1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/MemorySSA.h"
91 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
92 #include "llvm/Analysis/ProfileSummaryInfo.h"
93 #include "llvm/Analysis/ScalarEvolution.h"
94 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
95 #include "llvm/Analysis/TargetLibraryInfo.h"
96 #include "llvm/Analysis/TargetTransformInfo.h"
97 #include "llvm/Analysis/VectorUtils.h"
98 #include "llvm/IR/Attributes.h"
99 #include "llvm/IR/BasicBlock.h"
100 #include "llvm/IR/CFG.h"
101 #include "llvm/IR/Constant.h"
102 #include "llvm/IR/Constants.h"
103 #include "llvm/IR/DataLayout.h"
104 #include "llvm/IR/DebugInfoMetadata.h"
105 #include "llvm/IR/DebugLoc.h"
106 #include "llvm/IR/DerivedTypes.h"
107 #include "llvm/IR/DiagnosticInfo.h"
108 #include "llvm/IR/Dominators.h"
109 #include "llvm/IR/Function.h"
110 #include "llvm/IR/IRBuilder.h"
111 #include "llvm/IR/InstrTypes.h"
112 #include "llvm/IR/Instruction.h"
113 #include "llvm/IR/Instructions.h"
114 #include "llvm/IR/IntrinsicInst.h"
115 #include "llvm/IR/Intrinsics.h"
116 #include "llvm/IR/LLVMContext.h"
117 #include "llvm/IR/Metadata.h"
118 #include "llvm/IR/Module.h"
119 #include "llvm/IR/Operator.h"
120 #include "llvm/IR/PatternMatch.h"
121 #include "llvm/IR/Type.h"
122 #include "llvm/IR/Use.h"
123 #include "llvm/IR/User.h"
124 #include "llvm/IR/Value.h"
125 #include "llvm/IR/ValueHandle.h"
126 #include "llvm/IR/Verifier.h"
127 #include "llvm/InitializePasses.h"
128 #include "llvm/Pass.h"
129 #include "llvm/Support/Casting.h"
130 #include "llvm/Support/CommandLine.h"
131 #include "llvm/Support/Compiler.h"
132 #include "llvm/Support/Debug.h"
133 #include "llvm/Support/ErrorHandling.h"
134 #include "llvm/Support/InstructionCost.h"
135 #include "llvm/Support/MathExtras.h"
136 #include "llvm/Support/raw_ostream.h"
137 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
138 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
139 #include "llvm/Transforms/Utils/LoopSimplify.h"
140 #include "llvm/Transforms/Utils/LoopUtils.h"
141 #include "llvm/Transforms/Utils/LoopVersioning.h"
142 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
143 #include "llvm/Transforms/Utils/SizeOpts.h"
144 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
145 #include <algorithm>
146 #include <cassert>
147 #include <cstdint>
148 #include <cstdlib>
149 #include <functional>
150 #include <iterator>
151 #include <limits>
152 #include <memory>
153 #include <string>
154 #include <tuple>
155 #include <utility>
156 
157 using namespace llvm;
158 
159 #define LV_NAME "loop-vectorize"
160 #define DEBUG_TYPE LV_NAME
161 
162 #ifndef NDEBUG
163 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
164 #endif
165 
166 /// @{
167 /// Metadata attribute names
168 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
169 const char LLVMLoopVectorizeFollowupVectorized[] =
170     "llvm.loop.vectorize.followup_vectorized";
171 const char LLVMLoopVectorizeFollowupEpilogue[] =
172     "llvm.loop.vectorize.followup_epilogue";
173 /// @}
174 
175 STATISTIC(LoopsVectorized, "Number of loops vectorized");
176 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
177 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
178 
179 static cl::opt<bool> EnableEpilogueVectorization(
180     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
181     cl::desc("Enable vectorization of epilogue loops."));
182 
183 static cl::opt<unsigned> EpilogueVectorizationForceVF(
184     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
185     cl::desc("When epilogue vectorization is enabled, and a value greater than "
186              "1 is specified, forces the given VF for all applicable epilogue "
187              "loops."));
188 
189 static cl::opt<unsigned> EpilogueVectorizationMinVF(
190     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
191     cl::desc("Only loops with vectorization factor equal to or larger than "
192              "the specified value are considered for epilogue vectorization."));
193 
194 /// Loops with a known constant trip count below this number are vectorized only
195 /// if no scalar iteration overheads are incurred.
196 static cl::opt<unsigned> TinyTripCountVectorThreshold(
197     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
198     cl::desc("Loops with a constant trip count that is smaller than this "
199              "value are vectorized only if no scalar iteration overheads "
200              "are incurred."));
201 
202 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
203     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
204     cl::desc("The maximum allowed number of runtime memory checks with a "
205              "vectorize(enable) pragma."));
206 
207 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
208 // that predication is preferred, and this lists all options. I.e., the
209 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
210 // and predicate the instructions accordingly. If tail-folding fails, there are
211 // different fallback strategies depending on these values:
212 namespace PreferPredicateTy {
213   enum Option {
214     ScalarEpilogue = 0,
215     PredicateElseScalarEpilogue,
216     PredicateOrDontVectorize
217   };
218 } // namespace PreferPredicateTy
219 
220 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
221     "prefer-predicate-over-epilogue",
222     cl::init(PreferPredicateTy::ScalarEpilogue),
223     cl::Hidden,
224     cl::desc("Tail-folding and predication preferences over creating a scalar "
225              "epilogue loop."),
226     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
227                          "scalar-epilogue",
228                          "Don't tail-predicate loops, create scalar epilogue"),
229               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
230                          "predicate-else-scalar-epilogue",
231                          "prefer tail-folding, create scalar epilogue if tail "
232                          "folding fails."),
233               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
234                          "predicate-dont-vectorize",
235                          "prefers tail-folding, don't attempt vectorization if "
236                          "tail-folding fails.")));
237 
238 static cl::opt<bool> MaximizeBandwidth(
239     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
240     cl::desc("Maximize bandwidth when selecting vectorization factor which "
241              "will be determined by the smallest type in loop."));
242 
243 static cl::opt<bool> EnableInterleavedMemAccesses(
244     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
245     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
246 
247 /// An interleave-group may need masking if it resides in a block that needs
248 /// predication, or in order to mask away gaps.
249 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
250     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
251     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
252 
253 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
254     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
255     cl::desc("We don't interleave loops with a estimated constant trip count "
256              "below this number"));
257 
258 static cl::opt<unsigned> ForceTargetNumScalarRegs(
259     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
260     cl::desc("A flag that overrides the target's number of scalar registers."));
261 
262 static cl::opt<unsigned> ForceTargetNumVectorRegs(
263     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
264     cl::desc("A flag that overrides the target's number of vector registers."));
265 
266 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
267     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
268     cl::desc("A flag that overrides the target's max interleave factor for "
269              "scalar loops."));
270 
271 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
272     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
273     cl::desc("A flag that overrides the target's max interleave factor for "
274              "vectorized loops."));
275 
276 static cl::opt<unsigned> ForceTargetInstructionCost(
277     "force-target-instruction-cost", cl::init(0), cl::Hidden,
278     cl::desc("A flag that overrides the target's expected cost for "
279              "an instruction to a single constant value. Mostly "
280              "useful for getting consistent testing."));
281 
282 static cl::opt<bool> ForceTargetSupportsScalableVectors(
283     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
284     cl::desc(
285         "Pretend that scalable vectors are supported, even if the target does "
286         "not support them. This flag should only be used for testing."));
287 
288 static cl::opt<unsigned> SmallLoopCost(
289     "small-loop-cost", cl::init(20), cl::Hidden,
290     cl::desc(
291         "The cost of a loop that is considered 'small' by the interleaver."));
292 
293 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
294     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
295     cl::desc("Enable the use of the block frequency analysis to access PGO "
296              "heuristics minimizing code growth in cold regions and being more "
297              "aggressive in hot regions."));
298 
299 // Runtime interleave loops for load/store throughput.
300 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
301     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
302     cl::desc(
303         "Enable runtime interleaving until load/store ports are saturated"));
304 
305 /// Interleave small loops with scalar reductions.
306 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
307     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
308     cl::desc("Enable interleaving for loops with small iteration counts that "
309              "contain scalar reductions to expose ILP."));
310 
311 /// The number of stores in a loop that are allowed to need predication.
312 static cl::opt<unsigned> NumberOfStoresToPredicate(
313     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
314     cl::desc("Max number of stores to be predicated behind an if."));
315 
316 static cl::opt<bool> EnableIndVarRegisterHeur(
317     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
318     cl::desc("Count the induction variable only once when interleaving"));
319 
320 static cl::opt<bool> EnableCondStoresVectorization(
321     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
322     cl::desc("Enable if predication of stores during vectorization."));
323 
324 static cl::opt<unsigned> MaxNestedScalarReductionIC(
325     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
326     cl::desc("The maximum interleave count to use when interleaving a scalar "
327              "reduction in a nested loop."));
328 
329 static cl::opt<bool>
330     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
331                            cl::Hidden,
332                            cl::desc("Prefer in-loop vector reductions, "
333                                     "overriding the targets preference."));
334 
335 cl::opt<bool> EnableStrictReductions(
336     "enable-strict-reductions", cl::init(false), cl::Hidden,
337     cl::desc("Enable the vectorisation of loops with in-order (strict) "
338              "FP reductions"));
339 
340 static cl::opt<bool> PreferPredicatedReductionSelect(
341     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
342     cl::desc(
343         "Prefer predicating a reduction operation over an after loop select."));
344 
345 cl::opt<bool> EnableVPlanNativePath(
346     "enable-vplan-native-path", cl::init(false), cl::Hidden,
347     cl::desc("Enable VPlan-native vectorization path with "
348              "support for outer loop vectorization."));
349 
350 // FIXME: Remove this switch once we have divergence analysis. Currently we
351 // assume divergent non-backedge branches when this switch is true.
352 cl::opt<bool> EnableVPlanPredication(
353     "enable-vplan-predication", cl::init(false), cl::Hidden,
354     cl::desc("Enable VPlan-native vectorization path predicator with "
355              "support for outer loop vectorization."));
356 
357 // This flag enables the stress testing of the VPlan H-CFG construction in the
358 // VPlan-native vectorization path. It must be used in conjuction with
359 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
360 // verification of the H-CFGs built.
361 static cl::opt<bool> VPlanBuildStressTest(
362     "vplan-build-stress-test", cl::init(false), cl::Hidden,
363     cl::desc(
364         "Build VPlan for every supported loop nest in the function and bail "
365         "out right after the build (stress test the VPlan H-CFG construction "
366         "in the VPlan-native vectorization path)."));
367 
368 cl::opt<bool> llvm::EnableLoopInterleaving(
369     "interleave-loops", cl::init(true), cl::Hidden,
370     cl::desc("Enable loop interleaving in Loop vectorization passes"));
371 cl::opt<bool> llvm::EnableLoopVectorization(
372     "vectorize-loops", cl::init(true), cl::Hidden,
373     cl::desc("Run the Loop vectorization passes"));
374 
375 cl::opt<bool> PrintVPlansInDotFormat(
376     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
377     cl::desc("Use dot format instead of plain text when dumping VPlans"));
378 
379 /// A helper function that returns true if the given type is irregular. The
380 /// type is irregular if its allocated size doesn't equal the store size of an
381 /// element of the corresponding vector type.
382 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
383   // Determine if an array of N elements of type Ty is "bitcast compatible"
384   // with a <N x Ty> vector.
385   // This is only true if there is no padding between the array elements.
386   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
387 }
388 
389 /// A helper function that returns the reciprocal of the block probability of
390 /// predicated blocks. If we return X, we are assuming the predicated block
391 /// will execute once for every X iterations of the loop header.
392 ///
393 /// TODO: We should use actual block probability here, if available. Currently,
394 ///       we always assume predicated blocks have a 50% chance of executing.
395 static unsigned getReciprocalPredBlockProb() { return 2; }
396 
397 /// A helper function that returns an integer or floating-point constant with
398 /// value C.
399 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
400   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
401                            : ConstantFP::get(Ty, C);
402 }
403 
404 /// Returns "best known" trip count for the specified loop \p L as defined by
405 /// the following procedure:
406 ///   1) Returns exact trip count if it is known.
407 ///   2) Returns expected trip count according to profile data if any.
408 ///   3) Returns upper bound estimate if it is known.
409 ///   4) Returns None if all of the above failed.
410 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
411   // Check if exact trip count is known.
412   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
413     return ExpectedTC;
414 
415   // Check if there is an expected trip count available from profile data.
416   if (LoopVectorizeWithBlockFrequency)
417     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
418       return EstimatedTC;
419 
420   // Check if upper bound estimate is known.
421   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
422     return ExpectedTC;
423 
424   return None;
425 }
426 
427 // Forward declare GeneratedRTChecks.
428 class GeneratedRTChecks;
429 
430 namespace llvm {
431 
432 /// InnerLoopVectorizer vectorizes loops which contain only one basic
433 /// block to a specified vectorization factor (VF).
434 /// This class performs the widening of scalars into vectors, or multiple
435 /// scalars. This class also implements the following features:
436 /// * It inserts an epilogue loop for handling loops that don't have iteration
437 ///   counts that are known to be a multiple of the vectorization factor.
438 /// * It handles the code generation for reduction variables.
439 /// * Scalarization (implementation using scalars) of un-vectorizable
440 ///   instructions.
441 /// InnerLoopVectorizer does not perform any vectorization-legality
442 /// checks, and relies on the caller to check for the different legality
443 /// aspects. The InnerLoopVectorizer relies on the
444 /// LoopVectorizationLegality class to provide information about the induction
445 /// and reduction variables that were found to a given vectorization factor.
446 class InnerLoopVectorizer {
447 public:
448   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
449                       LoopInfo *LI, DominatorTree *DT,
450                       const TargetLibraryInfo *TLI,
451                       const TargetTransformInfo *TTI, AssumptionCache *AC,
452                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
453                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
454                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
455                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
456       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
457         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
458         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
459         PSI(PSI), RTChecks(RTChecks) {
460     // Query this against the original loop and save it here because the profile
461     // of the original loop header may change as the transformation happens.
462     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
463         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
464   }
465 
466   virtual ~InnerLoopVectorizer() = default;
467 
468   /// Create a new empty loop that will contain vectorized instructions later
469   /// on, while the old loop will be used as the scalar remainder. Control flow
470   /// is generated around the vectorized (and scalar epilogue) loops consisting
471   /// of various checks and bypasses. Return the pre-header block of the new
472   /// loop.
473   /// In the case of epilogue vectorization, this function is overriden to
474   /// handle the more complex control flow around the loops.
475   virtual BasicBlock *createVectorizedLoopSkeleton();
476 
477   /// Widen a single instruction within the innermost loop.
478   void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
479                         VPTransformState &State);
480 
481   /// Widen a single call instruction within the innermost loop.
482   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
483                             VPTransformState &State);
484 
485   /// Widen a single select instruction within the innermost loop.
486   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
487                               bool InvariantCond, VPTransformState &State);
488 
489   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
490   void fixVectorizedLoop(VPTransformState &State);
491 
492   // Return true if any runtime check is added.
493   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
494 
495   /// A type for vectorized values in the new loop. Each value from the
496   /// original loop, when vectorized, is represented by UF vector values in the
497   /// new unrolled loop, where UF is the unroll factor.
498   using VectorParts = SmallVector<Value *, 2>;
499 
500   /// Vectorize a single GetElementPtrInst based on information gathered and
501   /// decisions taken during planning.
502   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
503                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
504                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
505 
506   /// Vectorize a single PHINode in a block. This method handles the induction
507   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
508   /// arbitrary length vectors.
509   void widenPHIInstruction(Instruction *PN, RecurrenceDescriptor *RdxDesc,
510                            VPWidenPHIRecipe *PhiR, VPTransformState &State);
511 
512   /// A helper function to scalarize a single Instruction in the innermost loop.
513   /// Generates a sequence of scalar instances for each lane between \p MinLane
514   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
515   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
516   /// Instr's operands.
517   void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands,
518                             const VPIteration &Instance, bool IfPredicateInstr,
519                             VPTransformState &State);
520 
521   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
522   /// is provided, the integer induction variable will first be truncated to
523   /// the corresponding type.
524   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
525                              VPValue *Def, VPValue *CastDef,
526                              VPTransformState &State);
527 
528   /// Construct the vector value of a scalarized value \p V one lane at a time.
529   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
530                                  VPTransformState &State);
531 
532   /// Try to vectorize interleaved access group \p Group with the base address
533   /// given in \p Addr, optionally masking the vector operations if \p
534   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
535   /// values in the vectorized loop.
536   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
537                                 ArrayRef<VPValue *> VPDefs,
538                                 VPTransformState &State, VPValue *Addr,
539                                 ArrayRef<VPValue *> StoredValues,
540                                 VPValue *BlockInMask = nullptr);
541 
542   /// Vectorize Load and Store instructions with the base address given in \p
543   /// Addr, optionally masking the vector operations if \p BlockInMask is
544   /// non-null. Use \p State to translate given VPValues to IR values in the
545   /// vectorized loop.
546   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
547                                   VPValue *Def, VPValue *Addr,
548                                   VPValue *StoredValue, VPValue *BlockInMask);
549 
550   /// Set the debug location in the builder using the debug location in
551   /// the instruction.
552   void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);
553 
554   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
555   void fixNonInductionPHIs(VPTransformState &State);
556 
557   /// Returns true if the reordering of FP operations is not allowed, but we are
558   /// able to vectorize with strict in-order reductions for the given RdxDesc.
559   bool useOrderedReductions(RecurrenceDescriptor &RdxDesc);
560 
561   /// Create a broadcast instruction. This method generates a broadcast
562   /// instruction (shuffle) for loop invariant values and for the induction
563   /// value. If this is the induction variable then we extend it to N, N+1, ...
564   /// this is needed because each iteration in the loop corresponds to a SIMD
565   /// element.
566   virtual Value *getBroadcastInstrs(Value *V);
567 
568 protected:
569   friend class LoopVectorizationPlanner;
570 
571   /// A small list of PHINodes.
572   using PhiVector = SmallVector<PHINode *, 4>;
573 
574   /// A type for scalarized values in the new loop. Each value from the
575   /// original loop, when scalarized, is represented by UF x VF scalar values
576   /// in the new unrolled loop, where UF is the unroll factor and VF is the
577   /// vectorization factor.
578   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
579 
580   /// Set up the values of the IVs correctly when exiting the vector loop.
581   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
582                     Value *CountRoundDown, Value *EndValue,
583                     BasicBlock *MiddleBlock);
584 
585   /// Create a new induction variable inside L.
586   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
587                                    Value *Step, Instruction *DL);
588 
589   /// Handle all cross-iteration phis in the header.
590   void fixCrossIterationPHIs(VPTransformState &State);
591 
592   /// Fix a first-order recurrence. This is the second phase of vectorizing
593   /// this phi node.
594   void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State);
595 
596   /// Fix a reduction cross-iteration phi. This is the second phase of
597   /// vectorizing this phi node.
598   void fixReduction(VPWidenPHIRecipe *Phi, VPTransformState &State);
599 
600   /// Clear NSW/NUW flags from reduction instructions if necessary.
601   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
602                                VPTransformState &State);
603 
604   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
605   /// means we need to add the appropriate incoming value from the middle
606   /// block as exiting edges from the scalar epilogue loop (if present) are
607   /// already in place, and we exit the vector loop exclusively to the middle
608   /// block.
609   void fixLCSSAPHIs(VPTransformState &State);
610 
611   /// Iteratively sink the scalarized operands of a predicated instruction into
612   /// the block that was created for it.
613   void sinkScalarOperands(Instruction *PredInst);
614 
615   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
616   /// represented as.
617   void truncateToMinimalBitwidths(VPTransformState &State);
618 
619   /// This function adds
620   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
621   /// to each vector element of Val. The sequence starts at StartIndex.
622   /// \p Opcode is relevant for FP induction variable.
623   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
624                                Instruction::BinaryOps Opcode =
625                                Instruction::BinaryOpsEnd);
626 
627   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
628   /// variable on which to base the steps, \p Step is the size of the step, and
629   /// \p EntryVal is the value from the original loop that maps to the steps.
630   /// Note that \p EntryVal doesn't have to be an induction variable - it
631   /// can also be a truncate instruction.
632   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
633                         const InductionDescriptor &ID, VPValue *Def,
634                         VPValue *CastDef, VPTransformState &State);
635 
636   /// Create a vector induction phi node based on an existing scalar one. \p
637   /// EntryVal is the value from the original loop that maps to the vector phi
638   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
639   /// truncate instruction, instead of widening the original IV, we widen a
640   /// version of the IV truncated to \p EntryVal's type.
641   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
642                                        Value *Step, Value *Start,
643                                        Instruction *EntryVal, VPValue *Def,
644                                        VPValue *CastDef,
645                                        VPTransformState &State);
646 
647   /// Returns true if an instruction \p I should be scalarized instead of
648   /// vectorized for the chosen vectorization factor.
649   bool shouldScalarizeInstruction(Instruction *I) const;
650 
651   /// Returns true if we should generate a scalar version of \p IV.
652   bool needsScalarInduction(Instruction *IV) const;
653 
654   /// If there is a cast involved in the induction variable \p ID, which should
655   /// be ignored in the vectorized loop body, this function records the
656   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
657   /// cast. We had already proved that the casted Phi is equal to the uncasted
658   /// Phi in the vectorized loop (under a runtime guard), and therefore
659   /// there is no need to vectorize the cast - the same value can be used in the
660   /// vector loop for both the Phi and the cast.
661   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
662   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
663   ///
664   /// \p EntryVal is the value from the original loop that maps to the vector
665   /// phi node and is used to distinguish what is the IV currently being
666   /// processed - original one (if \p EntryVal is a phi corresponding to the
667   /// original IV) or the "newly-created" one based on the proof mentioned above
668   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
669   /// latter case \p EntryVal is a TruncInst and we must not record anything for
670   /// that IV, but it's error-prone to expect callers of this routine to care
671   /// about that, hence this explicit parameter.
672   void recordVectorLoopValueForInductionCast(
673       const InductionDescriptor &ID, const Instruction *EntryVal,
674       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
675       unsigned Part, unsigned Lane = UINT_MAX);
676 
677   /// Generate a shuffle sequence that will reverse the vector Vec.
678   virtual Value *reverseVector(Value *Vec);
679 
680   /// Returns (and creates if needed) the original loop trip count.
681   Value *getOrCreateTripCount(Loop *NewLoop);
682 
683   /// Returns (and creates if needed) the trip count of the widened loop.
684   Value *getOrCreateVectorTripCount(Loop *NewLoop);
685 
686   /// Returns a bitcasted value to the requested vector type.
687   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
688   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
689                                 const DataLayout &DL);
690 
691   /// Emit a bypass check to see if the vector trip count is zero, including if
692   /// it overflows.
693   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
694 
695   /// Emit a bypass check to see if all of the SCEV assumptions we've
696   /// had to make are correct. Returns the block containing the checks or
697   /// nullptr if no checks have been added.
698   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
699 
700   /// Emit bypass checks to check any memory assumptions we may have made.
701   /// Returns the block containing the checks or nullptr if no checks have been
702   /// added.
703   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
704 
705   /// Compute the transformed value of Index at offset StartValue using step
706   /// StepValue.
707   /// For integer induction, returns StartValue + Index * StepValue.
708   /// For pointer induction, returns StartValue[Index * StepValue].
709   /// FIXME: The newly created binary instructions should contain nsw/nuw
710   /// flags, which can be found from the original scalar operations.
711   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
712                               const DataLayout &DL,
713                               const InductionDescriptor &ID) const;
714 
715   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
716   /// vector loop preheader, middle block and scalar preheader. Also
717   /// allocate a loop object for the new vector loop and return it.
718   Loop *createVectorLoopSkeleton(StringRef Prefix);
719 
720   /// Create new phi nodes for the induction variables to resume iteration count
721   /// in the scalar epilogue, from where the vectorized loop left off (given by
722   /// \p VectorTripCount).
723   /// In cases where the loop skeleton is more complicated (eg. epilogue
724   /// vectorization) and the resume values can come from an additional bypass
725   /// block, the \p AdditionalBypass pair provides information about the bypass
726   /// block and the end value on the edge from bypass to this loop.
727   void createInductionResumeValues(
728       Loop *L, Value *VectorTripCount,
729       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
730 
731   /// Complete the loop skeleton by adding debug MDs, creating appropriate
732   /// conditional branches in the middle block, preparing the builder and
733   /// running the verifier. Take in the vector loop \p L as argument, and return
734   /// the preheader of the completed vector loop.
735   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
736 
737   /// Add additional metadata to \p To that was not present on \p Orig.
738   ///
739   /// Currently this is used to add the noalias annotations based on the
740   /// inserted memchecks.  Use this for instructions that are *cloned* into the
741   /// vector loop.
742   void addNewMetadata(Instruction *To, const Instruction *Orig);
743 
744   /// Add metadata from one instruction to another.
745   ///
746   /// This includes both the original MDs from \p From and additional ones (\see
747   /// addNewMetadata).  Use this for *newly created* instructions in the vector
748   /// loop.
749   void addMetadata(Instruction *To, Instruction *From);
750 
751   /// Similar to the previous function but it adds the metadata to a
752   /// vector of instructions.
753   void addMetadata(ArrayRef<Value *> To, Instruction *From);
754 
755   /// Allow subclasses to override and print debug traces before/after vplan
756   /// execution, when trace information is requested.
757   virtual void printDebugTracesAtStart(){};
758   virtual void printDebugTracesAtEnd(){};
759 
760   /// The original loop.
761   Loop *OrigLoop;
762 
763   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
764   /// dynamic knowledge to simplify SCEV expressions and converts them to a
765   /// more usable form.
766   PredicatedScalarEvolution &PSE;
767 
768   /// Loop Info.
769   LoopInfo *LI;
770 
771   /// Dominator Tree.
772   DominatorTree *DT;
773 
774   /// Alias Analysis.
775   AAResults *AA;
776 
777   /// Target Library Info.
778   const TargetLibraryInfo *TLI;
779 
780   /// Target Transform Info.
781   const TargetTransformInfo *TTI;
782 
783   /// Assumption Cache.
784   AssumptionCache *AC;
785 
786   /// Interface to emit optimization remarks.
787   OptimizationRemarkEmitter *ORE;
788 
789   /// LoopVersioning.  It's only set up (non-null) if memchecks were
790   /// used.
791   ///
792   /// This is currently only used to add no-alias metadata based on the
793   /// memchecks.  The actually versioning is performed manually.
794   std::unique_ptr<LoopVersioning> LVer;
795 
796   /// The vectorization SIMD factor to use. Each vector will have this many
797   /// vector elements.
798   ElementCount VF;
799 
800   /// The vectorization unroll factor to use. Each scalar is vectorized to this
801   /// many different vector instructions.
802   unsigned UF;
803 
804   /// The builder that we use
805   IRBuilder<> Builder;
806 
807   // --- Vectorization state ---
808 
809   /// The vector-loop preheader.
810   BasicBlock *LoopVectorPreHeader;
811 
812   /// The scalar-loop preheader.
813   BasicBlock *LoopScalarPreHeader;
814 
815   /// Middle Block between the vector and the scalar.
816   BasicBlock *LoopMiddleBlock;
817 
818   /// The (unique) ExitBlock of the scalar loop.  Note that
819   /// there can be multiple exiting edges reaching this block.
820   BasicBlock *LoopExitBlock;
821 
822   /// The vector loop body.
823   BasicBlock *LoopVectorBody;
824 
825   /// The scalar loop body.
826   BasicBlock *LoopScalarBody;
827 
828   /// A list of all bypass blocks. The first block is the entry of the loop.
829   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
830 
831   /// The new Induction variable which was added to the new block.
832   PHINode *Induction = nullptr;
833 
834   /// The induction variable of the old basic block.
835   PHINode *OldInduction = nullptr;
836 
837   /// Store instructions that were predicated.
838   SmallVector<Instruction *, 4> PredicatedInstructions;
839 
840   /// Trip count of the original loop.
841   Value *TripCount = nullptr;
842 
843   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
844   Value *VectorTripCount = nullptr;
845 
846   /// The legality analysis.
847   LoopVectorizationLegality *Legal;
848 
849   /// The profitablity analysis.
850   LoopVectorizationCostModel *Cost;
851 
852   // Record whether runtime checks are added.
853   bool AddedSafetyChecks = false;
854 
855   // Holds the end values for each induction variable. We save the end values
856   // so we can later fix-up the external users of the induction variables.
857   DenseMap<PHINode *, Value *> IVEndValues;
858 
859   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
860   // fixed up at the end of vector code generation.
861   SmallVector<PHINode *, 8> OrigPHIsToFix;
862 
863   /// BFI and PSI are used to check for profile guided size optimizations.
864   BlockFrequencyInfo *BFI;
865   ProfileSummaryInfo *PSI;
866 
867   // Whether this loop should be optimized for size based on profile guided size
868   // optimizatios.
869   bool OptForSizeBasedOnProfile;
870 
871   /// Structure to hold information about generated runtime checks, responsible
872   /// for cleaning the checks, if vectorization turns out unprofitable.
873   GeneratedRTChecks &RTChecks;
874 };
875 
876 class InnerLoopUnroller : public InnerLoopVectorizer {
877 public:
878   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
879                     LoopInfo *LI, DominatorTree *DT,
880                     const TargetLibraryInfo *TLI,
881                     const TargetTransformInfo *TTI, AssumptionCache *AC,
882                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
883                     LoopVectorizationLegality *LVL,
884                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
885                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
886       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
887                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
888                             BFI, PSI, Check) {}
889 
890 private:
891   Value *getBroadcastInstrs(Value *V) override;
892   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
893                        Instruction::BinaryOps Opcode =
894                        Instruction::BinaryOpsEnd) override;
895   Value *reverseVector(Value *Vec) override;
896 };
897 
898 /// Encapsulate information regarding vectorization of a loop and its epilogue.
899 /// This information is meant to be updated and used across two stages of
900 /// epilogue vectorization.
901 struct EpilogueLoopVectorizationInfo {
902   ElementCount MainLoopVF = ElementCount::getFixed(0);
903   unsigned MainLoopUF = 0;
904   ElementCount EpilogueVF = ElementCount::getFixed(0);
905   unsigned EpilogueUF = 0;
906   BasicBlock *MainLoopIterationCountCheck = nullptr;
907   BasicBlock *EpilogueIterationCountCheck = nullptr;
908   BasicBlock *SCEVSafetyCheck = nullptr;
909   BasicBlock *MemSafetyCheck = nullptr;
910   Value *TripCount = nullptr;
911   Value *VectorTripCount = nullptr;
912 
913   EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF,
914                                 unsigned EUF)
915       : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF),
916         EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) {
917     assert(EUF == 1 &&
918            "A high UF for the epilogue loop is likely not beneficial.");
919   }
920 };
921 
922 /// An extension of the inner loop vectorizer that creates a skeleton for a
923 /// vectorized loop that has its epilogue (residual) also vectorized.
924 /// The idea is to run the vplan on a given loop twice, firstly to setup the
925 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
926 /// from the first step and vectorize the epilogue.  This is achieved by
927 /// deriving two concrete strategy classes from this base class and invoking
928 /// them in succession from the loop vectorizer planner.
929 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
930 public:
931   InnerLoopAndEpilogueVectorizer(
932       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
933       DominatorTree *DT, const TargetLibraryInfo *TLI,
934       const TargetTransformInfo *TTI, AssumptionCache *AC,
935       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
936       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
937       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
938       GeneratedRTChecks &Checks)
939       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
940                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
941                             Checks),
942         EPI(EPI) {}
943 
944   // Override this function to handle the more complex control flow around the
945   // three loops.
946   BasicBlock *createVectorizedLoopSkeleton() final override {
947     return createEpilogueVectorizedLoopSkeleton();
948   }
949 
950   /// The interface for creating a vectorized skeleton using one of two
951   /// different strategies, each corresponding to one execution of the vplan
952   /// as described above.
953   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
954 
955   /// Holds and updates state information required to vectorize the main loop
956   /// and its epilogue in two separate passes. This setup helps us avoid
957   /// regenerating and recomputing runtime safety checks. It also helps us to
958   /// shorten the iteration-count-check path length for the cases where the
959   /// iteration count of the loop is so small that the main vector loop is
960   /// completely skipped.
961   EpilogueLoopVectorizationInfo &EPI;
962 };
963 
964 /// A specialized derived class of inner loop vectorizer that performs
965 /// vectorization of *main* loops in the process of vectorizing loops and their
966 /// epilogues.
967 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
968 public:
969   EpilogueVectorizerMainLoop(
970       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
971       DominatorTree *DT, const TargetLibraryInfo *TLI,
972       const TargetTransformInfo *TTI, AssumptionCache *AC,
973       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
974       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
975       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
976       GeneratedRTChecks &Check)
977       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
978                                        EPI, LVL, CM, BFI, PSI, Check) {}
979   /// Implements the interface for creating a vectorized skeleton using the
980   /// *main loop* strategy (ie the first pass of vplan execution).
981   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
982 
983 protected:
984   /// Emits an iteration count bypass check once for the main loop (when \p
985   /// ForEpilogue is false) and once for the epilogue loop (when \p
986   /// ForEpilogue is true).
987   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
988                                              bool ForEpilogue);
989   void printDebugTracesAtStart() override;
990   void printDebugTracesAtEnd() override;
991 };
992 
993 // A specialized derived class of inner loop vectorizer that performs
994 // vectorization of *epilogue* loops in the process of vectorizing loops and
995 // their epilogues.
996 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
997 public:
998   EpilogueVectorizerEpilogueLoop(
999       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
1000       DominatorTree *DT, const TargetLibraryInfo *TLI,
1001       const TargetTransformInfo *TTI, AssumptionCache *AC,
1002       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
1003       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
1004       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
1005       GeneratedRTChecks &Checks)
1006       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1007                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1008   /// Implements the interface for creating a vectorized skeleton using the
1009   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1010   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1011 
1012 protected:
1013   /// Emits an iteration count bypass check after the main vector loop has
1014   /// finished to see if there are any iterations left to execute by either
1015   /// the vector epilogue or the scalar epilogue.
1016   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1017                                                       BasicBlock *Bypass,
1018                                                       BasicBlock *Insert);
1019   void printDebugTracesAtStart() override;
1020   void printDebugTracesAtEnd() override;
1021 };
1022 } // end namespace llvm
1023 
1024 /// Look for a meaningful debug location on the instruction or it's
1025 /// operands.
1026 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1027   if (!I)
1028     return I;
1029 
1030   DebugLoc Empty;
1031   if (I->getDebugLoc() != Empty)
1032     return I;
1033 
1034   for (Use &Op : I->operands()) {
1035     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1036       if (OpInst->getDebugLoc() != Empty)
1037         return OpInst;
1038   }
1039 
1040   return I;
1041 }
1042 
1043 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
1044   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
1045     const DILocation *DIL = Inst->getDebugLoc();
1046 
1047     // When a FSDiscriminator is enabled, we don't need to add the multiply
1048     // factors to the discriminators.
1049     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1050         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1051       // FIXME: For scalable vectors, assume vscale=1.
1052       auto NewDIL =
1053           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1054       if (NewDIL)
1055         B.SetCurrentDebugLocation(NewDIL.getValue());
1056       else
1057         LLVM_DEBUG(dbgs()
1058                    << "Failed to create new discriminator: "
1059                    << DIL->getFilename() << " Line: " << DIL->getLine());
1060     } else
1061       B.SetCurrentDebugLocation(DIL);
1062   } else
1063     B.SetCurrentDebugLocation(DebugLoc());
1064 }
1065 
1066 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1067 /// is passed, the message relates to that particular instruction.
1068 #ifndef NDEBUG
1069 static void debugVectorizationMessage(const StringRef Prefix,
1070                                       const StringRef DebugMsg,
1071                                       Instruction *I) {
1072   dbgs() << "LV: " << Prefix << DebugMsg;
1073   if (I != nullptr)
1074     dbgs() << " " << *I;
1075   else
1076     dbgs() << '.';
1077   dbgs() << '\n';
1078 }
1079 #endif
1080 
1081 /// Create an analysis remark that explains why vectorization failed
1082 ///
1083 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1084 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1085 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1086 /// the location of the remark.  \return the remark object that can be
1087 /// streamed to.
1088 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1089     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1090   Value *CodeRegion = TheLoop->getHeader();
1091   DebugLoc DL = TheLoop->getStartLoc();
1092 
1093   if (I) {
1094     CodeRegion = I->getParent();
1095     // If there is no debug location attached to the instruction, revert back to
1096     // using the loop's.
1097     if (I->getDebugLoc())
1098       DL = I->getDebugLoc();
1099   }
1100 
1101   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1102 }
1103 
1104 /// Return a value for Step multiplied by VF.
1105 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) {
1106   assert(isa<ConstantInt>(Step) && "Expected an integer step");
1107   Constant *StepVal = ConstantInt::get(
1108       Step->getType(),
1109       cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue());
1110   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1111 }
1112 
1113 namespace llvm {
1114 
1115 /// Return the runtime value for VF.
1116 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1117   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1118   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1119 }
1120 
1121 void reportVectorizationFailure(const StringRef DebugMsg,
1122                                 const StringRef OREMsg, const StringRef ORETag,
1123                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1124                                 Instruction *I) {
1125   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1126   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1127   ORE->emit(
1128       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1129       << "loop not vectorized: " << OREMsg);
1130 }
1131 
1132 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1133                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1134                              Instruction *I) {
1135   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1136   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1137   ORE->emit(
1138       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1139       << Msg);
1140 }
1141 
1142 } // end namespace llvm
1143 
1144 #ifndef NDEBUG
1145 /// \return string containing a file name and a line # for the given loop.
1146 static std::string getDebugLocString(const Loop *L) {
1147   std::string Result;
1148   if (L) {
1149     raw_string_ostream OS(Result);
1150     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1151       LoopDbgLoc.print(OS);
1152     else
1153       // Just print the module name.
1154       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1155     OS.flush();
1156   }
1157   return Result;
1158 }
1159 #endif
1160 
1161 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1162                                          const Instruction *Orig) {
1163   // If the loop was versioned with memchecks, add the corresponding no-alias
1164   // metadata.
1165   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1166     LVer->annotateInstWithNoAlias(To, Orig);
1167 }
1168 
1169 void InnerLoopVectorizer::addMetadata(Instruction *To,
1170                                       Instruction *From) {
1171   propagateMetadata(To, From);
1172   addNewMetadata(To, From);
1173 }
1174 
1175 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1176                                       Instruction *From) {
1177   for (Value *V : To) {
1178     if (Instruction *I = dyn_cast<Instruction>(V))
1179       addMetadata(I, From);
1180   }
1181 }
1182 
1183 namespace llvm {
1184 
1185 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1186 // lowered.
1187 enum ScalarEpilogueLowering {
1188 
1189   // The default: allowing scalar epilogues.
1190   CM_ScalarEpilogueAllowed,
1191 
1192   // Vectorization with OptForSize: don't allow epilogues.
1193   CM_ScalarEpilogueNotAllowedOptSize,
1194 
1195   // A special case of vectorisation with OptForSize: loops with a very small
1196   // trip count are considered for vectorization under OptForSize, thereby
1197   // making sure the cost of their loop body is dominant, free of runtime
1198   // guards and scalar iteration overheads.
1199   CM_ScalarEpilogueNotAllowedLowTripLoop,
1200 
1201   // Loop hint predicate indicating an epilogue is undesired.
1202   CM_ScalarEpilogueNotNeededUsePredicate,
1203 
1204   // Directive indicating we must either tail fold or not vectorize
1205   CM_ScalarEpilogueNotAllowedUsePredicate
1206 };
1207 
1208 /// ElementCountComparator creates a total ordering for ElementCount
1209 /// for the purposes of using it in a set structure.
1210 struct ElementCountComparator {
1211   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1212     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1213            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1214   }
1215 };
1216 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1217 
1218 /// LoopVectorizationCostModel - estimates the expected speedups due to
1219 /// vectorization.
1220 /// In many cases vectorization is not profitable. This can happen because of
1221 /// a number of reasons. In this class we mainly attempt to predict the
1222 /// expected speedup/slowdowns due to the supported instruction set. We use the
1223 /// TargetTransformInfo to query the different backends for the cost of
1224 /// different operations.
1225 class LoopVectorizationCostModel {
1226 public:
1227   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1228                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1229                              LoopVectorizationLegality *Legal,
1230                              const TargetTransformInfo &TTI,
1231                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1232                              AssumptionCache *AC,
1233                              OptimizationRemarkEmitter *ORE, const Function *F,
1234                              const LoopVectorizeHints *Hints,
1235                              InterleavedAccessInfo &IAI)
1236       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1237         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1238         Hints(Hints), InterleaveInfo(IAI) {}
1239 
1240   /// \return An upper bound for the vectorization factors (both fixed and
1241   /// scalable). If the factors are 0, vectorization and interleaving should be
1242   /// avoided up front.
1243   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1244 
1245   /// \return True if runtime checks are required for vectorization, and false
1246   /// otherwise.
1247   bool runtimeChecksRequired();
1248 
1249   /// \return The most profitable vectorization factor and the cost of that VF.
1250   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1251   /// then this vectorization factor will be selected if vectorization is
1252   /// possible.
1253   VectorizationFactor
1254   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1255 
1256   VectorizationFactor
1257   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1258                                     const LoopVectorizationPlanner &LVP);
1259 
1260   /// Setup cost-based decisions for user vectorization factor.
1261   void selectUserVectorizationFactor(ElementCount UserVF) {
1262     collectUniformsAndScalars(UserVF);
1263     collectInstsToScalarize(UserVF);
1264   }
1265 
1266   /// \return The size (in bits) of the smallest and widest types in the code
1267   /// that needs to be vectorized. We ignore values that remain scalar such as
1268   /// 64 bit loop indices.
1269   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1270 
1271   /// \return The desired interleave count.
1272   /// If interleave count has been specified by metadata it will be returned.
1273   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1274   /// are the selected vectorization factor and the cost of the selected VF.
1275   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1276 
1277   /// Memory access instruction may be vectorized in more than one way.
1278   /// Form of instruction after vectorization depends on cost.
1279   /// This function takes cost-based decisions for Load/Store instructions
1280   /// and collects them in a map. This decisions map is used for building
1281   /// the lists of loop-uniform and loop-scalar instructions.
1282   /// The calculated cost is saved with widening decision in order to
1283   /// avoid redundant calculations.
1284   void setCostBasedWideningDecision(ElementCount VF);
1285 
1286   /// A struct that represents some properties of the register usage
1287   /// of a loop.
1288   struct RegisterUsage {
1289     /// Holds the number of loop invariant values that are used in the loop.
1290     /// The key is ClassID of target-provided register class.
1291     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1292     /// Holds the maximum number of concurrent live intervals in the loop.
1293     /// The key is ClassID of target-provided register class.
1294     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1295   };
1296 
1297   /// \return Returns information about the register usages of the loop for the
1298   /// given vectorization factors.
1299   SmallVector<RegisterUsage, 8>
1300   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1301 
1302   /// Collect values we want to ignore in the cost model.
1303   void collectValuesToIgnore();
1304 
1305   /// Split reductions into those that happen in the loop, and those that happen
1306   /// outside. In loop reductions are collected into InLoopReductionChains.
1307   void collectInLoopReductions();
1308 
1309   /// Returns true if we should use strict in-order reductions for the given
1310   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1311   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1312   /// of FP operations.
1313   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1314     return EnableStrictReductions && !Hints->allowReordering() &&
1315            RdxDesc.isOrdered();
1316   }
1317 
1318   /// \returns The smallest bitwidth each instruction can be represented with.
1319   /// The vector equivalents of these instructions should be truncated to this
1320   /// type.
1321   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1322     return MinBWs;
1323   }
1324 
1325   /// \returns True if it is more profitable to scalarize instruction \p I for
1326   /// vectorization factor \p VF.
