1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanTransforms.h" 62 #include "llvm/ADT/APInt.h" 63 #include "llvm/ADT/ArrayRef.h" 64 #include "llvm/ADT/DenseMap.h" 65 #include "llvm/ADT/DenseMapInfo.h" 66 #include "llvm/ADT/Hashing.h" 67 #include "llvm/ADT/MapVector.h" 68 #include "llvm/ADT/None.h" 69 #include "llvm/ADT/Optional.h" 70 #include "llvm/ADT/STLExtras.h" 71 #include "llvm/ADT/SmallPtrSet.h" 72 #include "llvm/ADT/SmallSet.h" 73 #include "llvm/ADT/SmallVector.h" 74 #include "llvm/ADT/Statistic.h" 75 #include "llvm/ADT/StringRef.h" 76 #include "llvm/ADT/Twine.h" 77 #include "llvm/ADT/iterator_range.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/BasicAliasAnalysis.h" 80 #include "llvm/Analysis/BlockFrequencyInfo.h" 81 #include "llvm/Analysis/CFG.h" 82 #include "llvm/Analysis/CodeMetrics.h" 83 #include "llvm/Analysis/DemandedBits.h" 84 #include "llvm/Analysis/GlobalsModRef.h" 85 #include "llvm/Analysis/LoopAccessAnalysis.h" 86 #include "llvm/Analysis/LoopAnalysisManager.h" 87 #include "llvm/Analysis/LoopInfo.h" 88 #include "llvm/Analysis/LoopIterator.h" 89 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 90 #include "llvm/Analysis/ProfileSummaryInfo.h" 91 #include "llvm/Analysis/ScalarEvolution.h" 92 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 93 #include "llvm/Analysis/TargetLibraryInfo.h" 94 #include "llvm/Analysis/TargetTransformInfo.h" 95 #include "llvm/Analysis/VectorUtils.h" 96 #include "llvm/IR/Attributes.h" 97 #include "llvm/IR/BasicBlock.h" 98 #include "llvm/IR/CFG.h" 99 #include "llvm/IR/Constant.h" 100 #include "llvm/IR/Constants.h" 101 #include "llvm/IR/DataLayout.h" 102 #include "llvm/IR/DebugInfoMetadata.h" 103 #include "llvm/IR/DebugLoc.h" 104 #include "llvm/IR/DerivedTypes.h" 105 #include "llvm/IR/DiagnosticInfo.h" 106 #include "llvm/IR/Dominators.h" 107 #include "llvm/IR/Function.h" 108 #include "llvm/IR/IRBuilder.h" 109 #include "llvm/IR/InstrTypes.h" 110 #include "llvm/IR/Instruction.h" 111 #include "llvm/IR/Instructions.h" 112 #include "llvm/IR/IntrinsicInst.h" 113 #include "llvm/IR/Intrinsics.h" 114 #include "llvm/IR/Metadata.h" 115 #include "llvm/IR/Module.h" 116 #include "llvm/IR/Operator.h" 117 #include "llvm/IR/PatternMatch.h" 118 #include "llvm/IR/Type.h" 119 #include "llvm/IR/Use.h" 120 #include "llvm/IR/User.h" 121 #include "llvm/IR/Value.h" 122 #include "llvm/IR/ValueHandle.h" 123 #include "llvm/IR/Verifier.h" 124 #include "llvm/InitializePasses.h" 125 #include "llvm/Pass.h" 126 #include "llvm/Support/Casting.h" 127 #include "llvm/Support/CommandLine.h" 128 #include "llvm/Support/Compiler.h" 129 #include "llvm/Support/Debug.h" 130 #include "llvm/Support/ErrorHandling.h" 131 #include "llvm/Support/InstructionCost.h" 132 #include "llvm/Support/MathExtras.h" 133 #include "llvm/Support/raw_ostream.h" 134 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 135 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 136 #include "llvm/Transforms/Utils/LoopSimplify.h" 137 #include "llvm/Transforms/Utils/LoopUtils.h" 138 #include "llvm/Transforms/Utils/LoopVersioning.h" 139 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 140 #include "llvm/Transforms/Utils/SizeOpts.h" 141 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 142 #include <algorithm> 143 #include <cassert> 144 #include <cstdint> 145 #include <functional> 146 #include <iterator> 147 #include <limits> 148 #include <map> 149 #include <memory> 150 #include <string> 151 #include <tuple> 152 #include <utility> 153 154 using namespace llvm; 155 156 #define LV_NAME "loop-vectorize" 157 #define DEBUG_TYPE LV_NAME 158 159 #ifndef NDEBUG 160 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 161 #endif 162 163 /// @{ 164 /// Metadata attribute names 165 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 166 const char LLVMLoopVectorizeFollowupVectorized[] = 167 "llvm.loop.vectorize.followup_vectorized"; 168 const char LLVMLoopVectorizeFollowupEpilogue[] = 169 "llvm.loop.vectorize.followup_epilogue"; 170 /// @} 171 172 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 173 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 174 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 175 176 static cl::opt<bool> EnableEpilogueVectorization( 177 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 178 cl::desc("Enable vectorization of epilogue loops.")); 179 180 static cl::opt<unsigned> EpilogueVectorizationForceVF( 181 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 182 cl::desc("When epilogue vectorization is enabled, and a value greater than " 183 "1 is specified, forces the given VF for all applicable epilogue " 184 "loops.")); 185 186 static cl::opt<unsigned> EpilogueVectorizationMinVF( 187 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 188 cl::desc("Only loops with vectorization factor equal to or larger than " 189 "the specified value are considered for epilogue vectorization.")); 190 191 /// Loops with a known constant trip count below this number are vectorized only 192 /// if no scalar iteration overheads are incurred. 193 static cl::opt<unsigned> TinyTripCountVectorThreshold( 194 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 195 cl::desc("Loops with a constant trip count that is smaller than this " 196 "value are vectorized only if no scalar iteration overheads " 197 "are incurred.")); 198 199 static cl::opt<unsigned> VectorizeMemoryCheckThreshold( 200 "vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 201 cl::desc("The maximum allowed number of runtime memory checks")); 202 203 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 204 // that predication is preferred, and this lists all options. I.e., the 205 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 206 // and predicate the instructions accordingly. If tail-folding fails, there are 207 // different fallback strategies depending on these values: 208 namespace PreferPredicateTy { 209 enum Option { 210 ScalarEpilogue = 0, 211 PredicateElseScalarEpilogue, 212 PredicateOrDontVectorize 213 }; 214 } // namespace PreferPredicateTy 215 216 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 217 "prefer-predicate-over-epilogue", 218 cl::init(PreferPredicateTy::ScalarEpilogue), 219 cl::Hidden, 220 cl::desc("Tail-folding and predication preferences over creating a scalar " 221 "epilogue loop."), 222 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 223 "scalar-epilogue", 224 "Don't tail-predicate loops, create scalar epilogue"), 225 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 226 "predicate-else-scalar-epilogue", 227 "prefer tail-folding, create scalar epilogue if tail " 228 "folding fails."), 229 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 230 "predicate-dont-vectorize", 231 "prefers tail-folding, don't attempt vectorization if " 232 "tail-folding fails."))); 233 234 static cl::opt<bool> MaximizeBandwidth( 235 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 236 cl::desc("Maximize bandwidth when selecting vectorization factor which " 237 "will be determined by the smallest type in loop.")); 238 239 static cl::opt<bool> EnableInterleavedMemAccesses( 240 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 241 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 242 243 /// An interleave-group may need masking if it resides in a block that needs 244 /// predication, or in order to mask away gaps. 245 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 246 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 247 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 248 249 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 250 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 251 cl::desc("We don't interleave loops with a estimated constant trip count " 252 "below this number")); 253 254 static cl::opt<unsigned> ForceTargetNumScalarRegs( 255 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 256 cl::desc("A flag that overrides the target's number of scalar registers.")); 257 258 static cl::opt<unsigned> ForceTargetNumVectorRegs( 259 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 260 cl::desc("A flag that overrides the target's number of vector registers.")); 261 262 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 263 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 264 cl::desc("A flag that overrides the target's max interleave factor for " 265 "scalar loops.")); 266 267 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 268 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 269 cl::desc("A flag that overrides the target's max interleave factor for " 270 "vectorized loops.")); 271 272 static cl::opt<unsigned> ForceTargetInstructionCost( 273 "force-target-instruction-cost", cl::init(0), cl::Hidden, 274 cl::desc("A flag that overrides the target's expected cost for " 275 "an instruction to a single constant value. Mostly " 276 "useful for getting consistent testing.")); 277 278 static cl::opt<bool> ForceTargetSupportsScalableVectors( 279 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 280 cl::desc( 281 "Pretend that scalable vectors are supported, even if the target does " 282 "not support them. This flag should only be used for testing.")); 283 284 static cl::opt<unsigned> SmallLoopCost( 285 "small-loop-cost", cl::init(20), cl::Hidden, 286 cl::desc( 287 "The cost of a loop that is considered 'small' by the interleaver.")); 288 289 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 290 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 291 cl::desc("Enable the use of the block frequency analysis to access PGO " 292 "heuristics minimizing code growth in cold regions and being more " 293 "aggressive in hot regions.")); 294 295 // Runtime interleave loops for load/store throughput. 296 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 297 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 298 cl::desc( 299 "Enable runtime interleaving until load/store ports are saturated")); 300 301 /// Interleave small loops with scalar reductions. 302 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 303 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 304 cl::desc("Enable interleaving for loops with small iteration counts that " 305 "contain scalar reductions to expose ILP.")); 306 307 /// The number of stores in a loop that are allowed to need predication. 308 static cl::opt<unsigned> NumberOfStoresToPredicate( 309 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 310 cl::desc("Max number of stores to be predicated behind an if.")); 311 312 static cl::opt<bool> EnableIndVarRegisterHeur( 313 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 314 cl::desc("Count the induction variable only once when interleaving")); 315 316 static cl::opt<bool> EnableCondStoresVectorization( 317 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 318 cl::desc("Enable if predication of stores during vectorization.")); 319 320 static cl::opt<unsigned> MaxNestedScalarReductionIC( 321 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 322 cl::desc("The maximum interleave count to use when interleaving a scalar " 323 "reduction in a nested loop.")); 324 325 static cl::opt<bool> 326 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 327 cl::Hidden, 328 cl::desc("Prefer in-loop vector reductions, " 329 "overriding the targets preference.")); 330 331 static cl::opt<bool> ForceOrderedReductions( 332 "force-ordered-reductions", cl::init(false), cl::Hidden, 333 cl::desc("Enable the vectorisation of loops with in-order (strict) " 334 "FP reductions")); 335 336 static cl::opt<bool> PreferPredicatedReductionSelect( 337 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 338 cl::desc( 339 "Prefer predicating a reduction operation over an after loop select.")); 340 341 cl::opt<bool> EnableVPlanNativePath( 342 "enable-vplan-native-path", cl::init(false), cl::Hidden, 343 cl::desc("Enable VPlan-native vectorization path with " 344 "support for outer loop vectorization.")); 345 346 // This flag enables the stress testing of the VPlan H-CFG construction in the 347 // VPlan-native vectorization path. It must be used in conjuction with 348 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 349 // verification of the H-CFGs built. 350 static cl::opt<bool> VPlanBuildStressTest( 351 "vplan-build-stress-test", cl::init(false), cl::Hidden, 352 cl::desc( 353 "Build VPlan for every supported loop nest in the function and bail " 354 "out right after the build (stress test the VPlan H-CFG construction " 355 "in the VPlan-native vectorization path).")); 356 357 cl::opt<bool> llvm::EnableLoopInterleaving( 358 "interleave-loops", cl::init(true), cl::Hidden, 359 cl::desc("Enable loop interleaving in Loop vectorization passes")); 360 cl::opt<bool> llvm::EnableLoopVectorization( 361 "vectorize-loops", cl::init(true), cl::Hidden, 362 cl::desc("Run the Loop vectorization passes")); 363 364 cl::opt<bool> PrintVPlansInDotFormat( 365 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 366 cl::desc("Use dot format instead of plain text when dumping VPlans")); 367 368 /// A helper function that returns true if the given type is irregular. The 369 /// type is irregular if its allocated size doesn't equal the store size of an 370 /// element of the corresponding vector type. 371 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 372 // Determine if an array of N elements of type Ty is "bitcast compatible" 373 // with a <N x Ty> vector. 374 // This is only true if there is no padding between the array elements. 375 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 376 } 377 378 /// A helper function that returns the reciprocal of the block probability of 379 /// predicated blocks. If we return X, we are assuming the predicated block 380 /// will execute once for every X iterations of the loop header. 381 /// 382 /// TODO: We should use actual block probability here, if available. Currently, 383 /// we always assume predicated blocks have a 50% chance of executing. 384 static unsigned getReciprocalPredBlockProb() { return 2; } 385 386 /// A helper function that returns an integer or floating-point constant with 387 /// value C. 388 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 389 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 390 : ConstantFP::get(Ty, C); 391 } 392 393 /// Returns "best known" trip count for the specified loop \p L as defined by 394 /// the following procedure: 395 /// 1) Returns exact trip count if it is known. 396 /// 2) Returns expected trip count according to profile data if any. 397 /// 3) Returns upper bound estimate if it is known. 398 /// 4) Returns None if all of the above failed. 399 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 400 // Check if exact trip count is known. 401 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 402 return ExpectedTC; 403 404 // Check if there is an expected trip count available from profile data. 405 if (LoopVectorizeWithBlockFrequency) 406 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 407 return EstimatedTC; 408 409 // Check if upper bound estimate is known. 410 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 411 return ExpectedTC; 412 413 return None; 414 } 415 416 // Forward declare GeneratedRTChecks. 417 class GeneratedRTChecks; 418 419 namespace llvm { 420 421 AnalysisKey ShouldRunExtraVectorPasses::Key; 422 423 /// InnerLoopVectorizer vectorizes loops which contain only one basic 424 /// block to a specified vectorization factor (VF). 425 /// This class performs the widening of scalars into vectors, or multiple 426 /// scalars. This class also implements the following features: 427 /// * It inserts an epilogue loop for handling loops that don't have iteration 428 /// counts that are known to be a multiple of the vectorization factor. 429 /// * It handles the code generation for reduction variables. 430 /// * Scalarization (implementation using scalars) of un-vectorizable 431 /// instructions. 432 /// InnerLoopVectorizer does not perform any vectorization-legality 433 /// checks, and relies on the caller to check for the different legality 434 /// aspects. The InnerLoopVectorizer relies on the 435 /// LoopVectorizationLegality class to provide information about the induction 436 /// and reduction variables that were found to a given vectorization factor. 437 class InnerLoopVectorizer { 438 public: 439 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 440 LoopInfo *LI, DominatorTree *DT, 441 const TargetLibraryInfo *TLI, 442 const TargetTransformInfo *TTI, AssumptionCache *AC, 443 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 444 ElementCount MinProfitableTripCount, 445 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 446 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 447 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 448 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 449 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 450 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 451 PSI(PSI), RTChecks(RTChecks) { 452 // Query this against the original loop and save it here because the profile 453 // of the original loop header may change as the transformation happens. 454 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 455 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 456 457 if (MinProfitableTripCount.isZero()) 458 this->MinProfitableTripCount = VecWidth; 459 else 460 this->MinProfitableTripCount = MinProfitableTripCount; 461 } 462 463 virtual ~InnerLoopVectorizer() = default; 464 465 /// Create a new empty loop that will contain vectorized instructions later 466 /// on, while the old loop will be used as the scalar remainder. Control flow 467 /// is generated around the vectorized (and scalar epilogue) loops consisting 468 /// of various checks and bypasses. Return the pre-header block of the new 469 /// loop and the start value for the canonical induction, if it is != 0. The 470 /// latter is the case when vectorizing the epilogue loop. In the case of 471 /// epilogue vectorization, this function is overriden to handle the more 472 /// complex control flow around the loops. 473 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 474 475 /// Widen a single call instruction within the innermost loop. 476 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 477 VPTransformState &State); 478 479 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 480 void fixVectorizedLoop(VPTransformState &State, VPlan &Plan); 481 482 // Return true if any runtime check is added. 483 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 484 485 /// A type for vectorized values in the new loop. Each value from the 486 /// original loop, when vectorized, is represented by UF vector values in the 487 /// new unrolled loop, where UF is the unroll factor. 488 using VectorParts = SmallVector<Value *, 2>; 489 490 /// A helper function to scalarize a single Instruction in the innermost loop. 491 /// Generates a sequence of scalar instances for each lane between \p MinLane 492 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 493 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 494 /// Instr's operands. 495 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 496 const VPIteration &Instance, bool IfPredicateInstr, 497 VPTransformState &State); 498 499 /// Construct the vector value of a scalarized value \p V one lane at a time. 500 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 501 VPTransformState &State); 502 503 /// Try to vectorize interleaved access group \p Group with the base address 504 /// given in \p Addr, optionally masking the vector operations if \p 505 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 506 /// values in the vectorized loop. 507 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 508 ArrayRef<VPValue *> VPDefs, 509 VPTransformState &State, VPValue *Addr, 510 ArrayRef<VPValue *> StoredValues, 511 VPValue *BlockInMask = nullptr); 512 513 /// Fix the non-induction PHIs in \p Plan. 514 void fixNonInductionPHIs(VPlan &Plan, VPTransformState &State); 515 516 /// Returns true if the reordering of FP operations is not allowed, but we are 517 /// able to vectorize with strict in-order reductions for the given RdxDesc. 518 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 519 520 /// Create a broadcast instruction. This method generates a broadcast 521 /// instruction (shuffle) for loop invariant values and for the induction 522 /// value. If this is the induction variable then we extend it to N, N+1, ... 523 /// this is needed because each iteration in the loop corresponds to a SIMD 524 /// element. 525 virtual Value *getBroadcastInstrs(Value *V); 526 527 // Returns the resume value (bc.merge.rdx) for a reduction as 528 // generated by fixReduction. 529 PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc); 530 531 protected: 532 friend class LoopVectorizationPlanner; 533 534 /// A small list of PHINodes. 535 using PhiVector = SmallVector<PHINode *, 4>; 536 537 /// A type for scalarized values in the new loop. Each value from the 538 /// original loop, when scalarized, is represented by UF x VF scalar values 539 /// in the new unrolled loop, where UF is the unroll factor and VF is the 540 /// vectorization factor. 541 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 542 543 /// Set up the values of the IVs correctly when exiting the vector loop. 544 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 545 Value *VectorTripCount, Value *EndValue, 546 BasicBlock *MiddleBlock, BasicBlock *VectorHeader, 547 VPlan &Plan); 548 549 /// Handle all cross-iteration phis in the header. 550 void fixCrossIterationPHIs(VPTransformState &State); 551 552 /// Create the exit value of first order recurrences in the middle block and 553 /// update their users. 554 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 555 VPTransformState &State); 556 557 /// Create code for the loop exit value of the reduction. 558 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 559 560 /// Clear NSW/NUW flags from reduction instructions if necessary. 561 void clearReductionWrapFlags(VPReductionPHIRecipe *PhiR, 562 VPTransformState &State); 563 564 /// Iteratively sink the scalarized operands of a predicated instruction into 565 /// the block that was created for it. 566 void sinkScalarOperands(Instruction *PredInst); 567 568 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 569 /// represented as. 570 void truncateToMinimalBitwidths(VPTransformState &State); 571 572 /// Returns (and creates if needed) the original loop trip count. 573 Value *getOrCreateTripCount(BasicBlock *InsertBlock); 574 575 /// Returns (and creates if needed) the trip count of the widened loop. 576 Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock); 577 578 /// Returns a bitcasted value to the requested vector type. 579 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 580 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 581 const DataLayout &DL); 582 583 /// Emit a bypass check to see if the vector trip count is zero, including if 584 /// it overflows. 585 void emitIterationCountCheck(BasicBlock *Bypass); 586 587 /// Emit a bypass check to see if all of the SCEV assumptions we've 588 /// had to make are correct. Returns the block containing the checks or 589 /// nullptr if no checks have been added. 590 BasicBlock *emitSCEVChecks(BasicBlock *Bypass); 591 592 /// Emit bypass checks to check any memory assumptions we may have made. 593 /// Returns the block containing the checks or nullptr if no checks have been 594 /// added. 595 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass); 596 597 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 598 /// vector loop preheader, middle block and scalar preheader. 599 void createVectorLoopSkeleton(StringRef Prefix); 600 601 /// Create new phi nodes for the induction variables to resume iteration count 602 /// in the scalar epilogue, from where the vectorized loop left off. 603 /// In cases where the loop skeleton is more complicated (eg. epilogue 604 /// vectorization) and the resume values can come from an additional bypass 605 /// block, the \p AdditionalBypass pair provides information about the bypass 606 /// block and the end value on the edge from bypass to this loop. 607 void createInductionResumeValues( 608 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 609 610 /// Complete the loop skeleton by adding debug MDs, creating appropriate 611 /// conditional branches in the middle block, preparing the builder and 612 /// running the verifier. Return the preheader of the completed vector loop. 613 BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID); 614 615 /// Collect poison-generating recipes that may generate a poison value that is 616 /// used after vectorization, even when their operands are not poison. Those 617 /// recipes meet the following conditions: 618 /// * Contribute to the address computation of a recipe generating a widen 619 /// memory load/store (VPWidenMemoryInstructionRecipe or 620 /// VPInterleaveRecipe). 621 /// * Such a widen memory load/store has at least one underlying Instruction 622 /// that is in a basic block that needs predication and after vectorization 623 /// the generated instruction won't be predicated. 624 void collectPoisonGeneratingRecipes(VPTransformState &State); 625 626 /// Allow subclasses to override and print debug traces before/after vplan 627 /// execution, when trace information is requested. 628 virtual void printDebugTracesAtStart(){}; 629 virtual void printDebugTracesAtEnd(){}; 630 631 /// The original loop. 632 Loop *OrigLoop; 633 634 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 635 /// dynamic knowledge to simplify SCEV expressions and converts them to a 636 /// more usable form. 637 PredicatedScalarEvolution &PSE; 638 639 /// Loop Info. 640 LoopInfo *LI; 641 642 /// Dominator Tree. 643 DominatorTree *DT; 644 645 /// Alias Analysis. 646 AAResults *AA; 647 648 /// Target Library Info. 649 const TargetLibraryInfo *TLI; 650 651 /// Target Transform Info. 652 const TargetTransformInfo *TTI; 653 654 /// Assumption Cache. 655 AssumptionCache *AC; 656 657 /// Interface to emit optimization remarks. 658 OptimizationRemarkEmitter *ORE; 659 660 /// The vectorization SIMD factor to use. Each vector will have this many 661 /// vector elements. 662 ElementCount VF; 663 664 ElementCount MinProfitableTripCount; 665 666 /// The vectorization unroll factor to use. Each scalar is vectorized to this 667 /// many different vector instructions. 668 unsigned UF; 669 670 /// The builder that we use 671 IRBuilder<> Builder; 672 673 // --- Vectorization state --- 674 675 /// The vector-loop preheader. 676 BasicBlock *LoopVectorPreHeader; 677 678 /// The scalar-loop preheader. 679 BasicBlock *LoopScalarPreHeader; 680 681 /// Middle Block between the vector and the scalar. 682 BasicBlock *LoopMiddleBlock; 683 684 /// The unique ExitBlock of the scalar loop if one exists. Note that 685 /// there can be multiple exiting edges reaching this block. 686 BasicBlock *LoopExitBlock; 687 688 /// The scalar loop body. 689 BasicBlock *LoopScalarBody; 690 691 /// A list of all bypass blocks. The first block is the entry of the loop. 692 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 693 694 /// Store instructions that were predicated. 695 SmallVector<Instruction *, 4> PredicatedInstructions; 696 697 /// Trip count of the original loop. 698 Value *TripCount = nullptr; 699 700 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 701 Value *VectorTripCount = nullptr; 702 703 /// The legality analysis. 704 LoopVectorizationLegality *Legal; 705 706 /// The profitablity analysis. 707 LoopVectorizationCostModel *Cost; 708 709 // Record whether runtime checks are added. 710 bool AddedSafetyChecks = false; 711 712 // Holds the end values for each induction variable. We save the end values 713 // so we can later fix-up the external users of the induction variables. 714 DenseMap<PHINode *, Value *> IVEndValues; 715 716 /// BFI and PSI are used to check for profile guided size optimizations. 717 BlockFrequencyInfo *BFI; 718 ProfileSummaryInfo *PSI; 719 720 // Whether this loop should be optimized for size based on profile guided size 721 // optimizatios. 722 bool OptForSizeBasedOnProfile; 723 724 /// Structure to hold information about generated runtime checks, responsible 725 /// for cleaning the checks, if vectorization turns out unprofitable. 726 GeneratedRTChecks &RTChecks; 727 728 // Holds the resume values for reductions in the loops, used to set the 729 // correct start value of reduction PHIs when vectorizing the epilogue. 730 SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4> 731 ReductionResumeValues; 732 }; 733 734 class InnerLoopUnroller : public InnerLoopVectorizer { 735 public: 736 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 737 LoopInfo *LI, DominatorTree *DT, 738 const TargetLibraryInfo *TLI, 739 const TargetTransformInfo *TTI, AssumptionCache *AC, 740 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 741 LoopVectorizationLegality *LVL, 742 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 743 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 744 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 745 ElementCount::getFixed(1), 746 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 747 BFI, PSI, Check) {} 748 749 private: 750 Value *getBroadcastInstrs(Value *V) override; 751 }; 752 753 /// Encapsulate information regarding vectorization of a loop and its epilogue. 754 /// This information is meant to be updated and used across two stages of 755 /// epilogue vectorization. 756 struct EpilogueLoopVectorizationInfo { 757 ElementCount MainLoopVF = ElementCount::getFixed(0); 758 unsigned MainLoopUF = 0; 759 ElementCount EpilogueVF = ElementCount::getFixed(0); 760 unsigned EpilogueUF = 0; 761 BasicBlock *MainLoopIterationCountCheck = nullptr; 762 BasicBlock *EpilogueIterationCountCheck = nullptr; 763 BasicBlock *SCEVSafetyCheck = nullptr; 764 BasicBlock *MemSafetyCheck = nullptr; 765 Value *TripCount = nullptr; 766 Value *VectorTripCount = nullptr; 767 768 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 769 ElementCount EVF, unsigned EUF) 770 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 771 assert(EUF == 1 && 772 "A high UF for the epilogue loop is likely not beneficial."); 773 } 774 }; 775 776 /// An extension of the inner loop vectorizer that creates a skeleton for a 777 /// vectorized loop that has its epilogue (residual) also vectorized. 778 /// The idea is to run the vplan on a given loop twice, firstly to setup the 779 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 780 /// from the first step and vectorize the epilogue. This is achieved by 781 /// deriving two concrete strategy classes from this base class and invoking 782 /// them in succession from the loop vectorizer planner. 783 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 784 public: 785 InnerLoopAndEpilogueVectorizer( 786 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 787 DominatorTree *DT, const TargetLibraryInfo *TLI, 788 const TargetTransformInfo *TTI, AssumptionCache *AC, 789 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 790 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 791 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 792 GeneratedRTChecks &Checks) 793 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 794 EPI.MainLoopVF, EPI.MainLoopVF, EPI.MainLoopUF, LVL, 795 CM, BFI, PSI, Checks), 796 EPI(EPI) {} 797 798 // Override this function to handle the more complex control flow around the 799 // three loops. 800 std::pair<BasicBlock *, Value *> 801 createVectorizedLoopSkeleton() final override { 802 return createEpilogueVectorizedLoopSkeleton(); 803 } 804 805 /// The interface for creating a vectorized skeleton using one of two 806 /// different strategies, each corresponding to one execution of the vplan 807 /// as described above. 808 virtual std::pair<BasicBlock *, Value *> 809 createEpilogueVectorizedLoopSkeleton() = 0; 810 811 /// Holds and updates state information required to vectorize the main loop 812 /// and its epilogue in two separate passes. This setup helps us avoid 813 /// regenerating and recomputing runtime safety checks. It also helps us to 814 /// shorten the iteration-count-check path length for the cases where the 815 /// iteration count of the loop is so small that the main vector loop is 816 /// completely skipped. 817 EpilogueLoopVectorizationInfo &EPI; 818 }; 819 820 /// A specialized derived class of inner loop vectorizer that performs 821 /// vectorization of *main* loops in the process of vectorizing loops and their 822 /// epilogues. 823 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 824 public: 825 EpilogueVectorizerMainLoop( 826 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 827 DominatorTree *DT, const TargetLibraryInfo *TLI, 828 const TargetTransformInfo *TTI, AssumptionCache *AC, 829 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 830 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 831 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 832 GeneratedRTChecks &Check) 833 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 834 EPI, LVL, CM, BFI, PSI, Check) {} 835 /// Implements the interface for creating a vectorized skeleton using the 836 /// *main loop* strategy (ie the first pass of vplan execution). 837 std::pair<BasicBlock *, Value *> 838 createEpilogueVectorizedLoopSkeleton() final override; 839 840 protected: 841 /// Emits an iteration count bypass check once for the main loop (when \p 842 /// ForEpilogue is false) and once for the epilogue loop (when \p 843 /// ForEpilogue is true). 844 BasicBlock *emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue); 845 void printDebugTracesAtStart() override; 846 void printDebugTracesAtEnd() override; 847 }; 848 849 // A specialized derived class of inner loop vectorizer that performs 850 // vectorization of *epilogue* loops in the process of vectorizing loops and 851 // their epilogues. 852 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 853 public: 854 EpilogueVectorizerEpilogueLoop( 855 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 856 DominatorTree *DT, const TargetLibraryInfo *TLI, 857 const TargetTransformInfo *TTI, AssumptionCache *AC, 858 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 859 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 860 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 861 GeneratedRTChecks &Checks) 862 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 863 EPI, LVL, CM, BFI, PSI, Checks) { 864 TripCount = EPI.TripCount; 865 } 866 /// Implements the interface for creating a vectorized skeleton using the 867 /// *epilogue loop* strategy (ie the second pass of vplan execution). 868 std::pair<BasicBlock *, Value *> 869 createEpilogueVectorizedLoopSkeleton() final override; 870 871 protected: 872 /// Emits an iteration count bypass check after the main vector loop has 873 /// finished to see if there are any iterations left to execute by either 874 /// the vector epilogue or the scalar epilogue. 875 BasicBlock *emitMinimumVectorEpilogueIterCountCheck( 876 BasicBlock *Bypass, 877 BasicBlock *Insert); 878 void printDebugTracesAtStart() override; 879 void printDebugTracesAtEnd() override; 880 }; 881 } // end namespace llvm 882 883 /// Look for a meaningful debug location on the instruction or it's 884 /// operands. 885 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 886 if (!I) 887 return I; 888 889 DebugLoc Empty; 890 if (I->getDebugLoc() != Empty) 891 return I; 892 893 for (Use &Op : I->operands()) { 894 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 895 if (OpInst->getDebugLoc() != Empty) 896 return OpInst; 897 } 898 899 return I; 900 } 901 902 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 903 /// is passed, the message relates to that particular instruction. 904 #ifndef NDEBUG 905 static void debugVectorizationMessage(const StringRef Prefix, 906 const StringRef DebugMsg, 907 Instruction *I) { 908 dbgs() << "LV: " << Prefix << DebugMsg; 909 if (I != nullptr) 910 dbgs() << " " << *I; 911 else 912 dbgs() << '.'; 913 dbgs() << '\n'; 914 } 915 #endif 916 917 /// Create an analysis remark that explains why vectorization failed 918 /// 919 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 920 /// RemarkName is the identifier for the remark. If \p I is passed it is an 921 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 922 /// the location of the remark. \return the remark object that can be 923 /// streamed to. 924 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 925 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 926 Value *CodeRegion = TheLoop->getHeader(); 927 DebugLoc DL = TheLoop->getStartLoc(); 928 929 if (I) { 930 CodeRegion = I->getParent(); 931 // If there is no debug location attached to the instruction, revert back to 932 // using the loop's. 933 if (I->getDebugLoc()) 934 DL = I->getDebugLoc(); 935 } 936 937 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 938 } 939 940 namespace llvm { 941 942 /// Return a value for Step multiplied by VF. 943 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, 944 int64_t Step) { 945 assert(Ty->isIntegerTy() && "Expected an integer step"); 946 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 947 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 948 } 949 950 /// Return the runtime value for VF. 951 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) { 952 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 953 return VF.isScalable() ? B.CreateVScale(EC) : EC; 954 } 955 956 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy, 957 ElementCount VF) { 958 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 959 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 960 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 961 return B.CreateUIToFP(RuntimeVF, FTy); 962 } 963 964 void reportVectorizationFailure(const StringRef DebugMsg, 965 const StringRef OREMsg, const StringRef ORETag, 966 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 967 Instruction *I) { 968 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 969 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 970 ORE->emit( 971 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 972 << "loop not vectorized: " << OREMsg); 973 } 974 975 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 976 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 977 Instruction *I) { 978 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 979 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 980 ORE->emit( 981 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 982 << Msg); 983 } 984 985 } // end namespace llvm 986 987 #ifndef NDEBUG 988 /// \return string containing a file name and a line # for the given loop. 989 static std::string getDebugLocString(const Loop *L) { 990 std::string Result; 991 if (L) { 992 raw_string_ostream OS(Result); 993 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 994 LoopDbgLoc.print(OS); 995 else 996 // Just print the module name. 997 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 998 OS.flush(); 999 } 1000 return Result; 1001 } 1002 #endif 1003 1004 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1005 VPTransformState &State) { 1006 1007 // Collect recipes in the backward slice of `Root` that may generate a poison 1008 // value that is used after vectorization. 1009 SmallPtrSet<VPRecipeBase *, 16> Visited; 1010 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1011 SmallVector<VPRecipeBase *, 16> Worklist; 1012 Worklist.push_back(Root); 1013 1014 // Traverse the backward slice of Root through its use-def chain. 1015 while (!Worklist.empty()) { 1016 VPRecipeBase *CurRec = Worklist.back(); 1017 Worklist.pop_back(); 1018 1019 if (!Visited.insert(CurRec).second) 1020 continue; 1021 1022 // Prune search if we find another recipe generating a widen memory 1023 // instruction. Widen memory instructions involved in address computation 1024 // will lead to gather/scatter instructions, which don't need to be 1025 // handled. 1026 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1027 isa<VPInterleaveRecipe>(CurRec) || 1028 isa<VPScalarIVStepsRecipe>(CurRec) || 1029 isa<VPCanonicalIVPHIRecipe>(CurRec) || 1030 isa<VPActiveLaneMaskPHIRecipe>(CurRec)) 1031 continue; 1032 1033 // This recipe contributes to the address computation of a widen 1034 // load/store. Collect recipe if its underlying instruction has 1035 // poison-generating flags. 1036 Instruction *Instr = CurRec->getUnderlyingInstr(); 1037 if (Instr && Instr->hasPoisonGeneratingFlags()) 1038 State.MayGeneratePoisonRecipes.insert(CurRec); 1039 1040 // Add new definitions to the worklist. 1041 for (VPValue *operand : CurRec->operands()) 1042 if (VPDef *OpDef = operand->getDef()) 1043 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1044 } 1045 }); 1046 1047 // Traverse all the recipes in the VPlan and collect the poison-generating 1048 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1049 // VPInterleaveRecipe. 1050 auto Iter = depth_first( 1051 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1052 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1053 for (VPRecipeBase &Recipe : *VPBB) { 1054 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1055 Instruction &UnderlyingInstr = WidenRec->getIngredient(); 1056 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1057 if (AddrDef && WidenRec->isConsecutive() && 1058 Legal->blockNeedsPredication(UnderlyingInstr.getParent())) 1059 collectPoisonGeneratingInstrsInBackwardSlice( 1060 cast<VPRecipeBase>(AddrDef)); 1061 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1062 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1063 if (AddrDef) { 1064 // Check if any member of the interleave group needs predication. 1065 const InterleaveGroup<Instruction> *InterGroup = 1066 InterleaveRec->getInterleaveGroup(); 1067 bool NeedPredication = false; 1068 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1069 I < NumMembers; ++I) { 1070 Instruction *Member = InterGroup->getMember(I); 1071 if (Member) 1072 NeedPredication |= 1073 Legal->blockNeedsPredication(Member->getParent()); 1074 } 1075 1076 if (NeedPredication) 1077 collectPoisonGeneratingInstrsInBackwardSlice( 1078 cast<VPRecipeBase>(AddrDef)); 1079 } 1080 } 1081 } 1082 } 1083 } 1084 1085 PHINode *InnerLoopVectorizer::getReductionResumeValue( 1086 const RecurrenceDescriptor &RdxDesc) { 1087 auto It = ReductionResumeValues.find(&RdxDesc); 1088 assert(It != ReductionResumeValues.end() && 1089 "Expected to find a resume value for the reduction."); 1090 return It->second; 1091 } 1092 1093 namespace llvm { 1094 1095 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1096 // lowered. 1097 enum ScalarEpilogueLowering { 1098 1099 // The default: allowing scalar epilogues. 1100 CM_ScalarEpilogueAllowed, 1101 1102 // Vectorization with OptForSize: don't allow epilogues. 1103 CM_ScalarEpilogueNotAllowedOptSize, 1104 1105 // A special case of vectorisation with OptForSize: loops with a very small 1106 // trip count are considered for vectorization under OptForSize, thereby 1107 // making sure the cost of their loop body is dominant, free of runtime 1108 // guards and scalar iteration overheads. 1109 CM_ScalarEpilogueNotAllowedLowTripLoop, 1110 1111 // Loop hint predicate indicating an epilogue is undesired. 1112 CM_ScalarEpilogueNotNeededUsePredicate, 1113 1114 // Directive indicating we must either tail fold or not vectorize 1115 CM_ScalarEpilogueNotAllowedUsePredicate 1116 }; 1117 1118 /// ElementCountComparator creates a total ordering for ElementCount 1119 /// for the purposes of using it in a set structure. 1120 struct ElementCountComparator { 1121 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1122 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1123 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1124 } 1125 }; 1126 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1127 1128 /// LoopVectorizationCostModel - estimates the expected speedups due to 1129 /// vectorization. 1130 /// In many cases vectorization is not profitable. This can happen because of 1131 /// a number of reasons. In this class we mainly attempt to predict the 1132 /// expected speedup/slowdowns due to the supported instruction set. We use the 1133 /// TargetTransformInfo to query the different backends for the cost of 1134 /// different operations. 1135 class LoopVectorizationCostModel { 1136 public: 1137 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1138 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1139 LoopVectorizationLegality *Legal, 1140 const TargetTransformInfo &TTI, 1141 const TargetLibraryInfo *TLI, DemandedBits *DB, 1142 AssumptionCache *AC, 1143 OptimizationRemarkEmitter *ORE, const Function *F, 1144 const LoopVectorizeHints *Hints, 1145 InterleavedAccessInfo &IAI) 1146 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1147 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1148 Hints(Hints), InterleaveInfo(IAI) {} 1149 1150 /// \return An upper bound for the vectorization factors (both fixed and 1151 /// scalable). If the factors are 0, vectorization and interleaving should be 1152 /// avoided up front. 1153 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1154 1155 /// \return True if runtime checks are required for vectorization, and false 1156 /// otherwise. 1157 bool runtimeChecksRequired(); 1158 1159 /// \return The most profitable vectorization factor and the cost of that VF. 1160 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1161 /// then this vectorization factor will be selected if vectorization is 1162 /// possible. 1163 VectorizationFactor 1164 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1165 1166 VectorizationFactor 1167 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1168 const LoopVectorizationPlanner &LVP); 1169 1170 /// Setup cost-based decisions for user vectorization factor. 1171 /// \return true if the UserVF is a feasible VF to be chosen. 1172 bool selectUserVectorizationFactor(ElementCount UserVF) { 1173 collectUniformsAndScalars(UserVF); 1174 collectInstsToScalarize(UserVF); 1175 return expectedCost(UserVF).first.isValid(); 1176 } 1177 1178 /// \return The size (in bits) of the smallest and widest types in the code 1179 /// that needs to be vectorized. We ignore values that remain scalar such as 1180 /// 64 bit loop indices. 1181 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1182 1183 /// \return The desired interleave count. 1184 /// If interleave count has been specified by metadata it will be returned. 1185 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1186 /// are the selected vectorization factor and the cost of the selected VF. 1187 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1188 1189 /// Memory access instruction may be vectorized in more than one way. 1190 /// Form of instruction after vectorization depends on cost. 1191 /// This function takes cost-based decisions for Load/Store instructions 1192 /// and collects them in a map. This decisions map is used for building 1193 /// the lists of loop-uniform and loop-scalar instructions. 1194 /// The calculated cost is saved with widening decision in order to 1195 /// avoid redundant calculations. 1196 void setCostBasedWideningDecision(ElementCount VF); 1197 1198 /// A struct that represents some properties of the register usage 1199 /// of a loop. 1200 struct RegisterUsage { 1201 /// Holds the number of loop invariant values that are used in the loop. 1202 /// The key is ClassID of target-provided register class. 1203 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1204 /// Holds the maximum number of concurrent live intervals in the loop. 1205 /// The key is ClassID of target-provided register class. 1206 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1207 }; 1208 1209 /// \return Returns information about the register usages of the loop for the 1210 /// given vectorization factors. 1211 SmallVector<RegisterUsage, 8> 1212 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1213 1214 /// Collect values we want to ignore in the cost model. 1215 void collectValuesToIgnore(); 1216 1217 /// Collect all element types in the loop for which widening is needed. 1218 void collectElementTypesForWidening(); 1219 1220 /// Split reductions into those that happen in the loop, and those that happen 1221 /// outside. In loop reductions are collected into InLoopReductionChains. 1222 void collectInLoopReductions(); 1223 1224 /// Returns true if we should use strict in-order reductions for the given 1225 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1226 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1227 /// of FP operations. 1228 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const { 1229 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1230 } 1231 1232 /// \returns The smallest bitwidth each instruction can be represented with. 1233 /// The vector equivalents of these instructions should be truncated to this 1234 /// type. 1235 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1236 return MinBWs; 1237 } 1238 1239 /// \returns True if it is more profitable to scalarize instruction \p I for 1240 /// vectorization factor \p VF. 1241 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1242 assert(VF.isVector() && 1243 "Profitable to scalarize relevant only for VF > 1."); 1244 1245 // Cost model is not run in the VPlan-native path - return conservative 1246 // result until this changes. 1247 if (EnableVPlanNativePath) 1248 return false; 1249 1250 auto Scalars = InstsToScalarize.find(VF); 1251 assert(Scalars != InstsToScalarize.end() && 1252 "VF not yet analyzed for scalarization profitability"); 1253 return Scalars->second.find(I) != Scalars->second.end(); 1254 } 1255 1256 /// Returns true if \p I is known to be uniform after vectorization. 1257 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1258 if (VF.isScalar()) 1259 return true; 1260 1261 // Cost model is not run in the VPlan-native path - return conservative 1262 // result until this changes. 1263 if (EnableVPlanNativePath) 1264 return false; 1265 1266 auto UniformsPerVF = Uniforms.find(VF); 1267 assert(UniformsPerVF != Uniforms.end() && 1268 "VF not yet analyzed for uniformity"); 1269 return UniformsPerVF->second.count(I); 1270 } 1271 1272 /// Returns true if \p I is known to be scalar after vectorization. 1273 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1274 if (VF.isScalar()) 1275 return true; 1276 1277 // Cost model is not run in the VPlan-native path - return conservative 1278 // result until this changes. 1279 if (EnableVPlanNativePath) 1280 return false; 1281 1282 auto ScalarsPerVF = Scalars.find(VF); 1283 assert(ScalarsPerVF != Scalars.end() && 1284 "Scalar values are not calculated for VF"); 1285 return ScalarsPerVF->second.count(I); 1286 } 1287 1288 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1289 /// for vectorization factor \p VF. 1290 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1291 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1292 !isProfitableToScalarize(I, VF) && 1293 !isScalarAfterVectorization(I, VF); 1294 } 1295 1296 /// Decision that was taken during cost calculation for memory instruction. 1297 enum InstWidening { 1298 CM_Unknown, 1299 CM_Widen, // For consecutive accesses with stride +1. 1300 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1301 CM_Interleave, 1302 CM_GatherScatter, 1303 CM_Scalarize 1304 }; 1305 1306 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1307 /// instruction \p I and vector width \p VF. 1308 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1309 InstructionCost Cost) { 1310 assert(VF.isVector() && "Expected VF >=2"); 1311 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1312 } 1313 1314 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1315 /// interleaving group \p Grp and vector width \p VF. 1316 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1317 ElementCount VF, InstWidening W, 1318 InstructionCost Cost) { 1319 assert(VF.isVector() && "Expected VF >=2"); 1320 /// Broadcast this decicion to all instructions inside the group. 1321 /// But the cost will be assigned to one instruction only. 1322 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1323 if (auto *I = Grp->getMember(i)) { 1324 if (Grp->getInsertPos() == I) 1325 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1326 else 1327 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1328 } 1329 } 1330 } 1331 1332 /// Return the cost model decision for the given instruction \p I and vector 1333 /// width \p VF. Return CM_Unknown if this instruction did not pass 1334 /// through the cost modeling. 1335 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1336 assert(VF.isVector() && "Expected VF to be a vector VF"); 1337 // Cost model is not run in the VPlan-native path - return conservative 1338 // result until this changes. 1339 if (EnableVPlanNativePath) 1340 return CM_GatherScatter; 1341 1342 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1343 auto Itr = WideningDecisions.find(InstOnVF); 1344 if (Itr == WideningDecisions.end()) 1345 return CM_Unknown; 1346 return Itr->second.first; 1347 } 1348 1349 /// Return the vectorization cost for the given instruction \p I and vector 1350 /// width \p VF. 1351 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1352 assert(VF.isVector() && "Expected VF >=2"); 1353 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1354 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1355 "The cost is not calculated"); 1356 return WideningDecisions[InstOnVF].second; 1357 } 1358 1359 /// Return True if instruction \p I is an optimizable truncate whose operand 1360 /// is an induction variable. Such a truncate will be removed by adding a new 1361 /// induction variable with the destination type. 1362 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1363 // If the instruction is not a truncate, return false. 