1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanTransforms.h"
62 #include "llvm/ADT/APInt.h"
63 #include "llvm/ADT/ArrayRef.h"
64 #include "llvm/ADT/DenseMap.h"
65 #include "llvm/ADT/DenseMapInfo.h"
66 #include "llvm/ADT/Hashing.h"
67 #include "llvm/ADT/MapVector.h"
68 #include "llvm/ADT/None.h"
69 #include "llvm/ADT/Optional.h"
70 #include "llvm/ADT/STLExtras.h"
71 #include "llvm/ADT/SmallPtrSet.h"
72 #include "llvm/ADT/SmallSet.h"
73 #include "llvm/ADT/SmallVector.h"
74 #include "llvm/ADT/Statistic.h"
75 #include "llvm/ADT/StringRef.h"
76 #include "llvm/ADT/Twine.h"
77 #include "llvm/ADT/iterator_range.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/BasicAliasAnalysis.h"
80 #include "llvm/Analysis/BlockFrequencyInfo.h"
81 #include "llvm/Analysis/CFG.h"
82 #include "llvm/Analysis/CodeMetrics.h"
83 #include "llvm/Analysis/DemandedBits.h"
84 #include "llvm/Analysis/GlobalsModRef.h"
85 #include "llvm/Analysis/LoopAccessAnalysis.h"
86 #include "llvm/Analysis/LoopAnalysisManager.h"
87 #include "llvm/Analysis/LoopInfo.h"
88 #include "llvm/Analysis/LoopIterator.h"
89 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
90 #include "llvm/Analysis/ProfileSummaryInfo.h"
91 #include "llvm/Analysis/ScalarEvolution.h"
92 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
93 #include "llvm/Analysis/TargetLibraryInfo.h"
94 #include "llvm/Analysis/TargetTransformInfo.h"
95 #include "llvm/Analysis/VectorUtils.h"
96 #include "llvm/IR/Attributes.h"
97 #include "llvm/IR/BasicBlock.h"
98 #include "llvm/IR/CFG.h"
99 #include "llvm/IR/Constant.h"
100 #include "llvm/IR/Constants.h"
101 #include "llvm/IR/DataLayout.h"
102 #include "llvm/IR/DebugInfoMetadata.h"
103 #include "llvm/IR/DebugLoc.h"
104 #include "llvm/IR/DerivedTypes.h"
105 #include "llvm/IR/DiagnosticInfo.h"
106 #include "llvm/IR/Dominators.h"
107 #include "llvm/IR/Function.h"
108 #include "llvm/IR/IRBuilder.h"
109 #include "llvm/IR/InstrTypes.h"
110 #include "llvm/IR/Instruction.h"
111 #include "llvm/IR/Instructions.h"
112 #include "llvm/IR/IntrinsicInst.h"
113 #include "llvm/IR/Intrinsics.h"
114 #include "llvm/IR/Metadata.h"
115 #include "llvm/IR/Module.h"
116 #include "llvm/IR/Operator.h"
117 #include "llvm/IR/PatternMatch.h"
118 #include "llvm/IR/Type.h"
119 #include "llvm/IR/Use.h"
120 #include "llvm/IR/User.h"
121 #include "llvm/IR/Value.h"
122 #include "llvm/IR/ValueHandle.h"
123 #include "llvm/IR/Verifier.h"
124 #include "llvm/InitializePasses.h"
125 #include "llvm/Pass.h"
126 #include "llvm/Support/Casting.h"
127 #include "llvm/Support/CommandLine.h"
128 #include "llvm/Support/Compiler.h"
129 #include "llvm/Support/Debug.h"
130 #include "llvm/Support/ErrorHandling.h"
131 #include "llvm/Support/InstructionCost.h"
132 #include "llvm/Support/MathExtras.h"
133 #include "llvm/Support/raw_ostream.h"
134 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
135 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
136 #include "llvm/Transforms/Utils/LoopSimplify.h"
137 #include "llvm/Transforms/Utils/LoopUtils.h"
138 #include "llvm/Transforms/Utils/LoopVersioning.h"
139 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
140 #include "llvm/Transforms/Utils/SizeOpts.h"
141 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
142 #include <algorithm>
143 #include <cassert>
144 #include <cstdint>
145 #include <functional>
146 #include <iterator>
147 #include <limits>
148 #include <map>
149 #include <memory>
150 #include <string>
151 #include <tuple>
152 #include <utility>
153 
154 using namespace llvm;
155 
156 #define LV_NAME "loop-vectorize"
157 #define DEBUG_TYPE LV_NAME
158 
159 #ifndef NDEBUG
160 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
161 #endif
162 
163 /// @{
164 /// Metadata attribute names
165 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
166 const char LLVMLoopVectorizeFollowupVectorized[] =
167     "llvm.loop.vectorize.followup_vectorized";