1327   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1328     assert(VF.isVector() &&
1329            "Profitable to scalarize relevant only for VF > 1.");
1330 
1331     // Cost model is not run in the VPlan-native path - return conservative
1332     // result until this changes.
1333     if (EnableVPlanNativePath)
1334       return false;
1335 
1336     auto Scalars = InstsToScalarize.find(VF);
1337     assert(Scalars != InstsToScalarize.end() &&
1338            "VF not yet analyzed for scalarization profitability");
1339     return Scalars->second.find(I) != Scalars->second.end();
1340   }
1341 
1342   /// Returns true if \p I is known to be uniform after vectorization.
1343   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1344     if (VF.isScalar())
1345       return true;
1346 
1347     // Cost model is not run in the VPlan-native path - return conservative
1348     // result until this changes.
1349     if (EnableVPlanNativePath)
1350       return false;
1351 
1352     auto UniformsPerVF = Uniforms.find(VF);
1353     assert(UniformsPerVF != Uniforms.end() &&
1354            "VF not yet analyzed for uniformity");
1355     return UniformsPerVF->second.count(I);
1356   }
1357 
1358   /// Returns true if \p I is known to be scalar after vectorization.
1359   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1360     if (VF.isScalar())
1361       return true;
1362 
1363     // Cost model is not run in the VPlan-native path - return conservative
1364     // result until this changes.
1365     if (EnableVPlanNativePath)
1366       return false;
1367 
1368     auto ScalarsPerVF = Scalars.find(VF);
1369     assert(ScalarsPerVF != Scalars.end() &&
1370            "Scalar values are not calculated for VF");
1371     return ScalarsPerVF->second.count(I);
1372   }
1373 
1374   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1375   /// for vectorization factor \p VF.
1376   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1377     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1378            !isProfitableToScalarize(I, VF) &&
1379            !isScalarAfterVectorization(I, VF);
1380   }
1381 
1382   /// Decision that was taken during cost calculation for memory instruction.
1383   enum InstWidening {
1384     CM_Unknown,
1385     CM_Widen,         // For consecutive accesses with stride +1.
1386     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1387     CM_Interleave,
1388     CM_GatherScatter,
1389     CM_Scalarize
1390   };
1391 
1392   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1393   /// instruction \p I and vector width \p VF.
1394   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1395                            InstructionCost Cost) {
1396     assert(VF.isVector() && "Expected VF >=2");
1397     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1398   }
1399 
1400   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1401   /// interleaving group \p Grp and vector width \p VF.
1402   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1403                            ElementCount VF, InstWidening W,
1404                            InstructionCost Cost) {
1405     assert(VF.isVector() && "Expected VF >=2");
1406     /// Broadcast this decicion to all instructions inside the group.
1407     /// But the cost will be assigned to one instruction only.
1408     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1409       if (auto *I = Grp->getMember(i)) {
1410         if (Grp->getInsertPos() == I)
1411           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1412         else
1413           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1414       }
1415     }
1416   }
1417 
1418   /// Return the cost model decision for the given instruction \p I and vector
1419   /// width \p VF. Return CM_Unknown if this instruction did not pass
1420   /// through the cost modeling.
1421   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1422     assert(VF.isVector() && "Expected VF to be a vector VF");
1423     // Cost model is not run in the VPlan-native path - return conservative
1424     // result until this changes.
1425     if (EnableVPlanNativePath)
1426       return CM_GatherScatter;
1427 
1428     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1429     auto Itr = WideningDecisions.find(InstOnVF);
1430     if (Itr == WideningDecisions.end())
1431       return CM_Unknown;
1432     return Itr->second.first;
1433   }
1434 
1435   /// Return the vectorization cost for the given instruction \p I and vector
1436   /// width \p VF.
1437   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1438     assert(VF.isVector() && "Expected VF >=2");
1439     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1440     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1441            "The cost is not calculated");
1442     return WideningDecisions[InstOnVF].second;
1443   }
1444 
1445   /// Return True if instruction \p I is an optimizable truncate whose operand
1446   /// is an induction variable. Such a truncate will be removed by adding a new
1447   /// induction variable with the destination type.
1448   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1449     // If the instruction is not a truncate, return false.
1450     auto *Trunc = dyn_cast<TruncInst>(I);
1451     if (!Trunc)
1452       return false;
1453 
1454     // Get the source and destination types of the truncate.
1455     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1456     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1457 
1458     // If the truncate is free for the given types, return false. Replacing a
1459     // free truncate with an induction variable would add an induction variable
1460     // update instruction to each iteration of the loop. We exclude from this
1461     // check the primary induction variable since it will need an update
1462     // instruction regardless.
1463     Value *Op = Trunc->getOperand(0);
1464     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1465       return false;
1466 
1467     // If the truncated value is not an induction variable, return false.
1468     return Legal->isInductionPhi(Op);
1469   }
1470 
1471   /// Collects the instructions to scalarize for each predicated instruction in
1472   /// the loop.
1473   void collectInstsToScalarize(ElementCount VF);
1474 
1475   /// Collect Uniform and Scalar values for the given \p VF.
1476   /// The sets depend on CM decision for Load/Store instructions
1477   /// that may be vectorized as interleave, gather-scatter or scalarized.
1478   void collectUniformsAndScalars(ElementCount VF) {
1479     // Do the analysis once.
1480     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1481       return;
1482     setCostBasedWideningDecision(VF);
1483     collectLoopUniforms(VF);
1484     collectLoopScalars(VF);
1485   }
1486 
1487   /// Returns true if the target machine supports masked store operation
1488   /// for the given \p DataType and kind of access to \p Ptr.
1489   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1490     return Legal->isConsecutivePtr(Ptr) &&
1491            TTI.isLegalMaskedStore(DataType, Alignment);
1492   }
1493 
1494   /// Returns true if the target machine supports masked load operation
1495   /// for the given \p DataType and kind of access to \p Ptr.
1496   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1497     return Legal->isConsecutivePtr(Ptr) &&
1498            TTI.isLegalMaskedLoad(DataType, Alignment);
1499   }
1500 
1501   /// Returns true if the target machine can represent \p V as a masked gather
1502   /// or scatter operation.
1503   bool isLegalGatherOrScatter(Value *V) {
1504     bool LI = isa<LoadInst>(V);
1505     bool SI = isa<StoreInst>(V);
1506     if (!LI && !SI)
1507       return false;
1508     auto *Ty = getLoadStoreType(V);
1509     Align Align = getLoadStoreAlignment(V);
1510     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1511            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1512   }
1513 
1514   /// Returns true if the target machine supports all of the reduction
1515   /// variables found for the given VF.
1516   bool canVectorizeReductions(ElementCount VF) {
1517     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1518       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1519       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1520     }));
1521   }
1522 
1523   /// Returns true if \p I is an instruction that will be scalarized with
1524   /// predication. Such instructions include conditional stores and
1525   /// instructions that may divide by zero.
1526   /// If a non-zero VF has been calculated, we check if I will be scalarized
1527   /// predication for that VF.
1528   bool isScalarWithPredication(Instruction *I) const;
1529 
1530   // Returns true if \p I is an instruction that will be predicated either
1531   // through scalar predication or masked load/store or masked gather/scatter.
1532   // Superset of instructions that return true for isScalarWithPredication.
1533   bool isPredicatedInst(Instruction *I) {
1534     if (!blockNeedsPredication(I->getParent()))
1535       return false;
1536     // Loads and stores that need some form of masked operation are predicated
1537     // instructions.
1538     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1539       return Legal->isMaskRequired(I);
1540     return isScalarWithPredication(I);
1541   }
1542 
1543   /// Returns true if \p I is a memory instruction with consecutive memory
1544   /// access that can be widened.
1545   bool
1546   memoryInstructionCanBeWidened(Instruction *I,
1547                                 ElementCount VF = ElementCount::getFixed(1));
1548 
1549   /// Returns true if \p I is a memory instruction in an interleaved-group
1550   /// of memory accesses that can be vectorized with wide vector loads/stores
1551   /// and shuffles.
1552   bool
1553   interleavedAccessCanBeWidened(Instruction *I,
1554                                 ElementCount VF = ElementCount::getFixed(1));
1555 
1556   /// Check if \p Instr belongs to any interleaved access group.
1557   bool isAccessInterleaved(Instruction *Instr) {
1558     return InterleaveInfo.isInterleaved(Instr);
1559   }
1560 
1561   /// Get the interleaved access group that \p Instr belongs to.
1562   const InterleaveGroup<Instruction> *
1563   getInterleavedAccessGroup(Instruction *Instr) {
1564     return InterleaveInfo.getInterleaveGroup(Instr);
1565   }
1566 
1567   /// Returns true if we're required to use a scalar epilogue for at least
1568   /// the final iteration of the original loop.
1569   bool requiresScalarEpilogue() const {
1570     if (!isScalarEpilogueAllowed())
1571       return false;
1572     // If we might exit from anywhere but the latch, must run the exiting
1573     // iteration in scalar form.
1574     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1575       return true;
1576     return InterleaveInfo.requiresScalarEpilogue();
1577   }
1578 
1579   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1580   /// loop hint annotation.
1581   bool isScalarEpilogueAllowed() const {
1582     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1583   }
1584 
1585   /// Returns true if all loop blocks should be masked to fold tail loop.
1586   bool foldTailByMasking() const { return FoldTailByMasking; }
1587 
1588   bool blockNeedsPredication(BasicBlock *BB) const {
1589     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1590   }
1591 
1592   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1593   /// nodes to the chain of instructions representing the reductions. Uses a
1594   /// MapVector to ensure deterministic iteration order.
1595   using ReductionChainMap =
1596       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1597 
1598   /// Return the chain of instructions representing an inloop reduction.
1599   const ReductionChainMap &getInLoopReductionChains() const {
1600     return InLoopReductionChains;
1601   }
1602 
1603   /// Returns true if the Phi is part of an inloop reduction.
1604   bool isInLoopReduction(PHINode *Phi) const {
1605     return InLoopReductionChains.count(Phi);
1606   }
1607 
1608   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1609   /// with factor VF.  Return the cost of the instruction, including
1610   /// scalarization overhead if it's needed.
1611   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1612 
1613   /// Estimate cost of a call instruction CI if it were vectorized with factor
1614   /// VF. Return the cost of the instruction, including scalarization overhead
1615   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1616   /// scalarized -
1617   /// i.e. either vector version isn't available, or is too expensive.
1618   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1619                                     bool &NeedToScalarize) const;
1620 
1621   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1622   /// that of B.
1623   bool isMoreProfitable(const VectorizationFactor &A,
1624                         const VectorizationFactor &B) const;
1625 
1626   /// Invalidates decisions already taken by the cost model.
1627   void invalidateCostModelingDecisions() {
1628     WideningDecisions.clear();
1629     Uniforms.clear();
1630     Scalars.clear();
1631   }
1632 
1633 private:
1634   unsigned NumPredStores = 0;
1635 
1636   /// \return An upper bound for the vectorization factors for both
1637   /// fixed and scalable vectorization, where the minimum-known number of
1638   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1639   /// disabled or unsupported, then the scalable part will be equal to
1640   /// ElementCount::getScalable(0).
1641   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1642                                            ElementCount UserVF);
1643 
1644   /// \return the maximized element count based on the targets vector
1645   /// registers and the loop trip-count, but limited to a maximum safe VF.
1646   /// This is a helper function of computeFeasibleMaxVF.
1647   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1648   /// issue that occurred on one of the buildbots which cannot be reproduced
1649   /// without having access to the properietary compiler (see comments on
1650   /// D98509). The issue is currently under investigation and this workaround
1651   /// will be removed as soon as possible.
1652   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1653                                        unsigned SmallestType,
1654                                        unsigned WidestType,
1655                                        const ElementCount &MaxSafeVF);
1656 
1657   /// \return the maximum legal scalable VF, based on the safe max number
1658   /// of elements.
1659   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1660 
1661   /// The vectorization cost is a combination of the cost itself and a boolean
1662   /// indicating whether any of the contributing operations will actually
1663   /// operate on vector values after type legalization in the backend. If this
1664   /// latter value is false, then all operations will be scalarized (i.e. no
1665   /// vectorization has actually taken place).
1666   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1667 
1668   /// Returns the expected execution cost. The unit of the cost does
1669   /// not matter because we use the 'cost' units to compare different
1670   /// vector widths. The cost that is returned is *not* normalized by
1671   /// the factor width.
1672   VectorizationCostTy expectedCost(ElementCount VF);
1673 
1674   /// Returns the execution time cost of an instruction for a given vector
1675   /// width. Vector width of one means scalar.
1676   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1677 
1678   /// The cost-computation logic from getInstructionCost which provides
1679   /// the vector type as an output parameter.
1680   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1681                                      Type *&VectorTy);
1682 
1683   /// Return the cost of instructions in an inloop reduction pattern, if I is
1684   /// part of that pattern.
1685   InstructionCost getReductionPatternCost(Instruction *I, ElementCount VF,
1686                                           Type *VectorTy,
1687                                           TTI::TargetCostKind CostKind);
1688 
1689   /// Calculate vectorization cost of memory instruction \p I.
1690   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1691 
1692   /// The cost computation for scalarized memory instruction.
1693   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1694 
1695   /// The cost computation for interleaving group of memory instructions.
1696   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1697 
1698   /// The cost computation for Gather/Scatter instruction.
1699   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1700 
1701   /// The cost computation for widening instruction \p I with consecutive
1702   /// memory access.
1703   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1704 
1705   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1706   /// Load: scalar load + broadcast.
1707   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1708   /// element)
1709   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1710 
1711   /// Estimate the overhead of scalarizing an instruction. This is a
1712   /// convenience wrapper for the type-based getScalarizationOverhead API.
1713   InstructionCost getScalarizationOverhead(Instruction *I,
1714                                            ElementCount VF) const;
1715 
1716   /// Returns whether the instruction is a load or store and will be a emitted
1717   /// as a vector operation.
1718   bool isConsecutiveLoadOrStore(Instruction *I);
1719 
1720   /// Returns true if an artificially high cost for emulated masked memrefs
1721   /// should be used.
1722   bool useEmulatedMaskMemRefHack(Instruction *I);
1723 
1724   /// Map of scalar integer values to the smallest bitwidth they can be legally
1725   /// represented as. The vector equivalents of these values should be truncated
1726   /// to this type.
1727   MapVector<Instruction *, uint64_t> MinBWs;
1728 
1729   /// A type representing the costs for instructions if they were to be
1730   /// scalarized rather than vectorized. The entries are Instruction-Cost
1731   /// pairs.
1732   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1733 
1734   /// A set containing all BasicBlocks that are known to present after
1735   /// vectorization as a predicated block.
1736   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1737 
1738   /// Records whether it is allowed to have the original scalar loop execute at
1739   /// least once. This may be needed as a fallback loop in case runtime
1740   /// aliasing/dependence checks fail, or to handle the tail/remainder
1741   /// iterations when the trip count is unknown or doesn't divide by the VF,
1742   /// or as a peel-loop to handle gaps in interleave-groups.
1743   /// Under optsize and when the trip count is very small we don't allow any
1744   /// iterations to execute in the scalar loop.
1745   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1746 
1747   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1748   bool FoldTailByMasking = false;
1749 
1750   /// A map holding scalar costs for different vectorization factors. The
1751   /// presence of a cost for an instruction in the mapping indicates that the
1752   /// instruction will be scalarized when vectorizing with the associated
1753   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1754   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1755 
1756   /// Holds the instructions known to be uniform after vectorization.
1757   /// The data is collected per VF.
1758   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1759 
1760   /// Holds the instructions known to be scalar after vectorization.
1761   /// The data is collected per VF.
1762   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1763 
1764   /// Holds the instructions (address computations) that are forced to be
1765   /// scalarized.
1766   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1767 
1768   /// PHINodes of the reductions that should be expanded in-loop along with
1769   /// their associated chains of reduction operations, in program order from top
1770   /// (PHI) to bottom
1771   ReductionChainMap InLoopReductionChains;
1772 
1773   /// A Map of inloop reduction operations and their immediate chain operand.
1774   /// FIXME: This can be removed once reductions can be costed correctly in
1775   /// vplan. This was added to allow quick lookup to the inloop operations,
1776   /// without having to loop through InLoopReductionChains.
1777   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1778 
1779   /// Returns the expected difference in cost from scalarizing the expression
1780   /// feeding a predicated instruction \p PredInst. The instructions to
1781   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1782   /// non-negative return value implies the expression will be scalarized.
1783   /// Currently, only single-use chains are considered for scalarization.
1784   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1785                               ElementCount VF);
1786 
1787   /// Collect the instructions that are uniform after vectorization. An
1788   /// instruction is uniform if we represent it with a single scalar value in
1789   /// the vectorized loop corresponding to each vector iteration. Examples of
1790   /// uniform instructions include pointer operands of consecutive or
1791   /// interleaved memory accesses. Note that although uniformity implies an
1792   /// instruction will be scalar, the reverse is not true. In general, a
1793   /// scalarized instruction will be represented by VF scalar values in the
1794   /// vectorized loop, each corresponding to an iteration of the original
1795   /// scalar loop.
1796   void collectLoopUniforms(ElementCount VF);
1797 
1798   /// Collect the instructions that are scalar after vectorization. An
1799   /// instruction is scalar if it is known to be uniform or will be scalarized
1800   /// during vectorization. Non-uniform scalarized instructions will be
1801   /// represented by VF values in the vectorized loop, each corresponding to an
1802   /// iteration of the original scalar loop.
1803   void collectLoopScalars(ElementCount VF);
1804 
1805   /// Keeps cost model vectorization decision and cost for instructions.
1806   /// Right now it is used for memory instructions only.
1807   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1808                                 std::pair<InstWidening, InstructionCost>>;
1809 
1810   DecisionList WideningDecisions;
1811 
1812   /// Returns true if \p V is expected to be vectorized and it needs to be
1813   /// extracted.
1814   bool needsExtract(Value *V, ElementCount VF) const {
1815     Instruction *I = dyn_cast<Instruction>(V);
1816     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1817         TheLoop->isLoopInvariant(I))
1818       return false;
1819 
1820     // Assume we can vectorize V (and hence we need extraction) if the
1821     // scalars are not computed yet. This can happen, because it is called
1822     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1823     // the scalars are collected. That should be a safe assumption in most
1824     // cases, because we check if the operands have vectorizable types
1825     // beforehand in LoopVectorizationLegality.
1826     return Scalars.find(VF) == Scalars.end() ||
1827            !isScalarAfterVectorization(I, VF);
1828   };
1829 
1830   /// Returns a range containing only operands needing to be extracted.
1831   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1832                                                    ElementCount VF) const {
1833     return SmallVector<Value *, 4>(make_filter_range(
1834         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1835   }
1836 
1837   /// Determines if we have the infrastructure to vectorize loop \p L and its
1838   /// epilogue, assuming the main loop is vectorized by \p VF.
1839   bool isCandidateForEpilogueVectorization(const Loop &L,
1840                                            const ElementCount VF) const;
1841 
1842   /// Returns true if epilogue vectorization is considered profitable, and
1843   /// false otherwise.
1844   /// \p VF is the vectorization factor chosen for the original loop.
1845   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1846 
1847 public:
1848   /// The loop that we evaluate.
1849   Loop *TheLoop;
1850 
1851   /// Predicated scalar evolution analysis.
1852   PredicatedScalarEvolution &PSE;
1853 
1854   /// Loop Info analysis.
1855   LoopInfo *LI;
1856 
1857   /// Vectorization legality.
1858   LoopVectorizationLegality *Legal;
1859 
1860   /// Vector target information.
1861   const TargetTransformInfo &TTI;
1862 
1863   /// Target Library Info.
1864   const TargetLibraryInfo *TLI;
1865 
1866   /// Demanded bits analysis.
1867   DemandedBits *DB;
1868 
1869   /// Assumption cache.
1870   AssumptionCache *AC;
1871 
1872   /// Interface to emit optimization remarks.
1873   OptimizationRemarkEmitter *ORE;
1874 
1875   const Function *TheFunction;
1876 
1877   /// Loop Vectorize Hint.
1878   const LoopVectorizeHints *Hints;
1879 
1880   /// The interleave access information contains groups of interleaved accesses
1881   /// with the same stride and close to each other.
1882   InterleavedAccessInfo &InterleaveInfo;
1883 
1884   /// Values to ignore in the cost model.
1885   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1886 
1887   /// Values to ignore in the cost model when VF > 1.
1888   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1889 
1890   /// Profitable vector factors.
1891   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1892 };
1893 } // end namespace llvm
1894 
1895 /// Helper struct to manage generating runtime checks for vectorization.
1896 ///
1897 /// The runtime checks are created up-front in temporary blocks to allow better
1898 /// estimating the cost and un-linked from the existing IR. After deciding to
1899 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1900 /// temporary blocks are completely removed.
1901 class GeneratedRTChecks {
1902   /// Basic block which contains the generated SCEV checks, if any.
1903   BasicBlock *SCEVCheckBlock = nullptr;
1904 
1905   /// The value representing the result of the generated SCEV checks. If it is
1906   /// nullptr, either no SCEV checks have been generated or they have been used.
1907   Value *SCEVCheckCond = nullptr;
1908 
1909   /// Basic block which contains the generated memory runtime checks, if any.
1910   BasicBlock *MemCheckBlock = nullptr;
1911 
1912   /// The value representing the result of the generated memory runtime checks.
1913   /// If it is nullptr, either no memory runtime checks have been generated or
1914   /// they have been used.
1915   Instruction *MemRuntimeCheckCond = nullptr;
1916 
1917   DominatorTree *DT;
1918   LoopInfo *LI;
1919 
1920   SCEVExpander SCEVExp;
1921   SCEVExpander MemCheckExp;
1922 
1923 public:
1924   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1925                     const DataLayout &DL)
1926       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1927         MemCheckExp(SE, DL, "scev.check") {}
1928 
1929   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1930   /// accurately estimate the cost of the runtime checks. The blocks are
1931   /// un-linked from the IR and is added back during vector code generation. If
1932   /// there is no vector code generation, the check blocks are removed
1933   /// completely.
1934   void Create(Loop *L, const LoopAccessInfo &LAI,
1935               const SCEVUnionPredicate &UnionPred) {
1936 
1937     BasicBlock *LoopHeader = L->getHeader();
1938     BasicBlock *Preheader = L->getLoopPreheader();
1939 
1940     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1941     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1942     // may be used by SCEVExpander. The blocks will be un-linked from their
1943     // predecessors and removed from LI & DT at the end of the function.
1944     if (!UnionPred.isAlwaysTrue()) {
1945       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1946                                   nullptr, "vector.scevcheck");
1947 
1948       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1949           &UnionPred, SCEVCheckBlock->getTerminator());
1950     }
1951 
1952     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1953     if (RtPtrChecking.Need) {
1954       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1955       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1956                                  "vector.memcheck");
1957 
1958       std::tie(std::ignore, MemRuntimeCheckCond) =
1959           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1960                            RtPtrChecking.getChecks(), MemCheckExp);
1961       assert(MemRuntimeCheckCond &&
1962              "no RT checks generated although RtPtrChecking "
1963              "claimed checks are required");
1964     }
1965 
1966     if (!MemCheckBlock && !SCEVCheckBlock)
1967       return;
1968 
1969     // Unhook the temporary block with the checks, update various places
1970     // accordingly.
1971     if (SCEVCheckBlock)
1972       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1973     if (MemCheckBlock)
1974       MemCheckBlock->replaceAllUsesWith(Preheader);
1975 
1976     if (SCEVCheckBlock) {
1977       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1978       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1979       Preheader->getTerminator()->eraseFromParent();
1980     }
1981     if (MemCheckBlock) {
1982       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1983       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1984       Preheader->getTerminator()->eraseFromParent();
1985     }
1986 
1987     DT->changeImmediateDominator(LoopHeader, Preheader);
1988     if (MemCheckBlock) {
1989       DT->eraseNode(MemCheckBlock);
1990       LI->removeBlock(MemCheckBlock);
1991     }
1992     if (SCEVCheckBlock) {
1993       DT->eraseNode(SCEVCheckBlock);
1994       LI->removeBlock(SCEVCheckBlock);
1995     }
1996   }
1997 
1998   /// Remove the created SCEV & memory runtime check blocks & instructions, if
1999   /// unused.
2000   ~GeneratedRTChecks() {
2001     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
2002     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
2003     if (!SCEVCheckCond)
2004       SCEVCleaner.markResultUsed();
2005 
2006     if (!MemRuntimeCheckCond)
2007       MemCheckCleaner.markResultUsed();
2008 
2009     if (MemRuntimeCheckCond) {
2010       auto &SE = *MemCheckExp.getSE();
2011       // Memory runtime check generation creates compares that use expanded
2012       // values. Remove them before running the SCEVExpanderCleaners.
2013       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2014         if (MemCheckExp.isInsertedInstruction(&I))
2015           continue;
2016         SE.forgetValue(&I);
2017         SE.eraseValueFromMap(&I);
2018         I.eraseFromParent();
2019       }
2020     }
2021     MemCheckCleaner.cleanup();
2022     SCEVCleaner.cleanup();
2023 
2024     if (SCEVCheckCond)
2025       SCEVCheckBlock->eraseFromParent();
2026     if (MemRuntimeCheckCond)
2027       MemCheckBlock->eraseFromParent();
2028   }
2029 
2030   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2031   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2032   /// depending on the generated condition.
2033   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2034                              BasicBlock *LoopVectorPreHeader,
2035                              BasicBlock *LoopExitBlock) {
2036     if (!SCEVCheckCond)
2037       return nullptr;
2038     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2039       if (C->isZero())
2040         return nullptr;
2041 
2042     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2043 
2044     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2045     // Create new preheader for vector loop.
2046     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2047       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2048 
2049     SCEVCheckBlock->getTerminator()->eraseFromParent();
2050     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2051     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2052                                                 SCEVCheckBlock);
2053 
2054     DT->addNewBlock(SCEVCheckBlock, Pred);
2055     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2056 
2057     ReplaceInstWithInst(
2058         SCEVCheckBlock->getTerminator(),
2059         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2060     // Mark the check as used, to prevent it from being removed during cleanup.
2061     SCEVCheckCond = nullptr;
2062     return SCEVCheckBlock;
2063   }
2064 
2065   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2066   /// the branches to branch to the vector preheader or \p Bypass, depending on
2067   /// the generated condition.
2068   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2069                                    BasicBlock *LoopVectorPreHeader) {
2070     // Check if we generated code that checks in runtime if arrays overlap.
2071     if (!MemRuntimeCheckCond)
2072       return nullptr;
2073 
2074     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2075     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2076                                                 MemCheckBlock);
2077 
2078     DT->addNewBlock(MemCheckBlock, Pred);
2079     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2080     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2081 
2082     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2083       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2084 
2085     ReplaceInstWithInst(
2086         MemCheckBlock->getTerminator(),
2087         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2088     MemCheckBlock->getTerminator()->setDebugLoc(
2089         Pred->getTerminator()->getDebugLoc());
2090 
2091     // Mark the check as used, to prevent it from being removed during cleanup.
2092     MemRuntimeCheckCond = nullptr;
2093     return MemCheckBlock;
2094   }
2095 };
2096 
2097 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2098 // vectorization. The loop needs to be annotated with #pragma omp simd
2099 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2100 // vector length information is not provided, vectorization is not considered
2101 // explicit. Interleave hints are not allowed either. These limitations will be
2102 // relaxed in the future.
2103 // Please, note that we are currently forced to abuse the pragma 'clang
2104 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2105 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2106 // provides *explicit vectorization hints* (LV can bypass legal checks and
2107 // assume that vectorization is legal). However, both hints are implemented
2108 // using the same metadata (llvm.loop.vectorize, processed by
2109 // LoopVectorizeHints). This will be fixed in the future when the native IR
2110 // representation for pragma 'omp simd' is introduced.
2111 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2112                                    OptimizationRemarkEmitter *ORE) {
2113   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2114   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2115 
2116   // Only outer loops with an explicit vectorization hint are supported.
2117   // Unannotated outer loops are ignored.
2118   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2119     return false;
2120 
2121   Function *Fn = OuterLp->getHeader()->getParent();
2122   if (!Hints.allowVectorization(Fn, OuterLp,
2123                                 true /*VectorizeOnlyWhenForced*/)) {
2124     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2125     return false;
2126   }
2127 
2128   if (Hints.getInterleave() > 1) {
2129     // TODO: Interleave support is future work.
2130     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2131                          "outer loops.\n");
2132     Hints.emitRemarkWithHints();
2133     return false;
2134   }
2135 
2136   return true;
2137 }
2138 
2139 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2140                                   OptimizationRemarkEmitter *ORE,
2141                                   SmallVectorImpl<Loop *> &V) {
2142   // Collect inner loops and outer loops without irreducible control flow. For
2143   // now, only collect outer loops that have explicit vectorization hints. If we
2144   // are stress testing the VPlan H-CFG construction, we collect the outermost
2145   // loop of every loop nest.
2146   if (L.isInnermost() || VPlanBuildStressTest ||
2147       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2148     LoopBlocksRPO RPOT(&L);
2149     RPOT.perform(LI);
2150     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2151       V.push_back(&L);
2152       // TODO: Collect inner loops inside marked outer loops in case
2153       // vectorization fails for the outer loop. Do not invoke
2154       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2155       // already known to be reducible. We can use an inherited attribute for
2156       // that.
2157       return;
2158     }
2159   }
2160   for (Loop *InnerL : L)
2161     collectSupportedLoops(*InnerL, LI, ORE, V);
2162 }
2163 
2164 namespace {
2165 
2166 /// The LoopVectorize Pass.
2167 struct LoopVectorize : public FunctionPass {
2168   /// Pass identification, replacement for typeid
2169   static char ID;
2170 
2171   LoopVectorizePass Impl;
2172 
2173   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2174                          bool VectorizeOnlyWhenForced = false)
2175       : FunctionPass(ID),
2176         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2177     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2178   }
2179 
2180   bool runOnFunction(Function &F) override {
2181     if (skipFunction(F))
2182       return false;
2183 
2184     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2185     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2186     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2187     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2188     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2189     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2190     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2191     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2192     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2193     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2194     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2195     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2196     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2197 
2198     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2199         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2200 
2201     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2202                         GetLAA, *ORE, PSI).MadeAnyChange;
2203   }
2204 
2205   void getAnalysisUsage(AnalysisUsage &AU) const override {
2206     AU.addRequired<AssumptionCacheTracker>();
2207     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2208     AU.addRequired<DominatorTreeWrapperPass>();
2209     AU.addRequired<LoopInfoWrapperPass>();
2210     AU.addRequired<ScalarEvolutionWrapperPass>();
2211     AU.addRequired<TargetTransformInfoWrapperPass>();
2212     AU.addRequired<AAResultsWrapperPass>();
2213     AU.addRequired<LoopAccessLegacyAnalysis>();
2214     AU.addRequired<DemandedBitsWrapperPass>();
2215     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2216     AU.addRequired<InjectTLIMappingsLegacy>();
2217 
2218     // We currently do not preserve loopinfo/dominator analyses with outer loop
2219     // vectorization. Until this is addressed, mark these analyses as preserved
2220     // only for non-VPlan-native path.
2221     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2222     if (!EnableVPlanNativePath) {
2223       AU.addPreserved<LoopInfoWrapperPass>();
2224       AU.addPreserved<DominatorTreeWrapperPass>();
2225     }
2226 
2227     AU.addPreserved<BasicAAWrapperPass>();
2228     AU.addPreserved<GlobalsAAWrapperPass>();
2229     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2230   }
2231 };
2232 
2233 } // end anonymous namespace
2234 
2235 //===----------------------------------------------------------------------===//
2236 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2237 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2238 //===----------------------------------------------------------------------===//
2239 
2240 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2241   // We need to place the broadcast of invariant variables outside the loop,
2242   // but only if it's proven safe to do so. Else, broadcast will be inside
2243   // vector loop body.
2244   Instruction *Instr = dyn_cast<Instruction>(V);
2245   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2246                      (!Instr ||
2247                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2248   // Place the code for broadcasting invariant variables in the new preheader.
2249   IRBuilder<>::InsertPointGuard Guard(Builder);
2250   if (SafeToHoist)
2251     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2252 
2253   // Broadcast the scalar into all locations in the vector.
2254   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2255 
2256   return Shuf;
2257 }
2258 
2259 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2260     const InductionDescriptor &II, Value *Step, Value *Start,
2261     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2262     VPTransformState &State) {
2263   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2264          "Expected either an induction phi-node or a truncate of it!");
2265 
2266   // Construct the initial value of the vector IV in the vector loop preheader
2267   auto CurrIP = Builder.saveIP();
2268   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2269   if (isa<TruncInst>(EntryVal)) {
2270     assert(Start->getType()->isIntegerTy() &&
2271            "Truncation requires an integer type");
2272     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2273     Step = Builder.CreateTrunc(Step, TruncType);
2274     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2275   }
2276   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2277   Value *SteppedStart =
2278       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
2279 
2280   // We create vector phi nodes for both integer and floating-point induction
2281   // variables. Here, we determine the kind of arithmetic we will perform.
2282   Instruction::BinaryOps AddOp;
2283   Instruction::BinaryOps MulOp;
2284   if (Step->getType()->isIntegerTy()) {
2285     AddOp = Instruction::Add;
2286     MulOp = Instruction::Mul;
2287   } else {
2288     AddOp = II.getInductionOpcode();
2289     MulOp = Instruction::FMul;
2290   }
2291 
2292   // Multiply the vectorization factor by the step using integer or
2293   // floating-point arithmetic as appropriate.
2294   Type *StepType = Step->getType();
2295   if (Step->getType()->isFloatingPointTy())
2296     StepType = IntegerType::get(StepType->getContext(),
2297                                 StepType->getScalarSizeInBits());
2298   Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF);
2299   if (Step->getType()->isFloatingPointTy())
2300     RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType());
2301   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2302 
2303   // Create a vector splat to use in the induction update.
2304   //
2305   // FIXME: If the step is non-constant, we create the vector splat with
2306   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2307   //        handle a constant vector splat.
2308   Value *SplatVF = isa<Constant>(Mul)
2309                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2310                        : Builder.CreateVectorSplat(VF, Mul);
2311   Builder.restoreIP(CurrIP);
2312 
2313   // We may need to add the step a number of times, depending on the unroll
2314   // factor. The last of those goes into the PHI.
2315   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2316                                     &*LoopVectorBody->getFirstInsertionPt());
2317   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2318   Instruction *LastInduction = VecInd;
2319   for (unsigned Part = 0; Part < UF; ++Part) {
2320     State.set(Def, LastInduction, Part);
2321 
2322     if (isa<TruncInst>(EntryVal))
2323       addMetadata(LastInduction, EntryVal);
2324     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2325                                           State, Part);
2326 
2327     LastInduction = cast<Instruction>(
2328         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2329     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2330   }
2331 
2332   // Move the last step to the end of the latch block. This ensures consistent
2333   // placement of all induction updates.
2334   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2335   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2336   auto *ICmp = cast<Instruction>(Br->getCondition());
2337   LastInduction->moveBefore(ICmp);
2338   LastInduction->setName("vec.ind.next");
2339 
2340   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2341   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2342 }
2343 
2344 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2345   return Cost->isScalarAfterVectorization(I, VF) ||
2346          Cost->isProfitableToScalarize(I, VF);
2347 }
2348 
2349 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2350   if (shouldScalarizeInstruction(IV))
2351     return true;
2352   auto isScalarInst = [&](User *U) -> bool {
2353     auto *I = cast<Instruction>(U);
2354     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2355   };
2356   return llvm::any_of(IV->users(), isScalarInst);
2357 }
2358 
2359 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2360     const InductionDescriptor &ID, const Instruction *EntryVal,
2361     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2362     unsigned Part, unsigned Lane) {
2363   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2364          "Expected either an induction phi-node or a truncate of it!");
2365 
2366   // This induction variable is not the phi from the original loop but the
2367   // newly-created IV based on the proof that casted Phi is equal to the
2368   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2369   // re-uses the same InductionDescriptor that original IV uses but we don't
2370   // have to do any recording in this case - that is done when original IV is
2371   // processed.
2372   if (isa<TruncInst>(EntryVal))
2373     return;
2374 
2375   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
2376   if (Casts.empty())
2377     return;
2378   // Only the first Cast instruction in the Casts vector is of interest.
2379   // The rest of the Casts (if exist) have no uses outside the
2380   // induction update chain itself.
2381   if (Lane < UINT_MAX)
2382     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2383   else
2384     State.set(CastDef, VectorLoopVal, Part);
2385 }
2386 
2387 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2388                                                 TruncInst *Trunc, VPValue *Def,
2389                                                 VPValue *CastDef,
2390                                                 VPTransformState &State) {
2391   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2392          "Primary induction variable must have an integer type");
2393 
2394   auto II = Legal->getInductionVars().find(IV);
2395   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2396 
2397   auto ID = II->second;
2398   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2399 
2400   // The value from the original loop to which we are mapping the new induction
2401   // variable.
2402   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2403 
2404   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2405 
2406   // Generate code for the induction step. Note that induction steps are
2407   // required to be loop-invariant
2408   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2409     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2410            "Induction step should be loop invariant");
2411     if (PSE.getSE()->isSCEVable(IV->getType())) {
2412       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2413       return Exp.expandCodeFor(Step, Step->getType(),
2414                                LoopVectorPreHeader->getTerminator());
2415     }
2416     return cast<SCEVUnknown>(Step)->getValue();
2417   };
2418 
2419   // The scalar value to broadcast. This is derived from the canonical
2420   // induction variable. If a truncation type is given, truncate the canonical
2421   // induction variable and step. Otherwise, derive these values from the
2422   // induction descriptor.
2423   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2424     Value *ScalarIV = Induction;
2425     if (IV != OldInduction) {
2426       ScalarIV = IV->getType()->isIntegerTy()
2427                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2428                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2429                                           IV->getType());
2430       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2431       ScalarIV->setName("offset.idx");
2432     }
2433     if (Trunc) {
2434       auto *TruncType = cast<IntegerType>(Trunc->getType());
2435       assert(Step->getType()->isIntegerTy() &&
2436              "Truncation requires an integer step");
2437       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2438       Step = Builder.CreateTrunc(Step, TruncType);
2439     }
2440     return ScalarIV;
2441   };
2442 
2443   // Create the vector values from the scalar IV, in the absence of creating a
2444   // vector IV.
2445   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2446     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2447     for (unsigned Part = 0; Part < UF; ++Part) {
2448       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2449       Value *EntryPart =
2450           getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step,
2451                         ID.getInductionOpcode());
2452       State.set(Def, EntryPart, Part);
2453       if (Trunc)
2454         addMetadata(EntryPart, Trunc);
2455       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2456                                             State, Part);
2457     }
2458   };
2459 
2460   // Fast-math-flags propagate from the original induction instruction.
2461   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2462   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2463     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2464 
2465   // Now do the actual transformations, and start with creating the step value.
2466   Value *Step = CreateStepValue(ID.getStep());
2467   if (VF.isZero() || VF.isScalar()) {
2468     Value *ScalarIV = CreateScalarIV(Step);
2469     CreateSplatIV(ScalarIV, Step);
2470     return;
2471   }
2472 
2473   // Determine if we want a scalar version of the induction variable. This is
2474   // true if the induction variable itself is not widened, or if it has at
2475   // least one user in the loop that is not widened.
2476   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2477   if (!NeedsScalarIV) {
2478     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2479                                     State);
2480     return;
2481   }
2482 
2483   // Try to create a new independent vector induction variable. If we can't
2484   // create the phi node, we will splat the scalar induction variable in each
2485   // loop iteration.
2486   if (!shouldScalarizeInstruction(EntryVal)) {
2487     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2488                                     State);
2489     Value *ScalarIV = CreateScalarIV(Step);
2490     // Create scalar steps that can be used by instructions we will later
2491     // scalarize. Note that the addition of the scalar steps will not increase
2492     // the number of instructions in the loop in the common case prior to
2493     // InstCombine. We will be trading one vector extract for each scalar step.
2494     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2495     return;
2496   }
2497 
2498   // All IV users are scalar instructions, so only emit a scalar IV, not a
2499   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2500   // predicate used by the masked loads/stores.
2501   Value *ScalarIV = CreateScalarIV(Step);
2502   if (!Cost->isScalarEpilogueAllowed())
2503     CreateSplatIV(ScalarIV, Step);
2504   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2505 }
2506 
2507 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2508                                           Instruction::BinaryOps BinOp) {
2509   // Create and check the types.
2510   auto *ValVTy = cast<VectorType>(Val->getType());
2511   ElementCount VLen = ValVTy->getElementCount();
2512 
2513   Type *STy = Val->getType()->getScalarType();
2514   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2515          "Induction Step must be an integer or FP");
2516   assert(Step->getType() == STy && "Step has wrong type");
2517 
2518   SmallVector<Constant *, 8> Indices;
2519 
2520   // Create a vector of consecutive numbers from zero to VF.
2521   VectorType *InitVecValVTy = ValVTy;
2522   Type *InitVecValSTy = STy;
2523   if (STy->isFloatingPointTy()) {
2524     InitVecValSTy =
2525         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2526     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2527   }
2528   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2529 
2530   // Add on StartIdx
2531   Value *StartIdxSplat = Builder.CreateVectorSplat(
2532       VLen, ConstantInt::get(InitVecValSTy, StartIdx));
2533   InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2534 
2535   if (STy->isIntegerTy()) {
2536     Step = Builder.CreateVectorSplat(VLen, Step);
2537     assert(Step->getType() == Val->getType() && "Invalid step vec");
2538     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2539     // which can be found from the original scalar operations.
2540     Step = Builder.CreateMul(InitVec, Step);
2541     return Builder.CreateAdd(Val, Step, "induction");
2542   }
2543 
2544   // Floating point induction.
2545   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2546          "Binary Opcode should be specified for FP induction");
2547   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2548   Step = Builder.CreateVectorSplat(VLen, Step);
2549   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2550   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2551 }
2552 
2553 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2554                                            Instruction *EntryVal,
2555                                            const InductionDescriptor &ID,
2556                                            VPValue *Def, VPValue *CastDef,
2557                                            VPTransformState &State) {
2558   // We shouldn't have to build scalar steps if we aren't vectorizing.
2559   assert(VF.isVector() && "VF should be greater than one");
2560   // Get the value type and ensure it and the step have the same integer type.
2561   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2562   assert(ScalarIVTy == Step->getType() &&
2563          "Val and Step should have the same type");
2564 
2565   // We build scalar steps for both integer and floating-point induction
2566   // variables. Here, we determine the kind of arithmetic we will perform.
2567   Instruction::BinaryOps AddOp;
2568   Instruction::BinaryOps MulOp;
2569   if (ScalarIVTy->isIntegerTy()) {
2570     AddOp = Instruction::Add;
2571     MulOp = Instruction::Mul;
2572   } else {
2573     AddOp = ID.getInductionOpcode();
2574     MulOp = Instruction::FMul;
2575   }
2576 
2577   // Determine the number of scalars we need to generate for each unroll
2578   // iteration. If EntryVal is uniform, we only need to generate the first
2579   // lane. Otherwise, we generate all VF values.
2580   bool IsUniform =
2581       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
2582   unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
2583   // Compute the scalar steps and save the results in State.
2584   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2585                                      ScalarIVTy->getScalarSizeInBits());
2586   Type *VecIVTy = nullptr;
2587   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2588   if (!IsUniform && VF.isScalable()) {
2589     VecIVTy = VectorType::get(ScalarIVTy, VF);
2590     UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
2591     SplatStep = Builder.CreateVectorSplat(VF, Step);
2592     SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
2593   }
2594 
2595   for (unsigned Part = 0; Part < UF; ++Part) {
2596     Value *StartIdx0 =
2597         createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF);
2598 
2599     if (!IsUniform && VF.isScalable()) {
2600       auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
2601       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2602       if (ScalarIVTy->isFloatingPointTy())
2603         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2604       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2605       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2606       State.set(Def, Add, Part);
2607       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2608                                             Part);
2609       // It's useful to record the lane values too for the known minimum number
2610       // of elements so we do those below. This improves the code quality when
2611       // trying to extract the first element, for example.