1364 auto *Trunc = dyn_cast<TruncInst>(I); 1365 if (!Trunc) 1366 return false; 1367 1368 // Get the source and destination types of the truncate. 1369 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1370 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1371 1372 // If the truncate is free for the given types, return false. Replacing a 1373 // free truncate with an induction variable would add an induction variable 1374 // update instruction to each iteration of the loop. We exclude from this 1375 // check the primary induction variable since it will need an update 1376 // instruction regardless. 1377 Value *Op = Trunc->getOperand(0); 1378 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1379 return false; 1380 1381 // If the truncated value is not an induction variable, return false. 1382 return Legal->isInductionPhi(Op); 1383 } 1384 1385 /// Collects the instructions to scalarize for each predicated instruction in 1386 /// the loop. 1387 void collectInstsToScalarize(ElementCount VF); 1388 1389 /// Collect Uniform and Scalar values for the given \p VF. 1390 /// The sets depend on CM decision for Load/Store instructions 1391 /// that may be vectorized as interleave, gather-scatter or scalarized. 1392 void collectUniformsAndScalars(ElementCount VF) { 1393 // Do the analysis once. 1394 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1395 return; 1396 setCostBasedWideningDecision(VF); 1397 collectLoopUniforms(VF); 1398 collectLoopScalars(VF); 1399 } 1400 1401 /// Returns true if the target machine supports masked store operation 1402 /// for the given \p DataType and kind of access to \p Ptr. 1403 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1404 return Legal->isConsecutivePtr(DataType, Ptr) && 1405 TTI.isLegalMaskedStore(DataType, Alignment); 1406 } 1407 1408 /// Returns true if the target machine supports masked load operation 1409 /// for the given \p DataType and kind of access to \p Ptr. 1410 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1411 return Legal->isConsecutivePtr(DataType, Ptr) && 1412 TTI.isLegalMaskedLoad(DataType, Alignment); 1413 } 1414 1415 /// Returns true if the target machine can represent \p V as a masked gather 1416 /// or scatter operation. 1417 bool isLegalGatherOrScatter(Value *V, 1418 ElementCount VF = ElementCount::getFixed(1)) { 1419 bool LI = isa<LoadInst>(V); 1420 bool SI = isa<StoreInst>(V); 1421 if (!LI && !SI) 1422 return false; 1423 auto *Ty = getLoadStoreType(V); 1424 Align Align = getLoadStoreAlignment(V); 1425 if (VF.isVector()) 1426 Ty = VectorType::get(Ty, VF); 1427 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1428 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1429 } 1430 1431 /// Returns true if the target machine supports all of the reduction 1432 /// variables found for the given VF. 1433 bool canVectorizeReductions(ElementCount VF) const { 1434 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1435 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1436 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1437 })); 1438 } 1439 1440 /// Returns true if \p I is an instruction that will be scalarized with 1441 /// predication when vectorizing \p I with vectorization factor \p VF. Such 1442 /// instructions include conditional stores and instructions that may divide 1443 /// by zero. 1444 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1445 1446 // Returns true if \p I is an instruction that will be predicated either 1447 // through scalar predication or masked load/store or masked gather/scatter. 1448 // \p VF is the vectorization factor that will be used to vectorize \p I. 1449 // Superset of instructions that return true for isScalarWithPredication. 1450 bool isPredicatedInst(Instruction *I, ElementCount VF, 1451 bool IsKnownUniform = false) { 1452 // When we know the load is uniform and the original scalar loop was not 1453 // predicated we don't need to mark it as a predicated instruction. Any 1454 // vectorised blocks created when tail-folding are something artificial we 1455 // have introduced and we know there is always at least one active lane. 1456 // That's why we call Legal->blockNeedsPredication here because it doesn't 1457 // query tail-folding. 1458 if (IsKnownUniform && isa<LoadInst>(I) && 1459 !Legal->blockNeedsPredication(I->getParent())) 1460 return false; 1461 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1462 return false; 1463 // Loads and stores that need some form of masked operation are predicated 1464 // instructions. 1465 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1466 return Legal->isMaskRequired(I); 1467 return isScalarWithPredication(I, VF); 1468 } 1469 1470 /// Returns true if \p I is a memory instruction with consecutive memory 1471 /// access that can be widened. 1472 bool 1473 memoryInstructionCanBeWidened(Instruction *I, 1474 ElementCount VF = ElementCount::getFixed(1)); 1475 1476 /// Returns true if \p I is a memory instruction in an interleaved-group 1477 /// of memory accesses that can be vectorized with wide vector loads/stores 1478 /// and shuffles. 1479 bool 1480 interleavedAccessCanBeWidened(Instruction *I, 1481 ElementCount VF = ElementCount::getFixed(1)); 1482 1483 /// Check if \p Instr belongs to any interleaved access group. 1484 bool isAccessInterleaved(Instruction *Instr) { 1485 return InterleaveInfo.isInterleaved(Instr); 1486 } 1487 1488 /// Get the interleaved access group that \p Instr belongs to. 1489 const InterleaveGroup<Instruction> * 1490 getInterleavedAccessGroup(Instruction *Instr) { 1491 return InterleaveInfo.getInterleaveGroup(Instr); 1492 } 1493 1494 /// Returns true if we're required to use a scalar epilogue for at least 1495 /// the final iteration of the original loop. 1496 bool requiresScalarEpilogue(ElementCount VF) const { 1497 if (!isScalarEpilogueAllowed()) 1498 return false; 1499 // If we might exit from anywhere but the latch, must run the exiting 1500 // iteration in scalar form. 1501 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1502 return true; 1503 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1504 } 1505 1506 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1507 /// loop hint annotation. 1508 bool isScalarEpilogueAllowed() const { 1509 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1510 } 1511 1512 /// Returns true if all loop blocks should be masked to fold tail loop. 1513 bool foldTailByMasking() const { return FoldTailByMasking; } 1514 1515 /// Returns true if were tail-folding and want to use the active lane mask 1516 /// for vector loop control flow. 1517 bool useActiveLaneMaskForControlFlow() const { 1518 return FoldTailByMasking && 1519 TTI.emitGetActiveLaneMask() == PredicationStyle::DataAndControlFlow; 1520 } 1521 1522 /// Returns true if the instructions in this block requires predication 1523 /// for any reason, e.g. because tail folding now requires a predicate 1524 /// or because the block in the original loop was predicated. 1525 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1526 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1527 } 1528 1529 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1530 /// nodes to the chain of instructions representing the reductions. Uses a 1531 /// MapVector to ensure deterministic iteration order. 1532 using ReductionChainMap = 1533 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1534 1535 /// Return the chain of instructions representing an inloop reduction. 1536 const ReductionChainMap &getInLoopReductionChains() const { 1537 return InLoopReductionChains; 1538 } 1539 1540 /// Returns true if the Phi is part of an inloop reduction. 1541 bool isInLoopReduction(PHINode *Phi) const { 1542 return InLoopReductionChains.count(Phi); 1543 } 1544 1545 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1546 /// with factor VF. Return the cost of the instruction, including 1547 /// scalarization overhead if it's needed. 1548 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1549 1550 /// Estimate cost of a call instruction CI if it were vectorized with factor 1551 /// VF. Return the cost of the instruction, including scalarization overhead 1552 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1553 /// scalarized - 1554 /// i.e. either vector version isn't available, or is too expensive. 1555 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1556 bool &NeedToScalarize) const; 1557 1558 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1559 /// that of B. 1560 bool isMoreProfitable(const VectorizationFactor &A, 1561 const VectorizationFactor &B) const; 1562 1563 /// Invalidates decisions already taken by the cost model. 1564 void invalidateCostModelingDecisions() { 1565 WideningDecisions.clear(); 1566 Uniforms.clear(); 1567 Scalars.clear(); 1568 } 1569 1570 /// Convenience function that returns the value of vscale_range iff 1571 /// vscale_range.min == vscale_range.max or otherwise returns the value 1572 /// returned by the corresponding TLI method. 1573 Optional<unsigned> getVScaleForTuning() const; 1574 1575 private: 1576 unsigned NumPredStores = 0; 1577 1578 /// \return An upper bound for the vectorization factors for both 1579 /// fixed and scalable vectorization, where the minimum-known number of 1580 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1581 /// disabled or unsupported, then the scalable part will be equal to 1582 /// ElementCount::getScalable(0). 1583 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1584 ElementCount UserVF, 1585 bool FoldTailByMasking); 1586 1587 /// \return the maximized element count based on the targets vector 1588 /// registers and the loop trip-count, but limited to a maximum safe VF. 1589 /// This is a helper function of computeFeasibleMaxVF. 1590 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1591 unsigned SmallestType, 1592 unsigned WidestType, 1593 ElementCount MaxSafeVF, 1594 bool FoldTailByMasking); 1595 1596 /// \return the maximum legal scalable VF, based on the safe max number 1597 /// of elements. 1598 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1599 1600 /// The vectorization cost is a combination of the cost itself and a boolean 1601 /// indicating whether any of the contributing operations will actually 1602 /// operate on vector values after type legalization in the backend. If this 1603 /// latter value is false, then all operations will be scalarized (i.e. no 1604 /// vectorization has actually taken place). 1605 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1606 1607 /// Returns the expected execution cost. The unit of the cost does 1608 /// not matter because we use the 'cost' units to compare different 1609 /// vector widths. The cost that is returned is *not* normalized by 1610 /// the factor width. If \p Invalid is not nullptr, this function 1611 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1612 /// each instruction that has an Invalid cost for the given VF. 1613 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1614 VectorizationCostTy 1615 expectedCost(ElementCount VF, 1616 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1617 1618 /// Returns the execution time cost of an instruction for a given vector 1619 /// width. Vector width of one means scalar. 1620 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1621 1622 /// The cost-computation logic from getInstructionCost which provides 1623 /// the vector type as an output parameter. 1624 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1625 Type *&VectorTy); 1626 1627 /// Return the cost of instructions in an inloop reduction pattern, if I is 1628 /// part of that pattern. 1629 Optional<InstructionCost> 1630 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1631 TTI::TargetCostKind CostKind); 1632 1633 /// Calculate vectorization cost of memory instruction \p I. 1634 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1635 1636 /// The cost computation for scalarized memory instruction. 1637 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1638 1639 /// The cost computation for interleaving group of memory instructions. 1640 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1641 1642 /// The cost computation for Gather/Scatter instruction. 1643 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1644 1645 /// The cost computation for widening instruction \p I with consecutive 1646 /// memory access. 1647 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1648 1649 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1650 /// Load: scalar load + broadcast. 1651 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1652 /// element) 1653 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1654 1655 /// Estimate the overhead of scalarizing an instruction. This is a 1656 /// convenience wrapper for the type-based getScalarizationOverhead API. 1657 InstructionCost getScalarizationOverhead(Instruction *I, 1658 ElementCount VF) const; 1659 1660 /// Returns whether the instruction is a load or store and will be a emitted 1661 /// as a vector operation. 1662 bool isConsecutiveLoadOrStore(Instruction *I); 1663 1664 /// Returns true if an artificially high cost for emulated masked memrefs 1665 /// should be used. 1666 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); 1667 1668 /// Map of scalar integer values to the smallest bitwidth they can be legally 1669 /// represented as. The vector equivalents of these values should be truncated 1670 /// to this type. 1671 MapVector<Instruction *, uint64_t> MinBWs; 1672 1673 /// A type representing the costs for instructions if they were to be 1674 /// scalarized rather than vectorized. The entries are Instruction-Cost 1675 /// pairs. 1676 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1677 1678 /// A set containing all BasicBlocks that are known to present after 1679 /// vectorization as a predicated block. 1680 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>> 1681 PredicatedBBsAfterVectorization; 1682 1683 /// Records whether it is allowed to have the original scalar loop execute at 1684 /// least once. This may be needed as a fallback loop in case runtime 1685 /// aliasing/dependence checks fail, or to handle the tail/remainder 1686 /// iterations when the trip count is unknown or doesn't divide by the VF, 1687 /// or as a peel-loop to handle gaps in interleave-groups. 1688 /// Under optsize and when the trip count is very small we don't allow any 1689 /// iterations to execute in the scalar loop. 1690 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1691 1692 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1693 bool FoldTailByMasking = false; 1694 1695 /// A map holding scalar costs for different vectorization factors. The 1696 /// presence of a cost for an instruction in the mapping indicates that the 1697 /// instruction will be scalarized when vectorizing with the associated 1698 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1699 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1700 1701 /// Holds the instructions known to be uniform after vectorization. 1702 /// The data is collected per VF. 1703 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1704 1705 /// Holds the instructions known to be scalar after vectorization. 1706 /// The data is collected per VF. 1707 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1708 1709 /// Holds the instructions (address computations) that are forced to be 1710 /// scalarized. 1711 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1712 1713 /// PHINodes of the reductions that should be expanded in-loop along with 1714 /// their associated chains of reduction operations, in program order from top 1715 /// (PHI) to bottom 1716 ReductionChainMap InLoopReductionChains; 1717 1718 /// A Map of inloop reduction operations and their immediate chain operand. 1719 /// FIXME: This can be removed once reductions can be costed correctly in 1720 /// vplan. This was added to allow quick lookup to the inloop operations, 1721 /// without having to loop through InLoopReductionChains. 1722 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1723 1724 /// Returns the expected difference in cost from scalarizing the expression 1725 /// feeding a predicated instruction \p PredInst. The instructions to 1726 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1727 /// non-negative return value implies the expression will be scalarized. 1728 /// Currently, only single-use chains are considered for scalarization. 1729 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1730 ElementCount VF); 1731 1732 /// Collect the instructions that are uniform after vectorization. An 1733 /// instruction is uniform if we represent it with a single scalar value in 1734 /// the vectorized loop corresponding to each vector iteration. Examples of 1735 /// uniform instructions include pointer operands of consecutive or 1736 /// interleaved memory accesses. Note that although uniformity implies an 1737 /// instruction will be scalar, the reverse is not true. In general, a 1738 /// scalarized instruction will be represented by VF scalar values in the 1739 /// vectorized loop, each corresponding to an iteration of the original 1740 /// scalar loop. 1741 void collectLoopUniforms(ElementCount VF); 1742 1743 /// Collect the instructions that are scalar after vectorization. An 1744 /// instruction is scalar if it is known to be uniform or will be scalarized 1745 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1746 /// to the list if they are used by a load/store instruction that is marked as 1747 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1748 /// VF values in the vectorized loop, each corresponding to an iteration of 1749 /// the original scalar loop. 1750 void collectLoopScalars(ElementCount VF); 1751 1752 /// Keeps cost model vectorization decision and cost for instructions. 1753 /// Right now it is used for memory instructions only. 1754 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1755 std::pair<InstWidening, InstructionCost>>; 1756 1757 DecisionList WideningDecisions; 1758 1759 /// Returns true if \p V is expected to be vectorized and it needs to be 1760 /// extracted. 1761 bool needsExtract(Value *V, ElementCount VF) const { 1762 Instruction *I = dyn_cast<Instruction>(V); 1763 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1764 TheLoop->isLoopInvariant(I)) 1765 return false; 1766 1767 // Assume we can vectorize V (and hence we need extraction) if the 1768 // scalars are not computed yet. This can happen, because it is called 1769 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1770 // the scalars are collected. That should be a safe assumption in most 1771 // cases, because we check if the operands have vectorizable types 1772 // beforehand in LoopVectorizationLegality. 1773 return Scalars.find(VF) == Scalars.end() || 1774 !isScalarAfterVectorization(I, VF); 1775 }; 1776 1777 /// Returns a range containing only operands needing to be extracted. 1778 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1779 ElementCount VF) const { 1780 return SmallVector<Value *, 4>(make_filter_range( 1781 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1782 } 1783 1784 /// Determines if we have the infrastructure to vectorize loop \p L and its 1785 /// epilogue, assuming the main loop is vectorized by \p VF. 1786 bool isCandidateForEpilogueVectorization(const Loop &L, 1787 const ElementCount VF) const; 1788 1789 /// Returns true if epilogue vectorization is considered profitable, and 1790 /// false otherwise. 1791 /// \p VF is the vectorization factor chosen for the original loop. 1792 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1793 1794 public: 1795 /// The loop that we evaluate. 1796 Loop *TheLoop; 1797 1798 /// Predicated scalar evolution analysis. 1799 PredicatedScalarEvolution &PSE; 1800 1801 /// Loop Info analysis. 1802 LoopInfo *LI; 1803 1804 /// Vectorization legality. 1805 LoopVectorizationLegality *Legal; 1806 1807 /// Vector target information. 1808 const TargetTransformInfo &TTI; 1809 1810 /// Target Library Info. 1811 const TargetLibraryInfo *TLI; 1812 1813 /// Demanded bits analysis. 1814 DemandedBits *DB; 1815 1816 /// Assumption cache. 1817 AssumptionCache *AC; 1818 1819 /// Interface to emit optimization remarks. 1820 OptimizationRemarkEmitter *ORE; 1821 1822 const Function *TheFunction; 1823 1824 /// Loop Vectorize Hint. 1825 const LoopVectorizeHints *Hints; 1826 1827 /// The interleave access information contains groups of interleaved accesses 1828 /// with the same stride and close to each other. 1829 InterleavedAccessInfo &InterleaveInfo; 1830 1831 /// Values to ignore in the cost model. 1832 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1833 1834 /// Values to ignore in the cost model when VF > 1. 1835 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1836 1837 /// All element types found in the loop. 1838 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1839 1840 /// Profitable vector factors. 1841 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1842 }; 1843 } // end namespace llvm 1844 1845 /// Helper struct to manage generating runtime checks for vectorization. 1846 /// 1847 /// The runtime checks are created up-front in temporary blocks to allow better 1848 /// estimating the cost and un-linked from the existing IR. After deciding to 1849 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1850 /// temporary blocks are completely removed. 1851 class GeneratedRTChecks { 1852 /// Basic block which contains the generated SCEV checks, if any. 1853 BasicBlock *SCEVCheckBlock = nullptr; 1854 1855 /// The value representing the result of the generated SCEV checks. If it is 1856 /// nullptr, either no SCEV checks have been generated or they have been used. 1857 Value *SCEVCheckCond = nullptr; 1858 1859 /// Basic block which contains the generated memory runtime checks, if any. 1860 BasicBlock *MemCheckBlock = nullptr; 1861 1862 /// The value representing the result of the generated memory runtime checks. 1863 /// If it is nullptr, either no memory runtime checks have been generated or 1864 /// they have been used. 1865 Value *MemRuntimeCheckCond = nullptr; 1866 1867 DominatorTree *DT; 1868 LoopInfo *LI; 1869 TargetTransformInfo *TTI; 1870 1871 SCEVExpander SCEVExp; 1872 SCEVExpander MemCheckExp; 1873 1874 bool CostTooHigh = false; 1875 1876 public: 1877 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1878 TargetTransformInfo *TTI, const DataLayout &DL) 1879 : DT(DT), LI(LI), TTI(TTI), SCEVExp(SE, DL, "scev.check"), 1880 MemCheckExp(SE, DL, "scev.check") {} 1881 1882 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1883 /// accurately estimate the cost of the runtime checks. The blocks are 1884 /// un-linked from the IR and is added back during vector code generation. If 1885 /// there is no vector code generation, the check blocks are removed 1886 /// completely. 1887 void Create(Loop *L, const LoopAccessInfo &LAI, 1888 const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) { 1889 1890 // Hard cutoff to limit compile-time increase in case a very large number of 1891 // runtime checks needs to be generated. 1892 // TODO: Skip cutoff if the loop is guaranteed to execute, e.g. due to 1893 // profile info. 1894 CostTooHigh = 1895 LAI.getNumRuntimePointerChecks() > VectorizeMemoryCheckThreshold; 1896 if (CostTooHigh) 1897 return; 1898 1899 BasicBlock *LoopHeader = L->getHeader(); 1900 BasicBlock *Preheader = L->getLoopPreheader(); 1901 1902 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1903 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1904 // may be used by SCEVExpander. The blocks will be un-linked from their 1905 // predecessors and removed from LI & DT at the end of the function. 1906 if (!UnionPred.isAlwaysTrue()) { 1907 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1908 nullptr, "vector.scevcheck"); 1909 1910 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1911 &UnionPred, SCEVCheckBlock->getTerminator()); 1912 } 1913 1914 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1915 if (RtPtrChecking.Need) { 1916 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1917 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1918 "vector.memcheck"); 1919 1920 auto DiffChecks = RtPtrChecking.getDiffChecks(); 1921 if (DiffChecks) { 1922 MemRuntimeCheckCond = addDiffRuntimeChecks( 1923 MemCheckBlock->getTerminator(), L, *DiffChecks, MemCheckExp, 1924 [VF](IRBuilderBase &B, unsigned Bits) { 1925 return getRuntimeVF(B, B.getIntNTy(Bits), VF); 1926 }, 1927 IC); 1928 } else { 1929 MemRuntimeCheckCond = 1930 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1931 RtPtrChecking.getChecks(), MemCheckExp); 1932 } 1933 assert(MemRuntimeCheckCond && 1934 "no RT checks generated although RtPtrChecking " 1935 "claimed checks are required"); 1936 } 1937 1938 if (!MemCheckBlock && !SCEVCheckBlock) 1939 return; 1940 1941 // Unhook the temporary block with the checks, update various places 1942 // accordingly. 1943 if (SCEVCheckBlock) 1944 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1945 if (MemCheckBlock) 1946 MemCheckBlock->replaceAllUsesWith(Preheader); 1947 1948 if (SCEVCheckBlock) { 1949 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1950 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1951 Preheader->getTerminator()->eraseFromParent(); 1952 } 1953 if (MemCheckBlock) { 1954 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1955 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 1956 Preheader->getTerminator()->eraseFromParent(); 1957 } 1958 1959 DT->changeImmediateDominator(LoopHeader, Preheader); 1960 if (MemCheckBlock) { 1961 DT->eraseNode(MemCheckBlock); 1962 LI->removeBlock(MemCheckBlock); 1963 } 1964 if (SCEVCheckBlock) { 1965 DT->eraseNode(SCEVCheckBlock); 1966 LI->removeBlock(SCEVCheckBlock); 1967 } 1968 } 1969 1970 InstructionCost getCost() { 1971 if (SCEVCheckBlock || MemCheckBlock) 1972 LLVM_DEBUG(dbgs() << "Calculating cost of runtime checks:\n"); 1973 1974 if (CostTooHigh) { 1975 InstructionCost Cost; 1976 Cost.setInvalid(); 1977 LLVM_DEBUG(dbgs() << " number of checks exceeded threshold\n"); 1978 return Cost; 1979 } 1980 1981 InstructionCost RTCheckCost = 0; 1982 if (SCEVCheckBlock) 1983 for (Instruction &I : *SCEVCheckBlock) { 1984 if (SCEVCheckBlock->getTerminator() == &I) 1985 continue; 1986 InstructionCost C = 1987 TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput); 1988 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n"); 1989 RTCheckCost += C; 1990 } 1991 if (MemCheckBlock) 1992 for (Instruction &I : *MemCheckBlock) { 1993 if (MemCheckBlock->getTerminator() == &I) 1994 continue; 1995 InstructionCost C = 1996 TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput); 1997 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n"); 1998 RTCheckCost += C; 1999 } 2000 2001 if (SCEVCheckBlock || MemCheckBlock) 2002 LLVM_DEBUG(dbgs() << "Total cost of runtime checks: " << RTCheckCost 2003 << "\n"); 2004 2005 return RTCheckCost; 2006 } 2007 2008 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2009 /// unused. 2010 ~GeneratedRTChecks() { 2011 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2012 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2013 if (!SCEVCheckCond) 2014 SCEVCleaner.markResultUsed(); 2015 2016 if (!MemRuntimeCheckCond) 2017 MemCheckCleaner.markResultUsed(); 2018 2019 if (MemRuntimeCheckCond) { 2020 auto &SE = *MemCheckExp.getSE(); 2021 // Memory runtime check generation creates compares that use expanded 2022 // values. Remove them before running the SCEVExpanderCleaners. 2023 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2024 if (MemCheckExp.isInsertedInstruction(&I)) 2025 continue; 2026 SE.forgetValue(&I); 2027 I.eraseFromParent(); 2028 } 2029 } 2030 MemCheckCleaner.cleanup(); 2031 SCEVCleaner.cleanup(); 2032 2033 if (SCEVCheckCond) 2034 SCEVCheckBlock->eraseFromParent(); 2035 if (MemRuntimeCheckCond) 2036 MemCheckBlock->eraseFromParent(); 2037 } 2038 2039 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2040 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2041 /// depending on the generated condition. 2042 BasicBlock *emitSCEVChecks(BasicBlock *Bypass, 2043 BasicBlock *LoopVectorPreHeader, 2044 BasicBlock *LoopExitBlock) { 2045 if (!SCEVCheckCond) 2046 return nullptr; 2047 2048 Value *Cond = SCEVCheckCond; 2049 // Mark the check as used, to prevent it from being removed during cleanup. 2050 SCEVCheckCond = nullptr; 2051 if (auto *C = dyn_cast<ConstantInt>(Cond)) 2052 if (C->isZero()) 2053 return nullptr; 2054 2055 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2056 2057 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2058 // Create new preheader for vector loop. 2059 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2060 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2061 2062 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2063 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2064 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2065 SCEVCheckBlock); 2066 2067 DT->addNewBlock(SCEVCheckBlock, Pred); 2068 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2069 2070 ReplaceInstWithInst(SCEVCheckBlock->getTerminator(), 2071 BranchInst::Create(Bypass, LoopVectorPreHeader, Cond)); 2072 return SCEVCheckBlock; 2073 } 2074 2075 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2076 /// the branches to branch to the vector preheader or \p Bypass, depending on 2077 /// the generated condition. 2078 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass, 2079 BasicBlock *LoopVectorPreHeader) { 2080 // Check if we generated code that checks in runtime if arrays overlap. 2081 if (!MemRuntimeCheckCond) 2082 return nullptr; 2083 2084 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2085 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2086 MemCheckBlock); 2087 2088 DT->addNewBlock(MemCheckBlock, Pred); 2089 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2090 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2091 2092 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2093 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2094 2095 ReplaceInstWithInst( 2096 MemCheckBlock->getTerminator(), 2097 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2098 MemCheckBlock->getTerminator()->setDebugLoc( 2099 Pred->getTerminator()->getDebugLoc()); 2100 2101 // Mark the check as used, to prevent it from being removed during cleanup. 2102 MemRuntimeCheckCond = nullptr; 2103 return MemCheckBlock; 2104 } 2105 }; 2106 2107 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2108 // vectorization. The loop needs to be annotated with #pragma omp simd 2109 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2110 // vector length information is not provided, vectorization is not considered 2111 // explicit. Interleave hints are not allowed either. These limitations will be 2112 // relaxed in the future. 2113 // Please, note that we are currently forced to abuse the pragma 'clang 2114 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2115 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2116 // provides *explicit vectorization hints* (LV can bypass legal checks and 2117 // assume that vectorization is legal). However, both hints are implemented 2118 // using the same metadata (llvm.loop.vectorize, processed by 2119 // LoopVectorizeHints). This will be fixed in the future when the native IR 2120 // representation for pragma 'omp simd' is introduced. 2121 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2122 OptimizationRemarkEmitter *ORE) { 2123 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2124 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2125 2126 // Only outer loops with an explicit vectorization hint are supported. 2127 // Unannotated outer loops are ignored. 2128 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2129 return false; 2130 2131 Function *Fn = OuterLp->getHeader()->getParent(); 2132 if (!Hints.allowVectorization(Fn, OuterLp, 2133 true /*VectorizeOnlyWhenForced*/)) { 2134 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2135 return false; 2136 } 2137 2138 if (Hints.getInterleave() > 1) { 2139 // TODO: Interleave support is future work. 2140 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2141 "outer loops.\n"); 2142 Hints.emitRemarkWithHints(); 2143 return false; 2144 } 2145 2146 return true; 2147 } 2148 2149 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2150 OptimizationRemarkEmitter *ORE, 2151 SmallVectorImpl<Loop *> &V) { 2152 // Collect inner loops and outer loops without irreducible control flow. For 2153 // now, only collect outer loops that have explicit vectorization hints. If we 2154 // are stress testing the VPlan H-CFG construction, we collect the outermost 2155 // loop of every loop nest. 2156 if (L.isInnermost() || VPlanBuildStressTest || 2157 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2158 LoopBlocksRPO RPOT(&L); 2159 RPOT.perform(LI); 2160 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2161 V.push_back(&L); 2162 // TODO: Collect inner loops inside marked outer loops in case 2163 // vectorization fails for the outer loop. Do not invoke 2164 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2165 // already known to be reducible. We can use an inherited attribute for 2166 // that. 2167 return; 2168 } 2169 } 2170 for (Loop *InnerL : L) 2171 collectSupportedLoops(*InnerL, LI, ORE, V); 2172 } 2173 2174 namespace { 2175 2176 /// The LoopVectorize Pass. 2177 struct LoopVectorize : public FunctionPass { 2178 /// Pass identification, replacement for typeid 2179 static char ID; 2180 2181 LoopVectorizePass Impl; 2182 2183 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2184 bool VectorizeOnlyWhenForced = false) 2185 : FunctionPass(ID), 2186 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2187 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2188 } 2189 2190 bool runOnFunction(Function &F) override { 2191 if (skipFunction(F)) 2192 return false; 2193 2194 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2195 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2196 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2197 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2198 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2199 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2200 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2201 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2202 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2203 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2204 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2205 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2206 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2207 2208 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2209 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2210 2211 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2212 GetLAA, *ORE, PSI).MadeAnyChange; 2213 } 2214 2215 void getAnalysisUsage(AnalysisUsage &AU) const override { 2216 AU.addRequired<AssumptionCacheTracker>(); 2217 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2218 AU.addRequired<DominatorTreeWrapperPass>(); 2219 AU.addRequired<LoopInfoWrapperPass>(); 2220 AU.addRequired<ScalarEvolutionWrapperPass>(); 2221 AU.addRequired<TargetTransformInfoWrapperPass>(); 2222 AU.addRequired<AAResultsWrapperPass>(); 2223 AU.addRequired<LoopAccessLegacyAnalysis>(); 2224 AU.addRequired<DemandedBitsWrapperPass>(); 2225 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2226 AU.addRequired<InjectTLIMappingsLegacy>(); 2227 2228 // We currently do not preserve loopinfo/dominator analyses with outer loop 2229 // vectorization. Until this is addressed, mark these analyses as preserved 2230 // only for non-VPlan-native path. 2231 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2232 if (!EnableVPlanNativePath) { 2233 AU.addPreserved<LoopInfoWrapperPass>(); 2234 AU.addPreserved<DominatorTreeWrapperPass>(); 2235 } 2236 2237 AU.addPreserved<BasicAAWrapperPass>(); 2238 AU.addPreserved<GlobalsAAWrapperPass>(); 2239 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2240 } 2241 }; 2242 2243 } // end anonymous namespace 2244 2245 //===----------------------------------------------------------------------===// 2246 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2247 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2248 //===----------------------------------------------------------------------===// 2249 2250 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2251 // We need to place the broadcast of invariant variables outside the loop, 2252 // but only if it's proven safe to do so. Else, broadcast will be inside 2253 // vector loop body. 2254 Instruction *Instr = dyn_cast<Instruction>(V); 2255 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2256 (!Instr || 2257 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2258 // Place the code for broadcasting invariant variables in the new preheader. 2259 IRBuilder<>::InsertPointGuard Guard(Builder); 2260 if (SafeToHoist) 2261 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2262 2263 // Broadcast the scalar into all locations in the vector. 2264 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2265 2266 return Shuf; 2267 } 2268 2269 /// This function adds 2270 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2271 /// to each vector element of Val. The sequence starts at StartIndex. 2272 /// \p Opcode is relevant for FP induction variable. 2273 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2274 Instruction::BinaryOps BinOp, ElementCount VF, 2275 IRBuilderBase &Builder) { 2276 assert(VF.isVector() && "only vector VFs are supported"); 2277 2278 // Create and check the types. 2279 auto *ValVTy = cast<VectorType>(Val->getType()); 2280 ElementCount VLen = ValVTy->getElementCount(); 2281 2282 Type *STy = Val->getType()->getScalarType(); 2283 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2284 "Induction Step must be an integer or FP"); 2285 assert(Step->getType() == STy && "Step has wrong type"); 2286 2287 SmallVector<Constant *, 8> Indices; 2288 2289 // Create a vector of consecutive numbers from zero to VF. 2290 VectorType *InitVecValVTy = ValVTy; 2291 if (STy->isFloatingPointTy()) { 2292 Type *InitVecValSTy = 2293 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2294 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2295 } 2296 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2297 2298 // Splat the StartIdx 2299 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2300 2301 if (STy->isIntegerTy()) { 2302 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2303 Step = Builder.CreateVectorSplat(VLen, Step); 2304 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2305 // FIXME: The newly created binary instructions should contain nsw/nuw 2306 // flags, which can be found from the original scalar operations. 2307 Step = Builder.CreateMul(InitVec, Step); 2308 return Builder.CreateAdd(Val, Step, "induction"); 2309 } 2310 2311 // Floating point induction. 2312 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2313 "Binary Opcode should be specified for FP induction"); 2314 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2315 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2316 2317 Step = Builder.CreateVectorSplat(VLen, Step); 2318 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2319 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2320 } 2321 2322 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 2323 /// variable on which to base the steps, \p Step is the size of the step. 2324 static void buildScalarSteps(Value *ScalarIV, Value *Step, 2325 const InductionDescriptor &ID, VPValue *Def, 2326 VPTransformState &State) { 2327 IRBuilderBase &Builder = State.Builder; 2328 // We shouldn't have to build scalar steps if we aren't vectorizing. 2329 assert(State.VF.isVector() && "VF should be greater than one"); 2330 // Get the value type and ensure it and the step have the same integer type. 2331 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2332 assert(ScalarIVTy == Step->getType() && 2333 "Val and Step should have the same type"); 2334 2335 // We build scalar steps for both integer and floating-point induction 2336 // variables. Here, we determine the kind of arithmetic we will perform. 2337 Instruction::BinaryOps AddOp; 2338 Instruction::BinaryOps MulOp; 2339 if (ScalarIVTy->isIntegerTy()) { 2340 AddOp = Instruction::Add; 2341 MulOp = Instruction::Mul; 2342 } else { 2343 AddOp = ID.getInductionOpcode(); 2344 MulOp = Instruction::FMul; 2345 } 2346 2347 // Determine the number of scalars we need to generate for each unroll 2348 // iteration. 2349 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def); 2350 unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue(); 2351 // Compute the scalar steps and save the results in State. 2352 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2353 ScalarIVTy->getScalarSizeInBits()); 2354 Type *VecIVTy = nullptr; 2355 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2356 if (!FirstLaneOnly && State.VF.isScalable()) { 2357 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2358 UnitStepVec = 2359 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2360 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2361 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2362 } 2363 2364 for (unsigned Part = 0; Part < State.UF; ++Part) { 2365 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2366 2367 if (!FirstLaneOnly && State.VF.isScalable()) { 2368 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2369 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2370 if (ScalarIVTy->isFloatingPointTy()) 2371 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2372 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2373 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2374 State.set(Def, Add, Part); 2375 // It's useful to record the lane values too for the known minimum number 2376 // of elements so we do those below. This improves the code quality when 2377 // trying to extract the first element, for example. 2378 } 2379 2380 if (ScalarIVTy->isFloatingPointTy()) 2381 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2382 2383 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2384 Value *StartIdx = Builder.CreateBinOp( 2385 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2386 // The step returned by `createStepForVF` is a runtime-evaluated value 2387 // when VF is scalable. Otherwise, it should be folded into a Constant. 2388 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2389 "Expected StartIdx to be folded to a constant when VF is not " 2390 "scalable"); 2391 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2392 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2393 State.set(Def, Add, VPIteration(Part, Lane)); 2394 } 2395 } 2396 } 2397 2398 // Generate code for the induction step. Note that induction steps are 2399 // required to be loop-invariant 2400 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE, 2401 Instruction *InsertBefore, 2402 Loop *OrigLoop = nullptr) { 2403 const DataLayout &DL = SE.getDataLayout(); 2404 assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) && 2405 "Induction step should be loop invariant"); 2406 if (auto *E = dyn_cast<SCEVUnknown>(Step)) 2407 return E->getValue(); 2408 2409 SCEVExpander Exp(SE, DL, "induction"); 2410 return Exp.expandCodeFor(Step, Step->getType(), InsertBefore); 2411 } 2412 2413 /// Compute the transformed value of Index at offset StartValue using step 2414 /// StepValue. 2415 /// For integer induction, returns StartValue + Index * StepValue. 2416 /// For pointer induction, returns StartValue[Index * StepValue]. 2417 /// FIXME: The newly created binary instructions should contain nsw/nuw 2418 /// flags, which can be found from the original scalar operations. 2419 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index, 2420 Value *StartValue, Value *Step, 2421 const InductionDescriptor &ID) { 2422 assert(Index->getType()->getScalarType() == Step->getType() && 2423 "Index scalar type does not match StepValue type"); 2424 2425 // Note: the IR at this point is broken. We cannot use SE to create any new 2426 // SCEV and then expand it, hoping that SCEV's simplification will give us 2427 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2428 // lead to various SCEV crashes. So all we can do is to use builder and rely 2429 // on InstCombine for future simplifications. Here we handle some trivial 2430 // cases only. 2431 auto CreateAdd = [&B](Value *X, Value *Y) { 2432 assert(X->getType() == Y->getType() && "Types don't match!"); 2433 if (auto *CX = dyn_cast<ConstantInt>(X)) 2434 if (CX->isZero()) 2435 return Y; 2436 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2437 if (CY->isZero()) 2438 return X; 2439 return B.CreateAdd(X, Y); 2440 }; 2441 2442 // We allow X to be a vector type, in which case Y will potentially be 2443 // splatted into a vector with the same element count. 2444 auto CreateMul = [&B](Value *X, Value *Y) { 2445 assert(X->getType()->getScalarType() == Y->getType() && 2446 "Types don't match!"); 2447 if (auto *CX = dyn_cast<ConstantInt>(X)) 2448 if (CX->isOne()) 2449 return Y; 2450 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2451 if (CY->isOne()) 2452 return X; 2453 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 2454 if (XVTy && !isa<VectorType>(Y->getType())) 2455 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 2456 return B.CreateMul(X, Y); 2457 }; 2458 2459 switch (ID.getKind()) { 2460 case InductionDescriptor::IK_IntInduction: { 2461 assert(!isa<VectorType>(Index->getType()) && 2462 "Vector indices not supported for integer inductions yet"); 2463 assert(Index->getType() == StartValue->getType() && 2464 "Index type does not match StartValue type"); 2465 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne()) 2466 return B.CreateSub(StartValue, Index); 2467 auto *Offset = CreateMul(Index, Step); 2468 return CreateAdd(StartValue, Offset); 2469 } 2470 case InductionDescriptor::IK_PtrInduction: { 2471 assert(isa<Constant>(Step) && 2472 "Expected constant step for pointer induction"); 2473 return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step)); 2474 } 2475 case InductionDescriptor::IK_FpInduction: { 2476 assert(!isa<VectorType>(Index->getType()) && 2477 "Vector indices not supported for FP inductions yet"); 2478 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2479 auto InductionBinOp = ID.getInductionBinOp(); 2480 assert(InductionBinOp && 2481 (InductionBinOp->getOpcode() == Instruction::FAdd || 2482 InductionBinOp->getOpcode() == Instruction::FSub) && 2483 "Original bin op should be defined for FP induction"); 2484 2485 Value *MulExp = B.CreateFMul(Step, Index); 2486 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2487 "induction"); 2488 } 2489 case InductionDescriptor::IK_NoInduction: 2490 return nullptr; 2491 } 2492 llvm_unreachable("invalid enum"); 2493 } 2494 2495 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2496 const VPIteration &Instance, 2497 VPTransformState &State) { 2498 Value *ScalarInst = State.get(Def, Instance); 2499 Value *VectorValue = State.get(Def, Instance.Part); 2500 VectorValue = Builder.CreateInsertElement( 2501 VectorValue, ScalarInst, 2502 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2503 State.set(Def, VectorValue, Instance.Part); 2504 } 2505 2506 // Return whether we allow using masked interleave-groups (for dealing with 2507 // strided loads/stores that reside in predicated blocks, or for dealing 2508 // with gaps). 2509 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2510 // If an override option has been passed in for interleaved accesses, use it. 2511 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2512 return EnableMaskedInterleavedMemAccesses; 2513 2514 return TTI.enableMaskedInterleavedAccessVectorization(); 2515 } 2516 2517 // Try to vectorize the interleave group that \p Instr belongs to. 2518 // 2519 // E.g. Translate following interleaved load group (factor = 3): 2520 // for (i = 0; i < N; i+=3) { 2521 // R = Pic[i]; // Member of index 0 2522 // G = Pic[i+1]; // Member of index 1 2523 // B = Pic[i+2]; // Member of index 2 2524 // ... // do something to R, G, B 2525 // } 2526 // To: 2527 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2528 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2529 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2530 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2531 // 2532 // Or translate following interleaved store group (factor = 3): 2533 // for (i = 0; i < N; i+=3) { 2534 // ... do something to R, G, B 2535 // Pic[i] = R; // Member of index 0 2536 // Pic[i+1] = G; // Member of index 1 2537 // Pic[i+2] = B; // Member of index 2 2538 // } 2539 // To: 2540 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2541 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2542 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2543 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2544 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2545 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2546 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2547 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2548 VPValue *BlockInMask) { 2549 Instruction *Instr = Group->getInsertPos(); 2550 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2551 2552 // Prepare for the vector type of the interleaved load/store. 2553 Type *ScalarTy = getLoadStoreType(Instr); 2554 unsigned InterleaveFactor = Group->getFactor(); 2555 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2556 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2557 2558 // Prepare for the new pointers. 2559 SmallVector<Value *, 2> AddrParts; 2560 unsigned Index = Group->getIndex(Instr); 2561 2562 // TODO: extend the masked interleaved-group support to reversed access. 2563 assert((!BlockInMask || !Group->isReverse()) && 2564 "Reversed masked interleave-group not supported."); 2565 2566 // If the group is reverse, adjust the index to refer to the last vector lane 2567 // instead of the first. We adjust the index from the first vector lane, 2568 // rather than directly getting the pointer for lane VF - 1, because the 2569 // pointer operand of the interleaved access is supposed to be uniform. For 2570 // uniform instructions, we're only required to generate a value for the 2571 // first vector lane in each unroll iteration. 2572 if (Group->isReverse()) 2573 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2574 2575 for (unsigned Part = 0; Part < UF; Part++) { 2576 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2577 State.setDebugLocFromInst(AddrPart); 2578 2579 // Notice current instruction could be any index. Need to adjust the address 2580 // to the member of index 0. 2581 // 2582 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2583 // b = A[i]; // Member of index 0 2584 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2585 // 2586 // E.g. A[i+1] = a; // Member of index 1 2587 // A[i] = b; // Member of index 0 2588 // A[i+2] = c; // Member of index 2 (Current instruction) 2589 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2590 2591 bool InBounds = false; 2592 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2593 InBounds = gep->isInBounds(); 2594 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2595 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2596 2597 // Cast to the vector pointer type. 2598 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2599 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2600 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2601 } 2602 2603 State.setDebugLocFromInst(Instr); 2604 Value *PoisonVec = PoisonValue::get(VecTy); 2605 2606 Value *MaskForGaps = nullptr; 2607 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2608 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2609 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2610 } 2611 2612 // Vectorize the interleaved load group. 2613 if (isa<LoadInst>(Instr)) { 2614 // For each unroll part, create a wide load for the group. 2615 SmallVector<Value *, 2> NewLoads; 2616 for (unsigned Part = 0; Part < UF; Part++) { 2617 Instruction *NewLoad; 2618 if (BlockInMask || MaskForGaps) { 2619 assert(useMaskedInterleavedAccesses(*TTI) && 2620 "masked interleaved groups are not allowed."); 2621 Value *GroupMask = MaskForGaps; 2622 if (BlockInMask) { 2623 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2624 Value *ShuffledMask = Builder.CreateShuffleVector( 2625 BlockInMaskPart, 2626 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2627 "interleaved.mask"); 2628 GroupMask = MaskForGaps 2629 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2630 MaskForGaps) 2631 : ShuffledMask; 2632 } 2633 NewLoad = 2634 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2635 GroupMask, PoisonVec, "wide.masked.vec"); 2636 } 2637 else 2638 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2639 Group->getAlign(), "wide.vec"); 2640 Group->addMetadata(NewLoad); 2641 NewLoads.push_back(NewLoad); 2642 } 2643 2644 // For each member in the group, shuffle out the appropriate data from the 2645 // wide loads. 