168 const char LLVMLoopVectorizeFollowupEpilogue[] =
169     "llvm.loop.vectorize.followup_epilogue";
170 /// @}
171 
172 STATISTIC(LoopsVectorized, "Number of loops vectorized");
173 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
174 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
175 
176 static cl::opt<bool> EnableEpilogueVectorization(
177     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
178     cl::desc("Enable vectorization of epilogue loops."));
179 
180 static cl::opt<unsigned> EpilogueVectorizationForceVF(
181     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
182     cl::desc("When epilogue vectorization is enabled, and a value greater than "
183              "1 is specified, forces the given VF for all applicable epilogue "
184              "loops."));
185 
186 static cl::opt<unsigned> EpilogueVectorizationMinVF(
187     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
188     cl::desc("Only loops with vectorization factor equal to or larger than "
189              "the specified value are considered for epilogue vectorization."));
190 
191 /// Loops with a known constant trip count below this number are vectorized only
192 /// if no scalar iteration overheads are incurred.
193 static cl::opt<unsigned> TinyTripCountVectorThreshold(
194     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
195     cl::desc("Loops with a constant trip count that is smaller than this "
196              "value are vectorized only if no scalar iteration overheads "
197              "are incurred."));
198 
199 static cl::opt<unsigned> VectorizeMemoryCheckThreshold(
200     "vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
201     cl::desc("The maximum allowed number of runtime memory checks"));
202 
203 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
204 // that predication is preferred, and this lists all options. I.e., the
205 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
206 // and predicate the instructions accordingly. If tail-folding fails, there are
207 // different fallback strategies depending on these values:
208 namespace PreferPredicateTy {
209   enum Option {
210     ScalarEpilogue = 0,
211     PredicateElseScalarEpilogue,
212     PredicateOrDontVectorize
213   };
214 } // namespace PreferPredicateTy
215 
216 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
217     "prefer-predicate-over-epilogue",
218     cl::init(PreferPredicateTy::ScalarEpilogue),
219     cl::Hidden,
220     cl::desc("Tail-folding and predication preferences over creating a scalar "
221              "epilogue loop."),
222     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
223                          "scalar-epilogue",
224                          "Don't tail-predicate loops, create scalar epilogue"),
225               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
226                          "predicate-else-scalar-epilogue",
227                          "prefer tail-folding, create scalar epilogue if tail "
228                          "folding fails."),
229               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
230                          "predicate-dont-vectorize",
231                          "prefers tail-folding, don't attempt vectorization if "
232                          "tail-folding fails.")));
233 
234 static cl::opt<bool> MaximizeBandwidth(
235     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
236     cl::desc("Maximize bandwidth when selecting vectorization factor which "
237              "will be determined by the smallest type in loop."));
238 
239 static cl::opt<bool> EnableInterleavedMemAccesses(
240     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
241     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
242 
243 /// An interleave-group may need masking if it resides in a block that needs
244 /// predication, or in order to mask away gaps.