2612     }
2613 
2614     if (ScalarIVTy->isFloatingPointTy())
2615       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2616 
2617     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2618       Value *StartIdx = Builder.CreateBinOp(
2619           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2620       // The step returned by `createStepForVF` is a runtime-evaluated value
2621       // when VF is scalable. Otherwise, it should be folded into a Constant.
2622       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2623              "Expected StartIdx to be folded to a constant when VF is not "
2624              "scalable");
2625       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2626       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2627       State.set(Def, Add, VPIteration(Part, Lane));
2628       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2629                                             Part, Lane);
2630     }
2631   }
2632 }
2633 
2634 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2635                                                     const VPIteration &Instance,
2636                                                     VPTransformState &State) {
2637   Value *ScalarInst = State.get(Def, Instance);
2638   Value *VectorValue = State.get(Def, Instance.Part);
2639   VectorValue = Builder.CreateInsertElement(
2640       VectorValue, ScalarInst,
2641       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2642   State.set(Def, VectorValue, Instance.Part);
2643 }
2644 
2645 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2646   assert(Vec->getType()->isVectorTy() && "Invalid type");
2647   return Builder.CreateVectorReverse(Vec, "reverse");
2648 }
2649 
2650 // Return whether we allow using masked interleave-groups (for dealing with
2651 // strided loads/stores that reside in predicated blocks, or for dealing
2652 // with gaps).
2653 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2654   // If an override option has been passed in for interleaved accesses, use it.
2655   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2656     return EnableMaskedInterleavedMemAccesses;
2657 
2658   return TTI.enableMaskedInterleavedAccessVectorization();
2659 }
2660 
2661 // Try to vectorize the interleave group that \p Instr belongs to.
2662 //
2663 // E.g. Translate following interleaved load group (factor = 3):
2664 //   for (i = 0; i < N; i+=3) {
2665 //     R = Pic[i];             // Member of index 0
2666 //     G = Pic[i+1];           // Member of index 1
2667 //     B = Pic[i+2];           // Member of index 2
2668 //     ... // do something to R, G, B
2669 //   }
2670 // To:
2671 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2672 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2673 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2674 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2675 //
2676 // Or translate following interleaved store group (factor = 3):
2677 //   for (i = 0; i < N; i+=3) {
2678 //     ... do something to R, G, B
2679 //     Pic[i]   = R;           // Member of index 0
2680 //     Pic[i+1] = G;           // Member of index 1
2681 //     Pic[i+2] = B;           // Member of index 2
2682 //   }
2683 // To:
2684 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2685 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2686 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2687 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2688 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2689 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2690     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2691     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2692     VPValue *BlockInMask) {
2693   Instruction *Instr = Group->getInsertPos();
2694   const DataLayout &DL = Instr->getModule()->getDataLayout();
2695 
2696   // Prepare for the vector type of the interleaved load/store.
2697   Type *ScalarTy = getLoadStoreType(Instr);
2698   unsigned InterleaveFactor = Group->getFactor();
2699   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2700   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2701 
2702   // Prepare for the new pointers.
2703   SmallVector<Value *, 2> AddrParts;
2704   unsigned Index = Group->getIndex(Instr);
2705 
2706   // TODO: extend the masked interleaved-group support to reversed access.
2707   assert((!BlockInMask || !Group->isReverse()) &&
2708          "Reversed masked interleave-group not supported.");
2709 
2710   // If the group is reverse, adjust the index to refer to the last vector lane
2711   // instead of the first. We adjust the index from the first vector lane,
2712   // rather than directly getting the pointer for lane VF - 1, because the
2713   // pointer operand of the interleaved access is supposed to be uniform. For
2714   // uniform instructions, we're only required to generate a value for the
2715   // first vector lane in each unroll iteration.
2716   if (Group->isReverse())
2717     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2718 
2719   for (unsigned Part = 0; Part < UF; Part++) {
2720     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2721     setDebugLocFromInst(Builder, AddrPart);
2722 
2723     // Notice current instruction could be any index. Need to adjust the address
2724     // to the member of index 0.
2725     //
2726     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2727     //       b = A[i];       // Member of index 0
2728     // Current pointer is pointed to A[i+1], adjust it to A[i].
2729     //
2730     // E.g.  A[i+1] = a;     // Member of index 1
2731     //       A[i]   = b;     // Member of index 0
2732     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2733     // Current pointer is pointed to A[i+2], adjust it to A[i].
2734 
2735     bool InBounds = false;
2736     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2737       InBounds = gep->isInBounds();
2738     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2739     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2740 
2741     // Cast to the vector pointer type.
2742     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2743     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2744     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2745   }
2746 
2747   setDebugLocFromInst(Builder, Instr);
2748   Value *PoisonVec = PoisonValue::get(VecTy);
2749 
2750   Value *MaskForGaps = nullptr;
2751   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2752     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2753     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2754   }
2755 
2756   // Vectorize the interleaved load group.
2757   if (isa<LoadInst>(Instr)) {
2758     // For each unroll part, create a wide load for the group.
2759     SmallVector<Value *, 2> NewLoads;
2760     for (unsigned Part = 0; Part < UF; Part++) {
2761       Instruction *NewLoad;
2762       if (BlockInMask || MaskForGaps) {
2763         assert(useMaskedInterleavedAccesses(*TTI) &&
2764                "masked interleaved groups are not allowed.");
2765         Value *GroupMask = MaskForGaps;
2766         if (BlockInMask) {
2767           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2768           Value *ShuffledMask = Builder.CreateShuffleVector(
2769               BlockInMaskPart,
2770               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2771               "interleaved.mask");
2772           GroupMask = MaskForGaps
2773                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2774                                                 MaskForGaps)
2775                           : ShuffledMask;
2776         }
2777         NewLoad =
2778             Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(),
2779                                      GroupMask, PoisonVec, "wide.masked.vec");
2780       }
2781       else
2782         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2783                                             Group->getAlign(), "wide.vec");
2784       Group->addMetadata(NewLoad);
2785       NewLoads.push_back(NewLoad);
2786     }
2787 
2788     // For each member in the group, shuffle out the appropriate data from the
2789     // wide loads.
2790     unsigned J = 0;
2791     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2792       Instruction *Member = Group->getMember(I);
2793 
2794       // Skip the gaps in the group.
2795       if (!Member)
2796         continue;
2797 
2798       auto StrideMask =
2799           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2800       for (unsigned Part = 0; Part < UF; Part++) {
2801         Value *StridedVec = Builder.CreateShuffleVector(
2802             NewLoads[Part], StrideMask, "strided.vec");
2803 
2804         // If this member has different type, cast the result type.
2805         if (Member->getType() != ScalarTy) {
2806           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2807           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2808           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2809         }
2810 
2811         if (Group->isReverse())
2812           StridedVec = reverseVector(StridedVec);
2813 
2814         State.set(VPDefs[J], StridedVec, Part);
2815       }
2816       ++J;
2817     }
2818     return;
2819   }
2820 
2821   // The sub vector type for current instruction.
2822   auto *SubVT = VectorType::get(ScalarTy, VF);
2823 
2824   // Vectorize the interleaved store group.
2825   for (unsigned Part = 0; Part < UF; Part++) {
2826     // Collect the stored vector from each member.
2827     SmallVector<Value *, 4> StoredVecs;
2828     for (unsigned i = 0; i < InterleaveFactor; i++) {
2829       // Interleaved store group doesn't allow a gap, so each index has a member
2830       assert(Group->getMember(i) && "Fail to get a member from an interleaved store group");
2831 
2832       Value *StoredVec = State.get(StoredValues[i], Part);
2833 
2834       if (Group->isReverse())
2835         StoredVec = reverseVector(StoredVec);
2836 
2837       // If this member has different type, cast it to a unified type.
2838 
2839       if (StoredVec->getType() != SubVT)
2840         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2841 
2842       StoredVecs.push_back(StoredVec);
2843     }
2844 
2845     // Concatenate all vectors into a wide vector.
2846     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2847 
2848     // Interleave the elements in the wide vector.
2849     Value *IVec = Builder.CreateShuffleVector(
2850         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2851         "interleaved.vec");
2852 
2853     Instruction *NewStoreInstr;
2854     if (BlockInMask) {
2855       Value *BlockInMaskPart = State.get(BlockInMask, Part);
2856       Value *ShuffledMask = Builder.CreateShuffleVector(
2857           BlockInMaskPart,
2858           createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2859           "interleaved.mask");
2860       NewStoreInstr = Builder.CreateMaskedStore(
2861           IVec, AddrParts[Part], Group->getAlign(), ShuffledMask);
2862     }
2863     else
2864       NewStoreInstr =
2865           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2866 
2867     Group->addMetadata(NewStoreInstr);
2868   }
2869 }
2870 
2871 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2872     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2873     VPValue *StoredValue, VPValue *BlockInMask) {
2874   // Attempt to issue a wide load.
2875   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2876   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2877 
2878   assert((LI || SI) && "Invalid Load/Store instruction");
2879   assert((!SI || StoredValue) && "No stored value provided for widened store");
2880   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2881 
2882   LoopVectorizationCostModel::InstWidening Decision =
2883       Cost->getWideningDecision(Instr, VF);
2884   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2885           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2886           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2887          "CM decision is not to widen the memory instruction");
2888 
2889   Type *ScalarDataTy = getLoadStoreType(Instr);
2890 
2891   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2892   const Align Alignment = getLoadStoreAlignment(Instr);
2893 
2894   // Determine if the pointer operand of the access is either consecutive or
2895   // reverse consecutive.
2896   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2897   bool ConsecutiveStride =
2898       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2899   bool CreateGatherScatter =
2900       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2901 
2902   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2903   // gather/scatter. Otherwise Decision should have been to Scalarize.
2904   assert((ConsecutiveStride || CreateGatherScatter) &&
2905          "The instruction should be scalarized");
2906   (void)ConsecutiveStride;
2907 
2908   VectorParts BlockInMaskParts(UF);
2909   bool isMaskRequired = BlockInMask;
2910   if (isMaskRequired)
2911     for (unsigned Part = 0; Part < UF; ++Part)
2912       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2913 
2914   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2915     // Calculate the pointer for the specific unroll-part.
2916     GetElementPtrInst *PartPtr = nullptr;
2917 
2918     bool InBounds = false;
2919     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2920       InBounds = gep->isInBounds();
2921     if (Reverse) {
2922       // If the address is consecutive but reversed, then the
2923       // wide store needs to start at the last vector element.
2924       // RunTimeVF =  VScale * VF.getKnownMinValue()
2925       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
2926       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
2927       // NumElt = -Part * RunTimeVF
2928       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
2929       // LastLane = 1 - RunTimeVF
2930       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
2931       PartPtr =
2932           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
2933       PartPtr->setIsInBounds(InBounds);
2934       PartPtr = cast<GetElementPtrInst>(
2935           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
2936       PartPtr->setIsInBounds(InBounds);
2937       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2938         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2939     } else {
2940       Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF);
2941       PartPtr = cast<GetElementPtrInst>(
2942           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
2943       PartPtr->setIsInBounds(InBounds);
2944     }
2945 
2946     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2947     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2948   };
2949 
2950   // Handle Stores:
2951   if (SI) {
2952     setDebugLocFromInst(Builder, SI);
2953 
2954     for (unsigned Part = 0; Part < UF; ++Part) {
2955       Instruction *NewSI = nullptr;
2956       Value *StoredVal = State.get(StoredValue, Part);
2957       if (CreateGatherScatter) {
2958         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2959         Value *VectorGep = State.get(Addr, Part);
2960         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2961                                             MaskPart);
2962       } else {
2963         if (Reverse) {
2964           // If we store to reverse consecutive memory locations, then we need
2965           // to reverse the order of elements in the stored value.
2966           StoredVal = reverseVector(StoredVal);
2967           // We don't want to update the value in the map as it might be used in
2968           // another expression. So don't call resetVectorValue(StoredVal).
2969         }
2970         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
2971         if (isMaskRequired)
2972           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
2973                                             BlockInMaskParts[Part]);
2974         else
2975           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
2976       }
2977       addMetadata(NewSI, SI);
2978     }
2979     return;
2980   }
2981 
2982   // Handle loads.
2983   assert(LI && "Must have a load instruction");
2984   setDebugLocFromInst(Builder, LI);
2985   for (unsigned Part = 0; Part < UF; ++Part) {
2986     Value *NewLI;
2987     if (CreateGatherScatter) {
2988       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2989       Value *VectorGep = State.get(Addr, Part);
2990       NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart,
2991                                          nullptr, "wide.masked.gather");
2992       addMetadata(NewLI, LI);
2993     } else {
2994       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
2995       if (isMaskRequired)
2996         NewLI = Builder.CreateMaskedLoad(
2997             VecPtr, Alignment, BlockInMaskParts[Part], PoisonValue::get(DataTy),
2998             "wide.masked.load");
2999       else
3000         NewLI =
3001             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
3002 
3003       // Add metadata to the load, but setVectorValue to the reverse shuffle.
3004       addMetadata(NewLI, LI);
3005       if (Reverse)
3006         NewLI = reverseVector(NewLI);
3007     }
3008 
3009     State.set(Def, NewLI, Part);
3010   }
3011 }
3012 
3013 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def,
3014                                                VPUser &User,
3015                                                const VPIteration &Instance,
3016                                                bool IfPredicateInstr,
3017                                                VPTransformState &State) {
3018   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
3019 
3020   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
3021   // the first lane and part.
3022   if (isa<NoAliasScopeDeclInst>(Instr))
3023     if (!Instance.isFirstIteration())
3024       return;
3025 
3026   setDebugLocFromInst(Builder, Instr);
3027 
3028   // Does this instruction return a value ?
3029   bool IsVoidRetTy = Instr->getType()->isVoidTy();
3030 
3031   Instruction *Cloned = Instr->clone();
3032   if (!IsVoidRetTy)
3033     Cloned->setName(Instr->getName() + ".cloned");
3034 
3035   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3036                                Builder.GetInsertPoint());
3037   // Replace the operands of the cloned instructions with their scalar
3038   // equivalents in the new loop.
3039   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
3040     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
3041     auto InputInstance = Instance;
3042     if (!Operand || !OrigLoop->contains(Operand) ||
3043         (Cost->isUniformAfterVectorization(Operand, State.VF)))
3044       InputInstance.Lane = VPLane::getFirstLane();
3045     auto *NewOp = State.get(User.getOperand(op), InputInstance);
3046     Cloned->setOperand(op, NewOp);
3047   }
3048   addNewMetadata(Cloned, Instr);
3049 
3050   // Place the cloned scalar in the new loop.
3051   Builder.Insert(Cloned);
3052 
3053   State.set(Def, Cloned, Instance);
3054 
3055   // If we just cloned a new assumption, add it the assumption cache.
3056   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3057     AC->registerAssumption(II);
3058 
3059   // End if-block.
3060   if (IfPredicateInstr)
3061     PredicatedInstructions.push_back(Cloned);
3062 }
3063 
3064 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3065                                                       Value *End, Value *Step,
3066                                                       Instruction *DL) {
3067   BasicBlock *Header = L->getHeader();
3068   BasicBlock *Latch = L->getLoopLatch();
3069   // As we're just creating this loop, it's possible no latch exists
3070   // yet. If so, use the header as this will be a single block loop.
3071   if (!Latch)
3072     Latch = Header;
3073 
3074   IRBuilder<> Builder(&*Header->getFirstInsertionPt());
3075   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3076   setDebugLocFromInst(Builder, OldInst);
3077   auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
3078 
3079   Builder.SetInsertPoint(Latch->getTerminator());
3080   setDebugLocFromInst(Builder, OldInst);
3081 
3082   // Create i+1 and fill the PHINode.
3083   //
3084   // If the tail is not folded, we know that End - Start >= Step (either
3085   // statically or through the minimum iteration checks). We also know that both
3086   // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
3087   // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned
3088   // overflows and we can mark the induction increment as NUW.
3089   Value *Next =
3090       Builder.CreateAdd(Induction, Step, "index.next",
3091                         /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false);
3092   Induction->addIncoming(Start, L->getLoopPreheader());
3093   Induction->addIncoming(Next, Latch);
3094   // Create the compare.
3095   Value *ICmp = Builder.CreateICmpEQ(Next, End);
3096   Builder.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3097 
3098   // Now we have two terminators. Remove the old one from the block.
3099   Latch->getTerminator()->eraseFromParent();
3100 
3101   return Induction;
3102 }
3103 
3104 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3105   if (TripCount)
3106     return TripCount;
3107 
3108   assert(L && "Create Trip Count for null loop.");
3109   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3110   // Find the loop boundaries.
3111   ScalarEvolution *SE = PSE.getSE();
3112   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3113   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3114          "Invalid loop count");
3115 
3116   Type *IdxTy = Legal->getWidestInductionType();
3117   assert(IdxTy && "No type for induction");
3118 
3119   // The exit count might have the type of i64 while the phi is i32. This can
3120   // happen if we have an induction variable that is sign extended before the
3121   // compare. The only way that we get a backedge taken count is that the
3122   // induction variable was signed and as such will not overflow. In such a case
3123   // truncation is legal.
3124   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3125       IdxTy->getPrimitiveSizeInBits())
3126     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3127   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3128 
3129   // Get the total trip count from the count by adding 1.
3130   const SCEV *ExitCount = SE->getAddExpr(
3131       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3132 
3133   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3134 
3135   // Expand the trip count and place the new instructions in the preheader.
3136   // Notice that the pre-header does not change, only the loop body.
3137   SCEVExpander Exp(*SE, DL, "induction");
3138 
3139   // Count holds the overall loop count (N).
3140   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3141                                 L->getLoopPreheader()->getTerminator());
3142 
3143   if (TripCount->getType()->isPointerTy())
3144     TripCount =
3145         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3146                                     L->getLoopPreheader()->getTerminator());
3147 
3148   return TripCount;
3149 }
3150 
3151 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3152   if (VectorTripCount)
3153     return VectorTripCount;
3154 
3155   Value *TC = getOrCreateTripCount(L);
3156   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3157 
3158   Type *Ty = TC->getType();
3159   // This is where we can make the step a runtime constant.
3160   Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF);
3161 
3162   // If the tail is to be folded by masking, round the number of iterations N
3163   // up to a multiple of Step instead of rounding down. This is done by first
3164   // adding Step-1 and then rounding down. Note that it's ok if this addition
3165   // overflows: the vector induction variable will eventually wrap to zero given
3166   // that it starts at zero and its Step is a power of two; the loop will then
3167   // exit, with the last early-exit vector comparison also producing all-true.
3168   if (Cost->foldTailByMasking()) {
3169     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3170            "VF*UF must be a power of 2 when folding tail by masking");
3171     assert(!VF.isScalable() &&
3172            "Tail folding not yet supported for scalable vectors");
3173     TC = Builder.CreateAdd(
3174         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3175   }
3176 
3177   // Now we need to generate the expression for the part of the loop that the
3178   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3179   // iterations are not required for correctness, or N - Step, otherwise. Step
3180   // is equal to the vectorization factor (number of SIMD elements) times the
3181   // unroll factor (number of SIMD instructions).
3182   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3183 
3184   // There are two cases where we need to ensure (at least) the last iteration
3185   // runs in the scalar remainder loop. Thus, if the step evenly divides
3186   // the trip count, we set the remainder to be equal to the step. If the step
3187   // does not evenly divide the trip count, no adjustment is necessary since
3188   // there will already be scalar iterations. Note that the minimum iterations
3189   // check ensures that N >= Step. The cases are:
3190   // 1) If there is a non-reversed interleaved group that may speculatively
3191   //    access memory out-of-bounds.
3192   // 2) If any instruction may follow a conditionally taken exit. That is, if
3193   //    the loop contains multiple exiting blocks, or a single exiting block
3194   //    which is not the latch.
3195   if (VF.isVector() && Cost->requiresScalarEpilogue()) {
3196     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3197     R = Builder.CreateSelect(IsZero, Step, R);
3198   }
3199 
3200   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3201 
3202   return VectorTripCount;
3203 }
3204 
3205 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3206                                                    const DataLayout &DL) {
3207   // Verify that V is a vector type with same number of elements as DstVTy.
3208   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3209   unsigned VF = DstFVTy->getNumElements();
3210   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3211   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3212   Type *SrcElemTy = SrcVecTy->getElementType();
3213   Type *DstElemTy = DstFVTy->getElementType();
3214   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3215          "Vector elements must have same size");
3216 
3217   // Do a direct cast if element types are castable.
3218   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3219     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3220   }
3221   // V cannot be directly casted to desired vector type.
3222   // May happen when V is a floating point vector but DstVTy is a vector of
3223   // pointers or vice-versa. Handle this using a two-step bitcast using an
3224   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3225   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3226          "Only one type should be a pointer type");
3227   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3228          "Only one type should be a floating point type");
3229   Type *IntTy =
3230       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3231   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3232   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3233   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3234 }
3235 
3236 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3237                                                          BasicBlock *Bypass) {
3238   Value *Count = getOrCreateTripCount(L);
3239   // Reuse existing vector loop preheader for TC checks.
3240   // Note that new preheader block is generated for vector loop.
3241   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3242   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3243 
3244   // Generate code to check if the loop's trip count is less than VF * UF, or
3245   // equal to it in case a scalar epilogue is required; this implies that the
3246   // vector trip count is zero. This check also covers the case where adding one
3247   // to the backedge-taken count overflowed leading to an incorrect trip count
3248   // of zero. In this case we will also jump to the scalar loop.
3249   auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE
3250                                           : ICmpInst::ICMP_ULT;
3251 
3252   // If tail is to be folded, vector loop takes care of all iterations.
3253   Value *CheckMinIters = Builder.getFalse();
3254   if (!Cost->foldTailByMasking()) {
3255     Value *Step =
3256         createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF);
3257     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3258   }
3259   // Create new preheader for vector loop.
3260   LoopVectorPreHeader =
3261       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3262                  "vector.ph");
3263 
3264   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3265                                DT->getNode(Bypass)->getIDom()) &&
3266          "TC check is expected to dominate Bypass");
3267 
3268   // Update dominator for Bypass & LoopExit.
3269   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3270   DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3271 
3272   ReplaceInstWithInst(
3273       TCCheckBlock->getTerminator(),
3274       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3275   LoopBypassBlocks.push_back(TCCheckBlock);
3276 }
3277 
3278 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3279 
3280   BasicBlock *const SCEVCheckBlock =
3281       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3282   if (!SCEVCheckBlock)
3283     return nullptr;
3284 
3285   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3286            (OptForSizeBasedOnProfile &&
3287             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3288          "Cannot SCEV check stride or overflow when optimizing for size");
3289 
3290 
3291   // Update dominator only if this is first RT check.
3292   if (LoopBypassBlocks.empty()) {
3293     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3294     DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3295   }
3296 
3297   LoopBypassBlocks.push_back(SCEVCheckBlock);
3298   AddedSafetyChecks = true;
3299   return SCEVCheckBlock;
3300 }
3301 
3302 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3303                                                       BasicBlock *Bypass) {
3304   // VPlan-native path does not do any analysis for runtime checks currently.
3305   if (EnableVPlanNativePath)
3306     return nullptr;
3307 
3308   BasicBlock *const MemCheckBlock =
3309       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3310 
3311   // Check if we generated code that checks in runtime if arrays overlap. We put
3312   // the checks into a separate block to make the more common case of few
3313   // elements faster.
3314   if (!MemCheckBlock)
3315     return nullptr;
3316 
3317   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3318     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3319            "Cannot emit memory checks when optimizing for size, unless forced "
3320            "to vectorize.");
3321     ORE->emit([&]() {
3322       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3323                                         L->getStartLoc(), L->getHeader())
3324              << "Code-size may be reduced by not forcing "
3325                 "vectorization, or by source-code modifications "
3326                 "eliminating the need for runtime checks "
3327                 "(e.g., adding 'restrict').";
3328     });
3329   }
3330 
3331   LoopBypassBlocks.push_back(MemCheckBlock);
3332 
3333   AddedSafetyChecks = true;
3334 
3335   // We currently don't use LoopVersioning for the actual loop cloning but we
3336   // still use it to add the noalias metadata.
3337   LVer = std::make_unique<LoopVersioning>(
3338       *Legal->getLAI(),
3339       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3340       DT, PSE.getSE());
3341   LVer->prepareNoAliasMetadata();
3342   return MemCheckBlock;
3343 }
3344 
3345 Value *InnerLoopVectorizer::emitTransformedIndex(
3346     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3347     const InductionDescriptor &ID) const {
3348 
3349   SCEVExpander Exp(*SE, DL, "induction");
3350   auto Step = ID.getStep();
3351   auto StartValue = ID.getStartValue();
3352   assert(Index->getType()->getScalarType() == Step->getType() &&
3353          "Index scalar type does not match StepValue type");
3354 
3355   // Note: the IR at this point is broken. We cannot use SE to create any new
3356   // SCEV and then expand it, hoping that SCEV's simplification will give us
3357   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3358   // lead to various SCEV crashes. So all we can do is to use builder and rely
3359   // on InstCombine for future simplifications. Here we handle some trivial
3360   // cases only.
3361   auto CreateAdd = [&B](Value *X, Value *Y) {
3362     assert(X->getType() == Y->getType() && "Types don't match!");
3363     if (auto *CX = dyn_cast<ConstantInt>(X))
3364       if (CX->isZero())
3365         return Y;
3366     if (auto *CY = dyn_cast<ConstantInt>(Y))
3367       if (CY->isZero())
3368         return X;
3369     return B.CreateAdd(X, Y);
3370   };
3371 
3372   // We allow X to be a vector type, in which case Y will potentially be
3373   // splatted into a vector with the same element count.
3374   auto CreateMul = [&B](Value *X, Value *Y) {
3375     assert(X->getType()->getScalarType() == Y->getType() &&
3376            "Types don't match!");
3377     if (auto *CX = dyn_cast<ConstantInt>(X))
3378       if (CX->isOne())
3379         return Y;
3380     if (auto *CY = dyn_cast<ConstantInt>(Y))
3381       if (CY->isOne())
3382         return X;
3383     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3384     if (XVTy && !isa<VectorType>(Y->getType()))
3385       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3386     return B.CreateMul(X, Y);
3387   };
3388 
3389   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3390   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3391   // the DomTree is not kept up-to-date for additional blocks generated in the
3392   // vector loop. By using the header as insertion point, we guarantee that the
3393   // expanded instructions dominate all their uses.
3394   auto GetInsertPoint = [this, &B]() {
3395     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3396     if (InsertBB != LoopVectorBody &&
3397         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3398       return LoopVectorBody->getTerminator();
3399     return &*B.GetInsertPoint();
3400   };
3401 
3402   switch (ID.getKind()) {
3403   case InductionDescriptor::IK_IntInduction: {
3404     assert(!isa<VectorType>(Index->getType()) &&
3405            "Vector indices not supported for integer inductions yet");
3406     assert(Index->getType() == StartValue->getType() &&
3407            "Index type does not match StartValue type");
3408     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3409       return B.CreateSub(StartValue, Index);
3410     auto *Offset = CreateMul(
3411         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3412     return CreateAdd(StartValue, Offset);
3413   }
3414   case InductionDescriptor::IK_PtrInduction: {
3415     assert(isa<SCEVConstant>(Step) &&
3416            "Expected constant step for pointer induction");
3417     return B.CreateGEP(
3418         StartValue->getType()->getPointerElementType(), StartValue,
3419         CreateMul(Index,
3420                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3421                                     GetInsertPoint())));
3422   }
3423   case InductionDescriptor::IK_FpInduction: {
3424     assert(!isa<VectorType>(Index->getType()) &&
3425            "Vector indices not supported for FP inductions yet");
3426     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3427     auto InductionBinOp = ID.getInductionBinOp();
3428     assert(InductionBinOp &&
3429            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3430             InductionBinOp->getOpcode() == Instruction::FSub) &&
3431            "Original bin op should be defined for FP induction");
3432 
3433     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3434     Value *MulExp = B.CreateFMul(StepValue, Index);
3435     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3436                          "induction");
3437   }
3438   case InductionDescriptor::IK_NoInduction:
3439     return nullptr;
3440   }
3441   llvm_unreachable("invalid enum");
3442 }
3443 
3444 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3445   LoopScalarBody = OrigLoop->getHeader();
3446   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3447   LoopExitBlock = OrigLoop->getUniqueExitBlock();
3448   assert(LoopExitBlock && "Must have an exit block");
3449   assert(LoopVectorPreHeader && "Invalid loop structure");
3450 
3451   LoopMiddleBlock =
3452       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3453                  LI, nullptr, Twine(Prefix) + "middle.block");
3454   LoopScalarPreHeader =
3455       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3456                  nullptr, Twine(Prefix) + "scalar.ph");
3457 
3458   // Set up branch from middle block to the exit and scalar preheader blocks.
3459   // completeLoopSkeleton will update the condition to use an iteration check,
3460   // if required to decide whether to execute the remainder.
3461   BranchInst *BrInst =
3462       BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, Builder.getTrue());
3463   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3464   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3465   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3466 
3467   // We intentionally don't let SplitBlock to update LoopInfo since
3468   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3469   // LoopVectorBody is explicitly added to the correct place few lines later.
3470   LoopVectorBody =
3471       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3472                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3473 
3474   // Update dominator for loop exit.
3475   DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3476 
3477   // Create and register the new vector loop.
3478   Loop *Lp = LI->AllocateLoop();
3479   Loop *ParentLoop = OrigLoop->getParentLoop();
3480 
3481   // Insert the new loop into the loop nest and register the new basic blocks
3482   // before calling any utilities such as SCEV that require valid LoopInfo.
3483   if (ParentLoop) {
3484     ParentLoop->addChildLoop(Lp);
3485   } else {
3486     LI->addTopLevelLoop(Lp);
3487   }
3488   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3489   return Lp;
3490 }
3491 
3492 void InnerLoopVectorizer::createInductionResumeValues(
3493     Loop *L, Value *VectorTripCount,
3494     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3495   assert(VectorTripCount && L && "Expected valid arguments");
3496   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3497           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3498          "Inconsistent information about additional bypass.");
3499   // We are going to resume the execution of the scalar loop.
3500   // Go over all of the induction variables that we found and fix the
3501   // PHIs that are left in the scalar version of the loop.
3502   // The starting values of PHI nodes depend on the counter of the last
3503   // iteration in the vectorized loop.
3504   // If we come from a bypass edge then we need to start from the original
3505   // start value.
3506   for (auto &InductionEntry : Legal->getInductionVars()) {
3507     PHINode *OrigPhi = InductionEntry.first;
3508     InductionDescriptor II = InductionEntry.second;
3509 
3510     // Create phi nodes to merge from the  backedge-taken check block.
3511     PHINode *BCResumeVal =
3512         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3513                         LoopScalarPreHeader->getTerminator());
3514     // Copy original phi DL over to the new one.
3515     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3516     Value *&EndValue = IVEndValues[OrigPhi];
3517     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3518     if (OrigPhi == OldInduction) {
3519       // We know what the end value is.
3520       EndValue = VectorTripCount;
3521     } else {
3522       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3523 
3524       // Fast-math-flags propagate from the original induction instruction.
3525       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3526         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3527 
3528       Type *StepType = II.getStep()->getType();
3529       Instruction::CastOps CastOp =
3530           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3531       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3532       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3533       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3534       EndValue->setName("ind.end");
3535 
3536       // Compute the end value for the additional bypass (if applicable).
3537       if (AdditionalBypass.first) {
3538         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3539         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3540                                          StepType, true);
3541         CRD =
3542             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3543         EndValueFromAdditionalBypass =
3544             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3545         EndValueFromAdditionalBypass->setName("ind.end");
3546       }
3547     }
3548     // The new PHI merges the original incoming value, in case of a bypass,
3549     // or the value at the end of the vectorized loop.
3550     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3551 
3552     // Fix the scalar body counter (PHI node).
3553     // The old induction's phi node in the scalar body needs the truncated
3554     // value.
3555     for (BasicBlock *BB : LoopBypassBlocks)
3556       BCResumeVal->addIncoming(II.getStartValue(), BB);
3557 
3558     if (AdditionalBypass.first)
3559       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3560                                             EndValueFromAdditionalBypass);
3561 
3562     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3563   }
3564 }
3565 
3566 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3567                                                       MDNode *OrigLoopID) {
3568   assert(L && "Expected valid loop.");
3569 
3570   // The trip counts should be cached by now.
3571   Value *Count = getOrCreateTripCount(L);
3572   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3573 
3574   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3575 
3576   // Add a check in the middle block to see if we have completed
3577   // all of the iterations in the first vector loop.
3578   // If (N - N%VF) == N, then we *don't* need to run the remainder.
3579   // If tail is to be folded, we know we don't need to run the remainder.
3580   if (!Cost->foldTailByMasking()) {
3581     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3582                                         Count, VectorTripCount, "cmp.n",
3583                                         LoopMiddleBlock->getTerminator());
3584 
3585     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3586     // of the corresponding compare because they may have ended up with
3587     // different line numbers and we want to avoid awkward line stepping while
3588     // debugging. Eg. if the compare has got a line number inside the loop.
3589     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3590     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3591   }
3592 
3593   // Get ready to start creating new instructions into the vectorized body.
3594   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3595          "Inconsistent vector loop preheader");
3596   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3597 
3598   Optional<MDNode *> VectorizedLoopID =
3599       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3600                                       LLVMLoopVectorizeFollowupVectorized});
3601   if (VectorizedLoopID.hasValue()) {
3602     L->setLoopID(VectorizedLoopID.getValue());
3603 
3604     // Do not setAlreadyVectorized if loop attributes have been defined
3605     // explicitly.
3606     return LoopVectorPreHeader;
3607   }
3608 
3609   // Keep all loop hints from the original loop on the vector loop (we'll
3610   // replace the vectorizer-specific hints below).
3611   if (MDNode *LID = OrigLoop->getLoopID())
3612     L->setLoopID(LID);
3613 
3614   LoopVectorizeHints Hints(L, true, *ORE);
3615   Hints.setAlreadyVectorized();
3616 
3617 #ifdef EXPENSIVE_CHECKS
3618   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3619   LI->verify(*DT);
3620 #endif
3621 
3622   return LoopVectorPreHeader;
3623 }
3624 
3625 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3626   /*
3627    In this function we generate a new loop. The new loop will contain
3628    the vectorized instructions while the old loop will continue to run the
3629    scalar remainder.
3630 
3631        [ ] <-- loop iteration number check.
3632     /   |
3633    /    v
3634   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3635   |  /  |
3636   | /   v
3637   ||   [ ]     <-- vector pre header.
3638   |/    |
3639   |     v
3640   |    [  ] \
3641   |    [  ]_|   <-- vector loop.
3642   |     |
3643   |     v
3644   |   -[ ]   <--- middle-block.
3645   |  /  |
3646   | /   v
3647   -|- >[ ]     <--- new preheader.
3648    |    |
3649    |    v
3650    |   [ ] \
3651    |   [ ]_|   <-- old scalar loop to handle remainder.
3652     \   |
3653      \  v
3654       >[ ]     <-- exit block.
3655    ...
3656    */
3657 
3658   // Get the metadata of the original loop before it gets modified.
3659   MDNode *OrigLoopID = OrigLoop->getLoopID();
3660 
3661   // Workaround!  Compute the trip count of the original loop and cache it
3662   // before we start modifying the CFG.  This code has a systemic problem
3663   // wherein it tries to run analysis over partially constructed IR; this is
3664   // wrong, and not simply for SCEV.  The trip count of the original loop
3665   // simply happens to be prone to hitting this in practice.  In theory, we
3666   // can hit the same issue for any SCEV, or ValueTracking query done during
3667   // mutation.  See PR49900.
3668   getOrCreateTripCount(OrigLoop);
3669 
3670   // Create an empty vector loop, and prepare basic blocks for the runtime
3671   // checks.
3672   Loop *Lp = createVectorLoopSkeleton("");
3673 
3674   // Now, compare the new count to zero. If it is zero skip the vector loop and
3675   // jump to the scalar loop. This check also covers the case where the
3676   // backedge-taken count is uint##_max: adding one to it will overflow leading
3677   // to an incorrect trip count of zero. In this (rare) case we will also jump
3678   // to the scalar loop.
3679   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3680 
3681   // Generate the code to check any assumptions that we've made for SCEV
3682   // expressions.
3683   emitSCEVChecks(Lp, LoopScalarPreHeader);
3684 
3685   // Generate the code that checks in runtime if arrays overlap. We put the
3686   // checks into a separate block to make the more common case of few elements
3687   // faster.
3688   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3689 
3690   // Some loops have a single integer induction variable, while other loops
3691   // don't. One example is c++ iterators that often have multiple pointer
3692   // induction variables. In the code below we also support a case where we
3693   // don't have a single induction variable.
3694   //
3695   // We try to obtain an induction variable from the original loop as hard
3696   // as possible. However if we don't find one that:
3697   //   - is an integer
3698   //   - counts from zero, stepping by one
3699   //   - is the size of the widest induction variable type
3700   // then we create a new one.
3701   OldInduction = Legal->getPrimaryInduction();
3702   Type *IdxTy = Legal->getWidestInductionType();
3703   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3704   // The loop step is equal to the vectorization factor (num of SIMD elements)
3705   // times the unroll factor (num of SIMD instructions).
3706   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3707   Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF);
3708   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3709   Induction =
3710       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3711                               getDebugLocFromInstOrOperands(OldInduction));
3712 
3713   // Emit phis for the new starting index of the scalar loop.
3714   createInductionResumeValues(Lp, CountRoundDown);
3715 
3716   return completeLoopSkeleton(Lp, OrigLoopID);
3717 }
3718 
3719 // Fix up external users of the induction variable. At this point, we are
3720 // in LCSSA form, with all external PHIs that use the IV having one input value,
3721 // coming from the remainder loop. We need those PHIs to also have a correct
3722 // value for the IV when arriving directly from the middle block.
3723 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3724                                        const InductionDescriptor &II,
3725                                        Value *CountRoundDown, Value *EndValue,
3726                                        BasicBlock *MiddleBlock) {
3727   // There are two kinds of external IV usages - those that use the value
3728   // computed in the last iteration (the PHI) and those that use the penultimate
3729   // value (the value that feeds into the phi from the loop latch).
3730   // We allow both, but they, obviously, have different values.
3731 
3732   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3733 
3734   DenseMap<Value *, Value *> MissingVals;
3735 
3736   // An external user of the last iteration's value should see the value that
3737   // the remainder loop uses to initialize its own IV.
3738   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3739   for (User *U : PostInc->users()) {
3740     Instruction *UI = cast<Instruction>(U);
3741     if (!OrigLoop->contains(UI)) {
3742       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3743       MissingVals[UI] = EndValue;
3744     }
3745   }
3746 
3747   // An external user of the penultimate value need to see EndValue - Step.
3748   // The simplest way to get this is to recompute it from the constituent SCEVs,
3749   // that is Start + (Step * (CRD - 1)).
3750   for (User *U : OrigPhi->users()) {
3751     auto *UI = cast<Instruction>(U);
3752     if (!OrigLoop->contains(UI)) {
3753       const DataLayout &DL =
3754           OrigLoop->getHeader()->getModule()->getDataLayout();
3755       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3756 
3757       IRBuilder<> B(MiddleBlock->getTerminator());
3758 
3759       // Fast-math-flags propagate from the original induction instruction.
3760       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3761         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3762 
3763       Value *CountMinusOne = B.CreateSub(
3764           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3765       Value *CMO =
3766           !II.getStep()->getType()->isIntegerTy()
3767               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3768                              II.getStep()->getType())
3769               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3770       CMO->setName("cast.cmo");
3771       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3772       Escape->setName("ind.escape");
3773       MissingVals[UI] = Escape;
3774     }
3775   }
3776 
3777   for (auto &I : MissingVals) {
3778     PHINode *PHI = cast<PHINode>(I.first);
3779     // One corner case we have to handle is two IVs "chasing" each-other,
3780     // that is %IV2 = phi [...], [ %IV1, %latch ]
3781     // In this case, if IV1 has an external use, we need to avoid adding both
3782     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3783     // don't already have an incoming value for the middle block.
3784     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3785       PHI->addIncoming(I.second, MiddleBlock);
3786   }
3787 }
3788 
3789 namespace {
3790 
3791 struct CSEDenseMapInfo {
3792   static bool canHandle(const Instruction *I) {
3793     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3794            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3795   }
3796 
3797   static inline Instruction *getEmptyKey() {
3798     return DenseMapInfo<Instruction *>::getEmptyKey();
3799   }
3800 
3801   static inline Instruction *getTombstoneKey() {
3802     return DenseMapInfo<Instruction *>::getTombstoneKey();
3803   }
3804 
3805   static unsigned getHashValue(const Instruction *I) {
3806     assert(canHandle(I) && "Unknown instruction!");
3807     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3808                                                            I->value_op_end()));
3809   }
3810 
3811   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3812     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3813         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3814       return LHS == RHS;
3815     return LHS->isIdenticalTo(RHS);
3816   }
3817 };
3818 
3819 } // end anonymous namespace
3820 
3821 ///Perform cse of induction variable instructions.
3822 static void cse(BasicBlock *BB) {
3823   // Perform simple cse.
3824   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3825   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3826     Instruction *In = &*I++;
3827 
3828     if (!CSEDenseMapInfo::canHandle(In))
3829       continue;
3830 
3831     // Check if we can replace this instruction with any of the
3832     // visited instructions.
3833     if (Instruction *V = CSEMap.lookup(In)) {
3834       In->replaceAllUsesWith(V);
3835       In->eraseFromParent();
3836       continue;
3837     }
3838 
3839     CSEMap[In] = In;
3840   }
3841 }
3842 
3843 InstructionCost
3844 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3845                                               bool &NeedToScalarize) const {
3846   Function *F = CI->getCalledFunction();
3847   Type *ScalarRetTy = CI->getType();
3848   SmallVector<Type *, 4> Tys, ScalarTys;
3849   for (auto &ArgOp : CI->arg_operands())
3850     ScalarTys.push_back(ArgOp->getType());
3851 
3852   // Estimate cost of scalarized vector call. The source operands are assumed
3853   // to be vectors, so we need to extract individual elements from there,
3854   // execute VF scalar calls, and then gather the result into the vector return
3855   // value.
3856   InstructionCost ScalarCallCost =
3857       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3858   if (VF.isScalar())
3859     return ScalarCallCost;
3860 
3861   // Compute corresponding vector type for return value and arguments.
3862   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3863   for (Type *ScalarTy : ScalarTys)
3864     Tys.push_back(ToVectorTy(ScalarTy, VF));
3865 
3866   // Compute costs of unpacking argument values for the scalar calls and
3867   // packing the return values to a vector.
3868   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3869 
3870   InstructionCost Cost =
3871       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3872 
3873   // If we can't emit a vector call for this function, then the currently found
3874   // cost is the cost we need to return.
3875   NeedToScalarize = true;
3876   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3877   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3878 
3879   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3880     return Cost;
3881 
3882   // If the corresponding vector cost is cheaper, return its cost.
3883   InstructionCost VectorCallCost =
3884       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3885   if (VectorCallCost < Cost) {
3886     NeedToScalarize = false;
3887     Cost = VectorCallCost;
3888   }
3889   return Cost;
3890 }
3891 
3892 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3893   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3894     return Elt;
3895   return VectorType::get(Elt, VF);
3896 }
3897 
3898 InstructionCost
3899 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3900                                                    ElementCount VF) const {
3901   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3902   assert(ID && "Expected intrinsic call!");
3903   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3904   FastMathFlags FMF;
3905   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3906     FMF = FPMO->getFastMathFlags();
3907 
3908   SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end());
3909   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3910   SmallVector<Type *> ParamTys;
3911   std::transform(FTy->param_begin(), FTy->param_end(),
3912                  std::back_inserter(ParamTys),
3913                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3914 
3915   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3916                                     dyn_cast<IntrinsicInst>(CI));
3917   return TTI.getIntrinsicInstrCost(CostAttrs,
3918                                    TargetTransformInfo::TCK_RecipThroughput);
3919 }
3920 
3921 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3922   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3923   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3924   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3925 }
3926 
3927 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3928   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3929   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3930   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3931 }
3932 
3933 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3934   // For every instruction `I` in MinBWs, truncate the operands, create a
3935   // truncated version of `I` and reextend its result. InstCombine runs
3936   // later and will remove any ext/trunc pairs.
