1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/Metadata.h" 116 #include "llvm/IR/Module.h" 117 #include "llvm/IR/Operator.h" 118 #include "llvm/IR/PatternMatch.h" 119 #include "llvm/IR/Type.h" 120 #include "llvm/IR/Use.h" 121 #include "llvm/IR/User.h" 122 #include "llvm/IR/Value.h" 123 #include "llvm/IR/ValueHandle.h" 124 #include "llvm/IR/Verifier.h" 125 #include "llvm/InitializePasses.h" 126 #include "llvm/Pass.h" 127 #include "llvm/Support/Casting.h" 128 #include "llvm/Support/CommandLine.h" 129 #include "llvm/Support/Compiler.h" 130 #include "llvm/Support/Debug.h" 131 #include "llvm/Support/ErrorHandling.h" 132 #include "llvm/Support/InstructionCost.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <functional> 147 #include <iterator> 148 #include <limits> 149 #include <map> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 #ifndef NDEBUG 161 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 162 #endif 163 164 /// @{ 165 /// Metadata attribute names 166 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 167 const char LLVMLoopVectorizeFollowupVectorized[] = 168 "llvm.loop.vectorize.followup_vectorized"; 169 const char LLVMLoopVectorizeFollowupEpilogue[] = 170 "llvm.loop.vectorize.followup_epilogue"; 171 /// @} 172 173 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 174 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 175 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 176 177 static cl::opt<bool> EnableEpilogueVectorization( 178 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 179 cl::desc("Enable vectorization of epilogue loops.")); 180 181 static cl::opt<unsigned> EpilogueVectorizationForceVF( 182 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 183 cl::desc("When epilogue vectorization is enabled, and a value greater than " 184 "1 is specified, forces the given VF for all applicable epilogue " 185 "loops.")); 186 187 static cl::opt<unsigned> EpilogueVectorizationMinVF( 188 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 189 cl::desc("Only loops with vectorization factor equal to or larger than " 190 "the specified value are considered for epilogue vectorization.")); 191 192 /// Loops with a known constant trip count below this number are vectorized only 193 /// if no scalar iteration overheads are incurred. 194 static cl::opt<unsigned> TinyTripCountVectorThreshold( 195 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 196 cl::desc("Loops with a constant trip count that is smaller than this " 197 "value are vectorized only if no scalar iteration overheads " 198 "are incurred.")); 199 200 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 201 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 202 cl::desc("The maximum allowed number of runtime memory checks with a " 203 "vectorize(enable) pragma.")); 204 205 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 206 // that predication is preferred, and this lists all options. I.e., the 207 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 208 // and predicate the instructions accordingly. If tail-folding fails, there are 209 // different fallback strategies depending on these values: 210 namespace PreferPredicateTy { 211 enum Option { 212 ScalarEpilogue = 0, 213 PredicateElseScalarEpilogue, 214 PredicateOrDontVectorize 215 }; 216 } // namespace PreferPredicateTy 217 218 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 219 "prefer-predicate-over-epilogue", 220 cl::init(PreferPredicateTy::ScalarEpilogue), 221 cl::Hidden, 222 cl::desc("Tail-folding and predication preferences over creating a scalar " 223 "epilogue loop."), 224 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 225 "scalar-epilogue", 226 "Don't tail-predicate loops, create scalar epilogue"), 227 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 228 "predicate-else-scalar-epilogue", 229 "prefer tail-folding, create scalar epilogue if tail " 230 "folding fails."), 231 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 232 "predicate-dont-vectorize", 233 "prefers tail-folding, don't attempt vectorization if " 234 "tail-folding fails."))); 235 236 static cl::opt<bool> MaximizeBandwidth( 237 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 238 cl::desc("Maximize bandwidth when selecting vectorization factor which " 239 "will be determined by the smallest type in loop.")); 240 241 static cl::opt<bool> EnableInterleavedMemAccesses( 242 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 243 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 244 245 /// An interleave-group may need masking if it resides in a block that needs 246 /// predication, or in order to mask away gaps. 247 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 248 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 249 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 250 251 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 252 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 253 cl::desc("We don't interleave loops with a estimated constant trip count " 254 "below this number")); 255 256 static cl::opt<unsigned> ForceTargetNumScalarRegs( 257 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 258 cl::desc("A flag that overrides the target's number of scalar registers.")); 259 260 static cl::opt<unsigned> ForceTargetNumVectorRegs( 261 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 262 cl::desc("A flag that overrides the target's number of vector registers.")); 263 264 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 265 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 266 cl::desc("A flag that overrides the target's max interleave factor for " 267 "scalar loops.")); 268 269 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 270 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 271 cl::desc("A flag that overrides the target's max interleave factor for " 272 "vectorized loops.")); 273 274 static cl::opt<unsigned> ForceTargetInstructionCost( 275 "force-target-instruction-cost", cl::init(0), cl::Hidden, 276 cl::desc("A flag that overrides the target's expected cost for " 277 "an instruction to a single constant value. Mostly " 278 "useful for getting consistent testing.")); 279 280 static cl::opt<bool> ForceTargetSupportsScalableVectors( 281 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 282 cl::desc( 283 "Pretend that scalable vectors are supported, even if the target does " 284 "not support them. This flag should only be used for testing.")); 285 286 static cl::opt<unsigned> SmallLoopCost( 287 "small-loop-cost", cl::init(20), cl::Hidden, 288 cl::desc( 289 "The cost of a loop that is considered 'small' by the interleaver.")); 290 291 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 292 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 293 cl::desc("Enable the use of the block frequency analysis to access PGO " 294 "heuristics minimizing code growth in cold regions and being more " 295 "aggressive in hot regions.")); 296 297 // Runtime interleave loops for load/store throughput. 298 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 299 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 300 cl::desc( 301 "Enable runtime interleaving until load/store ports are saturated")); 302 303 /// Interleave small loops with scalar reductions. 304 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 305 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 306 cl::desc("Enable interleaving for loops with small iteration counts that " 307 "contain scalar reductions to expose ILP.")); 308 309 /// The number of stores in a loop that are allowed to need predication. 310 static cl::opt<unsigned> NumberOfStoresToPredicate( 311 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 312 cl::desc("Max number of stores to be predicated behind an if.")); 313 314 static cl::opt<bool> EnableIndVarRegisterHeur( 315 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 316 cl::desc("Count the induction variable only once when interleaving")); 317 318 static cl::opt<bool> EnableCondStoresVectorization( 319 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 320 cl::desc("Enable if predication of stores during vectorization.")); 321 322 static cl::opt<unsigned> MaxNestedScalarReductionIC( 323 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 324 cl::desc("The maximum interleave count to use when interleaving a scalar " 325 "reduction in a nested loop.")); 326 327 static cl::opt<bool> 328 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 329 cl::Hidden, 330 cl::desc("Prefer in-loop vector reductions, " 331 "overriding the targets preference.")); 332 333 static cl::opt<bool> ForceOrderedReductions( 334 "force-ordered-reductions", cl::init(false), cl::Hidden, 335 cl::desc("Enable the vectorisation of loops with in-order (strict) " 336 "FP reductions")); 337 338 static cl::opt<bool> PreferPredicatedReductionSelect( 339 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 340 cl::desc( 341 "Prefer predicating a reduction operation over an after loop select.")); 342 343 cl::opt<bool> EnableVPlanNativePath( 344 "enable-vplan-native-path", cl::init(false), cl::Hidden, 345 cl::desc("Enable VPlan-native vectorization path with " 346 "support for outer loop vectorization.")); 347 348 // FIXME: Remove this switch once we have divergence analysis. Currently we 349 // assume divergent non-backedge branches when this switch is true. 350 cl::opt<bool> EnableVPlanPredication( 351 "enable-vplan-predication", cl::init(false), cl::Hidden, 352 cl::desc("Enable VPlan-native vectorization path predicator with " 353 "support for outer loop vectorization.")); 354 355 // This flag enables the stress testing of the VPlan H-CFG construction in the 356 // VPlan-native vectorization path. It must be used in conjuction with 357 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 358 // verification of the H-CFGs built. 359 static cl::opt<bool> VPlanBuildStressTest( 360 "vplan-build-stress-test", cl::init(false), cl::Hidden, 361 cl::desc( 362 "Build VPlan for every supported loop nest in the function and bail " 363 "out right after the build (stress test the VPlan H-CFG construction " 364 "in the VPlan-native vectorization path).")); 365 366 cl::opt<bool> llvm::EnableLoopInterleaving( 367 "interleave-loops", cl::init(true), cl::Hidden, 368 cl::desc("Enable loop interleaving in Loop vectorization passes")); 369 cl::opt<bool> llvm::EnableLoopVectorization( 370 "vectorize-loops", cl::init(true), cl::Hidden, 371 cl::desc("Run the Loop vectorization passes")); 372 373 cl::opt<bool> PrintVPlansInDotFormat( 374 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 375 cl::desc("Use dot format instead of plain text when dumping VPlans")); 376 377 /// A helper function that returns true if the given type is irregular. The 378 /// type is irregular if its allocated size doesn't equal the store size of an 379 /// element of the corresponding vector type. 380 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 381 // Determine if an array of N elements of type Ty is "bitcast compatible" 382 // with a <N x Ty> vector. 383 // This is only true if there is no padding between the array elements. 384 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 385 } 386 387 /// A helper function that returns the reciprocal of the block probability of 388 /// predicated blocks. If we return X, we are assuming the predicated block 389 /// will execute once for every X iterations of the loop header. 390 /// 391 /// TODO: We should use actual block probability here, if available. Currently, 392 /// we always assume predicated blocks have a 50% chance of executing. 393 static unsigned getReciprocalPredBlockProb() { return 2; } 394 395 /// A helper function that returns an integer or floating-point constant with 396 /// value C. 397 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 398 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 399 : ConstantFP::get(Ty, C); 400 } 401 402 /// Returns "best known" trip count for the specified loop \p L as defined by 403 /// the following procedure: 404 /// 1) Returns exact trip count if it is known. 405 /// 2) Returns expected trip count according to profile data if any. 406 /// 3) Returns upper bound estimate if it is known. 407 /// 4) Returns None if all of the above failed. 408 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 409 // Check if exact trip count is known. 410 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 411 return ExpectedTC; 412 413 // Check if there is an expected trip count available from profile data. 414 if (LoopVectorizeWithBlockFrequency) 415 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 416 return EstimatedTC; 417 418 // Check if upper bound estimate is known. 419 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 420 return ExpectedTC; 421 422 return None; 423 } 424 425 // Forward declare GeneratedRTChecks. 426 class GeneratedRTChecks; 427 428 namespace llvm { 429 430 AnalysisKey ShouldRunExtraVectorPasses::Key; 431 432 /// InnerLoopVectorizer vectorizes loops which contain only one basic 433 /// block to a specified vectorization factor (VF). 434 /// This class performs the widening of scalars into vectors, or multiple 435 /// scalars. This class also implements the following features: 436 /// * It inserts an epilogue loop for handling loops that don't have iteration 437 /// counts that are known to be a multiple of the vectorization factor. 438 /// * It handles the code generation for reduction variables. 439 /// * Scalarization (implementation using scalars) of un-vectorizable 440 /// instructions. 441 /// InnerLoopVectorizer does not perform any vectorization-legality 442 /// checks, and relies on the caller to check for the different legality 443 /// aspects. The InnerLoopVectorizer relies on the 444 /// LoopVectorizationLegality class to provide information about the induction 445 /// and reduction variables that were found to a given vectorization factor. 446 class InnerLoopVectorizer { 447 public: 448 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 449 LoopInfo *LI, DominatorTree *DT, 450 const TargetLibraryInfo *TLI, 451 const TargetTransformInfo *TTI, AssumptionCache *AC, 452 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 453 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 454 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 455 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 456 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 457 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 458 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 459 PSI(PSI), RTChecks(RTChecks) { 460 // Query this against the original loop and save it here because the profile 461 // of the original loop header may change as the transformation happens. 462 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 463 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 464 } 465 466 virtual ~InnerLoopVectorizer() = default; 467 468 /// Create a new empty loop that will contain vectorized instructions later 469 /// on, while the old loop will be used as the scalar remainder. Control flow 470 /// is generated around the vectorized (and scalar epilogue) loops consisting 471 /// of various checks and bypasses. Return the pre-header block of the new 472 /// loop and the start value for the canonical induction, if it is != 0. The 473 /// latter is the case when vectorizing the epilogue loop. In the case of 474 /// epilogue vectorization, this function is overriden to handle the more 475 /// complex control flow around the loops. 476 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 477 478 /// Widen a single call instruction within the innermost loop. 479 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 480 VPTransformState &State); 481 482 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 483 void fixVectorizedLoop(VPTransformState &State); 484 485 // Return true if any runtime check is added. 486 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 487 488 /// A type for vectorized values in the new loop. Each value from the 489 /// original loop, when vectorized, is represented by UF vector values in the 490 /// new unrolled loop, where UF is the unroll factor. 491 using VectorParts = SmallVector<Value *, 2>; 492 493 /// Vectorize a single vector PHINode in a block in the VPlan-native path 494 /// only. 495 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 496 VPTransformState &State); 497 498 /// A helper function to scalarize a single Instruction in the innermost loop. 499 /// Generates a sequence of scalar instances for each lane between \p MinLane 500 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 501 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 502 /// Instr's operands. 503 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 504 const VPIteration &Instance, bool IfPredicateInstr, 505 VPTransformState &State); 506 507 /// Construct the vector value of a scalarized value \p V one lane at a time. 508 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 509 VPTransformState &State); 510 511 /// Try to vectorize interleaved access group \p Group with the base address 512 /// given in \p Addr, optionally masking the vector operations if \p 513 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 514 /// values in the vectorized loop. 515 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 516 ArrayRef<VPValue *> VPDefs, 517 VPTransformState &State, VPValue *Addr, 518 ArrayRef<VPValue *> StoredValues, 519 VPValue *BlockInMask = nullptr); 520 521 /// Set the debug location in the builder \p Ptr using the debug location in 522 /// \p V. If \p Ptr is None then it uses the class member's Builder. 523 void setDebugLocFromInst(const Value *V, 524 Optional<IRBuilderBase *> CustomBuilder = None); 525 526 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 527 void fixNonInductionPHIs(VPTransformState &State); 528 529 /// Returns true if the reordering of FP operations is not allowed, but we are 530 /// able to vectorize with strict in-order reductions for the given RdxDesc. 531 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 532 533 /// Create a broadcast instruction. This method generates a broadcast 534 /// instruction (shuffle) for loop invariant values and for the induction 535 /// value. If this is the induction variable then we extend it to N, N+1, ... 536 /// this is needed because each iteration in the loop corresponds to a SIMD 537 /// element. 538 virtual Value *getBroadcastInstrs(Value *V); 539 540 /// Add metadata from one instruction to another. 541 /// 542 /// This includes both the original MDs from \p From and additional ones (\see 543 /// addNewMetadata). Use this for *newly created* instructions in the vector 544 /// loop. 545 void addMetadata(Instruction *To, Instruction *From); 546 547 /// Similar to the previous function but it adds the metadata to a 548 /// vector of instructions. 549 void addMetadata(ArrayRef<Value *> To, Instruction *From); 550 551 // Returns the resume value (bc.merge.rdx) for a reduction as 552 // generated by fixReduction. 553 PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc); 554 555 protected: 556 friend class LoopVectorizationPlanner; 557 558 /// A small list of PHINodes. 559 using PhiVector = SmallVector<PHINode *, 4>; 560 561 /// A type for scalarized values in the new loop. Each value from the 562 /// original loop, when scalarized, is represented by UF x VF scalar values 563 /// in the new unrolled loop, where UF is the unroll factor and VF is the 564 /// vectorization factor. 565 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 566 567 /// Set up the values of the IVs correctly when exiting the vector loop. 568 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 569 Value *CountRoundDown, Value *EndValue, 570 BasicBlock *MiddleBlock, BasicBlock *VectorHeader); 571 572 /// Handle all cross-iteration phis in the header. 573 void fixCrossIterationPHIs(VPTransformState &State); 574 575 /// Create the exit value of first order recurrences in the middle block and 576 /// update their users. 577 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 578 VPTransformState &State); 579 580 /// Create code for the loop exit value of the reduction. 581 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 582 583 /// Clear NSW/NUW flags from reduction instructions if necessary. 584 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 585 VPTransformState &State); 586 587 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 588 /// means we need to add the appropriate incoming value from the middle 589 /// block as exiting edges from the scalar epilogue loop (if present) are 590 /// already in place, and we exit the vector loop exclusively to the middle 591 /// block. 592 void fixLCSSAPHIs(VPTransformState &State); 593 594 /// Iteratively sink the scalarized operands of a predicated instruction into 595 /// the block that was created for it. 596 void sinkScalarOperands(Instruction *PredInst); 597 598 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 599 /// represented as. 600 void truncateToMinimalBitwidths(VPTransformState &State); 601 602 /// Returns (and creates if needed) the original loop trip count. 603 Value *getOrCreateTripCount(BasicBlock *InsertBlock); 604 605 /// Returns (and creates if needed) the trip count of the widened loop. 606 Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock); 607 608 /// Returns a bitcasted value to the requested vector type. 609 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 610 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 611 const DataLayout &DL); 612 613 /// Emit a bypass check to see if the vector trip count is zero, including if 614 /// it overflows. 615 void emitMinimumIterationCountCheck(BasicBlock *Bypass); 616 617 /// Emit a bypass check to see if all of the SCEV assumptions we've 618 /// had to make are correct. Returns the block containing the checks or 619 /// nullptr if no checks have been added. 620 BasicBlock *emitSCEVChecks(BasicBlock *Bypass); 621 622 /// Emit bypass checks to check any memory assumptions we may have made. 623 /// Returns the block containing the checks or nullptr if no checks have been 624 /// added. 625 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass); 626 627 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 628 /// vector loop preheader, middle block and scalar preheader. 629 void createVectorLoopSkeleton(StringRef Prefix); 630 631 /// Create new phi nodes for the induction variables to resume iteration count 632 /// in the scalar epilogue, from where the vectorized loop left off. 633 /// In cases where the loop skeleton is more complicated (eg. epilogue 634 /// vectorization) and the resume values can come from an additional bypass 635 /// block, the \p AdditionalBypass pair provides information about the bypass 636 /// block and the end value on the edge from bypass to this loop. 637 void createInductionResumeValues( 638 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 639 640 /// Complete the loop skeleton by adding debug MDs, creating appropriate 641 /// conditional branches in the middle block, preparing the builder and 642 /// running the verifier. Return the preheader of the completed vector loop. 643 BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID); 644 645 /// Add additional metadata to \p To that was not present on \p Orig. 646 /// 647 /// Currently this is used to add the noalias annotations based on the 648 /// inserted memchecks. Use this for instructions that are *cloned* into the 649 /// vector loop. 650 void addNewMetadata(Instruction *To, const Instruction *Orig); 651 652 /// Collect poison-generating recipes that may generate a poison value that is 653 /// used after vectorization, even when their operands are not poison. Those 654 /// recipes meet the following conditions: 655 /// * Contribute to the address computation of a recipe generating a widen 656 /// memory load/store (VPWidenMemoryInstructionRecipe or 657 /// VPInterleaveRecipe). 658 /// * Such a widen memory load/store has at least one underlying Instruction 659 /// that is in a basic block that needs predication and after vectorization 660 /// the generated instruction won't be predicated. 661 void collectPoisonGeneratingRecipes(VPTransformState &State); 662 663 /// Allow subclasses to override and print debug traces before/after vplan 664 /// execution, when trace information is requested. 665 virtual void printDebugTracesAtStart(){}; 666 virtual void printDebugTracesAtEnd(){}; 667 668 /// The original loop. 669 Loop *OrigLoop; 670 671 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 672 /// dynamic knowledge to simplify SCEV expressions and converts them to a 673 /// more usable form. 674 PredicatedScalarEvolution &PSE; 675 676 /// Loop Info. 677 LoopInfo *LI; 678 679 /// Dominator Tree. 680 DominatorTree *DT; 681 682 /// Alias Analysis. 683 AAResults *AA; 684 685 /// Target Library Info. 686 const TargetLibraryInfo *TLI; 687 688 /// Target Transform Info. 689 const TargetTransformInfo *TTI; 690 691 /// Assumption Cache. 692 AssumptionCache *AC; 693 694 /// Interface to emit optimization remarks. 695 OptimizationRemarkEmitter *ORE; 696 697 /// LoopVersioning. It's only set up (non-null) if memchecks were 698 /// used. 699 /// 700 /// This is currently only used to add no-alias metadata based on the 701 /// memchecks. The actually versioning is performed manually. 702 std::unique_ptr<LoopVersioning> LVer; 703 704 /// The vectorization SIMD factor to use. Each vector will have this many 705 /// vector elements. 706 ElementCount VF; 707 708 /// The vectorization unroll factor to use. Each scalar is vectorized to this 709 /// many different vector instructions. 710 unsigned UF; 711 712 /// The builder that we use 713 IRBuilder<> Builder; 714 715 // --- Vectorization state --- 716 717 /// The vector-loop preheader. 718 BasicBlock *LoopVectorPreHeader; 719 720 /// The scalar-loop preheader. 721 BasicBlock *LoopScalarPreHeader; 722 723 /// Middle Block between the vector and the scalar. 724 BasicBlock *LoopMiddleBlock; 725 726 /// The unique ExitBlock of the scalar loop if one exists. Note that 727 /// there can be multiple exiting edges reaching this block. 728 BasicBlock *LoopExitBlock; 729 730 /// The scalar loop body. 731 BasicBlock *LoopScalarBody; 732 733 /// A list of all bypass blocks. The first block is the entry of the loop. 734 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 735 736 /// Store instructions that were predicated. 737 SmallVector<Instruction *, 4> PredicatedInstructions; 738 739 /// Trip count of the original loop. 740 Value *TripCount = nullptr; 741 742 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 743 Value *VectorTripCount = nullptr; 744 745 /// The legality analysis. 746 LoopVectorizationLegality *Legal; 747 748 /// The profitablity analysis. 749 LoopVectorizationCostModel *Cost; 750 751 // Record whether runtime checks are added. 752 bool AddedSafetyChecks = false; 753 754 // Holds the end values for each induction variable. We save the end values 755 // so we can later fix-up the external users of the induction variables. 756 DenseMap<PHINode *, Value *> IVEndValues; 757 758 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 759 // fixed up at the end of vector code generation. 760 SmallVector<PHINode *, 8> OrigPHIsToFix; 761 762 /// BFI and PSI are used to check for profile guided size optimizations. 763 BlockFrequencyInfo *BFI; 764 ProfileSummaryInfo *PSI; 765 766 // Whether this loop should be optimized for size based on profile guided size 767 // optimizatios. 768 bool OptForSizeBasedOnProfile; 769 770 /// Structure to hold information about generated runtime checks, responsible 771 /// for cleaning the checks, if vectorization turns out unprofitable. 772 GeneratedRTChecks &RTChecks; 773 774 // Holds the resume values for reductions in the loops, used to set the 775 // correct start value of reduction PHIs when vectorizing the epilogue. 776 SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4> 777 ReductionResumeValues; 778 }; 779 780 class InnerLoopUnroller : public InnerLoopVectorizer { 781 public: 782 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 783 LoopInfo *LI, DominatorTree *DT, 784 const TargetLibraryInfo *TLI, 785 const TargetTransformInfo *TTI, AssumptionCache *AC, 786 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 787 LoopVectorizationLegality *LVL, 788 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 789 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 790 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 791 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 792 BFI, PSI, Check) {} 793 794 private: 795 Value *getBroadcastInstrs(Value *V) override; 796 }; 797 798 /// Encapsulate information regarding vectorization of a loop and its epilogue. 799 /// This information is meant to be updated and used across two stages of 800 /// epilogue vectorization. 801 struct EpilogueLoopVectorizationInfo { 802 ElementCount MainLoopVF = ElementCount::getFixed(0); 803 unsigned MainLoopUF = 0; 804 ElementCount EpilogueVF = ElementCount::getFixed(0); 805 unsigned EpilogueUF = 0; 806 BasicBlock *MainLoopIterationCountCheck = nullptr; 807 BasicBlock *EpilogueIterationCountCheck = nullptr; 808 BasicBlock *SCEVSafetyCheck = nullptr; 809 BasicBlock *MemSafetyCheck = nullptr; 810 Value *TripCount = nullptr; 811 Value *VectorTripCount = nullptr; 812 813 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 814 ElementCount EVF, unsigned EUF) 815 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 816 assert(EUF == 1 && 817 "A high UF for the epilogue loop is likely not beneficial."); 818 } 819 }; 820 821 /// An extension of the inner loop vectorizer that creates a skeleton for a 822 /// vectorized loop that has its epilogue (residual) also vectorized. 823 /// The idea is to run the vplan on a given loop twice, firstly to setup the 824 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 825 /// from the first step and vectorize the epilogue. This is achieved by 826 /// deriving two concrete strategy classes from this base class and invoking 827 /// them in succession from the loop vectorizer planner. 828 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 829 public: 830 InnerLoopAndEpilogueVectorizer( 831 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 832 DominatorTree *DT, const TargetLibraryInfo *TLI, 833 const TargetTransformInfo *TTI, AssumptionCache *AC, 834 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 835 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 836 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 837 GeneratedRTChecks &Checks) 838 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 839 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 840 Checks), 841 EPI(EPI) {} 842 843 // Override this function to handle the more complex control flow around the 844 // three loops. 845 std::pair<BasicBlock *, Value *> 846 createVectorizedLoopSkeleton() final override { 847 return createEpilogueVectorizedLoopSkeleton(); 848 } 849 850 /// The interface for creating a vectorized skeleton using one of two 851 /// different strategies, each corresponding to one execution of the vplan 852 /// as described above. 853 virtual std::pair<BasicBlock *, Value *> 854 createEpilogueVectorizedLoopSkeleton() = 0; 855 856 /// Holds and updates state information required to vectorize the main loop 857 /// and its epilogue in two separate passes. This setup helps us avoid 858 /// regenerating and recomputing runtime safety checks. It also helps us to 859 /// shorten the iteration-count-check path length for the cases where the 860 /// iteration count of the loop is so small that the main vector loop is 861 /// completely skipped. 862 EpilogueLoopVectorizationInfo &EPI; 863 }; 864 865 /// A specialized derived class of inner loop vectorizer that performs 866 /// vectorization of *main* loops in the process of vectorizing loops and their 867 /// epilogues. 868 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 869 public: 870 EpilogueVectorizerMainLoop( 871 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 872 DominatorTree *DT, const TargetLibraryInfo *TLI, 873 const TargetTransformInfo *TTI, AssumptionCache *AC, 874 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 875 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 876 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 877 GeneratedRTChecks &Check) 878 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 879 EPI, LVL, CM, BFI, PSI, Check) {} 880 /// Implements the interface for creating a vectorized skeleton using the 881 /// *main loop* strategy (ie the first pass of vplan execution). 882 std::pair<BasicBlock *, Value *> 883 createEpilogueVectorizedLoopSkeleton() final override; 884 885 protected: 886 /// Emits an iteration count bypass check once for the main loop (when \p 887 /// ForEpilogue is false) and once for the epilogue loop (when \p 888 /// ForEpilogue is true). 889 BasicBlock *emitMinimumIterationCountCheck(BasicBlock *Bypass, 890 bool ForEpilogue); 891 void printDebugTracesAtStart() override; 892 void printDebugTracesAtEnd() override; 893 }; 894 895 // A specialized derived class of inner loop vectorizer that performs 896 // vectorization of *epilogue* loops in the process of vectorizing loops and 897 // their epilogues. 898 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 899 public: 900 EpilogueVectorizerEpilogueLoop( 901 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 902 DominatorTree *DT, const TargetLibraryInfo *TLI, 903 const TargetTransformInfo *TTI, AssumptionCache *AC, 904 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 905 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 906 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 907 GeneratedRTChecks &Checks) 908 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 909 EPI, LVL, CM, BFI, PSI, Checks) { 910 TripCount = EPI.TripCount; 911 } 912 /// Implements the interface for creating a vectorized skeleton using the 913 /// *epilogue loop* strategy (ie the second pass of vplan execution). 914 std::pair<BasicBlock *, Value *> 915 createEpilogueVectorizedLoopSkeleton() final override; 916 917 protected: 918 /// Emits an iteration count bypass check after the main vector loop has 919 /// finished to see if there are any iterations left to execute by either 920 /// the vector epilogue or the scalar epilogue. 921 BasicBlock *emitMinimumVectorEpilogueIterCountCheck( 922 BasicBlock *Bypass, 923 BasicBlock *Insert); 924 void printDebugTracesAtStart() override; 925 void printDebugTracesAtEnd() override; 926 }; 927 } // end namespace llvm 928 929 /// Look for a meaningful debug location on the instruction or it's 930 /// operands. 931 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 932 if (!I) 933 return I; 934 935 DebugLoc Empty; 936 if (I->getDebugLoc() != Empty) 937 return I; 938 939 for (Use &Op : I->operands()) { 940 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 941 if (OpInst->getDebugLoc() != Empty) 942 return OpInst; 943 } 944 945 return I; 946 } 947 948 void InnerLoopVectorizer::setDebugLocFromInst( 949 const Value *V, Optional<IRBuilderBase *> CustomBuilder) { 950 IRBuilderBase *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 951 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 952 const DILocation *DIL = Inst->getDebugLoc(); 953 954 // When a FSDiscriminator is enabled, we don't need to add the multiply 955 // factors to the discriminators. 956 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 957 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 958 // FIXME: For scalable vectors, assume vscale=1. 959 auto NewDIL = 960 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 961 if (NewDIL) 962 B->SetCurrentDebugLocation(NewDIL.getValue()); 963 else 964 LLVM_DEBUG(dbgs() 965 << "Failed to create new discriminator: " 966 << DIL->getFilename() << " Line: " << DIL->getLine()); 967 } else 968 B->SetCurrentDebugLocation(DIL); 969 } else 970 B->SetCurrentDebugLocation(DebugLoc()); 971 } 972 973 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 974 /// is passed, the message relates to that particular instruction. 975 #ifndef NDEBUG 976 static void debugVectorizationMessage(const StringRef Prefix, 977 const StringRef DebugMsg, 978 Instruction *I) { 979 dbgs() << "LV: " << Prefix << DebugMsg; 980 if (I != nullptr) 981 dbgs() << " " << *I; 982 else 983 dbgs() << '.'; 984 dbgs() << '\n'; 985 } 986 #endif 987 988 /// Create an analysis remark that explains why vectorization failed 989 /// 990 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 991 /// RemarkName is the identifier for the remark. If \p I is passed it is an 992 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 993 /// the location of the remark. \return the remark object that can be 994 /// streamed to. 995 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 996 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 997 Value *CodeRegion = TheLoop->getHeader(); 998 DebugLoc DL = TheLoop->getStartLoc(); 999 1000 if (I) { 1001 CodeRegion = I->getParent(); 1002 // If there is no debug location attached to the instruction, revert back to 1003 // using the loop's. 1004 if (I->getDebugLoc()) 1005 DL = I->getDebugLoc(); 1006 } 1007 1008 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1009 } 1010 1011 namespace llvm { 1012 1013 /// Return a value for Step multiplied by VF. 1014 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, 1015 int64_t Step) { 1016 assert(Ty->isIntegerTy() && "Expected an integer step"); 1017 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 1018 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1019 } 1020 1021 /// Return the runtime value for VF. 1022 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) { 1023 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1024 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1025 } 1026 1027 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy, 1028 ElementCount VF) { 1029 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 1030 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 1031 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 1032 return B.CreateUIToFP(RuntimeVF, FTy); 1033 } 1034 1035 void reportVectorizationFailure(const StringRef DebugMsg, 1036 const StringRef OREMsg, const StringRef ORETag, 1037 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1038 Instruction *I) { 1039 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1040 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1041 ORE->emit( 1042 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1043 << "loop not vectorized: " << OREMsg); 1044 } 1045 1046 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1047 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1048 Instruction *I) { 1049 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1050 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1051 ORE->emit( 1052 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1053 << Msg); 1054 } 1055 1056 } // end namespace llvm 1057 1058 #ifndef NDEBUG 1059 /// \return string containing a file name and a line # for the given loop. 1060 static std::string getDebugLocString(const Loop *L) { 1061 std::string Result; 1062 if (L) { 1063 raw_string_ostream OS(Result); 1064 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1065 LoopDbgLoc.print(OS); 1066 else 1067 // Just print the module name. 1068 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1069 OS.flush(); 1070 } 1071 return Result; 1072 } 1073 #endif 1074 1075 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1076 const Instruction *Orig) { 1077 // If the loop was versioned with memchecks, add the corresponding no-alias 1078 // metadata. 1079 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1080 LVer->annotateInstWithNoAlias(To, Orig); 1081 } 1082 1083 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1084 VPTransformState &State) { 1085 1086 // Collect recipes in the backward slice of `Root` that may generate a poison 1087 // value that is used after vectorization. 1088 SmallPtrSet<VPRecipeBase *, 16> Visited; 1089 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1090 SmallVector<VPRecipeBase *, 16> Worklist; 1091 Worklist.push_back(Root); 1092 1093 // Traverse the backward slice of Root through its use-def chain. 1094 while (!Worklist.empty()) { 1095 VPRecipeBase *CurRec = Worklist.back(); 1096 Worklist.pop_back(); 1097 1098 if (!Visited.insert(CurRec).second) 1099 continue; 1100 1101 // Prune search if we find another recipe generating a widen memory 1102 // instruction. Widen memory instructions involved in address computation 1103 // will lead to gather/scatter instructions, which don't need to be 1104 // handled. 1105 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1106 isa<VPInterleaveRecipe>(CurRec) || 1107 isa<VPScalarIVStepsRecipe>(CurRec) || 1108 isa<VPCanonicalIVPHIRecipe>(CurRec)) 1109 continue; 1110 1111 // This recipe contributes to the address computation of a widen 1112 // load/store. Collect recipe if its underlying instruction has 1113 // poison-generating flags. 1114 Instruction *Instr = CurRec->getUnderlyingInstr(); 1115 if (Instr && Instr->hasPoisonGeneratingFlags()) 1116 State.MayGeneratePoisonRecipes.insert(CurRec); 1117 1118 // Add new definitions to the worklist. 1119 for (VPValue *operand : CurRec->operands()) 1120 if (VPDef *OpDef = operand->getDef()) 1121 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1122 } 1123 }); 1124 1125 // Traverse all the recipes in the VPlan and collect the poison-generating 1126 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1127 // VPInterleaveRecipe. 1128 auto Iter = depth_first( 1129 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1130 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1131 for (VPRecipeBase &Recipe : *VPBB) { 1132 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1133 Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr(); 1134 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1135 if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr && 1136 Legal->blockNeedsPredication(UnderlyingInstr->getParent())) 1137 collectPoisonGeneratingInstrsInBackwardSlice( 1138 cast<VPRecipeBase>(AddrDef)); 1139 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1140 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1141 if (AddrDef) { 1142 // Check if any member of the interleave group needs predication. 1143 const InterleaveGroup<Instruction> *InterGroup = 1144 InterleaveRec->getInterleaveGroup(); 1145 bool NeedPredication = false; 1146 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1147 I < NumMembers; ++I) { 1148 Instruction *Member = InterGroup->getMember(I); 1149 if (Member) 1150 NeedPredication |= 1151 Legal->blockNeedsPredication(Member->getParent()); 1152 } 1153 1154 if (NeedPredication) 1155 collectPoisonGeneratingInstrsInBackwardSlice( 1156 cast<VPRecipeBase>(AddrDef)); 1157 } 1158 } 1159 } 1160 } 1161 } 1162 1163 void InnerLoopVectorizer::addMetadata(Instruction *To, 1164 Instruction *From) { 1165 propagateMetadata(To, From); 1166 addNewMetadata(To, From); 1167 } 1168 1169 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1170 Instruction *From) { 1171 for (Value *V : To) { 1172 if (Instruction *I = dyn_cast<Instruction>(V)) 1173 addMetadata(I, From); 1174 } 1175 } 1176 1177 PHINode *InnerLoopVectorizer::getReductionResumeValue( 1178 const RecurrenceDescriptor &RdxDesc) { 1179 auto It = ReductionResumeValues.find(&RdxDesc); 1180 assert(It != ReductionResumeValues.end() && 1181 "Expected to find a resume value for the reduction."); 1182 return It->second; 1183 } 1184 1185 namespace llvm { 1186 1187 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1188 // lowered. 1189 enum ScalarEpilogueLowering { 1190 1191 // The default: allowing scalar epilogues. 1192 CM_ScalarEpilogueAllowed, 1193 1194 // Vectorization with OptForSize: don't allow epilogues. 1195 CM_ScalarEpilogueNotAllowedOptSize, 1196 1197 // A special case of vectorisation with OptForSize: loops with a very small 1198 // trip count are considered for vectorization under OptForSize, thereby 1199 // making sure the cost of their loop body is dominant, free of runtime 1200 // guards and scalar iteration overheads. 1201 CM_ScalarEpilogueNotAllowedLowTripLoop, 1202 1203 // Loop hint predicate indicating an epilogue is undesired. 1204 CM_ScalarEpilogueNotNeededUsePredicate, 1205 1206 // Directive indicating we must either tail fold or not vectorize 1207 CM_ScalarEpilogueNotAllowedUsePredicate 1208 }; 1209 1210 /// ElementCountComparator creates a total ordering for ElementCount 1211 /// for the purposes of using it in a set structure. 1212 struct ElementCountComparator { 1213 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1214 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1215 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1216 } 1217 }; 1218 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1219 1220 /// LoopVectorizationCostModel - estimates the expected speedups due to 1221 /// vectorization. 1222 /// In many cases vectorization is not profitable. This can happen because of 1223 /// a number of reasons. In this class we mainly attempt to predict the 1224 /// expected speedup/slowdowns due to the supported instruction set. We use the 1225 /// TargetTransformInfo to query the different backends for the cost of 1226 /// different operations. 1227 class LoopVectorizationCostModel { 1228 public: 1229 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1230 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1231 LoopVectorizationLegality *Legal, 1232 const TargetTransformInfo &TTI, 1233 const TargetLibraryInfo *TLI, DemandedBits *DB, 1234 AssumptionCache *AC, 1235 OptimizationRemarkEmitter *ORE, const Function *F, 1236 const LoopVectorizeHints *Hints, 1237 InterleavedAccessInfo &IAI) 1238 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1239 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1240 Hints(Hints), InterleaveInfo(IAI) {} 1241 1242 /// \return An upper bound for the vectorization factors (both fixed and 1243 /// scalable). If the factors are 0, vectorization and interleaving should be 1244 /// avoided up front. 1245 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1246 1247 /// \return True if runtime checks are required for vectorization, and false 1248 /// otherwise. 1249 bool runtimeChecksRequired(); 1250 1251 /// \return The most profitable vectorization factor and the cost of that VF. 1252 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1253 /// then this vectorization factor will be selected if vectorization is 1254 /// possible. 1255 VectorizationFactor 1256 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1257 1258 VectorizationFactor 1259 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1260 const LoopVectorizationPlanner &LVP); 1261 1262 /// Setup cost-based decisions for user vectorization factor. 1263 /// \return true if the UserVF is a feasible VF to be chosen. 1264 bool selectUserVectorizationFactor(ElementCount UserVF) { 1265 collectUniformsAndScalars(UserVF); 1266 collectInstsToScalarize(UserVF); 1267 return expectedCost(UserVF).first.isValid(); 1268 } 1269 1270 /// \return The size (in bits) of the smallest and widest types in the code 1271 /// that needs to be vectorized. We ignore values that remain scalar such as 1272 /// 64 bit loop indices. 1273 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1274 1275 /// \return The desired interleave count. 1276 /// If interleave count has been specified by metadata it will be returned. 1277 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1278 /// are the selected vectorization factor and the cost of the selected VF. 1279 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1280 1281 /// Memory access instruction may be vectorized in more than one way. 1282 /// Form of instruction after vectorization depends on cost. 1283 /// This function takes cost-based decisions for Load/Store instructions 1284 /// and collects them in a map. This decisions map is used for building 1285 /// the lists of loop-uniform and loop-scalar instructions. 1286 /// The calculated cost is saved with widening decision in order to 1287 /// avoid redundant calculations. 1288 void setCostBasedWideningDecision(ElementCount VF); 1289 1290 /// A struct that represents some properties of the register usage 1291 /// of a loop. 1292 struct RegisterUsage { 1293 /// Holds the number of loop invariant values that are used in the loop. 1294 /// The key is ClassID of target-provided register class. 1295 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1296 /// Holds the maximum number of concurrent live intervals in the loop. 1297 /// The key is ClassID of target-provided register class. 1298 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1299 }; 1300 1301 /// \return Returns information about the register usages of the loop for the 1302 /// given vectorization factors. 1303 SmallVector<RegisterUsage, 8> 1304 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1305 1306 /// Collect values we want to ignore in the cost model. 1307 void collectValuesToIgnore(); 1308 1309 /// Collect all element types in the loop for which widening is needed. 1310 void collectElementTypesForWidening(); 1311 1312 /// Split reductions into those that happen in the loop, and those that happen 1313 /// outside. In loop reductions are collected into InLoopReductionChains. 1314 void collectInLoopReductions(); 1315 1316 /// Returns true if we should use strict in-order reductions for the given 1317 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1318 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1319 /// of FP operations. 1320 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1321 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1322 } 1323 1324 /// \returns The smallest bitwidth each instruction can be represented with. 1325 /// The vector equivalents of these instructions should be truncated to this 1326 /// type. 1327 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1328 return MinBWs; 1329 } 1330 1331 /// \returns True if it is more profitable to scalarize instruction \p I for 1332 /// vectorization factor \p VF. 1333 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1334 assert(VF.isVector() && 1335 "Profitable to scalarize relevant only for VF > 1."); 1336 1337 // Cost model is not run in the VPlan-native path - return conservative 1338 // result until this changes. 1339 if (EnableVPlanNativePath) 1340 return false; 1341 1342 auto Scalars = InstsToScalarize.find(VF); 1343 assert(Scalars != InstsToScalarize.end() && 1344 "VF not yet analyzed for scalarization profitability"); 1345 return Scalars->second.find(I) != Scalars->second.end(); 1346 } 1347 1348 /// Returns true if \p I is known to be uniform after vectorization. 1349 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1350 if (VF.isScalar()) 1351 return true; 1352 1353 // Cost model is not run in the VPlan-native path - return conservative 1354 // result until this changes. 1355 if (EnableVPlanNativePath) 1356 return false; 1357 1358 auto UniformsPerVF = Uniforms.find(VF); 1359 assert(UniformsPerVF != Uniforms.end() && 1360 "VF not yet analyzed for uniformity"); 1361 return UniformsPerVF->second.count(I); 1362 } 1363 1364 /// Returns true if \p I is known to be scalar after vectorization. 1365 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1366 if (VF.isScalar()) 1367 return true; 1368 1369 // Cost model is not run in the VPlan-native path - return conservative 1370 // result until this changes. 1371 if (EnableVPlanNativePath) 1372 return false; 1373 1374 auto ScalarsPerVF = Scalars.find(VF); 1375 assert(ScalarsPerVF != Scalars.end() && 1376 "Scalar values are not calculated for VF"); 1377 return ScalarsPerVF->second.count(I); 1378 } 1379 1380 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1381 /// for vectorization factor \p VF. 1382 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1383 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1384 !isProfitableToScalarize(I, VF) && 1385 !isScalarAfterVectorization(I, VF); 1386 } 1387 1388 /// Decision that was taken during cost calculation for memory instruction. 1389 enum InstWidening { 1390 CM_Unknown, 1391 CM_Widen, // For consecutive accesses with stride +1. 1392 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1393 CM_Interleave, 1394 CM_GatherScatter, 1395 CM_Scalarize 1396 }; 1397 1398 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1399 /// instruction \p I and vector width \p VF. 1400 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1401 InstructionCost Cost) { 1402 assert(VF.isVector() && "Expected VF >=2"); 1403 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1404 } 1405 1406 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1407 /// interleaving group \p Grp and vector width \p VF. 1408 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1409 ElementCount VF, InstWidening W, 1410 InstructionCost Cost) { 1411 assert(VF.isVector() && "Expected VF >=2"); 1412 /// Broadcast this decicion to all instructions inside the group. 1413 /// But the cost will be assigned to one instruction only. 1414 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1415 if (auto *I = Grp->getMember(i)) { 1416 if (Grp->getInsertPos() == I) 1417 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1418 else 1419 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1420 } 1421 } 1422 } 1423 1424 /// Return the cost model decision for the given instruction \p I and vector 1425 /// width \p VF. Return CM_Unknown if this instruction did not pass 1426 /// through the cost modeling. 1427 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1428 assert(VF.isVector() && "Expected VF to be a vector VF"); 1429 // Cost model is not run in the VPlan-native path - return conservative 1430 // result until this changes. 