1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/MemorySSA.h"
91 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
92 #include "llvm/Analysis/ProfileSummaryInfo.h"
93 #include "llvm/Analysis/ScalarEvolution.h"
94 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
95 #include "llvm/Analysis/TargetLibraryInfo.h"
96 #include "llvm/Analysis/TargetTransformInfo.h"
97 #include "llvm/Analysis/VectorUtils.h"
98 #include "llvm/IR/Attributes.h"
99 #include "llvm/IR/BasicBlock.h"
100 #include "llvm/IR/CFG.h"
101 #include "llvm/IR/Constant.h"
102 #include "llvm/IR/Constants.h"
103 #include "llvm/IR/DataLayout.h"
104 #include "llvm/IR/DebugInfoMetadata.h"
105 #include "llvm/IR/DebugLoc.h"
106 #include "llvm/IR/DerivedTypes.h"
107 #include "llvm/IR/DiagnosticInfo.h"
108 #include "llvm/IR/Dominators.h"
109 #include "llvm/IR/Function.h"
110 #include "llvm/IR/IRBuilder.h"
111 #include "llvm/IR/InstrTypes.h"
112 #include "llvm/IR/Instruction.h"
113 #include "llvm/IR/Instructions.h"
114 #include "llvm/IR/IntrinsicInst.h"
115 #include "llvm/IR/Intrinsics.h"
116 #include "llvm/IR/LLVMContext.h"
117 #include "llvm/IR/Metadata.h"
118 #include "llvm/IR/Module.h"
119 #include "llvm/IR/Operator.h"
120 #include "llvm/IR/PatternMatch.h"
121 #include "llvm/IR/Type.h"
122 #include "llvm/IR/Use.h"
123 #include "llvm/IR/User.h"
124 #include "llvm/IR/Value.h"
125 #include "llvm/IR/ValueHandle.h"
126 #include "llvm/IR/Verifier.h"
127 #include "llvm/InitializePasses.h"
128 #include "llvm/Pass.h"
129 #include "llvm/Support/Casting.h"
130 #include "llvm/Support/CommandLine.h"
131 #include "llvm/Support/Compiler.h"
132 #include "llvm/Support/Debug.h"
133 #include "llvm/Support/ErrorHandling.h"
134 #include "llvm/Support/InstructionCost.h"
135 #include "llvm/Support/MathExtras.h"
136 #include "llvm/Support/raw_ostream.h"
137 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
138 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
139 #include "llvm/Transforms/Utils/LoopSimplify.h"
140 #include "llvm/Transforms/Utils/LoopUtils.h"
141 #include "llvm/Transforms/Utils/LoopVersioning.h"
142 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
143 #include "llvm/Transforms/Utils/SizeOpts.h"
144 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
145 #include <algorithm>
146 #include <cassert>
147 #include <cstdint>
148 #include <cstdlib>
149 #include <functional>
150 #include <iterator>
151 #include <limits>
152 #include <memory>
153 #include <string>
154 #include <tuple>
155 #include <utility>
156 
157 using namespace llvm;
158 
159 #define LV_NAME "loop-vectorize"
160 #define DEBUG_TYPE LV_NAME
161 
162 #ifndef NDEBUG
163 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
164 #endif
165 
166 /// @{
167 /// Metadata attribute names
168 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
169 const char LLVMLoopVectorizeFollowupVectorized[] =
170     "llvm.loop.vectorize.followup_vectorized";
171 const char LLVMLoopVectorizeFollowupEpilogue[] =
172     "llvm.loop.vectorize.followup_epilogue";
173 /// @}
174 
175 STATISTIC(LoopsVectorized, "Number of loops vectorized");
176 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
177 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
178 
179 static cl::opt<bool> EnableEpilogueVectorization(
180     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
181     cl::desc("Enable vectorization of epilogue loops."));
182 
183 static cl::opt<unsigned> EpilogueVectorizationForceVF(
184     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
185     cl::desc("When epilogue vectorization is enabled, and a value greater than "
186              "1 is specified, forces the given VF for all applicable epilogue "
187              "loops."));
188 
189 static cl::opt<unsigned> EpilogueVectorizationMinVF(
190     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
191     cl::desc("Only loops with vectorization factor equal to or larger than "
192              "the specified value are considered for epilogue vectorization."));
193 
194 /// Loops with a known constant trip count below this number are vectorized only
195 /// if no scalar iteration overheads are incurred.
196 static cl::opt<unsigned> TinyTripCountVectorThreshold(
197     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
198     cl::desc("Loops with a constant trip count that is smaller than this "
199              "value are vectorized only if no scalar iteration overheads "
200              "are incurred."));
201 
202 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
203     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
204     cl::desc("The maximum allowed number of runtime memory checks with a "
205              "vectorize(enable) pragma."));
206 
207 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
208 // that predication is preferred, and this lists all options. I.e., the
209 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
210 // and predicate the instructions accordingly. If tail-folding fails, there are
211 // different fallback strategies depending on these values:
212 namespace PreferPredicateTy {
213   enum Option {
214     ScalarEpilogue = 0,
215     PredicateElseScalarEpilogue,
216     PredicateOrDontVectorize
217   };
218 } // namespace PreferPredicateTy
219 
220 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
221     "prefer-predicate-over-epilogue",
222     cl::init(PreferPredicateTy::ScalarEpilogue),
223     cl::Hidden,
224     cl::desc("Tail-folding and predication preferences over creating a scalar "
225              "epilogue loop."),
226     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
227                          "scalar-epilogue",
228                          "Don't tail-predicate loops, create scalar epilogue"),
229               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
230                          "predicate-else-scalar-epilogue",
231                          "prefer tail-folding, create scalar epilogue if tail "
232                          "folding fails."),
233               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
234                          "predicate-dont-vectorize",
235                          "prefers tail-folding, don't attempt vectorization if "
236                          "tail-folding fails.")));
237 
238 static cl::opt<bool> MaximizeBandwidth(
239     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
240     cl::desc("Maximize bandwidth when selecting vectorization factor which "
241              "will be determined by the smallest type in loop."));
242 
243 static cl::opt<bool> EnableInterleavedMemAccesses(
244     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
245     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
246 
247 /// An interleave-group may need masking if it resides in a block that needs
248 /// predication, or in order to mask away gaps.
249 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
250     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
251     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
252 
253 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
254     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
255     cl::desc("We don't interleave loops with a estimated constant trip count "
256              "below this number"));
257 
258 static cl::opt<unsigned> ForceTargetNumScalarRegs(
259     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
260     cl::desc("A flag that overrides the target's number of scalar registers."));
261 
262 static cl::opt<unsigned> ForceTargetNumVectorRegs(
263     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
264     cl::desc("A flag that overrides the target's number of vector registers."));
265 
266 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
267     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
268     cl::desc("A flag that overrides the target's max interleave factor for "
269              "scalar loops."));
270 
271 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
272     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
273     cl::desc("A flag that overrides the target's max interleave factor for "
274              "vectorized loops."));
275 
276 static cl::opt<unsigned> ForceTargetInstructionCost(
277     "force-target-instruction-cost", cl::init(0), cl::Hidden,
278     cl::desc("A flag that overrides the target's expected cost for "
279              "an instruction to a single constant value. Mostly "
280              "useful for getting consistent testing."));
281 
282 static cl::opt<bool> ForceTargetSupportsScalableVectors(
283     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
284     cl::desc(
285         "Pretend that scalable vectors are supported, even if the target does "
286         "not support them. This flag should only be used for testing."));
287 
288 static cl::opt<unsigned> SmallLoopCost(
289     "small-loop-cost", cl::init(20), cl::Hidden,
290     cl::desc(
291         "The cost of a loop that is considered 'small' by the interleaver."));
292 
293 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
294     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
295     cl::desc("Enable the use of the block frequency analysis to access PGO "
296              "heuristics minimizing code growth in cold regions and being more "
297              "aggressive in hot regions."));
298 
299 // Runtime interleave loops for load/store throughput.
300 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
301     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
302     cl::desc(
303         "Enable runtime interleaving until load/store ports are saturated"));
304 
305 /// Interleave small loops with scalar reductions.
306 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
307     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
308     cl::desc("Enable interleaving for loops with small iteration counts that "
309              "contain scalar reductions to expose ILP."));
310 
311 /// The number of stores in a loop that are allowed to need predication.
312 static cl::opt<unsigned> NumberOfStoresToPredicate(
313     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
314     cl::desc("Max number of stores to be predicated behind an if."));
315 
316 static cl::opt<bool> EnableIndVarRegisterHeur(
317     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
318     cl::desc("Count the induction variable only once when interleaving"));
319 
320 static cl::opt<bool> EnableCondStoresVectorization(
321     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
322     cl::desc("Enable if predication of stores during vectorization."));
323 
324 static cl::opt<unsigned> MaxNestedScalarReductionIC(
325     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
326     cl::desc("The maximum interleave count to use when interleaving a scalar "
327              "reduction in a nested loop."));
328 
329 static cl::opt<bool>
330     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
331                            cl::Hidden,
332                            cl::desc("Prefer in-loop vector reductions, "
333                                     "overriding the targets preference."));
334 
335 cl::opt<bool> ForceOrderedReductions(
336     "force-ordered-reductions", cl::init(false), cl::Hidden,
337     cl::desc("Enable the vectorisation of loops with in-order (strict) "
338              "FP reductions"));
339 
340 static cl::opt<bool> PreferPredicatedReductionSelect(
341     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
342     cl::desc(
343         "Prefer predicating a reduction operation over an after loop select."));
344 
345 cl::opt<bool> EnableVPlanNativePath(
346     "enable-vplan-native-path", cl::init(false), cl::Hidden,
347     cl::desc("Enable VPlan-native vectorization path with "
348              "support for outer loop vectorization."));
349 
350 // FIXME: Remove this switch once we have divergence analysis. Currently we
351 // assume divergent non-backedge branches when this switch is true.
352 cl::opt<bool> EnableVPlanPredication(
353     "enable-vplan-predication", cl::init(false), cl::Hidden,
354     cl::desc("Enable VPlan-native vectorization path predicator with "
355              "support for outer loop vectorization."));
356 
357 // This flag enables the stress testing of the VPlan H-CFG construction in the
358 // VPlan-native vectorization path. It must be used in conjuction with
359 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
360 // verification of the H-CFGs built.
361 static cl::opt<bool> VPlanBuildStressTest(
362     "vplan-build-stress-test", cl::init(false), cl::Hidden,
363     cl::desc(
364         "Build VPlan for every supported loop nest in the function and bail "
365         "out right after the build (stress test the VPlan H-CFG construction "
366         "in the VPlan-native vectorization path)."));
367 
368 cl::opt<bool> llvm::EnableLoopInterleaving(
369     "interleave-loops", cl::init(true), cl::Hidden,
370     cl::desc("Enable loop interleaving in Loop vectorization passes"));
371 cl::opt<bool> llvm::EnableLoopVectorization(
372     "vectorize-loops", cl::init(true), cl::Hidden,
373     cl::desc("Run the Loop vectorization passes"));
374 
375 cl::opt<bool> PrintVPlansInDotFormat(
376     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
377     cl::desc("Use dot format instead of plain text when dumping VPlans"));
378 
379 /// A helper function that returns true if the given type is irregular. The
380 /// type is irregular if its allocated size doesn't equal the store size of an
381 /// element of the corresponding vector type.
382 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
383   // Determine if an array of N elements of type Ty is "bitcast compatible"
384   // with a <N x Ty> vector.
385   // This is only true if there is no padding between the array elements.
386   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
387 }
388 
389 /// A helper function that returns the reciprocal of the block probability of
390 /// predicated blocks. If we return X, we are assuming the predicated block
391 /// will execute once for every X iterations of the loop header.
392 ///
393 /// TODO: We should use actual block probability here, if available. Currently,
394 ///       we always assume predicated blocks have a 50% chance of executing.
395 static unsigned getReciprocalPredBlockProb() { return 2; }
396 
397 /// A helper function that returns an integer or floating-point constant with
398 /// value C.
399 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
400   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
401                            : ConstantFP::get(Ty, C);
402 }
403 
404 /// Returns "best known" trip count for the specified loop \p L as defined by
405 /// the following procedure:
406 ///   1) Returns exact trip count if it is known.
407 ///   2) Returns expected trip count according to profile data if any.
408 ///   3) Returns upper bound estimate if it is known.
409 ///   4) Returns None if all of the above failed.
410 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
411   // Check if exact trip count is known.
412   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
413     return ExpectedTC;
414 
415   // Check if there is an expected trip count available from profile data.
416   if (LoopVectorizeWithBlockFrequency)
417     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
418       return EstimatedTC;
419 
420   // Check if upper bound estimate is known.
421   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
422     return ExpectedTC;
423 
424   return None;
425 }
426 
427 // Forward declare GeneratedRTChecks.
428 class GeneratedRTChecks;
429 
430 namespace llvm {
431 
432 /// InnerLoopVectorizer vectorizes loops which contain only one basic
433 /// block to a specified vectorization factor (VF).
434 /// This class performs the widening of scalars into vectors, or multiple
435 /// scalars. This class also implements the following features:
436 /// * It inserts an epilogue loop for handling loops that don't have iteration
437 ///   counts that are known to be a multiple of the vectorization factor.
438 /// * It handles the code generation for reduction variables.
439 /// * Scalarization (implementation using scalars) of un-vectorizable
440 ///   instructions.
441 /// InnerLoopVectorizer does not perform any vectorization-legality
442 /// checks, and relies on the caller to check for the different legality
443 /// aspects. The InnerLoopVectorizer relies on the
444 /// LoopVectorizationLegality class to provide information about the induction
445 /// and reduction variables that were found to a given vectorization factor.
446 class InnerLoopVectorizer {
447 public:
448   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
449                       LoopInfo *LI, DominatorTree *DT,
450                       const TargetLibraryInfo *TLI,
451                       const TargetTransformInfo *TTI, AssumptionCache *AC,
452                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
453                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
454                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
455                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
456       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
457         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
458         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
459         PSI(PSI), RTChecks(RTChecks) {
460     // Query this against the original loop and save it here because the profile
461     // of the original loop header may change as the transformation happens.
462     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
463         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
464   }
465 
466   virtual ~InnerLoopVectorizer() = default;
467 
468   /// Create a new empty loop that will contain vectorized instructions later
469   /// on, while the old loop will be used as the scalar remainder. Control flow
470   /// is generated around the vectorized (and scalar epilogue) loops consisting
471   /// of various checks and bypasses. Return the pre-header block of the new
472   /// loop.
473   /// In the case of epilogue vectorization, this function is overriden to
474   /// handle the more complex control flow around the loops.
475   virtual BasicBlock *createVectorizedLoopSkeleton();
476 
477   /// Widen a single instruction within the innermost loop.
478   void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
479                         VPTransformState &State);
480 
481   /// Widen a single call instruction within the innermost loop.
482   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
483                             VPTransformState &State);
484 
485   /// Widen a single select instruction within the innermost loop.
486   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
487                               bool InvariantCond, VPTransformState &State);
488 
489   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
490   void fixVectorizedLoop(VPTransformState &State);
491 
492   // Return true if any runtime check is added.
493   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
494 
495   /// A type for vectorized values in the new loop. Each value from the
496   /// original loop, when vectorized, is represented by UF vector values in the
497   /// new unrolled loop, where UF is the unroll factor.
498   using VectorParts = SmallVector<Value *, 2>;
499 
500   /// Vectorize a single GetElementPtrInst based on information gathered and
501   /// decisions taken during planning.
502   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
503                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
504                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
505 
506   /// Vectorize a single first-order recurrence or pointer induction PHINode in
507   /// a block. This method handles the induction variable canonicalization. It
508   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
509   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
510                            VPTransformState &State);
511 
512   /// A helper function to scalarize a single Instruction in the innermost loop.
513   /// Generates a sequence of scalar instances for each lane between \p MinLane
514   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
515   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
516   /// Instr's operands.
517   void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands,
518                             const VPIteration &Instance, bool IfPredicateInstr,
519                             VPTransformState &State);
520 
521   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
522   /// is provided, the integer induction variable will first be truncated to
523   /// the corresponding type.
524   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
525                              VPValue *Def, VPValue *CastDef,
526                              VPTransformState &State);
527 
528   /// Construct the vector value of a scalarized value \p V one lane at a time.
529   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
530                                  VPTransformState &State);
531 
532   /// Try to vectorize interleaved access group \p Group with the base address
533   /// given in \p Addr, optionally masking the vector operations if \p
534   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
535   /// values in the vectorized loop.
536   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
537                                 ArrayRef<VPValue *> VPDefs,
538                                 VPTransformState &State, VPValue *Addr,
539                                 ArrayRef<VPValue *> StoredValues,
540                                 VPValue *BlockInMask = nullptr);
541 
542   /// Vectorize Load and Store instructions with the base address given in \p
543   /// Addr, optionally masking the vector operations if \p BlockInMask is
544   /// non-null. Use \p State to translate given VPValues to IR values in the
545   /// vectorized loop.
546   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
547                                   VPValue *Def, VPValue *Addr,
548                                   VPValue *StoredValue, VPValue *BlockInMask);
549 
550   /// Set the debug location in the builder \p Ptr using the debug location in
551   /// \p V. If \p Ptr is None then it uses the class member's Builder.
552   void setDebugLocFromInst(const Value *V,
553                            Optional<IRBuilder<> *> CustomBuilder = None);
554 
555   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
556   void fixNonInductionPHIs(VPTransformState &State);
557 
558   /// Returns true if the reordering of FP operations is not allowed, but we are
559   /// able to vectorize with strict in-order reductions for the given RdxDesc.
560   bool useOrderedReductions(RecurrenceDescriptor &RdxDesc);
561 
562   /// Create a broadcast instruction. This method generates a broadcast
563   /// instruction (shuffle) for loop invariant values and for the induction
564   /// value. If this is the induction variable then we extend it to N, N+1, ...
565   /// this is needed because each iteration in the loop corresponds to a SIMD
566   /// element.
567   virtual Value *getBroadcastInstrs(Value *V);
568 
569 protected:
570   friend class LoopVectorizationPlanner;
571 
572   /// A small list of PHINodes.
573   using PhiVector = SmallVector<PHINode *, 4>;
574 
575   /// A type for scalarized values in the new loop. Each value from the
576   /// original loop, when scalarized, is represented by UF x VF scalar values
577   /// in the new unrolled loop, where UF is the unroll factor and VF is the
578   /// vectorization factor.
579   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
580 
581   /// Set up the values of the IVs correctly when exiting the vector loop.
582   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
583                     Value *CountRoundDown, Value *EndValue,
584                     BasicBlock *MiddleBlock);
585 
586   /// Create a new induction variable inside L.
587   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
588                                    Value *Step, Instruction *DL);
589 
590   /// Handle all cross-iteration phis in the header.
591   void fixCrossIterationPHIs(VPTransformState &State);
592 
593   /// Create the exit value of first order recurrences in the middle block and
594   /// update their users.
595   void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State);
596 
597   /// Fix a reduction cross-iteration phi. This is the second phase of
598   /// vectorizing this phi node.
599   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
600 
601   /// Clear NSW/NUW flags from reduction instructions if necessary.
602   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
603                                VPTransformState &State);
604 
605   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
606   /// means we need to add the appropriate incoming value from the middle
607   /// block as exiting edges from the scalar epilogue loop (if present) are
608   /// already in place, and we exit the vector loop exclusively to the middle
609   /// block.
610   void fixLCSSAPHIs(VPTransformState &State);
611 
612   /// Iteratively sink the scalarized operands of a predicated instruction into
613   /// the block that was created for it.
614   void sinkScalarOperands(Instruction *PredInst);
615 
616   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
617   /// represented as.
618   void truncateToMinimalBitwidths(VPTransformState &State);
619 
620   /// This function adds
621   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
622   /// to each vector element of Val. The sequence starts at StartIndex.
623   /// \p Opcode is relevant for FP induction variable.
624   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
625                                Instruction::BinaryOps Opcode =
626                                Instruction::BinaryOpsEnd);
627 
628   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
629   /// variable on which to base the steps, \p Step is the size of the step, and
630   /// \p EntryVal is the value from the original loop that maps to the steps.
631   /// Note that \p EntryVal doesn't have to be an induction variable - it
632   /// can also be a truncate instruction.
633   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
634                         const InductionDescriptor &ID, VPValue *Def,
635                         VPValue *CastDef, VPTransformState &State);
636 
637   /// Create a vector induction phi node based on an existing scalar one. \p
638   /// EntryVal is the value from the original loop that maps to the vector phi
639   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
640   /// truncate instruction, instead of widening the original IV, we widen a
641   /// version of the IV truncated to \p EntryVal's type.
642   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
643                                        Value *Step, Value *Start,
644                                        Instruction *EntryVal, VPValue *Def,
645                                        VPValue *CastDef,
646                                        VPTransformState &State);
647 
648   /// Returns true if an instruction \p I should be scalarized instead of
649   /// vectorized for the chosen vectorization factor.
650   bool shouldScalarizeInstruction(Instruction *I) const;
651 
652   /// Returns true if we should generate a scalar version of \p IV.
653   bool needsScalarInduction(Instruction *IV) const;
654 
655   /// If there is a cast involved in the induction variable \p ID, which should
656   /// be ignored in the vectorized loop body, this function records the
657   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
658   /// cast. We had already proved that the casted Phi is equal to the uncasted
659   /// Phi in the vectorized loop (under a runtime guard), and therefore
660   /// there is no need to vectorize the cast - the same value can be used in the
661   /// vector loop for both the Phi and the cast.
662   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
663   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
664   ///
665   /// \p EntryVal is the value from the original loop that maps to the vector
666   /// phi node and is used to distinguish what is the IV currently being
667   /// processed - original one (if \p EntryVal is a phi corresponding to the
668   /// original IV) or the "newly-created" one based on the proof mentioned above
669   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
670   /// latter case \p EntryVal is a TruncInst and we must not record anything for
671   /// that IV, but it's error-prone to expect callers of this routine to care
672   /// about that, hence this explicit parameter.
673   void recordVectorLoopValueForInductionCast(
674       const InductionDescriptor &ID, const Instruction *EntryVal,
675       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
676       unsigned Part, unsigned Lane = UINT_MAX);
677 
678   /// Generate a shuffle sequence that will reverse the vector Vec.
679   virtual Value *reverseVector(Value *Vec);
680 
681   /// Returns (and creates if needed) the original loop trip count.
682   Value *getOrCreateTripCount(Loop *NewLoop);
683 
684   /// Returns (and creates if needed) the trip count of the widened loop.
685   Value *getOrCreateVectorTripCount(Loop *NewLoop);
686 
687   /// Returns a bitcasted value to the requested vector type.
688   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
689   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
690                                 const DataLayout &DL);
691 
692   /// Emit a bypass check to see if the vector trip count is zero, including if
693   /// it overflows.
694   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
695 
696   /// Emit a bypass check to see if all of the SCEV assumptions we've
697   /// had to make are correct. Returns the block containing the checks or
698   /// nullptr if no checks have been added.
699   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
700 
701   /// Emit bypass checks to check any memory assumptions we may have made.
702   /// Returns the block containing the checks or nullptr if no checks have been
703   /// added.
704   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
705 
706   /// Compute the transformed value of Index at offset StartValue using step
707   /// StepValue.
708   /// For integer induction, returns StartValue + Index * StepValue.
709   /// For pointer induction, returns StartValue[Index * StepValue].
710   /// FIXME: The newly created binary instructions should contain nsw/nuw
711   /// flags, which can be found from the original scalar operations.
712   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
713                               const DataLayout &DL,
714                               const InductionDescriptor &ID) const;
715 
716   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
717   /// vector loop preheader, middle block and scalar preheader. Also
718   /// allocate a loop object for the new vector loop and return it.
719   Loop *createVectorLoopSkeleton(StringRef Prefix);
720 
721   /// Create new phi nodes for the induction variables to resume iteration count
722   /// in the scalar epilogue, from where the vectorized loop left off (given by
723   /// \p VectorTripCount).
724   /// In cases where the loop skeleton is more complicated (eg. epilogue
725   /// vectorization) and the resume values can come from an additional bypass
726   /// block, the \p AdditionalBypass pair provides information about the bypass
727   /// block and the end value on the edge from bypass to this loop.
728   void createInductionResumeValues(
729       Loop *L, Value *VectorTripCount,
730       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
731 
732   /// Complete the loop skeleton by adding debug MDs, creating appropriate
733   /// conditional branches in the middle block, preparing the builder and
734   /// running the verifier. Take in the vector loop \p L as argument, and return
735   /// the preheader of the completed vector loop.
736   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
737 
738   /// Add additional metadata to \p To that was not present on \p Orig.
739   ///
740   /// Currently this is used to add the noalias annotations based on the
741   /// inserted memchecks.  Use this for instructions that are *cloned* into the
742   /// vector loop.
743   void addNewMetadata(Instruction *To, const Instruction *Orig);
744 
745   /// Add metadata from one instruction to another.
746   ///
747   /// This includes both the original MDs from \p From and additional ones (\see
748   /// addNewMetadata).  Use this for *newly created* instructions in the vector
749   /// loop.
750   void addMetadata(Instruction *To, Instruction *From);
751 
752   /// Similar to the previous function but it adds the metadata to a
753   /// vector of instructions.
754   void addMetadata(ArrayRef<Value *> To, Instruction *From);
755 
756   /// Allow subclasses to override and print debug traces before/after vplan
757   /// execution, when trace information is requested.
758   virtual void printDebugTracesAtStart(){};
759   virtual void printDebugTracesAtEnd(){};
760 
761   /// The original loop.
762   Loop *OrigLoop;
763 
764   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
765   /// dynamic knowledge to simplify SCEV expressions and converts them to a
766   /// more usable form.
767   PredicatedScalarEvolution &PSE;
768 
769   /// Loop Info.
770   LoopInfo *LI;
771 
772   /// Dominator Tree.
773   DominatorTree *DT;
774 
775   /// Alias Analysis.
776   AAResults *AA;
777 
778   /// Target Library Info.
779   const TargetLibraryInfo *TLI;
780 
781   /// Target Transform Info.
782   const TargetTransformInfo *TTI;
783 
784   /// Assumption Cache.
785   AssumptionCache *AC;
786 
787   /// Interface to emit optimization remarks.
788   OptimizationRemarkEmitter *ORE;
789 
790   /// LoopVersioning.  It's only set up (non-null) if memchecks were
791   /// used.
792   ///
793   /// This is currently only used to add no-alias metadata based on the
794   /// memchecks.  The actually versioning is performed manually.
795   std::unique_ptr<LoopVersioning> LVer;
796 
797   /// The vectorization SIMD factor to use. Each vector will have this many
798   /// vector elements.
799   ElementCount VF;
800 
801   /// The vectorization unroll factor to use. Each scalar is vectorized to this
802   /// many different vector instructions.
803   unsigned UF;
804 
805   /// The builder that we use
806   IRBuilder<> Builder;
807 
808   // --- Vectorization state ---
809 
810   /// The vector-loop preheader.
811   BasicBlock *LoopVectorPreHeader;
812 
813   /// The scalar-loop preheader.
814   BasicBlock *LoopScalarPreHeader;
815 
816   /// Middle Block between the vector and the scalar.
817   BasicBlock *LoopMiddleBlock;
818 
819   /// The unique ExitBlock of the scalar loop if one exists.  Note that
820   /// there can be multiple exiting edges reaching this block.
821   BasicBlock *LoopExitBlock;
822 
823   /// The vector loop body.
824   BasicBlock *LoopVectorBody;
825 
826   /// The scalar loop body.
827   BasicBlock *LoopScalarBody;
828 
829   /// A list of all bypass blocks. The first block is the entry of the loop.
830   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
831 
832   /// The new Induction variable which was added to the new block.
833   PHINode *Induction = nullptr;
834 
835   /// The induction variable of the old basic block.
836   PHINode *OldInduction = nullptr;
837 
838   /// Store instructions that were predicated.
839   SmallVector<Instruction *, 4> PredicatedInstructions;
840 
841   /// Trip count of the original loop.
842   Value *TripCount = nullptr;
843 
844   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
845   Value *VectorTripCount = nullptr;
846 
847   /// The legality analysis.
848   LoopVectorizationLegality *Legal;
849 
850   /// The profitablity analysis.
851   LoopVectorizationCostModel *Cost;
852 
853   // Record whether runtime checks are added.
854   bool AddedSafetyChecks = false;
855 
856   // Holds the end values for each induction variable. We save the end values
857   // so we can later fix-up the external users of the induction variables.
858   DenseMap<PHINode *, Value *> IVEndValues;
859 
860   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
861   // fixed up at the end of vector code generation.
862   SmallVector<PHINode *, 8> OrigPHIsToFix;
863 
864   /// BFI and PSI are used to check for profile guided size optimizations.
865   BlockFrequencyInfo *BFI;
866   ProfileSummaryInfo *PSI;
867 
868   // Whether this loop should be optimized for size based on profile guided size
869   // optimizatios.
870   bool OptForSizeBasedOnProfile;
871 
872   /// Structure to hold information about generated runtime checks, responsible
873   /// for cleaning the checks, if vectorization turns out unprofitable.
874   GeneratedRTChecks &RTChecks;
875 };
876 
877 class InnerLoopUnroller : public InnerLoopVectorizer {
878 public:
879   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
880                     LoopInfo *LI, DominatorTree *DT,
881                     const TargetLibraryInfo *TLI,
882                     const TargetTransformInfo *TTI, AssumptionCache *AC,
883                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
884                     LoopVectorizationLegality *LVL,
885                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
886                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
887       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
888                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
889                             BFI, PSI, Check) {}
890 
891 private:
892   Value *getBroadcastInstrs(Value *V) override;
893   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
894                        Instruction::BinaryOps Opcode =
895                        Instruction::BinaryOpsEnd) override;
896   Value *reverseVector(Value *Vec) override;
897 };
898 
899 /// Encapsulate information regarding vectorization of a loop and its epilogue.
900 /// This information is meant to be updated and used across two stages of
901 /// epilogue vectorization.
902 struct EpilogueLoopVectorizationInfo {
903   ElementCount MainLoopVF = ElementCount::getFixed(0);
904   unsigned MainLoopUF = 0;
905   ElementCount EpilogueVF = ElementCount::getFixed(0);
906   unsigned EpilogueUF = 0;
907   BasicBlock *MainLoopIterationCountCheck = nullptr;
908   BasicBlock *EpilogueIterationCountCheck = nullptr;
909   BasicBlock *SCEVSafetyCheck = nullptr;
910   BasicBlock *MemSafetyCheck = nullptr;
911   Value *TripCount = nullptr;
912   Value *VectorTripCount = nullptr;
913 
914   EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF,
915                                 unsigned EUF)
916       : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF),
917         EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) {
918     assert(EUF == 1 &&
919            "A high UF for the epilogue loop is likely not beneficial.");
920   }
921 };
922 
923 /// An extension of the inner loop vectorizer that creates a skeleton for a
924 /// vectorized loop that has its epilogue (residual) also vectorized.
925 /// The idea is to run the vplan on a given loop twice, firstly to setup the
926 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
927 /// from the first step and vectorize the epilogue.  This is achieved by
928 /// deriving two concrete strategy classes from this base class and invoking
929 /// them in succession from the loop vectorizer planner.
930 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
931 public:
932   InnerLoopAndEpilogueVectorizer(
933       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
934       DominatorTree *DT, const TargetLibraryInfo *TLI,
935       const TargetTransformInfo *TTI, AssumptionCache *AC,
936       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
937       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
938       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
939       GeneratedRTChecks &Checks)
940       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
941                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
942                             Checks),
943         EPI(EPI) {}
944 
945   // Override this function to handle the more complex control flow around the
946   // three loops.
947   BasicBlock *createVectorizedLoopSkeleton() final override {
948     return createEpilogueVectorizedLoopSkeleton();
949   }
950 
951   /// The interface for creating a vectorized skeleton using one of two
952   /// different strategies, each corresponding to one execution of the vplan
953   /// as described above.
954   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
955 
956   /// Holds and updates state information required to vectorize the main loop
957   /// and its epilogue in two separate passes. This setup helps us avoid
958   /// regenerating and recomputing runtime safety checks. It also helps us to
959   /// shorten the iteration-count-check path length for the cases where the
960   /// iteration count of the loop is so small that the main vector loop is
961   /// completely skipped.
962   EpilogueLoopVectorizationInfo &EPI;
963 };
964 
965 /// A specialized derived class of inner loop vectorizer that performs
966 /// vectorization of *main* loops in the process of vectorizing loops and their
967 /// epilogues.
968 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
969 public:
970   EpilogueVectorizerMainLoop(
971       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
972       DominatorTree *DT, const TargetLibraryInfo *TLI,
973       const TargetTransformInfo *TTI, AssumptionCache *AC,
974       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
975       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
976       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
977       GeneratedRTChecks &Check)
978       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
979                                        EPI, LVL, CM, BFI, PSI, Check) {}
980   /// Implements the interface for creating a vectorized skeleton using the
981   /// *main loop* strategy (ie the first pass of vplan execution).
982   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
983 
984 protected:
985   /// Emits an iteration count bypass check once for the main loop (when \p
986   /// ForEpilogue is false) and once for the epilogue loop (when \p
987   /// ForEpilogue is true).
988   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
989                                              bool ForEpilogue);
990   void printDebugTracesAtStart() override;
991   void printDebugTracesAtEnd() override;
992 };
993 
994 // A specialized derived class of inner loop vectorizer that performs
995 // vectorization of *epilogue* loops in the process of vectorizing loops and
996 // their epilogues.
997 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
998 public:
999   EpilogueVectorizerEpilogueLoop(
1000       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
1001       DominatorTree *DT, const TargetLibraryInfo *TLI,
1002       const TargetTransformInfo *TTI, AssumptionCache *AC,
1003       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
1004       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
1005       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
1006       GeneratedRTChecks &Checks)
1007       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1008                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1009   /// Implements the interface for creating a vectorized skeleton using the
1010   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1011   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1012 
1013 protected:
1014   /// Emits an iteration count bypass check after the main vector loop has
1015   /// finished to see if there are any iterations left to execute by either
1016   /// the vector epilogue or the scalar epilogue.
1017   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1018                                                       BasicBlock *Bypass,
1019                                                       BasicBlock *Insert);
1020   void printDebugTracesAtStart() override;
1021   void printDebugTracesAtEnd() override;
1022 };
1023 } // end namespace llvm
1024 
1025 /// Look for a meaningful debug location on the instruction or it's
1026 /// operands.
1027 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1028   if (!I)
1029     return I;
1030 
1031   DebugLoc Empty;
1032   if (I->getDebugLoc() != Empty)
1033     return I;
1034 
1035   for (Use &Op : I->operands()) {
1036     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1037       if (OpInst->getDebugLoc() != Empty)
1038         return OpInst;
1039   }
1040 
1041   return I;
1042 }
1043 
1044 void InnerLoopVectorizer::setDebugLocFromInst(
1045     const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
1046   IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
1047   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
1048     const DILocation *DIL = Inst->getDebugLoc();
1049 
1050     // When a FSDiscriminator is enabled, we don't need to add the multiply
1051     // factors to the discriminators.
1052     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1053         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1054       // FIXME: For scalable vectors, assume vscale=1.
1055       auto NewDIL =
1056           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1057       if (NewDIL)
1058         B->SetCurrentDebugLocation(NewDIL.getValue());
1059       else
1060         LLVM_DEBUG(dbgs()
1061                    << "Failed to create new discriminator: "
1062                    << DIL->getFilename() << " Line: " << DIL->getLine());
1063     } else
1064       B->SetCurrentDebugLocation(DIL);
1065   } else
1066     B->SetCurrentDebugLocation(DebugLoc());
1067 }
1068 
1069 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1070 /// is passed, the message relates to that particular instruction.
1071 #ifndef NDEBUG
1072 static void debugVectorizationMessage(const StringRef Prefix,
1073                                       const StringRef DebugMsg,
1074                                       Instruction *I) {
1075   dbgs() << "LV: " << Prefix << DebugMsg;
1076   if (I != nullptr)
1077     dbgs() << " " << *I;
1078   else
1079     dbgs() << '.';
1080   dbgs() << '\n';
1081 }
1082 #endif
1083 
1084 /// Create an analysis remark that explains why vectorization failed
1085 ///
1086 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1087 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1088 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1089 /// the location of the remark.  \return the remark object that can be
1090 /// streamed to.
1091 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1092     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1093   Value *CodeRegion = TheLoop->getHeader();
1094   DebugLoc DL = TheLoop->getStartLoc();
1095 
1096   if (I) {
1097     CodeRegion = I->getParent();
1098     // If there is no debug location attached to the instruction, revert back to
1099     // using the loop's.
1100     if (I->getDebugLoc())
1101       DL = I->getDebugLoc();
1102   }
1103 
1104   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1105 }
1106 
1107 /// Return a value for Step multiplied by VF.
1108 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) {
1109   assert(isa<ConstantInt>(Step) && "Expected an integer step");
1110   Constant *StepVal = ConstantInt::get(
1111       Step->getType(),
1112       cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue());
1113   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1114 }
1115 
1116 namespace llvm {
1117 
1118 /// Return the runtime value for VF.
1119 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1120   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1121   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1122 }
1123 
1124 void reportVectorizationFailure(const StringRef DebugMsg,
1125                                 const StringRef OREMsg, const StringRef ORETag,
1126                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1127                                 Instruction *I) {
1128   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1129   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1130   ORE->emit(
1131       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1132       << "loop not vectorized: " << OREMsg);
1133 }
1134 
1135 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1136                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1137                              Instruction *I) {
1138   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1139   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1140   ORE->emit(
1141       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1142       << Msg);
1143 }
1144 
1145 } // end namespace llvm
1146 
1147 #ifndef NDEBUG
1148 /// \return string containing a file name and a line # for the given loop.
1149 static std::string getDebugLocString(const Loop *L) {
1150   std::string Result;
1151   if (L) {
1152     raw_string_ostream OS(Result);
1153     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1154       LoopDbgLoc.print(OS);
1155     else
1156       // Just print the module name.
1157       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1158     OS.flush();
1159   }
1160   return Result;
1161 }
1162 #endif
1163 
1164 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1165                                          const Instruction *Orig) {
1166   // If the loop was versioned with memchecks, add the corresponding no-alias
1167   // metadata.
1168   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1169     LVer->annotateInstWithNoAlias(To, Orig);
1170 }
1171 
1172 void InnerLoopVectorizer::addMetadata(Instruction *To,
1173                                       Instruction *From) {
1174   propagateMetadata(To, From);
1175   addNewMetadata(To, From);
1176 }
1177 
1178 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1179                                       Instruction *From) {
1180   for (Value *V : To) {
1181     if (Instruction *I = dyn_cast<Instruction>(V))
1182       addMetadata(I, From);
1183   }
1184 }
1185 
1186 namespace llvm {
1187 
1188 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1189 // lowered.
1190 enum ScalarEpilogueLowering {
1191 
1192   // The default: allowing scalar epilogues.
1193   CM_ScalarEpilogueAllowed,
1194 
1195   // Vectorization with OptForSize: don't allow epilogues.
1196   CM_ScalarEpilogueNotAllowedOptSize,
1197 
1198   // A special case of vectorisation with OptForSize: loops with a very small
1199   // trip count are considered for vectorization under OptForSize, thereby
1200   // making sure the cost of their loop body is dominant, free of runtime
1201   // guards and scalar iteration overheads.
1202   CM_ScalarEpilogueNotAllowedLowTripLoop,
1203 
1204   // Loop hint predicate indicating an epilogue is undesired.
1205   CM_ScalarEpilogueNotNeededUsePredicate,
1206 
1207   // Directive indicating we must either tail fold or not vectorize
1208   CM_ScalarEpilogueNotAllowedUsePredicate
1209 };
1210 
1211 /// ElementCountComparator creates a total ordering for ElementCount
1212 /// for the purposes of using it in a set structure.
1213 struct ElementCountComparator {
1214   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1215     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1216            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1217   }
1218 };
1219 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1220 
1221 /// LoopVectorizationCostModel - estimates the expected speedups due to
1222 /// vectorization.
1223 /// In many cases vectorization is not profitable. This can happen because of
1224 /// a number of reasons. In this class we mainly attempt to predict the
1225 /// expected speedup/slowdowns due to the supported instruction set. We use the
1226 /// TargetTransformInfo to query the different backends for the cost of
1227 /// different operations.
1228 class LoopVectorizationCostModel {
1229 public:
1230   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1231                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1232                              LoopVectorizationLegality *Legal,
1233                              const TargetTransformInfo &TTI,
1234                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1235                              AssumptionCache *AC,
1236                              OptimizationRemarkEmitter *ORE, const Function *F,
1237                              const LoopVectorizeHints *Hints,
1238                              InterleavedAccessInfo &IAI)
1239       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1240         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1241         Hints(Hints), InterleaveInfo(IAI) {}
1242 
1243   /// \return An upper bound for the vectorization factors (both fixed and
1244   /// scalable). If the factors are 0, vectorization and interleaving should be
1245   /// avoided up front.
1246   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1247 
1248   /// \return True if runtime checks are required for vectorization, and false
1249   /// otherwise.
1250   bool runtimeChecksRequired();
1251 
1252   /// \return The most profitable vectorization factor and the cost of that VF.
1253   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1254   /// then this vectorization factor will be selected if vectorization is
1255   /// possible.
1256   VectorizationFactor
1257   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1258 
1259   VectorizationFactor
1260   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1261                                     const LoopVectorizationPlanner &LVP);
1262 
1263   /// Setup cost-based decisions for user vectorization factor.
1264   /// \return true if the UserVF is a feasible VF to be chosen.
1265   bool selectUserVectorizationFactor(ElementCount UserVF) {
1266     collectUniformsAndScalars(UserVF);
1267     collectInstsToScalarize(UserVF);
1268     return expectedCost(UserVF).first.isValid();
1269   }
1270 
1271   /// \return The size (in bits) of the smallest and widest types in the code
1272   /// that needs to be vectorized. We ignore values that remain scalar such as
1273   /// 64 bit loop indices.
1274   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1275 
1276   /// \return The desired interleave count.
1277   /// If interleave count has been specified by metadata it will be returned.
1278   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1279   /// are the selected vectorization factor and the cost of the selected VF.
1280   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1281 
1282   /// Memory access instruction may be vectorized in more than one way.
1283   /// Form of instruction after vectorization depends on cost.
1284   /// This function takes cost-based decisions for Load/Store instructions
1285   /// and collects them in a map. This decisions map is used for building
1286   /// the lists of loop-uniform and loop-scalar instructions.
1287   /// The calculated cost is saved with widening decision in order to
1288   /// avoid redundant calculations.
1289   void setCostBasedWideningDecision(ElementCount VF);
1290 
1291   /// A struct that represents some properties of the register usage
1292   /// of a loop.
1293   struct RegisterUsage {
1294     /// Holds the number of loop invariant values that are used in the loop.
1295     /// The key is ClassID of target-provided register class.
1296     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1297     /// Holds the maximum number of concurrent live intervals in the loop.
1298     /// The key is ClassID of target-provided register class.
1299     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1300   };
1301 
1302   /// \return Returns information about the register usages of the loop for the
1303   /// given vectorization factors.
1304   SmallVector<RegisterUsage, 8>
1305   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1306 
1307   /// Collect values we want to ignore in the cost model.
1308   void collectValuesToIgnore();
1309 
1310   /// Collect all element types in the loop for which widening is needed.
1311   void collectElementTypesForWidening();
1312 
1313   /// Split reductions into those that happen in the loop, and those that happen
1314   /// outside. In loop reductions are collected into InLoopReductionChains.
1315   void collectInLoopReductions();
1316 
1317   /// Returns true if we should use strict in-order reductions for the given
1318   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1319   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1320   /// of FP operations.
1321   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1322     return ForceOrderedReductions && !Hints->allowReordering() &&
1323            RdxDesc.isOrdered();
1324   }
1325 
1326   /// \returns The smallest bitwidth each instruction can be represented with.
1327   /// The vector equivalents of these instructions should be truncated to this
1328   /// type.
1329   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1330     return MinBWs;
1331   }
1332 
1333   /// \returns True if it is more profitable to scalarize instruction \p I for
1334   /// vectorization factor \p VF.
1335   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1336     assert(VF.isVector() &&
1337            "Profitable to scalarize relevant only for VF > 1.");
1338 
1339     // Cost model is not run in the VPlan-native path - return conservative
1340     // result until this changes.