245 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
246     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
247     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
248 
249 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
250     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
251     cl::desc("We don't interleave loops with a estimated constant trip count "
252              "below this number"));
253 
254 static cl::opt<unsigned> ForceTargetNumScalarRegs(
255     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
256     cl::desc("A flag that overrides the target's number of scalar registers."));
257 
258 static cl::opt<unsigned> ForceTargetNumVectorRegs(
259     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
260     cl::desc("A flag that overrides the target's number of vector registers."));
261 
262 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
263     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
264     cl::desc("A flag that overrides the target's max interleave factor for "
265              "scalar loops."));
266 
267 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
268     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
269     cl::desc("A flag that overrides the target's max interleave factor for "
270              "vectorized loops."));
271 
272 static cl::opt<unsigned> ForceTargetInstructionCost(
273     "force-target-instruction-cost", cl::init(0), cl::Hidden,
274     cl::desc("A flag that overrides the target's expected cost for "
275              "an instruction to a single constant value. Mostly "
276              "useful for getting consistent testing."));
277 
278 static cl::opt<bool> ForceTargetSupportsScalableVectors(
279     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
280     cl::desc(
281         "Pretend that scalable vectors are supported, even if the target does "
282         "not support them. This flag should only be used for testing."));
283 
284 static cl::opt<unsigned> SmallLoopCost(
285     "small-loop-cost", cl::init(20), cl::Hidden,
286     cl::desc(
287         "The cost of a loop that is considered 'small' by the interleaver."));
288 
289 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
290     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
291     cl::desc("Enable the use of the block frequency analysis to access PGO "
292              "heuristics minimizing code growth in cold regions and being more "
293              "aggressive in hot regions."));
294 
295 // Runtime interleave loops for load/store throughput.
296 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
297     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
298     cl::desc(
299         "Enable runtime interleaving until load/store ports are saturated"));
300 
301 /// Interleave small loops with scalar reductions.
302 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
303     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
304     cl::desc("Enable interleaving for loops with small iteration counts that "
305              "contain scalar reductions to expose ILP."));
306 
307 /// The number of stores in a loop that are allowed to need predication.
308 static cl::opt<unsigned> NumberOfStoresToPredicate(
309     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
310     cl::desc("Max number of stores to be predicated behind an if."));
311 
312 static cl::opt<bool> EnableIndVarRegisterHeur(
313     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
314     cl::desc("Count the induction variable only once when interleaving"));
315 
316 static cl::opt<bool> EnableCondStoresVectorization(
317     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
318     cl::desc("Enable if predication of stores during vectorization."));
319 
320 static cl::opt<unsigned> MaxNestedScalarReductionIC(
321     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
322     cl::desc("The maximum interleave count to use when interleaving a scalar "
323              "reduction in a nested loop."));
324 
325 static cl::opt<bool>
326     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
327                            cl::Hidden,
328                            cl::desc("Prefer in-loop vector reductions, "
329                                     "overriding the targets preference."));
330 
331 static cl::opt<bool> ForceOrderedReductions(
332     "force-ordered-reductions", cl::init(false), cl::Hidden,
333     cl::desc("Enable the vectorisation of loops with in-order (strict) "
334              "FP reductions"));
335 
336 static cl::opt<bool> PreferPredicatedReductionSelect(
337     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
338     cl::desc(
339         "Prefer predicating a reduction operation over an after loop select."));
340 
341 cl::opt<bool> EnableVPlanNativePath(
342     "enable-vplan-native-path", cl::init(false), cl::Hidden,
343     cl::desc("Enable VPlan-native vectorization path with "
344              "support for outer loop vectorization."));
345 
346 // This flag enables the stress testing of the VPlan H-CFG construction in the
347 // VPlan-native vectorization path. It must be used in conjuction with
348 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
349 // verification of the H-CFGs built.
