CreateICmp(P, Count, 8308 createStepForVF(Builder, Count->getType(), 8309 EPI.EpilogueVF, EPI.EpilogueUF), 8310 "min.epilog.iters.check"); 8311 8312 ReplaceInstWithInst( 8313 Insert->getTerminator(), 8314 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8315 8316 LoopBypassBlocks.push_back(Insert); 8317 return Insert; 8318 } 8319 8320 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8321 LLVM_DEBUG({ 8322 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8323 << "Epilogue Loop VF:" << EPI.EpilogueVF 8324 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8325 }); 8326 } 8327 8328 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8329 DEBUG_WITH_TYPE(VerboseDebug, { 8330 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 8331 }); 8332 } 8333 8334 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8335 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8336 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8337 bool PredicateAtRangeStart = Predicate(Range.Start); 8338 8339 for (ElementCount TmpVF = Range.Start * 2; 8340 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8341 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8342 Range.End = TmpVF; 8343 break; 8344 } 8345 8346 return PredicateAtRangeStart; 8347 } 8348 8349 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8350 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8351 /// of VF's starting at a given VF and extending it as much as possible. Each 8352 /// vectorization decision can potentially shorten this sub-range during 8353 /// buildVPlan(). 8354 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8355 ElementCount MaxVF) { 8356 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8357 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8358 VFRange SubRange = {VF, MaxVFPlusOne}; 8359 VPlans.push_back(buildVPlan(SubRange)); 8360 VF = SubRange.End; 8361 } 8362 } 8363 8364 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8365 VPlanPtr &Plan) { 8366 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8367 8368 // Look for cached value. 8369 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8370 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8371 if (ECEntryIt != EdgeMaskCache.end()) 8372 return ECEntryIt->second; 8373 8374 VPValue *SrcMask = createBlockInMask(Src, Plan); 8375 8376 // The terminator has to be a branch inst! 8377 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8378 assert(BI && "Unexpected terminator found"); 8379 8380 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8381 return EdgeMaskCache[Edge] = SrcMask; 8382 8383 // If source is an exiting block, we know the exit edge is dynamically dead 8384 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8385 // adding uses of an otherwise potentially dead instruction. 8386 if (OrigLoop->isLoopExiting(Src)) 8387 return EdgeMaskCache[Edge] = SrcMask; 8388 8389 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8390 assert(EdgeMask && "No Edge Mask found for condition"); 8391 8392 if (BI->getSuccessor(0) != Dst) 8393 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 8394 8395 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8396 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8397 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8398 // The select version does not introduce new UB if SrcMask is false and 8399 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8400 VPValue *False = Plan->getOrAddVPValue( 8401 ConstantInt::getFalse(BI->getCondition()->getType())); 8402 EdgeMask = 8403 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8404 } 8405 8406 return EdgeMaskCache[Edge] = EdgeMask; 8407 } 8408 8409 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8410 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8411 8412 // Look for cached value. 8413 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8414 if (BCEntryIt != BlockMaskCache.end()) 8415 return BCEntryIt->second; 8416 8417 // All-one mask is modelled as no-mask following the convention for masked 8418 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8419 VPValue *BlockMask = nullptr; 8420 8421 if (OrigLoop->getHeader() == BB) { 8422 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8423 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8424 8425 // Introduce the early-exit compare IV <= BTC to form header block mask. 8426 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8427 // constructing the desired canonical IV in the header block as its first 8428 // non-phi instructions. 8429 assert(CM.foldTailByMasking() && "must fold the tail"); 8430 VPBasicBlock *HeaderVPBB = Plan->getEntry()->getEntryBasicBlock(); 8431 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8432 auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); 8433 HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi()); 8434 8435 VPBuilder::InsertPointGuard Guard(Builder); 8436 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8437 if (CM.TTI.emitGetActiveLaneMask()) { 8438 VPValue *TC = Plan->getOrCreateTripCount(); 8439 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}); 8440 } else { 8441 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8442 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8443 } 8444 return BlockMaskCache[BB] = BlockMask; 8445 } 8446 8447 // This is the block mask. We OR all incoming edges. 8448 for (auto *Predecessor : predecessors(BB)) { 8449 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8450 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8451 return BlockMaskCache[BB] = EdgeMask; 8452 8453 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8454 BlockMask = EdgeMask; 8455 continue; 8456 } 8457 8458 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8459 } 8460 8461 return BlockMaskCache[BB] = BlockMask; 8462 } 8463 8464 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8465 ArrayRef<VPValue *> Operands, 8466 VFRange &Range, 8467 VPlanPtr &Plan) { 8468 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8469 "Must be called with either a load or store"); 8470 8471 auto willWiden = [&](ElementCount VF) -> bool { 8472 if (VF.isScalar()) 8473 return false; 8474 LoopVectorizationCostModel::InstWidening Decision = 8475 CM.getWideningDecision(I, VF); 8476 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8477 "CM decision should be taken at this point."); 8478 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8479 return true; 8480 if (CM.isScalarAfterVectorization(I, VF) || 8481 CM.isProfitableToScalarize(I, VF)) 8482 return false; 8483 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8484 }; 8485 8486 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8487 return nullptr; 8488 8489 VPValue *Mask = nullptr; 8490 if (Legal->isMaskRequired(I)) 8491 Mask = createBlockInMask(I->getParent(), Plan); 8492 8493 // Determine if the pointer operand of the access is either consecutive or 8494 // reverse consecutive. 8495 LoopVectorizationCostModel::InstWidening Decision = 8496 CM.getWideningDecision(I, Range.Start); 8497 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8498 bool Consecutive = 8499 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8500 8501 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8502 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8503 Consecutive, Reverse); 8504 8505 StoreInst *Store = cast<StoreInst>(I); 8506 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8507 Mask, Consecutive, Reverse); 8508 } 8509 8510 static VPWidenIntOrFpInductionRecipe * 8511 createWidenInductionRecipe(PHINode *Phi, Instruction *PhiOrTrunc, 8512 VPValue *Start, const InductionDescriptor &IndDesc, 8513 LoopVectorizationCostModel &CM, Loop &OrigLoop, 8514 VFRange &Range) { 8515 // Returns true if an instruction \p I should be scalarized instead of 8516 // vectorized for the chosen vectorization factor. 8517 auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) { 8518 return CM.isScalarAfterVectorization(I, VF) || 8519 CM.isProfitableToScalarize(I, VF); 8520 }; 8521 8522 bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange( 8523 [&](ElementCount VF) { 8524 // Returns true if we should generate a scalar version of \p IV. 8525 if (ShouldScalarizeInstruction(PhiOrTrunc, VF)) 8526 return true; 8527 auto isScalarInst = [&](User *U) -> bool { 8528 auto *I = cast<Instruction>(U); 8529 return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF); 8530 }; 8531 return any_of(PhiOrTrunc->users(), isScalarInst); 8532 }, 8533 Range); 8534 bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange( 8535 [&](ElementCount VF) { 8536 return ShouldScalarizeInstruction(PhiOrTrunc, VF); 8537 }, 8538 Range); 8539 assert(IndDesc.getStartValue() == 8540 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); 8541 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { 8542 return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, TruncI, 8543 NeedsScalarIV, !NeedsScalarIVOnly); 8544 } 8545 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); 8546 return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, NeedsScalarIV, 8547 !NeedsScalarIVOnly); 8548 } 8549 8550 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI( 8551 PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) const { 8552 8553 // Check if this is an integer or fp induction. If so, build the recipe that 8554 // produces its scalar and vector values. 8555 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) 8556 return createWidenInductionRecipe(Phi, Phi, Operands[0], *II, CM, *OrigLoop, 8557 Range); 8558 8559 return nullptr; 8560 } 8561 8562 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8563 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8564 VPlan &Plan) const { 8565 // Optimize the special case where the source is a constant integer 8566 // induction variable. Notice that we can only optimize the 'trunc' case 8567 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8568 // (c) other casts depend on pointer size. 8569 8570 // Determine whether \p K is a truncation based on an induction variable that 8571 // can be optimized. 8572 auto isOptimizableIVTruncate = 8573 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8574 return [=](ElementCount VF) -> bool { 8575 return CM.isOptimizableIVTruncate(K, VF); 8576 }; 8577 }; 8578 8579 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8580 isOptimizableIVTruncate(I), Range)) { 8581 8582 auto *Phi = cast<PHINode>(I->getOperand(0)); 8583 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8584 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8585 return createWidenInductionRecipe(Phi, I, Start, II, CM, *OrigLoop, Range); 8586 } 8587 return nullptr; 8588 } 8589 8590 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8591 ArrayRef<VPValue *> Operands, 8592 VPlanPtr &Plan) { 8593 // If all incoming values are equal, the incoming VPValue can be used directly 8594 // instead of creating a new VPBlendRecipe. 8595 VPValue *FirstIncoming = Operands[0]; 8596 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8597 return FirstIncoming == Inc; 8598 })) { 8599 return Operands[0]; 8600 } 8601 8602 // We know that all PHIs in non-header blocks are converted into selects, so 8603 // we don't have to worry about the insertion order and we can just use the 8604 // builder. At this point we generate the predication tree. There may be 8605 // duplications since this is a simple recursive scan, but future 8606 // optimizations will clean it up. 8607 SmallVector<VPValue *, 2> OperandsWithMask; 8608 unsigned NumIncoming = Phi->getNumIncomingValues(); 8609 8610 for (unsigned In = 0; In < NumIncoming; In++) { 8611 VPValue *EdgeMask = 8612 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8613 assert((EdgeMask || NumIncoming == 1) && 8614 "Multiple predecessors with one having a full mask"); 8615 OperandsWithMask.push_back(Operands[In]); 8616 if (EdgeMask) 8617 OperandsWithMask.push_back(EdgeMask); 8618 } 8619 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8620 } 8621 8622 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8623 ArrayRef<VPValue *> Operands, 8624 VFRange &Range) const { 8625 8626 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8627 [this, CI](ElementCount VF) { 8628 return CM.isScalarWithPredication(CI, VF); 8629 }, 8630 Range); 8631 8632 if (IsPredicated) 8633 return nullptr; 8634 8635 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8636 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8637 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8638 ID == Intrinsic::pseudoprobe || 8639 ID == Intrinsic::experimental_noalias_scope_decl)) 8640 return nullptr; 8641 8642 auto willWiden = [&](ElementCount VF) -> bool { 8643 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8644 // The following case may be scalarized depending on the VF. 8645 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8646 // version of the instruction. 