1341     if (EnableVPlanNativePath)
1342       return false;
1343 
1344     auto Scalars = InstsToScalarize.find(VF);
1345     assert(Scalars != InstsToScalarize.end() &&
1346            "VF not yet analyzed for scalarization profitability");
1347     return Scalars->second.find(I) != Scalars->second.end();
1348   }
1349 
1350   /// Returns true if \p I is known to be uniform after vectorization.
1351   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1352     if (VF.isScalar())
1353       return true;
1354 
1355     // Cost model is not run in the VPlan-native path - return conservative
1356     // result until this changes.
1357     if (EnableVPlanNativePath)
1358       return false;
1359 
1360     auto UniformsPerVF = Uniforms.find(VF);
1361     assert(UniformsPerVF != Uniforms.end() &&
1362            "VF not yet analyzed for uniformity");
1363     return UniformsPerVF->second.count(I);
1364   }
1365 
1366   /// Returns true if \p I is known to be scalar after vectorization.
1367   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1368     if (VF.isScalar())
1369       return true;
1370 
1371     // Cost model is not run in the VPlan-native path - return conservative
1372     // result until this changes.
1373     if (EnableVPlanNativePath)
1374       return false;
1375 
1376     auto ScalarsPerVF = Scalars.find(VF);
1377     assert(ScalarsPerVF != Scalars.end() &&
1378            "Scalar values are not calculated for VF");
1379     return ScalarsPerVF->second.count(I);
1380   }
1381 
1382   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1383   /// for vectorization factor \p VF.
1384   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1385     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1386            !isProfitableToScalarize(I, VF) &&
1387            !isScalarAfterVectorization(I, VF);
1388   }
1389 
1390   /// Decision that was taken during cost calculation for memory instruction.
1391   enum InstWidening {
1392     CM_Unknown,
1393     CM_Widen,         // For consecutive accesses with stride +1.
1394     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1395     CM_Interleave,
1396     CM_GatherScatter,
1397     CM_Scalarize
1398   };
1399 
1400   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1401   /// instruction \p I and vector width \p VF.
1402   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1403                            InstructionCost Cost) {
1404     assert(VF.isVector() && "Expected VF >=2");
1405     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1406   }
1407 
1408   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1409   /// interleaving group \p Grp and vector width \p VF.
1410   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1411                            ElementCount VF, InstWidening W,
1412                            InstructionCost Cost) {
1413     assert(VF.isVector() && "Expected VF >=2");
1414     /// Broadcast this decicion to all instructions inside the group.
1415     /// But the cost will be assigned to one instruction only.
1416     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1417       if (auto *I = Grp->getMember(i)) {
1418         if (Grp->getInsertPos() == I)
1419           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1420         else
1421           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1422       }
1423     }
1424   }
1425 
1426   /// Return the cost model decision for the given instruction \p I and vector
1427   /// width \p VF. Return CM_Unknown if this instruction did not pass
1428   /// through the cost modeling.
1429   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1430     assert(VF.isVector() && "Expected VF to be a vector VF");
1431     // Cost model is not run in the VPlan-native path - return conservative
1432     // result until this changes.
1433     if (EnableVPlanNativePath)
1434       return CM_GatherScatter;
1435 
1436     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1437     auto Itr = WideningDecisions.find(InstOnVF);
1438     if (Itr == WideningDecisions.end())
1439       return CM_Unknown;
1440     return Itr->second.first;
1441   }
1442 
1443   /// Return the vectorization cost for the given instruction \p I and vector
1444   /// width \p VF.
1445   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1446     assert(VF.isVector() && "Expected VF >=2");
1447     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1448     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1449            "The cost is not calculated");
1450     return WideningDecisions[InstOnVF].second;
1451   }
1452 
1453   /// Return True if instruction \p I is an optimizable truncate whose operand
1454   /// is an induction variable. Such a truncate will be removed by adding a new
1455   /// induction variable with the destination type.
1456   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1457     // If the instruction is not a truncate, return false.
1458     auto *Trunc = dyn_cast<TruncInst>(I);
1459     if (!Trunc)
1460       return false;
1461 
1462     // Get the source and destination types of the truncate.
1463     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1464     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1465 
1466     // If the truncate is free for the given types, return false. Replacing a
1467     // free truncate with an induction variable would add an induction variable
1468     // update instruction to each iteration of the loop. We exclude from this
1469     // check the primary induction variable since it will need an update
1470     // instruction regardless.
1471     Value *Op = Trunc->getOperand(0);
1472     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1473       return false;
1474 
1475     // If the truncated value is not an induction variable, return false.
1476     return Legal->isInductionPhi(Op);
1477   }
1478 
1479   /// Collects the instructions to scalarize for each predicated instruction in
1480   /// the loop.
1481   void collectInstsToScalarize(ElementCount VF);
1482 
1483   /// Collect Uniform and Scalar values for the given \p VF.
1484   /// The sets depend on CM decision for Load/Store instructions
1485   /// that may be vectorized as interleave, gather-scatter or scalarized.
1486   void collectUniformsAndScalars(ElementCount VF) {
1487     // Do the analysis once.
1488     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1489       return;
1490     setCostBasedWideningDecision(VF);
1491     collectLoopUniforms(VF);
1492     collectLoopScalars(VF);
1493   }
1494 
1495   /// Returns true if the target machine supports masked store operation
1496   /// for the given \p DataType and kind of access to \p Ptr.
1497   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1498     return Legal->isConsecutivePtr(Ptr) &&
1499            TTI.isLegalMaskedStore(DataType, Alignment);
1500   }
1501 
1502   /// Returns true if the target machine supports masked load operation
1503   /// for the given \p DataType and kind of access to \p Ptr.
1504   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1505     return Legal->isConsecutivePtr(Ptr) &&
1506            TTI.isLegalMaskedLoad(DataType, Alignment);
1507   }
1508 
1509   /// Returns true if the target machine can represent \p V as a masked gather
1510   /// or scatter operation.
1511   bool isLegalGatherOrScatter(Value *V) {
1512     bool LI = isa<LoadInst>(V);
1513     bool SI = isa<StoreInst>(V);
1514     if (!LI && !SI)
1515       return false;
1516     auto *Ty = getLoadStoreType(V);
1517     Align Align = getLoadStoreAlignment(V);
1518     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1519            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1520   }
1521 
1522   /// Returns true if the target machine supports all of the reduction
1523   /// variables found for the given VF.
1524   bool canVectorizeReductions(ElementCount VF) const {
1525     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1526       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1527       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1528     }));
1529   }
1530 
1531   /// Returns true if \p I is an instruction that will be scalarized with
1532   /// predication. Such instructions include conditional stores and
1533   /// instructions that may divide by zero.
1534   /// If a non-zero VF has been calculated, we check if I will be scalarized
1535   /// predication for that VF.
1536   bool isScalarWithPredication(Instruction *I) const;
1537 
1538   // Returns true if \p I is an instruction that will be predicated either
1539   // through scalar predication or masked load/store or masked gather/scatter.
1540   // Superset of instructions that return true for isScalarWithPredication.
1541   bool isPredicatedInst(Instruction *I) {
1542     if (!blockNeedsPredication(I->getParent()))
1543       return false;
1544     // Loads and stores that need some form of masked operation are predicated
1545     // instructions.
1546     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1547       return Legal->isMaskRequired(I);
1548     return isScalarWithPredication(I);
1549   }
1550 
1551   /// Returns true if \p I is a memory instruction with consecutive memory
1552   /// access that can be widened.
1553   bool
1554   memoryInstructionCanBeWidened(Instruction *I,
1555                                 ElementCount VF = ElementCount::getFixed(1));
1556 
1557   /// Returns true if \p I is a memory instruction in an interleaved-group
1558   /// of memory accesses that can be vectorized with wide vector loads/stores
1559   /// and shuffles.
1560   bool
1561   interleavedAccessCanBeWidened(Instruction *I,
1562                                 ElementCount VF = ElementCount::getFixed(1));
1563 
1564   /// Check if \p Instr belongs to any interleaved access group.
1565   bool isAccessInterleaved(Instruction *Instr) {
1566     return InterleaveInfo.isInterleaved(Instr);
1567   }
1568 
1569   /// Get the interleaved access group that \p Instr belongs to.
1570   const InterleaveGroup<Instruction> *
1571   getInterleavedAccessGroup(Instruction *Instr) {
1572     return InterleaveInfo.getInterleaveGroup(Instr);
1573   }
1574 
1575   /// Returns true if we're required to use a scalar epilogue for at least
1576   /// the final iteration of the original loop.
1577   bool requiresScalarEpilogue(ElementCount VF) const {
1578     if (!isScalarEpilogueAllowed())
1579       return false;
1580     // If we might exit from anywhere but the latch, must run the exiting
1581     // iteration in scalar form.
1582     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1583       return true;
1584     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1585   }
1586 
1587   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1588   /// loop hint annotation.
1589   bool isScalarEpilogueAllowed() const {
1590     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1591   }
1592 
1593   /// Returns true if all loop blocks should be masked to fold tail loop.
1594   bool foldTailByMasking() const { return FoldTailByMasking; }
1595 
1596   bool blockNeedsPredication(BasicBlock *BB) const {
1597     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1598   }
1599 
1600   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1601   /// nodes to the chain of instructions representing the reductions. Uses a
1602   /// MapVector to ensure deterministic iteration order.
1603   using ReductionChainMap =
1604       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1605 
1606   /// Return the chain of instructions representing an inloop reduction.
1607   const ReductionChainMap &getInLoopReductionChains() const {
1608     return InLoopReductionChains;
1609   }
1610 
1611   /// Returns true if the Phi is part of an inloop reduction.
1612   bool isInLoopReduction(PHINode *Phi) const {
1613     return InLoopReductionChains.count(Phi);
1614   }
1615 
1616   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1617   /// with factor VF.  Return the cost of the instruction, including
1618   /// scalarization overhead if it's needed.
1619   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1620 
1621   /// Estimate cost of a call instruction CI if it were vectorized with factor
1622   /// VF. Return the cost of the instruction, including scalarization overhead
1623   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1624   /// scalarized -
1625   /// i.e. either vector version isn't available, or is too expensive.
1626   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1627                                     bool &NeedToScalarize) const;
1628 
1629   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1630   /// that of B.
1631   bool isMoreProfitable(const VectorizationFactor &A,
1632                         const VectorizationFactor &B) const;
1633 
1634   /// Invalidates decisions already taken by the cost model.
1635   void invalidateCostModelingDecisions() {
1636     WideningDecisions.clear();
1637     Uniforms.clear();
1638     Scalars.clear();
1639   }
1640 
1641 private:
1642   unsigned NumPredStores = 0;
1643 
1644   /// \return An upper bound for the vectorization factors for both
1645   /// fixed and scalable vectorization, where the minimum-known number of
1646   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1647   /// disabled or unsupported, then the scalable part will be equal to
1648   /// ElementCount::getScalable(0).
1649   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1650                                            ElementCount UserVF);
1651 
1652   /// \return the maximized element count based on the targets vector
1653   /// registers and the loop trip-count, but limited to a maximum safe VF.
1654   /// This is a helper function of computeFeasibleMaxVF.
1655   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1656   /// issue that occurred on one of the buildbots which cannot be reproduced
1657   /// without having access to the properietary compiler (see comments on
1658   /// D98509). The issue is currently under investigation and this workaround
1659   /// will be removed as soon as possible.
1660   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1661                                        unsigned SmallestType,
1662                                        unsigned WidestType,
1663                                        const ElementCount &MaxSafeVF);
1664 
1665   /// \return the maximum legal scalable VF, based on the safe max number
1666   /// of elements.
1667   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1668 
1669   /// The vectorization cost is a combination of the cost itself and a boolean
1670   /// indicating whether any of the contributing operations will actually
1671   /// operate on vector values after type legalization in the backend. If this
1672   /// latter value is false, then all operations will be scalarized (i.e. no
1673   /// vectorization has actually taken place).
1674   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1675 
1676   /// Returns the expected execution cost. The unit of the cost does
1677   /// not matter because we use the 'cost' units to compare different
1678   /// vector widths. The cost that is returned is *not* normalized by
1679   /// the factor width. If \p Invalid is not nullptr, this function
1680   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1681   /// each instruction that has an Invalid cost for the given VF.
1682   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1683   VectorizationCostTy
1684   expectedCost(ElementCount VF,
1685                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1686 
1687   /// Returns the execution time cost of an instruction for a given vector
1688   /// width. Vector width of one means scalar.
1689   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1690 
1691   /// The cost-computation logic from getInstructionCost which provides
1692   /// the vector type as an output parameter.
1693   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1694                                      Type *&VectorTy);
1695 
1696   /// Return the cost of instructions in an inloop reduction pattern, if I is
1697   /// part of that pattern.
1698   Optional<InstructionCost>
1699   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1700                           TTI::TargetCostKind CostKind);
1701 
1702   /// Calculate vectorization cost of memory instruction \p I.
1703   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1704 
1705   /// The cost computation for scalarized memory instruction.
1706   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1707 
1708   /// The cost computation for interleaving group of memory instructions.
1709   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1710 
1711   /// The cost computation for Gather/Scatter instruction.
1712   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1713 
1714   /// The cost computation for widening instruction \p I with consecutive
1715   /// memory access.
1716   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1717 
1718   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1719   /// Load: scalar load + broadcast.
1720   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1721   /// element)
1722   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1723 
1724   /// Estimate the overhead of scalarizing an instruction. This is a
1725   /// convenience wrapper for the type-based getScalarizationOverhead API.
1726   InstructionCost getScalarizationOverhead(Instruction *I,
1727                                            ElementCount VF) const;
1728 
1729   /// Returns whether the instruction is a load or store and will be a emitted
1730   /// as a vector operation.
1731   bool isConsecutiveLoadOrStore(Instruction *I);
1732 
1733   /// Returns true if an artificially high cost for emulated masked memrefs
1734   /// should be used.
1735   bool useEmulatedMaskMemRefHack(Instruction *I);
1736 
1737   /// Map of scalar integer values to the smallest bitwidth they can be legally
1738   /// represented as. The vector equivalents of these values should be truncated
1739   /// to this type.
1740   MapVector<Instruction *, uint64_t> MinBWs;
1741 
1742   /// A type representing the costs for instructions if they were to be
1743   /// scalarized rather than vectorized. The entries are Instruction-Cost
1744   /// pairs.
1745   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1746 
1747   /// A set containing all BasicBlocks that are known to present after
1748   /// vectorization as a predicated block.
1749   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1750 
1751   /// Records whether it is allowed to have the original scalar loop execute at
1752   /// least once. This may be needed as a fallback loop in case runtime
1753   /// aliasing/dependence checks fail, or to handle the tail/remainder
1754   /// iterations when the trip count is unknown or doesn't divide by the VF,
1755   /// or as a peel-loop to handle gaps in interleave-groups.
1756   /// Under optsize and when the trip count is very small we don't allow any
1757   /// iterations to execute in the scalar loop.
1758   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1759 
1760   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1761   bool FoldTailByMasking = false;
1762 
1763   /// A map holding scalar costs for different vectorization factors. The
1764   /// presence of a cost for an instruction in the mapping indicates that the
1765   /// instruction will be scalarized when vectorizing with the associated
1766   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1767   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1768 
1769   /// Holds the instructions known to be uniform after vectorization.
1770   /// The data is collected per VF.
1771   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1772 
1773   /// Holds the instructions known to be scalar after vectorization.
1774   /// The data is collected per VF.
1775   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1776 
1777   /// Holds the instructions (address computations) that are forced to be
1778   /// scalarized.
1779   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1780 
1781   /// PHINodes of the reductions that should be expanded in-loop along with
1782   /// their associated chains of reduction operations, in program order from top
1783   /// (PHI) to bottom
1784   ReductionChainMap InLoopReductionChains;
1785 
1786   /// A Map of inloop reduction operations and their immediate chain operand.
1787   /// FIXME: This can be removed once reductions can be costed correctly in
1788   /// vplan. This was added to allow quick lookup to the inloop operations,
1789   /// without having to loop through InLoopReductionChains.
1790   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1791 
1792   /// Returns the expected difference in cost from scalarizing the expression
1793   /// feeding a predicated instruction \p PredInst. The instructions to
1794   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1795   /// non-negative return value implies the expression will be scalarized.
1796   /// Currently, only single-use chains are considered for scalarization.
1797   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1798                               ElementCount VF);
1799 
1800   /// Collect the instructions that are uniform after vectorization. An
1801   /// instruction is uniform if we represent it with a single scalar value in
1802   /// the vectorized loop corresponding to each vector iteration. Examples of
1803   /// uniform instructions include pointer operands of consecutive or
1804   /// interleaved memory accesses. Note that although uniformity implies an
1805   /// instruction will be scalar, the reverse is not true. In general, a
1806   /// scalarized instruction will be represented by VF scalar values in the
1807   /// vectorized loop, each corresponding to an iteration of the original
1808   /// scalar loop.
1809   void collectLoopUniforms(ElementCount VF);
1810 
1811   /// Collect the instructions that are scalar after vectorization. An
1812   /// instruction is scalar if it is known to be uniform or will be scalarized
1813   /// during vectorization. Non-uniform scalarized instructions will be
1814   /// represented by VF values in the vectorized loop, each corresponding to an
1815   /// iteration of the original scalar loop.
1816   void collectLoopScalars(ElementCount VF);
1817 
1818   /// Keeps cost model vectorization decision and cost for instructions.
1819   /// Right now it is used for memory instructions only.
1820   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1821                                 std::pair<InstWidening, InstructionCost>>;
1822 
1823   DecisionList WideningDecisions;
1824 
1825   /// Returns true if \p V is expected to be vectorized and it needs to be
1826   /// extracted.
1827   bool needsExtract(Value *V, ElementCount VF) const {
1828     Instruction *I = dyn_cast<Instruction>(V);
1829     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1830         TheLoop->isLoopInvariant(I))
1831       return false;
1832 
1833     // Assume we can vectorize V (and hence we need extraction) if the
1834     // scalars are not computed yet. This can happen, because it is called
1835     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1836     // the scalars are collected. That should be a safe assumption in most
1837     // cases, because we check if the operands have vectorizable types
1838     // beforehand in LoopVectorizationLegality.
1839     return Scalars.find(VF) == Scalars.end() ||
1840            !isScalarAfterVectorization(I, VF);
1841   };
1842 
1843   /// Returns a range containing only operands needing to be extracted.
1844   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1845                                                    ElementCount VF) const {
1846     return SmallVector<Value *, 4>(make_filter_range(
1847         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1848   }
1849 
1850   /// Determines if we have the infrastructure to vectorize loop \p L and its
1851   /// epilogue, assuming the main loop is vectorized by \p VF.
1852   bool isCandidateForEpilogueVectorization(const Loop &L,
1853                                            const ElementCount VF) const;
1854 
1855   /// Returns true if epilogue vectorization is considered profitable, and
1856   /// false otherwise.
1857   /// \p VF is the vectorization factor chosen for the original loop.
1858   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1859 
1860 public:
1861   /// The loop that we evaluate.
1862   Loop *TheLoop;
1863 
1864   /// Predicated scalar evolution analysis.
1865   PredicatedScalarEvolution &PSE;
1866 
1867   /// Loop Info analysis.
1868   LoopInfo *LI;
1869 
1870   /// Vectorization legality.
1871   LoopVectorizationLegality *Legal;
1872 
1873   /// Vector target information.
1874   const TargetTransformInfo &TTI;
1875 
1876   /// Target Library Info.
1877   const TargetLibraryInfo *TLI;
1878 
1879   /// Demanded bits analysis.
1880   DemandedBits *DB;
1881 
1882   /// Assumption cache.
1883   AssumptionCache *AC;
1884 
1885   /// Interface to emit optimization remarks.
1886   OptimizationRemarkEmitter *ORE;
1887 
1888   const Function *TheFunction;
1889 
1890   /// Loop Vectorize Hint.
1891   const LoopVectorizeHints *Hints;
1892 
1893   /// The interleave access information contains groups of interleaved accesses
1894   /// with the same stride and close to each other.
1895   InterleavedAccessInfo &InterleaveInfo;
1896 
1897   /// Values to ignore in the cost model.
1898   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1899 
1900   /// Values to ignore in the cost model when VF > 1.
1901   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1902 
1903   /// All element types found in the loop.
1904   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1905 
1906   /// Profitable vector factors.
1907   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1908 };
1909 } // end namespace llvm
1910 
1911 /// Helper struct to manage generating runtime checks for vectorization.
1912 ///
1913 /// The runtime checks are created up-front in temporary blocks to allow better
1914 /// estimating the cost and un-linked from the existing IR. After deciding to
1915 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1916 /// temporary blocks are completely removed.
1917 class GeneratedRTChecks {
1918   /// Basic block which contains the generated SCEV checks, if any.
1919   BasicBlock *SCEVCheckBlock = nullptr;
1920 
1921   /// The value representing the result of the generated SCEV checks. If it is
1922   /// nullptr, either no SCEV checks have been generated or they have been used.
1923   Value *SCEVCheckCond = nullptr;
1924 
1925   /// Basic block which contains the generated memory runtime checks, if any.
1926   BasicBlock *MemCheckBlock = nullptr;
1927 
1928   /// The value representing the result of the generated memory runtime checks.
1929   /// If it is nullptr, either no memory runtime checks have been generated or
1930   /// they have been used.
1931   Instruction *MemRuntimeCheckCond = nullptr;
1932 
1933   DominatorTree *DT;
1934   LoopInfo *LI;
1935 
1936   SCEVExpander SCEVExp;
1937   SCEVExpander MemCheckExp;
1938 
1939 public:
1940   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1941                     const DataLayout &DL)
1942       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1943         MemCheckExp(SE, DL, "scev.check") {}
1944 
1945   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1946   /// accurately estimate the cost of the runtime checks. The blocks are
1947   /// un-linked from the IR and is added back during vector code generation. If
1948   /// there is no vector code generation, the check blocks are removed
1949   /// completely.
1950   void Create(Loop *L, const LoopAccessInfo &LAI,
1951               const SCEVUnionPredicate &UnionPred) {
1952 
1953     BasicBlock *LoopHeader = L->getHeader();
1954     BasicBlock *Preheader = L->getLoopPreheader();
1955 
1956     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1957     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1958     // may be used by SCEVExpander. The blocks will be un-linked from their
1959     // predecessors and removed from LI & DT at the end of the function.
1960     if (!UnionPred.isAlwaysTrue()) {
1961       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1962                                   nullptr, "vector.scevcheck");
1963 
1964       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1965           &UnionPred, SCEVCheckBlock->getTerminator());
1966     }
1967 
1968     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1969     if (RtPtrChecking.Need) {
1970       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1971       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1972                                  "vector.memcheck");
1973 
1974       std::tie(std::ignore, MemRuntimeCheckCond) =
1975           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1976                            RtPtrChecking.getChecks(), MemCheckExp);
1977       assert(MemRuntimeCheckCond &&
1978              "no RT checks generated although RtPtrChecking "
1979              "claimed checks are required");
1980     }
1981 
1982     if (!MemCheckBlock && !SCEVCheckBlock)
1983       return;
1984 
1985     // Unhook the temporary block with the checks, update various places
1986     // accordingly.
1987     if (SCEVCheckBlock)
1988       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1989     if (MemCheckBlock)
1990       MemCheckBlock->replaceAllUsesWith(Preheader);
1991 
1992     if (SCEVCheckBlock) {
1993       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1994       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1995       Preheader->getTerminator()->eraseFromParent();
1996     }
1997     if (MemCheckBlock) {
1998       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1999       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2000       Preheader->getTerminator()->eraseFromParent();
2001     }
2002 
2003     DT->changeImmediateDominator(LoopHeader, Preheader);
2004     if (MemCheckBlock) {
2005       DT->eraseNode(MemCheckBlock);
2006       LI->removeBlock(MemCheckBlock);
2007     }
2008     if (SCEVCheckBlock) {
2009       DT->eraseNode(SCEVCheckBlock);
2010       LI->removeBlock(SCEVCheckBlock);
2011     }
2012   }
2013 
2014   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2015   /// unused.
2016   ~GeneratedRTChecks() {
2017     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
2018     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
2019     if (!SCEVCheckCond)
2020       SCEVCleaner.markResultUsed();
2021 
2022     if (!MemRuntimeCheckCond)
2023       MemCheckCleaner.markResultUsed();
2024 
2025     if (MemRuntimeCheckCond) {
2026       auto &SE = *MemCheckExp.getSE();
2027       // Memory runtime check generation creates compares that use expanded
2028       // values. Remove them before running the SCEVExpanderCleaners.
2029       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2030         if (MemCheckExp.isInsertedInstruction(&I))
2031           continue;
2032         SE.forgetValue(&I);
2033         SE.eraseValueFromMap(&I);
2034         I.eraseFromParent();
2035       }
2036     }
2037     MemCheckCleaner.cleanup();
2038     SCEVCleaner.cleanup();
2039 
2040     if (SCEVCheckCond)
2041       SCEVCheckBlock->eraseFromParent();
2042     if (MemRuntimeCheckCond)
2043       MemCheckBlock->eraseFromParent();
2044   }
2045 
2046   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2047   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2048   /// depending on the generated condition.
2049   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2050                              BasicBlock *LoopVectorPreHeader,
2051                              BasicBlock *LoopExitBlock) {
2052     if (!SCEVCheckCond)
2053       return nullptr;
2054     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2055       if (C->isZero())
2056         return nullptr;
2057 
2058     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2059 
2060     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2061     // Create new preheader for vector loop.
2062     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2063       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2064 
2065     SCEVCheckBlock->getTerminator()->eraseFromParent();
2066     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2067     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2068                                                 SCEVCheckBlock);
2069 
2070     DT->addNewBlock(SCEVCheckBlock, Pred);
2071     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2072 
2073     ReplaceInstWithInst(
2074         SCEVCheckBlock->getTerminator(),
2075         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2076     // Mark the check as used, to prevent it from being removed during cleanup.
2077     SCEVCheckCond = nullptr;
2078     return SCEVCheckBlock;
2079   }
2080 
2081   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2082   /// the branches to branch to the vector preheader or \p Bypass, depending on
2083   /// the generated condition.
2084   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2085                                    BasicBlock *LoopVectorPreHeader) {
2086     // Check if we generated code that checks in runtime if arrays overlap.
2087     if (!MemRuntimeCheckCond)
2088       return nullptr;
2089 
2090     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2091     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2092                                                 MemCheckBlock);
2093 
2094     DT->addNewBlock(MemCheckBlock, Pred);
2095     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2096     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2097 
2098     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2099       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2100 
2101     ReplaceInstWithInst(
2102         MemCheckBlock->getTerminator(),
2103         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2104     MemCheckBlock->getTerminator()->setDebugLoc(
2105         Pred->getTerminator()->getDebugLoc());
2106 
2107     // Mark the check as used, to prevent it from being removed during cleanup.
2108     MemRuntimeCheckCond = nullptr;
2109     return MemCheckBlock;
2110   }
2111 };
2112 
2113 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2114 // vectorization. The loop needs to be annotated with #pragma omp simd
2115 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2116 // vector length information is not provided, vectorization is not considered
2117 // explicit. Interleave hints are not allowed either. These limitations will be
2118 // relaxed in the future.
2119 // Please, note that we are currently forced to abuse the pragma 'clang
2120 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2121 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2122 // provides *explicit vectorization hints* (LV can bypass legal checks and
2123 // assume that vectorization is legal). However, both hints are implemented
2124 // using the same metadata (llvm.loop.vectorize, processed by
2125 // LoopVectorizeHints). This will be fixed in the future when the native IR
2126 // representation for pragma 'omp simd' is introduced.
2127 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2128                                    OptimizationRemarkEmitter *ORE) {
2129   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2130   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2131 
2132   // Only outer loops with an explicit vectorization hint are supported.
2133   // Unannotated outer loops are ignored.
2134   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2135     return false;
2136 
2137   Function *Fn = OuterLp->getHeader()->getParent();
2138   if (!Hints.allowVectorization(Fn, OuterLp,
2139                                 true /*VectorizeOnlyWhenForced*/)) {
2140     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2141     return false;
2142   }
2143 
2144   if (Hints.getInterleave() > 1) {
2145     // TODO: Interleave support is future work.
2146     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2147                          "outer loops.\n");
2148     Hints.emitRemarkWithHints();
2149     return false;
2150   }
2151 
2152   return true;
2153 }
2154 
2155 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2156                                   OptimizationRemarkEmitter *ORE,
2157                                   SmallVectorImpl<Loop *> &V) {
2158   // Collect inner loops and outer loops without irreducible control flow. For
2159   // now, only collect outer loops that have explicit vectorization hints. If we
2160   // are stress testing the VPlan H-CFG construction, we collect the outermost
2161   // loop of every loop nest.
2162   if (L.isInnermost() || VPlanBuildStressTest ||
2163       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2164     LoopBlocksRPO RPOT(&L);
2165     RPOT.perform(LI);
2166     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2167       V.push_back(&L);
2168       // TODO: Collect inner loops inside marked outer loops in case
2169       // vectorization fails for the outer loop. Do not invoke
2170       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2171       // already known to be reducible. We can use an inherited attribute for
2172       // that.
2173       return;
2174     }
2175   }
2176   for (Loop *InnerL : L)
2177     collectSupportedLoops(*InnerL, LI, ORE, V);
2178 }
2179 
2180 namespace {
2181 
2182 /// The LoopVectorize Pass.
2183 struct LoopVectorize : public FunctionPass {
2184   /// Pass identification, replacement for typeid
2185   static char ID;
2186 
2187   LoopVectorizePass Impl;
2188 
2189   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2190                          bool VectorizeOnlyWhenForced = false)
2191       : FunctionPass(ID),
2192         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2193     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2194   }
2195 
2196   bool runOnFunction(Function &F) override {
2197     if (skipFunction(F))
2198       return false;
2199 
2200     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2201     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2202     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2203     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2204     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2205     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2206     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2207     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2208     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2209     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2210     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2211     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2212     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2213 
2214     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2215         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2216 
2217     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2218                         GetLAA, *ORE, PSI).MadeAnyChange;
2219   }
2220 
2221   void getAnalysisUsage(AnalysisUsage &AU) const override {
2222     AU.addRequired<AssumptionCacheTracker>();
2223     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2224     AU.addRequired<DominatorTreeWrapperPass>();
2225     AU.addRequired<LoopInfoWrapperPass>();
2226     AU.addRequired<ScalarEvolutionWrapperPass>();
2227     AU.addRequired<TargetTransformInfoWrapperPass>();
2228     AU.addRequired<AAResultsWrapperPass>();
2229     AU.addRequired<LoopAccessLegacyAnalysis>();
2230     AU.addRequired<DemandedBitsWrapperPass>();
2231     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2232     AU.addRequired<InjectTLIMappingsLegacy>();
2233 
2234     // We currently do not preserve loopinfo/dominator analyses with outer loop
2235     // vectorization. Until this is addressed, mark these analyses as preserved
2236     // only for non-VPlan-native path.
2237     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2238     if (!EnableVPlanNativePath) {
2239       AU.addPreserved<LoopInfoWrapperPass>();
2240       AU.addPreserved<DominatorTreeWrapperPass>();
2241     }
2242 
2243     AU.addPreserved<BasicAAWrapperPass>();
2244     AU.addPreserved<GlobalsAAWrapperPass>();
2245     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2246   }
2247 };
2248 
2249 } // end anonymous namespace
2250 
2251 //===----------------------------------------------------------------------===//
2252 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2253 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2254 //===----------------------------------------------------------------------===//
2255 
2256 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2257   // We need to place the broadcast of invariant variables outside the loop,
2258   // but only if it's proven safe to do so. Else, broadcast will be inside
2259   // vector loop body.
2260   Instruction *Instr = dyn_cast<Instruction>(V);
2261   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2262                      (!Instr ||
2263                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2264   // Place the code for broadcasting invariant variables in the new preheader.
2265   IRBuilder<>::InsertPointGuard Guard(Builder);
2266   if (SafeToHoist)
2267     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2268 
2269   // Broadcast the scalar into all locations in the vector.
2270   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2271 
2272   return Shuf;
2273 }
2274 
2275 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2276     const InductionDescriptor &II, Value *Step, Value *Start,
2277     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2278     VPTransformState &State) {
2279   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2280          "Expected either an induction phi-node or a truncate of it!");
2281 
2282   // Construct the initial value of the vector IV in the vector loop preheader
2283   auto CurrIP = Builder.saveIP();
2284   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2285   if (isa<TruncInst>(EntryVal)) {
2286     assert(Start->getType()->isIntegerTy() &&
2287            "Truncation requires an integer type");
2288     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2289     Step = Builder.CreateTrunc(Step, TruncType);
2290     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2291   }
2292   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2293   Value *SteppedStart =
2294       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
2295 
2296   // We create vector phi nodes for both integer and floating-point induction
2297   // variables. Here, we determine the kind of arithmetic we will perform.
2298   Instruction::BinaryOps AddOp;
2299   Instruction::BinaryOps MulOp;
2300   if (Step->getType()->isIntegerTy()) {
2301     AddOp = Instruction::Add;
2302     MulOp = Instruction::Mul;
2303   } else {
2304     AddOp = II.getInductionOpcode();
2305     MulOp = Instruction::FMul;
2306   }
2307 
2308   // Multiply the vectorization factor by the step using integer or
2309   // floating-point arithmetic as appropriate.
2310   Type *StepType = Step->getType();
2311   if (Step->getType()->isFloatingPointTy())
2312     StepType = IntegerType::get(StepType->getContext(),
2313                                 StepType->getScalarSizeInBits());
2314   Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF);
2315   if (Step->getType()->isFloatingPointTy())
2316     RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType());
2317   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2318 
2319   // Create a vector splat to use in the induction update.
2320   //
2321   // FIXME: If the step is non-constant, we create the vector splat with
2322   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2323   //        handle a constant vector splat.
2324   Value *SplatVF = isa<Constant>(Mul)
2325                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2326                        : Builder.CreateVectorSplat(VF, Mul);
2327   Builder.restoreIP(CurrIP);
2328 
2329   // We may need to add the step a number of times, depending on the unroll
2330   // factor. The last of those goes into the PHI.
2331   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2332                                     &*LoopVectorBody->getFirstInsertionPt());
2333   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2334   Instruction *LastInduction = VecInd;
2335   for (unsigned Part = 0; Part < UF; ++Part) {
2336     State.set(Def, LastInduction, Part);
2337 
2338     if (isa<TruncInst>(EntryVal))
2339       addMetadata(LastInduction, EntryVal);
2340     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2341                                           State, Part);
2342 
2343     LastInduction = cast<Instruction>(
2344         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2345     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2346   }
2347 
2348   // Move the last step to the end of the latch block. This ensures consistent
2349   // placement of all induction updates.
2350   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2351   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2352   auto *ICmp = cast<Instruction>(Br->getCondition());
2353   LastInduction->moveBefore(ICmp);
2354   LastInduction->setName("vec.ind.next");
2355 
2356   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2357   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2358 }
2359 
2360 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2361   return Cost->isScalarAfterVectorization(I, VF) ||
2362          Cost->isProfitableToScalarize(I, VF);
2363 }
2364 
2365 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2366   if (shouldScalarizeInstruction(IV))
2367     return true;
2368   auto isScalarInst = [&](User *U) -> bool {
2369     auto *I = cast<Instruction>(U);
2370     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2371   };
2372   return llvm::any_of(IV->users(), isScalarInst);
2373 }
2374 
2375 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2376     const InductionDescriptor &ID, const Instruction *EntryVal,
2377     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2378     unsigned Part, unsigned Lane) {
2379   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2380          "Expected either an induction phi-node or a truncate of it!");
2381 
2382   // This induction variable is not the phi from the original loop but the
2383   // newly-created IV based on the proof that casted Phi is equal to the
2384   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2385   // re-uses the same InductionDescriptor that original IV uses but we don't
2386   // have to do any recording in this case - that is done when original IV is
2387   // processed.
2388   if (isa<TruncInst>(EntryVal))
2389     return;
2390 
2391   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
2392   if (Casts.empty())
2393     return;
2394   // Only the first Cast instruction in the Casts vector is of interest.
2395   // The rest of the Casts (if exist) have no uses outside the
2396   // induction update chain itself.
2397   if (Lane < UINT_MAX)
2398     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2399   else
2400     State.set(CastDef, VectorLoopVal, Part);
2401 }
2402 
2403 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2404                                                 TruncInst *Trunc, VPValue *Def,
2405                                                 VPValue *CastDef,
2406                                                 VPTransformState &State) {
2407   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2408          "Primary induction variable must have an integer type");
2409 
2410   auto II = Legal->getInductionVars().find(IV);
2411   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2412 
2413   auto ID = II->second;
2414   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2415 
2416   // The value from the original loop to which we are mapping the new induction
2417   // variable.
2418   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2419 
2420   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2421 
2422   // Generate code for the induction step. Note that induction steps are
2423   // required to be loop-invariant
2424   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2425     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2426            "Induction step should be loop invariant");
2427     if (PSE.getSE()->isSCEVable(IV->getType())) {
2428       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2429       return Exp.expandCodeFor(Step, Step->getType(),
2430                                LoopVectorPreHeader->getTerminator());
2431     }
2432     return cast<SCEVUnknown>(Step)->getValue();
2433   };
2434 
2435   // The scalar value to broadcast. This is derived from the canonical
2436   // induction variable. If a truncation type is given, truncate the canonical
2437   // induction variable and step. Otherwise, derive these values from the
2438   // induction descriptor.
2439   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2440     Value *ScalarIV = Induction;
2441     if (IV != OldInduction) {
2442       ScalarIV = IV->getType()->isIntegerTy()
2443                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2444                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2445                                           IV->getType());
2446       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2447       ScalarIV->setName("offset.idx");
2448     }
2449     if (Trunc) {
2450       auto *TruncType = cast<IntegerType>(Trunc->getType());
2451       assert(Step->getType()->isIntegerTy() &&
2452              "Truncation requires an integer step");
2453       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2454       Step = Builder.CreateTrunc(Step, TruncType);
2455     }
2456     return ScalarIV;
2457   };
2458 
2459   // Create the vector values from the scalar IV, in the absence of creating a
2460   // vector IV.
2461   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2462     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2463     for (unsigned Part = 0; Part < UF; ++Part) {
2464       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2465       Value *EntryPart =
2466           getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step,
2467                         ID.getInductionOpcode());
2468       State.set(Def, EntryPart, Part);
2469       if (Trunc)
2470         addMetadata(EntryPart, Trunc);
2471       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2472                                             State, Part);
2473     }
2474   };
2475 
2476   // Fast-math-flags propagate from the original induction instruction.
2477   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2478   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2479     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2480 
2481   // Now do the actual transformations, and start with creating the step value.
2482   Value *Step = CreateStepValue(ID.getStep());
2483   if (VF.isZero() || VF.isScalar()) {
2484     Value *ScalarIV = CreateScalarIV(Step);
2485     CreateSplatIV(ScalarIV, Step);
2486     return;
2487   }
2488 
2489   // Determine if we want a scalar version of the induction variable. This is
2490   // true if the induction variable itself is not widened, or if it has at
2491   // least one user in the loop that is not widened.
2492   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2493   if (!NeedsScalarIV) {
2494     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2495                                     State);
2496     return;
2497   }
2498 
2499   // Try to create a new independent vector induction variable. If we can't
2500   // create the phi node, we will splat the scalar induction variable in each
2501   // loop iteration.
2502   if (!shouldScalarizeInstruction(EntryVal)) {
2503     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2504                                     State);
2505     Value *ScalarIV = CreateScalarIV(Step);
2506     // Create scalar steps that can be used by instructions we will later
2507     // scalarize. Note that the addition of the scalar steps will not increase
2508     // the number of instructions in the loop in the common case prior to
2509     // InstCombine. We will be trading one vector extract for each scalar step.
2510     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2511     return;
2512   }
2513 
2514   // All IV users are scalar instructions, so only emit a scalar IV, not a
2515   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2516   // predicate used by the masked loads/stores.
2517   Value *ScalarIV = CreateScalarIV(Step);
2518   if (!Cost->isScalarEpilogueAllowed())
2519     CreateSplatIV(ScalarIV, Step);
2520   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2521 }
2522 
2523 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2524                                           Instruction::BinaryOps BinOp) {
2525   // Create and check the types.
2526   auto *ValVTy = cast<VectorType>(Val->getType());
2527   ElementCount VLen = ValVTy->getElementCount();
2528 
2529   Type *STy = Val->getType()->getScalarType();
2530   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2531          "Induction Step must be an integer or FP");
2532   assert(Step->getType() == STy && "Step has wrong type");
2533 
2534   SmallVector<Constant *, 8> Indices;
2535 
2536   // Create a vector of consecutive numbers from zero to VF.
2537   VectorType *InitVecValVTy = ValVTy;
2538   Type *InitVecValSTy = STy;
2539   if (STy->isFloatingPointTy()) {
2540     InitVecValSTy =
2541         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2542     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2543   }
2544   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2545 
2546   // Add on StartIdx
2547   Value *StartIdxSplat = Builder.CreateVectorSplat(
2548       VLen, ConstantInt::get(InitVecValSTy, StartIdx));
2549   InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2550 
2551   if (STy->isIntegerTy()) {
2552     Step = Builder.CreateVectorSplat(VLen, Step);
2553     assert(Step->getType() == Val->getType() && "Invalid step vec");
2554     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2555     // which can be found from the original scalar operations.
2556     Step = Builder.CreateMul(InitVec, Step);
2557     return Builder.CreateAdd(Val, Step, "induction");
2558   }
2559 
2560   // Floating point induction.
2561   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2562          "Binary Opcode should be specified for FP induction");
2563   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2564   Step = Builder.CreateVectorSplat(VLen, Step);
2565   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2566   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2567 }
2568 
2569 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2570                                            Instruction *EntryVal,
2571                                            const InductionDescriptor &ID,
2572                                            VPValue *Def, VPValue *CastDef,
2573                                            VPTransformState &State) {
2574   // We shouldn't have to build scalar steps if we aren't vectorizing.
2575   assert(VF.isVector() && "VF should be greater than one");
2576   // Get the value type and ensure it and the step have the same integer type.
2577   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2578   assert(ScalarIVTy == Step->getType() &&
2579          "Val and Step should have the same type");
2580 
2581   // We build scalar steps for both integer and floating-point induction
2582   // variables. Here, we determine the kind of arithmetic we will perform.
2583   Instruction::BinaryOps AddOp;
2584   Instruction::BinaryOps MulOp;
2585   if (ScalarIVTy->isIntegerTy()) {
2586     AddOp = Instruction::Add;
2587     MulOp = Instruction::Mul;
2588   } else {
2589     AddOp = ID.getInductionOpcode();
2590     MulOp = Instruction::FMul;
2591   }
2592 
2593   // Determine the number of scalars we need to generate for each unroll
2594   // iteration. If EntryVal is uniform, we only need to generate the first
2595   // lane. Otherwise, we generate all VF values.
2596   bool IsUniform =
2597       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
2598   unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
2599   // Compute the scalar steps and save the results in State.
2600   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2601                                      ScalarIVTy->getScalarSizeInBits());
2602   Type *VecIVTy = nullptr;
2603   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2604   if (!IsUniform && VF.isScalable()) {
2605     VecIVTy = VectorType::get(ScalarIVTy, VF);
2606     UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
2607     SplatStep = Builder.CreateVectorSplat(VF, Step);
2608     SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
2609   }
2610 
2611   for (unsigned Part = 0; Part < UF; ++Part) {
2612     Value *StartIdx0 =
2613         createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF);
2614 
2615     if (!IsUniform && VF.isScalable()) {
2616       auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
2617       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2618       if (ScalarIVTy->isFloatingPointTy())
2619         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2620       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2621       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2622       State.set(Def, Add, Part);
2623       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2624                                             Part);
2625       // It's useful to record the lane values too for the known minimum number
2626       // of elements so we do those below. This improves the code quality when
2627       // trying to extract the first element, for example.
2628     }
2629 
2630     if (ScalarIVTy->isFloatingPointTy())
2631       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2632 
2633     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2634       Value *StartIdx = Builder.CreateBinOp(
2635           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2636       // The step returned by `createStepForVF` is a runtime-evaluated value
2637       // when VF is scalable. Otherwise, it should be folded into a Constant.