350 static cl::opt<bool> VPlanBuildStressTest(
351     "vplan-build-stress-test", cl::init(false), cl::Hidden,
352     cl::desc(
353         "Build VPlan for every supported loop nest in the function and bail "
354         "out right after the build (stress test the VPlan H-CFG construction "
355         "in the VPlan-native vectorization path)."));
356 
357 cl::opt<bool> llvm::EnableLoopInterleaving(
358     "interleave-loops", cl::init(true), cl::Hidden,
359     cl::desc("Enable loop interleaving in Loop vectorization passes"));
360 cl::opt<bool> llvm::EnableLoopVectorization(
361     "vectorize-loops", cl::init(true), cl::Hidden,
362     cl::desc("Run the Loop vectorization passes"));
363 
364 cl::opt<bool> PrintVPlansInDotFormat(
365     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
366     cl::desc("Use dot format instead of plain text when dumping VPlans"));
367 
368 /// A helper function that returns true if the given type is irregular. The
369 /// type is irregular if its allocated size doesn't equal the store size of an
370 /// element of the corresponding vector type.
371 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
372   // Determine if an array of N elements of type Ty is "bitcast compatible"
373   // with a <N x Ty> vector.
374   // This is only true if there is no padding between the array elements.
375   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
376 }
377 
378 /// A helper function that returns the reciprocal of the block probability of
379 /// predicated blocks. If we return X, we are assuming the predicated block
380 /// will execute once for every X iterations of the loop header.
381 ///
382 /// TODO: We should use actual block probability here, if available. Currently,
383 ///       we always assume predicated blocks have a 50% chance of executing.
384 static unsigned getReciprocalPredBlockProb() { return 2; }
385 
386 /// A helper function that returns an integer or floating-point constant with
387 /// value C.
388 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
389   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
390                            : ConstantFP::get(Ty, C);
391 }
392 
393 /// Returns "best known" trip count for the specified loop \p L as defined by
394 /// the following procedure:
395 ///   1) Returns exact trip count if it is known.
396 ///   2) Returns expected trip count according to profile data if any.
397 ///   3) Returns upper bound estimate if it is known.
398 ///   4) Returns None if all of the above failed.
399 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
400   // Check if exact trip count is known.
401   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
402     return ExpectedTC;
403 
404   // Check if there is an expected trip count available from profile data.
405   if (LoopVectorizeWithBlockFrequency)
406     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
407       return EstimatedTC;
408 
409   // Check if upper bound estimate is known.
410   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
411     return ExpectedTC;
412 
413   return None;
414 }
415 
416 // Forward declare GeneratedRTChecks.
417 class GeneratedRTChecks;
418 
419 namespace llvm {
420 
421 AnalysisKey ShouldRunExtraVectorPasses::Key;
422 
423 /// InnerLoopVectorizer vectorizes loops which contain only one basic
424 /// block to a specified vectorization factor (VF).
425 /// This class performs the widening of scalars into vectors, or multiple
426 /// scalars. This class also implements the following features:
427 /// * It inserts an epilogue loop for handling loops that don't have iteration
428 ///   counts that are known to be a multiple of the vectorization factor.
429 /// * It handles the code generation for reduction variables.
430 /// * Scalarization (implementation using scalars) of un-vectorizable
431 ///   instructions.
432 /// InnerLoopVectorizer does not perform any vectorization-legality
433 /// checks, and relies on the caller to check for the different legality
434 /// aspects. The InnerLoopVectorizer relies on the
435 /// LoopVectorizationLegality class to provide information about the induction
436 /// and reduction variables that were found to a given vectorization factor.
437 class InnerLoopVectorizer {
438 public:
439   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
440                       LoopInfo *LI, DominatorTree *DT,
441                       const TargetLibraryInfo *TLI,
442                       const TargetTransformInfo *TTI, AssumptionCache *AC,
443                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
444                       ElementCount MinProfitableTripCount,
445                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
446                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
447                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
448       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
449         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
450         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
451         PSI(PSI), RTChecks(RTChecks) {
452     // Query this against the original loop and save it here because the profile
453     // of the original loop header may change as the transformation happens.