1431 if (EnableVPlanNativePath) 1432 return CM_GatherScatter; 1433 1434 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1435 auto Itr = WideningDecisions.find(InstOnVF); 1436 if (Itr == WideningDecisions.end()) 1437 return CM_Unknown; 1438 return Itr->second.first; 1439 } 1440 1441 /// Return the vectorization cost for the given instruction \p I and vector 1442 /// width \p VF. 1443 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1444 assert(VF.isVector() && "Expected VF >=2"); 1445 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1446 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1447 "The cost is not calculated"); 1448 return WideningDecisions[InstOnVF].second; 1449 } 1450 1451 /// Return True if instruction \p I is an optimizable truncate whose operand 1452 /// is an induction variable. Such a truncate will be removed by adding a new 1453 /// induction variable with the destination type. 1454 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1455 // If the instruction is not a truncate, return false. 1456 auto *Trunc = dyn_cast<TruncInst>(I); 1457 if (!Trunc) 1458 return false; 1459 1460 // Get the source and destination types of the truncate. 1461 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1462 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1463 1464 // If the truncate is free for the given types, return false. Replacing a 1465 // free truncate with an induction variable would add an induction variable 1466 // update instruction to each iteration of the loop. We exclude from this 1467 // check the primary induction variable since it will need an update 1468 // instruction regardless. 1469 Value *Op = Trunc->getOperand(0); 1470 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1471 return false; 1472 1473 // If the truncated value is not an induction variable, return false. 1474 return Legal->isInductionPhi(Op); 1475 } 1476 1477 /// Collects the instructions to scalarize for each predicated instruction in 1478 /// the loop. 1479 void collectInstsToScalarize(ElementCount VF); 1480 1481 /// Collect Uniform and Scalar values for the given \p VF. 1482 /// The sets depend on CM decision for Load/Store instructions 1483 /// that may be vectorized as interleave, gather-scatter or scalarized. 1484 void collectUniformsAndScalars(ElementCount VF) { 1485 // Do the analysis once. 1486 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1487 return; 1488 setCostBasedWideningDecision(VF); 1489 collectLoopUniforms(VF); 1490 collectLoopScalars(VF); 1491 } 1492 1493 /// Returns true if the target machine supports masked store operation 1494 /// for the given \p DataType and kind of access to \p Ptr. 1495 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1496 return Legal->isConsecutivePtr(DataType, Ptr) && 1497 TTI.isLegalMaskedStore(DataType, Alignment); 1498 } 1499 1500 /// Returns true if the target machine supports masked load operation 1501 /// for the given \p DataType and kind of access to \p Ptr. 1502 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1503 return Legal->isConsecutivePtr(DataType, Ptr) && 1504 TTI.isLegalMaskedLoad(DataType, Alignment); 1505 } 1506 1507 /// Returns true if the target machine can represent \p V as a masked gather 1508 /// or scatter operation. 1509 bool isLegalGatherOrScatter(Value *V, 1510 ElementCount VF = ElementCount::getFixed(1)) { 1511 bool LI = isa<LoadInst>(V); 1512 bool SI = isa<StoreInst>(V); 1513 if (!LI && !SI) 1514 return false; 1515 auto *Ty = getLoadStoreType(V); 1516 Align Align = getLoadStoreAlignment(V); 1517 if (VF.isVector()) 1518 Ty = VectorType::get(Ty, VF); 1519 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1520 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1521 } 1522 1523 /// Returns true if the target machine supports all of the reduction 1524 /// variables found for the given VF. 1525 bool canVectorizeReductions(ElementCount VF) const { 1526 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1527 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1528 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1529 })); 1530 } 1531 1532 /// Returns true if \p I is an instruction that will be scalarized with 1533 /// predication when vectorizing \p I with vectorization factor \p VF. Such 1534 /// instructions include conditional stores and instructions that may divide 1535 /// by zero. 1536 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1537 1538 // Returns true if \p I is an instruction that will be predicated either 1539 // through scalar predication or masked load/store or masked gather/scatter. 1540 // \p VF is the vectorization factor that will be used to vectorize \p I. 1541 // Superset of instructions that return true for isScalarWithPredication. 1542 bool isPredicatedInst(Instruction *I, ElementCount VF, 1543 bool IsKnownUniform = false) { 1544 // When we know the load is uniform and the original scalar loop was not 1545 // predicated we don't need to mark it as a predicated instruction. Any 1546 // vectorised blocks created when tail-folding are something artificial we 1547 // have introduced and we know there is always at least one active lane. 1548 // That's why we call Legal->blockNeedsPredication here because it doesn't 1549 // query tail-folding. 1550 if (IsKnownUniform && isa<LoadInst>(I) && 1551 !Legal->blockNeedsPredication(I->getParent())) 1552 return false; 1553 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1554 return false; 1555 // Loads and stores that need some form of masked operation are predicated 1556 // instructions. 1557 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1558 return Legal->isMaskRequired(I); 1559 return isScalarWithPredication(I, VF); 1560 } 1561 1562 /// Returns true if \p I is a memory instruction with consecutive memory 1563 /// access that can be widened. 1564 bool 1565 memoryInstructionCanBeWidened(Instruction *I, 1566 ElementCount VF = ElementCount::getFixed(1)); 1567 1568 /// Returns true if \p I is a memory instruction in an interleaved-group 1569 /// of memory accesses that can be vectorized with wide vector loads/stores 1570 /// and shuffles. 1571 bool 1572 interleavedAccessCanBeWidened(Instruction *I, 1573 ElementCount VF = ElementCount::getFixed(1)); 1574 1575 /// Check if \p Instr belongs to any interleaved access group. 1576 bool isAccessInterleaved(Instruction *Instr) { 1577 return InterleaveInfo.isInterleaved(Instr); 1578 } 1579 1580 /// Get the interleaved access group that \p Instr belongs to. 1581 const InterleaveGroup<Instruction> * 1582 getInterleavedAccessGroup(Instruction *Instr) { 1583 return InterleaveInfo.getInterleaveGroup(Instr); 1584 } 1585 1586 /// Returns true if we're required to use a scalar epilogue for at least 1587 /// the final iteration of the original loop. 1588 bool requiresScalarEpilogue(ElementCount VF) const { 1589 if (!isScalarEpilogueAllowed()) 1590 return false; 1591 // If we might exit from anywhere but the latch, must run the exiting 1592 // iteration in scalar form. 1593 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1594 return true; 1595 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1596 } 1597 1598 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1599 /// loop hint annotation. 1600 bool isScalarEpilogueAllowed() const { 1601 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1602 } 1603 1604 /// Returns true if all loop blocks should be masked to fold tail loop. 1605 bool foldTailByMasking() const { return FoldTailByMasking; } 1606 1607 /// Returns true if the instructions in this block requires predication 1608 /// for any reason, e.g. because tail folding now requires a predicate 1609 /// or because the block in the original loop was predicated. 1610 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1611 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1612 } 1613 1614 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1615 /// nodes to the chain of instructions representing the reductions. Uses a 1616 /// MapVector to ensure deterministic iteration order. 1617 using ReductionChainMap = 1618 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1619 1620 /// Return the chain of instructions representing an inloop reduction. 1621 const ReductionChainMap &getInLoopReductionChains() const { 1622 return InLoopReductionChains; 1623 } 1624 1625 /// Returns true if the Phi is part of an inloop reduction. 1626 bool isInLoopReduction(PHINode *Phi) const { 1627 return InLoopReductionChains.count(Phi); 1628 } 1629 1630 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1631 /// with factor VF. Return the cost of the instruction, including 1632 /// scalarization overhead if it's needed. 1633 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1634 1635 /// Estimate cost of a call instruction CI if it were vectorized with factor 1636 /// VF. Return the cost of the instruction, including scalarization overhead 1637 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1638 /// scalarized - 1639 /// i.e. either vector version isn't available, or is too expensive. 1640 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1641 bool &NeedToScalarize) const; 1642 1643 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1644 /// that of B. 1645 bool isMoreProfitable(const VectorizationFactor &A, 1646 const VectorizationFactor &B) const; 1647 1648 /// Invalidates decisions already taken by the cost model. 1649 void invalidateCostModelingDecisions() { 1650 WideningDecisions.clear(); 1651 Uniforms.clear(); 1652 Scalars.clear(); 1653 } 1654 1655 private: 1656 unsigned NumPredStores = 0; 1657 1658 /// Convenience function that returns the value of vscale_range iff 1659 /// vscale_range.min == vscale_range.max or otherwise returns the value 1660 /// returned by the corresponding TLI method. 1661 Optional<unsigned> getVScaleForTuning() const; 1662 1663 /// \return An upper bound for the vectorization factors for both 1664 /// fixed and scalable vectorization, where the minimum-known number of 1665 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1666 /// disabled or unsupported, then the scalable part will be equal to 1667 /// ElementCount::getScalable(0). 1668 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1669 ElementCount UserVF, 1670 bool FoldTailByMasking); 1671 1672 /// \return the maximized element count based on the targets vector 1673 /// registers and the loop trip-count, but limited to a maximum safe VF. 1674 /// This is a helper function of computeFeasibleMaxVF. 1675 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1676 /// issue that occurred on one of the buildbots which cannot be reproduced 1677 /// without having access to the properietary compiler (see comments on 1678 /// D98509). The issue is currently under investigation and this workaround 1679 /// will be removed as soon as possible. 1680 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1681 unsigned SmallestType, 1682 unsigned WidestType, 1683 const ElementCount &MaxSafeVF, 1684 bool FoldTailByMasking); 1685 1686 /// \return the maximum legal scalable VF, based on the safe max number 1687 /// of elements. 1688 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1689 1690 /// The vectorization cost is a combination of the cost itself and a boolean 1691 /// indicating whether any of the contributing operations will actually 1692 /// operate on vector values after type legalization in the backend. If this 1693 /// latter value is false, then all operations will be scalarized (i.e. no 1694 /// vectorization has actually taken place). 1695 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1696 1697 /// Returns the expected execution cost. The unit of the cost does 1698 /// not matter because we use the 'cost' units to compare different 1699 /// vector widths. The cost that is returned is *not* normalized by 1700 /// the factor width. If \p Invalid is not nullptr, this function 1701 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1702 /// each instruction that has an Invalid cost for the given VF. 1703 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1704 VectorizationCostTy 1705 expectedCost(ElementCount VF, 1706 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1707 1708 /// Returns the execution time cost of an instruction for a given vector 1709 /// width. Vector width of one means scalar. 1710 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1711 1712 /// The cost-computation logic from getInstructionCost which provides 1713 /// the vector type as an output parameter. 1714 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1715 Type *&VectorTy); 1716 1717 /// Return the cost of instructions in an inloop reduction pattern, if I is 1718 /// part of that pattern. 1719 Optional<InstructionCost> 1720 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1721 TTI::TargetCostKind CostKind); 1722 1723 /// Calculate vectorization cost of memory instruction \p I. 1724 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1725 1726 /// The cost computation for scalarized memory instruction. 1727 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1728 1729 /// The cost computation for interleaving group of memory instructions. 1730 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1731 1732 /// The cost computation for Gather/Scatter instruction. 1733 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1734 1735 /// The cost computation for widening instruction \p I with consecutive 1736 /// memory access. 1737 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1738 1739 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1740 /// Load: scalar load + broadcast. 1741 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1742 /// element) 1743 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1744 1745 /// Estimate the overhead of scalarizing an instruction. This is a 1746 /// convenience wrapper for the type-based getScalarizationOverhead API. 1747 InstructionCost getScalarizationOverhead(Instruction *I, 1748 ElementCount VF) const; 1749 1750 /// Returns whether the instruction is a load or store and will be a emitted 1751 /// as a vector operation. 1752 bool isConsecutiveLoadOrStore(Instruction *I); 1753 1754 /// Returns true if an artificially high cost for emulated masked memrefs 1755 /// should be used. 1756 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); 1757 1758 /// Map of scalar integer values to the smallest bitwidth they can be legally 1759 /// represented as. The vector equivalents of these values should be truncated 1760 /// to this type. 1761 MapVector<Instruction *, uint64_t> MinBWs; 1762 1763 /// A type representing the costs for instructions if they were to be 1764 /// scalarized rather than vectorized. The entries are Instruction-Cost 1765 /// pairs. 1766 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1767 1768 /// A set containing all BasicBlocks that are known to present after 1769 /// vectorization as a predicated block. 1770 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1771 1772 /// Records whether it is allowed to have the original scalar loop execute at 1773 /// least once. This may be needed as a fallback loop in case runtime 1774 /// aliasing/dependence checks fail, or to handle the tail/remainder 1775 /// iterations when the trip count is unknown or doesn't divide by the VF, 1776 /// or as a peel-loop to handle gaps in interleave-groups. 1777 /// Under optsize and when the trip count is very small we don't allow any 1778 /// iterations to execute in the scalar loop. 1779 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1780 1781 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1782 bool FoldTailByMasking = false; 1783 1784 /// A map holding scalar costs for different vectorization factors. The 1785 /// presence of a cost for an instruction in the mapping indicates that the 1786 /// instruction will be scalarized when vectorizing with the associated 1787 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1788 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1789 1790 /// Holds the instructions known to be uniform after vectorization. 1791 /// The data is collected per VF. 1792 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1793 1794 /// Holds the instructions known to be scalar after vectorization. 1795 /// The data is collected per VF. 1796 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1797 1798 /// Holds the instructions (address computations) that are forced to be 1799 /// scalarized. 1800 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1801 1802 /// PHINodes of the reductions that should be expanded in-loop along with 1803 /// their associated chains of reduction operations, in program order from top 1804 /// (PHI) to bottom 1805 ReductionChainMap InLoopReductionChains; 1806 1807 /// A Map of inloop reduction operations and their immediate chain operand. 1808 /// FIXME: This can be removed once reductions can be costed correctly in 1809 /// vplan. This was added to allow quick lookup to the inloop operations, 1810 /// without having to loop through InLoopReductionChains. 1811 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1812 1813 /// Returns the expected difference in cost from scalarizing the expression 1814 /// feeding a predicated instruction \p PredInst. The instructions to 1815 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1816 /// non-negative return value implies the expression will be scalarized. 1817 /// Currently, only single-use chains are considered for scalarization. 1818 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1819 ElementCount VF); 1820 1821 /// Collect the instructions that are uniform after vectorization. An 1822 /// instruction is uniform if we represent it with a single scalar value in 1823 /// the vectorized loop corresponding to each vector iteration. Examples of 1824 /// uniform instructions include pointer operands of consecutive or 1825 /// interleaved memory accesses. Note that although uniformity implies an 1826 /// instruction will be scalar, the reverse is not true. In general, a 1827 /// scalarized instruction will be represented by VF scalar values in the 1828 /// vectorized loop, each corresponding to an iteration of the original 1829 /// scalar loop. 1830 void collectLoopUniforms(ElementCount VF); 1831 1832 /// Collect the instructions that are scalar after vectorization. An 1833 /// instruction is scalar if it is known to be uniform or will be scalarized 1834 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1835 /// to the list if they are used by a load/store instruction that is marked as 1836 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1837 /// VF values in the vectorized loop, each corresponding to an iteration of 1838 /// the original scalar loop. 1839 void collectLoopScalars(ElementCount VF); 1840 1841 /// Keeps cost model vectorization decision and cost for instructions. 1842 /// Right now it is used for memory instructions only. 1843 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1844 std::pair<InstWidening, InstructionCost>>; 1845 1846 DecisionList WideningDecisions; 1847 1848 /// Returns true if \p V is expected to be vectorized and it needs to be 1849 /// extracted. 1850 bool needsExtract(Value *V, ElementCount VF) const { 1851 Instruction *I = dyn_cast<Instruction>(V); 1852 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1853 TheLoop->isLoopInvariant(I)) 1854 return false; 1855 1856 // Assume we can vectorize V (and hence we need extraction) if the 1857 // scalars are not computed yet. This can happen, because it is called 1858 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1859 // the scalars are collected. That should be a safe assumption in most 1860 // cases, because we check if the operands have vectorizable types 1861 // beforehand in LoopVectorizationLegality. 1862 return Scalars.find(VF) == Scalars.end() || 1863 !isScalarAfterVectorization(I, VF); 1864 }; 1865 1866 /// Returns a range containing only operands needing to be extracted. 1867 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1868 ElementCount VF) const { 1869 return SmallVector<Value *, 4>(make_filter_range( 1870 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1871 } 1872 1873 /// Determines if we have the infrastructure to vectorize loop \p L and its 1874 /// epilogue, assuming the main loop is vectorized by \p VF. 1875 bool isCandidateForEpilogueVectorization(const Loop &L, 1876 const ElementCount VF) const; 1877 1878 /// Returns true if epilogue vectorization is considered profitable, and 1879 /// false otherwise. 1880 /// \p VF is the vectorization factor chosen for the original loop. 1881 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1882 1883 public: 1884 /// The loop that we evaluate. 1885 Loop *TheLoop; 1886 1887 /// Predicated scalar evolution analysis. 1888 PredicatedScalarEvolution &PSE; 1889 1890 /// Loop Info analysis. 1891 LoopInfo *LI; 1892 1893 /// Vectorization legality. 1894 LoopVectorizationLegality *Legal; 1895 1896 /// Vector target information. 1897 const TargetTransformInfo &TTI; 1898 1899 /// Target Library Info. 1900 const TargetLibraryInfo *TLI; 1901 1902 /// Demanded bits analysis. 1903 DemandedBits *DB; 1904 1905 /// Assumption cache. 1906 AssumptionCache *AC; 1907 1908 /// Interface to emit optimization remarks. 1909 OptimizationRemarkEmitter *ORE; 1910 1911 const Function *TheFunction; 1912 1913 /// Loop Vectorize Hint. 1914 const LoopVectorizeHints *Hints; 1915 1916 /// The interleave access information contains groups of interleaved accesses 1917 /// with the same stride and close to each other. 1918 InterleavedAccessInfo &InterleaveInfo; 1919 1920 /// Values to ignore in the cost model. 1921 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1922 1923 /// Values to ignore in the cost model when VF > 1. 1924 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1925 1926 /// All element types found in the loop. 1927 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1928 1929 /// Profitable vector factors. 1930 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1931 }; 1932 } // end namespace llvm 1933 1934 /// Helper struct to manage generating runtime checks for vectorization. 1935 /// 1936 /// The runtime checks are created up-front in temporary blocks to allow better 1937 /// estimating the cost and un-linked from the existing IR. After deciding to 1938 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1939 /// temporary blocks are completely removed. 1940 class GeneratedRTChecks { 1941 /// Basic block which contains the generated SCEV checks, if any. 1942 BasicBlock *SCEVCheckBlock = nullptr; 1943 1944 /// The value representing the result of the generated SCEV checks. If it is 1945 /// nullptr, either no SCEV checks have been generated or they have been used. 1946 Value *SCEVCheckCond = nullptr; 1947 1948 /// Basic block which contains the generated memory runtime checks, if any. 1949 BasicBlock *MemCheckBlock = nullptr; 1950 1951 /// The value representing the result of the generated memory runtime checks. 1952 /// If it is nullptr, either no memory runtime checks have been generated or 1953 /// they have been used. 1954 Value *MemRuntimeCheckCond = nullptr; 1955 1956 DominatorTree *DT; 1957 LoopInfo *LI; 1958 1959 SCEVExpander SCEVExp; 1960 SCEVExpander MemCheckExp; 1961 1962 public: 1963 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1964 const DataLayout &DL) 1965 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1966 MemCheckExp(SE, DL, "scev.check") {} 1967 1968 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1969 /// accurately estimate the cost of the runtime checks. The blocks are 1970 /// un-linked from the IR and is added back during vector code generation. If 1971 /// there is no vector code generation, the check blocks are removed 1972 /// completely. 1973 void Create(Loop *L, const LoopAccessInfo &LAI, 1974 const SCEVPredicate &Pred) { 1975 1976 BasicBlock *LoopHeader = L->getHeader(); 1977 BasicBlock *Preheader = L->getLoopPreheader(); 1978 1979 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1980 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1981 // may be used by SCEVExpander. The blocks will be un-linked from their 1982 // predecessors and removed from LI & DT at the end of the function. 1983 if (!Pred.isAlwaysTrue()) { 1984 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1985 nullptr, "vector.scevcheck"); 1986 1987 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1988 &Pred, SCEVCheckBlock->getTerminator()); 1989 } 1990 1991 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1992 if (RtPtrChecking.Need) { 1993 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1994 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1995 "vector.memcheck"); 1996 1997 MemRuntimeCheckCond = 1998 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1999 RtPtrChecking.getChecks(), MemCheckExp); 2000 assert(MemRuntimeCheckCond && 2001 "no RT checks generated although RtPtrChecking " 2002 "claimed checks are required"); 2003 } 2004 2005 if (!MemCheckBlock && !SCEVCheckBlock) 2006 return; 2007 2008 // Unhook the temporary block with the checks, update various places 2009 // accordingly. 2010 if (SCEVCheckBlock) 2011 SCEVCheckBlock->replaceAllUsesWith(Preheader); 2012 if (MemCheckBlock) 2013 MemCheckBlock->replaceAllUsesWith(Preheader); 2014 2015 if (SCEVCheckBlock) { 2016 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2017 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 2018 Preheader->getTerminator()->eraseFromParent(); 2019 } 2020 if (MemCheckBlock) { 2021 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2022 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 2023 Preheader->getTerminator()->eraseFromParent(); 2024 } 2025 2026 DT->changeImmediateDominator(LoopHeader, Preheader); 2027 if (MemCheckBlock) { 2028 DT->eraseNode(MemCheckBlock); 2029 LI->removeBlock(MemCheckBlock); 2030 } 2031 if (SCEVCheckBlock) { 2032 DT->eraseNode(SCEVCheckBlock); 2033 LI->removeBlock(SCEVCheckBlock); 2034 } 2035 } 2036 2037 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2038 /// unused. 2039 ~GeneratedRTChecks() { 2040 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2041 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2042 if (!SCEVCheckCond) 2043 SCEVCleaner.markResultUsed(); 2044 2045 if (!MemRuntimeCheckCond) 2046 MemCheckCleaner.markResultUsed(); 2047 2048 if (MemRuntimeCheckCond) { 2049 auto &SE = *MemCheckExp.getSE(); 2050 // Memory runtime check generation creates compares that use expanded 2051 // values. Remove them before running the SCEVExpanderCleaners. 2052 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2053 if (MemCheckExp.isInsertedInstruction(&I)) 2054 continue; 2055 SE.forgetValue(&I); 2056 I.eraseFromParent(); 2057 } 2058 } 2059 MemCheckCleaner.cleanup(); 2060 SCEVCleaner.cleanup(); 2061 2062 if (SCEVCheckCond) 2063 SCEVCheckBlock->eraseFromParent(); 2064 if (MemRuntimeCheckCond) 2065 MemCheckBlock->eraseFromParent(); 2066 } 2067 2068 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2069 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2070 /// depending on the generated condition. 2071 BasicBlock *emitSCEVChecks(BasicBlock *Bypass, 2072 BasicBlock *LoopVectorPreHeader, 2073 BasicBlock *LoopExitBlock) { 2074 if (!SCEVCheckCond) 2075 return nullptr; 2076 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2077 if (C->isZero()) 2078 return nullptr; 2079 2080 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2081 2082 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2083 // Create new preheader for vector loop. 2084 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2085 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2086 2087 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2088 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2089 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2090 SCEVCheckBlock); 2091 2092 DT->addNewBlock(SCEVCheckBlock, Pred); 2093 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2094 2095 ReplaceInstWithInst( 2096 SCEVCheckBlock->getTerminator(), 2097 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2098 // Mark the check as used, to prevent it from being removed during cleanup. 2099 SCEVCheckCond = nullptr; 2100 return SCEVCheckBlock; 2101 } 2102 2103 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2104 /// the branches to branch to the vector preheader or \p Bypass, depending on 2105 /// the generated condition. 2106 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass, 2107 BasicBlock *LoopVectorPreHeader) { 2108 // Check if we generated code that checks in runtime if arrays overlap. 2109 if (!MemRuntimeCheckCond) 2110 return nullptr; 2111 2112 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2113 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2114 MemCheckBlock); 2115 2116 DT->addNewBlock(MemCheckBlock, Pred); 2117 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2118 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2119 2120 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2121 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2122 2123 ReplaceInstWithInst( 2124 MemCheckBlock->getTerminator(), 2125 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2126 MemCheckBlock->getTerminator()->setDebugLoc( 2127 Pred->getTerminator()->getDebugLoc()); 2128 2129 // Mark the check as used, to prevent it from being removed during cleanup. 2130 MemRuntimeCheckCond = nullptr; 2131 return MemCheckBlock; 2132 } 2133 }; 2134 2135 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2136 // vectorization. The loop needs to be annotated with #pragma omp simd 2137 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2138 // vector length information is not provided, vectorization is not considered 2139 // explicit. Interleave hints are not allowed either. These limitations will be 2140 // relaxed in the future. 2141 // Please, note that we are currently forced to abuse the pragma 'clang 2142 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2143 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2144 // provides *explicit vectorization hints* (LV can bypass legal checks and 2145 // assume that vectorization is legal). However, both hints are implemented 2146 // using the same metadata (llvm.loop.vectorize, processed by 2147 // LoopVectorizeHints). This will be fixed in the future when the native IR 2148 // representation for pragma 'omp simd' is introduced. 2149 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2150 OptimizationRemarkEmitter *ORE) { 2151 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2152 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2153 2154 // Only outer loops with an explicit vectorization hint are supported. 2155 // Unannotated outer loops are ignored. 2156 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2157 return false; 2158 2159 Function *Fn = OuterLp->getHeader()->getParent(); 2160 if (!Hints.allowVectorization(Fn, OuterLp, 2161 true /*VectorizeOnlyWhenForced*/)) { 2162 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2163 return false; 2164 } 2165 2166 if (Hints.getInterleave() > 1) { 2167 // TODO: Interleave support is future work. 2168 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2169 "outer loops.\n"); 2170 Hints.emitRemarkWithHints(); 2171 return false; 2172 } 2173 2174 return true; 2175 } 2176 2177 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2178 OptimizationRemarkEmitter *ORE, 2179 SmallVectorImpl<Loop *> &V) { 2180 // Collect inner loops and outer loops without irreducible control flow. For 2181 // now, only collect outer loops that have explicit vectorization hints. If we 2182 // are stress testing the VPlan H-CFG construction, we collect the outermost 2183 // loop of every loop nest. 2184 if (L.isInnermost() || VPlanBuildStressTest || 2185 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2186 LoopBlocksRPO RPOT(&L); 2187 RPOT.perform(LI); 2188 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2189 V.push_back(&L); 2190 // TODO: Collect inner loops inside marked outer loops in case 2191 // vectorization fails for the outer loop. Do not invoke 2192 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2193 // already known to be reducible. We can use an inherited attribute for 2194 // that. 2195 return; 2196 } 2197 } 2198 for (Loop *InnerL : L) 2199 collectSupportedLoops(*InnerL, LI, ORE, V); 2200 } 2201 2202 namespace { 2203 2204 /// The LoopVectorize Pass. 2205 struct LoopVectorize : public FunctionPass { 2206 /// Pass identification, replacement for typeid 2207 static char ID; 2208 2209 LoopVectorizePass Impl; 2210 2211 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2212 bool VectorizeOnlyWhenForced = false) 2213 : FunctionPass(ID), 2214 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2215 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2216 } 2217 2218 bool runOnFunction(Function &F) override { 2219 if (skipFunction(F)) 2220 return false; 2221 2222 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2223 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2224 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2225 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2226 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2227 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2228 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2229 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2230 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2231 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2232 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2233 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2234 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2235 2236 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2237 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2238 2239 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2240 GetLAA, *ORE, PSI).MadeAnyChange; 2241 } 2242 2243 void getAnalysisUsage(AnalysisUsage &AU) const override { 2244 AU.addRequired<AssumptionCacheTracker>(); 2245 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2246 AU.addRequired<DominatorTreeWrapperPass>(); 2247 AU.addRequired<LoopInfoWrapperPass>(); 2248 AU.addRequired<ScalarEvolutionWrapperPass>(); 2249 AU.addRequired<TargetTransformInfoWrapperPass>(); 2250 AU.addRequired<AAResultsWrapperPass>(); 2251 AU.addRequired<LoopAccessLegacyAnalysis>(); 2252 AU.addRequired<DemandedBitsWrapperPass>(); 2253 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2254 AU.addRequired<InjectTLIMappingsLegacy>(); 2255 2256 // We currently do not preserve loopinfo/dominator analyses with outer loop 2257 // vectorization. Until this is addressed, mark these analyses as preserved 2258 // only for non-VPlan-native path. 2259 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2260 if (!EnableVPlanNativePath) { 2261 AU.addPreserved<LoopInfoWrapperPass>(); 2262 AU.addPreserved<DominatorTreeWrapperPass>(); 2263 } 2264 2265 AU.addPreserved<BasicAAWrapperPass>(); 2266 AU.addPreserved<GlobalsAAWrapperPass>(); 2267 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2268 } 2269 }; 2270 2271 } // end anonymous namespace 2272 2273 //===----------------------------------------------------------------------===// 2274 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2275 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2276 //===----------------------------------------------------------------------===// 2277 2278 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2279 // We need to place the broadcast of invariant variables outside the loop, 2280 // but only if it's proven safe to do so. Else, broadcast will be inside 2281 // vector loop body. 2282 Instruction *Instr = dyn_cast<Instruction>(V); 2283 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2284 (!Instr || 2285 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2286 // Place the code for broadcasting invariant variables in the new preheader. 2287 IRBuilder<>::InsertPointGuard Guard(Builder); 2288 if (SafeToHoist) 2289 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2290 2291 // Broadcast the scalar into all locations in the vector. 2292 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2293 2294 return Shuf; 2295 } 2296 2297 /// This function adds 2298 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2299 /// to each vector element of Val. The sequence starts at StartIndex. 2300 /// \p Opcode is relevant for FP induction variable. 2301 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2302 Instruction::BinaryOps BinOp, ElementCount VF, 2303 IRBuilderBase &Builder) { 2304 assert(VF.isVector() && "only vector VFs are supported"); 2305 2306 // Create and check the types. 2307 auto *ValVTy = cast<VectorType>(Val->getType()); 2308 ElementCount VLen = ValVTy->getElementCount(); 2309 2310 Type *STy = Val->getType()->getScalarType(); 2311 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2312 "Induction Step must be an integer or FP"); 2313 assert(Step->getType() == STy && "Step has wrong type"); 2314 2315 SmallVector<Constant *, 8> Indices; 2316 2317 // Create a vector of consecutive numbers from zero to VF. 2318 VectorType *InitVecValVTy = ValVTy; 2319 if (STy->isFloatingPointTy()) { 2320 Type *InitVecValSTy = 2321 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2322 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2323 } 2324 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2325 2326 // Splat the StartIdx 2327 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2328 2329 if (STy->isIntegerTy()) { 2330 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2331 Step = Builder.CreateVectorSplat(VLen, Step); 2332 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2333 // FIXME: The newly created binary instructions should contain nsw/nuw 2334 // flags, which can be found from the original scalar operations. 2335 Step = Builder.CreateMul(InitVec, Step); 2336 return Builder.CreateAdd(Val, Step, "induction"); 2337 } 2338 2339 // Floating point induction. 2340 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2341 "Binary Opcode should be specified for FP induction"); 2342 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2343 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2344 2345 Step = Builder.CreateVectorSplat(VLen, Step); 2346 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2347 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2348 } 2349 2350 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 2351 /// variable on which to base the steps, \p Step is the size of the step. 2352 static void buildScalarSteps(Value *ScalarIV, Value *Step, 2353 const InductionDescriptor &ID, VPValue *Def, 2354 VPTransformState &State) { 2355 IRBuilderBase &Builder = State.Builder; 2356 // We shouldn't have to build scalar steps if we aren't vectorizing. 2357 assert(State.VF.isVector() && "VF should be greater than one"); 2358 // Get the value type and ensure it and the step have the same integer type. 2359 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2360 assert(ScalarIVTy == Step->getType() && 2361 "Val and Step should have the same type"); 2362 2363 // We build scalar steps for both integer and floating-point induction 2364 // variables. Here, we determine the kind of arithmetic we will perform. 2365 Instruction::BinaryOps AddOp; 2366 Instruction::BinaryOps MulOp; 2367 if (ScalarIVTy->isIntegerTy()) { 2368 AddOp = Instruction::Add; 2369 MulOp = Instruction::Mul; 2370 } else { 2371 AddOp = ID.getInductionOpcode(); 2372 MulOp = Instruction::FMul; 2373 } 2374 2375 // Determine the number of scalars we need to generate for each unroll 2376 // iteration. 2377 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def); 2378 unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue(); 2379 // Compute the scalar steps and save the results in State. 2380 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2381 ScalarIVTy->getScalarSizeInBits()); 2382 Type *VecIVTy = nullptr; 2383 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2384 if (!FirstLaneOnly && State.VF.isScalable()) { 2385 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2386 UnitStepVec = 2387 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2388 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2389 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2390 } 2391 2392 for (unsigned Part = 0; Part < State.UF; ++Part) { 2393 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2394 2395 if (!FirstLaneOnly && State.VF.isScalable()) { 2396 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2397 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2398 if (ScalarIVTy->isFloatingPointTy()) 2399 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2400 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2401 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2402 State.set(Def, Add, Part); 2403 // It's useful to record the lane values too for the known minimum number 2404 // of elements so we do those below. This improves the code quality when 2405 // trying to extract the first element, for example. 2406 } 2407 2408 if (ScalarIVTy->isFloatingPointTy()) 2409 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2410 2411 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2412 Value *StartIdx = Builder.CreateBinOp( 2413 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2414 // The step returned by `createStepForVF` is a runtime-evaluated value 2415 // when VF is scalable. Otherwise, it should be folded into a Constant. 2416 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2417 "Expected StartIdx to be folded to a constant when VF is not " 2418 "scalable"); 2419 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2420 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2421 State.set(Def, Add, VPIteration(Part, Lane)); 2422 } 2423 } 2424 } 2425 2426 // Generate code for the induction step. Note that induction steps are 2427 // required to be loop-invariant 2428 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE, 2429 Instruction *InsertBefore, 2430 Loop *OrigLoop = nullptr) { 2431 const DataLayout &DL = SE.getDataLayout(); 2432 assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) && 2433 "Induction step should be loop invariant"); 2434 if (auto *E = dyn_cast<SCEVUnknown>(Step)) 2435 return E->getValue(); 2436 2437 SCEVExpander Exp(SE, DL, "induction"); 2438 return Exp.expandCodeFor(Step, Step->getType(), InsertBefore); 2439 } 2440 2441 /// Compute the transformed value of Index at offset StartValue using step 2442 /// StepValue. 2443 /// For integer induction, returns StartValue + Index * StepValue. 2444 /// For pointer induction, returns StartValue[Index * StepValue]. 2445 /// FIXME: The newly created binary instructions should contain nsw/nuw 2446 /// flags, which can be found from the original scalar operations. 2447 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index, 2448 Value *StartValue, Value *Step, 2449 const InductionDescriptor &ID) { 2450 assert(Index->getType()->getScalarType() == Step->getType() && 2451 "Index scalar type does not match StepValue type"); 2452 2453 // Note: the IR at this point is broken. We cannot use SE to create any new 2454 // SCEV and then expand it, hoping that SCEV's simplification will give us 2455 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2456 // lead to various SCEV crashes. So all we can do is to use builder and rely 2457 // on InstCombine for future simplifications. Here we handle some trivial 2458 // cases only. 2459 auto CreateAdd = [&B](Value *X, Value *Y) { 2460 assert(X->getType() == Y->getType() && "Types don't match!"); 2461 if (auto *CX = dyn_cast<ConstantInt>(X)) 2462 if (CX->isZero()) 2463 return Y; 2464 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2465 if (CY->isZero()) 2466 return X; 2467 return B.CreateAdd(X, Y); 2468 }; 2469 2470 // We allow X to be a vector type, in which case Y will potentially be 2471 // splatted into a vector with the same element count. 2472 auto CreateMul = [&B](Value *X, Value *Y) { 2473 assert(X->getType()->getScalarType() == Y->getType() && 2474 "Types don't match!"); 2475 if (auto *CX = dyn_cast<ConstantInt>(X)) 2476 if (CX->isOne()) 2477 return Y; 2478 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2479 if (CY->isOne()) 2480 return X; 2481 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 2482 if (XVTy && !isa<VectorType>(Y->getType())) 2483 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 2484 return B.CreateMul(X, Y); 2485 }; 2486 2487 switch (ID.getKind()) { 2488 case InductionDescriptor::IK_IntInduction: { 2489 assert(!isa<VectorType>(Index->getType()) && 2490 "Vector indices not supported for integer inductions yet"); 2491 assert(Index->getType() == StartValue->getType() && 2492 "Index type does not match StartValue type"); 2493 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne()) 2494 return B.CreateSub(StartValue, Index); 2495 auto *Offset = CreateMul(Index, Step); 2496 return CreateAdd(StartValue, Offset); 2497 } 2498 case InductionDescriptor::IK_PtrInduction: { 2499 assert(isa<Constant>(Step) && 2500 "Expected constant step for pointer induction"); 2501 return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step)); 2502 } 2503 case InductionDescriptor::IK_FpInduction: { 2504 assert(!isa<VectorType>(Index->getType()) && 2505 "Vector indices not supported for FP inductions yet"); 2506 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2507 auto InductionBinOp = ID.getInductionBinOp(); 2508 assert(InductionBinOp && 2509 (InductionBinOp->getOpcode() == Instruction::FAdd || 2510 InductionBinOp->getOpcode() == Instruction::FSub) && 2511 "Original bin op should be defined for FP induction"); 2512 2513 Value *MulExp = B.CreateFMul(Step, Index); 2514 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2515 "induction"); 2516 } 2517 case InductionDescriptor::IK_NoInduction: 2518 return nullptr; 2519 } 2520 llvm_unreachable("invalid enum"); 2521 } 2522 2523 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2524 const VPIteration &Instance, 2525 VPTransformState &State) { 2526 Value *ScalarInst = State.get(Def, Instance); 2527 Value *VectorValue = State.get(Def, Instance.Part); 2528 VectorValue = Builder.CreateInsertElement( 2529 VectorValue, ScalarInst, 2530 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2531 State.set(Def, VectorValue, Instance.Part); 2532 } 2533 2534 // Return whether we allow using masked interleave-groups (for dealing with 2535 // strided loads/stores that reside in predicated blocks, or for dealing 2536 // with gaps). 2537 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2538 // If an override option has been passed in for interleaved accesses, use it. 2539 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2540 return EnableMaskedInterleavedMemAccesses; 2541 2542 return TTI.enableMaskedInterleavedAccessVectorization(); 2543 } 2544 2545 // Try to vectorize the interleave group that \p Instr belongs to. 2546 // 2547 // E.g. Translate following interleaved load group (factor = 3): 2548 // for (i = 0; i < N; i+=3) { 2549 // R = Pic[i]; // Member of index 0 2550 // G = Pic[i+1]; // Member of index 1 2551 // B = Pic[i+2]; // Member of index 2 2552 // ... // do something to R, G, B 2553 // } 2554 // To: 2555 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2556 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2557 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2558 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2559 // 2560 // Or translate following interleaved store group (factor = 3): 2561 // for (i = 0; i < N; i+=3) { 2562 // ... do something to R, G, B 2563 // Pic[i] = R; // Member of index 0 2564 // Pic[i+1] = G; // Member of index 1 2565 // Pic[i+2] = B; // Member of index 2 2566 // } 2567 // To: 2568 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2569 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2570 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2571 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2572 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2573 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2574 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2575 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2576 VPValue *BlockInMask) { 2577 Instruction *Instr = Group->getInsertPos(); 2578 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2579 2580 // Prepare for the vector type of the interleaved load/store. 2581 Type *ScalarTy = getLoadStoreType(Instr); 2582 unsigned InterleaveFactor = Group->getFactor(); 2583 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2584 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2585 2586 // Prepare for the new pointers. 2587 SmallVector<Value *, 2> AddrParts; 2588 unsigned Index = Group->getIndex(Instr); 2589 2590 // TODO: extend the masked interleaved-group support to reversed access. 2591 assert((!BlockInMask || !Group->isReverse()) && 2592 "Reversed masked interleave-group not supported."); 2593 2594 // If the group is reverse, adjust the index to refer to the last vector lane 2595 // instead of the first. We adjust the index from the first vector lane, 2596 // rather than directly getting the pointer for lane VF - 1, because the 2597 // pointer operand of the interleaved access is supposed to be uniform. For 2598 // uniform instructions, we're only required to generate a value for the 2599 // first vector lane in each unroll iteration. 2600 if (Group->isReverse()) 2601 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2602 2603 for (unsigned Part = 0; Part < UF; Part++) { 2604 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2605 setDebugLocFromInst(AddrPart); 2606 2607 // Notice current instruction could be any index. Need to adjust the address 2608 // to the member of index 0. 2609 // 2610 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2611 // b = A[i]; // Member of index 0 2612 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2613 // 2614 // E.g. A[i+1] = a; // Member of index 1 2615 // A[i] = b; // Member of index 0 2616 // A[i+2] = c; // Member of index 2 (Current instruction) 2617 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2618 2619 bool InBounds = false; 2620 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2621 InBounds = gep->isInBounds(); 2622 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2623 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2624 2625 // Cast to the vector pointer type. 2626 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2627 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2628 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2629 } 2630 2631 setDebugLocFromInst(Instr); 2632 Value *PoisonVec = PoisonValue::get(VecTy); 2633 2634 Value *MaskForGaps = nullptr; 2635 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2636 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2637 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2638 } 2639 2640 // Vectorize the interleaved load group. 2641 if (isa<LoadInst>(Instr)) { 2642 // For each unroll part, create a wide load for the group. 2643 SmallVector<Value *, 2> NewLoads; 2644 for (unsigned Part = 0; Part < UF; Part++) { 2645 Instruction *NewLoad; 2646 if (BlockInMask || MaskForGaps) { 2647 assert(useMaskedInterleavedAccesses(*TTI) && 2648 "masked interleaved groups are not allowed."); 2649 Value *GroupMask = MaskForGaps; 2650 if (BlockInMask) { 2651 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2652 Value *ShuffledMask = Builder.CreateShuffleVector( 2653 BlockInMaskPart, 2654 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2655 "interleaved.mask"); 2656 GroupMask = MaskForGaps 2657 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2658 MaskForGaps) 2659 : ShuffledMask; 2660 } 2661 NewLoad = 2662 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2663 GroupMask, PoisonVec, "wide.masked.vec"); 2664 } 2665 else 2666 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2667 Group->getAlign(), "wide.vec"); 2668 Group->addMetadata(NewLoad); 2669 NewLoads.push_back(NewLoad); 2670 } 2671 2672 // For each member in the group, shuffle out the appropriate data from the 2673 // wide loads. 2674 unsigned J = 0; 2675 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2676 Instruction *Member = Group->getMember(I); 2677 2678 // Skip the gaps in the group. 2679 if (!Member) 2680 continue; 2681 2682 auto StrideMask = 2683 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2684 for (unsigned Part = 0; Part < UF; Part++) { 2685 Value *StridedVec = Builder.CreateShuffleVector( 2686 NewLoads[Part], StrideMask, "strided.vec"); 2687 2688 // If this member has different type, cast the result type. 2689 if (Member->getType() != ScalarTy) { 2690 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2691 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2692 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2693 } 2694 2695 if (Group->isReverse()) 2696 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2697 2698 State.set(VPDefs[J], StridedVec, Part); 2699 } 2700 ++J; 2701 } 2702 return; 2703 } 2704 2705 // The sub vector type for current instruction. 2706 auto *SubVT = VectorType::get(ScalarTy, VF); 2707 2708 // Vectorize the interleaved store group. 2709 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2710 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2711 "masked interleaved groups are not allowed."); 2712 assert((!MaskForGaps || !VF.isScalable()) && 2713 "masking gaps for scalable vectors is not yet supported."); 2714 for (unsigned Part = 0; Part < UF; Part++) { 2715 // Collect the stored vector from each member. 2716 SmallVector<Value *, 4> StoredVecs; 2717 for (unsigned i = 0; i < InterleaveFactor; i++) { 2718 assert((Group->getMember(i) || MaskForGaps) && 2719 "Fail to get a member from an interleaved store group"); 2720 Instruction *Member = Group->getMember(i); 2721 2722 // Skip the gaps in the group. 