3937   SmallPtrSet<Value *, 4> Erased;
3938   for (const auto &KV : Cost->getMinimalBitwidths()) {
3939     // If the value wasn't vectorized, we must maintain the original scalar
3940     // type. The absence of the value from State indicates that it
3941     // wasn't vectorized.
3942     VPValue *Def = State.Plan->getVPValue(KV.first);
3943     if (!State.hasAnyVectorValue(Def))
3944       continue;
3945     for (unsigned Part = 0; Part < UF; ++Part) {
3946       Value *I = State.get(Def, Part);
3947       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3948         continue;
3949       Type *OriginalTy = I->getType();
3950       Type *ScalarTruncatedTy =
3951           IntegerType::get(OriginalTy->getContext(), KV.second);
3952       auto *TruncatedTy = FixedVectorType::get(
3953           ScalarTruncatedTy,
3954           cast<FixedVectorType>(OriginalTy)->getNumElements());
3955       if (TruncatedTy == OriginalTy)
3956         continue;
3957 
3958       IRBuilder<> B(cast<Instruction>(I));
3959       auto ShrinkOperand = [&](Value *V) -> Value * {
3960         if (auto *ZI = dyn_cast<ZExtInst>(V))
3961           if (ZI->getSrcTy() == TruncatedTy)
3962             return ZI->getOperand(0);
3963         return B.CreateZExtOrTrunc(V, TruncatedTy);
3964       };
3965 
3966       // The actual instruction modification depends on the instruction type,
3967       // unfortunately.
3968       Value *NewI = nullptr;
3969       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3970         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3971                              ShrinkOperand(BO->getOperand(1)));
3972 
3973         // Any wrapping introduced by shrinking this operation shouldn't be
3974         // considered undefined behavior. So, we can't unconditionally copy
3975         // arithmetic wrapping flags to NewI.
3976         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3977       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3978         NewI =
3979             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3980                          ShrinkOperand(CI->getOperand(1)));
3981       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3982         NewI = B.CreateSelect(SI->getCondition(),
3983                               ShrinkOperand(SI->getTrueValue()),
3984                               ShrinkOperand(SI->getFalseValue()));
3985       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3986         switch (CI->getOpcode()) {
3987         default:
3988           llvm_unreachable("Unhandled cast!");
3989         case Instruction::Trunc:
3990           NewI = ShrinkOperand(CI->getOperand(0));
3991           break;
3992         case Instruction::SExt:
3993           NewI = B.CreateSExtOrTrunc(
3994               CI->getOperand(0),
3995               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3996           break;
3997         case Instruction::ZExt:
3998           NewI = B.CreateZExtOrTrunc(
3999               CI->getOperand(0),
4000               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4001           break;
4002         }
4003       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
4004         auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType())
4005                              ->getNumElements();
4006         auto *O0 = B.CreateZExtOrTrunc(
4007             SI->getOperand(0),
4008             FixedVectorType::get(ScalarTruncatedTy, Elements0));
4009         auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType())
4010                              ->getNumElements();
4011         auto *O1 = B.CreateZExtOrTrunc(
4012             SI->getOperand(1),
4013             FixedVectorType::get(ScalarTruncatedTy, Elements1));
4014 
4015         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
4016       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
4017         // Don't do anything with the operands, just extend the result.
4018         continue;
4019       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
4020         auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType())
4021                             ->getNumElements();
4022         auto *O0 = B.CreateZExtOrTrunc(
4023             IE->getOperand(0),
4024             FixedVectorType::get(ScalarTruncatedTy, Elements));
4025         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
4026         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
4027       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
4028         auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType())
4029                             ->getNumElements();
4030         auto *O0 = B.CreateZExtOrTrunc(
4031             EE->getOperand(0),
4032             FixedVectorType::get(ScalarTruncatedTy, Elements));
4033         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
4034       } else {
4035         // If we don't know what to do, be conservative and don't do anything.
4036         continue;
4037       }
4038 
4039       // Lastly, extend the result.
4040       NewI->takeName(cast<Instruction>(I));
4041       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
4042       I->replaceAllUsesWith(Res);
4043       cast<Instruction>(I)->eraseFromParent();
4044       Erased.insert(I);
4045       State.reset(Def, Res, Part);
4046     }
4047   }
4048 
4049   // We'll have created a bunch of ZExts that are now parentless. Clean up.
4050   for (const auto &KV : Cost->getMinimalBitwidths()) {
4051     // If the value wasn't vectorized, we must maintain the original scalar
4052     // type. The absence of the value from State indicates that it
4053     // wasn't vectorized.
4054     VPValue *Def = State.Plan->getVPValue(KV.first);
4055     if (!State.hasAnyVectorValue(Def))
4056       continue;
4057     for (unsigned Part = 0; Part < UF; ++Part) {
4058       Value *I = State.get(Def, Part);
4059       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
4060       if (Inst && Inst->use_empty()) {
4061         Value *NewI = Inst->getOperand(0);
4062         Inst->eraseFromParent();
4063         State.reset(Def, NewI, Part);
4064       }
4065     }
4066   }
4067 }
4068 
4069 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
4070   // Insert truncates and extends for any truncated instructions as hints to
4071   // InstCombine.
4072   if (VF.isVector())
4073     truncateToMinimalBitwidths(State);
4074 
4075   // Fix widened non-induction PHIs by setting up the PHI operands.
4076   if (OrigPHIsToFix.size()) {
4077     assert(EnableVPlanNativePath &&
4078            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
4079     fixNonInductionPHIs(State);
4080   }
4081 
4082   // At this point every instruction in the original loop is widened to a
4083   // vector form. Now we need to fix the recurrences in the loop. These PHI
4084   // nodes are currently empty because we did not want to introduce cycles.
4085   // This is the second stage of vectorizing recurrences.
4086   fixCrossIterationPHIs(State);
4087 
4088   // Forget the original basic block.
4089   PSE.getSE()->forgetLoop(OrigLoop);
4090 
4091   // Fix-up external users of the induction variables.
4092   for (auto &Entry : Legal->getInductionVars())
4093     fixupIVUsers(Entry.first, Entry.second,
4094                  getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4095                  IVEndValues[Entry.first], LoopMiddleBlock);
4096 
4097   fixLCSSAPHIs(State);
4098   for (Instruction *PI : PredicatedInstructions)
4099     sinkScalarOperands(&*PI);
4100 
4101   // Remove redundant induction instructions.
4102   cse(LoopVectorBody);
4103 
4104   // Set/update profile weights for the vector and remainder loops as original
4105   // loop iterations are now distributed among them. Note that original loop
4106   // represented by LoopScalarBody becomes remainder loop after vectorization.
4107   //
4108   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4109   // end up getting slightly roughened result but that should be OK since
4110   // profile is not inherently precise anyway. Note also possible bypass of
4111   // vector code caused by legality checks is ignored, assigning all the weight
4112   // to the vector loop, optimistically.
4113   //
4114   // For scalable vectorization we can't know at compile time how many iterations
4115   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4116   // vscale of '1'.
4117   setProfileInfoAfterUnrolling(
4118       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4119       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4120 }
4121 
4122 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4123   // In order to support recurrences we need to be able to vectorize Phi nodes.
4124   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4125   // stage #2: We now need to fix the recurrences by adding incoming edges to
4126   // the currently empty PHI nodes. At this point every instruction in the
4127   // original loop is widened to a vector form so we can use them to construct
4128   // the incoming edges.
4129   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
4130   for (VPRecipeBase &R : Header->phis()) {
4131     auto *PhiR = dyn_cast<VPWidenPHIRecipe>(&R);
4132     if (!PhiR)
4133       continue;
4134     auto *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4135     if (PhiR->getRecurrenceDescriptor()) {
4136       fixReduction(PhiR, State);
4137     } else if (Legal->isFirstOrderRecurrence(OrigPhi))
4138       fixFirstOrderRecurrence(PhiR, State);
4139   }
4140 }
4141 
4142 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR,
4143                                                   VPTransformState &State) {
4144   // This is the second phase of vectorizing first-order recurrences. An
4145   // overview of the transformation is described below. Suppose we have the
4146   // following loop.
4147   //
4148   //   for (int i = 0; i < n; ++i)
4149   //     b[i] = a[i] - a[i - 1];
4150   //
4151   // There is a first-order recurrence on "a". For this loop, the shorthand
4152   // scalar IR looks like:
4153   //
4154   //   scalar.ph:
4155   //     s_init = a[-1]
4156   //     br scalar.body
4157   //
4158   //   scalar.body:
4159   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4160   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4161   //     s2 = a[i]
4162   //     b[i] = s2 - s1
4163   //     br cond, scalar.body, ...
4164   //
4165   // In this example, s1 is a recurrence because it's value depends on the
4166   // previous iteration. In the first phase of vectorization, we created a
4167   // temporary value for s1. We now complete the vectorization and produce the
4168   // shorthand vector IR shown below (for VF = 4, UF = 1).
4169   //
4170   //   vector.ph:
4171   //     v_init = vector(..., ..., ..., a[-1])
4172   //     br vector.body
4173   //
4174   //   vector.body
4175   //     i = phi [0, vector.ph], [i+4, vector.body]
4176   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4177   //     v2 = a[i, i+1, i+2, i+3];
4178   //     v3 = vector(v1(3), v2(0, 1, 2))
4179   //     b[i, i+1, i+2, i+3] = v2 - v3
4180   //     br cond, vector.body, middle.block
4181   //
4182   //   middle.block:
4183   //     x = v2(3)
4184   //     br scalar.ph
4185   //
4186   //   scalar.ph:
4187   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4188   //     br scalar.body
4189   //
4190   // After execution completes the vector loop, we extract the next value of
4191   // the recurrence (x) to use as the initial value in the scalar loop.
4192 
4193   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4194 
4195   auto *IdxTy = Builder.getInt32Ty();
4196   auto *One = ConstantInt::get(IdxTy, 1);
4197 
4198   // Create a vector from the initial value.
4199   auto *VectorInit = ScalarInit;
4200   if (VF.isVector()) {
4201     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4202     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4203     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4204     VectorInit = Builder.CreateInsertElement(
4205         PoisonValue::get(VectorType::get(VectorInit->getType(), VF)),
4206         VectorInit, LastIdx, "vector.recur.init");
4207   }
4208 
4209   VPValue *PreviousDef = PhiR->getBackedgeValue();
4210   // We constructed a temporary phi node in the first phase of vectorization.
4211   // This phi node will eventually be deleted.
4212   Builder.SetInsertPoint(cast<Instruction>(State.get(PhiR, 0)));
4213 
4214   // Create a phi node for the new recurrence. The current value will either be
4215   // the initial value inserted into a vector or loop-varying vector value.
4216   auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
4217   VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
4218 
4219   // Get the vectorized previous value of the last part UF - 1. It appears last
4220   // among all unrolled iterations, due to the order of their construction.
4221   Value *PreviousLastPart = State.get(PreviousDef, UF - 1);
4222 
4223   // Find and set the insertion point after the previous value if it is an
4224   // instruction.
4225   BasicBlock::iterator InsertPt;
4226   // Note that the previous value may have been constant-folded so it is not
4227   // guaranteed to be an instruction in the vector loop.
4228   // FIXME: Loop invariant values do not form recurrences. We should deal with
4229   //        them earlier.
4230   if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart))
4231     InsertPt = LoopVectorBody->getFirstInsertionPt();
4232   else {
4233     Instruction *PreviousInst = cast<Instruction>(PreviousLastPart);
4234     if (isa<PHINode>(PreviousLastPart))
4235       // If the previous value is a phi node, we should insert after all the phi
4236       // nodes in the block containing the PHI to avoid breaking basic block
4237       // verification. Note that the basic block may be different to
4238       // LoopVectorBody, in case we predicate the loop.
4239       InsertPt = PreviousInst->getParent()->getFirstInsertionPt();
4240     else
4241       InsertPt = ++PreviousInst->getIterator();
4242   }
4243   Builder.SetInsertPoint(&*InsertPt);
4244 
4245   // The vector from which to take the initial value for the current iteration
4246   // (actual or unrolled). Initially, this is the vector phi node.
4247   Value *Incoming = VecPhi;
4248 
4249   // Shuffle the current and previous vector and update the vector parts.
4250   for (unsigned Part = 0; Part < UF; ++Part) {
4251     Value *PreviousPart = State.get(PreviousDef, Part);
4252     Value *PhiPart = State.get(PhiR, Part);
4253     auto *Shuffle = VF.isVector()
4254                         ? Builder.CreateVectorSplice(Incoming, PreviousPart, -1)
4255                         : Incoming;
4256     PhiPart->replaceAllUsesWith(Shuffle);
4257     cast<Instruction>(PhiPart)->eraseFromParent();
4258     State.reset(PhiR, Shuffle, Part);
4259     Incoming = PreviousPart;
4260   }
4261 
4262   // Fix the latch value of the new recurrence in the vector loop.
4263   VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4264 
4265   // Extract the last vector element in the middle block. This will be the
4266   // initial value for the recurrence when jumping to the scalar loop.
4267   auto *ExtractForScalar = Incoming;
4268   if (VF.isVector()) {
4269     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4270     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4271     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4272     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4273                                                     "vector.recur.extract");
4274   }
4275   // Extract the second last element in the middle block if the
4276   // Phi is used outside the loop. We need to extract the phi itself
4277   // and not the last element (the phi update in the current iteration). This
4278   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4279   // when the scalar loop is not run at all.
4280   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4281   if (VF.isVector()) {
4282     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4283     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4284     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4285         Incoming, Idx, "vector.recur.extract.for.phi");
4286   } else if (UF > 1)
4287     // When loop is unrolled without vectorizing, initialize
4288     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4289     // of `Incoming`. This is analogous to the vectorized case above: extracting
4290     // the second last element when VF > 1.
4291     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4292 
4293   // Fix the initial value of the original recurrence in the scalar loop.
4294   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4295   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4296   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4297   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4298     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4299     Start->addIncoming(Incoming, BB);
4300   }
4301 
4302   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4303   Phi->setName("scalar.recur");
4304 
4305   // Finally, fix users of the recurrence outside the loop. The users will need
4306   // either the last value of the scalar recurrence or the last value of the
4307   // vector recurrence we extracted in the middle block. Since the loop is in
4308   // LCSSA form, we just need to find all the phi nodes for the original scalar
4309   // recurrence in the exit block, and then add an edge for the middle block.
4310   // Note that LCSSA does not imply single entry when the original scalar loop
4311   // had multiple exiting edges (as we always run the last iteration in the
4312   // scalar epilogue); in that case, the exiting path through middle will be
4313   // dynamically dead and the value picked for the phi doesn't matter.
4314   for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4315     if (any_of(LCSSAPhi.incoming_values(),
4316                [Phi](Value *V) { return V == Phi; }))
4317       LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4318 }
4319 
4320 void InnerLoopVectorizer::fixReduction(VPWidenPHIRecipe *PhiR,
4321                                        VPTransformState &State) {
4322   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4323   // Get it's reduction variable descriptor.
4324   assert(Legal->isReductionVariable(OrigPhi) &&
4325          "Unable to find the reduction variable");
4326   const RecurrenceDescriptor &RdxDesc = *PhiR->getRecurrenceDescriptor();
4327 
4328   RecurKind RK = RdxDesc.getRecurrenceKind();
4329   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4330   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4331   setDebugLocFromInst(Builder, ReductionStartValue);
4332   bool IsInLoopReductionPhi = Cost->isInLoopReduction(OrigPhi);
4333 
4334   VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst);
4335   // This is the vector-clone of the value that leaves the loop.
4336   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4337 
4338   // Wrap flags are in general invalid after vectorization, clear them.
4339   clearReductionWrapFlags(RdxDesc, State);
4340 
4341   // Fix the vector-loop phi.
4342 
4343   // Reductions do not have to start at zero. They can start with
4344   // any loop invariant values.
4345   BasicBlock *VectorLoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4346 
4347   bool IsOrdered = IsInLoopReductionPhi && Cost->useOrderedReductions(RdxDesc);
4348 
4349   for (unsigned Part = 0; Part < UF; ++Part) {
4350     if (IsOrdered && Part > 0)
4351       break;
4352     Value *VecRdxPhi = State.get(PhiR->getVPSingleValue(), Part);
4353     Value *Val = State.get(PhiR->getBackedgeValue(), Part);
4354     if (IsOrdered)
4355       Val = State.get(PhiR->getBackedgeValue(), UF - 1);
4356 
4357     cast<PHINode>(VecRdxPhi)->addIncoming(Val, VectorLoopLatch);
4358   }
4359 
4360   // Before each round, move the insertion point right between
4361   // the PHIs and the values we are going to write.
4362   // This allows us to write both PHINodes and the extractelement
4363   // instructions.
4364   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4365 
4366   setDebugLocFromInst(Builder, LoopExitInst);
4367 
4368   Type *PhiTy = OrigPhi->getType();
4369   // If tail is folded by masking, the vector value to leave the loop should be
4370   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4371   // instead of the former. For an inloop reduction the reduction will already
4372   // be predicated, and does not need to be handled here.
4373   if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) {
4374     for (unsigned Part = 0; Part < UF; ++Part) {
4375       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4376       Value *Sel = nullptr;
4377       for (User *U : VecLoopExitInst->users()) {
4378         if (isa<SelectInst>(U)) {
4379           assert(!Sel && "Reduction exit feeding two selects");
4380           Sel = U;
4381         } else
4382           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4383       }
4384       assert(Sel && "Reduction exit feeds no select");
4385       State.reset(LoopExitInstDef, Sel, Part);
4386 
4387       // If the target can create a predicated operator for the reduction at no
4388       // extra cost in the loop (for example a predicated vadd), it can be
4389       // cheaper for the select to remain in the loop than be sunk out of it,
4390       // and so use the select value for the phi instead of the old
4391       // LoopExitValue.
4392       if (PreferPredicatedReductionSelect ||
4393           TTI->preferPredicatedReductionSelect(
4394               RdxDesc.getOpcode(), PhiTy,
4395               TargetTransformInfo::ReductionFlags())) {
4396         auto *VecRdxPhi =
4397             cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part));
4398         VecRdxPhi->setIncomingValueForBlock(
4399             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4400       }
4401     }
4402   }
4403 
4404   // If the vector reduction can be performed in a smaller type, we truncate
4405   // then extend the loop exit value to enable InstCombine to evaluate the
4406   // entire expression in the smaller type.
4407   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4408     assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!");
4409     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4410     Builder.SetInsertPoint(
4411         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4412     VectorParts RdxParts(UF);
4413     for (unsigned Part = 0; Part < UF; ++Part) {
4414       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4415       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4416       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4417                                         : Builder.CreateZExt(Trunc, VecTy);
4418       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4419            UI != RdxParts[Part]->user_end();)
4420         if (*UI != Trunc) {
4421           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4422           RdxParts[Part] = Extnd;
4423         } else {
4424           ++UI;
4425         }
4426     }
4427     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4428     for (unsigned Part = 0; Part < UF; ++Part) {
4429       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4430       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4431     }
4432   }
4433 
4434   // Reduce all of the unrolled parts into a single vector.
4435   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4436   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4437 
4438   // The middle block terminator has already been assigned a DebugLoc here (the
4439   // OrigLoop's single latch terminator). We want the whole middle block to
4440   // appear to execute on this line because: (a) it is all compiler generated,
4441   // (b) these instructions are always executed after evaluating the latch
4442   // conditional branch, and (c) other passes may add new predecessors which
4443   // terminate on this line. This is the easiest way to ensure we don't
4444   // accidentally cause an extra step back into the loop while debugging.
4445   setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator());
4446   if (IsOrdered)
4447     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4448   else {
4449     // Floating-point operations should have some FMF to enable the reduction.
4450     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4451     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4452     for (unsigned Part = 1; Part < UF; ++Part) {
4453       Value *RdxPart = State.get(LoopExitInstDef, Part);
4454       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4455         ReducedPartRdx = Builder.CreateBinOp(
4456             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4457       } else {
4458         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4459       }
4460     }
4461   }
4462 
4463   // Create the reduction after the loop. Note that inloop reductions create the
4464   // target reduction in the loop using a Reduction recipe.
4465   if (VF.isVector() && !IsInLoopReductionPhi) {
4466     ReducedPartRdx =
4467         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx);
4468     // If the reduction can be performed in a smaller type, we need to extend
4469     // the reduction to the wider type before we branch to the original loop.
4470     if (PhiTy != RdxDesc.getRecurrenceType())
4471       ReducedPartRdx = RdxDesc.isSigned()
4472                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4473                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4474   }
4475 
4476   // Create a phi node that merges control-flow from the backedge-taken check
4477   // block and the middle block.
4478   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4479                                         LoopScalarPreHeader->getTerminator());
4480   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4481     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4482   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4483 
4484   // Now, we need to fix the users of the reduction variable
4485   // inside and outside of the scalar remainder loop.
4486 
4487   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4488   // in the exit blocks.  See comment on analogous loop in
4489   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4490   for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4491     if (any_of(LCSSAPhi.incoming_values(),
4492                [LoopExitInst](Value *V) { return V == LoopExitInst; }))
4493       LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4494 
4495   // Fix the scalar loop reduction variable with the incoming reduction sum
4496   // from the vector body and from the backedge value.
4497   int IncomingEdgeBlockIdx =
4498       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4499   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4500   // Pick the other block.
4501   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4502   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4503   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4504 }
4505 
4506 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4507                                                   VPTransformState &State) {
4508   RecurKind RK = RdxDesc.getRecurrenceKind();
4509   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4510     return;
4511 
4512   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4513   assert(LoopExitInstr && "null loop exit instruction");
4514   SmallVector<Instruction *, 8> Worklist;
4515   SmallPtrSet<Instruction *, 8> Visited;
4516   Worklist.push_back(LoopExitInstr);
4517   Visited.insert(LoopExitInstr);
4518 
4519   while (!Worklist.empty()) {
4520     Instruction *Cur = Worklist.pop_back_val();
4521     if (isa<OverflowingBinaryOperator>(Cur))
4522       for (unsigned Part = 0; Part < UF; ++Part) {
4523         Value *V = State.get(State.Plan->getVPValue(Cur), Part);
4524         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4525       }
4526 
4527     for (User *U : Cur->users()) {
4528       Instruction *UI = cast<Instruction>(U);
4529       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4530           Visited.insert(UI).second)
4531         Worklist.push_back(UI);
4532     }
4533   }
4534 }
4535 
4536 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4537   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4538     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4539       // Some phis were already hand updated by the reduction and recurrence
4540       // code above, leave them alone.
4541       continue;
4542 
4543     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4544     // Non-instruction incoming values will have only one value.
4545 
4546     VPLane Lane = VPLane::getFirstLane();
4547     if (isa<Instruction>(IncomingValue) &&
4548         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4549                                            VF))
4550       Lane = VPLane::getLastLaneForVF(VF);
4551 
4552     // Can be a loop invariant incoming value or the last scalar value to be
4553     // extracted from the vectorized loop.
4554     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4555     Value *lastIncomingValue =
4556         OrigLoop->isLoopInvariant(IncomingValue)
4557             ? IncomingValue
4558             : State.get(State.Plan->getVPValue(IncomingValue),
4559                         VPIteration(UF - 1, Lane));
4560     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4561   }
4562 }
4563 
4564 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4565   // The basic block and loop containing the predicated instruction.
4566   auto *PredBB = PredInst->getParent();
4567   auto *VectorLoop = LI->getLoopFor(PredBB);
4568 
4569   // Initialize a worklist with the operands of the predicated instruction.
4570   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4571 
4572   // Holds instructions that we need to analyze again. An instruction may be
4573   // reanalyzed if we don't yet know if we can sink it or not.
4574   SmallVector<Instruction *, 8> InstsToReanalyze;
4575 
4576   // Returns true if a given use occurs in the predicated block. Phi nodes use
4577   // their operands in their corresponding predecessor blocks.
4578   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4579     auto *I = cast<Instruction>(U.getUser());
4580     BasicBlock *BB = I->getParent();
4581     if (auto *Phi = dyn_cast<PHINode>(I))
4582       BB = Phi->getIncomingBlock(
4583           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4584     return BB == PredBB;
4585   };
4586 
4587   // Iteratively sink the scalarized operands of the predicated instruction
4588   // into the block we created for it. When an instruction is sunk, it's
4589   // operands are then added to the worklist. The algorithm ends after one pass
4590   // through the worklist doesn't sink a single instruction.
4591   bool Changed;
4592   do {
4593     // Add the instructions that need to be reanalyzed to the worklist, and
4594     // reset the changed indicator.
4595     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4596     InstsToReanalyze.clear();
4597     Changed = false;
4598 
4599     while (!Worklist.empty()) {
4600       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4601 
4602       // We can't sink an instruction if it is a phi node, is not in the loop,
4603       // or may have side effects.
4604       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4605           I->mayHaveSideEffects())
4606         continue;
4607 
4608       // If the instruction is already in PredBB, check if we can sink its
4609       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4610       // sinking the scalar instruction I, hence it appears in PredBB; but it
4611       // may have failed to sink I's operands (recursively), which we try
4612       // (again) here.
4613       if (I->getParent() == PredBB) {
4614         Worklist.insert(I->op_begin(), I->op_end());
4615         continue;
4616       }
4617 
4618       // It's legal to sink the instruction if all its uses occur in the
4619       // predicated block. Otherwise, there's nothing to do yet, and we may
4620       // need to reanalyze the instruction.
4621       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4622         InstsToReanalyze.push_back(I);
4623         continue;
4624       }
4625 
4626       // Move the instruction to the beginning of the predicated block, and add
4627       // it's operands to the worklist.
4628       I->moveBefore(&*PredBB->getFirstInsertionPt());
4629       Worklist.insert(I->op_begin(), I->op_end());
4630 
4631       // The sinking may have enabled other instructions to be sunk, so we will
4632       // need to iterate.
4633       Changed = true;
4634     }
4635   } while (Changed);
4636 }
4637 
4638 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4639   for (PHINode *OrigPhi : OrigPHIsToFix) {
4640     VPWidenPHIRecipe *VPPhi =
4641         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4642     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4643     // Make sure the builder has a valid insert point.
4644     Builder.SetInsertPoint(NewPhi);
4645     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4646       VPValue *Inc = VPPhi->getIncomingValue(i);
4647       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4648       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4649     }
4650   }
4651 }
4652 
4653 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) {
4654   return Cost->useOrderedReductions(RdxDesc);
4655 }
4656 
4657 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4658                                    VPUser &Operands, unsigned UF,
4659                                    ElementCount VF, bool IsPtrLoopInvariant,
4660                                    SmallBitVector &IsIndexLoopInvariant,
4661                                    VPTransformState &State) {
4662   // Construct a vector GEP by widening the operands of the scalar GEP as
4663   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4664   // results in a vector of pointers when at least one operand of the GEP
4665   // is vector-typed. Thus, to keep the representation compact, we only use
4666   // vector-typed operands for loop-varying values.
4667 
4668   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4669     // If we are vectorizing, but the GEP has only loop-invariant operands,
4670     // the GEP we build (by only using vector-typed operands for
4671     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4672     // produce a vector of pointers, we need to either arbitrarily pick an
4673     // operand to broadcast, or broadcast a clone of the original GEP.
4674     // Here, we broadcast a clone of the original.
4675     //
4676     // TODO: If at some point we decide to scalarize instructions having
4677     //       loop-invariant operands, this special case will no longer be
4678     //       required. We would add the scalarization decision to
4679     //       collectLoopScalars() and teach getVectorValue() to broadcast
4680     //       the lane-zero scalar value.
4681     auto *Clone = Builder.Insert(GEP->clone());
4682     for (unsigned Part = 0; Part < UF; ++Part) {
4683       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4684       State.set(VPDef, EntryPart, Part);
4685       addMetadata(EntryPart, GEP);
4686     }
4687   } else {
4688     // If the GEP has at least one loop-varying operand, we are sure to
4689     // produce a vector of pointers. But if we are only unrolling, we want
4690     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4691     // produce with the code below will be scalar (if VF == 1) or vector
4692     // (otherwise). Note that for the unroll-only case, we still maintain
4693     // values in the vector mapping with initVector, as we do for other
4694     // instructions.
4695     for (unsigned Part = 0; Part < UF; ++Part) {
4696       // The pointer operand of the new GEP. If it's loop-invariant, we
4697       // won't broadcast it.
4698       auto *Ptr = IsPtrLoopInvariant
4699                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4700                       : State.get(Operands.getOperand(0), Part);
4701 
4702       // Collect all the indices for the new GEP. If any index is
4703       // loop-invariant, we won't broadcast it.
4704       SmallVector<Value *, 4> Indices;
4705       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4706         VPValue *Operand = Operands.getOperand(I);
4707         if (IsIndexLoopInvariant[I - 1])
4708           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4709         else
4710           Indices.push_back(State.get(Operand, Part));
4711       }
4712 
4713       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4714       // but it should be a vector, otherwise.
4715       auto *NewGEP =
4716           GEP->isInBounds()
4717               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4718                                           Indices)
4719               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4720       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4721              "NewGEP is not a pointer vector");
4722       State.set(VPDef, NewGEP, Part);
4723       addMetadata(NewGEP, GEP);
4724     }
4725   }
4726 }
4727 
4728 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4729                                               RecurrenceDescriptor *RdxDesc,
4730                                               VPWidenPHIRecipe *PhiR,
4731                                               VPTransformState &State) {
4732   PHINode *P = cast<PHINode>(PN);
4733   if (EnableVPlanNativePath) {
4734     // Currently we enter here in the VPlan-native path for non-induction
4735     // PHIs where all control flow is uniform. We simply widen these PHIs.
4736     // Create a vector phi with no operands - the vector phi operands will be
4737     // set at the end of vector code generation.
4738     Type *VecTy = (State.VF.isScalar())
4739                       ? PN->getType()
4740                       : VectorType::get(PN->getType(), State.VF);
4741     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4742     State.set(PhiR, VecPhi, 0);
4743     OrigPHIsToFix.push_back(P);
4744 
4745     return;
4746   }
4747 
4748   assert(PN->getParent() == OrigLoop->getHeader() &&
4749          "Non-header phis should have been handled elsewhere");
4750 
4751   // In order to support recurrences we need to be able to vectorize Phi nodes.
4752   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4753   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4754   // this value when we vectorize all of the instructions that use the PHI.
4755   if (RdxDesc || Legal->isFirstOrderRecurrence(P)) {
4756     bool ScalarPHI =
4757         (State.VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN));
4758     Type *VecTy =
4759         ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF);
4760 
4761     bool IsOrdered = Cost->isInLoopReduction(cast<PHINode>(PN)) &&
4762                      Cost->useOrderedReductions(*RdxDesc);
4763     unsigned LastPartForNewPhi = IsOrdered ? 1 : State.UF;
4764     for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
4765       Value *EntryPart = PHINode::Create(
4766           VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
4767       State.set(PhiR, EntryPart, Part);
4768     }
4769     if (Legal->isFirstOrderRecurrence(P))
4770       return;
4771     VPValue *StartVPV = PhiR->getStartValue();
4772     Value *StartV = StartVPV->getLiveInIRValue();
4773 
4774     Value *Iden = nullptr;
4775 
4776     assert(Legal->isReductionVariable(P) && StartV &&
4777            "RdxDesc should only be set for reduction variables; in that case "
4778            "a StartV is also required");
4779     RecurKind RK = RdxDesc->getRecurrenceKind();
4780     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK)) {
4781       // MinMax reduction have the start value as their identify.
4782       if (ScalarPHI) {
4783         Iden = StartV;
4784       } else {
4785         IRBuilderBase::InsertPointGuard IPBuilder(Builder);
4786         Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4787         StartV = Iden =
4788             Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident");
4789       }
4790     } else {
4791       Constant *IdenC = RecurrenceDescriptor::getRecurrenceIdentity(
4792           RK, VecTy->getScalarType(), RdxDesc->getFastMathFlags());
4793       Iden = IdenC;
4794 
4795       if (!ScalarPHI) {
4796         Iden = ConstantVector::getSplat(State.VF, IdenC);
4797         IRBuilderBase::InsertPointGuard IPBuilder(Builder);
4798         Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4799         Constant *Zero = Builder.getInt32(0);
4800         StartV = Builder.CreateInsertElement(Iden, StartV, Zero);
4801       }
4802     }
4803 
4804     for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
4805       Value *EntryPart = State.get(PhiR, Part);
4806       // Make sure to add the reduction start value only to the
4807       // first unroll part.
4808       Value *StartVal = (Part == 0) ? StartV : Iden;
4809       cast<PHINode>(EntryPart)->addIncoming(StartVal, LoopVectorPreHeader);
4810     }
4811 
4812     return;
4813   }
4814 
4815   assert(!Legal->isReductionVariable(P) &&
4816          "reductions should be handled above");
4817 
4818   setDebugLocFromInst(Builder, P);
4819 
4820   // This PHINode must be an induction variable.
4821   // Make sure that we know about it.
4822   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4823 
4824   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4825   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4826 
4827   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4828   // which can be found from the original scalar operations.
4829   switch (II.getKind()) {
4830   case InductionDescriptor::IK_NoInduction:
4831     llvm_unreachable("Unknown induction");
4832   case InductionDescriptor::IK_IntInduction:
4833   case InductionDescriptor::IK_FpInduction:
4834     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4835   case InductionDescriptor::IK_PtrInduction: {
4836     // Handle the pointer induction variable case.
4837     assert(P->getType()->isPointerTy() && "Unexpected type.");
4838 
4839     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4840       // This is the normalized GEP that starts counting at zero.
4841       Value *PtrInd =
4842           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4843       // Determine the number of scalars we need to generate for each unroll
4844       // iteration. If the instruction is uniform, we only need to generate the
4845       // first lane. Otherwise, we generate all VF values.
4846       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4847       unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue();
4848 
4849       bool NeedsVectorIndex = !IsUniform && VF.isScalable();
4850       Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr;
4851       if (NeedsVectorIndex) {
4852         Type *VecIVTy = VectorType::get(PtrInd->getType(), VF);
4853         UnitStepVec = Builder.CreateStepVector(VecIVTy);
4854         PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd);
4855       }
4856 
4857       for (unsigned Part = 0; Part < UF; ++Part) {
4858         Value *PartStart = createStepForVF(
4859             Builder, ConstantInt::get(PtrInd->getType(), Part), VF);
4860 
4861         if (NeedsVectorIndex) {
4862           Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart);
4863           Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec);
4864           Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices);
4865           Value *SclrGep =
4866               emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II);
4867           SclrGep->setName("next.gep");
4868           State.set(PhiR, SclrGep, Part);
4869           // We've cached the whole vector, which means we can support the
4870           // extraction of any lane.
4871           continue;
4872         }
4873 
4874         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4875           Value *Idx = Builder.CreateAdd(
4876               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4877           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4878           Value *SclrGep =
4879               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4880           SclrGep->setName("next.gep");
4881           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4882         }
4883       }
4884       return;
4885     }
4886     assert(isa<SCEVConstant>(II.getStep()) &&
4887            "Induction step not a SCEV constant!");
4888     Type *PhiType = II.getStep()->getType();
4889 
4890     // Build a pointer phi
4891     Value *ScalarStartValue = II.getStartValue();
4892     Type *ScStValueType = ScalarStartValue->getType();
4893     PHINode *NewPointerPhi =
4894         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4895     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4896 
4897     // A pointer induction, performed by using a gep
4898     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4899     Instruction *InductionLoc = LoopLatch->getTerminator();
4900     const SCEV *ScalarStep = II.getStep();
4901     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4902     Value *ScalarStepValue =
4903         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4904     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4905     Value *NumUnrolledElems =
4906         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4907     Value *InductionGEP = GetElementPtrInst::Create(
4908         ScStValueType->getPointerElementType(), NewPointerPhi,
4909         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4910         InductionLoc);
4911     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4912 
4913     // Create UF many actual address geps that use the pointer
4914     // phi as base and a vectorized version of the step value
4915     // (<step*0, ..., step*N>) as offset.
4916     for (unsigned Part = 0; Part < State.UF; ++Part) {
4917       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4918       Value *StartOffsetScalar =
4919           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4920       Value *StartOffset =
4921           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4922       // Create a vector of consecutive numbers from zero to VF.
4923       StartOffset =
4924           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4925 
4926       Value *GEP = Builder.CreateGEP(
4927           ScStValueType->getPointerElementType(), NewPointerPhi,
4928           Builder.CreateMul(
4929               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4930               "vector.gep"));
4931       State.set(PhiR, GEP, Part);
4932     }
4933   }
4934   }
4935 }
4936 
4937 /// A helper function for checking whether an integer division-related
4938 /// instruction may divide by zero (in which case it must be predicated if
4939 /// executed conditionally in the scalar code).
4940 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4941 /// Non-zero divisors that are non compile-time constants will not be
4942 /// converted into multiplication, so we will still end up scalarizing
4943 /// the division, but can do so w/o predication.
4944 static bool mayDivideByZero(Instruction &I) {
4945   assert((I.getOpcode() == Instruction::UDiv ||
4946           I.getOpcode() == Instruction::SDiv ||
4947           I.getOpcode() == Instruction::URem ||
4948           I.getOpcode() == Instruction::SRem) &&
4949          "Unexpected instruction");
4950   Value *Divisor = I.getOperand(1);
4951   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4952   return !CInt || CInt->isZero();
4953 }
4954 
4955 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
4956                                            VPUser &User,
4957                                            VPTransformState &State) {
4958   switch (I.getOpcode()) {
4959   case Instruction::Call:
4960   case Instruction::Br:
4961   case Instruction::PHI:
4962   case Instruction::GetElementPtr:
4963   case Instruction::Select:
4964     llvm_unreachable("This instruction is handled by a different recipe.");
4965   case Instruction::UDiv:
4966   case Instruction::SDiv:
4967   case Instruction::SRem:
4968   case Instruction::URem:
4969   case Instruction::Add:
4970   case Instruction::FAdd:
4971   case Instruction::Sub:
4972   case Instruction::FSub:
4973   case Instruction::FNeg:
4974   case Instruction::Mul:
4975   case Instruction::FMul:
4976   case Instruction::FDiv:
4977   case Instruction::FRem:
4978   case Instruction::Shl:
4979   case Instruction::LShr:
4980   case Instruction::AShr:
4981   case Instruction::And:
4982   case Instruction::Or:
4983   case Instruction::Xor: {
4984     // Just widen unops and binops.
4985     setDebugLocFromInst(Builder, &I);
4986 
4987     for (unsigned Part = 0; Part < UF; ++Part) {
4988       SmallVector<Value *, 2> Ops;
4989       for (VPValue *VPOp : User.operands())
4990         Ops.push_back(State.get(VPOp, Part));
4991 
4992       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4993 
4994       if (auto *VecOp = dyn_cast<Instruction>(V))
4995         VecOp->copyIRFlags(&I);
4996 
4997       // Use this vector value for all users of the original instruction.
4998       State.set(Def, V, Part);
4999       addMetadata(V, &I);
5000     }
5001 
5002     break;
5003   }
5004   case Instruction::ICmp:
5005   case Instruction::FCmp: {
5006     // Widen compares. Generate vector compares.
5007     bool FCmp = (I.getOpcode() == Instruction::FCmp);
5008     auto *Cmp = cast<CmpInst>(&I);
5009     setDebugLocFromInst(Builder, Cmp);
5010     for (unsigned Part = 0; Part < UF; ++Part) {
5011       Value *A = State.get(User.getOperand(0), Part);
5012       Value *B = State.get(User.getOperand(1), Part);
5013       Value *C = nullptr;
5014       if (FCmp) {
5015         // Propagate fast math flags.
5016         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
5017         Builder.setFastMathFlags(Cmp->getFastMathFlags());
5018         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
5019       } else {
5020         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
5021       }
5022       State.set(Def, C, Part);
5023       addMetadata(C, &I);
5024     }
5025 
5026     break;
5027   }
5028 
5029   case Instruction::ZExt:
5030   case Instruction::SExt:
5031   case Instruction::FPToUI:
5032   case Instruction::FPToSI:
5033   case Instruction::FPExt:
5034   case Instruction::PtrToInt:
5035   case Instruction::IntToPtr:
5036   case Instruction::SIToFP:
5037   case Instruction::UIToFP:
5038   case Instruction::Trunc:
5039   case Instruction::FPTrunc:
5040   case Instruction::BitCast: {
5041     auto *CI = cast<CastInst>(&I);
5042     setDebugLocFromInst(Builder, CI);
5043 
5044     /// Vectorize casts.
5045     Type *DestTy =
5046         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
5047 
5048     for (unsigned Part = 0; Part < UF; ++Part) {
5049       Value *A = State.get(User.getOperand(0), Part);
5050       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
5051       State.set(Def, Cast, Part);
5052       addMetadata(Cast, &I);
5053     }
5054     break;
5055   }
5056   default:
5057     // This instruction is not vectorized by simple widening.
5058     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
5059     llvm_unreachable("Unhandled instruction!");
5060   } // end of switch.
5061 }
5062 
5063 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
5064                                                VPUser &ArgOperands,
5065                                                VPTransformState &State) {
5066   assert(!isa<DbgInfoIntrinsic>(I) &&
5067          "DbgInfoIntrinsic should have been dropped during VPlan construction");
5068   setDebugLocFromInst(Builder, &I);
5069 
5070   Module *M = I.getParent()->getParent()->getParent();
5071   auto *CI = cast<CallInst>(&I);
5072 
5073   SmallVector<Type *, 4> Tys;
5074   for (Value *ArgOperand : CI->arg_operands())
5075     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
5076 
5077   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
5078 
5079   // The flag shows whether we use Intrinsic or a usual Call for vectorized
5080   // version of the instruction.
5081   // Is it beneficial to perform intrinsic call compared to lib call?
5082   bool NeedToScalarize = false;
5083   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
5084   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
5085   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
5086   assert((UseVectorIntrinsic || !NeedToScalarize) &&
5087          "Instruction should be scalarized elsewhere.");
5088   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
5089          "Either the intrinsic cost or vector call cost must be valid");
5090 
5091   for (unsigned Part = 0; Part < UF; ++Part) {
5092     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
5093     SmallVector<Value *, 4> Args;
5094     for (auto &I : enumerate(ArgOperands.operands())) {
5095       // Some intrinsics have a scalar argument - don't replace it with a
5096       // vector.
5097       Value *Arg;
5098       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
5099         Arg = State.get(I.value(), Part);
5100       else {
5101         Arg = State.get(I.value(), VPIteration(0, 0));
5102         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
5103           TysForDecl.push_back(Arg->getType());
5104       }
5105       Args.push_back(Arg);
5106     }
5107 
5108     Function *VectorF;
5109     if (UseVectorIntrinsic) {
5110       // Use vector version of the intrinsic.
5111       if (VF.isVector())
5112         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
5113       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
5114       assert(VectorF && "Can't retrieve vector intrinsic.");
5115     } else {
5116       // Use vector version of the function call.
5117       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
5118 #ifndef NDEBUG
5119       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
5120              "Can't create vector function.");
5121 #endif
5122         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
5123     }
5124       SmallVector<OperandBundleDef, 1> OpBundles;
5125       CI->getOperandBundlesAsDefs(OpBundles);
5126       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
5127 
5128       if (isa<FPMathOperator>(V))
5129         V->copyFastMathFlags(CI);
5130 
5131       State.set(Def, V, Part);
5132       addMetadata(V, &I);
5133   }
5134 }
5135 
5136 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
5137                                                  VPUser &Operands,
5138                                                  bool InvariantCond,
5139                                                  VPTransformState &State) {
5140   setDebugLocFromInst(Builder, &I);
5141 
5142   // The condition can be loop invariant  but still defined inside the
5143   // loop. This means that we can't just use the original 'cond' value.
5144   // We have to take the 'vectorized' value and pick the first lane.
5145   // Instcombine will make this a no-op.