2638       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2639              "Expected StartIdx to be folded to a constant when VF is not "
2640              "scalable");
2641       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2642       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2643       State.set(Def, Add, VPIteration(Part, Lane));
2644       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2645                                             Part, Lane);
2646     }
2647   }
2648 }
2649 
2650 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2651                                                     const VPIteration &Instance,
2652                                                     VPTransformState &State) {
2653   Value *ScalarInst = State.get(Def, Instance);
2654   Value *VectorValue = State.get(Def, Instance.Part);
2655   VectorValue = Builder.CreateInsertElement(
2656       VectorValue, ScalarInst,
2657       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2658   State.set(Def, VectorValue, Instance.Part);
2659 }
2660 
2661 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2662   assert(Vec->getType()->isVectorTy() && "Invalid type");
2663   return Builder.CreateVectorReverse(Vec, "reverse");
2664 }
2665 
2666 // Return whether we allow using masked interleave-groups (for dealing with
2667 // strided loads/stores that reside in predicated blocks, or for dealing
2668 // with gaps).
2669 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2670   // If an override option has been passed in for interleaved accesses, use it.
2671   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2672     return EnableMaskedInterleavedMemAccesses;
2673 
2674   return TTI.enableMaskedInterleavedAccessVectorization();
2675 }
2676 
2677 // Try to vectorize the interleave group that \p Instr belongs to.
2678 //
2679 // E.g. Translate following interleaved load group (factor = 3):
2680 //   for (i = 0; i < N; i+=3) {
2681 //     R = Pic[i];             // Member of index 0
2682 //     G = Pic[i+1];           // Member of index 1
2683 //     B = Pic[i+2];           // Member of index 2
2684 //     ... // do something to R, G, B
2685 //   }
2686 // To:
2687 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2688 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2689 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2690 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2691 //
2692 // Or translate following interleaved store group (factor = 3):
2693 //   for (i = 0; i < N; i+=3) {
2694 //     ... do something to R, G, B
2695 //     Pic[i]   = R;           // Member of index 0
2696 //     Pic[i+1] = G;           // Member of index 1
2697 //     Pic[i+2] = B;           // Member of index 2
2698 //   }
2699 // To:
2700 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2701 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2702 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2703 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2704 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2705 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2706     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2707     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2708     VPValue *BlockInMask) {
2709   Instruction *Instr = Group->getInsertPos();
2710   const DataLayout &DL = Instr->getModule()->getDataLayout();
2711 
2712   // Prepare for the vector type of the interleaved load/store.
2713   Type *ScalarTy = getLoadStoreType(Instr);
2714   unsigned InterleaveFactor = Group->getFactor();
2715   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2716   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2717 
2718   // Prepare for the new pointers.
2719   SmallVector<Value *, 2> AddrParts;
2720   unsigned Index = Group->getIndex(Instr);
2721 
2722   // TODO: extend the masked interleaved-group support to reversed access.
2723   assert((!BlockInMask || !Group->isReverse()) &&
2724          "Reversed masked interleave-group not supported.");
2725 
2726   // If the group is reverse, adjust the index to refer to the last vector lane
2727   // instead of the first. We adjust the index from the first vector lane,
2728   // rather than directly getting the pointer for lane VF - 1, because the
2729   // pointer operand of the interleaved access is supposed to be uniform. For
2730   // uniform instructions, we're only required to generate a value for the
2731   // first vector lane in each unroll iteration.
2732   if (Group->isReverse())
2733     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2734 
2735   for (unsigned Part = 0; Part < UF; Part++) {
2736     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2737     setDebugLocFromInst(AddrPart);
2738 
2739     // Notice current instruction could be any index. Need to adjust the address
2740     // to the member of index 0.
2741     //
2742     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2743     //       b = A[i];       // Member of index 0
2744     // Current pointer is pointed to A[i+1], adjust it to A[i].
2745     //
2746     // E.g.  A[i+1] = a;     // Member of index 1
2747     //       A[i]   = b;     // Member of index 0
2748     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2749     // Current pointer is pointed to A[i+2], adjust it to A[i].
2750 
2751     bool InBounds = false;
2752     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2753       InBounds = gep->isInBounds();
2754     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2755     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2756 
2757     // Cast to the vector pointer type.
2758     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2759     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2760     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2761   }
2762 
2763   setDebugLocFromInst(Instr);
2764   Value *PoisonVec = PoisonValue::get(VecTy);
2765 
2766   Value *MaskForGaps = nullptr;
2767   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2768     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2769     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2770   }
2771 
2772   // Vectorize the interleaved load group.
2773   if (isa<LoadInst>(Instr)) {
2774     // For each unroll part, create a wide load for the group.
2775     SmallVector<Value *, 2> NewLoads;
2776     for (unsigned Part = 0; Part < UF; Part++) {
2777       Instruction *NewLoad;
2778       if (BlockInMask || MaskForGaps) {
2779         assert(useMaskedInterleavedAccesses(*TTI) &&
2780                "masked interleaved groups are not allowed.");
2781         Value *GroupMask = MaskForGaps;
2782         if (BlockInMask) {
2783           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2784           Value *ShuffledMask = Builder.CreateShuffleVector(
2785               BlockInMaskPart,
2786               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2787               "interleaved.mask");
2788           GroupMask = MaskForGaps
2789                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2790                                                 MaskForGaps)
2791                           : ShuffledMask;
2792         }
2793         NewLoad =
2794             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2795                                      GroupMask, PoisonVec, "wide.masked.vec");
2796       }
2797       else
2798         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2799                                             Group->getAlign(), "wide.vec");
2800       Group->addMetadata(NewLoad);
2801       NewLoads.push_back(NewLoad);
2802     }
2803 
2804     // For each member in the group, shuffle out the appropriate data from the
2805     // wide loads.
2806     unsigned J = 0;
2807     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2808       Instruction *Member = Group->getMember(I);
2809 
2810       // Skip the gaps in the group.
2811       if (!Member)
2812         continue;
2813 
2814       auto StrideMask =
2815           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2816       for (unsigned Part = 0; Part < UF; Part++) {
2817         Value *StridedVec = Builder.CreateShuffleVector(
2818             NewLoads[Part], StrideMask, "strided.vec");
2819 
2820         // If this member has different type, cast the result type.
2821         if (Member->getType() != ScalarTy) {
2822           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2823           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2824           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2825         }
2826 
2827         if (Group->isReverse())
2828           StridedVec = reverseVector(StridedVec);
2829 
2830         State.set(VPDefs[J], StridedVec, Part);
2831       }
2832       ++J;
2833     }
2834     return;
2835   }
2836 
2837   // The sub vector type for current instruction.
2838   auto *SubVT = VectorType::get(ScalarTy, VF);
2839 
2840   // Vectorize the interleaved store group.
2841   for (unsigned Part = 0; Part < UF; Part++) {
2842     // Collect the stored vector from each member.
2843     SmallVector<Value *, 4> StoredVecs;
2844     for (unsigned i = 0; i < InterleaveFactor; i++) {
2845       // Interleaved store group doesn't allow a gap, so each index has a member
2846       assert(Group->getMember(i) && "Fail to get a member from an interleaved store group");
2847 
2848       Value *StoredVec = State.get(StoredValues[i], Part);
2849 
2850       if (Group->isReverse())
2851         StoredVec = reverseVector(StoredVec);
2852 
2853       // If this member has different type, cast it to a unified type.
2854 
2855       if (StoredVec->getType() != SubVT)
2856         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2857 
2858       StoredVecs.push_back(StoredVec);
2859     }
2860 
2861     // Concatenate all vectors into a wide vector.
2862     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2863 
2864     // Interleave the elements in the wide vector.
2865     Value *IVec = Builder.CreateShuffleVector(
2866         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2867         "interleaved.vec");
2868 
2869     Instruction *NewStoreInstr;
2870     if (BlockInMask) {
2871       Value *BlockInMaskPart = State.get(BlockInMask, Part);
2872       Value *ShuffledMask = Builder.CreateShuffleVector(
2873           BlockInMaskPart,
2874           createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2875           "interleaved.mask");
2876       NewStoreInstr = Builder.CreateMaskedStore(
2877           IVec, AddrParts[Part], Group->getAlign(), ShuffledMask);
2878     }
2879     else
2880       NewStoreInstr =
2881           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2882 
2883     Group->addMetadata(NewStoreInstr);
2884   }
2885 }
2886 
2887 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2888     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2889     VPValue *StoredValue, VPValue *BlockInMask) {
2890   // Attempt to issue a wide load.
2891   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2892   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2893 
2894   assert((LI || SI) && "Invalid Load/Store instruction");
2895   assert((!SI || StoredValue) && "No stored value provided for widened store");
2896   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2897 
2898   LoopVectorizationCostModel::InstWidening Decision =
2899       Cost->getWideningDecision(Instr, VF);
2900   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2901           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2902           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2903          "CM decision is not to widen the memory instruction");
2904 
2905   Type *ScalarDataTy = getLoadStoreType(Instr);
2906 
2907   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2908   const Align Alignment = getLoadStoreAlignment(Instr);
2909 
2910   // Determine if the pointer operand of the access is either consecutive or
2911   // reverse consecutive.
2912   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2913   bool ConsecutiveStride =
2914       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2915   bool CreateGatherScatter =
2916       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2917 
2918   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2919   // gather/scatter. Otherwise Decision should have been to Scalarize.
2920   assert((ConsecutiveStride || CreateGatherScatter) &&
2921          "The instruction should be scalarized");
2922   (void)ConsecutiveStride;
2923 
2924   VectorParts BlockInMaskParts(UF);
2925   bool isMaskRequired = BlockInMask;
2926   if (isMaskRequired)
2927     for (unsigned Part = 0; Part < UF; ++Part)
2928       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2929 
2930   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2931     // Calculate the pointer for the specific unroll-part.
2932     GetElementPtrInst *PartPtr = nullptr;
2933 
2934     bool InBounds = false;
2935     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2936       InBounds = gep->isInBounds();
2937     if (Reverse) {
2938       // If the address is consecutive but reversed, then the
2939       // wide store needs to start at the last vector element.
2940       // RunTimeVF =  VScale * VF.getKnownMinValue()
2941       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
2942       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
2943       // NumElt = -Part * RunTimeVF
2944       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
2945       // LastLane = 1 - RunTimeVF
2946       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
2947       PartPtr =
2948           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
2949       PartPtr->setIsInBounds(InBounds);
2950       PartPtr = cast<GetElementPtrInst>(
2951           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
2952       PartPtr->setIsInBounds(InBounds);
2953       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2954         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2955     } else {
2956       Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF);
2957       PartPtr = cast<GetElementPtrInst>(
2958           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
2959       PartPtr->setIsInBounds(InBounds);
2960     }
2961 
2962     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2963     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2964   };
2965 
2966   // Handle Stores:
2967   if (SI) {
2968     setDebugLocFromInst(SI);
2969 
2970     for (unsigned Part = 0; Part < UF; ++Part) {
2971       Instruction *NewSI = nullptr;
2972       Value *StoredVal = State.get(StoredValue, Part);
2973       if (CreateGatherScatter) {
2974         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2975         Value *VectorGep = State.get(Addr, Part);
2976         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2977                                             MaskPart);
2978       } else {
2979         if (Reverse) {
2980           // If we store to reverse consecutive memory locations, then we need
2981           // to reverse the order of elements in the stored value.
2982           StoredVal = reverseVector(StoredVal);
2983           // We don't want to update the value in the map as it might be used in
2984           // another expression. So don't call resetVectorValue(StoredVal).
2985         }
2986         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
2987         if (isMaskRequired)
2988           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
2989                                             BlockInMaskParts[Part]);
2990         else
2991           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
2992       }
2993       addMetadata(NewSI, SI);
2994     }
2995     return;
2996   }
2997 
2998   // Handle loads.
2999   assert(LI && "Must have a load instruction");
3000   setDebugLocFromInst(LI);
3001   for (unsigned Part = 0; Part < UF; ++Part) {
3002     Value *NewLI;
3003     if (CreateGatherScatter) {
3004       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
3005       Value *VectorGep = State.get(Addr, Part);
3006       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
3007                                          nullptr, "wide.masked.gather");
3008       addMetadata(NewLI, LI);
3009     } else {
3010       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3011       if (isMaskRequired)
3012         NewLI = Builder.CreateMaskedLoad(
3013             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
3014             PoisonValue::get(DataTy), "wide.masked.load");
3015       else
3016         NewLI =
3017             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
3018 
3019       // Add metadata to the load, but setVectorValue to the reverse shuffle.
3020       addMetadata(NewLI, LI);
3021       if (Reverse)
3022         NewLI = reverseVector(NewLI);
3023     }
3024 
3025     State.set(Def, NewLI, Part);
3026   }
3027 }
3028 
3029 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def,
3030                                                VPUser &User,
3031                                                const VPIteration &Instance,
3032                                                bool IfPredicateInstr,
3033                                                VPTransformState &State) {
3034   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
3035 
3036   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
3037   // the first lane and part.
3038   if (isa<NoAliasScopeDeclInst>(Instr))
3039     if (!Instance.isFirstIteration())
3040       return;
3041 
3042   setDebugLocFromInst(Instr);
3043 
3044   // Does this instruction return a value ?
3045   bool IsVoidRetTy = Instr->getType()->isVoidTy();
3046 
3047   Instruction *Cloned = Instr->clone();
3048   if (!IsVoidRetTy)
3049     Cloned->setName(Instr->getName() + ".cloned");
3050 
3051   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3052                                Builder.GetInsertPoint());
3053   // Replace the operands of the cloned instructions with their scalar
3054   // equivalents in the new loop.
3055   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
3056     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
3057     auto InputInstance = Instance;
3058     if (!Operand || !OrigLoop->contains(Operand) ||
3059         (Cost->isUniformAfterVectorization(Operand, State.VF)))
3060       InputInstance.Lane = VPLane::getFirstLane();
3061     auto *NewOp = State.get(User.getOperand(op), InputInstance);
3062     Cloned->setOperand(op, NewOp);
3063   }
3064   addNewMetadata(Cloned, Instr);
3065 
3066   // Place the cloned scalar in the new loop.
3067   Builder.Insert(Cloned);
3068 
3069   State.set(Def, Cloned, Instance);
3070 
3071   // If we just cloned a new assumption, add it the assumption cache.
3072   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3073     AC->registerAssumption(II);
3074 
3075   // End if-block.
3076   if (IfPredicateInstr)
3077     PredicatedInstructions.push_back(Cloned);
3078 }
3079 
3080 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3081                                                       Value *End, Value *Step,
3082                                                       Instruction *DL) {
3083   BasicBlock *Header = L->getHeader();
3084   BasicBlock *Latch = L->getLoopLatch();
3085   // As we're just creating this loop, it's possible no latch exists
3086   // yet. If so, use the header as this will be a single block loop.
3087   if (!Latch)
3088     Latch = Header;
3089 
3090   IRBuilder<> B(&*Header->getFirstInsertionPt());
3091   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3092   setDebugLocFromInst(OldInst, &B);
3093   auto *Induction = B.CreatePHI(Start->getType(), 2, "index");
3094 
3095   B.SetInsertPoint(Latch->getTerminator());
3096   setDebugLocFromInst(OldInst, &B);
3097 
3098   // Create i+1 and fill the PHINode.
3099   //
3100   // If the tail is not folded, we know that End - Start >= Step (either
3101   // statically or through the minimum iteration checks). We also know that both
3102   // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
3103   // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned
3104   // overflows and we can mark the induction increment as NUW.
3105   Value *Next = B.CreateAdd(Induction, Step, "index.next",
3106                             /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false);
3107   Induction->addIncoming(Start, L->getLoopPreheader());
3108   Induction->addIncoming(Next, Latch);
3109   // Create the compare.
3110   Value *ICmp = B.CreateICmpEQ(Next, End);
3111   B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3112 
3113   // Now we have two terminators. Remove the old one from the block.
3114   Latch->getTerminator()->eraseFromParent();
3115 
3116   return Induction;
3117 }
3118 
3119 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3120   if (TripCount)
3121     return TripCount;
3122 
3123   assert(L && "Create Trip Count for null loop.");
3124   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3125   // Find the loop boundaries.
3126   ScalarEvolution *SE = PSE.getSE();
3127   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3128   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3129          "Invalid loop count");
3130 
3131   Type *IdxTy = Legal->getWidestInductionType();
3132   assert(IdxTy && "No type for induction");
3133 
3134   // The exit count might have the type of i64 while the phi is i32. This can
3135   // happen if we have an induction variable that is sign extended before the
3136   // compare. The only way that we get a backedge taken count is that the
3137   // induction variable was signed and as such will not overflow. In such a case
3138   // truncation is legal.
3139   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3140       IdxTy->getPrimitiveSizeInBits())
3141     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3142   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3143 
3144   // Get the total trip count from the count by adding 1.
3145   const SCEV *ExitCount = SE->getAddExpr(
3146       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3147 
3148   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3149 
3150   // Expand the trip count and place the new instructions in the preheader.
3151   // Notice that the pre-header does not change, only the loop body.
3152   SCEVExpander Exp(*SE, DL, "induction");
3153 
3154   // Count holds the overall loop count (N).
3155   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3156                                 L->getLoopPreheader()->getTerminator());
3157 
3158   if (TripCount->getType()->isPointerTy())
3159     TripCount =
3160         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3161                                     L->getLoopPreheader()->getTerminator());
3162 
3163   return TripCount;
3164 }
3165 
3166 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3167   if (VectorTripCount)
3168     return VectorTripCount;
3169 
3170   Value *TC = getOrCreateTripCount(L);
3171   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3172 
3173   Type *Ty = TC->getType();
3174   // This is where we can make the step a runtime constant.
3175   Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF);
3176 
3177   // If the tail is to be folded by masking, round the number of iterations N
3178   // up to a multiple of Step instead of rounding down. This is done by first
3179   // adding Step-1 and then rounding down. Note that it's ok if this addition
3180   // overflows: the vector induction variable will eventually wrap to zero given
3181   // that it starts at zero and its Step is a power of two; the loop will then
3182   // exit, with the last early-exit vector comparison also producing all-true.
3183   if (Cost->foldTailByMasking()) {
3184     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3185            "VF*UF must be a power of 2 when folding tail by masking");
3186     assert(!VF.isScalable() &&
3187            "Tail folding not yet supported for scalable vectors");
3188     TC = Builder.CreateAdd(
3189         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3190   }
3191 
3192   // Now we need to generate the expression for the part of the loop that the
3193   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3194   // iterations are not required for correctness, or N - Step, otherwise. Step
3195   // is equal to the vectorization factor (number of SIMD elements) times the
3196   // unroll factor (number of SIMD instructions).
3197   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3198 
3199   // There are cases where we *must* run at least one iteration in the remainder
3200   // loop.  See the cost model for when this can happen.  If the step evenly
3201   // divides the trip count, we set the remainder to be equal to the step. If
3202   // the step does not evenly divide the trip count, no adjustment is necessary
3203   // since there will already be scalar iterations. Note that the minimum
3204   // iterations check ensures that N >= Step.
3205   if (Cost->requiresScalarEpilogue(VF)) {
3206     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3207     R = Builder.CreateSelect(IsZero, Step, R);
3208   }
3209 
3210   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3211 
3212   return VectorTripCount;
3213 }
3214 
3215 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3216                                                    const DataLayout &DL) {
3217   // Verify that V is a vector type with same number of elements as DstVTy.
3218   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3219   unsigned VF = DstFVTy->getNumElements();
3220   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3221   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3222   Type *SrcElemTy = SrcVecTy->getElementType();
3223   Type *DstElemTy = DstFVTy->getElementType();
3224   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3225          "Vector elements must have same size");
3226 
3227   // Do a direct cast if element types are castable.
3228   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3229     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3230   }
3231   // V cannot be directly casted to desired vector type.
3232   // May happen when V is a floating point vector but DstVTy is a vector of
3233   // pointers or vice-versa. Handle this using a two-step bitcast using an
3234   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3235   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3236          "Only one type should be a pointer type");
3237   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3238          "Only one type should be a floating point type");
3239   Type *IntTy =
3240       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3241   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3242   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3243   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3244 }
3245 
3246 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3247                                                          BasicBlock *Bypass) {
3248   Value *Count = getOrCreateTripCount(L);
3249   // Reuse existing vector loop preheader for TC checks.
3250   // Note that new preheader block is generated for vector loop.
3251   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3252   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3253 
3254   // Generate code to check if the loop's trip count is less than VF * UF, or
3255   // equal to it in case a scalar epilogue is required; this implies that the
3256   // vector trip count is zero. This check also covers the case where adding one
3257   // to the backedge-taken count overflowed leading to an incorrect trip count
3258   // of zero. In this case we will also jump to the scalar loop.
3259   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3260                                             : ICmpInst::ICMP_ULT;
3261 
3262   // If tail is to be folded, vector loop takes care of all iterations.
3263   Value *CheckMinIters = Builder.getFalse();
3264   if (!Cost->foldTailByMasking()) {
3265     Value *Step =
3266         createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF);
3267     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3268   }
3269   // Create new preheader for vector loop.
3270   LoopVectorPreHeader =
3271       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3272                  "vector.ph");
3273 
3274   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3275                                DT->getNode(Bypass)->getIDom()) &&
3276          "TC check is expected to dominate Bypass");
3277 
3278   // Update dominator for Bypass & LoopExit (if needed).
3279   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3280   if (!Cost->requiresScalarEpilogue(VF))
3281     // If there is an epilogue which must run, there's no edge from the
3282     // middle block to exit blocks  and thus no need to update the immediate
3283     // dominator of the exit blocks.
3284     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3285 
3286   ReplaceInstWithInst(
3287       TCCheckBlock->getTerminator(),
3288       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3289   LoopBypassBlocks.push_back(TCCheckBlock);
3290 }
3291 
3292 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3293 
3294   BasicBlock *const SCEVCheckBlock =
3295       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3296   if (!SCEVCheckBlock)
3297     return nullptr;
3298 
3299   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3300            (OptForSizeBasedOnProfile &&
3301             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3302          "Cannot SCEV check stride or overflow when optimizing for size");
3303 
3304 
3305   // Update dominator only if this is first RT check.
3306   if (LoopBypassBlocks.empty()) {
3307     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3308     if (!Cost->requiresScalarEpilogue(VF))
3309       // If there is an epilogue which must run, there's no edge from the
3310       // middle block to exit blocks  and thus no need to update the immediate
3311       // dominator of the exit blocks.
3312       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3313   }
3314 
3315   LoopBypassBlocks.push_back(SCEVCheckBlock);
3316   AddedSafetyChecks = true;
3317   return SCEVCheckBlock;
3318 }
3319 
3320 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3321                                                       BasicBlock *Bypass) {
3322   // VPlan-native path does not do any analysis for runtime checks currently.
3323   if (EnableVPlanNativePath)
3324     return nullptr;
3325 
3326   BasicBlock *const MemCheckBlock =
3327       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3328 
3329   // Check if we generated code that checks in runtime if arrays overlap. We put
3330   // the checks into a separate block to make the more common case of few
3331   // elements faster.
3332   if (!MemCheckBlock)
3333     return nullptr;
3334 
3335   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3336     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3337            "Cannot emit memory checks when optimizing for size, unless forced "
3338            "to vectorize.");
3339     ORE->emit([&]() {
3340       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3341                                         L->getStartLoc(), L->getHeader())
3342              << "Code-size may be reduced by not forcing "
3343                 "vectorization, or by source-code modifications "
3344                 "eliminating the need for runtime checks "
3345                 "(e.g., adding 'restrict').";
3346     });
3347   }
3348 
3349   LoopBypassBlocks.push_back(MemCheckBlock);
3350 
3351   AddedSafetyChecks = true;
3352 
3353   // We currently don't use LoopVersioning for the actual loop cloning but we
3354   // still use it to add the noalias metadata.
3355   LVer = std::make_unique<LoopVersioning>(
3356       *Legal->getLAI(),
3357       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3358       DT, PSE.getSE());
3359   LVer->prepareNoAliasMetadata();
3360   return MemCheckBlock;
3361 }
3362 
3363 Value *InnerLoopVectorizer::emitTransformedIndex(
3364     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3365     const InductionDescriptor &ID) const {
3366 
3367   SCEVExpander Exp(*SE, DL, "induction");
3368   auto Step = ID.getStep();
3369   auto StartValue = ID.getStartValue();
3370   assert(Index->getType()->getScalarType() == Step->getType() &&
3371          "Index scalar type does not match StepValue type");
3372 
3373   // Note: the IR at this point is broken. We cannot use SE to create any new
3374   // SCEV and then expand it, hoping that SCEV's simplification will give us
3375   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3376   // lead to various SCEV crashes. So all we can do is to use builder and rely
3377   // on InstCombine for future simplifications. Here we handle some trivial
3378   // cases only.
3379   auto CreateAdd = [&B](Value *X, Value *Y) {
3380     assert(X->getType() == Y->getType() && "Types don't match!");
3381     if (auto *CX = dyn_cast<ConstantInt>(X))
3382       if (CX->isZero())
3383         return Y;
3384     if (auto *CY = dyn_cast<ConstantInt>(Y))
3385       if (CY->isZero())
3386         return X;
3387     return B.CreateAdd(X, Y);
3388   };
3389 
3390   // We allow X to be a vector type, in which case Y will potentially be
3391   // splatted into a vector with the same element count.
3392   auto CreateMul = [&B](Value *X, Value *Y) {
3393     assert(X->getType()->getScalarType() == Y->getType() &&
3394            "Types don't match!");
3395     if (auto *CX = dyn_cast<ConstantInt>(X))
3396       if (CX->isOne())
3397         return Y;
3398     if (auto *CY = dyn_cast<ConstantInt>(Y))
3399       if (CY->isOne())
3400         return X;
3401     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3402     if (XVTy && !isa<VectorType>(Y->getType()))
3403       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3404     return B.CreateMul(X, Y);
3405   };
3406 
3407   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3408   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3409   // the DomTree is not kept up-to-date for additional blocks generated in the
3410   // vector loop. By using the header as insertion point, we guarantee that the
3411   // expanded instructions dominate all their uses.
3412   auto GetInsertPoint = [this, &B]() {
3413     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3414     if (InsertBB != LoopVectorBody &&
3415         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3416       return LoopVectorBody->getTerminator();
3417     return &*B.GetInsertPoint();
3418   };
3419 
3420   switch (ID.getKind()) {
3421   case InductionDescriptor::IK_IntInduction: {
3422     assert(!isa<VectorType>(Index->getType()) &&
3423            "Vector indices not supported for integer inductions yet");
3424     assert(Index->getType() == StartValue->getType() &&
3425            "Index type does not match StartValue type");
3426     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3427       return B.CreateSub(StartValue, Index);
3428     auto *Offset = CreateMul(
3429         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3430     return CreateAdd(StartValue, Offset);
3431   }
3432   case InductionDescriptor::IK_PtrInduction: {
3433     assert(isa<SCEVConstant>(Step) &&
3434            "Expected constant step for pointer induction");
3435     return B.CreateGEP(
3436         StartValue->getType()->getPointerElementType(), StartValue,
3437         CreateMul(Index,
3438                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3439                                     GetInsertPoint())));
3440   }
3441   case InductionDescriptor::IK_FpInduction: {
3442     assert(!isa<VectorType>(Index->getType()) &&
3443            "Vector indices not supported for FP inductions yet");
3444     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3445     auto InductionBinOp = ID.getInductionBinOp();
3446     assert(InductionBinOp &&
3447            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3448             InductionBinOp->getOpcode() == Instruction::FSub) &&
3449            "Original bin op should be defined for FP induction");
3450 
3451     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3452     Value *MulExp = B.CreateFMul(StepValue, Index);
3453     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3454                          "induction");
3455   }
3456   case InductionDescriptor::IK_NoInduction:
3457     return nullptr;
3458   }
3459   llvm_unreachable("invalid enum");
3460 }
3461 
3462 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3463   LoopScalarBody = OrigLoop->getHeader();
3464   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3465   assert(LoopVectorPreHeader && "Invalid loop structure");
3466   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3467   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3468          "multiple exit loop without required epilogue?");
3469 
3470   LoopMiddleBlock =
3471       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3472                  LI, nullptr, Twine(Prefix) + "middle.block");
3473   LoopScalarPreHeader =
3474       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3475                  nullptr, Twine(Prefix) + "scalar.ph");
3476 
3477   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3478 
3479   // Set up the middle block terminator.  Two cases:
3480   // 1) If we know that we must execute the scalar epilogue, emit an
3481   //    unconditional branch.
3482   // 2) Otherwise, we must have a single unique exit block (due to how we
3483   //    implement the multiple exit case).  In this case, set up a conditonal
3484   //    branch from the middle block to the loop scalar preheader, and the
3485   //    exit block.  completeLoopSkeleton will update the condition to use an
3486   //    iteration check, if required to decide whether to execute the remainder.
3487   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3488     BranchInst::Create(LoopScalarPreHeader) :
3489     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3490                        Builder.getTrue());
3491   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3492   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3493 
3494   // We intentionally don't let SplitBlock to update LoopInfo since
3495   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3496   // LoopVectorBody is explicitly added to the correct place few lines later.
3497   LoopVectorBody =
3498       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3499                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3500 
3501   // Update dominator for loop exit.
3502   if (!Cost->requiresScalarEpilogue(VF))
3503     // If there is an epilogue which must run, there's no edge from the
3504     // middle block to exit blocks  and thus no need to update the immediate
3505     // dominator of the exit blocks.
3506     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3507 
3508   // Create and register the new vector loop.
3509   Loop *Lp = LI->AllocateLoop();
3510   Loop *ParentLoop = OrigLoop->getParentLoop();
3511 
3512   // Insert the new loop into the loop nest and register the new basic blocks
3513   // before calling any utilities such as SCEV that require valid LoopInfo.
3514   if (ParentLoop) {
3515     ParentLoop->addChildLoop(Lp);
3516   } else {
3517     LI->addTopLevelLoop(Lp);
3518   }
3519   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3520   return Lp;
3521 }
3522 
3523 void InnerLoopVectorizer::createInductionResumeValues(
3524     Loop *L, Value *VectorTripCount,
3525     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3526   assert(VectorTripCount && L && "Expected valid arguments");
3527   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3528           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3529          "Inconsistent information about additional bypass.");
3530   // We are going to resume the execution of the scalar loop.
3531   // Go over all of the induction variables that we found and fix the
3532   // PHIs that are left in the scalar version of the loop.
3533   // The starting values of PHI nodes depend on the counter of the last
3534   // iteration in the vectorized loop.
3535   // If we come from a bypass edge then we need to start from the original
3536   // start value.
3537   for (auto &InductionEntry : Legal->getInductionVars()) {
3538     PHINode *OrigPhi = InductionEntry.first;
3539     InductionDescriptor II = InductionEntry.second;
3540 
3541     // Create phi nodes to merge from the  backedge-taken check block.
3542     PHINode *BCResumeVal =
3543         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3544                         LoopScalarPreHeader->getTerminator());
3545     // Copy original phi DL over to the new one.
3546     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3547     Value *&EndValue = IVEndValues[OrigPhi];
3548     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3549     if (OrigPhi == OldInduction) {
3550       // We know what the end value is.
3551       EndValue = VectorTripCount;
3552     } else {
3553       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3554 
3555       // Fast-math-flags propagate from the original induction instruction.
3556       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3557         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3558 
3559       Type *StepType = II.getStep()->getType();
3560       Instruction::CastOps CastOp =
3561           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3562       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3563       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3564       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3565       EndValue->setName("ind.end");
3566 
3567       // Compute the end value for the additional bypass (if applicable).
3568       if (AdditionalBypass.first) {
3569         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3570         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3571                                          StepType, true);
3572         CRD =
3573             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3574         EndValueFromAdditionalBypass =
3575             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3576         EndValueFromAdditionalBypass->setName("ind.end");
3577       }
3578     }
3579     // The new PHI merges the original incoming value, in case of a bypass,
3580     // or the value at the end of the vectorized loop.
3581     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3582 
3583     // Fix the scalar body counter (PHI node).
3584     // The old induction's phi node in the scalar body needs the truncated
3585     // value.
3586     for (BasicBlock *BB : LoopBypassBlocks)
3587       BCResumeVal->addIncoming(II.getStartValue(), BB);
3588 
3589     if (AdditionalBypass.first)
3590       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3591                                             EndValueFromAdditionalBypass);
3592 
3593     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3594   }
3595 }
3596 
3597 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3598                                                       MDNode *OrigLoopID) {
3599   assert(L && "Expected valid loop.");
3600 
3601   // The trip counts should be cached by now.
3602   Value *Count = getOrCreateTripCount(L);
3603   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3604 
3605   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3606 
3607   // Add a check in the middle block to see if we have completed
3608   // all of the iterations in the first vector loop.  Three cases:
3609   // 1) If we require a scalar epilogue, there is no conditional branch as
3610   //    we unconditionally branch to the scalar preheader.  Do nothing.
3611   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3612   //    Thus if tail is to be folded, we know we don't need to run the
3613   //    remainder and we can use the previous value for the condition (true).
3614   // 3) Otherwise, construct a runtime check.
3615   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3616     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3617                                         Count, VectorTripCount, "cmp.n",
3618                                         LoopMiddleBlock->getTerminator());
3619 
3620     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3621     // of the corresponding compare because they may have ended up with
3622     // different line numbers and we want to avoid awkward line stepping while
3623     // debugging. Eg. if the compare has got a line number inside the loop.
3624     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3625     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3626   }
3627 
3628   // Get ready to start creating new instructions into the vectorized body.
3629   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3630          "Inconsistent vector loop preheader");
3631   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3632 
3633   Optional<MDNode *> VectorizedLoopID =
3634       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3635                                       LLVMLoopVectorizeFollowupVectorized});
3636   if (VectorizedLoopID.hasValue()) {
3637     L->setLoopID(VectorizedLoopID.getValue());
3638 
3639     // Do not setAlreadyVectorized if loop attributes have been defined
3640     // explicitly.
3641     return LoopVectorPreHeader;
3642   }
3643 
3644   // Keep all loop hints from the original loop on the vector loop (we'll
3645   // replace the vectorizer-specific hints below).
3646   if (MDNode *LID = OrigLoop->getLoopID())
3647     L->setLoopID(LID);
3648 
3649   LoopVectorizeHints Hints(L, true, *ORE);
3650   Hints.setAlreadyVectorized();
3651 
3652 #ifdef EXPENSIVE_CHECKS
3653   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3654   LI->verify(*DT);
3655 #endif
3656 
3657   return LoopVectorPreHeader;
3658 }
3659 
3660 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3661   /*
3662    In this function we generate a new loop. The new loop will contain
3663    the vectorized instructions while the old loop will continue to run the
3664    scalar remainder.
3665 
3666        [ ] <-- loop iteration number check.
3667     /   |
3668    /    v
3669   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3670   |  /  |
3671   | /   v
3672   ||   [ ]     <-- vector pre header.
3673   |/    |
3674   |     v
3675   |    [  ] \
3676   |    [  ]_|   <-- vector loop.
3677   |     |
3678   |     v
3679   \   -[ ]   <--- middle-block.
3680    \/   |
3681    /\   v
3682    | ->[ ]     <--- new preheader.
3683    |    |
3684  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3685    |   [ ] \
3686    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3687     \   |
3688      \  v
3689       >[ ]     <-- exit block(s).
3690    ...
3691    */
3692 
3693   // Get the metadata of the original loop before it gets modified.
3694   MDNode *OrigLoopID = OrigLoop->getLoopID();
3695 
3696   // Workaround!  Compute the trip count of the original loop and cache it
3697   // before we start modifying the CFG.  This code has a systemic problem
3698   // wherein it tries to run analysis over partially constructed IR; this is
3699   // wrong, and not simply for SCEV.  The trip count of the original loop
3700   // simply happens to be prone to hitting this in practice.  In theory, we
3701   // can hit the same issue for any SCEV, or ValueTracking query done during
3702   // mutation.  See PR49900.
3703   getOrCreateTripCount(OrigLoop);
3704 
3705   // Create an empty vector loop, and prepare basic blocks for the runtime
3706   // checks.
3707   Loop *Lp = createVectorLoopSkeleton("");
3708 
3709   // Now, compare the new count to zero. If it is zero skip the vector loop and
3710   // jump to the scalar loop. This check also covers the case where the
3711   // backedge-taken count is uint##_max: adding one to it will overflow leading
3712   // to an incorrect trip count of zero. In this (rare) case we will also jump
3713   // to the scalar loop.
3714   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3715 
3716   // Generate the code to check any assumptions that we've made for SCEV
3717   // expressions.
3718   emitSCEVChecks(Lp, LoopScalarPreHeader);
3719 
3720   // Generate the code that checks in runtime if arrays overlap. We put the
3721   // checks into a separate block to make the more common case of few elements
3722   // faster.
3723   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3724 
3725   // Some loops have a single integer induction variable, while other loops
3726   // don't. One example is c++ iterators that often have multiple pointer
3727   // induction variables. In the code below we also support a case where we
3728   // don't have a single induction variable.
3729   //
3730   // We try to obtain an induction variable from the original loop as hard
3731   // as possible. However if we don't find one that:
3732   //   - is an integer
3733   //   - counts from zero, stepping by one
3734   //   - is the size of the widest induction variable type
3735   // then we create a new one.
3736   OldInduction = Legal->getPrimaryInduction();
3737   Type *IdxTy = Legal->getWidestInductionType();
3738   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3739   // The loop step is equal to the vectorization factor (num of SIMD elements)
3740   // times the unroll factor (num of SIMD instructions).
3741   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3742   Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF);
3743   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3744   Induction =
3745       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3746                               getDebugLocFromInstOrOperands(OldInduction));
3747 
3748   // Emit phis for the new starting index of the scalar loop.
3749   createInductionResumeValues(Lp, CountRoundDown);
3750 
3751   return completeLoopSkeleton(Lp, OrigLoopID);
3752 }
3753 
3754 // Fix up external users of the induction variable. At this point, we are
3755 // in LCSSA form, with all external PHIs that use the IV having one input value,
3756 // coming from the remainder loop. We need those PHIs to also have a correct
3757 // value for the IV when arriving directly from the middle block.
3758 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3759                                        const InductionDescriptor &II,
3760                                        Value *CountRoundDown, Value *EndValue,
3761                                        BasicBlock *MiddleBlock) {
3762   // There are two kinds of external IV usages - those that use the value
3763   // computed in the last iteration (the PHI) and those that use the penultimate
3764   // value (the value that feeds into the phi from the loop latch).
3765   // We allow both, but they, obviously, have different values.
3766 
3767   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3768 
3769   DenseMap<Value *, Value *> MissingVals;
3770 
3771   // An external user of the last iteration's value should see the value that
3772   // the remainder loop uses to initialize its own IV.
3773   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3774   for (User *U : PostInc->users()) {
3775     Instruction *UI = cast<Instruction>(U);
3776     if (!OrigLoop->contains(UI)) {
3777       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3778       MissingVals[UI] = EndValue;
3779     }
3780   }
3781 
3782   // An external user of the penultimate value need to see EndValue - Step.
3783   // The simplest way to get this is to recompute it from the constituent SCEVs,
3784   // that is Start + (Step * (CRD - 1)).
3785   for (User *U : OrigPhi->users()) {
3786     auto *UI = cast<Instruction>(U);
3787     if (!OrigLoop->contains(UI)) {
3788       const DataLayout &DL =
3789           OrigLoop->getHeader()->getModule()->getDataLayout();
3790       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3791 
3792       IRBuilder<> B(MiddleBlock->getTerminator());
3793 
3794       // Fast-math-flags propagate from the original induction instruction.
3795       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3796         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3797 
3798       Value *CountMinusOne = B.CreateSub(
3799           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3800       Value *CMO =
3801           !II.getStep()->getType()->isIntegerTy()
3802               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3803                              II.getStep()->getType())
3804               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3805       CMO->setName("cast.cmo");
3806       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3807       Escape->setName("ind.escape");
3808       MissingVals[UI] = Escape;
3809     }
3810   }
3811 
3812   for (auto &I : MissingVals) {
3813     PHINode *PHI = cast<PHINode>(I.first);
3814     // One corner case we have to handle is two IVs "chasing" each-other,
3815     // that is %IV2 = phi [...], [ %IV1, %latch ]
3816     // In this case, if IV1 has an external use, we need to avoid adding both
3817     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3818     // don't already have an incoming value for the middle block.
3819     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3820       PHI->addIncoming(I.second, MiddleBlock);
3821   }
3822 }
3823 
3824 namespace {
3825 
3826 struct CSEDenseMapInfo {
3827   static bool canHandle(const Instruction *I) {
3828     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3829            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3830   }
3831 
3832   static inline Instruction *getEmptyKey() {
3833     return DenseMapInfo<Instruction *>::getEmptyKey();
3834   }
3835 
3836   static inline Instruction *getTombstoneKey() {
3837     return DenseMapInfo<Instruction *>::getTombstoneKey();
3838   }
3839 
3840   static unsigned getHashValue(const Instruction *I) {
3841     assert(canHandle(I) && "Unknown instruction!");
3842     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3843                                                            I->value_op_end()));
3844   }
3845 
3846   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3847     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3848         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3849       return LHS == RHS;
3850     return LHS->isIdenticalTo(RHS);
3851   }
3852 };
3853 
3854 } // end anonymous namespace
3855 
3856 ///Perform cse of induction variable instructions.
3857 static void cse(BasicBlock *BB) {
3858   // Perform simple cse.
3859   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3860   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3861     Instruction *In = &*I++;
3862 
3863     if (!CSEDenseMapInfo::canHandle(In))
3864       continue;
3865 
3866     // Check if we can replace this instruction with any of the
3867     // visited instructions.
3868     if (Instruction *V = CSEMap.lookup(In)) {
3869       In->replaceAllUsesWith(V);
3870       In->eraseFromParent();
3871       continue;
3872     }
3873 
3874     CSEMap[In] = In;
3875   }
3876 }
3877 
3878 InstructionCost
3879 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3880                                               bool &NeedToScalarize) const {
3881   Function *F = CI->getCalledFunction();
3882   Type *ScalarRetTy = CI->getType();
3883   SmallVector<Type *, 4> Tys, ScalarTys;
3884   for (auto &ArgOp : CI->arg_operands())
3885     ScalarTys.push_back(ArgOp->getType());
3886 
3887   // Estimate cost of scalarized vector call. The source operands are assumed
3888   // to be vectors, so we need to extract individual elements from there,
3889   // execute VF scalar calls, and then gather the result into the vector return
3890   // value.
3891   InstructionCost ScalarCallCost =
3892       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3893   if (VF.isScalar())
3894     return ScalarCallCost;
3895 
3896   // Compute corresponding vector type for return value and arguments.
3897   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3898   for (Type *ScalarTy : ScalarTys)
3899     Tys.push_back(ToVectorTy(ScalarTy, VF));
3900 
3901   // Compute costs of unpacking argument values for the scalar calls and
3902   // packing the return values to a vector.
3903   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3904 
3905   InstructionCost Cost =
3906       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3907 
3908   // If we can't emit a vector call for this function, then the currently found
3909   // cost is the cost we need to return.
3910   NeedToScalarize = true;
3911   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3912   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3913 
3914   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3915     return Cost;
3916 
3917   // If the corresponding vector cost is cheaper, return its cost.
3918   InstructionCost VectorCallCost =
3919       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3920   if (VectorCallCost < Cost) {
3921     NeedToScalarize = false;
3922     Cost = VectorCallCost;
3923   }
3924   return Cost;
3925 }
3926 
3927 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3928   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3929     return Elt;
3930   return VectorType::get(Elt, VF);
3931 }
3932 
3933 InstructionCost
3934 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3935                                                    ElementCount VF) const {
3936   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3937   assert(ID && "Expected intrinsic call!");
3938   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3939   FastMathFlags FMF;
3940   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3941     FMF = FPMO->getFastMathFlags();
3942 
3943   SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end());
3944   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3945   SmallVector<Type *> ParamTys;
3946   std::transform(FTy->param_begin(), FTy->param_end(),
3947                  std::back_inserter(ParamTys),
3948                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3949 
3950   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3951                                     dyn_cast<IntrinsicInst>(CI));
3952   return TTI.getIntrinsicInstrCost(CostAttrs,
3953                                    TargetTransformInfo::TCK_RecipThroughput);
3954 }
3955 
3956 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3957   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3958   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3959   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3960 }
3961 
3962 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3963   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3964   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3965   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3966 }
3967 
3968 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3969   // For every instruction `I` in MinBWs, truncate the operands, create a
3970   // truncated version of `I` and reextend its result. InstCombine runs
3971   // later and will remove any ext/trunc pairs.