2723 if (!Member) { 2724 Value *Undef = PoisonValue::get(SubVT); 2725 StoredVecs.push_back(Undef); 2726 continue; 2727 } 2728 2729 Value *StoredVec = State.get(StoredValues[i], Part); 2730 2731 if (Group->isReverse()) 2732 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2733 2734 // If this member has different type, cast it to a unified type. 2735 2736 if (StoredVec->getType() != SubVT) 2737 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2738 2739 StoredVecs.push_back(StoredVec); 2740 } 2741 2742 // Concatenate all vectors into a wide vector. 2743 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2744 2745 // Interleave the elements in the wide vector. 2746 Value *IVec = Builder.CreateShuffleVector( 2747 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2748 "interleaved.vec"); 2749 2750 Instruction *NewStoreInstr; 2751 if (BlockInMask || MaskForGaps) { 2752 Value *GroupMask = MaskForGaps; 2753 if (BlockInMask) { 2754 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2755 Value *ShuffledMask = Builder.CreateShuffleVector( 2756 BlockInMaskPart, 2757 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2758 "interleaved.mask"); 2759 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2760 ShuffledMask, MaskForGaps) 2761 : ShuffledMask; 2762 } 2763 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2764 Group->getAlign(), GroupMask); 2765 } else 2766 NewStoreInstr = 2767 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2768 2769 Group->addMetadata(NewStoreInstr); 2770 } 2771 } 2772 2773 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2774 VPReplicateRecipe *RepRecipe, 2775 const VPIteration &Instance, 2776 bool IfPredicateInstr, 2777 VPTransformState &State) { 2778 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2779 2780 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2781 // the first lane and part. 2782 if (isa<NoAliasScopeDeclInst>(Instr)) 2783 if (!Instance.isFirstIteration()) 2784 return; 2785 2786 setDebugLocFromInst(Instr); 2787 2788 // Does this instruction return a value ? 2789 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2790 2791 Instruction *Cloned = Instr->clone(); 2792 if (!IsVoidRetTy) 2793 Cloned->setName(Instr->getName() + ".cloned"); 2794 2795 // If the scalarized instruction contributes to the address computation of a 2796 // widen masked load/store which was in a basic block that needed predication 2797 // and is not predicated after vectorization, we can't propagate 2798 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 2799 // instruction could feed a poison value to the base address of the widen 2800 // load/store. 2801 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 2802 Cloned->dropPoisonGeneratingFlags(); 2803 2804 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 2805 Builder.GetInsertPoint()); 2806 // Replace the operands of the cloned instructions with their scalar 2807 // equivalents in the new loop. 2808 for (auto &I : enumerate(RepRecipe->operands())) { 2809 auto InputInstance = Instance; 2810 VPValue *Operand = I.value(); 2811 VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand); 2812 if (OperandR && OperandR->isUniform()) 2813 InputInstance.Lane = VPLane::getFirstLane(); 2814 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 2815 } 2816 addNewMetadata(Cloned, Instr); 2817 2818 // Place the cloned scalar in the new loop. 2819 Builder.Insert(Cloned); 2820 2821 State.set(RepRecipe, Cloned, Instance); 2822 2823 // If we just cloned a new assumption, add it the assumption cache. 2824 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 2825 AC->registerAssumption(II); 2826 2827 // End if-block. 2828 if (IfPredicateInstr) 2829 PredicatedInstructions.push_back(Cloned); 2830 } 2831 2832 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) { 2833 if (TripCount) 2834 return TripCount; 2835 2836 assert(InsertBlock); 2837 IRBuilder<> Builder(InsertBlock->getTerminator()); 2838 // Find the loop boundaries. 2839 ScalarEvolution *SE = PSE.getSE(); 2840 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2841 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2842 "Invalid loop count"); 2843 2844 Type *IdxTy = Legal->getWidestInductionType(); 2845 assert(IdxTy && "No type for induction"); 2846 2847 // The exit count might have the type of i64 while the phi is i32. This can 2848 // happen if we have an induction variable that is sign extended before the 2849 // compare. The only way that we get a backedge taken count is that the 2850 // induction variable was signed and as such will not overflow. In such a case 2851 // truncation is legal. 2852 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2853 IdxTy->getPrimitiveSizeInBits()) 2854 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2855 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2856 2857 // Get the total trip count from the count by adding 1. 2858 const SCEV *ExitCount = SE->getAddExpr( 2859 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2860 2861 const DataLayout &DL = InsertBlock->getModule()->getDataLayout(); 2862 2863 // Expand the trip count and place the new instructions in the preheader. 2864 // Notice that the pre-header does not change, only the loop body. 2865 SCEVExpander Exp(*SE, DL, "induction"); 2866 2867 // Count holds the overall loop count (N). 2868 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2869 InsertBlock->getTerminator()); 2870 2871 if (TripCount->getType()->isPointerTy()) 2872 TripCount = 2873 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2874 InsertBlock->getTerminator()); 2875 2876 return TripCount; 2877 } 2878 2879 Value * 2880 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) { 2881 if (VectorTripCount) 2882 return VectorTripCount; 2883 2884 Value *TC = getOrCreateTripCount(InsertBlock); 2885 IRBuilder<> Builder(InsertBlock->getTerminator()); 2886 2887 Type *Ty = TC->getType(); 2888 // This is where we can make the step a runtime constant. 2889 Value *Step = createStepForVF(Builder, Ty, VF, UF); 2890 2891 // If the tail is to be folded by masking, round the number of iterations N 2892 // up to a multiple of Step instead of rounding down. This is done by first 2893 // adding Step-1 and then rounding down. Note that it's ok if this addition 2894 // overflows: the vector induction variable will eventually wrap to zero given 2895 // that it starts at zero and its Step is a power of two; the loop will then 2896 // exit, with the last early-exit vector comparison also producing all-true. 2897 if (Cost->foldTailByMasking()) { 2898 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2899 "VF*UF must be a power of 2 when folding tail by masking"); 2900 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 2901 TC = Builder.CreateAdd( 2902 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 2903 } 2904 2905 // Now we need to generate the expression for the part of the loop that the 2906 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2907 // iterations are not required for correctness, or N - Step, otherwise. Step 2908 // is equal to the vectorization factor (number of SIMD elements) times the 2909 // unroll factor (number of SIMD instructions). 2910 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2911 2912 // There are cases where we *must* run at least one iteration in the remainder 2913 // loop. See the cost model for when this can happen. If the step evenly 2914 // divides the trip count, we set the remainder to be equal to the step. If 2915 // the step does not evenly divide the trip count, no adjustment is necessary 2916 // since there will already be scalar iterations. Note that the minimum 2917 // iterations check ensures that N >= Step. 2918 if (Cost->requiresScalarEpilogue(VF)) { 2919 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2920 R = Builder.CreateSelect(IsZero, Step, R); 2921 } 2922 2923 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2924 2925 return VectorTripCount; 2926 } 2927 2928 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2929 const DataLayout &DL) { 2930 // Verify that V is a vector type with same number of elements as DstVTy. 2931 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 2932 unsigned VF = DstFVTy->getNumElements(); 2933 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 2934 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2935 Type *SrcElemTy = SrcVecTy->getElementType(); 2936 Type *DstElemTy = DstFVTy->getElementType(); 2937 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2938 "Vector elements must have same size"); 2939 2940 // Do a direct cast if element types are castable. 2941 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2942 return Builder.CreateBitOrPointerCast(V, DstFVTy); 2943 } 2944 // V cannot be directly casted to desired vector type. 2945 // May happen when V is a floating point vector but DstVTy is a vector of 2946 // pointers or vice-versa. Handle this using a two-step bitcast using an 2947 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2948 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2949 "Only one type should be a pointer type"); 2950 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2951 "Only one type should be a floating point type"); 2952 Type *IntTy = 2953 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2954 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2955 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2956 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 2957 } 2958 2959 void InnerLoopVectorizer::emitMinimumIterationCountCheck(BasicBlock *Bypass) { 2960 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 2961 // Reuse existing vector loop preheader for TC checks. 2962 // Note that new preheader block is generated for vector loop. 2963 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2964 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2965 2966 // Generate code to check if the loop's trip count is less than VF * UF, or 2967 // equal to it in case a scalar epilogue is required; this implies that the 2968 // vector trip count is zero. This check also covers the case where adding one 2969 // to the backedge-taken count overflowed leading to an incorrect trip count 2970 // of zero. In this case we will also jump to the scalar loop. 2971 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 2972 : ICmpInst::ICMP_ULT; 2973 2974 // If tail is to be folded, vector loop takes care of all iterations. 2975 Value *CheckMinIters = Builder.getFalse(); 2976 if (!Cost->foldTailByMasking()) { 2977 Value *Step = createStepForVF(Builder, Count->getType(), VF, UF); 2978 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 2979 } 2980 // Create new preheader for vector loop. 2981 LoopVectorPreHeader = 2982 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2983 "vector.ph"); 2984 2985 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2986 DT->getNode(Bypass)->getIDom()) && 2987 "TC check is expected to dominate Bypass"); 2988 2989 // Update dominator for Bypass & LoopExit (if needed). 2990 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2991 if (!Cost->requiresScalarEpilogue(VF)) 2992 // If there is an epilogue which must run, there's no edge from the 2993 // middle block to exit blocks and thus no need to update the immediate 2994 // dominator of the exit blocks. 2995 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2996 2997 ReplaceInstWithInst( 2998 TCCheckBlock->getTerminator(), 2999 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3000 LoopBypassBlocks.push_back(TCCheckBlock); 3001 } 3002 3003 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) { 3004 3005 BasicBlock *const SCEVCheckBlock = 3006 RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock); 3007 if (!SCEVCheckBlock) 3008 return nullptr; 3009 3010 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3011 (OptForSizeBasedOnProfile && 3012 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3013 "Cannot SCEV check stride or overflow when optimizing for size"); 3014 3015 3016 // Update dominator only if this is first RT check. 3017 if (LoopBypassBlocks.empty()) { 3018 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3019 if (!Cost->requiresScalarEpilogue(VF)) 3020 // If there is an epilogue which must run, there's no edge from the 3021 // middle block to exit blocks and thus no need to update the immediate 3022 // dominator of the exit blocks. 3023 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3024 } 3025 3026 LoopBypassBlocks.push_back(SCEVCheckBlock); 3027 AddedSafetyChecks = true; 3028 return SCEVCheckBlock; 3029 } 3030 3031 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) { 3032 // VPlan-native path does not do any analysis for runtime checks currently. 3033 if (EnableVPlanNativePath) 3034 return nullptr; 3035 3036 BasicBlock *const MemCheckBlock = 3037 RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader); 3038 3039 // Check if we generated code that checks in runtime if arrays overlap. We put 3040 // the checks into a separate block to make the more common case of few 3041 // elements faster. 3042 if (!MemCheckBlock) 3043 return nullptr; 3044 3045 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3046 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3047 "Cannot emit memory checks when optimizing for size, unless forced " 3048 "to vectorize."); 3049 ORE->emit([&]() { 3050 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3051 OrigLoop->getStartLoc(), 3052 OrigLoop->getHeader()) 3053 << "Code-size may be reduced by not forcing " 3054 "vectorization, or by source-code modifications " 3055 "eliminating the need for runtime checks " 3056 "(e.g., adding 'restrict')."; 3057 }); 3058 } 3059 3060 LoopBypassBlocks.push_back(MemCheckBlock); 3061 3062 AddedSafetyChecks = true; 3063 3064 // We currently don't use LoopVersioning for the actual loop cloning but we 3065 // still use it to add the noalias metadata. 3066 LVer = std::make_unique<LoopVersioning>( 3067 *Legal->getLAI(), 3068 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3069 DT, PSE.getSE()); 3070 LVer->prepareNoAliasMetadata(); 3071 return MemCheckBlock; 3072 } 3073 3074 void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3075 LoopScalarBody = OrigLoop->getHeader(); 3076 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3077 assert(LoopVectorPreHeader && "Invalid loop structure"); 3078 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3079 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3080 "multiple exit loop without required epilogue?"); 3081 3082 LoopMiddleBlock = 3083 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3084 LI, nullptr, Twine(Prefix) + "middle.block"); 3085 LoopScalarPreHeader = 3086 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3087 nullptr, Twine(Prefix) + "scalar.ph"); 3088 3089 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3090 3091 // Set up the middle block terminator. Two cases: 3092 // 1) If we know that we must execute the scalar epilogue, emit an 3093 // unconditional branch. 3094 // 2) Otherwise, we must have a single unique exit block (due to how we 3095 // implement the multiple exit case). In this case, set up a conditonal 3096 // branch from the middle block to the loop scalar preheader, and the 3097 // exit block. completeLoopSkeleton will update the condition to use an 3098 // iteration check, if required to decide whether to execute the remainder. 3099 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3100 BranchInst::Create(LoopScalarPreHeader) : 3101 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3102 Builder.getTrue()); 3103 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3104 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3105 3106 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3107 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3108 3109 // Update dominator for loop exit. 3110 if (!Cost->requiresScalarEpilogue(VF)) 3111 // If there is an epilogue which must run, there's no edge from the 3112 // middle block to exit blocks and thus no need to update the immediate 3113 // dominator of the exit blocks. 3114 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3115 } 3116 3117 void InnerLoopVectorizer::createInductionResumeValues( 3118 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3119 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3120 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3121 "Inconsistent information about additional bypass."); 3122 3123 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3124 assert(VectorTripCount && "Expected valid arguments"); 3125 // We are going to resume the execution of the scalar loop. 3126 // Go over all of the induction variables that we found and fix the 3127 // PHIs that are left in the scalar version of the loop. 3128 // The starting values of PHI nodes depend on the counter of the last 3129 // iteration in the vectorized loop. 3130 // If we come from a bypass edge then we need to start from the original 3131 // start value. 3132 Instruction *OldInduction = Legal->getPrimaryInduction(); 3133 for (auto &InductionEntry : Legal->getInductionVars()) { 3134 PHINode *OrigPhi = InductionEntry.first; 3135 InductionDescriptor II = InductionEntry.second; 3136 3137 // Create phi nodes to merge from the backedge-taken check block. 3138 PHINode *BCResumeVal = 3139 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3140 LoopScalarPreHeader->getTerminator()); 3141 // Copy original phi DL over to the new one. 3142 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3143 Value *&EndValue = IVEndValues[OrigPhi]; 3144 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3145 if (OrigPhi == OldInduction) { 3146 // We know what the end value is. 3147 EndValue = VectorTripCount; 3148 } else { 3149 IRBuilder<> B(LoopVectorPreHeader->getTerminator()); 3150 3151 // Fast-math-flags propagate from the original induction instruction. 3152 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3153 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3154 3155 Type *StepType = II.getStep()->getType(); 3156 Instruction::CastOps CastOp = 3157 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3158 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3159 Value *Step = 3160 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3161 EndValue = emitTransformedIndex(B, CRD, II.getStartValue(), Step, II); 3162 EndValue->setName("ind.end"); 3163 3164 // Compute the end value for the additional bypass (if applicable). 3165 if (AdditionalBypass.first) { 3166 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3167 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3168 StepType, true); 3169 Value *Step = 3170 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3171 CRD = 3172 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3173 EndValueFromAdditionalBypass = 3174 emitTransformedIndex(B, CRD, II.getStartValue(), Step, II); 3175 EndValueFromAdditionalBypass->setName("ind.end"); 3176 } 3177 } 3178 // The new PHI merges the original incoming value, in case of a bypass, 3179 // or the value at the end of the vectorized loop. 3180 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3181 3182 // Fix the scalar body counter (PHI node). 3183 // The old induction's phi node in the scalar body needs the truncated 3184 // value. 3185 for (BasicBlock *BB : LoopBypassBlocks) 3186 BCResumeVal->addIncoming(II.getStartValue(), BB); 3187 3188 if (AdditionalBypass.first) 3189 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3190 EndValueFromAdditionalBypass); 3191 3192 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3193 } 3194 } 3195 3196 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) { 3197 // The trip counts should be cached by now. 3198 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 3199 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3200 3201 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3202 3203 // Add a check in the middle block to see if we have completed 3204 // all of the iterations in the first vector loop. Three cases: 3205 // 1) If we require a scalar epilogue, there is no conditional branch as 3206 // we unconditionally branch to the scalar preheader. Do nothing. 3207 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3208 // Thus if tail is to be folded, we know we don't need to run the 3209 // remainder and we can use the previous value for the condition (true). 3210 // 3) Otherwise, construct a runtime check. 3211 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3212 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3213 Count, VectorTripCount, "cmp.n", 3214 LoopMiddleBlock->getTerminator()); 3215 3216 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3217 // of the corresponding compare because they may have ended up with 3218 // different line numbers and we want to avoid awkward line stepping while 3219 // debugging. Eg. if the compare has got a line number inside the loop. 3220 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3221 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3222 } 3223 3224 #ifdef EXPENSIVE_CHECKS 3225 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3226 #endif 3227 3228 return LoopVectorPreHeader; 3229 } 3230 3231 std::pair<BasicBlock *, Value *> 3232 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3233 /* 3234 In this function we generate a new loop. The new loop will contain 3235 the vectorized instructions while the old loop will continue to run the 3236 scalar remainder. 3237 3238 [ ] <-- loop iteration number check. 3239 / | 3240 / v 3241 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3242 | / | 3243 | / v 3244 || [ ] <-- vector pre header. 3245 |/ | 3246 | v 3247 | [ ] \ 3248 | [ ]_| <-- vector loop. 3249 | | 3250 | v 3251 \ -[ ] <--- middle-block. 3252 \/ | 3253 /\ v 3254 | ->[ ] <--- new preheader. 3255 | | 3256 (opt) v <-- edge from middle to exit iff epilogue is not required. 3257 | [ ] \ 3258 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3259 \ | 3260 \ v 3261 >[ ] <-- exit block(s). 3262 ... 3263 */ 3264 3265 // Get the metadata of the original loop before it gets modified. 3266 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3267 3268 // Workaround! Compute the trip count of the original loop and cache it 3269 // before we start modifying the CFG. This code has a systemic problem 3270 // wherein it tries to run analysis over partially constructed IR; this is 3271 // wrong, and not simply for SCEV. The trip count of the original loop 3272 // simply happens to be prone to hitting this in practice. In theory, we 3273 // can hit the same issue for any SCEV, or ValueTracking query done during 3274 // mutation. See PR49900. 3275 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 3276 3277 // Create an empty vector loop, and prepare basic blocks for the runtime 3278 // checks. 3279 createVectorLoopSkeleton(""); 3280 3281 // Now, compare the new count to zero. If it is zero skip the vector loop and 3282 // jump to the scalar loop. This check also covers the case where the 3283 // backedge-taken count is uint##_max: adding one to it will overflow leading 3284 // to an incorrect trip count of zero. In this (rare) case we will also jump 3285 // to the scalar loop. 3286 emitMinimumIterationCountCheck(LoopScalarPreHeader); 3287 3288 // Generate the code to check any assumptions that we've made for SCEV 3289 // expressions. 3290 emitSCEVChecks(LoopScalarPreHeader); 3291 3292 // Generate the code that checks in runtime if arrays overlap. We put the 3293 // checks into a separate block to make the more common case of few elements 3294 // faster. 3295 emitMemRuntimeChecks(LoopScalarPreHeader); 3296 3297 // Emit phis for the new starting index of the scalar loop. 3298 createInductionResumeValues(); 3299 3300 return {completeLoopSkeleton(OrigLoopID), nullptr}; 3301 } 3302 3303 // Fix up external users of the induction variable. At this point, we are 3304 // in LCSSA form, with all external PHIs that use the IV having one input value, 3305 // coming from the remainder loop. We need those PHIs to also have a correct 3306 // value for the IV when arriving directly from the middle block. 3307 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3308 const InductionDescriptor &II, 3309 Value *CountRoundDown, Value *EndValue, 3310 BasicBlock *MiddleBlock, 3311 BasicBlock *VectorHeader) { 3312 // There are two kinds of external IV usages - those that use the value 3313 // computed in the last iteration (the PHI) and those that use the penultimate 3314 // value (the value that feeds into the phi from the loop latch). 3315 // We allow both, but they, obviously, have different values. 3316 3317 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3318 3319 DenseMap<Value *, Value *> MissingVals; 3320 3321 // An external user of the last iteration's value should see the value that 3322 // the remainder loop uses to initialize its own IV. 3323 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3324 for (User *U : PostInc->users()) { 3325 Instruction *UI = cast<Instruction>(U); 3326 if (!OrigLoop->contains(UI)) { 3327 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3328 MissingVals[UI] = EndValue; 3329 } 3330 } 3331 3332 // An external user of the penultimate value need to see EndValue - Step. 3333 // The simplest way to get this is to recompute it from the constituent SCEVs, 3334 // that is Start + (Step * (CRD - 1)). 3335 for (User *U : OrigPhi->users()) { 3336 auto *UI = cast<Instruction>(U); 3337 if (!OrigLoop->contains(UI)) { 3338 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3339 3340 IRBuilder<> B(MiddleBlock->getTerminator()); 3341 3342 // Fast-math-flags propagate from the original induction instruction. 3343 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3344 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3345 3346 Value *CountMinusOne = B.CreateSub( 3347 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3348 Value *CMO = 3349 !II.getStep()->getType()->isIntegerTy() 3350 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3351 II.getStep()->getType()) 3352 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3353 CMO->setName("cast.cmo"); 3354 3355 Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(), 3356 VectorHeader->getTerminator()); 3357 Value *Escape = 3358 emitTransformedIndex(B, CMO, II.getStartValue(), Step, II); 3359 Escape->setName("ind.escape"); 3360 MissingVals[UI] = Escape; 3361 } 3362 } 3363 3364 for (auto &I : MissingVals) { 3365 PHINode *PHI = cast<PHINode>(I.first); 3366 // One corner case we have to handle is two IVs "chasing" each-other, 3367 // that is %IV2 = phi [...], [ %IV1, %latch ] 3368 // In this case, if IV1 has an external use, we need to avoid adding both 3369 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3370 // don't already have an incoming value for the middle block. 3371 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3372 PHI->addIncoming(I.second, MiddleBlock); 3373 } 3374 } 3375 3376 namespace { 3377 3378 struct CSEDenseMapInfo { 3379 static bool canHandle(const Instruction *I) { 3380 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3381 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3382 } 3383 3384 static inline Instruction *getEmptyKey() { 3385 return DenseMapInfo<Instruction *>::getEmptyKey(); 3386 } 3387 3388 static inline Instruction *getTombstoneKey() { 3389 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3390 } 3391 3392 static unsigned getHashValue(const Instruction *I) { 3393 assert(canHandle(I) && "Unknown instruction!"); 3394 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3395 I->value_op_end())); 3396 } 3397 3398 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3399 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3400 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3401 return LHS == RHS; 3402 return LHS->isIdenticalTo(RHS); 3403 } 3404 }; 3405 3406 } // end anonymous namespace 3407 3408 ///Perform cse of induction variable instructions. 3409 static void cse(BasicBlock *BB) { 3410 // Perform simple cse. 3411 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3412 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3413 if (!CSEDenseMapInfo::canHandle(&In)) 3414 continue; 3415 3416 // Check if we can replace this instruction with any of the 3417 // visited instructions. 3418 if (Instruction *V = CSEMap.lookup(&In)) { 3419 In.replaceAllUsesWith(V); 3420 In.eraseFromParent(); 3421 continue; 3422 } 3423 3424 CSEMap[&In] = &In; 3425 } 3426 } 3427 3428 InstructionCost 3429 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3430 bool &NeedToScalarize) const { 3431 Function *F = CI->getCalledFunction(); 3432 Type *ScalarRetTy = CI->getType(); 3433 SmallVector<Type *, 4> Tys, ScalarTys; 3434 for (auto &ArgOp : CI->args()) 3435 ScalarTys.push_back(ArgOp->getType()); 3436 3437 // Estimate cost of scalarized vector call. The source operands are assumed 3438 // to be vectors, so we need to extract individual elements from there, 3439 // execute VF scalar calls, and then gather the result into the vector return 3440 // value. 3441 InstructionCost ScalarCallCost = 3442 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3443 if (VF.isScalar()) 3444 return ScalarCallCost; 3445 3446 // Compute corresponding vector type for return value and arguments. 3447 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3448 for (Type *ScalarTy : ScalarTys) 3449 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3450 3451 // Compute costs of unpacking argument values for the scalar calls and 3452 // packing the return values to a vector. 3453 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3454 3455 InstructionCost Cost = 3456 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3457 3458 // If we can't emit a vector call for this function, then the currently found 3459 // cost is the cost we need to return. 3460 NeedToScalarize = true; 3461 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3462 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3463 3464 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3465 return Cost; 3466 3467 // If the corresponding vector cost is cheaper, return its cost. 3468 InstructionCost VectorCallCost = 3469 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3470 if (VectorCallCost < Cost) { 3471 NeedToScalarize = false; 3472 Cost = VectorCallCost; 3473 } 3474 return Cost; 3475 } 3476 3477 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3478 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3479 return Elt; 3480 return VectorType::get(Elt, VF); 3481 } 3482 3483 InstructionCost 3484 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3485 ElementCount VF) const { 3486 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3487 assert(ID && "Expected intrinsic call!"); 3488 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3489 FastMathFlags FMF; 3490 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3491 FMF = FPMO->getFastMathFlags(); 3492 3493 SmallVector<const Value *> Arguments(CI->args()); 3494 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3495 SmallVector<Type *> ParamTys; 3496 std::transform(FTy->param_begin(), FTy->param_end(), 3497 std::back_inserter(ParamTys), 3498 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3499 3500 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3501 dyn_cast<IntrinsicInst>(CI)); 3502 return TTI.getIntrinsicInstrCost(CostAttrs, 3503 TargetTransformInfo::TCK_RecipThroughput); 3504 } 3505 3506 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3507 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3508 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3509 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3510 } 3511 3512 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3513 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3514 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3515 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3516 } 3517 3518 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3519 // For every instruction `I` in MinBWs, truncate the operands, create a 3520 // truncated version of `I` and reextend its result. InstCombine runs 3521 // later and will remove any ext/trunc pairs. 3522 SmallPtrSet<Value *, 4> Erased; 3523 for (const auto &KV : Cost->getMinimalBitwidths()) { 3524 // If the value wasn't vectorized, we must maintain the original scalar 3525 // type. The absence of the value from State indicates that it 3526 // wasn't vectorized. 3527 // FIXME: Should not rely on getVPValue at this point. 3528 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3529 if (!State.hasAnyVectorValue(Def)) 3530 continue; 3531 for (unsigned Part = 0; Part < UF; ++Part) { 3532 Value *I = State.get(Def, Part); 3533 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3534 continue; 3535 Type *OriginalTy = I->getType(); 3536 Type *ScalarTruncatedTy = 3537 IntegerType::get(OriginalTy->getContext(), KV.second); 3538 auto *TruncatedTy = VectorType::get( 3539 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3540 if (TruncatedTy == OriginalTy) 3541 continue; 3542 3543 IRBuilder<> B(cast<Instruction>(I)); 3544 auto ShrinkOperand = [&](Value *V) -> Value * { 3545 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3546 if (ZI->getSrcTy() == TruncatedTy) 3547 return ZI->getOperand(0); 3548 return B.CreateZExtOrTrunc(V, TruncatedTy); 3549 }; 3550 3551 // The actual instruction modification depends on the instruction type, 3552 // unfortunately. 3553 Value *NewI = nullptr; 3554 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3555 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3556 ShrinkOperand(BO->getOperand(1))); 3557 3558 // Any wrapping introduced by shrinking this operation shouldn't be 3559 // considered undefined behavior. So, we can't unconditionally copy 3560 // arithmetic wrapping flags to NewI. 3561 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3562 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3563 NewI = 3564 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3565 ShrinkOperand(CI->getOperand(1))); 3566 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3567 NewI = B.CreateSelect(SI->getCondition(), 3568 ShrinkOperand(SI->getTrueValue()), 3569 ShrinkOperand(SI->getFalseValue())); 3570 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3571 switch (CI->getOpcode()) { 3572 default: 3573 llvm_unreachable("Unhandled cast!"); 3574 case Instruction::Trunc: 3575 NewI = ShrinkOperand(CI->getOperand(0)); 3576 break; 3577 case Instruction::SExt: 3578 NewI = B.CreateSExtOrTrunc( 3579 CI->getOperand(0), 3580 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3581 break; 3582 case Instruction::ZExt: 3583 NewI = B.CreateZExtOrTrunc( 3584 CI->getOperand(0), 3585 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3586 break; 3587 } 3588 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3589 auto Elements0 = 3590 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3591 auto *O0 = B.CreateZExtOrTrunc( 3592 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3593 auto Elements1 = 3594 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3595 auto *O1 = B.CreateZExtOrTrunc( 3596 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3597 3598 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3599 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3600 // Don't do anything with the operands, just extend the result. 3601 continue; 3602 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3603 auto Elements = 3604 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3605 auto *O0 = B.CreateZExtOrTrunc( 3606 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3607 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3608 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3609 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3610 auto Elements = 3611 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3612 auto *O0 = B.CreateZExtOrTrunc( 3613 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3614 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3615 } else { 3616 // If we don't know what to do, be conservative and don't do anything. 3617 continue; 3618 } 3619 3620 // Lastly, extend the result. 3621 NewI->takeName(cast<Instruction>(I)); 3622 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3623 I->replaceAllUsesWith(Res); 3624 cast<Instruction>(I)->eraseFromParent(); 3625 Erased.insert(I); 3626 State.reset(Def, Res, Part); 3627 } 3628 } 3629 3630 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3631 for (const auto &KV : Cost->getMinimalBitwidths()) { 3632 // If the value wasn't vectorized, we must maintain the original scalar 3633 // type. The absence of the value from State indicates that it 3634 // wasn't vectorized. 3635 // FIXME: Should not rely on getVPValue at this point. 3636 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3637 if (!State.hasAnyVectorValue(Def)) 3638 continue; 3639 for (unsigned Part = 0; Part < UF; ++Part) { 3640 Value *I = State.get(Def, Part); 3641 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3642 if (Inst && Inst->use_empty()) { 3643 Value *NewI = Inst->getOperand(0); 3644 Inst->eraseFromParent(); 3645 State.reset(Def, NewI, Part); 3646 } 3647 } 3648 } 3649 } 3650 3651 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 3652 // Insert truncates and extends for any truncated instructions as hints to 3653 // InstCombine. 3654 if (VF.isVector()) 3655 truncateToMinimalBitwidths(State); 3656 3657 // Fix widened non-induction PHIs by setting up the PHI operands. 3658 if (OrigPHIsToFix.size()) { 3659 assert(EnableVPlanNativePath && 3660 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3661 fixNonInductionPHIs(State); 3662 } 3663 3664 // At this point every instruction in the original loop is widened to a 3665 // vector form. Now we need to fix the recurrences in the loop. These PHI 3666 // nodes are currently empty because we did not want to introduce cycles. 3667 // This is the second stage of vectorizing recurrences. 3668 fixCrossIterationPHIs(State); 3669 3670 // Forget the original basic block. 3671 PSE.getSE()->forgetLoop(OrigLoop); 3672 3673 Loop *VectorLoop = LI->getLoopFor(State.CFG.PrevBB); 3674 // If we inserted an edge from the middle block to the unique exit block, 3675 // update uses outside the loop (phis) to account for the newly inserted 3676 // edge. 3677 if (!Cost->requiresScalarEpilogue(VF)) { 3678 // Fix-up external users of the induction variables. 3679 for (auto &Entry : Legal->getInductionVars()) 3680 fixupIVUsers(Entry.first, Entry.second, 3681 getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()), 3682 IVEndValues[Entry.first], LoopMiddleBlock, 3683 VectorLoop->getHeader()); 3684 3685 fixLCSSAPHIs(State); 3686 } 3687 3688 for (Instruction *PI : PredicatedInstructions) 3689 sinkScalarOperands(&*PI); 3690 3691 // Remove redundant induction instructions. 3692 cse(VectorLoop->getHeader()); 3693 3694 // Set/update profile weights for the vector and remainder loops as original 3695 // loop iterations are now distributed among them. Note that original loop 3696 // represented by LoopScalarBody becomes remainder loop after vectorization. 3697 // 3698 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3699 // end up getting slightly roughened result but that should be OK since 3700 // profile is not inherently precise anyway. Note also possible bypass of 3701 // vector code caused by legality checks is ignored, assigning all the weight 3702 // to the vector loop, optimistically. 3703 // 3704 // For scalable vectorization we can't know at compile time how many iterations 3705 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3706 // vscale of '1'. 3707 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop, 3708 LI->getLoopFor(LoopScalarBody), 3709 VF.getKnownMinValue() * UF); 3710 } 3711 3712 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 3713 // In order to support recurrences we need to be able to vectorize Phi nodes. 3714 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3715 // stage #2: We now need to fix the recurrences by adding incoming edges to 3716 // the currently empty PHI nodes. At this point every instruction in the 3717 // original loop is widened to a vector form so we can use them to construct 3718 // the incoming edges. 3719 VPBasicBlock *Header = 3720 State.Plan->getVectorLoopRegion()->getEntryBasicBlock(); 3721 for (VPRecipeBase &R : Header->phis()) { 3722 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 3723 fixReduction(ReductionPhi, State); 3724 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 3725 fixFirstOrderRecurrence(FOR, State); 3726 } 3727 } 3728 3729 void InnerLoopVectorizer::fixFirstOrderRecurrence( 3730 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 3731 // This is the second phase of vectorizing first-order recurrences. An 3732 // overview of the transformation is described below. Suppose we have the 3733 // following loop. 3734 // 3735 // for (int i = 0; i < n; ++i) 3736 // b[i] = a[i] - a[i - 1]; 3737 // 3738 // There is a first-order recurrence on "a". For this loop, the shorthand 3739 // scalar IR looks like: 3740 // 3741 // scalar.ph: 3742 // s_init = a[-1] 3743 // br scalar.body 3744 // 3745 // scalar.body: 3746 // i = phi [0, scalar.ph], [i+1, scalar.body] 3747 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3748 // s2 = a[i] 3749 // b[i] = s2 - s1 3750 // br cond, scalar.body, ... 3751 // 3752 // In this example, s1 is a recurrence because it's value depends on the 3753 // previous iteration. In the first phase of vectorization, we created a 3754 // vector phi v1 for s1. We now complete the vectorization and produce the 3755 // shorthand vector IR shown below (for VF = 4, UF = 1). 3756 // 3757 // vector.ph: 3758 // v_init = vector(..., ..., ..., a[-1]) 3759 // br vector.body 3760 // 3761 // vector.body 3762 // i = phi [0, vector.ph], [i+4, vector.body] 3763 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3764 // v2 = a[i, i+1, i+2, i+3]; 3765 // v3 = vector(v1(3), v2(0, 1, 2)) 3766 // b[i, i+1, i+2, i+3] = v2 - v3 3767 // br cond, vector.body, middle.block 3768 // 3769 // middle.block: 3770 // x = v2(3) 3771 // br scalar.ph 3772 // 3773 // scalar.ph: 3774 // s_init = phi [x, middle.block], [a[-1], otherwise] 3775 // br scalar.body 3776 // 3777 // After execution completes the vector loop, we extract the next value of 3778 // the recurrence (x) to use as the initial value in the scalar loop. 3779 3780 // Extract the last vector element in the middle block. This will be the 3781 // initial value for the recurrence when jumping to the scalar loop. 3782 VPValue *PreviousDef = PhiR->getBackedgeValue(); 3783 Value *Incoming = State.get(PreviousDef, UF - 1); 3784 auto *ExtractForScalar = Incoming; 3785 auto *IdxTy = Builder.getInt32Ty(); 3786 if (VF.isVector()) { 3787 auto *One = ConstantInt::get(IdxTy, 1); 3788 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3789 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3790 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 3791 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 3792 "vector.recur.extract"); 3793 } 3794 // Extract the second last element in the middle block if the 3795 // Phi is used outside the loop. We need to extract the phi itself 3796 // and not the last element (the phi update in the current iteration). This 3797 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3798 // when the scalar loop is not run at all. 3799 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3800 if (VF.isVector()) { 3801 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3802 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 3803 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3804 Incoming, Idx, "vector.recur.extract.for.phi"); 3805 } else if (UF > 1) 3806 // When loop is unrolled without vectorizing, initialize 3807 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 3808 // of `Incoming`. This is analogous to the vectorized case above: extracting 3809 // the second last element when VF > 1. 3810 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 3811 3812 // Fix the initial value of the original recurrence in the scalar loop. 3813 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3814 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 3815 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3816 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 3817 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3818 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3819 Start->addIncoming(Incoming, BB); 3820 } 3821 3822 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3823 Phi->setName("scalar.recur"); 3824 3825 // Finally, fix users of the recurrence outside the loop. The users will need 3826 // either the last value of the scalar recurrence or the last value of the 3827 // vector recurrence we extracted in the middle block. Since the loop is in 3828 // LCSSA form, we just need to find all the phi nodes for the original scalar 3829 // recurrence in the exit block, and then add an edge for the middle block. 3830 // Note that LCSSA does not imply single entry when the original scalar loop 3831 // had multiple exiting edges (as we always run the last iteration in the 3832 // scalar epilogue); in that case, there is no edge from middle to exit and 3833 // and thus no phis which needed updated. 3834 if (!Cost->requiresScalarEpilogue(VF)) 3835 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 3836 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) 3837 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3838 } 3839 3840 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 3841 VPTransformState &State) { 3842 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 3843 // Get it's reduction variable descriptor. 3844 assert(Legal->isReductionVariable(OrigPhi) && 3845 "Unable to find the reduction variable"); 3846 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 3847 3848 RecurKind RK = RdxDesc.getRecurrenceKind(); 3849 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3850 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3851 setDebugLocFromInst(ReductionStartValue); 3852 3853 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 3854 // This is the vector-clone of the value that leaves the loop. 3855 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 3856 3857 // Wrap flags are in general invalid after vectorization, clear them. 3858 clearReductionWrapFlags(RdxDesc, State); 3859 3860 // Before each round, move the insertion point right between 3861 // the PHIs and the values we are going to write. 3862 // This allows us to write both PHINodes and the extractelement 3863 // instructions. 3864 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3865 3866 setDebugLocFromInst(LoopExitInst); 3867 3868 Type *PhiTy = OrigPhi->getType(); 3869 BasicBlock *VectorLoopLatch = 3870 LI->getLoopFor(State.CFG.PrevBB)->getLoopLatch(); 3871 // If tail is folded by masking, the vector value to leave the loop should be 3872 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3873 // instead of the former. For an inloop reduction the reduction will already 3874 // be predicated, and does not need to be handled here. 3875 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 3876 for (unsigned Part = 0; Part < UF; ++Part) { 3877 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 3878 Value *Sel = nullptr; 3879 for (User *U : VecLoopExitInst->users()) { 3880 if (isa<SelectInst>(U)) { 3881 assert(!Sel && "Reduction exit feeding two selects"); 3882 Sel = U; 3883 } else 3884 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3885 } 3886 assert(Sel && "Reduction exit feeds no select"); 3887 State.reset(LoopExitInstDef, Sel, Part); 3888 3889 // If the target can create a predicated operator for the reduction at no 3890 // extra cost in the loop (for example a predicated vadd), it can be 3891 // cheaper for the select to remain in the loop than be sunk out of it, 3892 // and so use the select value for the phi instead of the old 3893 // LoopExitValue. 3894 if (PreferPredicatedReductionSelect || 3895 TTI->preferPredicatedReductionSelect( 3896 RdxDesc.getOpcode(), PhiTy, 3897 TargetTransformInfo::ReductionFlags())) { 3898 auto *VecRdxPhi = 3899 cast<PHINode>(State.get(PhiR, Part)); 3900 VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel); 3901 } 3902 } 3903 } 3904 3905 // If the vector reduction can be performed in a smaller type, we truncate 3906 // then extend the loop exit value to enable InstCombine to evaluate the 3907 // entire expression in the smaller type. 3908 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 3909 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 3910 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3911 Builder.SetInsertPoint(VectorLoopLatch->getTerminator()); 3912 VectorParts RdxParts(UF); 3913 for (unsigned Part = 0; Part < UF; ++Part) { 3914 RdxParts[Part] = State.get(LoopExitInstDef, Part); 3915 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3916 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3917 : Builder.CreateZExt(Trunc, VecTy); 3918 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 3919 if (U != Trunc) { 3920 U->replaceUsesOfWith(RdxParts[Part], Extnd); 3921 RdxParts[Part] = Extnd; 3922 } 3923 } 3924 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3925 for (unsigned Part = 0; Part < UF; ++Part) { 3926 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3927 State.reset(LoopExitInstDef, RdxParts[Part], Part); 3928 } 3929 } 3930 3931 // Reduce all of the unrolled parts into a single vector. 3932 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 3933 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 3934 3935 // The middle block terminator has already been assigned a DebugLoc here (the 3936 // OrigLoop's single latch terminator). We want the whole middle block to 3937 // appear to execute on this line because: (a) it is all compiler generated, 3938 // (b) these instructions are always executed after evaluating the latch 3939 // conditional branch, and (c) other passes may add new predecessors which 3940 // terminate on this line. This is the easiest way to ensure we don't 3941 // accidentally cause an extra step back into the loop while debugging. 3942 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 3943 if (PhiR->isOrdered()) 3944 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 3945 else { 3946 // Floating-point operations should have some FMF to enable the reduction. 3947 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 3948 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 3949 for (unsigned Part = 1; Part < UF; ++Part) { 3950 Value *RdxPart = State.get(LoopExitInstDef, Part); 3951 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 3952 ReducedPartRdx = Builder.CreateBinOp( 3953 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 3954 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 3955 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 3956 ReducedPartRdx, RdxPart); 3957 else 3958 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 3959 } 3960 } 3961 3962 // Create the reduction after the loop. Note that inloop reductions create the 3963 // target reduction in the loop using a Reduction recipe. 3964 if (VF.isVector() && !PhiR->isInLoop()) { 3965 ReducedPartRdx = 3966 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 3967 // If the reduction can be performed in a smaller type, we need to extend 3968 // the reduction to the wider type before we branch to the original loop. 3969 if (PhiTy != RdxDesc.getRecurrenceType()) 3970 ReducedPartRdx = RdxDesc.isSigned() 3971 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 3972 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 3973 } 3974 3975 PHINode *ResumePhi = 3976 dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue()); 3977 3978 // Create a phi node that merges control-flow from the backedge-taken check 3979 // block and the middle block. 3980 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 3981 LoopScalarPreHeader->getTerminator()); 3982 3983 // If we are fixing reductions in the epilogue loop then we should already 3984 // have created a bc.merge.rdx Phi after the main vector body. Ensure that 3985 // we carry over the incoming values correctly. 3986 for (auto *Incoming : predecessors(LoopScalarPreHeader)) { 3987 if (Incoming == LoopMiddleBlock) 3988 BCBlockPhi->addIncoming(ReducedPartRdx, Incoming); 3989 else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming)) 3990 BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming), 3991 Incoming); 3992 else 3993 BCBlockPhi->addIncoming(ReductionStartValue, Incoming); 3994 } 3995 3996 // Set the resume value for this reduction 3997 ReductionResumeValues.insert({&RdxDesc, BCBlockPhi}); 3998 3999 // Now, we need to fix the users of the reduction variable 4000 // inside and outside of the scalar remainder loop. 4001 4002 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4003 // in the exit blocks. See comment on analogous loop in 4004 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4005 if (!Cost->requiresScalarEpilogue(VF)) 4006 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4007 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) 4008 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4009 4010 // Fix the scalar loop reduction variable with the incoming reduction sum 4011 // from the vector body and from the backedge value. 4012 int IncomingEdgeBlockIdx = 4013 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4014 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4015 // Pick the other block. 