2646 unsigned J = 0; 2647 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2648 Instruction *Member = Group->getMember(I); 2649 2650 // Skip the gaps in the group. 2651 if (!Member) 2652 continue; 2653 2654 auto StrideMask = 2655 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2656 for (unsigned Part = 0; Part < UF; Part++) { 2657 Value *StridedVec = Builder.CreateShuffleVector( 2658 NewLoads[Part], StrideMask, "strided.vec"); 2659 2660 // If this member has different type, cast the result type. 2661 if (Member->getType() != ScalarTy) { 2662 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2663 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2664 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2665 } 2666 2667 if (Group->isReverse()) 2668 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2669 2670 State.set(VPDefs[J], StridedVec, Part); 2671 } 2672 ++J; 2673 } 2674 return; 2675 } 2676 2677 // The sub vector type for current instruction. 2678 auto *SubVT = VectorType::get(ScalarTy, VF); 2679 2680 // Vectorize the interleaved store group. 2681 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2682 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2683 "masked interleaved groups are not allowed."); 2684 assert((!MaskForGaps || !VF.isScalable()) && 2685 "masking gaps for scalable vectors is not yet supported."); 2686 for (unsigned Part = 0; Part < UF; Part++) { 2687 // Collect the stored vector from each member. 2688 SmallVector<Value *, 4> StoredVecs; 2689 for (unsigned i = 0; i < InterleaveFactor; i++) { 2690 assert((Group->getMember(i) || MaskForGaps) && 2691 "Fail to get a member from an interleaved store group"); 2692 Instruction *Member = Group->getMember(i); 2693 2694 // Skip the gaps in the group. 2695 if (!Member) { 2696 Value *Undef = PoisonValue::get(SubVT); 2697 StoredVecs.push_back(Undef); 2698 continue; 2699 } 2700 2701 Value *StoredVec = State.get(StoredValues[i], Part); 2702 2703 if (Group->isReverse()) 2704 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2705 2706 // If this member has different type, cast it to a unified type. 2707 2708 if (StoredVec->getType() != SubVT) 2709 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2710 2711 StoredVecs.push_back(StoredVec); 2712 } 2713 2714 // Concatenate all vectors into a wide vector. 2715 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2716 2717 // Interleave the elements in the wide vector. 2718 Value *IVec = Builder.CreateShuffleVector( 2719 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2720 "interleaved.vec"); 2721 2722 Instruction *NewStoreInstr; 2723 if (BlockInMask || MaskForGaps) { 2724 Value *GroupMask = MaskForGaps; 2725 if (BlockInMask) { 2726 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2727 Value *ShuffledMask = Builder.CreateShuffleVector( 2728 BlockInMaskPart, 2729 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2730 "interleaved.mask"); 2731 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2732 ShuffledMask, MaskForGaps) 2733 : ShuffledMask; 2734 } 2735 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2736 Group->getAlign(), GroupMask); 2737 } else 2738 NewStoreInstr = 2739 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2740 2741 Group->addMetadata(NewStoreInstr); 2742 } 2743 } 2744 2745 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2746 VPReplicateRecipe *RepRecipe, 2747 const VPIteration &Instance, 2748 bool IfPredicateInstr, 2749 VPTransformState &State) { 2750 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2751 2752 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2753 // the first lane and part. 2754 if (isa<NoAliasScopeDeclInst>(Instr)) 2755 if (!Instance.isFirstIteration()) 2756 return; 2757 2758 // Does this instruction return a value ? 2759 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2760 2761 Instruction *Cloned = Instr->clone(); 2762 if (!IsVoidRetTy) 2763 Cloned->setName(Instr->getName() + ".cloned"); 2764 2765 // If the scalarized instruction contributes to the address computation of a 2766 // widen masked load/store which was in a basic block that needed predication 2767 // and is not predicated after vectorization, we can't propagate 2768 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 2769 // instruction could feed a poison value to the base address of the widen 2770 // load/store. 2771 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 2772 Cloned->dropPoisonGeneratingFlags(); 2773 2774 if (Instr->getDebugLoc()) 2775 State.setDebugLocFromInst(Instr); 2776 2777 // Replace the operands of the cloned instructions with their scalar 2778 // equivalents in the new loop. 2779 for (auto &I : enumerate(RepRecipe->operands())) { 2780 auto InputInstance = Instance; 2781 VPValue *Operand = I.value(); 2782 VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand); 2783 if (OperandR && OperandR->isUniform()) 2784 InputInstance.Lane = VPLane::getFirstLane(); 2785 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 2786 } 2787 State.addNewMetadata(Cloned, Instr); 2788 2789 // Place the cloned scalar in the new loop. 2790 State.Builder.Insert(Cloned); 2791 2792 State.set(RepRecipe, Cloned, Instance); 2793 2794 // If we just cloned a new assumption, add it the assumption cache. 2795 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 2796 AC->registerAssumption(II); 2797 2798 // End if-block. 2799 if (IfPredicateInstr) 2800 PredicatedInstructions.push_back(Cloned); 2801 } 2802 2803 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) { 2804 if (TripCount) 2805 return TripCount; 2806 2807 assert(InsertBlock); 2808 IRBuilder<> Builder(InsertBlock->getTerminator()); 2809 // Find the loop boundaries. 2810 ScalarEvolution *SE = PSE.getSE(); 2811 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2812 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2813 "Invalid loop count"); 2814 2815 Type *IdxTy = Legal->getWidestInductionType(); 2816 assert(IdxTy && "No type for induction"); 2817 2818 // The exit count might have the type of i64 while the phi is i32. This can 2819 // happen if we have an induction variable that is sign extended before the 2820 // compare. The only way that we get a backedge taken count is that the 2821 // induction variable was signed and as such will not overflow. In such a case 2822 // truncation is legal. 2823 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2824 IdxTy->getPrimitiveSizeInBits()) 2825 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2826 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2827 2828 // Get the total trip count from the count by adding 1. 2829 const SCEV *ExitCount = SE->getAddExpr( 2830 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2831 2832 const DataLayout &DL = InsertBlock->getModule()->getDataLayout(); 2833 2834 // Expand the trip count and place the new instructions in the preheader. 2835 // Notice that the pre-header does not change, only the loop body. 2836 SCEVExpander Exp(*SE, DL, "induction"); 2837 2838 // Count holds the overall loop count (N). 2839 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2840 InsertBlock->getTerminator()); 2841 2842 if (TripCount->getType()->isPointerTy()) 2843 TripCount = 2844 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2845 InsertBlock->getTerminator()); 2846 2847 return TripCount; 2848 } 2849 2850 Value * 2851 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) { 2852 if (VectorTripCount) 2853 return VectorTripCount; 2854 2855 Value *TC = getOrCreateTripCount(InsertBlock); 2856 IRBuilder<> Builder(InsertBlock->getTerminator()); 2857 2858 Type *Ty = TC->getType(); 2859 // This is where we can make the step a runtime constant. 2860 Value *Step = createStepForVF(Builder, Ty, VF, UF); 2861 2862 // If the tail is to be folded by masking, round the number of iterations N 2863 // up to a multiple of Step instead of rounding down. This is done by first 2864 // adding Step-1 and then rounding down. Note that it's ok if this addition 2865 // overflows: the vector induction variable will eventually wrap to zero given 2866 // that it starts at zero and its Step is a power of two; the loop will then 2867 // exit, with the last early-exit vector comparison also producing all-true. 2868 // For scalable vectors the VF is not guaranteed to be a power of 2, but this 2869 // is accounted for in emitIterationCountCheck that adds an overflow check. 2870 if (Cost->foldTailByMasking()) { 2871 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2872 "VF*UF must be a power of 2 when folding tail by masking"); 2873 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 2874 TC = Builder.CreateAdd( 2875 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 2876 } 2877 2878 // Now we need to generate the expression for the part of the loop that the 2879 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2880 // iterations are not required for correctness, or N - Step, otherwise. Step 2881 // is equal to the vectorization factor (number of SIMD elements) times the 2882 // unroll factor (number of SIMD instructions). 2883 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2884 2885 // There are cases where we *must* run at least one iteration in the remainder 2886 // loop. See the cost model for when this can happen. If the step evenly 2887 // divides the trip count, we set the remainder to be equal to the step. If 2888 // the step does not evenly divide the trip count, no adjustment is necessary 2889 // since there will already be scalar iterations. Note that the minimum 2890 // iterations check ensures that N >= Step. 2891 if (Cost->requiresScalarEpilogue(VF)) { 2892 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2893 R = Builder.CreateSelect(IsZero, Step, R); 2894 } 2895 2896 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2897 2898 return VectorTripCount; 2899 } 2900 2901 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2902 const DataLayout &DL) { 2903 // Verify that V is a vector type with same number of elements as DstVTy. 2904 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 2905 unsigned VF = DstFVTy->getNumElements(); 2906 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 2907 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2908 Type *SrcElemTy = SrcVecTy->getElementType(); 2909 Type *DstElemTy = DstFVTy->getElementType(); 2910 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2911 "Vector elements must have same size"); 2912 2913 // Do a direct cast if element types are castable. 2914 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2915 return Builder.CreateBitOrPointerCast(V, DstFVTy); 2916 } 2917 // V cannot be directly casted to desired vector type. 2918 // May happen when V is a floating point vector but DstVTy is a vector of 2919 // pointers or vice-versa. Handle this using a two-step bitcast using an 2920 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2921 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2922 "Only one type should be a pointer type"); 2923 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2924 "Only one type should be a floating point type"); 2925 Type *IntTy = 2926 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2927 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2928 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2929 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 2930 } 2931 2932 void InnerLoopVectorizer::emitIterationCountCheck(BasicBlock *Bypass) { 2933 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 2934 // Reuse existing vector loop preheader for TC checks. 2935 // Note that new preheader block is generated for vector loop. 2936 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2937 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2938 2939 // Generate code to check if the loop's trip count is less than VF * UF, or 2940 // equal to it in case a scalar epilogue is required; this implies that the 2941 // vector trip count is zero. This check also covers the case where adding one 2942 // to the backedge-taken count overflowed leading to an incorrect trip count 2943 // of zero. In this case we will also jump to the scalar loop. 2944 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 2945 : ICmpInst::ICMP_ULT; 2946 2947 // If tail is to be folded, vector loop takes care of all iterations. 2948 Type *CountTy = Count->getType(); 2949 Value *CheckMinIters = Builder.getFalse(); 2950 auto CreateStep = [&]() -> Value * { 2951 // Create step with max(MinProTripCount, UF * VF). 2952 if (UF * VF.getKnownMinValue() >= MinProfitableTripCount.getKnownMinValue()) 2953 return createStepForVF(Builder, CountTy, VF, UF); 2954 2955 Value *MinProfTC = 2956 createStepForVF(Builder, CountTy, MinProfitableTripCount, 1); 2957 if (!VF.isScalable()) 2958 return MinProfTC; 2959 return Builder.CreateBinaryIntrinsic( 2960 Intrinsic::umax, MinProfTC, createStepForVF(Builder, CountTy, VF, UF)); 2961 }; 2962 2963 if (!Cost->foldTailByMasking()) 2964 CheckMinIters = 2965 Builder.CreateICmp(P, Count, CreateStep(), "min.iters.check"); 2966 else if (VF.isScalable()) { 2967 // vscale is not necessarily a power-of-2, which means we cannot guarantee 2968 // an overflow to zero when updating induction variables and so an 2969 // additional overflow check is required before entering the vector loop. 2970 2971 // Get the maximum unsigned value for the type. 2972 Value *MaxUIntTripCount = 2973 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask()); 2974 Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count); 2975 2976 // Don't execute the vector loop if (UMax - n) < (VF * UF). 2977 CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, CreateStep()); 2978 } 2979 2980 // Create new preheader for vector loop. 2981 LoopVectorPreHeader = 2982 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2983 "vector.ph"); 2984 2985 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2986 DT->getNode(Bypass)->getIDom()) && 2987 "TC check is expected to dominate Bypass"); 2988 2989 // Update dominator for Bypass & LoopExit (if needed). 2990 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2991 if (!Cost->requiresScalarEpilogue(VF)) 2992 // If there is an epilogue which must run, there's no edge from the 2993 // middle block to exit blocks and thus no need to update the immediate 2994 // dominator of the exit blocks. 2995 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2996 2997 ReplaceInstWithInst( 2998 TCCheckBlock->getTerminator(), 2999 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3000 LoopBypassBlocks.push_back(TCCheckBlock); 3001 } 3002 3003 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) { 3004 BasicBlock *const SCEVCheckBlock = 3005 RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock); 3006 if (!SCEVCheckBlock) 3007 return nullptr; 3008 3009 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3010 (OptForSizeBasedOnProfile && 3011 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3012 "Cannot SCEV check stride or overflow when optimizing for size"); 3013 3014 3015 // Update dominator only if this is first RT check. 3016 if (LoopBypassBlocks.empty()) { 3017 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3018 if (!Cost->requiresScalarEpilogue(VF)) 3019 // If there is an epilogue which must run, there's no edge from the 3020 // middle block to exit blocks and thus no need to update the immediate 3021 // dominator of the exit blocks. 3022 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3023 } 3024 3025 LoopBypassBlocks.push_back(SCEVCheckBlock); 3026 AddedSafetyChecks = true; 3027 return SCEVCheckBlock; 3028 } 3029 3030 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) { 3031 // VPlan-native path does not do any analysis for runtime checks currently. 3032 if (EnableVPlanNativePath) 3033 return nullptr; 3034 3035 BasicBlock *const MemCheckBlock = 3036 RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader); 3037 3038 // Check if we generated code that checks in runtime if arrays overlap. We put 3039 // the checks into a separate block to make the more common case of few 3040 // elements faster. 3041 if (!MemCheckBlock) 3042 return nullptr; 3043 3044 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3045 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3046 "Cannot emit memory checks when optimizing for size, unless forced " 3047 "to vectorize."); 3048 ORE->emit([&]() { 3049 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3050 OrigLoop->getStartLoc(), 3051 OrigLoop->getHeader()) 3052 << "Code-size may be reduced by not forcing " 3053 "vectorization, or by source-code modifications " 3054 "eliminating the need for runtime checks " 3055 "(e.g., adding 'restrict')."; 3056 }); 3057 } 3058 3059 LoopBypassBlocks.push_back(MemCheckBlock); 3060 3061 AddedSafetyChecks = true; 3062 3063 return MemCheckBlock; 3064 } 3065 3066 void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3067 LoopScalarBody = OrigLoop->getHeader(); 3068 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3069 assert(LoopVectorPreHeader && "Invalid loop structure"); 3070 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3071 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3072 "multiple exit loop without required epilogue?"); 3073 3074 LoopMiddleBlock = 3075 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3076 LI, nullptr, Twine(Prefix) + "middle.block"); 3077 LoopScalarPreHeader = 3078 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3079 nullptr, Twine(Prefix) + "scalar.ph"); 3080 3081 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3082 3083 // Set up the middle block terminator. Two cases: 3084 // 1) If we know that we must execute the scalar epilogue, emit an 3085 // unconditional branch. 3086 // 2) Otherwise, we must have a single unique exit block (due to how we 3087 // implement the multiple exit case). In this case, set up a conditonal 3088 // branch from the middle block to the loop scalar preheader, and the 3089 // exit block. completeLoopSkeleton will update the condition to use an 3090 // iteration check, if required to decide whether to execute the remainder. 3091 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3092 BranchInst::Create(LoopScalarPreHeader) : 3093 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3094 Builder.getTrue()); 3095 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3096 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3097 3098 // Update dominator for loop exit. During skeleton creation, only the vector 3099 // pre-header and the middle block are created. The vector loop is entirely 3100 // created during VPlan exection. 3101 if (!Cost->requiresScalarEpilogue(VF)) 3102 // If there is an epilogue which must run, there's no edge from the 3103 // middle block to exit blocks and thus no need to update the immediate 3104 // dominator of the exit blocks. 3105 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3106 } 3107 3108 void InnerLoopVectorizer::createInductionResumeValues( 3109 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3110 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3111 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3112 "Inconsistent information about additional bypass."); 3113 3114 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3115 assert(VectorTripCount && "Expected valid arguments"); 3116 // We are going to resume the execution of the scalar loop. 3117 // Go over all of the induction variables that we found and fix the 3118 // PHIs that are left in the scalar version of the loop. 3119 // The starting values of PHI nodes depend on the counter of the last 3120 // iteration in the vectorized loop. 3121 // If we come from a bypass edge then we need to start from the original 3122 // start value. 3123 Instruction *OldInduction = Legal->getPrimaryInduction(); 3124 for (auto &InductionEntry : Legal->getInductionVars()) { 3125 PHINode *OrigPhi = InductionEntry.first; 3126 InductionDescriptor II = InductionEntry.second; 3127 3128 Value *&EndValue = IVEndValues[OrigPhi]; 3129 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3130 if (OrigPhi == OldInduction) { 3131 // We know what the end value is. 3132 EndValue = VectorTripCount; 3133 } else { 3134 IRBuilder<> B(LoopVectorPreHeader->getTerminator()); 3135 3136 // Fast-math-flags propagate from the original induction instruction. 3137 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3138 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3139 3140 Type *StepType = II.getStep()->getType(); 3141 Instruction::CastOps CastOp = 3142 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3143 Value *VTC = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.vtc"); 3144 Value *Step = 3145 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3146 EndValue = emitTransformedIndex(B, VTC, II.getStartValue(), Step, II); 3147 EndValue->setName("ind.end"); 3148 3149 // Compute the end value for the additional bypass (if applicable). 3150 if (AdditionalBypass.first) { 3151 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3152 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3153 StepType, true); 3154 Value *Step = 3155 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3156 VTC = 3157 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.vtc"); 3158 EndValueFromAdditionalBypass = 3159 emitTransformedIndex(B, VTC, II.getStartValue(), Step, II); 3160 EndValueFromAdditionalBypass->setName("ind.end"); 3161 } 3162 } 3163 3164 // Create phi nodes to merge from the backedge-taken check block. 3165 PHINode *BCResumeVal = 3166 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3167 LoopScalarPreHeader->getTerminator()); 3168 // Copy original phi DL over to the new one. 3169 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3170 3171 // The new PHI merges the original incoming value, in case of a bypass, 3172 // or the value at the end of the vectorized loop. 3173 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3174 3175 // Fix the scalar body counter (PHI node). 3176 // The old induction's phi node in the scalar body needs the truncated 3177 // value. 3178 for (BasicBlock *BB : LoopBypassBlocks) 3179 BCResumeVal->addIncoming(II.getStartValue(), BB); 3180 3181 if (AdditionalBypass.first) 3182 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3183 EndValueFromAdditionalBypass); 3184 3185 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3186 } 3187 } 3188 3189 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) { 3190 // The trip counts should be cached by now. 3191 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 3192 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3193 3194 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3195 3196 // Add a check in the middle block to see if we have completed 3197 // all of the iterations in the first vector loop. Three cases: 3198 // 1) If we require a scalar epilogue, there is no conditional branch as 3199 // we unconditionally branch to the scalar preheader. Do nothing. 3200 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3201 // Thus if tail is to be folded, we know we don't need to run the 3202 // remainder and we can use the previous value for the condition (true). 3203 // 3) Otherwise, construct a runtime check. 3204 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3205 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3206 Count, VectorTripCount, "cmp.n", 3207 LoopMiddleBlock->getTerminator()); 3208 3209 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3210 // of the corresponding compare because they may have ended up with 3211 // different line numbers and we want to avoid awkward line stepping while 3212 // debugging. Eg. if the compare has got a line number inside the loop. 3213 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3214 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3215 } 3216 3217 #ifdef EXPENSIVE_CHECKS 3218 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3219 #endif 3220 3221 return LoopVectorPreHeader; 3222 } 3223 3224 std::pair<BasicBlock *, Value *> 3225 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3226 /* 3227 In this function we generate a new loop. The new loop will contain 3228 the vectorized instructions while the old loop will continue to run the 3229 scalar remainder. 3230 3231 [ ] <-- loop iteration number check. 3232 / | 3233 / v 3234 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3235 | / | 3236 | / v 3237 || [ ] <-- vector pre header. 3238 |/ | 3239 | v 3240 | [ ] \ 3241 | [ ]_| <-- vector loop (created during VPlan execution). 3242 | | 3243 | v 3244 \ -[ ] <--- middle-block. 3245 \/ | 3246 /\ v 3247 | ->[ ] <--- new preheader. 3248 | | 3249 (opt) v <-- edge from middle to exit iff epilogue is not required. 3250 | [ ] \ 3251 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3252 \ | 3253 \ v 3254 >[ ] <-- exit block(s). 3255 ... 3256 */ 3257 3258 // Get the metadata of the original loop before it gets modified. 3259 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3260 3261 // Workaround! Compute the trip count of the original loop and cache it 3262 // before we start modifying the CFG. This code has a systemic problem 3263 // wherein it tries to run analysis over partially constructed IR; this is 3264 // wrong, and not simply for SCEV. The trip count of the original loop 3265 // simply happens to be prone to hitting this in practice. In theory, we 3266 // can hit the same issue for any SCEV, or ValueTracking query done during 3267 // mutation. See PR49900. 3268 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 3269 3270 // Create an empty vector loop, and prepare basic blocks for the runtime 3271 // checks. 3272 createVectorLoopSkeleton(""); 3273 3274 // Now, compare the new count to zero. If it is zero skip the vector loop and 3275 // jump to the scalar loop. This check also covers the case where the 3276 // backedge-taken count is uint##_max: adding one to it will overflow leading 3277 // to an incorrect trip count of zero. In this (rare) case we will also jump 3278 // to the scalar loop. 3279 emitIterationCountCheck(LoopScalarPreHeader); 3280 3281 // Generate the code to check any assumptions that we've made for SCEV 3282 // expressions. 3283 emitSCEVChecks(LoopScalarPreHeader); 3284 3285 // Generate the code that checks in runtime if arrays overlap. We put the 3286 // checks into a separate block to make the more common case of few elements 3287 // faster. 3288 emitMemRuntimeChecks(LoopScalarPreHeader); 3289 3290 // Emit phis for the new starting index of the scalar loop. 3291 createInductionResumeValues(); 3292 3293 return {completeLoopSkeleton(OrigLoopID), nullptr}; 3294 } 3295 3296 // Fix up external users of the induction variable. At this point, we are 3297 // in LCSSA form, with all external PHIs that use the IV having one input value, 3298 // coming from the remainder loop. We need those PHIs to also have a correct 3299 // value for the IV when arriving directly from the middle block. 3300 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3301 const InductionDescriptor &II, 3302 Value *VectorTripCount, Value *EndValue, 3303 BasicBlock *MiddleBlock, 3304 BasicBlock *VectorHeader, VPlan &Plan) { 3305 // There are two kinds of external IV usages - those that use the value 3306 // computed in the last iteration (the PHI) and those that use the penultimate 3307 // value (the value that feeds into the phi from the loop latch). 3308 // We allow both, but they, obviously, have different values. 3309 3310 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3311 3312 DenseMap<Value *, Value *> MissingVals; 3313 3314 // An external user of the last iteration's value should see the value that 3315 // the remainder loop uses to initialize its own IV. 3316 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3317 for (User *U : PostInc->users()) { 3318 Instruction *UI = cast<Instruction>(U); 3319 if (!OrigLoop->contains(UI)) { 3320 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3321 MissingVals[UI] = EndValue; 3322 } 3323 } 3324 3325 // An external user of the penultimate value need to see EndValue - Step. 3326 // The simplest way to get this is to recompute it from the constituent SCEVs, 3327 // that is Start + (Step * (CRD - 1)). 3328 for (User *U : OrigPhi->users()) { 3329 auto *UI = cast<Instruction>(U); 3330 if (!OrigLoop->contains(UI)) { 3331 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3332 3333 IRBuilder<> B(MiddleBlock->getTerminator()); 3334 3335 // Fast-math-flags propagate from the original induction instruction. 3336 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3337 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3338 3339 Value *CountMinusOne = B.CreateSub( 3340 VectorTripCount, ConstantInt::get(VectorTripCount->getType(), 1)); 3341 Value *CMO = 3342 !II.getStep()->getType()->isIntegerTy() 3343 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3344 II.getStep()->getType()) 3345 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3346 CMO->setName("cast.cmo"); 3347 3348 Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(), 3349 VectorHeader->getTerminator()); 3350 Value *Escape = 3351 emitTransformedIndex(B, CMO, II.getStartValue(), Step, II); 3352 Escape->setName("ind.escape"); 3353 MissingVals[UI] = Escape; 3354 } 3355 } 3356 3357 for (auto &I : MissingVals) { 3358 PHINode *PHI = cast<PHINode>(I.first); 3359 // One corner case we have to handle is two IVs "chasing" each-other, 3360 // that is %IV2 = phi [...], [ %IV1, %latch ] 3361 // In this case, if IV1 has an external use, we need to avoid adding both 3362 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3363 // don't already have an incoming value for the middle block. 3364 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) { 3365 PHI->addIncoming(I.second, MiddleBlock); 3366 Plan.removeLiveOut(PHI); 3367 } 3368 } 3369 } 3370 3371 namespace { 3372 3373 struct CSEDenseMapInfo { 3374 static bool canHandle(const Instruction *I) { 3375 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3376 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3377 } 3378 3379 static inline Instruction *getEmptyKey() { 3380 return DenseMapInfo<Instruction *>::getEmptyKey(); 3381 } 3382 3383 static inline Instruction *getTombstoneKey() { 3384 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3385 } 3386 3387 static unsigned getHashValue(const Instruction *I) { 3388 assert(canHandle(I) && "Unknown instruction!"); 3389 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3390 I->value_op_end())); 3391 } 3392 3393 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3394 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3395 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3396 return LHS == RHS; 3397 return LHS->isIdenticalTo(RHS); 3398 } 3399 }; 3400 3401 } // end anonymous namespace 3402 3403 ///Perform cse of induction variable instructions. 3404 static void cse(BasicBlock *BB) { 3405 // Perform simple cse. 3406 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3407 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3408 if (!CSEDenseMapInfo::canHandle(&In)) 3409 continue; 3410 3411 // Check if we can replace this instruction with any of the 3412 // visited instructions. 3413 if (Instruction *V = CSEMap.lookup(&In)) { 3414 In.replaceAllUsesWith(V); 3415 In.eraseFromParent(); 3416 continue; 3417 } 3418 3419 CSEMap[&In] = &In; 3420 } 3421 } 3422 3423 InstructionCost 3424 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3425 bool &NeedToScalarize) const { 3426 Function *F = CI->getCalledFunction(); 3427 Type *ScalarRetTy = CI->getType(); 3428 SmallVector<Type *, 4> Tys, ScalarTys; 3429 for (auto &ArgOp : CI->args()) 3430 ScalarTys.push_back(ArgOp->getType()); 3431 3432 // Estimate cost of scalarized vector call. The source operands are assumed 3433 // to be vectors, so we need to extract individual elements from there, 3434 // execute VF scalar calls, and then gather the result into the vector return 3435 // value. 3436 InstructionCost ScalarCallCost = 3437 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3438 if (VF.isScalar()) 3439 return ScalarCallCost; 3440 3441 // Compute corresponding vector type for return value and arguments. 3442 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3443 for (Type *ScalarTy : ScalarTys) 3444 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3445 3446 // Compute costs of unpacking argument values for the scalar calls and 3447 // packing the return values to a vector. 3448 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3449 3450 InstructionCost Cost = 3451 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3452 3453 // If we can't emit a vector call for this function, then the currently found 3454 // cost is the cost we need to return. 3455 NeedToScalarize = true; 3456 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3457 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3458 3459 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3460 return Cost; 3461 3462 // If the corresponding vector cost is cheaper, return its cost. 3463 InstructionCost VectorCallCost = 3464 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3465 if (VectorCallCost < Cost) { 3466 NeedToScalarize = false; 3467 Cost = VectorCallCost; 3468 } 3469 return Cost; 3470 } 3471 3472 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3473 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3474 return Elt; 3475 return VectorType::get(Elt, VF); 3476 } 3477 3478 InstructionCost 3479 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3480 ElementCount VF) const { 3481 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3482 assert(ID && "Expected intrinsic call!"); 3483 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3484 FastMathFlags FMF; 3485 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3486 FMF = FPMO->getFastMathFlags(); 3487 3488 SmallVector<const Value *> Arguments(CI->args()); 3489 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3490 SmallVector<Type *> ParamTys; 3491 std::transform(FTy->param_begin(), FTy->param_end(), 3492 std::back_inserter(ParamTys), 3493 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3494 3495 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3496 dyn_cast<IntrinsicInst>(CI)); 3497 return TTI.getIntrinsicInstrCost(CostAttrs, 3498 TargetTransformInfo::TCK_RecipThroughput); 3499 } 3500 3501 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3502 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3503 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3504 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3505 } 3506 3507 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3508 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3509 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3510 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3511 } 3512 3513 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3514 // For every instruction `I` in MinBWs, truncate the operands, create a 3515 // truncated version of `I` and reextend its result. InstCombine runs 3516 // later and will remove any ext/trunc pairs. 3517 SmallPtrSet<Value *, 4> Erased; 3518 for (const auto &KV : Cost->getMinimalBitwidths()) { 3519 // If the value wasn't vectorized, we must maintain the original scalar 3520 // type. The absence of the value from State indicates that it 3521 // wasn't vectorized. 3522 // FIXME: Should not rely on getVPValue at this point. 3523 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3524 if (!State.hasAnyVectorValue(Def)) 3525 continue; 3526 for (unsigned Part = 0; Part < UF; ++Part) { 3527 Value *I = State.get(Def, Part); 3528 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3529 continue; 3530 Type *OriginalTy = I->getType(); 3531 Type *ScalarTruncatedTy = 3532 IntegerType::get(OriginalTy->getContext(), KV.second); 3533 auto *TruncatedTy = VectorType::get( 3534 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3535 if (TruncatedTy == OriginalTy) 3536 continue; 3537 3538 IRBuilder<> B(cast<Instruction>(I)); 3539 auto ShrinkOperand = [&](Value *V) -> Value * { 3540 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3541 if (ZI->getSrcTy() == TruncatedTy) 3542 return ZI->getOperand(0); 3543 return B.CreateZExtOrTrunc(V, TruncatedTy); 3544 }; 3545 3546 // The actual instruction modification depends on the instruction type, 3547 // unfortunately. 3548 Value *NewI = nullptr; 3549 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3550 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3551 ShrinkOperand(BO->getOperand(1))); 3552 3553 // Any wrapping introduced by shrinking this operation shouldn't be 3554 // considered undefined behavior. So, we can't unconditionally copy 3555 // arithmetic wrapping flags to NewI. 3556 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3557 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3558 NewI = 3559 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3560 ShrinkOperand(CI->getOperand(1))); 3561 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3562 NewI = B.CreateSelect(SI->getCondition(), 3563 ShrinkOperand(SI->getTrueValue()), 3564 ShrinkOperand(SI->getFalseValue())); 3565 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3566 switch (CI->getOpcode()) { 3567 default: 3568 llvm_unreachable("Unhandled cast!"); 3569 case Instruction::Trunc: 3570 NewI = ShrinkOperand(CI->getOperand(0)); 3571 break; 3572 case Instruction::SExt: 3573 NewI = B.CreateSExtOrTrunc( 3574 CI->getOperand(0), 3575 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3576 break; 3577 case Instruction::ZExt: 3578 NewI = B.CreateZExtOrTrunc( 3579 CI->getOperand(0), 3580 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3581 break; 3582 } 3583 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3584 auto Elements0 = 3585 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3586 auto *O0 = B.CreateZExtOrTrunc( 3587 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3588 auto Elements1 = 3589 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3590 auto *O1 = B.CreateZExtOrTrunc( 3591 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3592 3593 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3594 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3595 // Don't do anything with the operands, just extend the result. 3596 continue; 3597 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3598 auto Elements = 3599 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3600 auto *O0 = B.CreateZExtOrTrunc( 3601 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3602 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3603 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3604 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3605 auto Elements = 3606 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3607 auto *O0 = B.CreateZExtOrTrunc( 3608 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3609 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3610 } else { 3611 // If we don't know what to do, be conservative and don't do anything. 3612 continue; 3613 } 3614 3615 // Lastly, extend the result. 3616 NewI->takeName(cast<Instruction>(I)); 3617 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3618 I->replaceAllUsesWith(Res); 3619 cast<Instruction>(I)->eraseFromParent(); 3620 Erased.insert(I); 3621 State.reset(Def, Res, Part); 3622 } 3623 } 3624 3625 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3626 for (const auto &KV : Cost->getMinimalBitwidths()) { 3627 // If the value wasn't vectorized, we must maintain the original scalar 3628 // type. The absence of the value from State indicates that it 3629 // wasn't vectorized. 3630 // FIXME: Should not rely on getVPValue at this point. 3631 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3632 if (!State.hasAnyVectorValue(Def)) 3633 continue; 3634 for (unsigned Part = 0; Part < UF; ++Part) { 3635 Value *I = State.get(Def, Part); 3636 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3637 if (Inst && Inst->use_empty()) { 3638 Value *NewI = Inst->getOperand(0); 3639 Inst->eraseFromParent(); 3640 State.reset(Def, NewI, Part); 3641 } 3642 } 3643 } 3644 } 3645 3646 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State, 3647 VPlan &Plan) { 3648 // Insert truncates and extends for any truncated instructions as hints to 3649 // InstCombine. 3650 if (VF.isVector()) 3651 truncateToMinimalBitwidths(State); 3652 3653 // Fix widened non-induction PHIs by setting up the PHI operands. 3654 if (EnableVPlanNativePath) 3655 fixNonInductionPHIs(Plan, State); 3656 3657 // At this point every instruction in the original loop is widened to a 3658 // vector form. Now we need to fix the recurrences in the loop. These PHI 3659 // nodes are currently empty because we did not want to introduce cycles. 3660 // This is the second stage of vectorizing recurrences. 3661 fixCrossIterationPHIs(State); 3662 3663 // Forget the original basic block. 3664 PSE.getSE()->forgetLoop(OrigLoop); 3665 3666 VPBasicBlock *LatchVPBB = Plan.getVectorLoopRegion()->getExitingBasicBlock(); 3667 Loop *VectorLoop = LI->getLoopFor(State.CFG.VPBB2IRBB[LatchVPBB]); 3668 if (Cost->requiresScalarEpilogue(VF)) { 3669 // No edge from the middle block to the unique exit block has been inserted 3670 // and there is nothing to fix from vector loop; phis should have incoming 3671 // from scalar loop only. 3672 Plan.clearLiveOuts(); 3673 } else { 3674 // If we inserted an edge from the middle block to the unique exit block, 3675 // update uses outside the loop (phis) to account for the newly inserted 3676 // edge. 3677 3678 // Fix-up external users of the induction variables. 3679 for (auto &Entry : Legal->getInductionVars()) 3680 fixupIVUsers(Entry.first, Entry.second, 3681 getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()), 3682 IVEndValues[Entry.first], LoopMiddleBlock, 3683 VectorLoop->getHeader(), Plan); 3684 } 3685 3686 // Fix LCSSA phis not already fixed earlier. Extracts may need to be generated 3687 // in the exit block, so update the builder. 3688 State.Builder.SetInsertPoint(State.CFG.ExitBB->getFirstNonPHI()); 3689 for (auto &KV : Plan.getLiveOuts()) 3690 KV.second->fixPhi(Plan, State); 3691 3692 for (Instruction *PI : PredicatedInstructions) 3693 sinkScalarOperands(&*PI); 3694 3695 // Remove redundant induction instructions. 3696 cse(VectorLoop->getHeader()); 3697 3698 // Set/update profile weights for the vector and remainder loops as original 3699 // loop iterations are now distributed among them. Note that original loop 3700 // represented by LoopScalarBody becomes remainder loop after vectorization. 3701 // 3702 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3703 // end up getting slightly roughened result but that should be OK since 3704 // profile is not inherently precise anyway. Note also possible bypass of 3705 // vector code caused by legality checks is ignored, assigning all the weight 3706 // to the vector loop, optimistically. 3707 // 3708 // For scalable vectorization we can't know at compile time how many iterations 3709 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3710 // vscale of '1'. 3711 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop, 3712 LI->getLoopFor(LoopScalarBody), 3713 VF.getKnownMinValue() * UF); 3714 } 3715 3716 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 3717 // In order to support recurrences we need to be able to vectorize Phi nodes. 3718 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3719 // stage #2: We now need to fix the recurrences by adding incoming edges to 3720 // the currently empty PHI nodes. At this point every instruction in the 3721 // original loop is widened to a vector form so we can use them to construct 3722 // the incoming edges. 3723 VPBasicBlock *Header = 3724 State.Plan->getVectorLoopRegion()->getEntryBasicBlock(); 3725 for (VPRecipeBase &R : Header->phis()) { 3726 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 3727 fixReduction(ReductionPhi, State); 3728 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 3729 fixFirstOrderRecurrence(FOR, State); 3730 } 3731 } 3732 3733 void InnerLoopVectorizer::fixFirstOrderRecurrence( 3734 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 3735 // This is the second phase of vectorizing first-order recurrences. An 3736 // overview of the transformation is described below. Suppose we have the 3737 // following loop. 3738 // 3739 // for (int i = 0; i < n; ++i) 3740 // b[i] = a[i] - a[i - 1]; 3741 // 3742 // There is a first-order recurrence on "a". For this loop, the shorthand 3743 // scalar IR looks like: 3744 // 3745 // scalar.ph: 3746 // s_init = a[-1] 3747 // br scalar.body 3748 // 3749 // scalar.body: 3750 // i = phi [0, scalar.ph], [i+1, scalar.body] 3751 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3752 // s2 = a[i] 3753 // b[i] = s2 - s1 3754 // br cond, scalar.body, ... 3755 // 3756 // In this example, s1 is a recurrence because it's value depends on the 3757 // previous iteration. In the first phase of vectorization, we created a 3758 // vector phi v1 for s1. We now complete the vectorization and produce the 3759 // shorthand vector IR shown below (for VF = 4, UF = 1). 3760 // 3761 // vector.ph: 3762 // v_init = vector(..., ..., ..., a[-1]) 3763 // br vector.body 3764 // 3765 // vector.body 3766 // i = phi [0, vector.ph], [i+4, vector.body] 3767 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3768 // v2 = a[i, i+1, i+2, i+3]; 3769 // v3 = vector(v1(3), v2(0, 1, 2)) 3770 // b[i, i+1, i+2, i+3] = v2 - v3 3771 // br cond, vector.body, middle.block 3772 // 3773 // middle.block: 3774 // x = v2(3) 3775 // br scalar.ph 3776 // 3777 // scalar.ph: 3778 // s_init = phi [x, middle.block], [a[-1], otherwise] 3779 // br scalar.body 3780 // 3781 // After execution completes the vector loop, we extract the next value of 3782 // the recurrence (x) to use as the initial value in the scalar loop. 3783 3784 // Extract the last vector element in the middle block. This will be the 3785 // initial value for the recurrence when jumping to the scalar loop. 3786 VPValue *PreviousDef = PhiR->getBackedgeValue(); 3787 Value *Incoming = State.get(PreviousDef, UF - 1); 3788 auto *ExtractForScalar = Incoming; 3789 auto *IdxTy = Builder.getInt32Ty(); 3790 if (VF.isVector()) { 3791 auto *One = ConstantInt::get(IdxTy, 1); 3792 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3793 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3794 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 3795 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 3796 "vector.recur.extract"); 3797 } 3798 // Extract the second last element in the middle block if the 3799 // Phi is used outside the loop. We need to extract the phi itself 3800 // and not the last element (the phi update in the current iteration). This 3801 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3802 // when the scalar loop is not run at all. 3803 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3804 if (VF.isVector()) { 3805 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3806 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 3807 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3808 Incoming, Idx, "vector.recur.extract.for.phi"); 3809 } else if (UF > 1) 3810 // When loop is unrolled without vectorizing, initialize 3811 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 3812 // of `Incoming`. This is analogous to the vectorized case above: extracting 3813 // the second last element when VF > 1. 3814 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 3815 3816 // Fix the initial value of the original recurrence in the scalar loop. 3817 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3818 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 3819 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3820 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 3821 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3822 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3823 Start->addIncoming(Incoming, BB); 3824 } 3825 3826 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3827 Phi->setName("scalar.recur"); 3828 3829 // Finally, fix users of the recurrence outside the loop. The users will need 3830 // either the last value of the scalar recurrence or the last value of the 3831 // vector recurrence we extracted in the middle block. Since the loop is in 3832 // LCSSA form, we just need to find all the phi nodes for the original scalar 3833 // recurrence in the exit block, and then add an edge for the middle block. 3834 // Note that LCSSA does not imply single entry when the original scalar loop 3835 // had multiple exiting edges (as we always run the last iteration in the 3836 // scalar epilogue); in that case, there is no edge from middle to exit and 3837 // and thus no phis which needed updated. 3838 if (!Cost->requiresScalarEpilogue(VF)) 3839 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 3840 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) { 3841 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3842 State.Plan->removeLiveOut(&LCSSAPhi); 3843 } 3844 } 3845 3846 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 3847 VPTransformState &State) { 3848 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 3849 // Get it's reduction variable descriptor. 3850 assert(Legal->isReductionVariable(OrigPhi) && 3851 "Unable to find the reduction variable"); 3852 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 3853 3854 RecurKind RK = RdxDesc.getRecurrenceKind(); 3855 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3856 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3857 State.setDebugLocFromInst(ReductionStartValue); 3858 3859 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 3860 // This is the vector-clone of the value that leaves the loop. 3861 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 3862 3863 // Wrap flags are in general invalid after vectorization, clear them. 3864 clearReductionWrapFlags(PhiR, State); 3865 3866 // Before each round, move the insertion point right between 3867 // the PHIs and the values we are going to write. 3868 // This allows us to write both PHINodes and the extractelement 3869 // instructions. 3870 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3871 3872 State.setDebugLocFromInst(LoopExitInst); 3873 3874 Type *PhiTy = OrigPhi->getType(); 3875 3876 VPBasicBlock *LatchVPBB = 3877 PhiR->getParent()->getEnclosingLoopRegion()->getExitingBasicBlock(); 3878 BasicBlock *VectorLoopLatch = State.CFG.VPBB2IRBB[LatchVPBB]; 3879 // If tail is folded by masking, the vector value to leave the loop should be 3880 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3881 // instead of the former. For an inloop reduction the reduction will already 3882 // be predicated, and does not need to be handled here. 3883 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 3884 for (unsigned Part = 0; Part < UF; ++Part) { 3885 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 3886 SelectInst *Sel = nullptr; 3887 for (User *U : VecLoopExitInst->users()) { 3888 if (isa<SelectInst>(U)) { 3889 assert(!Sel && "Reduction exit feeding two selects"); 3890 Sel = cast<SelectInst>(U); 3891 } else 3892 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3893 } 3894 assert(Sel && "Reduction exit feeds no select"); 3895 State.reset(LoopExitInstDef, Sel, Part); 3896 3897 if (isa<FPMathOperator>(Sel)) 3898 Sel->setFastMathFlags(RdxDesc.getFastMathFlags()); 3899 3900 // If the target can create a predicated operator for the reduction at no 3901 // extra cost in the loop (for example a predicated vadd), it can be 3902 // cheaper for the select to remain in the loop than be sunk out of it, 3903 // and so use the select value for the phi instead of the old 3904 // LoopExitValue. 3905 if (PreferPredicatedReductionSelect || 3906 TTI->preferPredicatedReductionSelect( 3907 RdxDesc.getOpcode(), PhiTy, 3908 TargetTransformInfo::ReductionFlags())) { 3909 auto *VecRdxPhi = 3910 cast<PHINode>(State.get(PhiR, Part)); 3911 VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel); 3912 } 3913 } 3914 } 3915 3916 // If the vector reduction can be performed in a smaller type, we truncate 3917 // then extend the loop exit value to enable InstCombine to evaluate the 3918 // entire expression in the smaller type. 3919 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 3920 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 3921 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3922 Builder.SetInsertPoint(VectorLoopLatch->getTerminator()); 3923 VectorParts RdxParts(UF); 3924 for (unsigned Part = 0; Part < UF; ++Part) { 3925 RdxParts[Part] = State.get(LoopExitInstDef, Part); 3926 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3927 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3928 : Builder.CreateZExt(Trunc, VecTy); 3929 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 3930 if (U != Trunc) { 3931 U->replaceUsesOfWith(RdxParts[Part], Extnd); 3932 RdxParts[Part] = Extnd; 3933 } 3934 } 3935 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3936 for (unsigned Part = 0; Part < UF; ++Part) { 3937 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3938 State.reset(LoopExitInstDef, RdxParts[Part], Part); 3939 } 3940 } 3941 3942 // Reduce all of the unrolled parts into a single vector. 3943 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 3944 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 3945 3946 // The middle block terminator has already been assigned a DebugLoc here (the 3947 // OrigLoop's single latch terminator). We want the whole middle block to 3948 // appear to execute on this line because: (a) it is all compiler generated, 3949 // (b) these instructions are always executed after evaluating the latch 3950 // conditional branch, and (c) other passes may add new predecessors which 3951 // terminate on this line. This is the easiest way to ensure we don't 3952 // accidentally cause an extra step back into the loop while debugging. 