454     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
455         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
456 
457     if (MinProfitableTripCount.isZero())
458       this->MinProfitableTripCount = VecWidth;
459     else
460       this->MinProfitableTripCount = MinProfitableTripCount;
461   }
462 
463   virtual ~InnerLoopVectorizer() = default;
464 
465   /// Create a new empty loop that will contain vectorized instructions later
466   /// on, while the old loop will be used as the scalar remainder. Control flow
467   /// is generated around the vectorized (and scalar epilogue) loops consisting
468   /// of various checks and bypasses. Return the pre-header block of the new
469   /// loop and the start value for the canonical induction, if it is != 0. The
470   /// latter is the case when vectorizing the epilogue loop. In the case of
471   /// epilogue vectorization, this function is overriden to handle the more
472   /// complex control flow around the loops.
473   virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton();
474 
475   /// Widen a single call instruction within the innermost loop.
476   void widenCallInstruction(CallInst &CI, VPValue *Def, VPUser &ArgOperands,
477                             VPTransformState &State);
478 
479   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
480   void fixVectorizedLoop(VPTransformState &State, VPlan &Plan);
481 
482   // Return true if any runtime check is added.
483   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
484 
485   /// A type for vectorized values in the new loop. Each value from the
486   /// original loop, when vectorized, is represented by UF vector values in the
487   /// new unrolled loop, where UF is the unroll factor.
488   using VectorParts = SmallVector<Value *, 2>;
489 
490   /// A helper function to scalarize a single Instruction in the innermost loop.
491   /// Generates a sequence of scalar instances for each lane between \p MinLane
492   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
493   /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
494   /// Instr's operands.
495   void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe,
496                             const VPIteration &Instance, bool IfPredicateInstr,
497                             VPTransformState &State);
498 
499   /// Construct the vector value of a scalarized value \p V one lane at a time.
500   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
501                                  VPTransformState &State);
502 
503   /// Try to vectorize interleaved access group \p Group with the base address
504   /// given in \p Addr, optionally masking the vector operations if \p
505   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
506   /// values in the vectorized loop.
507   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
508                                 ArrayRef<VPValue *> VPDefs,
509                                 VPTransformState &State, VPValue *Addr,
510                                 ArrayRef<VPValue *> StoredValues,
511                                 VPValue *BlockInMask = nullptr);
512 
513   /// Fix the non-induction PHIs in \p Plan.
514   void fixNonInductionPHIs(VPlan &Plan, VPTransformState &State);
515 
516   /// Returns true if the reordering of FP operations is not allowed, but we are
517   /// able to vectorize with strict in-order reductions for the given RdxDesc.
518   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc);
519 
520   /// Create a broadcast instruction. This method generates a broadcast
521   /// instruction (shuffle) for loop invariant values and for the induction
522   /// value. If this is the induction variable then we extend it to N, N+1, ...
523   /// this is needed because each iteration in the loop corresponds to a SIMD
524   /// element.
525   virtual Value *getBroadcastInstrs(Value *V);
526 
527   // Returns the resume value (bc.merge.rdx) for a reduction as
528   // generated by fixReduction.
529   PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc);
530 
531 protected:
532   friend class LoopVectorizationPlanner;
533 
534   /// A small list of PHINodes.
535   using PhiVector = SmallVector<PHINode *, 4>;
536 
537   /// A type for scalarized values in the new loop. Each value from the
538   /// original loop, when scalarized, is represented by UF x VF scalar values
539   /// in the new unrolled loop, where UF is the unroll factor and VF is the
540   /// vectorization factor.
541   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
542 
543   /// Set up the values of the IVs correctly when exiting the vector loop.
544   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
545                     Value *VectorTripCount, Value *EndValue,
546                     BasicBlock *MiddleBlock, BasicBlock *VectorHeader,
547                     VPlan &Plan);
548 
549   /// Handle all cross-iteration phis in the header.