5146   auto *InvarCond = InvariantCond
5147                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5148                         : nullptr;
5149 
5150   for (unsigned Part = 0; Part < UF; ++Part) {
5151     Value *Cond =
5152         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5153     Value *Op0 = State.get(Operands.getOperand(1), Part);
5154     Value *Op1 = State.get(Operands.getOperand(2), Part);
5155     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5156     State.set(VPDef, Sel, Part);
5157     addMetadata(Sel, &I);
5158   }
5159 }
5160 
5161 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5162   // We should not collect Scalars more than once per VF. Right now, this
5163   // function is called from collectUniformsAndScalars(), which already does
5164   // this check. Collecting Scalars for VF=1 does not make any sense.
5165   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5166          "This function should not be visited twice for the same VF");
5167 
5168   SmallSetVector<Instruction *, 8> Worklist;
5169 
5170   // These sets are used to seed the analysis with pointers used by memory
5171   // accesses that will remain scalar.
5172   SmallSetVector<Instruction *, 8> ScalarPtrs;
5173   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5174   auto *Latch = TheLoop->getLoopLatch();
5175 
5176   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5177   // The pointer operands of loads and stores will be scalar as long as the
5178   // memory access is not a gather or scatter operation. The value operand of a
5179   // store will remain scalar if the store is scalarized.
5180   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5181     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5182     assert(WideningDecision != CM_Unknown &&
5183            "Widening decision should be ready at this moment");
5184     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5185       if (Ptr == Store->getValueOperand())
5186         return WideningDecision == CM_Scalarize;
5187     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5188            "Ptr is neither a value or pointer operand");
5189     return WideningDecision != CM_GatherScatter;
5190   };
5191 
5192   // A helper that returns true if the given value is a bitcast or
5193   // getelementptr instruction contained in the loop.
5194   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5195     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5196             isa<GetElementPtrInst>(V)) &&
5197            !TheLoop->isLoopInvariant(V);
5198   };
5199 
5200   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5201     if (!isa<PHINode>(Ptr) ||
5202         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5203       return false;
5204     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5205     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5206       return false;
5207     return isScalarUse(MemAccess, Ptr);
5208   };
5209 
5210   // A helper that evaluates a memory access's use of a pointer. If the
5211   // pointer is actually the pointer induction of a loop, it is being
5212   // inserted into Worklist. If the use will be a scalar use, and the
5213   // pointer is only used by memory accesses, we place the pointer in
5214   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5215   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5216     if (isScalarPtrInduction(MemAccess, Ptr)) {
5217       Worklist.insert(cast<Instruction>(Ptr));
5218       Instruction *Update = cast<Instruction>(
5219           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5220       Worklist.insert(Update);
5221       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5222                         << "\n");
5223       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update
5224                         << "\n");
5225       return;
5226     }
5227     // We only care about bitcast and getelementptr instructions contained in
5228     // the loop.
5229     if (!isLoopVaryingBitCastOrGEP(Ptr))
5230       return;
5231 
5232     // If the pointer has already been identified as scalar (e.g., if it was
5233     // also identified as uniform), there's nothing to do.
5234     auto *I = cast<Instruction>(Ptr);
5235     if (Worklist.count(I))
5236       return;
5237 
5238     // If the use of the pointer will be a scalar use, and all users of the
5239     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5240     // place the pointer in PossibleNonScalarPtrs.
5241     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5242           return isa<LoadInst>(U) || isa<StoreInst>(U);
5243         }))
5244       ScalarPtrs.insert(I);
5245     else
5246       PossibleNonScalarPtrs.insert(I);
5247   };
5248 
5249   // We seed the scalars analysis with three classes of instructions: (1)
5250   // instructions marked uniform-after-vectorization and (2) bitcast,
5251   // getelementptr and (pointer) phi instructions used by memory accesses
5252   // requiring a scalar use.
5253   //
5254   // (1) Add to the worklist all instructions that have been identified as
5255   // uniform-after-vectorization.
5256   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5257 
5258   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5259   // memory accesses requiring a scalar use. The pointer operands of loads and
5260   // stores will be scalar as long as the memory accesses is not a gather or
5261   // scatter operation. The value operand of a store will remain scalar if the
5262   // store is scalarized.
5263   for (auto *BB : TheLoop->blocks())
5264     for (auto &I : *BB) {
5265       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5266         evaluatePtrUse(Load, Load->getPointerOperand());
5267       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5268         evaluatePtrUse(Store, Store->getPointerOperand());
5269         evaluatePtrUse(Store, Store->getValueOperand());
5270       }
5271     }
5272   for (auto *I : ScalarPtrs)
5273     if (!PossibleNonScalarPtrs.count(I)) {
5274       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5275       Worklist.insert(I);
5276     }
5277 
5278   // Insert the forced scalars.
5279   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5280   // induction variable when the PHI user is scalarized.
5281   auto ForcedScalar = ForcedScalars.find(VF);
5282   if (ForcedScalar != ForcedScalars.end())
5283     for (auto *I : ForcedScalar->second)
5284       Worklist.insert(I);
5285 
5286   // Expand the worklist by looking through any bitcasts and getelementptr
5287   // instructions we've already identified as scalar. This is similar to the
5288   // expansion step in collectLoopUniforms(); however, here we're only
5289   // expanding to include additional bitcasts and getelementptr instructions.
5290   unsigned Idx = 0;
5291   while (Idx != Worklist.size()) {
5292     Instruction *Dst = Worklist[Idx++];
5293     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5294       continue;
5295     auto *Src = cast<Instruction>(Dst->getOperand(0));
5296     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5297           auto *J = cast<Instruction>(U);
5298           return !TheLoop->contains(J) || Worklist.count(J) ||
5299                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5300                   isScalarUse(J, Src));
5301         })) {
5302       Worklist.insert(Src);
5303       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5304     }
5305   }
5306 
5307   // An induction variable will remain scalar if all users of the induction
5308   // variable and induction variable update remain scalar.
5309   for (auto &Induction : Legal->getInductionVars()) {
5310     auto *Ind = Induction.first;
5311     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5312 
5313     // If tail-folding is applied, the primary induction variable will be used
5314     // to feed a vector compare.
5315     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5316       continue;
5317 
5318     // Determine if all users of the induction variable are scalar after
5319     // vectorization.
5320     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5321       auto *I = cast<Instruction>(U);
5322       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5323     });
5324     if (!ScalarInd)
5325       continue;
5326 
5327     // Determine if all users of the induction variable update instruction are
5328     // scalar after vectorization.
5329     auto ScalarIndUpdate =
5330         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5331           auto *I = cast<Instruction>(U);
5332           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5333         });
5334     if (!ScalarIndUpdate)
5335       continue;
5336 
5337     // The induction variable and its update instruction will remain scalar.
5338     Worklist.insert(Ind);
5339     Worklist.insert(IndUpdate);
5340     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5341     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5342                       << "\n");
5343   }
5344 
5345   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5346 }
5347 
5348 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const {
5349   if (!blockNeedsPredication(I->getParent()))
5350     return false;
5351   switch(I->getOpcode()) {
5352   default:
5353     break;
5354   case Instruction::Load:
5355   case Instruction::Store: {
5356     if (!Legal->isMaskRequired(I))
5357       return false;
5358     auto *Ptr = getLoadStorePointerOperand(I);
5359     auto *Ty = getLoadStoreType(I);
5360     const Align Alignment = getLoadStoreAlignment(I);
5361     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5362                                 TTI.isLegalMaskedGather(Ty, Alignment))
5363                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5364                                 TTI.isLegalMaskedScatter(Ty, Alignment));
5365   }
5366   case Instruction::UDiv:
5367   case Instruction::SDiv:
5368   case Instruction::SRem:
5369   case Instruction::URem:
5370     return mayDivideByZero(*I);
5371   }
5372   return false;
5373 }
5374 
5375 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5376     Instruction *I, ElementCount VF) {
5377   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5378   assert(getWideningDecision(I, VF) == CM_Unknown &&
5379          "Decision should not be set yet.");
5380   auto *Group = getInterleavedAccessGroup(I);
5381   assert(Group && "Must have a group.");
5382 
5383   // If the instruction's allocated size doesn't equal it's type size, it
5384   // requires padding and will be scalarized.
5385   auto &DL = I->getModule()->getDataLayout();
5386   auto *ScalarTy = getLoadStoreType(I);
5387   if (hasIrregularType(ScalarTy, DL))
5388     return false;
5389 
5390   // Check if masking is required.
5391   // A Group may need masking for one of two reasons: it resides in a block that
5392   // needs predication, or it was decided to use masking to deal with gaps.
5393   bool PredicatedAccessRequiresMasking =
5394       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
5395   bool AccessWithGapsRequiresMasking =
5396       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
5397   if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking)
5398     return true;
5399 
5400   // If masked interleaving is required, we expect that the user/target had
5401   // enabled it, because otherwise it either wouldn't have been created or
5402   // it should have been invalidated by the CostModel.
5403   assert(useMaskedInterleavedAccesses(TTI) &&
5404          "Masked interleave-groups for predicated accesses are not enabled.");
5405 
5406   auto *Ty = getLoadStoreType(I);
5407   const Align Alignment = getLoadStoreAlignment(I);
5408   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5409                           : TTI.isLegalMaskedStore(Ty, Alignment);
5410 }
5411 
5412 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5413     Instruction *I, ElementCount VF) {
5414   // Get and ensure we have a valid memory instruction.
5415   LoadInst *LI = dyn_cast<LoadInst>(I);
5416   StoreInst *SI = dyn_cast<StoreInst>(I);
5417   assert((LI || SI) && "Invalid memory instruction");
5418 
5419   auto *Ptr = getLoadStorePointerOperand(I);
5420 
5421   // In order to be widened, the pointer should be consecutive, first of all.
5422   if (!Legal->isConsecutivePtr(Ptr))
5423     return false;
5424 
5425   // If the instruction is a store located in a predicated block, it will be
5426   // scalarized.
5427   if (isScalarWithPredication(I))
5428     return false;
5429 
5430   // If the instruction's allocated size doesn't equal it's type size, it
5431   // requires padding and will be scalarized.
5432   auto &DL = I->getModule()->getDataLayout();
5433   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
5434   if (hasIrregularType(ScalarTy, DL))
5435     return false;
5436 
5437   return true;
5438 }
5439 
5440 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5441   // We should not collect Uniforms more than once per VF. Right now,
5442   // this function is called from collectUniformsAndScalars(), which
5443   // already does this check. Collecting Uniforms for VF=1 does not make any
5444   // sense.
5445 
5446   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5447          "This function should not be visited twice for the same VF");
5448 
5449   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5450   // not analyze again.  Uniforms.count(VF) will return 1.
5451   Uniforms[VF].clear();
5452 
5453   // We now know that the loop is vectorizable!
5454   // Collect instructions inside the loop that will remain uniform after
5455   // vectorization.
5456 
5457   // Global values, params and instructions outside of current loop are out of
5458   // scope.
5459   auto isOutOfScope = [&](Value *V) -> bool {
5460     Instruction *I = dyn_cast<Instruction>(V);
5461     return (!I || !TheLoop->contains(I));
5462   };
5463 
5464   SetVector<Instruction *> Worklist;
5465   BasicBlock *Latch = TheLoop->getLoopLatch();
5466 
5467   // Instructions that are scalar with predication must not be considered
5468   // uniform after vectorization, because that would create an erroneous
5469   // replicating region where only a single instance out of VF should be formed.
5470   // TODO: optimize such seldom cases if found important, see PR40816.
5471   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5472     if (isOutOfScope(I)) {
5473       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5474                         << *I << "\n");
5475       return;
5476     }
5477     if (isScalarWithPredication(I)) {
5478       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5479                         << *I << "\n");
5480       return;
5481     }
5482     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5483     Worklist.insert(I);
5484   };
5485 
5486   // Start with the conditional branch. If the branch condition is an
5487   // instruction contained in the loop that is only used by the branch, it is
5488   // uniform.
5489   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5490   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5491     addToWorklistIfAllowed(Cmp);
5492 
5493   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5494     InstWidening WideningDecision = getWideningDecision(I, VF);
5495     assert(WideningDecision != CM_Unknown &&
5496            "Widening decision should be ready at this moment");
5497 
5498     // A uniform memory op is itself uniform.  We exclude uniform stores
5499     // here as they demand the last lane, not the first one.
5500     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5501       assert(WideningDecision == CM_Scalarize);
5502       return true;
5503     }
5504 
5505     return (WideningDecision == CM_Widen ||
5506             WideningDecision == CM_Widen_Reverse ||
5507             WideningDecision == CM_Interleave);
5508   };
5509 
5510 
5511   // Returns true if Ptr is the pointer operand of a memory access instruction
5512   // I, and I is known to not require scalarization.
5513   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5514     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5515   };
5516 
5517   // Holds a list of values which are known to have at least one uniform use.
5518   // Note that there may be other uses which aren't uniform.  A "uniform use"
5519   // here is something which only demands lane 0 of the unrolled iterations;
5520   // it does not imply that all lanes produce the same value (e.g. this is not
5521   // the usual meaning of uniform)
5522   SetVector<Value *> HasUniformUse;
5523 
5524   // Scan the loop for instructions which are either a) known to have only
5525   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5526   for (auto *BB : TheLoop->blocks())
5527     for (auto &I : *BB) {
5528       // If there's no pointer operand, there's nothing to do.
5529       auto *Ptr = getLoadStorePointerOperand(&I);
5530       if (!Ptr)
5531         continue;
5532 
5533       // A uniform memory op is itself uniform.  We exclude uniform stores
5534       // here as they demand the last lane, not the first one.
5535       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5536         addToWorklistIfAllowed(&I);
5537 
5538       if (isUniformDecision(&I, VF)) {
5539         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5540         HasUniformUse.insert(Ptr);
5541       }
5542     }
5543 
5544   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5545   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5546   // disallows uses outside the loop as well.
5547   for (auto *V : HasUniformUse) {
5548     if (isOutOfScope(V))
5549       continue;
5550     auto *I = cast<Instruction>(V);
5551     auto UsersAreMemAccesses =
5552       llvm::all_of(I->users(), [&](User *U) -> bool {
5553         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5554       });
5555     if (UsersAreMemAccesses)
5556       addToWorklistIfAllowed(I);
5557   }
5558 
5559   // Expand Worklist in topological order: whenever a new instruction
5560   // is added , its users should be already inside Worklist.  It ensures
5561   // a uniform instruction will only be used by uniform instructions.
5562   unsigned idx = 0;
5563   while (idx != Worklist.size()) {
5564     Instruction *I = Worklist[idx++];
5565 
5566     for (auto OV : I->operand_values()) {
5567       // isOutOfScope operands cannot be uniform instructions.
5568       if (isOutOfScope(OV))
5569         continue;
5570       // First order recurrence Phi's should typically be considered
5571       // non-uniform.
5572       auto *OP = dyn_cast<PHINode>(OV);
5573       if (OP && Legal->isFirstOrderRecurrence(OP))
5574         continue;
5575       // If all the users of the operand are uniform, then add the
5576       // operand into the uniform worklist.
5577       auto *OI = cast<Instruction>(OV);
5578       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5579             auto *J = cast<Instruction>(U);
5580             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5581           }))
5582         addToWorklistIfAllowed(OI);
5583     }
5584   }
5585 
5586   // For an instruction to be added into Worklist above, all its users inside
5587   // the loop should also be in Worklist. However, this condition cannot be
5588   // true for phi nodes that form a cyclic dependence. We must process phi
5589   // nodes separately. An induction variable will remain uniform if all users
5590   // of the induction variable and induction variable update remain uniform.
5591   // The code below handles both pointer and non-pointer induction variables.
5592   for (auto &Induction : Legal->getInductionVars()) {
5593     auto *Ind = Induction.first;
5594     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5595 
5596     // Determine if all users of the induction variable are uniform after
5597     // vectorization.
5598     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5599       auto *I = cast<Instruction>(U);
5600       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5601              isVectorizedMemAccessUse(I, Ind);
5602     });
5603     if (!UniformInd)
5604       continue;
5605 
5606     // Determine if all users of the induction variable update instruction are
5607     // uniform after vectorization.
5608     auto UniformIndUpdate =
5609         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5610           auto *I = cast<Instruction>(U);
5611           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5612                  isVectorizedMemAccessUse(I, IndUpdate);
5613         });
5614     if (!UniformIndUpdate)
5615       continue;
5616 
5617     // The induction variable and its update instruction will remain uniform.
5618     addToWorklistIfAllowed(Ind);
5619     addToWorklistIfAllowed(IndUpdate);
5620   }
5621 
5622   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5623 }
5624 
5625 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5626   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5627 
5628   if (Legal->getRuntimePointerChecking()->Need) {
5629     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5630         "runtime pointer checks needed. Enable vectorization of this "
5631         "loop with '#pragma clang loop vectorize(enable)' when "
5632         "compiling with -Os/-Oz",
5633         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5634     return true;
5635   }
5636 
5637   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5638     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5639         "runtime SCEV checks needed. Enable vectorization of this "
5640         "loop with '#pragma clang loop vectorize(enable)' when "
5641         "compiling with -Os/-Oz",
5642         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5643     return true;
5644   }
5645 
5646   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5647   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5648     reportVectorizationFailure("Runtime stride check for small trip count",
5649         "runtime stride == 1 checks needed. Enable vectorization of "
5650         "this loop without such check by compiling with -Os/-Oz",
5651         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5652     return true;
5653   }
5654 
5655   return false;
5656 }
5657 
5658 ElementCount
5659 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5660   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5661     reportVectorizationInfo(
5662         "Disabling scalable vectorization, because target does not "
5663         "support scalable vectors.",
5664         "ScalableVectorsUnsupported", ORE, TheLoop);
5665     return ElementCount::getScalable(0);
5666   }
5667 
5668   if (Hints->isScalableVectorizationDisabled()) {
5669     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5670                             "ScalableVectorizationDisabled", ORE, TheLoop);
5671     return ElementCount::getScalable(0);
5672   }
5673 
5674   auto MaxScalableVF = ElementCount::getScalable(
5675       std::numeric_limits<ElementCount::ScalarTy>::max());
5676 
5677   // Disable scalable vectorization if the loop contains unsupported reductions.
5678   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5679   // FIXME: While for scalable vectors this is currently sufficient, this should
5680   // be replaced by a more detailed mechanism that filters out specific VFs,
5681   // instead of invalidating vectorization for a whole set of VFs based on the
5682   // MaxVF.
5683   if (!canVectorizeReductions(MaxScalableVF)) {
5684     reportVectorizationInfo(
5685         "Scalable vectorization not supported for the reduction "
5686         "operations found in this loop.",
5687         "ScalableVFUnfeasible", ORE, TheLoop);
5688     return ElementCount::getScalable(0);
5689   }
5690 
5691   if (Legal->isSafeForAnyVectorWidth())
5692     return MaxScalableVF;
5693 
5694   // Limit MaxScalableVF by the maximum safe dependence distance.
5695   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5696   MaxScalableVF = ElementCount::getScalable(
5697       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5698   if (!MaxScalableVF)
5699     reportVectorizationInfo(
5700         "Max legal vector width too small, scalable vectorization "
5701         "unfeasible.",
5702         "ScalableVFUnfeasible", ORE, TheLoop);
5703 
5704   return MaxScalableVF;
5705 }
5706 
5707 FixedScalableVFPair
5708 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5709                                                  ElementCount UserVF) {
5710   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5711   unsigned SmallestType, WidestType;
5712   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5713 
5714   // Get the maximum safe dependence distance in bits computed by LAA.
5715   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5716   // the memory accesses that is most restrictive (involved in the smallest
5717   // dependence distance).
5718   unsigned MaxSafeElements =
5719       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5720 
5721   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5722   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5723 
5724   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5725                     << ".\n");
5726   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5727                     << ".\n");
5728 
5729   // First analyze the UserVF, fall back if the UserVF should be ignored.
5730   if (UserVF) {
5731     auto MaxSafeUserVF =
5732         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5733 
5734     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF))
5735       return UserVF;
5736 
5737     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5738 
5739     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5740     // is better to ignore the hint and let the compiler choose a suitable VF.
5741     if (!UserVF.isScalable()) {
5742       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5743                         << " is unsafe, clamping to max safe VF="
5744                         << MaxSafeFixedVF << ".\n");
5745       ORE->emit([&]() {
5746         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5747                                           TheLoop->getStartLoc(),
5748                                           TheLoop->getHeader())
5749                << "User-specified vectorization factor "
5750                << ore::NV("UserVectorizationFactor", UserVF)
5751                << " is unsafe, clamping to maximum safe vectorization factor "
5752                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5753       });
5754       return MaxSafeFixedVF;
5755     }
5756 
5757     LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5758                       << " is unsafe. Ignoring scalable UserVF.\n");
5759     ORE->emit([&]() {
5760       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5761                                         TheLoop->getStartLoc(),
5762                                         TheLoop->getHeader())
5763              << "User-specified vectorization factor "
5764              << ore::NV("UserVectorizationFactor", UserVF)
5765              << " is unsafe. Ignoring the hint to let the compiler pick a "
5766                 "suitable VF.";
5767     });
5768   }
5769 
5770   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5771                     << " / " << WidestType << " bits.\n");
5772 
5773   FixedScalableVFPair Result(ElementCount::getFixed(1),
5774                              ElementCount::getScalable(0));
5775   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5776                                            WidestType, MaxSafeFixedVF))
5777     Result.FixedVF = MaxVF;
5778 
5779   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5780                                            WidestType, MaxSafeScalableVF))
5781     if (MaxVF.isScalable()) {
5782       Result.ScalableVF = MaxVF;
5783       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5784                         << "\n");
5785     }
5786 
5787   return Result;
5788 }
5789 
5790 FixedScalableVFPair
5791 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5792   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5793     // TODO: It may by useful to do since it's still likely to be dynamically
5794     // uniform if the target can skip.
5795     reportVectorizationFailure(
5796         "Not inserting runtime ptr check for divergent target",
5797         "runtime pointer checks needed. Not enabled for divergent target",
5798         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5799     return FixedScalableVFPair::getNone();
5800   }
5801 
5802   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5803   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5804   if (TC == 1) {
5805     reportVectorizationFailure("Single iteration (non) loop",
5806         "loop trip count is one, irrelevant for vectorization",
5807         "SingleIterationLoop", ORE, TheLoop);
5808     return FixedScalableVFPair::getNone();
5809   }
5810 
5811   switch (ScalarEpilogueStatus) {
5812   case CM_ScalarEpilogueAllowed:
5813     return computeFeasibleMaxVF(TC, UserVF);
5814   case CM_ScalarEpilogueNotAllowedUsePredicate:
5815     LLVM_FALLTHROUGH;
5816   case CM_ScalarEpilogueNotNeededUsePredicate:
5817     LLVM_DEBUG(
5818         dbgs() << "LV: vector predicate hint/switch found.\n"
5819                << "LV: Not allowing scalar epilogue, creating predicated "
5820                << "vector loop.\n");
5821     break;
5822   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5823     // fallthrough as a special case of OptForSize
5824   case CM_ScalarEpilogueNotAllowedOptSize:
5825     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5826       LLVM_DEBUG(
5827           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5828     else
5829       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5830                         << "count.\n");
5831 
5832     // Bail if runtime checks are required, which are not good when optimising
5833     // for size.
5834     if (runtimeChecksRequired())
5835       return FixedScalableVFPair::getNone();
5836 
5837     break;
5838   }
5839 
5840   // The only loops we can vectorize without a scalar epilogue, are loops with
5841   // a bottom-test and a single exiting block. We'd have to handle the fact
5842   // that not every instruction executes on the last iteration.  This will
5843   // require a lane mask which varies through the vector loop body.  (TODO)
5844   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5845     // If there was a tail-folding hint/switch, but we can't fold the tail by
5846     // masking, fallback to a vectorization with a scalar epilogue.
5847     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5848       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5849                            "scalar epilogue instead.\n");
5850       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5851       return computeFeasibleMaxVF(TC, UserVF);
5852     }
5853     return FixedScalableVFPair::getNone();
5854   }
5855 
5856   // Now try the tail folding
5857 
5858   // Invalidate interleave groups that require an epilogue if we can't mask
5859   // the interleave-group.
5860   if (!useMaskedInterleavedAccesses(TTI)) {
5861     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5862            "No decisions should have been taken at this point");
5863     // Note: There is no need to invalidate any cost modeling decisions here, as
5864     // non where taken so far.
5865     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5866   }
5867 
5868   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF);
5869   // Avoid tail folding if the trip count is known to be a multiple of any VF
5870   // we chose.
5871   // FIXME: The condition below pessimises the case for fixed-width vectors,
5872   // when scalable VFs are also candidates for vectorization.
5873   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5874     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5875     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5876            "MaxFixedVF must be a power of 2");
5877     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5878                                    : MaxFixedVF.getFixedValue();
5879     ScalarEvolution *SE = PSE.getSE();
5880     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5881     const SCEV *ExitCount = SE->getAddExpr(
5882         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5883     const SCEV *Rem = SE->getURemExpr(
5884         SE->applyLoopGuards(ExitCount, TheLoop),
5885         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5886     if (Rem->isZero()) {
5887       // Accept MaxFixedVF if we do not have a tail.
5888       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5889       return MaxFactors;
5890     }
5891   }
5892 
5893   // If we don't know the precise trip count, or if the trip count that we
5894   // found modulo the vectorization factor is not zero, try to fold the tail
5895   // by masking.
5896   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5897   if (Legal->prepareToFoldTailByMasking()) {
5898     FoldTailByMasking = true;
5899     return MaxFactors;
5900   }
5901 
5902   // If there was a tail-folding hint/switch, but we can't fold the tail by
5903   // masking, fallback to a vectorization with a scalar epilogue.
5904   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5905     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5906                          "scalar epilogue instead.\n");
5907     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5908     return MaxFactors;
5909   }
5910 
5911   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5912     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5913     return FixedScalableVFPair::getNone();
5914   }
5915 
5916   if (TC == 0) {
5917     reportVectorizationFailure(
5918         "Unable to calculate the loop count due to complex control flow",
5919         "unable to calculate the loop count due to complex control flow",
5920         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5921     return FixedScalableVFPair::getNone();
5922   }
5923 
5924   reportVectorizationFailure(
5925       "Cannot optimize for size and vectorize at the same time.",
5926       "cannot optimize for size and vectorize at the same time. "
5927       "Enable vectorization of this loop with '#pragma clang loop "
5928       "vectorize(enable)' when compiling with -Os/-Oz",
5929       "NoTailLoopWithOptForSize", ORE, TheLoop);
5930   return FixedScalableVFPair::getNone();
5931 }
5932 
5933 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5934     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5935     const ElementCount &MaxSafeVF) {
5936   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5937   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5938       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5939                            : TargetTransformInfo::RGK_FixedWidthVector);
5940 
5941   // Convenience function to return the minimum of two ElementCounts.
5942   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5943     assert((LHS.isScalable() == RHS.isScalable()) &&
5944            "Scalable flags must match");
5945     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5946   };
5947 
5948   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5949   // Note that both WidestRegister and WidestType may not be a powers of 2.
5950   auto MaxVectorElementCount = ElementCount::get(
5951       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5952       ComputeScalableMaxVF);
5953   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5954   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5955                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5956 
5957   if (!MaxVectorElementCount) {
5958     LLVM_DEBUG(dbgs() << "LV: The target has no "
5959                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5960                       << " vector registers.\n");
5961     return ElementCount::getFixed(1);
5962   }
5963 
5964   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5965   if (ConstTripCount &&
5966       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5967       isPowerOf2_32(ConstTripCount)) {
5968     // We need to clamp the VF to be the ConstTripCount. There is no point in
5969     // choosing a higher viable VF as done in the loop below. If
5970     // MaxVectorElementCount is scalable, we only fall back on a fixed VF when
5971     // the TC is less than or equal to the known number of lanes.
5972     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5973                       << ConstTripCount << "\n");
5974     return TripCountEC;
5975   }
5976 
5977   ElementCount MaxVF = MaxVectorElementCount;
5978   if (TTI.shouldMaximizeVectorBandwidth() ||
5979       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5980     auto MaxVectorElementCountMaxBW = ElementCount::get(
5981         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5982         ComputeScalableMaxVF);
5983     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5984 
5985     // Collect all viable vectorization factors larger than the default MaxVF
5986     // (i.e. MaxVectorElementCount).
5987     SmallVector<ElementCount, 8> VFs;
5988     for (ElementCount VS = MaxVectorElementCount * 2;
5989          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5990       VFs.push_back(VS);
5991 
5992     // For each VF calculate its register usage.
5993     auto RUs = calculateRegisterUsage(VFs);
5994 
5995     // Select the largest VF which doesn't require more registers than existing
5996     // ones.
5997     for (int i = RUs.size() - 1; i >= 0; --i) {
5998       bool Selected = true;
5999       for (auto &pair : RUs[i].MaxLocalUsers) {
6000         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6001         if (pair.second > TargetNumRegisters)
6002           Selected = false;
6003       }
6004       if (Selected) {
6005         MaxVF = VFs[i];
6006         break;
6007       }
6008     }
6009     if (ElementCount MinVF =
6010             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
6011       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
6012         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
6013                           << ") with target's minimum: " << MinVF << '\n');
6014         MaxVF = MinVF;
6015       }
6016     }
6017   }
6018   return MaxVF;
6019 }
6020 
6021 bool LoopVectorizationCostModel::isMoreProfitable(
6022     const VectorizationFactor &A, const VectorizationFactor &B) const {
6023   InstructionCost::CostType CostA = *A.Cost.getValue();
6024   InstructionCost::CostType CostB = *B.Cost.getValue();
6025 
6026   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
6027 
6028   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
6029       MaxTripCount) {
6030     // If we are folding the tail and the trip count is a known (possibly small)
6031     // constant, the trip count will be rounded up to an integer number of
6032     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
6033     // which we compare directly. When not folding the tail, the total cost will
6034     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
6035     // approximated with the per-lane cost below instead of using the tripcount
6036     // as here.
6037     int64_t RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
6038     int64_t RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
6039     return RTCostA < RTCostB;
6040   }
6041 
6042   // When set to preferred, for now assume vscale may be larger than 1, so
6043   // that scalable vectorization is slightly favorable over fixed-width
6044   // vectorization.
6045   if (Hints->isScalableVectorizationPreferred())
6046     if (A.Width.isScalable() && !B.Width.isScalable())
6047       return (CostA * B.Width.getKnownMinValue()) <=
6048              (CostB * A.Width.getKnownMinValue());
6049 
6050   // To avoid the need for FP division:
6051   //      (CostA / A.Width) < (CostB / B.Width)
6052   // <=>  (CostA * B.Width) < (CostB * A.Width)
6053   return (CostA * B.Width.getKnownMinValue()) <
6054          (CostB * A.Width.getKnownMinValue());
6055 }
6056 
6057 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
6058     const ElementCountSet &VFCandidates) {
6059   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
6060   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
6061   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
6062   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
6063          "Expected Scalar VF to be a candidate");
6064 
6065   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
6066   VectorizationFactor ChosenFactor = ScalarCost;
6067 
6068   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
6069   if (ForceVectorization && VFCandidates.size() > 1) {
6070     // Ignore scalar width, because the user explicitly wants vectorization.
6071     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
6072     // evaluation.
6073     ChosenFactor.Cost = std::numeric_limits<InstructionCost::CostType>::max();
6074   }
6075 
6076   for (const auto &i : VFCandidates) {
6077     // The cost for scalar VF=1 is already calculated, so ignore it.
6078     if (i.isScalar())
6079       continue;
6080 
6081     // Notice that the vector loop needs to be executed less times, so
6082     // we need to divide the cost of the vector loops by the width of
6083     // the vector elements.
6084     VectorizationCostTy C = expectedCost(i);
6085 
6086     assert(C.first.isValid() && "Unexpected invalid cost for vector loop");
6087     VectorizationFactor Candidate(i, C.first);
6088     LLVM_DEBUG(
6089         dbgs() << "LV: Vector loop of width " << i << " costs: "
6090                << (*Candidate.Cost.getValue() /
6091                    Candidate.Width.getKnownMinValue())
6092                << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "")
6093                << ".\n");
6094 
6095     if (!C.second && !ForceVectorization) {
6096       LLVM_DEBUG(
6097           dbgs() << "LV: Not considering vector loop of width " << i
6098                  << " because it will not generate any vector instructions.\n");
6099       continue;
6100     }
6101 
6102     // If profitable add it to ProfitableVF list.
6103     if (isMoreProfitable(Candidate, ScalarCost))
6104       ProfitableVFs.push_back(Candidate);
6105 
6106     if (isMoreProfitable(Candidate, ChosenFactor))
6107       ChosenFactor = Candidate;
6108   }
6109 
6110   if (!EnableCondStoresVectorization && NumPredStores) {
6111     reportVectorizationFailure("There are conditional stores.",
6112         "store that is conditionally executed prevents vectorization",
6113         "ConditionalStore", ORE, TheLoop);
6114     ChosenFactor = ScalarCost;
6115   }
6116 
6117   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
6118                  *ChosenFactor.Cost.getValue() >= *ScalarCost.Cost.getValue())
6119                  dbgs()
6120              << "LV: Vectorization seems to be not beneficial, "
6121              << "but was forced by a user.\n");
6122   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
6123   return ChosenFactor;
6124 }
6125 
6126 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
6127     const Loop &L, ElementCount VF) const {
6128   // Cross iteration phis such as reductions need special handling and are
6129   // currently unsupported.
6130   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
6131         return Legal->isFirstOrderRecurrence(&Phi) ||
6132                Legal->isReductionVariable(&Phi);
6133       }))
6134     return false;
6135 
6136   // Phis with uses outside of the loop require special handling and are
6137   // currently unsupported.
6138   for (auto &Entry : Legal->getInductionVars()) {
6139     // Look for uses of the value of the induction at the last iteration.
6140     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
6141     for (User *U : PostInc->users())
6142       if (!L.contains(cast<Instruction>(U)))
6143         return false;
6144     // Look for uses of penultimate value of the induction.
6145     for (User *U : Entry.first->users())
6146       if (!L.contains(cast<Instruction>(U)))
6147         return false;
6148   }
6149 
6150   // Induction variables that are widened require special handling that is
6151   // currently not supported.
6152   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
6153         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
6154                  this->isProfitableToScalarize(Entry.first, VF));
6155       }))
6156     return false;
6157 
6158   return true;
6159 }
6160 
6161 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
6162     const ElementCount VF) const {
6163   // FIXME: We need a much better cost-model to take different parameters such
6164   // as register pressure, code size increase and cost of extra branches into
6165   // account. For now we apply a very crude heuristic and only consider loops
6166   // with vectorization factors larger than a certain value.
6167   // We also consider epilogue vectorization unprofitable for targets that don't
6168   // consider interleaving beneficial (eg. MVE).
6169   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
6170     return false;
6171   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
6172     return true;
6173   return false;
6174 }
6175 
6176 VectorizationFactor
6177 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
6178     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
6179   VectorizationFactor Result = VectorizationFactor::Disabled();
6180   if (!EnableEpilogueVectorization) {
6181     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
6182     return Result;
6183   }
6184 
6185   if (!isScalarEpilogueAllowed()) {
6186     LLVM_DEBUG(
6187         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
6188                   "allowed.\n";);
6189     return Result;
6190   }
6191 
6192   // FIXME: This can be fixed for scalable vectors later, because at this stage
6193   // the LoopVectorizer will only consider vectorizing a loop with scalable
6194   // vectors when the loop has a hint to enable vectorization for a given VF.
6195   if (MainLoopVF.isScalable()) {
6196     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not "
6197                          "yet supported.\n");
6198     return Result;
6199   }
6200 
6201   // Not really a cost consideration, but check for unsupported cases here to
6202   // simplify the logic.
6203   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
6204     LLVM_DEBUG(
6205         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
6206                   "not a supported candidate.\n";);
6207     return Result;
6208   }
6209 
6210   if (EpilogueVectorizationForceVF > 1) {
6211     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
6212     if (LVP.hasPlanWithVFs(
6213             {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)}))
6214       return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0};
6215     else {
6216       LLVM_DEBUG(
6217           dbgs()
6218               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
6219       return Result;
6220     }
6221   }
6222 
6223   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
6224       TheLoop->getHeader()->getParent()->hasMinSize()) {
6225     LLVM_DEBUG(
6226         dbgs()
6227             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6228     return Result;
6229   }
6230 
6231   if (!isEpilogueVectorizationProfitable(MainLoopVF))
6232     return Result;
6233 
6234   for (auto &NextVF : ProfitableVFs)
6235     if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) &&
6236         (Result.Width.getFixedValue() == 1 ||
6237          isMoreProfitable(NextVF, Result)) &&
6238         LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width}))
6239       Result = NextVF;
6240 
6241   if (Result != VectorizationFactor::Disabled())
6242     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6243                       << Result.Width.getFixedValue() << "\n";);
6244   return Result;
6245 }
6246 
6247 std::pair<unsigned, unsigned>
6248 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6249   unsigned MinWidth = -1U;
6250   unsigned MaxWidth = 8;
6251   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6252 
6253   // For each block.
6254   for (BasicBlock *BB : TheLoop->blocks()) {
6255     // For each instruction in the loop.
6256     for (Instruction &I : BB->instructionsWithoutDebug()) {
6257       Type *T = I.getType();
6258 
6259       // Skip ignored values.
6260       if (ValuesToIgnore.count(&I))
6261         continue;
6262 
6263       // Only examine Loads, Stores and PHINodes.
6264       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6265         continue;
6266 
6267       // Examine PHI nodes that are reduction variables. Update the type to
6268       // account for the recurrence type.
6269       if (auto *PN = dyn_cast<PHINode>(&I)) {
6270         if (!Legal->isReductionVariable(PN))
6271           continue;
6272         const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN];
6273         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6274             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6275                                       RdxDesc.getRecurrenceType(),
6276                                       TargetTransformInfo::ReductionFlags()))
6277           continue;
6278         T = RdxDesc.getRecurrenceType();
6279       }
6280 
6281       // Examine the stored values.
6282       if (auto *ST = dyn_cast<StoreInst>(&I))
6283         T = ST->getValueOperand()->getType();
6284 
6285       // Ignore loaded pointer types and stored pointer types that are not
6286       // vectorizable.
6287       //
6288       // FIXME: The check here attempts to predict whether a load or store will
6289       //        be vectorized. We only know this for certain after a VF has
6290       //        been selected. Here, we assume that if an access can be
6291       //        vectorized, it will be. We should also look at extending this
6292       //        optimization to non-pointer types.
6293       //
6294       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6295           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6296         continue;
6297 
6298       MinWidth = std::min(MinWidth,
6299                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
6300       MaxWidth = std::max(MaxWidth,
6301                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
6302     }
6303   }
6304 
6305   return {MinWidth, MaxWidth};
6306 }
6307 
6308 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6309                                                            unsigned LoopCost) {
6310   // -- The interleave heuristics --
6311   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6312   // There are many micro-architectural considerations that we can't predict
6313   // at this level. For example, frontend pressure (on decode or fetch) due to
6314   // code size, or the number and capabilities of the execution ports.
6315   //
6316   // We use the following heuristics to select the interleave count:
6317   // 1. If the code has reductions, then we interleave to break the cross
6318   // iteration dependency.
6319   // 2. If the loop is really small, then we interleave to reduce the loop
6320   // overhead.
6321   // 3. We don't interleave if we think that we will spill registers to memory
6322   // due to the increased register pressure.
6323 
6324   if (!isScalarEpilogueAllowed())
6325     return 1;
6326 
6327   // We used the distance for the interleave count.
6328   if (Legal->getMaxSafeDepDistBytes() != -1U)
6329     return 1;
6330 
6331   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6332   const bool HasReductions = !Legal->getReductionVars().empty();
6333   // Do not interleave loops with a relatively small known or estimated trip
6334   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6335   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6336   // because with the above conditions interleaving can expose ILP and break
6337   // cross iteration dependences for reductions.
6338   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6339       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6340     return 1;
6341 
6342   RegisterUsage R = calculateRegisterUsage({VF})[0];
6343   // We divide by these constants so assume that we have at least one
6344   // instruction that uses at least one register.
6345   for (auto& pair : R.MaxLocalUsers) {
6346     pair.second = std::max(pair.second, 1U);
6347   }
6348 
6349   // We calculate the interleave count using the following formula.
6350   // Subtract the number of loop invariants from the number of available
6351   // registers. These registers are used by all of the interleaved instances.
6352   // Next, divide the remaining registers by the number of registers that is
6353   // required by the loop, in order to estimate how many parallel instances
6354   // fit without causing spills. All of this is rounded down if necessary to be
6355   // a power of two. We want power of two interleave count to simplify any
6356   // addressing operations or alignment considerations.
6357   // We also want power of two interleave counts to ensure that the induction
6358   // variable of the vector loop wraps to zero, when tail is folded by masking;
6359   // this currently happens when OptForSize, in which case IC is set to 1 above.
6360   unsigned IC = UINT_MAX;
6361 
6362   for (auto& pair : R.MaxLocalUsers) {
6363     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6364     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6365                       << " registers of "
6366                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6367     if (VF.isScalar()) {
6368       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6369         TargetNumRegisters = ForceTargetNumScalarRegs;
6370     } else {
6371       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6372         TargetNumRegisters = ForceTargetNumVectorRegs;
6373     }
6374     unsigned MaxLocalUsers = pair.second;
6375     unsigned LoopInvariantRegs = 0;
6376     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6377       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6378 
6379     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6380     // Don't count the induction variable as interleaved.
6381     if (EnableIndVarRegisterHeur) {
6382       TmpIC =
6383           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6384                         std::max(1U, (MaxLocalUsers - 1)));
6385     }
6386 
6387     IC = std::min(IC, TmpIC);
6388   }
6389 
6390   // Clamp the interleave ranges to reasonable counts.
6391   unsigned MaxInterleaveCount =
6392       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6393 
6394   // Check if the user has overridden the max.
6395   if (VF.isScalar()) {
6396     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6397       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6398   } else {
6399     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6400       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6401   }
6402 
6403   // If trip count is known or estimated compile time constant, limit the
6404   // interleave count to be less than the trip count divided by VF, provided it
6405   // is at least 1.
6406   //
6407   // For scalable vectors we can't know if interleaving is beneficial. It may
6408   // not be beneficial for small loops if none of the lanes in the second vector
6409   // iterations is enabled. However, for larger loops, there is likely to be a
6410   // similar benefit as for fixed-width vectors. For now, we choose to leave
6411   // the InterleaveCount as if vscale is '1', although if some information about
6412   // the vector is known (e.g. min vector size), we can make a better decision.
6413   if (BestKnownTC) {
6414     MaxInterleaveCount =
6415         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6416     // Make sure MaxInterleaveCount is greater than 0.
6417     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6418   }
6419 
6420   assert(MaxInterleaveCount > 0 &&
6421          "Maximum interleave count must be greater than 0");
6422 
6423   // Clamp the calculated IC to be between the 1 and the max interleave count
6424   // that the target and trip count allows.
6425   if (IC > MaxInterleaveCount)
6426     IC = MaxInterleaveCount;
6427   else
6428     // Make sure IC is greater than 0.
6429     IC = std::max(1u, IC);
6430 
6431   assert(IC > 0 && "Interleave count must be greater than 0.");
6432 
6433   // If we did not calculate the cost for VF (because the user selected the VF)
6434   // then we calculate the cost of VF here.
6435   if (LoopCost == 0) {
6436     assert(expectedCost(VF).first.isValid() && "Expected a valid cost");
6437     LoopCost = *expectedCost(VF).first.getValue();
6438   }
6439 
6440   assert(LoopCost && "Non-zero loop cost expected");
6441 
6442   // Interleave if we vectorized this loop and there is a reduction that could
6443   // benefit from interleaving.
6444   if (VF.isVector() && HasReductions) {
6445     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6446     return IC;
6447   }
6448 
6449   // Note that if we've already vectorized the loop we will have done the
6450   // runtime check and so interleaving won't require further checks.