8647 // Is it beneficial to perform intrinsic call compared to lib call? 8648 bool NeedToScalarize = false; 8649 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8650 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8651 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8652 return UseVectorIntrinsic || !NeedToScalarize; 8653 }; 8654 8655 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8656 return nullptr; 8657 8658 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8659 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8660 } 8661 8662 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8663 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8664 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8665 // Instruction should be widened, unless it is scalar after vectorization, 8666 // scalarization is profitable or it is predicated. 8667 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8668 return CM.isScalarAfterVectorization(I, VF) || 8669 CM.isProfitableToScalarize(I, VF) || 8670 CM.isScalarWithPredication(I, VF); 8671 }; 8672 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8673 Range); 8674 } 8675 8676 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8677 ArrayRef<VPValue *> Operands) const { 8678 auto IsVectorizableOpcode = [](unsigned Opcode) { 8679 switch (Opcode) { 8680 case Instruction::Add: 8681 case Instruction::And: 8682 case Instruction::AShr: 8683 case Instruction::BitCast: 8684 case Instruction::FAdd: 8685 case Instruction::FCmp: 8686 case Instruction::FDiv: 8687 case Instruction::FMul: 8688 case Instruction::FNeg: 8689 case Instruction::FPExt: 8690 case Instruction::FPToSI: 8691 case Instruction::FPToUI: 8692 case Instruction::FPTrunc: 8693 case Instruction::FRem: 8694 case Instruction::FSub: 8695 case Instruction::ICmp: 8696 case Instruction::IntToPtr: 8697 case Instruction::LShr: 8698 case Instruction::Mul: 8699 case Instruction::Or: 8700 case Instruction::PtrToInt: 8701 case Instruction::SDiv: 8702 case Instruction::Select: 8703 case Instruction::SExt: 8704 case Instruction::Shl: 8705 case Instruction::SIToFP: 8706 case Instruction::SRem: 8707 case Instruction::Sub: 8708 case Instruction::Trunc: 8709 case Instruction::UDiv: 8710 case Instruction::UIToFP: 8711 case Instruction::URem: 8712 case Instruction::Xor: 8713 case Instruction::ZExt: 8714 return true; 8715 } 8716 return false; 8717 }; 8718 8719 if (!IsVectorizableOpcode(I->getOpcode())) 8720 return nullptr; 8721 8722 // Success: widen this instruction. 8723 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8724 } 8725 8726 void VPRecipeBuilder::fixHeaderPhis() { 8727 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8728 for (VPHeaderPHIRecipe *R : PhisToFix) { 8729 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8730 VPRecipeBase *IncR = 8731 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8732 R->addOperand(IncR->getVPSingleValue()); 8733 } 8734 } 8735 8736 VPBasicBlock *VPRecipeBuilder::handleReplication( 8737 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8738 VPlanPtr &Plan) { 8739 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8740 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8741 Range); 8742 8743 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8744 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); }, 8745 Range); 8746 8747 // Even if the instruction is not marked as uniform, there are certain 8748 // intrinsic calls that can be effectively treated as such, so we check for 8749 // them here. Conservatively, we only do this for scalable vectors, since 8750 // for fixed-width VFs we can always fall back on full scalarization. 8751 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8752 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8753 case Intrinsic::assume: 8754 case Intrinsic::lifetime_start: 8755 case Intrinsic::lifetime_end: 8756 // For scalable vectors if one of the operands is variant then we still 8757 // want to mark as uniform, which will generate one instruction for just 8758 // the first lane of the vector. We can't scalarize the call in the same 8759 // way as for fixed-width vectors because we don't know how many lanes 8760 // there are. 8761 // 8762 // The reasons for doing it this way for scalable vectors are: 8763 // 1. For the assume intrinsic generating the instruction for the first 8764 // lane is still be better than not generating any at all. For 8765 // example, the input may be a splat across all lanes. 8766 // 2. For the lifetime start/end intrinsics the pointer operand only 8767 // does anything useful when the input comes from a stack object, 8768 // which suggests it should always be uniform. For non-stack objects 8769 // the effect is to poison the object, which still allows us to 8770 // remove the call. 8771 IsUniform = true; 8772 break; 8773 default: 8774 break; 8775 } 8776 } 8777 8778 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8779 IsUniform, IsPredicated); 8780 setRecipe(I, Recipe); 8781 Plan->addVPValue(I, Recipe); 8782 8783 // Find if I uses a predicated instruction. If so, it will use its scalar 8784 // value. Avoid hoisting the insert-element which packs the scalar value into 8785 // a vector value, as that happens iff all users use the vector value. 8786 for (VPValue *Op : Recipe->operands()) { 8787 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8788 if (!PredR) 8789 continue; 8790 auto *RepR = 8791 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8792 assert(RepR->isPredicated() && 8793 "expected Replicate recipe to be predicated"); 8794 RepR->setAlsoPack(false); 8795 } 8796 8797 // Finalize the recipe for Instr, first if it is not predicated. 8798 if (!IsPredicated) { 8799 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8800 VPBB->appendRecipe(Recipe); 8801 return VPBB; 8802 } 8803 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8804 8805 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8806 assert(SingleSucc && "VPBB must have a single successor when handling " 8807 "predicated replication."); 8808 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8809 // Record predicated instructions for above packing optimizations. 8810 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8811 VPBlockUtils::insertBlockAfter(Region, VPBB); 8812 auto *RegSucc = new VPBasicBlock(); 8813 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8814 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8815 return RegSucc; 8816 } 8817 8818 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8819 VPRecipeBase *PredRecipe, 8820 VPlanPtr &Plan) { 8821 // Instructions marked for predication are replicated and placed under an 8822 // if-then construct to prevent side-effects. 8823 8824 // Generate recipes to compute the block mask for this region. 8825 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8826 8827 // Build the triangular if-then region. 8828 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8829 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8830 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8831 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8832 auto *PHIRecipe = Instr->getType()->isVoidTy() 8833 ? nullptr 8834 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8835 if (PHIRecipe) { 8836 Plan->removeVPValueFor(Instr); 8837 Plan->addVPValue(Instr, PHIRecipe); 8838 } 8839 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8840 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8841 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8842 8843 // Note: first set Entry as region entry and then connect successors starting 8844 // from it in order, to propagate the "parent" of each VPBasicBlock. 8845 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8846 VPBlockUtils::connectBlocks(Pred, Exit); 8847 8848 return Region; 8849 } 8850 8851 VPRecipeOrVPValueTy 8852 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8853 ArrayRef<VPValue *> Operands, 8854 VFRange &Range, VPlanPtr &Plan) { 8855 // First, check for specific widening recipes that deal with calls, memory 8856 // operations, inductions and Phi nodes. 8857 if (auto *CI = dyn_cast<CallInst>(Instr)) 8858 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8859 8860 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8861 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8862 8863 VPRecipeBase *Recipe; 8864 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8865 if (Phi->getParent() != OrigLoop->getHeader()) 8866 return tryToBlend(Phi, Operands, Plan); 8867 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range))) 8868 return toVPRecipeResult(Recipe); 8869 8870 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8871 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 8872 VPValue *StartV = Operands[0]; 8873 if (Legal->isReductionVariable(Phi)) { 8874 const RecurrenceDescriptor &RdxDesc = 8875 Legal->getReductionVars().find(Phi)->second; 8876 assert(RdxDesc.getRecurrenceStartValue() == 8877 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8878 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8879 CM.isInLoopReduction(Phi), 8880 CM.useOrderedReductions(RdxDesc)); 8881 } else { 8882 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8883 } 8884 8885 // Record the incoming value from the backedge, so we can add the incoming 8886 // value from the backedge after all recipes have been created. 8887 recordRecipeOf(cast<Instruction>( 8888 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8889 PhisToFix.push_back(PhiRecipe); 8890 } else { 8891 // TODO: record backedge value for remaining pointer induction phis. 8892 assert(Phi->getType()->isPointerTy() && 8893 "only pointer phis should be handled here"); 8894 assert(Legal->getInductionVars().count(Phi) && 8895 "Not an induction variable"); 8896 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8897 VPValue *Start = Plan->getOrAddVPValue(II.getStartValue()); 8898 PhiRecipe = new VPWidenPHIRecipe(Phi, Start); 8899 } 8900 8901 return toVPRecipeResult(PhiRecipe); 8902 } 8903 8904 if (isa<TruncInst>(Instr) && 8905 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8906 Range, *Plan))) 8907 return toVPRecipeResult(Recipe); 8908 8909 if (!shouldWiden(Instr, Range)) 8910 return nullptr; 8911 8912 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8913 return toVPRecipeResult(new VPWidenGEPRecipe( 8914 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8915 8916 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8917 bool InvariantCond = 8918 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8919 return toVPRecipeResult(new VPWidenSelectRecipe( 8920 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8921 } 8922 8923 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8924 } 8925 8926 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8927 ElementCount MaxVF) { 8928 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8929 8930 // Collect instructions from the original loop that will become trivially dead 8931 // in the vectorized loop. We don't need to vectorize these instructions. For 8932 // example, original induction update instructions can become dead because we 8933 // separately emit induction "steps" when generating code for the new loop. 8934 // Similarly, we create a new latch condition when setting up the structure 8935 // of the new loop, so the old one can become dead. 8936 SmallPtrSet<Instruction *, 4> DeadInstructions; 8937 collectTriviallyDeadInstructions(DeadInstructions); 8938 8939 // Add assume instructions we need to drop to DeadInstructions, to prevent 8940 // them from being added to the VPlan. 8941 // TODO: We only need to drop assumes in blocks that get flattend. If the 8942 // control flow is preserved, we should keep them. 8943 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8944 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8945 8946 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8947 // Dead instructions do not need sinking. Remove them from SinkAfter. 