550   void fixCrossIterationPHIs(VPTransformState &State);
551 
552   /// Create the exit value of first order recurrences in the middle block and
553   /// update their users.
554   void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR,
555                                VPTransformState &State);
556 
557   /// Create code for the loop exit value of the reduction.
558   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
559 
560   /// Clear NSW/NUW flags from reduction instructions if necessary.
561   void clearReductionWrapFlags(VPReductionPHIRecipe *PhiR,
562                                VPTransformState &State);
563 
564   /// Iteratively sink the scalarized operands of a predicated instruction into
565   /// the block that was created for it.
566   void sinkScalarOperands(Instruction *PredInst);
567 
568   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
569   /// represented as.
570   void truncateToMinimalBitwidths(VPTransformState &State);
571 
572   /// Returns (and creates if needed) the original loop trip count.
573   Value *getOrCreateTripCount(BasicBlock *InsertBlock);
574 
575   /// Returns (and creates if needed) the trip count of the widened loop.
576   Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock);
577 
578   /// Returns a bitcasted value to the requested vector type.
579   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
580   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
581                                 const DataLayout &DL);
582 
583   /// Emit a bypass check to see if the vector trip count is zero, including if
584   /// it overflows.
585   void emitIterationCountCheck(BasicBlock *Bypass);
586 
587   /// Emit a bypass check to see if all of the SCEV assumptions we've
588   /// had to make are correct. Returns the block containing the checks or
589   /// nullptr if no checks have been added.
590   BasicBlock *emitSCEVChecks(BasicBlock *Bypass);
591 
592   /// Emit bypass checks to check any memory assumptions we may have made.
593   /// Returns the block containing the checks or nullptr if no checks have been
594   /// added.
595   BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass);
596 
597   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
598   /// vector loop preheader, middle block and scalar preheader.
599   void createVectorLoopSkeleton(StringRef Prefix);
600 
601   /// Create new phi nodes for the induction variables to resume iteration count
602   /// in the scalar epilogue, from where the vectorized loop left off.
603   /// In cases where the loop skeleton is more complicated (eg. epilogue
604   /// vectorization) and the resume values can come from an additional bypass
605   /// block, the \p AdditionalBypass pair provides information about the bypass
606   /// block and the end value on the edge from bypass to this loop.
607   void createInductionResumeValues(
608       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
609 
610   /// Complete the loop skeleton by adding debug MDs, creating appropriate
611   /// conditional branches in the middle block, preparing the builder and
612   /// running the verifier. Return the preheader of the completed vector loop.
613   BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID);
614 
615   /// Collect poison-generating recipes that may generate a poison value that is
616   /// used after vectorization, even when their operands are not poison. Those
617   /// recipes meet the following conditions:
618   ///  * Contribute to the address computation of a recipe generating a widen
619   ///    memory load/store (VPWidenMemoryInstructionRecipe or
620   ///    VPInterleaveRecipe).
621   ///  * Such a widen memory load/store has at least one underlying Instruction
622   ///    that is in a basic block that needs predication and after vectorization
623   ///    the generated instruction won't be predicated.
624   void collectPoisonGeneratingRecipes(VPTransformState &State);
625 
626   /// Allow subclasses to override and print debug traces before/after vplan
627   /// execution, when trace information is requested.
628   virtual void printDebugTracesAtStart(){};
629   virtual void printDebugTracesAtEnd(){};
630 
631   /// The original loop.
632   Loop *OrigLoop;
633 
634   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
635   /// dynamic knowledge to simplify SCEV expressions and converts them to a
636   /// more usable form.
637   PredicatedScalarEvolution &PSE;
638 
639   /// Loop Info.
640   LoopInfo *LI;
641 
642   /// Dominator Tree.
643   DominatorTree *DT;
644 
645   /// Alias Analysis.
646   AAResults *AA;
647 
648   /// Target Library Info.