3953 State.setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 3954 if (PhiR->isOrdered()) 3955 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 3956 else { 3957 // Floating-point operations should have some FMF to enable the reduction. 3958 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 3959 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 3960 for (unsigned Part = 1; Part < UF; ++Part) { 3961 Value *RdxPart = State.get(LoopExitInstDef, Part); 3962 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 3963 ReducedPartRdx = Builder.CreateBinOp( 3964 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 3965 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 3966 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 3967 ReducedPartRdx, RdxPart); 3968 else 3969 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 3970 } 3971 } 3972 3973 // Create the reduction after the loop. Note that inloop reductions create the 3974 // target reduction in the loop using a Reduction recipe. 3975 if (VF.isVector() && !PhiR->isInLoop()) { 3976 ReducedPartRdx = 3977 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 3978 // If the reduction can be performed in a smaller type, we need to extend 3979 // the reduction to the wider type before we branch to the original loop. 3980 if (PhiTy != RdxDesc.getRecurrenceType()) 3981 ReducedPartRdx = RdxDesc.isSigned() 3982 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 3983 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 3984 } 3985 3986 PHINode *ResumePhi = 3987 dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue()); 3988 3989 // Create a phi node that merges control-flow from the backedge-taken check 3990 // block and the middle block. 3991 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 3992 LoopScalarPreHeader->getTerminator()); 3993 3994 // If we are fixing reductions in the epilogue loop then we should already 3995 // have created a bc.merge.rdx Phi after the main vector body. Ensure that 3996 // we carry over the incoming values correctly. 3997 for (auto *Incoming : predecessors(LoopScalarPreHeader)) { 3998 if (Incoming == LoopMiddleBlock) 3999 BCBlockPhi->addIncoming(ReducedPartRdx, Incoming); 4000 else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming)) 4001 BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming), 4002 Incoming); 4003 else 4004 BCBlockPhi->addIncoming(ReductionStartValue, Incoming); 4005 } 4006 4007 // Set the resume value for this reduction 4008 ReductionResumeValues.insert({&RdxDesc, BCBlockPhi}); 4009 4010 // If there were stores of the reduction value to a uniform memory address 4011 // inside the loop, create the final store here. 4012 if (StoreInst *SI = RdxDesc.IntermediateStore) { 4013 StoreInst *NewSI = 4014 Builder.CreateStore(ReducedPartRdx, SI->getPointerOperand()); 4015 propagateMetadata(NewSI, SI); 4016 4017 // If the reduction value is used in other places, 4018 // then let the code below create PHI's for that. 4019 } 4020 4021 // Now, we need to fix the users of the reduction variable 4022 // inside and outside of the scalar remainder loop. 4023 4024 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4025 // in the exit blocks. See comment on analogous loop in 4026 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4027 if (!Cost->requiresScalarEpilogue(VF)) 4028 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4029 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) { 4030 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4031 State.Plan->removeLiveOut(&LCSSAPhi); 4032 } 4033 4034 // Fix the scalar loop reduction variable with the incoming reduction sum 4035 // from the vector body and from the backedge value. 4036 int IncomingEdgeBlockIdx = 4037 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4038 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4039 // Pick the other block. 4040 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4041 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4042 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4043 } 4044 4045 void InnerLoopVectorizer::clearReductionWrapFlags(VPReductionPHIRecipe *PhiR, 4046 VPTransformState &State) { 4047 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4048 RecurKind RK = RdxDesc.getRecurrenceKind(); 4049 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4050 return; 4051 4052 SmallVector<VPValue *, 8> Worklist; 4053 SmallPtrSet<VPValue *, 8> Visited; 4054 Worklist.push_back(PhiR); 4055 Visited.insert(PhiR); 4056 4057 while (!Worklist.empty()) { 4058 VPValue *Cur = Worklist.pop_back_val(); 4059 for (unsigned Part = 0; Part < UF; ++Part) { 4060 Value *V = State.get(Cur, Part); 4061 if (!isa<OverflowingBinaryOperator>(V)) 4062 break; 4063 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4064 } 4065 4066 for (VPUser *U : Cur->users()) { 4067 auto *UserRecipe = dyn_cast<VPRecipeBase>(U); 4068 if (!UserRecipe) 4069 continue; 4070 for (VPValue *V : UserRecipe->definedValues()) 4071 if (Visited.insert(V).second) 4072 Worklist.push_back(V); 4073 } 4074 } 4075 } 4076 4077 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4078 // The basic block and loop containing the predicated instruction. 4079 auto *PredBB = PredInst->getParent(); 4080 auto *VectorLoop = LI->getLoopFor(PredBB); 4081 4082 // Initialize a worklist with the operands of the predicated instruction. 4083 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4084 4085 // Holds instructions that we need to analyze again. An instruction may be 4086 // reanalyzed if we don't yet know if we can sink it or not. 4087 SmallVector<Instruction *, 8> InstsToReanalyze; 4088 4089 // Returns true if a given use occurs in the predicated block. Phi nodes use 4090 // their operands in their corresponding predecessor blocks. 4091 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4092 auto *I = cast<Instruction>(U.getUser()); 4093 BasicBlock *BB = I->getParent(); 4094 if (auto *Phi = dyn_cast<PHINode>(I)) 4095 BB = Phi->getIncomingBlock( 4096 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4097 return BB == PredBB; 4098 }; 4099 4100 // Iteratively sink the scalarized operands of the predicated instruction 4101 // into the block we created for it. When an instruction is sunk, it's 4102 // operands are then added to the worklist. The algorithm ends after one pass 4103 // through the worklist doesn't sink a single instruction. 4104 bool Changed; 4105 do { 4106 // Add the instructions that need to be reanalyzed to the worklist, and 4107 // reset the changed indicator. 4108 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4109 InstsToReanalyze.clear(); 4110 Changed = false; 4111 4112 while (!Worklist.empty()) { 4113 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4114 4115 // We can't sink an instruction if it is a phi node, is not in the loop, 4116 // or may have side effects. 4117 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4118 I->mayHaveSideEffects()) 4119 continue; 4120 4121 // If the instruction is already in PredBB, check if we can sink its 4122 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4123 // sinking the scalar instruction I, hence it appears in PredBB; but it 4124 // may have failed to sink I's operands (recursively), which we try 4125 // (again) here. 4126 if (I->getParent() == PredBB) { 4127 Worklist.insert(I->op_begin(), I->op_end()); 4128 continue; 4129 } 4130 4131 // It's legal to sink the instruction if all its uses occur in the 4132 // predicated block. Otherwise, there's nothing to do yet, and we may 4133 // need to reanalyze the instruction. 4134 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4135 InstsToReanalyze.push_back(I); 4136 continue; 4137 } 4138 4139 // Move the instruction to the beginning of the predicated block, and add 4140 // it's operands to the worklist. 4141 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4142 Worklist.insert(I->op_begin(), I->op_end()); 4143 4144 // The sinking may have enabled other instructions to be sunk, so we will 4145 // need to iterate. 4146 Changed = true; 4147 } 4148 } while (Changed); 4149 } 4150 4151 void InnerLoopVectorizer::fixNonInductionPHIs(VPlan &Plan, 4152 VPTransformState &State) { 4153 auto Iter = depth_first( 4154 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(Plan.getEntry())); 4155 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 4156 for (VPRecipeBase &P : VPBB->phis()) { 4157 VPWidenPHIRecipe *VPPhi = dyn_cast<VPWidenPHIRecipe>(&P); 4158 if (!VPPhi) 4159 continue; 4160 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4161 // Make sure the builder has a valid insert point. 4162 Builder.SetInsertPoint(NewPhi); 4163 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4164 VPValue *Inc = VPPhi->getIncomingValue(i); 4165 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4166 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4167 } 4168 } 4169 } 4170 } 4171 4172 bool InnerLoopVectorizer::useOrderedReductions( 4173 const RecurrenceDescriptor &RdxDesc) { 4174 return Cost->useOrderedReductions(RdxDesc); 4175 } 4176 4177 /// A helper function for checking whether an integer division-related 4178 /// instruction may divide by zero (in which case it must be predicated if 4179 /// executed conditionally in the scalar code). 4180 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4181 /// Non-zero divisors that are non compile-time constants will not be 4182 /// converted into multiplication, so we will still end up scalarizing 4183 /// the division, but can do so w/o predication. 4184 static bool mayDivideByZero(Instruction &I) { 4185 assert((I.getOpcode() == Instruction::UDiv || 4186 I.getOpcode() == Instruction::SDiv || 4187 I.getOpcode() == Instruction::URem || 4188 I.getOpcode() == Instruction::SRem) && 4189 "Unexpected instruction"); 4190 Value *Divisor = I.getOperand(1); 4191 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4192 return !CInt || CInt->isZero(); 4193 } 4194 4195 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4196 VPUser &ArgOperands, 4197 VPTransformState &State) { 4198 assert(!isa<DbgInfoIntrinsic>(I) && 4199 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4200 State.setDebugLocFromInst(&I); 4201 4202 Module *M = I.getParent()->getParent()->getParent(); 4203 auto *CI = cast<CallInst>(&I); 4204 4205 SmallVector<Type *, 4> Tys; 4206 for (Value *ArgOperand : CI->args()) 4207 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4208 4209 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4210 4211 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4212 // version of the instruction. 4213 // Is it beneficial to perform intrinsic call compared to lib call? 4214 bool NeedToScalarize = false; 4215 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4216 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4217 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4218 assert((UseVectorIntrinsic || !NeedToScalarize) && 4219 "Instruction should be scalarized elsewhere."); 4220 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4221 "Either the intrinsic cost or vector call cost must be valid"); 4222 4223 for (unsigned Part = 0; Part < UF; ++Part) { 4224 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4225 SmallVector<Value *, 4> Args; 4226 for (auto &I : enumerate(ArgOperands.operands())) { 4227 // Some intrinsics have a scalar argument - don't replace it with a 4228 // vector. 4229 Value *Arg; 4230 if (!UseVectorIntrinsic || 4231 !isVectorIntrinsicWithScalarOpAtArg(ID, I.index())) 4232 Arg = State.get(I.value(), Part); 4233 else 4234 Arg = State.get(I.value(), VPIteration(0, 0)); 4235 if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I.index())) 4236 TysForDecl.push_back(Arg->getType()); 4237 Args.push_back(Arg); 4238 } 4239 4240 Function *VectorF; 4241 if (UseVectorIntrinsic) { 4242 // Use vector version of the intrinsic. 4243 if (VF.isVector()) 4244 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4245 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4246 assert(VectorF && "Can't retrieve vector intrinsic."); 4247 } else { 4248 // Use vector version of the function call. 4249 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4250 #ifndef NDEBUG 4251 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4252 "Can't create vector function."); 4253 #endif 4254 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4255 } 4256 SmallVector<OperandBundleDef, 1> OpBundles; 4257 CI->getOperandBundlesAsDefs(OpBundles); 4258 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4259 4260 if (isa<FPMathOperator>(V)) 4261 V->copyFastMathFlags(CI); 4262 4263 State.set(Def, V, Part); 4264 State.addMetadata(V, &I); 4265 } 4266 } 4267 4268 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4269 // We should not collect Scalars more than once per VF. Right now, this 4270 // function is called from collectUniformsAndScalars(), which already does 4271 // this check. Collecting Scalars for VF=1 does not make any sense. 4272 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4273 "This function should not be visited twice for the same VF"); 4274 4275 // This avoids any chances of creating a REPLICATE recipe during planning 4276 // since that would result in generation of scalarized code during execution, 4277 // which is not supported for scalable vectors. 4278 if (VF.isScalable()) { 4279 Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4280 return; 4281 } 4282 4283 SmallSetVector<Instruction *, 8> Worklist; 4284 4285 // These sets are used to seed the analysis with pointers used by memory 4286 // accesses that will remain scalar. 4287 SmallSetVector<Instruction *, 8> ScalarPtrs; 4288 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4289 auto *Latch = TheLoop->getLoopLatch(); 4290 4291 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4292 // The pointer operands of loads and stores will be scalar as long as the 4293 // memory access is not a gather or scatter operation. The value operand of a 4294 // store will remain scalar if the store is scalarized. 4295 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4296 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4297 assert(WideningDecision != CM_Unknown && 4298 "Widening decision should be ready at this moment"); 4299 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4300 if (Ptr == Store->getValueOperand()) 4301 return WideningDecision == CM_Scalarize; 4302 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4303 "Ptr is neither a value or pointer operand"); 4304 return WideningDecision != CM_GatherScatter; 4305 }; 4306 4307 // A helper that returns true if the given value is a bitcast or 4308 // getelementptr instruction contained in the loop. 4309 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4310 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4311 isa<GetElementPtrInst>(V)) && 4312 !TheLoop->isLoopInvariant(V); 4313 }; 4314 4315 // A helper that evaluates a memory access's use of a pointer. If the use will 4316 // be a scalar use and the pointer is only used by memory accesses, we place 4317 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4318 // PossibleNonScalarPtrs. 4319 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4320 // We only care about bitcast and getelementptr instructions contained in 4321 // the loop. 4322 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4323 return; 4324 4325 // If the pointer has already been identified as scalar (e.g., if it was 4326 // also identified as uniform), there's nothing to do. 4327 auto *I = cast<Instruction>(Ptr); 4328 if (Worklist.count(I)) 4329 return; 4330 4331 // If the use of the pointer will be a scalar use, and all users of the 4332 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4333 // place the pointer in PossibleNonScalarPtrs. 4334 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4335 return isa<LoadInst>(U) || isa<StoreInst>(U); 4336 })) 4337 ScalarPtrs.insert(I); 4338 else 4339 PossibleNonScalarPtrs.insert(I); 4340 }; 4341 4342 // We seed the scalars analysis with three classes of instructions: (1) 4343 // instructions marked uniform-after-vectorization and (2) bitcast, 4344 // getelementptr and (pointer) phi instructions used by memory accesses 4345 // requiring a scalar use. 4346 // 4347 // (1) Add to the worklist all instructions that have been identified as 4348 // uniform-after-vectorization. 4349 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4350 4351 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4352 // memory accesses requiring a scalar use. The pointer operands of loads and 4353 // stores will be scalar as long as the memory accesses is not a gather or 4354 // scatter operation. The value operand of a store will remain scalar if the 4355 // store is scalarized. 4356 for (auto *BB : TheLoop->blocks()) 4357 for (auto &I : *BB) { 4358 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4359 evaluatePtrUse(Load, Load->getPointerOperand()); 4360 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4361 evaluatePtrUse(Store, Store->getPointerOperand()); 4362 evaluatePtrUse(Store, Store->getValueOperand()); 4363 } 4364 } 4365 for (auto *I : ScalarPtrs) 4366 if (!PossibleNonScalarPtrs.count(I)) { 4367 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4368 Worklist.insert(I); 4369 } 4370 4371 // Insert the forced scalars. 4372 // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector 4373 // induction variable when the PHI user is scalarized. 4374 auto ForcedScalar = ForcedScalars.find(VF); 4375 if (ForcedScalar != ForcedScalars.end()) 4376 for (auto *I : ForcedScalar->second) 4377 Worklist.insert(I); 4378 4379 // Expand the worklist by looking through any bitcasts and getelementptr 4380 // instructions we've already identified as scalar. This is similar to the 4381 // expansion step in collectLoopUniforms(); however, here we're only 4382 // expanding to include additional bitcasts and getelementptr instructions. 4383 unsigned Idx = 0; 4384 while (Idx != Worklist.size()) { 4385 Instruction *Dst = Worklist[Idx++]; 4386 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4387 continue; 4388 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4389 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4390 auto *J = cast<Instruction>(U); 4391 return !TheLoop->contains(J) || Worklist.count(J) || 4392 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4393 isScalarUse(J, Src)); 4394 })) { 4395 Worklist.insert(Src); 4396 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4397 } 4398 } 4399 4400 // An induction variable will remain scalar if all users of the induction 4401 // variable and induction variable update remain scalar. 4402 for (auto &Induction : Legal->getInductionVars()) { 4403 auto *Ind = Induction.first; 4404 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4405 4406 // If tail-folding is applied, the primary induction variable will be used 4407 // to feed a vector compare. 4408 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4409 continue; 4410 4411 // Returns true if \p Indvar is a pointer induction that is used directly by 4412 // load/store instruction \p I. 4413 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4414 Instruction *I) { 4415 return Induction.second.getKind() == 4416 InductionDescriptor::IK_PtrInduction && 4417 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4418 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4419 }; 4420 4421 // Determine if all users of the induction variable are scalar after 4422 // vectorization. 4423 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4424 auto *I = cast<Instruction>(U); 4425 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4426 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4427 }); 4428 if (!ScalarInd) 4429 continue; 4430 4431 // Determine if all users of the induction variable update instruction are 4432 // scalar after vectorization. 4433 auto ScalarIndUpdate = 4434 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4435 auto *I = cast<Instruction>(U); 4436 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4437 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4438 }); 4439 if (!ScalarIndUpdate) 4440 continue; 4441 4442 // The induction variable and its update instruction will remain scalar. 4443 Worklist.insert(Ind); 4444 Worklist.insert(IndUpdate); 4445 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4446 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4447 << "\n"); 4448 } 4449 4450 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4451 } 4452 4453 bool LoopVectorizationCostModel::isScalarWithPredication( 4454 Instruction *I, ElementCount VF) const { 4455 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4456 return false; 4457 switch(I->getOpcode()) { 4458 default: 4459 break; 4460 case Instruction::Load: 4461 case Instruction::Store: { 4462 if (!Legal->isMaskRequired(I)) 4463 return false; 4464 auto *Ptr = getLoadStorePointerOperand(I); 4465 auto *Ty = getLoadStoreType(I); 4466 Type *VTy = Ty; 4467 if (VF.isVector()) 4468 VTy = VectorType::get(Ty, VF); 4469 const Align Alignment = getLoadStoreAlignment(I); 4470 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4471 TTI.isLegalMaskedGather(VTy, Alignment)) 4472 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4473 TTI.isLegalMaskedScatter(VTy, Alignment)); 4474 } 4475 case Instruction::UDiv: 4476 case Instruction::SDiv: 4477 case Instruction::SRem: 4478 case Instruction::URem: 4479 return mayDivideByZero(*I); 4480 } 4481 return false; 4482 } 4483 4484 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4485 Instruction *I, ElementCount VF) { 4486 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4487 assert(getWideningDecision(I, VF) == CM_Unknown && 4488 "Decision should not be set yet."); 4489 auto *Group = getInterleavedAccessGroup(I); 4490 assert(Group && "Must have a group."); 4491 4492 // If the instruction's allocated size doesn't equal it's type size, it 4493 // requires padding and will be scalarized. 4494 auto &DL = I->getModule()->getDataLayout(); 4495 auto *ScalarTy = getLoadStoreType(I); 4496 if (hasIrregularType(ScalarTy, DL)) 4497 return false; 4498 4499 // If the group involves a non-integral pointer, we may not be able to 4500 // losslessly cast all values to a common type. 4501 unsigned InterleaveFactor = Group->getFactor(); 4502 bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy); 4503 for (unsigned i = 0; i < InterleaveFactor; i++) { 4504 Instruction *Member = Group->getMember(i); 4505 if (!Member) 4506 continue; 4507 auto *MemberTy = getLoadStoreType(Member); 4508 bool MemberNI = DL.isNonIntegralPointerType(MemberTy); 4509 // Don't coerce non-integral pointers to integers or vice versa. 4510 if (MemberNI != ScalarNI) { 4511 // TODO: Consider adding special nullptr value case here 4512 return false; 4513 } else if (MemberNI && ScalarNI && 4514 ScalarTy->getPointerAddressSpace() != 4515 MemberTy->getPointerAddressSpace()) { 4516 return false; 4517 } 4518 } 4519 4520 // Check if masking is required. 4521 // A Group may need masking for one of two reasons: it resides in a block that 4522 // needs predication, or it was decided to use masking to deal with gaps 4523 // (either a gap at the end of a load-access that may result in a speculative 4524 // load, or any gaps in a store-access). 4525 bool PredicatedAccessRequiresMasking = 4526 blockNeedsPredicationForAnyReason(I->getParent()) && 4527 Legal->isMaskRequired(I); 4528 bool LoadAccessWithGapsRequiresEpilogMasking = 4529 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4530 !isScalarEpilogueAllowed(); 4531 bool StoreAccessWithGapsRequiresMasking = 4532 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4533 if (!PredicatedAccessRequiresMasking && 4534 !LoadAccessWithGapsRequiresEpilogMasking && 4535 !StoreAccessWithGapsRequiresMasking) 4536 return true; 4537 4538 // If masked interleaving is required, we expect that the user/target had 4539 // enabled it, because otherwise it either wouldn't have been created or 4540 // it should have been invalidated by the CostModel. 4541 assert(useMaskedInterleavedAccesses(TTI) && 4542 "Masked interleave-groups for predicated accesses are not enabled."); 4543 4544 if (Group->isReverse()) 4545 return false; 4546 4547 auto *Ty = getLoadStoreType(I); 4548 const Align Alignment = getLoadStoreAlignment(I); 4549 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4550 : TTI.isLegalMaskedStore(Ty, Alignment); 4551 } 4552 4553 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4554 Instruction *I, ElementCount VF) { 4555 // Get and ensure we have a valid memory instruction. 4556 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4557 4558 auto *Ptr = getLoadStorePointerOperand(I); 4559 auto *ScalarTy = getLoadStoreType(I); 4560 4561 // In order to be widened, the pointer should be consecutive, first of all. 4562 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4563 return false; 4564 4565 // If the instruction is a store located in a predicated block, it will be 4566 // scalarized. 4567 if (isScalarWithPredication(I, VF)) 4568 return false; 4569 4570 // If the instruction's allocated size doesn't equal it's type size, it 4571 // requires padding and will be scalarized. 4572 auto &DL = I->getModule()->getDataLayout(); 4573 if (hasIrregularType(ScalarTy, DL)) 4574 return false; 4575 4576 return true; 4577 } 4578 4579 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4580 // We should not collect Uniforms more than once per VF. Right now, 4581 // this function is called from collectUniformsAndScalars(), which 4582 // already does this check. Collecting Uniforms for VF=1 does not make any 4583 // sense. 4584 4585 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 4586 "This function should not be visited twice for the same VF"); 4587 4588 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4589 // not analyze again. Uniforms.count(VF) will return 1. 4590 Uniforms[VF].clear(); 4591 4592 // We now know that the loop is vectorizable! 4593 // Collect instructions inside the loop that will remain uniform after 4594 // vectorization. 4595 4596 // Global values, params and instructions outside of current loop are out of 4597 // scope. 4598 auto isOutOfScope = [&](Value *V) -> bool { 4599 Instruction *I = dyn_cast<Instruction>(V); 4600 return (!I || !TheLoop->contains(I)); 4601 }; 4602 4603 // Worklist containing uniform instructions demanding lane 0. 4604 SetVector<Instruction *> Worklist; 4605 BasicBlock *Latch = TheLoop->getLoopLatch(); 4606 4607 // Add uniform instructions demanding lane 0 to the worklist. Instructions 4608 // that are scalar with predication must not be considered uniform after 4609 // vectorization, because that would create an erroneous replicating region 4610 // where only a single instance out of VF should be formed. 4611 // TODO: optimize such seldom cases if found important, see PR40816. 4612 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4613 if (isOutOfScope(I)) { 4614 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 4615 << *I << "\n"); 4616 return; 4617 } 4618 if (isScalarWithPredication(I, VF)) { 4619 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4620 << *I << "\n"); 4621 return; 4622 } 4623 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4624 Worklist.insert(I); 4625 }; 4626 4627 // Start with the conditional branch. If the branch condition is an 4628 // instruction contained in the loop that is only used by the branch, it is 4629 // uniform. 4630 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4631 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4632 addToWorklistIfAllowed(Cmp); 4633 4634 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 4635 InstWidening WideningDecision = getWideningDecision(I, VF); 4636 assert(WideningDecision != CM_Unknown && 4637 "Widening decision should be ready at this moment"); 4638 4639 // A uniform memory op is itself uniform. We exclude uniform stores 4640 // here as they demand the last lane, not the first one. 4641 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 4642 assert(WideningDecision == CM_Scalarize); 4643 return true; 4644 } 4645 4646 return (WideningDecision == CM_Widen || 4647 WideningDecision == CM_Widen_Reverse || 4648 WideningDecision == CM_Interleave); 4649 }; 4650 4651 4652 // Returns true if Ptr is the pointer operand of a memory access instruction 4653 // I, and I is known to not require scalarization. 4654 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4655 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4656 }; 4657 4658 // Holds a list of values which are known to have at least one uniform use. 4659 // Note that there may be other uses which aren't uniform. A "uniform use" 4660 // here is something which only demands lane 0 of the unrolled iterations; 4661 // it does not imply that all lanes produce the same value (e.g. this is not 4662 // the usual meaning of uniform) 4663 SetVector<Value *> HasUniformUse; 4664 4665 // Scan the loop for instructions which are either a) known to have only 4666 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 4667 for (auto *BB : TheLoop->blocks()) 4668 for (auto &I : *BB) { 4669 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 4670 switch (II->getIntrinsicID()) { 4671 case Intrinsic::sideeffect: 4672 case Intrinsic::experimental_noalias_scope_decl: 4673 case Intrinsic::assume: 4674 case Intrinsic::lifetime_start: 4675 case Intrinsic::lifetime_end: 4676 if (TheLoop->hasLoopInvariantOperands(&I)) 4677 addToWorklistIfAllowed(&I); 4678 break; 4679 default: 4680 break; 4681 } 4682 } 4683 4684 // ExtractValue instructions must be uniform, because the operands are 4685 // known to be loop-invariant. 4686 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 4687 assert(isOutOfScope(EVI->getAggregateOperand()) && 4688 "Expected aggregate value to be loop invariant"); 4689 addToWorklistIfAllowed(EVI); 4690 continue; 4691 } 4692 4693 // If there's no pointer operand, there's nothing to do. 4694 auto *Ptr = getLoadStorePointerOperand(&I); 4695 if (!Ptr) 4696 continue; 4697 4698 // A uniform memory op is itself uniform. We exclude uniform stores 4699 // here as they demand the last lane, not the first one. 4700 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 4701 addToWorklistIfAllowed(&I); 4702 4703 if (isUniformDecision(&I, VF)) { 4704 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 4705 HasUniformUse.insert(Ptr); 4706 } 4707 } 4708 4709 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 4710 // demanding) users. Since loops are assumed to be in LCSSA form, this 4711 // disallows uses outside the loop as well. 4712 for (auto *V : HasUniformUse) { 4713 if (isOutOfScope(V)) 4714 continue; 4715 auto *I = cast<Instruction>(V); 4716 auto UsersAreMemAccesses = 4717 llvm::all_of(I->users(), [&](User *U) -> bool { 4718 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 4719 }); 4720 if (UsersAreMemAccesses) 4721 addToWorklistIfAllowed(I); 4722 } 4723 4724 // Expand Worklist in topological order: whenever a new instruction 4725 // is added , its users should be already inside Worklist. It ensures 4726 // a uniform instruction will only be used by uniform instructions. 4727 unsigned idx = 0; 4728 while (idx != Worklist.size()) { 4729 Instruction *I = Worklist[idx++]; 4730 4731 for (auto OV : I->operand_values()) { 4732 // isOutOfScope operands cannot be uniform instructions. 4733 if (isOutOfScope(OV)) 4734 continue; 4735 // First order recurrence Phi's should typically be considered 4736 // non-uniform. 4737 auto *OP = dyn_cast<PHINode>(OV); 4738 if (OP && Legal->isFirstOrderRecurrence(OP)) 4739 continue; 4740 // If all the users of the operand are uniform, then add the 4741 // operand into the uniform worklist. 4742 auto *OI = cast<Instruction>(OV); 4743 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4744 auto *J = cast<Instruction>(U); 4745 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 4746 })) 4747 addToWorklistIfAllowed(OI); 4748 } 4749 } 4750 4751 // For an instruction to be added into Worklist above, all its users inside 4752 // the loop should also be in Worklist. However, this condition cannot be 4753 // true for phi nodes that form a cyclic dependence. We must process phi 4754 // nodes separately. An induction variable will remain uniform if all users 4755 // of the induction variable and induction variable update remain uniform. 4756 // The code below handles both pointer and non-pointer induction variables. 4757 for (auto &Induction : Legal->getInductionVars()) { 4758 auto *Ind = Induction.first; 4759 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4760 4761 // Determine if all users of the induction variable are uniform after 4762 // vectorization. 4763 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4764 auto *I = cast<Instruction>(U); 4765 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4766 isVectorizedMemAccessUse(I, Ind); 4767 }); 4768 if (!UniformInd) 4769 continue; 4770 4771 // Determine if all users of the induction variable update instruction are 4772 // uniform after vectorization. 4773 auto UniformIndUpdate = 4774 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4775 auto *I = cast<Instruction>(U); 4776 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4777 isVectorizedMemAccessUse(I, IndUpdate); 4778 }); 4779 if (!UniformIndUpdate) 4780 continue; 4781 4782 // The induction variable and its update instruction will remain uniform. 4783 addToWorklistIfAllowed(Ind); 4784 addToWorklistIfAllowed(IndUpdate); 4785 } 4786 4787 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4788 } 4789 4790 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4791 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4792 4793 if (Legal->getRuntimePointerChecking()->Need) { 4794 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4795 "runtime pointer checks needed. Enable vectorization of this " 4796 "loop with '#pragma clang loop vectorize(enable)' when " 4797 "compiling with -Os/-Oz", 4798 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4799 return true; 4800 } 4801 4802 if (!PSE.getPredicate().isAlwaysTrue()) { 4803 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4804 "runtime SCEV checks needed. Enable vectorization of this " 4805 "loop with '#pragma clang loop vectorize(enable)' when " 4806 "compiling with -Os/-Oz", 4807 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4808 return true; 4809 } 4810 4811 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4812 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4813 reportVectorizationFailure("Runtime stride check for small trip count", 4814 "runtime stride == 1 checks needed. Enable vectorization of " 4815 "this loop without such check by compiling with -Os/-Oz", 4816 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4817 return true; 4818 } 4819 4820 return false; 4821 } 4822 4823 ElementCount 4824 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 4825 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 4826 return ElementCount::getScalable(0); 4827 4828 if (Hints->isScalableVectorizationDisabled()) { 4829 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 4830 "ScalableVectorizationDisabled", ORE, TheLoop); 4831 return ElementCount::getScalable(0); 4832 } 4833 4834 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 4835 4836 auto MaxScalableVF = ElementCount::getScalable( 4837 std::numeric_limits<ElementCount::ScalarTy>::max()); 4838 4839 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 4840 // FIXME: While for scalable vectors this is currently sufficient, this should 4841 // be replaced by a more detailed mechanism that filters out specific VFs, 4842 // instead of invalidating vectorization for a whole set of VFs based on the 4843 // MaxVF. 4844 4845 // Disable scalable vectorization if the loop contains unsupported reductions. 4846 if (!canVectorizeReductions(MaxScalableVF)) { 4847 reportVectorizationInfo( 4848 "Scalable vectorization not supported for the reduction " 4849 "operations found in this loop.", 4850 "ScalableVFUnfeasible", ORE, TheLoop); 4851 return ElementCount::getScalable(0); 4852 } 4853 4854 // Disable scalable vectorization if the loop contains any instructions 4855 // with element types not supported for scalable vectors. 4856 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 4857 return !Ty->isVoidTy() && 4858 !this->TTI.isElementTypeLegalForScalableVector(Ty); 4859 })) { 4860 reportVectorizationInfo("Scalable vectorization is not supported " 4861 "for all element types found in this loop.", 4862 "ScalableVFUnfeasible", ORE, TheLoop); 4863 return ElementCount::getScalable(0); 4864 } 4865 4866 if (Legal->isSafeForAnyVectorWidth()) 4867 return MaxScalableVF; 4868 4869 // Limit MaxScalableVF by the maximum safe dependence distance. 4870 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 4871 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 4872 MaxVScale = 4873 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 4874 MaxScalableVF = ElementCount::getScalable( 4875 MaxVScale ? (MaxSafeElements / MaxVScale.value()) : 0); 4876 if (!MaxScalableVF) 4877 reportVectorizationInfo( 4878 "Max legal vector width too small, scalable vectorization " 4879 "unfeasible.", 4880 "ScalableVFUnfeasible", ORE, TheLoop); 4881 4882 return MaxScalableVF; 4883 } 4884 4885 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 4886 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 4887 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4888 unsigned SmallestType, WidestType; 4889 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4890 4891 // Get the maximum safe dependence distance in bits computed by LAA. 4892 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4893 // the memory accesses that is most restrictive (involved in the smallest 4894 // dependence distance). 4895 unsigned MaxSafeElements = 4896 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 4897 4898 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 4899 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 4900 4901 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 4902 << ".\n"); 4903 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 4904 << ".\n"); 4905 4906 // First analyze the UserVF, fall back if the UserVF should be ignored. 4907 if (UserVF) { 4908 auto MaxSafeUserVF = 4909 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 4910 4911 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 4912 // If `VF=vscale x N` is safe, then so is `VF=N` 4913 if (UserVF.isScalable()) 4914 return FixedScalableVFPair( 4915 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 4916 else 4917 return UserVF; 4918 } 4919 4920 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 4921 4922 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 4923 // is better to ignore the hint and let the compiler choose a suitable VF. 4924 if (!UserVF.isScalable()) { 4925 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4926 << " is unsafe, clamping to max safe VF=" 4927 << MaxSafeFixedVF << ".\n"); 4928 ORE->emit([&]() { 4929 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4930 TheLoop->getStartLoc(), 4931 TheLoop->getHeader()) 4932 << "User-specified vectorization factor " 4933 << ore::NV("UserVectorizationFactor", UserVF) 4934 << " is unsafe, clamping to maximum safe vectorization factor " 4935 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 4936 }); 4937 return MaxSafeFixedVF; 4938 } 4939 4940 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 4941 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4942 << " is ignored because scalable vectors are not " 4943 "available.\n"); 4944 ORE->emit([&]() { 4945 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4946 TheLoop->getStartLoc(), 4947 TheLoop->getHeader()) 4948 << "User-specified vectorization factor " 4949 << ore::NV("UserVectorizationFactor", UserVF) 4950 << " is ignored because the target does not support scalable " 4951 "vectors. The compiler will pick a more suitable value."; 4952 }); 4953 } else { 4954 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4955 << " is unsafe. Ignoring scalable UserVF.\n"); 4956 ORE->emit([&]() { 4957 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4958 TheLoop->getStartLoc(), 4959 TheLoop->getHeader()) 4960 << "User-specified vectorization factor " 4961 << ore::NV("UserVectorizationFactor", UserVF) 4962 << " is unsafe. Ignoring the hint to let the compiler pick a " 4963 "more suitable value."; 4964 }); 4965 } 4966 } 4967 4968 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4969 << " / " << WidestType << " bits.\n"); 4970 4971 FixedScalableVFPair Result(ElementCount::getFixed(1), 4972 ElementCount::getScalable(0)); 4973 if (auto MaxVF = 4974 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 4975 MaxSafeFixedVF, FoldTailByMasking)) 4976 Result.FixedVF = MaxVF; 4977 4978 if (auto MaxVF = 4979 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 4980 MaxSafeScalableVF, FoldTailByMasking)) 4981 if (MaxVF.isScalable()) { 4982 Result.ScalableVF = MaxVF; 4983 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 4984 << "\n"); 4985 } 4986 4987 return Result; 4988 } 4989 4990 FixedScalableVFPair 4991 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 4992 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4993 // TODO: It may by useful to do since it's still likely to be dynamically 4994 // uniform if the target can skip. 4995 reportVectorizationFailure( 4996 "Not inserting runtime ptr check for divergent target", 4997 "runtime pointer checks needed. Not enabled for divergent target", 4998 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 4999 return FixedScalableVFPair::getNone(); 5000 } 5001 5002 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5003 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5004 if (TC == 1) { 5005 reportVectorizationFailure("Single iteration (non) loop", 5006 "loop trip count is one, irrelevant for vectorization", 5007 "SingleIterationLoop", ORE, TheLoop); 5008 return FixedScalableVFPair::getNone(); 5009 } 5010 5011 switch (ScalarEpilogueStatus) { 5012 case CM_ScalarEpilogueAllowed: 5013 return computeFeasibleMaxVF(TC, UserVF, false); 5014 case CM_ScalarEpilogueNotAllowedUsePredicate: 5015 LLVM_FALLTHROUGH; 5016 case CM_ScalarEpilogueNotNeededUsePredicate: 5017 LLVM_DEBUG( 5018 dbgs() << "LV: vector predicate hint/switch found.\n" 5019 << "LV: Not allowing scalar epilogue, creating predicated " 5020 << "vector loop.\n"); 5021 break; 5022 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5023 // fallthrough as a special case of OptForSize 5024 case CM_ScalarEpilogueNotAllowedOptSize: 5025 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5026 LLVM_DEBUG( 5027 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5028 else 5029 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5030 << "count.\n"); 5031 5032 // Bail if runtime checks are required, which are not good when optimising 5033 // for size. 5034 if (runtimeChecksRequired()) 5035 return FixedScalableVFPair::getNone(); 5036 5037 break; 5038 } 5039 5040 // The only loops we can vectorize without a scalar epilogue, are loops with 5041 // a bottom-test and a single exiting block. We'd have to handle the fact 5042 // that not every instruction executes on the last iteration. This will 5043 // require a lane mask which varies through the vector loop body. (TODO) 5044 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5045 // If there was a tail-folding hint/switch, but we can't fold the tail by 5046 // masking, fallback to a vectorization with a scalar epilogue. 5047 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5048 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5049 "scalar epilogue instead.\n"); 5050 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5051 return computeFeasibleMaxVF(TC, UserVF, false); 5052 } 5053 return FixedScalableVFPair::getNone(); 5054 } 5055 5056 // Now try the tail folding 5057 5058 // Invalidate interleave groups that require an epilogue if we can't mask 5059 // the interleave-group. 5060 if (!useMaskedInterleavedAccesses(TTI)) { 5061 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5062 "No decisions should have been taken at this point"); 5063 // Note: There is no need to invalidate any cost modeling decisions here, as 5064 // non where taken so far. 5065 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5066 } 5067 5068 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5069 // Avoid tail folding if the trip count is known to be a multiple of any VF 5070 // we chose. 5071 // FIXME: The condition below pessimises the case for fixed-width vectors, 5072 // when scalable VFs are also candidates for vectorization. 5073 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5074 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5075 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5076 "MaxFixedVF must be a power of 2"); 5077 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5078 : MaxFixedVF.getFixedValue(); 5079 ScalarEvolution *SE = PSE.getSE(); 5080 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5081 const SCEV *ExitCount = SE->getAddExpr( 5082 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5083 const SCEV *Rem = SE->getURemExpr( 5084 SE->applyLoopGuards(ExitCount, TheLoop), 5085 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5086 if (Rem->isZero()) { 5087 // Accept MaxFixedVF if we do not have a tail. 5088 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5089 return MaxFactors; 5090 } 5091 } 5092 5093 // If we don't know the precise trip count, or if the trip count that we 5094 // found modulo the vectorization factor is not zero, try to fold the tail 5095 // by masking. 5096 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5097 if (Legal->prepareToFoldTailByMasking()) { 5098 FoldTailByMasking = true; 5099 return MaxFactors; 5100 } 5101 5102 // If there was a tail-folding hint/switch, but we can't fold the tail by 5103 // masking, fallback to a vectorization with a scalar epilogue. 5104 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5105 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5106 "scalar epilogue instead.\n"); 5107 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5108 return MaxFactors; 5109 } 5110 5111 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5112 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5113 return FixedScalableVFPair::getNone(); 5114 } 5115 5116 if (TC == 0) { 5117 reportVectorizationFailure( 5118 "Unable to calculate the loop count due to complex control flow", 5119 "unable to calculate the loop count due to complex control flow", 5120 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5121 return FixedScalableVFPair::getNone(); 5122 } 5123 5124 reportVectorizationFailure( 5125 "Cannot optimize for size and vectorize at the same time.", 5126 "cannot optimize for size and vectorize at the same time. " 5127 "Enable vectorization of this loop with '#pragma clang loop " 5128 "vectorize(enable)' when compiling with -Os/-Oz", 5129 "NoTailLoopWithOptForSize", ORE, TheLoop); 5130 return FixedScalableVFPair::getNone(); 5131 } 5132 5133 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5134 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5135 ElementCount MaxSafeVF, bool FoldTailByMasking) { 5136 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5137 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5138 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5139 : TargetTransformInfo::RGK_FixedWidthVector); 5140 5141 // Convenience function to return the minimum of two ElementCounts. 5142 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5143 assert((LHS.isScalable() == RHS.isScalable()) && 5144 "Scalable flags must match"); 5145 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5146 }; 5147 5148 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5149 // Note that both WidestRegister and WidestType may not be a powers of 2. 5150 auto MaxVectorElementCount = ElementCount::get( 5151 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5152 ComputeScalableMaxVF); 5153 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5154 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5155 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5156 5157 if (!MaxVectorElementCount) { 5158 LLVM_DEBUG(dbgs() << "LV: The target has no " 5159 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5160 << " vector registers.\n"); 5161 return ElementCount::getFixed(1); 5162 } 5163 5164 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5165 if (ConstTripCount && 5166 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5167 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5168 // If loop trip count (TC) is known at compile time there is no point in 5169 // choosing VF greater than TC (as done in the loop below). Select maximum 5170 // power of two which doesn't exceed TC. 5171 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5172 // when the TC is less than or equal to the known number of lanes. 5173 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5174 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5175 "exceeding the constant trip count: " 5176 << ClampedConstTripCount << "\n"); 5177 return ElementCount::getFixed(ClampedConstTripCount); 5178 } 5179 5180 TargetTransformInfo::RegisterKind RegKind = 5181 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5182 : TargetTransformInfo::RGK_FixedWidthVector; 5183 ElementCount MaxVF = MaxVectorElementCount; 5184 if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 && 5185 TTI.shouldMaximizeVectorBandwidth(RegKind))) { 5186 auto MaxVectorElementCountMaxBW = ElementCount::get( 5187 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5188 ComputeScalableMaxVF); 5189 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5190 5191 // Collect all viable vectorization factors larger than the default MaxVF 5192 // (i.e. MaxVectorElementCount). 5193 SmallVector<ElementCount, 8> VFs; 5194 for (ElementCount VS = MaxVectorElementCount * 2; 5195 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5196 VFs.push_back(VS); 5197 5198 // For each VF calculate its register usage. 5199 auto RUs = calculateRegisterUsage(VFs); 5200 5201 // Select the largest VF which doesn't require more registers than existing 5202 // ones. 5203 for (int i = RUs.size() - 1; i >= 0; --i) { 5204 bool Selected = true; 5205 for (auto &pair : RUs[i].MaxLocalUsers) { 5206 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5207 if (pair.second > TargetNumRegisters) 5208 Selected = false; 5209 } 5210 if (Selected) { 5211 MaxVF = VFs[i]; 5212 break; 5213 } 5214 } 5215 if (ElementCount MinVF = 5216 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5217 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5218 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5219 << ") with target's minimum: " << MinVF << '\n'); 5220 MaxVF = MinVF; 5221 } 5222 } 5223 5224 // Invalidate any widening decisions we might have made, in case the loop 5225 // requires prediction (decided later), but we have already made some 5226 // load/store widening decisions. 5227 invalidateCostModelingDecisions(); 5228 } 5229 return MaxVF; 5230 } 5231 5232 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const { 5233 if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5234 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); 5235 auto Min = Attr.getVScaleRangeMin(); 5236 auto Max = Attr.getVScaleRangeMax(); 5237 if (Max && Min == Max) 5238 return Max; 5239 } 5240 5241 return TTI.getVScaleForTuning(); 5242 } 5243 5244 bool LoopVectorizationCostModel::isMoreProfitable( 5245 const VectorizationFactor &A, const VectorizationFactor &B) const { 5246 InstructionCost CostA = A.Cost; 5247 InstructionCost CostB = B.Cost; 5248 5249 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5250 5251 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5252 MaxTripCount) { 5253 // If we are folding the tail and the trip count is a known (possibly small) 5254 // constant, the trip count will be rounded up to an integer number of 5255 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5256 // which we compare directly. When not folding the tail, the total cost will 5257 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5258 // approximated with the per-lane cost below instead of using the tripcount 5259 // as here. 5260 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5261 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5262 return RTCostA < RTCostB; 5263 } 5264 5265 // Improve estimate for the vector width if it is scalable. 5266 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5267 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5268 if (Optional<unsigned> VScale = getVScaleForTuning()) { 5269 if (A.Width.isScalable()) 5270 EstimatedWidthA *= VScale.value(); 5271 if (B.Width.isScalable()) 5272 EstimatedWidthB *= VScale.value(); 5273 } 5274 5275 // Assume vscale may be larger than 1 (or the value being tuned for), 5276 // so that scalable vectorization is slightly favorable over fixed-width 5277 // vectorization. 