3972   SmallPtrSet<Value *, 4> Erased;
3973   for (const auto &KV : Cost->getMinimalBitwidths()) {
3974     // If the value wasn't vectorized, we must maintain the original scalar
3975     // type. The absence of the value from State indicates that it
3976     // wasn't vectorized.
3977     VPValue *Def = State.Plan->getVPValue(KV.first);
3978     if (!State.hasAnyVectorValue(Def))
3979       continue;
3980     for (unsigned Part = 0; Part < UF; ++Part) {
3981       Value *I = State.get(Def, Part);
3982       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3983         continue;
3984       Type *OriginalTy = I->getType();
3985       Type *ScalarTruncatedTy =
3986           IntegerType::get(OriginalTy->getContext(), KV.second);
3987       auto *TruncatedTy = VectorType::get(
3988           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3989       if (TruncatedTy == OriginalTy)
3990         continue;
3991 
3992       IRBuilder<> B(cast<Instruction>(I));
3993       auto ShrinkOperand = [&](Value *V) -> Value * {
3994         if (auto *ZI = dyn_cast<ZExtInst>(V))
3995           if (ZI->getSrcTy() == TruncatedTy)
3996             return ZI->getOperand(0);
3997         return B.CreateZExtOrTrunc(V, TruncatedTy);
3998       };
3999 
4000       // The actual instruction modification depends on the instruction type,
4001       // unfortunately.
4002       Value *NewI = nullptr;
4003       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
4004         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
4005                              ShrinkOperand(BO->getOperand(1)));
4006 
4007         // Any wrapping introduced by shrinking this operation shouldn't be
4008         // considered undefined behavior. So, we can't unconditionally copy
4009         // arithmetic wrapping flags to NewI.
4010         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
4011       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
4012         NewI =
4013             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
4014                          ShrinkOperand(CI->getOperand(1)));
4015       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
4016         NewI = B.CreateSelect(SI->getCondition(),
4017                               ShrinkOperand(SI->getTrueValue()),
4018                               ShrinkOperand(SI->getFalseValue()));
4019       } else if (auto *CI = dyn_cast<CastInst>(I)) {
4020         switch (CI->getOpcode()) {
4021         default:
4022           llvm_unreachable("Unhandled cast!");
4023         case Instruction::Trunc:
4024           NewI = ShrinkOperand(CI->getOperand(0));
4025           break;
4026         case Instruction::SExt:
4027           NewI = B.CreateSExtOrTrunc(
4028               CI->getOperand(0),
4029               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4030           break;
4031         case Instruction::ZExt:
4032           NewI = B.CreateZExtOrTrunc(
4033               CI->getOperand(0),
4034               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4035           break;
4036         }
4037       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
4038         auto Elements0 =
4039             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
4040         auto *O0 = B.CreateZExtOrTrunc(
4041             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
4042         auto Elements1 =
4043             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
4044         auto *O1 = B.CreateZExtOrTrunc(
4045             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
4046 
4047         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
4048       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
4049         // Don't do anything with the operands, just extend the result.
4050         continue;
4051       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
4052         auto Elements =
4053             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
4054         auto *O0 = B.CreateZExtOrTrunc(
4055             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4056         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
4057         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
4058       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
4059         auto Elements =
4060             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
4061         auto *O0 = B.CreateZExtOrTrunc(
4062             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4063         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
4064       } else {
4065         // If we don't know what to do, be conservative and don't do anything.
4066         continue;
4067       }
4068 
4069       // Lastly, extend the result.
4070       NewI->takeName(cast<Instruction>(I));
4071       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
4072       I->replaceAllUsesWith(Res);
4073       cast<Instruction>(I)->eraseFromParent();
4074       Erased.insert(I);
4075       State.reset(Def, Res, Part);
4076     }
4077   }
4078 
4079   // We'll have created a bunch of ZExts that are now parentless. Clean up.
4080   for (const auto &KV : Cost->getMinimalBitwidths()) {
4081     // If the value wasn't vectorized, we must maintain the original scalar
4082     // type. The absence of the value from State indicates that it
4083     // wasn't vectorized.
4084     VPValue *Def = State.Plan->getVPValue(KV.first);
4085     if (!State.hasAnyVectorValue(Def))
4086       continue;
4087     for (unsigned Part = 0; Part < UF; ++Part) {
4088       Value *I = State.get(Def, Part);
4089       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
4090       if (Inst && Inst->use_empty()) {
4091         Value *NewI = Inst->getOperand(0);
4092         Inst->eraseFromParent();
4093         State.reset(Def, NewI, Part);
4094       }
4095     }
4096   }
4097 }
4098 
4099 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
4100   // Insert truncates and extends for any truncated instructions as hints to
4101   // InstCombine.
4102   if (VF.isVector())
4103     truncateToMinimalBitwidths(State);
4104 
4105   // Fix widened non-induction PHIs by setting up the PHI operands.
4106   if (OrigPHIsToFix.size()) {
4107     assert(EnableVPlanNativePath &&
4108            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
4109     fixNonInductionPHIs(State);
4110   }
4111 
4112   // At this point every instruction in the original loop is widened to a
4113   // vector form. Now we need to fix the recurrences in the loop. These PHI
4114   // nodes are currently empty because we did not want to introduce cycles.
4115   // This is the second stage of vectorizing recurrences.
4116   fixCrossIterationPHIs(State);
4117 
4118   // Forget the original basic block.
4119   PSE.getSE()->forgetLoop(OrigLoop);
4120 
4121   // If we inserted an edge from the middle block to the unique exit block,
4122   // update uses outside the loop (phis) to account for the newly inserted
4123   // edge.
4124   if (!Cost->requiresScalarEpilogue(VF)) {
4125     // Fix-up external users of the induction variables.
4126     for (auto &Entry : Legal->getInductionVars())
4127       fixupIVUsers(Entry.first, Entry.second,
4128                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4129                    IVEndValues[Entry.first], LoopMiddleBlock);
4130 
4131     fixLCSSAPHIs(State);
4132   }
4133 
4134   for (Instruction *PI : PredicatedInstructions)
4135     sinkScalarOperands(&*PI);
4136 
4137   // Remove redundant induction instructions.
4138   cse(LoopVectorBody);
4139 
4140   // Set/update profile weights for the vector and remainder loops as original
4141   // loop iterations are now distributed among them. Note that original loop
4142   // represented by LoopScalarBody becomes remainder loop after vectorization.
4143   //
4144   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4145   // end up getting slightly roughened result but that should be OK since
4146   // profile is not inherently precise anyway. Note also possible bypass of
4147   // vector code caused by legality checks is ignored, assigning all the weight
4148   // to the vector loop, optimistically.
4149   //
4150   // For scalable vectorization we can't know at compile time how many iterations
4151   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4152   // vscale of '1'.
4153   setProfileInfoAfterUnrolling(
4154       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4155       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4156 }
4157 
4158 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4159   // In order to support recurrences we need to be able to vectorize Phi nodes.
4160   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4161   // stage #2: We now need to fix the recurrences by adding incoming edges to
4162   // the currently empty PHI nodes. At this point every instruction in the
4163   // original loop is widened to a vector form so we can use them to construct
4164   // the incoming edges.
4165   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
4166   for (VPRecipeBase &R : Header->phis()) {
4167     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
4168       fixReduction(ReductionPhi, State);
4169     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
4170       fixFirstOrderRecurrence(FOR, State);
4171   }
4172 }
4173 
4174 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR,
4175                                                   VPTransformState &State) {
4176   // This is the second phase of vectorizing first-order recurrences. An
4177   // overview of the transformation is described below. Suppose we have the
4178   // following loop.
4179   //
4180   //   for (int i = 0; i < n; ++i)
4181   //     b[i] = a[i] - a[i - 1];
4182   //
4183   // There is a first-order recurrence on "a". For this loop, the shorthand
4184   // scalar IR looks like:
4185   //
4186   //   scalar.ph:
4187   //     s_init = a[-1]
4188   //     br scalar.body
4189   //
4190   //   scalar.body:
4191   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4192   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4193   //     s2 = a[i]
4194   //     b[i] = s2 - s1
4195   //     br cond, scalar.body, ...
4196   //
4197   // In this example, s1 is a recurrence because it's value depends on the
4198   // previous iteration. In the first phase of vectorization, we created a
4199   // vector phi v1 for s1. We now complete the vectorization and produce the
4200   // shorthand vector IR shown below (for VF = 4, UF = 1).
4201   //
4202   //   vector.ph:
4203   //     v_init = vector(..., ..., ..., a[-1])
4204   //     br vector.body
4205   //
4206   //   vector.body
4207   //     i = phi [0, vector.ph], [i+4, vector.body]
4208   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4209   //     v2 = a[i, i+1, i+2, i+3];
4210   //     v3 = vector(v1(3), v2(0, 1, 2))
4211   //     b[i, i+1, i+2, i+3] = v2 - v3
4212   //     br cond, vector.body, middle.block
4213   //
4214   //   middle.block:
4215   //     x = v2(3)
4216   //     br scalar.ph
4217   //
4218   //   scalar.ph:
4219   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4220   //     br scalar.body
4221   //
4222   // After execution completes the vector loop, we extract the next value of
4223   // the recurrence (x) to use as the initial value in the scalar loop.
4224 
4225   // Extract the last vector element in the middle block. This will be the
4226   // initial value for the recurrence when jumping to the scalar loop.
4227   VPValue *PreviousDef = PhiR->getBackedgeValue();
4228   Value *Incoming = State.get(PreviousDef, UF - 1);
4229   auto *ExtractForScalar = Incoming;
4230   auto *IdxTy = Builder.getInt32Ty();
4231   if (VF.isVector()) {
4232     auto *One = ConstantInt::get(IdxTy, 1);
4233     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4234     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4235     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4236     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4237                                                     "vector.recur.extract");
4238   }
4239   // Extract the second last element in the middle block if the
4240   // Phi is used outside the loop. We need to extract the phi itself
4241   // and not the last element (the phi update in the current iteration). This
4242   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4243   // when the scalar loop is not run at all.
4244   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4245   if (VF.isVector()) {
4246     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4247     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4248     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4249         Incoming, Idx, "vector.recur.extract.for.phi");
4250   } else if (UF > 1)
4251     // When loop is unrolled without vectorizing, initialize
4252     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4253     // of `Incoming`. This is analogous to the vectorized case above: extracting
4254     // the second last element when VF > 1.
4255     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4256 
4257   // Fix the initial value of the original recurrence in the scalar loop.
4258   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4259   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4260   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4261   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4262   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4263     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4264     Start->addIncoming(Incoming, BB);
4265   }
4266 
4267   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4268   Phi->setName("scalar.recur");
4269 
4270   // Finally, fix users of the recurrence outside the loop. The users will need
4271   // either the last value of the scalar recurrence or the last value of the
4272   // vector recurrence we extracted in the middle block. Since the loop is in
4273   // LCSSA form, we just need to find all the phi nodes for the original scalar
4274   // recurrence in the exit block, and then add an edge for the middle block.
4275   // Note that LCSSA does not imply single entry when the original scalar loop
4276   // had multiple exiting edges (as we always run the last iteration in the
4277   // scalar epilogue); in that case, there is no edge from middle to exit and
4278   // and thus no phis which needed updated.
4279   if (!Cost->requiresScalarEpilogue(VF))
4280     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4281       if (any_of(LCSSAPhi.incoming_values(),
4282                  [Phi](Value *V) { return V == Phi; }))
4283         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4284 }
4285 
4286 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4287                                        VPTransformState &State) {
4288   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4289   // Get it's reduction variable descriptor.
4290   assert(Legal->isReductionVariable(OrigPhi) &&
4291          "Unable to find the reduction variable");
4292   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4293 
4294   RecurKind RK = RdxDesc.getRecurrenceKind();
4295   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4296   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4297   setDebugLocFromInst(ReductionStartValue);
4298 
4299   VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst);
4300   // This is the vector-clone of the value that leaves the loop.
4301   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4302 
4303   // Wrap flags are in general invalid after vectorization, clear them.
4304   clearReductionWrapFlags(RdxDesc, State);
4305 
4306   // Fix the vector-loop phi.
4307 
4308   // Reductions do not have to start at zero. They can start with
4309   // any loop invariant values.
4310   BasicBlock *VectorLoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4311 
4312   unsigned LastPartForNewPhi = PhiR->isOrdered() ? 1 : UF;
4313   for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
4314     Value *VecRdxPhi = State.get(PhiR->getVPSingleValue(), Part);
4315     Value *Val = State.get(PhiR->getBackedgeValue(), Part);
4316     if (PhiR->isOrdered())
4317       Val = State.get(PhiR->getBackedgeValue(), UF - 1);
4318 
4319     cast<PHINode>(VecRdxPhi)->addIncoming(Val, VectorLoopLatch);
4320   }
4321 
4322   // Before each round, move the insertion point right between
4323   // the PHIs and the values we are going to write.
4324   // This allows us to write both PHINodes and the extractelement
4325   // instructions.
4326   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4327 
4328   setDebugLocFromInst(LoopExitInst);
4329 
4330   Type *PhiTy = OrigPhi->getType();
4331   // If tail is folded by masking, the vector value to leave the loop should be
4332   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4333   // instead of the former. For an inloop reduction the reduction will already
4334   // be predicated, and does not need to be handled here.
4335   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4336     for (unsigned Part = 0; Part < UF; ++Part) {
4337       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4338       Value *Sel = nullptr;
4339       for (User *U : VecLoopExitInst->users()) {
4340         if (isa<SelectInst>(U)) {
4341           assert(!Sel && "Reduction exit feeding two selects");
4342           Sel = U;
4343         } else
4344           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4345       }
4346       assert(Sel && "Reduction exit feeds no select");
4347       State.reset(LoopExitInstDef, Sel, Part);
4348 
4349       // If the target can create a predicated operator for the reduction at no
4350       // extra cost in the loop (for example a predicated vadd), it can be
4351       // cheaper for the select to remain in the loop than be sunk out of it,
4352       // and so use the select value for the phi instead of the old
4353       // LoopExitValue.
4354       if (PreferPredicatedReductionSelect ||
4355           TTI->preferPredicatedReductionSelect(
4356               RdxDesc.getOpcode(), PhiTy,
4357               TargetTransformInfo::ReductionFlags())) {
4358         auto *VecRdxPhi =
4359             cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part));
4360         VecRdxPhi->setIncomingValueForBlock(
4361             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4362       }
4363     }
4364   }
4365 
4366   // If the vector reduction can be performed in a smaller type, we truncate
4367   // then extend the loop exit value to enable InstCombine to evaluate the
4368   // entire expression in the smaller type.
4369   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4370     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4371     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4372     Builder.SetInsertPoint(
4373         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4374     VectorParts RdxParts(UF);
4375     for (unsigned Part = 0; Part < UF; ++Part) {
4376       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4377       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4378       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4379                                         : Builder.CreateZExt(Trunc, VecTy);
4380       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4381            UI != RdxParts[Part]->user_end();)
4382         if (*UI != Trunc) {
4383           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4384           RdxParts[Part] = Extnd;
4385         } else {
4386           ++UI;
4387         }
4388     }
4389     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4390     for (unsigned Part = 0; Part < UF; ++Part) {
4391       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4392       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4393     }
4394   }
4395 
4396   // Reduce all of the unrolled parts into a single vector.
4397   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4398   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4399 
4400   // The middle block terminator has already been assigned a DebugLoc here (the
4401   // OrigLoop's single latch terminator). We want the whole middle block to
4402   // appear to execute on this line because: (a) it is all compiler generated,
4403   // (b) these instructions are always executed after evaluating the latch
4404   // conditional branch, and (c) other passes may add new predecessors which
4405   // terminate on this line. This is the easiest way to ensure we don't
4406   // accidentally cause an extra step back into the loop while debugging.
4407   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4408   if (PhiR->isOrdered())
4409     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4410   else {
4411     // Floating-point operations should have some FMF to enable the reduction.
4412     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4413     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4414     for (unsigned Part = 1; Part < UF; ++Part) {
4415       Value *RdxPart = State.get(LoopExitInstDef, Part);
4416       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4417         ReducedPartRdx = Builder.CreateBinOp(
4418             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4419       } else {
4420         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4421       }
4422     }
4423   }
4424 
4425   // Create the reduction after the loop. Note that inloop reductions create the
4426   // target reduction in the loop using a Reduction recipe.
4427   if (VF.isVector() && !PhiR->isInLoop()) {
4428     ReducedPartRdx =
4429         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx);
4430     // If the reduction can be performed in a smaller type, we need to extend
4431     // the reduction to the wider type before we branch to the original loop.
4432     if (PhiTy != RdxDesc.getRecurrenceType())
4433       ReducedPartRdx = RdxDesc.isSigned()
4434                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4435                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4436   }
4437 
4438   // Create a phi node that merges control-flow from the backedge-taken check
4439   // block and the middle block.
4440   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4441                                         LoopScalarPreHeader->getTerminator());
4442   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4443     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4444   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4445 
4446   // Now, we need to fix the users of the reduction variable
4447   // inside and outside of the scalar remainder loop.
4448 
4449   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4450   // in the exit blocks.  See comment on analogous loop in
4451   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4452   if (!Cost->requiresScalarEpilogue(VF))
4453     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4454       if (any_of(LCSSAPhi.incoming_values(),
4455                  [LoopExitInst](Value *V) { return V == LoopExitInst; }))
4456         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4457 
4458   // Fix the scalar loop reduction variable with the incoming reduction sum
4459   // from the vector body and from the backedge value.
4460   int IncomingEdgeBlockIdx =
4461       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4462   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4463   // Pick the other block.
4464   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4465   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4466   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4467 }
4468 
4469 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4470                                                   VPTransformState &State) {
4471   RecurKind RK = RdxDesc.getRecurrenceKind();
4472   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4473     return;
4474 
4475   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4476   assert(LoopExitInstr && "null loop exit instruction");
4477   SmallVector<Instruction *, 8> Worklist;
4478   SmallPtrSet<Instruction *, 8> Visited;
4479   Worklist.push_back(LoopExitInstr);
4480   Visited.insert(LoopExitInstr);
4481 
4482   while (!Worklist.empty()) {
4483     Instruction *Cur = Worklist.pop_back_val();
4484     if (isa<OverflowingBinaryOperator>(Cur))
4485       for (unsigned Part = 0; Part < UF; ++Part) {
4486         Value *V = State.get(State.Plan->getVPValue(Cur), Part);
4487         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4488       }
4489 
4490     for (User *U : Cur->users()) {
4491       Instruction *UI = cast<Instruction>(U);
4492       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4493           Visited.insert(UI).second)
4494         Worklist.push_back(UI);
4495     }
4496   }
4497 }
4498 
4499 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4500   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4501     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4502       // Some phis were already hand updated by the reduction and recurrence
4503       // code above, leave them alone.
4504       continue;
4505 
4506     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4507     // Non-instruction incoming values will have only one value.
4508 
4509     VPLane Lane = VPLane::getFirstLane();
4510     if (isa<Instruction>(IncomingValue) &&
4511         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4512                                            VF))
4513       Lane = VPLane::getLastLaneForVF(VF);
4514 
4515     // Can be a loop invariant incoming value or the last scalar value to be
4516     // extracted from the vectorized loop.
4517     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4518     Value *lastIncomingValue =
4519         OrigLoop->isLoopInvariant(IncomingValue)
4520             ? IncomingValue
4521             : State.get(State.Plan->getVPValue(IncomingValue),
4522                         VPIteration(UF - 1, Lane));
4523     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4524   }
4525 }
4526 
4527 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4528   // The basic block and loop containing the predicated instruction.
4529   auto *PredBB = PredInst->getParent();
4530   auto *VectorLoop = LI->getLoopFor(PredBB);
4531 
4532   // Initialize a worklist with the operands of the predicated instruction.
4533   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4534 
4535   // Holds instructions that we need to analyze again. An instruction may be
4536   // reanalyzed if we don't yet know if we can sink it or not.
4537   SmallVector<Instruction *, 8> InstsToReanalyze;
4538 
4539   // Returns true if a given use occurs in the predicated block. Phi nodes use
4540   // their operands in their corresponding predecessor blocks.
4541   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4542     auto *I = cast<Instruction>(U.getUser());
4543     BasicBlock *BB = I->getParent();
4544     if (auto *Phi = dyn_cast<PHINode>(I))
4545       BB = Phi->getIncomingBlock(
4546           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4547     return BB == PredBB;
4548   };
4549 
4550   // Iteratively sink the scalarized operands of the predicated instruction
4551   // into the block we created for it. When an instruction is sunk, it's
4552   // operands are then added to the worklist. The algorithm ends after one pass
4553   // through the worklist doesn't sink a single instruction.
4554   bool Changed;
4555   do {
4556     // Add the instructions that need to be reanalyzed to the worklist, and
4557     // reset the changed indicator.
4558     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4559     InstsToReanalyze.clear();
4560     Changed = false;
4561 
4562     while (!Worklist.empty()) {
4563       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4564 
4565       // We can't sink an instruction if it is a phi node, is not in the loop,
4566       // or may have side effects.
4567       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4568           I->mayHaveSideEffects())
4569         continue;
4570 
4571       // If the instruction is already in PredBB, check if we can sink its
4572       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4573       // sinking the scalar instruction I, hence it appears in PredBB; but it
4574       // may have failed to sink I's operands (recursively), which we try
4575       // (again) here.
4576       if (I->getParent() == PredBB) {
4577         Worklist.insert(I->op_begin(), I->op_end());
4578         continue;
4579       }
4580 
4581       // It's legal to sink the instruction if all its uses occur in the
4582       // predicated block. Otherwise, there's nothing to do yet, and we may
4583       // need to reanalyze the instruction.
4584       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4585         InstsToReanalyze.push_back(I);
4586         continue;
4587       }
4588 
4589       // Move the instruction to the beginning of the predicated block, and add
4590       // it's operands to the worklist.
4591       I->moveBefore(&*PredBB->getFirstInsertionPt());
4592       Worklist.insert(I->op_begin(), I->op_end());
4593 
4594       // The sinking may have enabled other instructions to be sunk, so we will
4595       // need to iterate.
4596       Changed = true;
4597     }
4598   } while (Changed);
4599 }
4600 
4601 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4602   for (PHINode *OrigPhi : OrigPHIsToFix) {
4603     VPWidenPHIRecipe *VPPhi =
4604         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4605     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4606     // Make sure the builder has a valid insert point.
4607     Builder.SetInsertPoint(NewPhi);
4608     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4609       VPValue *Inc = VPPhi->getIncomingValue(i);
4610       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4611       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4612     }
4613   }
4614 }
4615 
4616 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) {
4617   return Cost->useOrderedReductions(RdxDesc);
4618 }
4619 
4620 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4621                                    VPUser &Operands, unsigned UF,
4622                                    ElementCount VF, bool IsPtrLoopInvariant,
4623                                    SmallBitVector &IsIndexLoopInvariant,
4624                                    VPTransformState &State) {
4625   // Construct a vector GEP by widening the operands of the scalar GEP as
4626   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4627   // results in a vector of pointers when at least one operand of the GEP
4628   // is vector-typed. Thus, to keep the representation compact, we only use
4629   // vector-typed operands for loop-varying values.
4630 
4631   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4632     // If we are vectorizing, but the GEP has only loop-invariant operands,
4633     // the GEP we build (by only using vector-typed operands for
4634     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4635     // produce a vector of pointers, we need to either arbitrarily pick an
4636     // operand to broadcast, or broadcast a clone of the original GEP.
4637     // Here, we broadcast a clone of the original.
4638     //
4639     // TODO: If at some point we decide to scalarize instructions having
4640     //       loop-invariant operands, this special case will no longer be
4641     //       required. We would add the scalarization decision to
4642     //       collectLoopScalars() and teach getVectorValue() to broadcast
4643     //       the lane-zero scalar value.
4644     auto *Clone = Builder.Insert(GEP->clone());
4645     for (unsigned Part = 0; Part < UF; ++Part) {
4646       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4647       State.set(VPDef, EntryPart, Part);
4648       addMetadata(EntryPart, GEP);
4649     }
4650   } else {
4651     // If the GEP has at least one loop-varying operand, we are sure to
4652     // produce a vector of pointers. But if we are only unrolling, we want
4653     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4654     // produce with the code below will be scalar (if VF == 1) or vector
4655     // (otherwise). Note that for the unroll-only case, we still maintain
4656     // values in the vector mapping with initVector, as we do for other
4657     // instructions.
4658     for (unsigned Part = 0; Part < UF; ++Part) {
4659       // The pointer operand of the new GEP. If it's loop-invariant, we
4660       // won't broadcast it.
4661       auto *Ptr = IsPtrLoopInvariant
4662                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4663                       : State.get(Operands.getOperand(0), Part);
4664 
4665       // Collect all the indices for the new GEP. If any index is
4666       // loop-invariant, we won't broadcast it.
4667       SmallVector<Value *, 4> Indices;
4668       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4669         VPValue *Operand = Operands.getOperand(I);
4670         if (IsIndexLoopInvariant[I - 1])
4671           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4672         else
4673           Indices.push_back(State.get(Operand, Part));
4674       }
4675 
4676       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4677       // but it should be a vector, otherwise.
4678       auto *NewGEP =
4679           GEP->isInBounds()
4680               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4681                                           Indices)
4682               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4683       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4684              "NewGEP is not a pointer vector");
4685       State.set(VPDef, NewGEP, Part);
4686       addMetadata(NewGEP, GEP);
4687     }
4688   }
4689 }
4690 
4691 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4692                                               VPWidenPHIRecipe *PhiR,
4693                                               VPTransformState &State) {
4694   PHINode *P = cast<PHINode>(PN);
4695   if (EnableVPlanNativePath) {
4696     // Currently we enter here in the VPlan-native path for non-induction
4697     // PHIs where all control flow is uniform. We simply widen these PHIs.
4698     // Create a vector phi with no operands - the vector phi operands will be
4699     // set at the end of vector code generation.
4700     Type *VecTy = (State.VF.isScalar())
4701                       ? PN->getType()
4702                       : VectorType::get(PN->getType(), State.VF);
4703     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4704     State.set(PhiR, VecPhi, 0);
4705     OrigPHIsToFix.push_back(P);
4706 
4707     return;
4708   }
4709 
4710   assert(PN->getParent() == OrigLoop->getHeader() &&
4711          "Non-header phis should have been handled elsewhere");
4712 
4713   // In order to support recurrences we need to be able to vectorize Phi nodes.
4714   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4715   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4716   // this value when we vectorize all of the instructions that use the PHI.
4717 
4718   assert(!Legal->isReductionVariable(P) &&
4719          "reductions should be handled elsewhere");
4720 
4721   setDebugLocFromInst(P);
4722 
4723   // This PHINode must be an induction variable.
4724   // Make sure that we know about it.
4725   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4726 
4727   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4728   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4729 
4730   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4731   // which can be found from the original scalar operations.
4732   switch (II.getKind()) {
4733   case InductionDescriptor::IK_NoInduction:
4734     llvm_unreachable("Unknown induction");
4735   case InductionDescriptor::IK_IntInduction:
4736   case InductionDescriptor::IK_FpInduction:
4737     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4738   case InductionDescriptor::IK_PtrInduction: {
4739     // Handle the pointer induction variable case.
4740     assert(P->getType()->isPointerTy() && "Unexpected type.");
4741 
4742     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4743       // This is the normalized GEP that starts counting at zero.
4744       Value *PtrInd =
4745           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4746       // Determine the number of scalars we need to generate for each unroll
4747       // iteration. If the instruction is uniform, we only need to generate the
4748       // first lane. Otherwise, we generate all VF values.
4749       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4750       unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue();
4751 
4752       bool NeedsVectorIndex = !IsUniform && VF.isScalable();
4753       Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr;
4754       if (NeedsVectorIndex) {
4755         Type *VecIVTy = VectorType::get(PtrInd->getType(), VF);
4756         UnitStepVec = Builder.CreateStepVector(VecIVTy);
4757         PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd);
4758       }
4759 
4760       for (unsigned Part = 0; Part < UF; ++Part) {
4761         Value *PartStart = createStepForVF(
4762             Builder, ConstantInt::get(PtrInd->getType(), Part), VF);
4763 
4764         if (NeedsVectorIndex) {
4765           Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart);
4766           Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec);
4767           Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices);
4768           Value *SclrGep =
4769               emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II);
4770           SclrGep->setName("next.gep");
4771           State.set(PhiR, SclrGep, Part);
4772           // We've cached the whole vector, which means we can support the
4773           // extraction of any lane.
4774           continue;
4775         }
4776 
4777         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4778           Value *Idx = Builder.CreateAdd(
4779               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4780           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4781           Value *SclrGep =
4782               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4783           SclrGep->setName("next.gep");
4784           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4785         }
4786       }
4787       return;
4788     }
4789     assert(isa<SCEVConstant>(II.getStep()) &&
4790            "Induction step not a SCEV constant!");
4791     Type *PhiType = II.getStep()->getType();
4792 
4793     // Build a pointer phi
4794     Value *ScalarStartValue = II.getStartValue();
4795     Type *ScStValueType = ScalarStartValue->getType();
4796     PHINode *NewPointerPhi =
4797         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4798     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4799 
4800     // A pointer induction, performed by using a gep
4801     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4802     Instruction *InductionLoc = LoopLatch->getTerminator();
4803     const SCEV *ScalarStep = II.getStep();
4804     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4805     Value *ScalarStepValue =
4806         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4807     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4808     Value *NumUnrolledElems =
4809         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4810     Value *InductionGEP = GetElementPtrInst::Create(
4811         ScStValueType->getPointerElementType(), NewPointerPhi,
4812         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4813         InductionLoc);
4814     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4815 
4816     // Create UF many actual address geps that use the pointer
4817     // phi as base and a vectorized version of the step value
4818     // (<step*0, ..., step*N>) as offset.
4819     for (unsigned Part = 0; Part < State.UF; ++Part) {
4820       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4821       Value *StartOffsetScalar =
4822           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4823       Value *StartOffset =
4824           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4825       // Create a vector of consecutive numbers from zero to VF.
4826       StartOffset =
4827           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4828 
4829       Value *GEP = Builder.CreateGEP(
4830           ScStValueType->getPointerElementType(), NewPointerPhi,
4831           Builder.CreateMul(
4832               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4833               "vector.gep"));
4834       State.set(PhiR, GEP, Part);
4835     }
4836   }
4837   }
4838 }
4839 
4840 /// A helper function for checking whether an integer division-related
4841 /// instruction may divide by zero (in which case it must be predicated if
4842 /// executed conditionally in the scalar code).
4843 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4844 /// Non-zero divisors that are non compile-time constants will not be
4845 /// converted into multiplication, so we will still end up scalarizing
4846 /// the division, but can do so w/o predication.
4847 static bool mayDivideByZero(Instruction &I) {
4848   assert((I.getOpcode() == Instruction::UDiv ||
4849           I.getOpcode() == Instruction::SDiv ||
4850           I.getOpcode() == Instruction::URem ||
4851           I.getOpcode() == Instruction::SRem) &&
4852          "Unexpected instruction");
4853   Value *Divisor = I.getOperand(1);
4854   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4855   return !CInt || CInt->isZero();
4856 }
4857 
4858 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
4859                                            VPUser &User,
4860                                            VPTransformState &State) {
4861   switch (I.getOpcode()) {
4862   case Instruction::Call:
4863   case Instruction::Br:
4864   case Instruction::PHI:
4865   case Instruction::GetElementPtr:
4866   case Instruction::Select:
4867     llvm_unreachable("This instruction is handled by a different recipe.");
4868   case Instruction::UDiv:
4869   case Instruction::SDiv:
4870   case Instruction::SRem:
4871   case Instruction::URem:
4872   case Instruction::Add:
4873   case Instruction::FAdd:
4874   case Instruction::Sub:
4875   case Instruction::FSub:
4876   case Instruction::FNeg:
4877   case Instruction::Mul:
4878   case Instruction::FMul:
4879   case Instruction::FDiv:
4880   case Instruction::FRem:
4881   case Instruction::Shl:
4882   case Instruction::LShr:
4883   case Instruction::AShr:
4884   case Instruction::And:
4885   case Instruction::Or:
4886   case Instruction::Xor: {
4887     // Just widen unops and binops.
4888     setDebugLocFromInst(&I);
4889 
4890     for (unsigned Part = 0; Part < UF; ++Part) {
4891       SmallVector<Value *, 2> Ops;
4892       for (VPValue *VPOp : User.operands())
4893         Ops.push_back(State.get(VPOp, Part));
4894 
4895       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4896 
4897       if (auto *VecOp = dyn_cast<Instruction>(V))
4898         VecOp->copyIRFlags(&I);
4899 
4900       // Use this vector value for all users of the original instruction.
4901       State.set(Def, V, Part);
4902       addMetadata(V, &I);
4903     }
4904 
4905     break;
4906   }
4907   case Instruction::ICmp:
4908   case Instruction::FCmp: {
4909     // Widen compares. Generate vector compares.
4910     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4911     auto *Cmp = cast<CmpInst>(&I);
4912     setDebugLocFromInst(Cmp);
4913     for (unsigned Part = 0; Part < UF; ++Part) {
4914       Value *A = State.get(User.getOperand(0), Part);
4915       Value *B = State.get(User.getOperand(1), Part);
4916       Value *C = nullptr;
4917       if (FCmp) {
4918         // Propagate fast math flags.
4919         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4920         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4921         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4922       } else {
4923         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4924       }
4925       State.set(Def, C, Part);
4926       addMetadata(C, &I);
4927     }
4928 
4929     break;
4930   }
4931 
4932   case Instruction::ZExt:
4933   case Instruction::SExt:
4934   case Instruction::FPToUI:
4935   case Instruction::FPToSI:
4936   case Instruction::FPExt:
4937   case Instruction::PtrToInt:
4938   case Instruction::IntToPtr:
4939   case Instruction::SIToFP:
4940   case Instruction::UIToFP:
4941   case Instruction::Trunc:
4942   case Instruction::FPTrunc:
4943   case Instruction::BitCast: {
4944     auto *CI = cast<CastInst>(&I);
4945     setDebugLocFromInst(CI);
4946 
4947     /// Vectorize casts.
4948     Type *DestTy =
4949         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
4950 
4951     for (unsigned Part = 0; Part < UF; ++Part) {
4952       Value *A = State.get(User.getOperand(0), Part);
4953       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4954       State.set(Def, Cast, Part);
4955       addMetadata(Cast, &I);
4956     }
4957     break;
4958   }
4959   default:
4960     // This instruction is not vectorized by simple widening.
4961     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4962     llvm_unreachable("Unhandled instruction!");
4963   } // end of switch.
4964 }
4965 
4966 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4967                                                VPUser &ArgOperands,
4968                                                VPTransformState &State) {
4969   assert(!isa<DbgInfoIntrinsic>(I) &&
4970          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4971   setDebugLocFromInst(&I);
4972 
4973   Module *M = I.getParent()->getParent()->getParent();
4974   auto *CI = cast<CallInst>(&I);
4975 
4976   SmallVector<Type *, 4> Tys;
4977   for (Value *ArgOperand : CI->arg_operands())
4978     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4979 
4980   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4981 
4982   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4983   // version of the instruction.
4984   // Is it beneficial to perform intrinsic call compared to lib call?
4985   bool NeedToScalarize = false;
4986   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4987   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4988   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4989   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4990          "Instruction should be scalarized elsewhere.");
4991   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4992          "Either the intrinsic cost or vector call cost must be valid");
4993 
4994   for (unsigned Part = 0; Part < UF; ++Part) {
4995     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4996     SmallVector<Value *, 4> Args;
4997     for (auto &I : enumerate(ArgOperands.operands())) {
4998       // Some intrinsics have a scalar argument - don't replace it with a
4999       // vector.
5000       Value *Arg;
5001       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
5002         Arg = State.get(I.value(), Part);
5003       else {
5004         Arg = State.get(I.value(), VPIteration(0, 0));
5005         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
5006           TysForDecl.push_back(Arg->getType());
5007       }
5008       Args.push_back(Arg);
5009     }
5010 
5011     Function *VectorF;
5012     if (UseVectorIntrinsic) {
5013       // Use vector version of the intrinsic.
5014       if (VF.isVector())
5015         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
5016       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
5017       assert(VectorF && "Can't retrieve vector intrinsic.");
5018     } else {
5019       // Use vector version of the function call.
5020       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
5021 #ifndef NDEBUG
5022       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
5023              "Can't create vector function.");
5024 #endif
5025         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
5026     }
5027       SmallVector<OperandBundleDef, 1> OpBundles;
5028       CI->getOperandBundlesAsDefs(OpBundles);
5029       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
5030 
5031       if (isa<FPMathOperator>(V))
5032         V->copyFastMathFlags(CI);
5033 
5034       State.set(Def, V, Part);
5035       addMetadata(V, &I);
5036   }
5037 }
5038 
5039 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
5040                                                  VPUser &Operands,
5041                                                  bool InvariantCond,
5042                                                  VPTransformState &State) {
5043   setDebugLocFromInst(&I);
5044 
5045   // The condition can be loop invariant  but still defined inside the
5046   // loop. This means that we can't just use the original 'cond' value.
5047   // We have to take the 'vectorized' value and pick the first lane.
5048   // Instcombine will make this a no-op.
5049   auto *InvarCond = InvariantCond
5050                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5051                         : nullptr;
5052 
5053   for (unsigned Part = 0; Part < UF; ++Part) {
5054     Value *Cond =
5055         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5056     Value *Op0 = State.get(Operands.getOperand(1), Part);
5057     Value *Op1 = State.get(Operands.getOperand(2), Part);
5058     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5059     State.set(VPDef, Sel, Part);
5060     addMetadata(Sel, &I);
5061   }
5062 }
5063 
5064 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5065   // We should not collect Scalars more than once per VF. Right now, this
5066   // function is called from collectUniformsAndScalars(), which already does
5067   // this check. Collecting Scalars for VF=1 does not make any sense.
5068   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5069          "This function should not be visited twice for the same VF");
5070 
5071   SmallSetVector<Instruction *, 8> Worklist;
5072 
5073   // These sets are used to seed the analysis with pointers used by memory
5074   // accesses that will remain scalar.
5075   SmallSetVector<Instruction *, 8> ScalarPtrs;
5076   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5077   auto *Latch = TheLoop->getLoopLatch();
5078 
5079   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5080   // The pointer operands of loads and stores will be scalar as long as the
5081   // memory access is not a gather or scatter operation. The value operand of a
5082   // store will remain scalar if the store is scalarized.
5083   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5084     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5085     assert(WideningDecision != CM_Unknown &&
5086            "Widening decision should be ready at this moment");
5087     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5088       if (Ptr == Store->getValueOperand())
5089         return WideningDecision == CM_Scalarize;
5090     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5091            "Ptr is neither a value or pointer operand");
5092     return WideningDecision != CM_GatherScatter;
5093   };
5094 
5095   // A helper that returns true if the given value is a bitcast or
5096   // getelementptr instruction contained in the loop.
5097   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5098     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5099             isa<GetElementPtrInst>(V)) &&
5100            !TheLoop->isLoopInvariant(V);
5101   };
5102 
5103   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5104     if (!isa<PHINode>(Ptr) ||
5105         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5106       return false;
5107     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5108     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5109       return false;
5110     return isScalarUse(MemAccess, Ptr);
5111   };
5112 
5113   // A helper that evaluates a memory access's use of a pointer. If the
5114   // pointer is actually the pointer induction of a loop, it is being
5115   // inserted into Worklist. If the use will be a scalar use, and the
5116   // pointer is only used by memory accesses, we place the pointer in
5117   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5118   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5119     if (isScalarPtrInduction(MemAccess, Ptr)) {
5120       Worklist.insert(cast<Instruction>(Ptr));
5121       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5122                         << "\n");
5123 
5124       Instruction *Update = cast<Instruction>(
5125           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5126       ScalarPtrs.insert(Update);
5127       return;
5128     }
5129     // We only care about bitcast and getelementptr instructions contained in
5130     // the loop.
5131     if (!isLoopVaryingBitCastOrGEP(Ptr))
5132       return;
5133 
5134     // If the pointer has already been identified as scalar (e.g., if it was
5135     // also identified as uniform), there's nothing to do.
5136     auto *I = cast<Instruction>(Ptr);
5137     if (Worklist.count(I))
5138       return;
5139 
5140     // If the use of the pointer will be a scalar use, and all users of the
5141     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5142     // place the pointer in PossibleNonScalarPtrs.
5143     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5144           return isa<LoadInst>(U) || isa<StoreInst>(U);
5145         }))
5146       ScalarPtrs.insert(I);
5147     else
5148       PossibleNonScalarPtrs.insert(I);
5149   };
5150 
5151   // We seed the scalars analysis with three classes of instructions: (1)
5152   // instructions marked uniform-after-vectorization and (2) bitcast,
5153   // getelementptr and (pointer) phi instructions used by memory accesses
5154   // requiring a scalar use.
5155   //
5156   // (1) Add to the worklist all instructions that have been identified as
5157   // uniform-after-vectorization.
5158   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5159 
5160   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5161   // memory accesses requiring a scalar use. The pointer operands of loads and
5162   // stores will be scalar as long as the memory accesses is not a gather or
5163   // scatter operation. The value operand of a store will remain scalar if the
5164   // store is scalarized.
5165   for (auto *BB : TheLoop->blocks())
5166     for (auto &I : *BB) {
5167       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5168         evaluatePtrUse(Load, Load->getPointerOperand());
5169       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5170         evaluatePtrUse(Store, Store->getPointerOperand());
5171         evaluatePtrUse(Store, Store->getValueOperand());
5172       }
5173     }
5174   for (auto *I : ScalarPtrs)
5175     if (!PossibleNonScalarPtrs.count(I)) {
5176       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5177       Worklist.insert(I);
5178     }
5179 
5180   // Insert the forced scalars.
5181   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5182   // induction variable when the PHI user is scalarized.
5183   auto ForcedScalar = ForcedScalars.find(VF);
5184   if (ForcedScalar != ForcedScalars.end())
5185     for (auto *I : ForcedScalar->second)
5186       Worklist.insert(I);
5187 
5188   // Expand the worklist by looking through any bitcasts and getelementptr
5189   // instructions we've already identified as scalar. This is similar to the
5190   // expansion step in collectLoopUniforms(); however, here we're only
5191   // expanding to include additional bitcasts and getelementptr instructions.
5192   unsigned Idx = 0;
5193   while (Idx != Worklist.size()) {
5194     Instruction *Dst = Worklist[Idx++];
5195     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5196       continue;
5197     auto *Src = cast<Instruction>(Dst->getOperand(0));
5198     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5199           auto *J = cast<Instruction>(U);
5200           return !TheLoop->contains(J) || Worklist.count(J) ||
5201                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5202                   isScalarUse(J, Src));
5203         })) {
5204       Worklist.insert(Src);
5205       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5206     }
5207   }
5208 
5209   // An induction variable will remain scalar if all users of the induction
5210   // variable and induction variable update remain scalar.
5211   for (auto &Induction : Legal->getInductionVars()) {
5212     auto *Ind = Induction.first;
5213     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5214 
5215     // If tail-folding is applied, the primary induction variable will be used
5216     // to feed a vector compare.
5217     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5218       continue;
5219 
5220     // Determine if all users of the induction variable are scalar after
5221     // vectorization.
5222     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5223       auto *I = cast<Instruction>(U);
5224       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5225     });
5226     if (!ScalarInd)
5227       continue;
5228 
5229     // Determine if all users of the induction variable update instruction are
5230     // scalar after vectorization.
5231     auto ScalarIndUpdate =
5232         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5233           auto *I = cast<Instruction>(U);
5234           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5235         });
5236     if (!ScalarIndUpdate)
5237       continue;
5238 
5239     // The induction variable and its update instruction will remain scalar.