4016 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4017 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4018 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4019 } 4020 4021 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4022 VPTransformState &State) { 4023 RecurKind RK = RdxDesc.getRecurrenceKind(); 4024 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4025 return; 4026 4027 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4028 assert(LoopExitInstr && "null loop exit instruction"); 4029 SmallVector<Instruction *, 8> Worklist; 4030 SmallPtrSet<Instruction *, 8> Visited; 4031 Worklist.push_back(LoopExitInstr); 4032 Visited.insert(LoopExitInstr); 4033 4034 while (!Worklist.empty()) { 4035 Instruction *Cur = Worklist.pop_back_val(); 4036 if (isa<OverflowingBinaryOperator>(Cur)) 4037 for (unsigned Part = 0; Part < UF; ++Part) { 4038 // FIXME: Should not rely on getVPValue at this point. 4039 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4040 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4041 } 4042 4043 for (User *U : Cur->users()) { 4044 Instruction *UI = cast<Instruction>(U); 4045 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4046 Visited.insert(UI).second) 4047 Worklist.push_back(UI); 4048 } 4049 } 4050 } 4051 4052 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4053 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4054 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4055 // Some phis were already hand updated by the reduction and recurrence 4056 // code above, leave them alone. 4057 continue; 4058 4059 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4060 // Non-instruction incoming values will have only one value. 4061 4062 VPLane Lane = VPLane::getFirstLane(); 4063 if (isa<Instruction>(IncomingValue) && 4064 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4065 VF)) 4066 Lane = VPLane::getLastLaneForVF(VF); 4067 4068 // Can be a loop invariant incoming value or the last scalar value to be 4069 // extracted from the vectorized loop. 4070 // FIXME: Should not rely on getVPValue at this point. 4071 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4072 Value *lastIncomingValue = 4073 OrigLoop->isLoopInvariant(IncomingValue) 4074 ? IncomingValue 4075 : State.get(State.Plan->getVPValue(IncomingValue, true), 4076 VPIteration(UF - 1, Lane)); 4077 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4078 } 4079 } 4080 4081 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4082 // The basic block and loop containing the predicated instruction. 4083 auto *PredBB = PredInst->getParent(); 4084 auto *VectorLoop = LI->getLoopFor(PredBB); 4085 4086 // Initialize a worklist with the operands of the predicated instruction. 4087 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4088 4089 // Holds instructions that we need to analyze again. An instruction may be 4090 // reanalyzed if we don't yet know if we can sink it or not. 4091 SmallVector<Instruction *, 8> InstsToReanalyze; 4092 4093 // Returns true if a given use occurs in the predicated block. Phi nodes use 4094 // their operands in their corresponding predecessor blocks. 4095 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4096 auto *I = cast<Instruction>(U.getUser()); 4097 BasicBlock *BB = I->getParent(); 4098 if (auto *Phi = dyn_cast<PHINode>(I)) 4099 BB = Phi->getIncomingBlock( 4100 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4101 return BB == PredBB; 4102 }; 4103 4104 // Iteratively sink the scalarized operands of the predicated instruction 4105 // into the block we created for it. When an instruction is sunk, it's 4106 // operands are then added to the worklist. The algorithm ends after one pass 4107 // through the worklist doesn't sink a single instruction. 4108 bool Changed; 4109 do { 4110 // Add the instructions that need to be reanalyzed to the worklist, and 4111 // reset the changed indicator. 4112 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4113 InstsToReanalyze.clear(); 4114 Changed = false; 4115 4116 while (!Worklist.empty()) { 4117 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4118 4119 // We can't sink an instruction if it is a phi node, is not in the loop, 4120 // or may have side effects. 4121 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4122 I->mayHaveSideEffects()) 4123 continue; 4124 4125 // If the instruction is already in PredBB, check if we can sink its 4126 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4127 // sinking the scalar instruction I, hence it appears in PredBB; but it 4128 // may have failed to sink I's operands (recursively), which we try 4129 // (again) here. 4130 if (I->getParent() == PredBB) { 4131 Worklist.insert(I->op_begin(), I->op_end()); 4132 continue; 4133 } 4134 4135 // It's legal to sink the instruction if all its uses occur in the 4136 // predicated block. Otherwise, there's nothing to do yet, and we may 4137 // need to reanalyze the instruction. 4138 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4139 InstsToReanalyze.push_back(I); 4140 continue; 4141 } 4142 4143 // Move the instruction to the beginning of the predicated block, and add 4144 // it's operands to the worklist. 4145 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4146 Worklist.insert(I->op_begin(), I->op_end()); 4147 4148 // The sinking may have enabled other instructions to be sunk, so we will 4149 // need to iterate. 4150 Changed = true; 4151 } 4152 } while (Changed); 4153 } 4154 4155 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4156 for (PHINode *OrigPhi : OrigPHIsToFix) { 4157 VPWidenPHIRecipe *VPPhi = 4158 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4159 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4160 // Make sure the builder has a valid insert point. 4161 Builder.SetInsertPoint(NewPhi); 4162 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4163 VPValue *Inc = VPPhi->getIncomingValue(i); 4164 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4165 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4166 } 4167 } 4168 } 4169 4170 bool InnerLoopVectorizer::useOrderedReductions( 4171 const RecurrenceDescriptor &RdxDesc) { 4172 return Cost->useOrderedReductions(RdxDesc); 4173 } 4174 4175 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4176 VPWidenPHIRecipe *PhiR, 4177 VPTransformState &State) { 4178 assert(EnableVPlanNativePath && 4179 "Non-native vplans are not expected to have VPWidenPHIRecipes."); 4180 // Currently we enter here in the VPlan-native path for non-induction 4181 // PHIs where all control flow is uniform. We simply widen these PHIs. 4182 // Create a vector phi with no operands - the vector phi operands will be 4183 // set at the end of vector code generation. 4184 Type *VecTy = (State.VF.isScalar()) 4185 ? PN->getType() 4186 : VectorType::get(PN->getType(), State.VF); 4187 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4188 State.set(PhiR, VecPhi, 0); 4189 OrigPHIsToFix.push_back(cast<PHINode>(PN)); 4190 } 4191 4192 /// A helper function for checking whether an integer division-related 4193 /// instruction may divide by zero (in which case it must be predicated if 4194 /// executed conditionally in the scalar code). 4195 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4196 /// Non-zero divisors that are non compile-time constants will not be 4197 /// converted into multiplication, so we will still end up scalarizing 4198 /// the division, but can do so w/o predication. 4199 static bool mayDivideByZero(Instruction &I) { 4200 assert((I.getOpcode() == Instruction::UDiv || 4201 I.getOpcode() == Instruction::SDiv || 4202 I.getOpcode() == Instruction::URem || 4203 I.getOpcode() == Instruction::SRem) && 4204 "Unexpected instruction"); 4205 Value *Divisor = I.getOperand(1); 4206 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4207 return !CInt || CInt->isZero(); 4208 } 4209 4210 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4211 VPUser &ArgOperands, 4212 VPTransformState &State) { 4213 assert(!isa<DbgInfoIntrinsic>(I) && 4214 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4215 setDebugLocFromInst(&I); 4216 4217 Module *M = I.getParent()->getParent()->getParent(); 4218 auto *CI = cast<CallInst>(&I); 4219 4220 SmallVector<Type *, 4> Tys; 4221 for (Value *ArgOperand : CI->args()) 4222 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4223 4224 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4225 4226 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4227 // version of the instruction. 4228 // Is it beneficial to perform intrinsic call compared to lib call? 4229 bool NeedToScalarize = false; 4230 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4231 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4232 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4233 assert((UseVectorIntrinsic || !NeedToScalarize) && 4234 "Instruction should be scalarized elsewhere."); 4235 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4236 "Either the intrinsic cost or vector call cost must be valid"); 4237 4238 for (unsigned Part = 0; Part < UF; ++Part) { 4239 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4240 SmallVector<Value *, 4> Args; 4241 for (auto &I : enumerate(ArgOperands.operands())) { 4242 // Some intrinsics have a scalar argument - don't replace it with a 4243 // vector. 4244 Value *Arg; 4245 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4246 Arg = State.get(I.value(), Part); 4247 else { 4248 Arg = State.get(I.value(), VPIteration(0, 0)); 4249 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 4250 TysForDecl.push_back(Arg->getType()); 4251 } 4252 Args.push_back(Arg); 4253 } 4254 4255 Function *VectorF; 4256 if (UseVectorIntrinsic) { 4257 // Use vector version of the intrinsic. 4258 if (VF.isVector()) 4259 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4260 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4261 assert(VectorF && "Can't retrieve vector intrinsic."); 4262 } else { 4263 // Use vector version of the function call. 4264 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4265 #ifndef NDEBUG 4266 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4267 "Can't create vector function."); 4268 #endif 4269 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4270 } 4271 SmallVector<OperandBundleDef, 1> OpBundles; 4272 CI->getOperandBundlesAsDefs(OpBundles); 4273 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4274 4275 if (isa<FPMathOperator>(V)) 4276 V->copyFastMathFlags(CI); 4277 4278 State.set(Def, V, Part); 4279 addMetadata(V, &I); 4280 } 4281 } 4282 4283 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4284 // We should not collect Scalars more than once per VF. Right now, this 4285 // function is called from collectUniformsAndScalars(), which already does 4286 // this check. Collecting Scalars for VF=1 does not make any sense. 4287 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4288 "This function should not be visited twice for the same VF"); 4289 4290 // This avoids any chances of creating a REPLICATE recipe during planning 4291 // since that would result in generation of scalarized code during execution, 4292 // which is not supported for scalable vectors. 4293 if (VF.isScalable()) { 4294 Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4295 return; 4296 } 4297 4298 SmallSetVector<Instruction *, 8> Worklist; 4299 4300 // These sets are used to seed the analysis with pointers used by memory 4301 // accesses that will remain scalar. 4302 SmallSetVector<Instruction *, 8> ScalarPtrs; 4303 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4304 auto *Latch = TheLoop->getLoopLatch(); 4305 4306 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4307 // The pointer operands of loads and stores will be scalar as long as the 4308 // memory access is not a gather or scatter operation. The value operand of a 4309 // store will remain scalar if the store is scalarized. 4310 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4311 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4312 assert(WideningDecision != CM_Unknown && 4313 "Widening decision should be ready at this moment"); 4314 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4315 if (Ptr == Store->getValueOperand()) 4316 return WideningDecision == CM_Scalarize; 4317 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4318 "Ptr is neither a value or pointer operand"); 4319 return WideningDecision != CM_GatherScatter; 4320 }; 4321 4322 // A helper that returns true if the given value is a bitcast or 4323 // getelementptr instruction contained in the loop. 4324 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4325 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4326 isa<GetElementPtrInst>(V)) && 4327 !TheLoop->isLoopInvariant(V); 4328 }; 4329 4330 // A helper that evaluates a memory access's use of a pointer. If the use will 4331 // be a scalar use and the pointer is only used by memory accesses, we place 4332 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4333 // PossibleNonScalarPtrs. 4334 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4335 // We only care about bitcast and getelementptr instructions contained in 4336 // the loop. 4337 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4338 return; 4339 4340 // If the pointer has already been identified as scalar (e.g., if it was 4341 // also identified as uniform), there's nothing to do. 4342 auto *I = cast<Instruction>(Ptr); 4343 if (Worklist.count(I)) 4344 return; 4345 4346 // If the use of the pointer will be a scalar use, and all users of the 4347 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4348 // place the pointer in PossibleNonScalarPtrs. 4349 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4350 return isa<LoadInst>(U) || isa<StoreInst>(U); 4351 })) 4352 ScalarPtrs.insert(I); 4353 else 4354 PossibleNonScalarPtrs.insert(I); 4355 }; 4356 4357 // We seed the scalars analysis with three classes of instructions: (1) 4358 // instructions marked uniform-after-vectorization and (2) bitcast, 4359 // getelementptr and (pointer) phi instructions used by memory accesses 4360 // requiring a scalar use. 4361 // 4362 // (1) Add to the worklist all instructions that have been identified as 4363 // uniform-after-vectorization. 4364 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4365 4366 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4367 // memory accesses requiring a scalar use. The pointer operands of loads and 4368 // stores will be scalar as long as the memory accesses is not a gather or 4369 // scatter operation. The value operand of a store will remain scalar if the 4370 // store is scalarized. 4371 for (auto *BB : TheLoop->blocks()) 4372 for (auto &I : *BB) { 4373 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4374 evaluatePtrUse(Load, Load->getPointerOperand()); 4375 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4376 evaluatePtrUse(Store, Store->getPointerOperand()); 4377 evaluatePtrUse(Store, Store->getValueOperand()); 4378 } 4379 } 4380 for (auto *I : ScalarPtrs) 4381 if (!PossibleNonScalarPtrs.count(I)) { 4382 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4383 Worklist.insert(I); 4384 } 4385 4386 // Insert the forced scalars. 4387 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4388 // induction variable when the PHI user is scalarized. 4389 auto ForcedScalar = ForcedScalars.find(VF); 4390 if (ForcedScalar != ForcedScalars.end()) 4391 for (auto *I : ForcedScalar->second) 4392 Worklist.insert(I); 4393 4394 // Expand the worklist by looking through any bitcasts and getelementptr 4395 // instructions we've already identified as scalar. This is similar to the 4396 // expansion step in collectLoopUniforms(); however, here we're only 4397 // expanding to include additional bitcasts and getelementptr instructions. 4398 unsigned Idx = 0; 4399 while (Idx != Worklist.size()) { 4400 Instruction *Dst = Worklist[Idx++]; 4401 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4402 continue; 4403 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4404 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4405 auto *J = cast<Instruction>(U); 4406 return !TheLoop->contains(J) || Worklist.count(J) || 4407 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4408 isScalarUse(J, Src)); 4409 })) { 4410 Worklist.insert(Src); 4411 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4412 } 4413 } 4414 4415 // An induction variable will remain scalar if all users of the induction 4416 // variable and induction variable update remain scalar. 4417 for (auto &Induction : Legal->getInductionVars()) { 4418 auto *Ind = Induction.first; 4419 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4420 4421 // If tail-folding is applied, the primary induction variable will be used 4422 // to feed a vector compare. 4423 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4424 continue; 4425 4426 // Returns true if \p Indvar is a pointer induction that is used directly by 4427 // load/store instruction \p I. 4428 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4429 Instruction *I) { 4430 return Induction.second.getKind() == 4431 InductionDescriptor::IK_PtrInduction && 4432 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4433 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4434 }; 4435 4436 // Determine if all users of the induction variable are scalar after 4437 // vectorization. 4438 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4439 auto *I = cast<Instruction>(U); 4440 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4441 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4442 }); 4443 if (!ScalarInd) 4444 continue; 4445 4446 // Determine if all users of the induction variable update instruction are 4447 // scalar after vectorization. 4448 auto ScalarIndUpdate = 4449 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4450 auto *I = cast<Instruction>(U); 4451 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4452 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4453 }); 4454 if (!ScalarIndUpdate) 4455 continue; 4456 4457 // The induction variable and its update instruction will remain scalar. 4458 Worklist.insert(Ind); 4459 Worklist.insert(IndUpdate); 4460 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4461 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4462 << "\n"); 4463 } 4464 4465 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4466 } 4467 4468 bool LoopVectorizationCostModel::isScalarWithPredication( 4469 Instruction *I, ElementCount VF) const { 4470 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4471 return false; 4472 switch(I->getOpcode()) { 4473 default: 4474 break; 4475 case Instruction::Load: 4476 case Instruction::Store: { 4477 if (!Legal->isMaskRequired(I)) 4478 return false; 4479 auto *Ptr = getLoadStorePointerOperand(I); 4480 auto *Ty = getLoadStoreType(I); 4481 Type *VTy = Ty; 4482 if (VF.isVector()) 4483 VTy = VectorType::get(Ty, VF); 4484 const Align Alignment = getLoadStoreAlignment(I); 4485 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4486 TTI.isLegalMaskedGather(VTy, Alignment)) 4487 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4488 TTI.isLegalMaskedScatter(VTy, Alignment)); 4489 } 4490 case Instruction::UDiv: 4491 case Instruction::SDiv: 4492 case Instruction::SRem: 4493 case Instruction::URem: 4494 return mayDivideByZero(*I); 4495 } 4496 return false; 4497 } 4498 4499 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4500 Instruction *I, ElementCount VF) { 4501 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4502 assert(getWideningDecision(I, VF) == CM_Unknown && 4503 "Decision should not be set yet."); 4504 auto *Group = getInterleavedAccessGroup(I); 4505 assert(Group && "Must have a group."); 4506 4507 // If the instruction's allocated size doesn't equal it's type size, it 4508 // requires padding and will be scalarized. 4509 auto &DL = I->getModule()->getDataLayout(); 4510 auto *ScalarTy = getLoadStoreType(I); 4511 if (hasIrregularType(ScalarTy, DL)) 4512 return false; 4513 4514 // If the group involves a non-integral pointer, we may not be able to 4515 // losslessly cast all values to a common type. 4516 unsigned InterleaveFactor = Group->getFactor(); 4517 bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy); 4518 for (unsigned i = 0; i < InterleaveFactor; i++) { 4519 Instruction *Member = Group->getMember(i); 4520 if (!Member) 4521 continue; 4522 auto *MemberTy = getLoadStoreType(Member); 4523 bool MemberNI = DL.isNonIntegralPointerType(MemberTy); 4524 // Don't coerce non-integral pointers to integers or vice versa. 4525 if (MemberNI != ScalarNI) { 4526 // TODO: Consider adding special nullptr value case here 4527 return false; 4528 } else if (MemberNI && ScalarNI && 4529 ScalarTy->getPointerAddressSpace() != 4530 MemberTy->getPointerAddressSpace()) { 4531 return false; 4532 } 4533 } 4534 4535 // Check if masking is required. 4536 // A Group may need masking for one of two reasons: it resides in a block that 4537 // needs predication, or it was decided to use masking to deal with gaps 4538 // (either a gap at the end of a load-access that may result in a speculative 4539 // load, or any gaps in a store-access). 4540 bool PredicatedAccessRequiresMasking = 4541 blockNeedsPredicationForAnyReason(I->getParent()) && 4542 Legal->isMaskRequired(I); 4543 bool LoadAccessWithGapsRequiresEpilogMasking = 4544 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4545 !isScalarEpilogueAllowed(); 4546 bool StoreAccessWithGapsRequiresMasking = 4547 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4548 if (!PredicatedAccessRequiresMasking && 4549 !LoadAccessWithGapsRequiresEpilogMasking && 4550 !StoreAccessWithGapsRequiresMasking) 4551 return true; 4552 4553 // If masked interleaving is required, we expect that the user/target had 4554 // enabled it, because otherwise it either wouldn't have been created or 4555 // it should have been invalidated by the CostModel. 4556 assert(useMaskedInterleavedAccesses(TTI) && 4557 "Masked interleave-groups for predicated accesses are not enabled."); 4558 4559 if (Group->isReverse()) 4560 return false; 4561 4562 auto *Ty = getLoadStoreType(I); 4563 const Align Alignment = getLoadStoreAlignment(I); 4564 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4565 : TTI.isLegalMaskedStore(Ty, Alignment); 4566 } 4567 4568 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4569 Instruction *I, ElementCount VF) { 4570 // Get and ensure we have a valid memory instruction. 4571 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4572 4573 auto *Ptr = getLoadStorePointerOperand(I); 4574 auto *ScalarTy = getLoadStoreType(I); 4575 4576 // In order to be widened, the pointer should be consecutive, first of all. 4577 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4578 return false; 4579 4580 // If the instruction is a store located in a predicated block, it will be 4581 // scalarized. 4582 if (isScalarWithPredication(I, VF)) 4583 return false; 4584 4585 // If the instruction's allocated size doesn't equal it's type size, it 4586 // requires padding and will be scalarized. 4587 auto &DL = I->getModule()->getDataLayout(); 4588 if (hasIrregularType(ScalarTy, DL)) 4589 return false; 4590 4591 return true; 4592 } 4593 4594 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4595 // We should not collect Uniforms more than once per VF. Right now, 4596 // this function is called from collectUniformsAndScalars(), which 4597 // already does this check. Collecting Uniforms for VF=1 does not make any 4598 // sense. 4599 4600 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 4601 "This function should not be visited twice for the same VF"); 4602 4603 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4604 // not analyze again. Uniforms.count(VF) will return 1. 4605 Uniforms[VF].clear(); 4606 4607 // We now know that the loop is vectorizable! 4608 // Collect instructions inside the loop that will remain uniform after 4609 // vectorization. 4610 4611 // Global values, params and instructions outside of current loop are out of 4612 // scope. 4613 auto isOutOfScope = [&](Value *V) -> bool { 4614 Instruction *I = dyn_cast<Instruction>(V); 4615 return (!I || !TheLoop->contains(I)); 4616 }; 4617 4618 // Worklist containing uniform instructions demanding lane 0. 4619 SetVector<Instruction *> Worklist; 4620 BasicBlock *Latch = TheLoop->getLoopLatch(); 4621 4622 // Add uniform instructions demanding lane 0 to the worklist. Instructions 4623 // that are scalar with predication must not be considered uniform after 4624 // vectorization, because that would create an erroneous replicating region 4625 // where only a single instance out of VF should be formed. 4626 // TODO: optimize such seldom cases if found important, see PR40816. 4627 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4628 if (isOutOfScope(I)) { 4629 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 4630 << *I << "\n"); 4631 return; 4632 } 4633 if (isScalarWithPredication(I, VF)) { 4634 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4635 << *I << "\n"); 4636 return; 4637 } 4638 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4639 Worklist.insert(I); 4640 }; 4641 4642 // Start with the conditional branch. If the branch condition is an 4643 // instruction contained in the loop that is only used by the branch, it is 4644 // uniform. 4645 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4646 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4647 addToWorklistIfAllowed(Cmp); 4648 4649 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 4650 InstWidening WideningDecision = getWideningDecision(I, VF); 4651 assert(WideningDecision != CM_Unknown && 4652 "Widening decision should be ready at this moment"); 4653 4654 // A uniform memory op is itself uniform. We exclude uniform stores 4655 // here as they demand the last lane, not the first one. 4656 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 4657 assert(WideningDecision == CM_Scalarize); 4658 return true; 4659 } 4660 4661 return (WideningDecision == CM_Widen || 4662 WideningDecision == CM_Widen_Reverse || 4663 WideningDecision == CM_Interleave); 4664 }; 4665 4666 4667 // Returns true if Ptr is the pointer operand of a memory access instruction 4668 // I, and I is known to not require scalarization. 4669 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4670 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4671 }; 4672 4673 // Holds a list of values which are known to have at least one uniform use. 4674 // Note that there may be other uses which aren't uniform. A "uniform use" 4675 // here is something which only demands lane 0 of the unrolled iterations; 4676 // it does not imply that all lanes produce the same value (e.g. this is not 4677 // the usual meaning of uniform) 4678 SetVector<Value *> HasUniformUse; 4679 4680 // Scan the loop for instructions which are either a) known to have only 4681 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 4682 for (auto *BB : TheLoop->blocks()) 4683 for (auto &I : *BB) { 4684 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 4685 switch (II->getIntrinsicID()) { 4686 case Intrinsic::sideeffect: 4687 case Intrinsic::experimental_noalias_scope_decl: 4688 case Intrinsic::assume: 4689 case Intrinsic::lifetime_start: 4690 case Intrinsic::lifetime_end: 4691 if (TheLoop->hasLoopInvariantOperands(&I)) 4692 addToWorklistIfAllowed(&I); 4693 break; 4694 default: 4695 break; 4696 } 4697 } 4698 4699 // ExtractValue instructions must be uniform, because the operands are 4700 // known to be loop-invariant. 4701 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 4702 assert(isOutOfScope(EVI->getAggregateOperand()) && 4703 "Expected aggregate value to be loop invariant"); 4704 addToWorklistIfAllowed(EVI); 4705 continue; 4706 } 4707 4708 // If there's no pointer operand, there's nothing to do. 4709 auto *Ptr = getLoadStorePointerOperand(&I); 4710 if (!Ptr) 4711 continue; 4712 4713 // A uniform memory op is itself uniform. We exclude uniform stores 4714 // here as they demand the last lane, not the first one. 4715 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 4716 addToWorklistIfAllowed(&I); 4717 4718 if (isUniformDecision(&I, VF)) { 4719 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 4720 HasUniformUse.insert(Ptr); 4721 } 4722 } 4723 4724 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 4725 // demanding) users. Since loops are assumed to be in LCSSA form, this 4726 // disallows uses outside the loop as well. 4727 for (auto *V : HasUniformUse) { 4728 if (isOutOfScope(V)) 4729 continue; 4730 auto *I = cast<Instruction>(V); 4731 auto UsersAreMemAccesses = 4732 llvm::all_of(I->users(), [&](User *U) -> bool { 4733 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 4734 }); 4735 if (UsersAreMemAccesses) 4736 addToWorklistIfAllowed(I); 4737 } 4738 4739 // Expand Worklist in topological order: whenever a new instruction 4740 // is added , its users should be already inside Worklist. It ensures 4741 // a uniform instruction will only be used by uniform instructions. 4742 unsigned idx = 0; 4743 while (idx != Worklist.size()) { 4744 Instruction *I = Worklist[idx++]; 4745 4746 for (auto OV : I->operand_values()) { 4747 // isOutOfScope operands cannot be uniform instructions. 4748 if (isOutOfScope(OV)) 4749 continue; 4750 // First order recurrence Phi's should typically be considered 4751 // non-uniform. 4752 auto *OP = dyn_cast<PHINode>(OV); 4753 if (OP && Legal->isFirstOrderRecurrence(OP)) 4754 continue; 4755 // If all the users of the operand are uniform, then add the 4756 // operand into the uniform worklist. 4757 auto *OI = cast<Instruction>(OV); 4758 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4759 auto *J = cast<Instruction>(U); 4760 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 4761 })) 4762 addToWorklistIfAllowed(OI); 4763 } 4764 } 4765 4766 // For an instruction to be added into Worklist above, all its users inside 4767 // the loop should also be in Worklist. However, this condition cannot be 4768 // true for phi nodes that form a cyclic dependence. We must process phi 4769 // nodes separately. An induction variable will remain uniform if all users 4770 // of the induction variable and induction variable update remain uniform. 4771 // The code below handles both pointer and non-pointer induction variables. 4772 for (auto &Induction : Legal->getInductionVars()) { 4773 auto *Ind = Induction.first; 4774 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4775 4776 // Determine if all users of the induction variable are uniform after 4777 // vectorization. 4778 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4779 auto *I = cast<Instruction>(U); 4780 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4781 isVectorizedMemAccessUse(I, Ind); 4782 }); 4783 if (!UniformInd) 4784 continue; 4785 4786 // Determine if all users of the induction variable update instruction are 4787 // uniform after vectorization. 4788 auto UniformIndUpdate = 4789 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4790 auto *I = cast<Instruction>(U); 4791 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4792 isVectorizedMemAccessUse(I, IndUpdate); 4793 }); 4794 if (!UniformIndUpdate) 4795 continue; 4796 4797 // The induction variable and its update instruction will remain uniform. 4798 addToWorklistIfAllowed(Ind); 4799 addToWorklistIfAllowed(IndUpdate); 4800 } 4801 4802 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4803 } 4804 4805 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4806 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4807 4808 if (Legal->getRuntimePointerChecking()->Need) { 4809 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4810 "runtime pointer checks needed. Enable vectorization of this " 4811 "loop with '#pragma clang loop vectorize(enable)' when " 4812 "compiling with -Os/-Oz", 4813 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4814 return true; 4815 } 4816 4817 if (!PSE.getPredicate().isAlwaysTrue()) { 4818 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4819 "runtime SCEV checks needed. Enable vectorization of this " 4820 "loop with '#pragma clang loop vectorize(enable)' when " 4821 "compiling with -Os/-Oz", 4822 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4823 return true; 4824 } 4825 4826 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4827 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4828 reportVectorizationFailure("Runtime stride check for small trip count", 4829 "runtime stride == 1 checks needed. Enable vectorization of " 4830 "this loop without such check by compiling with -Os/-Oz", 4831 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4832 return true; 4833 } 4834 4835 return false; 4836 } 4837 4838 ElementCount 4839 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 4840 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 4841 return ElementCount::getScalable(0); 4842 4843 if (Hints->isScalableVectorizationDisabled()) { 4844 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 4845 "ScalableVectorizationDisabled", ORE, TheLoop); 4846 return ElementCount::getScalable(0); 4847 } 4848 4849 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 4850 4851 auto MaxScalableVF = ElementCount::getScalable( 4852 std::numeric_limits<ElementCount::ScalarTy>::max()); 4853 4854 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 4855 // FIXME: While for scalable vectors this is currently sufficient, this should 4856 // be replaced by a more detailed mechanism that filters out specific VFs, 4857 // instead of invalidating vectorization for a whole set of VFs based on the 4858 // MaxVF. 4859 4860 // Disable scalable vectorization if the loop contains unsupported reductions. 4861 if (!canVectorizeReductions(MaxScalableVF)) { 4862 reportVectorizationInfo( 4863 "Scalable vectorization not supported for the reduction " 4864 "operations found in this loop.", 4865 "ScalableVFUnfeasible", ORE, TheLoop); 4866 return ElementCount::getScalable(0); 4867 } 4868 4869 // Disable scalable vectorization if the loop contains any instructions 4870 // with element types not supported for scalable vectors. 4871 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 4872 return !Ty->isVoidTy() && 4873 !this->TTI.isElementTypeLegalForScalableVector(Ty); 4874 })) { 4875 reportVectorizationInfo("Scalable vectorization is not supported " 4876 "for all element types found in this loop.", 4877 "ScalableVFUnfeasible", ORE, TheLoop); 4878 return ElementCount::getScalable(0); 4879 } 4880 4881 if (Legal->isSafeForAnyVectorWidth()) 4882 return MaxScalableVF; 4883 4884 // Limit MaxScalableVF by the maximum safe dependence distance. 4885 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 4886 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 4887 MaxVScale = 4888 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 4889 MaxScalableVF = ElementCount::getScalable( 4890 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 4891 if (!MaxScalableVF) 4892 reportVectorizationInfo( 4893 "Max legal vector width too small, scalable vectorization " 4894 "unfeasible.", 4895 "ScalableVFUnfeasible", ORE, TheLoop); 4896 4897 return MaxScalableVF; 4898 } 4899 4900 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 4901 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 4902 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4903 unsigned SmallestType, WidestType; 4904 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4905 4906 // Get the maximum safe dependence distance in bits computed by LAA. 4907 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4908 // the memory accesses that is most restrictive (involved in the smallest 4909 // dependence distance). 4910 unsigned MaxSafeElements = 4911 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 4912 4913 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 4914 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 4915 4916 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 4917 << ".\n"); 4918 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 4919 << ".\n"); 4920 4921 // First analyze the UserVF, fall back if the UserVF should be ignored. 4922 if (UserVF) { 4923 auto MaxSafeUserVF = 4924 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 4925 4926 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 4927 // If `VF=vscale x N` is safe, then so is `VF=N` 4928 if (UserVF.isScalable()) 4929 return FixedScalableVFPair( 4930 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 4931 else 4932 return UserVF; 4933 } 4934 4935 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 4936 4937 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 4938 // is better to ignore the hint and let the compiler choose a suitable VF. 4939 if (!UserVF.isScalable()) { 4940 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4941 << " is unsafe, clamping to max safe VF=" 4942 << MaxSafeFixedVF << ".\n"); 4943 ORE->emit([&]() { 4944 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4945 TheLoop->getStartLoc(), 4946 TheLoop->getHeader()) 4947 << "User-specified vectorization factor " 4948 << ore::NV("UserVectorizationFactor", UserVF) 4949 << " is unsafe, clamping to maximum safe vectorization factor " 4950 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 4951 }); 4952 return MaxSafeFixedVF; 4953 } 4954 4955 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 4956 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4957 << " is ignored because scalable vectors are not " 4958 "available.\n"); 4959 ORE->emit([&]() { 4960 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4961 TheLoop->getStartLoc(), 4962 TheLoop->getHeader()) 4963 << "User-specified vectorization factor " 4964 << ore::NV("UserVectorizationFactor", UserVF) 4965 << " is ignored because the target does not support scalable " 4966 "vectors. The compiler will pick a more suitable value."; 4967 }); 4968 } else { 4969 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4970 << " is unsafe. Ignoring scalable UserVF.\n"); 4971 ORE->emit([&]() { 4972 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4973 TheLoop->getStartLoc(), 4974 TheLoop->getHeader()) 4975 << "User-specified vectorization factor " 4976 << ore::NV("UserVectorizationFactor", UserVF) 4977 << " is unsafe. Ignoring the hint to let the compiler pick a " 4978 "more suitable value."; 4979 }); 4980 } 4981 } 4982 4983 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4984 << " / " << WidestType << " bits.\n"); 4985 4986 FixedScalableVFPair Result(ElementCount::getFixed(1), 4987 ElementCount::getScalable(0)); 4988 if (auto MaxVF = 4989 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 4990 MaxSafeFixedVF, FoldTailByMasking)) 4991 Result.FixedVF = MaxVF; 4992 4993 if (auto MaxVF = 4994 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 4995 MaxSafeScalableVF, FoldTailByMasking)) 4996 if (MaxVF.isScalable()) { 4997 Result.ScalableVF = MaxVF; 4998 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 4999 << "\n"); 5000 } 5001 5002 return Result; 5003 } 5004 5005 FixedScalableVFPair 5006 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5007 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5008 // TODO: It may by useful to do since it's still likely to be dynamically 5009 // uniform if the target can skip. 5010 reportVectorizationFailure( 5011 "Not inserting runtime ptr check for divergent target", 5012 "runtime pointer checks needed. Not enabled for divergent target", 5013 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5014 return FixedScalableVFPair::getNone(); 5015 } 5016 5017 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5018 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5019 if (TC == 1) { 5020 reportVectorizationFailure("Single iteration (non) loop", 5021 "loop trip count is one, irrelevant for vectorization", 5022 "SingleIterationLoop", ORE, TheLoop); 5023 return FixedScalableVFPair::getNone(); 5024 } 5025 5026 switch (ScalarEpilogueStatus) { 5027 case CM_ScalarEpilogueAllowed: 5028 return computeFeasibleMaxVF(TC, UserVF, false); 5029 case CM_ScalarEpilogueNotAllowedUsePredicate: 5030 LLVM_FALLTHROUGH; 5031 case CM_ScalarEpilogueNotNeededUsePredicate: 5032 LLVM_DEBUG( 5033 dbgs() << "LV: vector predicate hint/switch found.\n" 5034 << "LV: Not allowing scalar epilogue, creating predicated " 5035 << "vector loop.\n"); 5036 break; 5037 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5038 // fallthrough as a special case of OptForSize 5039 case CM_ScalarEpilogueNotAllowedOptSize: 5040 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5041 LLVM_DEBUG( 5042 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5043 else 5044 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5045 << "count.\n"); 5046 5047 // Bail if runtime checks are required, which are not good when optimising 5048 // for size. 5049 if (runtimeChecksRequired()) 5050 return FixedScalableVFPair::getNone(); 5051 5052 break; 5053 } 5054 5055 // The only loops we can vectorize without a scalar epilogue, are loops with 5056 // a bottom-test and a single exiting block. We'd have to handle the fact 5057 // that not every instruction executes on the last iteration. This will 5058 // require a lane mask which varies through the vector loop body. (TODO) 5059 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5060 // If there was a tail-folding hint/switch, but we can't fold the tail by 5061 // masking, fallback to a vectorization with a scalar epilogue. 5062 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5063 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5064 "scalar epilogue instead.\n"); 5065 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5066 return computeFeasibleMaxVF(TC, UserVF, false); 5067 } 5068 return FixedScalableVFPair::getNone(); 5069 } 5070 5071 // Now try the tail folding 5072 5073 // Invalidate interleave groups that require an epilogue if we can't mask 5074 // the interleave-group. 5075 if (!useMaskedInterleavedAccesses(TTI)) { 5076 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5077 "No decisions should have been taken at this point"); 5078 // Note: There is no need to invalidate any cost modeling decisions here, as 5079 // non where taken so far. 5080 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5081 } 5082 5083 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5084 // Avoid tail folding if the trip count is known to be a multiple of any VF 5085 // we chose. 5086 // FIXME: The condition below pessimises the case for fixed-width vectors, 5087 // when scalable VFs are also candidates for vectorization. 5088 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5089 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5090 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5091 "MaxFixedVF must be a power of 2"); 5092 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5093 : MaxFixedVF.getFixedValue(); 5094 ScalarEvolution *SE = PSE.getSE(); 5095 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5096 const SCEV *ExitCount = SE->getAddExpr( 5097 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5098 const SCEV *Rem = SE->getURemExpr( 5099 SE->applyLoopGuards(ExitCount, TheLoop), 5100 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5101 if (Rem->isZero()) { 5102 // Accept MaxFixedVF if we do not have a tail. 5103 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5104 return MaxFactors; 5105 } 5106 } 5107 5108 // For scalable vectors don't use tail folding for low trip counts or 5109 // optimizing for code size. We only permit this if the user has explicitly 5110 // requested it. 5111 if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate && 5112 ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate && 5113 MaxFactors.ScalableVF.isVector()) 5114 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5115 5116 // If we don't know the precise trip count, or if the trip count that we 5117 // found modulo the vectorization factor is not zero, try to fold the tail 5118 // by masking. 5119 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5120 if (Legal->prepareToFoldTailByMasking()) { 5121 FoldTailByMasking = true; 5122 return MaxFactors; 5123 } 5124 5125 // If there was a tail-folding hint/switch, but we can't fold the tail by 5126 // masking, fallback to a vectorization with a scalar epilogue. 5127 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5128 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5129 "scalar epilogue instead.\n"); 5130 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5131 return MaxFactors; 5132 } 5133 5134 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5135 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5136 return FixedScalableVFPair::getNone(); 5137 } 5138 5139 if (TC == 0) { 5140 reportVectorizationFailure( 5141 "Unable to calculate the loop count due to complex control flow", 5142 "unable to calculate the loop count due to complex control flow", 5143 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5144 return FixedScalableVFPair::getNone(); 5145 } 5146 5147 reportVectorizationFailure( 5148 "Cannot optimize for size and vectorize at the same time.", 5149 "cannot optimize for size and vectorize at the same time. " 5150 "Enable vectorization of this loop with '#pragma clang loop " 5151 "vectorize(enable)' when compiling with -Os/-Oz", 5152 "NoTailLoopWithOptForSize", ORE, TheLoop); 5153 return FixedScalableVFPair::getNone(); 5154 } 5155 5156 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5157 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5158 const ElementCount &MaxSafeVF, bool FoldTailByMasking) { 5159 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5160 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5161 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5162 : TargetTransformInfo::RGK_FixedWidthVector); 5163 5164 // Convenience function to return the minimum of two ElementCounts. 5165 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5166 assert((LHS.isScalable() == RHS.isScalable()) && 5167 "Scalable flags must match"); 5168 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5169 }; 5170 5171 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5172 // Note that both WidestRegister and WidestType may not be a powers of 2. 5173 auto MaxVectorElementCount = ElementCount::get( 5174 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5175 ComputeScalableMaxVF); 5176 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5177 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5178 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5179 5180 if (!MaxVectorElementCount) { 5181 LLVM_DEBUG(dbgs() << "LV: The target has no " 5182 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5183 << " vector registers.\n"); 5184 return ElementCount::getFixed(1); 5185 } 5186 5187 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5188 if (ConstTripCount && 5189 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5190 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5191 // If loop trip count (TC) is known at compile time there is no point in 5192 // choosing VF greater than TC (as done in the loop below). Select maximum 5193 // power of two which doesn't exceed TC. 5194 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5195 // when the TC is less than or equal to the known number of lanes. 5196 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5197 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5198 "exceeding the constant trip count: " 5199 << ClampedConstTripCount << "\n"); 5200 return ElementCount::getFixed(ClampedConstTripCount); 5201 } 5202 5203 ElementCount MaxVF = MaxVectorElementCount; 5204 if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 && 5205 TTI.shouldMaximizeVectorBandwidth())) { 5206 auto MaxVectorElementCountMaxBW = ElementCount::get( 5207 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5208 ComputeScalableMaxVF); 5209 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5210 5211 // Collect all viable vectorization factors larger than the default MaxVF 5212 // (i.e. MaxVectorElementCount). 5213 SmallVector<ElementCount, 8> VFs; 5214 for (ElementCount VS = MaxVectorElementCount * 2; 5215 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5216 VFs.push_back(VS); 5217 5218 // For each VF calculate its register usage. 5219 auto RUs = calculateRegisterUsage(VFs); 5220 5221 // Select the largest VF which doesn't require more registers than existing 5222 // ones. 5223 for (int i = RUs.size() - 1; i >= 0; --i) { 5224 bool Selected = true; 5225 for (auto &pair : RUs[i].MaxLocalUsers) { 5226 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5227 if (pair.second > TargetNumRegisters) 5228 Selected = false; 5229 } 5230 if (Selected) { 5231 MaxVF = VFs[i]; 5232 break; 5233 } 5234 } 5235 if (ElementCount MinVF = 5236 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5237 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5238 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5239 << ") with target's minimum: " << MinVF << '\n'); 5240 MaxVF = MinVF; 5241 } 5242 } 5243 5244 // Invalidate any widening decisions we might have made, in case the loop 5245 // requires prediction (decided later), but we have already made some 5246 // load/store widening decisions. 5247 invalidateCostModelingDecisions(); 5248 } 5249 return MaxVF; 5250 } 5251 5252 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const { 5253 if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5254 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); 5255 auto Min = Attr.getVScaleRangeMin(); 5256 auto Max = Attr.getVScaleRangeMax(); 5257 if (Max && Min == Max) 5258 return Max; 5259 } 5260 5261 return TTI.getVScaleForTuning(); 5262 } 5263 5264 bool LoopVectorizationCostModel::isMoreProfitable( 5265 const VectorizationFactor &A, const VectorizationFactor &B) const { 5266 InstructionCost CostA = A.Cost; 5267 InstructionCost CostB = B.Cost; 5268 5269 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5270 5271 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5272 MaxTripCount) { 5273 // If we are folding the tail and the trip count is a known (possibly small) 5274 // constant, the trip count will be rounded up to an integer number of 5275 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5276 // which we compare directly. When not folding the tail, the total cost will 5277 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5278 // approximated with the per-lane cost below instead of using the tripcount 5279 // as here. 5280 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5281 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5282 return RTCostA < RTCostB; 5283 } 5284 5285 // Improve estimate for the vector width if it is scalable. 5286 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5287 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5288 if (Optional<unsigned> VScale = getVScaleForTuning()) { 5289 if (A.Width.isScalable()) 5290 EstimatedWidthA *= VScale.getValue(); 5291 if (B.Width.isScalable()) 5292 EstimatedWidthB *= VScale.getValue(); 5293 } 5294 5295 // Assume vscale may be larger than 1 (or the value being tuned for), 5296 // so that scalable vectorization is slightly favorable over fixed-width 5297 // vectorization. 5298 if (A.Width.isScalable() && !B.Width.isScalable()) 5299 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5300 5301 // To avoid the need for FP division: 5302 // (CostA / A.Width) < (CostB / B.Width) 5303 // <=> (CostA * B.Width) < (CostB * A.Width) 5304 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5305 } 5306 5307 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5308 const ElementCountSet &VFCandidates) { 5309 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5310 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5311 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5312 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5313 "Expected Scalar VF to be a candidate"); 5314 5315 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 5316 VectorizationFactor ChosenFactor = ScalarCost; 5317 5318 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5319 if (ForceVectorization && VFCandidates.size() > 1) { 5320 // Ignore scalar width, because the user explicitly wants vectorization. 5321 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5322 // evaluation. 5323 ChosenFactor.Cost = InstructionCost::getMax(); 5324 } 5325 5326 SmallVector<InstructionVFPair> InvalidCosts; 5327 for (const auto &i : VFCandidates) { 5328 // The cost for scalar VF=1 is already calculated, so ignore it. 5329 if (i.isScalar()) 5330 continue; 5331 5332 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5333 VectorizationFactor Candidate(i, C.first); 5334 5335 #ifndef NDEBUG 5336 unsigned AssumedMinimumVscale = 1; 5337 if (Optional<unsigned> VScale = getVScaleForTuning()) 5338 AssumedMinimumVscale = VScale.getValue(); 5339 unsigned Width = 5340 Candidate.Width.isScalable() 5341 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5342 : Candidate.Width.getFixedValue(); 5343 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5344 << " costs: " << (Candidate.Cost / Width)); 5345 if (i.isScalable()) 5346 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5347 << AssumedMinimumVscale << ")"); 5348 LLVM_DEBUG(dbgs() << ".\n"); 5349 #endif 5350 5351 if (!C.second && !ForceVectorization) { 5352 LLVM_DEBUG( 5353 dbgs() << "LV: Not considering vector loop of width " << i 5354 << " because it will not generate any vector instructions.\n"); 5355 continue; 5356 } 5357 5358 // If profitable add it to ProfitableVF list. 5359 if (isMoreProfitable(Candidate, ScalarCost)) 5360 ProfitableVFs.push_back(Candidate); 5361 5362 if (isMoreProfitable(Candidate, ChosenFactor)) 5363 ChosenFactor = Candidate; 5364 } 5365 5366 // Emit a report of VFs with invalid costs in the loop. 5367 if (!InvalidCosts.empty()) { 5368 // Group the remarks per instruction, keeping the instruction order from 5369 // InvalidCosts. 