8948 for (Instruction *I : DeadInstructions) 8949 SinkAfter.erase(I); 8950 8951 // Cannot sink instructions after dead instructions (there won't be any 8952 // recipes for them). Instead, find the first non-dead previous instruction. 8953 for (auto &P : Legal->getSinkAfter()) { 8954 Instruction *SinkTarget = P.second; 8955 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8956 (void)FirstInst; 8957 while (DeadInstructions.contains(SinkTarget)) { 8958 assert( 8959 SinkTarget != FirstInst && 8960 "Must find a live instruction (at least the one feeding the " 8961 "first-order recurrence PHI) before reaching beginning of the block"); 8962 SinkTarget = SinkTarget->getPrevNode(); 8963 assert(SinkTarget != P.first && 8964 "sink source equals target, no sinking required"); 8965 } 8966 P.second = SinkTarget; 8967 } 8968 8969 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8970 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8971 VFRange SubRange = {VF, MaxVFPlusOne}; 8972 VPlans.push_back( 8973 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8974 VF = SubRange.End; 8975 } 8976 } 8977 8978 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a 8979 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a 8980 // BranchOnCount VPInstruction to the latch. 8981 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8982 bool HasNUW, bool IsVPlanNative) { 8983 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8984 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8985 8986 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8987 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8988 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8989 if (IsVPlanNative) 8990 Header = cast<VPBasicBlock>(Header->getSingleSuccessor()); 8991 Header->insert(CanonicalIVPHI, Header->begin()); 8992 8993 auto *CanonicalIVIncrement = 8994 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8995 : VPInstruction::CanonicalIVIncrement, 8996 {CanonicalIVPHI}, DL); 8997 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8998 8999 VPBasicBlock *EB = TopRegion->getExitBasicBlock(); 9000 if (IsVPlanNative) { 9001 EB = cast<VPBasicBlock>(EB->getSinglePredecessor()); 9002 EB->setCondBit(nullptr); 9003 } 9004 EB->appendRecipe(CanonicalIVIncrement); 9005 9006 auto *BranchOnCount = 9007 new VPInstruction(VPInstruction::BranchOnCount, 9008 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 9009 EB->appendRecipe(BranchOnCount); 9010 } 9011 9012 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 9013 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 9014 const MapVector<Instruction *, Instruction *> &SinkAfter) { 9015 9016 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 9017 9018 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 9019 9020 // --------------------------------------------------------------------------- 9021 // Pre-construction: record ingredients whose recipes we'll need to further 9022 // process after constructing the initial VPlan. 9023 // --------------------------------------------------------------------------- 9024 9025 // Mark instructions we'll need to sink later and their targets as 9026 // ingredients whose recipe we'll need to record. 9027 for (auto &Entry : SinkAfter) { 9028 RecipeBuilder.recordRecipeOf(Entry.first); 9029 RecipeBuilder.recordRecipeOf(Entry.second); 9030 } 9031 for (auto &Reduction : CM.getInLoopReductionChains()) { 9032 PHINode *Phi = Reduction.first; 9033 RecurKind Kind = 9034 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 9035 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9036 9037 RecipeBuilder.recordRecipeOf(Phi); 9038 for (auto &R : ReductionOperations) { 9039 RecipeBuilder.recordRecipeOf(R); 9040 // For min/max reducitons, where we have a pair of icmp/select, we also 9041 // need to record the ICmp recipe, so it can be removed later. 9042 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9043 "Only min/max recurrences allowed for inloop reductions"); 9044 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 9045 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 9046 } 9047 } 9048 9049 // For each interleave group which is relevant for this (possibly trimmed) 9050 // Range, add it to the set of groups to be later applied to the VPlan and add 9051 // placeholders for its members' Recipes which we'll be replacing with a 9052 // single VPInterleaveRecipe. 9053 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9054 auto applyIG = [IG, this](ElementCount VF) -> bool { 9055 return (VF.isVector() && // Query is illegal for VF == 1 9056 CM.getWideningDecision(IG->getInsertPos(), VF) == 9057 LoopVectorizationCostModel::CM_Interleave); 9058 }; 9059 if (!getDecisionAndClampRange(applyIG, Range)) 9060 continue; 9061 InterleaveGroups.insert(IG); 9062 for (unsigned i = 0; i < IG->getFactor(); i++) 9063 if (Instruction *Member = IG->getMember(i)) 9064 RecipeBuilder.recordRecipeOf(Member); 9065 }; 9066 9067 // --------------------------------------------------------------------------- 9068 // Build initial VPlan: Scan the body of the loop in a topological order to 9069 // visit each basic block after having visited its predecessor basic blocks. 9070 // --------------------------------------------------------------------------- 9071 9072 // Create initial VPlan skeleton, with separate header and latch blocks. 9073 VPBasicBlock *HeaderVPBB = new VPBasicBlock(); 9074 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 9075 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 9076 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 9077 auto Plan = std::make_unique<VPlan>(TopRegion); 9078 9079 Instruction *DLInst = 9080 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 9081 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 9082 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 9083 !CM.foldTailByMasking(), false); 9084 9085 // Scan the body of the loop in a topological order to visit each basic block 9086 // after having visited its predecessor basic blocks. 9087 LoopBlocksDFS DFS(OrigLoop); 9088 DFS.perform(LI); 9089 9090 VPBasicBlock *VPBB = HeaderVPBB; 9091 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 9092 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9093 // Relevant instructions from basic block BB will be grouped into VPRecipe 9094 // ingredients and fill a new VPBasicBlock. 9095 unsigned VPBBsForBB = 0; 9096 VPBB->setName(BB->getName()); 9097 Builder.setInsertPoint(VPBB); 9098 9099 // Introduce each ingredient into VPlan. 9100 // TODO: Model and preserve debug instrinsics in VPlan. 9101 for (Instruction &I : BB->instructionsWithoutDebug()) { 9102 Instruction *Instr = &I; 9103 9104 // First filter out irrelevant instructions, to ensure no recipes are 9105 // built for them. 9106 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9107 continue; 9108 9109 SmallVector<VPValue *, 4> Operands; 9110 auto *Phi = dyn_cast<PHINode>(Instr); 9111 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9112 Operands.push_back(Plan->getOrAddVPValue( 9113 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9114 } else { 9115 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9116 Operands = {OpRange.begin(), OpRange.end()}; 9117 } 9118 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9119 Instr, Operands, Range, Plan)) { 9120 // If Instr can be simplified to an existing VPValue, use it. 9121 if (RecipeOrValue.is<VPValue *>()) { 9122 auto *VPV = RecipeOrValue.get<VPValue *>(); 9123 Plan->addVPValue(Instr, VPV); 9124 // If the re-used value is a recipe, register the recipe for the 9125 // instruction, in case the recipe for Instr needs to be recorded. 9126 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9127 RecipeBuilder.setRecipe(Instr, R); 9128 continue; 9129 } 9130 // Otherwise, add the new recipe. 9131 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9132 for (auto *Def : Recipe->definedValues()) { 9133 auto *UV = Def->getUnderlyingValue(); 9134 Plan->addVPValue(UV, Def); 9135 } 9136 9137 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 9138 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 9139 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 9140 // of the header block. That can happen for truncates of induction 9141 // variables. Those recipes are moved to the phi section of the header 9142 // block after applying SinkAfter, which relies on the original 9143 // position of the trunc. 9144 assert(isa<TruncInst>(Instr)); 9145 InductionsToMove.push_back( 9146 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 9147 } 9148 RecipeBuilder.setRecipe(Instr, Recipe); 9149 VPBB->appendRecipe(Recipe); 9150 continue; 9151 } 9152 9153 // Otherwise, if all widening options failed, Instruction is to be 9154 // replicated. This may create a successor for VPBB. 9155 VPBasicBlock *NextVPBB = 9156 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9157 if (NextVPBB != VPBB) { 9158 VPBB = NextVPBB; 9159 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9160 : ""); 9161 } 9162 } 9163 9164 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 9165 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 9166 } 9167 9168 // Fold the last, empty block into its predecessor. 9169 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 9170 assert(VPBB && "expected to fold last (empty) block"); 9171 // After here, VPBB should not be used. 9172 VPBB = nullptr; 9173 9174 assert(isa<VPRegionBlock>(Plan->getEntry()) && 9175 !Plan->getEntry()->getEntryBasicBlock()->empty() && 9176 "entry block must be set to a VPRegionBlock having a non-empty entry " 9177 "VPBasicBlock"); 9178 RecipeBuilder.fixHeaderPhis(); 9179 9180 // --------------------------------------------------------------------------- 9181 // Transform initial VPlan: Apply previously taken decisions, in order, to 9182 // bring the VPlan to its final state. 9183 // --------------------------------------------------------------------------- 9184 9185 // Apply Sink-After legal constraints. 9186 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9187 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9188 if (Region && Region->isReplicator()) { 9189 assert(Region->getNumSuccessors() == 1 && 9190 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 9191 assert(R->getParent()->size() == 1 && 9192 "A recipe in an original replicator region must be the only " 9193 "recipe in its block"); 9194 return Region; 9195 } 9196 return nullptr; 9197 }; 9198 for (auto &Entry : SinkAfter) { 9199 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9200 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9201 9202 auto *TargetRegion = GetReplicateRegion(Target); 9203 auto *SinkRegion = GetReplicateRegion(Sink); 9204 if (!SinkRegion) { 9205 // If the sink source is not a replicate region, sink the recipe directly. 9206 if (TargetRegion) { 9207 // The target is in a replication region, make sure to move Sink to 9208 // the block after it, not into the replication region itself. 9209 VPBasicBlock *NextBlock = 9210 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9211 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9212 } else 9213 Sink->moveAfter(Target); 9214 continue; 9215 } 9216 9217 // The sink source is in a replicate region. Unhook the region from the CFG. 9218 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9219 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9220 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9221 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9222 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9223 9224 if (TargetRegion) { 9225 // The target recipe is also in a replicate region, move the sink region 9226 // after the target region. 9227 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9228 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9229 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9230 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9231 } else { 9232 // The sink source is in a replicate region, we need to move the whole 9233 // replicate region, which should only contain a single recipe in the 9234 // main block. 9235 auto *SplitBlock = 9236 Target->getParent()->splitAt(std::next(Target->getIterator())); 9237 9238 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9239 9240 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9241 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9242 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9243 } 9244 } 9245 9246 VPlanTransforms::removeRedundantCanonicalIVs(*Plan); 9247 VPlanTransforms::removeRedundantInductionCasts(*Plan); 9248 9249 // Now that sink-after is done, move induction recipes for optimized truncates 9250 // to the phi section of the header block. 