5240     Worklist.insert(Ind);
5241     Worklist.insert(IndUpdate);
5242     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5243     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5244                       << "\n");
5245   }
5246 
5247   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5248 }
5249 
5250 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const {
5251   if (!blockNeedsPredication(I->getParent()))
5252     return false;
5253   switch(I->getOpcode()) {
5254   default:
5255     break;
5256   case Instruction::Load:
5257   case Instruction::Store: {
5258     if (!Legal->isMaskRequired(I))
5259       return false;
5260     auto *Ptr = getLoadStorePointerOperand(I);
5261     auto *Ty = getLoadStoreType(I);
5262     const Align Alignment = getLoadStoreAlignment(I);
5263     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5264                                 TTI.isLegalMaskedGather(Ty, Alignment))
5265                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5266                                 TTI.isLegalMaskedScatter(Ty, Alignment));
5267   }
5268   case Instruction::UDiv:
5269   case Instruction::SDiv:
5270   case Instruction::SRem:
5271   case Instruction::URem:
5272     return mayDivideByZero(*I);
5273   }
5274   return false;
5275 }
5276 
5277 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5278     Instruction *I, ElementCount VF) {
5279   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5280   assert(getWideningDecision(I, VF) == CM_Unknown &&
5281          "Decision should not be set yet.");
5282   auto *Group = getInterleavedAccessGroup(I);
5283   assert(Group && "Must have a group.");
5284 
5285   // If the instruction's allocated size doesn't equal it's type size, it
5286   // requires padding and will be scalarized.
5287   auto &DL = I->getModule()->getDataLayout();
5288   auto *ScalarTy = getLoadStoreType(I);
5289   if (hasIrregularType(ScalarTy, DL))
5290     return false;
5291 
5292   // Check if masking is required.
5293   // A Group may need masking for one of two reasons: it resides in a block that
5294   // needs predication, or it was decided to use masking to deal with gaps.
5295   bool PredicatedAccessRequiresMasking =
5296       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
5297   bool AccessWithGapsRequiresMasking =
5298       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
5299   if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking)
5300     return true;
5301 
5302   // If masked interleaving is required, we expect that the user/target had
5303   // enabled it, because otherwise it either wouldn't have been created or
5304   // it should have been invalidated by the CostModel.
5305   assert(useMaskedInterleavedAccesses(TTI) &&
5306          "Masked interleave-groups for predicated accesses are not enabled.");
5307 
5308   auto *Ty = getLoadStoreType(I);
5309   const Align Alignment = getLoadStoreAlignment(I);
5310   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5311                           : TTI.isLegalMaskedStore(Ty, Alignment);
5312 }
5313 
5314 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5315     Instruction *I, ElementCount VF) {
5316   // Get and ensure we have a valid memory instruction.
5317   LoadInst *LI = dyn_cast<LoadInst>(I);
5318   StoreInst *SI = dyn_cast<StoreInst>(I);
5319   assert((LI || SI) && "Invalid memory instruction");
5320 
5321   auto *Ptr = getLoadStorePointerOperand(I);
5322 
5323   // In order to be widened, the pointer should be consecutive, first of all.
5324   if (!Legal->isConsecutivePtr(Ptr))
5325     return false;
5326 
5327   // If the instruction is a store located in a predicated block, it will be
5328   // scalarized.
5329   if (isScalarWithPredication(I))
5330     return false;
5331 
5332   // If the instruction's allocated size doesn't equal it's type size, it
5333   // requires padding and will be scalarized.
5334   auto &DL = I->getModule()->getDataLayout();
5335   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
5336   if (hasIrregularType(ScalarTy, DL))
5337     return false;
5338 
5339   return true;
5340 }
5341 
5342 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5343   // We should not collect Uniforms more than once per VF. Right now,
5344   // this function is called from collectUniformsAndScalars(), which
5345   // already does this check. Collecting Uniforms for VF=1 does not make any
5346   // sense.
5347 
5348   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5349          "This function should not be visited twice for the same VF");
5350 
5351   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5352   // not analyze again.  Uniforms.count(VF) will return 1.
5353   Uniforms[VF].clear();
5354 
5355   // We now know that the loop is vectorizable!
5356   // Collect instructions inside the loop that will remain uniform after
5357   // vectorization.
5358 
5359   // Global values, params and instructions outside of current loop are out of
5360   // scope.
5361   auto isOutOfScope = [&](Value *V) -> bool {
5362     Instruction *I = dyn_cast<Instruction>(V);
5363     return (!I || !TheLoop->contains(I));
5364   };
5365 
5366   SetVector<Instruction *> Worklist;
5367   BasicBlock *Latch = TheLoop->getLoopLatch();
5368 
5369   // Instructions that are scalar with predication must not be considered
5370   // uniform after vectorization, because that would create an erroneous
5371   // replicating region where only a single instance out of VF should be formed.
5372   // TODO: optimize such seldom cases if found important, see PR40816.
5373   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5374     if (isOutOfScope(I)) {
5375       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5376                         << *I << "\n");
5377       return;
5378     }
5379     if (isScalarWithPredication(I)) {
5380       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5381                         << *I << "\n");
5382       return;
5383     }
5384     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5385     Worklist.insert(I);
5386   };
5387 
5388   // Start with the conditional branch. If the branch condition is an
5389   // instruction contained in the loop that is only used by the branch, it is
5390   // uniform.
5391   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5392   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5393     addToWorklistIfAllowed(Cmp);
5394 
5395   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5396     InstWidening WideningDecision = getWideningDecision(I, VF);
5397     assert(WideningDecision != CM_Unknown &&
5398            "Widening decision should be ready at this moment");
5399 
5400     // A uniform memory op is itself uniform.  We exclude uniform stores
5401     // here as they demand the last lane, not the first one.
5402     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5403       assert(WideningDecision == CM_Scalarize);
5404       return true;
5405     }
5406 
5407     return (WideningDecision == CM_Widen ||
5408             WideningDecision == CM_Widen_Reverse ||
5409             WideningDecision == CM_Interleave);
5410   };
5411 
5412 
5413   // Returns true if Ptr is the pointer operand of a memory access instruction
5414   // I, and I is known to not require scalarization.
5415   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5416     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5417   };
5418 
5419   // Holds a list of values which are known to have at least one uniform use.
5420   // Note that there may be other uses which aren't uniform.  A "uniform use"
5421   // here is something which only demands lane 0 of the unrolled iterations;
5422   // it does not imply that all lanes produce the same value (e.g. this is not
5423   // the usual meaning of uniform)
5424   SetVector<Value *> HasUniformUse;
5425 
5426   // Scan the loop for instructions which are either a) known to have only
5427   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5428   for (auto *BB : TheLoop->blocks())
5429     for (auto &I : *BB) {
5430       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
5431         switch (II->getIntrinsicID()) {
5432         case Intrinsic::sideeffect:
5433         case Intrinsic::experimental_noalias_scope_decl:
5434         case Intrinsic::assume:
5435         case Intrinsic::lifetime_start:
5436         case Intrinsic::lifetime_end:
5437           if (TheLoop->hasLoopInvariantOperands(&I))
5438             addToWorklistIfAllowed(&I);
5439           LLVM_FALLTHROUGH;
5440         default:
5441           break;
5442         }
5443       }
5444 
5445       // ExtractValue instructions must be uniform, because the operands are
5446       // known to be loop-invariant.
5447       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
5448         assert(isOutOfScope(EVI->getAggregateOperand()) &&
5449                "Expected aggregate value to be loop invariant");
5450         addToWorklistIfAllowed(EVI);
5451         continue;
5452       }
5453 
5454       // If there's no pointer operand, there's nothing to do.
5455       auto *Ptr = getLoadStorePointerOperand(&I);
5456       if (!Ptr)
5457         continue;
5458 
5459       // A uniform memory op is itself uniform.  We exclude uniform stores
5460       // here as they demand the last lane, not the first one.
5461       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5462         addToWorklistIfAllowed(&I);
5463 
5464       if (isUniformDecision(&I, VF)) {
5465         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5466         HasUniformUse.insert(Ptr);
5467       }
5468     }
5469 
5470   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5471   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5472   // disallows uses outside the loop as well.
5473   for (auto *V : HasUniformUse) {
5474     if (isOutOfScope(V))
5475       continue;
5476     auto *I = cast<Instruction>(V);
5477     auto UsersAreMemAccesses =
5478       llvm::all_of(I->users(), [&](User *U) -> bool {
5479         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5480       });
5481     if (UsersAreMemAccesses)
5482       addToWorklistIfAllowed(I);
5483   }
5484 
5485   // Expand Worklist in topological order: whenever a new instruction
5486   // is added , its users should be already inside Worklist.  It ensures
5487   // a uniform instruction will only be used by uniform instructions.
5488   unsigned idx = 0;
5489   while (idx != Worklist.size()) {
5490     Instruction *I = Worklist[idx++];
5491 
5492     for (auto OV : I->operand_values()) {
5493       // isOutOfScope operands cannot be uniform instructions.
5494       if (isOutOfScope(OV))
5495         continue;
5496       // First order recurrence Phi's should typically be considered
5497       // non-uniform.
5498       auto *OP = dyn_cast<PHINode>(OV);
5499       if (OP && Legal->isFirstOrderRecurrence(OP))
5500         continue;
5501       // If all the users of the operand are uniform, then add the
5502       // operand into the uniform worklist.
5503       auto *OI = cast<Instruction>(OV);
5504       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5505             auto *J = cast<Instruction>(U);
5506             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5507           }))
5508         addToWorklistIfAllowed(OI);
5509     }
5510   }
5511 
5512   // For an instruction to be added into Worklist above, all its users inside
5513   // the loop should also be in Worklist. However, this condition cannot be
5514   // true for phi nodes that form a cyclic dependence. We must process phi
5515   // nodes separately. An induction variable will remain uniform if all users
5516   // of the induction variable and induction variable update remain uniform.
5517   // The code below handles both pointer and non-pointer induction variables.
5518   for (auto &Induction : Legal->getInductionVars()) {
5519     auto *Ind = Induction.first;
5520     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5521 
5522     // Determine if all users of the induction variable are uniform after
5523     // vectorization.
5524     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5525       auto *I = cast<Instruction>(U);
5526       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5527              isVectorizedMemAccessUse(I, Ind);
5528     });
5529     if (!UniformInd)
5530       continue;
5531 
5532     // Determine if all users of the induction variable update instruction are
5533     // uniform after vectorization.
5534     auto UniformIndUpdate =
5535         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5536           auto *I = cast<Instruction>(U);
5537           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5538                  isVectorizedMemAccessUse(I, IndUpdate);
5539         });
5540     if (!UniformIndUpdate)
5541       continue;
5542 
5543     // The induction variable and its update instruction will remain uniform.
5544     addToWorklistIfAllowed(Ind);
5545     addToWorklistIfAllowed(IndUpdate);
5546   }
5547 
5548   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5549 }
5550 
5551 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5552   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5553 
5554   if (Legal->getRuntimePointerChecking()->Need) {
5555     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5556         "runtime pointer checks needed. Enable vectorization of this "
5557         "loop with '#pragma clang loop vectorize(enable)' when "
5558         "compiling with -Os/-Oz",
5559         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5560     return true;
5561   }
5562 
5563   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5564     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5565         "runtime SCEV checks needed. Enable vectorization of this "
5566         "loop with '#pragma clang loop vectorize(enable)' when "
5567         "compiling with -Os/-Oz",
5568         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5569     return true;
5570   }
5571 
5572   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5573   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5574     reportVectorizationFailure("Runtime stride check for small trip count",
5575         "runtime stride == 1 checks needed. Enable vectorization of "
5576         "this loop without such check by compiling with -Os/-Oz",
5577         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5578     return true;
5579   }
5580 
5581   return false;
5582 }
5583 
5584 ElementCount
5585 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5586   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5587     reportVectorizationInfo(
5588         "Disabling scalable vectorization, because target does not "
5589         "support scalable vectors.",
5590         "ScalableVectorsUnsupported", ORE, TheLoop);
5591     return ElementCount::getScalable(0);
5592   }
5593 
5594   if (Hints->isScalableVectorizationDisabled()) {
5595     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5596                             "ScalableVectorizationDisabled", ORE, TheLoop);
5597     return ElementCount::getScalable(0);
5598   }
5599 
5600   auto MaxScalableVF = ElementCount::getScalable(
5601       std::numeric_limits<ElementCount::ScalarTy>::max());
5602 
5603   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5604   // FIXME: While for scalable vectors this is currently sufficient, this should
5605   // be replaced by a more detailed mechanism that filters out specific VFs,
5606   // instead of invalidating vectorization for a whole set of VFs based on the
5607   // MaxVF.
5608 
5609   // Disable scalable vectorization if the loop contains unsupported reductions.
5610   if (!canVectorizeReductions(MaxScalableVF)) {
5611     reportVectorizationInfo(
5612         "Scalable vectorization not supported for the reduction "
5613         "operations found in this loop.",
5614         "ScalableVFUnfeasible", ORE, TheLoop);
5615     return ElementCount::getScalable(0);
5616   }
5617 
5618   // Disable scalable vectorization if the loop contains any instructions
5619   // with element types not supported for scalable vectors.
5620   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5621         return !Ty->isVoidTy() &&
5622                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5623       })) {
5624     reportVectorizationInfo("Scalable vectorization is not supported "
5625                             "for all element types found in this loop.",
5626                             "ScalableVFUnfeasible", ORE, TheLoop);
5627     return ElementCount::getScalable(0);
5628   }
5629 
5630   if (Legal->isSafeForAnyVectorWidth())
5631     return MaxScalableVF;
5632 
5633   // Limit MaxScalableVF by the maximum safe dependence distance.
5634   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5635   MaxScalableVF = ElementCount::getScalable(
5636       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5637   if (!MaxScalableVF)
5638     reportVectorizationInfo(
5639         "Max legal vector width too small, scalable vectorization "
5640         "unfeasible.",
5641         "ScalableVFUnfeasible", ORE, TheLoop);
5642 
5643   return MaxScalableVF;
5644 }
5645 
5646 FixedScalableVFPair
5647 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5648                                                  ElementCount UserVF) {
5649   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5650   unsigned SmallestType, WidestType;
5651   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5652 
5653   // Get the maximum safe dependence distance in bits computed by LAA.
5654   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5655   // the memory accesses that is most restrictive (involved in the smallest
5656   // dependence distance).
5657   unsigned MaxSafeElements =
5658       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5659 
5660   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5661   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5662 
5663   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5664                     << ".\n");
5665   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5666                     << ".\n");
5667 
5668   // First analyze the UserVF, fall back if the UserVF should be ignored.
5669   if (UserVF) {
5670     auto MaxSafeUserVF =
5671         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5672 
5673     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5674       // If `VF=vscale x N` is safe, then so is `VF=N`
5675       if (UserVF.isScalable())
5676         return FixedScalableVFPair(
5677             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5678       else
5679         return UserVF;
5680     }
5681 
5682     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5683 
5684     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5685     // is better to ignore the hint and let the compiler choose a suitable VF.
5686     if (!UserVF.isScalable()) {
5687       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5688                         << " is unsafe, clamping to max safe VF="
5689                         << MaxSafeFixedVF << ".\n");
5690       ORE->emit([&]() {
5691         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5692                                           TheLoop->getStartLoc(),
5693                                           TheLoop->getHeader())
5694                << "User-specified vectorization factor "
5695                << ore::NV("UserVectorizationFactor", UserVF)
5696                << " is unsafe, clamping to maximum safe vectorization factor "
5697                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5698       });
5699       return MaxSafeFixedVF;
5700     }
5701 
5702     LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5703                       << " is unsafe. Ignoring scalable UserVF.\n");
5704     ORE->emit([&]() {
5705       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5706                                         TheLoop->getStartLoc(),
5707                                         TheLoop->getHeader())
5708              << "User-specified vectorization factor "
5709              << ore::NV("UserVectorizationFactor", UserVF)
5710              << " is unsafe. Ignoring the hint to let the compiler pick a "
5711                 "suitable VF.";
5712     });
5713   }
5714 
5715   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5716                     << " / " << WidestType << " bits.\n");
5717 
5718   FixedScalableVFPair Result(ElementCount::getFixed(1),
5719                              ElementCount::getScalable(0));
5720   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5721                                            WidestType, MaxSafeFixedVF))
5722     Result.FixedVF = MaxVF;
5723 
5724   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5725                                            WidestType, MaxSafeScalableVF))
5726     if (MaxVF.isScalable()) {
5727       Result.ScalableVF = MaxVF;
5728       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5729                         << "\n");
5730     }
5731 
5732   return Result;
5733 }
5734 
5735 FixedScalableVFPair
5736 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5737   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5738     // TODO: It may by useful to do since it's still likely to be dynamically
5739     // uniform if the target can skip.
5740     reportVectorizationFailure(
5741         "Not inserting runtime ptr check for divergent target",
5742         "runtime pointer checks needed. Not enabled for divergent target",
5743         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5744     return FixedScalableVFPair::getNone();
5745   }
5746 
5747   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5748   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5749   if (TC == 1) {
5750     reportVectorizationFailure("Single iteration (non) loop",
5751         "loop trip count is one, irrelevant for vectorization",
5752         "SingleIterationLoop", ORE, TheLoop);
5753     return FixedScalableVFPair::getNone();
5754   }
5755 
5756   switch (ScalarEpilogueStatus) {
5757   case CM_ScalarEpilogueAllowed:
5758     return computeFeasibleMaxVF(TC, UserVF);
5759   case CM_ScalarEpilogueNotAllowedUsePredicate:
5760     LLVM_FALLTHROUGH;
5761   case CM_ScalarEpilogueNotNeededUsePredicate:
5762     LLVM_DEBUG(
5763         dbgs() << "LV: vector predicate hint/switch found.\n"
5764                << "LV: Not allowing scalar epilogue, creating predicated "
5765                << "vector loop.\n");
5766     break;
5767   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5768     // fallthrough as a special case of OptForSize
5769   case CM_ScalarEpilogueNotAllowedOptSize:
5770     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5771       LLVM_DEBUG(
5772           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5773     else
5774       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5775                         << "count.\n");
5776 
5777     // Bail if runtime checks are required, which are not good when optimising
5778     // for size.
5779     if (runtimeChecksRequired())
5780       return FixedScalableVFPair::getNone();
5781 
5782     break;
5783   }
5784 
5785   // The only loops we can vectorize without a scalar epilogue, are loops with
5786   // a bottom-test and a single exiting block. We'd have to handle the fact
5787   // that not every instruction executes on the last iteration.  This will
5788   // require a lane mask which varies through the vector loop body.  (TODO)
5789   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5790     // If there was a tail-folding hint/switch, but we can't fold the tail by
5791     // masking, fallback to a vectorization with a scalar epilogue.
5792     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5793       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5794                            "scalar epilogue instead.\n");
5795       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5796       return computeFeasibleMaxVF(TC, UserVF);
5797     }
5798     return FixedScalableVFPair::getNone();
5799   }
5800 
5801   // Now try the tail folding
5802 
5803   // Invalidate interleave groups that require an epilogue if we can't mask
5804   // the interleave-group.
5805   if (!useMaskedInterleavedAccesses(TTI)) {
5806     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5807            "No decisions should have been taken at this point");
5808     // Note: There is no need to invalidate any cost modeling decisions here, as
5809     // non where taken so far.
5810     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5811   }
5812 
5813   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF);
5814   // Avoid tail folding if the trip count is known to be a multiple of any VF
5815   // we chose.
5816   // FIXME: The condition below pessimises the case for fixed-width vectors,
5817   // when scalable VFs are also candidates for vectorization.
5818   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5819     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5820     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5821            "MaxFixedVF must be a power of 2");
5822     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5823                                    : MaxFixedVF.getFixedValue();
5824     ScalarEvolution *SE = PSE.getSE();
5825     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5826     const SCEV *ExitCount = SE->getAddExpr(
5827         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5828     const SCEV *Rem = SE->getURemExpr(
5829         SE->applyLoopGuards(ExitCount, TheLoop),
5830         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5831     if (Rem->isZero()) {
5832       // Accept MaxFixedVF if we do not have a tail.
5833       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5834       return MaxFactors;
5835     }
5836   }
5837 
5838   // For scalable vectors, don't use tail folding as this is currently not yet
5839   // supported. The code is likely to have ended up here if the tripcount is
5840   // low, in which case it makes sense not to use scalable vectors.
5841   if (MaxFactors.ScalableVF.isVector())
5842     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5843 
5844   // If we don't know the precise trip count, or if the trip count that we
5845   // found modulo the vectorization factor is not zero, try to fold the tail
5846   // by masking.
5847   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5848   if (Legal->prepareToFoldTailByMasking()) {
5849     FoldTailByMasking = true;
5850     return MaxFactors;
5851   }
5852 
5853   // If there was a tail-folding hint/switch, but we can't fold the tail by
5854   // masking, fallback to a vectorization with a scalar epilogue.
5855   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5856     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5857                          "scalar epilogue instead.\n");
5858     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5859     return MaxFactors;
5860   }
5861 
5862   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5863     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5864     return FixedScalableVFPair::getNone();
5865   }
5866 
5867   if (TC == 0) {
5868     reportVectorizationFailure(
5869         "Unable to calculate the loop count due to complex control flow",
5870         "unable to calculate the loop count due to complex control flow",
5871         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5872     return FixedScalableVFPair::getNone();
5873   }
5874 
5875   reportVectorizationFailure(
5876       "Cannot optimize for size and vectorize at the same time.",
5877       "cannot optimize for size and vectorize at the same time. "
5878       "Enable vectorization of this loop with '#pragma clang loop "
5879       "vectorize(enable)' when compiling with -Os/-Oz",
5880       "NoTailLoopWithOptForSize", ORE, TheLoop);
5881   return FixedScalableVFPair::getNone();
5882 }
5883 
5884 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5885     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5886     const ElementCount &MaxSafeVF) {
5887   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5888   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5889       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5890                            : TargetTransformInfo::RGK_FixedWidthVector);
5891 
5892   // Convenience function to return the minimum of two ElementCounts.
5893   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5894     assert((LHS.isScalable() == RHS.isScalable()) &&
5895            "Scalable flags must match");
5896     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5897   };
5898 
5899   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5900   // Note that both WidestRegister and WidestType may not be a powers of 2.
5901   auto MaxVectorElementCount = ElementCount::get(
5902       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5903       ComputeScalableMaxVF);
5904   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5905   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5906                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5907 
5908   if (!MaxVectorElementCount) {
5909     LLVM_DEBUG(dbgs() << "LV: The target has no "
5910                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5911                       << " vector registers.\n");
5912     return ElementCount::getFixed(1);
5913   }
5914 
5915   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5916   if (ConstTripCount &&
5917       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5918       isPowerOf2_32(ConstTripCount)) {
5919     // We need to clamp the VF to be the ConstTripCount. There is no point in
5920     // choosing a higher viable VF as done in the loop below. If
5921     // MaxVectorElementCount is scalable, we only fall back on a fixed VF when
5922     // the TC is less than or equal to the known number of lanes.
5923     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5924                       << ConstTripCount << "\n");
5925     return TripCountEC;
5926   }
5927 
5928   ElementCount MaxVF = MaxVectorElementCount;
5929   if (TTI.shouldMaximizeVectorBandwidth() ||
5930       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5931     auto MaxVectorElementCountMaxBW = ElementCount::get(
5932         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5933         ComputeScalableMaxVF);
5934     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5935 
5936     // Collect all viable vectorization factors larger than the default MaxVF
5937     // (i.e. MaxVectorElementCount).
5938     SmallVector<ElementCount, 8> VFs;
5939     for (ElementCount VS = MaxVectorElementCount * 2;
5940          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5941       VFs.push_back(VS);
5942 
5943     // For each VF calculate its register usage.
5944     auto RUs = calculateRegisterUsage(VFs);
5945 
5946     // Select the largest VF which doesn't require more registers than existing
5947     // ones.
5948     for (int i = RUs.size() - 1; i >= 0; --i) {
5949       bool Selected = true;
5950       for (auto &pair : RUs[i].MaxLocalUsers) {
5951         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5952         if (pair.second > TargetNumRegisters)
5953           Selected = false;
5954       }
5955       if (Selected) {
5956         MaxVF = VFs[i];
5957         break;
5958       }
5959     }
5960     if (ElementCount MinVF =
5961             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5962       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5963         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5964                           << ") with target's minimum: " << MinVF << '\n');
5965         MaxVF = MinVF;
5966       }
5967     }
5968   }
5969   return MaxVF;
5970 }
5971 
5972 bool LoopVectorizationCostModel::isMoreProfitable(
5973     const VectorizationFactor &A, const VectorizationFactor &B) const {
5974   InstructionCost CostA = A.Cost;
5975   InstructionCost CostB = B.Cost;
5976 
5977   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5978 
5979   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5980       MaxTripCount) {
5981     // If we are folding the tail and the trip count is a known (possibly small)
5982     // constant, the trip count will be rounded up to an integer number of
5983     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
5984     // which we compare directly. When not folding the tail, the total cost will
5985     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
5986     // approximated with the per-lane cost below instead of using the tripcount
5987     // as here.
5988     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
5989     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
5990     return RTCostA < RTCostB;
5991   }
5992 
5993   // When set to preferred, for now assume vscale may be larger than 1, so
5994   // that scalable vectorization is slightly favorable over fixed-width
5995   // vectorization.
5996   if (Hints->isScalableVectorizationPreferred())
5997     if (A.Width.isScalable() && !B.Width.isScalable())
5998       return (CostA * B.Width.getKnownMinValue()) <=
5999              (CostB * A.Width.getKnownMinValue());
6000 
6001   // To avoid the need for FP division:
6002   //      (CostA / A.Width) < (CostB / B.Width)
6003   // <=>  (CostA * B.Width) < (CostB * A.Width)
6004   return (CostA * B.Width.getKnownMinValue()) <
6005          (CostB * A.Width.getKnownMinValue());
6006 }
6007 
6008 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
6009     const ElementCountSet &VFCandidates) {
6010   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
6011   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
6012   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
6013   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
6014          "Expected Scalar VF to be a candidate");
6015 
6016   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
6017   VectorizationFactor ChosenFactor = ScalarCost;
6018 
6019   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
6020   if (ForceVectorization && VFCandidates.size() > 1) {
6021     // Ignore scalar width, because the user explicitly wants vectorization.
6022     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
6023     // evaluation.
6024     ChosenFactor.Cost = InstructionCost::getMax();
6025   }
6026 
6027   SmallVector<InstructionVFPair> InvalidCosts;
6028   for (const auto &i : VFCandidates) {
6029     // The cost for scalar VF=1 is already calculated, so ignore it.
6030     if (i.isScalar())
6031       continue;
6032 
6033     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
6034     VectorizationFactor Candidate(i, C.first);
6035     LLVM_DEBUG(
6036         dbgs() << "LV: Vector loop of width " << i << " costs: "
6037                << (Candidate.Cost / Candidate.Width.getKnownMinValue())
6038                << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "")
6039                << ".\n");
6040 
6041     if (!C.second && !ForceVectorization) {
6042       LLVM_DEBUG(
6043           dbgs() << "LV: Not considering vector loop of width " << i
6044                  << " because it will not generate any vector instructions.\n");
6045       continue;
6046     }
6047 
6048     // If profitable add it to ProfitableVF list.
6049     if (isMoreProfitable(Candidate, ScalarCost))
6050       ProfitableVFs.push_back(Candidate);
6051 
6052     if (isMoreProfitable(Candidate, ChosenFactor))
6053       ChosenFactor = Candidate;
6054   }
6055 
6056   // Emit a report of VFs with invalid costs in the loop.
6057   if (!InvalidCosts.empty()) {
6058     // Group the remarks per instruction, keeping the instruction order from
6059     // InvalidCosts.
6060     std::map<Instruction *, unsigned> Numbering;
6061     unsigned I = 0;
6062     for (auto &Pair : InvalidCosts)
6063       if (!Numbering.count(Pair.first))
6064         Numbering[Pair.first] = I++;
6065 
6066     // Sort the list, first on instruction(number) then on VF.
6067     llvm::sort(InvalidCosts,
6068                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
6069                  if (Numbering[A.first] != Numbering[B.first])
6070                    return Numbering[A.first] < Numbering[B.first];
6071                  ElementCountComparator ECC;
6072                  return ECC(A.second, B.second);
6073                });
6074 
6075     // For a list of ordered instruction-vf pairs:
6076     //   [(load, vf1), (load, vf2), (store, vf1)]
6077     // Group the instructions together to emit separate remarks for:
6078     //   load  (vf1, vf2)
6079     //   store (vf1)
6080     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
6081     auto Subset = ArrayRef<InstructionVFPair>();
6082     do {
6083       if (Subset.empty())
6084         Subset = Tail.take_front(1);
6085 
6086       Instruction *I = Subset.front().first;
6087 
6088       // If the next instruction is different, or if there are no other pairs,
6089       // emit a remark for the collated subset. e.g.
6090       //   [(load, vf1), (load, vf2))]
6091       // to emit:
6092       //  remark: invalid costs for 'load' at VF=(vf, vf2)
6093       if (Subset == Tail || Tail[Subset.size()].first != I) {
6094         std::string OutString;
6095         raw_string_ostream OS(OutString);
6096         assert(!Subset.empty() && "Unexpected empty range");
6097         OS << "Instruction with invalid costs prevented vectorization at VF=(";
6098         for (auto &Pair : Subset)
6099           OS << (Pair.second == Subset.front().second ? "" : ", ")
6100              << Pair.second;
6101         OS << "):";
6102         if (auto *CI = dyn_cast<CallInst>(I))
6103           OS << " call to " << CI->getCalledFunction()->getName();
6104         else
6105           OS << " " << I->getOpcodeName();
6106         OS.flush();
6107         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
6108         Tail = Tail.drop_front(Subset.size());
6109         Subset = {};
6110       } else
6111         // Grow the subset by one element
6112         Subset = Tail.take_front(Subset.size() + 1);
6113     } while (!Tail.empty());
6114   }
6115 
6116   if (!EnableCondStoresVectorization && NumPredStores) {
6117     reportVectorizationFailure("There are conditional stores.",
6118         "store that is conditionally executed prevents vectorization",
6119         "ConditionalStore", ORE, TheLoop);
6120     ChosenFactor = ScalarCost;
6121   }
6122 
6123   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
6124                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
6125              << "LV: Vectorization seems to be not beneficial, "
6126              << "but was forced by a user.\n");
6127   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
6128   return ChosenFactor;
6129 }
6130 
6131 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
6132     const Loop &L, ElementCount VF) const {
6133   // Cross iteration phis such as reductions need special handling and are
6134   // currently unsupported.
6135   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
6136         return Legal->isFirstOrderRecurrence(&Phi) ||
6137                Legal->isReductionVariable(&Phi);
6138       }))
6139     return false;
6140 
6141   // Phis with uses outside of the loop require special handling and are
6142   // currently unsupported.
6143   for (auto &Entry : Legal->getInductionVars()) {
6144     // Look for uses of the value of the induction at the last iteration.
6145     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
6146     for (User *U : PostInc->users())
6147       if (!L.contains(cast<Instruction>(U)))
6148         return false;
6149     // Look for uses of penultimate value of the induction.
6150     for (User *U : Entry.first->users())
6151       if (!L.contains(cast<Instruction>(U)))
6152         return false;
6153   }
6154 
6155   // Induction variables that are widened require special handling that is
6156   // currently not supported.
6157   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
6158         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
6159                  this->isProfitableToScalarize(Entry.first, VF));
6160       }))
6161     return false;
6162 
6163   // Epilogue vectorization code has not been auditted to ensure it handles
6164   // non-latch exits properly.  It may be fine, but it needs auditted and
6165   // tested.
6166   if (L.getExitingBlock() != L.getLoopLatch())
6167     return false;
6168 
6169   return true;
6170 }
6171 
6172 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
6173     const ElementCount VF) const {
6174   // FIXME: We need a much better cost-model to take different parameters such
6175   // as register pressure, code size increase and cost of extra branches into
6176   // account. For now we apply a very crude heuristic and only consider loops
6177   // with vectorization factors larger than a certain value.
6178   // We also consider epilogue vectorization unprofitable for targets that don't
6179   // consider interleaving beneficial (eg. MVE).
6180   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
6181     return false;
6182   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
6183     return true;
6184   return false;
6185 }
6186 
6187 VectorizationFactor
6188 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
6189     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
6190   VectorizationFactor Result = VectorizationFactor::Disabled();
6191   if (!EnableEpilogueVectorization) {
6192     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
6193     return Result;
6194   }
6195 
6196   if (!isScalarEpilogueAllowed()) {
6197     LLVM_DEBUG(
6198         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
6199                   "allowed.\n";);
6200     return Result;
6201   }
6202 
6203   // FIXME: This can be fixed for scalable vectors later, because at this stage
6204   // the LoopVectorizer will only consider vectorizing a loop with scalable
6205   // vectors when the loop has a hint to enable vectorization for a given VF.
6206   if (MainLoopVF.isScalable()) {
6207     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not "
6208                          "yet supported.\n");
6209     return Result;
6210   }
6211 
6212   // Not really a cost consideration, but check for unsupported cases here to
6213   // simplify the logic.
6214   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
6215     LLVM_DEBUG(
6216         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
6217                   "not a supported candidate.\n";);
6218     return Result;
6219   }
6220 
6221   if (EpilogueVectorizationForceVF > 1) {
6222     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
6223     if (LVP.hasPlanWithVFs(
6224             {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)}))
6225       return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0};
6226     else {
6227       LLVM_DEBUG(
6228           dbgs()
6229               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
6230       return Result;
6231     }
6232   }
6233 
6234   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
6235       TheLoop->getHeader()->getParent()->hasMinSize()) {
6236     LLVM_DEBUG(
6237         dbgs()
6238             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6239     return Result;
6240   }
6241 
6242   if (!isEpilogueVectorizationProfitable(MainLoopVF))
6243     return Result;
6244 
6245   for (auto &NextVF : ProfitableVFs)
6246     if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) &&
6247         (Result.Width.getFixedValue() == 1 ||
6248          isMoreProfitable(NextVF, Result)) &&
6249         LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width}))
6250       Result = NextVF;
6251 
6252   if (Result != VectorizationFactor::Disabled())
6253     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6254                       << Result.Width.getFixedValue() << "\n";);
6255   return Result;
6256 }
6257 
6258 std::pair<unsigned, unsigned>
6259 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6260   unsigned MinWidth = -1U;
6261   unsigned MaxWidth = 8;
6262   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6263   for (Type *T : ElementTypesInLoop) {
6264     MinWidth = std::min<unsigned>(
6265         MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6266     MaxWidth = std::max<unsigned>(
6267         MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6268   }
6269   return {MinWidth, MaxWidth};
6270 }
6271 
6272 void LoopVectorizationCostModel::collectElementTypesForWidening() {
6273   ElementTypesInLoop.clear();
6274   // For each block.
6275   for (BasicBlock *BB : TheLoop->blocks()) {
6276     // For each instruction in the loop.
6277     for (Instruction &I : BB->instructionsWithoutDebug()) {
6278       Type *T = I.getType();
6279 
6280       // Skip ignored values.
6281       if (ValuesToIgnore.count(&I))
6282         continue;
6283 
6284       // Only examine Loads, Stores and PHINodes.
6285       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6286         continue;
6287 
6288       // Examine PHI nodes that are reduction variables. Update the type to
6289       // account for the recurrence type.
6290       if (auto *PN = dyn_cast<PHINode>(&I)) {
6291         if (!Legal->isReductionVariable(PN))
6292           continue;
6293         const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN];
6294         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6295             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6296                                       RdxDesc.getRecurrenceType(),
6297                                       TargetTransformInfo::ReductionFlags()))
6298           continue;
6299         T = RdxDesc.getRecurrenceType();
6300       }
6301 
6302       // Examine the stored values.
6303       if (auto *ST = dyn_cast<StoreInst>(&I))
6304         T = ST->getValueOperand()->getType();
6305 
6306       // Ignore loaded pointer types and stored pointer types that are not
6307       // vectorizable.
6308       //
6309       // FIXME: The check here attempts to predict whether a load or store will
6310       //        be vectorized. We only know this for certain after a VF has
6311       //        been selected. Here, we assume that if an access can be
6312       //        vectorized, it will be. We should also look at extending this
6313       //        optimization to non-pointer types.
6314       //
6315       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6316           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6317         continue;
6318 
6319       ElementTypesInLoop.insert(T);
6320     }
6321   }
6322 }
6323 
6324 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6325                                                            unsigned LoopCost) {
6326   // -- The interleave heuristics --
6327   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6328   // There are many micro-architectural considerations that we can't predict
6329   // at this level. For example, frontend pressure (on decode or fetch) due to
6330   // code size, or the number and capabilities of the execution ports.
6331   //
6332   // We use the following heuristics to select the interleave count:
6333   // 1. If the code has reductions, then we interleave to break the cross
6334   // iteration dependency.
6335   // 2. If the loop is really small, then we interleave to reduce the loop
6336   // overhead.
6337   // 3. We don't interleave if we think that we will spill registers to memory
6338   // due to the increased register pressure.
6339 
6340   if (!isScalarEpilogueAllowed())
6341     return 1;
6342 
6343   // We used the distance for the interleave count.
6344   if (Legal->getMaxSafeDepDistBytes() != -1U)
6345     return 1;
6346 
6347   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6348   const bool HasReductions = !Legal->getReductionVars().empty();
6349   // Do not interleave loops with a relatively small known or estimated trip
6350   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6351   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6352   // because with the above conditions interleaving can expose ILP and break
6353   // cross iteration dependences for reductions.
6354   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6355       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6356     return 1;
6357 
6358   RegisterUsage R = calculateRegisterUsage({VF})[0];
6359   // We divide by these constants so assume that we have at least one
6360   // instruction that uses at least one register.
6361   for (auto& pair : R.MaxLocalUsers) {
6362     pair.second = std::max(pair.second, 1U);
6363   }
6364 
6365   // We calculate the interleave count using the following formula.
6366   // Subtract the number of loop invariants from the number of available
6367   // registers. These registers are used by all of the interleaved instances.
6368   // Next, divide the remaining registers by the number of registers that is
6369   // required by the loop, in order to estimate how many parallel instances
6370   // fit without causing spills. All of this is rounded down if necessary to be
6371   // a power of two. We want power of two interleave count to simplify any
6372   // addressing operations or alignment considerations.
6373   // We also want power of two interleave counts to ensure that the induction
6374   // variable of the vector loop wraps to zero, when tail is folded by masking;
6375   // this currently happens when OptForSize, in which case IC is set to 1 above.
6376   unsigned IC = UINT_MAX;
6377 
6378   for (auto& pair : R.MaxLocalUsers) {
6379     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6380     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6381                       << " registers of "
6382                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6383     if (VF.isScalar()) {
6384       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6385         TargetNumRegisters = ForceTargetNumScalarRegs;
6386     } else {
6387       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6388         TargetNumRegisters = ForceTargetNumVectorRegs;
6389     }
6390     unsigned MaxLocalUsers = pair.second;
6391     unsigned LoopInvariantRegs = 0;
6392     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6393       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6394 
6395     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6396     // Don't count the induction variable as interleaved.
6397     if (EnableIndVarRegisterHeur) {
6398       TmpIC =
6399           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6400                         std::max(1U, (MaxLocalUsers - 1)));
6401     }
6402 
6403     IC = std::min(IC, TmpIC);
6404   }
6405 
6406   // Clamp the interleave ranges to reasonable counts.
6407   unsigned MaxInterleaveCount =
6408       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6409 
6410   // Check if the user has overridden the max.
6411   if (VF.isScalar()) {
6412     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6413       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6414   } else {
6415     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6416       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6417   }
6418 
6419   // If trip count is known or estimated compile time constant, limit the
6420   // interleave count to be less than the trip count divided by VF, provided it
6421   // is at least 1.
6422   //
6423   // For scalable vectors we can't know if interleaving is beneficial. It may
6424   // not be beneficial for small loops if none of the lanes in the second vector
6425   // iterations is enabled. However, for larger loops, there is likely to be a
6426   // similar benefit as for fixed-width vectors. For now, we choose to leave
6427   // the InterleaveCount as if vscale is '1', although if some information about
6428   // the vector is known (e.g. min vector size), we can make a better decision.
6429   if (BestKnownTC) {
6430     MaxInterleaveCount =
6431         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6432     // Make sure MaxInterleaveCount is greater than 0.
6433     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6434   }
6435 
6436   assert(MaxInterleaveCount > 0 &&
6437          "Maximum interleave count must be greater than 0");
6438 
6439   // Clamp the calculated IC to be between the 1 and the max interleave count
6440   // that the target and trip count allows.
6441   if (IC > MaxInterleaveCount)
6442     IC = MaxInterleaveCount;
6443   else
6444     // Make sure IC is greater than 0.
6445     IC = std::max(1u, IC);
6446 
6447   assert(IC > 0 && "Interleave count must be greater than 0.");
6448 
6449   // If we did not calculate the cost for VF (because the user selected the VF)
6450   // then we calculate the cost of VF here.
6451   if (LoopCost == 0) {
6452     InstructionCost C = expectedCost(VF).first;
6453     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6454     LoopCost = *C.getValue();
6455   }
6456 
6457   assert(LoopCost && "Non-zero loop cost expected");
6458 
6459   // Interleave if we vectorized this loop and there is a reduction that could
6460   // benefit from interleaving.
6461   if (VF.isVector() && HasReductions) {
6462     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6463     return IC;
6464   }
6465 
6466   // Note that if we've already vectorized the loop we will have done the
6467   // runtime check and so interleaving won't require further checks.
6468   bool InterleavingRequiresRuntimePointerCheck =
6469       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6470 
6471   // We want to interleave small loops in order to reduce the loop overhead and
6472   // potentially expose ILP opportunities.
6473   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6474                     << "LV: IC is " << IC << '\n'
6475                     << "LV: VF is " << VF << '\n');
6476   const bool AggressivelyInterleaveReductions =
6477       TTI.enableAggressiveInterleaving(HasReductions);
6478   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6479     // We assume that the cost overhead is 1 and we use the cost model
6480     // to estimate the cost of the loop and interleave until the cost of the
6481     // loop overhead is about 5% of the cost of the loop.
6482     unsigned SmallIC =
6483         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6484 
6485     // Interleave until store/load ports (estimated by max interleave count) are
6486     // saturated.
6487     unsigned NumStores = Legal->getNumStores();
6488     unsigned NumLoads = Legal->getNumLoads();
6489     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6490     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6491 
6492     // If we have a scalar reduction (vector reductions are already dealt with
6493     // by this point), we can increase the critical path length if the loop
6494     // we're interleaving is inside another loop. For tree-wise reductions
6495     // set the limit to 2, and for ordered reductions it's best to disable
6496     // interleaving entirely.
6497     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6498       bool HasOrderedReductions =
6499           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6500             const RecurrenceDescriptor &RdxDesc = Reduction.second;
6501             return RdxDesc.isOrdered();
6502           });
6503       if (HasOrderedReductions) {
6504         LLVM_DEBUG(
6505             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
6506         return 1;
6507       }
6508 
6509       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6510       SmallIC = std::min(SmallIC, F);
6511       StoresIC = std::min(StoresIC, F);
6512       LoadsIC = std::min(LoadsIC, F);
6513     }
6514 
6515     if (EnableLoadStoreRuntimeInterleave &&
6516         std::max(StoresIC, LoadsIC) > SmallIC) {
6517       LLVM_DEBUG(
6518           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6519       return std::max(StoresIC, LoadsIC);
6520     }
6521 
6522     // If there are scalar reductions and TTI has enabled aggressive
6523     // interleaving for reductions, we will interleave to expose ILP.
6524     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6525         AggressivelyInterleaveReductions) {
6526       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6527       // Interleave no less than SmallIC but not as aggressive as the normal IC
6528       // to satisfy the rare situation when resources are too limited.
6529       return std::max(IC / 2, SmallIC);
6530     } else {
6531       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6532       return SmallIC;
6533     }
6534   }
6535 
6536   // Interleave if this is a large loop (small loops are already dealt with by
6537   // this point) that could benefit from interleaving.
6538   if (AggressivelyInterleaveReductions) {
6539     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6540     return IC;
6541   }
6542 
6543   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6544   return 1;
6545 }
6546 
6547 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6548 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6549   // This function calculates the register usage by measuring the highest number
6550   // of values that are alive at a single location. Obviously, this is a very
6551   // rough estimation. We scan the loop in a topological order in order and
6552   // assign a number to each instruction. We use RPO to ensure that defs are
6553   // met before their users. We assume that each instruction that has in-loop
6554   // users starts an interval. We record every time that an in-loop value is
6555   // used, so we have a list of the first and last occurrences of each
6556   // instruction. Next, we transpose this data structure into a multi map that
6557   // holds the list of intervals that *end* at a specific location. This multi
6558   // map allows us to perform a linear search. We scan the instructions linearly
6559   // and record each time that a new interval starts, by placing it in a set.