649   const TargetLibraryInfo *TLI;
650 
651   /// Target Transform Info.
652   const TargetTransformInfo *TTI;
653 
654   /// Assumption Cache.
655   AssumptionCache *AC;
656 
657   /// Interface to emit optimization remarks.
658   OptimizationRemarkEmitter *ORE;
659 
660   /// The vectorization SIMD factor to use. Each vector will have this many
661   /// vector elements.
662   ElementCount VF;
663 
664   ElementCount MinProfitableTripCount;
665 
666   /// The vectorization unroll factor to use. Each scalar is vectorized to this
667   /// many different vector instructions.
668   unsigned UF;
669 
670   /// The builder that we use
671   IRBuilder<> Builder;
672 
673   // --- Vectorization state ---
674 
675   /// The vector-loop preheader.
676   BasicBlock *LoopVectorPreHeader;
677 
678   /// The scalar-loop preheader.
679   BasicBlock *LoopScalarPreHeader;
680 
681   /// Middle Block between the vector and the scalar.
682   BasicBlock *LoopMiddleBlock;
683 
684   /// The unique ExitBlock of the scalar loop if one exists.  Note that
685   /// there can be multiple exiting edges reaching this block.
686   BasicBlock *LoopExitBlock;
687 
688   /// The scalar loop body.
689   BasicBlock *LoopScalarBody;
690 
691   /// A list of all bypass blocks. The first block is the entry of the loop.
692   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
693 
694   /// Store instructions that were predicated.
695   SmallVector<Instruction *, 4> PredicatedInstructions;
696 
697   /// Trip count of the original loop.
698   Value *TripCount = nullptr;
699 
700   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
701   Value *VectorTripCount = nullptr;
702 
703   /// The legality analysis.
704   LoopVectorizationLegality *Legal;
705 
706   /// The profitablity analysis.
707   LoopVectorizationCostModel *Cost;
708 
709   // Record whether runtime checks are added.
710   bool AddedSafetyChecks = false;
711 
712   // Holds the end values for each induction variable. We save the end values
713   // so we can later fix-up the external users of the induction variables.
714   DenseMap<PHINode *, Value *> IVEndValues;
715 
716   /// BFI and PSI are used to check for profile guided size optimizations.
717   BlockFrequencyInfo *BFI;
718   ProfileSummaryInfo *PSI;
719 
720   // Whether this loop should be optimized for size based on profile guided size
721   // optimizatios.
722   bool OptForSizeBasedOnProfile;
723 
724   /// Structure to hold information about generated runtime checks, responsible
725   /// for cleaning the checks, if vectorization turns out unprofitable.
726   GeneratedRTChecks &RTChecks;
727 
728   // Holds the resume values for reductions in the loops, used to set the
729   // correct start value of reduction PHIs when vectorizing the epilogue.
730   SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4>
731       ReductionResumeValues;
732 };
733 
734 class InnerLoopUnroller : public InnerLoopVectorizer {
735 public:
736   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
737                     LoopInfo *LI, DominatorTree *DT,
738                     const TargetLibraryInfo *TLI,
739                     const TargetTransformInfo *TTI, AssumptionCache *AC,
740                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
741                     LoopVectorizationLegality *LVL,
742                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
743                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
744       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
745                             ElementCount::getFixed(1),
746                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
747                             BFI, PSI, Check) {}
748 
749 private:
750   Value *getBroadcastInstrs(Value *V) override;
751 };
752 
753 /// Encapsulate information regarding vectorization of a loop and its epilogue.
754 /// This information is meant to be updated and used across two stages of
755 /// epilogue vectorization.