9251 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 9252 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 9253 9254 // Adjust the recipes for any inloop reductions. 9255 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan, 9256 RecipeBuilder, Range.Start); 9257 9258 // Introduce a recipe to combine the incoming and previous values of a 9259 // first-order recurrence. 9260 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9261 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 9262 if (!RecurPhi) 9263 continue; 9264 9265 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 9266 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 9267 auto *Region = GetReplicateRegion(PrevRecipe); 9268 if (Region) 9269 InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor()); 9270 if (Region || PrevRecipe->isPhi()) 9271 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 9272 else 9273 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 9274 9275 auto *RecurSplice = cast<VPInstruction>( 9276 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 9277 {RecurPhi, RecurPhi->getBackedgeValue()})); 9278 9279 RecurPhi->replaceAllUsesWith(RecurSplice); 9280 // Set the first operand of RecurSplice to RecurPhi again, after replacing 9281 // all users. 9282 RecurSplice->setOperand(0, RecurPhi); 9283 } 9284 9285 // Interleave memory: for each Interleave Group we marked earlier as relevant 9286 // for this VPlan, replace the Recipes widening its memory instructions with a 9287 // single VPInterleaveRecipe at its insertion point. 9288 for (auto IG : InterleaveGroups) { 9289 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9290 RecipeBuilder.getRecipe(IG->getInsertPos())); 9291 SmallVector<VPValue *, 4> StoredValues; 9292 for (unsigned i = 0; i < IG->getFactor(); ++i) 9293 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9294 auto *StoreR = 9295 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9296 StoredValues.push_back(StoreR->getStoredValue()); 9297 } 9298 9299 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9300 Recipe->getMask()); 9301 VPIG->insertBefore(Recipe); 9302 unsigned J = 0; 9303 for (unsigned i = 0; i < IG->getFactor(); ++i) 9304 if (Instruction *Member = IG->getMember(i)) { 9305 if (!Member->getType()->isVoidTy()) { 9306 VPValue *OriginalV = Plan->getVPValue(Member); 9307 Plan->removeVPValueFor(Member); 9308 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9309 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9310 J++; 9311 } 9312 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9313 } 9314 } 9315 9316 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9317 // in ways that accessing values using original IR values is incorrect. 9318 Plan->disableValue2VPValue(); 9319 9320 VPlanTransforms::sinkScalarOperands(*Plan); 9321 VPlanTransforms::mergeReplicateRegions(*Plan); 9322 9323 std::string PlanName; 9324 raw_string_ostream RSO(PlanName); 9325 ElementCount VF = Range.Start; 9326 Plan->addVF(VF); 9327 RSO << "Initial VPlan for VF={" << VF; 9328 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9329 Plan->addVF(VF); 9330 RSO << "," << VF; 9331 } 9332 RSO << "},UF>=1"; 9333 RSO.flush(); 9334 Plan->setName(PlanName); 9335 9336 // Fold Exit block into its predecessor if possible. 9337 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9338 // VPBasicBlock as exit. 9339 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit()); 9340 9341 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9342 return Plan; 9343 } 9344 9345 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9346 // Outer loop handling: They may require CFG and instruction level 9347 // transformations before even evaluating whether vectorization is profitable. 9348 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9349 // the vectorization pipeline. 9350 assert(!OrigLoop->isInnermost()); 9351 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9352 9353 // Create new empty VPlan 9354 auto Plan = std::make_unique<VPlan>(); 9355 9356 // Build hierarchical CFG 9357 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9358 HCFGBuilder.buildHierarchicalCFG(); 9359 9360 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9361 VF *= 2) 9362 Plan->addVF(VF); 9363 9364 if (EnableVPlanPredication) { 9365 VPlanPredicator VPP(*Plan); 9366 VPP.predicate(); 9367 9368 // Avoid running transformation to recipes until masked code generation in 9369 // VPlan-native path is in place. 9370 return Plan; 9371 } 9372 9373 SmallPtrSet<Instruction *, 1> DeadInstructions; 9374 VPlanTransforms::VPInstructionsToVPRecipes( 9375 OrigLoop, Plan, 9376 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9377 DeadInstructions, *PSE.getSE()); 9378 9379 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9380 true, true); 9381 return Plan; 9382 } 9383 9384 // Adjust the recipes for reductions. For in-loop reductions the chain of 9385 // instructions leading from the loop exit instr to the phi need to be converted 9386 // to reductions, with one operand being vector and the other being the scalar 9387 // reduction chain. For other reductions, a select is introduced between the phi 9388 // and live-out recipes when folding the tail. 9389 void LoopVectorizationPlanner::adjustRecipesForReductions( 9390 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9391 ElementCount MinVF) { 9392 for (auto &Reduction : CM.getInLoopReductionChains()) { 9393 PHINode *Phi = Reduction.first; 9394 const RecurrenceDescriptor &RdxDesc = 9395 Legal->getReductionVars().find(Phi)->second; 9396 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9397 9398 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9399 continue; 9400 9401 // ReductionOperations are orders top-down from the phi's use to the 9402 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9403 // which of the two operands will remain scalar and which will be reduced. 9404 // For minmax the chain will be the select instructions. 9405 Instruction *Chain = Phi; 9406 for (Instruction *R : ReductionOperations) { 9407 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9408 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9409 9410 VPValue *ChainOp = Plan->getVPValue(Chain); 9411 unsigned FirstOpId; 9412 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9413 "Only min/max recurrences allowed for inloop reductions"); 9414 // Recognize a call to the llvm.fmuladd intrinsic. 9415 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9416 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9417 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9418 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9419 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9420 "Expected to replace a VPWidenSelectSC"); 9421 FirstOpId = 1; 9422 } else { 9423 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9424 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9425 "Expected to replace a VPWidenSC"); 9426 FirstOpId = 0; 9427 } 9428 unsigned VecOpId = 9429 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9430 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9431 9432 auto *CondOp = CM.foldTailByMasking() 9433 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9434 : nullptr; 9435 9436 if (IsFMulAdd) { 9437 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9438 // need to create an fmul recipe to use as the vector operand for the 9439 // fadd reduction. 9440 VPInstruction *FMulRecipe = new VPInstruction( 9441 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9442 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9443 WidenRecipe->getParent()->insert(FMulRecipe, 9444 WidenRecipe->getIterator()); 9445 VecOp = FMulRecipe; 9446 } 9447 VPReductionRecipe *RedRecipe = 9448 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9449 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9450 Plan->removeVPValueFor(R); 9451 Plan->addVPValue(R, RedRecipe); 9452 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9453 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9454 WidenRecipe->eraseFromParent(); 9455 9456 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9457 VPRecipeBase *CompareRecipe = 9458 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9459 assert(isa<VPWidenRecipe>(CompareRecipe) && 9460 "Expected to replace a VPWidenSC"); 9461 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9462 "Expected no remaining users"); 9463 CompareRecipe->eraseFromParent(); 9464 } 9465 Chain = R; 9466 } 9467 } 9468 9469 // If tail is folded by masking, introduce selects between the phi 9470 // and the live-out instruction of each reduction, at the beginning of the 9471 // dedicated latch block. 9472 if (CM.foldTailByMasking()) { 9473 Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); 9474 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9475 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9476 if (!PhiR || PhiR->isInLoop()) 9477 continue; 9478 VPValue *Cond = 9479 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9480 VPValue *Red = PhiR->getBackedgeValue(); 9481 assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB && 9482 "reduction recipe must be defined before latch"); 9483 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9484 } 9485 } 9486 } 9487 9488 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9489 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9490 VPSlotTracker &SlotTracker) const { 9491 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9492 IG->getInsertPos()->printAsOperand(O, false); 9493 O << ", "; 9494 getAddr()->printAsOperand(O, SlotTracker); 9495 VPValue *Mask = getMask(); 9496 if (Mask) { 9497 O << ", "; 9498 Mask->printAsOperand(O, SlotTracker); 9499 } 9500 9501 unsigned OpIdx = 0; 9502 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9503 if (!IG->getMember(i)) 9504 continue; 9505 if (getNumStoreOperands() > 0) { 9506 O << "\n" << Indent << " store "; 9507 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9508 O << " to index " << i; 9509 } else { 9510 O << "\n" << Indent << " "; 9511 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9512 O << " = load from index " << i; 9513 } 9514 ++OpIdx; 9515 } 9516 } 9517 #endif 9518 9519 void VPWidenCallRecipe::execute(VPTransformState &State) { 9520 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9521 *this, State); 9522 } 9523 9524 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9525 auto &I = *cast<SelectInst>(getUnderlyingInstr()); 9526 State.ILV->setDebugLocFromInst(&I); 9527 9528 // The condition can be loop invariant but still defined inside the 9529 // loop. This means that we can't just use the original 'cond' value. 9530 // We have to take the 'vectorized' value and pick the first lane. 9531 // Instcombine will make this a no-op. 9532 auto *InvarCond = 9533 InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr; 9534 9535 for (unsigned Part = 0; Part < State.UF; ++Part) { 9536 Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part); 9537 Value *Op0 = State.get(getOperand(1), Part); 9538 Value *Op1 = State.get(getOperand(2), Part); 9539 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1); 9540 State.set(this, Sel, Part); 9541 State.ILV->addMetadata(Sel, &I); 9542 } 9543 } 9544 9545 void VPWidenRecipe::execute(VPTransformState &State) { 9546 auto &I = *cast<Instruction>(getUnderlyingValue()); 9547 auto &Builder = State.Builder; 9548 switch (I.getOpcode()) { 9549 case Instruction::Call: 9550 case Instruction::Br: 9551 case Instruction::PHI: 9552 case Instruction::GetElementPtr: 9553 case Instruction::Select: 9554 llvm_unreachable("This instruction is handled by a different recipe."); 9555 case Instruction::UDiv: 9556 case Instruction::SDiv: 9557 case Instruction::SRem: 9558 case Instruction::URem: 9559 case Instruction::Add: 9560 case Instruction::FAdd: 9561 case Instruction::Sub: 9562 case Instruction::FSub: 9563 case Instruction::FNeg: 9564 case Instruction::Mul: 9565 case Instruction::FMul: 9566 case Instruction::FDiv: 9567 case Instruction::FRem: 9568 case Instruction::Shl: 9569 case Instruction::LShr: 9570 case Instruction::AShr: 9571 case Instruction::And: 9572 case Instruction::Or: 9573 case Instruction::Xor: { 9574 // Just widen unops and binops. 