6451   bool InterleavingRequiresRuntimePointerCheck =
6452       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6453 
6454   // We want to interleave small loops in order to reduce the loop overhead and
6455   // potentially expose ILP opportunities.
6456   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6457                     << "LV: IC is " << IC << '\n'
6458                     << "LV: VF is " << VF << '\n');
6459   const bool AggressivelyInterleaveReductions =
6460       TTI.enableAggressiveInterleaving(HasReductions);
6461   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6462     // We assume that the cost overhead is 1 and we use the cost model
6463     // to estimate the cost of the loop and interleave until the cost of the
6464     // loop overhead is about 5% of the cost of the loop.
6465     unsigned SmallIC =
6466         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6467 
6468     // Interleave until store/load ports (estimated by max interleave count) are
6469     // saturated.
6470     unsigned NumStores = Legal->getNumStores();
6471     unsigned NumLoads = Legal->getNumLoads();
6472     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6473     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6474 
6475     // If we have a scalar reduction (vector reductions are already dealt with
6476     // by this point), we can increase the critical path length if the loop
6477     // we're interleaving is inside another loop. Limit, by default to 2, so the
6478     // critical path only gets increased by one reduction operation.
6479     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6480       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6481       SmallIC = std::min(SmallIC, F);
6482       StoresIC = std::min(StoresIC, F);
6483       LoadsIC = std::min(LoadsIC, F);
6484     }
6485 
6486     if (EnableLoadStoreRuntimeInterleave &&
6487         std::max(StoresIC, LoadsIC) > SmallIC) {
6488       LLVM_DEBUG(
6489           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6490       return std::max(StoresIC, LoadsIC);
6491     }
6492 
6493     // If there are scalar reductions and TTI has enabled aggressive
6494     // interleaving for reductions, we will interleave to expose ILP.
6495     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6496         AggressivelyInterleaveReductions) {
6497       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6498       // Interleave no less than SmallIC but not as aggressive as the normal IC
6499       // to satisfy the rare situation when resources are too limited.
6500       return std::max(IC / 2, SmallIC);
6501     } else {
6502       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6503       return SmallIC;
6504     }
6505   }
6506 
6507   // Interleave if this is a large loop (small loops are already dealt with by
6508   // this point) that could benefit from interleaving.
6509   if (AggressivelyInterleaveReductions) {
6510     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6511     return IC;
6512   }
6513 
6514   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6515   return 1;
6516 }
6517 
6518 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6519 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6520   // This function calculates the register usage by measuring the highest number
6521   // of values that are alive at a single location. Obviously, this is a very
6522   // rough estimation. We scan the loop in a topological order in order and
6523   // assign a number to each instruction. We use RPO to ensure that defs are
6524   // met before their users. We assume that each instruction that has in-loop
6525   // users starts an interval. We record every time that an in-loop value is
6526   // used, so we have a list of the first and last occurrences of each
6527   // instruction. Next, we transpose this data structure into a multi map that
6528   // holds the list of intervals that *end* at a specific location. This multi
6529   // map allows us to perform a linear search. We scan the instructions linearly
6530   // and record each time that a new interval starts, by placing it in a set.
6531   // If we find this value in the multi-map then we remove it from the set.
6532   // The max register usage is the maximum size of the set.
6533   // We also search for instructions that are defined outside the loop, but are
6534   // used inside the loop. We need this number separately from the max-interval
6535   // usage number because when we unroll, loop-invariant values do not take
6536   // more register.
6537   LoopBlocksDFS DFS(TheLoop);
6538   DFS.perform(LI);
6539 
6540   RegisterUsage RU;
6541 
6542   // Each 'key' in the map opens a new interval. The values
6543   // of the map are the index of the 'last seen' usage of the
6544   // instruction that is the key.
6545   using IntervalMap = DenseMap<Instruction *, unsigned>;
6546 
6547   // Maps instruction to its index.
6548   SmallVector<Instruction *, 64> IdxToInstr;
6549   // Marks the end of each interval.
6550   IntervalMap EndPoint;
6551   // Saves the list of instruction indices that are used in the loop.
6552   SmallPtrSet<Instruction *, 8> Ends;
6553   // Saves the list of values that are used in the loop but are
6554   // defined outside the loop, such as arguments and constants.
6555   SmallPtrSet<Value *, 8> LoopInvariants;
6556 
6557   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6558     for (Instruction &I : BB->instructionsWithoutDebug()) {
6559       IdxToInstr.push_back(&I);
6560 
6561       // Save the end location of each USE.
6562       for (Value *U : I.operands()) {
6563         auto *Instr = dyn_cast<Instruction>(U);
6564 
6565         // Ignore non-instruction values such as arguments, constants, etc.
6566         if (!Instr)
6567           continue;
6568 
6569         // If this instruction is outside the loop then record it and continue.
6570         if (!TheLoop->contains(Instr)) {
6571           LoopInvariants.insert(Instr);
6572           continue;
6573         }
6574 
6575         // Overwrite previous end points.
6576         EndPoint[Instr] = IdxToInstr.size();
6577         Ends.insert(Instr);
6578       }
6579     }
6580   }
6581 
6582   // Saves the list of intervals that end with the index in 'key'.
6583   using InstrList = SmallVector<Instruction *, 2>;
6584   DenseMap<unsigned, InstrList> TransposeEnds;
6585 
6586   // Transpose the EndPoints to a list of values that end at each index.
6587   for (auto &Interval : EndPoint)
6588     TransposeEnds[Interval.second].push_back(Interval.first);
6589 
6590   SmallPtrSet<Instruction *, 8> OpenIntervals;
6591   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6592   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6593 
6594   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6595 
6596   // A lambda that gets the register usage for the given type and VF.
6597   const auto &TTICapture = TTI;
6598   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) {
6599     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6600       return 0;
6601     return *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6602   };
6603 
6604   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6605     Instruction *I = IdxToInstr[i];
6606 
6607     // Remove all of the instructions that end at this location.
6608     InstrList &List = TransposeEnds[i];
6609     for (Instruction *ToRemove : List)
6610       OpenIntervals.erase(ToRemove);
6611 
6612     // Ignore instructions that are never used within the loop.
6613     if (!Ends.count(I))
6614       continue;
6615 
6616     // Skip ignored values.
6617     if (ValuesToIgnore.count(I))
6618       continue;
6619 
6620     // For each VF find the maximum usage of registers.
6621     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6622       // Count the number of live intervals.
6623       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6624 
6625       if (VFs[j].isScalar()) {
6626         for (auto Inst : OpenIntervals) {
6627           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6628           if (RegUsage.find(ClassID) == RegUsage.end())
6629             RegUsage[ClassID] = 1;
6630           else
6631             RegUsage[ClassID] += 1;
6632         }
6633       } else {
6634         collectUniformsAndScalars(VFs[j]);
6635         for (auto Inst : OpenIntervals) {
6636           // Skip ignored values for VF > 1.
6637           if (VecValuesToIgnore.count(Inst))
6638             continue;
6639           if (isScalarAfterVectorization(Inst, VFs[j])) {
6640             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6641             if (RegUsage.find(ClassID) == RegUsage.end())
6642               RegUsage[ClassID] = 1;
6643             else
6644               RegUsage[ClassID] += 1;
6645           } else {
6646             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6647             if (RegUsage.find(ClassID) == RegUsage.end())
6648               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6649             else
6650               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6651           }
6652         }
6653       }
6654 
6655       for (auto& pair : RegUsage) {
6656         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6657           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6658         else
6659           MaxUsages[j][pair.first] = pair.second;
6660       }
6661     }
6662 
6663     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6664                       << OpenIntervals.size() << '\n');
6665 
6666     // Add the current instruction to the list of open intervals.
6667     OpenIntervals.insert(I);
6668   }
6669 
6670   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6671     SmallMapVector<unsigned, unsigned, 4> Invariant;
6672 
6673     for (auto Inst : LoopInvariants) {
6674       unsigned Usage =
6675           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6676       unsigned ClassID =
6677           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6678       if (Invariant.find(ClassID) == Invariant.end())
6679         Invariant[ClassID] = Usage;
6680       else
6681         Invariant[ClassID] += Usage;
6682     }
6683 
6684     LLVM_DEBUG({
6685       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6686       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6687              << " item\n";
6688       for (const auto &pair : MaxUsages[i]) {
6689         dbgs() << "LV(REG): RegisterClass: "
6690                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6691                << " registers\n";
6692       }
6693       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6694              << " item\n";
6695       for (const auto &pair : Invariant) {
6696         dbgs() << "LV(REG): RegisterClass: "
6697                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6698                << " registers\n";
6699       }
6700     });
6701 
6702     RU.LoopInvariantRegs = Invariant;
6703     RU.MaxLocalUsers = MaxUsages[i];
6704     RUs[i] = RU;
6705   }
6706 
6707   return RUs;
6708 }
6709 
6710 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6711   // TODO: Cost model for emulated masked load/store is completely
6712   // broken. This hack guides the cost model to use an artificially
6713   // high enough value to practically disable vectorization with such
6714   // operations, except where previously deployed legality hack allowed
6715   // using very low cost values. This is to avoid regressions coming simply
6716   // from moving "masked load/store" check from legality to cost model.
6717   // Masked Load/Gather emulation was previously never allowed.
6718   // Limited number of Masked Store/Scatter emulation was allowed.
6719   assert(isPredicatedInst(I) &&
6720          "Expecting a scalar emulated instruction");
6721   return isa<LoadInst>(I) ||
6722          (isa<StoreInst>(I) &&
6723           NumPredStores > NumberOfStoresToPredicate);
6724 }
6725 
6726 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6727   // If we aren't vectorizing the loop, or if we've already collected the
6728   // instructions to scalarize, there's nothing to do. Collection may already
6729   // have occurred if we have a user-selected VF and are now computing the
6730   // expected cost for interleaving.
6731   if (VF.isScalar() || VF.isZero() ||
6732       InstsToScalarize.find(VF) != InstsToScalarize.end())
6733     return;
6734 
6735   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6736   // not profitable to scalarize any instructions, the presence of VF in the
6737   // map will indicate that we've analyzed it already.
6738   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6739 
6740   // Find all the instructions that are scalar with predication in the loop and
6741   // determine if it would be better to not if-convert the blocks they are in.
6742   // If so, we also record the instructions to scalarize.
6743   for (BasicBlock *BB : TheLoop->blocks()) {
6744     if (!blockNeedsPredication(BB))
6745       continue;
6746     for (Instruction &I : *BB)
6747       if (isScalarWithPredication(&I)) {
6748         ScalarCostsTy ScalarCosts;
6749         // Do not apply discount logic if hacked cost is needed
6750         // for emulated masked memrefs.
6751         if (!useEmulatedMaskMemRefHack(&I) &&
6752             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6753           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6754         // Remember that BB will remain after vectorization.
6755         PredicatedBBsAfterVectorization.insert(BB);
6756       }
6757   }
6758 }
6759 
6760 int LoopVectorizationCostModel::computePredInstDiscount(
6761     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6762   assert(!isUniformAfterVectorization(PredInst, VF) &&
6763          "Instruction marked uniform-after-vectorization will be predicated");
6764 
6765   // Initialize the discount to zero, meaning that the scalar version and the
6766   // vector version cost the same.
6767   InstructionCost Discount = 0;
6768 
6769   // Holds instructions to analyze. The instructions we visit are mapped in
6770   // ScalarCosts. Those instructions are the ones that would be scalarized if
6771   // we find that the scalar version costs less.
6772   SmallVector<Instruction *, 8> Worklist;
6773 
6774   // Returns true if the given instruction can be scalarized.
6775   auto canBeScalarized = [&](Instruction *I) -> bool {
6776     // We only attempt to scalarize instructions forming a single-use chain
6777     // from the original predicated block that would otherwise be vectorized.
6778     // Although not strictly necessary, we give up on instructions we know will
6779     // already be scalar to avoid traversing chains that are unlikely to be
6780     // beneficial.
6781     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6782         isScalarAfterVectorization(I, VF))
6783       return false;
6784 
6785     // If the instruction is scalar with predication, it will be analyzed
6786     // separately. We ignore it within the context of PredInst.
6787     if (isScalarWithPredication(I))
6788       return false;
6789 
6790     // If any of the instruction's operands are uniform after vectorization,
6791     // the instruction cannot be scalarized. This prevents, for example, a
6792     // masked load from being scalarized.
6793     //
6794     // We assume we will only emit a value for lane zero of an instruction
6795     // marked uniform after vectorization, rather than VF identical values.
6796     // Thus, if we scalarize an instruction that uses a uniform, we would
6797     // create uses of values corresponding to the lanes we aren't emitting code
6798     // for. This behavior can be changed by allowing getScalarValue to clone
6799     // the lane zero values for uniforms rather than asserting.
6800     for (Use &U : I->operands())
6801       if (auto *J = dyn_cast<Instruction>(U.get()))
6802         if (isUniformAfterVectorization(J, VF))
6803           return false;
6804 
6805     // Otherwise, we can scalarize the instruction.
6806     return true;
6807   };
6808 
6809   // Compute the expected cost discount from scalarizing the entire expression
6810   // feeding the predicated instruction. We currently only consider expressions
6811   // that are single-use instruction chains.
6812   Worklist.push_back(PredInst);
6813   while (!Worklist.empty()) {
6814     Instruction *I = Worklist.pop_back_val();
6815 
6816     // If we've already analyzed the instruction, there's nothing to do.
6817     if (ScalarCosts.find(I) != ScalarCosts.end())
6818       continue;
6819 
6820     // Compute the cost of the vector instruction. Note that this cost already
6821     // includes the scalarization overhead of the predicated instruction.
6822     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6823 
6824     // Compute the cost of the scalarized instruction. This cost is the cost of
6825     // the instruction as if it wasn't if-converted and instead remained in the
6826     // predicated block. We will scale this cost by block probability after
6827     // computing the scalarization overhead.
6828     assert(!VF.isScalable() && "scalable vectors not yet supported.");
6829     InstructionCost ScalarCost =
6830         VF.getKnownMinValue() *
6831         getInstructionCost(I, ElementCount::getFixed(1)).first;
6832 
6833     // Compute the scalarization overhead of needed insertelement instructions
6834     // and phi nodes.
6835     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6836       ScalarCost += TTI.getScalarizationOverhead(
6837           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6838           APInt::getAllOnesValue(VF.getKnownMinValue()), true, false);
6839       assert(!VF.isScalable() && "scalable vectors not yet supported.");
6840       ScalarCost +=
6841           VF.getKnownMinValue() *
6842           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6843     }
6844 
6845     // Compute the scalarization overhead of needed extractelement
6846     // instructions. For each of the instruction's operands, if the operand can
6847     // be scalarized, add it to the worklist; otherwise, account for the
6848     // overhead.
6849     for (Use &U : I->operands())
6850       if (auto *J = dyn_cast<Instruction>(U.get())) {
6851         assert(VectorType::isValidElementType(J->getType()) &&
6852                "Instruction has non-scalar type");
6853         if (canBeScalarized(J))
6854           Worklist.push_back(J);
6855         else if (needsExtract(J, VF)) {
6856           assert(!VF.isScalable() && "scalable vectors not yet supported.");
6857           ScalarCost += TTI.getScalarizationOverhead(
6858               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6859               APInt::getAllOnesValue(VF.getKnownMinValue()), false, true);
6860         }
6861       }
6862 
6863     // Scale the total scalar cost by block probability.
6864     ScalarCost /= getReciprocalPredBlockProb();
6865 
6866     // Compute the discount. A non-negative discount means the vector version
6867     // of the instruction costs more, and scalarizing would be beneficial.
6868     Discount += VectorCost - ScalarCost;
6869     ScalarCosts[I] = ScalarCost;
6870   }
6871 
6872   return *Discount.getValue();
6873 }
6874 
6875 LoopVectorizationCostModel::VectorizationCostTy
6876 LoopVectorizationCostModel::expectedCost(ElementCount VF) {
6877   VectorizationCostTy Cost;
6878 
6879   // For each block.
6880   for (BasicBlock *BB : TheLoop->blocks()) {
6881     VectorizationCostTy BlockCost;
6882 
6883     // For each instruction in the old loop.
6884     for (Instruction &I : BB->instructionsWithoutDebug()) {
6885       // Skip ignored values.
6886       if (ValuesToIgnore.count(&I) ||
6887           (VF.isVector() && VecValuesToIgnore.count(&I)))
6888         continue;
6889 
6890       VectorizationCostTy C = getInstructionCost(&I, VF);
6891 
6892       // Check if we should override the cost.
6893       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
6894         C.first = InstructionCost(ForceTargetInstructionCost);
6895 
6896       BlockCost.first += C.first;
6897       BlockCost.second |= C.second;
6898       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6899                         << " for VF " << VF << " For instruction: " << I
6900                         << '\n');
6901     }
6902 
6903     // If we are vectorizing a predicated block, it will have been
6904     // if-converted. This means that the block's instructions (aside from
6905     // stores and instructions that may divide by zero) will now be
6906     // unconditionally executed. For the scalar case, we may not always execute
6907     // the predicated block, if it is an if-else block. Thus, scale the block's
6908     // cost by the probability of executing it. blockNeedsPredication from
6909     // Legal is used so as to not include all blocks in tail folded loops.
6910     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6911       BlockCost.first /= getReciprocalPredBlockProb();
6912 
6913     Cost.first += BlockCost.first;
6914     Cost.second |= BlockCost.second;
6915   }
6916 
6917   return Cost;
6918 }
6919 
6920 /// Gets Address Access SCEV after verifying that the access pattern
6921 /// is loop invariant except the induction variable dependence.
6922 ///
6923 /// This SCEV can be sent to the Target in order to estimate the address
6924 /// calculation cost.
6925 static const SCEV *getAddressAccessSCEV(
6926               Value *Ptr,
6927               LoopVectorizationLegality *Legal,
6928               PredicatedScalarEvolution &PSE,
6929               const Loop *TheLoop) {
6930 
6931   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6932   if (!Gep)
6933     return nullptr;
6934 
6935   // We are looking for a gep with all loop invariant indices except for one
6936   // which should be an induction variable.
6937   auto SE = PSE.getSE();
6938   unsigned NumOperands = Gep->getNumOperands();
6939   for (unsigned i = 1; i < NumOperands; ++i) {
6940     Value *Opd = Gep->getOperand(i);
6941     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6942         !Legal->isInductionVariable(Opd))
6943       return nullptr;
6944   }
6945 
6946   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6947   return PSE.getSCEV(Ptr);
6948 }
6949 
6950 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6951   return Legal->hasStride(I->getOperand(0)) ||
6952          Legal->hasStride(I->getOperand(1));
6953 }
6954 
6955 InstructionCost
6956 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6957                                                         ElementCount VF) {
6958   assert(VF.isVector() &&
6959          "Scalarization cost of instruction implies vectorization.");
6960   if (VF.isScalable())
6961     return InstructionCost::getInvalid();
6962 
6963   Type *ValTy = getLoadStoreType(I);
6964   auto SE = PSE.getSE();
6965 
6966   unsigned AS = getLoadStoreAddressSpace(I);
6967   Value *Ptr = getLoadStorePointerOperand(I);
6968   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6969 
6970   // Figure out whether the access is strided and get the stride value
6971   // if it's known in compile time
6972   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6973 
6974   // Get the cost of the scalar memory instruction and address computation.
6975   InstructionCost Cost =
6976       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6977 
6978   // Don't pass *I here, since it is scalar but will actually be part of a
6979   // vectorized loop where the user of it is a vectorized instruction.
6980   const Align Alignment = getLoadStoreAlignment(I);
6981   Cost += VF.getKnownMinValue() *
6982           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6983                               AS, TTI::TCK_RecipThroughput);
6984 
6985   // Get the overhead of the extractelement and insertelement instructions
6986   // we might create due to scalarization.
6987   Cost += getScalarizationOverhead(I, VF);
6988 
6989   // If we have a predicated load/store, it will need extra i1 extracts and
6990   // conditional branches, but may not be executed for each vector lane. Scale
6991   // the cost by the probability of executing the predicated block.
6992   if (isPredicatedInst(I)) {
6993     Cost /= getReciprocalPredBlockProb();
6994 
6995     // Add the cost of an i1 extract and a branch
6996     auto *Vec_i1Ty =
6997         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6998     Cost += TTI.getScalarizationOverhead(
6999         Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()),
7000         /*Insert=*/false, /*Extract=*/true);
7001     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
7002 
7003     if (useEmulatedMaskMemRefHack(I))
7004       // Artificially setting to a high enough value to practically disable
7005       // vectorization with such operations.
7006       Cost = 3000000;
7007   }
7008 
7009   return Cost;
7010 }
7011 
7012 InstructionCost
7013 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
7014                                                     ElementCount VF) {
7015   Type *ValTy = getLoadStoreType(I);
7016   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7017   Value *Ptr = getLoadStorePointerOperand(I);
7018   unsigned AS = getLoadStoreAddressSpace(I);
7019   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
7020   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7021 
7022   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7023          "Stride should be 1 or -1 for consecutive memory access");
7024   const Align Alignment = getLoadStoreAlignment(I);
7025   InstructionCost Cost = 0;
7026   if (Legal->isMaskRequired(I))
7027     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7028                                       CostKind);
7029   else
7030     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7031                                 CostKind, I);
7032 
7033   bool Reverse = ConsecutiveStride < 0;
7034   if (Reverse)
7035     Cost +=
7036         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7037   return Cost;
7038 }
7039 
7040 InstructionCost
7041 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
7042                                                 ElementCount VF) {
7043   assert(Legal->isUniformMemOp(*I));
7044 
7045   Type *ValTy = getLoadStoreType(I);
7046   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7047   const Align Alignment = getLoadStoreAlignment(I);
7048   unsigned AS = getLoadStoreAddressSpace(I);
7049   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7050   if (isa<LoadInst>(I)) {
7051     return TTI.getAddressComputationCost(ValTy) +
7052            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
7053                                CostKind) +
7054            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
7055   }
7056   StoreInst *SI = cast<StoreInst>(I);
7057 
7058   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
7059   return TTI.getAddressComputationCost(ValTy) +
7060          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
7061                              CostKind) +
7062          (isLoopInvariantStoreValue
7063               ? 0
7064               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
7065                                        VF.getKnownMinValue() - 1));
7066 }
7067 
7068 InstructionCost
7069 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
7070                                                  ElementCount VF) {
7071   Type *ValTy = getLoadStoreType(I);
7072   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7073   const Align Alignment = getLoadStoreAlignment(I);
7074   const Value *Ptr = getLoadStorePointerOperand(I);
7075 
7076   return TTI.getAddressComputationCost(VectorTy) +
7077          TTI.getGatherScatterOpCost(
7078              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
7079              TargetTransformInfo::TCK_RecipThroughput, I);
7080 }
7081 
7082 InstructionCost
7083 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
7084                                                    ElementCount VF) {
7085   // TODO: Once we have support for interleaving with scalable vectors
7086   // we can calculate the cost properly here.
7087   if (VF.isScalable())
7088     return InstructionCost::getInvalid();
7089 
7090   Type *ValTy = getLoadStoreType(I);
7091   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7092   unsigned AS = getLoadStoreAddressSpace(I);
7093 
7094   auto Group = getInterleavedAccessGroup(I);
7095   assert(Group && "Fail to get an interleaved access group.");
7096 
7097   unsigned InterleaveFactor = Group->getFactor();
7098   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
7099 
7100   // Holds the indices of existing members in an interleaved load group.
7101   // An interleaved store group doesn't need this as it doesn't allow gaps.
7102   SmallVector<unsigned, 4> Indices;
7103   if (isa<LoadInst>(I)) {
7104     for (unsigned i = 0; i < InterleaveFactor; i++)
7105       if (Group->getMember(i))
7106         Indices.push_back(i);
7107   }
7108 
7109   // Calculate the cost of the whole interleaved group.
7110   bool UseMaskForGaps =
7111       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
7112   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
7113       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
7114       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
7115 
7116   if (Group->isReverse()) {
7117     // TODO: Add support for reversed masked interleaved access.
7118     assert(!Legal->isMaskRequired(I) &&
7119            "Reverse masked interleaved access not supported.");
7120     Cost +=
7121         Group->getNumMembers() *
7122         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7123   }
7124   return Cost;
7125 }
7126 
7127 InstructionCost LoopVectorizationCostModel::getReductionPatternCost(
7128     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
7129   // Early exit for no inloop reductions
7130   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
7131     return InstructionCost::getInvalid();
7132   auto *VectorTy = cast<VectorType>(Ty);
7133 
7134   // We are looking for a pattern of, and finding the minimal acceptable cost:
7135   //  reduce(mul(ext(A), ext(B))) or
7136   //  reduce(mul(A, B)) or
7137   //  reduce(ext(A)) or
7138   //  reduce(A).
7139   // The basic idea is that we walk down the tree to do that, finding the root
7140   // reduction instruction in InLoopReductionImmediateChains. From there we find
7141   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
7142   // of the components. If the reduction cost is lower then we return it for the
7143   // reduction instruction and 0 for the other instructions in the pattern. If
7144   // it is not we return an invalid cost specifying the orignal cost method
7145   // should be used.
7146   Instruction *RetI = I;
7147   if ((RetI->getOpcode() == Instruction::SExt ||
7148        RetI->getOpcode() == Instruction::ZExt)) {
7149     if (!RetI->hasOneUser())
7150       return InstructionCost::getInvalid();
7151     RetI = RetI->user_back();
7152   }
7153   if (RetI->getOpcode() == Instruction::Mul &&
7154       RetI->user_back()->getOpcode() == Instruction::Add) {
7155     if (!RetI->hasOneUser())
7156       return InstructionCost::getInvalid();
7157     RetI = RetI->user_back();
7158   }
7159 
7160   // Test if the found instruction is a reduction, and if not return an invalid
7161   // cost specifying the parent to use the original cost modelling.
7162   if (!InLoopReductionImmediateChains.count(RetI))
7163     return InstructionCost::getInvalid();
7164 
7165   // Find the reduction this chain is a part of and calculate the basic cost of
7166   // the reduction on its own.
7167   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
7168   Instruction *ReductionPhi = LastChain;
7169   while (!isa<PHINode>(ReductionPhi))
7170     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
7171 
7172   const RecurrenceDescriptor &RdxDesc =
7173       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
7174   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
7175       RdxDesc.getOpcode(), VectorTy, false, CostKind);
7176 
7177   // Get the operand that was not the reduction chain and match it to one of the
7178   // patterns, returning the better cost if it is found.
7179   Instruction *RedOp = RetI->getOperand(1) == LastChain
7180                            ? dyn_cast<Instruction>(RetI->getOperand(0))
7181                            : dyn_cast<Instruction>(RetI->getOperand(1));
7182 
7183   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
7184 
7185   if (RedOp && (isa<SExtInst>(RedOp) || isa<ZExtInst>(RedOp)) &&
7186       !TheLoop->isLoopInvariant(RedOp)) {
7187     bool IsUnsigned = isa<ZExtInst>(RedOp);
7188     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
7189     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7190         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7191         CostKind);
7192 
7193     InstructionCost ExtCost =
7194         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
7195                              TTI::CastContextHint::None, CostKind, RedOp);
7196     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
7197       return I == RetI ? *RedCost.getValue() : 0;
7198   } else if (RedOp && RedOp->getOpcode() == Instruction::Mul) {
7199     Instruction *Mul = RedOp;
7200     Instruction *Op0 = dyn_cast<Instruction>(Mul->getOperand(0));
7201     Instruction *Op1 = dyn_cast<Instruction>(Mul->getOperand(1));
7202     if (Op0 && Op1 && (isa<SExtInst>(Op0) || isa<ZExtInst>(Op0)) &&
7203         Op0->getOpcode() == Op1->getOpcode() &&
7204         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7205         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7206       bool IsUnsigned = isa<ZExtInst>(Op0);
7207       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7208       // reduce(mul(ext, ext))
7209       InstructionCost ExtCost =
7210           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
7211                                TTI::CastContextHint::None, CostKind, Op0);
7212       InstructionCost MulCost =
7213           TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind);
7214 
7215       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7216           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7217           CostKind);
7218 
7219       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
7220         return I == RetI ? *RedCost.getValue() : 0;
7221     } else {
7222       InstructionCost MulCost =
7223           TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind);
7224 
7225       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7226           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7227           CostKind);
7228 
7229       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7230         return I == RetI ? *RedCost.getValue() : 0;
7231     }
7232   }
7233 
7234   return I == RetI ? BaseCost : InstructionCost::getInvalid();
7235 }
7236 
7237 InstructionCost
7238 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7239                                                      ElementCount VF) {
7240   // Calculate scalar cost only. Vectorization cost should be ready at this
7241   // moment.
7242   if (VF.isScalar()) {
7243     Type *ValTy = getLoadStoreType(I);
7244     const Align Alignment = getLoadStoreAlignment(I);
7245     unsigned AS = getLoadStoreAddressSpace(I);
7246 
7247     return TTI.getAddressComputationCost(ValTy) +
7248            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7249                                TTI::TCK_RecipThroughput, I);
7250   }
7251   return getWideningCost(I, VF);
7252 }
7253 
7254 LoopVectorizationCostModel::VectorizationCostTy
7255 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7256                                                ElementCount VF) {
7257   // If we know that this instruction will remain uniform, check the cost of
7258   // the scalar version.
7259   if (isUniformAfterVectorization(I, VF))
7260     VF = ElementCount::getFixed(1);
7261 
7262   if (VF.isVector() && isProfitableToScalarize(I, VF))
7263     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7264 
7265   // Forced scalars do not have any scalarization overhead.
7266   auto ForcedScalar = ForcedScalars.find(VF);
7267   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7268     auto InstSet = ForcedScalar->second;
7269     if (InstSet.count(I))
7270       return VectorizationCostTy(
7271           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7272            VF.getKnownMinValue()),
7273           false);
7274   }
7275 
7276   Type *VectorTy;
7277   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7278 
7279   bool TypeNotScalarized =
7280       VF.isVector() && VectorTy->isVectorTy() &&
7281       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
7282   return VectorizationCostTy(C, TypeNotScalarized);
7283 }
7284 
7285 InstructionCost
7286 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7287                                                      ElementCount VF) const {
7288 
7289   if (VF.isScalable())
7290     return InstructionCost::getInvalid();
7291 
7292   if (VF.isScalar())
7293     return 0;
7294 
7295   InstructionCost Cost = 0;
7296   Type *RetTy = ToVectorTy(I->getType(), VF);
7297   if (!RetTy->isVoidTy() &&
7298       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7299     Cost += TTI.getScalarizationOverhead(
7300         cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()),
7301         true, false);
7302 
7303   // Some targets keep addresses scalar.
7304   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7305     return Cost;
7306 
7307   // Some targets support efficient element stores.
7308   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7309     return Cost;
7310 
7311   // Collect operands to consider.
7312   CallInst *CI = dyn_cast<CallInst>(I);
7313   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
7314 
7315   // Skip operands that do not require extraction/scalarization and do not incur
7316   // any overhead.
7317   SmallVector<Type *> Tys;
7318   for (auto *V : filterExtractingOperands(Ops, VF))
7319     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7320   return Cost + TTI.getOperandsScalarizationOverhead(
7321                     filterExtractingOperands(Ops, VF), Tys);
7322 }
7323 
7324 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7325   if (VF.isScalar())
7326     return;
7327   NumPredStores = 0;
7328   for (BasicBlock *BB : TheLoop->blocks()) {
7329     // For each instruction in the old loop.
7330     for (Instruction &I : *BB) {
7331       Value *Ptr =  getLoadStorePointerOperand(&I);
7332       if (!Ptr)
7333         continue;
7334 
7335       // TODO: We should generate better code and update the cost model for
7336       // predicated uniform stores. Today they are treated as any other
7337       // predicated store (see added test cases in
7338       // invariant-store-vectorization.ll).
7339       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7340         NumPredStores++;
7341 
7342       if (Legal->isUniformMemOp(I)) {
7343         // TODO: Avoid replicating loads and stores instead of
7344         // relying on instcombine to remove them.
7345         // Load: Scalar load + broadcast
7346         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7347         InstructionCost Cost = getUniformMemOpCost(&I, VF);
7348         setWideningDecision(&I, VF, CM_Scalarize, Cost);
7349         continue;
7350       }
7351 
7352       // We assume that widening is the best solution when possible.
7353       if (memoryInstructionCanBeWidened(&I, VF)) {
7354         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7355         int ConsecutiveStride =
7356                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
7357         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7358                "Expected consecutive stride.");
7359         InstWidening Decision =
7360             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7361         setWideningDecision(&I, VF, Decision, Cost);
7362         continue;
7363       }
7364 
7365       // Choose between Interleaving, Gather/Scatter or Scalarization.
7366       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7367       unsigned NumAccesses = 1;
7368       if (isAccessInterleaved(&I)) {
7369         auto Group = getInterleavedAccessGroup(&I);
7370         assert(Group && "Fail to get an interleaved access group.");
7371 
7372         // Make one decision for the whole group.
7373         if (getWideningDecision(&I, VF) != CM_Unknown)
7374           continue;
7375 
7376         NumAccesses = Group->getNumMembers();
7377         if (interleavedAccessCanBeWidened(&I, VF))
7378           InterleaveCost = getInterleaveGroupCost(&I, VF);
7379       }
7380 
7381       InstructionCost GatherScatterCost =
7382           isLegalGatherOrScatter(&I)
7383               ? getGatherScatterCost(&I, VF) * NumAccesses
7384               : InstructionCost::getInvalid();
7385 
7386       InstructionCost ScalarizationCost =
7387           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7388 
7389       // Choose better solution for the current VF,
7390       // write down this decision and use it during vectorization.
7391       InstructionCost Cost;
7392       InstWidening Decision;
7393       if (InterleaveCost <= GatherScatterCost &&
7394           InterleaveCost < ScalarizationCost) {
7395         Decision = CM_Interleave;
7396         Cost = InterleaveCost;
7397       } else if (GatherScatterCost < ScalarizationCost) {
7398         Decision = CM_GatherScatter;
7399         Cost = GatherScatterCost;
7400       } else {
7401         assert(!VF.isScalable() &&
7402                "We cannot yet scalarise for scalable vectors");
7403         Decision = CM_Scalarize;
7404         Cost = ScalarizationCost;
7405       }
7406       // If the instructions belongs to an interleave group, the whole group
7407       // receives the same decision. The whole group receives the cost, but
7408       // the cost will actually be assigned to one instruction.
7409       if (auto Group = getInterleavedAccessGroup(&I))
7410         setWideningDecision(Group, VF, Decision, Cost);
7411       else
7412         setWideningDecision(&I, VF, Decision, Cost);
7413     }
7414   }
7415 
7416   // Make sure that any load of address and any other address computation
7417   // remains scalar unless there is gather/scatter support. This avoids
7418   // inevitable extracts into address registers, and also has the benefit of
7419   // activating LSR more, since that pass can't optimize vectorized
7420   // addresses.
7421   if (TTI.prefersVectorizedAddressing())
7422     return;
7423 
7424   // Start with all scalar pointer uses.
7425   SmallPtrSet<Instruction *, 8> AddrDefs;
7426   for (BasicBlock *BB : TheLoop->blocks())
7427     for (Instruction &I : *BB) {
7428       Instruction *PtrDef =
7429         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7430       if (PtrDef && TheLoop->contains(PtrDef) &&
7431           getWideningDecision(&I, VF) != CM_GatherScatter)
7432         AddrDefs.insert(PtrDef);
7433     }
7434 
7435   // Add all instructions used to generate the addresses.
7436   SmallVector<Instruction *, 4> Worklist;
7437   append_range(Worklist, AddrDefs);
7438   while (!Worklist.empty()) {
7439     Instruction *I = Worklist.pop_back_val();
7440     for (auto &Op : I->operands())
7441       if (auto *InstOp = dyn_cast<Instruction>(Op))
7442         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7443             AddrDefs.insert(InstOp).second)
7444           Worklist.push_back(InstOp);
7445   }
7446 
7447   for (auto *I : AddrDefs) {
7448     if (isa<LoadInst>(I)) {
7449       // Setting the desired widening decision should ideally be handled in
7450       // by cost functions, but since this involves the task of finding out
7451       // if the loaded register is involved in an address computation, it is
7452       // instead changed here when we know this is the case.
7453       InstWidening Decision = getWideningDecision(I, VF);
7454       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7455         // Scalarize a widened load of address.
7456         setWideningDecision(
7457             I, VF, CM_Scalarize,
7458             (VF.getKnownMinValue() *
7459              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7460       else if (auto Group = getInterleavedAccessGroup(I)) {
7461         // Scalarize an interleave group of address loads.
7462         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7463           if (Instruction *Member = Group->getMember(I))
7464             setWideningDecision(
7465                 Member, VF, CM_Scalarize,
7466                 (VF.getKnownMinValue() *
7467                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7468         }
7469       }
7470     } else
7471       // Make sure I gets scalarized and a cost estimate without
7472       // scalarization overhead.
7473       ForcedScalars[VF].insert(I);
7474   }
7475 }
7476 
7477 InstructionCost
7478 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7479                                                Type *&VectorTy) {
7480   Type *RetTy = I->getType();
7481   if (canTruncateToMinimalBitwidth(I, VF))
7482     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7483   auto SE = PSE.getSE();
7484   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7485 
7486   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7487                                                 ElementCount VF) -> bool {
7488     if (VF.isScalar())
7489       return true;
7490 
7491     auto Scalarized = InstsToScalarize.find(VF);
7492     assert(Scalarized != InstsToScalarize.end() &&
7493            "VF not yet analyzed for scalarization profitability");
7494     return !Scalarized->second.count(I) &&
7495            llvm::all_of(I->users(), [&](User *U) {
7496              auto *UI = cast<Instruction>(U);
7497              return !Scalarized->second.count(UI);
7498            });
7499   };
7500   (void) hasSingleCopyAfterVectorization;
7501 
7502   if (isScalarAfterVectorization(I, VF)) {
7503     // With the exception of GEPs and PHIs, after scalarization there should
7504     // only be one copy of the instruction generated in the loop. This is
7505     // because the VF is either 1, or any instructions that need scalarizing
7506     // have already been dealt with by the the time we get here. As a result,
7507     // it means we don't have to multiply the instruction cost by VF.
7508     assert(I->getOpcode() == Instruction::GetElementPtr ||
7509            I->getOpcode() == Instruction::PHI ||
7510            (I->getOpcode() == Instruction::BitCast &&
7511             I->getType()->isPointerTy()) ||
7512            hasSingleCopyAfterVectorization(I, VF));
7513     VectorTy = RetTy;
7514   } else
7515     VectorTy = ToVectorTy(RetTy, VF);
7516 
7517   // TODO: We need to estimate the cost of intrinsic calls.
7518   switch (I->getOpcode()) {
7519   case Instruction::GetElementPtr:
7520     // We mark this instruction as zero-cost because the cost of GEPs in
7521     // vectorized code depends on whether the corresponding memory instruction
7522     // is scalarized or not. Therefore, we handle GEPs with the memory
7523     // instruction cost.
7524     return 0;
7525   case Instruction::Br: {
7526     // In cases of scalarized and predicated instructions, there will be VF
7527     // predicated blocks in the vectorized loop. Each branch around these
7528     // blocks requires also an extract of its vector compare i1 element.
7529     bool ScalarPredicatedBB = false;
7530     BranchInst *BI = cast<BranchInst>(I);
7531     if (VF.isVector() && BI->isConditional() &&
7532         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7533          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7534       ScalarPredicatedBB = true;
7535 
7536     if (ScalarPredicatedBB) {
7537       // Return cost for branches around scalarized and predicated blocks.
7538       assert(!VF.isScalable() && "scalable vectors not yet supported.");
7539       auto *Vec_i1Ty =
7540           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7541       return (TTI.getScalarizationOverhead(
7542                   Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()),
7543                   false, true) +
7544               (TTI.getCFInstrCost(Instruction::Br, CostKind) *
7545                VF.getKnownMinValue()));
7546     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7547       // The back-edge branch will remain, as will all scalar branches.
7548       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7549     else
7550       // This branch will be eliminated by if-conversion.
7551       return 0;
7552     // Note: We currently assume zero cost for an unconditional branch inside
7553     // a predicated block since it will become a fall-through, although we
7554     // may decide in the future to call TTI for all branches.
7555   }
7556   case Instruction::PHI: {
7557     auto *Phi = cast<PHINode>(I);
7558 
7559     // First-order recurrences are replaced by vector shuffles inside the loop.
7560     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7561     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7562       return TTI.getShuffleCost(
7563           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7564           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7565 
7566     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7567     // converted into select instructions. We require N - 1 selects per phi
7568     // node, where N is the number of incoming values.
7569     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7570       return (Phi->getNumIncomingValues() - 1) *
7571              TTI.getCmpSelInstrCost(
7572                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7573                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7574                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7575 
7576     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7577   }
7578   case Instruction::UDiv:
7579   case Instruction::SDiv:
7580   case Instruction::URem:
7581   case Instruction::SRem:
7582     // If we have a predicated instruction, it may not be executed for each
7583     // vector lane. Get the scalarization cost and scale this amount by the
7584     // probability of executing the predicated block. If the instruction is not
7585     // predicated, we fall through to the next case.
7586     if (VF.isVector() && isScalarWithPredication(I)) {
7587       InstructionCost Cost = 0;
7588 
7589       // These instructions have a non-void type, so account for the phi nodes
7590       // that we will create. This cost is likely to be zero. The phi node
7591       // cost, if any, should be scaled by the block probability because it
7592       // models a copy at the end of each predicated block.
7593       Cost += VF.getKnownMinValue() *
7594               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7595 
7596       // The cost of the non-predicated instruction.
7597       Cost += VF.getKnownMinValue() *
7598               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7599 
7600       // The cost of insertelement and extractelement instructions needed for
7601       // scalarization.
7602       Cost += getScalarizationOverhead(I, VF);
7603 
7604       // Scale the cost by the probability of executing the predicated blocks.
7605       // This assumes the predicated block for each vector lane is equally
7606       // likely.
7607       return Cost / getReciprocalPredBlockProb();
7608     }
7609     LLVM_FALLTHROUGH;
7610   case Instruction::Add:
7611   case Instruction::FAdd:
7612   case Instruction::Sub:
7613   case Instruction::FSub:
7614   case Instruction::Mul:
7615   case Instruction::FMul:
7616   case Instruction::FDiv:
7617   case Instruction::FRem:
7618   case Instruction::Shl:
7619   case Instruction::LShr:
7620   case Instruction::AShr:
7621   case Instruction::And:
7622   case Instruction::Or:
7623   case Instruction::Xor: {
7624     // Since we will replace the stride by 1 the multiplication should go away.
7625     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7626       return 0;
7627 
7628     // Detect reduction patterns
7629     InstructionCost RedCost;
7630     if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7631             .isValid())
7632       return RedCost;
7633 
7634     // Certain instructions can be cheaper to vectorize if they have a constant
7635     // second vector operand. One example of this are shifts on x86.