5278 if (A.Width.isScalable() && !B.Width.isScalable()) 5279 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5280 5281 // To avoid the need for FP division: 5282 // (CostA / A.Width) < (CostB / B.Width) 5283 // <=> (CostA * B.Width) < (CostB * A.Width) 5284 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5285 } 5286 5287 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5288 const ElementCountSet &VFCandidates) { 5289 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5290 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5291 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5292 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5293 "Expected Scalar VF to be a candidate"); 5294 5295 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost, 5296 ExpectedCost); 5297 VectorizationFactor ChosenFactor = ScalarCost; 5298 5299 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5300 if (ForceVectorization && VFCandidates.size() > 1) { 5301 // Ignore scalar width, because the user explicitly wants vectorization. 5302 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5303 // evaluation. 5304 ChosenFactor.Cost = InstructionCost::getMax(); 5305 } 5306 5307 SmallVector<InstructionVFPair> InvalidCosts; 5308 for (const auto &i : VFCandidates) { 5309 // The cost for scalar VF=1 is already calculated, so ignore it. 5310 if (i.isScalar()) 5311 continue; 5312 5313 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5314 VectorizationFactor Candidate(i, C.first, ScalarCost.ScalarCost); 5315 5316 #ifndef NDEBUG 5317 unsigned AssumedMinimumVscale = 1; 5318 if (Optional<unsigned> VScale = getVScaleForTuning()) 5319 AssumedMinimumVscale = *VScale; 5320 unsigned Width = 5321 Candidate.Width.isScalable() 5322 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5323 : Candidate.Width.getFixedValue(); 5324 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5325 << " costs: " << (Candidate.Cost / Width)); 5326 if (i.isScalable()) 5327 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5328 << AssumedMinimumVscale << ")"); 5329 LLVM_DEBUG(dbgs() << ".\n"); 5330 #endif 5331 5332 if (!C.second && !ForceVectorization) { 5333 LLVM_DEBUG( 5334 dbgs() << "LV: Not considering vector loop of width " << i 5335 << " because it will not generate any vector instructions.\n"); 5336 continue; 5337 } 5338 5339 // If profitable add it to ProfitableVF list. 5340 if (isMoreProfitable(Candidate, ScalarCost)) 5341 ProfitableVFs.push_back(Candidate); 5342 5343 if (isMoreProfitable(Candidate, ChosenFactor)) 5344 ChosenFactor = Candidate; 5345 } 5346 5347 // Emit a report of VFs with invalid costs in the loop. 5348 if (!InvalidCosts.empty()) { 5349 // Group the remarks per instruction, keeping the instruction order from 5350 // InvalidCosts. 5351 std::map<Instruction *, unsigned> Numbering; 5352 unsigned I = 0; 5353 for (auto &Pair : InvalidCosts) 5354 if (!Numbering.count(Pair.first)) 5355 Numbering[Pair.first] = I++; 5356 5357 // Sort the list, first on instruction(number) then on VF. 5358 llvm::sort(InvalidCosts, 5359 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5360 if (Numbering[A.first] != Numbering[B.first]) 5361 return Numbering[A.first] < Numbering[B.first]; 5362 ElementCountComparator ECC; 5363 return ECC(A.second, B.second); 5364 }); 5365 5366 // For a list of ordered instruction-vf pairs: 5367 // [(load, vf1), (load, vf2), (store, vf1)] 5368 // Group the instructions together to emit separate remarks for: 5369 // load (vf1, vf2) 5370 // store (vf1) 5371 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5372 auto Subset = ArrayRef<InstructionVFPair>(); 5373 do { 5374 if (Subset.empty()) 5375 Subset = Tail.take_front(1); 5376 5377 Instruction *I = Subset.front().first; 5378 5379 // If the next instruction is different, or if there are no other pairs, 5380 // emit a remark for the collated subset. e.g. 5381 // [(load, vf1), (load, vf2))] 5382 // to emit: 5383 // remark: invalid costs for 'load' at VF=(vf, vf2) 5384 if (Subset == Tail || Tail[Subset.size()].first != I) { 5385 std::string OutString; 5386 raw_string_ostream OS(OutString); 5387 assert(!Subset.empty() && "Unexpected empty range"); 5388 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5389 for (auto &Pair : Subset) 5390 OS << (Pair.second == Subset.front().second ? "" : ", ") 5391 << Pair.second; 5392 OS << "):"; 5393 if (auto *CI = dyn_cast<CallInst>(I)) 5394 OS << " call to " << CI->getCalledFunction()->getName(); 5395 else 5396 OS << " " << I->getOpcodeName(); 5397 OS.flush(); 5398 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5399 Tail = Tail.drop_front(Subset.size()); 5400 Subset = {}; 5401 } else 5402 // Grow the subset by one element 5403 Subset = Tail.take_front(Subset.size() + 1); 5404 } while (!Tail.empty()); 5405 } 5406 5407 if (!EnableCondStoresVectorization && NumPredStores) { 5408 reportVectorizationFailure("There are conditional stores.", 5409 "store that is conditionally executed prevents vectorization", 5410 "ConditionalStore", ORE, TheLoop); 5411 ChosenFactor = ScalarCost; 5412 } 5413 5414 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5415 !isMoreProfitable(ChosenFactor, ScalarCost)) dbgs() 5416 << "LV: Vectorization seems to be not beneficial, " 5417 << "but was forced by a user.\n"); 5418 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5419 return ChosenFactor; 5420 } 5421 5422 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5423 const Loop &L, ElementCount VF) const { 5424 // Cross iteration phis such as reductions need special handling and are 5425 // currently unsupported. 5426 if (any_of(L.getHeader()->phis(), 5427 [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); })) 5428 return false; 5429 5430 // Phis with uses outside of the loop require special handling and are 5431 // currently unsupported. 5432 for (auto &Entry : Legal->getInductionVars()) { 5433 // Look for uses of the value of the induction at the last iteration. 5434 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5435 for (User *U : PostInc->users()) 5436 if (!L.contains(cast<Instruction>(U))) 5437 return false; 5438 // Look for uses of penultimate value of the induction. 5439 for (User *U : Entry.first->users()) 5440 if (!L.contains(cast<Instruction>(U))) 5441 return false; 5442 } 5443 5444 // Induction variables that are widened require special handling that is 5445 // currently not supported. 5446 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5447 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5448 this->isProfitableToScalarize(Entry.first, VF)); 5449 })) 5450 return false; 5451 5452 // Epilogue vectorization code has not been auditted to ensure it handles 5453 // non-latch exits properly. It may be fine, but it needs auditted and 5454 // tested. 5455 if (L.getExitingBlock() != L.getLoopLatch()) 5456 return false; 5457 5458 return true; 5459 } 5460 5461 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5462 const ElementCount VF) const { 5463 // FIXME: We need a much better cost-model to take different parameters such 5464 // as register pressure, code size increase and cost of extra branches into 5465 // account. For now we apply a very crude heuristic and only consider loops 5466 // with vectorization factors larger than a certain value. 5467 // We also consider epilogue vectorization unprofitable for targets that don't 5468 // consider interleaving beneficial (eg. MVE). 5469 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5470 return false; 5471 // FIXME: We should consider changing the threshold for scalable 5472 // vectors to take VScaleForTuning into account. 5473 if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF) 5474 return true; 5475 return false; 5476 } 5477 5478 VectorizationFactor 5479 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5480 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5481 VectorizationFactor Result = VectorizationFactor::Disabled(); 5482 if (!EnableEpilogueVectorization) { 5483 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5484 return Result; 5485 } 5486 5487 if (!isScalarEpilogueAllowed()) { 5488 LLVM_DEBUG( 5489 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5490 "allowed.\n";); 5491 return Result; 5492 } 5493 5494 // Not really a cost consideration, but check for unsupported cases here to 5495 // simplify the logic. 5496 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5497 LLVM_DEBUG( 5498 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5499 "not a supported candidate.\n";); 5500 return Result; 5501 } 5502 5503 if (EpilogueVectorizationForceVF > 1) { 5504 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5505 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5506 if (LVP.hasPlanWithVF(ForcedEC)) 5507 return {ForcedEC, 0, 0}; 5508 else { 5509 LLVM_DEBUG( 5510 dbgs() 5511 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5512 return Result; 5513 } 5514 } 5515 5516 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5517 TheLoop->getHeader()->getParent()->hasMinSize()) { 5518 LLVM_DEBUG( 5519 dbgs() 5520 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5521 return Result; 5522 } 5523 5524 if (!isEpilogueVectorizationProfitable(MainLoopVF)) { 5525 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5526 "this loop\n"); 5527 return Result; 5528 } 5529 5530 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know 5531 // the main loop handles 8 lanes per iteration. We could still benefit from 5532 // vectorizing the epilogue loop with VF=4. 5533 ElementCount EstimatedRuntimeVF = MainLoopVF; 5534 if (MainLoopVF.isScalable()) { 5535 EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 5536 if (Optional<unsigned> VScale = getVScaleForTuning()) 5537 EstimatedRuntimeVF *= *VScale; 5538 } 5539 5540 for (auto &NextVF : ProfitableVFs) 5541 if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() && 5542 ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) || 5543 ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) && 5544 (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) && 5545 LVP.hasPlanWithVF(NextVF.Width)) 5546 Result = NextVF; 5547 5548 if (Result != VectorizationFactor::Disabled()) 5549 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5550 << Result.Width << "\n";); 5551 return Result; 5552 } 5553 5554 std::pair<unsigned, unsigned> 5555 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5556 unsigned MinWidth = -1U; 5557 unsigned MaxWidth = 8; 5558 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5559 // For in-loop reductions, no element types are added to ElementTypesInLoop 5560 // if there are no loads/stores in the loop. In this case, check through the 5561 // reduction variables to determine the maximum width. 5562 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5563 // Reset MaxWidth so that we can find the smallest type used by recurrences 5564 // in the loop. 5565 MaxWidth = -1U; 5566 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5567 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5568 // When finding the min width used by the recurrence we need to account 5569 // for casts on the input operands of the recurrence. 5570 MaxWidth = std::min<unsigned>( 5571 MaxWidth, std::min<unsigned>( 5572 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5573 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5574 } 5575 } else { 5576 for (Type *T : ElementTypesInLoop) { 5577 MinWidth = std::min<unsigned>( 5578 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5579 MaxWidth = std::max<unsigned>( 5580 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5581 } 5582 } 5583 return {MinWidth, MaxWidth}; 5584 } 5585 5586 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5587 ElementTypesInLoop.clear(); 5588 // For each block. 5589 for (BasicBlock *BB : TheLoop->blocks()) { 5590 // For each instruction in the loop. 5591 for (Instruction &I : BB->instructionsWithoutDebug()) { 5592 Type *T = I.getType(); 5593 5594 // Skip ignored values. 5595 if (ValuesToIgnore.count(&I)) 5596 continue; 5597 5598 // Only examine Loads, Stores and PHINodes. 5599 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5600 continue; 5601 5602 // Examine PHI nodes that are reduction variables. Update the type to 5603 // account for the recurrence type. 5604 if (auto *PN = dyn_cast<PHINode>(&I)) { 5605 if (!Legal->isReductionVariable(PN)) 5606 continue; 5607 const RecurrenceDescriptor &RdxDesc = 5608 Legal->getReductionVars().find(PN)->second; 5609 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 5610 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5611 RdxDesc.getRecurrenceType(), 5612 TargetTransformInfo::ReductionFlags())) 5613 continue; 5614 T = RdxDesc.getRecurrenceType(); 5615 } 5616 5617 // Examine the stored values. 5618 if (auto *ST = dyn_cast<StoreInst>(&I)) 5619 T = ST->getValueOperand()->getType(); 5620 5621 assert(T->isSized() && 5622 "Expected the load/store/recurrence type to be sized"); 5623 5624 ElementTypesInLoop.insert(T); 5625 } 5626 } 5627 } 5628 5629 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5630 unsigned LoopCost) { 5631 // -- The interleave heuristics -- 5632 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5633 // There are many micro-architectural considerations that we can't predict 5634 // at this level. For example, frontend pressure (on decode or fetch) due to 5635 // code size, or the number and capabilities of the execution ports. 5636 // 5637 // We use the following heuristics to select the interleave count: 5638 // 1. If the code has reductions, then we interleave to break the cross 5639 // iteration dependency. 5640 // 2. If the loop is really small, then we interleave to reduce the loop 5641 // overhead. 5642 // 3. We don't interleave if we think that we will spill registers to memory 5643 // due to the increased register pressure. 5644 5645 if (!isScalarEpilogueAllowed()) 5646 return 1; 5647 5648 // We used the distance for the interleave count. 5649 if (Legal->getMaxSafeDepDistBytes() != -1U) 5650 return 1; 5651 5652 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5653 const bool HasReductions = !Legal->getReductionVars().empty(); 5654 // Do not interleave loops with a relatively small known or estimated trip 5655 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5656 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5657 // because with the above conditions interleaving can expose ILP and break 5658 // cross iteration dependences for reductions. 5659 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5660 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5661 return 1; 5662 5663 // If we did not calculate the cost for VF (because the user selected the VF) 5664 // then we calculate the cost of VF here. 5665 if (LoopCost == 0) { 5666 InstructionCost C = expectedCost(VF).first; 5667 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 5668 LoopCost = *C.getValue(); 5669 5670 // Loop body is free and there is no need for interleaving. 5671 if (LoopCost == 0) 5672 return 1; 5673 } 5674 5675 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5676 // We divide by these constants so assume that we have at least one 5677 // instruction that uses at least one register. 5678 for (auto& pair : R.MaxLocalUsers) { 5679 pair.second = std::max(pair.second, 1U); 5680 } 5681 5682 // We calculate the interleave count using the following formula. 5683 // Subtract the number of loop invariants from the number of available 5684 // registers. These registers are used by all of the interleaved instances. 5685 // Next, divide the remaining registers by the number of registers that is 5686 // required by the loop, in order to estimate how many parallel instances 5687 // fit without causing spills. All of this is rounded down if necessary to be 5688 // a power of two. We want power of two interleave count to simplify any 5689 // addressing operations or alignment considerations. 5690 // We also want power of two interleave counts to ensure that the induction 5691 // variable of the vector loop wraps to zero, when tail is folded by masking; 5692 // this currently happens when OptForSize, in which case IC is set to 1 above. 5693 unsigned IC = UINT_MAX; 5694 5695 for (auto& pair : R.MaxLocalUsers) { 5696 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5697 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5698 << " registers of " 5699 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5700 if (VF.isScalar()) { 5701 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5702 TargetNumRegisters = ForceTargetNumScalarRegs; 5703 } else { 5704 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5705 TargetNumRegisters = ForceTargetNumVectorRegs; 5706 } 5707 unsigned MaxLocalUsers = pair.second; 5708 unsigned LoopInvariantRegs = 0; 5709 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5710 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5711 5712 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5713 // Don't count the induction variable as interleaved. 5714 if (EnableIndVarRegisterHeur) { 5715 TmpIC = 5716 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5717 std::max(1U, (MaxLocalUsers - 1))); 5718 } 5719 5720 IC = std::min(IC, TmpIC); 5721 } 5722 5723 // Clamp the interleave ranges to reasonable counts. 5724 unsigned MaxInterleaveCount = 5725 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5726 5727 // Check if the user has overridden the max. 5728 if (VF.isScalar()) { 5729 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5730 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5731 } else { 5732 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5733 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5734 } 5735 5736 // If trip count is known or estimated compile time constant, limit the 5737 // interleave count to be less than the trip count divided by VF, provided it 5738 // is at least 1. 5739 // 5740 // For scalable vectors we can't know if interleaving is beneficial. It may 5741 // not be beneficial for small loops if none of the lanes in the second vector 5742 // iterations is enabled. However, for larger loops, there is likely to be a 5743 // similar benefit as for fixed-width vectors. For now, we choose to leave 5744 // the InterleaveCount as if vscale is '1', although if some information about 5745 // the vector is known (e.g. min vector size), we can make a better decision. 5746 if (BestKnownTC) { 5747 MaxInterleaveCount = 5748 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 5749 // Make sure MaxInterleaveCount is greater than 0. 5750 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 5751 } 5752 5753 assert(MaxInterleaveCount > 0 && 5754 "Maximum interleave count must be greater than 0"); 5755 5756 // Clamp the calculated IC to be between the 1 and the max interleave count 5757 // that the target and trip count allows. 5758 if (IC > MaxInterleaveCount) 5759 IC = MaxInterleaveCount; 5760 else 5761 // Make sure IC is greater than 0. 5762 IC = std::max(1u, IC); 5763 5764 assert(IC > 0 && "Interleave count must be greater than 0."); 5765 5766 // Interleave if we vectorized this loop and there is a reduction that could 5767 // benefit from interleaving. 5768 if (VF.isVector() && HasReductions) { 5769 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5770 return IC; 5771 } 5772 5773 // For any scalar loop that either requires runtime checks or predication we 5774 // are better off leaving this to the unroller. Note that if we've already 5775 // vectorized the loop we will have done the runtime check and so interleaving 5776 // won't require further checks. 5777 bool ScalarInterleavingRequiresPredication = 5778 (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) { 5779 return Legal->blockNeedsPredication(BB); 5780 })); 5781 bool ScalarInterleavingRequiresRuntimePointerCheck = 5782 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 5783 5784 // We want to interleave small loops in order to reduce the loop overhead and 5785 // potentially expose ILP opportunities. 5786 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 5787 << "LV: IC is " << IC << '\n' 5788 << "LV: VF is " << VF << '\n'); 5789 const bool AggressivelyInterleaveReductions = 5790 TTI.enableAggressiveInterleaving(HasReductions); 5791 if (!ScalarInterleavingRequiresRuntimePointerCheck && 5792 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) { 5793 // We assume that the cost overhead is 1 and we use the cost model 5794 // to estimate the cost of the loop and interleave until the cost of the 5795 // loop overhead is about 5% of the cost of the loop. 5796 unsigned SmallIC = 5797 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5798 5799 // Interleave until store/load ports (estimated by max interleave count) are 5800 // saturated. 5801 unsigned NumStores = Legal->getNumStores(); 5802 unsigned NumLoads = Legal->getNumLoads(); 5803 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5804 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5805 5806 // There is little point in interleaving for reductions containing selects 5807 // and compares when VF=1 since it may just create more overhead than it's 5808 // worth for loops with small trip counts. This is because we still have to 5809 // do the final reduction after the loop. 5810 bool HasSelectCmpReductions = 5811 HasReductions && 5812 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5813 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5814 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 5815 RdxDesc.getRecurrenceKind()); 5816 }); 5817 if (HasSelectCmpReductions) { 5818 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 5819 return 1; 5820 } 5821 5822 // If we have a scalar reduction (vector reductions are already dealt with 5823 // by this point), we can increase the critical path length if the loop 5824 // we're interleaving is inside another loop. For tree-wise reductions 5825 // set the limit to 2, and for ordered reductions it's best to disable 5826 // interleaving entirely. 5827 if (HasReductions && TheLoop->getLoopDepth() > 1) { 5828 bool HasOrderedReductions = 5829 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5830 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5831 return RdxDesc.isOrdered(); 5832 }); 5833 if (HasOrderedReductions) { 5834 LLVM_DEBUG( 5835 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 5836 return 1; 5837 } 5838 5839 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5840 SmallIC = std::min(SmallIC, F); 5841 StoresIC = std::min(StoresIC, F); 5842 LoadsIC = std::min(LoadsIC, F); 5843 } 5844 5845 if (EnableLoadStoreRuntimeInterleave && 5846 std::max(StoresIC, LoadsIC) > SmallIC) { 5847 LLVM_DEBUG( 5848 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5849 return std::max(StoresIC, LoadsIC); 5850 } 5851 5852 // If there are scalar reductions and TTI has enabled aggressive 5853 // interleaving for reductions, we will interleave to expose ILP. 5854 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 5855 AggressivelyInterleaveReductions) { 5856 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5857 // Interleave no less than SmallIC but not as aggressive as the normal IC 5858 // to satisfy the rare situation when resources are too limited. 5859 return std::max(IC / 2, SmallIC); 5860 } else { 5861 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5862 return SmallIC; 5863 } 5864 } 5865 5866 // Interleave if this is a large loop (small loops are already dealt with by 5867 // this point) that could benefit from interleaving. 5868 if (AggressivelyInterleaveReductions) { 5869 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5870 return IC; 5871 } 5872 5873 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5874 return 1; 5875 } 5876 5877 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5878 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 5879 // This function calculates the register usage by measuring the highest number 5880 // of values that are alive at a single location. Obviously, this is a very 5881 // rough estimation. We scan the loop in a topological order in order and 5882 // assign a number to each instruction. We use RPO to ensure that defs are 5883 // met before their users. We assume that each instruction that has in-loop 5884 // users starts an interval. We record every time that an in-loop value is 5885 // used, so we have a list of the first and last occurrences of each 5886 // instruction. Next, we transpose this data structure into a multi map that 5887 // holds the list of intervals that *end* at a specific location. This multi 5888 // map allows us to perform a linear search. We scan the instructions linearly 5889 // and record each time that a new interval starts, by placing it in a set. 5890 // If we find this value in the multi-map then we remove it from the set. 5891 // The max register usage is the maximum size of the set. 5892 // We also search for instructions that are defined outside the loop, but are 5893 // used inside the loop. We need this number separately from the max-interval 5894 // usage number because when we unroll, loop-invariant values do not take 5895 // more register. 5896 LoopBlocksDFS DFS(TheLoop); 5897 DFS.perform(LI); 5898 5899 RegisterUsage RU; 5900 5901 // Each 'key' in the map opens a new interval. The values 5902 // of the map are the index of the 'last seen' usage of the 5903 // instruction that is the key. 5904 using IntervalMap = DenseMap<Instruction *, unsigned>; 5905 5906 // Maps instruction to its index. 5907 SmallVector<Instruction *, 64> IdxToInstr; 5908 // Marks the end of each interval. 5909 IntervalMap EndPoint; 5910 // Saves the list of instruction indices that are used in the loop. 5911 SmallPtrSet<Instruction *, 8> Ends; 5912 // Saves the list of values that are used in the loop but are 5913 // defined outside the loop, such as arguments and constants. 5914 SmallPtrSet<Value *, 8> LoopInvariants; 5915 5916 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5917 for (Instruction &I : BB->instructionsWithoutDebug()) { 5918 IdxToInstr.push_back(&I); 5919 5920 // Save the end location of each USE. 5921 for (Value *U : I.operands()) { 5922 auto *Instr = dyn_cast<Instruction>(U); 5923 5924 // Ignore non-instruction values such as arguments, constants, etc. 5925 if (!Instr) 5926 continue; 5927 5928 // If this instruction is outside the loop then record it and continue. 5929 if (!TheLoop->contains(Instr)) { 5930 LoopInvariants.insert(Instr); 5931 continue; 5932 } 5933 5934 // Overwrite previous end points. 5935 EndPoint[Instr] = IdxToInstr.size(); 5936 Ends.insert(Instr); 5937 } 5938 } 5939 } 5940 5941 // Saves the list of intervals that end with the index in 'key'. 5942 using InstrList = SmallVector<Instruction *, 2>; 5943 DenseMap<unsigned, InstrList> TransposeEnds; 5944 5945 // Transpose the EndPoints to a list of values that end at each index. 5946 for (auto &Interval : EndPoint) 5947 TransposeEnds[Interval.second].push_back(Interval.first); 5948 5949 SmallPtrSet<Instruction *, 8> OpenIntervals; 5950 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5951 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5952 5953 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5954 5955 const auto &TTICapture = TTI; 5956 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 5957 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 5958 return 0; 5959 return TTICapture.getRegUsageForType(VectorType::get(Ty, VF)); 5960 }; 5961 5962 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5963 Instruction *I = IdxToInstr[i]; 5964 5965 // Remove all of the instructions that end at this location. 5966 InstrList &List = TransposeEnds[i]; 5967 for (Instruction *ToRemove : List) 5968 OpenIntervals.erase(ToRemove); 5969 5970 // Ignore instructions that are never used within the loop. 5971 if (!Ends.count(I)) 5972 continue; 5973 5974 // Skip ignored values. 5975 if (ValuesToIgnore.count(I)) 5976 continue; 5977 5978 // For each VF find the maximum usage of registers. 5979 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5980 // Count the number of live intervals. 5981 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5982 5983 if (VFs[j].isScalar()) { 5984 for (auto Inst : OpenIntervals) { 5985 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5986 if (RegUsage.find(ClassID) == RegUsage.end()) 5987 RegUsage[ClassID] = 1; 5988 else 5989 RegUsage[ClassID] += 1; 5990 } 5991 } else { 5992 collectUniformsAndScalars(VFs[j]); 5993 for (auto Inst : OpenIntervals) { 5994 // Skip ignored values for VF > 1. 5995 if (VecValuesToIgnore.count(Inst)) 5996 continue; 5997 if (isScalarAfterVectorization(Inst, VFs[j])) { 5998 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5999 if (RegUsage.find(ClassID) == RegUsage.end()) 6000 RegUsage[ClassID] = 1; 6001 else 6002 RegUsage[ClassID] += 1; 6003 } else { 6004 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6005 if (RegUsage.find(ClassID) == RegUsage.end()) 6006 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6007 else 6008 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6009 } 6010 } 6011 } 6012 6013 for (auto& pair : RegUsage) { 6014 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6015 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6016 else 6017 MaxUsages[j][pair.first] = pair.second; 6018 } 6019 } 6020 6021 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6022 << OpenIntervals.size() << '\n'); 6023 6024 // Add the current instruction to the list of open intervals. 6025 OpenIntervals.insert(I); 6026 } 6027 6028 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6029 SmallMapVector<unsigned, unsigned, 4> Invariant; 6030 6031 for (auto Inst : LoopInvariants) { 6032 unsigned Usage = 6033 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6034 unsigned ClassID = 6035 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6036 if (Invariant.find(ClassID) == Invariant.end()) 6037 Invariant[ClassID] = Usage; 6038 else 6039 Invariant[ClassID] += Usage; 6040 } 6041 6042 LLVM_DEBUG({ 6043 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6044 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6045 << " item\n"; 6046 for (const auto &pair : MaxUsages[i]) { 6047 dbgs() << "LV(REG): RegisterClass: " 6048 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6049 << " registers\n"; 6050 } 6051 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6052 << " item\n"; 6053 for (const auto &pair : Invariant) { 6054 dbgs() << "LV(REG): RegisterClass: " 6055 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6056 << " registers\n"; 6057 } 6058 }); 6059 6060 RU.LoopInvariantRegs = Invariant; 6061 RU.MaxLocalUsers = MaxUsages[i]; 6062 RUs[i] = RU; 6063 } 6064 6065 return RUs; 6066 } 6067 6068 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, 6069 ElementCount VF) { 6070 // TODO: Cost model for emulated masked load/store is completely 6071 // broken. This hack guides the cost model to use an artificially 6072 // high enough value to practically disable vectorization with such 6073 // operations, except where previously deployed legality hack allowed 6074 // using very low cost values. This is to avoid regressions coming simply 6075 // from moving "masked load/store" check from legality to cost model. 6076 // Masked Load/Gather emulation was previously never allowed. 6077 // Limited number of Masked Store/Scatter emulation was allowed. 6078 assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction"); 6079 return isa<LoadInst>(I) || 6080 (isa<StoreInst>(I) && 6081 NumPredStores > NumberOfStoresToPredicate); 6082 } 6083 6084 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6085 // If we aren't vectorizing the loop, or if we've already collected the 6086 // instructions to scalarize, there's nothing to do. Collection may already 6087 // have occurred if we have a user-selected VF and are now computing the 6088 // expected cost for interleaving. 6089 if (VF.isScalar() || VF.isZero() || 6090 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6091 return; 6092 6093 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6094 // not profitable to scalarize any instructions, the presence of VF in the 6095 // map will indicate that we've analyzed it already. 6096 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6097 6098 PredicatedBBsAfterVectorization[VF].clear(); 6099 6100 // Find all the instructions that are scalar with predication in the loop and 6101 // determine if it would be better to not if-convert the blocks they are in. 6102 // If so, we also record the instructions to scalarize. 6103 for (BasicBlock *BB : TheLoop->blocks()) { 6104 if (!blockNeedsPredicationForAnyReason(BB)) 6105 continue; 6106 for (Instruction &I : *BB) 6107 if (isScalarWithPredication(&I, VF)) { 6108 ScalarCostsTy ScalarCosts; 6109 // Do not apply discount if scalable, because that would lead to 6110 // invalid scalarization costs. 6111 // Do not apply discount logic if hacked cost is needed 6112 // for emulated masked memrefs. 6113 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) && 6114 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6115 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6116 // Remember that BB will remain after vectorization. 6117 PredicatedBBsAfterVectorization[VF].insert(BB); 6118 } 6119 } 6120 } 6121 6122 int LoopVectorizationCostModel::computePredInstDiscount( 6123 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6124 assert(!isUniformAfterVectorization(PredInst, VF) && 6125 "Instruction marked uniform-after-vectorization will be predicated"); 6126 6127 // Initialize the discount to zero, meaning that the scalar version and the 6128 // vector version cost the same. 6129 InstructionCost Discount = 0; 6130 6131 // Holds instructions to analyze. The instructions we visit are mapped in 6132 // ScalarCosts. Those instructions are the ones that would be scalarized if 6133 // we find that the scalar version costs less. 6134 SmallVector<Instruction *, 8> Worklist; 6135 6136 // Returns true if the given instruction can be scalarized. 6137 auto canBeScalarized = [&](Instruction *I) -> bool { 6138 // We only attempt to scalarize instructions forming a single-use chain 6139 // from the original predicated block that would otherwise be vectorized. 6140 // Although not strictly necessary, we give up on instructions we know will 6141 // already be scalar to avoid traversing chains that are unlikely to be 6142 // beneficial. 6143 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6144 isScalarAfterVectorization(I, VF)) 6145 return false; 6146 6147 // If the instruction is scalar with predication, it will be analyzed 6148 // separately. We ignore it within the context of PredInst. 6149 if (isScalarWithPredication(I, VF)) 6150 return false; 6151 6152 // If any of the instruction's operands are uniform after vectorization, 6153 // the instruction cannot be scalarized. This prevents, for example, a 6154 // masked load from being scalarized. 6155 // 6156 // We assume we will only emit a value for lane zero of an instruction 6157 // marked uniform after vectorization, rather than VF identical values. 6158 // Thus, if we scalarize an instruction that uses a uniform, we would 6159 // create uses of values corresponding to the lanes we aren't emitting code 6160 // for. This behavior can be changed by allowing getScalarValue to clone 6161 // the lane zero values for uniforms rather than asserting. 6162 for (Use &U : I->operands()) 6163 if (auto *J = dyn_cast<Instruction>(U.get())) 6164 if (isUniformAfterVectorization(J, VF)) 6165 return false; 6166 6167 // Otherwise, we can scalarize the instruction. 6168 return true; 6169 }; 6170 6171 // Compute the expected cost discount from scalarizing the entire expression 6172 // feeding the predicated instruction. We currently only consider expressions 6173 // that are single-use instruction chains. 6174 Worklist.push_back(PredInst); 6175 while (!Worklist.empty()) { 6176 Instruction *I = Worklist.pop_back_val(); 6177 6178 // If we've already analyzed the instruction, there's nothing to do. 6179 if (ScalarCosts.find(I) != ScalarCosts.end()) 6180 continue; 6181 6182 // Compute the cost of the vector instruction. Note that this cost already 6183 // includes the scalarization overhead of the predicated instruction. 6184 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6185 6186 // Compute the cost of the scalarized instruction. This cost is the cost of 6187 // the instruction as if it wasn't if-converted and instead remained in the 6188 // predicated block. We will scale this cost by block probability after 6189 // computing the scalarization overhead. 6190 InstructionCost ScalarCost = 6191 VF.getFixedValue() * 6192 getInstructionCost(I, ElementCount::getFixed(1)).first; 6193 6194 // Compute the scalarization overhead of needed insertelement instructions 6195 // and phi nodes. 6196 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 6197 ScalarCost += TTI.getScalarizationOverhead( 6198 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6199 APInt::getAllOnes(VF.getFixedValue()), true, false); 6200 ScalarCost += 6201 VF.getFixedValue() * 6202 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6203 } 6204 6205 // Compute the scalarization overhead of needed extractelement 6206 // instructions. For each of the instruction's operands, if the operand can 6207 // be scalarized, add it to the worklist; otherwise, account for the 6208 // overhead. 6209 for (Use &U : I->operands()) 6210 if (auto *J = dyn_cast<Instruction>(U.get())) { 6211 assert(VectorType::isValidElementType(J->getType()) && 6212 "Instruction has non-scalar type"); 6213 if (canBeScalarized(J)) 6214 Worklist.push_back(J); 6215 else if (needsExtract(J, VF)) { 6216 ScalarCost += TTI.getScalarizationOverhead( 6217 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6218 APInt::getAllOnes(VF.getFixedValue()), false, true); 6219 } 6220 } 6221 6222 // Scale the total scalar cost by block probability. 6223 ScalarCost /= getReciprocalPredBlockProb(); 6224 6225 // Compute the discount. A non-negative discount means the vector version 6226 // of the instruction costs more, and scalarizing would be beneficial. 6227 Discount += VectorCost - ScalarCost; 6228 ScalarCosts[I] = ScalarCost; 6229 } 6230 6231 return *Discount.getValue(); 6232 } 6233 6234 LoopVectorizationCostModel::VectorizationCostTy 6235 LoopVectorizationCostModel::expectedCost( 6236 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6237 VectorizationCostTy Cost; 6238 6239 // For each block. 6240 for (BasicBlock *BB : TheLoop->blocks()) { 6241 VectorizationCostTy BlockCost; 6242 6243 // For each instruction in the old loop. 6244 for (Instruction &I : BB->instructionsWithoutDebug()) { 6245 // Skip ignored values. 6246 if (ValuesToIgnore.count(&I) || 6247 (VF.isVector() && VecValuesToIgnore.count(&I))) 6248 continue; 6249 6250 VectorizationCostTy C = getInstructionCost(&I, VF); 6251 6252 // Check if we should override the cost. 6253 if (C.first.isValid() && 6254 ForceTargetInstructionCost.getNumOccurrences() > 0) 6255 C.first = InstructionCost(ForceTargetInstructionCost); 6256 6257 // Keep a list of instructions with invalid costs. 6258 if (Invalid && !C.first.isValid()) 6259 Invalid->emplace_back(&I, VF); 6260 6261 BlockCost.first += C.first; 6262 BlockCost.second |= C.second; 6263 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6264 << " for VF " << VF << " For instruction: " << I 6265 << '\n'); 6266 } 6267 6268 // If we are vectorizing a predicated block, it will have been 6269 // if-converted. This means that the block's instructions (aside from 6270 // stores and instructions that may divide by zero) will now be 6271 // unconditionally executed. For the scalar case, we may not always execute 6272 // the predicated block, if it is an if-else block. Thus, scale the block's 6273 // cost by the probability of executing it. blockNeedsPredication from 6274 // Legal is used so as to not include all blocks in tail folded loops. 6275 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6276 BlockCost.first /= getReciprocalPredBlockProb(); 6277 6278 Cost.first += BlockCost.first; 6279 Cost.second |= BlockCost.second; 6280 } 6281 6282 return Cost; 6283 } 6284 6285 /// Gets Address Access SCEV after verifying that the access pattern 6286 /// is loop invariant except the induction variable dependence. 6287 /// 6288 /// This SCEV can be sent to the Target in order to estimate the address 6289 /// calculation cost. 6290 static const SCEV *getAddressAccessSCEV( 6291 Value *Ptr, 6292 LoopVectorizationLegality *Legal, 6293 PredicatedScalarEvolution &PSE, 6294 const Loop *TheLoop) { 6295 6296 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6297 if (!Gep) 6298 return nullptr; 6299 6300 // We are looking for a gep with all loop invariant indices except for one 6301 // which should be an induction variable. 6302 auto SE = PSE.getSE(); 6303 unsigned NumOperands = Gep->getNumOperands(); 6304 for (unsigned i = 1; i < NumOperands; ++i) { 6305 Value *Opd = Gep->getOperand(i); 6306 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6307 !Legal->isInductionVariable(Opd)) 6308 return nullptr; 6309 } 6310 6311 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6312 return PSE.getSCEV(Ptr); 6313 } 6314 6315 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6316 return Legal->hasStride(I->getOperand(0)) || 6317 Legal->hasStride(I->getOperand(1)); 6318 } 6319 6320 InstructionCost 6321 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6322 ElementCount VF) { 6323 assert(VF.isVector() && 6324 "Scalarization cost of instruction implies vectorization."); 6325 if (VF.isScalable()) 6326 return InstructionCost::getInvalid(); 6327 6328 Type *ValTy = getLoadStoreType(I); 6329 auto SE = PSE.getSE(); 6330 6331 unsigned AS = getLoadStoreAddressSpace(I); 6332 Value *Ptr = getLoadStorePointerOperand(I); 6333 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6334 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6335 // that it is being called from this specific place. 6336 6337 // Figure out whether the access is strided and get the stride value 6338 // if it's known in compile time 6339 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6340 6341 // Get the cost of the scalar memory instruction and address computation. 6342 InstructionCost Cost = 6343 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6344 6345 // Don't pass *I here, since it is scalar but will actually be part of a 6346 // vectorized loop where the user of it is a vectorized instruction. 6347 const Align Alignment = getLoadStoreAlignment(I); 6348 Cost += VF.getKnownMinValue() * 6349 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6350 AS, TTI::TCK_RecipThroughput); 6351 6352 // Get the overhead of the extractelement and insertelement instructions 6353 // we might create due to scalarization. 6354 Cost += getScalarizationOverhead(I, VF); 6355 6356 // If we have a predicated load/store, it will need extra i1 extracts and 6357 // conditional branches, but may not be executed for each vector lane. Scale 6358 // the cost by the probability of executing the predicated block. 6359 if (isPredicatedInst(I, VF)) { 6360 Cost /= getReciprocalPredBlockProb(); 6361 6362 // Add the cost of an i1 extract and a branch 6363 auto *Vec_i1Ty = 6364 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6365 Cost += TTI.getScalarizationOverhead( 6366 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6367 /*Insert=*/false, /*Extract=*/true); 6368 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6369 6370 if (useEmulatedMaskMemRefHack(I, VF)) 6371 // Artificially setting to a high enough value to practically disable 6372 // vectorization with such operations. 6373 Cost = 3000000; 6374 } 6375 6376 return Cost; 6377 } 6378 6379 InstructionCost 6380 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6381 ElementCount VF) { 6382 Type *ValTy = getLoadStoreType(I); 6383 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6384 Value *Ptr = getLoadStorePointerOperand(I); 6385 unsigned AS = getLoadStoreAddressSpace(I); 6386 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6387 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6388 6389 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6390 "Stride should be 1 or -1 for consecutive memory access"); 6391 const Align Alignment = getLoadStoreAlignment(I); 6392 InstructionCost Cost = 0; 6393 if (Legal->isMaskRequired(I)) 6394 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6395 CostKind); 6396 else 6397 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6398 CostKind, I); 6399 6400 bool Reverse = ConsecutiveStride < 0; 6401 if (Reverse) 6402 Cost += 6403 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6404 return Cost; 6405 } 6406 6407 InstructionCost 6408 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6409 ElementCount VF) { 6410 assert(Legal->isUniformMemOp(*I)); 6411 6412 Type *ValTy = getLoadStoreType(I); 6413 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6414 const Align Alignment = getLoadStoreAlignment(I); 6415 unsigned AS = getLoadStoreAddressSpace(I); 6416 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6417 if (isa<LoadInst>(I)) { 6418 return TTI.getAddressComputationCost(ValTy) + 6419 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6420 CostKind) + 6421 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6422 } 6423 StoreInst *SI = cast<StoreInst>(I); 6424 6425 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6426 return TTI.getAddressComputationCost(ValTy) + 6427 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6428 CostKind) + 6429 (isLoopInvariantStoreValue 6430 ? 0 6431 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6432 VF.getKnownMinValue() - 1)); 6433 } 6434 6435 InstructionCost 6436 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6437 ElementCount VF) { 6438 Type *ValTy = getLoadStoreType(I); 6439 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6440 const Align Alignment = getLoadStoreAlignment(I); 6441 const Value *Ptr = getLoadStorePointerOperand(I); 6442 6443 return TTI.getAddressComputationCost(VectorTy) + 6444 TTI.getGatherScatterOpCost( 6445 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6446 TargetTransformInfo::TCK_RecipThroughput, I); 6447 } 6448 6449 InstructionCost 6450 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6451 ElementCount VF) { 6452 // TODO: Once we have support for interleaving with scalable vectors 6453 // we can calculate the cost properly here. 6454 if (VF.isScalable()) 6455 return InstructionCost::getInvalid(); 6456 6457 Type *ValTy = getLoadStoreType(I); 6458 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6459 unsigned AS = getLoadStoreAddressSpace(I); 6460 6461 auto Group = getInterleavedAccessGroup(I); 6462 assert(Group && "Fail to get an interleaved access group."); 6463 6464 unsigned InterleaveFactor = Group->getFactor(); 6465 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6466 6467 // Holds the indices of existing members in the interleaved group. 6468 SmallVector<unsigned, 4> Indices; 6469 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6470 if (Group->getMember(IF)) 6471 Indices.push_back(IF); 6472 6473 // Calculate the cost of the whole interleaved group. 6474 bool UseMaskForGaps = 6475 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6476 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6477 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6478 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6479 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6480 6481 if (Group->isReverse()) { 6482 // TODO: Add support for reversed masked interleaved access. 6483 assert(!Legal->isMaskRequired(I) && 6484 "Reverse masked interleaved access not supported."); 6485 Cost += 6486 Group->getNumMembers() * 6487 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6488 } 6489 return Cost; 6490 } 6491 6492 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6493 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6494 using namespace llvm::PatternMatch; 6495 // Early exit for no inloop reductions 6496 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6497 return None; 6498 auto *VectorTy = cast<VectorType>(Ty); 6499 6500 // We are looking for a pattern of, and finding the minimal acceptable cost: 6501 // reduce(mul(ext(A), ext(B))) or 6502 // reduce(mul(A, B)) or 6503 // reduce(ext(A)) or 6504 // reduce(A). 6505 // The basic idea is that we walk down the tree to do that, finding the root 6506 // reduction instruction in InLoopReductionImmediateChains. From there we find 6507 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6508 // of the components. If the reduction cost is lower then we return it for the 6509 // reduction instruction and 0 for the other instructions in the pattern. If 6510 // it is not we return an invalid cost specifying the orignal cost method 6511 // should be used. 6512 Instruction *RetI = I; 6513 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6514 if (!RetI->hasOneUser()) 6515 return None; 6516 RetI = RetI->user_back(); 6517 } 6518 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6519 RetI->user_back()->getOpcode() == Instruction::Add) { 6520 if (!RetI->hasOneUser()) 6521 return None; 6522 RetI = RetI->user_back(); 6523 } 6524 6525 // Test if the found instruction is a reduction, and if not return an invalid 6526 // cost specifying the parent to use the original cost modelling. 6527 if (!InLoopReductionImmediateChains.count(RetI)) 6528 return None; 6529 6530 // Find the reduction this chain is a part of and calculate the basic cost of 6531 // the reduction on its own. 6532 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6533 Instruction *ReductionPhi = LastChain; 6534 while (!isa<PHINode>(ReductionPhi)) 6535 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6536 6537 const RecurrenceDescriptor &RdxDesc = 6538 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6539 6540 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6541 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6542 6543 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6544 // normal fmul instruction to the cost of the fadd reduction. 6545 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6546 BaseCost += 6547 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6548 6549 // If we're using ordered reductions then we can just return the base cost 6550 // here, since getArithmeticReductionCost calculates the full ordered 6551 // reduction cost when FP reassociation is not allowed. 6552 if (useOrderedReductions(RdxDesc)) 6553 return BaseCost; 6554 6555 // Get the operand that was not the reduction chain and match it to one of the 6556 // patterns, returning the better cost if it is found. 6557 Instruction *RedOp = RetI->getOperand(1) == LastChain 6558 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6559 : dyn_cast<Instruction>(RetI->getOperand(1)); 6560 6561 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6562 6563 Instruction *Op0, *Op1; 6564 if (RedOp && 6565 match(RedOp, 6566 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6567 match(Op0, m_ZExtOrSExt(m_Value())) && 6568 Op0->getOpcode() == Op1->getOpcode() && 6569 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6570 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6571 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6572 6573 // Matched reduce(ext(mul(ext(A), ext(B))) 6574 // Note that the extend opcodes need to all match, or if A==B they will have 6575 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6576 // which is equally fine. 6577 bool IsUnsigned = isa<ZExtInst>(Op0); 6578 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6579 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6580 6581 InstructionCost ExtCost = 6582 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6583 TTI::CastContextHint::None, CostKind, Op0); 6584 InstructionCost MulCost = 6585 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6586 InstructionCost Ext2Cost = 6587 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6588 TTI::CastContextHint::None, CostKind, RedOp); 6589 6590 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6591 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6592 CostKind); 6593 6594 if (RedCost.isValid() && 6595 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6596 return I == RetI ? RedCost : 0; 6597 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6598 !TheLoop->isLoopInvariant(RedOp)) { 6599 // Matched reduce(ext(A)) 6600 bool IsUnsigned = isa<ZExtInst>(RedOp); 6601 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6602 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6603 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6604 CostKind); 6605 6606 InstructionCost ExtCost = 6607 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6608 TTI::CastContextHint::None, CostKind, RedOp); 6609 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6610 return I == RetI ? RedCost : 0; 6611 } else if (RedOp && 6612 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6613 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6614 Op0->getOpcode() == Op1->getOpcode() && 6615 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6616 bool IsUnsigned = isa<ZExtInst>(Op0); 6617 Type *Op0Ty = Op0->getOperand(0)->getType(); 6618 Type *Op1Ty = Op1->getOperand(0)->getType(); 6619 Type *LargestOpTy = 6620 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 6621 : Op0Ty; 6622 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 6623 6624 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 6625 // different sizes. We take the largest type as the ext to reduce, and add 6626 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 6627 InstructionCost ExtCost0 = TTI.getCastInstrCost( 6628 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 6629 TTI::CastContextHint::None, CostKind, Op0); 6630 InstructionCost ExtCost1 = TTI.getCastInstrCost( 6631 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 6632 TTI::CastContextHint::None, CostKind, Op1); 6633 InstructionCost MulCost = 6634 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6635 6636 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6637 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6638 CostKind); 6639 InstructionCost ExtraExtCost = 0; 6640 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 6641 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 6642 ExtraExtCost = TTI.getCastInstrCost( 6643 ExtraExtOp->getOpcode(), ExtType, 6644 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 6645 TTI::CastContextHint::None, CostKind, ExtraExtOp); 6646 } 6647 6648 if (RedCost.isValid() && 6649 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 6650 return I == RetI ? RedCost : 0; 6651 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 6652 // Matched reduce(mul()) 6653 InstructionCost MulCost = 6654 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6655 6656 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6657 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 6658 CostKind); 6659 6660 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 6661 return I == RetI ? RedCost : 0; 6662 } 6663 } 6664 6665 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 6666 } 6667 6668 InstructionCost 6669 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6670 ElementCount VF) { 6671 // Calculate scalar cost only. Vectorization cost should be ready at this 6672 // moment. 