9575 State.ILV->setDebugLocFromInst(&I); 9576 9577 for (unsigned Part = 0; Part < State.UF; ++Part) { 9578 SmallVector<Value *, 2> Ops; 9579 for (VPValue *VPOp : operands()) 9580 Ops.push_back(State.get(VPOp, Part)); 9581 9582 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 9583 9584 if (auto *VecOp = dyn_cast<Instruction>(V)) { 9585 VecOp->copyIRFlags(&I); 9586 9587 // If the instruction is vectorized and was in a basic block that needed 9588 // predication, we can't propagate poison-generating flags (nuw/nsw, 9589 // exact, etc.). The control flow has been linearized and the 9590 // instruction is no longer guarded by the predicate, which could make 9591 // the flag properties to no longer hold. 9592 if (State.MayGeneratePoisonRecipes.contains(this)) 9593 VecOp->dropPoisonGeneratingFlags(); 9594 } 9595 9596 // Use this vector value for all users of the original instruction. 9597 State.set(this, V, Part); 9598 State.ILV->addMetadata(V, &I); 9599 } 9600 9601 break; 9602 } 9603 case Instruction::ICmp: 9604 case Instruction::FCmp: { 9605 // Widen compares. Generate vector compares. 9606 bool FCmp = (I.getOpcode() == Instruction::FCmp); 9607 auto *Cmp = cast<CmpInst>(&I); 9608 State.ILV->setDebugLocFromInst(Cmp); 9609 for (unsigned Part = 0; Part < State.UF; ++Part) { 9610 Value *A = State.get(getOperand(0), Part); 9611 Value *B = State.get(getOperand(1), Part); 9612 Value *C = nullptr; 9613 if (FCmp) { 9614 // Propagate fast math flags. 9615 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9616 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 9617 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 9618 } else { 9619 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 9620 } 9621 State.set(this, C, Part); 9622 State.ILV->addMetadata(C, &I); 9623 } 9624 9625 break; 9626 } 9627 9628 case Instruction::ZExt: 9629 case Instruction::SExt: 9630 case Instruction::FPToUI: 9631 case Instruction::FPToSI: 9632 case Instruction::FPExt: 9633 case Instruction::PtrToInt: 9634 case Instruction::IntToPtr: 9635 case Instruction::SIToFP: 9636 case Instruction::UIToFP: 9637 case Instruction::Trunc: 9638 case Instruction::FPTrunc: 9639 case Instruction::BitCast: { 9640 auto *CI = cast<CastInst>(&I); 9641 State.ILV->setDebugLocFromInst(CI); 9642 9643 /// Vectorize casts. 9644 Type *DestTy = (State.VF.isScalar()) 9645 ? CI->getType() 9646 : VectorType::get(CI->getType(), State.VF); 9647 9648 for (unsigned Part = 0; Part < State.UF; ++Part) { 9649 Value *A = State.get(getOperand(0), Part); 9650 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 9651 State.set(this, Cast, Part); 9652 State.ILV->addMetadata(Cast, &I); 9653 } 9654 break; 9655 } 9656 default: 9657 // This instruction is not vectorized by simple widening. 9658 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 9659 llvm_unreachable("Unhandled instruction!"); 9660 } // end of switch. 9661 } 9662 9663 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9664 auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr()); 9665 // Construct a vector GEP by widening the operands of the scalar GEP as 9666 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 9667 // results in a vector of pointers when at least one operand of the GEP 9668 // is vector-typed. Thus, to keep the representation compact, we only use 9669 // vector-typed operands for loop-varying values. 9670 9671 if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 9672 // If we are vectorizing, but the GEP has only loop-invariant operands, 9673 // the GEP we build (by only using vector-typed operands for 9674 // loop-varying values) would be a scalar pointer. Thus, to ensure we 9675 // produce a vector of pointers, we need to either arbitrarily pick an 9676 // operand to broadcast, or broadcast a clone of the original GEP. 9677 // Here, we broadcast a clone of the original. 9678 // 9679 // TODO: If at some point we decide to scalarize instructions having 9680 // loop-invariant operands, this special case will no longer be 9681 // required. We would add the scalarization decision to 9682 // collectLoopScalars() and teach getVectorValue() to broadcast 9683 // the lane-zero scalar value. 9684 auto *Clone = State.Builder.Insert(GEP->clone()); 9685 for (unsigned Part = 0; Part < State.UF; ++Part) { 9686 Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone); 9687 State.set(this, EntryPart, Part); 9688 State.ILV->addMetadata(EntryPart, GEP); 9689 } 9690 } else { 9691 // If the GEP has at least one loop-varying operand, we are sure to 9692 // produce a vector of pointers. But if we are only unrolling, we want 9693 // to produce a scalar GEP for each unroll part. Thus, the GEP we 9694 // produce with the code below will be scalar (if VF == 1) or vector 9695 // (otherwise). Note that for the unroll-only case, we still maintain 9696 // values in the vector mapping with initVector, as we do for other 9697 // instructions. 9698 for (unsigned Part = 0; Part < State.UF; ++Part) { 9699 // The pointer operand of the new GEP. If it's loop-invariant, we 9700 // won't broadcast it. 9701 auto *Ptr = IsPtrLoopInvariant 9702 ? State.get(getOperand(0), VPIteration(0, 0)) 9703 : State.get(getOperand(0), Part); 9704 9705 // Collect all the indices for the new GEP. If any index is 9706 // loop-invariant, we won't broadcast it. 9707 SmallVector<Value *, 4> Indices; 9708 for (unsigned I = 1, E = getNumOperands(); I < E; I++) { 9709 VPValue *Operand = getOperand(I); 9710 if (IsIndexLoopInvariant[I - 1]) 9711 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 9712 else 9713 Indices.push_back(State.get(Operand, Part)); 9714 } 9715 9716 // If the GEP instruction is vectorized and was in a basic block that 9717 // needed predication, we can't propagate the poison-generating 'inbounds' 9718 // flag. The control flow has been linearized and the GEP is no longer 9719 // guarded by the predicate, which could make the 'inbounds' properties to 9720 // no longer hold. 9721 bool IsInBounds = 9722 GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0; 9723 9724 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 9725 // but it should be a vector, otherwise. 9726 auto *NewGEP = IsInBounds 9727 ? State.Builder.CreateInBoundsGEP( 9728 GEP->getSourceElementType(), Ptr, Indices) 9729 : State.Builder.CreateGEP(GEP->getSourceElementType(), 9730 Ptr, Indices); 9731 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) && 9732 "NewGEP is not a pointer vector"); 9733 State.set(this, NewGEP, Part); 9734 State.ILV->addMetadata(NewGEP, GEP); 9735 } 9736 } 9737 } 9738 9739 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9740 assert(!State.Instance && "Int or FP induction being replicated."); 9741 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9742 State.ILV->widenIntOrFpInduction(IV, this, State, CanonicalIV); 9743 } 9744 9745 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9746 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9747 State); 9748 } 9749 9750 void VPBlendRecipe::execute(VPTransformState &State) { 9751 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9752 // We know that all PHIs in non-header blocks are converted into 9753 // selects, so we don't have to worry about the insertion order and we 9754 // can just use the builder. 9755 // At this point we generate the predication tree. There may be 9756 // duplications since this is a simple recursive scan, but future 9757 // optimizations will clean it up. 9758 9759 unsigned NumIncoming = getNumIncomingValues(); 9760 9761 // Generate a sequence of selects of the form: 9762 // SELECT(Mask3, In3, 9763 // SELECT(Mask2, In2, 9764 // SELECT(Mask1, In1, 9765 // In0))) 9766 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9767 // are essentially undef are taken from In0. 9768 InnerLoopVectorizer::VectorParts Entry(State.UF); 9769 for (unsigned In = 0; In < NumIncoming; ++In) { 9770 for (unsigned Part = 0; Part < State.UF; ++Part) { 9771 // We might have single edge PHIs (blocks) - use an identity 9772 // 'select' for the first PHI operand. 9773 Value *In0 = State.get(getIncomingValue(In), Part); 9774 if (In == 0) 9775 Entry[Part] = In0; // Initialize with the first incoming value. 9776 else { 9777 // Select between the current value and the previous incoming edge 9778 // based on the incoming mask. 9779 Value *Cond = State.get(getMask(In), Part); 9780 Entry[Part] = 9781 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9782 } 9783 } 9784 } 9785 for (unsigned Part = 0; Part < State.UF; ++Part) 9786 State.set(this, Entry[Part], Part); 9787 } 9788 9789 void VPInterleaveRecipe::execute(VPTransformState &State) { 9790 assert(!State.Instance && "Interleave group being replicated."); 9791 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9792 getStoredValues(), getMask()); 9793 } 9794 9795 void VPReductionRecipe::execute(VPTransformState &State) { 9796 assert(!State.Instance && "Reduction being replicated."); 9797 Value *PrevInChain = State.get(getChainOp(), 0); 9798 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9799 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9800 // Propagate the fast-math flags carried by the underlying instruction. 9801 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9802 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9803 for (unsigned Part = 0; Part < State.UF; ++Part) { 9804 Value *NewVecOp = State.get(getVecOp(), Part); 9805 if (VPValue *Cond = getCondOp()) { 9806 Value *NewCond = State.get(Cond, Part); 9807 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9808 Value *Iden = RdxDesc->getRecurrenceIdentity( 9809 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9810 Value *IdenVec = 9811 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9812 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9813 NewVecOp = Select; 9814 } 9815 Value *NewRed; 9816 Value *NextInChain; 9817 if (IsOrdered) { 9818 if (State.VF.isVector()) 9819 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9820 PrevInChain); 9821 else 9822 NewRed = State.Builder.CreateBinOp( 9823 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9824 NewVecOp); 9825 PrevInChain = NewRed; 9826 } else { 9827 PrevInChain = State.get(getChainOp(), Part); 9828 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9829 } 9830 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9831 NextInChain = 9832 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9833 NewRed, PrevInChain); 9834 } else if (IsOrdered) 9835 NextInChain = NewRed; 9836 else 9837 NextInChain = State.Builder.CreateBinOp( 9838 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9839 PrevInChain); 9840 State.set(this, NextInChain, Part); 9841 } 9842 } 9843 9844 void VPReplicateRecipe::execute(VPTransformState &State) { 9845 if (State.Instance) { // Generate a single instance. 9846 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9847 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9848 IsPredicated, State); 9849 // Insert scalar instance packing it into a vector. 9850 if (AlsoPack && State.VF.isVector()) { 9851 // If we're constructing lane 0, initialize to start from poison. 9852 if (State.Instance->Lane.isFirstLane()) { 9853 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9854 Value *Poison = PoisonValue::get( 9855 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9856 State.set(this, Poison, State.Instance->Part); 9857 } 9858 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9859 } 9860 return; 9861 } 9862 9863 // Generate scalar instances for all VF lanes of all UF parts, unless the 9864 // instruction is uniform inwhich case generate only the first lane for each 9865 // of the UF parts. 9866 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9867 assert((!State.VF.isScalable() || IsUniform) && 9868 "Can't scalarize a scalable vector"); 9869 for (unsigned Part = 0; Part < State.UF; ++Part) 9870 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9871 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9872 VPIteration(Part, Lane), IsPredicated, 9873 State); 9874 } 9875 9876 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9877 assert(State.Instance && "Branch on Mask works only on single instance."); 9878 9879 unsigned Part = State.Instance->Part; 9880 unsigned Lane = State.Instance->Lane.getKnownLane(); 9881 9882 Value *ConditionBit = nullptr; 9883 VPValue *BlockInMask = getMask(); 9884 if (BlockInMask) { 9885 ConditionBit = State.get(BlockInMask, Part); 9886 if (ConditionBit->getType()->isVectorTy()) 9887 ConditionBit = State.Builder.CreateExtractElement( 9888 ConditionBit, State.Builder.getInt32(Lane)); 9889 } else // Block in mask is all-one. 9890 ConditionBit = State.Builder.getTrue(); 9891 9892 // Replace the temporary unreachable terminator with a new conditional branch, 9893 // whose two destinations will be set later when they are created. 