5370 std::map<Instruction *, unsigned> Numbering; 5371 unsigned I = 0; 5372 for (auto &Pair : InvalidCosts) 5373 if (!Numbering.count(Pair.first)) 5374 Numbering[Pair.first] = I++; 5375 5376 // Sort the list, first on instruction(number) then on VF. 5377 llvm::sort(InvalidCosts, 5378 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5379 if (Numbering[A.first] != Numbering[B.first]) 5380 return Numbering[A.first] < Numbering[B.first]; 5381 ElementCountComparator ECC; 5382 return ECC(A.second, B.second); 5383 }); 5384 5385 // For a list of ordered instruction-vf pairs: 5386 // [(load, vf1), (load, vf2), (store, vf1)] 5387 // Group the instructions together to emit separate remarks for: 5388 // load (vf1, vf2) 5389 // store (vf1) 5390 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5391 auto Subset = ArrayRef<InstructionVFPair>(); 5392 do { 5393 if (Subset.empty()) 5394 Subset = Tail.take_front(1); 5395 5396 Instruction *I = Subset.front().first; 5397 5398 // If the next instruction is different, or if there are no other pairs, 5399 // emit a remark for the collated subset. e.g. 5400 // [(load, vf1), (load, vf2))] 5401 // to emit: 5402 // remark: invalid costs for 'load' at VF=(vf, vf2) 5403 if (Subset == Tail || Tail[Subset.size()].first != I) { 5404 std::string OutString; 5405 raw_string_ostream OS(OutString); 5406 assert(!Subset.empty() && "Unexpected empty range"); 5407 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5408 for (auto &Pair : Subset) 5409 OS << (Pair.second == Subset.front().second ? "" : ", ") 5410 << Pair.second; 5411 OS << "):"; 5412 if (auto *CI = dyn_cast<CallInst>(I)) 5413 OS << " call to " << CI->getCalledFunction()->getName(); 5414 else 5415 OS << " " << I->getOpcodeName(); 5416 OS.flush(); 5417 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5418 Tail = Tail.drop_front(Subset.size()); 5419 Subset = {}; 5420 } else 5421 // Grow the subset by one element 5422 Subset = Tail.take_front(Subset.size() + 1); 5423 } while (!Tail.empty()); 5424 } 5425 5426 if (!EnableCondStoresVectorization && NumPredStores) { 5427 reportVectorizationFailure("There are conditional stores.", 5428 "store that is conditionally executed prevents vectorization", 5429 "ConditionalStore", ORE, TheLoop); 5430 ChosenFactor = ScalarCost; 5431 } 5432 5433 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5434 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 5435 << "LV: Vectorization seems to be not beneficial, " 5436 << "but was forced by a user.\n"); 5437 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5438 return ChosenFactor; 5439 } 5440 5441 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5442 const Loop &L, ElementCount VF) const { 5443 // Cross iteration phis such as reductions need special handling and are 5444 // currently unsupported. 5445 if (any_of(L.getHeader()->phis(), 5446 [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); })) 5447 return false; 5448 5449 // Phis with uses outside of the loop require special handling and are 5450 // currently unsupported. 5451 for (auto &Entry : Legal->getInductionVars()) { 5452 // Look for uses of the value of the induction at the last iteration. 5453 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5454 for (User *U : PostInc->users()) 5455 if (!L.contains(cast<Instruction>(U))) 5456 return false; 5457 // Look for uses of penultimate value of the induction. 5458 for (User *U : Entry.first->users()) 5459 if (!L.contains(cast<Instruction>(U))) 5460 return false; 5461 } 5462 5463 // Induction variables that are widened require special handling that is 5464 // currently not supported. 5465 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5466 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5467 this->isProfitableToScalarize(Entry.first, VF)); 5468 })) 5469 return false; 5470 5471 // Epilogue vectorization code has not been auditted to ensure it handles 5472 // non-latch exits properly. It may be fine, but it needs auditted and 5473 // tested. 5474 if (L.getExitingBlock() != L.getLoopLatch()) 5475 return false; 5476 5477 return true; 5478 } 5479 5480 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5481 const ElementCount VF) const { 5482 // FIXME: We need a much better cost-model to take different parameters such 5483 // as register pressure, code size increase and cost of extra branches into 5484 // account. For now we apply a very crude heuristic and only consider loops 5485 // with vectorization factors larger than a certain value. 5486 // We also consider epilogue vectorization unprofitable for targets that don't 5487 // consider interleaving beneficial (eg. MVE). 5488 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5489 return false; 5490 // FIXME: We should consider changing the threshold for scalable 5491 // vectors to take VScaleForTuning into account. 5492 if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF) 5493 return true; 5494 return false; 5495 } 5496 5497 VectorizationFactor 5498 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5499 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5500 VectorizationFactor Result = VectorizationFactor::Disabled(); 5501 if (!EnableEpilogueVectorization) { 5502 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5503 return Result; 5504 } 5505 5506 if (!isScalarEpilogueAllowed()) { 5507 LLVM_DEBUG( 5508 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5509 "allowed.\n";); 5510 return Result; 5511 } 5512 5513 // Not really a cost consideration, but check for unsupported cases here to 5514 // simplify the logic. 5515 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5516 LLVM_DEBUG( 5517 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5518 "not a supported candidate.\n";); 5519 return Result; 5520 } 5521 5522 if (EpilogueVectorizationForceVF > 1) { 5523 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5524 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5525 if (LVP.hasPlanWithVF(ForcedEC)) 5526 return {ForcedEC, 0}; 5527 else { 5528 LLVM_DEBUG( 5529 dbgs() 5530 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5531 return Result; 5532 } 5533 } 5534 5535 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5536 TheLoop->getHeader()->getParent()->hasMinSize()) { 5537 LLVM_DEBUG( 5538 dbgs() 5539 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5540 return Result; 5541 } 5542 5543 if (!isEpilogueVectorizationProfitable(MainLoopVF)) { 5544 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5545 "this loop\n"); 5546 return Result; 5547 } 5548 5549 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know 5550 // the main loop handles 8 lanes per iteration. We could still benefit from 5551 // vectorizing the epilogue loop with VF=4. 5552 ElementCount EstimatedRuntimeVF = MainLoopVF; 5553 if (MainLoopVF.isScalable()) { 5554 EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 5555 if (Optional<unsigned> VScale = getVScaleForTuning()) 5556 EstimatedRuntimeVF *= VScale.getValue(); 5557 } 5558 5559 for (auto &NextVF : ProfitableVFs) 5560 if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() && 5561 ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) || 5562 ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) && 5563 (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) && 5564 LVP.hasPlanWithVF(NextVF.Width)) 5565 Result = NextVF; 5566 5567 if (Result != VectorizationFactor::Disabled()) 5568 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5569 << Result.Width << "\n";); 5570 return Result; 5571 } 5572 5573 std::pair<unsigned, unsigned> 5574 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5575 unsigned MinWidth = -1U; 5576 unsigned MaxWidth = 8; 5577 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5578 // For in-loop reductions, no element types are added to ElementTypesInLoop 5579 // if there are no loads/stores in the loop. In this case, check through the 5580 // reduction variables to determine the maximum width. 5581 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5582 // Reset MaxWidth so that we can find the smallest type used by recurrences 5583 // in the loop. 5584 MaxWidth = -1U; 5585 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5586 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5587 // When finding the min width used by the recurrence we need to account 5588 // for casts on the input operands of the recurrence. 5589 MaxWidth = std::min<unsigned>( 5590 MaxWidth, std::min<unsigned>( 5591 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5592 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5593 } 5594 } else { 5595 for (Type *T : ElementTypesInLoop) { 5596 MinWidth = std::min<unsigned>( 5597 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5598 MaxWidth = std::max<unsigned>( 5599 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5600 } 5601 } 5602 return {MinWidth, MaxWidth}; 5603 } 5604 5605 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5606 ElementTypesInLoop.clear(); 5607 // For each block. 5608 for (BasicBlock *BB : TheLoop->blocks()) { 5609 // For each instruction in the loop. 5610 for (Instruction &I : BB->instructionsWithoutDebug()) { 5611 Type *T = I.getType(); 5612 5613 // Skip ignored values. 5614 if (ValuesToIgnore.count(&I)) 5615 continue; 5616 5617 // Only examine Loads, Stores and PHINodes. 5618 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5619 continue; 5620 5621 // Examine PHI nodes that are reduction variables. Update the type to 5622 // account for the recurrence type. 5623 if (auto *PN = dyn_cast<PHINode>(&I)) { 5624 if (!Legal->isReductionVariable(PN)) 5625 continue; 5626 const RecurrenceDescriptor &RdxDesc = 5627 Legal->getReductionVars().find(PN)->second; 5628 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 5629 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5630 RdxDesc.getRecurrenceType(), 5631 TargetTransformInfo::ReductionFlags())) 5632 continue; 5633 T = RdxDesc.getRecurrenceType(); 5634 } 5635 5636 // Examine the stored values. 5637 if (auto *ST = dyn_cast<StoreInst>(&I)) 5638 T = ST->getValueOperand()->getType(); 5639 5640 assert(T->isSized() && 5641 "Expected the load/store/recurrence type to be sized"); 5642 5643 ElementTypesInLoop.insert(T); 5644 } 5645 } 5646 } 5647 5648 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5649 unsigned LoopCost) { 5650 // -- The interleave heuristics -- 5651 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5652 // There are many micro-architectural considerations that we can't predict 5653 // at this level. For example, frontend pressure (on decode or fetch) due to 5654 // code size, or the number and capabilities of the execution ports. 5655 // 5656 // We use the following heuristics to select the interleave count: 5657 // 1. If the code has reductions, then we interleave to break the cross 5658 // iteration dependency. 5659 // 2. If the loop is really small, then we interleave to reduce the loop 5660 // overhead. 5661 // 3. We don't interleave if we think that we will spill registers to memory 5662 // due to the increased register pressure. 5663 5664 if (!isScalarEpilogueAllowed()) 5665 return 1; 5666 5667 // We used the distance for the interleave count. 5668 if (Legal->getMaxSafeDepDistBytes() != -1U) 5669 return 1; 5670 5671 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5672 const bool HasReductions = !Legal->getReductionVars().empty(); 5673 // Do not interleave loops with a relatively small known or estimated trip 5674 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5675 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5676 // because with the above conditions interleaving can expose ILP and break 5677 // cross iteration dependences for reductions. 5678 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5679 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5680 return 1; 5681 5682 // If we did not calculate the cost for VF (because the user selected the VF) 5683 // then we calculate the cost of VF here. 5684 if (LoopCost == 0) { 5685 InstructionCost C = expectedCost(VF).first; 5686 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 5687 LoopCost = *C.getValue(); 5688 5689 // Loop body is free and there is no need for interleaving. 5690 if (LoopCost == 0) 5691 return 1; 5692 } 5693 5694 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5695 // We divide by these constants so assume that we have at least one 5696 // instruction that uses at least one register. 5697 for (auto& pair : R.MaxLocalUsers) { 5698 pair.second = std::max(pair.second, 1U); 5699 } 5700 5701 // We calculate the interleave count using the following formula. 5702 // Subtract the number of loop invariants from the number of available 5703 // registers. These registers are used by all of the interleaved instances. 5704 // Next, divide the remaining registers by the number of registers that is 5705 // required by the loop, in order to estimate how many parallel instances 5706 // fit without causing spills. All of this is rounded down if necessary to be 5707 // a power of two. We want power of two interleave count to simplify any 5708 // addressing operations or alignment considerations. 5709 // We also want power of two interleave counts to ensure that the induction 5710 // variable of the vector loop wraps to zero, when tail is folded by masking; 5711 // this currently happens when OptForSize, in which case IC is set to 1 above. 5712 unsigned IC = UINT_MAX; 5713 5714 for (auto& pair : R.MaxLocalUsers) { 5715 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5716 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5717 << " registers of " 5718 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5719 if (VF.isScalar()) { 5720 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5721 TargetNumRegisters = ForceTargetNumScalarRegs; 5722 } else { 5723 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5724 TargetNumRegisters = ForceTargetNumVectorRegs; 5725 } 5726 unsigned MaxLocalUsers = pair.second; 5727 unsigned LoopInvariantRegs = 0; 5728 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5729 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5730 5731 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5732 // Don't count the induction variable as interleaved. 5733 if (EnableIndVarRegisterHeur) { 5734 TmpIC = 5735 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5736 std::max(1U, (MaxLocalUsers - 1))); 5737 } 5738 5739 IC = std::min(IC, TmpIC); 5740 } 5741 5742 // Clamp the interleave ranges to reasonable counts. 5743 unsigned MaxInterleaveCount = 5744 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5745 5746 // Check if the user has overridden the max. 5747 if (VF.isScalar()) { 5748 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5749 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5750 } else { 5751 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5752 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5753 } 5754 5755 // If trip count is known or estimated compile time constant, limit the 5756 // interleave count to be less than the trip count divided by VF, provided it 5757 // is at least 1. 5758 // 5759 // For scalable vectors we can't know if interleaving is beneficial. It may 5760 // not be beneficial for small loops if none of the lanes in the second vector 5761 // iterations is enabled. However, for larger loops, there is likely to be a 5762 // similar benefit as for fixed-width vectors. For now, we choose to leave 5763 // the InterleaveCount as if vscale is '1', although if some information about 5764 // the vector is known (e.g. min vector size), we can make a better decision. 5765 if (BestKnownTC) { 5766 MaxInterleaveCount = 5767 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 5768 // Make sure MaxInterleaveCount is greater than 0. 5769 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 5770 } 5771 5772 assert(MaxInterleaveCount > 0 && 5773 "Maximum interleave count must be greater than 0"); 5774 5775 // Clamp the calculated IC to be between the 1 and the max interleave count 5776 // that the target and trip count allows. 5777 if (IC > MaxInterleaveCount) 5778 IC = MaxInterleaveCount; 5779 else 5780 // Make sure IC is greater than 0. 5781 IC = std::max(1u, IC); 5782 5783 assert(IC > 0 && "Interleave count must be greater than 0."); 5784 5785 // Interleave if we vectorized this loop and there is a reduction that could 5786 // benefit from interleaving. 5787 if (VF.isVector() && HasReductions) { 5788 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5789 return IC; 5790 } 5791 5792 // For any scalar loop that either requires runtime checks or predication we 5793 // are better off leaving this to the unroller. Note that if we've already 5794 // vectorized the loop we will have done the runtime check and so interleaving 5795 // won't require further checks. 5796 bool ScalarInterleavingRequiresPredication = 5797 (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) { 5798 return Legal->blockNeedsPredication(BB); 5799 })); 5800 bool ScalarInterleavingRequiresRuntimePointerCheck = 5801 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 5802 5803 // We want to interleave small loops in order to reduce the loop overhead and 5804 // potentially expose ILP opportunities. 5805 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 5806 << "LV: IC is " << IC << '\n' 5807 << "LV: VF is " << VF << '\n'); 5808 const bool AggressivelyInterleaveReductions = 5809 TTI.enableAggressiveInterleaving(HasReductions); 5810 if (!ScalarInterleavingRequiresRuntimePointerCheck && 5811 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) { 5812 // We assume that the cost overhead is 1 and we use the cost model 5813 // to estimate the cost of the loop and interleave until the cost of the 5814 // loop overhead is about 5% of the cost of the loop. 5815 unsigned SmallIC = 5816 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5817 5818 // Interleave until store/load ports (estimated by max interleave count) are 5819 // saturated. 5820 unsigned NumStores = Legal->getNumStores(); 5821 unsigned NumLoads = Legal->getNumLoads(); 5822 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5823 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5824 5825 // There is little point in interleaving for reductions containing selects 5826 // and compares when VF=1 since it may just create more overhead than it's 5827 // worth for loops with small trip counts. This is because we still have to 5828 // do the final reduction after the loop. 5829 bool HasSelectCmpReductions = 5830 HasReductions && 5831 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5832 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5833 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 5834 RdxDesc.getRecurrenceKind()); 5835 }); 5836 if (HasSelectCmpReductions) { 5837 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 5838 return 1; 5839 } 5840 5841 // If we have a scalar reduction (vector reductions are already dealt with 5842 // by this point), we can increase the critical path length if the loop 5843 // we're interleaving is inside another loop. For tree-wise reductions 5844 // set the limit to 2, and for ordered reductions it's best to disable 5845 // interleaving entirely. 5846 if (HasReductions && TheLoop->getLoopDepth() > 1) { 5847 bool HasOrderedReductions = 5848 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5849 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5850 return RdxDesc.isOrdered(); 5851 }); 5852 if (HasOrderedReductions) { 5853 LLVM_DEBUG( 5854 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 5855 return 1; 5856 } 5857 5858 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5859 SmallIC = std::min(SmallIC, F); 5860 StoresIC = std::min(StoresIC, F); 5861 LoadsIC = std::min(LoadsIC, F); 5862 } 5863 5864 if (EnableLoadStoreRuntimeInterleave && 5865 std::max(StoresIC, LoadsIC) > SmallIC) { 5866 LLVM_DEBUG( 5867 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5868 return std::max(StoresIC, LoadsIC); 5869 } 5870 5871 // If there are scalar reductions and TTI has enabled aggressive 5872 // interleaving for reductions, we will interleave to expose ILP. 5873 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 5874 AggressivelyInterleaveReductions) { 5875 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5876 // Interleave no less than SmallIC but not as aggressive as the normal IC 5877 // to satisfy the rare situation when resources are too limited. 5878 return std::max(IC / 2, SmallIC); 5879 } else { 5880 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5881 return SmallIC; 5882 } 5883 } 5884 5885 // Interleave if this is a large loop (small loops are already dealt with by 5886 // this point) that could benefit from interleaving. 5887 if (AggressivelyInterleaveReductions) { 5888 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5889 return IC; 5890 } 5891 5892 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5893 return 1; 5894 } 5895 5896 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5897 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 5898 // This function calculates the register usage by measuring the highest number 5899 // of values that are alive at a single location. Obviously, this is a very 5900 // rough estimation. We scan the loop in a topological order in order and 5901 // assign a number to each instruction. We use RPO to ensure that defs are 5902 // met before their users. We assume that each instruction that has in-loop 5903 // users starts an interval. We record every time that an in-loop value is 5904 // used, so we have a list of the first and last occurrences of each 5905 // instruction. Next, we transpose this data structure into a multi map that 5906 // holds the list of intervals that *end* at a specific location. This multi 5907 // map allows us to perform a linear search. We scan the instructions linearly 5908 // and record each time that a new interval starts, by placing it in a set. 5909 // If we find this value in the multi-map then we remove it from the set. 5910 // The max register usage is the maximum size of the set. 5911 // We also search for instructions that are defined outside the loop, but are 5912 // used inside the loop. We need this number separately from the max-interval 5913 // usage number because when we unroll, loop-invariant values do not take 5914 // more register. 5915 LoopBlocksDFS DFS(TheLoop); 5916 DFS.perform(LI); 5917 5918 RegisterUsage RU; 5919 5920 // Each 'key' in the map opens a new interval. The values 5921 // of the map are the index of the 'last seen' usage of the 5922 // instruction that is the key. 5923 using IntervalMap = DenseMap<Instruction *, unsigned>; 5924 5925 // Maps instruction to its index. 5926 SmallVector<Instruction *, 64> IdxToInstr; 5927 // Marks the end of each interval. 5928 IntervalMap EndPoint; 5929 // Saves the list of instruction indices that are used in the loop. 5930 SmallPtrSet<Instruction *, 8> Ends; 5931 // Saves the list of values that are used in the loop but are 5932 // defined outside the loop, such as arguments and constants. 5933 SmallPtrSet<Value *, 8> LoopInvariants; 5934 5935 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5936 for (Instruction &I : BB->instructionsWithoutDebug()) { 5937 IdxToInstr.push_back(&I); 5938 5939 // Save the end location of each USE. 5940 for (Value *U : I.operands()) { 5941 auto *Instr = dyn_cast<Instruction>(U); 5942 5943 // Ignore non-instruction values such as arguments, constants, etc. 5944 if (!Instr) 5945 continue; 5946 5947 // If this instruction is outside the loop then record it and continue. 5948 if (!TheLoop->contains(Instr)) { 5949 LoopInvariants.insert(Instr); 5950 continue; 5951 } 5952 5953 // Overwrite previous end points. 5954 EndPoint[Instr] = IdxToInstr.size(); 5955 Ends.insert(Instr); 5956 } 5957 } 5958 } 5959 5960 // Saves the list of intervals that end with the index in 'key'. 5961 using InstrList = SmallVector<Instruction *, 2>; 5962 DenseMap<unsigned, InstrList> TransposeEnds; 5963 5964 // Transpose the EndPoints to a list of values that end at each index. 5965 for (auto &Interval : EndPoint) 5966 TransposeEnds[Interval.second].push_back(Interval.first); 5967 5968 SmallPtrSet<Instruction *, 8> OpenIntervals; 5969 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5970 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5971 5972 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5973 5974 // A lambda that gets the register usage for the given type and VF. 5975 const auto &TTICapture = TTI; 5976 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 5977 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 5978 return 0; 5979 InstructionCost::CostType RegUsage = 5980 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 5981 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 5982 "Nonsensical values for register usage."); 5983 return RegUsage; 5984 }; 5985 5986 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5987 Instruction *I = IdxToInstr[i]; 5988 5989 // Remove all of the instructions that end at this location. 5990 InstrList &List = TransposeEnds[i]; 5991 for (Instruction *ToRemove : List) 5992 OpenIntervals.erase(ToRemove); 5993 5994 // Ignore instructions that are never used within the loop. 5995 if (!Ends.count(I)) 5996 continue; 5997 5998 // Skip ignored values. 5999 if (ValuesToIgnore.count(I)) 6000 continue; 6001 6002 // For each VF find the maximum usage of registers. 6003 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6004 // Count the number of live intervals. 6005 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6006 6007 if (VFs[j].isScalar()) { 6008 for (auto Inst : OpenIntervals) { 6009 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6010 if (RegUsage.find(ClassID) == RegUsage.end()) 6011 RegUsage[ClassID] = 1; 6012 else 6013 RegUsage[ClassID] += 1; 6014 } 6015 } else { 6016 collectUniformsAndScalars(VFs[j]); 6017 for (auto Inst : OpenIntervals) { 6018 // Skip ignored values for VF > 1. 6019 if (VecValuesToIgnore.count(Inst)) 6020 continue; 6021 if (isScalarAfterVectorization(Inst, VFs[j])) { 6022 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6023 if (RegUsage.find(ClassID) == RegUsage.end()) 6024 RegUsage[ClassID] = 1; 6025 else 6026 RegUsage[ClassID] += 1; 6027 } else { 6028 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6029 if (RegUsage.find(ClassID) == RegUsage.end()) 6030 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6031 else 6032 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6033 } 6034 } 6035 } 6036 6037 for (auto& pair : RegUsage) { 6038 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6039 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6040 else 6041 MaxUsages[j][pair.first] = pair.second; 6042 } 6043 } 6044 6045 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6046 << OpenIntervals.size() << '\n'); 6047 6048 // Add the current instruction to the list of open intervals. 6049 OpenIntervals.insert(I); 6050 } 6051 6052 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6053 SmallMapVector<unsigned, unsigned, 4> Invariant; 6054 6055 for (auto Inst : LoopInvariants) { 6056 unsigned Usage = 6057 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6058 unsigned ClassID = 6059 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6060 if (Invariant.find(ClassID) == Invariant.end()) 6061 Invariant[ClassID] = Usage; 6062 else 6063 Invariant[ClassID] += Usage; 6064 } 6065 6066 LLVM_DEBUG({ 6067 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6068 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6069 << " item\n"; 6070 for (const auto &pair : MaxUsages[i]) { 6071 dbgs() << "LV(REG): RegisterClass: " 6072 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6073 << " registers\n"; 6074 } 6075 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6076 << " item\n"; 6077 for (const auto &pair : Invariant) { 6078 dbgs() << "LV(REG): RegisterClass: " 6079 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6080 << " registers\n"; 6081 } 6082 }); 6083 6084 RU.LoopInvariantRegs = Invariant; 6085 RU.MaxLocalUsers = MaxUsages[i]; 6086 RUs[i] = RU; 6087 } 6088 6089 return RUs; 6090 } 6091 6092 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, 6093 ElementCount VF) { 6094 // TODO: Cost model for emulated masked load/store is completely 6095 // broken. This hack guides the cost model to use an artificially 6096 // high enough value to practically disable vectorization with such 6097 // operations, except where previously deployed legality hack allowed 6098 // using very low cost values. This is to avoid regressions coming simply 6099 // from moving "masked load/store" check from legality to cost model. 6100 // Masked Load/Gather emulation was previously never allowed. 6101 // Limited number of Masked Store/Scatter emulation was allowed. 6102 assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction"); 6103 return isa<LoadInst>(I) || 6104 (isa<StoreInst>(I) && 6105 NumPredStores > NumberOfStoresToPredicate); 6106 } 6107 6108 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6109 // If we aren't vectorizing the loop, or if we've already collected the 6110 // instructions to scalarize, there's nothing to do. Collection may already 6111 // have occurred if we have a user-selected VF and are now computing the 6112 // expected cost for interleaving. 6113 if (VF.isScalar() || VF.isZero() || 6114 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6115 return; 6116 6117 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6118 // not profitable to scalarize any instructions, the presence of VF in the 6119 // map will indicate that we've analyzed it already. 6120 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6121 6122 // Find all the instructions that are scalar with predication in the loop and 6123 // determine if it would be better to not if-convert the blocks they are in. 6124 // If so, we also record the instructions to scalarize. 6125 for (BasicBlock *BB : TheLoop->blocks()) { 6126 if (!blockNeedsPredicationForAnyReason(BB)) 6127 continue; 6128 for (Instruction &I : *BB) 6129 if (isScalarWithPredication(&I, VF)) { 6130 ScalarCostsTy ScalarCosts; 6131 // Do not apply discount if scalable, because that would lead to 6132 // invalid scalarization costs. 6133 // Do not apply discount logic if hacked cost is needed 6134 // for emulated masked memrefs. 6135 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) && 6136 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6137 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6138 // Remember that BB will remain after vectorization. 6139 PredicatedBBsAfterVectorization.insert(BB); 6140 } 6141 } 6142 } 6143 6144 int LoopVectorizationCostModel::computePredInstDiscount( 6145 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6146 assert(!isUniformAfterVectorization(PredInst, VF) && 6147 "Instruction marked uniform-after-vectorization will be predicated"); 6148 6149 // Initialize the discount to zero, meaning that the scalar version and the 6150 // vector version cost the same. 6151 InstructionCost Discount = 0; 6152 6153 // Holds instructions to analyze. The instructions we visit are mapped in 6154 // ScalarCosts. Those instructions are the ones that would be scalarized if 6155 // we find that the scalar version costs less. 6156 SmallVector<Instruction *, 8> Worklist; 6157 6158 // Returns true if the given instruction can be scalarized. 6159 auto canBeScalarized = [&](Instruction *I) -> bool { 6160 // We only attempt to scalarize instructions forming a single-use chain 6161 // from the original predicated block that would otherwise be vectorized. 6162 // Although not strictly necessary, we give up on instructions we know will 6163 // already be scalar to avoid traversing chains that are unlikely to be 6164 // beneficial. 6165 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6166 isScalarAfterVectorization(I, VF)) 6167 return false; 6168 6169 // If the instruction is scalar with predication, it will be analyzed 6170 // separately. We ignore it within the context of PredInst. 6171 if (isScalarWithPredication(I, VF)) 6172 return false; 6173 6174 // If any of the instruction's operands are uniform after vectorization, 6175 // the instruction cannot be scalarized. This prevents, for example, a 6176 // masked load from being scalarized. 6177 // 6178 // We assume we will only emit a value for lane zero of an instruction 6179 // marked uniform after vectorization, rather than VF identical values. 6180 // Thus, if we scalarize an instruction that uses a uniform, we would 6181 // create uses of values corresponding to the lanes we aren't emitting code 6182 // for. This behavior can be changed by allowing getScalarValue to clone 6183 // the lane zero values for uniforms rather than asserting. 6184 for (Use &U : I->operands()) 6185 if (auto *J = dyn_cast<Instruction>(U.get())) 6186 if (isUniformAfterVectorization(J, VF)) 6187 return false; 6188 6189 // Otherwise, we can scalarize the instruction. 6190 return true; 6191 }; 6192 6193 // Compute the expected cost discount from scalarizing the entire expression 6194 // feeding the predicated instruction. We currently only consider expressions 6195 // that are single-use instruction chains. 6196 Worklist.push_back(PredInst); 6197 while (!Worklist.empty()) { 6198 Instruction *I = Worklist.pop_back_val(); 6199 6200 // If we've already analyzed the instruction, there's nothing to do. 6201 if (ScalarCosts.find(I) != ScalarCosts.end()) 6202 continue; 6203 6204 // Compute the cost of the vector instruction. Note that this cost already 6205 // includes the scalarization overhead of the predicated instruction. 6206 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6207 6208 // Compute the cost of the scalarized instruction. This cost is the cost of 6209 // the instruction as if it wasn't if-converted and instead remained in the 6210 // predicated block. We will scale this cost by block probability after 6211 // computing the scalarization overhead. 6212 InstructionCost ScalarCost = 6213 VF.getFixedValue() * 6214 getInstructionCost(I, ElementCount::getFixed(1)).first; 6215 6216 // Compute the scalarization overhead of needed insertelement instructions 6217 // and phi nodes. 6218 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 6219 ScalarCost += TTI.getScalarizationOverhead( 6220 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6221 APInt::getAllOnes(VF.getFixedValue()), true, false); 6222 ScalarCost += 6223 VF.getFixedValue() * 6224 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6225 } 6226 6227 // Compute the scalarization overhead of needed extractelement 6228 // instructions. For each of the instruction's operands, if the operand can 6229 // be scalarized, add it to the worklist; otherwise, account for the 6230 // overhead. 6231 for (Use &U : I->operands()) 6232 if (auto *J = dyn_cast<Instruction>(U.get())) { 6233 assert(VectorType::isValidElementType(J->getType()) && 6234 "Instruction has non-scalar type"); 6235 if (canBeScalarized(J)) 6236 Worklist.push_back(J); 6237 else if (needsExtract(J, VF)) { 6238 ScalarCost += TTI.getScalarizationOverhead( 6239 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6240 APInt::getAllOnes(VF.getFixedValue()), false, true); 6241 } 6242 } 6243 6244 // Scale the total scalar cost by block probability. 6245 ScalarCost /= getReciprocalPredBlockProb(); 6246 6247 // Compute the discount. A non-negative discount means the vector version 6248 // of the instruction costs more, and scalarizing would be beneficial. 6249 Discount += VectorCost - ScalarCost; 6250 ScalarCosts[I] = ScalarCost; 6251 } 6252 6253 return *Discount.getValue(); 6254 } 6255 6256 LoopVectorizationCostModel::VectorizationCostTy 6257 LoopVectorizationCostModel::expectedCost( 6258 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6259 VectorizationCostTy Cost; 6260 6261 // For each block. 6262 for (BasicBlock *BB : TheLoop->blocks()) { 6263 VectorizationCostTy BlockCost; 6264 6265 // For each instruction in the old loop. 6266 for (Instruction &I : BB->instructionsWithoutDebug()) { 6267 // Skip ignored values. 6268 if (ValuesToIgnore.count(&I) || 6269 (VF.isVector() && VecValuesToIgnore.count(&I))) 6270 continue; 6271 6272 VectorizationCostTy C = getInstructionCost(&I, VF); 6273 6274 // Check if we should override the cost. 6275 if (C.first.isValid() && 6276 ForceTargetInstructionCost.getNumOccurrences() > 0) 6277 C.first = InstructionCost(ForceTargetInstructionCost); 6278 6279 // Keep a list of instructions with invalid costs. 6280 if (Invalid && !C.first.isValid()) 6281 Invalid->emplace_back(&I, VF); 6282 6283 BlockCost.first += C.first; 6284 BlockCost.second |= C.second; 6285 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6286 << " for VF " << VF << " For instruction: " << I 6287 << '\n'); 6288 } 6289 6290 // If we are vectorizing a predicated block, it will have been 6291 // if-converted. This means that the block's instructions (aside from 6292 // stores and instructions that may divide by zero) will now be 6293 // unconditionally executed. For the scalar case, we may not always execute 6294 // the predicated block, if it is an if-else block. Thus, scale the block's 6295 // cost by the probability of executing it. blockNeedsPredication from 6296 // Legal is used so as to not include all blocks in tail folded loops. 6297 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6298 BlockCost.first /= getReciprocalPredBlockProb(); 6299 6300 Cost.first += BlockCost.first; 6301 Cost.second |= BlockCost.second; 6302 } 6303 6304 return Cost; 6305 } 6306 6307 /// Gets Address Access SCEV after verifying that the access pattern 6308 /// is loop invariant except the induction variable dependence. 6309 /// 6310 /// This SCEV can be sent to the Target in order to estimate the address 6311 /// calculation cost. 6312 static const SCEV *getAddressAccessSCEV( 6313 Value *Ptr, 6314 LoopVectorizationLegality *Legal, 6315 PredicatedScalarEvolution &PSE, 6316 const Loop *TheLoop) { 6317 6318 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6319 if (!Gep) 6320 return nullptr; 6321 6322 // We are looking for a gep with all loop invariant indices except for one 6323 // which should be an induction variable. 6324 auto SE = PSE.getSE(); 6325 unsigned NumOperands = Gep->getNumOperands(); 6326 for (unsigned i = 1; i < NumOperands; ++i) { 6327 Value *Opd = Gep->getOperand(i); 6328 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6329 !Legal->isInductionVariable(Opd)) 6330 return nullptr; 6331 } 6332 6333 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6334 return PSE.getSCEV(Ptr); 6335 } 6336 6337 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6338 return Legal->hasStride(I->getOperand(0)) || 6339 Legal->hasStride(I->getOperand(1)); 6340 } 6341 6342 InstructionCost 6343 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6344 ElementCount VF) { 6345 assert(VF.isVector() && 6346 "Scalarization cost of instruction implies vectorization."); 6347 if (VF.isScalable()) 6348 return InstructionCost::getInvalid(); 6349 6350 Type *ValTy = getLoadStoreType(I); 6351 auto SE = PSE.getSE(); 6352 6353 unsigned AS = getLoadStoreAddressSpace(I); 6354 Value *Ptr = getLoadStorePointerOperand(I); 6355 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6356 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6357 // that it is being called from this specific place. 6358 6359 // Figure out whether the access is strided and get the stride value 6360 // if it's known in compile time 6361 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6362 6363 // Get the cost of the scalar memory instruction and address computation. 6364 InstructionCost Cost = 6365 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6366 6367 // Don't pass *I here, since it is scalar but will actually be part of a 6368 // vectorized loop where the user of it is a vectorized instruction. 6369 const Align Alignment = getLoadStoreAlignment(I); 6370 Cost += VF.getKnownMinValue() * 6371 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6372 AS, TTI::TCK_RecipThroughput); 6373 6374 // Get the overhead of the extractelement and insertelement instructions 6375 // we might create due to scalarization. 6376 Cost += getScalarizationOverhead(I, VF); 6377 6378 // If we have a predicated load/store, it will need extra i1 extracts and 6379 // conditional branches, but may not be executed for each vector lane. Scale 6380 // the cost by the probability of executing the predicated block. 6381 if (isPredicatedInst(I, VF)) { 6382 Cost /= getReciprocalPredBlockProb(); 6383 6384 // Add the cost of an i1 extract and a branch 6385 auto *Vec_i1Ty = 6386 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6387 Cost += TTI.getScalarizationOverhead( 6388 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6389 /*Insert=*/false, /*Extract=*/true); 6390 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6391 6392 if (useEmulatedMaskMemRefHack(I, VF)) 6393 // Artificially setting to a high enough value to practically disable 6394 // vectorization with such operations. 6395 Cost = 3000000; 6396 } 6397 6398 return Cost; 6399 } 6400 6401 InstructionCost 6402 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6403 ElementCount VF) { 6404 Type *ValTy = getLoadStoreType(I); 6405 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6406 Value *Ptr = getLoadStorePointerOperand(I); 6407 unsigned AS = getLoadStoreAddressSpace(I); 6408 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6409 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6410 6411 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6412 "Stride should be 1 or -1 for consecutive memory access"); 6413 const Align Alignment = getLoadStoreAlignment(I); 6414 InstructionCost Cost = 0; 6415 if (Legal->isMaskRequired(I)) 6416 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6417 CostKind); 6418 else 6419 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6420 CostKind, I); 6421 6422 bool Reverse = ConsecutiveStride < 0; 6423 if (Reverse) 6424 Cost += 6425 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6426 return Cost; 6427 } 6428 6429 InstructionCost 6430 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6431 ElementCount VF) { 6432 assert(Legal->isUniformMemOp(*I)); 6433 6434 Type *ValTy = getLoadStoreType(I); 6435 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6436 const Align Alignment = getLoadStoreAlignment(I); 6437 unsigned AS = getLoadStoreAddressSpace(I); 6438 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6439 if (isa<LoadInst>(I)) { 6440 return TTI.getAddressComputationCost(ValTy) + 6441 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6442 CostKind) + 6443 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6444 } 6445 StoreInst *SI = cast<StoreInst>(I); 6446 6447 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6448 return TTI.getAddressComputationCost(ValTy) + 6449 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6450 CostKind) + 6451 (isLoopInvariantStoreValue 6452 ? 0 6453 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6454 VF.getKnownMinValue() - 1)); 6455 } 6456 6457 InstructionCost 6458 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6459 ElementCount VF) { 6460 Type *ValTy = getLoadStoreType(I); 6461 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6462 const Align Alignment = getLoadStoreAlignment(I); 6463 const Value *Ptr = getLoadStorePointerOperand(I); 6464 6465 return TTI.getAddressComputationCost(VectorTy) + 6466 TTI.getGatherScatterOpCost( 6467 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6468 TargetTransformInfo::TCK_RecipThroughput, I); 6469 } 6470 6471 InstructionCost 6472 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6473 ElementCount VF) { 6474 // TODO: Once we have support for interleaving with scalable vectors 6475 // we can calculate the cost properly here. 6476 if (VF.isScalable()) 6477 return InstructionCost::getInvalid(); 6478 6479 Type *ValTy = getLoadStoreType(I); 6480 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6481 unsigned AS = getLoadStoreAddressSpace(I); 6482 6483 auto Group = getInterleavedAccessGroup(I); 6484 assert(Group && "Fail to get an interleaved access group."); 6485 6486 unsigned InterleaveFactor = Group->getFactor(); 6487 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6488 6489 // Holds the indices of existing members in the interleaved group. 6490 SmallVector<unsigned, 4> Indices; 6491 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6492 if (Group->getMember(IF)) 6493 Indices.push_back(IF); 6494 6495 // Calculate the cost of the whole interleaved group. 6496 bool UseMaskForGaps = 6497 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6498 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6499 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6500 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6501 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6502 6503 if (Group->isReverse()) { 6504 // TODO: Add support for reversed masked interleaved access. 6505 assert(!Legal->isMaskRequired(I) && 6506 "Reverse masked interleaved access not supported."); 6507 Cost += 6508 Group->getNumMembers() * 6509 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6510 } 6511 return Cost; 6512 } 6513 6514 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6515 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6516 using namespace llvm::PatternMatch; 6517 // Early exit for no inloop reductions 6518 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6519 return None; 6520 auto *VectorTy = cast<VectorType>(Ty); 6521 6522 // We are looking for a pattern of, and finding the minimal acceptable cost: 6523 // reduce(mul(ext(A), ext(B))) or 6524 // reduce(mul(A, B)) or 6525 // reduce(ext(A)) or 6526 // reduce(A). 6527 // The basic idea is that we walk down the tree to do that, finding the root 6528 // reduction instruction in InLoopReductionImmediateChains. From there we find 6529 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6530 // of the components. If the reduction cost is lower then we return it for the 6531 // reduction instruction and 0 for the other instructions in the pattern. If 6532 // it is not we return an invalid cost specifying the orignal cost method 6533 // should be used. 6534 Instruction *RetI = I; 6535 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6536 if (!RetI->hasOneUser()) 6537 return None; 6538 RetI = RetI->user_back(); 6539 } 6540 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6541 RetI->user_back()->getOpcode() == Instruction::Add) { 6542 if (!RetI->hasOneUser()) 6543 return None; 6544 RetI = RetI->user_back(); 6545 } 6546 6547 // Test if the found instruction is a reduction, and if not return an invalid 6548 // cost specifying the parent to use the original cost modelling. 6549 if (!InLoopReductionImmediateChains.count(RetI)) 6550 return None; 6551 6552 // Find the reduction this chain is a part of and calculate the basic cost of 6553 // the reduction on its own. 6554 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6555 Instruction *ReductionPhi = LastChain; 6556 while (!isa<PHINode>(ReductionPhi)) 6557 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6558 6559 const RecurrenceDescriptor &RdxDesc = 6560 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6561 6562 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6563 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6564 6565 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6566 // normal fmul instruction to the cost of the fadd reduction. 6567 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6568 BaseCost += 6569 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6570 6571 // If we're using ordered reductions then we can just return the base cost 6572 // here, since getArithmeticReductionCost calculates the full ordered 6573 // reduction cost when FP reassociation is not allowed. 6574 if (useOrderedReductions(RdxDesc)) 6575 return BaseCost; 6576 6577 // Get the operand that was not the reduction chain and match it to one of the 6578 // patterns, returning the better cost if it is found. 6579 Instruction *RedOp = RetI->getOperand(1) == LastChain 6580 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6581 : dyn_cast<Instruction>(RetI->getOperand(1)); 6582 6583 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6584 6585 Instruction *Op0, *Op1; 6586 if (RedOp && 6587 match(RedOp, 6588 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6589 match(Op0, m_ZExtOrSExt(m_Value())) && 6590 Op0->getOpcode() == Op1->getOpcode() && 6591 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6592 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6593 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6594 6595 // Matched reduce(ext(mul(ext(A), ext(B))) 6596 // Note that the extend opcodes need to all match, or if A==B they will have 6597 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6598 // which is equally fine. 6599 bool IsUnsigned = isa<ZExtInst>(Op0); 6600 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6601 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6602 6603 InstructionCost ExtCost = 6604 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6605 TTI::CastContextHint::None, CostKind, Op0); 6606 InstructionCost MulCost = 6607 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6608 InstructionCost Ext2Cost = 6609 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6610 TTI::CastContextHint::None, CostKind, RedOp); 6611 6612 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6613 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6614 CostKind); 6615 6616 if (RedCost.isValid() && 6617 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6618 return I == RetI ? RedCost : 0; 6619 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6620 !TheLoop->isLoopInvariant(RedOp)) { 6621 // Matched reduce(ext(A)) 6622 bool IsUnsigned = isa<ZExtInst>(RedOp); 6623 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6624 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6625 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6626 CostKind); 6627 6628 InstructionCost ExtCost = 6629 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6630 TTI::CastContextHint::None, CostKind, RedOp); 6631 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6632 return I == RetI ? RedCost : 0; 6633 } else if (RedOp && 6634 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6635 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6636 Op0->getOpcode() == Op1->getOpcode() && 6637 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6638 bool IsUnsigned = isa<ZExtInst>(Op0); 6639 Type *Op0Ty = Op0->getOperand(0)->getType(); 6640 Type *Op1Ty = Op1->getOperand(0)->getType(); 6641 Type *LargestOpTy = 6642 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 6643 : Op0Ty; 6644 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 6645 6646 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 6647 // different sizes. We take the largest type as the ext to reduce, and add 6648 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 6649 InstructionCost ExtCost0 = TTI.getCastInstrCost( 6650 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 6651 TTI::CastContextHint::None, CostKind, Op0); 6652 InstructionCost ExtCost1 = TTI.getCastInstrCost( 6653 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 6654 TTI::CastContextHint::None, CostKind, Op1); 6655 InstructionCost MulCost = 6656 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6657 6658 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6659 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6660 CostKind); 6661 InstructionCost ExtraExtCost = 0; 6662 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 6663 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 6664 ExtraExtCost = TTI.getCastInstrCost( 6665 ExtraExtOp->getOpcode(), ExtType, 6666 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 6667 TTI::CastContextHint::None, CostKind, ExtraExtOp); 6668 } 6669 6670 if (RedCost.isValid() && 6671 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 6672 return I == RetI ? RedCost : 0; 6673 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 6674 // Matched reduce(mul()) 6675 InstructionCost MulCost = 6676 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6677 6678 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6679 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 6680 CostKind); 6681 6682 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 6683 return I == RetI ? RedCost : 0; 6684 } 6685 } 6686 6687 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 6688 } 6689 6690 InstructionCost 6691 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6692 ElementCount VF) { 6693 // Calculate scalar cost only. Vectorization cost should be ready at this 6694 // moment. 6695 if (VF.isScalar()) { 6696 Type *ValTy = getLoadStoreType(I); 6697 const Align Alignment = getLoadStoreAlignment(I); 6698 unsigned AS = getLoadStoreAddressSpace(I); 6699 6700 return TTI.getAddressComputationCost(ValTy) + 6701 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6702 TTI::TCK_RecipThroughput, I); 6703 } 6704 return getWideningCost(I, VF); 6705 } 6706 6707 LoopVectorizationCostModel::VectorizationCostTy 6708 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6709 ElementCount VF) { 6710 // If we know that this instruction will remain uniform, check the cost of 6711 // the scalar version. 6712 if (isUniformAfterVectorization(I, VF)) 6713 VF = ElementCount::getFixed(1); 6714 6715 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6716 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6717 6718 // Forced scalars do not have any scalarization overhead. 