6673 if (VF.isScalar()) { 6674 Type *ValTy = getLoadStoreType(I); 6675 const Align Alignment = getLoadStoreAlignment(I); 6676 unsigned AS = getLoadStoreAddressSpace(I); 6677 6678 return TTI.getAddressComputationCost(ValTy) + 6679 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6680 TTI::TCK_RecipThroughput, I); 6681 } 6682 return getWideningCost(I, VF); 6683 } 6684 6685 LoopVectorizationCostModel::VectorizationCostTy 6686 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6687 ElementCount VF) { 6688 // If we know that this instruction will remain uniform, check the cost of 6689 // the scalar version. 6690 if (isUniformAfterVectorization(I, VF)) 6691 VF = ElementCount::getFixed(1); 6692 6693 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6694 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6695 6696 // Forced scalars do not have any scalarization overhead. 6697 auto ForcedScalar = ForcedScalars.find(VF); 6698 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6699 auto InstSet = ForcedScalar->second; 6700 if (InstSet.count(I)) 6701 return VectorizationCostTy( 6702 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6703 VF.getKnownMinValue()), 6704 false); 6705 } 6706 6707 Type *VectorTy; 6708 InstructionCost C = getInstructionCost(I, VF, VectorTy); 6709 6710 bool TypeNotScalarized = false; 6711 if (VF.isVector() && VectorTy->isVectorTy()) { 6712 if (unsigned NumParts = TTI.getNumberOfParts(VectorTy)) { 6713 if (VF.isScalable()) 6714 // <vscale x 1 x iN> is assumed to be profitable over iN because 6715 // scalable registers are a distinct register class from scalar ones. 6716 // If we ever find a target which wants to lower scalable vectors 6717 // back to scalars, we'll need to update this code to explicitly 6718 // ask TTI about the register class uses for each part. 6719 TypeNotScalarized = NumParts <= VF.getKnownMinValue(); 6720 else 6721 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 6722 } else 6723 C = InstructionCost::getInvalid(); 6724 } 6725 return VectorizationCostTy(C, TypeNotScalarized); 6726 } 6727 6728 InstructionCost 6729 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6730 ElementCount VF) const { 6731 6732 // There is no mechanism yet to create a scalable scalarization loop, 6733 // so this is currently Invalid. 6734 if (VF.isScalable()) 6735 return InstructionCost::getInvalid(); 6736 6737 if (VF.isScalar()) 6738 return 0; 6739 6740 InstructionCost Cost = 0; 6741 Type *RetTy = ToVectorTy(I->getType(), VF); 6742 if (!RetTy->isVoidTy() && 6743 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6744 Cost += TTI.getScalarizationOverhead( 6745 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 6746 false); 6747 6748 // Some targets keep addresses scalar. 6749 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6750 return Cost; 6751 6752 // Some targets support efficient element stores. 6753 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6754 return Cost; 6755 6756 // Collect operands to consider. 6757 CallInst *CI = dyn_cast<CallInst>(I); 6758 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 6759 6760 // Skip operands that do not require extraction/scalarization and do not incur 6761 // any overhead. 6762 SmallVector<Type *> Tys; 6763 for (auto *V : filterExtractingOperands(Ops, VF)) 6764 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 6765 return Cost + TTI.getOperandsScalarizationOverhead( 6766 filterExtractingOperands(Ops, VF), Tys); 6767 } 6768 6769 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6770 if (VF.isScalar()) 6771 return; 6772 NumPredStores = 0; 6773 for (BasicBlock *BB : TheLoop->blocks()) { 6774 // For each instruction in the old loop. 6775 for (Instruction &I : *BB) { 6776 Value *Ptr = getLoadStorePointerOperand(&I); 6777 if (!Ptr) 6778 continue; 6779 6780 // TODO: We should generate better code and update the cost model for 6781 // predicated uniform stores. Today they are treated as any other 6782 // predicated store (see added test cases in 6783 // invariant-store-vectorization.ll). 6784 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 6785 NumPredStores++; 6786 6787 if (Legal->isUniformMemOp(I)) { 6788 // TODO: Avoid replicating loads and stores instead of 6789 // relying on instcombine to remove them. 6790 // Load: Scalar load + broadcast 6791 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6792 InstructionCost Cost; 6793 if (isa<StoreInst>(&I) && VF.isScalable() && 6794 isLegalGatherOrScatter(&I, VF)) { 6795 Cost = getGatherScatterCost(&I, VF); 6796 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 6797 } else { 6798 Cost = getUniformMemOpCost(&I, VF); 6799 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6800 } 6801 continue; 6802 } 6803 6804 // We assume that widening is the best solution when possible. 6805 if (memoryInstructionCanBeWidened(&I, VF)) { 6806 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 6807 int ConsecutiveStride = Legal->isConsecutivePtr( 6808 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 6809 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6810 "Expected consecutive stride."); 6811 InstWidening Decision = 6812 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6813 setWideningDecision(&I, VF, Decision, Cost); 6814 continue; 6815 } 6816 6817 // Choose between Interleaving, Gather/Scatter or Scalarization. 6818 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 6819 unsigned NumAccesses = 1; 6820 if (isAccessInterleaved(&I)) { 6821 auto Group = getInterleavedAccessGroup(&I); 6822 assert(Group && "Fail to get an interleaved access group."); 6823 6824 // Make one decision for the whole group. 6825 if (getWideningDecision(&I, VF) != CM_Unknown) 6826 continue; 6827 6828 NumAccesses = Group->getNumMembers(); 6829 if (interleavedAccessCanBeWidened(&I, VF)) 6830 InterleaveCost = getInterleaveGroupCost(&I, VF); 6831 } 6832 6833 InstructionCost GatherScatterCost = 6834 isLegalGatherOrScatter(&I, VF) 6835 ? getGatherScatterCost(&I, VF) * NumAccesses 6836 : InstructionCost::getInvalid(); 6837 6838 InstructionCost ScalarizationCost = 6839 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6840 6841 // Choose better solution for the current VF, 6842 // write down this decision and use it during vectorization. 6843 InstructionCost Cost; 6844 InstWidening Decision; 6845 if (InterleaveCost <= GatherScatterCost && 6846 InterleaveCost < ScalarizationCost) { 6847 Decision = CM_Interleave; 6848 Cost = InterleaveCost; 6849 } else if (GatherScatterCost < ScalarizationCost) { 6850 Decision = CM_GatherScatter; 6851 Cost = GatherScatterCost; 6852 } else { 6853 Decision = CM_Scalarize; 6854 Cost = ScalarizationCost; 6855 } 6856 // If the instructions belongs to an interleave group, the whole group 6857 // receives the same decision. The whole group receives the cost, but 6858 // the cost will actually be assigned to one instruction. 6859 if (auto Group = getInterleavedAccessGroup(&I)) 6860 setWideningDecision(Group, VF, Decision, Cost); 6861 else 6862 setWideningDecision(&I, VF, Decision, Cost); 6863 } 6864 } 6865 6866 // Make sure that any load of address and any other address computation 6867 // remains scalar unless there is gather/scatter support. This avoids 6868 // inevitable extracts into address registers, and also has the benefit of 6869 // activating LSR more, since that pass can't optimize vectorized 6870 // addresses. 6871 if (TTI.prefersVectorizedAddressing()) 6872 return; 6873 6874 // Start with all scalar pointer uses. 6875 SmallPtrSet<Instruction *, 8> AddrDefs; 6876 for (BasicBlock *BB : TheLoop->blocks()) 6877 for (Instruction &I : *BB) { 6878 Instruction *PtrDef = 6879 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6880 if (PtrDef && TheLoop->contains(PtrDef) && 6881 getWideningDecision(&I, VF) != CM_GatherScatter) 6882 AddrDefs.insert(PtrDef); 6883 } 6884 6885 // Add all instructions used to generate the addresses. 6886 SmallVector<Instruction *, 4> Worklist; 6887 append_range(Worklist, AddrDefs); 6888 while (!Worklist.empty()) { 6889 Instruction *I = Worklist.pop_back_val(); 6890 for (auto &Op : I->operands()) 6891 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6892 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6893 AddrDefs.insert(InstOp).second) 6894 Worklist.push_back(InstOp); 6895 } 6896 6897 for (auto *I : AddrDefs) { 6898 if (isa<LoadInst>(I)) { 6899 // Setting the desired widening decision should ideally be handled in 6900 // by cost functions, but since this involves the task of finding out 6901 // if the loaded register is involved in an address computation, it is 6902 // instead changed here when we know this is the case. 6903 InstWidening Decision = getWideningDecision(I, VF); 6904 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6905 // Scalarize a widened load of address. 6906 setWideningDecision( 6907 I, VF, CM_Scalarize, 6908 (VF.getKnownMinValue() * 6909 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 6910 else if (auto Group = getInterleavedAccessGroup(I)) { 6911 // Scalarize an interleave group of address loads. 6912 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6913 if (Instruction *Member = Group->getMember(I)) 6914 setWideningDecision( 6915 Member, VF, CM_Scalarize, 6916 (VF.getKnownMinValue() * 6917 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 6918 } 6919 } 6920 } else 6921 // Make sure I gets scalarized and a cost estimate without 6922 // scalarization overhead. 6923 ForcedScalars[VF].insert(I); 6924 } 6925 } 6926 6927 InstructionCost 6928 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 6929 Type *&VectorTy) { 6930 Type *RetTy = I->getType(); 6931 if (canTruncateToMinimalBitwidth(I, VF)) 6932 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6933 auto SE = PSE.getSE(); 6934 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6935 6936 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 6937 ElementCount VF) -> bool { 6938 if (VF.isScalar()) 6939 return true; 6940 6941 auto Scalarized = InstsToScalarize.find(VF); 6942 assert(Scalarized != InstsToScalarize.end() && 6943 "VF not yet analyzed for scalarization profitability"); 6944 return !Scalarized->second.count(I) && 6945 llvm::all_of(I->users(), [&](User *U) { 6946 auto *UI = cast<Instruction>(U); 6947 return !Scalarized->second.count(UI); 6948 }); 6949 }; 6950 (void) hasSingleCopyAfterVectorization; 6951 6952 if (isScalarAfterVectorization(I, VF)) { 6953 // With the exception of GEPs and PHIs, after scalarization there should 6954 // only be one copy of the instruction generated in the loop. This is 6955 // because the VF is either 1, or any instructions that need scalarizing 6956 // have already been dealt with by the the time we get here. As a result, 6957 // it means we don't have to multiply the instruction cost by VF. 6958 assert(I->getOpcode() == Instruction::GetElementPtr || 6959 I->getOpcode() == Instruction::PHI || 6960 (I->getOpcode() == Instruction::BitCast && 6961 I->getType()->isPointerTy()) || 6962 hasSingleCopyAfterVectorization(I, VF)); 6963 VectorTy = RetTy; 6964 } else 6965 VectorTy = ToVectorTy(RetTy, VF); 6966 6967 // TODO: We need to estimate the cost of intrinsic calls. 6968 switch (I->getOpcode()) { 6969 case Instruction::GetElementPtr: 6970 // We mark this instruction as zero-cost because the cost of GEPs in 6971 // vectorized code depends on whether the corresponding memory instruction 6972 // is scalarized or not. Therefore, we handle GEPs with the memory 6973 // instruction cost. 6974 return 0; 6975 case Instruction::Br: { 6976 // In cases of scalarized and predicated instructions, there will be VF 6977 // predicated blocks in the vectorized loop. Each branch around these 6978 // blocks requires also an extract of its vector compare i1 element. 6979 bool ScalarPredicatedBB = false; 6980 BranchInst *BI = cast<BranchInst>(I); 6981 if (VF.isVector() && BI->isConditional() && 6982 (PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(0)) || 6983 PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(1)))) 6984 ScalarPredicatedBB = true; 6985 6986 if (ScalarPredicatedBB) { 6987 // Not possible to scalarize scalable vector with predicated instructions. 6988 if (VF.isScalable()) 6989 return InstructionCost::getInvalid(); 6990 // Return cost for branches around scalarized and predicated blocks. 6991 auto *Vec_i1Ty = 6992 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6993 return ( 6994 TTI.getScalarizationOverhead( 6995 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 6996 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 6997 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 6998 // The back-edge branch will remain, as will all scalar branches. 6999 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7000 else 7001 // This branch will be eliminated by if-conversion. 7002 return 0; 7003 // Note: We currently assume zero cost for an unconditional branch inside 7004 // a predicated block since it will become a fall-through, although we 7005 // may decide in the future to call TTI for all branches. 7006 } 7007 case Instruction::PHI: { 7008 auto *Phi = cast<PHINode>(I); 7009 7010 // First-order recurrences are replaced by vector shuffles inside the loop. 7011 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7012 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7013 return TTI.getShuffleCost( 7014 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7015 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7016 7017 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7018 // converted into select instructions. We require N - 1 selects per phi 7019 // node, where N is the number of incoming values. 7020 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7021 return (Phi->getNumIncomingValues() - 1) * 7022 TTI.getCmpSelInstrCost( 7023 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7024 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7025 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7026 7027 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7028 } 7029 case Instruction::UDiv: 7030 case Instruction::SDiv: 7031 case Instruction::URem: 7032 case Instruction::SRem: 7033 // If we have a predicated instruction, it may not be executed for each 7034 // vector lane. Get the scalarization cost and scale this amount by the 7035 // probability of executing the predicated block. If the instruction is not 7036 // predicated, we fall through to the next case. 7037 if (VF.isVector() && isScalarWithPredication(I, VF)) { 7038 InstructionCost Cost = 0; 7039 7040 // These instructions have a non-void type, so account for the phi nodes 7041 // that we will create. This cost is likely to be zero. The phi node 7042 // cost, if any, should be scaled by the block probability because it 7043 // models a copy at the end of each predicated block. 7044 Cost += VF.getKnownMinValue() * 7045 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7046 7047 // The cost of the non-predicated instruction. 7048 Cost += VF.getKnownMinValue() * 7049 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7050 7051 // The cost of insertelement and extractelement instructions needed for 7052 // scalarization. 7053 Cost += getScalarizationOverhead(I, VF); 7054 7055 // Scale the cost by the probability of executing the predicated blocks. 7056 // This assumes the predicated block for each vector lane is equally 7057 // likely. 7058 return Cost / getReciprocalPredBlockProb(); 7059 } 7060 LLVM_FALLTHROUGH; 7061 case Instruction::Add: 7062 case Instruction::FAdd: 7063 case Instruction::Sub: 7064 case Instruction::FSub: 7065 case Instruction::Mul: 7066 case Instruction::FMul: 7067 case Instruction::FDiv: 7068 case Instruction::FRem: 7069 case Instruction::Shl: 7070 case Instruction::LShr: 7071 case Instruction::AShr: 7072 case Instruction::And: 7073 case Instruction::Or: 7074 case Instruction::Xor: { 7075 // Since we will replace the stride by 1 the multiplication should go away. 7076 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7077 return 0; 7078 7079 // Detect reduction patterns 7080 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7081 return *RedCost; 7082 7083 // Certain instructions can be cheaper to vectorize if they have a constant 7084 // second vector operand. One example of this are shifts on x86. 7085 Value *Op2 = I->getOperand(1); 7086 TargetTransformInfo::OperandValueProperties Op2VP; 7087 TargetTransformInfo::OperandValueKind Op2VK = 7088 TTI.getOperandInfo(Op2, Op2VP); 7089 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7090 Op2VK = TargetTransformInfo::OK_UniformValue; 7091 7092 SmallVector<const Value *, 4> Operands(I->operand_values()); 7093 return TTI.getArithmeticInstrCost( 7094 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7095 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7096 } 7097 case Instruction::FNeg: { 7098 return TTI.getArithmeticInstrCost( 7099 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7100 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7101 TargetTransformInfo::OP_None, I->getOperand(0), I); 7102 } 7103 case Instruction::Select: { 7104 SelectInst *SI = cast<SelectInst>(I); 7105 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7106 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7107 7108 const Value *Op0, *Op1; 7109 using namespace llvm::PatternMatch; 7110 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7111 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7112 // select x, y, false --> x & y 7113 // select x, true, y --> x | y 7114 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7115 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7116 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7117 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7118 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7119 Op1->getType()->getScalarSizeInBits() == 1); 7120 7121 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7122 return TTI.getArithmeticInstrCost( 7123 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7124 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7125 } 7126 7127 Type *CondTy = SI->getCondition()->getType(); 7128 if (!ScalarCond) 7129 CondTy = VectorType::get(CondTy, VF); 7130 7131 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7132 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7133 Pred = Cmp->getPredicate(); 7134 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7135 CostKind, I); 7136 } 7137 case Instruction::ICmp: 7138 case Instruction::FCmp: { 7139 Type *ValTy = I->getOperand(0)->getType(); 7140 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7141 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7142 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7143 VectorTy = ToVectorTy(ValTy, VF); 7144 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7145 cast<CmpInst>(I)->getPredicate(), CostKind, 7146 I); 7147 } 7148 case Instruction::Store: 7149 case Instruction::Load: { 7150 ElementCount Width = VF; 7151 if (Width.isVector()) { 7152 InstWidening Decision = getWideningDecision(I, Width); 7153 assert(Decision != CM_Unknown && 7154 "CM decision should be taken at this point"); 7155 if (Decision == CM_Scalarize) { 7156 if (VF.isScalable() && isa<StoreInst>(I)) 7157 // We can't scalarize a scalable vector store (even a uniform one 7158 // currently), return an invalid cost so as to prevent vectorization. 7159 return InstructionCost::getInvalid(); 7160 Width = ElementCount::getFixed(1); 7161 } 7162 } 7163 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7164 return getMemoryInstructionCost(I, VF); 7165 } 7166 case Instruction::BitCast: 7167 if (I->getType()->isPointerTy()) 7168 return 0; 7169 LLVM_FALLTHROUGH; 7170 case Instruction::ZExt: 7171 case Instruction::SExt: 7172 case Instruction::FPToUI: 7173 case Instruction::FPToSI: 7174 case Instruction::FPExt: 7175 case Instruction::PtrToInt: 7176 case Instruction::IntToPtr: 7177 case Instruction::SIToFP: 7178 case Instruction::UIToFP: 7179 case Instruction::Trunc: 7180 case Instruction::FPTrunc: { 7181 // Computes the CastContextHint from a Load/Store instruction. 7182 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7183 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7184 "Expected a load or a store!"); 7185 7186 if (VF.isScalar() || !TheLoop->contains(I)) 7187 return TTI::CastContextHint::Normal; 7188 7189 switch (getWideningDecision(I, VF)) { 7190 case LoopVectorizationCostModel::CM_GatherScatter: 7191 return TTI::CastContextHint::GatherScatter; 7192 case LoopVectorizationCostModel::CM_Interleave: 7193 return TTI::CastContextHint::Interleave; 7194 case LoopVectorizationCostModel::CM_Scalarize: 7195 case LoopVectorizationCostModel::CM_Widen: 7196 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7197 : TTI::CastContextHint::Normal; 7198 case LoopVectorizationCostModel::CM_Widen_Reverse: 7199 return TTI::CastContextHint::Reversed; 7200 case LoopVectorizationCostModel::CM_Unknown: 7201 llvm_unreachable("Instr did not go through cost modelling?"); 7202 } 7203 7204 llvm_unreachable("Unhandled case!"); 7205 }; 7206 7207 unsigned Opcode = I->getOpcode(); 7208 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7209 // For Trunc, the context is the only user, which must be a StoreInst. 7210 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7211 if (I->hasOneUse()) 7212 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7213 CCH = ComputeCCH(Store); 7214 } 7215 // For Z/Sext, the context is the operand, which must be a LoadInst. 7216 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7217 Opcode == Instruction::FPExt) { 7218 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7219 CCH = ComputeCCH(Load); 7220 } 7221 7222 // We optimize the truncation of induction variables having constant 7223 // integer steps. The cost of these truncations is the same as the scalar 7224 // operation. 7225 if (isOptimizableIVTruncate(I, VF)) { 7226 auto *Trunc = cast<TruncInst>(I); 7227 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7228 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7229 } 7230 7231 // Detect reduction patterns 7232 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7233 return *RedCost; 7234 7235 Type *SrcScalarTy = I->getOperand(0)->getType(); 7236 Type *SrcVecTy = 7237 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7238 if (canTruncateToMinimalBitwidth(I, VF)) { 7239 // This cast is going to be shrunk. This may remove the cast or it might 7240 // turn it into slightly different cast. For example, if MinBW == 16, 7241 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7242 // 7243 // Calculate the modified src and dest types. 7244 Type *MinVecTy = VectorTy; 7245 if (Opcode == Instruction::Trunc) { 7246 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7247 VectorTy = 7248 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7249 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7250 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7251 VectorTy = 7252 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7253 } 7254 } 7255 7256 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7257 } 7258 case Instruction::Call: { 7259 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7260 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7261 return *RedCost; 7262 bool NeedToScalarize; 7263 CallInst *CI = cast<CallInst>(I); 7264 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7265 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7266 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7267 return std::min(CallCost, IntrinsicCost); 7268 } 7269 return CallCost; 7270 } 7271 case Instruction::ExtractValue: 7272 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7273 case Instruction::Alloca: 7274 // We cannot easily widen alloca to a scalable alloca, as 7275 // the result would need to be a vector of pointers. 7276 if (VF.isScalable()) 7277 return InstructionCost::getInvalid(); 7278 LLVM_FALLTHROUGH; 7279 default: 7280 // This opcode is unknown. Assume that it is the same as 'mul'. 7281 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7282 } // end of switch. 7283 } 7284 7285 char LoopVectorize::ID = 0; 7286 7287 static const char lv_name[] = "Loop Vectorization"; 7288 7289 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7290 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7291 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7292 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7293 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7294 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7295 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7296 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7297 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7298 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7299 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7300 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7301 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7302 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7303 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7304 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7305 7306 namespace llvm { 7307 7308 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7309 7310 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7311 bool VectorizeOnlyWhenForced) { 7312 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7313 } 7314 7315 } // end namespace llvm 7316 7317 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7318 // Check if the pointer operand of a load or store instruction is 7319 // consecutive. 7320 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7321 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7322 return false; 7323 } 7324 7325 void LoopVectorizationCostModel::collectValuesToIgnore() { 7326 // Ignore ephemeral values. 7327 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7328 7329 // Find all stores to invariant variables. Since they are going to sink 7330 // outside the loop we do not need calculate cost for them. 7331 for (BasicBlock *BB : TheLoop->blocks()) 7332 for (Instruction &I : *BB) { 7333 StoreInst *SI; 7334 if ((SI = dyn_cast<StoreInst>(&I)) && 7335 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) 7336 ValuesToIgnore.insert(&I); 7337 } 7338 7339 // Ignore type-promoting instructions we identified during reduction 7340 // detection. 7341 for (auto &Reduction : Legal->getReductionVars()) { 7342 const RecurrenceDescriptor &RedDes = Reduction.second; 7343 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7344 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7345 } 7346 // Ignore type-casting instructions we identified during induction 7347 // detection. 7348 for (auto &Induction : Legal->getInductionVars()) { 7349 const InductionDescriptor &IndDes = Induction.second; 7350 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7351 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7352 } 7353 } 7354 7355 void LoopVectorizationCostModel::collectInLoopReductions() { 7356 for (auto &Reduction : Legal->getReductionVars()) { 7357 PHINode *Phi = Reduction.first; 7358 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7359 7360 // We don't collect reductions that are type promoted (yet). 7361 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7362 continue; 7363 7364 // If the target would prefer this reduction to happen "in-loop", then we 7365 // want to record it as such. 7366 unsigned Opcode = RdxDesc.getOpcode(); 7367 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7368 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7369 TargetTransformInfo::ReductionFlags())) 7370 continue; 7371 7372 // Check that we can correctly put the reductions into the loop, by 7373 // finding the chain of operations that leads from the phi to the loop 7374 // exit value. 7375 SmallVector<Instruction *, 4> ReductionOperations = 7376 RdxDesc.getReductionOpChain(Phi, TheLoop); 7377 bool InLoop = !ReductionOperations.empty(); 7378 if (InLoop) { 7379 InLoopReductionChains[Phi] = ReductionOperations; 7380 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7381 Instruction *LastChain = Phi; 7382 for (auto *I : ReductionOperations) { 7383 InLoopReductionImmediateChains[I] = LastChain; 7384 LastChain = I; 7385 } 7386 } 7387 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7388 << " reduction for phi: " << *Phi << "\n"); 7389 } 7390 } 7391 7392 // TODO: we could return a pair of values that specify the max VF and 7393 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7394 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7395 // doesn't have a cost model that can choose which plan to execute if 7396 // more than one is generated. 7397 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7398 LoopVectorizationCostModel &CM) { 7399 unsigned WidestType; 7400 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7401 return WidestVectorRegBits / WidestType; 7402 } 7403 7404 VectorizationFactor 7405 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7406 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7407 ElementCount VF = UserVF; 7408 // Outer loop handling: They may require CFG and instruction level 7409 // transformations before even evaluating whether vectorization is profitable. 7410 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7411 // the vectorization pipeline. 7412 if (!OrigLoop->isInnermost()) { 7413 // If the user doesn't provide a vectorization factor, determine a 7414 // reasonable one. 7415 if (UserVF.isZero()) { 7416 VF = ElementCount::getFixed(determineVPlanVF( 7417 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7418 .getFixedSize(), 7419 CM)); 7420 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7421 7422 // Make sure we have a VF > 1 for stress testing. 7423 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7424 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7425 << "overriding computed VF.\n"); 7426 VF = ElementCount::getFixed(4); 7427 } 7428 } 7429 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7430 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7431 "VF needs to be a power of two"); 7432 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7433 << "VF " << VF << " to build VPlans.\n"); 7434 buildVPlans(VF, VF); 7435 7436 // For VPlan build stress testing, we bail out after VPlan construction. 7437 if (VPlanBuildStressTest) 7438 return VectorizationFactor::Disabled(); 7439 7440 return {VF, 0 /*Cost*/, 0 /* ScalarCost */}; 7441 } 7442 7443 LLVM_DEBUG( 7444 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7445 "VPlan-native path.\n"); 7446 return VectorizationFactor::Disabled(); 7447 } 7448 7449 Optional<VectorizationFactor> 7450 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7451 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7452 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7453 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7454 return None; 7455 7456 // Invalidate interleave groups if all blocks of loop will be predicated. 7457 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7458 !useMaskedInterleavedAccesses(*TTI)) { 7459 LLVM_DEBUG( 7460 dbgs() 7461 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7462 "which requires masked-interleaved support.\n"); 7463 if (CM.InterleaveInfo.invalidateGroups()) 7464 // Invalidating interleave groups also requires invalidating all decisions 7465 // based on them, which includes widening decisions and uniform and scalar 7466 // values. 7467 CM.invalidateCostModelingDecisions(); 7468 } 7469 7470 ElementCount MaxUserVF = 7471 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7472 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7473 if (!UserVF.isZero() && UserVFIsLegal) { 7474 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7475 "VF needs to be a power of two"); 7476 // Collect the instructions (and their associated costs) that will be more 7477 // profitable to scalarize. 7478 if (CM.selectUserVectorizationFactor(UserVF)) { 7479 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7480 CM.collectInLoopReductions(); 7481 buildVPlansWithVPRecipes(UserVF, UserVF); 7482 LLVM_DEBUG(printPlans(dbgs())); 7483 return {{UserVF, 0, 0}}; 7484 } else 7485 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7486 "InvalidCost", ORE, OrigLoop); 7487 } 7488 7489 // Populate the set of Vectorization Factor Candidates. 7490 ElementCountSet VFCandidates; 7491 for (auto VF = ElementCount::getFixed(1); 7492 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7493 VFCandidates.insert(VF); 7494 for (auto VF = ElementCount::getScalable(1); 7495 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7496 VFCandidates.insert(VF); 7497 7498 for (const auto &VF : VFCandidates) { 7499 // Collect Uniform and Scalar instructions after vectorization with VF. 7500 CM.collectUniformsAndScalars(VF); 7501 7502 // Collect the instructions (and their associated costs) that will be more 7503 // profitable to scalarize. 7504 if (VF.isVector()) 7505 CM.collectInstsToScalarize(VF); 7506 } 7507 7508 CM.collectInLoopReductions(); 7509 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7510 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7511 7512 LLVM_DEBUG(printPlans(dbgs())); 7513 if (!MaxFactors.hasVector()) 7514 return VectorizationFactor::Disabled(); 7515 7516 // Select the optimal vectorization factor. 7517 VectorizationFactor VF = CM.selectVectorizationFactor(VFCandidates); 7518 assert((VF.Width.isScalar() || VF.ScalarCost > 0) && "when vectorizing, the scalar cost must be non-zero."); 7519 return VF; 7520 } 7521 7522 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7523 assert(count_if(VPlans, 7524 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7525 1 && 7526 "Best VF has not a single VPlan."); 7527 7528 for (const VPlanPtr &Plan : VPlans) { 7529 if (Plan->hasVF(VF)) 7530 return *Plan.get(); 7531 } 7532 llvm_unreachable("No plan found!"); 7533 } 7534 7535 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7536 SmallVector<Metadata *, 4> MDs; 7537 // Reserve first location for self reference to the LoopID metadata node. 7538 MDs.push_back(nullptr); 7539 bool IsUnrollMetadata = false; 7540 MDNode *LoopID = L->getLoopID(); 7541 if (LoopID) { 7542 // First find existing loop unrolling disable metadata. 7543 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7544 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7545 if (MD) { 7546 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7547 IsUnrollMetadata = 7548 S && S->getString().startswith("llvm.loop.unroll.disable"); 7549 } 7550 MDs.push_back(LoopID->getOperand(i)); 7551 } 7552 } 7553 7554 if (!IsUnrollMetadata) { 7555 // Add runtime unroll disable metadata. 7556 LLVMContext &Context = L->getHeader()->getContext(); 7557 SmallVector<Metadata *, 1> DisableOperands; 7558 DisableOperands.push_back( 7559 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7560 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7561 MDs.push_back(DisableNode); 7562 MDNode *NewLoopID = MDNode::get(Context, MDs); 7563 // Set operand 0 to refer to the loop id itself. 7564 NewLoopID->replaceOperandWith(0, NewLoopID); 7565 L->setLoopID(NewLoopID); 7566 } 7567 } 7568 7569 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7570 VPlan &BestVPlan, 7571 InnerLoopVectorizer &ILV, 7572 DominatorTree *DT, 7573 bool IsEpilogueVectorization) { 7574 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7575 << '\n'); 7576 7577 // Perform the actual loop transformation. 7578 7579 // 1. Set up the skeleton for vectorization, including vector pre-header and 7580 // middle block. The vector loop is created during VPlan execution. 7581 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7582 Value *CanonicalIVStartValue; 7583 std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = 7584 ILV.createVectorizedLoopSkeleton(); 7585 7586 // Only use noalias metadata when using memory checks guaranteeing no overlap 7587 // across all iterations. 7588 const LoopAccessInfo *LAI = ILV.Legal->getLAI(); 7589 if (LAI && !LAI->getRuntimePointerChecking()->getChecks().empty() && 7590 !LAI->getRuntimePointerChecking()->getDiffChecks()) { 7591 7592 // We currently don't use LoopVersioning for the actual loop cloning but we 7593 // still use it to add the noalias metadata. 7594 // TODO: Find a better way to re-use LoopVersioning functionality to add 7595 // metadata. 7596 State.LVer = std::make_unique<LoopVersioning>( 7597 *LAI, LAI->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, DT, 7598 PSE.getSE()); 7599 State.LVer->prepareNoAliasMetadata(); 7600 } 7601 7602 ILV.collectPoisonGeneratingRecipes(State); 7603 7604 ILV.printDebugTracesAtStart(); 7605 7606 //===------------------------------------------------===// 7607 // 7608 // Notice: any optimization or new instruction that go 7609 // into the code below should also be implemented in 7610 // the cost-model. 7611 // 7612 //===------------------------------------------------===// 7613 7614 // 2. Copy and widen instructions from the old loop into the new loop. 7615 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7616 ILV.getOrCreateVectorTripCount(nullptr), 7617 CanonicalIVStartValue, State, 7618 IsEpilogueVectorization); 7619 7620 BestVPlan.execute(&State); 7621 7622 // Keep all loop hints from the original loop on the vector loop (we'll 7623 // replace the vectorizer-specific hints below). 7624 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7625 7626 Optional<MDNode *> VectorizedLoopID = 7627 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7628 LLVMLoopVectorizeFollowupVectorized}); 7629 7630 VPBasicBlock *HeaderVPBB = 7631 BestVPlan.getVectorLoopRegion()->getEntryBasicBlock(); 7632 Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]); 7633 if (VectorizedLoopID) 7634 L->setLoopID(VectorizedLoopID.value()); 7635 else { 7636 // Keep all loop hints from the original loop on the vector loop (we'll 7637 // replace the vectorizer-specific hints below). 7638 if (MDNode *LID = OrigLoop->getLoopID()) 7639 L->setLoopID(LID); 7640 7641 LoopVectorizeHints Hints(L, true, *ORE); 7642 Hints.setAlreadyVectorized(); 7643 } 7644 // Disable runtime unrolling when vectorizing the epilogue loop. 7645 if (CanonicalIVStartValue) 7646 AddRuntimeUnrollDisableMetaData(L); 7647 7648 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7649 // predication, updating analyses. 7650 ILV.fixVectorizedLoop(State, BestVPlan); 7651 7652 ILV.printDebugTracesAtEnd(); 7653 } 7654 7655 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7656 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 7657 for (const auto &Plan : VPlans) 7658 if (PrintVPlansInDotFormat) 7659 Plan->printDOT(O); 7660 else 7661 Plan->print(O); 7662 } 7663 #endif 7664 7665 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7666 7667 //===--------------------------------------------------------------------===// 7668 // EpilogueVectorizerMainLoop 7669 //===--------------------------------------------------------------------===// 7670 7671 /// This function is partially responsible for generating the control flow 7672 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7673 std::pair<BasicBlock *, Value *> 7674 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 7675 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7676 7677 // Workaround! Compute the trip count of the original loop and cache it 7678 // before we start modifying the CFG. This code has a systemic problem 7679 // wherein it tries to run analysis over partially constructed IR; this is 7680 // wrong, and not simply for SCEV. The trip count of the original loop 7681 // simply happens to be prone to hitting this in practice. In theory, we 7682 // can hit the same issue for any SCEV, or ValueTracking query done during 7683 // mutation. See PR49900. 7684 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 7685 createVectorLoopSkeleton(""); 7686 7687 // Generate the code to check the minimum iteration count of the vector 7688 // epilogue (see below). 7689 EPI.EpilogueIterationCountCheck = 7690 emitIterationCountCheck(LoopScalarPreHeader, true); 7691 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7692 7693 // Generate the code to check any assumptions that we've made for SCEV 7694 // expressions. 7695 EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader); 7696 7697 // Generate the code that checks at runtime if arrays overlap. We put the 7698 // checks into a separate block to make the more common case of few elements 7699 // faster. 7700 EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader); 7701 7702 // Generate the iteration count check for the main loop, *after* the check 7703 // for the epilogue loop, so that the path-length is shorter for the case 7704 // that goes directly through the vector epilogue. The longer-path length for 7705 // the main loop is compensated for, by the gain from vectorizing the larger 7706 // trip count. Note: the branch will get updated later on when we vectorize 7707 // the epilogue. 7708 EPI.MainLoopIterationCountCheck = 7709 emitIterationCountCheck(LoopScalarPreHeader, false); 7710 7711 // Generate the induction variable. 7712 EPI.VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 7713 7714 // Skip induction resume value creation here because they will be created in 7715 // the second pass. If we created them here, they wouldn't be used anyway, 7716 // because the vplan in the second pass still contains the inductions from the 7717 // original loop. 7718 7719 return {completeLoopSkeleton(OrigLoopID), nullptr}; 7720 } 7721 7722 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 7723 LLVM_DEBUG({ 7724 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 7725 << "Main Loop VF:" << EPI.MainLoopVF 7726 << ", Main Loop UF:" << EPI.MainLoopUF 7727 << ", Epilogue Loop VF:" << EPI.EpilogueVF 7728 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7729 }); 7730 } 7731 7732 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 7733 DEBUG_WITH_TYPE(VerboseDebug, { 7734 dbgs() << "intermediate fn:\n" 7735 << *OrigLoop->getHeader()->getParent() << "\n"; 7736 }); 7737 } 7738 7739 BasicBlock * 7740 EpilogueVectorizerMainLoop::emitIterationCountCheck(BasicBlock *Bypass, 7741 bool ForEpilogue) { 7742 assert(Bypass && "Expected valid bypass basic block."); 7743 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 7744 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 7745 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 7746 // Reuse existing vector loop preheader for TC checks. 7747 // Note that new preheader block is generated for vector loop. 7748 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 7749 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 7750 7751 // Generate code to check if the loop's trip count is less than VF * UF of the 7752 // main vector loop. 7753 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 7754 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7755 7756 Value *CheckMinIters = Builder.CreateICmp( 7757 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 7758 "min.iters.check"); 7759 7760 if (!ForEpilogue) 7761 TCCheckBlock->setName("vector.main.loop.iter.check"); 7762 7763 // Create new preheader for vector loop. 7764 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 7765 DT, LI, nullptr, "vector.ph"); 7766 7767 if (ForEpilogue) { 7768 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 7769 DT->getNode(Bypass)->getIDom()) && 7770 "TC check is expected to dominate Bypass"); 7771 7772 // Update dominator for Bypass & LoopExit. 7773 DT->changeImmediateDominator(Bypass, TCCheckBlock); 7774 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7775 // For loops with multiple exits, there's no edge from the middle block 7776 // to exit blocks (as the epilogue must run) and thus no need to update 7777 // the immediate dominator of the exit blocks. 7778 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 7779 7780 LoopBypassBlocks.push_back(TCCheckBlock); 7781 7782 // Save the trip count so we don't have to regenerate it in the 7783 // vec.epilog.iter.check. This is safe to do because the trip count 7784 // generated here dominates the vector epilog iter check. 7785 EPI.TripCount = Count; 7786 } 7787 7788 ReplaceInstWithInst( 7789 TCCheckBlock->getTerminator(), 7790 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7791 7792 return TCCheckBlock; 7793 } 7794 7795 //===--------------------------------------------------------------------===// 7796 // EpilogueVectorizerEpilogueLoop 7797 //===--------------------------------------------------------------------===// 7798 7799 /// This function is partially responsible for generating the control flow 7800 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7801 std::pair<BasicBlock *, Value *> 7802 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 7803 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7804 createVectorLoopSkeleton("vec.epilog."); 7805 7806 // Now, compare the remaining count and if there aren't enough iterations to 7807 // execute the vectorized epilogue skip to the scalar part. 7808 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 7809 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 7810 LoopVectorPreHeader = 7811 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 7812 LI, nullptr, "vec.epilog.ph"); 7813 emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader, 7814 VecEpilogueIterationCountCheck); 7815 7816 // Adjust the control flow taking the state info from the main loop 7817 // vectorization into account. 7818 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 7819 "expected this to be saved from the previous pass."); 7820 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 7821 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 7822 7823 DT->changeImmediateDominator(LoopVectorPreHeader, 7824 EPI.MainLoopIterationCountCheck); 7825 7826 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 7827 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7828 7829 if (EPI.SCEVSafetyCheck) 7830 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 7831 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7832 if (EPI.MemSafetyCheck) 7833 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 7834 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7835 7836 DT->changeImmediateDominator( 7837 VecEpilogueIterationCountCheck, 7838 VecEpilogueIterationCountCheck->getSinglePredecessor()); 7839 7840 DT->changeImmediateDominator(LoopScalarPreHeader, 7841 EPI.EpilogueIterationCountCheck); 7842 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7843 // If there is an epilogue which must run, there's no edge from the 7844 // middle block to exit blocks and thus no need to update the immediate 7845 // dominator of the exit blocks. 7846 DT->changeImmediateDominator(LoopExitBlock, 7847 EPI.EpilogueIterationCountCheck); 7848 7849 // Keep track of bypass blocks, as they feed start values to the induction 7850 // phis in the scalar loop preheader. 7851 if (EPI.SCEVSafetyCheck) 7852 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 7853 if (EPI.MemSafetyCheck) 7854 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 7855 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 7856 7857 // The vec.epilog.iter.check block may contain Phi nodes from reductions which 7858 // merge control-flow from the latch block and the middle block. Update the 7859 // incoming values here and move the Phi into the preheader. 7860 SmallVector<PHINode *, 4> PhisInBlock; 7861 for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) 7862 PhisInBlock.push_back(&Phi); 7863 7864 for (PHINode *Phi : PhisInBlock) { 7865 Phi->replaceIncomingBlockWith( 7866 VecEpilogueIterationCountCheck->getSinglePredecessor(), 7867 VecEpilogueIterationCountCheck); 7868 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); 7869 if (EPI.SCEVSafetyCheck) 7870 Phi->removeIncomingValue(EPI.SCEVSafetyCheck); 7871 if (EPI.MemSafetyCheck) 7872 Phi->removeIncomingValue(EPI.MemSafetyCheck); 7873 Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); 7874 } 7875 7876 // Generate a resume induction for the vector epilogue and put it in the 7877 // vector epilogue preheader 7878 Type *IdxTy = Legal->getWidestInductionType(); 7879 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 7880 LoopVectorPreHeader->getFirstNonPHI()); 7881 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 7882 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 7883 EPI.MainLoopIterationCountCheck); 7884 7885 // Generate induction resume values. These variables save the new starting 7886 // indexes for the scalar loop. They are used to test if there are any tail 7887 // iterations left once the vector loop has completed. 7888 // Note that when the vectorized epilogue is skipped due to iteration count 7889 // check, then the resume value for the induction variable comes from 7890 // the trip count of the main vector loop, hence passing the AdditionalBypass 7891 // argument. 7892 createInductionResumeValues({VecEpilogueIterationCountCheck, 7893 EPI.VectorTripCount} /* AdditionalBypass */); 7894 7895 return {completeLoopSkeleton(OrigLoopID), EPResumeVal}; 7896 } 7897 7898 BasicBlock * 7899 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 7900 BasicBlock *Bypass, BasicBlock *Insert) { 7901 7902 assert(EPI.TripCount && 7903 "Expected trip count to have been safed in the first pass."); 7904 assert( 7905 (!isa<Instruction>(EPI.TripCount) || 7906 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 7907 "saved trip count does not dominate insertion point."); 7908 Value *TC = EPI.TripCount; 7909 IRBuilder<> Builder(Insert->getTerminator()); 7910 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 7911 7912 // Generate code to check if the loop's trip count is less than VF * UF of the 7913 // vector epilogue loop. 7914 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 7915 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7916 7917 Value *CheckMinIters = 7918 Builder.CreateICmp(P, Count, 7919 createStepForVF(Builder, Count->getType(), 7920 EPI.EpilogueVF, EPI.EpilogueUF), 7921 "min.epilog.iters.check"); 7922 7923 ReplaceInstWithInst( 7924 Insert->getTerminator(), 7925 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7926 7927 LoopBypassBlocks.push_back(Insert); 7928 return Insert; 7929 } 7930 7931 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 7932 LLVM_DEBUG({ 7933 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 7934 << "Epilogue Loop VF:" << EPI.EpilogueVF 7935 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7936 }); 7937 } 7938 7939 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 7940 DEBUG_WITH_TYPE(VerboseDebug, { 7941 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 7942 }); 7943 } 7944 7945 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7946 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 7947 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 7948 bool PredicateAtRangeStart = Predicate(Range.Start); 7949 7950 for (ElementCount TmpVF = Range.Start * 2; 7951 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 7952 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7953 Range.End = TmpVF; 7954 break; 7955 } 7956 7957 return PredicateAtRangeStart; 7958 } 7959 7960 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7961 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7962 /// of VF's starting at a given VF and extending it as much as possible. Each 7963 /// vectorization decision can potentially shorten this sub-range during 7964 /// buildVPlan(). 7965 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 7966 ElementCount MaxVF) { 7967 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 7968 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 7969 VFRange SubRange = {VF, MaxVFPlusOne}; 7970 VPlans.push_back(buildVPlan(SubRange)); 7971 VF = SubRange.End; 7972 } 7973 } 7974 7975 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 7976 VPlanPtr &Plan) { 7977 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 7978 7979 // Look for cached value. 