7636     Value *Op2 = I->getOperand(1);
7637     TargetTransformInfo::OperandValueProperties Op2VP;
7638     TargetTransformInfo::OperandValueKind Op2VK =
7639         TTI.getOperandInfo(Op2, Op2VP);
7640     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7641       Op2VK = TargetTransformInfo::OK_UniformValue;
7642 
7643     SmallVector<const Value *, 4> Operands(I->operand_values());
7644     return TTI.getArithmeticInstrCost(
7645         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7646         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7647   }
7648   case Instruction::FNeg: {
7649     return TTI.getArithmeticInstrCost(
7650         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7651         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7652         TargetTransformInfo::OP_None, I->getOperand(0), I);
7653   }
7654   case Instruction::Select: {
7655     SelectInst *SI = cast<SelectInst>(I);
7656     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7657     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7658 
7659     const Value *Op0, *Op1;
7660     using namespace llvm::PatternMatch;
7661     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7662                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7663       // select x, y, false --> x & y
7664       // select x, true, y --> x | y
7665       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7666       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7667       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7668       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7669       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7670               Op1->getType()->getScalarSizeInBits() == 1);
7671 
7672       SmallVector<const Value *, 2> Operands{Op0, Op1};
7673       return TTI.getArithmeticInstrCost(
7674           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7675           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7676     }
7677 
7678     Type *CondTy = SI->getCondition()->getType();
7679     if (!ScalarCond)
7680       CondTy = VectorType::get(CondTy, VF);
7681     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7682                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7683   }
7684   case Instruction::ICmp:
7685   case Instruction::FCmp: {
7686     Type *ValTy = I->getOperand(0)->getType();
7687     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7688     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7689       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7690     VectorTy = ToVectorTy(ValTy, VF);
7691     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7692                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7693   }
7694   case Instruction::Store:
7695   case Instruction::Load: {
7696     ElementCount Width = VF;
7697     if (Width.isVector()) {
7698       InstWidening Decision = getWideningDecision(I, Width);
7699       assert(Decision != CM_Unknown &&
7700              "CM decision should be taken at this point");
7701       if (Decision == CM_Scalarize)
7702         Width = ElementCount::getFixed(1);
7703     }
7704     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7705     return getMemoryInstructionCost(I, VF);
7706   }
7707   case Instruction::BitCast:
7708     if (I->getType()->isPointerTy())
7709       return 0;
7710     LLVM_FALLTHROUGH;
7711   case Instruction::ZExt:
7712   case Instruction::SExt:
7713   case Instruction::FPToUI:
7714   case Instruction::FPToSI:
7715   case Instruction::FPExt:
7716   case Instruction::PtrToInt:
7717   case Instruction::IntToPtr:
7718   case Instruction::SIToFP:
7719   case Instruction::UIToFP:
7720   case Instruction::Trunc:
7721   case Instruction::FPTrunc: {
7722     // Computes the CastContextHint from a Load/Store instruction.
7723     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7724       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7725              "Expected a load or a store!");
7726 
7727       if (VF.isScalar() || !TheLoop->contains(I))
7728         return TTI::CastContextHint::Normal;
7729 
7730       switch (getWideningDecision(I, VF)) {
7731       case LoopVectorizationCostModel::CM_GatherScatter:
7732         return TTI::CastContextHint::GatherScatter;
7733       case LoopVectorizationCostModel::CM_Interleave:
7734         return TTI::CastContextHint::Interleave;
7735       case LoopVectorizationCostModel::CM_Scalarize:
7736       case LoopVectorizationCostModel::CM_Widen:
7737         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7738                                         : TTI::CastContextHint::Normal;
7739       case LoopVectorizationCostModel::CM_Widen_Reverse:
7740         return TTI::CastContextHint::Reversed;
7741       case LoopVectorizationCostModel::CM_Unknown:
7742         llvm_unreachable("Instr did not go through cost modelling?");
7743       }
7744 
7745       llvm_unreachable("Unhandled case!");
7746     };
7747 
7748     unsigned Opcode = I->getOpcode();
7749     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7750     // For Trunc, the context is the only user, which must be a StoreInst.
7751     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7752       if (I->hasOneUse())
7753         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7754           CCH = ComputeCCH(Store);
7755     }
7756     // For Z/Sext, the context is the operand, which must be a LoadInst.
7757     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7758              Opcode == Instruction::FPExt) {
7759       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7760         CCH = ComputeCCH(Load);
7761     }
7762 
7763     // We optimize the truncation of induction variables having constant
7764     // integer steps. The cost of these truncations is the same as the scalar
7765     // operation.
7766     if (isOptimizableIVTruncate(I, VF)) {
7767       auto *Trunc = cast<TruncInst>(I);
7768       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7769                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7770     }
7771 
7772     // Detect reduction patterns
7773     InstructionCost RedCost;
7774     if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7775             .isValid())
7776       return RedCost;
7777 
7778     Type *SrcScalarTy = I->getOperand(0)->getType();
7779     Type *SrcVecTy =
7780         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7781     if (canTruncateToMinimalBitwidth(I, VF)) {
7782       // This cast is going to be shrunk. This may remove the cast or it might
7783       // turn it into slightly different cast. For example, if MinBW == 16,
7784       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7785       //
7786       // Calculate the modified src and dest types.
7787       Type *MinVecTy = VectorTy;
7788       if (Opcode == Instruction::Trunc) {
7789         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7790         VectorTy =
7791             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7792       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7793         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7794         VectorTy =
7795             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7796       }
7797     }
7798 
7799     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7800   }
7801   case Instruction::Call: {
7802     bool NeedToScalarize;
7803     CallInst *CI = cast<CallInst>(I);
7804     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7805     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7806       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7807       return std::min(CallCost, IntrinsicCost);
7808     }
7809     return CallCost;
7810   }
7811   case Instruction::ExtractValue:
7812     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7813   default:
7814     // This opcode is unknown. Assume that it is the same as 'mul'.
7815     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7816   } // end of switch.
7817 }
7818 
7819 char LoopVectorize::ID = 0;
7820 
7821 static const char lv_name[] = "Loop Vectorization";
7822 
7823 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7824 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7825 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7826 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7827 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7828 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7829 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7830 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7831 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7832 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7833 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7834 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7835 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7836 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7837 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7838 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7839 
7840 namespace llvm {
7841 
7842 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7843 
7844 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7845                               bool VectorizeOnlyWhenForced) {
7846   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7847 }
7848 
7849 } // end namespace llvm
7850 
7851 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7852   // Check if the pointer operand of a load or store instruction is
7853   // consecutive.
7854   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7855     return Legal->isConsecutivePtr(Ptr);
7856   return false;
7857 }
7858 
7859 void LoopVectorizationCostModel::collectValuesToIgnore() {
7860   // Ignore ephemeral values.
7861   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7862 
7863   // Ignore type-promoting instructions we identified during reduction
7864   // detection.
7865   for (auto &Reduction : Legal->getReductionVars()) {
7866     RecurrenceDescriptor &RedDes = Reduction.second;
7867     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7868     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7869   }
7870   // Ignore type-casting instructions we identified during induction
7871   // detection.
7872   for (auto &Induction : Legal->getInductionVars()) {
7873     InductionDescriptor &IndDes = Induction.second;
7874     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7875     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7876   }
7877 }
7878 
7879 void LoopVectorizationCostModel::collectInLoopReductions() {
7880   for (auto &Reduction : Legal->getReductionVars()) {
7881     PHINode *Phi = Reduction.first;
7882     RecurrenceDescriptor &RdxDesc = Reduction.second;
7883 
7884     // We don't collect reductions that are type promoted (yet).
7885     if (RdxDesc.getRecurrenceType() != Phi->getType())
7886       continue;
7887 
7888     // If the target would prefer this reduction to happen "in-loop", then we
7889     // want to record it as such.
7890     unsigned Opcode = RdxDesc.getOpcode();
7891     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7892         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7893                                    TargetTransformInfo::ReductionFlags()))
7894       continue;
7895 
7896     // Check that we can correctly put the reductions into the loop, by
7897     // finding the chain of operations that leads from the phi to the loop
7898     // exit value.
7899     SmallVector<Instruction *, 4> ReductionOperations =
7900         RdxDesc.getReductionOpChain(Phi, TheLoop);
7901     bool InLoop = !ReductionOperations.empty();
7902     if (InLoop) {
7903       InLoopReductionChains[Phi] = ReductionOperations;
7904       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7905       Instruction *LastChain = Phi;
7906       for (auto *I : ReductionOperations) {
7907         InLoopReductionImmediateChains[I] = LastChain;
7908         LastChain = I;
7909       }
7910     }
7911     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7912                       << " reduction for phi: " << *Phi << "\n");
7913   }
7914 }
7915 
7916 // TODO: we could return a pair of values that specify the max VF and
7917 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7918 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7919 // doesn't have a cost model that can choose which plan to execute if
7920 // more than one is generated.
7921 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7922                                  LoopVectorizationCostModel &CM) {
7923   unsigned WidestType;
7924   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7925   return WidestVectorRegBits / WidestType;
7926 }
7927 
7928 VectorizationFactor
7929 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7930   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7931   ElementCount VF = UserVF;
7932   // Outer loop handling: They may require CFG and instruction level
7933   // transformations before even evaluating whether vectorization is profitable.
7934   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7935   // the vectorization pipeline.
7936   if (!OrigLoop->isInnermost()) {
7937     // If the user doesn't provide a vectorization factor, determine a
7938     // reasonable one.
7939     if (UserVF.isZero()) {
7940       VF = ElementCount::getFixed(determineVPlanVF(
7941           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7942               .getFixedSize(),
7943           CM));
7944       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7945 
7946       // Make sure we have a VF > 1 for stress testing.
7947       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7948         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7949                           << "overriding computed VF.\n");
7950         VF = ElementCount::getFixed(4);
7951       }
7952     }
7953     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7954     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7955            "VF needs to be a power of two");
7956     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7957                       << "VF " << VF << " to build VPlans.\n");
7958     buildVPlans(VF, VF);
7959 
7960     // For VPlan build stress testing, we bail out after VPlan construction.
7961     if (VPlanBuildStressTest)
7962       return VectorizationFactor::Disabled();
7963 
7964     return {VF, 0 /*Cost*/};
7965   }
7966 
7967   LLVM_DEBUG(
7968       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7969                 "VPlan-native path.\n");
7970   return VectorizationFactor::Disabled();
7971 }
7972 
7973 Optional<VectorizationFactor>
7974 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7975   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7976   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
7977   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
7978     return None;
7979 
7980   // Invalidate interleave groups if all blocks of loop will be predicated.
7981   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
7982       !useMaskedInterleavedAccesses(*TTI)) {
7983     LLVM_DEBUG(
7984         dbgs()
7985         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7986            "which requires masked-interleaved support.\n");
7987     if (CM.InterleaveInfo.invalidateGroups())
7988       // Invalidating interleave groups also requires invalidating all decisions
7989       // based on them, which includes widening decisions and uniform and scalar
7990       // values.
7991       CM.invalidateCostModelingDecisions();
7992   }
7993 
7994   ElementCount MaxUserVF =
7995       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
7996   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
7997   if (!UserVF.isZero() && UserVFIsLegal) {
7998     LLVM_DEBUG(dbgs() << "LV: Using " << (UserVFIsLegal ? "user" : "max")
7999                       << " VF " << UserVF << ".\n");
8000     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
8001            "VF needs to be a power of two");
8002     // Collect the instructions (and their associated costs) that will be more
8003     // profitable to scalarize.
8004     CM.selectUserVectorizationFactor(UserVF);
8005     CM.collectInLoopReductions();
8006     buildVPlansWithVPRecipes(UserVF, UserVF);
8007     LLVM_DEBUG(printPlans(dbgs()));
8008     return {{UserVF, 0}};
8009   }
8010 
8011   // Populate the set of Vectorization Factor Candidates.
8012   ElementCountSet VFCandidates;
8013   for (auto VF = ElementCount::getFixed(1);
8014        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
8015     VFCandidates.insert(VF);
8016   for (auto VF = ElementCount::getScalable(1);
8017        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
8018     VFCandidates.insert(VF);
8019 
8020   for (const auto &VF : VFCandidates) {
8021     // Collect Uniform and Scalar instructions after vectorization with VF.
8022     CM.collectUniformsAndScalars(VF);
8023 
8024     // Collect the instructions (and their associated costs) that will be more
8025     // profitable to scalarize.
8026     if (VF.isVector())
8027       CM.collectInstsToScalarize(VF);
8028   }
8029 
8030   CM.collectInLoopReductions();
8031   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
8032   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
8033 
8034   LLVM_DEBUG(printPlans(dbgs()));
8035   if (!MaxFactors.hasVector())
8036     return VectorizationFactor::Disabled();
8037 
8038   // Select the optimal vectorization factor.
8039   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
8040 
8041   // Check if it is profitable to vectorize with runtime checks.
8042   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
8043   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
8044     bool PragmaThresholdReached =
8045         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
8046     bool ThresholdReached =
8047         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
8048     if ((ThresholdReached && !Hints.allowReordering()) ||
8049         PragmaThresholdReached) {
8050       ORE->emit([&]() {
8051         return OptimizationRemarkAnalysisAliasing(
8052                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
8053                    OrigLoop->getHeader())
8054                << "loop not vectorized: cannot prove it is safe to reorder "
8055                   "memory operations";
8056       });
8057       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
8058       Hints.emitRemarkWithHints();
8059       return VectorizationFactor::Disabled();
8060     }
8061   }
8062   return SelectedVF;
8063 }
8064 
8065 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) {
8066   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
8067                     << '\n');
8068   BestVF = VF;
8069   BestUF = UF;
8070 
8071   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
8072     return !Plan->hasVF(VF);
8073   });
8074   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
8075 }
8076 
8077 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
8078                                            DominatorTree *DT) {
8079   // Perform the actual loop transformation.
8080 
8081   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
8082   assert(BestVF.hasValue() && "Vectorization Factor is missing");
8083   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
8084 
8085   VPTransformState State{
8086       *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()};
8087   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
8088   State.TripCount = ILV.getOrCreateTripCount(nullptr);
8089   State.CanonicalIV = ILV.Induction;
8090 
8091   ILV.printDebugTracesAtStart();
8092 
8093   //===------------------------------------------------===//
8094   //
8095   // Notice: any optimization or new instruction that go
8096   // into the code below should also be implemented in
8097   // the cost-model.
8098   //
8099   //===------------------------------------------------===//
8100 
8101   // 2. Copy and widen instructions from the old loop into the new loop.
8102   VPlans.front()->execute(&State);
8103 
8104   // 3. Fix the vectorized code: take care of header phi's, live-outs,
8105   //    predication, updating analyses.
8106   ILV.fixVectorizedLoop(State);
8107 
8108   ILV.printDebugTracesAtEnd();
8109 }
8110 
8111 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
8112 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
8113   for (const auto &Plan : VPlans)
8114     if (PrintVPlansInDotFormat)
8115       Plan->printDOT(O);
8116     else
8117       Plan->print(O);
8118 }
8119 #endif
8120 
8121 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
8122     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
8123 
8124   // We create new control-flow for the vectorized loop, so the original exit
8125   // conditions will be dead after vectorization if it's only used by the
8126   // terminator
8127   SmallVector<BasicBlock*> ExitingBlocks;
8128   OrigLoop->getExitingBlocks(ExitingBlocks);
8129   for (auto *BB : ExitingBlocks) {
8130     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
8131     if (!Cmp || !Cmp->hasOneUse())
8132       continue;
8133 
8134     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8135     if (!DeadInstructions.insert(Cmp).second)
8136       continue;
8137 
8138     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8139     // TODO: can recurse through operands in general
8140     for (Value *Op : Cmp->operands()) {
8141       if (isa<TruncInst>(Op) && Op->hasOneUse())
8142           DeadInstructions.insert(cast<Instruction>(Op));
8143     }
8144   }
8145 
8146   // We create new "steps" for induction variable updates to which the original
8147   // induction variables map. An original update instruction will be dead if
8148   // all its users except the induction variable are dead.
8149   auto *Latch = OrigLoop->getLoopLatch();
8150   for (auto &Induction : Legal->getInductionVars()) {
8151     PHINode *Ind = Induction.first;
8152     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8153 
8154     // If the tail is to be folded by masking, the primary induction variable,
8155     // if exists, isn't dead: it will be used for masking. Don't kill it.
8156     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8157       continue;
8158 
8159     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8160           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8161         }))
8162       DeadInstructions.insert(IndUpdate);
8163 
8164     // We record as "Dead" also the type-casting instructions we had identified
8165     // during induction analysis. We don't need any handling for them in the
8166     // vectorized loop because we have proven that, under a proper runtime
8167     // test guarding the vectorized loop, the value of the phi, and the casted
8168     // value of the phi, are the same. The last instruction in this casting chain
8169     // will get its scalar/vector/widened def from the scalar/vector/widened def
8170     // of the respective phi node. Any other casts in the induction def-use chain
8171     // have no other uses outside the phi update chain, and will be ignored.
8172     InductionDescriptor &IndDes = Induction.second;
8173     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8174     DeadInstructions.insert(Casts.begin(), Casts.end());
8175   }
8176 }
8177 
8178 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
8179 
8180 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8181 
8182 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
8183                                         Instruction::BinaryOps BinOp) {
8184   // When unrolling and the VF is 1, we only need to add a simple scalar.
8185   Type *Ty = Val->getType();
8186   assert(!Ty->isVectorTy() && "Val must be a scalar");
8187 
8188   if (Ty->isFloatingPointTy()) {
8189     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
8190 
8191     // Floating-point operations inherit FMF via the builder's flags.
8192     Value *MulOp = Builder.CreateFMul(C, Step);
8193     return Builder.CreateBinOp(BinOp, Val, MulOp);
8194   }
8195   Constant *C = ConstantInt::get(Ty, StartIdx);
8196   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
8197 }
8198 
8199 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
8200   SmallVector<Metadata *, 4> MDs;
8201   // Reserve first location for self reference to the LoopID metadata node.
8202   MDs.push_back(nullptr);
8203   bool IsUnrollMetadata = false;
8204   MDNode *LoopID = L->getLoopID();
8205   if (LoopID) {
8206     // First find existing loop unrolling disable metadata.
8207     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
8208       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
8209       if (MD) {
8210         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
8211         IsUnrollMetadata =
8212             S && S->getString().startswith("llvm.loop.unroll.disable");
8213       }
8214       MDs.push_back(LoopID->getOperand(i));
8215     }
8216   }
8217 
8218   if (!IsUnrollMetadata) {
8219     // Add runtime unroll disable metadata.
8220     LLVMContext &Context = L->getHeader()->getContext();
8221     SmallVector<Metadata *, 1> DisableOperands;
8222     DisableOperands.push_back(
8223         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
8224     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
8225     MDs.push_back(DisableNode);
8226     MDNode *NewLoopID = MDNode::get(Context, MDs);
8227     // Set operand 0 to refer to the loop id itself.
8228     NewLoopID->replaceOperandWith(0, NewLoopID);
8229     L->setLoopID(NewLoopID);
8230   }
8231 }
8232 
8233 //===--------------------------------------------------------------------===//
8234 // EpilogueVectorizerMainLoop
8235 //===--------------------------------------------------------------------===//
8236 
8237 /// This function is partially responsible for generating the control flow
8238 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8239 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8240   MDNode *OrigLoopID = OrigLoop->getLoopID();
8241   Loop *Lp = createVectorLoopSkeleton("");
8242 
8243   // Generate the code to check the minimum iteration count of the vector
8244   // epilogue (see below).
8245   EPI.EpilogueIterationCountCheck =
8246       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8247   EPI.EpilogueIterationCountCheck->setName("iter.check");
8248 
8249   // Generate the code to check any assumptions that we've made for SCEV
8250   // expressions.
8251   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8252 
8253   // Generate the code that checks at runtime if arrays overlap. We put the
8254   // checks into a separate block to make the more common case of few elements
8255   // faster.
8256   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8257 
8258   // Generate the iteration count check for the main loop, *after* the check
8259   // for the epilogue loop, so that the path-length is shorter for the case
8260   // that goes directly through the vector epilogue. The longer-path length for
8261   // the main loop is compensated for, by the gain from vectorizing the larger
8262   // trip count. Note: the branch will get updated later on when we vectorize
8263   // the epilogue.
8264   EPI.MainLoopIterationCountCheck =
8265       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8266 
8267   // Generate the induction variable.
8268   OldInduction = Legal->getPrimaryInduction();
8269   Type *IdxTy = Legal->getWidestInductionType();
8270   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8271   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8272   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8273   EPI.VectorTripCount = CountRoundDown;
8274   Induction =
8275       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8276                               getDebugLocFromInstOrOperands(OldInduction));
8277 
8278   // Skip induction resume value creation here because they will be created in
8279   // the second pass. If we created them here, they wouldn't be used anyway,
8280   // because the vplan in the second pass still contains the inductions from the
8281   // original loop.
8282 
8283   return completeLoopSkeleton(Lp, OrigLoopID);
8284 }
8285 
8286 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8287   LLVM_DEBUG({
8288     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8289            << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue()
8290            << ", Main Loop UF:" << EPI.MainLoopUF
8291            << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8292            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8293   });
8294 }
8295 
8296 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8297   DEBUG_WITH_TYPE(VerboseDebug, {
8298     dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
8299   });
8300 }
8301 
8302 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8303     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8304   assert(L && "Expected valid Loop.");
8305   assert(Bypass && "Expected valid bypass basic block.");
8306   unsigned VFactor =
8307       ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue();
8308   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8309   Value *Count = getOrCreateTripCount(L);
8310   // Reuse existing vector loop preheader for TC checks.
8311   // Note that new preheader block is generated for vector loop.
8312   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8313   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8314 
8315   // Generate code to check if the loop's trip count is less than VF * UF of the
8316   // main vector loop.
8317   auto P =
8318       Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8319 
8320   Value *CheckMinIters = Builder.CreateICmp(
8321       P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor),
8322       "min.iters.check");
8323 
8324   if (!ForEpilogue)
8325     TCCheckBlock->setName("vector.main.loop.iter.check");
8326 
8327   // Create new preheader for vector loop.
8328   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8329                                    DT, LI, nullptr, "vector.ph");
8330 
8331   if (ForEpilogue) {
8332     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8333                                  DT->getNode(Bypass)->getIDom()) &&
8334            "TC check is expected to dominate Bypass");
8335 
8336     // Update dominator for Bypass & LoopExit.
8337     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8338     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8339 
8340     LoopBypassBlocks.push_back(TCCheckBlock);
8341 
8342     // Save the trip count so we don't have to regenerate it in the
8343     // vec.epilog.iter.check. This is safe to do because the trip count
8344     // generated here dominates the vector epilog iter check.
8345     EPI.TripCount = Count;
8346   }
8347 
8348   ReplaceInstWithInst(
8349       TCCheckBlock->getTerminator(),
8350       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8351 
8352   return TCCheckBlock;
8353 }
8354 
8355 //===--------------------------------------------------------------------===//
8356 // EpilogueVectorizerEpilogueLoop
8357 //===--------------------------------------------------------------------===//
8358 
8359 /// This function is partially responsible for generating the control flow
8360 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8361 BasicBlock *
8362 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8363   MDNode *OrigLoopID = OrigLoop->getLoopID();
8364   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8365 
8366   // Now, compare the remaining count and if there aren't enough iterations to
8367   // execute the vectorized epilogue skip to the scalar part.
8368   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8369   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8370   LoopVectorPreHeader =
8371       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8372                  LI, nullptr, "vec.epilog.ph");
8373   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8374                                           VecEpilogueIterationCountCheck);
8375 
8376   // Adjust the control flow taking the state info from the main loop
8377   // vectorization into account.
8378   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8379          "expected this to be saved from the previous pass.");
8380   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8381       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8382 
8383   DT->changeImmediateDominator(LoopVectorPreHeader,
8384                                EPI.MainLoopIterationCountCheck);
8385 
8386   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8387       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8388 
8389   if (EPI.SCEVSafetyCheck)
8390     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8391         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8392   if (EPI.MemSafetyCheck)
8393     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8394         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8395 
8396   DT->changeImmediateDominator(
8397       VecEpilogueIterationCountCheck,
8398       VecEpilogueIterationCountCheck->getSinglePredecessor());
8399 
8400   DT->changeImmediateDominator(LoopScalarPreHeader,
8401                                EPI.EpilogueIterationCountCheck);
8402   DT->changeImmediateDominator(LoopExitBlock, EPI.EpilogueIterationCountCheck);
8403 
8404   // Keep track of bypass blocks, as they feed start values to the induction
8405   // phis in the scalar loop preheader.
8406   if (EPI.SCEVSafetyCheck)
8407     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8408   if (EPI.MemSafetyCheck)
8409     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8410   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8411 
8412   // Generate a resume induction for the vector epilogue and put it in the
8413   // vector epilogue preheader
8414   Type *IdxTy = Legal->getWidestInductionType();
8415   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8416                                          LoopVectorPreHeader->getFirstNonPHI());
8417   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8418   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8419                            EPI.MainLoopIterationCountCheck);
8420 
8421   // Generate the induction variable.
8422   OldInduction = Legal->getPrimaryInduction();
8423   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8424   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8425   Value *StartIdx = EPResumeVal;
8426   Induction =
8427       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8428                               getDebugLocFromInstOrOperands(OldInduction));
8429 
8430   // Generate induction resume values. These variables save the new starting
8431   // indexes for the scalar loop. They are used to test if there are any tail
8432   // iterations left once the vector loop has completed.
8433   // Note that when the vectorized epilogue is skipped due to iteration count
8434   // check, then the resume value for the induction variable comes from
8435   // the trip count of the main vector loop, hence passing the AdditionalBypass
8436   // argument.
8437   createInductionResumeValues(Lp, CountRoundDown,
8438                               {VecEpilogueIterationCountCheck,
8439                                EPI.VectorTripCount} /* AdditionalBypass */);
8440 
8441   AddRuntimeUnrollDisableMetaData(Lp);
8442   return completeLoopSkeleton(Lp, OrigLoopID);
8443 }
8444 
8445 BasicBlock *
8446 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8447     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8448 
8449   assert(EPI.TripCount &&
8450          "Expected trip count to have been safed in the first pass.");
8451   assert(
8452       (!isa<Instruction>(EPI.TripCount) ||
8453        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8454       "saved trip count does not dominate insertion point.");
8455   Value *TC = EPI.TripCount;
8456   IRBuilder<> Builder(Insert->getTerminator());
8457   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8458 
8459   // Generate code to check if the loop's trip count is less than VF * UF of the
8460   // vector epilogue loop.
8461   auto P =
8462       Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8463 
8464   Value *CheckMinIters = Builder.CreateICmp(
8465       P, Count,
8466       ConstantInt::get(Count->getType(),
8467                        EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF),
8468       "min.epilog.iters.check");
8469 
8470   ReplaceInstWithInst(
8471       Insert->getTerminator(),
8472       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8473 
8474   LoopBypassBlocks.push_back(Insert);
8475   return Insert;
8476 }
8477 
8478 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8479   LLVM_DEBUG({
8480     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8481            << "Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8482            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8483   });
8484 }
8485 
8486 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8487   DEBUG_WITH_TYPE(VerboseDebug, {
8488     dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
8489   });
8490 }
8491 
8492 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8493     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8494   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8495   bool PredicateAtRangeStart = Predicate(Range.Start);
8496 
8497   for (ElementCount TmpVF = Range.Start * 2;
8498        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8499     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8500       Range.End = TmpVF;
8501       break;
8502     }
8503 
8504   return PredicateAtRangeStart;
8505 }
8506 
8507 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8508 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8509 /// of VF's starting at a given VF and extending it as much as possible. Each
8510 /// vectorization decision can potentially shorten this sub-range during
8511 /// buildVPlan().
8512 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8513                                            ElementCount MaxVF) {
8514   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8515   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8516     VFRange SubRange = {VF, MaxVFPlusOne};
8517     VPlans.push_back(buildVPlan(SubRange));
8518     VF = SubRange.End;
8519   }
8520 }
8521 
8522 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8523                                          VPlanPtr &Plan) {
8524   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8525 
8526   // Look for cached value.
8527   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8528   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8529   if (ECEntryIt != EdgeMaskCache.end())
8530     return ECEntryIt->second;
8531 
8532   VPValue *SrcMask = createBlockInMask(Src, Plan);
8533 
8534   // The terminator has to be a branch inst!
8535   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8536   assert(BI && "Unexpected terminator found");
8537 
8538   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8539     return EdgeMaskCache[Edge] = SrcMask;
8540 
8541   // If source is an exiting block, we know the exit edge is dynamically dead
8542   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8543   // adding uses of an otherwise potentially dead instruction.
8544   if (OrigLoop->isLoopExiting(Src))
8545     return EdgeMaskCache[Edge] = SrcMask;
8546 
8547   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8548   assert(EdgeMask && "No Edge Mask found for condition");
8549 
8550   if (BI->getSuccessor(0) != Dst)
8551     EdgeMask = Builder.createNot(EdgeMask);
8552 
8553   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8554     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8555     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8556     // The select version does not introduce new UB if SrcMask is false and
8557     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8558     VPValue *False = Plan->getOrAddVPValue(
8559         ConstantInt::getFalse(BI->getCondition()->getType()));
8560     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8561   }
8562 
8563   return EdgeMaskCache[Edge] = EdgeMask;
8564 }
8565 
8566 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8567   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8568 
8569   // Look for cached value.
8570   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8571   if (BCEntryIt != BlockMaskCache.end())
8572     return BCEntryIt->second;
8573 
8574   // All-one mask is modelled as no-mask following the convention for masked
8575   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8576   VPValue *BlockMask = nullptr;
8577 
8578   if (OrigLoop->getHeader() == BB) {
8579     if (!CM.blockNeedsPredication(BB))
8580       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8581 
8582     // Create the block in mask as the first non-phi instruction in the block.
8583     VPBuilder::InsertPointGuard Guard(Builder);
8584     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8585     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8586 
8587     // Introduce the early-exit compare IV <= BTC to form header block mask.
8588     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8589     // Start by constructing the desired canonical IV.
8590     VPValue *IV = nullptr;
8591     if (Legal->getPrimaryInduction())
8592       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8593     else {
8594       auto IVRecipe = new VPWidenCanonicalIVRecipe();
8595       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8596       IV = IVRecipe->getVPSingleValue();
8597     }
8598     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8599     bool TailFolded = !CM.isScalarEpilogueAllowed();
8600 
8601     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8602       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8603       // as a second argument, we only pass the IV here and extract the
8604       // tripcount from the transform state where codegen of the VP instructions
8605       // happen.
8606       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8607     } else {
8608       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8609     }
8610     return BlockMaskCache[BB] = BlockMask;
8611   }
8612 
8613   // This is the block mask. We OR all incoming edges.
8614   for (auto *Predecessor : predecessors(BB)) {
8615     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8616     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8617       return BlockMaskCache[BB] = EdgeMask;
8618 
8619     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8620       BlockMask = EdgeMask;
8621       continue;
8622     }
8623 
8624     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8625   }
8626 
8627   return BlockMaskCache[BB] = BlockMask;
8628 }
8629 
8630 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8631                                                 ArrayRef<VPValue *> Operands,
8632                                                 VFRange &Range,
8633                                                 VPlanPtr &Plan) {
8634   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8635          "Must be called with either a load or store");
8636 
8637   auto willWiden = [&](ElementCount VF) -> bool {
8638     if (VF.isScalar())
8639       return false;
8640     LoopVectorizationCostModel::InstWidening Decision =
8641         CM.getWideningDecision(I, VF);
8642     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8643            "CM decision should be taken at this point.");
8644     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8645       return true;
8646     if (CM.isScalarAfterVectorization(I, VF) ||
8647         CM.isProfitableToScalarize(I, VF))
8648       return false;
8649     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8650   };
8651 
8652   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8653     return nullptr;
8654 
8655   VPValue *Mask = nullptr;
8656   if (Legal->isMaskRequired(I))
8657     Mask = createBlockInMask(I->getParent(), Plan);
8658 
8659   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8660     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask);
8661 
8662   StoreInst *Store = cast<StoreInst>(I);
8663   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8664                                             Mask);
8665 }
8666 
8667 VPWidenIntOrFpInductionRecipe *
8668 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8669                                            ArrayRef<VPValue *> Operands) const {
8670   // Check if this is an integer or fp induction. If so, build the recipe that
8671   // produces its scalar and vector values.
8672   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8673   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8674       II.getKind() == InductionDescriptor::IK_FpInduction) {
8675     assert(II.getStartValue() ==
8676            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8677     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8678     return new VPWidenIntOrFpInductionRecipe(
8679         Phi, Operands[0], Casts.empty() ? nullptr : Casts.front());
8680   }
8681 
8682   return nullptr;
8683 }
8684 
8685 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8686     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8687     VPlan &Plan) const {
8688   // Optimize the special case where the source is a constant integer
8689   // induction variable. Notice that we can only optimize the 'trunc' case
8690   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8691   // (c) other casts depend on pointer size.
8692 
8693   // Determine whether \p K is a truncation based on an induction variable that
8694   // can be optimized.
8695   auto isOptimizableIVTruncate =
8696       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8697     return [=](ElementCount VF) -> bool {
8698       return CM.isOptimizableIVTruncate(K, VF);
8699     };
8700   };
8701 
8702   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8703           isOptimizableIVTruncate(I), Range)) {
8704 
8705     InductionDescriptor II =
8706         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
8707     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8708     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
8709                                              Start, nullptr, I);
8710   }
8711   return nullptr;
8712 }
8713 
8714 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8715                                                 ArrayRef<VPValue *> Operands,
8716                                                 VPlanPtr &Plan) {
8717   // If all incoming values are equal, the incoming VPValue can be used directly
8718   // instead of creating a new VPBlendRecipe.
8719   VPValue *FirstIncoming = Operands[0];
8720   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8721         return FirstIncoming == Inc;
8722       })) {
8723     return Operands[0];
8724   }
8725 
8726   // We know that all PHIs in non-header blocks are converted into selects, so
8727   // we don't have to worry about the insertion order and we can just use the
8728   // builder. At this point we generate the predication tree. There may be
8729   // duplications since this is a simple recursive scan, but future
8730   // optimizations will clean it up.
8731   SmallVector<VPValue *, 2> OperandsWithMask;
8732   unsigned NumIncoming = Phi->getNumIncomingValues();
8733 
8734   for (unsigned In = 0; In < NumIncoming; In++) {
8735     VPValue *EdgeMask =
8736       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8737     assert((EdgeMask || NumIncoming == 1) &&
8738            "Multiple predecessors with one having a full mask");
8739     OperandsWithMask.push_back(Operands[In]);
8740     if (EdgeMask)
8741       OperandsWithMask.push_back(EdgeMask);
8742   }
8743   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8744 }
8745 
8746 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8747                                                    ArrayRef<VPValue *> Operands,
8748                                                    VFRange &Range) const {
8749 
8750   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8751       [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); },
8752       Range);
8753 
8754   if (IsPredicated)
8755     return nullptr;
8756 
8757   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8758   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8759              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8760              ID == Intrinsic::pseudoprobe ||
8761              ID == Intrinsic::experimental_noalias_scope_decl))
8762     return nullptr;
8763 
8764   auto willWiden = [&](ElementCount VF) -> bool {
8765     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8766     // The following case may be scalarized depending on the VF.
8767     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8768     // version of the instruction.
8769     // Is it beneficial to perform intrinsic call compared to lib call?
8770     bool NeedToScalarize = false;
8771     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8772     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8773     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8774     assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
8775            "Either the intrinsic cost or vector call cost must be valid");
8776     return UseVectorIntrinsic || !NeedToScalarize;
8777   };
8778 
8779   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8780     return nullptr;
8781 
8782   ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands());
8783   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8784 }
8785 
8786 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8787   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8788          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8789   // Instruction should be widened, unless it is scalar after vectorization,
8790   // scalarization is profitable or it is predicated.
8791   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8792     return CM.isScalarAfterVectorization(I, VF) ||
8793            CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I);
8794   };
8795   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8796                                                              Range);
8797 }
8798 
8799 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8800                                            ArrayRef<VPValue *> Operands) const {
8801   auto IsVectorizableOpcode = [](unsigned Opcode) {
8802     switch (Opcode) {
8803     case Instruction::Add:
8804     case Instruction::And:
8805     case Instruction::AShr:
8806     case Instruction::BitCast:
8807     case Instruction::FAdd:
8808     case Instruction::FCmp:
8809     case Instruction::FDiv:
8810     case Instruction::FMul:
8811     case Instruction::FNeg:
8812     case Instruction::FPExt:
8813     case Instruction::FPToSI:
8814     case Instruction::FPToUI:
8815     case Instruction::FPTrunc:
8816     case Instruction::FRem:
8817     case Instruction::FSub:
8818     case Instruction::ICmp:
8819     case Instruction::IntToPtr:
8820     case Instruction::LShr:
8821     case Instruction::Mul:
8822     case Instruction::Or:
8823     case Instruction::PtrToInt:
8824     case Instruction::SDiv:
8825     case Instruction::Select:
8826     case Instruction::SExt:
8827     case Instruction::Shl:
8828     case Instruction::SIToFP:
8829     case Instruction::SRem:
8830     case Instruction::Sub:
8831     case Instruction::Trunc:
8832     case Instruction::UDiv:
8833     case Instruction::UIToFP:
8834     case Instruction::URem:
8835     case Instruction::Xor:
8836     case Instruction::ZExt:
8837       return true;
8838     }
8839     return false;
8840   };
8841 
8842   if (!IsVectorizableOpcode(I->getOpcode()))
8843     return nullptr;
8844 
8845   // Success: widen this instruction.
8846   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8847 }
8848 
8849 void VPRecipeBuilder::fixHeaderPhis() {
8850   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8851   for (VPWidenPHIRecipe *R : PhisToFix) {
8852     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8853     VPRecipeBase *IncR =
8854         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8855     R->addOperand(IncR->getVPSingleValue());
8856   }
8857 }
8858 
8859 VPBasicBlock *VPRecipeBuilder::handleReplication(
8860     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8861     VPlanPtr &Plan) {
8862   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8863       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8864       Range);
8865 
8866   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8867       [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range);
8868 
8869   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8870                                        IsUniform, IsPredicated);
8871   setRecipe(I, Recipe);
8872   Plan->addVPValue(I, Recipe);
8873 
8874   // Find if I uses a predicated instruction. If so, it will use its scalar
8875   // value. Avoid hoisting the insert-element which packs the scalar value into
8876   // a vector value, as that happens iff all users use the vector value.
8877   for (VPValue *Op : Recipe->operands()) {
8878     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8879     if (!PredR)
8880       continue;
8881     auto *RepR =
8882         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8883     assert(RepR->isPredicated() &&
8884            "expected Replicate recipe to be predicated");
8885     RepR->setAlsoPack(false);
8886   }
8887 
8888   // Finalize the recipe for Instr, first if it is not predicated.
8889   if (!IsPredicated) {
8890     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8891     VPBB->appendRecipe(Recipe);
8892     return VPBB;
8893   }
8894   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8895   assert(VPBB->getSuccessors().empty() &&
8896          "VPBB has successors when handling predicated replication.");
8897   // Record predicated instructions for above packing optimizations.
8898   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8899   VPBlockUtils::insertBlockAfter(Region, VPBB);
8900   auto *RegSucc = new VPBasicBlock();
8901   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8902   return RegSucc;
8903 }
8904 
8905 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8906                                                       VPRecipeBase *PredRecipe,
8907                                                       VPlanPtr &Plan) {
8908   // Instructions marked for predication are replicated and placed under an
8909   // if-then construct to prevent side-effects.
8910 
8911   // Generate recipes to compute the block mask for this region.
8912   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8913 
8914   // Build the triangular if-then region.
8915   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8916   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8917   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8918   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8919   auto *PHIRecipe = Instr->getType()->isVoidTy()
8920                         ? nullptr
8921                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8922   if (PHIRecipe) {
8923     Plan->removeVPValueFor(Instr);
8924     Plan->addVPValue(Instr, PHIRecipe);
8925   }
8926   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8927   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8928   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
8929 
8930   // Note: first set Entry as region entry and then connect successors starting
8931   // from it in order, to propagate the "parent" of each VPBasicBlock.
8932   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
8933   VPBlockUtils::connectBlocks(Pred, Exit);
8934 
8935   return Region;
8936 }
8937 
8938 VPRecipeOrVPValueTy
8939 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8940                                         ArrayRef<VPValue *> Operands,
8941                                         VFRange &Range, VPlanPtr &Plan) {
8942   // First, check for specific widening recipes that deal with calls, memory
8943   // operations, inductions and Phi nodes.
8944   if (auto *CI = dyn_cast<CallInst>(Instr))
8945     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8946 
8947   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8948     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8949 
8950   VPRecipeBase *Recipe;
8951   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8952     if (Phi->getParent() != OrigLoop->getHeader())
8953       return tryToBlend(Phi, Operands, Plan);
8954     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
8955       return toVPRecipeResult(Recipe);
8956 
8957     VPWidenPHIRecipe *PhiRecipe = nullptr;
8958     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
8959       VPValue *StartV = Operands[0];
8960       if (Legal->isReductionVariable(Phi)) {
8961         RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
8962         assert(RdxDesc.getRecurrenceStartValue() ==
8963                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8964         PhiRecipe = new VPWidenPHIRecipe(Phi, RdxDesc, *StartV);
8965       } else {
8966         PhiRecipe = new VPWidenPHIRecipe(Phi, *StartV);
8967       }
8968 
8969       // Record the incoming value from the backedge, so we can add the incoming
8970       // value from the backedge after all recipes have been created.
8971       recordRecipeOf(cast<Instruction>(
8972           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
8973       PhisToFix.push_back(PhiRecipe);
8974     } else {
8975       // TODO: record start and backedge value for remaining pointer induction
8976       // phis.
8977       assert(Phi->getType()->isPointerTy() &&
8978              "only pointer phis should be handled here");
8979       PhiRecipe = new VPWidenPHIRecipe(Phi);
8980     }
8981 
8982     return toVPRecipeResult(PhiRecipe);
8983   }
8984 
8985   if (isa<TruncInst>(Instr) &&
8986       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8987                                                Range, *Plan)))
8988     return toVPRecipeResult(Recipe);
8989 
8990   if (!shouldWiden(Instr, Range))
8991     return nullptr;
8992 
8993   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8994     return toVPRecipeResult(new VPWidenGEPRecipe(
8995         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8996 
8997   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8998     bool InvariantCond =
8999         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
9000     return toVPRecipeResult(new VPWidenSelectRecipe(
9001         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
9002   }
9003 
9004   return toVPRecipeResult(tryToWiden(Instr, Operands));
9005 }
9006 
9007 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
9008                                                         ElementCount MaxVF) {
9009   assert(OrigLoop->isInnermost() && "Inner loop expected.");
9010 
9011   // Collect instructions from the original loop that will become trivially dead
9012   // in the vectorized loop. We don't need to vectorize these instructions. For
9013   // example, original induction update instructions can become dead because we
9014   // separately emit induction "steps" when generating code for the new loop.
9015   // Similarly, we create a new latch condition when setting up the structure
9016   // of the new loop, so the old one can become dead.
9017   SmallPtrSet<Instruction *, 4> DeadInstructions;
9018   collectTriviallyDeadInstructions(DeadInstructions);
9019 
9020   // Add assume instructions we need to drop to DeadInstructions, to prevent
9021   // them from being added to the VPlan.
9022   // TODO: We only need to drop assumes in blocks that get flattend. If the
9023   // control flow is preserved, we should keep them.
9024   auto &ConditionalAssumes = Legal->getConditionalAssumes();
9025   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
9026 
9027   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
9028   // Dead instructions do not need sinking. Remove them from SinkAfter.
9029   for (Instruction *I : DeadInstructions)
9030     SinkAfter.erase(I);
9031 
9032   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
9033   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
9034     VFRange SubRange = {VF, MaxVFPlusOne};
9035     VPlans.push_back(
9036         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
9037     VF = SubRange.End;
9038   }
9039 }
9040 
9041 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
9042     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
9043     const MapVector<Instruction *, Instruction *> &SinkAfter) {
9044 
9045   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
9046 
9047   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
9048 
9049   // ---------------------------------------------------------------------------
9050   // Pre-construction: record ingredients whose recipes we'll need to further
9051   // process after constructing the initial VPlan.
9052   // ---------------------------------------------------------------------------
9053 
9054   // Mark instructions we'll need to sink later and their targets as
9055   // ingredients whose recipe we'll need to record.
9056   for (auto &Entry : SinkAfter) {
9057     RecipeBuilder.recordRecipeOf(Entry.first);
9058     RecipeBuilder.recordRecipeOf(Entry.second);
9059   }
9060   for (auto &Reduction : CM.getInLoopReductionChains()) {
9061     PHINode *Phi = Reduction.first;
9062     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
9063     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9064 
9065     RecipeBuilder.recordRecipeOf(Phi);
9066     for (auto &R : ReductionOperations) {
9067       RecipeBuilder.recordRecipeOf(R);
9068       // For min/max reducitons, where we have a pair of icmp/select, we also
9069       // need to record the ICmp recipe, so it can be removed later.