6560   // If we find this value in the multi-map then we remove it from the set.
6561   // The max register usage is the maximum size of the set.
6562   // We also search for instructions that are defined outside the loop, but are
6563   // used inside the loop. We need this number separately from the max-interval
6564   // usage number because when we unroll, loop-invariant values do not take
6565   // more register.
6566   LoopBlocksDFS DFS(TheLoop);
6567   DFS.perform(LI);
6568 
6569   RegisterUsage RU;
6570 
6571   // Each 'key' in the map opens a new interval. The values
6572   // of the map are the index of the 'last seen' usage of the
6573   // instruction that is the key.
6574   using IntervalMap = DenseMap<Instruction *, unsigned>;
6575 
6576   // Maps instruction to its index.
6577   SmallVector<Instruction *, 64> IdxToInstr;
6578   // Marks the end of each interval.
6579   IntervalMap EndPoint;
6580   // Saves the list of instruction indices that are used in the loop.
6581   SmallPtrSet<Instruction *, 8> Ends;
6582   // Saves the list of values that are used in the loop but are
6583   // defined outside the loop, such as arguments and constants.
6584   SmallPtrSet<Value *, 8> LoopInvariants;
6585 
6586   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6587     for (Instruction &I : BB->instructionsWithoutDebug()) {
6588       IdxToInstr.push_back(&I);
6589 
6590       // Save the end location of each USE.
6591       for (Value *U : I.operands()) {
6592         auto *Instr = dyn_cast<Instruction>(U);
6593 
6594         // Ignore non-instruction values such as arguments, constants, etc.
6595         if (!Instr)
6596           continue;
6597 
6598         // If this instruction is outside the loop then record it and continue.
6599         if (!TheLoop->contains(Instr)) {
6600           LoopInvariants.insert(Instr);
6601           continue;
6602         }
6603 
6604         // Overwrite previous end points.
6605         EndPoint[Instr] = IdxToInstr.size();
6606         Ends.insert(Instr);
6607       }
6608     }
6609   }
6610 
6611   // Saves the list of intervals that end with the index in 'key'.
6612   using InstrList = SmallVector<Instruction *, 2>;
6613   DenseMap<unsigned, InstrList> TransposeEnds;
6614 
6615   // Transpose the EndPoints to a list of values that end at each index.
6616   for (auto &Interval : EndPoint)
6617     TransposeEnds[Interval.second].push_back(Interval.first);
6618 
6619   SmallPtrSet<Instruction *, 8> OpenIntervals;
6620   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6621   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6622 
6623   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6624 
6625   // A lambda that gets the register usage for the given type and VF.
6626   const auto &TTICapture = TTI;
6627   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6628     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6629       return 0;
6630     InstructionCost::CostType RegUsage =
6631         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6632     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6633            "Nonsensical values for register usage.");
6634     return RegUsage;
6635   };
6636 
6637   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6638     Instruction *I = IdxToInstr[i];
6639 
6640     // Remove all of the instructions that end at this location.
6641     InstrList &List = TransposeEnds[i];
6642     for (Instruction *ToRemove : List)
6643       OpenIntervals.erase(ToRemove);
6644 
6645     // Ignore instructions that are never used within the loop.
6646     if (!Ends.count(I))
6647       continue;
6648 
6649     // Skip ignored values.
6650     if (ValuesToIgnore.count(I))
6651       continue;
6652 
6653     // For each VF find the maximum usage of registers.
6654     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6655       // Count the number of live intervals.
6656       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6657 
6658       if (VFs[j].isScalar()) {
6659         for (auto Inst : OpenIntervals) {
6660           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6661           if (RegUsage.find(ClassID) == RegUsage.end())
6662             RegUsage[ClassID] = 1;
6663           else
6664             RegUsage[ClassID] += 1;
6665         }
6666       } else {
6667         collectUniformsAndScalars(VFs[j]);
6668         for (auto Inst : OpenIntervals) {
6669           // Skip ignored values for VF > 1.
6670           if (VecValuesToIgnore.count(Inst))
6671             continue;
6672           if (isScalarAfterVectorization(Inst, VFs[j])) {
6673             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6674             if (RegUsage.find(ClassID) == RegUsage.end())
6675               RegUsage[ClassID] = 1;
6676             else
6677               RegUsage[ClassID] += 1;
6678           } else {
6679             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6680             if (RegUsage.find(ClassID) == RegUsage.end())
6681               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6682             else
6683               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6684           }
6685         }
6686       }
6687 
6688       for (auto& pair : RegUsage) {
6689         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6690           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6691         else
6692           MaxUsages[j][pair.first] = pair.second;
6693       }
6694     }
6695 
6696     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6697                       << OpenIntervals.size() << '\n');
6698 
6699     // Add the current instruction to the list of open intervals.
6700     OpenIntervals.insert(I);
6701   }
6702 
6703   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6704     SmallMapVector<unsigned, unsigned, 4> Invariant;
6705 
6706     for (auto Inst : LoopInvariants) {
6707       unsigned Usage =
6708           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6709       unsigned ClassID =
6710           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6711       if (Invariant.find(ClassID) == Invariant.end())
6712         Invariant[ClassID] = Usage;
6713       else
6714         Invariant[ClassID] += Usage;
6715     }
6716 
6717     LLVM_DEBUG({
6718       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6719       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6720              << " item\n";
6721       for (const auto &pair : MaxUsages[i]) {
6722         dbgs() << "LV(REG): RegisterClass: "
6723                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6724                << " registers\n";
6725       }
6726       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6727              << " item\n";
6728       for (const auto &pair : Invariant) {
6729         dbgs() << "LV(REG): RegisterClass: "
6730                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6731                << " registers\n";
6732       }
6733     });
6734 
6735     RU.LoopInvariantRegs = Invariant;
6736     RU.MaxLocalUsers = MaxUsages[i];
6737     RUs[i] = RU;
6738   }
6739 
6740   return RUs;
6741 }
6742 
6743 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6744   // TODO: Cost model for emulated masked load/store is completely
6745   // broken. This hack guides the cost model to use an artificially
6746   // high enough value to practically disable vectorization with such
6747   // operations, except where previously deployed legality hack allowed
6748   // using very low cost values. This is to avoid regressions coming simply
6749   // from moving "masked load/store" check from legality to cost model.
6750   // Masked Load/Gather emulation was previously never allowed.
6751   // Limited number of Masked Store/Scatter emulation was allowed.
6752   assert(isPredicatedInst(I) &&
6753          "Expecting a scalar emulated instruction");
6754   return isa<LoadInst>(I) ||
6755          (isa<StoreInst>(I) &&
6756           NumPredStores > NumberOfStoresToPredicate);
6757 }
6758 
6759 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6760   // If we aren't vectorizing the loop, or if we've already collected the
6761   // instructions to scalarize, there's nothing to do. Collection may already
6762   // have occurred if we have a user-selected VF and are now computing the
6763   // expected cost for interleaving.
6764   if (VF.isScalar() || VF.isZero() ||
6765       InstsToScalarize.find(VF) != InstsToScalarize.end())
6766     return;
6767 
6768   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6769   // not profitable to scalarize any instructions, the presence of VF in the
6770   // map will indicate that we've analyzed it already.
6771   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6772 
6773   // Find all the instructions that are scalar with predication in the loop and
6774   // determine if it would be better to not if-convert the blocks they are in.
6775   // If so, we also record the instructions to scalarize.
6776   for (BasicBlock *BB : TheLoop->blocks()) {
6777     if (!blockNeedsPredication(BB))
6778       continue;
6779     for (Instruction &I : *BB)
6780       if (isScalarWithPredication(&I)) {
6781         ScalarCostsTy ScalarCosts;
6782         // Do not apply discount if scalable, because that would lead to
6783         // invalid scalarization costs.
6784         // Do not apply discount logic if hacked cost is needed
6785         // for emulated masked memrefs.
6786         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) &&
6787             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6788           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6789         // Remember that BB will remain after vectorization.
6790         PredicatedBBsAfterVectorization.insert(BB);
6791       }
6792   }
6793 }
6794 
6795 int LoopVectorizationCostModel::computePredInstDiscount(
6796     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6797   assert(!isUniformAfterVectorization(PredInst, VF) &&
6798          "Instruction marked uniform-after-vectorization will be predicated");
6799 
6800   // Initialize the discount to zero, meaning that the scalar version and the
6801   // vector version cost the same.
6802   InstructionCost Discount = 0;
6803 
6804   // Holds instructions to analyze. The instructions we visit are mapped in
6805   // ScalarCosts. Those instructions are the ones that would be scalarized if
6806   // we find that the scalar version costs less.
6807   SmallVector<Instruction *, 8> Worklist;
6808 
6809   // Returns true if the given instruction can be scalarized.
6810   auto canBeScalarized = [&](Instruction *I) -> bool {
6811     // We only attempt to scalarize instructions forming a single-use chain
6812     // from the original predicated block that would otherwise be vectorized.
6813     // Although not strictly necessary, we give up on instructions we know will
6814     // already be scalar to avoid traversing chains that are unlikely to be
6815     // beneficial.
6816     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6817         isScalarAfterVectorization(I, VF))
6818       return false;
6819 
6820     // If the instruction is scalar with predication, it will be analyzed
6821     // separately. We ignore it within the context of PredInst.
6822     if (isScalarWithPredication(I))
6823       return false;
6824 
6825     // If any of the instruction's operands are uniform after vectorization,
6826     // the instruction cannot be scalarized. This prevents, for example, a
6827     // masked load from being scalarized.
6828     //
6829     // We assume we will only emit a value for lane zero of an instruction
6830     // marked uniform after vectorization, rather than VF identical values.
6831     // Thus, if we scalarize an instruction that uses a uniform, we would
6832     // create uses of values corresponding to the lanes we aren't emitting code
6833     // for. This behavior can be changed by allowing getScalarValue to clone
6834     // the lane zero values for uniforms rather than asserting.
6835     for (Use &U : I->operands())
6836       if (auto *J = dyn_cast<Instruction>(U.get()))
6837         if (isUniformAfterVectorization(J, VF))
6838           return false;
6839 
6840     // Otherwise, we can scalarize the instruction.
6841     return true;
6842   };
6843 
6844   // Compute the expected cost discount from scalarizing the entire expression
6845   // feeding the predicated instruction. We currently only consider expressions
6846   // that are single-use instruction chains.
6847   Worklist.push_back(PredInst);
6848   while (!Worklist.empty()) {
6849     Instruction *I = Worklist.pop_back_val();
6850 
6851     // If we've already analyzed the instruction, there's nothing to do.
6852     if (ScalarCosts.find(I) != ScalarCosts.end())
6853       continue;
6854 
6855     // Compute the cost of the vector instruction. Note that this cost already
6856     // includes the scalarization overhead of the predicated instruction.
6857     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6858 
6859     // Compute the cost of the scalarized instruction. This cost is the cost of
6860     // the instruction as if it wasn't if-converted and instead remained in the
6861     // predicated block. We will scale this cost by block probability after
6862     // computing the scalarization overhead.
6863     InstructionCost ScalarCost =
6864         VF.getFixedValue() *
6865         getInstructionCost(I, ElementCount::getFixed(1)).first;
6866 
6867     // Compute the scalarization overhead of needed insertelement instructions
6868     // and phi nodes.
6869     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6870       ScalarCost += TTI.getScalarizationOverhead(
6871           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6872           APInt::getAllOnesValue(VF.getFixedValue()), true, false);
6873       ScalarCost +=
6874           VF.getFixedValue() *
6875           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6876     }
6877 
6878     // Compute the scalarization overhead of needed extractelement
6879     // instructions. For each of the instruction's operands, if the operand can
6880     // be scalarized, add it to the worklist; otherwise, account for the
6881     // overhead.
6882     for (Use &U : I->operands())
6883       if (auto *J = dyn_cast<Instruction>(U.get())) {
6884         assert(VectorType::isValidElementType(J->getType()) &&
6885                "Instruction has non-scalar type");
6886         if (canBeScalarized(J))
6887           Worklist.push_back(J);
6888         else if (needsExtract(J, VF)) {
6889           ScalarCost += TTI.getScalarizationOverhead(
6890               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6891               APInt::getAllOnesValue(VF.getFixedValue()), false, true);
6892         }
6893       }
6894 
6895     // Scale the total scalar cost by block probability.
6896     ScalarCost /= getReciprocalPredBlockProb();
6897 
6898     // Compute the discount. A non-negative discount means the vector version
6899     // of the instruction costs more, and scalarizing would be beneficial.
6900     Discount += VectorCost - ScalarCost;
6901     ScalarCosts[I] = ScalarCost;
6902   }
6903 
6904   return *Discount.getValue();
6905 }
6906 
6907 LoopVectorizationCostModel::VectorizationCostTy
6908 LoopVectorizationCostModel::expectedCost(
6909     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6910   VectorizationCostTy Cost;
6911 
6912   // For each block.
6913   for (BasicBlock *BB : TheLoop->blocks()) {
6914     VectorizationCostTy BlockCost;
6915 
6916     // For each instruction in the old loop.
6917     for (Instruction &I : BB->instructionsWithoutDebug()) {
6918       // Skip ignored values.
6919       if (ValuesToIgnore.count(&I) ||
6920           (VF.isVector() && VecValuesToIgnore.count(&I)))
6921         continue;
6922 
6923       VectorizationCostTy C = getInstructionCost(&I, VF);
6924 
6925       // Check if we should override the cost.
6926       if (C.first.isValid() &&
6927           ForceTargetInstructionCost.getNumOccurrences() > 0)
6928         C.first = InstructionCost(ForceTargetInstructionCost);
6929 
6930       // Keep a list of instructions with invalid costs.
6931       if (Invalid && !C.first.isValid())
6932         Invalid->emplace_back(&I, VF);
6933 
6934       BlockCost.first += C.first;
6935       BlockCost.second |= C.second;
6936       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6937                         << " for VF " << VF << " For instruction: " << I
6938                         << '\n');
6939     }
6940 
6941     // If we are vectorizing a predicated block, it will have been
6942     // if-converted. This means that the block's instructions (aside from
6943     // stores and instructions that may divide by zero) will now be
6944     // unconditionally executed. For the scalar case, we may not always execute
6945     // the predicated block, if it is an if-else block. Thus, scale the block's
6946     // cost by the probability of executing it. blockNeedsPredication from
6947     // Legal is used so as to not include all blocks in tail folded loops.
6948     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6949       BlockCost.first /= getReciprocalPredBlockProb();
6950 
6951     Cost.first += BlockCost.first;
6952     Cost.second |= BlockCost.second;
6953   }
6954 
6955   return Cost;
6956 }
6957 
6958 /// Gets Address Access SCEV after verifying that the access pattern
6959 /// is loop invariant except the induction variable dependence.
6960 ///
6961 /// This SCEV can be sent to the Target in order to estimate the address
6962 /// calculation cost.
6963 static const SCEV *getAddressAccessSCEV(
6964               Value *Ptr,
6965               LoopVectorizationLegality *Legal,
6966               PredicatedScalarEvolution &PSE,
6967               const Loop *TheLoop) {
6968 
6969   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6970   if (!Gep)
6971     return nullptr;
6972 
6973   // We are looking for a gep with all loop invariant indices except for one
6974   // which should be an induction variable.
6975   auto SE = PSE.getSE();
6976   unsigned NumOperands = Gep->getNumOperands();
6977   for (unsigned i = 1; i < NumOperands; ++i) {
6978     Value *Opd = Gep->getOperand(i);
6979     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6980         !Legal->isInductionVariable(Opd))
6981       return nullptr;
6982   }
6983 
6984   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6985   return PSE.getSCEV(Ptr);
6986 }
6987 
6988 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6989   return Legal->hasStride(I->getOperand(0)) ||
6990          Legal->hasStride(I->getOperand(1));
6991 }
6992 
6993 InstructionCost
6994 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6995                                                         ElementCount VF) {
6996   assert(VF.isVector() &&
6997          "Scalarization cost of instruction implies vectorization.");
6998   if (VF.isScalable())
6999     return InstructionCost::getInvalid();
7000 
7001   Type *ValTy = getLoadStoreType(I);
7002   auto SE = PSE.getSE();
7003 
7004   unsigned AS = getLoadStoreAddressSpace(I);
7005   Value *Ptr = getLoadStorePointerOperand(I);
7006   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
7007 
7008   // Figure out whether the access is strided and get the stride value
7009   // if it's known in compile time
7010   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
7011 
7012   // Get the cost of the scalar memory instruction and address computation.
7013   InstructionCost Cost =
7014       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
7015 
7016   // Don't pass *I here, since it is scalar but will actually be part of a
7017   // vectorized loop where the user of it is a vectorized instruction.
7018   const Align Alignment = getLoadStoreAlignment(I);
7019   Cost += VF.getKnownMinValue() *
7020           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
7021                               AS, TTI::TCK_RecipThroughput);
7022 
7023   // Get the overhead of the extractelement and insertelement instructions
7024   // we might create due to scalarization.
7025   Cost += getScalarizationOverhead(I, VF);
7026 
7027   // If we have a predicated load/store, it will need extra i1 extracts and
7028   // conditional branches, but may not be executed for each vector lane. Scale
7029   // the cost by the probability of executing the predicated block.
7030   if (isPredicatedInst(I)) {
7031     Cost /= getReciprocalPredBlockProb();
7032 
7033     // Add the cost of an i1 extract and a branch
7034     auto *Vec_i1Ty =
7035         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
7036     Cost += TTI.getScalarizationOverhead(
7037         Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()),
7038         /*Insert=*/false, /*Extract=*/true);
7039     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
7040 
7041     if (useEmulatedMaskMemRefHack(I))
7042       // Artificially setting to a high enough value to practically disable
7043       // vectorization with such operations.
7044       Cost = 3000000;
7045   }
7046 
7047   return Cost;
7048 }
7049 
7050 InstructionCost
7051 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
7052                                                     ElementCount VF) {
7053   Type *ValTy = getLoadStoreType(I);
7054   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7055   Value *Ptr = getLoadStorePointerOperand(I);
7056   unsigned AS = getLoadStoreAddressSpace(I);
7057   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
7058   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7059 
7060   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7061          "Stride should be 1 or -1 for consecutive memory access");
7062   const Align Alignment = getLoadStoreAlignment(I);
7063   InstructionCost Cost = 0;
7064   if (Legal->isMaskRequired(I))
7065     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7066                                       CostKind);
7067   else
7068     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7069                                 CostKind, I);
7070 
7071   bool Reverse = ConsecutiveStride < 0;
7072   if (Reverse)
7073     Cost +=
7074         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7075   return Cost;
7076 }
7077 
7078 InstructionCost
7079 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
7080                                                 ElementCount VF) {
7081   assert(Legal->isUniformMemOp(*I));
7082 
7083   Type *ValTy = getLoadStoreType(I);
7084   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7085   const Align Alignment = getLoadStoreAlignment(I);
7086   unsigned AS = getLoadStoreAddressSpace(I);
7087   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7088   if (isa<LoadInst>(I)) {
7089     return TTI.getAddressComputationCost(ValTy) +
7090            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
7091                                CostKind) +
7092            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
7093   }
7094   StoreInst *SI = cast<StoreInst>(I);
7095 
7096   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
7097   return TTI.getAddressComputationCost(ValTy) +
7098          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
7099                              CostKind) +
7100          (isLoopInvariantStoreValue
7101               ? 0
7102               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
7103                                        VF.getKnownMinValue() - 1));
7104 }
7105 
7106 InstructionCost
7107 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
7108                                                  ElementCount VF) {
7109   Type *ValTy = getLoadStoreType(I);
7110   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7111   const Align Alignment = getLoadStoreAlignment(I);
7112   const Value *Ptr = getLoadStorePointerOperand(I);
7113 
7114   return TTI.getAddressComputationCost(VectorTy) +
7115          TTI.getGatherScatterOpCost(
7116              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
7117              TargetTransformInfo::TCK_RecipThroughput, I);
7118 }
7119 
7120 InstructionCost
7121 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
7122                                                    ElementCount VF) {
7123   // TODO: Once we have support for interleaving with scalable vectors
7124   // we can calculate the cost properly here.
7125   if (VF.isScalable())
7126     return InstructionCost::getInvalid();
7127 
7128   Type *ValTy = getLoadStoreType(I);
7129   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7130   unsigned AS = getLoadStoreAddressSpace(I);
7131 
7132   auto Group = getInterleavedAccessGroup(I);
7133   assert(Group && "Fail to get an interleaved access group.");
7134 
7135   unsigned InterleaveFactor = Group->getFactor();
7136   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
7137 
7138   // Holds the indices of existing members in an interleaved load group.
7139   // An interleaved store group doesn't need this as it doesn't allow gaps.
7140   SmallVector<unsigned, 4> Indices;
7141   if (isa<LoadInst>(I)) {
7142     for (unsigned i = 0; i < InterleaveFactor; i++)
7143       if (Group->getMember(i))
7144         Indices.push_back(i);
7145   }
7146 
7147   // Calculate the cost of the whole interleaved group.
7148   bool UseMaskForGaps =
7149       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
7150   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
7151       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
7152       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
7153 
7154   if (Group->isReverse()) {
7155     // TODO: Add support for reversed masked interleaved access.
7156     assert(!Legal->isMaskRequired(I) &&
7157            "Reverse masked interleaved access not supported.");
7158     Cost +=
7159         Group->getNumMembers() *
7160         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7161   }
7162   return Cost;
7163 }
7164 
7165 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
7166     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
7167   using namespace llvm::PatternMatch;
7168   // Early exit for no inloop reductions
7169   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
7170     return None;
7171   auto *VectorTy = cast<VectorType>(Ty);
7172 
7173   // We are looking for a pattern of, and finding the minimal acceptable cost:
7174   //  reduce(mul(ext(A), ext(B))) or
7175   //  reduce(mul(A, B)) or
7176   //  reduce(ext(A)) or
7177   //  reduce(A).
7178   // The basic idea is that we walk down the tree to do that, finding the root
7179   // reduction instruction in InLoopReductionImmediateChains. From there we find
7180   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
7181   // of the components. If the reduction cost is lower then we return it for the
7182   // reduction instruction and 0 for the other instructions in the pattern. If
7183   // it is not we return an invalid cost specifying the orignal cost method
7184   // should be used.
7185   Instruction *RetI = I;
7186   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
7187     if (!RetI->hasOneUser())
7188       return None;
7189     RetI = RetI->user_back();
7190   }
7191   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
7192       RetI->user_back()->getOpcode() == Instruction::Add) {
7193     if (!RetI->hasOneUser())
7194       return None;
7195     RetI = RetI->user_back();
7196   }
7197 
7198   // Test if the found instruction is a reduction, and if not return an invalid
7199   // cost specifying the parent to use the original cost modelling.
7200   if (!InLoopReductionImmediateChains.count(RetI))
7201     return None;
7202 
7203   // Find the reduction this chain is a part of and calculate the basic cost of
7204   // the reduction on its own.
7205   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
7206   Instruction *ReductionPhi = LastChain;
7207   while (!isa<PHINode>(ReductionPhi))
7208     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
7209 
7210   const RecurrenceDescriptor &RdxDesc =
7211       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
7212 
7213   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
7214       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
7215 
7216   // If we're using ordered reductions then we can just return the base cost
7217   // here, since getArithmeticReductionCost calculates the full ordered
7218   // reduction cost when FP reassociation is not allowed.
7219   if (useOrderedReductions(RdxDesc))
7220     return BaseCost;
7221 
7222   // Get the operand that was not the reduction chain and match it to one of the
7223   // patterns, returning the better cost if it is found.
7224   Instruction *RedOp = RetI->getOperand(1) == LastChain
7225                            ? dyn_cast<Instruction>(RetI->getOperand(0))
7226                            : dyn_cast<Instruction>(RetI->getOperand(1));
7227 
7228   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
7229 
7230   Instruction *Op0, *Op1;
7231   if (RedOp &&
7232       match(RedOp,
7233             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
7234       match(Op0, m_ZExtOrSExt(m_Value())) &&
7235       Op0->getOpcode() == Op1->getOpcode() &&
7236       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7237       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
7238       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
7239 
7240     // Matched reduce(ext(mul(ext(A), ext(B)))
7241     // Note that the extend opcodes need to all match, or if A==B they will have
7242     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
7243     // which is equally fine.
7244     bool IsUnsigned = isa<ZExtInst>(Op0);
7245     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7246     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
7247 
7248     InstructionCost ExtCost =
7249         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
7250                              TTI::CastContextHint::None, CostKind, Op0);
7251     InstructionCost MulCost =
7252         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
7253     InstructionCost Ext2Cost =
7254         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
7255                              TTI::CastContextHint::None, CostKind, RedOp);
7256 
7257     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7258         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7259         CostKind);
7260 
7261     if (RedCost.isValid() &&
7262         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
7263       return I == RetI ? RedCost : 0;
7264   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
7265              !TheLoop->isLoopInvariant(RedOp)) {
7266     // Matched reduce(ext(A))
7267     bool IsUnsigned = isa<ZExtInst>(RedOp);
7268     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
7269     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7270         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7271         CostKind);
7272 
7273     InstructionCost ExtCost =
7274         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
7275                              TTI::CastContextHint::None, CostKind, RedOp);
7276     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
7277       return I == RetI ? RedCost : 0;
7278   } else if (RedOp &&
7279              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
7280     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
7281         Op0->getOpcode() == Op1->getOpcode() &&
7282         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7283         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7284       bool IsUnsigned = isa<ZExtInst>(Op0);
7285       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7286       // Matched reduce(mul(ext, ext))
7287       InstructionCost ExtCost =
7288           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
7289                                TTI::CastContextHint::None, CostKind, Op0);
7290       InstructionCost MulCost =
7291           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7292 
7293       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7294           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7295           CostKind);
7296 
7297       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
7298         return I == RetI ? RedCost : 0;
7299     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
7300       // Matched reduce(mul())
7301       InstructionCost MulCost =
7302           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7303 
7304       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7305           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7306           CostKind);
7307 
7308       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7309         return I == RetI ? RedCost : 0;
7310     }
7311   }
7312 
7313   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7314 }
7315 
7316 InstructionCost
7317 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7318                                                      ElementCount VF) {
7319   // Calculate scalar cost only. Vectorization cost should be ready at this
7320   // moment.
7321   if (VF.isScalar()) {
7322     Type *ValTy = getLoadStoreType(I);
7323     const Align Alignment = getLoadStoreAlignment(I);
7324     unsigned AS = getLoadStoreAddressSpace(I);
7325 
7326     return TTI.getAddressComputationCost(ValTy) +
7327            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7328                                TTI::TCK_RecipThroughput, I);
7329   }
7330   return getWideningCost(I, VF);
7331 }
7332 
7333 LoopVectorizationCostModel::VectorizationCostTy
7334 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7335                                                ElementCount VF) {
7336   // If we know that this instruction will remain uniform, check the cost of
7337   // the scalar version.
7338   if (isUniformAfterVectorization(I, VF))
7339     VF = ElementCount::getFixed(1);
7340 
7341   if (VF.isVector() && isProfitableToScalarize(I, VF))
7342     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7343 
7344   // Forced scalars do not have any scalarization overhead.
7345   auto ForcedScalar = ForcedScalars.find(VF);
7346   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7347     auto InstSet = ForcedScalar->second;
7348     if (InstSet.count(I))
7349       return VectorizationCostTy(
7350           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7351            VF.getKnownMinValue()),
7352           false);
7353   }
7354 
7355   Type *VectorTy;
7356   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7357 
7358   bool TypeNotScalarized =
7359       VF.isVector() && VectorTy->isVectorTy() &&
7360       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
7361   return VectorizationCostTy(C, TypeNotScalarized);
7362 }
7363 
7364 InstructionCost
7365 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7366                                                      ElementCount VF) const {
7367 
7368   // There is no mechanism yet to create a scalable scalarization loop,
7369   // so this is currently Invalid.
7370   if (VF.isScalable())
7371     return InstructionCost::getInvalid();
7372 
7373   if (VF.isScalar())
7374     return 0;
7375 
7376   InstructionCost Cost = 0;
7377   Type *RetTy = ToVectorTy(I->getType(), VF);
7378   if (!RetTy->isVoidTy() &&
7379       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7380     Cost += TTI.getScalarizationOverhead(
7381         cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()),
7382         true, false);
7383 
7384   // Some targets keep addresses scalar.
7385   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7386     return Cost;
7387 
7388   // Some targets support efficient element stores.
7389   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7390     return Cost;
7391 
7392   // Collect operands to consider.
7393   CallInst *CI = dyn_cast<CallInst>(I);
7394   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
7395 
7396   // Skip operands that do not require extraction/scalarization and do not incur
7397   // any overhead.
7398   SmallVector<Type *> Tys;
7399   for (auto *V : filterExtractingOperands(Ops, VF))
7400     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7401   return Cost + TTI.getOperandsScalarizationOverhead(
7402                     filterExtractingOperands(Ops, VF), Tys);
7403 }
7404 
7405 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7406   if (VF.isScalar())
7407     return;
7408   NumPredStores = 0;
7409   for (BasicBlock *BB : TheLoop->blocks()) {
7410     // For each instruction in the old loop.
7411     for (Instruction &I : *BB) {
7412       Value *Ptr =  getLoadStorePointerOperand(&I);
7413       if (!Ptr)
7414         continue;
7415 
7416       // TODO: We should generate better code and update the cost model for
7417       // predicated uniform stores. Today they are treated as any other
7418       // predicated store (see added test cases in
7419       // invariant-store-vectorization.ll).
7420       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7421         NumPredStores++;
7422 
7423       if (Legal->isUniformMemOp(I)) {
7424         // TODO: Avoid replicating loads and stores instead of
7425         // relying on instcombine to remove them.
7426         // Load: Scalar load + broadcast
7427         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7428         InstructionCost Cost;
7429         if (isa<StoreInst>(&I) && VF.isScalable() &&
7430             isLegalGatherOrScatter(&I)) {
7431           Cost = getGatherScatterCost(&I, VF);
7432           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7433         } else {
7434           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7435                  "Cannot yet scalarize uniform stores");
7436           Cost = getUniformMemOpCost(&I, VF);
7437           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7438         }
7439         continue;
7440       }
7441 
7442       // We assume that widening is the best solution when possible.
7443       if (memoryInstructionCanBeWidened(&I, VF)) {
7444         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7445         int ConsecutiveStride =
7446                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
7447         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7448                "Expected consecutive stride.");
7449         InstWidening Decision =
7450             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7451         setWideningDecision(&I, VF, Decision, Cost);
7452         continue;
7453       }
7454 
7455       // Choose between Interleaving, Gather/Scatter or Scalarization.
7456       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7457       unsigned NumAccesses = 1;
7458       if (isAccessInterleaved(&I)) {
7459         auto Group = getInterleavedAccessGroup(&I);
7460         assert(Group && "Fail to get an interleaved access group.");
7461 
7462         // Make one decision for the whole group.
7463         if (getWideningDecision(&I, VF) != CM_Unknown)
7464           continue;
7465 
7466         NumAccesses = Group->getNumMembers();
7467         if (interleavedAccessCanBeWidened(&I, VF))
7468           InterleaveCost = getInterleaveGroupCost(&I, VF);
7469       }
7470 
7471       InstructionCost GatherScatterCost =
7472           isLegalGatherOrScatter(&I)
7473               ? getGatherScatterCost(&I, VF) * NumAccesses
7474               : InstructionCost::getInvalid();
7475 
7476       InstructionCost ScalarizationCost =
7477           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7478 
7479       // Choose better solution for the current VF,
7480       // write down this decision and use it during vectorization.
7481       InstructionCost Cost;
7482       InstWidening Decision;
7483       if (InterleaveCost <= GatherScatterCost &&
7484           InterleaveCost < ScalarizationCost) {
7485         Decision = CM_Interleave;
7486         Cost = InterleaveCost;
7487       } else if (GatherScatterCost < ScalarizationCost) {
7488         Decision = CM_GatherScatter;
7489         Cost = GatherScatterCost;
7490       } else {
7491         Decision = CM_Scalarize;
7492         Cost = ScalarizationCost;
7493       }
7494       // If the instructions belongs to an interleave group, the whole group
7495       // receives the same decision. The whole group receives the cost, but
7496       // the cost will actually be assigned to one instruction.
7497       if (auto Group = getInterleavedAccessGroup(&I))
7498         setWideningDecision(Group, VF, Decision, Cost);
7499       else
7500         setWideningDecision(&I, VF, Decision, Cost);
7501     }
7502   }
7503 
7504   // Make sure that any load of address and any other address computation
7505   // remains scalar unless there is gather/scatter support. This avoids
7506   // inevitable extracts into address registers, and also has the benefit of
7507   // activating LSR more, since that pass can't optimize vectorized
7508   // addresses.
7509   if (TTI.prefersVectorizedAddressing())
7510     return;
7511 
7512   // Start with all scalar pointer uses.
7513   SmallPtrSet<Instruction *, 8> AddrDefs;
7514   for (BasicBlock *BB : TheLoop->blocks())
7515     for (Instruction &I : *BB) {
7516       Instruction *PtrDef =
7517         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7518       if (PtrDef && TheLoop->contains(PtrDef) &&
7519           getWideningDecision(&I, VF) != CM_GatherScatter)
7520         AddrDefs.insert(PtrDef);
7521     }
7522 
7523   // Add all instructions used to generate the addresses.
7524   SmallVector<Instruction *, 4> Worklist;
7525   append_range(Worklist, AddrDefs);
7526   while (!Worklist.empty()) {
7527     Instruction *I = Worklist.pop_back_val();
7528     for (auto &Op : I->operands())
7529       if (auto *InstOp = dyn_cast<Instruction>(Op))
7530         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7531             AddrDefs.insert(InstOp).second)
7532           Worklist.push_back(InstOp);
7533   }
7534 
7535   for (auto *I : AddrDefs) {
7536     if (isa<LoadInst>(I)) {
7537       // Setting the desired widening decision should ideally be handled in
7538       // by cost functions, but since this involves the task of finding out
7539       // if the loaded register is involved in an address computation, it is
7540       // instead changed here when we know this is the case.
7541       InstWidening Decision = getWideningDecision(I, VF);
7542       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7543         // Scalarize a widened load of address.
7544         setWideningDecision(
7545             I, VF, CM_Scalarize,
7546             (VF.getKnownMinValue() *
7547              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7548       else if (auto Group = getInterleavedAccessGroup(I)) {
7549         // Scalarize an interleave group of address loads.
7550         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7551           if (Instruction *Member = Group->getMember(I))
7552             setWideningDecision(
7553                 Member, VF, CM_Scalarize,
7554                 (VF.getKnownMinValue() *
7555                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7556         }
7557       }
7558     } else
7559       // Make sure I gets scalarized and a cost estimate without
7560       // scalarization overhead.
7561       ForcedScalars[VF].insert(I);
7562   }
7563 }
7564 
7565 InstructionCost
7566 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7567                                                Type *&VectorTy) {
7568   Type *RetTy = I->getType();
7569   if (canTruncateToMinimalBitwidth(I, VF))
7570     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7571   auto SE = PSE.getSE();
7572   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7573 
7574   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7575                                                 ElementCount VF) -> bool {
7576     if (VF.isScalar())
7577       return true;
7578 
7579     auto Scalarized = InstsToScalarize.find(VF);
7580     assert(Scalarized != InstsToScalarize.end() &&
7581            "VF not yet analyzed for scalarization profitability");
7582     return !Scalarized->second.count(I) &&
7583            llvm::all_of(I->users(), [&](User *U) {
7584              auto *UI = cast<Instruction>(U);
7585              return !Scalarized->second.count(UI);
7586            });
7587   };
7588   (void) hasSingleCopyAfterVectorization;
7589 
7590   if (isScalarAfterVectorization(I, VF)) {
7591     // With the exception of GEPs and PHIs, after scalarization there should
7592     // only be one copy of the instruction generated in the loop. This is
7593     // because the VF is either 1, or any instructions that need scalarizing
7594     // have already been dealt with by the the time we get here. As a result,
7595     // it means we don't have to multiply the instruction cost by VF.
7596     assert(I->getOpcode() == Instruction::GetElementPtr ||
7597            I->getOpcode() == Instruction::PHI ||
7598            (I->getOpcode() == Instruction::BitCast &&
7599             I->getType()->isPointerTy()) ||
7600            hasSingleCopyAfterVectorization(I, VF));
7601     VectorTy = RetTy;
7602   } else
7603     VectorTy = ToVectorTy(RetTy, VF);
7604 
7605   // TODO: We need to estimate the cost of intrinsic calls.
7606   switch (I->getOpcode()) {
7607   case Instruction::GetElementPtr:
7608     // We mark this instruction as zero-cost because the cost of GEPs in
7609     // vectorized code depends on whether the corresponding memory instruction
7610     // is scalarized or not. Therefore, we handle GEPs with the memory
7611     // instruction cost.
7612     return 0;
7613   case Instruction::Br: {
7614     // In cases of scalarized and predicated instructions, there will be VF
7615     // predicated blocks in the vectorized loop. Each branch around these
7616     // blocks requires also an extract of its vector compare i1 element.
7617     bool ScalarPredicatedBB = false;
7618     BranchInst *BI = cast<BranchInst>(I);
7619     if (VF.isVector() && BI->isConditional() &&
7620         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7621          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7622       ScalarPredicatedBB = true;
7623 
7624     if (ScalarPredicatedBB) {
7625       // Not possible to scalarize scalable vector with predicated instructions.
7626       if (VF.isScalable())
7627         return InstructionCost::getInvalid();
7628       // Return cost for branches around scalarized and predicated blocks.
7629       auto *Vec_i1Ty =
7630           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7631       return (
7632           TTI.getScalarizationOverhead(
7633               Vec_i1Ty, APInt::getAllOnesValue(VF.getFixedValue()), false,
7634               true) +
7635           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7636     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7637       // The back-edge branch will remain, as will all scalar branches.
7638       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7639     else
7640       // This branch will be eliminated by if-conversion.
7641       return 0;
7642     // Note: We currently assume zero cost for an unconditional branch inside
7643     // a predicated block since it will become a fall-through, although we
7644     // may decide in the future to call TTI for all branches.
7645   }
7646   case Instruction::PHI: {
7647     auto *Phi = cast<PHINode>(I);
7648 
7649     // First-order recurrences are replaced by vector shuffles inside the loop.
7650     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7651     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7652       return TTI.getShuffleCost(
7653           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7654           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7655 
7656     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7657     // converted into select instructions. We require N - 1 selects per phi
7658     // node, where N is the number of incoming values.
7659     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7660       return (Phi->getNumIncomingValues() - 1) *
7661              TTI.getCmpSelInstrCost(
7662                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7663                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7664                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7665 
7666     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7667   }
7668   case Instruction::UDiv:
7669   case Instruction::SDiv:
7670   case Instruction::URem:
7671   case Instruction::SRem:
7672     // If we have a predicated instruction, it may not be executed for each
7673     // vector lane. Get the scalarization cost and scale this amount by the
7674     // probability of executing the predicated block. If the instruction is not
7675     // predicated, we fall through to the next case.
7676     if (VF.isVector() && isScalarWithPredication(I)) {
7677       InstructionCost Cost = 0;
7678 
7679       // These instructions have a non-void type, so account for the phi nodes
7680       // that we will create. This cost is likely to be zero. The phi node
7681       // cost, if any, should be scaled by the block probability because it
7682       // models a copy at the end of each predicated block.
7683       Cost += VF.getKnownMinValue() *
7684               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7685 
7686       // The cost of the non-predicated instruction.
7687       Cost += VF.getKnownMinValue() *
7688               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7689 
7690       // The cost of insertelement and extractelement instructions needed for
7691       // scalarization.
7692       Cost += getScalarizationOverhead(I, VF);
7693 
7694       // Scale the cost by the probability of executing the predicated blocks.
7695       // This assumes the predicated block for each vector lane is equally
7696       // likely.
7697       return Cost / getReciprocalPredBlockProb();
7698     }
7699     LLVM_FALLTHROUGH;
7700   case Instruction::Add:
7701   case Instruction::FAdd:
7702   case Instruction::Sub:
7703   case Instruction::FSub:
7704   case Instruction::Mul:
7705   case Instruction::FMul:
7706   case Instruction::FDiv:
7707   case Instruction::FRem:
7708   case Instruction::Shl:
7709   case Instruction::LShr:
7710   case Instruction::AShr:
7711   case Instruction::And:
7712   case Instruction::Or:
7713   case Instruction::Xor: {
7714     // Since we will replace the stride by 1 the multiplication should go away.
7715     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7716       return 0;
7717 
7718     // Detect reduction patterns
7719     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7720       return *RedCost;
7721 
7722     // Certain instructions can be cheaper to vectorize if they have a constant
7723     // second vector operand. One example of this are shifts on x86.
7724     Value *Op2 = I->getOperand(1);
7725     TargetTransformInfo::OperandValueProperties Op2VP;
7726     TargetTransformInfo::OperandValueKind Op2VK =
7727         TTI.getOperandInfo(Op2, Op2VP);
7728     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7729       Op2VK = TargetTransformInfo::OK_UniformValue;
7730 
7731     SmallVector<const Value *, 4> Operands(I->operand_values());
7732     return TTI.getArithmeticInstrCost(
7733         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7734         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7735   }
7736   case Instruction::FNeg: {
7737     return TTI.getArithmeticInstrCost(
7738         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7739         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7740         TargetTransformInfo::OP_None, I->getOperand(0), I);
7741   }
7742   case Instruction::Select: {
7743     SelectInst *SI = cast<SelectInst>(I);
7744     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7745     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7746 
7747     const Value *Op0, *Op1;
7748     using namespace llvm::PatternMatch;
7749     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7750                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7751       // select x, y, false --> x & y
7752       // select x, true, y --> x | y
7753       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7754       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7755       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7756       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7757       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7758               Op1->getType()->getScalarSizeInBits() == 1);
7759 
7760       SmallVector<const Value *, 2> Operands{Op0, Op1};
7761       return TTI.getArithmeticInstrCost(
7762           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7763           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7764     }
7765 
7766     Type *CondTy = SI->getCondition()->getType();
7767     if (!ScalarCond)
7768       CondTy = VectorType::get(CondTy, VF);
7769     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7770                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7771   }
7772   case Instruction::ICmp:
7773   case Instruction::FCmp: {
7774     Type *ValTy = I->getOperand(0)->getType();
7775     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7776     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7777       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7778     VectorTy = ToVectorTy(ValTy, VF);
7779     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7780                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7781   }
7782   case Instruction::Store:
7783   case Instruction::Load: {
7784     ElementCount Width = VF;
7785     if (Width.isVector()) {
7786       InstWidening Decision = getWideningDecision(I, Width);
7787       assert(Decision != CM_Unknown &&
7788              "CM decision should be taken at this point");
7789       if (Decision == CM_Scalarize)
7790         Width = ElementCount::getFixed(1);
7791     }
7792     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7793     return getMemoryInstructionCost(I, VF);
7794   }
7795   case Instruction::BitCast:
7796     if (I->getType()->isPointerTy())
7797       return 0;
7798     LLVM_FALLTHROUGH;
7799   case Instruction::ZExt:
7800   case Instruction::SExt:
7801   case Instruction::FPToUI:
7802   case Instruction::FPToSI:
7803   case Instruction::FPExt:
7804   case Instruction::PtrToInt:
7805   case Instruction::IntToPtr:
7806   case Instruction::SIToFP:
7807   case Instruction::UIToFP:
7808   case Instruction::Trunc:
7809   case Instruction::FPTrunc: {
7810     // Computes the CastContextHint from a Load/Store instruction.
7811     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7812       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7813              "Expected a load or a store!");
7814 
7815       if (VF.isScalar() || !TheLoop->contains(I))
7816         return TTI::CastContextHint::Normal;
7817 
7818       switch (getWideningDecision(I, VF)) {
7819       case LoopVectorizationCostModel::CM_GatherScatter:
7820         return TTI::CastContextHint::GatherScatter;
7821       case LoopVectorizationCostModel::CM_Interleave:
7822         return TTI::CastContextHint::Interleave;
7823       case LoopVectorizationCostModel::CM_Scalarize:
7824       case LoopVectorizationCostModel::CM_Widen:
7825         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7826                                         : TTI::CastContextHint::Normal;
7827       case LoopVectorizationCostModel::CM_Widen_Reverse:
7828         return TTI::CastContextHint::Reversed;
7829       case LoopVectorizationCostModel::CM_Unknown:
7830         llvm_unreachable("Instr did not go through cost modelling?");
7831       }
7832 
7833       llvm_unreachable("Unhandled case!");
7834     };
7835 
7836     unsigned Opcode = I->getOpcode();
7837     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7838     // For Trunc, the context is the only user, which must be a StoreInst.