7980 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 7981 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 7982 if (ECEntryIt != EdgeMaskCache.end()) 7983 return ECEntryIt->second; 7984 7985 VPValue *SrcMask = createBlockInMask(Src, Plan); 7986 7987 // The terminator has to be a branch inst! 7988 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 7989 assert(BI && "Unexpected terminator found"); 7990 7991 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 7992 return EdgeMaskCache[Edge] = SrcMask; 7993 7994 // If source is an exiting block, we know the exit edge is dynamically dead 7995 // in the vector loop, and thus we don't need to restrict the mask. Avoid 7996 // adding uses of an otherwise potentially dead instruction. 7997 if (OrigLoop->isLoopExiting(Src)) 7998 return EdgeMaskCache[Edge] = SrcMask; 7999 8000 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8001 assert(EdgeMask && "No Edge Mask found for condition"); 8002 8003 if (BI->getSuccessor(0) != Dst) 8004 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 8005 8006 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8007 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8008 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8009 // The select version does not introduce new UB if SrcMask is false and 8010 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8011 VPValue *False = Plan->getOrAddVPValue( 8012 ConstantInt::getFalse(BI->getCondition()->getType())); 8013 EdgeMask = 8014 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8015 } 8016 8017 return EdgeMaskCache[Edge] = EdgeMask; 8018 } 8019 8020 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8021 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8022 8023 // Look for cached value. 8024 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8025 if (BCEntryIt != BlockMaskCache.end()) 8026 return BCEntryIt->second; 8027 8028 // All-one mask is modelled as no-mask following the convention for masked 8029 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8030 VPValue *BlockMask = nullptr; 8031 8032 if (OrigLoop->getHeader() == BB) { 8033 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8034 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8035 8036 assert(CM.foldTailByMasking() && "must fold the tail"); 8037 8038 // If we're using the active lane mask for control flow, then we get the 8039 // mask from the active lane mask PHI that is cached in the VPlan. 8040 PredicationStyle EmitGetActiveLaneMask = CM.TTI.emitGetActiveLaneMask(); 8041 if (EmitGetActiveLaneMask == PredicationStyle::DataAndControlFlow) 8042 return BlockMaskCache[BB] = Plan->getActiveLaneMaskPhi(); 8043 8044 // Introduce the early-exit compare IV <= BTC to form header block mask. 8045 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8046 // constructing the desired canonical IV in the header block as its first 8047 // non-phi instructions. 8048 8049 VPBasicBlock *HeaderVPBB = 8050 Plan->getVectorLoopRegion()->getEntryBasicBlock(); 8051 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8052 auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); 8053 HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi()); 8054 8055 VPBuilder::InsertPointGuard Guard(Builder); 8056 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8057 if (EmitGetActiveLaneMask != PredicationStyle::None) { 8058 VPValue *TC = Plan->getOrCreateTripCount(); 8059 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}, 8060 nullptr, "active.lane.mask"); 8061 } else { 8062 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8063 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8064 } 8065 return BlockMaskCache[BB] = BlockMask; 8066 } 8067 8068 // This is the block mask. We OR all incoming edges. 8069 for (auto *Predecessor : predecessors(BB)) { 8070 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8071 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8072 return BlockMaskCache[BB] = EdgeMask; 8073 8074 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8075 BlockMask = EdgeMask; 8076 continue; 8077 } 8078 8079 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8080 } 8081 8082 return BlockMaskCache[BB] = BlockMask; 8083 } 8084 8085 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8086 ArrayRef<VPValue *> Operands, 8087 VFRange &Range, 8088 VPlanPtr &Plan) { 8089 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8090 "Must be called with either a load or store"); 8091 8092 auto willWiden = [&](ElementCount VF) -> bool { 8093 LoopVectorizationCostModel::InstWidening Decision = 8094 CM.getWideningDecision(I, VF); 8095 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8096 "CM decision should be taken at this point."); 8097 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8098 return true; 8099 if (CM.isScalarAfterVectorization(I, VF) || 8100 CM.isProfitableToScalarize(I, VF)) 8101 return false; 8102 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8103 }; 8104 8105 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8106 return nullptr; 8107 8108 VPValue *Mask = nullptr; 8109 if (Legal->isMaskRequired(I)) 8110 Mask = createBlockInMask(I->getParent(), Plan); 8111 8112 // Determine if the pointer operand of the access is either consecutive or 8113 // reverse consecutive. 8114 LoopVectorizationCostModel::InstWidening Decision = 8115 CM.getWideningDecision(I, Range.Start); 8116 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8117 bool Consecutive = 8118 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8119 8120 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8121 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8122 Consecutive, Reverse); 8123 8124 StoreInst *Store = cast<StoreInst>(I); 8125 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8126 Mask, Consecutive, Reverse); 8127 } 8128 8129 /// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also 8130 /// insert a recipe to expand the step for the induction recipe. 8131 static VPWidenIntOrFpInductionRecipe *createWidenInductionRecipes( 8132 PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, 8133 const InductionDescriptor &IndDesc, LoopVectorizationCostModel &CM, 8134 VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop, VFRange &Range) { 8135 // Returns true if an instruction \p I should be scalarized instead of 8136 // vectorized for the chosen vectorization factor. 8137 auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) { 8138 return CM.isScalarAfterVectorization(I, VF) || 8139 CM.isProfitableToScalarize(I, VF); 8140 }; 8141 8142 bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange( 8143 [&](ElementCount VF) { 8144 return ShouldScalarizeInstruction(PhiOrTrunc, VF); 8145 }, 8146 Range); 8147 assert(IndDesc.getStartValue() == 8148 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); 8149 assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) && 8150 "step must be loop invariant"); 8151 8152 VPValue *Step = 8153 vputils::getOrCreateVPValueForSCEVExpr(Plan, IndDesc.getStep(), SE); 8154 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { 8155 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, TruncI, 8156 !NeedsScalarIVOnly); 8157 } 8158 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); 8159 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, 8160 !NeedsScalarIVOnly); 8161 } 8162 8163 VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI( 8164 PHINode *Phi, ArrayRef<VPValue *> Operands, VPlan &Plan, VFRange &Range) { 8165 8166 // Check if this is an integer or fp induction. If so, build the recipe that 8167 // produces its scalar and vector values. 8168 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) 8169 return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, CM, Plan, 8170 *PSE.getSE(), *OrigLoop, Range); 8171 8172 // Check if this is pointer induction. If so, build the recipe for it. 8173 if (auto *II = Legal->getPointerInductionDescriptor(Phi)) 8174 return new VPWidenPointerInductionRecipe(Phi, Operands[0], *II, 8175 *PSE.getSE()); 8176 return nullptr; 8177 } 8178 8179 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8180 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, VPlan &Plan) { 8181 // Optimize the special case where the source is a constant integer 8182 // induction variable. Notice that we can only optimize the 'trunc' case 8183 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8184 // (c) other casts depend on pointer size. 8185 8186 // Determine whether \p K is a truncation based on an induction variable that 8187 // can be optimized. 8188 auto isOptimizableIVTruncate = 8189 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8190 return [=](ElementCount VF) -> bool { 8191 return CM.isOptimizableIVTruncate(K, VF); 8192 }; 8193 }; 8194 8195 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8196 isOptimizableIVTruncate(I), Range)) { 8197 8198 auto *Phi = cast<PHINode>(I->getOperand(0)); 8199 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8200 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8201 return createWidenInductionRecipes(Phi, I, Start, II, CM, Plan, 8202 *PSE.getSE(), *OrigLoop, Range); 8203 } 8204 return nullptr; 8205 } 8206 8207 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8208 ArrayRef<VPValue *> Operands, 8209 VPlanPtr &Plan) { 8210 // If all incoming values are equal, the incoming VPValue can be used directly 8211 // instead of creating a new VPBlendRecipe. 8212 VPValue *FirstIncoming = Operands[0]; 8213 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8214 return FirstIncoming == Inc; 8215 })) { 8216 return Operands[0]; 8217 } 8218 8219 unsigned NumIncoming = Phi->getNumIncomingValues(); 8220 // For in-loop reductions, we do not need to create an additional select. 8221 VPValue *InLoopVal = nullptr; 8222 for (unsigned In = 0; In < NumIncoming; In++) { 8223 PHINode *PhiOp = 8224 dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue()); 8225 if (PhiOp && CM.isInLoopReduction(PhiOp)) { 8226 assert(!InLoopVal && "Found more than one in-loop reduction!"); 8227 InLoopVal = Operands[In]; 8228 } 8229 } 8230 8231 assert((!InLoopVal || NumIncoming == 2) && 8232 "Found an in-loop reduction for PHI with unexpected number of " 8233 "incoming values"); 8234 if (InLoopVal) 8235 return Operands[Operands[0] == InLoopVal ? 1 : 0]; 8236 8237 // We know that all PHIs in non-header blocks are converted into selects, so 8238 // we don't have to worry about the insertion order and we can just use the 8239 // builder. At this point we generate the predication tree. There may be 8240 // duplications since this is a simple recursive scan, but future 8241 // optimizations will clean it up. 8242 SmallVector<VPValue *, 2> OperandsWithMask; 8243 8244 for (unsigned In = 0; In < NumIncoming; In++) { 8245 VPValue *EdgeMask = 8246 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8247 assert((EdgeMask || NumIncoming == 1) && 8248 "Multiple predecessors with one having a full mask"); 8249 OperandsWithMask.push_back(Operands[In]); 8250 if (EdgeMask) 8251 OperandsWithMask.push_back(EdgeMask); 8252 } 8253 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8254 } 8255 8256 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8257 ArrayRef<VPValue *> Operands, 8258 VFRange &Range) const { 8259 8260 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8261 [this, CI](ElementCount VF) { 8262 return CM.isScalarWithPredication(CI, VF); 8263 }, 8264 Range); 8265 8266 if (IsPredicated) 8267 return nullptr; 8268 8269 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8270 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8271 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8272 ID == Intrinsic::pseudoprobe || 8273 ID == Intrinsic::experimental_noalias_scope_decl)) 8274 return nullptr; 8275 8276 auto willWiden = [&](ElementCount VF) -> bool { 8277 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8278 // The following case may be scalarized depending on the VF. 8279 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8280 // version of the instruction. 8281 // Is it beneficial to perform intrinsic call compared to lib call? 8282 bool NeedToScalarize = false; 8283 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8284 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8285 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8286 return UseVectorIntrinsic || !NeedToScalarize; 8287 }; 8288 8289 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8290 return nullptr; 8291 8292 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8293 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8294 } 8295 8296 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8297 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8298 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8299 // Instruction should be widened, unless it is scalar after vectorization, 8300 // scalarization is profitable or it is predicated. 8301 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8302 return CM.isScalarAfterVectorization(I, VF) || 8303 CM.isProfitableToScalarize(I, VF) || 8304 CM.isScalarWithPredication(I, VF); 8305 }; 8306 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8307 Range); 8308 } 8309 8310 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8311 ArrayRef<VPValue *> Operands) const { 8312 auto IsVectorizableOpcode = [](unsigned Opcode) { 8313 switch (Opcode) { 8314 case Instruction::Add: 8315 case Instruction::And: 8316 case Instruction::AShr: 8317 case Instruction::BitCast: 8318 case Instruction::FAdd: 8319 case Instruction::FCmp: 8320 case Instruction::FDiv: 8321 case Instruction::FMul: 8322 case Instruction::FNeg: 8323 case Instruction::FPExt: 8324 case Instruction::FPToSI: 8325 case Instruction::FPToUI: 8326 case Instruction::FPTrunc: 8327 case Instruction::FRem: 8328 case Instruction::FSub: 8329 case Instruction::ICmp: 8330 case Instruction::IntToPtr: 8331 case Instruction::LShr: 8332 case Instruction::Mul: 8333 case Instruction::Or: 8334 case Instruction::PtrToInt: 8335 case Instruction::SDiv: 8336 case Instruction::Select: 8337 case Instruction::SExt: 8338 case Instruction::Shl: 8339 case Instruction::SIToFP: 8340 case Instruction::SRem: 8341 case Instruction::Sub: 8342 case Instruction::Trunc: 8343 case Instruction::UDiv: 8344 case Instruction::UIToFP: 8345 case Instruction::URem: 8346 case Instruction::Xor: 8347 case Instruction::ZExt: 8348 case Instruction::Freeze: 8349 return true; 8350 } 8351 return false; 8352 }; 8353 8354 if (!IsVectorizableOpcode(I->getOpcode())) 8355 return nullptr; 8356 8357 // Success: widen this instruction. 8358 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8359 } 8360 8361 void VPRecipeBuilder::fixHeaderPhis() { 8362 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8363 for (VPHeaderPHIRecipe *R : PhisToFix) { 8364 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8365 VPRecipeBase *IncR = 8366 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8367 R->addOperand(IncR->getVPSingleValue()); 8368 } 8369 } 8370 8371 VPBasicBlock *VPRecipeBuilder::handleReplication( 8372 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8373 VPlanPtr &Plan) { 8374 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8375 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8376 Range); 8377 8378 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8379 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); }, 8380 Range); 8381 8382 // Even if the instruction is not marked as uniform, there are certain 8383 // intrinsic calls that can be effectively treated as such, so we check for 8384 // them here. Conservatively, we only do this for scalable vectors, since 8385 // for fixed-width VFs we can always fall back on full scalarization. 8386 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8387 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8388 case Intrinsic::assume: 8389 case Intrinsic::lifetime_start: 8390 case Intrinsic::lifetime_end: 8391 // For scalable vectors if one of the operands is variant then we still 8392 // want to mark as uniform, which will generate one instruction for just 8393 // the first lane of the vector. We can't scalarize the call in the same 8394 // way as for fixed-width vectors because we don't know how many lanes 8395 // there are. 8396 // 8397 // The reasons for doing it this way for scalable vectors are: 8398 // 1. For the assume intrinsic generating the instruction for the first 8399 // lane is still be better than not generating any at all. For 8400 // example, the input may be a splat across all lanes. 8401 // 2. For the lifetime start/end intrinsics the pointer operand only 8402 // does anything useful when the input comes from a stack object, 8403 // which suggests it should always be uniform. For non-stack objects 8404 // the effect is to poison the object, which still allows us to 8405 // remove the call. 8406 IsUniform = true; 8407 break; 8408 default: 8409 break; 8410 } 8411 } 8412 8413 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8414 IsUniform, IsPredicated); 8415 setRecipe(I, Recipe); 8416 Plan->addVPValue(I, Recipe); 8417 8418 // Find if I uses a predicated instruction. If so, it will use its scalar 8419 // value. Avoid hoisting the insert-element which packs the scalar value into 8420 // a vector value, as that happens iff all users use the vector value. 8421 for (VPValue *Op : Recipe->operands()) { 8422 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8423 if (!PredR) 8424 continue; 8425 auto *RepR = 8426 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8427 assert(RepR->isPredicated() && 8428 "expected Replicate recipe to be predicated"); 8429 RepR->setAlsoPack(false); 8430 } 8431 8432 // Finalize the recipe for Instr, first if it is not predicated. 8433 if (!IsPredicated) { 8434 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8435 VPBB->appendRecipe(Recipe); 8436 return VPBB; 8437 } 8438 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8439 8440 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8441 assert(SingleSucc && "VPBB must have a single successor when handling " 8442 "predicated replication."); 8443 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8444 // Record predicated instructions for above packing optimizations. 8445 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8446 VPBlockUtils::insertBlockAfter(Region, VPBB); 8447 auto *RegSucc = new VPBasicBlock(); 8448 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8449 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8450 return RegSucc; 8451 } 8452 8453 VPRegionBlock *VPRecipeBuilder::createReplicateRegion( 8454 Instruction *Instr, VPReplicateRecipe *PredRecipe, VPlanPtr &Plan) { 8455 // Instructions marked for predication are replicated and placed under an 8456 // if-then construct to prevent side-effects. 8457 8458 // Generate recipes to compute the block mask for this region. 8459 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8460 8461 // Build the triangular if-then region. 8462 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8463 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8464 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8465 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8466 auto *PHIRecipe = Instr->getType()->isVoidTy() 8467 ? nullptr 8468 : new VPPredInstPHIRecipe(PredRecipe); 8469 if (PHIRecipe) { 8470 Plan->removeVPValueFor(Instr); 8471 Plan->addVPValue(Instr, PHIRecipe); 8472 } 8473 auto *Exiting = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8474 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8475 VPRegionBlock *Region = new VPRegionBlock(Entry, Exiting, RegionName, true); 8476 8477 // Note: first set Entry as region entry and then connect successors starting 8478 // from it in order, to propagate the "parent" of each VPBasicBlock. 8479 VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry); 8480 VPBlockUtils::connectBlocks(Pred, Exiting); 8481 8482 return Region; 8483 } 8484 8485 VPRecipeOrVPValueTy 8486 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8487 ArrayRef<VPValue *> Operands, 8488 VFRange &Range, VPlanPtr &Plan) { 8489 // First, check for specific widening recipes that deal with inductions, Phi 8490 // nodes, calls and memory operations. 8491 VPRecipeBase *Recipe; 8492 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8493 if (Phi->getParent() != OrigLoop->getHeader()) 8494 return tryToBlend(Phi, Operands, Plan); 8495 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, *Plan, Range))) 8496 return toVPRecipeResult(Recipe); 8497 8498 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8499 assert((Legal->isReductionVariable(Phi) || 8500 Legal->isFirstOrderRecurrence(Phi)) && 8501 "can only widen reductions and first-order recurrences here"); 8502 VPValue *StartV = Operands[0]; 8503 if (Legal->isReductionVariable(Phi)) { 8504 const RecurrenceDescriptor &RdxDesc = 8505 Legal->getReductionVars().find(Phi)->second; 8506 assert(RdxDesc.getRecurrenceStartValue() == 8507 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8508 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8509 CM.isInLoopReduction(Phi), 8510 CM.useOrderedReductions(RdxDesc)); 8511 } else { 8512 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8513 } 8514 8515 // Record the incoming value from the backedge, so we can add the incoming 8516 // value from the backedge after all recipes have been created. 8517 recordRecipeOf(cast<Instruction>( 8518 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8519 PhisToFix.push_back(PhiRecipe); 8520 return toVPRecipeResult(PhiRecipe); 8521 } 8522 8523 if (isa<TruncInst>(Instr) && 8524 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8525 Range, *Plan))) 8526 return toVPRecipeResult(Recipe); 8527 8528 // All widen recipes below deal only with VF > 1. 8529 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8530 [&](ElementCount VF) { return VF.isScalar(); }, Range)) 8531 return nullptr; 8532 8533 if (auto *CI = dyn_cast<CallInst>(Instr)) 8534 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8535 8536 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8537 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8538 8539 if (!shouldWiden(Instr, Range)) 8540 return nullptr; 8541 8542 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8543 return toVPRecipeResult(new VPWidenGEPRecipe( 8544 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8545 8546 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8547 bool InvariantCond = 8548 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8549 return toVPRecipeResult(new VPWidenSelectRecipe( 8550 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8551 } 8552 8553 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8554 } 8555 8556 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8557 ElementCount MaxVF) { 8558 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8559 8560 // Add assume instructions we need to drop to DeadInstructions, to prevent 8561 // them from being added to the VPlan. 8562 // TODO: We only need to drop assumes in blocks that get flattend. If the 8563 // control flow is preserved, we should keep them. 8564 SmallPtrSet<Instruction *, 4> DeadInstructions; 8565 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8566 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8567 8568 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8569 // Dead instructions do not need sinking. Remove them from SinkAfter. 8570 for (Instruction *I : DeadInstructions) 8571 SinkAfter.erase(I); 8572 8573 // Cannot sink instructions after dead instructions (there won't be any 8574 // recipes for them). Instead, find the first non-dead previous instruction. 8575 for (auto &P : Legal->getSinkAfter()) { 8576 Instruction *SinkTarget = P.second; 8577 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8578 (void)FirstInst; 8579 while (DeadInstructions.contains(SinkTarget)) { 8580 assert( 8581 SinkTarget != FirstInst && 8582 "Must find a live instruction (at least the one feeding the " 8583 "first-order recurrence PHI) before reaching beginning of the block"); 8584 SinkTarget = SinkTarget->getPrevNode(); 8585 assert(SinkTarget != P.first && 8586 "sink source equals target, no sinking required"); 8587 } 8588 P.second = SinkTarget; 8589 } 8590 8591 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8592 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8593 VFRange SubRange = {VF, MaxVFPlusOne}; 8594 VPlans.push_back( 8595 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8596 VF = SubRange.End; 8597 } 8598 } 8599 8600 // Add the necessary canonical IV and branch recipes required to control the 8601 // loop. 8602 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8603 bool HasNUW, 8604 bool UseLaneMaskForLoopControlFlow) { 8605 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8606 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8607 8608 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header. 8609 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8610 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8611 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8612 Header->insert(CanonicalIVPHI, Header->begin()); 8613 8614 // Add a CanonicalIVIncrement{NUW} VPInstruction to increment the scalar 8615 // IV by VF * UF. 8616 auto *CanonicalIVIncrement = 8617 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8618 : VPInstruction::CanonicalIVIncrement, 8619 {CanonicalIVPHI}, DL, "index.next"); 8620 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8621 8622 VPBasicBlock *EB = TopRegion->getExitingBasicBlock(); 8623 EB->appendRecipe(CanonicalIVIncrement); 8624 8625 if (UseLaneMaskForLoopControlFlow) { 8626 // Create the active lane mask instruction in the vplan preheader. 8627 VPBasicBlock *Preheader = Plan.getEntry()->getEntryBasicBlock(); 8628 8629 // We can't use StartV directly in the ActiveLaneMask VPInstruction, since 8630 // we have to take unrolling into account. Each part needs to start at 8631 // Part * VF 8632 auto *CanonicalIVIncrementParts = 8633 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementForPartNUW 8634 : VPInstruction::CanonicalIVIncrementForPart, 8635 {StartV}, DL, "index.part.next"); 8636 Preheader->appendRecipe(CanonicalIVIncrementParts); 8637 8638 // Create the ActiveLaneMask instruction using the correct start values. 8639 VPValue *TC = Plan.getOrCreateTripCount(); 8640 auto *EntryALM = new VPInstruction(VPInstruction::ActiveLaneMask, 8641 {CanonicalIVIncrementParts, TC}, DL, 8642 "active.lane.mask.entry"); 8643 Preheader->appendRecipe(EntryALM); 8644 8645 // Now create the ActiveLaneMaskPhi recipe in the main loop using the 8646 // preheader ActiveLaneMask instruction. 8647 auto *LaneMaskPhi = new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc()); 8648 Header->insert(LaneMaskPhi, Header->getFirstNonPhi()); 8649 8650 // Create the active lane mask for the next iteration of the loop. 8651 CanonicalIVIncrementParts = 8652 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementForPartNUW 8653 : VPInstruction::CanonicalIVIncrementForPart, 8654 {CanonicalIVIncrement}, DL); 8655 EB->appendRecipe(CanonicalIVIncrementParts); 8656 8657 auto *ALM = new VPInstruction(VPInstruction::ActiveLaneMask, 8658 {CanonicalIVIncrementParts, TC}, DL, 8659 "active.lane.mask.next"); 8660 EB->appendRecipe(ALM); 8661 LaneMaskPhi->addOperand(ALM); 8662 8663 // We have to invert the mask here because a true condition means jumping 8664 // to the exit block. 8665 auto *NotMask = new VPInstruction(VPInstruction::Not, ALM, DL); 8666 EB->appendRecipe(NotMask); 8667 8668 VPInstruction *BranchBack = 8669 new VPInstruction(VPInstruction::BranchOnCond, {NotMask}, DL); 8670 EB->appendRecipe(BranchBack); 8671 } else { 8672 // Add the BranchOnCount VPInstruction to the latch. 8673 VPInstruction *BranchBack = new VPInstruction( 8674 VPInstruction::BranchOnCount, 8675 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 8676 EB->appendRecipe(BranchBack); 8677 } 8678 } 8679 8680 // Add exit values to \p Plan. VPLiveOuts are added for each LCSSA phi in the 8681 // original exit block. 8682 static void addUsersInExitBlock(VPBasicBlock *HeaderVPBB, 8683 VPBasicBlock *MiddleVPBB, Loop *OrigLoop, 8684 VPlan &Plan) { 8685 BasicBlock *ExitBB = OrigLoop->getUniqueExitBlock(); 8686 BasicBlock *ExitingBB = OrigLoop->getExitingBlock(); 8687 // Only handle single-exit loops with unique exit blocks for now. 8688 if (!ExitBB || !ExitBB->getSinglePredecessor() || !ExitingBB) 8689 return; 8690 8691 // Introduce VPUsers modeling the exit values. 8692 for (PHINode &ExitPhi : ExitBB->phis()) { 8693 Value *IncomingValue = 8694 ExitPhi.getIncomingValueForBlock(ExitingBB); 8695 VPValue *V = Plan.getOrAddVPValue(IncomingValue, true); 8696 Plan.addLiveOut(&ExitPhi, V); 8697 } 8698 } 8699 8700 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8701 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8702 const MapVector<Instruction *, Instruction *> &SinkAfter) { 8703 8704 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8705 8706 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8707 8708 // --------------------------------------------------------------------------- 8709 // Pre-construction: record ingredients whose recipes we'll need to further 8710 // process after constructing the initial VPlan. 8711 // --------------------------------------------------------------------------- 8712 8713 // Mark instructions we'll need to sink later and their targets as 8714 // ingredients whose recipe we'll need to record. 8715 for (auto &Entry : SinkAfter) { 8716 RecipeBuilder.recordRecipeOf(Entry.first); 8717 RecipeBuilder.recordRecipeOf(Entry.second); 8718 } 8719 for (auto &Reduction : CM.getInLoopReductionChains()) { 8720 PHINode *Phi = Reduction.first; 8721 RecurKind Kind = 8722 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 8723 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8724 8725 RecipeBuilder.recordRecipeOf(Phi); 8726 for (auto &R : ReductionOperations) { 8727 RecipeBuilder.recordRecipeOf(R); 8728 // For min/max reductions, where we have a pair of icmp/select, we also 8729 // need to record the ICmp recipe, so it can be removed later. 8730 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 8731 "Only min/max recurrences allowed for inloop reductions"); 8732 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 8733 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8734 } 8735 } 8736 8737 // For each interleave group which is relevant for this (possibly trimmed) 8738 // Range, add it to the set of groups to be later applied to the VPlan and add 8739 // placeholders for its members' Recipes which we'll be replacing with a 8740 // single VPInterleaveRecipe. 8741 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8742 auto applyIG = [IG, this](ElementCount VF) -> bool { 8743 return (VF.isVector() && // Query is illegal for VF == 1 8744 CM.getWideningDecision(IG->getInsertPos(), VF) == 8745 LoopVectorizationCostModel::CM_Interleave); 8746 }; 8747 if (!getDecisionAndClampRange(applyIG, Range)) 8748 continue; 8749 InterleaveGroups.insert(IG); 8750 for (unsigned i = 0; i < IG->getFactor(); i++) 8751 if (Instruction *Member = IG->getMember(i)) 8752 RecipeBuilder.recordRecipeOf(Member); 8753 }; 8754 8755 // --------------------------------------------------------------------------- 8756 // Build initial VPlan: Scan the body of the loop in a topological order to 8757 // visit each basic block after having visited its predecessor basic blocks. 8758 // --------------------------------------------------------------------------- 8759 8760 // Create initial VPlan skeleton, starting with a block for the pre-header, 8761 // followed by a region for the vector loop, followed by the middle block. The 8762 // skeleton vector loop region contains a header and latch block. 8763 VPBasicBlock *Preheader = new VPBasicBlock("vector.ph"); 8764 auto Plan = std::make_unique<VPlan>(Preheader); 8765 8766 VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body"); 8767 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 8768 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 8769 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 8770 VPBlockUtils::insertBlockAfter(TopRegion, Preheader); 8771 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); 8772 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 8773 8774 Instruction *DLInst = 8775 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 8776 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 8777 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 8778 !CM.foldTailByMasking(), 8779 CM.useActiveLaneMaskForControlFlow()); 8780 8781 // Scan the body of the loop in a topological order to visit each basic block 8782 // after having visited its predecessor basic blocks. 8783 LoopBlocksDFS DFS(OrigLoop); 8784 DFS.perform(LI); 8785 8786 VPBasicBlock *VPBB = HeaderVPBB; 8787 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 8788 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8789 // Relevant instructions from basic block BB will be grouped into VPRecipe 8790 // ingredients and fill a new VPBasicBlock. 8791 unsigned VPBBsForBB = 0; 8792 if (VPBB != HeaderVPBB) 8793 VPBB->setName(BB->getName()); 8794 Builder.setInsertPoint(VPBB); 8795 8796 // Introduce each ingredient into VPlan. 8797 // TODO: Model and preserve debug intrinsics in VPlan. 8798 for (Instruction &I : BB->instructionsWithoutDebug()) { 8799 Instruction *Instr = &I; 8800 8801 // First filter out irrelevant instructions, to ensure no recipes are 8802 // built for them. 8803 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 8804 continue; 8805 8806 SmallVector<VPValue *, 4> Operands; 8807 auto *Phi = dyn_cast<PHINode>(Instr); 8808 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 8809 Operands.push_back(Plan->getOrAddVPValue( 8810 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 8811 } else { 8812 auto OpRange = Plan->mapToVPValues(Instr->operands()); 8813 Operands = {OpRange.begin(), OpRange.end()}; 8814 } 8815 8816 // Invariant stores inside loop will be deleted and a single store 8817 // with the final reduction value will be added to the exit block 8818 StoreInst *SI; 8819 if ((SI = dyn_cast<StoreInst>(&I)) && 8820 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) 8821 continue; 8822 8823 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 8824 Instr, Operands, Range, Plan)) { 8825 // If Instr can be simplified to an existing VPValue, use it. 8826 if (RecipeOrValue.is<VPValue *>()) { 8827 auto *VPV = RecipeOrValue.get<VPValue *>(); 8828 Plan->addVPValue(Instr, VPV); 8829 // If the re-used value is a recipe, register the recipe for the 8830 // instruction, in case the recipe for Instr needs to be recorded. 8831 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 8832 RecipeBuilder.setRecipe(Instr, R); 8833 continue; 8834 } 8835 // Otherwise, add the new recipe. 8836 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 8837 for (auto *Def : Recipe->definedValues()) { 8838 auto *UV = Def->getUnderlyingValue(); 8839 Plan->addVPValue(UV, Def); 8840 } 8841 8842 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 8843 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 8844 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 8845 // of the header block. That can happen for truncates of induction 8846 // variables. Those recipes are moved to the phi section of the header 8847 // block after applying SinkAfter, which relies on the original 8848 // position of the trunc. 8849 assert(isa<TruncInst>(Instr)); 8850 InductionsToMove.push_back( 8851 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 8852 } 8853 RecipeBuilder.setRecipe(Instr, Recipe); 8854 VPBB->appendRecipe(Recipe); 8855 continue; 8856 } 8857 8858 // Otherwise, if all widening options failed, Instruction is to be 8859 // replicated. This may create a successor for VPBB. 8860 VPBasicBlock *NextVPBB = 8861 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 8862 if (NextVPBB != VPBB) { 8863 VPBB = NextVPBB; 8864 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8865 : ""); 8866 } 8867 } 8868 8869 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 8870 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 8871 } 8872 8873 HeaderVPBB->setName("vector.body"); 8874 8875 // Fold the last, empty block into its predecessor. 8876 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 8877 assert(VPBB && "expected to fold last (empty) block"); 8878 // After here, VPBB should not be used. 8879 VPBB = nullptr; 8880 8881 addUsersInExitBlock(HeaderVPBB, MiddleVPBB, OrigLoop, *Plan); 8882 8883 assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) && 8884 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() && 8885 "entry block must be set to a VPRegionBlock having a non-empty entry " 8886 "VPBasicBlock"); 8887 RecipeBuilder.fixHeaderPhis(); 8888 8889 // --------------------------------------------------------------------------- 8890 // Transform initial VPlan: Apply previously taken decisions, in order, to 8891 // bring the VPlan to its final state. 8892 // --------------------------------------------------------------------------- 8893 8894 // Apply Sink-After legal constraints. 8895 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 8896 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 8897 if (Region && Region->isReplicator()) { 8898 assert(Region->getNumSuccessors() == 1 && 8899 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 8900 assert(R->getParent()->size() == 1 && 8901 "A recipe in an original replicator region must be the only " 8902 "recipe in its block"); 8903 return Region; 8904 } 8905 return nullptr; 8906 }; 8907 for (auto &Entry : SinkAfter) { 8908 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 8909 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 8910 8911 auto *TargetRegion = GetReplicateRegion(Target); 8912 auto *SinkRegion = GetReplicateRegion(Sink); 8913 if (!SinkRegion) { 8914 // If the sink source is not a replicate region, sink the recipe directly. 8915 if (TargetRegion) { 8916 // The target is in a replication region, make sure to move Sink to 8917 // the block after it, not into the replication region itself. 8918 VPBasicBlock *NextBlock = 8919 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 8920 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 8921 } else 8922 Sink->moveAfter(Target); 8923 continue; 8924 } 8925 8926 // The sink source is in a replicate region. Unhook the region from the CFG. 8927 auto *SinkPred = SinkRegion->getSinglePredecessor(); 8928 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 8929 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 8930 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 8931 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 8932 8933 if (TargetRegion) { 8934 // The target recipe is also in a replicate region, move the sink region 8935 // after the target region. 8936 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 8937 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 8938 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 8939 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 8940 } else { 8941 // The sink source is in a replicate region, we need to move the whole 8942 // replicate region, which should only contain a single recipe in the 8943 // main block. 8944 auto *SplitBlock = 8945 Target->getParent()->splitAt(std::next(Target->getIterator())); 8946 8947 auto *SplitPred = SplitBlock->getSinglePredecessor(); 8948 8949 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 8950 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 8951 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 8952 } 8953 } 8954 8955 VPlanTransforms::removeRedundantCanonicalIVs(*Plan); 8956 VPlanTransforms::removeRedundantInductionCasts(*Plan); 8957 8958 // Now that sink-after is done, move induction recipes for optimized truncates 8959 // to the phi section of the header block. 8960 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 8961 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 8962 8963 // Adjust the recipes for any inloop reductions. 8964 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExiting()), Plan, 8965 RecipeBuilder, Range.Start); 8966 8967 // Introduce a recipe to combine the incoming and previous values of a 8968 // first-order recurrence. 8969 for (VPRecipeBase &R : 8970 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 8971 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 8972 if (!RecurPhi) 8973 continue; 8974 8975 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 8976 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 8977 auto *Region = GetReplicateRegion(PrevRecipe); 8978 if (Region) 8979 InsertBlock = dyn_cast<VPBasicBlock>(Region->getSingleSuccessor()); 8980 if (!InsertBlock) { 8981 InsertBlock = new VPBasicBlock(Region->getName() + ".succ"); 8982 VPBlockUtils::insertBlockAfter(InsertBlock, Region); 8983 } 8984 if (Region || PrevRecipe->isPhi()) 8985 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 8986 else 8987 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 8988 8989 auto *RecurSplice = cast<VPInstruction>( 8990 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 8991 {RecurPhi, RecurPhi->getBackedgeValue()})); 8992 8993 RecurPhi->replaceAllUsesWith(RecurSplice); 8994 // Set the first operand of RecurSplice to RecurPhi again, after replacing 8995 // all users. 8996 RecurSplice->setOperand(0, RecurPhi); 8997 } 8998 8999 // Interleave memory: for each Interleave Group we marked earlier as relevant 9000 // for this VPlan, replace the Recipes widening its memory instructions with a 9001 // single VPInterleaveRecipe at its insertion point. 9002 for (auto IG : InterleaveGroups) { 9003 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9004 RecipeBuilder.getRecipe(IG->getInsertPos())); 9005 SmallVector<VPValue *, 4> StoredValues; 9006 for (unsigned i = 0; i < IG->getFactor(); ++i) 9007 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9008 auto *StoreR = 9009 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9010 StoredValues.push_back(StoreR->getStoredValue()); 9011 } 9012 9013 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9014 Recipe->getMask()); 9015 VPIG->insertBefore(Recipe); 9016 unsigned J = 0; 9017 for (unsigned i = 0; i < IG->getFactor(); ++i) 9018 if (Instruction *Member = IG->getMember(i)) { 9019 if (!Member->getType()->isVoidTy()) { 9020 VPValue *OriginalV = Plan->getVPValue(Member); 9021 Plan->removeVPValueFor(Member); 9022 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9023 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9024 J++; 9025 } 9026 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9027 } 9028 } 9029 9030 std::string PlanName; 9031 raw_string_ostream RSO(PlanName); 9032 ElementCount VF = Range.Start; 9033 Plan->addVF(VF); 9034 RSO << "Initial VPlan for VF={" << VF; 9035 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9036 Plan->addVF(VF); 9037 RSO << "," << VF; 9038 } 9039 RSO << "},UF>=1"; 9040 RSO.flush(); 9041 Plan->setName(PlanName); 9042 9043 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9044 // in ways that accessing values using original IR values is incorrect. 9045 Plan->disableValue2VPValue(); 9046 9047 VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE()); 9048 VPlanTransforms::sinkScalarOperands(*Plan); 9049 VPlanTransforms::removeDeadRecipes(*Plan); 9050 VPlanTransforms::mergeReplicateRegions(*Plan); 9051 VPlanTransforms::removeRedundantExpandSCEVRecipes(*Plan); 9052 9053 // Fold Exit block into its predecessor if possible. 9054 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9055 // VPBasicBlock as exit. 9056 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExiting()); 9057 9058 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9059 return Plan; 9060 } 9061 9062 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9063 // Outer loop handling: They may require CFG and instruction level 9064 // transformations before even evaluating whether vectorization is profitable. 9065 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9066 // the vectorization pipeline. 9067 assert(!OrigLoop->isInnermost()); 9068 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9069 9070 // Create new empty VPlan 9071 auto Plan = std::make_unique<VPlan>(); 9072 9073 // Build hierarchical CFG 9074 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9075 HCFGBuilder.buildHierarchicalCFG(); 9076 9077 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9078 VF *= 2) 9079 Plan->addVF(VF); 9080 9081 SmallPtrSet<Instruction *, 1> DeadInstructions; 9082 VPlanTransforms::VPInstructionsToVPRecipes( 9083 OrigLoop, Plan, 9084 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9085 DeadInstructions, *PSE.getSE()); 9086 9087 // Remove the existing terminator of the exiting block of the top-most region. 9088 // A BranchOnCount will be added instead when adding the canonical IV recipes. 9089 auto *Term = 9090 Plan->getVectorLoopRegion()->getExitingBasicBlock()->getTerminator(); 9091 Term->eraseFromParent(); 9092 9093 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9094 true, CM.useActiveLaneMaskForControlFlow()); 9095 return Plan; 9096 } 9097 9098 // Adjust the recipes for reductions. For in-loop reductions the chain of 9099 // instructions leading from the loop exit instr to the phi need to be converted 9100 // to reductions, with one operand being vector and the other being the scalar 9101 // reduction chain. For other reductions, a select is introduced between the phi 9102 // and live-out recipes when folding the tail. 9103 void LoopVectorizationPlanner::adjustRecipesForReductions( 9104 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9105 ElementCount MinVF) { 9106 for (auto &Reduction : CM.getInLoopReductionChains()) { 9107 PHINode *Phi = Reduction.first; 9108 const RecurrenceDescriptor &RdxDesc = 9109 Legal->getReductionVars().find(Phi)->second; 9110 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9111 9112 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9113 continue; 9114 9115 // ReductionOperations are orders top-down from the phi's use to the 9116 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9117 // which of the two operands will remain scalar and which will be reduced. 9118 // For minmax the chain will be the select instructions. 9119 Instruction *Chain = Phi; 9120 for (Instruction *R : ReductionOperations) { 9121 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9122 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9123 9124 VPValue *ChainOp = Plan->getVPValue(Chain); 9125 unsigned FirstOpId; 9126 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9127 "Only min/max recurrences allowed for inloop reductions"); 9128 // Recognize a call to the llvm.fmuladd intrinsic. 9129 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9130 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9131 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9132 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9133 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9134 "Expected to replace a VPWidenSelectSC"); 9135 FirstOpId = 1; 9136 } else { 9137 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9138 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9139 "Expected to replace a VPWidenSC"); 9140 FirstOpId = 0; 9141 } 9142 unsigned VecOpId = 9143 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9144 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9145 9146 auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent()) 9147 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9148 : nullptr; 9149 9150 if (IsFMulAdd) { 9151 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9152 // need to create an fmul recipe to use as the vector operand for the 9153 // fadd reduction. 9154 VPInstruction *FMulRecipe = new VPInstruction( 9155 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9156 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9157 WidenRecipe->getParent()->insert(FMulRecipe, 9158 WidenRecipe->getIterator()); 9159 VecOp = FMulRecipe; 9160 } 9161 VPReductionRecipe *RedRecipe = 9162 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9163 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9164 Plan->removeVPValueFor(R); 9165 Plan->addVPValue(R, RedRecipe); 9166 // Append the recipe to the end of the VPBasicBlock because we need to 9167 // ensure that it comes after all of it's inputs, including CondOp. 9168 WidenRecipe->getParent()->appendRecipe(RedRecipe); 9169 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9170 WidenRecipe->eraseFromParent(); 9171 9172 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9173 VPRecipeBase *CompareRecipe = 9174 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9175 assert(isa<VPWidenRecipe>(CompareRecipe) && 9176 "Expected to replace a VPWidenSC"); 9177 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9178 "Expected no remaining users"); 9179 CompareRecipe->eraseFromParent(); 9180 } 9181 Chain = R; 9182 } 9183 } 9184 9185 // If tail is folded by masking, introduce selects between the phi 9186 // and the live-out instruction of each reduction, at the beginning of the 9187 // dedicated latch block. 9188 if (CM.foldTailByMasking()) { 9189 Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); 9190 for (VPRecipeBase &R : 9191 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 9192 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9193 if (!PhiR || PhiR->isInLoop()) 9194 continue; 9195 VPValue *Cond = 9196 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9197 VPValue *Red = PhiR->getBackedgeValue(); 9198 assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB && 9199 "reduction recipe must be defined before latch"); 9200 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9201 } 9202 } 9203 } 9204 9205 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9206 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9207 VPSlotTracker &SlotTracker) const { 9208 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9209 IG->getInsertPos()->printAsOperand(O, false); 9210 O << ", "; 9211 getAddr()->printAsOperand(O, SlotTracker); 9212 VPValue *Mask = getMask(); 9213 if (Mask) { 9214 O << ", "; 9215 Mask->printAsOperand(O, SlotTracker); 9216 } 9217 9218 unsigned OpIdx = 0; 9219 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9220 if (!IG->getMember(i)) 9221 continue; 9222 if (getNumStoreOperands() > 0) { 9223 O << "\n" << Indent << " store "; 9224 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9225 O << " to index " << i; 9226 } else { 9227 O << "\n" << Indent << " "; 9228 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9229 O << " = load from index " << i; 9230 } 9231 ++OpIdx; 9232 } 9233 } 9234 #endif 9235 9236 void VPWidenCallRecipe::execute(VPTransformState &State) { 9237 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9238 *this, State); 9239 } 9240 9241 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9242 assert(!State.Instance && "Int or FP induction being replicated."); 9243 9244 Value *Start = getStartValue()->getLiveInIRValue(); 9245 const InductionDescriptor &ID = getInductionDescriptor(); 9246 TruncInst *Trunc = getTruncInst(); 9247 IRBuilderBase &Builder = State.Builder; 9248 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 9249 assert(State.VF.isVector() && "must have vector VF"); 9250 9251 // The value from the original loop to which we are mapping the new induction 9252 // variable. 9253 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 9254 9255 // Fast-math-flags propagate from the original induction instruction. 9256 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9257 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 9258 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 9259 9260 // Now do the actual transformations, and start with fetching the step value. 9261 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9262 9263 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 9264 "Expected either an induction phi-node or a truncate of it!"); 9265 9266 // Construct the initial value of the vector IV in the vector loop preheader 9267 auto CurrIP = Builder.saveIP(); 9268 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 9269 Builder.SetInsertPoint(VectorPH->getTerminator()); 9270 if (isa<TruncInst>(EntryVal)) { 9271 assert(Start->getType()->isIntegerTy() && 9272 "Truncation requires an integer type"); 9273 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 9274 Step = Builder.CreateTrunc(Step, TruncType); 9275 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 9276 } 9277 9278 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 9279 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 9280 Value *SteppedStart = getStepVector( 9281 SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder); 9282 9283 // We create vector phi nodes for both integer and floating-point induction 9284 // variables. Here, we determine the kind of arithmetic we will perform. 9285 Instruction::BinaryOps AddOp; 9286 Instruction::BinaryOps MulOp; 9287 if (Step->getType()->isIntegerTy()) { 9288 AddOp = Instruction::Add; 9289 MulOp = Instruction::Mul; 9290 } else { 9291 AddOp = ID.getInductionOpcode(); 9292 MulOp = Instruction::FMul; 9293 } 9294 9295 // Multiply the vectorization factor by the step using integer or 9296 // floating-point arithmetic as appropriate. 