9894 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9895 assert(isa<UnreachableInst>(CurrentTerminator) && 9896 "Expected to replace unreachable terminator with conditional branch."); 9897 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9898 CondBr->setSuccessor(0, nullptr); 9899 ReplaceInstWithInst(CurrentTerminator, CondBr); 9900 } 9901 9902 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9903 assert(State.Instance && "Predicated instruction PHI works per instance."); 9904 Instruction *ScalarPredInst = 9905 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9906 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9907 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9908 assert(PredicatingBB && "Predicated block has no single predecessor."); 9909 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9910 "operand must be VPReplicateRecipe"); 9911 9912 // By current pack/unpack logic we need to generate only a single phi node: if 9913 // a vector value for the predicated instruction exists at this point it means 9914 // the instruction has vector users only, and a phi for the vector value is 9915 // needed. In this case the recipe of the predicated instruction is marked to 9916 // also do that packing, thereby "hoisting" the insert-element sequence. 9917 // Otherwise, a phi node for the scalar value is needed. 9918 unsigned Part = State.Instance->Part; 9919 if (State.hasVectorValue(getOperand(0), Part)) { 9920 Value *VectorValue = State.get(getOperand(0), Part); 9921 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9922 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9923 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9924 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9925 if (State.hasVectorValue(this, Part)) 9926 State.reset(this, VPhi, Part); 9927 else 9928 State.set(this, VPhi, Part); 9929 // NOTE: Currently we need to update the value of the operand, so the next 9930 // predicated iteration inserts its generated value in the correct vector. 9931 State.reset(getOperand(0), VPhi, Part); 9932 } else { 9933 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9934 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9935 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9936 PredicatingBB); 9937 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9938 if (State.hasScalarValue(this, *State.Instance)) 9939 State.reset(this, Phi, *State.Instance); 9940 else 9941 State.set(this, Phi, *State.Instance); 9942 // NOTE: Currently we need to update the value of the operand, so the next 9943 // predicated iteration inserts its generated value in the correct vector. 9944 State.reset(getOperand(0), Phi, *State.Instance); 9945 } 9946 } 9947 9948 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9949 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9950 9951 // Attempt to issue a wide load. 9952 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9953 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9954 9955 assert((LI || SI) && "Invalid Load/Store instruction"); 9956 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9957 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9958 9959 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9960 9961 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9962 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9963 bool CreateGatherScatter = !Consecutive; 9964 9965 auto &Builder = State.Builder; 9966 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9967 bool isMaskRequired = getMask(); 9968 if (isMaskRequired) 9969 for (unsigned Part = 0; Part < State.UF; ++Part) 9970 BlockInMaskParts[Part] = State.get(getMask(), Part); 9971 9972 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9973 // Calculate the pointer for the specific unroll-part. 9974 GetElementPtrInst *PartPtr = nullptr; 9975 9976 bool InBounds = false; 9977 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9978 InBounds = gep->isInBounds(); 9979 if (Reverse) { 9980 // If the address is consecutive but reversed, then the 9981 // wide store needs to start at the last vector element. 9982 // RunTimeVF = VScale * VF.getKnownMinValue() 9983 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9984 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9985 // NumElt = -Part * RunTimeVF 9986 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9987 // LastLane = 1 - RunTimeVF 9988 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 9989 PartPtr = 9990 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 9991 PartPtr->setIsInBounds(InBounds); 9992 PartPtr = cast<GetElementPtrInst>( 9993 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 9994 PartPtr->setIsInBounds(InBounds); 9995 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 9996 BlockInMaskParts[Part] = 9997 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 9998 } else { 9999 Value *Increment = 10000 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 10001 PartPtr = cast<GetElementPtrInst>( 10002 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 10003 PartPtr->setIsInBounds(InBounds); 10004 } 10005 10006 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 10007 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 10008 }; 10009 10010 // Handle Stores: 10011 if (SI) { 10012 State.ILV->setDebugLocFromInst(SI); 10013 10014 for (unsigned Part = 0; Part < State.UF; ++Part) { 10015 Instruction *NewSI = nullptr; 10016 Value *StoredVal = State.get(StoredValue, Part); 10017 if (CreateGatherScatter) { 10018 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10019 Value *VectorGep = State.get(getAddr(), Part); 10020 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 10021 MaskPart); 10022 } else { 10023 if (Reverse) { 10024 // If we store to reverse consecutive memory locations, then we need 10025 // to reverse the order of elements in the stored value. 10026 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 10027 // We don't want to update the value in the map as it might be used in 10028 // another expression. So don't call resetVectorValue(StoredVal). 10029 } 10030 auto *VecPtr = 10031 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10032 if (isMaskRequired) 10033 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 10034 BlockInMaskParts[Part]); 10035 else 10036 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 10037 } 10038 State.ILV->addMetadata(NewSI, SI); 10039 } 10040 return; 10041 } 10042 10043 // Handle loads. 10044 assert(LI && "Must have a load instruction"); 10045 State.ILV->setDebugLocFromInst(LI); 10046 for (unsigned Part = 0; Part < State.UF; ++Part) { 10047 Value *NewLI; 10048 if (CreateGatherScatter) { 10049 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10050 Value *VectorGep = State.get(getAddr(), Part); 10051 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 10052 nullptr, "wide.masked.gather"); 10053 State.ILV->addMetadata(NewLI, LI); 10054 } else { 10055 auto *VecPtr = 10056 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10057 if (isMaskRequired) 10058 NewLI = Builder.CreateMaskedLoad( 10059 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 10060 PoisonValue::get(DataTy), "wide.masked.load"); 10061 else 10062 NewLI = 10063 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 10064 10065 // Add metadata to the load, but setVectorValue to the reverse shuffle. 10066 State.ILV->addMetadata(NewLI, LI); 10067 if (Reverse) 10068 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 10069 } 10070 10071 State.set(this, NewLI, Part); 10072 } 10073 } 10074 10075 // Determine how to lower the scalar epilogue, which depends on 1) optimising 10076 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 10077 // predication, and 4) a TTI hook that analyses whether the loop is suitable 10078 // for predication. 10079 static ScalarEpilogueLowering getScalarEpilogueLowering( 10080 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 10081 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 10082 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 10083 LoopVectorizationLegality &LVL) { 10084 // 1) OptSize takes precedence over all other options, i.e. if this is set, 10085 // don't look at hints or options, and don't request a scalar epilogue. 10086 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 10087 // LoopAccessInfo (due to code dependency and not being able to reliably get 10088 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 10089 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 10090 // versioning when the vectorization is forced, unlike hasOptSize. So revert 10091 // back to the old way and vectorize with versioning when forced. See D81345.) 10092 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 10093 PGSOQueryType::IRPass) && 10094 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 10095 return CM_ScalarEpilogueNotAllowedOptSize; 10096 10097 // 2) If set, obey the directives 10098 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 10099 switch (PreferPredicateOverEpilogue) { 10100 case PreferPredicateTy::ScalarEpilogue: 10101 return CM_ScalarEpilogueAllowed; 10102 case PreferPredicateTy::PredicateElseScalarEpilogue: 10103 return CM_ScalarEpilogueNotNeededUsePredicate; 10104 case PreferPredicateTy::PredicateOrDontVectorize: 10105 return CM_ScalarEpilogueNotAllowedUsePredicate; 10106 }; 10107 } 10108 10109 // 3) If set, obey the hints 10110 switch (Hints.getPredicate()) { 10111 case LoopVectorizeHints::FK_Enabled: 10112 return CM_ScalarEpilogueNotNeededUsePredicate; 10113 case LoopVectorizeHints::FK_Disabled: 10114 return CM_ScalarEpilogueAllowed; 10115 }; 10116 10117 // 4) if the TTI hook indicates this is profitable, request predication. 10118 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 10119 LVL.getLAI())) 10120 return CM_ScalarEpilogueNotNeededUsePredicate; 10121 10122 return CM_ScalarEpilogueAllowed; 10123 } 10124 10125 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 10126 // If Values have been set for this Def return the one relevant for \p Part. 10127 if (hasVectorValue(Def, Part)) 10128 return Data.PerPartOutput[Def][Part]; 10129 10130 if (!hasScalarValue(Def, {Part, 0})) { 10131 Value *IRV = Def->getLiveInIRValue(); 10132 Value *B = ILV->getBroadcastInstrs(IRV); 10133 set(Def, B, Part); 10134 return B; 10135 } 10136 10137 Value *ScalarValue = get(Def, {Part, 0}); 10138 // If we aren't vectorizing, we can just copy the scalar map values over 10139 // to the vector map. 10140 if (VF.isScalar()) { 10141 set(Def, ScalarValue, Part); 10142 return ScalarValue; 10143 } 10144 10145 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 10146 bool IsUniform = RepR && RepR->isUniform(); 10147 10148 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 10149 // Check if there is a scalar value for the selected lane. 10150 if (!hasScalarValue(Def, {Part, LastLane})) { 10151 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 10152 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 10153 "unexpected recipe found to be invariant"); 10154 IsUniform = true; 10155 LastLane = 0; 10156 } 10157 10158 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 10159 // Set the insert point after the last scalarized instruction or after the 10160 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 10161 // will directly follow the scalar definitions. 10162 auto OldIP = Builder.saveIP(); 10163 auto NewIP = 10164 isa<PHINode>(LastInst) 10165 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10166 : std::next(BasicBlock::iterator(LastInst)); 10167 Builder.SetInsertPoint(&*NewIP); 10168 10169 // However, if we are vectorizing, we need to construct the vector values. 10170 // If the value is known to be uniform after vectorization, we can just 10171 // broadcast the scalar value corresponding to lane zero for each unroll 10172 // iteration. Otherwise, we construct the vector values using 10173 // insertelement instructions. Since the resulting vectors are stored in 10174 // State, we will only generate the insertelements once. 10175 Value *VectorValue = nullptr; 10176 if (IsUniform) { 10177 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10178 set(Def, VectorValue, Part); 10179 } else { 10180 // Initialize packing with insertelements to start from undef. 