7839     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7840       if (I->hasOneUse())
7841         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7842           CCH = ComputeCCH(Store);
7843     }
7844     // For Z/Sext, the context is the operand, which must be a LoadInst.
7845     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7846              Opcode == Instruction::FPExt) {
7847       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7848         CCH = ComputeCCH(Load);
7849     }
7850 
7851     // We optimize the truncation of induction variables having constant
7852     // integer steps. The cost of these truncations is the same as the scalar
7853     // operation.
7854     if (isOptimizableIVTruncate(I, VF)) {
7855       auto *Trunc = cast<TruncInst>(I);
7856       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7857                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7858     }
7859 
7860     // Detect reduction patterns
7861     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7862       return *RedCost;
7863 
7864     Type *SrcScalarTy = I->getOperand(0)->getType();
7865     Type *SrcVecTy =
7866         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7867     if (canTruncateToMinimalBitwidth(I, VF)) {
7868       // This cast is going to be shrunk. This may remove the cast or it might
7869       // turn it into slightly different cast. For example, if MinBW == 16,
7870       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7871       //
7872       // Calculate the modified src and dest types.
7873       Type *MinVecTy = VectorTy;
7874       if (Opcode == Instruction::Trunc) {
7875         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7876         VectorTy =
7877             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7878       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7879         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7880         VectorTy =
7881             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7882       }
7883     }
7884 
7885     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7886   }
7887   case Instruction::Call: {
7888     bool NeedToScalarize;
7889     CallInst *CI = cast<CallInst>(I);
7890     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7891     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7892       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7893       return std::min(CallCost, IntrinsicCost);
7894     }
7895     return CallCost;
7896   }
7897   case Instruction::ExtractValue:
7898     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7899   case Instruction::Alloca:
7900     // We cannot easily widen alloca to a scalable alloca, as
7901     // the result would need to be a vector of pointers.
7902     if (VF.isScalable())
7903       return InstructionCost::getInvalid();
7904     LLVM_FALLTHROUGH;
7905   default:
7906     // This opcode is unknown. Assume that it is the same as 'mul'.
7907     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7908   } // end of switch.
7909 }
7910 
7911 char LoopVectorize::ID = 0;
7912 
7913 static const char lv_name[] = "Loop Vectorization";
7914 
7915 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7916 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7917 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7918 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7919 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7920 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7921 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7922 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7923 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7924 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7925 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7926 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7927 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7928 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7929 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7930 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7931 
7932 namespace llvm {
7933 
7934 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7935 
7936 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7937                               bool VectorizeOnlyWhenForced) {
7938   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7939 }
7940 
7941 } // end namespace llvm
7942 
7943 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7944   // Check if the pointer operand of a load or store instruction is
7945   // consecutive.
7946   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7947     return Legal->isConsecutivePtr(Ptr);
7948   return false;
7949 }
7950 
7951 void LoopVectorizationCostModel::collectValuesToIgnore() {
7952   // Ignore ephemeral values.
7953   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7954 
7955   // Ignore type-promoting instructions we identified during reduction
7956   // detection.
7957   for (auto &Reduction : Legal->getReductionVars()) {
7958     RecurrenceDescriptor &RedDes = Reduction.second;
7959     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7960     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7961   }
7962   // Ignore type-casting instructions we identified during induction
7963   // detection.
7964   for (auto &Induction : Legal->getInductionVars()) {
7965     InductionDescriptor &IndDes = Induction.second;
7966     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7967     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7968   }
7969 }
7970 
7971 void LoopVectorizationCostModel::collectInLoopReductions() {
7972   for (auto &Reduction : Legal->getReductionVars()) {
7973     PHINode *Phi = Reduction.first;
7974     RecurrenceDescriptor &RdxDesc = Reduction.second;
7975 
7976     // We don't collect reductions that are type promoted (yet).
7977     if (RdxDesc.getRecurrenceType() != Phi->getType())
7978       continue;
7979 
7980     // If the target would prefer this reduction to happen "in-loop", then we
7981     // want to record it as such.
7982     unsigned Opcode = RdxDesc.getOpcode();
7983     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7984         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7985                                    TargetTransformInfo::ReductionFlags()))
7986       continue;
7987 
7988     // Check that we can correctly put the reductions into the loop, by
7989     // finding the chain of operations that leads from the phi to the loop
7990     // exit value.
7991     SmallVector<Instruction *, 4> ReductionOperations =
7992         RdxDesc.getReductionOpChain(Phi, TheLoop);
7993     bool InLoop = !ReductionOperations.empty();
7994     if (InLoop) {
7995       InLoopReductionChains[Phi] = ReductionOperations;
7996       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7997       Instruction *LastChain = Phi;
7998       for (auto *I : ReductionOperations) {
7999         InLoopReductionImmediateChains[I] = LastChain;
8000         LastChain = I;
8001       }
8002     }
8003     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
8004                       << " reduction for phi: " << *Phi << "\n");
8005   }
8006 }
8007 
8008 // TODO: we could return a pair of values that specify the max VF and
8009 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
8010 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
8011 // doesn't have a cost model that can choose which plan to execute if
8012 // more than one is generated.
8013 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
8014                                  LoopVectorizationCostModel &CM) {
8015   unsigned WidestType;
8016   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
8017   return WidestVectorRegBits / WidestType;
8018 }
8019 
8020 VectorizationFactor
8021 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
8022   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
8023   ElementCount VF = UserVF;
8024   // Outer loop handling: They may require CFG and instruction level
8025   // transformations before even evaluating whether vectorization is profitable.
8026   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
8027   // the vectorization pipeline.
8028   if (!OrigLoop->isInnermost()) {
8029     // If the user doesn't provide a vectorization factor, determine a
8030     // reasonable one.
8031     if (UserVF.isZero()) {
8032       VF = ElementCount::getFixed(determineVPlanVF(
8033           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
8034               .getFixedSize(),
8035           CM));
8036       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
8037 
8038       // Make sure we have a VF > 1 for stress testing.
8039       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
8040         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
8041                           << "overriding computed VF.\n");
8042         VF = ElementCount::getFixed(4);
8043       }
8044     }
8045     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
8046     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
8047            "VF needs to be a power of two");
8048     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
8049                       << "VF " << VF << " to build VPlans.\n");
8050     buildVPlans(VF, VF);
8051 
8052     // For VPlan build stress testing, we bail out after VPlan construction.
8053     if (VPlanBuildStressTest)
8054       return VectorizationFactor::Disabled();
8055 
8056     return {VF, 0 /*Cost*/};
8057   }
8058 
8059   LLVM_DEBUG(
8060       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
8061                 "VPlan-native path.\n");
8062   return VectorizationFactor::Disabled();
8063 }
8064 
8065 Optional<VectorizationFactor>
8066 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
8067   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8068   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
8069   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
8070     return None;
8071 
8072   // Invalidate interleave groups if all blocks of loop will be predicated.
8073   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
8074       !useMaskedInterleavedAccesses(*TTI)) {
8075     LLVM_DEBUG(
8076         dbgs()
8077         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
8078            "which requires masked-interleaved support.\n");
8079     if (CM.InterleaveInfo.invalidateGroups())
8080       // Invalidating interleave groups also requires invalidating all decisions
8081       // based on them, which includes widening decisions and uniform and scalar
8082       // values.
8083       CM.invalidateCostModelingDecisions();
8084   }
8085 
8086   ElementCount MaxUserVF =
8087       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
8088   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
8089   if (!UserVF.isZero() && UserVFIsLegal) {
8090     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
8091            "VF needs to be a power of two");
8092     // Collect the instructions (and their associated costs) that will be more
8093     // profitable to scalarize.
8094     if (CM.selectUserVectorizationFactor(UserVF)) {
8095       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
8096       CM.collectInLoopReductions();
8097       buildVPlansWithVPRecipes(UserVF, UserVF);
8098       LLVM_DEBUG(printPlans(dbgs()));
8099       return {{UserVF, 0}};
8100     } else
8101       reportVectorizationInfo("UserVF ignored because of invalid costs.",
8102                               "InvalidCost", ORE, OrigLoop);
8103   }
8104 
8105   // Populate the set of Vectorization Factor Candidates.
8106   ElementCountSet VFCandidates;
8107   for (auto VF = ElementCount::getFixed(1);
8108        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
8109     VFCandidates.insert(VF);
8110   for (auto VF = ElementCount::getScalable(1);
8111        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
8112     VFCandidates.insert(VF);
8113 
8114   for (const auto &VF : VFCandidates) {
8115     // Collect Uniform and Scalar instructions after vectorization with VF.
8116     CM.collectUniformsAndScalars(VF);
8117 
8118     // Collect the instructions (and their associated costs) that will be more
8119     // profitable to scalarize.
8120     if (VF.isVector())
8121       CM.collectInstsToScalarize(VF);
8122   }
8123 
8124   CM.collectInLoopReductions();
8125   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
8126   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
8127 
8128   LLVM_DEBUG(printPlans(dbgs()));
8129   if (!MaxFactors.hasVector())
8130     return VectorizationFactor::Disabled();
8131 
8132   // Select the optimal vectorization factor.
8133   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
8134 
8135   // Check if it is profitable to vectorize with runtime checks.
8136   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
8137   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
8138     bool PragmaThresholdReached =
8139         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
8140     bool ThresholdReached =
8141         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
8142     if ((ThresholdReached && !Hints.allowReordering()) ||
8143         PragmaThresholdReached) {
8144       ORE->emit([&]() {
8145         return OptimizationRemarkAnalysisAliasing(
8146                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
8147                    OrigLoop->getHeader())
8148                << "loop not vectorized: cannot prove it is safe to reorder "
8149                   "memory operations";
8150       });
8151       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
8152       Hints.emitRemarkWithHints();
8153       return VectorizationFactor::Disabled();
8154     }
8155   }
8156   return SelectedVF;
8157 }
8158 
8159 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) {
8160   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
8161                     << '\n');
8162   BestVF = VF;
8163   BestUF = UF;
8164 
8165   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
8166     return !Plan->hasVF(VF);
8167   });
8168   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
8169 }
8170 
8171 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
8172                                            DominatorTree *DT) {
8173   // Perform the actual loop transformation.
8174 
8175   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
8176   assert(BestVF.hasValue() && "Vectorization Factor is missing");
8177   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
8178 
8179   VPTransformState State{
8180       *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()};
8181   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
8182   State.TripCount = ILV.getOrCreateTripCount(nullptr);
8183   State.CanonicalIV = ILV.Induction;
8184 
8185   ILV.printDebugTracesAtStart();
8186 
8187   //===------------------------------------------------===//
8188   //
8189   // Notice: any optimization or new instruction that go
8190   // into the code below should also be implemented in
8191   // the cost-model.
8192   //
8193   //===------------------------------------------------===//
8194 
8195   // 2. Copy and widen instructions from the old loop into the new loop.
8196   VPlans.front()->execute(&State);
8197 
8198   // 3. Fix the vectorized code: take care of header phi's, live-outs,
8199   //    predication, updating analyses.
8200   ILV.fixVectorizedLoop(State);
8201 
8202   ILV.printDebugTracesAtEnd();
8203 }
8204 
8205 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
8206 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
8207   for (const auto &Plan : VPlans)
8208     if (PrintVPlansInDotFormat)
8209       Plan->printDOT(O);
8210     else
8211       Plan->print(O);
8212 }
8213 #endif
8214 
8215 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
8216     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
8217 
8218   // We create new control-flow for the vectorized loop, so the original exit
8219   // conditions will be dead after vectorization if it's only used by the
8220   // terminator
8221   SmallVector<BasicBlock*> ExitingBlocks;
8222   OrigLoop->getExitingBlocks(ExitingBlocks);
8223   for (auto *BB : ExitingBlocks) {
8224     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
8225     if (!Cmp || !Cmp->hasOneUse())
8226       continue;
8227 
8228     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8229     if (!DeadInstructions.insert(Cmp).second)
8230       continue;
8231 
8232     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8233     // TODO: can recurse through operands in general
8234     for (Value *Op : Cmp->operands()) {
8235       if (isa<TruncInst>(Op) && Op->hasOneUse())
8236           DeadInstructions.insert(cast<Instruction>(Op));
8237     }
8238   }
8239 
8240   // We create new "steps" for induction variable updates to which the original
8241   // induction variables map. An original update instruction will be dead if
8242   // all its users except the induction variable are dead.
8243   auto *Latch = OrigLoop->getLoopLatch();
8244   for (auto &Induction : Legal->getInductionVars()) {
8245     PHINode *Ind = Induction.first;
8246     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8247 
8248     // If the tail is to be folded by masking, the primary induction variable,
8249     // if exists, isn't dead: it will be used for masking. Don't kill it.
8250     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8251       continue;
8252 
8253     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8254           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8255         }))
8256       DeadInstructions.insert(IndUpdate);
8257 
8258     // We record as "Dead" also the type-casting instructions we had identified
8259     // during induction analysis. We don't need any handling for them in the
8260     // vectorized loop because we have proven that, under a proper runtime
8261     // test guarding the vectorized loop, the value of the phi, and the casted
8262     // value of the phi, are the same. The last instruction in this casting chain
8263     // will get its scalar/vector/widened def from the scalar/vector/widened def
8264     // of the respective phi node. Any other casts in the induction def-use chain
8265     // have no other uses outside the phi update chain, and will be ignored.
8266     InductionDescriptor &IndDes = Induction.second;
8267     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8268     DeadInstructions.insert(Casts.begin(), Casts.end());
8269   }
8270 }
8271 
8272 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
8273 
8274 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8275 
8276 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
8277                                         Instruction::BinaryOps BinOp) {
8278   // When unrolling and the VF is 1, we only need to add a simple scalar.
8279   Type *Ty = Val->getType();
8280   assert(!Ty->isVectorTy() && "Val must be a scalar");
8281 
8282   if (Ty->isFloatingPointTy()) {
8283     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
8284 
8285     // Floating-point operations inherit FMF via the builder's flags.
8286     Value *MulOp = Builder.CreateFMul(C, Step);
8287     return Builder.CreateBinOp(BinOp, Val, MulOp);
8288   }
8289   Constant *C = ConstantInt::get(Ty, StartIdx);
8290   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
8291 }
8292 
8293 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
8294   SmallVector<Metadata *, 4> MDs;
8295   // Reserve first location for self reference to the LoopID metadata node.
8296   MDs.push_back(nullptr);
8297   bool IsUnrollMetadata = false;
8298   MDNode *LoopID = L->getLoopID();
8299   if (LoopID) {
8300     // First find existing loop unrolling disable metadata.
8301     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
8302       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
8303       if (MD) {
8304         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
8305         IsUnrollMetadata =
8306             S && S->getString().startswith("llvm.loop.unroll.disable");
8307       }
8308       MDs.push_back(LoopID->getOperand(i));
8309     }
8310   }
8311 
8312   if (!IsUnrollMetadata) {
8313     // Add runtime unroll disable metadata.
8314     LLVMContext &Context = L->getHeader()->getContext();
8315     SmallVector<Metadata *, 1> DisableOperands;
8316     DisableOperands.push_back(
8317         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
8318     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
8319     MDs.push_back(DisableNode);
8320     MDNode *NewLoopID = MDNode::get(Context, MDs);
8321     // Set operand 0 to refer to the loop id itself.
8322     NewLoopID->replaceOperandWith(0, NewLoopID);
8323     L->setLoopID(NewLoopID);
8324   }
8325 }
8326 
8327 //===--------------------------------------------------------------------===//
8328 // EpilogueVectorizerMainLoop
8329 //===--------------------------------------------------------------------===//
8330 
8331 /// This function is partially responsible for generating the control flow
8332 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8333 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8334   MDNode *OrigLoopID = OrigLoop->getLoopID();
8335   Loop *Lp = createVectorLoopSkeleton("");
8336 
8337   // Generate the code to check the minimum iteration count of the vector
8338   // epilogue (see below).
8339   EPI.EpilogueIterationCountCheck =
8340       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8341   EPI.EpilogueIterationCountCheck->setName("iter.check");
8342 
8343   // Generate the code to check any assumptions that we've made for SCEV
8344   // expressions.
8345   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8346 
8347   // Generate the code that checks at runtime if arrays overlap. We put the
8348   // checks into a separate block to make the more common case of few elements
8349   // faster.
8350   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8351 
8352   // Generate the iteration count check for the main loop, *after* the check
8353   // for the epilogue loop, so that the path-length is shorter for the case
8354   // that goes directly through the vector epilogue. The longer-path length for
8355   // the main loop is compensated for, by the gain from vectorizing the larger
8356   // trip count. Note: the branch will get updated later on when we vectorize
8357   // the epilogue.
8358   EPI.MainLoopIterationCountCheck =
8359       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8360 
8361   // Generate the induction variable.
8362   OldInduction = Legal->getPrimaryInduction();
8363   Type *IdxTy = Legal->getWidestInductionType();
8364   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8365   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8366   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8367   EPI.VectorTripCount = CountRoundDown;
8368   Induction =
8369       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8370                               getDebugLocFromInstOrOperands(OldInduction));
8371 
8372   // Skip induction resume value creation here because they will be created in
8373   // the second pass. If we created them here, they wouldn't be used anyway,
8374   // because the vplan in the second pass still contains the inductions from the
8375   // original loop.
8376 
8377   return completeLoopSkeleton(Lp, OrigLoopID);
8378 }
8379 
8380 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8381   LLVM_DEBUG({
8382     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8383            << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue()
8384            << ", Main Loop UF:" << EPI.MainLoopUF
8385            << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8386            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8387   });
8388 }
8389 
8390 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8391   DEBUG_WITH_TYPE(VerboseDebug, {
8392     dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
8393   });
8394 }
8395 
8396 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8397     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8398   assert(L && "Expected valid Loop.");
8399   assert(Bypass && "Expected valid bypass basic block.");
8400   unsigned VFactor =
8401       ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue();
8402   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8403   Value *Count = getOrCreateTripCount(L);
8404   // Reuse existing vector loop preheader for TC checks.
8405   // Note that new preheader block is generated for vector loop.
8406   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8407   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8408 
8409   // Generate code to check if the loop's trip count is less than VF * UF of the
8410   // main vector loop.
8411   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8412       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8413 
8414   Value *CheckMinIters = Builder.CreateICmp(
8415       P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor),
8416       "min.iters.check");
8417 
8418   if (!ForEpilogue)
8419     TCCheckBlock->setName("vector.main.loop.iter.check");
8420 
8421   // Create new preheader for vector loop.
8422   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8423                                    DT, LI, nullptr, "vector.ph");
8424 
8425   if (ForEpilogue) {
8426     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8427                                  DT->getNode(Bypass)->getIDom()) &&
8428            "TC check is expected to dominate Bypass");
8429 
8430     // Update dominator for Bypass & LoopExit.
8431     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8432     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8433       // For loops with multiple exits, there's no edge from the middle block
8434       // to exit blocks (as the epilogue must run) and thus no need to update
8435       // the immediate dominator of the exit blocks.
8436       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8437 
8438     LoopBypassBlocks.push_back(TCCheckBlock);
8439 
8440     // Save the trip count so we don't have to regenerate it in the
8441     // vec.epilog.iter.check. This is safe to do because the trip count
8442     // generated here dominates the vector epilog iter check.
8443     EPI.TripCount = Count;
8444   }
8445 
8446   ReplaceInstWithInst(
8447       TCCheckBlock->getTerminator(),
8448       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8449 
8450   return TCCheckBlock;
8451 }
8452 
8453 //===--------------------------------------------------------------------===//
8454 // EpilogueVectorizerEpilogueLoop
8455 //===--------------------------------------------------------------------===//
8456 
8457 /// This function is partially responsible for generating the control flow
8458 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8459 BasicBlock *
8460 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8461   MDNode *OrigLoopID = OrigLoop->getLoopID();
8462   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8463 
8464   // Now, compare the remaining count and if there aren't enough iterations to
8465   // execute the vectorized epilogue skip to the scalar part.
8466   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8467   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8468   LoopVectorPreHeader =
8469       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8470                  LI, nullptr, "vec.epilog.ph");
8471   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8472                                           VecEpilogueIterationCountCheck);
8473 
8474   // Adjust the control flow taking the state info from the main loop
8475   // vectorization into account.
8476   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8477          "expected this to be saved from the previous pass.");
8478   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8479       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8480 
8481   DT->changeImmediateDominator(LoopVectorPreHeader,
8482                                EPI.MainLoopIterationCountCheck);
8483 
8484   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8485       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8486 
8487   if (EPI.SCEVSafetyCheck)
8488     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8489         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8490   if (EPI.MemSafetyCheck)
8491     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8492         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8493 
8494   DT->changeImmediateDominator(
8495       VecEpilogueIterationCountCheck,
8496       VecEpilogueIterationCountCheck->getSinglePredecessor());
8497 
8498   DT->changeImmediateDominator(LoopScalarPreHeader,
8499                                EPI.EpilogueIterationCountCheck);
8500   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8501     // If there is an epilogue which must run, there's no edge from the
8502     // middle block to exit blocks  and thus no need to update the immediate
8503     // dominator of the exit blocks.
8504     DT->changeImmediateDominator(LoopExitBlock,
8505                                  EPI.EpilogueIterationCountCheck);
8506 
8507   // Keep track of bypass blocks, as they feed start values to the induction
8508   // phis in the scalar loop preheader.
8509   if (EPI.SCEVSafetyCheck)
8510     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8511   if (EPI.MemSafetyCheck)
8512     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8513   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8514 
8515   // Generate a resume induction for the vector epilogue and put it in the
8516   // vector epilogue preheader
8517   Type *IdxTy = Legal->getWidestInductionType();
8518   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8519                                          LoopVectorPreHeader->getFirstNonPHI());
8520   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8521   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8522                            EPI.MainLoopIterationCountCheck);
8523 
8524   // Generate the induction variable.
8525   OldInduction = Legal->getPrimaryInduction();
8526   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8527   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8528   Value *StartIdx = EPResumeVal;
8529   Induction =
8530       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8531                               getDebugLocFromInstOrOperands(OldInduction));
8532 
8533   // Generate induction resume values. These variables save the new starting
8534   // indexes for the scalar loop. They are used to test if there are any tail
8535   // iterations left once the vector loop has completed.
8536   // Note that when the vectorized epilogue is skipped due to iteration count
8537   // check, then the resume value for the induction variable comes from
8538   // the trip count of the main vector loop, hence passing the AdditionalBypass
8539   // argument.
8540   createInductionResumeValues(Lp, CountRoundDown,
8541                               {VecEpilogueIterationCountCheck,
8542                                EPI.VectorTripCount} /* AdditionalBypass */);
8543 
8544   AddRuntimeUnrollDisableMetaData(Lp);
8545   return completeLoopSkeleton(Lp, OrigLoopID);
8546 }
8547 
8548 BasicBlock *
8549 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8550     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8551 
8552   assert(EPI.TripCount &&
8553          "Expected trip count to have been safed in the first pass.");
8554   assert(
8555       (!isa<Instruction>(EPI.TripCount) ||
8556        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8557       "saved trip count does not dominate insertion point.");
8558   Value *TC = EPI.TripCount;
8559   IRBuilder<> Builder(Insert->getTerminator());
8560   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8561 
8562   // Generate code to check if the loop's trip count is less than VF * UF of the
8563   // vector epilogue loop.
8564   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8565       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8566 
8567   Value *CheckMinIters = Builder.CreateICmp(
8568       P, Count,
8569       ConstantInt::get(Count->getType(),
8570                        EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF),
8571       "min.epilog.iters.check");
8572 
8573   ReplaceInstWithInst(
8574       Insert->getTerminator(),
8575       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8576 
8577   LoopBypassBlocks.push_back(Insert);
8578   return Insert;
8579 }
8580 
8581 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8582   LLVM_DEBUG({
8583     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8584            << "Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8585            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8586   });
8587 }
8588 
8589 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8590   DEBUG_WITH_TYPE(VerboseDebug, {
8591     dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
8592   });
8593 }
8594 
8595 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8596     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8597   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8598   bool PredicateAtRangeStart = Predicate(Range.Start);
8599 
8600   for (ElementCount TmpVF = Range.Start * 2;
8601        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8602     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8603       Range.End = TmpVF;
8604       break;
8605     }
8606 
8607   return PredicateAtRangeStart;
8608 }
8609 
8610 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8611 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8612 /// of VF's starting at a given VF and extending it as much as possible. Each
8613 /// vectorization decision can potentially shorten this sub-range during
8614 /// buildVPlan().
8615 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8616                                            ElementCount MaxVF) {
8617   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8618   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8619     VFRange SubRange = {VF, MaxVFPlusOne};
8620     VPlans.push_back(buildVPlan(SubRange));
8621     VF = SubRange.End;
8622   }
8623 }
8624 
8625 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8626                                          VPlanPtr &Plan) {
8627   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8628 
8629   // Look for cached value.
8630   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8631   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8632   if (ECEntryIt != EdgeMaskCache.end())
8633     return ECEntryIt->second;
8634 
8635   VPValue *SrcMask = createBlockInMask(Src, Plan);
8636 
8637   // The terminator has to be a branch inst!
8638   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8639   assert(BI && "Unexpected terminator found");
8640 
8641   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8642     return EdgeMaskCache[Edge] = SrcMask;
8643 
8644   // If source is an exiting block, we know the exit edge is dynamically dead
8645   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8646   // adding uses of an otherwise potentially dead instruction.
8647   if (OrigLoop->isLoopExiting(Src))
8648     return EdgeMaskCache[Edge] = SrcMask;
8649 
8650   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8651   assert(EdgeMask && "No Edge Mask found for condition");
8652 
8653   if (BI->getSuccessor(0) != Dst)
8654     EdgeMask = Builder.createNot(EdgeMask);
8655 
8656   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8657     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8658     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8659     // The select version does not introduce new UB if SrcMask is false and
8660     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8661     VPValue *False = Plan->getOrAddVPValue(
8662         ConstantInt::getFalse(BI->getCondition()->getType()));
8663     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8664   }
8665 
8666   return EdgeMaskCache[Edge] = EdgeMask;
8667 }
8668 
8669 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8670   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8671 
8672   // Look for cached value.
8673   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8674   if (BCEntryIt != BlockMaskCache.end())
8675     return BCEntryIt->second;
8676 
8677   // All-one mask is modelled as no-mask following the convention for masked
8678   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8679   VPValue *BlockMask = nullptr;
8680 
8681   if (OrigLoop->getHeader() == BB) {
8682     if (!CM.blockNeedsPredication(BB))
8683       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8684 
8685     // Create the block in mask as the first non-phi instruction in the block.
8686     VPBuilder::InsertPointGuard Guard(Builder);
8687     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8688     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8689 
8690     // Introduce the early-exit compare IV <= BTC to form header block mask.
8691     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8692     // Start by constructing the desired canonical IV.
8693     VPValue *IV = nullptr;
8694     if (Legal->getPrimaryInduction())
8695       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8696     else {
8697       auto IVRecipe = new VPWidenCanonicalIVRecipe();
8698       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8699       IV = IVRecipe->getVPSingleValue();
8700     }
8701     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8702     bool TailFolded = !CM.isScalarEpilogueAllowed();
8703 
8704     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8705       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8706       // as a second argument, we only pass the IV here and extract the
8707       // tripcount from the transform state where codegen of the VP instructions
8708       // happen.
8709       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8710     } else {
8711       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8712     }
8713     return BlockMaskCache[BB] = BlockMask;
8714   }
8715 
8716   // This is the block mask. We OR all incoming edges.
8717   for (auto *Predecessor : predecessors(BB)) {
8718     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8719     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8720       return BlockMaskCache[BB] = EdgeMask;
8721 
8722     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8723       BlockMask = EdgeMask;
8724       continue;
8725     }
8726 
8727     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8728   }
8729 
8730   return BlockMaskCache[BB] = BlockMask;
8731 }
8732 
8733 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8734                                                 ArrayRef<VPValue *> Operands,
8735                                                 VFRange &Range,
8736                                                 VPlanPtr &Plan) {
8737   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8738          "Must be called with either a load or store");
8739 
8740   auto willWiden = [&](ElementCount VF) -> bool {
8741     if (VF.isScalar())
8742       return false;
8743     LoopVectorizationCostModel::InstWidening Decision =
8744         CM.getWideningDecision(I, VF);
8745     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8746            "CM decision should be taken at this point.");
8747     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8748       return true;
8749     if (CM.isScalarAfterVectorization(I, VF) ||
8750         CM.isProfitableToScalarize(I, VF))
8751       return false;
8752     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8753   };
8754 
8755   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8756     return nullptr;
8757 
8758   VPValue *Mask = nullptr;
8759   if (Legal->isMaskRequired(I))
8760     Mask = createBlockInMask(I->getParent(), Plan);
8761 
8762   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8763     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask);
8764 
8765   StoreInst *Store = cast<StoreInst>(I);
8766   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8767                                             Mask);
8768 }
8769 
8770 VPWidenIntOrFpInductionRecipe *
8771 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8772                                            ArrayRef<VPValue *> Operands) const {
8773   // Check if this is an integer or fp induction. If so, build the recipe that
8774   // produces its scalar and vector values.
8775   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8776   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8777       II.getKind() == InductionDescriptor::IK_FpInduction) {
8778     assert(II.getStartValue() ==
8779            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8780     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8781     return new VPWidenIntOrFpInductionRecipe(
8782         Phi, Operands[0], Casts.empty() ? nullptr : Casts.front());
8783   }
8784 
8785   return nullptr;
8786 }
8787 
8788 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8789     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8790     VPlan &Plan) const {
8791   // Optimize the special case where the source is a constant integer
8792   // induction variable. Notice that we can only optimize the 'trunc' case
8793   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8794   // (c) other casts depend on pointer size.
8795 
8796   // Determine whether \p K is a truncation based on an induction variable that
8797   // can be optimized.
8798   auto isOptimizableIVTruncate =
8799       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8800     return [=](ElementCount VF) -> bool {
8801       return CM.isOptimizableIVTruncate(K, VF);
8802     };
8803   };
8804 
8805   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8806           isOptimizableIVTruncate(I), Range)) {
8807 
8808     InductionDescriptor II =
8809         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
8810     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8811     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
8812                                              Start, nullptr, I);
8813   }
8814   return nullptr;
8815 }
8816 
8817 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8818                                                 ArrayRef<VPValue *> Operands,
8819                                                 VPlanPtr &Plan) {
8820   // If all incoming values are equal, the incoming VPValue can be used directly
8821   // instead of creating a new VPBlendRecipe.
8822   VPValue *FirstIncoming = Operands[0];
8823   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8824         return FirstIncoming == Inc;
8825       })) {
8826     return Operands[0];
8827   }
8828 
8829   // We know that all PHIs in non-header blocks are converted into selects, so
8830   // we don't have to worry about the insertion order and we can just use the
8831   // builder. At this point we generate the predication tree. There may be
8832   // duplications since this is a simple recursive scan, but future
8833   // optimizations will clean it up.
8834   SmallVector<VPValue *, 2> OperandsWithMask;
8835   unsigned NumIncoming = Phi->getNumIncomingValues();
8836 
8837   for (unsigned In = 0; In < NumIncoming; In++) {
8838     VPValue *EdgeMask =
8839       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8840     assert((EdgeMask || NumIncoming == 1) &&
8841            "Multiple predecessors with one having a full mask");
8842     OperandsWithMask.push_back(Operands[In]);
8843     if (EdgeMask)
8844       OperandsWithMask.push_back(EdgeMask);
8845   }
8846   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8847 }
8848 
8849 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8850                                                    ArrayRef<VPValue *> Operands,
8851                                                    VFRange &Range) const {
8852 
8853   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8854       [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); },
8855       Range);
8856 
8857   if (IsPredicated)
8858     return nullptr;
8859 
8860   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8861   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8862              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8863              ID == Intrinsic::pseudoprobe ||
8864              ID == Intrinsic::experimental_noalias_scope_decl))
8865     return nullptr;
8866 
8867   auto willWiden = [&](ElementCount VF) -> bool {
8868     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8869     // The following case may be scalarized depending on the VF.
8870     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8871     // version of the instruction.
8872     // Is it beneficial to perform intrinsic call compared to lib call?
8873     bool NeedToScalarize = false;
8874     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8875     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8876     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8877     return UseVectorIntrinsic || !NeedToScalarize;
8878   };
8879 
8880   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8881     return nullptr;
8882 
8883   ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands());
8884   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8885 }
8886 
8887 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8888   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8889          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8890   // Instruction should be widened, unless it is scalar after vectorization,
8891   // scalarization is profitable or it is predicated.
8892   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8893     return CM.isScalarAfterVectorization(I, VF) ||
8894            CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I);
8895   };
8896   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8897                                                              Range);
8898 }
8899 
8900 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8901                                            ArrayRef<VPValue *> Operands) const {
8902   auto IsVectorizableOpcode = [](unsigned Opcode) {
8903     switch (Opcode) {
8904     case Instruction::Add:
8905     case Instruction::And:
8906     case Instruction::AShr:
8907     case Instruction::BitCast:
8908     case Instruction::FAdd:
8909     case Instruction::FCmp:
8910     case Instruction::FDiv:
8911     case Instruction::FMul:
8912     case Instruction::FNeg:
8913     case Instruction::FPExt:
8914     case Instruction::FPToSI:
8915     case Instruction::FPToUI:
8916     case Instruction::FPTrunc:
8917     case Instruction::FRem:
8918     case Instruction::FSub:
8919     case Instruction::ICmp:
8920     case Instruction::IntToPtr:
8921     case Instruction::LShr:
8922     case Instruction::Mul:
8923     case Instruction::Or:
8924     case Instruction::PtrToInt:
8925     case Instruction::SDiv:
8926     case Instruction::Select:
8927     case Instruction::SExt:
8928     case Instruction::Shl:
8929     case Instruction::SIToFP:
8930     case Instruction::SRem:
8931     case Instruction::Sub:
8932     case Instruction::Trunc:
8933     case Instruction::UDiv:
8934     case Instruction::UIToFP:
8935     case Instruction::URem:
8936     case Instruction::Xor:
8937     case Instruction::ZExt:
8938       return true;
8939     }
8940     return false;
8941   };
8942 
8943   if (!IsVectorizableOpcode(I->getOpcode()))
8944     return nullptr;
8945 
8946   // Success: widen this instruction.
8947   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8948 }
8949 
8950 void VPRecipeBuilder::fixHeaderPhis() {
8951   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8952   for (VPWidenPHIRecipe *R : PhisToFix) {
8953     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8954     VPRecipeBase *IncR =
8955         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8956     R->addOperand(IncR->getVPSingleValue());
8957   }
8958 }
8959 
8960 VPBasicBlock *VPRecipeBuilder::handleReplication(
8961     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8962     VPlanPtr &Plan) {
8963   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8964       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8965       Range);
8966 
8967   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8968       [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range);
8969 
8970   // Even if the instruction is not marked as uniform, there are certain
8971   // intrinsic calls that can be effectively treated as such, so we check for
8972   // them here. Conservatively, we only do this for scalable vectors, since
8973   // for fixed-width VFs we can always fall back on full scalarization.
8974   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
8975     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
8976     case Intrinsic::assume:
8977     case Intrinsic::lifetime_start:
8978     case Intrinsic::lifetime_end:
8979       // For scalable vectors if one of the operands is variant then we still
8980       // want to mark as uniform, which will generate one instruction for just
8981       // the first lane of the vector. We can't scalarize the call in the same
8982       // way as for fixed-width vectors because we don't know how many lanes
8983       // there are.
8984       //
8985       // The reasons for doing it this way for scalable vectors are:
8986       //   1. For the assume intrinsic generating the instruction for the first
8987       //      lane is still be better than not generating any at all. For
8988       //      example, the input may be a splat across all lanes.
8989       //   2. For the lifetime start/end intrinsics the pointer operand only
8990       //      does anything useful when the input comes from a stack object,
8991       //      which suggests it should always be uniform. For non-stack objects
8992       //      the effect is to poison the object, which still allows us to
8993       //      remove the call.
8994       IsUniform = true;
8995       break;
8996     default:
8997       break;
8998     }
8999   }
9000 
9001   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
9002                                        IsUniform, IsPredicated);
9003   setRecipe(I, Recipe);
9004   Plan->addVPValue(I, Recipe);
9005 
9006   // Find if I uses a predicated instruction. If so, it will use its scalar
9007   // value. Avoid hoisting the insert-element which packs the scalar value into
9008   // a vector value, as that happens iff all users use the vector value.
9009   for (VPValue *Op : Recipe->operands()) {
9010     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
9011     if (!PredR)
9012       continue;
9013     auto *RepR =
9014         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
9015     assert(RepR->isPredicated() &&
9016            "expected Replicate recipe to be predicated");
9017     RepR->setAlsoPack(false);
9018   }
9019 
9020   // Finalize the recipe for Instr, first if it is not predicated.
9021   if (!IsPredicated) {
9022     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
9023     VPBB->appendRecipe(Recipe);
9024     return VPBB;
9025   }
9026   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
9027   assert(VPBB->getSuccessors().empty() &&
9028          "VPBB has successors when handling predicated replication.");
9029   // Record predicated instructions for above packing optimizations.
9030   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
9031   VPBlockUtils::insertBlockAfter(Region, VPBB);
9032   auto *RegSucc = new VPBasicBlock();
9033   VPBlockUtils::insertBlockAfter(RegSucc, Region);
9034   return RegSucc;
9035 }
9036 
9037 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
9038                                                       VPRecipeBase *PredRecipe,
9039                                                       VPlanPtr &Plan) {
9040   // Instructions marked for predication are replicated and placed under an
9041   // if-then construct to prevent side-effects.
9042 
9043   // Generate recipes to compute the block mask for this region.
9044   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
9045 
9046   // Build the triangular if-then region.
9047   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
9048   assert(Instr->getParent() && "Predicated instruction not in any basic block");
9049   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
9050   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
9051   auto *PHIRecipe = Instr->getType()->isVoidTy()
9052                         ? nullptr
9053                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
9054   if (PHIRecipe) {
9055     Plan->removeVPValueFor(Instr);
9056     Plan->addVPValue(Instr, PHIRecipe);
9057   }
9058   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
9059   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
9060   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
9061 
9062   // Note: first set Entry as region entry and then connect successors starting
9063   // from it in order, to propagate the "parent" of each VPBasicBlock.
9064   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
9065   VPBlockUtils::connectBlocks(Pred, Exit);
9066 
9067   return Region;
9068 }
9069 
9070 VPRecipeOrVPValueTy
9071 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
9072                                         ArrayRef<VPValue *> Operands,
9073                                         VFRange &Range, VPlanPtr &Plan) {
9074   // First, check for specific widening recipes that deal with calls, memory
9075   // operations, inductions and Phi nodes.
9076   if (auto *CI = dyn_cast<CallInst>(Instr))
9077     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
9078 
9079   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
9080     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
9081 
9082   VPRecipeBase *Recipe;
9083   if (auto Phi = dyn_cast<PHINode>(Instr)) {
9084     if (Phi->getParent() != OrigLoop->getHeader())
9085       return tryToBlend(Phi, Operands, Plan);
9086     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
9087       return toVPRecipeResult(Recipe);
9088 
9089     VPWidenPHIRecipe *PhiRecipe = nullptr;
9090     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
9091       VPValue *StartV = Operands[0];
9092       if (Legal->isReductionVariable(Phi)) {
9093         RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9094         assert(RdxDesc.getRecurrenceStartValue() ==
9095                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
9096         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
9097                                              CM.isInLoopReduction(Phi),
9098                                              CM.useOrderedReductions(RdxDesc));
9099       } else {
9100         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
9101       }
9102 
9103       // Record the incoming value from the backedge, so we can add the incoming
9104       // value from the backedge after all recipes have been created.
9105       recordRecipeOf(cast<Instruction>(
9106           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
9107       PhisToFix.push_back(PhiRecipe);
9108     } else {
9109       // TODO: record start and backedge value for remaining pointer induction
9110       // phis.
9111       assert(Phi->getType()->isPointerTy() &&
9112              "only pointer phis should be handled here");
9113       PhiRecipe = new VPWidenPHIRecipe(Phi);
9114     }
9115 
9116     return toVPRecipeResult(PhiRecipe);
9117   }
9118 
9119   if (isa<TruncInst>(Instr) &&
9120       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
9121                                                Range, *Plan)))
9122     return toVPRecipeResult(Recipe);
9123 
9124   if (!shouldWiden(Instr, Range))
9125     return nullptr;
9126 
9127   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
9128     return toVPRecipeResult(new VPWidenGEPRecipe(
9129         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
9130 
9131   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
9132     bool InvariantCond =
9133         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
9134     return toVPRecipeResult(new VPWidenSelectRecipe(
9135         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
9136   }
9137 
9138   return toVPRecipeResult(tryToWiden(Instr, Operands));
9139 }
9140 
9141 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
9142                                                         ElementCount MaxVF) {
9143   assert(OrigLoop->isInnermost() && "Inner loop expected.");
9144 
9145   // Collect instructions from the original loop that will become trivially dead
9146   // in the vectorized loop. We don't need to vectorize these instructions. For
9147   // example, original induction update instructions can become dead because we
9148   // separately emit induction "steps" when generating code for the new loop.
9149   // Similarly, we create a new latch condition when setting up the structure
9150   // of the new loop, so the old one can become dead.
9151   SmallPtrSet<Instruction *, 4> DeadInstructions;
9152   collectTriviallyDeadInstructions(DeadInstructions);
9153 
9154   // Add assume instructions we need to drop to DeadInstructions, to prevent
9155   // them from being added to the VPlan.
9156   // TODO: We only need to drop assumes in blocks that get flattend. If the
9157   // control flow is preserved, we should keep them.
9158   auto &ConditionalAssumes = Legal->getConditionalAssumes();
9159   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
9160 
9161   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
9162   // Dead instructions do not need sinking. Remove them from SinkAfter.
9163   for (Instruction *I : DeadInstructions)
9164     SinkAfter.erase(I);
9165 
9166   // Cannot sink instructions after dead instructions (there won't be any
9167   // recipes for them). Instead, find the first non-dead previous instruction.
9168   for (auto &P : Legal->getSinkAfter()) {
9169     Instruction *SinkTarget = P.second;
9170     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
9171     (void)FirstInst;
9172     while (DeadInstructions.contains(SinkTarget)) {
9173       assert(
9174           SinkTarget != FirstInst &&
9175           "Must find a live instruction (at least the one feeding the "
9176           "first-order recurrence PHI) before reaching beginning of the block");
9177       SinkTarget = SinkTarget->getPrevNode();
9178       assert(SinkTarget != P.first &&
9179              "sink source equals target, no sinking required");
9180     }
9181     P.second = SinkTarget;
9182   }
9183 
9184   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
9185   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
9186     VFRange SubRange = {VF, MaxVFPlusOne};
9187     VPlans.push_back(
9188         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
9189     VF = SubRange.End;
9190   }
9191 }
9192 
9193 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
9194     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
9195     const MapVector<Instruction *, Instruction *> &SinkAfter) {
9196 
9197   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
9198 
9199   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
9200 
9201   // ---------------------------------------------------------------------------
9202   // Pre-construction: record ingredients whose recipes we'll need to further
9203   // process after constructing the initial VPlan.
9204   // ---------------------------------------------------------------------------
9205 
9206   // Mark instructions we'll need to sink later and their targets as
9207   // ingredients whose recipe we'll need to record.
9208   for (auto &Entry : SinkAfter) {
9209     RecipeBuilder.recordRecipeOf(Entry.first);
9210     RecipeBuilder.recordRecipeOf(Entry.second);
9211   }
9212   for (auto &Reduction : CM.getInLoopReductionChains()) {
9213     PHINode *Phi = Reduction.first;
9214     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
9215     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9216 
9217     RecipeBuilder.recordRecipeOf(Phi);
9218     for (auto &R : ReductionOperations) {
9219       RecipeBuilder.recordRecipeOf(R);
9220       // For min/max reducitons, where we have a pair of icmp/select, we also
9221       // need to record the ICmp recipe, so it can be removed later.