6719 auto ForcedScalar = ForcedScalars.find(VF); 6720 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6721 auto InstSet = ForcedScalar->second; 6722 if (InstSet.count(I)) 6723 return VectorizationCostTy( 6724 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6725 VF.getKnownMinValue()), 6726 false); 6727 } 6728 6729 Type *VectorTy; 6730 InstructionCost C = getInstructionCost(I, VF, VectorTy); 6731 6732 bool TypeNotScalarized = false; 6733 if (VF.isVector() && VectorTy->isVectorTy()) { 6734 unsigned NumParts = TTI.getNumberOfParts(VectorTy); 6735 if (NumParts) 6736 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 6737 else 6738 C = InstructionCost::getInvalid(); 6739 } 6740 return VectorizationCostTy(C, TypeNotScalarized); 6741 } 6742 6743 InstructionCost 6744 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6745 ElementCount VF) const { 6746 6747 // There is no mechanism yet to create a scalable scalarization loop, 6748 // so this is currently Invalid. 6749 if (VF.isScalable()) 6750 return InstructionCost::getInvalid(); 6751 6752 if (VF.isScalar()) 6753 return 0; 6754 6755 InstructionCost Cost = 0; 6756 Type *RetTy = ToVectorTy(I->getType(), VF); 6757 if (!RetTy->isVoidTy() && 6758 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6759 Cost += TTI.getScalarizationOverhead( 6760 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 6761 false); 6762 6763 // Some targets keep addresses scalar. 6764 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6765 return Cost; 6766 6767 // Some targets support efficient element stores. 6768 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6769 return Cost; 6770 6771 // Collect operands to consider. 6772 CallInst *CI = dyn_cast<CallInst>(I); 6773 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 6774 6775 // Skip operands that do not require extraction/scalarization and do not incur 6776 // any overhead. 6777 SmallVector<Type *> Tys; 6778 for (auto *V : filterExtractingOperands(Ops, VF)) 6779 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 6780 return Cost + TTI.getOperandsScalarizationOverhead( 6781 filterExtractingOperands(Ops, VF), Tys); 6782 } 6783 6784 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6785 if (VF.isScalar()) 6786 return; 6787 NumPredStores = 0; 6788 for (BasicBlock *BB : TheLoop->blocks()) { 6789 // For each instruction in the old loop. 6790 for (Instruction &I : *BB) { 6791 Value *Ptr = getLoadStorePointerOperand(&I); 6792 if (!Ptr) 6793 continue; 6794 6795 // TODO: We should generate better code and update the cost model for 6796 // predicated uniform stores. Today they are treated as any other 6797 // predicated store (see added test cases in 6798 // invariant-store-vectorization.ll). 6799 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 6800 NumPredStores++; 6801 6802 if (Legal->isUniformMemOp(I)) { 6803 // TODO: Avoid replicating loads and stores instead of 6804 // relying on instcombine to remove them. 6805 // Load: Scalar load + broadcast 6806 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6807 InstructionCost Cost; 6808 if (isa<StoreInst>(&I) && VF.isScalable() && 6809 isLegalGatherOrScatter(&I, VF)) { 6810 Cost = getGatherScatterCost(&I, VF); 6811 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 6812 } else { 6813 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 6814 "Cannot yet scalarize uniform stores"); 6815 Cost = getUniformMemOpCost(&I, VF); 6816 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6817 } 6818 continue; 6819 } 6820 6821 // We assume that widening is the best solution when possible. 6822 if (memoryInstructionCanBeWidened(&I, VF)) { 6823 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 6824 int ConsecutiveStride = Legal->isConsecutivePtr( 6825 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 6826 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6827 "Expected consecutive stride."); 6828 InstWidening Decision = 6829 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6830 setWideningDecision(&I, VF, Decision, Cost); 6831 continue; 6832 } 6833 6834 // Choose between Interleaving, Gather/Scatter or Scalarization. 6835 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 6836 unsigned NumAccesses = 1; 6837 if (isAccessInterleaved(&I)) { 6838 auto Group = getInterleavedAccessGroup(&I); 6839 assert(Group && "Fail to get an interleaved access group."); 6840 6841 // Make one decision for the whole group. 6842 if (getWideningDecision(&I, VF) != CM_Unknown) 6843 continue; 6844 6845 NumAccesses = Group->getNumMembers(); 6846 if (interleavedAccessCanBeWidened(&I, VF)) 6847 InterleaveCost = getInterleaveGroupCost(&I, VF); 6848 } 6849 6850 InstructionCost GatherScatterCost = 6851 isLegalGatherOrScatter(&I, VF) 6852 ? getGatherScatterCost(&I, VF) * NumAccesses 6853 : InstructionCost::getInvalid(); 6854 6855 InstructionCost ScalarizationCost = 6856 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6857 6858 // Choose better solution for the current VF, 6859 // write down this decision and use it during vectorization. 6860 InstructionCost Cost; 6861 InstWidening Decision; 6862 if (InterleaveCost <= GatherScatterCost && 6863 InterleaveCost < ScalarizationCost) { 6864 Decision = CM_Interleave; 6865 Cost = InterleaveCost; 6866 } else if (GatherScatterCost < ScalarizationCost) { 6867 Decision = CM_GatherScatter; 6868 Cost = GatherScatterCost; 6869 } else { 6870 Decision = CM_Scalarize; 6871 Cost = ScalarizationCost; 6872 } 6873 // If the instructions belongs to an interleave group, the whole group 6874 // receives the same decision. The whole group receives the cost, but 6875 // the cost will actually be assigned to one instruction. 6876 if (auto Group = getInterleavedAccessGroup(&I)) 6877 setWideningDecision(Group, VF, Decision, Cost); 6878 else 6879 setWideningDecision(&I, VF, Decision, Cost); 6880 } 6881 } 6882 6883 // Make sure that any load of address and any other address computation 6884 // remains scalar unless there is gather/scatter support. This avoids 6885 // inevitable extracts into address registers, and also has the benefit of 6886 // activating LSR more, since that pass can't optimize vectorized 6887 // addresses. 6888 if (TTI.prefersVectorizedAddressing()) 6889 return; 6890 6891 // Start with all scalar pointer uses. 6892 SmallPtrSet<Instruction *, 8> AddrDefs; 6893 for (BasicBlock *BB : TheLoop->blocks()) 6894 for (Instruction &I : *BB) { 6895 Instruction *PtrDef = 6896 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6897 if (PtrDef && TheLoop->contains(PtrDef) && 6898 getWideningDecision(&I, VF) != CM_GatherScatter) 6899 AddrDefs.insert(PtrDef); 6900 } 6901 6902 // Add all instructions used to generate the addresses. 6903 SmallVector<Instruction *, 4> Worklist; 6904 append_range(Worklist, AddrDefs); 6905 while (!Worklist.empty()) { 6906 Instruction *I = Worklist.pop_back_val(); 6907 for (auto &Op : I->operands()) 6908 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6909 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6910 AddrDefs.insert(InstOp).second) 6911 Worklist.push_back(InstOp); 6912 } 6913 6914 for (auto *I : AddrDefs) { 6915 if (isa<LoadInst>(I)) { 6916 // Setting the desired widening decision should ideally be handled in 6917 // by cost functions, but since this involves the task of finding out 6918 // if the loaded register is involved in an address computation, it is 6919 // instead changed here when we know this is the case. 6920 InstWidening Decision = getWideningDecision(I, VF); 6921 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6922 // Scalarize a widened load of address. 6923 setWideningDecision( 6924 I, VF, CM_Scalarize, 6925 (VF.getKnownMinValue() * 6926 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 6927 else if (auto Group = getInterleavedAccessGroup(I)) { 6928 // Scalarize an interleave group of address loads. 6929 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6930 if (Instruction *Member = Group->getMember(I)) 6931 setWideningDecision( 6932 Member, VF, CM_Scalarize, 6933 (VF.getKnownMinValue() * 6934 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 6935 } 6936 } 6937 } else 6938 // Make sure I gets scalarized and a cost estimate without 6939 // scalarization overhead. 6940 ForcedScalars[VF].insert(I); 6941 } 6942 } 6943 6944 InstructionCost 6945 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 6946 Type *&VectorTy) { 6947 Type *RetTy = I->getType(); 6948 if (canTruncateToMinimalBitwidth(I, VF)) 6949 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6950 auto SE = PSE.getSE(); 6951 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6952 6953 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 6954 ElementCount VF) -> bool { 6955 if (VF.isScalar()) 6956 return true; 6957 6958 auto Scalarized = InstsToScalarize.find(VF); 6959 assert(Scalarized != InstsToScalarize.end() && 6960 "VF not yet analyzed for scalarization profitability"); 6961 return !Scalarized->second.count(I) && 6962 llvm::all_of(I->users(), [&](User *U) { 6963 auto *UI = cast<Instruction>(U); 6964 return !Scalarized->second.count(UI); 6965 }); 6966 }; 6967 (void) hasSingleCopyAfterVectorization; 6968 6969 if (isScalarAfterVectorization(I, VF)) { 6970 // With the exception of GEPs and PHIs, after scalarization there should 6971 // only be one copy of the instruction generated in the loop. This is 6972 // because the VF is either 1, or any instructions that need scalarizing 6973 // have already been dealt with by the the time we get here. As a result, 6974 // it means we don't have to multiply the instruction cost by VF. 6975 assert(I->getOpcode() == Instruction::GetElementPtr || 6976 I->getOpcode() == Instruction::PHI || 6977 (I->getOpcode() == Instruction::BitCast && 6978 I->getType()->isPointerTy()) || 6979 hasSingleCopyAfterVectorization(I, VF)); 6980 VectorTy = RetTy; 6981 } else 6982 VectorTy = ToVectorTy(RetTy, VF); 6983 6984 // TODO: We need to estimate the cost of intrinsic calls. 6985 switch (I->getOpcode()) { 6986 case Instruction::GetElementPtr: 6987 // We mark this instruction as zero-cost because the cost of GEPs in 6988 // vectorized code depends on whether the corresponding memory instruction 6989 // is scalarized or not. Therefore, we handle GEPs with the memory 6990 // instruction cost. 6991 return 0; 6992 case Instruction::Br: { 6993 // In cases of scalarized and predicated instructions, there will be VF 6994 // predicated blocks in the vectorized loop. Each branch around these 6995 // blocks requires also an extract of its vector compare i1 element. 6996 bool ScalarPredicatedBB = false; 6997 BranchInst *BI = cast<BranchInst>(I); 6998 if (VF.isVector() && BI->isConditional() && 6999 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7000 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7001 ScalarPredicatedBB = true; 7002 7003 if (ScalarPredicatedBB) { 7004 // Not possible to scalarize scalable vector with predicated instructions. 7005 if (VF.isScalable()) 7006 return InstructionCost::getInvalid(); 7007 // Return cost for branches around scalarized and predicated blocks. 7008 auto *Vec_i1Ty = 7009 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7010 return ( 7011 TTI.getScalarizationOverhead( 7012 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7013 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7014 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7015 // The back-edge branch will remain, as will all scalar branches. 7016 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7017 else 7018 // This branch will be eliminated by if-conversion. 7019 return 0; 7020 // Note: We currently assume zero cost for an unconditional branch inside 7021 // a predicated block since it will become a fall-through, although we 7022 // may decide in the future to call TTI for all branches. 7023 } 7024 case Instruction::PHI: { 7025 auto *Phi = cast<PHINode>(I); 7026 7027 // First-order recurrences are replaced by vector shuffles inside the loop. 7028 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7029 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7030 return TTI.getShuffleCost( 7031 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7032 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7033 7034 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7035 // converted into select instructions. We require N - 1 selects per phi 7036 // node, where N is the number of incoming values. 7037 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7038 return (Phi->getNumIncomingValues() - 1) * 7039 TTI.getCmpSelInstrCost( 7040 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7041 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7042 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7043 7044 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7045 } 7046 case Instruction::UDiv: 7047 case Instruction::SDiv: 7048 case Instruction::URem: 7049 case Instruction::SRem: 7050 // If we have a predicated instruction, it may not be executed for each 7051 // vector lane. Get the scalarization cost and scale this amount by the 7052 // probability of executing the predicated block. If the instruction is not 7053 // predicated, we fall through to the next case. 7054 if (VF.isVector() && isScalarWithPredication(I, VF)) { 7055 InstructionCost Cost = 0; 7056 7057 // These instructions have a non-void type, so account for the phi nodes 7058 // that we will create. This cost is likely to be zero. The phi node 7059 // cost, if any, should be scaled by the block probability because it 7060 // models a copy at the end of each predicated block. 7061 Cost += VF.getKnownMinValue() * 7062 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7063 7064 // The cost of the non-predicated instruction. 7065 Cost += VF.getKnownMinValue() * 7066 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7067 7068 // The cost of insertelement and extractelement instructions needed for 7069 // scalarization. 7070 Cost += getScalarizationOverhead(I, VF); 7071 7072 // Scale the cost by the probability of executing the predicated blocks. 7073 // This assumes the predicated block for each vector lane is equally 7074 // likely. 7075 return Cost / getReciprocalPredBlockProb(); 7076 } 7077 LLVM_FALLTHROUGH; 7078 case Instruction::Add: 7079 case Instruction::FAdd: 7080 case Instruction::Sub: 7081 case Instruction::FSub: 7082 case Instruction::Mul: 7083 case Instruction::FMul: 7084 case Instruction::FDiv: 7085 case Instruction::FRem: 7086 case Instruction::Shl: 7087 case Instruction::LShr: 7088 case Instruction::AShr: 7089 case Instruction::And: 7090 case Instruction::Or: 7091 case Instruction::Xor: { 7092 // Since we will replace the stride by 1 the multiplication should go away. 7093 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7094 return 0; 7095 7096 // Detect reduction patterns 7097 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7098 return *RedCost; 7099 7100 // Certain instructions can be cheaper to vectorize if they have a constant 7101 // second vector operand. One example of this are shifts on x86. 7102 Value *Op2 = I->getOperand(1); 7103 TargetTransformInfo::OperandValueProperties Op2VP; 7104 TargetTransformInfo::OperandValueKind Op2VK = 7105 TTI.getOperandInfo(Op2, Op2VP); 7106 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7107 Op2VK = TargetTransformInfo::OK_UniformValue; 7108 7109 SmallVector<const Value *, 4> Operands(I->operand_values()); 7110 return TTI.getArithmeticInstrCost( 7111 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7112 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7113 } 7114 case Instruction::FNeg: { 7115 return TTI.getArithmeticInstrCost( 7116 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7117 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7118 TargetTransformInfo::OP_None, I->getOperand(0), I); 7119 } 7120 case Instruction::Select: { 7121 SelectInst *SI = cast<SelectInst>(I); 7122 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7123 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7124 7125 const Value *Op0, *Op1; 7126 using namespace llvm::PatternMatch; 7127 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7128 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7129 // select x, y, false --> x & y 7130 // select x, true, y --> x | y 7131 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7132 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7133 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7134 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7135 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7136 Op1->getType()->getScalarSizeInBits() == 1); 7137 7138 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7139 return TTI.getArithmeticInstrCost( 7140 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7141 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7142 } 7143 7144 Type *CondTy = SI->getCondition()->getType(); 7145 if (!ScalarCond) 7146 CondTy = VectorType::get(CondTy, VF); 7147 7148 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7149 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7150 Pred = Cmp->getPredicate(); 7151 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7152 CostKind, I); 7153 } 7154 case Instruction::ICmp: 7155 case Instruction::FCmp: { 7156 Type *ValTy = I->getOperand(0)->getType(); 7157 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7158 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7159 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7160 VectorTy = ToVectorTy(ValTy, VF); 7161 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7162 cast<CmpInst>(I)->getPredicate(), CostKind, 7163 I); 7164 } 7165 case Instruction::Store: 7166 case Instruction::Load: { 7167 ElementCount Width = VF; 7168 if (Width.isVector()) { 7169 InstWidening Decision = getWideningDecision(I, Width); 7170 assert(Decision != CM_Unknown && 7171 "CM decision should be taken at this point"); 7172 if (Decision == CM_Scalarize) 7173 Width = ElementCount::getFixed(1); 7174 } 7175 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7176 return getMemoryInstructionCost(I, VF); 7177 } 7178 case Instruction::BitCast: 7179 if (I->getType()->isPointerTy()) 7180 return 0; 7181 LLVM_FALLTHROUGH; 7182 case Instruction::ZExt: 7183 case Instruction::SExt: 7184 case Instruction::FPToUI: 7185 case Instruction::FPToSI: 7186 case Instruction::FPExt: 7187 case Instruction::PtrToInt: 7188 case Instruction::IntToPtr: 7189 case Instruction::SIToFP: 7190 case Instruction::UIToFP: 7191 case Instruction::Trunc: 7192 case Instruction::FPTrunc: { 7193 // Computes the CastContextHint from a Load/Store instruction. 7194 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7195 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7196 "Expected a load or a store!"); 7197 7198 if (VF.isScalar() || !TheLoop->contains(I)) 7199 return TTI::CastContextHint::Normal; 7200 7201 switch (getWideningDecision(I, VF)) { 7202 case LoopVectorizationCostModel::CM_GatherScatter: 7203 return TTI::CastContextHint::GatherScatter; 7204 case LoopVectorizationCostModel::CM_Interleave: 7205 return TTI::CastContextHint::Interleave; 7206 case LoopVectorizationCostModel::CM_Scalarize: 7207 case LoopVectorizationCostModel::CM_Widen: 7208 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7209 : TTI::CastContextHint::Normal; 7210 case LoopVectorizationCostModel::CM_Widen_Reverse: 7211 return TTI::CastContextHint::Reversed; 7212 case LoopVectorizationCostModel::CM_Unknown: 7213 llvm_unreachable("Instr did not go through cost modelling?"); 7214 } 7215 7216 llvm_unreachable("Unhandled case!"); 7217 }; 7218 7219 unsigned Opcode = I->getOpcode(); 7220 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7221 // For Trunc, the context is the only user, which must be a StoreInst. 7222 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7223 if (I->hasOneUse()) 7224 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7225 CCH = ComputeCCH(Store); 7226 } 7227 // For Z/Sext, the context is the operand, which must be a LoadInst. 7228 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7229 Opcode == Instruction::FPExt) { 7230 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7231 CCH = ComputeCCH(Load); 7232 } 7233 7234 // We optimize the truncation of induction variables having constant 7235 // integer steps. The cost of these truncations is the same as the scalar 7236 // operation. 7237 if (isOptimizableIVTruncate(I, VF)) { 7238 auto *Trunc = cast<TruncInst>(I); 7239 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7240 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7241 } 7242 7243 // Detect reduction patterns 7244 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7245 return *RedCost; 7246 7247 Type *SrcScalarTy = I->getOperand(0)->getType(); 7248 Type *SrcVecTy = 7249 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7250 if (canTruncateToMinimalBitwidth(I, VF)) { 7251 // This cast is going to be shrunk. This may remove the cast or it might 7252 // turn it into slightly different cast. For example, if MinBW == 16, 7253 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7254 // 7255 // Calculate the modified src and dest types. 7256 Type *MinVecTy = VectorTy; 7257 if (Opcode == Instruction::Trunc) { 7258 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7259 VectorTy = 7260 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7261 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7262 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7263 VectorTy = 7264 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7265 } 7266 } 7267 7268 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7269 } 7270 case Instruction::Call: { 7271 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7272 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7273 return *RedCost; 7274 bool NeedToScalarize; 7275 CallInst *CI = cast<CallInst>(I); 7276 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7277 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7278 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7279 return std::min(CallCost, IntrinsicCost); 7280 } 7281 return CallCost; 7282 } 7283 case Instruction::ExtractValue: 7284 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7285 case Instruction::Alloca: 7286 // We cannot easily widen alloca to a scalable alloca, as 7287 // the result would need to be a vector of pointers. 7288 if (VF.isScalable()) 7289 return InstructionCost::getInvalid(); 7290 LLVM_FALLTHROUGH; 7291 default: 7292 // This opcode is unknown. Assume that it is the same as 'mul'. 7293 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7294 } // end of switch. 7295 } 7296 7297 char LoopVectorize::ID = 0; 7298 7299 static const char lv_name[] = "Loop Vectorization"; 7300 7301 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7302 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7303 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7304 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7305 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7306 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7307 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7308 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7309 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7310 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7311 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7312 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7313 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7314 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7315 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7316 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7317 7318 namespace llvm { 7319 7320 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7321 7322 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7323 bool VectorizeOnlyWhenForced) { 7324 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7325 } 7326 7327 } // end namespace llvm 7328 7329 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7330 // Check if the pointer operand of a load or store instruction is 7331 // consecutive. 7332 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7333 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7334 return false; 7335 } 7336 7337 void LoopVectorizationCostModel::collectValuesToIgnore() { 7338 // Ignore ephemeral values. 7339 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7340 7341 // Ignore type-promoting instructions we identified during reduction 7342 // detection. 7343 for (auto &Reduction : Legal->getReductionVars()) { 7344 const RecurrenceDescriptor &RedDes = Reduction.second; 7345 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7346 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7347 } 7348 // Ignore type-casting instructions we identified during induction 7349 // detection. 7350 for (auto &Induction : Legal->getInductionVars()) { 7351 const InductionDescriptor &IndDes = Induction.second; 7352 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7353 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7354 } 7355 } 7356 7357 void LoopVectorizationCostModel::collectInLoopReductions() { 7358 for (auto &Reduction : Legal->getReductionVars()) { 7359 PHINode *Phi = Reduction.first; 7360 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7361 7362 // We don't collect reductions that are type promoted (yet). 7363 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7364 continue; 7365 7366 // If the target would prefer this reduction to happen "in-loop", then we 7367 // want to record it as such. 7368 unsigned Opcode = RdxDesc.getOpcode(); 7369 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7370 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7371 TargetTransformInfo::ReductionFlags())) 7372 continue; 7373 7374 // Check that we can correctly put the reductions into the loop, by 7375 // finding the chain of operations that leads from the phi to the loop 7376 // exit value. 7377 SmallVector<Instruction *, 4> ReductionOperations = 7378 RdxDesc.getReductionOpChain(Phi, TheLoop); 7379 bool InLoop = !ReductionOperations.empty(); 7380 if (InLoop) { 7381 InLoopReductionChains[Phi] = ReductionOperations; 7382 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7383 Instruction *LastChain = Phi; 7384 for (auto *I : ReductionOperations) { 7385 InLoopReductionImmediateChains[I] = LastChain; 7386 LastChain = I; 7387 } 7388 } 7389 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7390 << " reduction for phi: " << *Phi << "\n"); 7391 } 7392 } 7393 7394 // TODO: we could return a pair of values that specify the max VF and 7395 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7396 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7397 // doesn't have a cost model that can choose which plan to execute if 7398 // more than one is generated. 7399 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7400 LoopVectorizationCostModel &CM) { 7401 unsigned WidestType; 7402 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7403 return WidestVectorRegBits / WidestType; 7404 } 7405 7406 VectorizationFactor 7407 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7408 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7409 ElementCount VF = UserVF; 7410 // Outer loop handling: They may require CFG and instruction level 7411 // transformations before even evaluating whether vectorization is profitable. 7412 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7413 // the vectorization pipeline. 7414 if (!OrigLoop->isInnermost()) { 7415 // If the user doesn't provide a vectorization factor, determine a 7416 // reasonable one. 7417 if (UserVF.isZero()) { 7418 VF = ElementCount::getFixed(determineVPlanVF( 7419 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7420 .getFixedSize(), 7421 CM)); 7422 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7423 7424 // Make sure we have a VF > 1 for stress testing. 7425 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7426 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7427 << "overriding computed VF.\n"); 7428 VF = ElementCount::getFixed(4); 7429 } 7430 } 7431 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7432 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7433 "VF needs to be a power of two"); 7434 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7435 << "VF " << VF << " to build VPlans.\n"); 7436 buildVPlans(VF, VF); 7437 7438 // For VPlan build stress testing, we bail out after VPlan construction. 7439 if (VPlanBuildStressTest) 7440 return VectorizationFactor::Disabled(); 7441 7442 return {VF, 0 /*Cost*/}; 7443 } 7444 7445 LLVM_DEBUG( 7446 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7447 "VPlan-native path.\n"); 7448 return VectorizationFactor::Disabled(); 7449 } 7450 7451 Optional<VectorizationFactor> 7452 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7453 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7454 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7455 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7456 return None; 7457 7458 // Invalidate interleave groups if all blocks of loop will be predicated. 7459 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7460 !useMaskedInterleavedAccesses(*TTI)) { 7461 LLVM_DEBUG( 7462 dbgs() 7463 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7464 "which requires masked-interleaved support.\n"); 7465 if (CM.InterleaveInfo.invalidateGroups()) 7466 // Invalidating interleave groups also requires invalidating all decisions 7467 // based on them, which includes widening decisions and uniform and scalar 7468 // values. 7469 CM.invalidateCostModelingDecisions(); 7470 } 7471 7472 ElementCount MaxUserVF = 7473 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7474 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7475 if (!UserVF.isZero() && UserVFIsLegal) { 7476 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7477 "VF needs to be a power of two"); 7478 // Collect the instructions (and their associated costs) that will be more 7479 // profitable to scalarize. 7480 if (CM.selectUserVectorizationFactor(UserVF)) { 7481 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7482 CM.collectInLoopReductions(); 7483 buildVPlansWithVPRecipes(UserVF, UserVF); 7484 LLVM_DEBUG(printPlans(dbgs())); 7485 return {{UserVF, 0}}; 7486 } else 7487 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7488 "InvalidCost", ORE, OrigLoop); 7489 } 7490 7491 // Populate the set of Vectorization Factor Candidates. 7492 ElementCountSet VFCandidates; 7493 for (auto VF = ElementCount::getFixed(1); 7494 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7495 VFCandidates.insert(VF); 7496 for (auto VF = ElementCount::getScalable(1); 7497 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7498 VFCandidates.insert(VF); 7499 7500 for (const auto &VF : VFCandidates) { 7501 // Collect Uniform and Scalar instructions after vectorization with VF. 7502 CM.collectUniformsAndScalars(VF); 7503 7504 // Collect the instructions (and their associated costs) that will be more 7505 // profitable to scalarize. 7506 if (VF.isVector()) 7507 CM.collectInstsToScalarize(VF); 7508 } 7509 7510 CM.collectInLoopReductions(); 7511 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7512 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7513 7514 LLVM_DEBUG(printPlans(dbgs())); 7515 if (!MaxFactors.hasVector()) 7516 return VectorizationFactor::Disabled(); 7517 7518 // Select the optimal vectorization factor. 7519 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 7520 7521 // Check if it is profitable to vectorize with runtime checks. 7522 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 7523 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 7524 bool PragmaThresholdReached = 7525 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 7526 bool ThresholdReached = 7527 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 7528 if ((ThresholdReached && !Hints.allowReordering()) || 7529 PragmaThresholdReached) { 7530 ORE->emit([&]() { 7531 return OptimizationRemarkAnalysisAliasing( 7532 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 7533 OrigLoop->getHeader()) 7534 << "loop not vectorized: cannot prove it is safe to reorder " 7535 "memory operations"; 7536 }); 7537 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 7538 Hints.emitRemarkWithHints(); 7539 return VectorizationFactor::Disabled(); 7540 } 7541 } 7542 return SelectedVF; 7543 } 7544 7545 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7546 assert(count_if(VPlans, 7547 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7548 1 && 7549 "Best VF has not a single VPlan."); 7550 7551 for (const VPlanPtr &Plan : VPlans) { 7552 if (Plan->hasVF(VF)) 7553 return *Plan.get(); 7554 } 7555 llvm_unreachable("No plan found!"); 7556 } 7557 7558 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7559 SmallVector<Metadata *, 4> MDs; 7560 // Reserve first location for self reference to the LoopID metadata node. 7561 MDs.push_back(nullptr); 7562 bool IsUnrollMetadata = false; 7563 MDNode *LoopID = L->getLoopID(); 7564 if (LoopID) { 7565 // First find existing loop unrolling disable metadata. 7566 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7567 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7568 if (MD) { 7569 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7570 IsUnrollMetadata = 7571 S && S->getString().startswith("llvm.loop.unroll.disable"); 7572 } 7573 MDs.push_back(LoopID->getOperand(i)); 7574 } 7575 } 7576 7577 if (!IsUnrollMetadata) { 7578 // Add runtime unroll disable metadata. 7579 LLVMContext &Context = L->getHeader()->getContext(); 7580 SmallVector<Metadata *, 1> DisableOperands; 7581 DisableOperands.push_back( 7582 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7583 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7584 MDs.push_back(DisableNode); 7585 MDNode *NewLoopID = MDNode::get(Context, MDs); 7586 // Set operand 0 to refer to the loop id itself. 7587 NewLoopID->replaceOperandWith(0, NewLoopID); 7588 L->setLoopID(NewLoopID); 7589 } 7590 } 7591 7592 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7593 VPlan &BestVPlan, 7594 InnerLoopVectorizer &ILV, 7595 DominatorTree *DT) { 7596 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7597 << '\n'); 7598 7599 // Perform the actual loop transformation. 7600 7601 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7602 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7603 Value *CanonicalIVStartValue; 7604 std::tie(State.CFG.VectorPreHeader, CanonicalIVStartValue) = 7605 ILV.createVectorizedLoopSkeleton(); 7606 ILV.collectPoisonGeneratingRecipes(State); 7607 7608 ILV.printDebugTracesAtStart(); 7609 7610 //===------------------------------------------------===// 7611 // 7612 // Notice: any optimization or new instruction that go 7613 // into the code below should also be implemented in 7614 // the cost-model. 7615 // 7616 //===------------------------------------------------===// 7617 7618 // 2. Copy and widen instructions from the old loop into the new loop. 7619 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7620 ILV.getOrCreateVectorTripCount(nullptr), 7621 CanonicalIVStartValue, State); 7622 BestVPlan.execute(&State); 7623 7624 // Keep all loop hints from the original loop on the vector loop (we'll 7625 // replace the vectorizer-specific hints below). 7626 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7627 7628 Optional<MDNode *> VectorizedLoopID = 7629 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7630 LLVMLoopVectorizeFollowupVectorized}); 7631 7632 Loop *L = LI->getLoopFor(State.CFG.PrevBB); 7633 if (VectorizedLoopID.hasValue()) 7634 L->setLoopID(VectorizedLoopID.getValue()); 7635 else { 7636 // Keep all loop hints from the original loop on the vector loop (we'll 7637 // replace the vectorizer-specific hints below). 7638 if (MDNode *LID = OrigLoop->getLoopID()) 7639 L->setLoopID(LID); 7640 7641 LoopVectorizeHints Hints(L, true, *ORE); 7642 Hints.setAlreadyVectorized(); 7643 } 7644 // Disable runtime unrolling when vectorizing the epilogue loop. 7645 if (CanonicalIVStartValue) 7646 AddRuntimeUnrollDisableMetaData(L); 7647 7648 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7649 // predication, updating analyses. 7650 ILV.fixVectorizedLoop(State); 7651 7652 ILV.printDebugTracesAtEnd(); 7653 } 7654 7655 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7656 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 7657 for (const auto &Plan : VPlans) 7658 if (PrintVPlansInDotFormat) 7659 Plan->printDOT(O); 7660 else 7661 Plan->print(O); 7662 } 7663 #endif 7664 7665 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7666 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7667 7668 // We create new control-flow for the vectorized loop, so the original exit 7669 // conditions will be dead after vectorization if it's only used by the 7670 // terminator 7671 SmallVector<BasicBlock*> ExitingBlocks; 7672 OrigLoop->getExitingBlocks(ExitingBlocks); 7673 for (auto *BB : ExitingBlocks) { 7674 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 7675 if (!Cmp || !Cmp->hasOneUse()) 7676 continue; 7677 7678 // TODO: we should introduce a getUniqueExitingBlocks on Loop 7679 if (!DeadInstructions.insert(Cmp).second) 7680 continue; 7681 7682 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7683 // TODO: can recurse through operands in general 7684 for (Value *Op : Cmp->operands()) { 7685 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7686 DeadInstructions.insert(cast<Instruction>(Op)); 7687 } 7688 } 7689 7690 // We create new "steps" for induction variable updates to which the original 7691 // induction variables map. An original update instruction will be dead if 7692 // all its users except the induction variable are dead. 7693 auto *Latch = OrigLoop->getLoopLatch(); 7694 for (auto &Induction : Legal->getInductionVars()) { 7695 PHINode *Ind = Induction.first; 7696 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7697 7698 // If the tail is to be folded by masking, the primary induction variable, 7699 // if exists, isn't dead: it will be used for masking. Don't kill it. 7700 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 7701 continue; 7702 7703 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7704 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7705 })) 7706 DeadInstructions.insert(IndUpdate); 7707 } 7708 } 7709 7710 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7711 7712 //===--------------------------------------------------------------------===// 7713 // EpilogueVectorizerMainLoop 7714 //===--------------------------------------------------------------------===// 7715 7716 /// This function is partially responsible for generating the control flow 7717 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7718 std::pair<BasicBlock *, Value *> 7719 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 7720 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7721 7722 // Workaround! Compute the trip count of the original loop and cache it 7723 // before we start modifying the CFG. This code has a systemic problem 7724 // wherein it tries to run analysis over partially constructed IR; this is 7725 // wrong, and not simply for SCEV. The trip count of the original loop 7726 // simply happens to be prone to hitting this in practice. In theory, we 7727 // can hit the same issue for any SCEV, or ValueTracking query done during 7728 // mutation. See PR49900. 7729 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 7730 createVectorLoopSkeleton(""); 7731 7732 // Generate the code to check the minimum iteration count of the vector 7733 // epilogue (see below). 7734 EPI.EpilogueIterationCountCheck = 7735 emitMinimumIterationCountCheck(LoopScalarPreHeader, true); 7736 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7737 7738 // Generate the code to check any assumptions that we've made for SCEV 7739 // expressions. 7740 EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader); 7741 7742 // Generate the code that checks at runtime if arrays overlap. We put the 7743 // checks into a separate block to make the more common case of few elements 7744 // faster. 7745 EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader); 7746 7747 // Generate the iteration count check for the main loop, *after* the check 7748 // for the epilogue loop, so that the path-length is shorter for the case 7749 // that goes directly through the vector epilogue. The longer-path length for 7750 // the main loop is compensated for, by the gain from vectorizing the larger 7751 // trip count. Note: the branch will get updated later on when we vectorize 7752 // the epilogue. 7753 EPI.MainLoopIterationCountCheck = 7754 emitMinimumIterationCountCheck(LoopScalarPreHeader, false); 7755 7756 // Generate the induction variable. 7757 Value *CountRoundDown = getOrCreateVectorTripCount(LoopVectorPreHeader); 7758 EPI.VectorTripCount = CountRoundDown; 7759 7760 // Skip induction resume value creation here because they will be created in 7761 // the second pass. If we created them here, they wouldn't be used anyway, 7762 // because the vplan in the second pass still contains the inductions from the 7763 // original loop. 7764 7765 return {completeLoopSkeleton(OrigLoopID), nullptr}; 7766 } 7767 7768 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 7769 LLVM_DEBUG({ 7770 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 7771 << "Main Loop VF:" << EPI.MainLoopVF 7772 << ", Main Loop UF:" << EPI.MainLoopUF 7773 << ", Epilogue Loop VF:" << EPI.EpilogueVF 7774 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7775 }); 7776 } 7777 7778 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 7779 DEBUG_WITH_TYPE(VerboseDebug, { 7780 dbgs() << "intermediate fn:\n" 7781 << *OrigLoop->getHeader()->getParent() << "\n"; 7782 }); 7783 } 7784 7785 BasicBlock * 7786 EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(BasicBlock *Bypass, 7787 bool ForEpilogue) { 7788 assert(Bypass && "Expected valid bypass basic block."); 7789 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 7790 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 7791 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 7792 // Reuse existing vector loop preheader for TC checks. 7793 // Note that new preheader block is generated for vector loop. 7794 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 7795 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 7796 7797 // Generate code to check if the loop's trip count is less than VF * UF of the 7798 // main vector loop. 7799 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 7800 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7801 7802 Value *CheckMinIters = Builder.CreateICmp( 7803 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 7804 "min.iters.check"); 7805 7806 if (!ForEpilogue) 7807 TCCheckBlock->setName("vector.main.loop.iter.check"); 7808 7809 // Create new preheader for vector loop. 7810 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 7811 DT, LI, nullptr, "vector.ph"); 7812 7813 if (ForEpilogue) { 7814 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 7815 DT->getNode(Bypass)->getIDom()) && 7816 "TC check is expected to dominate Bypass"); 7817 7818 // Update dominator for Bypass & LoopExit. 7819 DT->changeImmediateDominator(Bypass, TCCheckBlock); 7820 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7821 // For loops with multiple exits, there's no edge from the middle block 7822 // to exit blocks (as the epilogue must run) and thus no need to update 7823 // the immediate dominator of the exit blocks. 7824 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 7825 7826 LoopBypassBlocks.push_back(TCCheckBlock); 7827 7828 // Save the trip count so we don't have to regenerate it in the 7829 // vec.epilog.iter.check. This is safe to do because the trip count 7830 // generated here dominates the vector epilog iter check. 7831 EPI.TripCount = Count; 7832 } 7833 7834 ReplaceInstWithInst( 7835 TCCheckBlock->getTerminator(), 7836 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7837 7838 return TCCheckBlock; 7839 } 7840 7841 //===--------------------------------------------------------------------===// 7842 // EpilogueVectorizerEpilogueLoop 7843 //===--------------------------------------------------------------------===// 7844 7845 /// This function is partially responsible for generating the control flow 7846 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7847 std::pair<BasicBlock *, Value *> 7848 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 7849 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7850 createVectorLoopSkeleton("vec.epilog."); 7851 7852 // Now, compare the remaining count and if there aren't enough iterations to 7853 // execute the vectorized epilogue skip to the scalar part. 7854 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 7855 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 7856 LoopVectorPreHeader = 7857 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 7858 LI, nullptr, "vec.epilog.ph"); 7859 emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader, 7860 VecEpilogueIterationCountCheck); 7861 7862 // Adjust the control flow taking the state info from the main loop 7863 // vectorization into account. 7864 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 7865 "expected this to be saved from the previous pass."); 7866 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 7867 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 7868 7869 DT->changeImmediateDominator(LoopVectorPreHeader, 7870 EPI.MainLoopIterationCountCheck); 7871 7872 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 7873 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7874 7875 if (EPI.SCEVSafetyCheck) 7876 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 7877 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7878 if (EPI.MemSafetyCheck) 7879 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 7880 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7881 7882 DT->changeImmediateDominator( 7883 VecEpilogueIterationCountCheck, 7884 VecEpilogueIterationCountCheck->getSinglePredecessor()); 7885 7886 DT->changeImmediateDominator(LoopScalarPreHeader, 7887 EPI.EpilogueIterationCountCheck); 7888 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7889 // If there is an epilogue which must run, there's no edge from the 7890 // middle block to exit blocks and thus no need to update the immediate 7891 // dominator of the exit blocks. 7892 DT->changeImmediateDominator(LoopExitBlock, 7893 EPI.EpilogueIterationCountCheck); 7894 7895 // Keep track of bypass blocks, as they feed start values to the induction 7896 // phis in the scalar loop preheader. 7897 if (EPI.SCEVSafetyCheck) 7898 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 7899 if (EPI.MemSafetyCheck) 7900 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 7901 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 7902 7903 // The vec.epilog.iter.check block may contain Phi nodes from reductions which 7904 // merge control-flow from the latch block and the middle block. Update the 7905 // incoming values here and move the Phi into the preheader. 7906 SmallVector<PHINode *, 4> PhisInBlock; 7907 for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) 7908 PhisInBlock.push_back(&Phi); 7909 7910 for (PHINode *Phi : PhisInBlock) { 7911 Phi->replaceIncomingBlockWith( 7912 VecEpilogueIterationCountCheck->getSinglePredecessor(), 7913 VecEpilogueIterationCountCheck); 7914 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); 7915 if (EPI.SCEVSafetyCheck) 7916 Phi->removeIncomingValue(EPI.SCEVSafetyCheck); 7917 if (EPI.MemSafetyCheck) 7918 Phi->removeIncomingValue(EPI.MemSafetyCheck); 7919 Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); 7920 } 7921 7922 // Generate a resume induction for the vector epilogue and put it in the 7923 // vector epilogue preheader 7924 Type *IdxTy = Legal->getWidestInductionType(); 7925 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 7926 LoopVectorPreHeader->getFirstNonPHI()); 7927 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 7928 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 7929 EPI.MainLoopIterationCountCheck); 7930 7931 // Generate induction resume values. These variables save the new starting 7932 // indexes for the scalar loop. They are used to test if there are any tail 7933 // iterations left once the vector loop has completed. 7934 // Note that when the vectorized epilogue is skipped due to iteration count 7935 // check, then the resume value for the induction variable comes from 7936 // the trip count of the main vector loop, hence passing the AdditionalBypass 7937 // argument. 7938 createInductionResumeValues({VecEpilogueIterationCountCheck, 7939 EPI.VectorTripCount} /* AdditionalBypass */); 7940 7941 return {completeLoopSkeleton(OrigLoopID), EPResumeVal}; 7942 } 7943 7944 BasicBlock * 7945 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 7946 BasicBlock *Bypass, BasicBlock *Insert) { 7947 7948 assert(EPI.TripCount && 7949 "Expected trip count to have been safed in the first pass."); 7950 assert( 7951 (!isa<Instruction>(EPI.TripCount) || 7952 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 7953 "saved trip count does not dominate insertion point."); 7954 Value *TC = EPI.TripCount; 7955 IRBuilder<> Builder(Insert->getTerminator()); 7956 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 7957 7958 // Generate code to check if the loop's trip count is less than VF * UF of the 7959 // vector epilogue loop. 7960 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 7961 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7962 7963 Value *CheckMinIters = 7964 Builder.CreateICmp(P, Count, 7965 createStepForVF(Builder, Count->getType(), 7966 EPI.EpilogueVF, EPI.EpilogueUF), 7967 "min.epilog.iters.check"); 7968 7969 ReplaceInstWithInst( 7970 Insert->getTerminator(), 7971 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7972 7973 LoopBypassBlocks.push_back(Insert); 7974 return Insert; 7975 } 7976 7977 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 7978 LLVM_DEBUG({ 7979 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 7980 << "Epilogue Loop VF:" << EPI.EpilogueVF 7981 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7982 }); 7983 } 7984 7985 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 7986 DEBUG_WITH_TYPE(VerboseDebug, { 7987 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 7988 }); 7989 } 7990 7991 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7992 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 7993 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 7994 bool PredicateAtRangeStart = Predicate(Range.Start); 7995 7996 for (ElementCount TmpVF = Range.Start * 2; 7997 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 7998 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7999 Range.End = TmpVF; 8000 break; 8001 } 8002 8003 return PredicateAtRangeStart; 8004 } 8005 8006 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8007 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8008 /// of VF's starting at a given VF and extending it as much as possible. Each 8009 /// vectorization decision can potentially shorten this sub-range during 8010 /// buildVPlan(). 8011 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8012 ElementCount MaxVF) { 8013 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8014 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8015 VFRange SubRange = {VF, MaxVFPlusOne}; 8016 VPlans.push_back(buildVPlan(SubRange)); 8017 VF = SubRange.End; 8018 } 8019 } 8020 8021 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8022 VPlanPtr &Plan) { 8023 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8024 8025 // Look for cached value. 8026 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8027 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8028 if (ECEntryIt != EdgeMaskCache.end()) 8029 return ECEntryIt->second; 8030 8031 VPValue *SrcMask = createBlockInMask(Src, Plan); 8032 8033 // The terminator has to be a branch inst! 8034 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8035 assert(BI && "Unexpected terminator found"); 8036 8037 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8038 return EdgeMaskCache[Edge] = SrcMask; 8039 8040 // If source is an exiting block, we know the exit edge is dynamically dead 8041 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8042 // adding uses of an otherwise potentially dead instruction. 8043 if (OrigLoop->isLoopExiting(Src)) 8044 return EdgeMaskCache[Edge] = SrcMask; 8045 8046 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8047 assert(EdgeMask && "No Edge Mask found for condition"); 8048 8049 if (BI->getSuccessor(0) != Dst) 8050 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 8051 8052 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8053 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8054 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8055 // The select version does not introduce new UB if SrcMask is false and 8056 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8057 VPValue *False = Plan->getOrAddVPValue( 8058 ConstantInt::getFalse(BI->getCondition()->getType())); 8059 EdgeMask = 8060 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8061 } 8062 8063 return EdgeMaskCache[Edge] = EdgeMask; 8064 } 8065 8066 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8067 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8068 8069 // Look for cached value. 8070 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8071 if (BCEntryIt != BlockMaskCache.end()) 8072 return BCEntryIt->second; 8073 8074 // All-one mask is modelled as no-mask following the convention for masked 8075 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8076 VPValue *BlockMask = nullptr; 8077 8078 if (OrigLoop->getHeader() == BB) { 8079 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8080 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8081 8082 // Introduce the early-exit compare IV <= BTC to form header block mask. 8083 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8084 // constructing the desired canonical IV in the header block as its first 8085 // non-phi instructions. 