9070       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9071         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9072     }
9073   }
9074 
9075   // For each interleave group which is relevant for this (possibly trimmed)
9076   // Range, add it to the set of groups to be later applied to the VPlan and add
9077   // placeholders for its members' Recipes which we'll be replacing with a
9078   // single VPInterleaveRecipe.
9079   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9080     auto applyIG = [IG, this](ElementCount VF) -> bool {
9081       return (VF.isVector() && // Query is illegal for VF == 1
9082               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9083                   LoopVectorizationCostModel::CM_Interleave);
9084     };
9085     if (!getDecisionAndClampRange(applyIG, Range))
9086       continue;
9087     InterleaveGroups.insert(IG);
9088     for (unsigned i = 0; i < IG->getFactor(); i++)
9089       if (Instruction *Member = IG->getMember(i))
9090         RecipeBuilder.recordRecipeOf(Member);
9091   };
9092 
9093   // ---------------------------------------------------------------------------
9094   // Build initial VPlan: Scan the body of the loop in a topological order to
9095   // visit each basic block after having visited its predecessor basic blocks.
9096   // ---------------------------------------------------------------------------
9097 
9098   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
9099   auto Plan = std::make_unique<VPlan>();
9100   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
9101   Plan->setEntry(VPBB);
9102 
9103   // Scan the body of the loop in a topological order to visit each basic block
9104   // after having visited its predecessor basic blocks.
9105   LoopBlocksDFS DFS(OrigLoop);
9106   DFS.perform(LI);
9107 
9108   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9109     // Relevant instructions from basic block BB will be grouped into VPRecipe
9110     // ingredients and fill a new VPBasicBlock.
9111     unsigned VPBBsForBB = 0;
9112     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
9113     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
9114     VPBB = FirstVPBBForBB;
9115     Builder.setInsertPoint(VPBB);
9116 
9117     // Introduce each ingredient into VPlan.
9118     // TODO: Model and preserve debug instrinsics in VPlan.
9119     for (Instruction &I : BB->instructionsWithoutDebug()) {
9120       Instruction *Instr = &I;
9121 
9122       // First filter out irrelevant instructions, to ensure no recipes are
9123       // built for them.
9124       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9125         continue;
9126 
9127       SmallVector<VPValue *, 4> Operands;
9128       auto *Phi = dyn_cast<PHINode>(Instr);
9129       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9130         Operands.push_back(Plan->getOrAddVPValue(
9131             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9132       } else {
9133         auto OpRange = Plan->mapToVPValues(Instr->operands());
9134         Operands = {OpRange.begin(), OpRange.end()};
9135       }
9136       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9137               Instr, Operands, Range, Plan)) {
9138         // If Instr can be simplified to an existing VPValue, use it.
9139         if (RecipeOrValue.is<VPValue *>()) {
9140           auto *VPV = RecipeOrValue.get<VPValue *>();
9141           Plan->addVPValue(Instr, VPV);
9142           // If the re-used value is a recipe, register the recipe for the
9143           // instruction, in case the recipe for Instr needs to be recorded.
9144           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9145             RecipeBuilder.setRecipe(Instr, R);
9146           continue;
9147         }
9148         // Otherwise, add the new recipe.
9149         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9150         for (auto *Def : Recipe->definedValues()) {
9151           auto *UV = Def->getUnderlyingValue();
9152           Plan->addVPValue(UV, Def);
9153         }
9154 
9155         RecipeBuilder.setRecipe(Instr, Recipe);
9156         VPBB->appendRecipe(Recipe);
9157         continue;
9158       }
9159 
9160       // Otherwise, if all widening options failed, Instruction is to be
9161       // replicated. This may create a successor for VPBB.
9162       VPBasicBlock *NextVPBB =
9163           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9164       if (NextVPBB != VPBB) {
9165         VPBB = NextVPBB;
9166         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9167                                     : "");
9168       }
9169     }
9170   }
9171 
9172   RecipeBuilder.fixHeaderPhis();
9173 
9174   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
9175   // may also be empty, such as the last one VPBB, reflecting original
9176   // basic-blocks with no recipes.
9177   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
9178   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
9179   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
9180   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
9181   delete PreEntry;
9182 
9183   // ---------------------------------------------------------------------------
9184   // Transform initial VPlan: Apply previously taken decisions, in order, to
9185   // bring the VPlan to its final state.
9186   // ---------------------------------------------------------------------------
9187 
9188   // Apply Sink-After legal constraints.
9189   for (auto &Entry : SinkAfter) {
9190     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9191     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9192 
9193     auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9194       auto *Region =
9195           dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9196       if (Region && Region->isReplicator()) {
9197         assert(Region->getNumSuccessors() == 1 &&
9198                Region->getNumPredecessors() == 1 && "Expected SESE region!");
9199         assert(R->getParent()->size() == 1 &&
9200                "A recipe in an original replicator region must be the only "
9201                "recipe in its block");
9202         return Region;
9203       }
9204       return nullptr;
9205     };
9206     auto *TargetRegion = GetReplicateRegion(Target);
9207     auto *SinkRegion = GetReplicateRegion(Sink);
9208     if (!SinkRegion) {
9209       // If the sink source is not a replicate region, sink the recipe directly.
9210       if (TargetRegion) {
9211         // The target is in a replication region, make sure to move Sink to
9212         // the block after it, not into the replication region itself.
9213         VPBasicBlock *NextBlock =
9214             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9215         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9216       } else
9217         Sink->moveAfter(Target);
9218       continue;
9219     }
9220 
9221     // The sink source is in a replicate region. Unhook the region from the CFG.
9222     auto *SinkPred = SinkRegion->getSinglePredecessor();
9223     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9224     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9225     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9226     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9227 
9228     if (TargetRegion) {
9229       // The target recipe is also in a replicate region, move the sink region
9230       // after the target region.
9231       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9232       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9233       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9234       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9235     } else {
9236       // The sink source is in a replicate region, we need to move the whole
9237       // replicate region, which should only contain a single recipe in the main
9238       // block.
9239       auto *SplitBlock =
9240           Target->getParent()->splitAt(std::next(Target->getIterator()));
9241 
9242       auto *SplitPred = SplitBlock->getSinglePredecessor();
9243 
9244       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9245       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9246       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9247       if (VPBB == SplitPred)
9248         VPBB = SplitBlock;
9249     }
9250   }
9251 
9252   // Interleave memory: for each Interleave Group we marked earlier as relevant
9253   // for this VPlan, replace the Recipes widening its memory instructions with a
9254   // single VPInterleaveRecipe at its insertion point.
9255   for (auto IG : InterleaveGroups) {
9256     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9257         RecipeBuilder.getRecipe(IG->getInsertPos()));
9258     SmallVector<VPValue *, 4> StoredValues;
9259     for (unsigned i = 0; i < IG->getFactor(); ++i)
9260       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i)))
9261         StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0)));
9262 
9263     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9264                                         Recipe->getMask());
9265     VPIG->insertBefore(Recipe);
9266     unsigned J = 0;
9267     for (unsigned i = 0; i < IG->getFactor(); ++i)
9268       if (Instruction *Member = IG->getMember(i)) {
9269         if (!Member->getType()->isVoidTy()) {
9270           VPValue *OriginalV = Plan->getVPValue(Member);
9271           Plan->removeVPValueFor(Member);
9272           Plan->addVPValue(Member, VPIG->getVPValue(J));
9273           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9274           J++;
9275         }
9276         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9277       }
9278   }
9279 
9280   // Adjust the recipes for any inloop reductions.
9281   adjustRecipesForInLoopReductions(Plan, RecipeBuilder, Range.Start);
9282 
9283   // Finally, if tail is folded by masking, introduce selects between the phi
9284   // and the live-out instruction of each reduction, at the end of the latch.
9285   if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) {
9286     Builder.setInsertPoint(VPBB);
9287     auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9288     for (auto &Reduction : Legal->getReductionVars()) {
9289       if (CM.isInLoopReduction(Reduction.first))
9290         continue;
9291       VPValue *Phi = Plan->getOrAddVPValue(Reduction.first);
9292       VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr());
9293       Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi});
9294     }
9295   }
9296 
9297   VPlanTransforms::sinkScalarOperands(*Plan);
9298   VPlanTransforms::mergeReplicateRegions(*Plan);
9299 
9300   std::string PlanName;
9301   raw_string_ostream RSO(PlanName);
9302   ElementCount VF = Range.Start;
9303   Plan->addVF(VF);
9304   RSO << "Initial VPlan for VF={" << VF;
9305   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9306     Plan->addVF(VF);
9307     RSO << "," << VF;
9308   }
9309   RSO << "},UF>=1";
9310   RSO.flush();
9311   Plan->setName(PlanName);
9312 
9313   return Plan;
9314 }
9315 
9316 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9317   // Outer loop handling: They may require CFG and instruction level
9318   // transformations before even evaluating whether vectorization is profitable.
9319   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9320   // the vectorization pipeline.
9321   assert(!OrigLoop->isInnermost());
9322   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9323 
9324   // Create new empty VPlan
9325   auto Plan = std::make_unique<VPlan>();
9326 
9327   // Build hierarchical CFG
9328   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9329   HCFGBuilder.buildHierarchicalCFG();
9330 
9331   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9332        VF *= 2)
9333     Plan->addVF(VF);
9334 
9335   if (EnableVPlanPredication) {
9336     VPlanPredicator VPP(*Plan);
9337     VPP.predicate();
9338 
9339     // Avoid running transformation to recipes until masked code generation in
9340     // VPlan-native path is in place.
9341     return Plan;
9342   }
9343 
9344   SmallPtrSet<Instruction *, 1> DeadInstructions;
9345   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
9346                                              Legal->getInductionVars(),
9347                                              DeadInstructions, *PSE.getSE());
9348   return Plan;
9349 }
9350 
9351 // Adjust the recipes for any inloop reductions. The chain of instructions
9352 // leading from the loop exit instr to the phi need to be converted to
9353 // reductions, with one operand being vector and the other being the scalar
9354 // reduction chain.
9355 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions(
9356     VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) {
9357   for (auto &Reduction : CM.getInLoopReductionChains()) {
9358     PHINode *Phi = Reduction.first;
9359     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9360     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9361 
9362     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9363       continue;
9364 
9365     // ReductionOperations are orders top-down from the phi's use to the
9366     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9367     // which of the two operands will remain scalar and which will be reduced.
9368     // For minmax the chain will be the select instructions.
9369     Instruction *Chain = Phi;
9370     for (Instruction *R : ReductionOperations) {
9371       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9372       RecurKind Kind = RdxDesc.getRecurrenceKind();
9373 
9374       VPValue *ChainOp = Plan->getVPValue(Chain);
9375       unsigned FirstOpId;
9376       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9377         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9378                "Expected to replace a VPWidenSelectSC");
9379         FirstOpId = 1;
9380       } else {
9381         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) &&
9382                "Expected to replace a VPWidenSC");
9383         FirstOpId = 0;
9384       }
9385       unsigned VecOpId =
9386           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9387       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9388 
9389       auto *CondOp = CM.foldTailByMasking()
9390                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9391                          : nullptr;
9392       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
9393           &RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9394       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9395       Plan->removeVPValueFor(R);
9396       Plan->addVPValue(R, RedRecipe);
9397       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9398       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9399       WidenRecipe->eraseFromParent();
9400 
9401       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9402         VPRecipeBase *CompareRecipe =
9403             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9404         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9405                "Expected to replace a VPWidenSC");
9406         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9407                "Expected no remaining users");
9408         CompareRecipe->eraseFromParent();
9409       }
9410       Chain = R;
9411     }
9412   }
9413 }
9414 
9415 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9416 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9417                                VPSlotTracker &SlotTracker) const {
9418   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9419   IG->getInsertPos()->printAsOperand(O, false);
9420   O << ", ";
9421   getAddr()->printAsOperand(O, SlotTracker);
9422   VPValue *Mask = getMask();
9423   if (Mask) {
9424     O << ", ";
9425     Mask->printAsOperand(O, SlotTracker);
9426   }
9427   for (unsigned i = 0; i < IG->getFactor(); ++i)
9428     if (Instruction *I = IG->getMember(i))
9429       O << "\n" << Indent << "  " << VPlanIngredient(I) << " " << i;
9430 }
9431 #endif
9432 
9433 void VPWidenCallRecipe::execute(VPTransformState &State) {
9434   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9435                                   *this, State);
9436 }
9437 
9438 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9439   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9440                                     this, *this, InvariantCond, State);
9441 }
9442 
9443 void VPWidenRecipe::execute(VPTransformState &State) {
9444   State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
9445 }
9446 
9447 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9448   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9449                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9450                       IsIndexLoopInvariant, State);
9451 }
9452 
9453 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9454   assert(!State.Instance && "Int or FP induction being replicated.");
9455   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9456                                    getTruncInst(), getVPValue(0),
9457                                    getCastValue(), State);
9458 }
9459 
9460 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9461   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), RdxDesc,
9462                                  this, State);
9463 }
9464 
9465 void VPBlendRecipe::execute(VPTransformState &State) {
9466   State.ILV->setDebugLocFromInst(State.Builder, Phi);
9467   // We know that all PHIs in non-header blocks are converted into
9468   // selects, so we don't have to worry about the insertion order and we
9469   // can just use the builder.
9470   // At this point we generate the predication tree. There may be
9471   // duplications since this is a simple recursive scan, but future
9472   // optimizations will clean it up.
9473 
9474   unsigned NumIncoming = getNumIncomingValues();
9475 
9476   // Generate a sequence of selects of the form:
9477   // SELECT(Mask3, In3,
9478   //        SELECT(Mask2, In2,
9479   //               SELECT(Mask1, In1,
9480   //                      In0)))
9481   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9482   // are essentially undef are taken from In0.
9483   InnerLoopVectorizer::VectorParts Entry(State.UF);
9484   for (unsigned In = 0; In < NumIncoming; ++In) {
9485     for (unsigned Part = 0; Part < State.UF; ++Part) {
9486       // We might have single edge PHIs (blocks) - use an identity
9487       // 'select' for the first PHI operand.
9488       Value *In0 = State.get(getIncomingValue(In), Part);
9489       if (In == 0)
9490         Entry[Part] = In0; // Initialize with the first incoming value.
9491       else {
9492         // Select between the current value and the previous incoming edge
9493         // based on the incoming mask.
9494         Value *Cond = State.get(getMask(In), Part);
9495         Entry[Part] =
9496             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9497       }
9498     }
9499   }
9500   for (unsigned Part = 0; Part < State.UF; ++Part)
9501     State.set(this, Entry[Part], Part);
9502 }
9503 
9504 void VPInterleaveRecipe::execute(VPTransformState &State) {
9505   assert(!State.Instance && "Interleave group being replicated.");
9506   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9507                                       getStoredValues(), getMask());
9508 }
9509 
9510 void VPReductionRecipe::execute(VPTransformState &State) {
9511   assert(!State.Instance && "Reduction being replicated.");
9512   Value *PrevInChain = State.get(getChainOp(), 0);
9513   for (unsigned Part = 0; Part < State.UF; ++Part) {
9514     RecurKind Kind = RdxDesc->getRecurrenceKind();
9515     bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9516     Value *NewVecOp = State.get(getVecOp(), Part);
9517     if (VPValue *Cond = getCondOp()) {
9518       Value *NewCond = State.get(Cond, Part);
9519       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9520       Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
9521           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9522       Constant *IdenVec =
9523           ConstantVector::getSplat(VecTy->getElementCount(), Iden);
9524       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9525       NewVecOp = Select;
9526     }
9527     Value *NewRed;
9528     Value *NextInChain;
9529     if (IsOrdered) {
9530       if (State.VF.isVector())
9531         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9532                                         PrevInChain);
9533       else
9534         NewRed = State.Builder.CreateBinOp(
9535             (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(),
9536             PrevInChain, NewVecOp);
9537       PrevInChain = NewRed;
9538     } else {
9539       PrevInChain = State.get(getChainOp(), Part);
9540       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9541     }
9542     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9543       NextInChain =
9544           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9545                          NewRed, PrevInChain);
9546     } else if (IsOrdered)
9547       NextInChain = NewRed;
9548     else {
9549       NextInChain = State.Builder.CreateBinOp(
9550           (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed,
9551           PrevInChain);
9552     }
9553     State.set(this, NextInChain, Part);
9554   }
9555 }
9556 
9557 void VPReplicateRecipe::execute(VPTransformState &State) {
9558   if (State.Instance) { // Generate a single instance.
9559     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9560     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9561                                     *State.Instance, IsPredicated, State);
9562     // Insert scalar instance packing it into a vector.
9563     if (AlsoPack && State.VF.isVector()) {
9564       // If we're constructing lane 0, initialize to start from poison.
9565       if (State.Instance->Lane.isFirstLane()) {
9566         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9567         Value *Poison = PoisonValue::get(
9568             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9569         State.set(this, Poison, State.Instance->Part);
9570       }
9571       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9572     }
9573     return;
9574   }
9575 
9576   // Generate scalar instances for all VF lanes of all UF parts, unless the
9577   // instruction is uniform inwhich case generate only the first lane for each
9578   // of the UF parts.
9579   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9580   assert((!State.VF.isScalable() || IsUniform) &&
9581          "Can't scalarize a scalable vector");
9582   for (unsigned Part = 0; Part < State.UF; ++Part)
9583     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9584       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9585                                       VPIteration(Part, Lane), IsPredicated,
9586                                       State);
9587 }
9588 
9589 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9590   assert(State.Instance && "Branch on Mask works only on single instance.");
9591 
9592   unsigned Part = State.Instance->Part;
9593   unsigned Lane = State.Instance->Lane.getKnownLane();
9594 
9595   Value *ConditionBit = nullptr;
9596   VPValue *BlockInMask = getMask();
9597   if (BlockInMask) {
9598     ConditionBit = State.get(BlockInMask, Part);
9599     if (ConditionBit->getType()->isVectorTy())
9600       ConditionBit = State.Builder.CreateExtractElement(
9601           ConditionBit, State.Builder.getInt32(Lane));
9602   } else // Block in mask is all-one.
9603     ConditionBit = State.Builder.getTrue();
9604 
9605   // Replace the temporary unreachable terminator with a new conditional branch,
9606   // whose two destinations will be set later when they are created.
9607   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9608   assert(isa<UnreachableInst>(CurrentTerminator) &&
9609          "Expected to replace unreachable terminator with conditional branch.");
9610   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9611   CondBr->setSuccessor(0, nullptr);
9612   ReplaceInstWithInst(CurrentTerminator, CondBr);
9613 }
9614 
9615 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9616   assert(State.Instance && "Predicated instruction PHI works per instance.");
9617   Instruction *ScalarPredInst =
9618       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9619   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9620   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9621   assert(PredicatingBB && "Predicated block has no single predecessor.");
9622   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9623          "operand must be VPReplicateRecipe");
9624 
9625   // By current pack/unpack logic we need to generate only a single phi node: if
9626   // a vector value for the predicated instruction exists at this point it means
9627   // the instruction has vector users only, and a phi for the vector value is
9628   // needed. In this case the recipe of the predicated instruction is marked to
9629   // also do that packing, thereby "hoisting" the insert-element sequence.
9630   // Otherwise, a phi node for the scalar value is needed.
9631   unsigned Part = State.Instance->Part;
9632   if (State.hasVectorValue(getOperand(0), Part)) {
9633     Value *VectorValue = State.get(getOperand(0), Part);
9634     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9635     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9636     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9637     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9638     if (State.hasVectorValue(this, Part))
9639       State.reset(this, VPhi, Part);
9640     else
9641       State.set(this, VPhi, Part);
9642     // NOTE: Currently we need to update the value of the operand, so the next
9643     // predicated iteration inserts its generated value in the correct vector.
9644     State.reset(getOperand(0), VPhi, Part);
9645   } else {
9646     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9647     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9648     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9649                      PredicatingBB);
9650     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9651     if (State.hasScalarValue(this, *State.Instance))
9652       State.reset(this, Phi, *State.Instance);
9653     else
9654       State.set(this, Phi, *State.Instance);
9655     // NOTE: Currently we need to update the value of the operand, so the next
9656     // predicated iteration inserts its generated value in the correct vector.
9657     State.reset(getOperand(0), Phi, *State.Instance);
9658   }
9659 }
9660 
9661 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9662   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9663   State.ILV->vectorizeMemoryInstruction(
9664       &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(),
9665       StoredValue, getMask());
9666 }
9667 
9668 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9669 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9670 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9671 // for predication.
9672 static ScalarEpilogueLowering getScalarEpilogueLowering(
9673     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9674     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9675     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9676     LoopVectorizationLegality &LVL) {
9677   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9678   // don't look at hints or options, and don't request a scalar epilogue.
9679   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9680   // LoopAccessInfo (due to code dependency and not being able to reliably get
9681   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9682   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9683   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9684   // back to the old way and vectorize with versioning when forced. See D81345.)
9685   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9686                                                       PGSOQueryType::IRPass) &&
9687                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9688     return CM_ScalarEpilogueNotAllowedOptSize;
9689 
9690   // 2) If set, obey the directives
9691   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9692     switch (PreferPredicateOverEpilogue) {
9693     case PreferPredicateTy::ScalarEpilogue:
9694       return CM_ScalarEpilogueAllowed;
9695     case PreferPredicateTy::PredicateElseScalarEpilogue:
9696       return CM_ScalarEpilogueNotNeededUsePredicate;
9697     case PreferPredicateTy::PredicateOrDontVectorize:
9698       return CM_ScalarEpilogueNotAllowedUsePredicate;
9699     };
9700   }
9701 
9702   // 3) If set, obey the hints
9703   switch (Hints.getPredicate()) {
9704   case LoopVectorizeHints::FK_Enabled:
9705     return CM_ScalarEpilogueNotNeededUsePredicate;
9706   case LoopVectorizeHints::FK_Disabled:
9707     return CM_ScalarEpilogueAllowed;
9708   };
9709 
9710   // 4) if the TTI hook indicates this is profitable, request predication.
9711   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
9712                                        LVL.getLAI()))
9713     return CM_ScalarEpilogueNotNeededUsePredicate;
9714 
9715   return CM_ScalarEpilogueAllowed;
9716 }
9717 
9718 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
9719   // If Values have been set for this Def return the one relevant for \p Part.
9720   if (hasVectorValue(Def, Part))
9721     return Data.PerPartOutput[Def][Part];
9722 
9723   if (!hasScalarValue(Def, {Part, 0})) {
9724     Value *IRV = Def->getLiveInIRValue();
9725     Value *B = ILV->getBroadcastInstrs(IRV);
9726     set(Def, B, Part);
9727     return B;
9728   }
9729 
9730   Value *ScalarValue = get(Def, {Part, 0});
9731   // If we aren't vectorizing, we can just copy the scalar map values over
9732   // to the vector map.
9733   if (VF.isScalar()) {
9734     set(Def, ScalarValue, Part);
9735     return ScalarValue;
9736   }
9737 
9738   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
9739   bool IsUniform = RepR && RepR->isUniform();
9740 
9741   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
9742   // Check if there is a scalar value for the selected lane.
9743   if (!hasScalarValue(Def, {Part, LastLane})) {
9744     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
9745     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
9746            "unexpected recipe found to be invariant");
9747     IsUniform = true;
9748     LastLane = 0;
9749   }
9750 
9751   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
9752   // Set the insert point after the last scalarized instruction or after the
9753   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
9754   // will directly follow the scalar definitions.
9755   auto OldIP = Builder.saveIP();
9756   auto NewIP =
9757       isa<PHINode>(LastInst)
9758           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
9759           : std::next(BasicBlock::iterator(LastInst));
9760   Builder.SetInsertPoint(&*NewIP);
9761 
9762   // However, if we are vectorizing, we need to construct the vector values.
9763   // If the value is known to be uniform after vectorization, we can just
9764   // broadcast the scalar value corresponding to lane zero for each unroll
9765   // iteration. Otherwise, we construct the vector values using
9766   // insertelement instructions. Since the resulting vectors are stored in
9767   // State, we will only generate the insertelements once.
9768   Value *VectorValue = nullptr;
9769   if (IsUniform) {
9770     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
9771     set(Def, VectorValue, Part);
9772   } else {
9773     // Initialize packing with insertelements to start from undef.
9774     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
9775     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
9776     set(Def, Undef, Part);
9777     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
9778       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
9779     VectorValue = get(Def, Part);
9780   }
9781   Builder.restoreIP(OldIP);
9782   return VectorValue;
9783 }
9784 
9785 // Process the loop in the VPlan-native vectorization path. This path builds
9786 // VPlan upfront in the vectorization pipeline, which allows to apply
9787 // VPlan-to-VPlan transformations from the very beginning without modifying the
9788 // input LLVM IR.
9789 static bool processLoopInVPlanNativePath(
9790     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
9791     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
9792     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
9793     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
9794     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
9795     LoopVectorizationRequirements &Requirements) {
9796 
9797   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
9798     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
9799     return false;
9800   }
9801   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
9802   Function *F = L->getHeader()->getParent();
9803   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
9804 
9805   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
9806       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
9807 
9808   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
9809                                 &Hints, IAI);
9810   // Use the planner for outer loop vectorization.
9811   // TODO: CM is not used at this point inside the planner. Turn CM into an
9812   // optional argument if we don't need it in the future.
9813   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
9814                                Requirements, ORE);
9815 
9816   // Get user vectorization factor.
9817   ElementCount UserVF = Hints.getWidth();
9818 
9819   // Plan how to best vectorize, return the best VF and its cost.
9820   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
9821 
9822   // If we are stress testing VPlan builds, do not attempt to generate vector
9823   // code. Masked vector code generation support will follow soon.
9824   // Also, do not attempt to vectorize if no vector code will be produced.
9825   if (VPlanBuildStressTest || EnableVPlanPredication ||
9826       VectorizationFactor::Disabled() == VF)
9827     return false;
9828 
9829   LVP.setBestPlan(VF.Width, 1);
9830 
9831   {
9832     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
9833                              F->getParent()->getDataLayout());
9834     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
9835                            &CM, BFI, PSI, Checks);
9836     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
9837                       << L->getHeader()->getParent()->getName() << "\"\n");
9838     LVP.executePlan(LB, DT);
9839   }
9840 
9841   // Mark the loop as already vectorized to avoid vectorizing again.
9842   Hints.setAlreadyVectorized();
9843   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9844   return true;
9845 }
9846 
9847 // Emit a remark if there are stores to floats that required a floating point
9848 // extension. If the vectorized loop was generated with floating point there
9849 // will be a performance penalty from the conversion overhead and the change in
9850 // the vector width.
9851 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
9852   SmallVector<Instruction *, 4> Worklist;
9853   for (BasicBlock *BB : L->getBlocks()) {
9854     for (Instruction &Inst : *BB) {
9855       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
9856         if (S->getValueOperand()->getType()->isFloatTy())
9857           Worklist.push_back(S);
9858       }
9859     }
9860   }
9861 
9862   // Traverse the floating point stores upwards searching, for floating point
9863   // conversions.
9864   SmallPtrSet<const Instruction *, 4> Visited;
9865   SmallPtrSet<const Instruction *, 4> EmittedRemark;
9866   while (!Worklist.empty()) {
9867     auto *I = Worklist.pop_back_val();
9868     if (!L->contains(I))
9869       continue;
9870     if (!Visited.insert(I).second)
9871       continue;
9872 
9873     // Emit a remark if the floating point store required a floating
9874     // point conversion.
9875     // TODO: More work could be done to identify the root cause such as a
9876     // constant or a function return type and point the user to it.
9877     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
9878       ORE->emit([&]() {
9879         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
9880                                           I->getDebugLoc(), L->getHeader())
9881                << "floating point conversion changes vector width. "
9882                << "Mixed floating point precision requires an up/down "
9883                << "cast that will negatively impact performance.";
9884       });
9885 
9886     for (Use &Op : I->operands())
9887       if (auto *OpI = dyn_cast<Instruction>(Op))
9888         Worklist.push_back(OpI);
9889   }
9890 }
9891 
9892 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
9893     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9894                                !EnableLoopInterleaving),
9895       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9896                               !EnableLoopVectorization) {}
9897 
9898 bool LoopVectorizePass::processLoop(Loop *L) {
9899   assert((EnableVPlanNativePath || L->isInnermost()) &&
9900          "VPlan-native path is not enabled. Only process inner loops.");
9901 
9902 #ifndef NDEBUG
9903   const std::string DebugLocStr = getDebugLocString(L);
9904 #endif /* NDEBUG */
9905 
9906   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
9907                     << L->getHeader()->getParent()->getName() << "\" from "
9908                     << DebugLocStr << "\n");
9909 
9910   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
9911 
9912   LLVM_DEBUG(
9913       dbgs() << "LV: Loop hints:"
9914              << " force="
9915              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
9916                      ? "disabled"
9917                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
9918                             ? "enabled"
9919                             : "?"))
9920              << " width=" << Hints.getWidth()
9921              << " interleave=" << Hints.getInterleave() << "\n");
9922 
9923   // Function containing loop
9924   Function *F = L->getHeader()->getParent();
9925 
9926   // Looking at the diagnostic output is the only way to determine if a loop
9927   // was vectorized (other than looking at the IR or machine code), so it
9928   // is important to generate an optimization remark for each loop. Most of
9929   // these messages are generated as OptimizationRemarkAnalysis. Remarks
9930   // generated as OptimizationRemark and OptimizationRemarkMissed are
9931   // less verbose reporting vectorized loops and unvectorized loops that may
9932   // benefit from vectorization, respectively.
9933 
9934   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
9935     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
9936     return false;
9937   }
9938 
9939   PredicatedScalarEvolution PSE(*SE, *L);
9940 
9941   // Check if it is legal to vectorize the loop.
9942   LoopVectorizationRequirements Requirements;
9943   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
9944                                 &Requirements, &Hints, DB, AC, BFI, PSI);
9945   if (!LVL.canVectorize(EnableVPlanNativePath)) {
9946     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
9947     Hints.emitRemarkWithHints();
9948     return false;
9949   }
9950 
9951   // Check the function attributes and profiles to find out if this function
9952   // should be optimized for size.
9953   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
9954       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
9955 
9956   // Entrance to the VPlan-native vectorization path. Outer loops are processed
9957   // here. They may require CFG and instruction level transformations before
9958   // even evaluating whether vectorization is profitable. Since we cannot modify
9959   // the incoming IR, we need to build VPlan upfront in the vectorization
9960   // pipeline.
9961   if (!L->isInnermost())
9962     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
9963                                         ORE, BFI, PSI, Hints, Requirements);
9964 
9965   assert(L->isInnermost() && "Inner loop expected.");
9966 
9967   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
9968   // count by optimizing for size, to minimize overheads.
9969   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
9970   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
9971     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
9972                       << "This loop is worth vectorizing only if no scalar "
9973                       << "iteration overheads are incurred.");
9974     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
9975       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
9976     else {
9977       LLVM_DEBUG(dbgs() << "\n");
9978       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
9979     }
9980   }
9981 
9982   // Check the function attributes to see if implicit floats are allowed.
9983   // FIXME: This check doesn't seem possibly correct -- what if the loop is
9984   // an integer loop and the vector instructions selected are purely integer
9985   // vector instructions?
9986   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9987     reportVectorizationFailure(
9988         "Can't vectorize when the NoImplicitFloat attribute is used",
9989         "loop not vectorized due to NoImplicitFloat attribute",
9990         "NoImplicitFloat", ORE, L);
9991     Hints.emitRemarkWithHints();
9992     return false;
9993   }
9994 
9995   // Check if the target supports potentially unsafe FP vectorization.
9996   // FIXME: Add a check for the type of safety issue (denormal, signaling)
9997   // for the target we're vectorizing for, to make sure none of the
9998   // additional fp-math flags can help.
9999   if (Hints.isPotentiallyUnsafe() &&
10000       TTI->isFPVectorizationPotentiallyUnsafe()) {
10001     reportVectorizationFailure(
10002         "Potentially unsafe FP op prevents vectorization",
10003         "loop not vectorized due to unsafe FP support.",
10004         "UnsafeFP", ORE, L);
10005     Hints.emitRemarkWithHints();
10006     return false;
10007   }
10008 
10009   if (!LVL.canVectorizeFPMath(EnableStrictReductions)) {
10010     ORE->emit([&]() {
10011       auto *ExactFPMathInst = Requirements.getExactFPInst();
10012       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10013                                                  ExactFPMathInst->getDebugLoc(),
10014                                                  ExactFPMathInst->getParent())
10015              << "loop not vectorized: cannot prove it is safe to reorder "
10016                 "floating-point operations";
10017     });
10018     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10019                          "reorder floating-point operations\n");
10020     Hints.emitRemarkWithHints();
10021     return false;
10022   }
10023 
10024   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10025   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10026 
10027   // If an override option has been passed in for interleaved accesses, use it.
10028   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10029     UseInterleaved = EnableInterleavedMemAccesses;
10030 
10031   // Analyze interleaved memory accesses.
10032   if (UseInterleaved) {
10033     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10034   }
10035 
10036   // Use the cost model.
10037   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10038                                 F, &Hints, IAI);
10039   CM.collectValuesToIgnore();
10040 
10041   // Use the planner for vectorization.
10042   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10043                                Requirements, ORE);
10044 
10045   // Get user vectorization factor and interleave count.
10046   ElementCount UserVF = Hints.getWidth();
10047   unsigned UserIC = Hints.getInterleave();
10048 
10049   // Plan how to best vectorize, return the best VF and its cost.
10050   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10051 
10052   VectorizationFactor VF = VectorizationFactor::Disabled();
10053   unsigned IC = 1;
10054 
10055   if (MaybeVF) {
10056     VF = *MaybeVF;
10057     // Select the interleave count.
10058     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10059   }
10060 
10061   // Identify the diagnostic messages that should be produced.
10062   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10063   bool VectorizeLoop = true, InterleaveLoop = true;
10064   if (VF.Width.isScalar()) {
10065     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10066     VecDiagMsg = std::make_pair(
10067         "VectorizationNotBeneficial",
10068         "the cost-model indicates that vectorization is not beneficial");
10069     VectorizeLoop = false;
10070   }
10071 
10072   if (!MaybeVF && UserIC > 1) {
10073     // Tell the user interleaving was avoided up-front, despite being explicitly
10074     // requested.
10075     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10076                          "interleaving should be avoided up front\n");
10077     IntDiagMsg = std::make_pair(
10078         "InterleavingAvoided",
10079         "Ignoring UserIC, because interleaving was avoided up front");
10080     InterleaveLoop = false;
10081   } else if (IC == 1 && UserIC <= 1) {
10082     // Tell the user interleaving is not beneficial.
10083     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10084     IntDiagMsg = std::make_pair(
10085         "InterleavingNotBeneficial",
10086         "the cost-model indicates that interleaving is not beneficial");
10087     InterleaveLoop = false;
10088     if (UserIC == 1) {
10089       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10090       IntDiagMsg.second +=
10091           " and is explicitly disabled or interleave count is set to 1";
10092     }
10093   } else if (IC > 1 && UserIC == 1) {
10094     // Tell the user interleaving is beneficial, but it explicitly disabled.
10095     LLVM_DEBUG(
10096         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10097     IntDiagMsg = std::make_pair(
10098         "InterleavingBeneficialButDisabled",
10099         "the cost-model indicates that interleaving is beneficial "
10100         "but is explicitly disabled or interleave count is set to 1");
10101     InterleaveLoop = false;
10102   }
10103 
10104   // Override IC if user provided an interleave count.
10105   IC = UserIC > 0 ? UserIC : IC;
10106 
10107   // Emit diagnostic messages, if any.
10108   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10109   if (!VectorizeLoop && !InterleaveLoop) {
10110     // Do not vectorize or interleaving the loop.
10111     ORE->emit([&]() {
10112       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10113                                       L->getStartLoc(), L->getHeader())
10114              << VecDiagMsg.second;
10115     });
10116     ORE->emit([&]() {
10117       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10118                                       L->getStartLoc(), L->getHeader())
10119              << IntDiagMsg.second;
10120     });
10121     return false;
10122   } else if (!VectorizeLoop && InterleaveLoop) {
10123     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10124     ORE->emit([&]() {
10125       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10126                                         L->getStartLoc(), L->getHeader())
10127              << VecDiagMsg.second;
10128     });
10129   } else if (VectorizeLoop && !InterleaveLoop) {
10130     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10131                       << ") in " << DebugLocStr << '\n');
10132     ORE->emit([&]() {
10133       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10134                                         L->getStartLoc(), L->getHeader())
10135              << IntDiagMsg.second;
10136     });
10137   } else if (VectorizeLoop && InterleaveLoop) {
10138     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10139                       << ") in " << DebugLocStr << '\n');
10140     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10141   }
10142 
10143   bool DisableRuntimeUnroll = false;
10144   MDNode *OrigLoopID = L->getLoopID();
10145   {
10146     // Optimistically generate runtime checks. Drop them if they turn out to not
10147     // be profitable. Limit the scope of Checks, so the cleanup happens
10148     // immediately after vector codegeneration is done.
10149     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10150                              F->getParent()->getDataLayout());
10151     if (!VF.Width.isScalar() || IC > 1)
10152       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10153     LVP.setBestPlan(VF.Width, IC);
10154 
10155     using namespace ore;
10156     if (!VectorizeLoop) {
10157       assert(IC > 1 && "interleave count should not be 1 or 0");
10158       // If we decided that it is not legal to vectorize the loop, then
10159       // interleave it.
10160       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10161                                  &CM, BFI, PSI, Checks);
10162       LVP.executePlan(Unroller, DT);
10163 
10164       ORE->emit([&]() {
10165         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10166                                   L->getHeader())
10167                << "interleaved loop (interleaved count: "
10168                << NV("InterleaveCount", IC) << ")";
10169       });
10170     } else {
10171       // If we decided that it is *legal* to vectorize the loop, then do it.
10172 
10173       // Consider vectorizing the epilogue too if it's profitable.
10174       VectorizationFactor EpilogueVF =
10175           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10176       if (EpilogueVF.Width.isVector()) {
10177 
10178         // The first pass vectorizes the main loop and creates a scalar epilogue
10179         // to be vectorized by executing the plan (potentially with a different
10180         // factor) again shortly afterwards.
10181         EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC,
10182                                           EpilogueVF.Width.getKnownMinValue(),
10183                                           1);
10184         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10185                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10186 
10187         LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF);
10188         LVP.executePlan(MainILV, DT);
10189         ++LoopsVectorized;
10190 
10191         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10192         formLCSSARecursively(*L, *DT, LI, SE);
10193 
10194         // Second pass vectorizes the epilogue and adjusts the control flow
10195         // edges from the first pass.
10196         LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF);
10197         EPI.MainLoopVF = EPI.EpilogueVF;
10198         EPI.MainLoopUF = EPI.EpilogueUF;
10199         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10200                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10201                                                  Checks);
10202         LVP.executePlan(EpilogILV, DT);
10203         ++LoopsEpilogueVectorized;
10204 
10205         if (!MainILV.areSafetyChecksAdded())
10206           DisableRuntimeUnroll = true;
10207       } else {
10208         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10209                                &LVL, &CM, BFI, PSI, Checks);
10210         LVP.executePlan(LB, DT);
10211         ++LoopsVectorized;
10212 
10213         // Add metadata to disable runtime unrolling a scalar loop when there
10214         // are no runtime checks about strides and memory. A scalar loop that is
10215         // rarely used is not worth unrolling.
10216         if (!LB.areSafetyChecksAdded())
10217           DisableRuntimeUnroll = true;
10218       }
10219       // Report the vectorization decision.
10220       ORE->emit([&]() {
10221         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10222                                   L->getHeader())
10223                << "vectorized loop (vectorization width: "
10224                << NV("VectorizationFactor", VF.Width)
10225                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10226       });
10227     }
10228 
10229     if (ORE->allowExtraAnalysis(LV_NAME))
10230       checkMixedPrecision(L, ORE);
10231   }
10232 
10233   Optional<MDNode *> RemainderLoopID =
10234       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10235                                       LLVMLoopVectorizeFollowupEpilogue});
10236   if (RemainderLoopID.hasValue()) {
10237     L->setLoopID(RemainderLoopID.getValue());
10238   } else {
10239     if (DisableRuntimeUnroll)
10240       AddRuntimeUnrollDisableMetaData(L);
10241 
10242     // Mark the loop as already vectorized to avoid vectorizing again.
10243     Hints.setAlreadyVectorized();
10244   }
10245 
10246   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10247   return true;
10248 }
10249 
10250 LoopVectorizeResult LoopVectorizePass::runImpl(
10251     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10252     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10253     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10254     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10255     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10256   SE = &SE_;
10257   LI = &LI_;
10258   TTI = &TTI_;
10259   DT = &DT_;
10260   BFI = &BFI_;
10261   TLI = TLI_;
10262   AA = &AA_;
10263   AC = &AC_;
10264   GetLAA = &GetLAA_;
10265   DB = &DB_;
10266   ORE = &ORE_;
10267   PSI = PSI_;
10268 
10269   // Don't attempt if
10270   // 1. the target claims to have no vector registers, and
10271   // 2. interleaving won't help ILP.
10272   //
10273   // The second condition is necessary because, even if the target has no
10274   // vector registers, loop vectorization may still enable scalar
10275   // interleaving.
10276   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10277       TTI->getMaxInterleaveFactor(1) < 2)
10278     return LoopVectorizeResult(false, false);
10279 
10280   bool Changed = false, CFGChanged = false;
10281 
10282   // The vectorizer requires loops to be in simplified form.
10283   // Since simplification may add new inner loops, it has to run before the
10284   // legality and profitability checks. This means running the loop vectorizer
10285   // will simplify all loops, regardless of whether anything end up being
10286   // vectorized.
10287   for (auto &L : *LI)
10288     Changed |= CFGChanged |=
10289         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10290 
10291   // Build up a worklist of inner-loops to vectorize. This is necessary as
10292   // the act of vectorizing or partially unrolling a loop creates new loops
10293   // and can invalidate iterators across the loops.
10294   SmallVector<Loop *, 8> Worklist;
10295 
10296   for (Loop *L : *LI)
10297     collectSupportedLoops(*L, LI, ORE, Worklist);
10298 
10299   LoopsAnalyzed += Worklist.size();
10300 
10301   // Now walk the identified inner loops.
10302   while (!Worklist.empty()) {
10303     Loop *L = Worklist.pop_back_val();
10304 
10305     // For the inner loops we actually process, form LCSSA to simplify the
10306     // transform.
10307     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10308 
10309     Changed |= CFGChanged |= processLoop(L);
10310   }
10311 
10312   // Process each loop nest in the function.
10313   return LoopVectorizeResult(Changed, CFGChanged);
10314 }
10315 
10316 PreservedAnalyses LoopVectorizePass::run(Function &F,
10317                                          FunctionAnalysisManager &AM) {
10318     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10319     auto &LI = AM.getResult<LoopAnalysis>(F);
10320     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10321     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10322     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10323     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10324     auto &AA = AM.getResult<AAManager>(F);
10325     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10326     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10327     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10328     MemorySSA *MSSA = EnableMSSALoopDependency
10329                           ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
10330                           : nullptr;
10331 
10332     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10333     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10334         [&](Loop &L) -> const LoopAccessInfo & {
10335       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,  SE,
10336                                         TLI, TTI, nullptr, MSSA};
10337       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10338     };
10339     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10340     ProfileSummaryInfo *PSI =
10341         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10342     LoopVectorizeResult Result =
10343         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10344     if (!Result.MadeAnyChange)
10345       return PreservedAnalyses::all();
10346     PreservedAnalyses PA;
10347 
10348     // We currently do not preserve loopinfo/dominator analyses with outer loop
10349     // vectorization. Until this is addressed, mark these analyses as preserved
10350     // only for non-VPlan-native path.
10351     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10352     if (!EnableVPlanNativePath) {
10353       PA.preserve<LoopAnalysis>();
10354       PA.preserve<DominatorTreeAnalysis>();
10355     }
10356     if (!Result.MadeCFGChange)
10357       PA.preserveSet<CFGAnalyses>();
10358     return PA;
10359 }
10360