9222       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9223         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9224     }
9225   }
9226 
9227   // For each interleave group which is relevant for this (possibly trimmed)
9228   // Range, add it to the set of groups to be later applied to the VPlan and add
9229   // placeholders for its members' Recipes which we'll be replacing with a
9230   // single VPInterleaveRecipe.
9231   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9232     auto applyIG = [IG, this](ElementCount VF) -> bool {
9233       return (VF.isVector() && // Query is illegal for VF == 1
9234               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9235                   LoopVectorizationCostModel::CM_Interleave);
9236     };
9237     if (!getDecisionAndClampRange(applyIG, Range))
9238       continue;
9239     InterleaveGroups.insert(IG);
9240     for (unsigned i = 0; i < IG->getFactor(); i++)
9241       if (Instruction *Member = IG->getMember(i))
9242         RecipeBuilder.recordRecipeOf(Member);
9243   };
9244 
9245   // ---------------------------------------------------------------------------
9246   // Build initial VPlan: Scan the body of the loop in a topological order to
9247   // visit each basic block after having visited its predecessor basic blocks.
9248   // ---------------------------------------------------------------------------
9249 
9250   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
9251   auto Plan = std::make_unique<VPlan>();
9252   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
9253   Plan->setEntry(VPBB);
9254 
9255   // Scan the body of the loop in a topological order to visit each basic block
9256   // after having visited its predecessor basic blocks.
9257   LoopBlocksDFS DFS(OrigLoop);
9258   DFS.perform(LI);
9259 
9260   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9261     // Relevant instructions from basic block BB will be grouped into VPRecipe
9262     // ingredients and fill a new VPBasicBlock.
9263     unsigned VPBBsForBB = 0;
9264     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
9265     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
9266     VPBB = FirstVPBBForBB;
9267     Builder.setInsertPoint(VPBB);
9268 
9269     // Introduce each ingredient into VPlan.
9270     // TODO: Model and preserve debug instrinsics in VPlan.
9271     for (Instruction &I : BB->instructionsWithoutDebug()) {
9272       Instruction *Instr = &I;
9273 
9274       // First filter out irrelevant instructions, to ensure no recipes are
9275       // built for them.
9276       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9277         continue;
9278 
9279       SmallVector<VPValue *, 4> Operands;
9280       auto *Phi = dyn_cast<PHINode>(Instr);
9281       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9282         Operands.push_back(Plan->getOrAddVPValue(
9283             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9284       } else {
9285         auto OpRange = Plan->mapToVPValues(Instr->operands());
9286         Operands = {OpRange.begin(), OpRange.end()};
9287       }
9288       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9289               Instr, Operands, Range, Plan)) {
9290         // If Instr can be simplified to an existing VPValue, use it.
9291         if (RecipeOrValue.is<VPValue *>()) {
9292           auto *VPV = RecipeOrValue.get<VPValue *>();
9293           Plan->addVPValue(Instr, VPV);
9294           // If the re-used value is a recipe, register the recipe for the
9295           // instruction, in case the recipe for Instr needs to be recorded.
9296           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9297             RecipeBuilder.setRecipe(Instr, R);
9298           continue;
9299         }
9300         // Otherwise, add the new recipe.
9301         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9302         for (auto *Def : Recipe->definedValues()) {
9303           auto *UV = Def->getUnderlyingValue();
9304           Plan->addVPValue(UV, Def);
9305         }
9306 
9307         RecipeBuilder.setRecipe(Instr, Recipe);
9308         VPBB->appendRecipe(Recipe);
9309         continue;
9310       }
9311 
9312       // Otherwise, if all widening options failed, Instruction is to be
9313       // replicated. This may create a successor for VPBB.
9314       VPBasicBlock *NextVPBB =
9315           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9316       if (NextVPBB != VPBB) {
9317         VPBB = NextVPBB;
9318         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9319                                     : "");
9320       }
9321     }
9322   }
9323 
9324   RecipeBuilder.fixHeaderPhis();
9325 
9326   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
9327   // may also be empty, such as the last one VPBB, reflecting original
9328   // basic-blocks with no recipes.
9329   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
9330   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
9331   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
9332   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
9333   delete PreEntry;
9334 
9335   // ---------------------------------------------------------------------------
9336   // Transform initial VPlan: Apply previously taken decisions, in order, to
9337   // bring the VPlan to its final state.
9338   // ---------------------------------------------------------------------------
9339 
9340   // Apply Sink-After legal constraints.
9341   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9342     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9343     if (Region && Region->isReplicator()) {
9344       assert(Region->getNumSuccessors() == 1 &&
9345              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9346       assert(R->getParent()->size() == 1 &&
9347              "A recipe in an original replicator region must be the only "
9348              "recipe in its block");
9349       return Region;
9350     }
9351     return nullptr;
9352   };
9353   for (auto &Entry : SinkAfter) {
9354     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9355     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9356 
9357     auto *TargetRegion = GetReplicateRegion(Target);
9358     auto *SinkRegion = GetReplicateRegion(Sink);
9359     if (!SinkRegion) {
9360       // If the sink source is not a replicate region, sink the recipe directly.
9361       if (TargetRegion) {
9362         // The target is in a replication region, make sure to move Sink to
9363         // the block after it, not into the replication region itself.
9364         VPBasicBlock *NextBlock =
9365             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9366         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9367       } else
9368         Sink->moveAfter(Target);
9369       continue;
9370     }
9371 
9372     // The sink source is in a replicate region. Unhook the region from the CFG.
9373     auto *SinkPred = SinkRegion->getSinglePredecessor();
9374     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9375     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9376     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9377     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9378 
9379     if (TargetRegion) {
9380       // The target recipe is also in a replicate region, move the sink region
9381       // after the target region.
9382       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9383       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9384       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9385       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9386     } else {
9387       // The sink source is in a replicate region, we need to move the whole
9388       // replicate region, which should only contain a single recipe in the
9389       // main block.
9390       auto *SplitBlock =
9391           Target->getParent()->splitAt(std::next(Target->getIterator()));
9392 
9393       auto *SplitPred = SplitBlock->getSinglePredecessor();
9394 
9395       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9396       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9397       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9398       if (VPBB == SplitPred)
9399         VPBB = SplitBlock;
9400     }
9401   }
9402 
9403   // Introduce a recipe to combine the incoming and previous values of a
9404   // first-order recurrence.
9405   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9406     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9407     if (!RecurPhi)
9408       continue;
9409 
9410     auto *RecurSplice = cast<VPInstruction>(
9411         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9412                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9413 
9414     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9415     if (auto *Region = GetReplicateRegion(PrevRecipe)) {
9416       VPBasicBlock *Succ = cast<VPBasicBlock>(Region->getSingleSuccessor());
9417       RecurSplice->moveBefore(*Succ, Succ->getFirstNonPhi());
9418     } else
9419       RecurSplice->moveAfter(PrevRecipe);
9420     RecurPhi->replaceAllUsesWith(RecurSplice);
9421     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9422     // all users.
9423     RecurSplice->setOperand(0, RecurPhi);
9424   }
9425 
9426   // Interleave memory: for each Interleave Group we marked earlier as relevant
9427   // for this VPlan, replace the Recipes widening its memory instructions with a
9428   // single VPInterleaveRecipe at its insertion point.
9429   for (auto IG : InterleaveGroups) {
9430     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9431         RecipeBuilder.getRecipe(IG->getInsertPos()));
9432     SmallVector<VPValue *, 4> StoredValues;
9433     for (unsigned i = 0; i < IG->getFactor(); ++i)
9434       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9435         auto *StoreR =
9436             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9437         StoredValues.push_back(StoreR->getStoredValue());
9438       }
9439 
9440     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9441                                         Recipe->getMask());
9442     VPIG->insertBefore(Recipe);
9443     unsigned J = 0;
9444     for (unsigned i = 0; i < IG->getFactor(); ++i)
9445       if (Instruction *Member = IG->getMember(i)) {
9446         if (!Member->getType()->isVoidTy()) {
9447           VPValue *OriginalV = Plan->getVPValue(Member);
9448           Plan->removeVPValueFor(Member);
9449           Plan->addVPValue(Member, VPIG->getVPValue(J));
9450           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9451           J++;
9452         }
9453         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9454       }
9455   }
9456 
9457   // Adjust the recipes for any inloop reductions.
9458   adjustRecipesForInLoopReductions(Plan, RecipeBuilder, Range.Start);
9459 
9460   // Finally, if tail is folded by masking, introduce selects between the phi
9461   // and the live-out instruction of each reduction, at the end of the latch.
9462   if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) {
9463     Builder.setInsertPoint(VPBB);
9464     auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9465     for (auto &Reduction : Legal->getReductionVars()) {
9466       if (CM.isInLoopReduction(Reduction.first))
9467         continue;
9468       VPValue *Phi = Plan->getOrAddVPValue(Reduction.first);
9469       VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr());
9470       Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi});
9471     }
9472   }
9473 
9474   VPlanTransforms::sinkScalarOperands(*Plan);
9475   VPlanTransforms::mergeReplicateRegions(*Plan);
9476 
9477   std::string PlanName;
9478   raw_string_ostream RSO(PlanName);
9479   ElementCount VF = Range.Start;
9480   Plan->addVF(VF);
9481   RSO << "Initial VPlan for VF={" << VF;
9482   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9483     Plan->addVF(VF);
9484     RSO << "," << VF;
9485   }
9486   RSO << "},UF>=1";
9487   RSO.flush();
9488   Plan->setName(PlanName);
9489 
9490   return Plan;
9491 }
9492 
9493 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9494   // Outer loop handling: They may require CFG and instruction level
9495   // transformations before even evaluating whether vectorization is profitable.
9496   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9497   // the vectorization pipeline.
9498   assert(!OrigLoop->isInnermost());
9499   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9500 
9501   // Create new empty VPlan
9502   auto Plan = std::make_unique<VPlan>();
9503 
9504   // Build hierarchical CFG
9505   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9506   HCFGBuilder.buildHierarchicalCFG();
9507 
9508   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9509        VF *= 2)
9510     Plan->addVF(VF);
9511 
9512   if (EnableVPlanPredication) {
9513     VPlanPredicator VPP(*Plan);
9514     VPP.predicate();
9515 
9516     // Avoid running transformation to recipes until masked code generation in
9517     // VPlan-native path is in place.
9518     return Plan;
9519   }
9520 
9521   SmallPtrSet<Instruction *, 1> DeadInstructions;
9522   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
9523                                              Legal->getInductionVars(),
9524                                              DeadInstructions, *PSE.getSE());
9525   return Plan;
9526 }
9527 
9528 // Adjust the recipes for any inloop reductions. The chain of instructions
9529 // leading from the loop exit instr to the phi need to be converted to
9530 // reductions, with one operand being vector and the other being the scalar
9531 // reduction chain.
9532 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions(
9533     VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) {
9534   for (auto &Reduction : CM.getInLoopReductionChains()) {
9535     PHINode *Phi = Reduction.first;
9536     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9537     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9538 
9539     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9540       continue;
9541 
9542     // ReductionOperations are orders top-down from the phi's use to the
9543     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9544     // which of the two operands will remain scalar and which will be reduced.
9545     // For minmax the chain will be the select instructions.
9546     Instruction *Chain = Phi;
9547     for (Instruction *R : ReductionOperations) {
9548       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9549       RecurKind Kind = RdxDesc.getRecurrenceKind();
9550 
9551       VPValue *ChainOp = Plan->getVPValue(Chain);
9552       unsigned FirstOpId;
9553       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9554         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9555                "Expected to replace a VPWidenSelectSC");
9556         FirstOpId = 1;
9557       } else {
9558         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) &&
9559                "Expected to replace a VPWidenSC");
9560         FirstOpId = 0;
9561       }
9562       unsigned VecOpId =
9563           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9564       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9565 
9566       auto *CondOp = CM.foldTailByMasking()
9567                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9568                          : nullptr;
9569       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
9570           &RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9571       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9572       Plan->removeVPValueFor(R);
9573       Plan->addVPValue(R, RedRecipe);
9574       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9575       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9576       WidenRecipe->eraseFromParent();
9577 
9578       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9579         VPRecipeBase *CompareRecipe =
9580             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9581         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9582                "Expected to replace a VPWidenSC");
9583         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9584                "Expected no remaining users");
9585         CompareRecipe->eraseFromParent();
9586       }
9587       Chain = R;
9588     }
9589   }
9590 }
9591 
9592 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9593 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9594                                VPSlotTracker &SlotTracker) const {
9595   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9596   IG->getInsertPos()->printAsOperand(O, false);
9597   O << ", ";
9598   getAddr()->printAsOperand(O, SlotTracker);
9599   VPValue *Mask = getMask();
9600   if (Mask) {
9601     O << ", ";
9602     Mask->printAsOperand(O, SlotTracker);
9603   }
9604 
9605   unsigned OpIdx = 0;
9606   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9607     if (!IG->getMember(i))
9608       continue;
9609     if (getNumStoreOperands() > 0) {
9610       O << "\n" << Indent << "  store ";
9611       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9612       O << " to index " << i;
9613     } else {
9614       O << "\n" << Indent << "  ";
9615       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9616       O << " = load from index " << i;
9617     }
9618     ++OpIdx;
9619   }
9620 }
9621 #endif
9622 
9623 void VPWidenCallRecipe::execute(VPTransformState &State) {
9624   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9625                                   *this, State);
9626 }
9627 
9628 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9629   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9630                                     this, *this, InvariantCond, State);
9631 }
9632 
9633 void VPWidenRecipe::execute(VPTransformState &State) {
9634   State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
9635 }
9636 
9637 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9638   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9639                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9640                       IsIndexLoopInvariant, State);
9641 }
9642 
9643 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9644   assert(!State.Instance && "Int or FP induction being replicated.");
9645   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9646                                    getTruncInst(), getVPValue(0),
9647                                    getCastValue(), State);
9648 }
9649 
9650 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9651   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9652                                  State);
9653 }
9654 
9655 void VPBlendRecipe::execute(VPTransformState &State) {
9656   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9657   // We know that all PHIs in non-header blocks are converted into
9658   // selects, so we don't have to worry about the insertion order and we
9659   // can just use the builder.
9660   // At this point we generate the predication tree. There may be
9661   // duplications since this is a simple recursive scan, but future
9662   // optimizations will clean it up.
9663 
9664   unsigned NumIncoming = getNumIncomingValues();
9665 
9666   // Generate a sequence of selects of the form:
9667   // SELECT(Mask3, In3,
9668   //        SELECT(Mask2, In2,
9669   //               SELECT(Mask1, In1,
9670   //                      In0)))
9671   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9672   // are essentially undef are taken from In0.
9673   InnerLoopVectorizer::VectorParts Entry(State.UF);
9674   for (unsigned In = 0; In < NumIncoming; ++In) {
9675     for (unsigned Part = 0; Part < State.UF; ++Part) {
9676       // We might have single edge PHIs (blocks) - use an identity
9677       // 'select' for the first PHI operand.
9678       Value *In0 = State.get(getIncomingValue(In), Part);
9679       if (In == 0)
9680         Entry[Part] = In0; // Initialize with the first incoming value.
9681       else {
9682         // Select between the current value and the previous incoming edge
9683         // based on the incoming mask.
9684         Value *Cond = State.get(getMask(In), Part);
9685         Entry[Part] =
9686             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9687       }
9688     }
9689   }
9690   for (unsigned Part = 0; Part < State.UF; ++Part)
9691     State.set(this, Entry[Part], Part);
9692 }
9693 
9694 void VPInterleaveRecipe::execute(VPTransformState &State) {
9695   assert(!State.Instance && "Interleave group being replicated.");
9696   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9697                                       getStoredValues(), getMask());
9698 }
9699 
9700 void VPReductionRecipe::execute(VPTransformState &State) {
9701   assert(!State.Instance && "Reduction being replicated.");
9702   Value *PrevInChain = State.get(getChainOp(), 0);
9703   for (unsigned Part = 0; Part < State.UF; ++Part) {
9704     RecurKind Kind = RdxDesc->getRecurrenceKind();
9705     bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9706     Value *NewVecOp = State.get(getVecOp(), Part);
9707     if (VPValue *Cond = getCondOp()) {
9708       Value *NewCond = State.get(Cond, Part);
9709       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9710       Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
9711           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9712       Constant *IdenVec =
9713           ConstantVector::getSplat(VecTy->getElementCount(), Iden);
9714       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9715       NewVecOp = Select;
9716     }
9717     Value *NewRed;
9718     Value *NextInChain;
9719     if (IsOrdered) {
9720       if (State.VF.isVector())
9721         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9722                                         PrevInChain);
9723       else
9724         NewRed = State.Builder.CreateBinOp(
9725             (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(),
9726             PrevInChain, NewVecOp);
9727       PrevInChain = NewRed;
9728     } else {
9729       PrevInChain = State.get(getChainOp(), Part);
9730       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9731     }
9732     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9733       NextInChain =
9734           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9735                          NewRed, PrevInChain);
9736     } else if (IsOrdered)
9737       NextInChain = NewRed;
9738     else {
9739       NextInChain = State.Builder.CreateBinOp(
9740           (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed,
9741           PrevInChain);
9742     }
9743     State.set(this, NextInChain, Part);
9744   }
9745 }
9746 
9747 void VPReplicateRecipe::execute(VPTransformState &State) {
9748   if (State.Instance) { // Generate a single instance.
9749     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9750     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9751                                     *State.Instance, IsPredicated, State);
9752     // Insert scalar instance packing it into a vector.
9753     if (AlsoPack && State.VF.isVector()) {
9754       // If we're constructing lane 0, initialize to start from poison.
9755       if (State.Instance->Lane.isFirstLane()) {
9756         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9757         Value *Poison = PoisonValue::get(
9758             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9759         State.set(this, Poison, State.Instance->Part);
9760       }
9761       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9762     }
9763     return;
9764   }
9765 
9766   // Generate scalar instances for all VF lanes of all UF parts, unless the
9767   // instruction is uniform inwhich case generate only the first lane for each
9768   // of the UF parts.
9769   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9770   assert((!State.VF.isScalable() || IsUniform) &&
9771          "Can't scalarize a scalable vector");
9772   for (unsigned Part = 0; Part < State.UF; ++Part)
9773     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9774       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9775                                       VPIteration(Part, Lane), IsPredicated,
9776                                       State);
9777 }
9778 
9779 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9780   assert(State.Instance && "Branch on Mask works only on single instance.");
9781 
9782   unsigned Part = State.Instance->Part;
9783   unsigned Lane = State.Instance->Lane.getKnownLane();
9784 
9785   Value *ConditionBit = nullptr;
9786   VPValue *BlockInMask = getMask();
9787   if (BlockInMask) {
9788     ConditionBit = State.get(BlockInMask, Part);
9789     if (ConditionBit->getType()->isVectorTy())
9790       ConditionBit = State.Builder.CreateExtractElement(
9791           ConditionBit, State.Builder.getInt32(Lane));
9792   } else // Block in mask is all-one.
9793     ConditionBit = State.Builder.getTrue();
9794 
9795   // Replace the temporary unreachable terminator with a new conditional branch,
9796   // whose two destinations will be set later when they are created.
9797   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9798   assert(isa<UnreachableInst>(CurrentTerminator) &&
9799          "Expected to replace unreachable terminator with conditional branch.");
9800   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9801   CondBr->setSuccessor(0, nullptr);
9802   ReplaceInstWithInst(CurrentTerminator, CondBr);
9803 }
9804 
9805 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9806   assert(State.Instance && "Predicated instruction PHI works per instance.");
9807   Instruction *ScalarPredInst =
9808       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9809   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9810   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9811   assert(PredicatingBB && "Predicated block has no single predecessor.");
9812   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9813          "operand must be VPReplicateRecipe");
9814 
9815   // By current pack/unpack logic we need to generate only a single phi node: if
9816   // a vector value for the predicated instruction exists at this point it means
9817   // the instruction has vector users only, and a phi for the vector value is
9818   // needed. In this case the recipe of the predicated instruction is marked to
9819   // also do that packing, thereby "hoisting" the insert-element sequence.
9820   // Otherwise, a phi node for the scalar value is needed.
9821   unsigned Part = State.Instance->Part;
9822   if (State.hasVectorValue(getOperand(0), Part)) {
9823     Value *VectorValue = State.get(getOperand(0), Part);
9824     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9825     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9826     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9827     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9828     if (State.hasVectorValue(this, Part))
9829       State.reset(this, VPhi, Part);
9830     else
9831       State.set(this, VPhi, Part);
9832     // NOTE: Currently we need to update the value of the operand, so the next
9833     // predicated iteration inserts its generated value in the correct vector.
9834     State.reset(getOperand(0), VPhi, Part);
9835   } else {
9836     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9837     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9838     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9839                      PredicatingBB);
9840     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9841     if (State.hasScalarValue(this, *State.Instance))
9842       State.reset(this, Phi, *State.Instance);
9843     else
9844       State.set(this, Phi, *State.Instance);
9845     // NOTE: Currently we need to update the value of the operand, so the next
9846     // predicated iteration inserts its generated value in the correct vector.
9847     State.reset(getOperand(0), Phi, *State.Instance);
9848   }
9849 }
9850 
9851 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9852   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9853   State.ILV->vectorizeMemoryInstruction(
9854       &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(),
9855       StoredValue, getMask());
9856 }
9857 
9858 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9859 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9860 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9861 // for predication.
9862 static ScalarEpilogueLowering getScalarEpilogueLowering(
9863     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9864     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9865     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9866     LoopVectorizationLegality &LVL) {
9867   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9868   // don't look at hints or options, and don't request a scalar epilogue.
9869   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9870   // LoopAccessInfo (due to code dependency and not being able to reliably get
9871   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9872   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9873   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9874   // back to the old way and vectorize with versioning when forced. See D81345.)
9875   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9876                                                       PGSOQueryType::IRPass) &&
9877                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9878     return CM_ScalarEpilogueNotAllowedOptSize;
9879 
9880   // 2) If set, obey the directives
9881   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9882     switch (PreferPredicateOverEpilogue) {
9883     case PreferPredicateTy::ScalarEpilogue:
9884       return CM_ScalarEpilogueAllowed;
9885     case PreferPredicateTy::PredicateElseScalarEpilogue:
9886       return CM_ScalarEpilogueNotNeededUsePredicate;
9887     case PreferPredicateTy::PredicateOrDontVectorize:
9888       return CM_ScalarEpilogueNotAllowedUsePredicate;
9889     };
9890   }
9891 
9892   // 3) If set, obey the hints
9893   switch (Hints.getPredicate()) {
9894   case LoopVectorizeHints::FK_Enabled:
9895     return CM_ScalarEpilogueNotNeededUsePredicate;
9896   case LoopVectorizeHints::FK_Disabled:
9897     return CM_ScalarEpilogueAllowed;
9898   };
9899 
9900   // 4) if the TTI hook indicates this is profitable, request predication.
9901   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
9902                                        LVL.getLAI()))
9903     return CM_ScalarEpilogueNotNeededUsePredicate;
9904 
9905   return CM_ScalarEpilogueAllowed;
9906 }
9907 
9908 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
9909   // If Values have been set for this Def return the one relevant for \p Part.
9910   if (hasVectorValue(Def, Part))
9911     return Data.PerPartOutput[Def][Part];
9912 
9913   if (!hasScalarValue(Def, {Part, 0})) {
9914     Value *IRV = Def->getLiveInIRValue();
9915     Value *B = ILV->getBroadcastInstrs(IRV);
9916     set(Def, B, Part);
9917     return B;
9918   }
9919 
9920   Value *ScalarValue = get(Def, {Part, 0});
9921   // If we aren't vectorizing, we can just copy the scalar map values over
9922   // to the vector map.
9923   if (VF.isScalar()) {
9924     set(Def, ScalarValue, Part);
9925     return ScalarValue;
9926   }
9927 
9928   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
9929   bool IsUniform = RepR && RepR->isUniform();
9930 
9931   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
9932   // Check if there is a scalar value for the selected lane.
9933   if (!hasScalarValue(Def, {Part, LastLane})) {
9934     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
9935     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
9936            "unexpected recipe found to be invariant");
9937     IsUniform = true;
9938     LastLane = 0;
9939   }
9940 
9941   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
9942   // Set the insert point after the last scalarized instruction or after the
9943   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
9944   // will directly follow the scalar definitions.
9945   auto OldIP = Builder.saveIP();
9946   auto NewIP =
9947       isa<PHINode>(LastInst)
9948           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
9949           : std::next(BasicBlock::iterator(LastInst));
9950   Builder.SetInsertPoint(&*NewIP);
9951 
9952   // However, if we are vectorizing, we need to construct the vector values.
9953   // If the value is known to be uniform after vectorization, we can just
9954   // broadcast the scalar value corresponding to lane zero for each unroll
9955   // iteration. Otherwise, we construct the vector values using
9956   // insertelement instructions. Since the resulting vectors are stored in
9957   // State, we will only generate the insertelements once.
9958   Value *VectorValue = nullptr;
9959   if (IsUniform) {
9960     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
9961     set(Def, VectorValue, Part);
9962   } else {
9963     // Initialize packing with insertelements to start from undef.
9964     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
9965     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
9966     set(Def, Undef, Part);
9967     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
9968       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
9969     VectorValue = get(Def, Part);
9970   }
9971   Builder.restoreIP(OldIP);
9972   return VectorValue;
9973 }
9974 
9975 // Process the loop in the VPlan-native vectorization path. This path builds
9976 // VPlan upfront in the vectorization pipeline, which allows to apply
9977 // VPlan-to-VPlan transformations from the very beginning without modifying the
9978 // input LLVM IR.
9979 static bool processLoopInVPlanNativePath(
9980     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
9981     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
9982     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
9983     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
9984     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
9985     LoopVectorizationRequirements &Requirements) {
9986 
9987   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
9988     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
9989     return false;
9990   }
9991   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
9992   Function *F = L->getHeader()->getParent();
9993   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
9994 
9995   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
9996       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
9997 
9998   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
9999                                 &Hints, IAI);
10000   // Use the planner for outer loop vectorization.
10001   // TODO: CM is not used at this point inside the planner. Turn CM into an
10002   // optional argument if we don't need it in the future.
10003   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10004                                Requirements, ORE);
10005 
10006   // Get user vectorization factor.
10007   ElementCount UserVF = Hints.getWidth();
10008 
10009   CM.collectElementTypesForWidening();
10010 
10011   // Plan how to best vectorize, return the best VF and its cost.
10012   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10013 
10014   // If we are stress testing VPlan builds, do not attempt to generate vector
10015   // code. Masked vector code generation support will follow soon.
10016   // Also, do not attempt to vectorize if no vector code will be produced.
10017   if (VPlanBuildStressTest || EnableVPlanPredication ||
10018       VectorizationFactor::Disabled() == VF)
10019     return false;
10020 
10021   LVP.setBestPlan(VF.Width, 1);
10022 
10023   {
10024     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10025                              F->getParent()->getDataLayout());
10026     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10027                            &CM, BFI, PSI, Checks);
10028     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10029                       << L->getHeader()->getParent()->getName() << "\"\n");
10030     LVP.executePlan(LB, DT);
10031   }
10032 
10033   // Mark the loop as already vectorized to avoid vectorizing again.
10034   Hints.setAlreadyVectorized();
10035   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10036   return true;
10037 }
10038 
10039 // Emit a remark if there are stores to floats that required a floating point
10040 // extension. If the vectorized loop was generated with floating point there
10041 // will be a performance penalty from the conversion overhead and the change in
10042 // the vector width.
10043 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10044   SmallVector<Instruction *, 4> Worklist;
10045   for (BasicBlock *BB : L->getBlocks()) {
10046     for (Instruction &Inst : *BB) {
10047       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10048         if (S->getValueOperand()->getType()->isFloatTy())
10049           Worklist.push_back(S);
10050       }
10051     }
10052   }
10053 
10054   // Traverse the floating point stores upwards searching, for floating point
10055   // conversions.
10056   SmallPtrSet<const Instruction *, 4> Visited;
10057   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10058   while (!Worklist.empty()) {
10059     auto *I = Worklist.pop_back_val();
10060     if (!L->contains(I))
10061       continue;
10062     if (!Visited.insert(I).second)
10063       continue;
10064 
10065     // Emit a remark if the floating point store required a floating
10066     // point conversion.
10067     // TODO: More work could be done to identify the root cause such as a
10068     // constant or a function return type and point the user to it.
10069     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10070       ORE->emit([&]() {
10071         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10072                                           I->getDebugLoc(), L->getHeader())
10073                << "floating point conversion changes vector width. "
10074                << "Mixed floating point precision requires an up/down "
10075                << "cast that will negatively impact performance.";
10076       });
10077 
10078     for (Use &Op : I->operands())
10079       if (auto *OpI = dyn_cast<Instruction>(Op))
10080         Worklist.push_back(OpI);
10081   }
10082 }
10083 
10084 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10085     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10086                                !EnableLoopInterleaving),
10087       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10088                               !EnableLoopVectorization) {}
10089 
10090 bool LoopVectorizePass::processLoop(Loop *L) {
10091   assert((EnableVPlanNativePath || L->isInnermost()) &&
10092          "VPlan-native path is not enabled. Only process inner loops.");
10093 
10094 #ifndef NDEBUG
10095   const std::string DebugLocStr = getDebugLocString(L);
10096 #endif /* NDEBUG */
10097 
10098   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
10099                     << L->getHeader()->getParent()->getName() << "\" from "
10100                     << DebugLocStr << "\n");
10101 
10102   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
10103 
10104   LLVM_DEBUG(
10105       dbgs() << "LV: Loop hints:"
10106              << " force="
10107              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10108                      ? "disabled"
10109                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10110                             ? "enabled"
10111                             : "?"))
10112              << " width=" << Hints.getWidth()
10113              << " interleave=" << Hints.getInterleave() << "\n");
10114 
10115   // Function containing loop
10116   Function *F = L->getHeader()->getParent();
10117 
10118   // Looking at the diagnostic output is the only way to determine if a loop
10119   // was vectorized (other than looking at the IR or machine code), so it
10120   // is important to generate an optimization remark for each loop. Most of
10121   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10122   // generated as OptimizationRemark and OptimizationRemarkMissed are
10123   // less verbose reporting vectorized loops and unvectorized loops that may
10124   // benefit from vectorization, respectively.
10125 
10126   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10127     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10128     return false;
10129   }
10130 
10131   PredicatedScalarEvolution PSE(*SE, *L);
10132 
10133   // Check if it is legal to vectorize the loop.
10134   LoopVectorizationRequirements Requirements;
10135   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10136                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10137   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10138     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10139     Hints.emitRemarkWithHints();
10140     return false;
10141   }
10142 
10143   // Check the function attributes and profiles to find out if this function
10144   // should be optimized for size.
10145   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10146       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10147 
10148   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10149   // here. They may require CFG and instruction level transformations before
10150   // even evaluating whether vectorization is profitable. Since we cannot modify
10151   // the incoming IR, we need to build VPlan upfront in the vectorization
10152   // pipeline.
10153   if (!L->isInnermost())
10154     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10155                                         ORE, BFI, PSI, Hints, Requirements);
10156 
10157   assert(L->isInnermost() && "Inner loop expected.");
10158 
10159   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10160   // count by optimizing for size, to minimize overheads.
10161   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10162   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10163     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10164                       << "This loop is worth vectorizing only if no scalar "
10165                       << "iteration overheads are incurred.");
10166     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10167       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10168     else {
10169       LLVM_DEBUG(dbgs() << "\n");
10170       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10171     }
10172   }
10173 
10174   // Check the function attributes to see if implicit floats are allowed.
10175   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10176   // an integer loop and the vector instructions selected are purely integer
10177   // vector instructions?
10178   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10179     reportVectorizationFailure(
10180         "Can't vectorize when the NoImplicitFloat attribute is used",
10181         "loop not vectorized due to NoImplicitFloat attribute",
10182         "NoImplicitFloat", ORE, L);
10183     Hints.emitRemarkWithHints();
10184     return false;
10185   }
10186 
10187   // Check if the target supports potentially unsafe FP vectorization.
10188   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10189   // for the target we're vectorizing for, to make sure none of the
10190   // additional fp-math flags can help.
10191   if (Hints.isPotentiallyUnsafe() &&
10192       TTI->isFPVectorizationPotentiallyUnsafe()) {
10193     reportVectorizationFailure(
10194         "Potentially unsafe FP op prevents vectorization",
10195         "loop not vectorized due to unsafe FP support.",
10196         "UnsafeFP", ORE, L);
10197     Hints.emitRemarkWithHints();
10198     return false;
10199   }
10200 
10201   if (!LVL.canVectorizeFPMath(ForceOrderedReductions)) {
10202     ORE->emit([&]() {
10203       auto *ExactFPMathInst = Requirements.getExactFPInst();
10204       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10205                                                  ExactFPMathInst->getDebugLoc(),
10206                                                  ExactFPMathInst->getParent())
10207              << "loop not vectorized: cannot prove it is safe to reorder "
10208                 "floating-point operations";
10209     });
10210     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10211                          "reorder floating-point operations\n");
10212     Hints.emitRemarkWithHints();
10213     return false;
10214   }
10215 
10216   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10217   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10218 
10219   // If an override option has been passed in for interleaved accesses, use it.
10220   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10221     UseInterleaved = EnableInterleavedMemAccesses;
10222 
10223   // Analyze interleaved memory accesses.
10224   if (UseInterleaved) {
10225     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10226   }
10227 
10228   // Use the cost model.
10229   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10230                                 F, &Hints, IAI);
10231   CM.collectValuesToIgnore();
10232   CM.collectElementTypesForWidening();
10233 
10234   // Use the planner for vectorization.
10235   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10236                                Requirements, ORE);
10237 
10238   // Get user vectorization factor and interleave count.
10239   ElementCount UserVF = Hints.getWidth();
10240   unsigned UserIC = Hints.getInterleave();
10241 
10242   // Plan how to best vectorize, return the best VF and its cost.
10243   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10244 
10245   VectorizationFactor VF = VectorizationFactor::Disabled();
10246   unsigned IC = 1;
10247 
10248   if (MaybeVF) {
10249     VF = *MaybeVF;
10250     // Select the interleave count.
10251     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10252   }
10253 
10254   // Identify the diagnostic messages that should be produced.
10255   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10256   bool VectorizeLoop = true, InterleaveLoop = true;
10257   if (VF.Width.isScalar()) {
10258     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10259     VecDiagMsg = std::make_pair(
10260         "VectorizationNotBeneficial",
10261         "the cost-model indicates that vectorization is not beneficial");
10262     VectorizeLoop = false;
10263   }
10264 
10265   if (!MaybeVF && UserIC > 1) {
10266     // Tell the user interleaving was avoided up-front, despite being explicitly
10267     // requested.
10268     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10269                          "interleaving should be avoided up front\n");
10270     IntDiagMsg = std::make_pair(
10271         "InterleavingAvoided",
10272         "Ignoring UserIC, because interleaving was avoided up front");
10273     InterleaveLoop = false;
10274   } else if (IC == 1 && UserIC <= 1) {
10275     // Tell the user interleaving is not beneficial.
10276     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10277     IntDiagMsg = std::make_pair(
10278         "InterleavingNotBeneficial",
10279         "the cost-model indicates that interleaving is not beneficial");
10280     InterleaveLoop = false;
10281     if (UserIC == 1) {
10282       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10283       IntDiagMsg.second +=
10284           " and is explicitly disabled or interleave count is set to 1";
10285     }
10286   } else if (IC > 1 && UserIC == 1) {
10287     // Tell the user interleaving is beneficial, but it explicitly disabled.
10288     LLVM_DEBUG(
10289         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10290     IntDiagMsg = std::make_pair(
10291         "InterleavingBeneficialButDisabled",
10292         "the cost-model indicates that interleaving is beneficial "
10293         "but is explicitly disabled or interleave count is set to 1");
10294     InterleaveLoop = false;
10295   }
10296 
10297   // Override IC if user provided an interleave count.
10298   IC = UserIC > 0 ? UserIC : IC;
10299 
10300   // Emit diagnostic messages, if any.
10301   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10302   if (!VectorizeLoop && !InterleaveLoop) {
10303     // Do not vectorize or interleaving the loop.
10304     ORE->emit([&]() {
10305       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10306                                       L->getStartLoc(), L->getHeader())
10307              << VecDiagMsg.second;
10308     });
10309     ORE->emit([&]() {
10310       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10311                                       L->getStartLoc(), L->getHeader())
10312              << IntDiagMsg.second;
10313     });
10314     return false;
10315   } else if (!VectorizeLoop && InterleaveLoop) {
10316     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10317     ORE->emit([&]() {
10318       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10319                                         L->getStartLoc(), L->getHeader())
10320              << VecDiagMsg.second;
10321     });
10322   } else if (VectorizeLoop && !InterleaveLoop) {
10323     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10324                       << ") in " << DebugLocStr << '\n');
10325     ORE->emit([&]() {
10326       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10327                                         L->getStartLoc(), L->getHeader())
10328              << IntDiagMsg.second;
10329     });
10330   } else if (VectorizeLoop && InterleaveLoop) {
10331     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10332                       << ") in " << DebugLocStr << '\n');
10333     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10334   }
10335 
10336   bool DisableRuntimeUnroll = false;
10337   MDNode *OrigLoopID = L->getLoopID();
10338   {
10339     // Optimistically generate runtime checks. Drop them if they turn out to not
10340     // be profitable. Limit the scope of Checks, so the cleanup happens
10341     // immediately after vector codegeneration is done.
10342     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10343                              F->getParent()->getDataLayout());
10344     if (!VF.Width.isScalar() || IC > 1)
10345       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10346     LVP.setBestPlan(VF.Width, IC);
10347 
10348     using namespace ore;
10349     if (!VectorizeLoop) {
10350       assert(IC > 1 && "interleave count should not be 1 or 0");
10351       // If we decided that it is not legal to vectorize the loop, then
10352       // interleave it.
10353       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10354                                  &CM, BFI, PSI, Checks);
10355       LVP.executePlan(Unroller, DT);
10356 
10357       ORE->emit([&]() {
10358         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10359                                   L->getHeader())
10360                << "interleaved loop (interleaved count: "
10361                << NV("InterleaveCount", IC) << ")";
10362       });
10363     } else {
10364       // If we decided that it is *legal* to vectorize the loop, then do it.
10365 
10366       // Consider vectorizing the epilogue too if it's profitable.
10367       VectorizationFactor EpilogueVF =
10368           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10369       if (EpilogueVF.Width.isVector()) {
10370 
10371         // The first pass vectorizes the main loop and creates a scalar epilogue
10372         // to be vectorized by executing the plan (potentially with a different
10373         // factor) again shortly afterwards.
10374         EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC,
10375                                           EpilogueVF.Width.getKnownMinValue(),
10376                                           1);
10377         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10378                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10379 
10380         LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF);
10381         LVP.executePlan(MainILV, DT);
10382         ++LoopsVectorized;
10383 
10384         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10385         formLCSSARecursively(*L, *DT, LI, SE);
10386 
10387         // Second pass vectorizes the epilogue and adjusts the control flow
10388         // edges from the first pass.
10389         LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF);
10390         EPI.MainLoopVF = EPI.EpilogueVF;
10391         EPI.MainLoopUF = EPI.EpilogueUF;
10392         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10393                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10394                                                  Checks);
10395         LVP.executePlan(EpilogILV, DT);
10396         ++LoopsEpilogueVectorized;
10397 
10398         if (!MainILV.areSafetyChecksAdded())
10399           DisableRuntimeUnroll = true;
10400       } else {
10401         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10402                                &LVL, &CM, BFI, PSI, Checks);
10403         LVP.executePlan(LB, DT);
10404         ++LoopsVectorized;
10405 
10406         // Add metadata to disable runtime unrolling a scalar loop when there
10407         // are no runtime checks about strides and memory. A scalar loop that is
10408         // rarely used is not worth unrolling.
10409         if (!LB.areSafetyChecksAdded())
10410           DisableRuntimeUnroll = true;
10411       }
10412       // Report the vectorization decision.
10413       ORE->emit([&]() {
10414         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10415                                   L->getHeader())
10416                << "vectorized loop (vectorization width: "
10417                << NV("VectorizationFactor", VF.Width)
10418                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10419       });
10420     }
10421 
10422     if (ORE->allowExtraAnalysis(LV_NAME))
10423       checkMixedPrecision(L, ORE);
10424   }
10425 
10426   Optional<MDNode *> RemainderLoopID =
10427       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10428                                       LLVMLoopVectorizeFollowupEpilogue});
10429   if (RemainderLoopID.hasValue()) {
10430     L->setLoopID(RemainderLoopID.getValue());
10431   } else {
10432     if (DisableRuntimeUnroll)
10433       AddRuntimeUnrollDisableMetaData(L);
10434 
10435     // Mark the loop as already vectorized to avoid vectorizing again.
10436     Hints.setAlreadyVectorized();
10437   }
10438 
10439   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10440   return true;
10441 }
10442 
10443 LoopVectorizeResult LoopVectorizePass::runImpl(
10444     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10445     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10446     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10447     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10448     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10449   SE = &SE_;
10450   LI = &LI_;
10451   TTI = &TTI_;
10452   DT = &DT_;
10453   BFI = &BFI_;
10454   TLI = TLI_;
10455   AA = &AA_;
10456   AC = &AC_;
10457   GetLAA = &GetLAA_;
10458   DB = &DB_;
10459   ORE = &ORE_;
10460   PSI = PSI_;
10461 
10462   // Don't attempt if
10463   // 1. the target claims to have no vector registers, and
10464   // 2. interleaving won't help ILP.
10465   //
10466   // The second condition is necessary because, even if the target has no
10467   // vector registers, loop vectorization may still enable scalar
10468   // interleaving.
10469   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10470       TTI->getMaxInterleaveFactor(1) < 2)
10471     return LoopVectorizeResult(false, false);
10472 
10473   bool Changed = false, CFGChanged = false;
10474 
10475   // The vectorizer requires loops to be in simplified form.
10476   // Since simplification may add new inner loops, it has to run before the
10477   // legality and profitability checks. This means running the loop vectorizer
10478   // will simplify all loops, regardless of whether anything end up being
10479   // vectorized.
10480   for (auto &L : *LI)
10481     Changed |= CFGChanged |=
10482         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10483 
10484   // Build up a worklist of inner-loops to vectorize. This is necessary as
10485   // the act of vectorizing or partially unrolling a loop creates new loops
10486   // and can invalidate iterators across the loops.
10487   SmallVector<Loop *, 8> Worklist;
10488 
10489   for (Loop *L : *LI)
10490     collectSupportedLoops(*L, LI, ORE, Worklist);
10491 
10492   LoopsAnalyzed += Worklist.size();
10493 
10494   // Now walk the identified inner loops.
10495   while (!Worklist.empty()) {
10496     Loop *L = Worklist.pop_back_val();
10497 
10498     // For the inner loops we actually process, form LCSSA to simplify the
10499     // transform.
10500     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10501 
10502     Changed |= CFGChanged |= processLoop(L);
10503   }
10504 
10505   // Process each loop nest in the function.
10506   return LoopVectorizeResult(Changed, CFGChanged);
10507 }
10508 
10509 PreservedAnalyses LoopVectorizePass::run(Function &F,
10510                                          FunctionAnalysisManager &AM) {
10511     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10512     auto &LI = AM.getResult<LoopAnalysis>(F);
10513     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10514     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10515     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10516     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10517     auto &AA = AM.getResult<AAManager>(F);
10518     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10519     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10520     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10521     MemorySSA *MSSA = EnableMSSALoopDependency
10522                           ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
10523                           : nullptr;
10524 
10525     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10526     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10527         [&](Loop &L) -> const LoopAccessInfo & {
10528       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,  SE,
10529                                         TLI, TTI, nullptr, MSSA};
10530       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10531     };
10532     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10533     ProfileSummaryInfo *PSI =
10534         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10535     LoopVectorizeResult Result =
10536         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10537     if (!Result.MadeAnyChange)
10538       return PreservedAnalyses::all();
10539     PreservedAnalyses PA;
10540 
10541     // We currently do not preserve loopinfo/dominator analyses with outer loop
10542     // vectorization. Until this is addressed, mark these analyses as preserved
10543     // only for non-VPlan-native path.
10544     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10545     if (!EnableVPlanNativePath) {
10546       PA.preserve<LoopAnalysis>();
10547       PA.preserve<DominatorTreeAnalysis>();
10548     }
10549     if (!Result.MadeCFGChange)
10550       PA.preserveSet<CFGAnalyses>();
10551     return PA;
10552 }
10553