8086 assert(CM.foldTailByMasking() && "must fold the tail"); 8087 VPBasicBlock *HeaderVPBB = 8088 Plan->getVectorLoopRegion()->getEntryBasicBlock(); 8089 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8090 auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); 8091 HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi()); 8092 8093 VPBuilder::InsertPointGuard Guard(Builder); 8094 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8095 if (CM.TTI.emitGetActiveLaneMask()) { 8096 VPValue *TC = Plan->getOrCreateTripCount(); 8097 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}); 8098 } else { 8099 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8100 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8101 } 8102 return BlockMaskCache[BB] = BlockMask; 8103 } 8104 8105 // This is the block mask. We OR all incoming edges. 8106 for (auto *Predecessor : predecessors(BB)) { 8107 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8108 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8109 return BlockMaskCache[BB] = EdgeMask; 8110 8111 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8112 BlockMask = EdgeMask; 8113 continue; 8114 } 8115 8116 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8117 } 8118 8119 return BlockMaskCache[BB] = BlockMask; 8120 } 8121 8122 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8123 ArrayRef<VPValue *> Operands, 8124 VFRange &Range, 8125 VPlanPtr &Plan) { 8126 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8127 "Must be called with either a load or store"); 8128 8129 auto willWiden = [&](ElementCount VF) -> bool { 8130 if (VF.isScalar()) 8131 return false; 8132 LoopVectorizationCostModel::InstWidening Decision = 8133 CM.getWideningDecision(I, VF); 8134 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8135 "CM decision should be taken at this point."); 8136 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8137 return true; 8138 if (CM.isScalarAfterVectorization(I, VF) || 8139 CM.isProfitableToScalarize(I, VF)) 8140 return false; 8141 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8142 }; 8143 8144 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8145 return nullptr; 8146 8147 VPValue *Mask = nullptr; 8148 if (Legal->isMaskRequired(I)) 8149 Mask = createBlockInMask(I->getParent(), Plan); 8150 8151 // Determine if the pointer operand of the access is either consecutive or 8152 // reverse consecutive. 8153 LoopVectorizationCostModel::InstWidening Decision = 8154 CM.getWideningDecision(I, Range.Start); 8155 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8156 bool Consecutive = 8157 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8158 8159 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8160 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8161 Consecutive, Reverse); 8162 8163 StoreInst *Store = cast<StoreInst>(I); 8164 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8165 Mask, Consecutive, Reverse); 8166 } 8167 8168 static VPWidenIntOrFpInductionRecipe * 8169 createWidenInductionRecipe(PHINode *Phi, Instruction *PhiOrTrunc, 8170 VPValue *Start, const InductionDescriptor &IndDesc, 8171 LoopVectorizationCostModel &CM, ScalarEvolution &SE, 8172 Loop &OrigLoop, VFRange &Range) { 8173 // Returns true if an instruction \p I should be scalarized instead of 8174 // vectorized for the chosen vectorization factor. 8175 auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) { 8176 return CM.isScalarAfterVectorization(I, VF) || 8177 CM.isProfitableToScalarize(I, VF); 8178 }; 8179 8180 bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange( 8181 [&](ElementCount VF) { 8182 // Returns true if we should generate a scalar version of \p IV. 8183 if (ShouldScalarizeInstruction(PhiOrTrunc, VF)) 8184 return true; 8185 auto isScalarInst = [&](User *U) -> bool { 8186 auto *I = cast<Instruction>(U); 8187 return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF); 8188 }; 8189 return any_of(PhiOrTrunc->users(), isScalarInst); 8190 }, 8191 Range); 8192 bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange( 8193 [&](ElementCount VF) { 8194 return ShouldScalarizeInstruction(PhiOrTrunc, VF); 8195 }, 8196 Range); 8197 assert(IndDesc.getStartValue() == 8198 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); 8199 assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) && 8200 "step must be loop invariant"); 8201 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { 8202 return new VPWidenIntOrFpInductionRecipe( 8203 Phi, Start, IndDesc, TruncI, NeedsScalarIV, !NeedsScalarIVOnly, SE); 8204 } 8205 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); 8206 return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, NeedsScalarIV, 8207 !NeedsScalarIVOnly, SE); 8208 } 8209 8210 VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI( 8211 PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) const { 8212 8213 // Check if this is an integer or fp induction. If so, build the recipe that 8214 // produces its scalar and vector values. 8215 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) 8216 return createWidenInductionRecipe(Phi, Phi, Operands[0], *II, CM, 8217 *PSE.getSE(), *OrigLoop, Range); 8218 8219 // Check if this is pointer induction. If so, build the recipe for it. 8220 if (auto *II = Legal->getPointerInductionDescriptor(Phi)) 8221 return new VPWidenPointerInductionRecipe(Phi, Operands[0], *II, 8222 *PSE.getSE()); 8223 return nullptr; 8224 } 8225 8226 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8227 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8228 VPlan &Plan) const { 8229 // Optimize the special case where the source is a constant integer 8230 // induction variable. Notice that we can only optimize the 'trunc' case 8231 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8232 // (c) other casts depend on pointer size. 8233 8234 // Determine whether \p K is a truncation based on an induction variable that 8235 // can be optimized. 8236 auto isOptimizableIVTruncate = 8237 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8238 return [=](ElementCount VF) -> bool { 8239 return CM.isOptimizableIVTruncate(K, VF); 8240 }; 8241 }; 8242 8243 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8244 isOptimizableIVTruncate(I), Range)) { 8245 8246 auto *Phi = cast<PHINode>(I->getOperand(0)); 8247 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8248 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8249 return createWidenInductionRecipe(Phi, I, Start, II, CM, *PSE.getSE(), 8250 *OrigLoop, Range); 8251 } 8252 return nullptr; 8253 } 8254 8255 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8256 ArrayRef<VPValue *> Operands, 8257 VPlanPtr &Plan) { 8258 // If all incoming values are equal, the incoming VPValue can be used directly 8259 // instead of creating a new VPBlendRecipe. 8260 VPValue *FirstIncoming = Operands[0]; 8261 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8262 return FirstIncoming == Inc; 8263 })) { 8264 return Operands[0]; 8265 } 8266 8267 unsigned NumIncoming = Phi->getNumIncomingValues(); 8268 // For in-loop reductions, we do not need to create an additional select. 8269 VPValue *InLoopVal = nullptr; 8270 for (unsigned In = 0; In < NumIncoming; In++) { 8271 PHINode *PhiOp = 8272 dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue()); 8273 if (PhiOp && CM.isInLoopReduction(PhiOp)) { 8274 assert(!InLoopVal && "Found more than one in-loop reduction!"); 8275 InLoopVal = Operands[In]; 8276 } 8277 } 8278 8279 assert((!InLoopVal || NumIncoming == 2) && 8280 "Found an in-loop reduction for PHI with unexpected number of " 8281 "incoming values"); 8282 if (InLoopVal) 8283 return Operands[Operands[0] == InLoopVal ? 1 : 0]; 8284 8285 // We know that all PHIs in non-header blocks are converted into selects, so 8286 // we don't have to worry about the insertion order and we can just use the 8287 // builder. At this point we generate the predication tree. There may be 8288 // duplications since this is a simple recursive scan, but future 8289 // optimizations will clean it up. 8290 SmallVector<VPValue *, 2> OperandsWithMask; 8291 8292 for (unsigned In = 0; In < NumIncoming; In++) { 8293 VPValue *EdgeMask = 8294 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8295 assert((EdgeMask || NumIncoming == 1) && 8296 "Multiple predecessors with one having a full mask"); 8297 OperandsWithMask.push_back(Operands[In]); 8298 if (EdgeMask) 8299 OperandsWithMask.push_back(EdgeMask); 8300 } 8301 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8302 } 8303 8304 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8305 ArrayRef<VPValue *> Operands, 8306 VFRange &Range) const { 8307 8308 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8309 [this, CI](ElementCount VF) { 8310 return CM.isScalarWithPredication(CI, VF); 8311 }, 8312 Range); 8313 8314 if (IsPredicated) 8315 return nullptr; 8316 8317 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8318 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8319 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8320 ID == Intrinsic::pseudoprobe || 8321 ID == Intrinsic::experimental_noalias_scope_decl)) 8322 return nullptr; 8323 8324 auto willWiden = [&](ElementCount VF) -> bool { 8325 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8326 // The following case may be scalarized depending on the VF. 8327 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8328 // version of the instruction. 8329 // Is it beneficial to perform intrinsic call compared to lib call? 8330 bool NeedToScalarize = false; 8331 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8332 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8333 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8334 return UseVectorIntrinsic || !NeedToScalarize; 8335 }; 8336 8337 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8338 return nullptr; 8339 8340 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8341 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8342 } 8343 8344 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8345 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8346 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8347 // Instruction should be widened, unless it is scalar after vectorization, 8348 // scalarization is profitable or it is predicated. 8349 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8350 return CM.isScalarAfterVectorization(I, VF) || 8351 CM.isProfitableToScalarize(I, VF) || 8352 CM.isScalarWithPredication(I, VF); 8353 }; 8354 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8355 Range); 8356 } 8357 8358 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8359 ArrayRef<VPValue *> Operands) const { 8360 auto IsVectorizableOpcode = [](unsigned Opcode) { 8361 switch (Opcode) { 8362 case Instruction::Add: 8363 case Instruction::And: 8364 case Instruction::AShr: 8365 case Instruction::BitCast: 8366 case Instruction::FAdd: 8367 case Instruction::FCmp: 8368 case Instruction::FDiv: 8369 case Instruction::FMul: 8370 case Instruction::FNeg: 8371 case Instruction::FPExt: 8372 case Instruction::FPToSI: 8373 case Instruction::FPToUI: 8374 case Instruction::FPTrunc: 8375 case Instruction::FRem: 8376 case Instruction::FSub: 8377 case Instruction::ICmp: 8378 case Instruction::IntToPtr: 8379 case Instruction::LShr: 8380 case Instruction::Mul: 8381 case Instruction::Or: 8382 case Instruction::PtrToInt: 8383 case Instruction::SDiv: 8384 case Instruction::Select: 8385 case Instruction::SExt: 8386 case Instruction::Shl: 8387 case Instruction::SIToFP: 8388 case Instruction::SRem: 8389 case Instruction::Sub: 8390 case Instruction::Trunc: 8391 case Instruction::UDiv: 8392 case Instruction::UIToFP: 8393 case Instruction::URem: 8394 case Instruction::Xor: 8395 case Instruction::ZExt: 8396 return true; 8397 } 8398 return false; 8399 }; 8400 8401 if (!IsVectorizableOpcode(I->getOpcode())) 8402 return nullptr; 8403 8404 // Success: widen this instruction. 8405 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8406 } 8407 8408 void VPRecipeBuilder::fixHeaderPhis() { 8409 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8410 for (VPHeaderPHIRecipe *R : PhisToFix) { 8411 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8412 VPRecipeBase *IncR = 8413 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8414 R->addOperand(IncR->getVPSingleValue()); 8415 } 8416 } 8417 8418 VPBasicBlock *VPRecipeBuilder::handleReplication( 8419 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8420 VPlanPtr &Plan) { 8421 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8422 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8423 Range); 8424 8425 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8426 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); }, 8427 Range); 8428 8429 // Even if the instruction is not marked as uniform, there are certain 8430 // intrinsic calls that can be effectively treated as such, so we check for 8431 // them here. Conservatively, we only do this for scalable vectors, since 8432 // for fixed-width VFs we can always fall back on full scalarization. 8433 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8434 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8435 case Intrinsic::assume: 8436 case Intrinsic::lifetime_start: 8437 case Intrinsic::lifetime_end: 8438 // For scalable vectors if one of the operands is variant then we still 8439 // want to mark as uniform, which will generate one instruction for just 8440 // the first lane of the vector. We can't scalarize the call in the same 8441 // way as for fixed-width vectors because we don't know how many lanes 8442 // there are. 8443 // 8444 // The reasons for doing it this way for scalable vectors are: 8445 // 1. For the assume intrinsic generating the instruction for the first 8446 // lane is still be better than not generating any at all. For 8447 // example, the input may be a splat across all lanes. 8448 // 2. For the lifetime start/end intrinsics the pointer operand only 8449 // does anything useful when the input comes from a stack object, 8450 // which suggests it should always be uniform. For non-stack objects 8451 // the effect is to poison the object, which still allows us to 8452 // remove the call. 8453 IsUniform = true; 8454 break; 8455 default: 8456 break; 8457 } 8458 } 8459 8460 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8461 IsUniform, IsPredicated); 8462 setRecipe(I, Recipe); 8463 Plan->addVPValue(I, Recipe); 8464 8465 // Find if I uses a predicated instruction. If so, it will use its scalar 8466 // value. Avoid hoisting the insert-element which packs the scalar value into 8467 // a vector value, as that happens iff all users use the vector value. 8468 for (VPValue *Op : Recipe->operands()) { 8469 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8470 if (!PredR) 8471 continue; 8472 auto *RepR = 8473 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8474 assert(RepR->isPredicated() && 8475 "expected Replicate recipe to be predicated"); 8476 RepR->setAlsoPack(false); 8477 } 8478 8479 // Finalize the recipe for Instr, first if it is not predicated. 8480 if (!IsPredicated) { 8481 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8482 VPBB->appendRecipe(Recipe); 8483 return VPBB; 8484 } 8485 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8486 8487 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8488 assert(SingleSucc && "VPBB must have a single successor when handling " 8489 "predicated replication."); 8490 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8491 // Record predicated instructions for above packing optimizations. 8492 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8493 VPBlockUtils::insertBlockAfter(Region, VPBB); 8494 auto *RegSucc = new VPBasicBlock(); 8495 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8496 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8497 return RegSucc; 8498 } 8499 8500 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8501 VPRecipeBase *PredRecipe, 8502 VPlanPtr &Plan) { 8503 // Instructions marked for predication are replicated and placed under an 8504 // if-then construct to prevent side-effects. 8505 8506 // Generate recipes to compute the block mask for this region. 8507 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8508 8509 // Build the triangular if-then region. 8510 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8511 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8512 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8513 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8514 auto *PHIRecipe = Instr->getType()->isVoidTy() 8515 ? nullptr 8516 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8517 if (PHIRecipe) { 8518 Plan->removeVPValueFor(Instr); 8519 Plan->addVPValue(Instr, PHIRecipe); 8520 } 8521 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8522 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8523 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8524 8525 // Note: first set Entry as region entry and then connect successors starting 8526 // from it in order, to propagate the "parent" of each VPBasicBlock. 8527 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8528 VPBlockUtils::connectBlocks(Pred, Exit); 8529 8530 return Region; 8531 } 8532 8533 VPRecipeOrVPValueTy 8534 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8535 ArrayRef<VPValue *> Operands, 8536 VFRange &Range, VPlanPtr &Plan) { 8537 // First, check for specific widening recipes that deal with calls, memory 8538 // operations, inductions and Phi nodes. 8539 if (auto *CI = dyn_cast<CallInst>(Instr)) 8540 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8541 8542 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8543 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8544 8545 VPRecipeBase *Recipe; 8546 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8547 if (Phi->getParent() != OrigLoop->getHeader()) 8548 return tryToBlend(Phi, Operands, Plan); 8549 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range))) 8550 return toVPRecipeResult(Recipe); 8551 8552 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8553 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 8554 VPValue *StartV = Operands[0]; 8555 if (Legal->isReductionVariable(Phi)) { 8556 const RecurrenceDescriptor &RdxDesc = 8557 Legal->getReductionVars().find(Phi)->second; 8558 assert(RdxDesc.getRecurrenceStartValue() == 8559 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8560 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8561 CM.isInLoopReduction(Phi), 8562 CM.useOrderedReductions(RdxDesc)); 8563 } else { 8564 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8565 } 8566 8567 // Record the incoming value from the backedge, so we can add the incoming 8568 // value from the backedge after all recipes have been created. 8569 recordRecipeOf(cast<Instruction>( 8570 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8571 PhisToFix.push_back(PhiRecipe); 8572 } else { 8573 // TODO: record backedge value for remaining pointer induction phis. 8574 assert(Phi->getType()->isPointerTy() && 8575 "only pointer phis should be handled here"); 8576 assert(Legal->getInductionVars().count(Phi) && 8577 "Not an induction variable"); 8578 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8579 VPValue *Start = Plan->getOrAddVPValue(II.getStartValue()); 8580 PhiRecipe = new VPWidenPHIRecipe(Phi, Start); 8581 } 8582 8583 return toVPRecipeResult(PhiRecipe); 8584 } 8585 8586 if (isa<TruncInst>(Instr) && 8587 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8588 Range, *Plan))) 8589 return toVPRecipeResult(Recipe); 8590 8591 if (!shouldWiden(Instr, Range)) 8592 return nullptr; 8593 8594 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8595 return toVPRecipeResult(new VPWidenGEPRecipe( 8596 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8597 8598 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8599 bool InvariantCond = 8600 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8601 return toVPRecipeResult(new VPWidenSelectRecipe( 8602 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8603 } 8604 8605 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8606 } 8607 8608 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8609 ElementCount MaxVF) { 8610 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8611 8612 // Collect instructions from the original loop that will become trivially dead 8613 // in the vectorized loop. We don't need to vectorize these instructions. For 8614 // example, original induction update instructions can become dead because we 8615 // separately emit induction "steps" when generating code for the new loop. 8616 // Similarly, we create a new latch condition when setting up the structure 8617 // of the new loop, so the old one can become dead. 8618 SmallPtrSet<Instruction *, 4> DeadInstructions; 8619 collectTriviallyDeadInstructions(DeadInstructions); 8620 8621 // Add assume instructions we need to drop to DeadInstructions, to prevent 8622 // them from being added to the VPlan. 8623 // TODO: We only need to drop assumes in blocks that get flattend. If the 8624 // control flow is preserved, we should keep them. 8625 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8626 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8627 8628 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8629 // Dead instructions do not need sinking. Remove them from SinkAfter. 8630 for (Instruction *I : DeadInstructions) 8631 SinkAfter.erase(I); 8632 8633 // Cannot sink instructions after dead instructions (there won't be any 8634 // recipes for them). Instead, find the first non-dead previous instruction. 8635 for (auto &P : Legal->getSinkAfter()) { 8636 Instruction *SinkTarget = P.second; 8637 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8638 (void)FirstInst; 8639 while (DeadInstructions.contains(SinkTarget)) { 8640 assert( 8641 SinkTarget != FirstInst && 8642 "Must find a live instruction (at least the one feeding the " 8643 "first-order recurrence PHI) before reaching beginning of the block"); 8644 SinkTarget = SinkTarget->getPrevNode(); 8645 assert(SinkTarget != P.first && 8646 "sink source equals target, no sinking required"); 8647 } 8648 P.second = SinkTarget; 8649 } 8650 8651 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8652 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8653 VFRange SubRange = {VF, MaxVFPlusOne}; 8654 VPlans.push_back( 8655 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8656 VF = SubRange.End; 8657 } 8658 } 8659 8660 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a 8661 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a 8662 // BranchOnCount VPInstruction to the latch. 8663 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8664 bool HasNUW, bool IsVPlanNative) { 8665 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8666 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8667 8668 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8669 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8670 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8671 if (IsVPlanNative) 8672 Header = cast<VPBasicBlock>(Header->getSingleSuccessor()); 8673 Header->insert(CanonicalIVPHI, Header->begin()); 8674 8675 auto *CanonicalIVIncrement = 8676 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8677 : VPInstruction::CanonicalIVIncrement, 8678 {CanonicalIVPHI}, DL); 8679 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8680 8681 VPBasicBlock *EB = TopRegion->getExitBasicBlock(); 8682 if (IsVPlanNative) { 8683 EB = cast<VPBasicBlock>(EB->getSinglePredecessor()); 8684 EB->setCondBit(nullptr); 8685 } 8686 EB->appendRecipe(CanonicalIVIncrement); 8687 8688 auto *BranchOnCount = 8689 new VPInstruction(VPInstruction::BranchOnCount, 8690 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 8691 EB->appendRecipe(BranchOnCount); 8692 } 8693 8694 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8695 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8696 const MapVector<Instruction *, Instruction *> &SinkAfter) { 8697 8698 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8699 8700 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8701 8702 // --------------------------------------------------------------------------- 8703 // Pre-construction: record ingredients whose recipes we'll need to further 8704 // process after constructing the initial VPlan. 8705 // --------------------------------------------------------------------------- 8706 8707 // Mark instructions we'll need to sink later and their targets as 8708 // ingredients whose recipe we'll need to record. 8709 for (auto &Entry : SinkAfter) { 8710 RecipeBuilder.recordRecipeOf(Entry.first); 8711 RecipeBuilder.recordRecipeOf(Entry.second); 8712 } 8713 for (auto &Reduction : CM.getInLoopReductionChains()) { 8714 PHINode *Phi = Reduction.first; 8715 RecurKind Kind = 8716 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 8717 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8718 8719 RecipeBuilder.recordRecipeOf(Phi); 8720 for (auto &R : ReductionOperations) { 8721 RecipeBuilder.recordRecipeOf(R); 8722 // For min/max reductions, where we have a pair of icmp/select, we also 8723 // need to record the ICmp recipe, so it can be removed later. 8724 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 8725 "Only min/max recurrences allowed for inloop reductions"); 8726 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 8727 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8728 } 8729 } 8730 8731 // For each interleave group which is relevant for this (possibly trimmed) 8732 // Range, add it to the set of groups to be later applied to the VPlan and add 8733 // placeholders for its members' Recipes which we'll be replacing with a 8734 // single VPInterleaveRecipe. 8735 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8736 auto applyIG = [IG, this](ElementCount VF) -> bool { 8737 return (VF.isVector() && // Query is illegal for VF == 1 8738 CM.getWideningDecision(IG->getInsertPos(), VF) == 8739 LoopVectorizationCostModel::CM_Interleave); 8740 }; 8741 if (!getDecisionAndClampRange(applyIG, Range)) 8742 continue; 8743 InterleaveGroups.insert(IG); 8744 for (unsigned i = 0; i < IG->getFactor(); i++) 8745 if (Instruction *Member = IG->getMember(i)) 8746 RecipeBuilder.recordRecipeOf(Member); 8747 }; 8748 8749 // --------------------------------------------------------------------------- 8750 // Build initial VPlan: Scan the body of the loop in a topological order to 8751 // visit each basic block after having visited its predecessor basic blocks. 8752 // --------------------------------------------------------------------------- 8753 8754 // Create initial VPlan skeleton, with separate header and latch blocks. 8755 VPBasicBlock *HeaderVPBB = new VPBasicBlock(); 8756 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 8757 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 8758 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 8759 auto Plan = std::make_unique<VPlan>(TopRegion); 8760 8761 Instruction *DLInst = 8762 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 8763 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 8764 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 8765 !CM.foldTailByMasking(), false); 8766 8767 // Scan the body of the loop in a topological order to visit each basic block 8768 // after having visited its predecessor basic blocks. 8769 LoopBlocksDFS DFS(OrigLoop); 8770 DFS.perform(LI); 8771 8772 VPBasicBlock *VPBB = HeaderVPBB; 8773 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 8774 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8775 // Relevant instructions from basic block BB will be grouped into VPRecipe 8776 // ingredients and fill a new VPBasicBlock. 8777 unsigned VPBBsForBB = 0; 8778 VPBB->setName(BB->getName()); 8779 Builder.setInsertPoint(VPBB); 8780 8781 // Introduce each ingredient into VPlan. 8782 // TODO: Model and preserve debug instrinsics in VPlan. 8783 for (Instruction &I : BB->instructionsWithoutDebug()) { 8784 Instruction *Instr = &I; 8785 8786 // First filter out irrelevant instructions, to ensure no recipes are 8787 // built for them. 8788 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 8789 continue; 8790 8791 SmallVector<VPValue *, 4> Operands; 8792 auto *Phi = dyn_cast<PHINode>(Instr); 8793 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 8794 Operands.push_back(Plan->getOrAddVPValue( 8795 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 8796 } else { 8797 auto OpRange = Plan->mapToVPValues(Instr->operands()); 8798 Operands = {OpRange.begin(), OpRange.end()}; 8799 } 8800 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 8801 Instr, Operands, Range, Plan)) { 8802 // If Instr can be simplified to an existing VPValue, use it. 8803 if (RecipeOrValue.is<VPValue *>()) { 8804 auto *VPV = RecipeOrValue.get<VPValue *>(); 8805 Plan->addVPValue(Instr, VPV); 8806 // If the re-used value is a recipe, register the recipe for the 8807 // instruction, in case the recipe for Instr needs to be recorded. 8808 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 8809 RecipeBuilder.setRecipe(Instr, R); 8810 continue; 8811 } 8812 // Otherwise, add the new recipe. 8813 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 8814 for (auto *Def : Recipe->definedValues()) { 8815 auto *UV = Def->getUnderlyingValue(); 8816 Plan->addVPValue(UV, Def); 8817 } 8818 8819 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 8820 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 8821 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 8822 // of the header block. That can happen for truncates of induction 8823 // variables. Those recipes are moved to the phi section of the header 8824 // block after applying SinkAfter, which relies on the original 8825 // position of the trunc. 8826 assert(isa<TruncInst>(Instr)); 8827 InductionsToMove.push_back( 8828 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 8829 } 8830 RecipeBuilder.setRecipe(Instr, Recipe); 8831 VPBB->appendRecipe(Recipe); 8832 continue; 8833 } 8834 8835 // Otherwise, if all widening options failed, Instruction is to be 8836 // replicated. This may create a successor for VPBB. 8837 VPBasicBlock *NextVPBB = 8838 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 8839 if (NextVPBB != VPBB) { 8840 VPBB = NextVPBB; 8841 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8842 : ""); 8843 } 8844 } 8845 8846 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 8847 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 8848 } 8849 8850 HeaderVPBB->setName("vector.body"); 8851 8852 // Fold the last, empty block into its predecessor. 8853 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 8854 assert(VPBB && "expected to fold last (empty) block"); 8855 // After here, VPBB should not be used. 8856 VPBB = nullptr; 8857 8858 assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) && 8859 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() && 8860 "entry block must be set to a VPRegionBlock having a non-empty entry " 8861 "VPBasicBlock"); 8862 RecipeBuilder.fixHeaderPhis(); 8863 8864 // --------------------------------------------------------------------------- 8865 // Transform initial VPlan: Apply previously taken decisions, in order, to 8866 // bring the VPlan to its final state. 8867 // --------------------------------------------------------------------------- 8868 8869 // Apply Sink-After legal constraints. 8870 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 8871 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 8872 if (Region && Region->isReplicator()) { 8873 assert(Region->getNumSuccessors() == 1 && 8874 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 8875 assert(R->getParent()->size() == 1 && 8876 "A recipe in an original replicator region must be the only " 8877 "recipe in its block"); 8878 return Region; 8879 } 8880 return nullptr; 8881 }; 8882 for (auto &Entry : SinkAfter) { 8883 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 8884 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 8885 8886 auto *TargetRegion = GetReplicateRegion(Target); 8887 auto *SinkRegion = GetReplicateRegion(Sink); 8888 if (!SinkRegion) { 8889 // If the sink source is not a replicate region, sink the recipe directly. 8890 if (TargetRegion) { 8891 // The target is in a replication region, make sure to move Sink to 8892 // the block after it, not into the replication region itself. 8893 VPBasicBlock *NextBlock = 8894 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 8895 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 8896 } else 8897 Sink->moveAfter(Target); 8898 continue; 8899 } 8900 8901 // The sink source is in a replicate region. Unhook the region from the CFG. 8902 auto *SinkPred = SinkRegion->getSinglePredecessor(); 8903 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 8904 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 8905 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 8906 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 8907 8908 if (TargetRegion) { 8909 // The target recipe is also in a replicate region, move the sink region 8910 // after the target region. 8911 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 8912 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 8913 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 8914 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 8915 } else { 8916 // The sink source is in a replicate region, we need to move the whole 8917 // replicate region, which should only contain a single recipe in the 8918 // main block. 8919 auto *SplitBlock = 8920 Target->getParent()->splitAt(std::next(Target->getIterator())); 8921 8922 auto *SplitPred = SplitBlock->getSinglePredecessor(); 8923 8924 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 8925 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 8926 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 8927 } 8928 } 8929 8930 VPlanTransforms::removeRedundantCanonicalIVs(*Plan); 8931 VPlanTransforms::removeRedundantInductionCasts(*Plan); 8932 8933 // Now that sink-after is done, move induction recipes for optimized truncates 8934 // to the phi section of the header block. 8935 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 8936 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 8937 8938 // Adjust the recipes for any inloop reductions. 8939 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan, 8940 RecipeBuilder, Range.Start); 8941 8942 // Introduce a recipe to combine the incoming and previous values of a 8943 // first-order recurrence. 8944 for (VPRecipeBase &R : 8945 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 8946 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 8947 if (!RecurPhi) 8948 continue; 8949 8950 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 8951 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 8952 auto *Region = GetReplicateRegion(PrevRecipe); 8953 if (Region) 8954 InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor()); 8955 if (Region || PrevRecipe->isPhi()) 8956 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 8957 else 8958 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 8959 8960 auto *RecurSplice = cast<VPInstruction>( 8961 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 8962 {RecurPhi, RecurPhi->getBackedgeValue()})); 8963 8964 RecurPhi->replaceAllUsesWith(RecurSplice); 8965 // Set the first operand of RecurSplice to RecurPhi again, after replacing 8966 // all users. 8967 RecurSplice->setOperand(0, RecurPhi); 8968 } 8969 8970 // Interleave memory: for each Interleave Group we marked earlier as relevant 8971 // for this VPlan, replace the Recipes widening its memory instructions with a 8972 // single VPInterleaveRecipe at its insertion point. 8973 for (auto IG : InterleaveGroups) { 8974 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 8975 RecipeBuilder.getRecipe(IG->getInsertPos())); 8976 SmallVector<VPValue *, 4> StoredValues; 8977 for (unsigned i = 0; i < IG->getFactor(); ++i) 8978 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 8979 auto *StoreR = 8980 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 8981 StoredValues.push_back(StoreR->getStoredValue()); 8982 } 8983 8984 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 8985 Recipe->getMask()); 8986 VPIG->insertBefore(Recipe); 8987 unsigned J = 0; 8988 for (unsigned i = 0; i < IG->getFactor(); ++i) 8989 if (Instruction *Member = IG->getMember(i)) { 8990 if (!Member->getType()->isVoidTy()) { 8991 VPValue *OriginalV = Plan->getVPValue(Member); 8992 Plan->removeVPValueFor(Member); 8993 Plan->addVPValue(Member, VPIG->getVPValue(J)); 8994 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 8995 J++; 8996 } 8997 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 8998 } 8999 } 9000 9001 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9002 // in ways that accessing values using original IR values is incorrect. 9003 Plan->disableValue2VPValue(); 9004 9005 VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE()); 9006 VPlanTransforms::sinkScalarOperands(*Plan); 9007 VPlanTransforms::mergeReplicateRegions(*Plan); 9008 VPlanTransforms::removeDeadRecipes(*Plan, *OrigLoop); 9009 9010 std::string PlanName; 9011 raw_string_ostream RSO(PlanName); 9012 ElementCount VF = Range.Start; 9013 Plan->addVF(VF); 9014 RSO << "Initial VPlan for VF={" << VF; 9015 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9016 Plan->addVF(VF); 9017 RSO << "," << VF; 9018 } 9019 RSO << "},UF>=1"; 9020 RSO.flush(); 9021 Plan->setName(PlanName); 9022 9023 // Fold Exit block into its predecessor if possible. 9024 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9025 // VPBasicBlock as exit. 9026 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit()); 9027 9028 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9029 return Plan; 9030 } 9031 9032 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9033 // Outer loop handling: They may require CFG and instruction level 9034 // transformations before even evaluating whether vectorization is profitable. 9035 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9036 // the vectorization pipeline. 9037 assert(!OrigLoop->isInnermost()); 9038 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9039 9040 // Create new empty VPlan 9041 auto Plan = std::make_unique<VPlan>(); 9042 9043 // Build hierarchical CFG 9044 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9045 HCFGBuilder.buildHierarchicalCFG(); 9046 9047 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9048 VF *= 2) 9049 Plan->addVF(VF); 9050 9051 if (EnableVPlanPredication) { 9052 VPlanPredicator VPP(*Plan); 9053 VPP.predicate(); 9054 9055 // Avoid running transformation to recipes until masked code generation in 9056 // VPlan-native path is in place. 9057 return Plan; 9058 } 9059 9060 SmallPtrSet<Instruction *, 1> DeadInstructions; 9061 VPlanTransforms::VPInstructionsToVPRecipes( 9062 OrigLoop, Plan, 9063 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9064 DeadInstructions, *PSE.getSE()); 9065 9066 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9067 true, true); 9068 return Plan; 9069 } 9070 9071 // Adjust the recipes for reductions. For in-loop reductions the chain of 9072 // instructions leading from the loop exit instr to the phi need to be converted 9073 // to reductions, with one operand being vector and the other being the scalar 9074 // reduction chain. For other reductions, a select is introduced between the phi 9075 // and live-out recipes when folding the tail. 9076 void LoopVectorizationPlanner::adjustRecipesForReductions( 9077 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9078 ElementCount MinVF) { 9079 for (auto &Reduction : CM.getInLoopReductionChains()) { 9080 PHINode *Phi = Reduction.first; 9081 const RecurrenceDescriptor &RdxDesc = 9082 Legal->getReductionVars().find(Phi)->second; 9083 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9084 9085 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9086 continue; 9087 9088 // ReductionOperations are orders top-down from the phi's use to the 9089 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9090 // which of the two operands will remain scalar and which will be reduced. 9091 // For minmax the chain will be the select instructions. 9092 Instruction *Chain = Phi; 9093 for (Instruction *R : ReductionOperations) { 9094 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9095 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9096 9097 VPValue *ChainOp = Plan->getVPValue(Chain); 9098 unsigned FirstOpId; 9099 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9100 "Only min/max recurrences allowed for inloop reductions"); 9101 // Recognize a call to the llvm.fmuladd intrinsic. 9102 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9103 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9104 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9105 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9106 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9107 "Expected to replace a VPWidenSelectSC"); 9108 FirstOpId = 1; 9109 } else { 9110 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9111 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9112 "Expected to replace a VPWidenSC"); 9113 FirstOpId = 0; 9114 } 9115 unsigned VecOpId = 9116 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9117 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9118 9119 auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent()) 9120 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9121 : nullptr; 9122 9123 if (IsFMulAdd) { 9124 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9125 // need to create an fmul recipe to use as the vector operand for the 9126 // fadd reduction. 9127 VPInstruction *FMulRecipe = new VPInstruction( 9128 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9129 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9130 WidenRecipe->getParent()->insert(FMulRecipe, 9131 WidenRecipe->getIterator()); 9132 VecOp = FMulRecipe; 9133 } 9134 VPReductionRecipe *RedRecipe = 9135 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9136 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9137 Plan->removeVPValueFor(R); 9138 Plan->addVPValue(R, RedRecipe); 9139 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9140 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9141 WidenRecipe->eraseFromParent(); 9142 9143 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9144 VPRecipeBase *CompareRecipe = 9145 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9146 assert(isa<VPWidenRecipe>(CompareRecipe) && 9147 "Expected to replace a VPWidenSC"); 9148 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9149 "Expected no remaining users"); 9150 CompareRecipe->eraseFromParent(); 9151 } 9152 Chain = R; 9153 } 9154 } 9155 9156 // If tail is folded by masking, introduce selects between the phi 9157 // and the live-out instruction of each reduction, at the beginning of the 9158 // dedicated latch block. 9159 if (CM.foldTailByMasking()) { 9160 Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); 9161 for (VPRecipeBase &R : 9162 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 9163 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9164 if (!PhiR || PhiR->isInLoop()) 9165 continue; 9166 VPValue *Cond = 9167 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9168 VPValue *Red = PhiR->getBackedgeValue(); 9169 assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB && 9170 "reduction recipe must be defined before latch"); 9171 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9172 } 9173 } 9174 } 9175 9176 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9177 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9178 VPSlotTracker &SlotTracker) const { 9179 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9180 IG->getInsertPos()->printAsOperand(O, false); 9181 O << ", "; 9182 getAddr()->printAsOperand(O, SlotTracker); 9183 VPValue *Mask = getMask(); 9184 if (Mask) { 9185 O << ", "; 9186 Mask->printAsOperand(O, SlotTracker); 9187 } 9188 9189 unsigned OpIdx = 0; 9190 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9191 if (!IG->getMember(i)) 9192 continue; 9193 if (getNumStoreOperands() > 0) { 9194 O << "\n" << Indent << " store "; 9195 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9196 O << " to index " << i; 9197 } else { 9198 O << "\n" << Indent << " "; 9199 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9200 O << " = load from index " << i; 9201 } 9202 ++OpIdx; 9203 } 9204 } 9205 #endif 9206 9207 void VPWidenCallRecipe::execute(VPTransformState &State) { 9208 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9209 *this, State); 9210 } 9211 9212 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9213 auto &I = *cast<SelectInst>(getUnderlyingInstr()); 9214 State.ILV->setDebugLocFromInst(&I); 9215 9216 // The condition can be loop invariant but still defined inside the 9217 // loop. This means that we can't just use the original 'cond' value. 9218 // We have to take the 'vectorized' value and pick the first lane. 9219 // Instcombine will make this a no-op. 9220 auto *InvarCond = 9221 InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr; 9222 9223 for (unsigned Part = 0; Part < State.UF; ++Part) { 9224 Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part); 9225 Value *Op0 = State.get(getOperand(1), Part); 9226 Value *Op1 = State.get(getOperand(2), Part); 9227 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1); 9228 State.set(this, Sel, Part); 9229 State.ILV->addMetadata(Sel, &I); 9230 } 9231 } 9232 9233 void VPWidenRecipe::execute(VPTransformState &State) { 9234 auto &I = *cast<Instruction>(getUnderlyingValue()); 9235 auto &Builder = State.Builder; 9236 switch (I.getOpcode()) { 9237 case Instruction::Call: 9238 case Instruction::Br: 9239 case Instruction::PHI: 9240 case Instruction::GetElementPtr: 9241 case Instruction::Select: 9242 llvm_unreachable("This instruction is handled by a different recipe."); 9243 case Instruction::UDiv: 9244 case Instruction::SDiv: 9245 case Instruction::SRem: 9246 case Instruction::URem: 9247 case Instruction::Add: 9248 case Instruction::FAdd: 9249 case Instruction::Sub: 9250 case Instruction::FSub: 9251 case Instruction::FNeg: 9252 case Instruction::Mul: 9253 case Instruction::FMul: 9254 case Instruction::FDiv: 9255 case Instruction::FRem: 9256 case Instruction::Shl: 9257 case Instruction::LShr: 9258 case Instruction::AShr: 9259 case Instruction::And: 9260 case Instruction::Or: 9261 case Instruction::Xor: { 9262 // Just widen unops and binops. 9263 State.ILV->setDebugLocFromInst(&I); 9264 9265 for (unsigned Part = 0; Part < State.UF; ++Part) { 9266 SmallVector<Value *, 2> Ops; 9267 for (VPValue *VPOp : operands()) 9268 Ops.push_back(State.get(VPOp, Part)); 9269 9270 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 9271 9272 if (auto *VecOp = dyn_cast<Instruction>(V)) { 9273 VecOp->copyIRFlags(&I); 9274 9275 // If the instruction is vectorized and was in a basic block that needed 9276 // predication, we can't propagate poison-generating flags (nuw/nsw, 9277 // exact, etc.). The control flow has been linearized and the 9278 // instruction is no longer guarded by the predicate, which could make 9279 // the flag properties to no longer hold. 9280 if (State.MayGeneratePoisonRecipes.contains(this)) 9281 VecOp->dropPoisonGeneratingFlags(); 9282 } 9283 9284 // Use this vector value for all users of the original instruction. 9285 State.set(this, V, Part); 9286 State.ILV->addMetadata(V, &I); 9287 } 9288 9289 break; 9290 } 9291 case Instruction::ICmp: 9292 case Instruction::FCmp: { 9293 // Widen compares. Generate vector compares. 9294 bool FCmp = (I.getOpcode() == Instruction::FCmp); 9295 auto *Cmp = cast<CmpInst>(&I); 9296 State.ILV->setDebugLocFromInst(Cmp); 9297 for (unsigned Part = 0; Part < State.UF; ++Part) { 9298 Value *A = State.get(getOperand(0), Part); 9299 Value *B = State.get(getOperand(1), Part); 9300 Value *C = nullptr; 9301 if (FCmp) { 9302 // Propagate fast math flags. 9303 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9304 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 9305 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 9306 } else { 9307 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 9308 } 9309 State.set(this, C, Part); 9310 State.ILV->addMetadata(C, &I); 9311 } 9312 9313 break; 9314 } 9315 9316 case Instruction::ZExt: 9317 case Instruction::SExt: 9318 case Instruction::FPToUI: 9319 case Instruction::FPToSI: 9320 case Instruction::FPExt: 9321 case Instruction::PtrToInt: 9322 case Instruction::IntToPtr: 9323 case Instruction::SIToFP: 9324 case Instruction::UIToFP: 9325 case Instruction::Trunc: 9326 case Instruction::FPTrunc: 9327 case Instruction::BitCast: { 9328 auto *CI = cast<CastInst>(&I); 9329 State.ILV->setDebugLocFromInst(CI); 9330 9331 /// Vectorize casts. 9332 Type *DestTy = (State.VF.isScalar()) 9333 ? CI->getType() 9334 : VectorType::get(CI->getType(), State.VF); 9335 9336 for (unsigned Part = 0; Part < State.UF; ++Part) { 9337 Value *A = State.get(getOperand(0), Part); 9338 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 9339 State.set(this, Cast, Part); 9340 State.ILV->addMetadata(Cast, &I); 9341 } 9342 break; 9343 } 9344 default: 9345 // This instruction is not vectorized by simple widening. 9346 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 9347 llvm_unreachable("Unhandled instruction!"); 9348 } // end of switch. 9349 } 9350 9351 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9352 auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr()); 9353 // Construct a vector GEP by widening the operands of the scalar GEP as 9354 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 9355 // results in a vector of pointers when at least one operand of the GEP 9356 // is vector-typed. Thus, to keep the representation compact, we only use 9357 // vector-typed operands for loop-varying values. 9358 9359 if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 9360 // If we are vectorizing, but the GEP has only loop-invariant operands, 9361 // the GEP we build (by only using vector-typed operands for 9362 // loop-varying values) would be a scalar pointer. Thus, to ensure we 9363 // produce a vector of pointers, we need to either arbitrarily pick an 9364 // operand to broadcast, or broadcast a clone of the original GEP. 9365 // Here, we broadcast a clone of the original. 9366 // 9367 // TODO: If at some point we decide to scalarize instructions having 9368 // loop-invariant operands, this special case will no longer be 9369 // required. We would add the scalarization decision to 9370 // collectLoopScalars() and teach getVectorValue() to broadcast 9371 // the lane-zero scalar value. 9372 auto *Clone = State.Builder.Insert(GEP->clone()); 9373 for (unsigned Part = 0; Part < State.UF; ++Part) { 9374 Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone); 9375 State.set(this, EntryPart, Part); 9376 State.ILV->addMetadata(EntryPart, GEP); 9377 } 9378 } else { 9379 // If the GEP has at least one loop-varying operand, we are sure to 9380 // produce a vector of pointers. But if we are only unrolling, we want 9381 // to produce a scalar GEP for each unroll part. Thus, the GEP we 9382 // produce with the code below will be scalar (if VF == 1) or vector 9383 // (otherwise). Note that for the unroll-only case, we still maintain 9384 // values in the vector mapping with initVector, as we do for other 9385 // instructions. 9386 for (unsigned Part = 0; Part < State.UF; ++Part) { 9387 // The pointer operand of the new GEP. If it's loop-invariant, we 9388 // won't broadcast it. 9389 auto *Ptr = IsPtrLoopInvariant 9390 ? State.get(getOperand(0), VPIteration(0, 0)) 9391 : State.get(getOperand(0), Part); 9392 9393 // Collect all the indices for the new GEP. If any index is 9394 // loop-invariant, we won't broadcast it. 9395 SmallVector<Value *, 4> Indices; 9396 for (unsigned I = 1, E = getNumOperands(); I < E; I++) { 9397 VPValue *Operand = getOperand(I); 9398 if (IsIndexLoopInvariant[I - 1]) 9399 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 9400 else 9401 Indices.push_back(State.get(Operand, Part)); 9402 } 9403 9404 // If the GEP instruction is vectorized and was in a basic block that 9405 // needed predication, we can't propagate the poison-generating 'inbounds' 9406 // flag. The control flow has been linearized and the GEP is no longer 9407 // guarded by the predicate, which could make the 'inbounds' properties to 9408 // no longer hold. 9409 bool IsInBounds = 9410 GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0; 9411 9412 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 9413 // but it should be a vector, otherwise. 9414 auto *NewGEP = IsInBounds 9415 ? State.Builder.CreateInBoundsGEP( 9416 GEP->getSourceElementType(), Ptr, Indices) 9417 : State.Builder.CreateGEP(GEP->getSourceElementType(), 9418 Ptr, Indices); 9419 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) && 9420 "NewGEP is not a pointer vector"); 9421 State.set(this, NewGEP, Part); 9422 State.ILV->addMetadata(NewGEP, GEP); 9423 } 9424 } 9425 } 9426 9427 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9428 assert(!State.Instance && "Int or FP induction being replicated."); 9429 9430 Value *Start = getStartValue()->getLiveInIRValue(); 9431 const InductionDescriptor &ID = getInductionDescriptor(); 9432 TruncInst *Trunc = getTruncInst(); 9433 IRBuilderBase &Builder = State.Builder; 9434 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 9435 assert(State.VF.isVector() && "must have vector VF"); 9436 9437 // The value from the original loop to which we are mapping the new induction 9438 // variable. 9439 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 9440 9441 auto &DL = EntryVal->getModule()->getDataLayout(); 9442 9443 // Generate code for the induction step. Note that induction steps are 9444 // required to be loop-invariant 9445 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 9446 if (SE.isSCEVable(IV->getType())) { 9447 SCEVExpander Exp(SE, DL, "induction"); 9448 return Exp.expandCodeFor(Step, Step->getType(), 9449 State.CFG.VectorPreHeader->getTerminator()); 9450 } 9451 return cast<SCEVUnknown>(Step)->getValue(); 9452 }; 9453 9454 // Fast-math-flags propagate from the original induction instruction. 