10181 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10182 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10183 set(Def, Undef, Part); 10184 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10185 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10186 VectorValue = get(Def, Part); 10187 } 10188 Builder.restoreIP(OldIP); 10189 return VectorValue; 10190 } 10191 10192 // Process the loop in the VPlan-native vectorization path. This path builds 10193 // VPlan upfront in the vectorization pipeline, which allows to apply 10194 // VPlan-to-VPlan transformations from the very beginning without modifying the 10195 // input LLVM IR. 10196 static bool processLoopInVPlanNativePath( 10197 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10198 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10199 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10200 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10201 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10202 LoopVectorizationRequirements &Requirements) { 10203 10204 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10205 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10206 return false; 10207 } 10208 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10209 Function *F = L->getHeader()->getParent(); 10210 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10211 10212 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10213 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10214 10215 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10216 &Hints, IAI); 10217 // Use the planner for outer loop vectorization. 10218 // TODO: CM is not used at this point inside the planner. Turn CM into an 10219 // optional argument if we don't need it in the future. 10220 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10221 Requirements, ORE); 10222 10223 // Get user vectorization factor. 10224 ElementCount UserVF = Hints.getWidth(); 10225 10226 CM.collectElementTypesForWidening(); 10227 10228 // Plan how to best vectorize, return the best VF and its cost. 10229 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10230 10231 // If we are stress testing VPlan builds, do not attempt to generate vector 10232 // code. Masked vector code generation support will follow soon. 10233 // Also, do not attempt to vectorize if no vector code will be produced. 10234 if (VPlanBuildStressTest || EnableVPlanPredication || 10235 VectorizationFactor::Disabled() == VF) 10236 return false; 10237 10238 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10239 10240 { 10241 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10242 F->getParent()->getDataLayout()); 10243 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10244 &CM, BFI, PSI, Checks); 10245 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10246 << L->getHeader()->getParent()->getName() << "\"\n"); 10247 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT); 10248 } 10249 10250 // Mark the loop as already vectorized to avoid vectorizing again. 10251 Hints.setAlreadyVectorized(); 10252 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10253 return true; 10254 } 10255 10256 // Emit a remark if there are stores to floats that required a floating point 10257 // extension. If the vectorized loop was generated with floating point there 10258 // will be a performance penalty from the conversion overhead and the change in 10259 // the vector width. 10260 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10261 SmallVector<Instruction *, 4> Worklist; 10262 for (BasicBlock *BB : L->getBlocks()) { 10263 for (Instruction &Inst : *BB) { 10264 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10265 if (S->getValueOperand()->getType()->isFloatTy()) 10266 Worklist.push_back(S); 10267 } 10268 } 10269 } 10270 10271 // Traverse the floating point stores upwards searching, for floating point 10272 // conversions. 10273 SmallPtrSet<const Instruction *, 4> Visited; 10274 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10275 while (!Worklist.empty()) { 10276 auto *I = Worklist.pop_back_val(); 10277 if (!L->contains(I)) 10278 continue; 10279 if (!Visited.insert(I).second) 10280 continue; 10281 10282 // Emit a remark if the floating point store required a floating 10283 // point conversion. 10284 // TODO: More work could be done to identify the root cause such as a 10285 // constant or a function return type and point the user to it. 10286 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10287 ORE->emit([&]() { 10288 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10289 I->getDebugLoc(), L->getHeader()) 10290 << "floating point conversion changes vector width. " 10291 << "Mixed floating point precision requires an up/down " 10292 << "cast that will negatively impact performance."; 10293 }); 10294 10295 for (Use &Op : I->operands()) 10296 if (auto *OpI = dyn_cast<Instruction>(Op)) 10297 Worklist.push_back(OpI); 10298 } 10299 } 10300 10301 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10302 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10303 !EnableLoopInterleaving), 10304 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10305 !EnableLoopVectorization) {} 10306 10307 bool LoopVectorizePass::processLoop(Loop *L) { 10308 assert((EnableVPlanNativePath || L->isInnermost()) && 10309 "VPlan-native path is not enabled. Only process inner loops."); 10310 10311 #ifndef NDEBUG 10312 const std::string DebugLocStr = getDebugLocString(L); 10313 #endif /* NDEBUG */ 10314 10315 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 10316 << L->getHeader()->getParent()->getName() << "\" from " 10317 << DebugLocStr << "\n"); 10318 10319 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10320 10321 LLVM_DEBUG( 10322 dbgs() << "LV: Loop hints:" 10323 << " force=" 10324 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10325 ? "disabled" 10326 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10327 ? "enabled" 10328 : "?")) 10329 << " width=" << Hints.getWidth() 10330 << " interleave=" << Hints.getInterleave() << "\n"); 10331 10332 // Function containing loop 10333 Function *F = L->getHeader()->getParent(); 10334 10335 // Looking at the diagnostic output is the only way to determine if a loop 10336 // was vectorized (other than looking at the IR or machine code), so it 10337 // is important to generate an optimization remark for each loop. Most of 10338 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10339 // generated as OptimizationRemark and OptimizationRemarkMissed are 10340 // less verbose reporting vectorized loops and unvectorized loops that may 10341 // benefit from vectorization, respectively. 10342 10343 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10344 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10345 return false; 10346 } 10347 10348 PredicatedScalarEvolution PSE(*SE, *L); 10349 10350 // Check if it is legal to vectorize the loop. 10351 LoopVectorizationRequirements Requirements; 10352 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10353 &Requirements, &Hints, DB, AC, BFI, PSI); 10354 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10355 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10356 Hints.emitRemarkWithHints(); 10357 return false; 10358 } 10359 10360 // Check the function attributes and profiles to find out if this function 10361 // should be optimized for size. 10362 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10363 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10364 10365 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10366 // here. They may require CFG and instruction level transformations before 10367 // even evaluating whether vectorization is profitable. Since we cannot modify 10368 // the incoming IR, we need to build VPlan upfront in the vectorization 10369 // pipeline. 10370 if (!L->isInnermost()) 10371 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10372 ORE, BFI, PSI, Hints, Requirements); 10373 10374 assert(L->isInnermost() && "Inner loop expected."); 10375 10376 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10377 // count by optimizing for size, to minimize overheads. 10378 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10379 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10380 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10381 << "This loop is worth vectorizing only if no scalar " 10382 << "iteration overheads are incurred."); 10383 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10384 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10385 else { 10386 LLVM_DEBUG(dbgs() << "\n"); 10387 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10388 } 10389 } 10390 10391 // Check the function attributes to see if implicit floats are allowed. 10392 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10393 // an integer loop and the vector instructions selected are purely integer 10394 // vector instructions? 10395 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10396 reportVectorizationFailure( 10397 "Can't vectorize when the NoImplicitFloat attribute is used", 10398 "loop not vectorized due to NoImplicitFloat attribute", 10399 "NoImplicitFloat", ORE, L); 10400 Hints.emitRemarkWithHints(); 10401 return false; 10402 } 10403 10404 // Check if the target supports potentially unsafe FP vectorization. 10405 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10406 // for the target we're vectorizing for, to make sure none of the 10407 // additional fp-math flags can help. 10408 if (Hints.isPotentiallyUnsafe() && 10409 TTI->isFPVectorizationPotentiallyUnsafe()) { 10410 reportVectorizationFailure( 10411 "Potentially unsafe FP op prevents vectorization", 10412 "loop not vectorized due to unsafe FP support.", 10413 "UnsafeFP", ORE, L); 10414 Hints.emitRemarkWithHints(); 10415 return false; 10416 } 10417 10418 bool AllowOrderedReductions; 10419 // If the flag is set, use that instead and override the TTI behaviour. 10420 if (ForceOrderedReductions.getNumOccurrences() > 0) 10421 AllowOrderedReductions = ForceOrderedReductions; 10422 else 10423 AllowOrderedReductions = TTI->enableOrderedReductions(); 10424 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10425 ORE->emit([&]() { 10426 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10427 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10428 ExactFPMathInst->getDebugLoc(), 10429 ExactFPMathInst->getParent()) 10430 << "loop not vectorized: cannot prove it is safe to reorder " 10431 "floating-point operations"; 10432 }); 10433 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10434 "reorder floating-point operations\n"); 10435 Hints.emitRemarkWithHints(); 10436 return false; 10437 } 10438 10439 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10440 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10441 10442 // If an override option has been passed in for interleaved accesses, use it. 10443 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10444 UseInterleaved = EnableInterleavedMemAccesses; 10445 10446 // Analyze interleaved memory accesses. 10447 if (UseInterleaved) { 10448 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10449 } 10450 10451 // Use the cost model. 10452 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10453 F, &Hints, IAI); 10454 CM.collectValuesToIgnore(); 10455 CM.collectElementTypesForWidening(); 10456 10457 // Use the planner for vectorization. 10458 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10459 Requirements, ORE); 10460 10461 // Get user vectorization factor and interleave count. 10462 ElementCount UserVF = Hints.getWidth(); 10463 unsigned UserIC = Hints.getInterleave(); 10464 10465 // Plan how to best vectorize, return the best VF and its cost. 10466 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10467 10468 VectorizationFactor VF = VectorizationFactor::Disabled(); 10469 unsigned IC = 1; 10470 10471 if (MaybeVF) { 10472 VF = *MaybeVF; 10473 // Select the interleave count. 10474 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10475 } 10476 10477 // Identify the diagnostic messages that should be produced. 10478 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10479 bool VectorizeLoop = true, InterleaveLoop = true; 10480 if (VF.Width.isScalar()) { 10481 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10482 VecDiagMsg = std::make_pair( 10483 "VectorizationNotBeneficial", 10484 "the cost-model indicates that vectorization is not beneficial"); 10485 VectorizeLoop = false; 10486 } 10487 10488 if (!MaybeVF && UserIC > 1) { 10489 // Tell the user interleaving was avoided up-front, despite being explicitly 10490 // requested. 