9297 Type *StepType = Step->getType(); 9298 Value *RuntimeVF; 9299 if (Step->getType()->isFloatingPointTy()) 9300 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 9301 else 9302 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 9303 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 9304 9305 // Create a vector splat to use in the induction update. 9306 // 9307 // FIXME: If the step is non-constant, we create the vector splat with 9308 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 9309 // handle a constant vector splat. 9310 Value *SplatVF = isa<Constant>(Mul) 9311 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 9312 : Builder.CreateVectorSplat(State.VF, Mul); 9313 Builder.restoreIP(CurrIP); 9314 9315 // We may need to add the step a number of times, depending on the unroll 9316 // factor. The last of those goes into the PHI. 9317 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 9318 &*State.CFG.PrevBB->getFirstInsertionPt()); 9319 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 9320 Instruction *LastInduction = VecInd; 9321 for (unsigned Part = 0; Part < State.UF; ++Part) { 9322 State.set(this, LastInduction, Part); 9323 9324 if (isa<TruncInst>(EntryVal)) 9325 State.addMetadata(LastInduction, EntryVal); 9326 9327 LastInduction = cast<Instruction>( 9328 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 9329 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 9330 } 9331 9332 LastInduction->setName("vec.ind.next"); 9333 VecInd->addIncoming(SteppedStart, VectorPH); 9334 // Add induction update using an incorrect block temporarily. The phi node 9335 // will be fixed after VPlan execution. Note that at this point the latch 9336 // block cannot be used, as it does not exist yet. 9337 // TODO: Model increment value in VPlan, by turning the recipe into a 9338 // multi-def and a subclass of VPHeaderPHIRecipe. 9339 VecInd->addIncoming(LastInduction, VectorPH); 9340 } 9341 9342 void VPWidenPointerInductionRecipe::execute(VPTransformState &State) { 9343 assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction && 9344 "Not a pointer induction according to InductionDescriptor!"); 9345 assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() && 9346 "Unexpected type."); 9347 9348 auto *IVR = getParent()->getPlan()->getCanonicalIV(); 9349 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 9350 9351 if (onlyScalarsGenerated(State.VF)) { 9352 // This is the normalized GEP that starts counting at zero. 9353 Value *PtrInd = State.Builder.CreateSExtOrTrunc( 9354 CanonicalIV, IndDesc.getStep()->getType()); 9355 // Determine the number of scalars we need to generate for each unroll 9356 // iteration. If the instruction is uniform, we only need to generate the 9357 // first lane. Otherwise, we generate all VF values. 9358 bool IsUniform = vputils::onlyFirstLaneUsed(this); 9359 assert((IsUniform || !State.VF.isScalable()) && 9360 "Cannot scalarize a scalable VF"); 9361 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 9362 9363 for (unsigned Part = 0; Part < State.UF; ++Part) { 9364 Value *PartStart = 9365 createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part); 9366 9367 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 9368 Value *Idx = State.Builder.CreateAdd( 9369 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 9370 Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx); 9371 9372 Value *Step = CreateStepValue(IndDesc.getStep(), SE, 9373 State.CFG.PrevBB->getTerminator()); 9374 Value *SclrGep = emitTransformedIndex( 9375 State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc); 9376 SclrGep->setName("next.gep"); 9377 State.set(this, SclrGep, VPIteration(Part, Lane)); 9378 } 9379 } 9380 return; 9381 } 9382 9383 assert(isa<SCEVConstant>(IndDesc.getStep()) && 9384 "Induction step not a SCEV constant!"); 9385 Type *PhiType = IndDesc.getStep()->getType(); 9386 9387 // Build a pointer phi 9388 Value *ScalarStartValue = getStartValue()->getLiveInIRValue(); 9389 Type *ScStValueType = ScalarStartValue->getType(); 9390 PHINode *NewPointerPhi = 9391 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 9392 9393 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 9394 NewPointerPhi->addIncoming(ScalarStartValue, VectorPH); 9395 9396 // A pointer induction, performed by using a gep 9397 const DataLayout &DL = NewPointerPhi->getModule()->getDataLayout(); 9398 Instruction *InductionLoc = &*State.Builder.GetInsertPoint(); 9399 9400 const SCEV *ScalarStep = IndDesc.getStep(); 9401 SCEVExpander Exp(SE, DL, "induction"); 9402 Value *ScalarStepValue = Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 9403 Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF); 9404 Value *NumUnrolledElems = 9405 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 9406 Value *InductionGEP = GetElementPtrInst::Create( 9407 IndDesc.getElementType(), NewPointerPhi, 9408 State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 9409 InductionLoc); 9410 // Add induction update using an incorrect block temporarily. The phi node 9411 // will be fixed after VPlan execution. Note that at this point the latch 9412 // block cannot be used, as it does not exist yet. 9413 // TODO: Model increment value in VPlan, by turning the recipe into a 9414 // multi-def and a subclass of VPHeaderPHIRecipe. 9415 NewPointerPhi->addIncoming(InductionGEP, VectorPH); 9416 9417 // Create UF many actual address geps that use the pointer 9418 // phi as base and a vectorized version of the step value 9419 // (<step*0, ..., step*N>) as offset. 9420 for (unsigned Part = 0; Part < State.UF; ++Part) { 9421 Type *VecPhiType = VectorType::get(PhiType, State.VF); 9422 Value *StartOffsetScalar = 9423 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 9424 Value *StartOffset = 9425 State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 9426 // Create a vector of consecutive numbers from zero to VF. 9427 StartOffset = State.Builder.CreateAdd( 9428 StartOffset, State.Builder.CreateStepVector(VecPhiType)); 9429 9430 Value *GEP = State.Builder.CreateGEP( 9431 IndDesc.getElementType(), NewPointerPhi, 9432 State.Builder.CreateMul( 9433 StartOffset, 9434 State.Builder.CreateVectorSplat(State.VF, ScalarStepValue), 9435 "vector.gep")); 9436 State.set(this, GEP, Part); 9437 } 9438 } 9439 9440 void VPScalarIVStepsRecipe::execute(VPTransformState &State) { 9441 assert(!State.Instance && "VPScalarIVStepsRecipe being replicated."); 9442 9443 // Fast-math-flags propagate from the original induction instruction. 9444 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder); 9445 if (IndDesc.getInductionBinOp() && 9446 isa<FPMathOperator>(IndDesc.getInductionBinOp())) 9447 State.Builder.setFastMathFlags( 9448 IndDesc.getInductionBinOp()->getFastMathFlags()); 9449 9450 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9451 auto CreateScalarIV = [&](Value *&Step) -> Value * { 9452 Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0)); 9453 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9454 if (!isCanonical() || CanonicalIV->getType() != Ty) { 9455 ScalarIV = 9456 Ty->isIntegerTy() 9457 ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty) 9458 : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty); 9459 ScalarIV = emitTransformedIndex(State.Builder, ScalarIV, 9460 getStartValue()->getLiveInIRValue(), Step, 9461 IndDesc); 9462 ScalarIV->setName("offset.idx"); 9463 } 9464 if (TruncToTy) { 9465 assert(Step->getType()->isIntegerTy() && 9466 "Truncation requires an integer step"); 9467 ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy); 9468 Step = State.Builder.CreateTrunc(Step, TruncToTy); 9469 } 9470 return ScalarIV; 9471 }; 9472 9473 Value *ScalarIV = CreateScalarIV(Step); 9474 if (State.VF.isVector()) { 9475 buildScalarSteps(ScalarIV, Step, IndDesc, this, State); 9476 return; 9477 } 9478 9479 for (unsigned Part = 0; Part < State.UF; ++Part) { 9480 assert(!State.VF.isScalable() && "scalable vectors not yet supported."); 9481 Value *EntryPart; 9482 if (Step->getType()->isFloatingPointTy()) { 9483 Value *StartIdx = 9484 getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part); 9485 // Floating-point operations inherit FMF via the builder's flags. 9486 Value *MulOp = State.Builder.CreateFMul(StartIdx, Step); 9487 EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(), 9488 ScalarIV, MulOp); 9489 } else { 9490 Value *StartIdx = 9491 getRuntimeVF(State.Builder, Step->getType(), State.VF * Part); 9492 EntryPart = State.Builder.CreateAdd( 9493 ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction"); 9494 } 9495 State.set(this, EntryPart, Part); 9496 } 9497 } 9498 9499 void VPInterleaveRecipe::execute(VPTransformState &State) { 9500 assert(!State.Instance && "Interleave group being replicated."); 9501 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9502 getStoredValues(), getMask()); 9503 } 9504 9505 void VPReductionRecipe::execute(VPTransformState &State) { 9506 assert(!State.Instance && "Reduction being replicated."); 9507 Value *PrevInChain = State.get(getChainOp(), 0); 9508 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9509 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9510 // Propagate the fast-math flags carried by the underlying instruction. 9511 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9512 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9513 for (unsigned Part = 0; Part < State.UF; ++Part) { 9514 Value *NewVecOp = State.get(getVecOp(), Part); 9515 if (VPValue *Cond = getCondOp()) { 9516 Value *NewCond = State.get(Cond, Part); 9517 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9518 Value *Iden = RdxDesc->getRecurrenceIdentity( 9519 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9520 Value *IdenVec = 9521 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9522 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9523 NewVecOp = Select; 9524 } 9525 Value *NewRed; 9526 Value *NextInChain; 9527 if (IsOrdered) { 9528 if (State.VF.isVector()) 9529 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9530 PrevInChain); 9531 else 9532 NewRed = State.Builder.CreateBinOp( 9533 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9534 NewVecOp); 9535 PrevInChain = NewRed; 9536 } else { 9537 PrevInChain = State.get(getChainOp(), Part); 9538 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9539 } 9540 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9541 NextInChain = 9542 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9543 NewRed, PrevInChain); 9544 } else if (IsOrdered) 9545 NextInChain = NewRed; 9546 else 9547 NextInChain = State.Builder.CreateBinOp( 9548 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9549 PrevInChain); 9550 State.set(this, NextInChain, Part); 9551 } 9552 } 9553 9554 void VPReplicateRecipe::execute(VPTransformState &State) { 9555 if (State.Instance) { // Generate a single instance. 9556 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9557 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9558 IsPredicated, State); 9559 // Insert scalar instance packing it into a vector. 9560 if (AlsoPack && State.VF.isVector()) { 9561 // If we're constructing lane 0, initialize to start from poison. 9562 if (State.Instance->Lane.isFirstLane()) { 9563 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9564 Value *Poison = PoisonValue::get( 9565 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9566 State.set(this, Poison, State.Instance->Part); 9567 } 9568 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9569 } 9570 return; 9571 } 9572 9573 // Generate scalar instances for all VF lanes of all UF parts, unless the 9574 // instruction is uniform inwhich case generate only the first lane for each 9575 // of the UF parts. 9576 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9577 assert((!State.VF.isScalable() || IsUniform) && 9578 "Can't scalarize a scalable vector"); 9579 for (unsigned Part = 0; Part < State.UF; ++Part) 9580 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9581 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9582 VPIteration(Part, Lane), IsPredicated, 9583 State); 9584 } 9585 9586 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9587 assert(State.Instance && "Predicated instruction PHI works per instance."); 9588 Instruction *ScalarPredInst = 9589 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9590 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9591 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9592 assert(PredicatingBB && "Predicated block has no single predecessor."); 9593 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9594 "operand must be VPReplicateRecipe"); 9595 9596 // By current pack/unpack logic we need to generate only a single phi node: if 9597 // a vector value for the predicated instruction exists at this point it means 9598 // the instruction has vector users only, and a phi for the vector value is 9599 // needed. In this case the recipe of the predicated instruction is marked to 9600 // also do that packing, thereby "hoisting" the insert-element sequence. 9601 // Otherwise, a phi node for the scalar value is needed. 9602 unsigned Part = State.Instance->Part; 9603 if (State.hasVectorValue(getOperand(0), Part)) { 9604 Value *VectorValue = State.get(getOperand(0), Part); 9605 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9606 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9607 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9608 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9609 if (State.hasVectorValue(this, Part)) 9610 State.reset(this, VPhi, Part); 9611 else 9612 State.set(this, VPhi, Part); 9613 // NOTE: Currently we need to update the value of the operand, so the next 9614 // predicated iteration inserts its generated value in the correct vector. 9615 State.reset(getOperand(0), VPhi, Part); 9616 } else { 9617 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9618 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9619 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9620 PredicatingBB); 9621 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9622 if (State.hasScalarValue(this, *State.Instance)) 9623 State.reset(this, Phi, *State.Instance); 9624 else 9625 State.set(this, Phi, *State.Instance); 9626 // NOTE: Currently we need to update the value of the operand, so the next 9627 // predicated iteration inserts its generated value in the correct vector. 9628 State.reset(getOperand(0), Phi, *State.Instance); 9629 } 9630 } 9631 9632 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9633 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9634 9635 // Attempt to issue a wide load. 9636 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9637 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9638 9639 assert((LI || SI) && "Invalid Load/Store instruction"); 9640 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9641 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9642 9643 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9644 9645 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9646 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9647 bool CreateGatherScatter = !Consecutive; 9648 9649 auto &Builder = State.Builder; 9650 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9651 bool isMaskRequired = getMask(); 9652 if (isMaskRequired) 9653 for (unsigned Part = 0; Part < State.UF; ++Part) 9654 BlockInMaskParts[Part] = State.get(getMask(), Part); 9655 9656 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9657 // Calculate the pointer for the specific unroll-part. 9658 GetElementPtrInst *PartPtr = nullptr; 9659 9660 bool InBounds = false; 9661 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9662 InBounds = gep->isInBounds(); 9663 if (Reverse) { 9664 // If the address is consecutive but reversed, then the 9665 // wide store needs to start at the last vector element. 9666 // RunTimeVF = VScale * VF.getKnownMinValue() 9667 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9668 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9669 // NumElt = -Part * RunTimeVF 9670 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9671 // LastLane = 1 - RunTimeVF 9672 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 9673 PartPtr = 9674 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 9675 PartPtr->setIsInBounds(InBounds); 9676 PartPtr = cast<GetElementPtrInst>( 9677 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 9678 PartPtr->setIsInBounds(InBounds); 9679 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 9680 BlockInMaskParts[Part] = 9681 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 9682 } else { 9683 Value *Increment = 9684 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 9685 PartPtr = cast<GetElementPtrInst>( 9686 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 9687 PartPtr->setIsInBounds(InBounds); 9688 } 9689 9690 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 9691 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 9692 }; 9693 9694 // Handle Stores: 9695 if (SI) { 9696 State.setDebugLocFromInst(SI); 9697 9698 for (unsigned Part = 0; Part < State.UF; ++Part) { 9699 Instruction *NewSI = nullptr; 9700 Value *StoredVal = State.get(StoredValue, Part); 9701 if (CreateGatherScatter) { 9702 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9703 Value *VectorGep = State.get(getAddr(), Part); 9704 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 9705 MaskPart); 9706 } else { 9707 if (Reverse) { 9708 // If we store to reverse consecutive memory locations, then we need 9709 // to reverse the order of elements in the stored value. 9710 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 9711 // We don't want to update the value in the map as it might be used in 9712 // another expression. So don't call resetVectorValue(StoredVal). 9713 } 9714 auto *VecPtr = 9715 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 9716 if (isMaskRequired) 9717 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 9718 BlockInMaskParts[Part]); 9719 else 9720 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 9721 } 9722 State.addMetadata(NewSI, SI); 9723 } 9724 return; 9725 } 9726 9727 // Handle loads. 9728 assert(LI && "Must have a load instruction"); 9729 State.setDebugLocFromInst(LI); 9730 for (unsigned Part = 0; Part < State.UF; ++Part) { 9731 Value *NewLI; 9732 if (CreateGatherScatter) { 9733 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9734 Value *VectorGep = State.get(getAddr(), Part); 9735 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 9736 nullptr, "wide.masked.gather"); 9737 State.addMetadata(NewLI, LI); 9738 } else { 9739 auto *VecPtr = 9740 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 9741 if (isMaskRequired) 9742 NewLI = Builder.CreateMaskedLoad( 9743 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 9744 PoisonValue::get(DataTy), "wide.masked.load"); 9745 else 9746 NewLI = 9747 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 9748 9749 // Add metadata to the load, but setVectorValue to the reverse shuffle. 9750 State.addMetadata(NewLI, LI); 9751 if (Reverse) 9752 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 9753 } 9754 9755 State.set(getVPSingleValue(), NewLI, Part); 9756 } 9757 } 9758 9759 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9760 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9761 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9762 // for predication. 9763 static ScalarEpilogueLowering getScalarEpilogueLowering( 9764 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9765 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9766 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9767 LoopVectorizationLegality &LVL) { 9768 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9769 // don't look at hints or options, and don't request a scalar epilogue. 9770 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9771 // LoopAccessInfo (due to code dependency and not being able to reliably get 9772 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9773 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9774 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9775 // back to the old way and vectorize with versioning when forced. See D81345.) 9776 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9777 PGSOQueryType::IRPass) && 9778 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9779 return CM_ScalarEpilogueNotAllowedOptSize; 9780 9781 // 2) If set, obey the directives 9782 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9783 switch (PreferPredicateOverEpilogue) { 9784 case PreferPredicateTy::ScalarEpilogue: 9785 return CM_ScalarEpilogueAllowed; 9786 case PreferPredicateTy::PredicateElseScalarEpilogue: 9787 return CM_ScalarEpilogueNotNeededUsePredicate; 9788 case PreferPredicateTy::PredicateOrDontVectorize: 9789 return CM_ScalarEpilogueNotAllowedUsePredicate; 9790 }; 9791 } 9792 9793 // 3) If set, obey the hints 9794 switch (Hints.getPredicate()) { 9795 case LoopVectorizeHints::FK_Enabled: 9796 return CM_ScalarEpilogueNotNeededUsePredicate; 9797 case LoopVectorizeHints::FK_Disabled: 9798 return CM_ScalarEpilogueAllowed; 9799 }; 9800 9801 // 4) if the TTI hook indicates this is profitable, request predication. 9802 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 9803 LVL.getLAI())) 9804 return CM_ScalarEpilogueNotNeededUsePredicate; 9805 9806 return CM_ScalarEpilogueAllowed; 9807 } 9808 9809 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9810 // If Values have been set for this Def return the one relevant for \p Part. 9811 if (hasVectorValue(Def, Part)) 9812 return Data.PerPartOutput[Def][Part]; 9813 9814 if (!hasScalarValue(Def, {Part, 0})) { 9815 Value *IRV = Def->getLiveInIRValue(); 9816 Value *B = ILV->getBroadcastInstrs(IRV); 9817 set(Def, B, Part); 9818 return B; 9819 } 9820 9821 Value *ScalarValue = get(Def, {Part, 0}); 9822 // If we aren't vectorizing, we can just copy the scalar map values over 9823 // to the vector map. 9824 if (VF.isScalar()) { 9825 set(Def, ScalarValue, Part); 9826 return ScalarValue; 9827 } 9828 9829 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9830 bool IsUniform = RepR && RepR->isUniform(); 9831 9832 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9833 // Check if there is a scalar value for the selected lane. 9834 if (!hasScalarValue(Def, {Part, LastLane})) { 9835 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 9836 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) || 9837 isa<VPScalarIVStepsRecipe>(Def->getDef())) && 9838 "unexpected recipe found to be invariant"); 9839 IsUniform = true; 9840 LastLane = 0; 9841 } 9842 9843 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 9844 // Set the insert point after the last scalarized instruction or after the 9845 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 9846 // will directly follow the scalar definitions. 9847 auto OldIP = Builder.saveIP(); 9848 auto NewIP = 9849 isa<PHINode>(LastInst) 9850 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 9851 : std::next(BasicBlock::iterator(LastInst)); 9852 Builder.SetInsertPoint(&*NewIP); 9853 9854 // However, if we are vectorizing, we need to construct the vector values. 9855 // If the value is known to be uniform after vectorization, we can just 9856 // broadcast the scalar value corresponding to lane zero for each unroll 9857 // iteration. Otherwise, we construct the vector values using 9858 // insertelement instructions. Since the resulting vectors are stored in 9859 // State, we will only generate the insertelements once. 9860 Value *VectorValue = nullptr; 9861 if (IsUniform) { 9862 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 9863 set(Def, VectorValue, Part); 9864 } else { 9865 // Initialize packing with insertelements to start from undef. 9866 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 9867 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 9868 set(Def, Undef, Part); 9869 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 9870 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 9871 VectorValue = get(Def, Part); 9872 } 9873 Builder.restoreIP(OldIP); 9874 return VectorValue; 9875 } 9876 9877 // Process the loop in the VPlan-native vectorization path. This path builds 9878 // VPlan upfront in the vectorization pipeline, which allows to apply 9879 // VPlan-to-VPlan transformations from the very beginning without modifying the 9880 // input LLVM IR. 9881 static bool processLoopInVPlanNativePath( 9882 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 9883 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 9884 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 9885 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 9886 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 9887 LoopVectorizationRequirements &Requirements) { 9888 9889 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 9890 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 9891 return false; 9892 } 9893 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 9894 Function *F = L->getHeader()->getParent(); 9895 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 9896 9897 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9898 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 9899 9900 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 9901 &Hints, IAI); 9902 // Use the planner for outer loop vectorization. 9903 // TODO: CM is not used at this point inside the planner. Turn CM into an 9904 // optional argument if we don't need it in the future. 9905 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, ORE); 9906 9907 // Get user vectorization factor. 9908 ElementCount UserVF = Hints.getWidth(); 9909 9910 CM.collectElementTypesForWidening(); 9911 9912 // Plan how to best vectorize, return the best VF and its cost. 9913 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 9914 9915 // If we are stress testing VPlan builds, do not attempt to generate vector 9916 // code. Masked vector code generation support will follow soon. 9917 // Also, do not attempt to vectorize if no vector code will be produced. 9918 if (VPlanBuildStressTest || VectorizationFactor::Disabled() == VF) 9919 return false; 9920 9921 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 9922 9923 { 9924 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, TTI, 9925 F->getParent()->getDataLayout()); 9926 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 9927 VF.Width, 1, LVL, &CM, BFI, PSI, Checks); 9928 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 9929 << L->getHeader()->getParent()->getName() << "\"\n"); 9930 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT, false); 9931 } 9932 9933 // Mark the loop as already vectorized to avoid vectorizing again. 9934 Hints.setAlreadyVectorized(); 9935 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9936 return true; 9937 } 9938 9939 // Emit a remark if there are stores to floats that required a floating point 9940 // extension. If the vectorized loop was generated with floating point there 9941 // will be a performance penalty from the conversion overhead and the change in 9942 // the vector width. 9943 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 9944 SmallVector<Instruction *, 4> Worklist; 9945 for (BasicBlock *BB : L->getBlocks()) { 9946 for (Instruction &Inst : *BB) { 9947 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 9948 if (S->getValueOperand()->getType()->isFloatTy()) 9949 Worklist.push_back(S); 9950 } 9951 } 9952 } 9953 9954 // Traverse the floating point stores upwards searching, for floating point 9955 // conversions. 9956 SmallPtrSet<const Instruction *, 4> Visited; 9957 SmallPtrSet<const Instruction *, 4> EmittedRemark; 9958 while (!Worklist.empty()) { 9959 auto *I = Worklist.pop_back_val(); 9960 if (!L->contains(I)) 9961 continue; 9962 if (!Visited.insert(I).second) 9963 continue; 9964 9965 // Emit a remark if the floating point store required a floating 9966 // point conversion. 9967 // TODO: More work could be done to identify the root cause such as a 9968 // constant or a function return type and point the user to it. 9969 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 9970 ORE->emit([&]() { 9971 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 9972 I->getDebugLoc(), L->getHeader()) 9973 << "floating point conversion changes vector width. " 9974 << "Mixed floating point precision requires an up/down " 9975 << "cast that will negatively impact performance."; 9976 }); 9977 9978 for (Use &Op : I->operands()) 9979 if (auto *OpI = dyn_cast<Instruction>(Op)) 9980 Worklist.push_back(OpI); 9981 } 9982 } 9983 9984 static bool areRuntimeChecksProfitable(GeneratedRTChecks &Checks, 9985 VectorizationFactor &VF, 9986 Optional<unsigned> VScale, Loop *L, 9987 ScalarEvolution &SE) { 9988 InstructionCost CheckCost = Checks.getCost(); 9989 if (!CheckCost.isValid()) 9990 return false; 9991 9992 // When interleaving only scalar and vector cost will be equal, which in turn 9993 // would lead to a divide by 0. Fall back to hard threshold. 9994 if (VF.Width.isScalar()) { 9995 if (CheckCost > VectorizeMemoryCheckThreshold) { 9996 LLVM_DEBUG( 9997 dbgs() 9998 << "LV: Interleaving only is not profitable due to runtime checks\n"); 9999 return false; 10000 } 10001 return true; 10002 } 10003 10004 // The scalar cost should only be 0 when vectorizing with a user specified VF/IC. In those cases, runtime checks should always be generated. 10005 double ScalarC = *VF.ScalarCost.getValue(); 10006 if (ScalarC == 0) 10007 return true; 10008 10009 // First, compute the minimum iteration count required so that the vector 10010 // loop outperforms the scalar loop. 10011 // The total cost of the scalar loop is 10012 // ScalarC * TC 10013 // where 10014 // * TC is the actual trip count of the loop. 10015 // * ScalarC is the cost of a single scalar iteration. 10016 // 10017 // The total cost of the vector loop is 10018 // RtC + VecC * (TC / VF) + EpiC 10019 // where 10020 // * RtC is the cost of the generated runtime checks 10021 // * VecC is the cost of a single vector iteration. 10022 // * TC is the actual trip count of the loop 10023 // * VF is the vectorization factor 10024 // * EpiCost is the cost of the generated epilogue, including the cost 10025 // of the remaining scalar operations. 10026 // 10027 // Vectorization is profitable once the total vector cost is less than the 10028 // total scalar cost: 10029 // RtC + VecC * (TC / VF) + EpiC < ScalarC * TC 10030 // 10031 // Now we can compute the minimum required trip count TC as 10032 // (RtC + EpiC) / (ScalarC - (VecC / VF)) < TC 10033 // 10034 // For now we assume the epilogue cost EpiC = 0 for simplicity. Note that 10035 // the computations are performed on doubles, not integers and the result 10036 // is rounded up, hence we get an upper estimate of the TC. 10037 unsigned IntVF = VF.Width.getKnownMinValue(); 10038 if (VF.Width.isScalable()) { 10039 unsigned AssumedMinimumVscale = 1; 10040 if (VScale) 10041 AssumedMinimumVscale = *VScale; 10042 IntVF *= AssumedMinimumVscale; 10043 } 10044 double VecCOverVF = double(*VF.Cost.getValue()) / IntVF; 10045 double RtC = *CheckCost.getValue(); 10046 double MinTC1 = RtC / (ScalarC - VecCOverVF); 10047 10048 // Second, compute a minimum iteration count so that the cost of the 10049 // runtime checks is only a fraction of the total scalar loop cost. This 10050 // adds a loop-dependent bound on the overhead incurred if the runtime 10051 // checks fail. In case the runtime checks fail, the cost is RtC + ScalarC 10052 // * TC. To bound the runtime check to be a fraction 1/X of the scalar 10053 // cost, compute 10054 // RtC < ScalarC * TC * (1 / X) ==> RtC * X / ScalarC < TC 10055 double MinTC2 = RtC * 10 / ScalarC; 10056 10057 // Now pick the larger minimum. If it is not a multiple of VF, choose the 10058 // next closest multiple of VF. This should partly compensate for ignoring 10059 // the epilogue cost. 10060 uint64_t MinTC = std::ceil(std::max(MinTC1, MinTC2)); 10061 VF.MinProfitableTripCount = ElementCount::getFixed(alignTo(MinTC, IntVF)); 10062 10063 LLVM_DEBUG( 10064 dbgs() << "LV: Minimum required TC for runtime checks to be profitable:" 10065 << VF.MinProfitableTripCount << "\n"); 10066 10067 // Skip vectorization if the expected trip count is less than the minimum 10068 // required trip count. 10069 if (auto ExpectedTC = getSmallBestKnownTC(SE, L)) { 10070 if (ElementCount::isKnownLT(ElementCount::getFixed(*ExpectedTC), 10071 VF.MinProfitableTripCount)) { 10072 LLVM_DEBUG(dbgs() << "LV: Vectorization is not beneficial: expected " 10073 "trip count < minimum profitable VF (" 10074 << *ExpectedTC << " < " << VF.MinProfitableTripCount 10075 << ")\n"); 10076 10077 return false; 10078 } 10079 } 10080 return true; 10081 } 10082 10083 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10084 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10085 !EnableLoopInterleaving), 10086 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10087 !EnableLoopVectorization) {} 10088 10089 bool LoopVectorizePass::processLoop(Loop *L) { 10090 assert((EnableVPlanNativePath || L->isInnermost()) && 10091 "VPlan-native path is not enabled. Only process inner loops."); 10092 10093 #ifndef NDEBUG 10094 const std::string DebugLocStr = getDebugLocString(L); 10095 #endif /* NDEBUG */ 10096 10097 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '" 10098 << L->getHeader()->getParent()->getName() << "' from " 10099 << DebugLocStr << "\n"); 10100 10101 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10102 10103 LLVM_DEBUG( 10104 dbgs() << "LV: Loop hints:" 10105 << " force=" 10106 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10107 ? "disabled" 10108 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10109 ? "enabled" 10110 : "?")) 10111 << " width=" << Hints.getWidth() 10112 << " interleave=" << Hints.getInterleave() << "\n"); 10113 10114 // Function containing loop 10115 Function *F = L->getHeader()->getParent(); 10116 10117 // Looking at the diagnostic output is the only way to determine if a loop 10118 // was vectorized (other than looking at the IR or machine code), so it 10119 // is important to generate an optimization remark for each loop. Most of 10120 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10121 // generated as OptimizationRemark and OptimizationRemarkMissed are 10122 // less verbose reporting vectorized loops and unvectorized loops that may 10123 // benefit from vectorization, respectively. 10124 10125 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10126 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10127 return false; 10128 } 10129 10130 PredicatedScalarEvolution PSE(*SE, *L); 10131 10132 // Check if it is legal to vectorize the loop. 10133 LoopVectorizationRequirements Requirements; 10134 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10135 &Requirements, &Hints, DB, AC, BFI, PSI); 10136 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10137 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10138 Hints.emitRemarkWithHints(); 10139 return false; 10140 } 10141 10142 // Check the function attributes and profiles to find out if this function 10143 // should be optimized for size. 10144 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10145 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10146 10147 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10148 // here. They may require CFG and instruction level transformations before 10149 // even evaluating whether vectorization is profitable. Since we cannot modify 10150 // the incoming IR, we need to build VPlan upfront in the vectorization 10151 // pipeline. 10152 if (!L->isInnermost()) 10153 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10154 ORE, BFI, PSI, Hints, Requirements); 10155 10156 assert(L->isInnermost() && "Inner loop expected."); 10157 10158 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10159 // count by optimizing for size, to minimize overheads. 10160 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10161 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10162 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10163 << "This loop is worth vectorizing only if no scalar " 10164 << "iteration overheads are incurred."); 10165 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10166 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10167 else { 10168 LLVM_DEBUG(dbgs() << "\n"); 10169 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10170 } 10171 } 10172 10173 // Check the function attributes to see if implicit floats are allowed. 10174 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10175 // an integer loop and the vector instructions selected are purely integer 10176 // vector instructions? 10177 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10178 reportVectorizationFailure( 10179 "Can't vectorize when the NoImplicitFloat attribute is used", 10180 "loop not vectorized due to NoImplicitFloat attribute", 10181 "NoImplicitFloat", ORE, L); 10182 Hints.emitRemarkWithHints(); 10183 return false; 10184 } 10185 10186 // Check if the target supports potentially unsafe FP vectorization. 10187 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10188 // for the target we're vectorizing for, to make sure none of the 10189 // additional fp-math flags can help. 10190 if (Hints.isPotentiallyUnsafe() && 10191 TTI->isFPVectorizationPotentiallyUnsafe()) { 10192 reportVectorizationFailure( 10193 "Potentially unsafe FP op prevents vectorization", 10194 "loop not vectorized due to unsafe FP support.", 10195 "UnsafeFP", ORE, L); 10196 Hints.emitRemarkWithHints(); 10197 return false; 10198 } 10199 10200 bool AllowOrderedReductions; 10201 // If the flag is set, use that instead and override the TTI behaviour. 10202 if (ForceOrderedReductions.getNumOccurrences() > 0) 10203 AllowOrderedReductions = ForceOrderedReductions; 10204 else 10205 AllowOrderedReductions = TTI->enableOrderedReductions(); 10206 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10207 ORE->emit([&]() { 10208 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10209 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10210 ExactFPMathInst->getDebugLoc(), 10211 ExactFPMathInst->getParent()) 10212 << "loop not vectorized: cannot prove it is safe to reorder " 10213 "floating-point operations"; 10214 }); 10215 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10216 "reorder floating-point operations\n"); 10217 Hints.emitRemarkWithHints(); 10218 return false; 10219 } 10220 10221 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10222 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10223 10224 // If an override option has been passed in for interleaved accesses, use it. 10225 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10226 UseInterleaved = EnableInterleavedMemAccesses; 10227 10228 // Analyze interleaved memory accesses. 10229 if (UseInterleaved) { 10230 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10231 } 10232 10233 // Use the cost model. 10234 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10235 F, &Hints, IAI); 10236 CM.collectValuesToIgnore(); 10237 CM.collectElementTypesForWidening(); 10238 10239 // Use the planner for vectorization. 10240 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, ORE); 10241 10242 // Get user vectorization factor and interleave count. 10243 ElementCount UserVF = Hints.getWidth(); 10244 unsigned UserIC = Hints.getInterleave(); 10245 10246 // Plan how to best vectorize, return the best VF and its cost. 10247 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10248 10249 VectorizationFactor VF = VectorizationFactor::Disabled(); 10250 unsigned IC = 1; 10251 10252 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, TTI, 10253 F->getParent()->getDataLayout()); 10254 if (MaybeVF) { 10255 VF = *MaybeVF; 10256 // Select the interleave count. 10257 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10258 10259 unsigned SelectedIC = std::max(IC, UserIC); 10260 // Optimistically generate runtime checks if they are needed. Drop them if 10261 // they turn out to not be profitable. 10262 if (VF.Width.isVector() || SelectedIC > 1) 10263 Checks.Create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC); 10264 10265 // Check if it is profitable to vectorize with runtime checks. 10266 bool ForceVectorization = 10267 Hints.getForce() == LoopVectorizeHints::FK_Enabled; 10268 if (!ForceVectorization && 10269 !areRuntimeChecksProfitable(Checks, VF, CM.getVScaleForTuning(), L, 10270 *PSE.getSE())) { 10271 ORE->emit([&]() { 10272 return OptimizationRemarkAnalysisAliasing( 10273 DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(), 10274 L->getHeader()) 10275 << "loop not vectorized: cannot prove it is safe to reorder " 10276 "memory operations"; 10277 }); 10278 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 10279 Hints.emitRemarkWithHints(); 10280 return false; 10281 } 10282 } 10283 10284 // Identify the diagnostic messages that should be produced. 10285 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10286 bool VectorizeLoop = true, InterleaveLoop = true; 10287 if (VF.Width.isScalar()) { 10288 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10289 VecDiagMsg = std::make_pair( 10290 "VectorizationNotBeneficial", 10291 "the cost-model indicates that vectorization is not beneficial"); 10292 VectorizeLoop = false; 10293 } 10294 10295 if (!MaybeVF && UserIC > 1) { 10296 // Tell the user interleaving was avoided up-front, despite being explicitly 10297 // requested. 10298 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10299 "interleaving should be avoided up front\n"); 10300 IntDiagMsg = std::make_pair( 10301 "InterleavingAvoided", 10302 "Ignoring UserIC, because interleaving was avoided up front"); 10303 InterleaveLoop = false; 10304 } else if (IC == 1 && UserIC <= 1) { 10305 // Tell the user interleaving is not beneficial. 10306 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10307 IntDiagMsg = std::make_pair( 10308 "InterleavingNotBeneficial", 10309 "the cost-model indicates that interleaving is not beneficial"); 10310 InterleaveLoop = false; 10311 if (UserIC == 1) { 10312 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10313 IntDiagMsg.second += 10314 " and is explicitly disabled or interleave count is set to 1"; 10315 } 10316 } else if (IC > 1 && UserIC == 1) { 10317 // Tell the user interleaving is beneficial, but it explicitly disabled. 10318 LLVM_DEBUG( 10319 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10320 IntDiagMsg = std::make_pair( 10321 "InterleavingBeneficialButDisabled", 10322 "the cost-model indicates that interleaving is beneficial " 10323 "but is explicitly disabled or interleave count is set to 1"); 10324 InterleaveLoop = false; 10325 } 10326 10327 // Override IC if user provided an interleave count. 10328 IC = UserIC > 0 ? UserIC : IC; 10329 10330 // Emit diagnostic messages, if any. 10331 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10332 if (!VectorizeLoop && !InterleaveLoop) { 10333 // Do not vectorize or interleaving the loop. 10334 ORE->emit([&]() { 10335 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10336 L->getStartLoc(), L->getHeader()) 10337 << VecDiagMsg.second; 10338 }); 10339 ORE->emit([&]() { 10340 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10341 L->getStartLoc(), L->getHeader()) 10342 << IntDiagMsg.second; 10343 }); 10344 return false; 10345 } else if (!VectorizeLoop && InterleaveLoop) { 10346 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10347 ORE->emit([&]() { 10348 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10349 L->getStartLoc(), L->getHeader()) 10350 << VecDiagMsg.second; 10351 }); 10352 } else if (VectorizeLoop && !InterleaveLoop) { 10353 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10354 << ") in " << DebugLocStr << '\n'); 10355 ORE->emit([&]() { 10356 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10357 L->getStartLoc(), L->getHeader()) 10358 << IntDiagMsg.second; 10359 }); 10360 } else if (VectorizeLoop && InterleaveLoop) { 10361 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10362 << ") in " << DebugLocStr << '\n'); 10363 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10364 } 10365 10366 bool DisableRuntimeUnroll = false; 10367 MDNode *OrigLoopID = L->getLoopID(); 10368 { 10369 using namespace ore; 10370 if (!VectorizeLoop) { 10371 assert(IC > 1 && "interleave count should not be 1 or 0"); 10372 // If we decided that it is not legal to vectorize the loop, then 10373 // interleave it. 10374 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10375 &CM, BFI, PSI, Checks); 10376 10377 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10378 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT, false); 10379 10380 ORE->emit([&]() { 10381 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10382 L->getHeader()) 10383 << "interleaved loop (interleaved count: " 10384 << NV("InterleaveCount", IC) << ")"; 10385 }); 10386 } else { 10387 // If we decided that it is *legal* to vectorize the loop, then do it. 10388 10389 // Consider vectorizing the epilogue too if it's profitable. 10390 VectorizationFactor EpilogueVF = 10391 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10392 if (EpilogueVF.Width.isVector()) { 10393 10394 // The first pass vectorizes the main loop and creates a scalar epilogue 10395 // to be vectorized by executing the plan (potentially with a different 10396 // factor) again shortly afterwards. 10397 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10398 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10399 EPI, &LVL, &CM, BFI, PSI, Checks); 10400 10401 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10402 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10403 DT, true); 10404 ++LoopsVectorized; 10405 10406 // Second pass vectorizes the epilogue and adjusts the control flow 10407 // edges from the first pass. 10408 EPI.MainLoopVF = EPI.EpilogueVF; 10409 EPI.MainLoopUF = EPI.EpilogueUF; 10410 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10411 ORE, EPI, &LVL, &CM, BFI, PSI, 10412 Checks); 10413 10414 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10415 VPRegionBlock *VectorLoop = BestEpiPlan.getVectorLoopRegion(); 10416 VPBasicBlock *Header = VectorLoop->getEntryBasicBlock(); 10417 Header->setName("vec.epilog.vector.body"); 10418 10419 // Ensure that the start values for any VPReductionPHIRecipes are 10420 // updated before vectorising the epilogue loop. 10421 for (VPRecipeBase &R : Header->phis()) { 10422 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { 10423 if (auto *Resume = MainILV.getReductionResumeValue( 10424 ReductionPhi->getRecurrenceDescriptor())) { 10425 VPValue *StartVal = BestEpiPlan.getOrAddExternalDef(Resume); 10426 ReductionPhi->setOperand(0, StartVal); 10427 } 10428 } 10429 } 10430 10431 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10432 DT, true); 10433 ++LoopsEpilogueVectorized; 10434 10435 if (!MainILV.areSafetyChecksAdded()) 10436 DisableRuntimeUnroll = true; 10437 } else { 10438 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 10439 VF.MinProfitableTripCount, IC, &LVL, &CM, BFI, 10440 PSI, Checks); 10441 10442 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10443 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT, false); 10444 ++LoopsVectorized; 10445 10446 // Add metadata to disable runtime unrolling a scalar loop when there 10447 // are no runtime checks about strides and memory. A scalar loop that is 10448 // rarely used is not worth unrolling. 10449 if (!LB.areSafetyChecksAdded()) 10450 DisableRuntimeUnroll = true; 10451 } 10452 // Report the vectorization decision. 10453 ORE->emit([&]() { 10454 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10455 L->getHeader()) 10456 << "vectorized loop (vectorization width: " 10457 << NV("VectorizationFactor", VF.Width) 10458 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10459 }); 10460 } 10461 10462 if (ORE->allowExtraAnalysis(LV_NAME)) 10463 checkMixedPrecision(L, ORE); 10464 } 10465 10466 Optional<MDNode *> RemainderLoopID = 10467 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10468 LLVMLoopVectorizeFollowupEpilogue}); 10469 if (RemainderLoopID) { 10470 L->setLoopID(RemainderLoopID.value()); 10471 } else { 10472 if (DisableRuntimeUnroll) 10473 AddRuntimeUnrollDisableMetaData(L); 10474 10475 // Mark the loop as already vectorized to avoid vectorizing again. 10476 Hints.setAlreadyVectorized(); 10477 } 10478 10479 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10480 return true; 10481 } 10482 10483 LoopVectorizeResult LoopVectorizePass::runImpl( 10484 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10485 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10486 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10487 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10488 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10489 SE = &SE_; 10490 LI = &LI_; 10491 TTI = &TTI_; 10492 DT = &DT_; 10493 BFI = &BFI_; 10494 TLI = TLI_; 10495 AA = &AA_; 10496 AC = &AC_; 10497 GetLAA = &GetLAA_; 10498 DB = &DB_; 10499 ORE = &ORE_; 10500 PSI = PSI_; 10501 10502 // Don't attempt if 10503 // 1. the target claims to have no vector registers, and 10504 // 2. interleaving won't help ILP. 10505 // 10506 // The second condition is necessary because, even if the target has no 10507 // vector registers, loop vectorization may still enable scalar 10508 // interleaving. 10509 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10510 TTI->getMaxInterleaveFactor(1) < 2) 10511 return LoopVectorizeResult(false, false); 10512 10513 bool Changed = false, CFGChanged = false; 10514 10515 // The vectorizer requires loops to be in simplified form. 10516 // Since simplification may add new inner loops, it has to run before the 10517 // legality and profitability checks. This means running the loop vectorizer 10518 // will simplify all loops, regardless of whether anything end up being 10519 // vectorized. 10520 for (auto &L : *LI) 10521 Changed |= CFGChanged |= 10522 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10523 10524 // Build up a worklist of inner-loops to vectorize. This is necessary as 10525 // the act of vectorizing or partially unrolling a loop creates new loops 10526 // and can invalidate iterators across the loops. 10527 SmallVector<Loop *, 8> Worklist; 10528 10529 for (Loop *L : *LI) 10530 collectSupportedLoops(*L, LI, ORE, Worklist); 10531 10532 LoopsAnalyzed += Worklist.size(); 10533 10534 // Now walk the identified inner loops. 10535 while (!Worklist.empty()) { 10536 Loop *L = Worklist.pop_back_val(); 10537 10538 // For the inner loops we actually process, form LCSSA to simplify the 10539 // transform. 10540 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10541 10542 Changed |= CFGChanged |= processLoop(L); 10543 } 10544 10545 // Process each loop nest in the function. 10546 return LoopVectorizeResult(Changed, CFGChanged); 10547 } 10548 10549 PreservedAnalyses LoopVectorizePass::run(Function &F, 10550 FunctionAnalysisManager &AM) { 10551 auto &LI = AM.getResult<LoopAnalysis>(F); 10552 // There are no loops in the function. Return before computing other expensive 10553 // analyses. 10554 if (LI.empty()) 10555 return PreservedAnalyses::all(); 10556 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10557 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10558 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10559 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10560 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10561 auto &AA = AM.getResult<AAManager>(F); 10562 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10563 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10564 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10565 10566 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10567 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10568 [&](Loop &L) -> const LoopAccessInfo & { 10569 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10570 TLI, TTI, nullptr, nullptr, nullptr}; 10571 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10572 }; 10573 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10574 ProfileSummaryInfo *PSI = 10575 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10576 LoopVectorizeResult Result = 10577 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10578 if (!Result.MadeAnyChange) 10579 return PreservedAnalyses::all(); 10580 PreservedAnalyses PA; 10581 10582 // We currently do not preserve loopinfo/dominator analyses with outer loop 10583 // vectorization. Until this is addressed, mark these analyses as preserved 10584 // only for non-VPlan-native path. 10585 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10586 if (!EnableVPlanNativePath) { 10587 PA.preserve<LoopAnalysis>(); 10588 PA.preserve<DominatorTreeAnalysis>(); 10589 } 10590 10591 if (Result.MadeCFGChange) { 10592 // Making CFG changes likely means a loop got vectorized. Indicate that 10593 // extra simplification passes should be run. 10594 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10595 // be run if runtime checks have been added. 10596 AM.getResult<ShouldRunExtraVectorPasses>(F); 10597 PA.preserve<ShouldRunExtraVectorPasses>(); 10598 } else { 10599 PA.preserveSet<CFGAnalyses>(); 10600 } 10601 return PA; 10602 } 10603 10604 void LoopVectorizePass::printPipeline( 10605 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10606 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10607 OS, MapClassName2PassName); 10608 10609 OS << "<"; 10610 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10611 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10612 OS << ">"; 10613 } 10614