9455 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9456 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 9457 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 9458 9459 // Now do the actual transformations, and start with creating the step value. 9460 Value *Step = CreateStepValue(ID.getStep()); 9461 9462 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 9463 "Expected either an induction phi-node or a truncate of it!"); 9464 9465 // Construct the initial value of the vector IV in the vector loop preheader 9466 auto CurrIP = Builder.saveIP(); 9467 Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator()); 9468 if (isa<TruncInst>(EntryVal)) { 9469 assert(Start->getType()->isIntegerTy() && 9470 "Truncation requires an integer type"); 9471 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 9472 Step = Builder.CreateTrunc(Step, TruncType); 9473 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 9474 } 9475 9476 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 9477 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 9478 Value *SteppedStart = getStepVector( 9479 SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder); 9480 9481 // We create vector phi nodes for both integer and floating-point induction 9482 // variables. Here, we determine the kind of arithmetic we will perform. 9483 Instruction::BinaryOps AddOp; 9484 Instruction::BinaryOps MulOp; 9485 if (Step->getType()->isIntegerTy()) { 9486 AddOp = Instruction::Add; 9487 MulOp = Instruction::Mul; 9488 } else { 9489 AddOp = ID.getInductionOpcode(); 9490 MulOp = Instruction::FMul; 9491 } 9492 9493 // Multiply the vectorization factor by the step using integer or 9494 // floating-point arithmetic as appropriate. 9495 Type *StepType = Step->getType(); 9496 Value *RuntimeVF; 9497 if (Step->getType()->isFloatingPointTy()) 9498 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 9499 else 9500 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 9501 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 9502 9503 // Create a vector splat to use in the induction update. 9504 // 9505 // FIXME: If the step is non-constant, we create the vector splat with 9506 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 9507 // handle a constant vector splat. 9508 Value *SplatVF = isa<Constant>(Mul) 9509 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 9510 : Builder.CreateVectorSplat(State.VF, Mul); 9511 Builder.restoreIP(CurrIP); 9512 9513 // We may need to add the step a number of times, depending on the unroll 9514 // factor. The last of those goes into the PHI. 9515 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 9516 &*State.CFG.PrevBB->getFirstInsertionPt()); 9517 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 9518 Instruction *LastInduction = VecInd; 9519 for (unsigned Part = 0; Part < State.UF; ++Part) { 9520 State.set(this, LastInduction, Part); 9521 9522 if (isa<TruncInst>(EntryVal)) 9523 State.ILV->addMetadata(LastInduction, EntryVal); 9524 9525 LastInduction = cast<Instruction>( 9526 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 9527 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 9528 } 9529 9530 LastInduction->setName("vec.ind.next"); 9531 VecInd->addIncoming(SteppedStart, State.CFG.VectorPreHeader); 9532 // Add induction update using an incorrect block temporarily. The phi node 9533 // will be fixed after VPlan execution. Note that at this point the latch 9534 // block cannot be used, as it does not exist yet. 9535 // TODO: Model increment value in VPlan, by turning the recipe into a 9536 // multi-def and a subclass of VPHeaderPHIRecipe. 9537 VecInd->addIncoming(LastInduction, State.CFG.VectorPreHeader); 9538 } 9539 9540 void VPWidenPointerInductionRecipe::execute(VPTransformState &State) { 9541 assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction && 9542 "Not a pointer induction according to InductionDescriptor!"); 9543 assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() && 9544 "Unexpected type."); 9545 9546 auto *IVR = getParent()->getPlan()->getCanonicalIV(); 9547 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 9548 9549 if (all_of(users(), [this](const VPUser *U) { 9550 return cast<VPRecipeBase>(U)->usesScalars(this); 9551 })) { 9552 // This is the normalized GEP that starts counting at zero. 9553 Value *PtrInd = State.Builder.CreateSExtOrTrunc( 9554 CanonicalIV, IndDesc.getStep()->getType()); 9555 // Determine the number of scalars we need to generate for each unroll 9556 // iteration. If the instruction is uniform, we only need to generate the 9557 // first lane. Otherwise, we generate all VF values. 9558 bool IsUniform = vputils::onlyFirstLaneUsed(this); 9559 assert((IsUniform || !State.VF.isScalable()) && 9560 "Cannot scalarize a scalable VF"); 9561 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 9562 9563 for (unsigned Part = 0; Part < State.UF; ++Part) { 9564 Value *PartStart = 9565 createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part); 9566 9567 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 9568 Value *Idx = State.Builder.CreateAdd( 9569 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 9570 Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx); 9571 9572 Value *Step = CreateStepValue(IndDesc.getStep(), SE, 9573 State.CFG.PrevBB->getTerminator()); 9574 Value *SclrGep = emitTransformedIndex( 9575 State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc); 9576 SclrGep->setName("next.gep"); 9577 State.set(this, SclrGep, VPIteration(Part, Lane)); 9578 } 9579 } 9580 return; 9581 } 9582 9583 assert(isa<SCEVConstant>(IndDesc.getStep()) && 9584 "Induction step not a SCEV constant!"); 9585 Type *PhiType = IndDesc.getStep()->getType(); 9586 9587 // Build a pointer phi 9588 Value *ScalarStartValue = getStartValue()->getLiveInIRValue(); 9589 Type *ScStValueType = ScalarStartValue->getType(); 9590 PHINode *NewPointerPhi = 9591 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 9592 NewPointerPhi->addIncoming(ScalarStartValue, State.CFG.VectorPreHeader); 9593 9594 // A pointer induction, performed by using a gep 9595 const DataLayout &DL = NewPointerPhi->getModule()->getDataLayout(); 9596 Instruction *InductionLoc = &*State.Builder.GetInsertPoint(); 9597 9598 const SCEV *ScalarStep = IndDesc.getStep(); 9599 SCEVExpander Exp(SE, DL, "induction"); 9600 Value *ScalarStepValue = Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 9601 Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF); 9602 Value *NumUnrolledElems = 9603 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 9604 Value *InductionGEP = GetElementPtrInst::Create( 9605 IndDesc.getElementType(), NewPointerPhi, 9606 State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 9607 InductionLoc); 9608 // Add induction update using an incorrect block temporarily. The phi node 9609 // will be fixed after VPlan execution. Note that at this point the latch 9610 // block cannot be used, as it does not exist yet. 9611 // TODO: Model increment value in VPlan, by turning the recipe into a 9612 // multi-def and a subclass of VPHeaderPHIRecipe. 9613 NewPointerPhi->addIncoming(InductionGEP, State.CFG.VectorPreHeader); 9614 9615 // Create UF many actual address geps that use the pointer 9616 // phi as base and a vectorized version of the step value 9617 // (<step*0, ..., step*N>) as offset. 9618 for (unsigned Part = 0; Part < State.UF; ++Part) { 9619 Type *VecPhiType = VectorType::get(PhiType, State.VF); 9620 Value *StartOffsetScalar = 9621 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 9622 Value *StartOffset = 9623 State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 9624 // Create a vector of consecutive numbers from zero to VF. 9625 StartOffset = State.Builder.CreateAdd( 9626 StartOffset, State.Builder.CreateStepVector(VecPhiType)); 9627 9628 Value *GEP = State.Builder.CreateGEP( 9629 IndDesc.getElementType(), NewPointerPhi, 9630 State.Builder.CreateMul( 9631 StartOffset, 9632 State.Builder.CreateVectorSplat(State.VF, ScalarStepValue), 9633 "vector.gep")); 9634 State.set(this, GEP, Part); 9635 } 9636 } 9637 9638 void VPScalarIVStepsRecipe::execute(VPTransformState &State) { 9639 assert(!State.Instance && "VPScalarIVStepsRecipe being replicated."); 9640 9641 // Fast-math-flags propagate from the original induction instruction. 9642 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder); 9643 if (IndDesc.getInductionBinOp() && 9644 isa<FPMathOperator>(IndDesc.getInductionBinOp())) 9645 State.Builder.setFastMathFlags( 9646 IndDesc.getInductionBinOp()->getFastMathFlags()); 9647 9648 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9649 auto CreateScalarIV = [&](Value *&Step) -> Value * { 9650 Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0)); 9651 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9652 if (!isCanonical() || CanonicalIV->getType() != Ty) { 9653 ScalarIV = 9654 Ty->isIntegerTy() 9655 ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty) 9656 : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty); 9657 ScalarIV = emitTransformedIndex(State.Builder, ScalarIV, 9658 getStartValue()->getLiveInIRValue(), Step, 9659 IndDesc); 9660 ScalarIV->setName("offset.idx"); 9661 } 9662 if (TruncToTy) { 9663 assert(Step->getType()->isIntegerTy() && 9664 "Truncation requires an integer step"); 9665 ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy); 9666 Step = State.Builder.CreateTrunc(Step, TruncToTy); 9667 } 9668 return ScalarIV; 9669 }; 9670 9671 Value *ScalarIV = CreateScalarIV(Step); 9672 if (State.VF.isVector()) { 9673 buildScalarSteps(ScalarIV, Step, IndDesc, this, State); 9674 return; 9675 } 9676 9677 for (unsigned Part = 0; Part < State.UF; ++Part) { 9678 assert(!State.VF.isScalable() && "scalable vectors not yet supported."); 9679 Value *EntryPart; 9680 if (Step->getType()->isFloatingPointTy()) { 9681 Value *StartIdx = 9682 getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part); 9683 // Floating-point operations inherit FMF via the builder's flags. 9684 Value *MulOp = State.Builder.CreateFMul(StartIdx, Step); 9685 EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(), 9686 ScalarIV, MulOp); 9687 } else { 9688 Value *StartIdx = 9689 getRuntimeVF(State.Builder, Step->getType(), State.VF * Part); 9690 EntryPart = State.Builder.CreateAdd( 9691 ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction"); 9692 } 9693 State.set(this, EntryPart, Part); 9694 } 9695 } 9696 9697 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9698 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9699 State); 9700 } 9701 9702 void VPBlendRecipe::execute(VPTransformState &State) { 9703 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9704 // We know that all PHIs in non-header blocks are converted into 9705 // selects, so we don't have to worry about the insertion order and we 9706 // can just use the builder. 9707 // At this point we generate the predication tree. There may be 9708 // duplications since this is a simple recursive scan, but future 9709 // optimizations will clean it up. 9710 9711 unsigned NumIncoming = getNumIncomingValues(); 9712 9713 // Generate a sequence of selects of the form: 9714 // SELECT(Mask3, In3, 9715 // SELECT(Mask2, In2, 9716 // SELECT(Mask1, In1, 9717 // In0))) 9718 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9719 // are essentially undef are taken from In0. 9720 InnerLoopVectorizer::VectorParts Entry(State.UF); 9721 for (unsigned In = 0; In < NumIncoming; ++In) { 9722 for (unsigned Part = 0; Part < State.UF; ++Part) { 9723 // We might have single edge PHIs (blocks) - use an identity 9724 // 'select' for the first PHI operand. 9725 Value *In0 = State.get(getIncomingValue(In), Part); 9726 if (In == 0) 9727 Entry[Part] = In0; // Initialize with the first incoming value. 9728 else { 9729 // Select between the current value and the previous incoming edge 9730 // based on the incoming mask. 9731 Value *Cond = State.get(getMask(In), Part); 9732 Entry[Part] = 9733 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9734 } 9735 } 9736 } 9737 for (unsigned Part = 0; Part < State.UF; ++Part) 9738 State.set(this, Entry[Part], Part); 9739 } 9740 9741 void VPInterleaveRecipe::execute(VPTransformState &State) { 9742 assert(!State.Instance && "Interleave group being replicated."); 9743 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9744 getStoredValues(), getMask()); 9745 } 9746 9747 void VPReductionRecipe::execute(VPTransformState &State) { 9748 assert(!State.Instance && "Reduction being replicated."); 9749 Value *PrevInChain = State.get(getChainOp(), 0); 9750 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9751 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9752 // Propagate the fast-math flags carried by the underlying instruction. 9753 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9754 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9755 for (unsigned Part = 0; Part < State.UF; ++Part) { 9756 Value *NewVecOp = State.get(getVecOp(), Part); 9757 if (VPValue *Cond = getCondOp()) { 9758 Value *NewCond = State.get(Cond, Part); 9759 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9760 Value *Iden = RdxDesc->getRecurrenceIdentity( 9761 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9762 Value *IdenVec = 9763 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9764 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9765 NewVecOp = Select; 9766 } 9767 Value *NewRed; 9768 Value *NextInChain; 9769 if (IsOrdered) { 9770 if (State.VF.isVector()) 9771 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9772 PrevInChain); 9773 else 9774 NewRed = State.Builder.CreateBinOp( 9775 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9776 NewVecOp); 9777 PrevInChain = NewRed; 9778 } else { 9779 PrevInChain = State.get(getChainOp(), Part); 9780 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9781 } 9782 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9783 NextInChain = 9784 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9785 NewRed, PrevInChain); 9786 } else if (IsOrdered) 9787 NextInChain = NewRed; 9788 else 9789 NextInChain = State.Builder.CreateBinOp( 9790 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9791 PrevInChain); 9792 State.set(this, NextInChain, Part); 9793 } 9794 } 9795 9796 void VPReplicateRecipe::execute(VPTransformState &State) { 9797 if (State.Instance) { // Generate a single instance. 9798 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9799 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9800 IsPredicated, State); 9801 // Insert scalar instance packing it into a vector. 9802 if (AlsoPack && State.VF.isVector()) { 9803 // If we're constructing lane 0, initialize to start from poison. 9804 if (State.Instance->Lane.isFirstLane()) { 9805 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9806 Value *Poison = PoisonValue::get( 9807 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9808 State.set(this, Poison, State.Instance->Part); 9809 } 9810 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9811 } 9812 return; 9813 } 9814 9815 // Generate scalar instances for all VF lanes of all UF parts, unless the 9816 // instruction is uniform inwhich case generate only the first lane for each 9817 // of the UF parts. 9818 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9819 assert((!State.VF.isScalable() || IsUniform) && 9820 "Can't scalarize a scalable vector"); 9821 for (unsigned Part = 0; Part < State.UF; ++Part) 9822 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9823 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9824 VPIteration(Part, Lane), IsPredicated, 9825 State); 9826 } 9827 9828 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9829 assert(State.Instance && "Branch on Mask works only on single instance."); 9830 9831 unsigned Part = State.Instance->Part; 9832 unsigned Lane = State.Instance->Lane.getKnownLane(); 9833 9834 Value *ConditionBit = nullptr; 9835 VPValue *BlockInMask = getMask(); 9836 if (BlockInMask) { 9837 ConditionBit = State.get(BlockInMask, Part); 9838 if (ConditionBit->getType()->isVectorTy()) 9839 ConditionBit = State.Builder.CreateExtractElement( 9840 ConditionBit, State.Builder.getInt32(Lane)); 9841 } else // Block in mask is all-one. 9842 ConditionBit = State.Builder.getTrue(); 9843 9844 // Replace the temporary unreachable terminator with a new conditional branch, 9845 // whose two destinations will be set later when they are created. 9846 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9847 assert(isa<UnreachableInst>(CurrentTerminator) && 9848 "Expected to replace unreachable terminator with conditional branch."); 9849 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9850 CondBr->setSuccessor(0, nullptr); 9851 ReplaceInstWithInst(CurrentTerminator, CondBr); 9852 } 9853 9854 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9855 assert(State.Instance && "Predicated instruction PHI works per instance."); 9856 Instruction *ScalarPredInst = 9857 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9858 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9859 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9860 assert(PredicatingBB && "Predicated block has no single predecessor."); 9861 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9862 "operand must be VPReplicateRecipe"); 9863 9864 // By current pack/unpack logic we need to generate only a single phi node: if 9865 // a vector value for the predicated instruction exists at this point it means 9866 // the instruction has vector users only, and a phi for the vector value is 9867 // needed. In this case the recipe of the predicated instruction is marked to 9868 // also do that packing, thereby "hoisting" the insert-element sequence. 9869 // Otherwise, a phi node for the scalar value is needed. 9870 unsigned Part = State.Instance->Part; 9871 if (State.hasVectorValue(getOperand(0), Part)) { 9872 Value *VectorValue = State.get(getOperand(0), Part); 9873 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9874 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9875 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9876 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9877 if (State.hasVectorValue(this, Part)) 9878 State.reset(this, VPhi, Part); 9879 else 9880 State.set(this, VPhi, Part); 9881 // NOTE: Currently we need to update the value of the operand, so the next 9882 // predicated iteration inserts its generated value in the correct vector. 9883 State.reset(getOperand(0), VPhi, Part); 9884 } else { 9885 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9886 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9887 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9888 PredicatingBB); 9889 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9890 if (State.hasScalarValue(this, *State.Instance)) 9891 State.reset(this, Phi, *State.Instance); 9892 else 9893 State.set(this, Phi, *State.Instance); 9894 // NOTE: Currently we need to update the value of the operand, so the next 9895 // predicated iteration inserts its generated value in the correct vector. 9896 State.reset(getOperand(0), Phi, *State.Instance); 9897 } 9898 } 9899 9900 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9901 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9902 9903 // Attempt to issue a wide load. 9904 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9905 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9906 9907 assert((LI || SI) && "Invalid Load/Store instruction"); 9908 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9909 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9910 9911 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9912 9913 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9914 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9915 bool CreateGatherScatter = !Consecutive; 9916 9917 auto &Builder = State.Builder; 9918 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9919 bool isMaskRequired = getMask(); 9920 if (isMaskRequired) 9921 for (unsigned Part = 0; Part < State.UF; ++Part) 9922 BlockInMaskParts[Part] = State.get(getMask(), Part); 9923 9924 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9925 // Calculate the pointer for the specific unroll-part. 9926 GetElementPtrInst *PartPtr = nullptr; 9927 9928 bool InBounds = false; 9929 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9930 InBounds = gep->isInBounds(); 9931 if (Reverse) { 9932 // If the address is consecutive but reversed, then the 9933 // wide store needs to start at the last vector element. 9934 // RunTimeVF = VScale * VF.getKnownMinValue() 9935 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9936 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9937 // NumElt = -Part * RunTimeVF 9938 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9939 // LastLane = 1 - RunTimeVF 9940 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 9941 PartPtr = 9942 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 9943 PartPtr->setIsInBounds(InBounds); 9944 PartPtr = cast<GetElementPtrInst>( 9945 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 9946 PartPtr->setIsInBounds(InBounds); 9947 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 9948 BlockInMaskParts[Part] = 9949 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 9950 } else { 9951 Value *Increment = 9952 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 9953 PartPtr = cast<GetElementPtrInst>( 9954 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 9955 PartPtr->setIsInBounds(InBounds); 9956 } 9957 9958 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 9959 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 9960 }; 9961 9962 // Handle Stores: 9963 if (SI) { 9964 State.ILV->setDebugLocFromInst(SI); 9965 9966 for (unsigned Part = 0; Part < State.UF; ++Part) { 9967 Instruction *NewSI = nullptr; 9968 Value *StoredVal = State.get(StoredValue, Part); 9969 if (CreateGatherScatter) { 9970 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9971 Value *VectorGep = State.get(getAddr(), Part); 9972 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 9973 MaskPart); 9974 } else { 9975 if (Reverse) { 9976 // If we store to reverse consecutive memory locations, then we need 9977 // to reverse the order of elements in the stored value. 9978 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 9979 // We don't want to update the value in the map as it might be used in 9980 // another expression. So don't call resetVectorValue(StoredVal). 9981 } 9982 auto *VecPtr = 9983 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 9984 if (isMaskRequired) 9985 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 9986 BlockInMaskParts[Part]); 9987 else 9988 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 9989 } 9990 State.ILV->addMetadata(NewSI, SI); 9991 } 9992 return; 9993 } 9994 9995 // Handle loads. 9996 assert(LI && "Must have a load instruction"); 9997 State.ILV->setDebugLocFromInst(LI); 9998 for (unsigned Part = 0; Part < State.UF; ++Part) { 9999 Value *NewLI; 10000 if (CreateGatherScatter) { 10001 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10002 Value *VectorGep = State.get(getAddr(), Part); 10003 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 10004 nullptr, "wide.masked.gather"); 10005 State.ILV->addMetadata(NewLI, LI); 10006 } else { 10007 auto *VecPtr = 10008 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10009 if (isMaskRequired) 10010 NewLI = Builder.CreateMaskedLoad( 10011 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 10012 PoisonValue::get(DataTy), "wide.masked.load"); 10013 else 10014 NewLI = 10015 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 10016 10017 // Add metadata to the load, but setVectorValue to the reverse shuffle. 10018 State.ILV->addMetadata(NewLI, LI); 10019 if (Reverse) 10020 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 10021 } 10022 10023 State.set(this, NewLI, Part); 10024 } 10025 } 10026 10027 // Determine how to lower the scalar epilogue, which depends on 1) optimising 10028 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 10029 // predication, and 4) a TTI hook that analyses whether the loop is suitable 10030 // for predication. 10031 static ScalarEpilogueLowering getScalarEpilogueLowering( 10032 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 10033 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 10034 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 10035 LoopVectorizationLegality &LVL) { 10036 // 1) OptSize takes precedence over all other options, i.e. if this is set, 10037 // don't look at hints or options, and don't request a scalar epilogue. 10038 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 10039 // LoopAccessInfo (due to code dependency and not being able to reliably get 10040 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 10041 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 10042 // versioning when the vectorization is forced, unlike hasOptSize. So revert 10043 // back to the old way and vectorize with versioning when forced. See D81345.) 10044 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 10045 PGSOQueryType::IRPass) && 10046 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 10047 return CM_ScalarEpilogueNotAllowedOptSize; 10048 10049 // 2) If set, obey the directives 10050 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 10051 switch (PreferPredicateOverEpilogue) { 10052 case PreferPredicateTy::ScalarEpilogue: 10053 return CM_ScalarEpilogueAllowed; 10054 case PreferPredicateTy::PredicateElseScalarEpilogue: 10055 return CM_ScalarEpilogueNotNeededUsePredicate; 10056 case PreferPredicateTy::PredicateOrDontVectorize: 10057 return CM_ScalarEpilogueNotAllowedUsePredicate; 10058 }; 10059 } 10060 10061 // 3) If set, obey the hints 10062 switch (Hints.getPredicate()) { 10063 case LoopVectorizeHints::FK_Enabled: 10064 return CM_ScalarEpilogueNotNeededUsePredicate; 10065 case LoopVectorizeHints::FK_Disabled: 10066 return CM_ScalarEpilogueAllowed; 10067 }; 10068 10069 // 4) if the TTI hook indicates this is profitable, request predication. 10070 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 10071 LVL.getLAI())) 10072 return CM_ScalarEpilogueNotNeededUsePredicate; 10073 10074 return CM_ScalarEpilogueAllowed; 10075 } 10076 10077 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 10078 // If Values have been set for this Def return the one relevant for \p Part. 10079 if (hasVectorValue(Def, Part)) 10080 return Data.PerPartOutput[Def][Part]; 10081 10082 if (!hasScalarValue(Def, {Part, 0})) { 10083 Value *IRV = Def->getLiveInIRValue(); 10084 Value *B = ILV->getBroadcastInstrs(IRV); 10085 set(Def, B, Part); 10086 return B; 10087 } 10088 10089 Value *ScalarValue = get(Def, {Part, 0}); 10090 // If we aren't vectorizing, we can just copy the scalar map values over 10091 // to the vector map. 10092 if (VF.isScalar()) { 10093 set(Def, ScalarValue, Part); 10094 return ScalarValue; 10095 } 10096 10097 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 10098 bool IsUniform = RepR && RepR->isUniform(); 10099 10100 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 10101 // Check if there is a scalar value for the selected lane. 10102 if (!hasScalarValue(Def, {Part, LastLane})) { 10103 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 10104 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) || 10105 isa<VPScalarIVStepsRecipe>(Def->getDef())) && 10106 "unexpected recipe found to be invariant"); 10107 IsUniform = true; 10108 LastLane = 0; 10109 } 10110 10111 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 10112 // Set the insert point after the last scalarized instruction or after the 10113 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 10114 // will directly follow the scalar definitions. 10115 auto OldIP = Builder.saveIP(); 10116 auto NewIP = 10117 isa<PHINode>(LastInst) 10118 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10119 : std::next(BasicBlock::iterator(LastInst)); 10120 Builder.SetInsertPoint(&*NewIP); 10121 10122 // However, if we are vectorizing, we need to construct the vector values. 10123 // If the value is known to be uniform after vectorization, we can just 10124 // broadcast the scalar value corresponding to lane zero for each unroll 10125 // iteration. Otherwise, we construct the vector values using 10126 // insertelement instructions. Since the resulting vectors are stored in 10127 // State, we will only generate the insertelements once. 10128 Value *VectorValue = nullptr; 10129 if (IsUniform) { 10130 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10131 set(Def, VectorValue, Part); 10132 } else { 10133 // Initialize packing with insertelements to start from undef. 10134 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10135 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10136 set(Def, Undef, Part); 10137 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10138 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10139 VectorValue = get(Def, Part); 10140 } 10141 Builder.restoreIP(OldIP); 10142 return VectorValue; 10143 } 10144 10145 // Process the loop in the VPlan-native vectorization path. This path builds 10146 // VPlan upfront in the vectorization pipeline, which allows to apply 10147 // VPlan-to-VPlan transformations from the very beginning without modifying the 10148 // input LLVM IR. 10149 static bool processLoopInVPlanNativePath( 10150 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10151 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10152 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10153 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10154 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10155 LoopVectorizationRequirements &Requirements) { 10156 10157 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10158 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10159 return false; 10160 } 10161 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10162 Function *F = L->getHeader()->getParent(); 10163 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10164 10165 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10166 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10167 10168 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10169 &Hints, IAI); 10170 // Use the planner for outer loop vectorization. 10171 // TODO: CM is not used at this point inside the planner. Turn CM into an 10172 // optional argument if we don't need it in the future. 10173 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10174 Requirements, ORE); 10175 10176 // Get user vectorization factor. 10177 ElementCount UserVF = Hints.getWidth(); 10178 10179 CM.collectElementTypesForWidening(); 10180 10181 // Plan how to best vectorize, return the best VF and its cost. 10182 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10183 10184 // If we are stress testing VPlan builds, do not attempt to generate vector 10185 // code. Masked vector code generation support will follow soon. 10186 // Also, do not attempt to vectorize if no vector code will be produced. 10187 if (VPlanBuildStressTest || EnableVPlanPredication || 10188 VectorizationFactor::Disabled() == VF) 10189 return false; 10190 10191 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10192 10193 { 10194 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10195 F->getParent()->getDataLayout()); 10196 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10197 &CM, BFI, PSI, Checks); 10198 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10199 << L->getHeader()->getParent()->getName() << "\"\n"); 10200 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT); 10201 } 10202 10203 // Mark the loop as already vectorized to avoid vectorizing again. 10204 Hints.setAlreadyVectorized(); 10205 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10206 return true; 10207 } 10208 10209 // Emit a remark if there are stores to floats that required a floating point 10210 // extension. If the vectorized loop was generated with floating point there 10211 // will be a performance penalty from the conversion overhead and the change in 10212 // the vector width. 10213 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10214 SmallVector<Instruction *, 4> Worklist; 10215 for (BasicBlock *BB : L->getBlocks()) { 10216 for (Instruction &Inst : *BB) { 10217 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10218 if (S->getValueOperand()->getType()->isFloatTy()) 10219 Worklist.push_back(S); 10220 } 10221 } 10222 } 10223 10224 // Traverse the floating point stores upwards searching, for floating point 10225 // conversions. 10226 SmallPtrSet<const Instruction *, 4> Visited; 10227 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10228 while (!Worklist.empty()) { 10229 auto *I = Worklist.pop_back_val(); 10230 if (!L->contains(I)) 10231 continue; 10232 if (!Visited.insert(I).second) 10233 continue; 10234 10235 // Emit a remark if the floating point store required a floating 10236 // point conversion. 10237 // TODO: More work could be done to identify the root cause such as a 10238 // constant or a function return type and point the user to it. 10239 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10240 ORE->emit([&]() { 10241 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10242 I->getDebugLoc(), L->getHeader()) 10243 << "floating point conversion changes vector width. " 10244 << "Mixed floating point precision requires an up/down " 10245 << "cast that will negatively impact performance."; 10246 }); 10247 10248 for (Use &Op : I->operands()) 10249 if (auto *OpI = dyn_cast<Instruction>(Op)) 10250 Worklist.push_back(OpI); 10251 } 10252 } 10253 10254 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10255 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10256 !EnableLoopInterleaving), 10257 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10258 !EnableLoopVectorization) {} 10259 10260 bool LoopVectorizePass::processLoop(Loop *L) { 10261 assert((EnableVPlanNativePath || L->isInnermost()) && 10262 "VPlan-native path is not enabled. Only process inner loops."); 10263 10264 #ifndef NDEBUG 10265 const std::string DebugLocStr = getDebugLocString(L); 10266 #endif /* NDEBUG */ 10267 10268 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '" 10269 << L->getHeader()->getParent()->getName() << "' from " 10270 << DebugLocStr << "\n"); 10271 10272 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10273 10274 LLVM_DEBUG( 10275 dbgs() << "LV: Loop hints:" 10276 << " force=" 10277 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10278 ? "disabled" 10279 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10280 ? "enabled" 10281 : "?")) 10282 << " width=" << Hints.getWidth() 10283 << " interleave=" << Hints.getInterleave() << "\n"); 10284 10285 // Function containing loop 10286 Function *F = L->getHeader()->getParent(); 10287 10288 // Looking at the diagnostic output is the only way to determine if a loop 10289 // was vectorized (other than looking at the IR or machine code), so it 10290 // is important to generate an optimization remark for each loop. Most of 10291 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10292 // generated as OptimizationRemark and OptimizationRemarkMissed are 10293 // less verbose reporting vectorized loops and unvectorized loops that may 10294 // benefit from vectorization, respectively. 10295 10296 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10297 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10298 return false; 10299 } 10300 10301 PredicatedScalarEvolution PSE(*SE, *L); 10302 10303 // Check if it is legal to vectorize the loop. 10304 LoopVectorizationRequirements Requirements; 10305 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10306 &Requirements, &Hints, DB, AC, BFI, PSI); 10307 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10308 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10309 Hints.emitRemarkWithHints(); 10310 return false; 10311 } 10312 10313 // Check the function attributes and profiles to find out if this function 10314 // should be optimized for size. 10315 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10316 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10317 10318 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10319 // here. They may require CFG and instruction level transformations before 10320 // even evaluating whether vectorization is profitable. Since we cannot modify 10321 // the incoming IR, we need to build VPlan upfront in the vectorization 10322 // pipeline. 10323 if (!L->isInnermost()) 10324 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10325 ORE, BFI, PSI, Hints, Requirements); 10326 10327 assert(L->isInnermost() && "Inner loop expected."); 10328 10329 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10330 // count by optimizing for size, to minimize overheads. 10331 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10332 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10333 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10334 << "This loop is worth vectorizing only if no scalar " 10335 << "iteration overheads are incurred."); 10336 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10337 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10338 else { 10339 LLVM_DEBUG(dbgs() << "\n"); 10340 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10341 } 10342 } 10343 10344 // Check the function attributes to see if implicit floats are allowed. 10345 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10346 // an integer loop and the vector instructions selected are purely integer 10347 // vector instructions? 10348 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10349 reportVectorizationFailure( 10350 "Can't vectorize when the NoImplicitFloat attribute is used", 10351 "loop not vectorized due to NoImplicitFloat attribute", 10352 "NoImplicitFloat", ORE, L); 10353 Hints.emitRemarkWithHints(); 10354 return false; 10355 } 10356 10357 // Check if the target supports potentially unsafe FP vectorization. 10358 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10359 // for the target we're vectorizing for, to make sure none of the 10360 // additional fp-math flags can help. 10361 if (Hints.isPotentiallyUnsafe() && 10362 TTI->isFPVectorizationPotentiallyUnsafe()) { 10363 reportVectorizationFailure( 10364 "Potentially unsafe FP op prevents vectorization", 10365 "loop not vectorized due to unsafe FP support.", 10366 "UnsafeFP", ORE, L); 10367 Hints.emitRemarkWithHints(); 10368 return false; 10369 } 10370 10371 bool AllowOrderedReductions; 10372 // If the flag is set, use that instead and override the TTI behaviour. 10373 if (ForceOrderedReductions.getNumOccurrences() > 0) 10374 AllowOrderedReductions = ForceOrderedReductions; 10375 else 10376 AllowOrderedReductions = TTI->enableOrderedReductions(); 10377 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10378 ORE->emit([&]() { 10379 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10380 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10381 ExactFPMathInst->getDebugLoc(), 10382 ExactFPMathInst->getParent()) 10383 << "loop not vectorized: cannot prove it is safe to reorder " 10384 "floating-point operations"; 10385 }); 10386 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10387 "reorder floating-point operations\n"); 10388 Hints.emitRemarkWithHints(); 10389 return false; 10390 } 10391 10392 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10393 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10394 10395 // If an override option has been passed in for interleaved accesses, use it. 10396 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10397 UseInterleaved = EnableInterleavedMemAccesses; 10398 10399 // Analyze interleaved memory accesses. 10400 if (UseInterleaved) { 10401 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10402 } 10403 10404 // Use the cost model. 10405 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10406 F, &Hints, IAI); 10407 CM.collectValuesToIgnore(); 10408 CM.collectElementTypesForWidening(); 10409 10410 // Use the planner for vectorization. 10411 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10412 Requirements, ORE); 10413 10414 // Get user vectorization factor and interleave count. 10415 ElementCount UserVF = Hints.getWidth(); 10416 unsigned UserIC = Hints.getInterleave(); 10417 10418 // Plan how to best vectorize, return the best VF and its cost. 10419 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10420 10421 VectorizationFactor VF = VectorizationFactor::Disabled(); 10422 unsigned IC = 1; 10423 10424 if (MaybeVF) { 10425 VF = *MaybeVF; 10426 // Select the interleave count. 10427 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10428 } 10429 10430 // Identify the diagnostic messages that should be produced. 10431 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10432 bool VectorizeLoop = true, InterleaveLoop = true; 10433 if (VF.Width.isScalar()) { 10434 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10435 VecDiagMsg = std::make_pair( 10436 "VectorizationNotBeneficial", 10437 "the cost-model indicates that vectorization is not beneficial"); 10438 VectorizeLoop = false; 10439 } 10440 10441 if (!MaybeVF && UserIC > 1) { 10442 // Tell the user interleaving was avoided up-front, despite being explicitly 10443 // requested. 10444 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10445 "interleaving should be avoided up front\n"); 10446 IntDiagMsg = std::make_pair( 10447 "InterleavingAvoided", 10448 "Ignoring UserIC, because interleaving was avoided up front"); 10449 InterleaveLoop = false; 10450 } else if (IC == 1 && UserIC <= 1) { 10451 // Tell the user interleaving is not beneficial. 10452 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10453 IntDiagMsg = std::make_pair( 10454 "InterleavingNotBeneficial", 10455 "the cost-model indicates that interleaving is not beneficial"); 10456 InterleaveLoop = false; 10457 if (UserIC == 1) { 10458 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10459 IntDiagMsg.second += 10460 " and is explicitly disabled or interleave count is set to 1"; 10461 } 10462 } else if (IC > 1 && UserIC == 1) { 10463 // Tell the user interleaving is beneficial, but it explicitly disabled. 10464 LLVM_DEBUG( 10465 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10466 IntDiagMsg = std::make_pair( 10467 "InterleavingBeneficialButDisabled", 10468 "the cost-model indicates that interleaving is beneficial " 10469 "but is explicitly disabled or interleave count is set to 1"); 10470 InterleaveLoop = false; 10471 } 10472 10473 // Override IC if user provided an interleave count. 10474 IC = UserIC > 0 ? UserIC : IC; 10475 10476 // Emit diagnostic messages, if any. 10477 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10478 if (!VectorizeLoop && !InterleaveLoop) { 10479 // Do not vectorize or interleaving the loop. 10480 ORE->emit([&]() { 10481 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10482 L->getStartLoc(), L->getHeader()) 10483 << VecDiagMsg.second; 10484 }); 10485 ORE->emit([&]() { 10486 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10487 L->getStartLoc(), L->getHeader()) 10488 << IntDiagMsg.second; 10489 }); 10490 return false; 10491 } else if (!VectorizeLoop && InterleaveLoop) { 10492 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10493 ORE->emit([&]() { 10494 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10495 L->getStartLoc(), L->getHeader()) 10496 << VecDiagMsg.second; 10497 }); 10498 } else if (VectorizeLoop && !InterleaveLoop) { 10499 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10500 << ") in " << DebugLocStr << '\n'); 10501 ORE->emit([&]() { 10502 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10503 L->getStartLoc(), L->getHeader()) 10504 << IntDiagMsg.second; 10505 }); 10506 } else if (VectorizeLoop && InterleaveLoop) { 10507 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10508 << ") in " << DebugLocStr << '\n'); 10509 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10510 } 10511 10512 bool DisableRuntimeUnroll = false; 10513 MDNode *OrigLoopID = L->getLoopID(); 10514 { 10515 // Optimistically generate runtime checks. Drop them if they turn out to not 10516 // be profitable. Limit the scope of Checks, so the cleanup happens 10517 // immediately after vector codegeneration is done. 10518 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10519 F->getParent()->getDataLayout()); 10520 if (!VF.Width.isScalar() || IC > 1) 10521 Checks.Create(L, *LVL.getLAI(), PSE.getPredicate()); 10522 10523 using namespace ore; 10524 if (!VectorizeLoop) { 10525 assert(IC > 1 && "interleave count should not be 1 or 0"); 10526 // If we decided that it is not legal to vectorize the loop, then 10527 // interleave it. 10528 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10529 &CM, BFI, PSI, Checks); 10530 10531 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10532 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT); 10533 10534 ORE->emit([&]() { 10535 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10536 L->getHeader()) 10537 << "interleaved loop (interleaved count: " 10538 << NV("InterleaveCount", IC) << ")"; 10539 }); 10540 } else { 10541 // If we decided that it is *legal* to vectorize the loop, then do it. 10542 10543 // Consider vectorizing the epilogue too if it's profitable. 10544 VectorizationFactor EpilogueVF = 10545 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10546 if (EpilogueVF.Width.isVector()) { 10547 10548 // The first pass vectorizes the main loop and creates a scalar epilogue 10549 // to be vectorized by executing the plan (potentially with a different 10550 // factor) again shortly afterwards. 10551 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10552 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10553 EPI, &LVL, &CM, BFI, PSI, Checks); 10554 10555 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10556 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10557 DT); 10558 ++LoopsVectorized; 10559 10560 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10561 formLCSSARecursively(*L, *DT, LI, SE); 10562 10563 // Second pass vectorizes the epilogue and adjusts the control flow 10564 // edges from the first pass. 10565 EPI.MainLoopVF = EPI.EpilogueVF; 10566 EPI.MainLoopUF = EPI.EpilogueUF; 10567 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10568 ORE, EPI, &LVL, &CM, BFI, PSI, 10569 Checks); 10570 10571 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10572 BestEpiPlan.getVectorLoopRegion()->getEntryBasicBlock()->setName( 10573 "vec.epilog.vector.body"); 10574 10575 // Ensure that the start values for any VPReductionPHIRecipes are 10576 // updated before vectorising the epilogue loop. 10577 VPBasicBlock *Header = 10578 BestEpiPlan.getVectorLoopRegion()->getEntryBasicBlock(); 10579 for (VPRecipeBase &R : Header->phis()) { 10580 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { 10581 if (auto *Resume = MainILV.getReductionResumeValue( 10582 ReductionPhi->getRecurrenceDescriptor())) { 10583 VPValue *StartVal = new VPValue(Resume); 10584 BestEpiPlan.addExternalDef(StartVal); 10585 ReductionPhi->setOperand(0, StartVal); 10586 } 10587 } 10588 } 10589 10590 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10591 DT); 10592 ++LoopsEpilogueVectorized; 10593 10594 if (!MainILV.areSafetyChecksAdded()) 10595 DisableRuntimeUnroll = true; 10596 } else { 10597 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10598 &LVL, &CM, BFI, PSI, Checks); 10599 10600 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10601 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT); 10602 ++LoopsVectorized; 10603 10604 // Add metadata to disable runtime unrolling a scalar loop when there 10605 // are no runtime checks about strides and memory. A scalar loop that is 10606 // rarely used is not worth unrolling. 10607 if (!LB.areSafetyChecksAdded()) 10608 DisableRuntimeUnroll = true; 10609 } 10610 // Report the vectorization decision. 10611 ORE->emit([&]() { 10612 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10613 L->getHeader()) 10614 << "vectorized loop (vectorization width: " 10615 << NV("VectorizationFactor", VF.Width) 10616 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10617 }); 10618 } 10619 10620 if (ORE->allowExtraAnalysis(LV_NAME)) 10621 checkMixedPrecision(L, ORE); 10622 } 10623 10624 Optional<MDNode *> RemainderLoopID = 10625 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10626 LLVMLoopVectorizeFollowupEpilogue}); 10627 if (RemainderLoopID.hasValue()) { 10628 L->setLoopID(RemainderLoopID.getValue()); 10629 } else { 10630 if (DisableRuntimeUnroll) 10631 AddRuntimeUnrollDisableMetaData(L); 10632 10633 // Mark the loop as already vectorized to avoid vectorizing again. 10634 Hints.setAlreadyVectorized(); 10635 } 10636 10637 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10638 return true; 10639 } 10640 10641 LoopVectorizeResult LoopVectorizePass::runImpl( 10642 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10643 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10644 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10645 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10646 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10647 SE = &SE_; 10648 LI = &LI_; 10649 TTI = &TTI_; 10650 DT = &DT_; 10651 BFI = &BFI_; 10652 TLI = TLI_; 10653 AA = &AA_; 10654 AC = &AC_; 10655 GetLAA = &GetLAA_; 10656 DB = &DB_; 10657 ORE = &ORE_; 10658 PSI = PSI_; 10659 10660 // Don't attempt if 10661 // 1. the target claims to have no vector registers, and 10662 // 2. interleaving won't help ILP. 10663 // 10664 // The second condition is necessary because, even if the target has no 10665 // vector registers, loop vectorization may still enable scalar 10666 // interleaving. 10667 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10668 TTI->getMaxInterleaveFactor(1) < 2) 10669 return LoopVectorizeResult(false, false); 10670 10671 bool Changed = false, CFGChanged = false; 10672 10673 // The vectorizer requires loops to be in simplified form. 10674 // Since simplification may add new inner loops, it has to run before the 10675 // legality and profitability checks. This means running the loop vectorizer 10676 // will simplify all loops, regardless of whether anything end up being 10677 // vectorized. 10678 for (auto &L : *LI) 10679 Changed |= CFGChanged |= 10680 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10681 10682 // Build up a worklist of inner-loops to vectorize. This is necessary as 10683 // the act of vectorizing or partially unrolling a loop creates new loops 10684 // and can invalidate iterators across the loops. 10685 SmallVector<Loop *, 8> Worklist; 10686 10687 for (Loop *L : *LI) 10688 collectSupportedLoops(*L, LI, ORE, Worklist); 10689 10690 LoopsAnalyzed += Worklist.size(); 10691 10692 // Now walk the identified inner loops. 10693 while (!Worklist.empty()) { 10694 Loop *L = Worklist.pop_back_val(); 10695 10696 // For the inner loops we actually process, form LCSSA to simplify the 10697 // transform. 10698 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10699 10700 Changed |= CFGChanged |= processLoop(L); 10701 } 10702 10703 // Process each loop nest in the function. 10704 return LoopVectorizeResult(Changed, CFGChanged); 10705 } 10706 10707 PreservedAnalyses LoopVectorizePass::run(Function &F, 10708 FunctionAnalysisManager &AM) { 10709 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10710 auto &LI = AM.getResult<LoopAnalysis>(F); 10711 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10712 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10713 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10714 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10715 auto &AA = AM.getResult<AAManager>(F); 10716 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10717 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10718 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10719 10720 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10721 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10722 [&](Loop &L) -> const LoopAccessInfo & { 10723 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10724 TLI, TTI, nullptr, nullptr, nullptr}; 10725 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10726 }; 10727 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10728 ProfileSummaryInfo *PSI = 10729 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10730 LoopVectorizeResult Result = 10731 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10732 if (!Result.MadeAnyChange) 10733 return PreservedAnalyses::all(); 10734 PreservedAnalyses PA; 10735 10736 // We currently do not preserve loopinfo/dominator analyses with outer loop 10737 // vectorization. Until this is addressed, mark these analyses as preserved 10738 // only for non-VPlan-native path. 10739 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10740 if (!EnableVPlanNativePath) { 10741 PA.preserve<LoopAnalysis>(); 10742 PA.preserve<DominatorTreeAnalysis>(); 10743 } 10744 10745 if (Result.MadeCFGChange) { 10746 // Making CFG changes likely means a loop got vectorized. Indicate that 10747 // extra simplification passes should be run. 10748 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10749 // be run if runtime checks have been added. 10750 AM.getResult<ShouldRunExtraVectorPasses>(F); 10751 PA.preserve<ShouldRunExtraVectorPasses>(); 10752 } else { 10753 PA.preserveSet<CFGAnalyses>(); 10754 } 10755 return PA; 10756 } 10757 10758 void LoopVectorizePass::printPipeline( 10759 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10760 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10761 OS, MapClassName2PassName); 10762 10763 OS << "<"; 10764 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10765 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10766 OS << ">"; 10767 } 10768