10491 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10492 "interleaving should be avoided up front\n"); 10493 IntDiagMsg = std::make_pair( 10494 "InterleavingAvoided", 10495 "Ignoring UserIC, because interleaving was avoided up front"); 10496 InterleaveLoop = false; 10497 } else if (IC == 1 && UserIC <= 1) { 10498 // Tell the user interleaving is not beneficial. 10499 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10500 IntDiagMsg = std::make_pair( 10501 "InterleavingNotBeneficial", 10502 "the cost-model indicates that interleaving is not beneficial"); 10503 InterleaveLoop = false; 10504 if (UserIC == 1) { 10505 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10506 IntDiagMsg.second += 10507 " and is explicitly disabled or interleave count is set to 1"; 10508 } 10509 } else if (IC > 1 && UserIC == 1) { 10510 // Tell the user interleaving is beneficial, but it explicitly disabled. 10511 LLVM_DEBUG( 10512 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10513 IntDiagMsg = std::make_pair( 10514 "InterleavingBeneficialButDisabled", 10515 "the cost-model indicates that interleaving is beneficial " 10516 "but is explicitly disabled or interleave count is set to 1"); 10517 InterleaveLoop = false; 10518 } 10519 10520 // Override IC if user provided an interleave count. 10521 IC = UserIC > 0 ? UserIC : IC; 10522 10523 // Emit diagnostic messages, if any. 10524 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10525 if (!VectorizeLoop && !InterleaveLoop) { 10526 // Do not vectorize or interleaving the loop. 10527 ORE->emit([&]() { 10528 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10529 L->getStartLoc(), L->getHeader()) 10530 << VecDiagMsg.second; 10531 }); 10532 ORE->emit([&]() { 10533 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10534 L->getStartLoc(), L->getHeader()) 10535 << IntDiagMsg.second; 10536 }); 10537 return false; 10538 } else if (!VectorizeLoop && InterleaveLoop) { 10539 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10540 ORE->emit([&]() { 10541 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10542 L->getStartLoc(), L->getHeader()) 10543 << VecDiagMsg.second; 10544 }); 10545 } else if (VectorizeLoop && !InterleaveLoop) { 10546 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10547 << ") in " << DebugLocStr << '\n'); 10548 ORE->emit([&]() { 10549 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10550 L->getStartLoc(), L->getHeader()) 10551 << IntDiagMsg.second; 10552 }); 10553 } else if (VectorizeLoop && InterleaveLoop) { 10554 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10555 << ") in " << DebugLocStr << '\n'); 10556 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10557 } 10558 10559 bool DisableRuntimeUnroll = false; 10560 MDNode *OrigLoopID = L->getLoopID(); 10561 { 10562 // Optimistically generate runtime checks. Drop them if they turn out to not 10563 // be profitable. Limit the scope of Checks, so the cleanup happens 10564 // immediately after vector codegeneration is done. 10565 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10566 F->getParent()->getDataLayout()); 10567 if (!VF.Width.isScalar() || IC > 1) 10568 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10569 10570 using namespace ore; 10571 if (!VectorizeLoop) { 10572 assert(IC > 1 && "interleave count should not be 1 or 0"); 10573 // If we decided that it is not legal to vectorize the loop, then 10574 // interleave it. 10575 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10576 &CM, BFI, PSI, Checks); 10577 10578 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10579 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT); 10580 10581 ORE->emit([&]() { 10582 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10583 L->getHeader()) 10584 << "interleaved loop (interleaved count: " 10585 << NV("InterleaveCount", IC) << ")"; 10586 }); 10587 } else { 10588 // If we decided that it is *legal* to vectorize the loop, then do it. 10589 10590 // Consider vectorizing the epilogue too if it's profitable. 10591 VectorizationFactor EpilogueVF = 10592 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10593 if (EpilogueVF.Width.isVector()) { 10594 10595 // The first pass vectorizes the main loop and creates a scalar epilogue 10596 // to be vectorized by executing the plan (potentially with a different 10597 // factor) again shortly afterwards. 10598 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10599 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10600 EPI, &LVL, &CM, BFI, PSI, Checks); 10601 10602 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10603 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10604 DT); 10605 ++LoopsVectorized; 10606 10607 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10608 formLCSSARecursively(*L, *DT, LI, SE); 10609 10610 // Second pass vectorizes the epilogue and adjusts the control flow 10611 // edges from the first pass. 10612 EPI.MainLoopVF = EPI.EpilogueVF; 10613 EPI.MainLoopUF = EPI.EpilogueUF; 10614 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10615 ORE, EPI, &LVL, &CM, BFI, PSI, 10616 Checks); 10617 10618 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10619 10620 // Ensure that the start values for any VPReductionPHIRecipes are 10621 // updated before vectorising the epilogue loop. 10622 VPBasicBlock *Header = BestEpiPlan.getEntry()->getEntryBasicBlock(); 10623 for (VPRecipeBase &R : Header->phis()) { 10624 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { 10625 if (auto *Resume = MainILV.getReductionResumeValue( 10626 ReductionPhi->getRecurrenceDescriptor())) { 10627 VPValue *StartVal = new VPValue(Resume); 10628 BestEpiPlan.addExternalDef(StartVal); 10629 ReductionPhi->setOperand(0, StartVal); 10630 } 10631 } 10632 } 10633 10634 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10635 DT); 10636 ++LoopsEpilogueVectorized; 10637 10638 if (!MainILV.areSafetyChecksAdded()) 10639 DisableRuntimeUnroll = true; 10640 } else { 10641 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10642 &LVL, &CM, BFI, PSI, Checks); 10643 10644 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10645 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT); 10646 ++LoopsVectorized; 10647 10648 // Add metadata to disable runtime unrolling a scalar loop when there 10649 // are no runtime checks about strides and memory. A scalar loop that is 10650 // rarely used is not worth unrolling. 10651 if (!LB.areSafetyChecksAdded()) 10652 DisableRuntimeUnroll = true; 10653 } 10654 // Report the vectorization decision. 10655 ORE->emit([&]() { 10656 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10657 L->getHeader()) 10658 << "vectorized loop (vectorization width: " 10659 << NV("VectorizationFactor", VF.Width) 10660 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10661 }); 10662 } 10663 10664 if (ORE->allowExtraAnalysis(LV_NAME)) 10665 checkMixedPrecision(L, ORE); 10666 } 10667 10668 Optional<MDNode *> RemainderLoopID = 10669 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10670 LLVMLoopVectorizeFollowupEpilogue}); 10671 if (RemainderLoopID.hasValue()) { 10672 L->setLoopID(RemainderLoopID.getValue()); 10673 } else { 10674 if (DisableRuntimeUnroll) 10675 AddRuntimeUnrollDisableMetaData(L); 10676 10677 // Mark the loop as already vectorized to avoid vectorizing again. 10678 Hints.setAlreadyVectorized(); 10679 } 10680 10681 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10682 return true; 10683 } 10684 10685 LoopVectorizeResult LoopVectorizePass::runImpl( 10686 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10687 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10688 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10689 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10690 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10691 SE = &SE_; 10692 LI = &LI_; 10693 TTI = &TTI_; 10694 DT = &DT_; 10695 BFI = &BFI_; 10696 TLI = TLI_; 10697 AA = &AA_; 10698 AC = &AC_; 10699 GetLAA = &GetLAA_; 10700 DB = &DB_; 10701 ORE = &ORE_; 10702 PSI = PSI_; 10703 10704 // Don't attempt if 10705 // 1. the target claims to have no vector registers, and 10706 // 2. interleaving won't help ILP. 10707 // 10708 // The second condition is necessary because, even if the target has no 10709 // vector registers, loop vectorization may still enable scalar 10710 // interleaving. 10711 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10712 TTI->getMaxInterleaveFactor(1) < 2) 10713 return LoopVectorizeResult(false, false); 10714 10715 bool Changed = false, CFGChanged = false; 10716 10717 // The vectorizer requires loops to be in simplified form. 10718 // Since simplification may add new inner loops, it has to run before the 10719 // legality and profitability checks. This means running the loop vectorizer 10720 // will simplify all loops, regardless of whether anything end up being 10721 // vectorized. 10722 for (auto &L : *LI) 10723 Changed |= CFGChanged |= 10724 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10725 10726 // Build up a worklist of inner-loops to vectorize. This is necessary as 10727 // the act of vectorizing or partially unrolling a loop creates new loops 10728 // and can invalidate iterators across the loops. 10729 SmallVector<Loop *, 8> Worklist; 10730 10731 for (Loop *L : *LI) 10732 collectSupportedLoops(*L, LI, ORE, Worklist); 10733 10734 LoopsAnalyzed += Worklist.size(); 10735 10736 // Now walk the identified inner loops. 10737 while (!Worklist.empty()) { 10738 Loop *L = Worklist.pop_back_val(); 10739 10740 // For the inner loops we actually process, form LCSSA to simplify the 10741 // transform. 10742 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10743 10744 Changed |= CFGChanged |= processLoop(L); 10745 } 10746 10747 // Process each loop nest in the function. 10748 return LoopVectorizeResult(Changed, CFGChanged); 10749 } 10750 10751 PreservedAnalyses LoopVectorizePass::run(Function &F, 10752 FunctionAnalysisManager &AM) { 10753 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10754 auto &LI = AM.getResult<LoopAnalysis>(F); 10755 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10756 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10757 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10758 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10759 auto &AA = AM.getResult<AAManager>(F); 10760 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10761 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10762 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10763 10764 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10765 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10766 [&](Loop &L) -> const LoopAccessInfo & { 10767 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10768 TLI, TTI, nullptr, nullptr, nullptr}; 10769 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10770 }; 10771 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10772 ProfileSummaryInfo *PSI = 10773 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10774 LoopVectorizeResult Result = 10775 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10776 if (!Result.MadeAnyChange) 10777 return PreservedAnalyses::all(); 10778 PreservedAnalyses PA; 10779 10780 // We currently do not preserve loopinfo/dominator analyses with outer loop 10781 // vectorization. Until this is addressed, mark these analyses as preserved 10782 // only for non-VPlan-native path. 10783 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10784 if (!EnableVPlanNativePath) { 10785 PA.preserve<LoopAnalysis>(); 10786 PA.preserve<DominatorTreeAnalysis>(); 10787 } 10788 10789 if (Result.MadeCFGChange) { 10790 // Making CFG changes likely means a loop got vectorized. Indicate that 10791 // extra simplification passes should be run. 10792 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10793 // be run if runtime checks have been added. 10794 AM.getResult<ShouldRunExtraVectorPasses>(F); 10795 PA.preserve<ShouldRunExtraVectorPasses>(); 10796 } else { 10797 PA.preserveSet<CFGAnalyses>(); 10798 } 10799 return PA; 10800 } 10801 10802 void LoopVectorizePass::printPipeline( 10803 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10804 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10805 OS, MapClassName2PassName); 10806 10807 OS << "<"; 10808 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10809 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10810 OS << ">"; 10811 } 10812