756 struct EpilogueLoopVectorizationInfo {
757   ElementCount MainLoopVF = ElementCount::getFixed(0);
758   unsigned MainLoopUF = 0;
759   ElementCount EpilogueVF = ElementCount::getFixed(0);
760   unsigned EpilogueUF = 0;
761   BasicBlock *MainLoopIterationCountCheck = nullptr;
762   BasicBlock *EpilogueIterationCountCheck = nullptr;
763   BasicBlock *SCEVSafetyCheck = nullptr;
764   BasicBlock *MemSafetyCheck = nullptr;
765   Value *TripCount = nullptr;
766   Value *VectorTripCount = nullptr;
767 
768   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
769                                 ElementCount EVF, unsigned EUF)
770       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
771     assert(EUF == 1 &&
772            "A high UF for the epilogue loop is likely not beneficial.");
773   }
774 };
775 
776 /// An extension of the inner loop vectorizer that creates a skeleton for a
777 /// vectorized loop that has its epilogue (residual) also vectorized.
778 /// The idea is to run the vplan on a given loop twice, firstly to setup the
779 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
780 /// from the first step and vectorize the epilogue.  This is achieved by
781 /// deriving two concrete strategy classes from this base class and invoking
782 /// them in succession from the loop vectorizer planner.
783 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
784 public:
785   InnerLoopAndEpilogueVectorizer(
786       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
787       DominatorTree *DT, const TargetLibraryInfo *TLI,
788       const TargetTransformInfo *TTI, AssumptionCache *AC,
789       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
790       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
791       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
792       GeneratedRTChecks &Checks)
793       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
794                             EPI.MainLoopVF, EPI.MainLoopVF, EPI.MainLoopUF, LVL,
795                             CM, BFI, PSI, Checks),
796         EPI(EPI) {}
797 
798   // Override this function to handle the more complex control flow around the
799   // three loops.
800   std::pair<BasicBlock *, Value *>
801   createVectorizedLoopSkeleton() final override {
802     return createEpilogueVectorizedLoopSkeleton();
803   }
804 
805   /// The interface for creating a vectorized skeleton using one of two
806   /// different strategies, each corresponding to one execution of the vplan
807   /// as described above.
808   virtual std::pair<BasicBlock *, Value *>
809   createEpilogueVectorizedLoopSkeleton() = 0;
810 
811   /// Holds and updates state information required to vectorize the main loop
812   /// and its epilogue in two separate passes. This setup helps us avoid
813   /// regenerating and recomputing runtime safety checks. It also helps us to
814   /// shorten the iteration-count-check path length for the cases where the
815   /// iteration count of the loop is so small that the main vector loop is
816   /// completely skipped.
817   EpilogueLoopVectorizationInfo &EPI;
818 };
819 
820 /// A specialized derived class of inner loop vectorizer that performs
821 /// vectorization of *main* loops in the process of vectorizing loops and their
822 /// epilogues.
823 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
824 public:
825   EpilogueVectorizerMainLoop(
826       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
827       DominatorTree *DT, const TargetLibraryInfo *TLI,
828       const TargetTransformInfo *TTI, AssumptionCache *AC,
829       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
830       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
831       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
832       GeneratedRTChecks &Check)
833       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
834                                        EPI, LVL, CM, BFI, PSI, Check) {}
835   /// Implements the interface for creating a vectorized skeleton using the
836   /// *main loop* strategy (ie the first pass of vplan execution).
837   std::pair<BasicBlock *, Value *>
838   createEpilogueVectorizedLoopSkeleton() final override;
839 
840 protected:
841   /// Emits an iteration count bypass check once for the main loop (when \p
842   /// ForEpilogue is false) and once for the epilogue loop (when \p
843   /// ForEpilogue is true).
844   BasicBlock *emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue);
845   void printDebugTracesAtStart() override;
846   void printDebugTracesAtEnd() override;
847 };
848 
849 // A specialized derived class of inner loop vectorizer that performs
850 // vectorization of *epilogue* loops in the process of vectorizing loops and
851 // their epilogues.
852 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
853 public:
854   EpilogueVectorizerEpilogueLoop(
855       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
856       DominatorTree *DT, const TargetLibraryInfo *TLI,
857       const TargetTransformInfo *TTI, AssumptionCache *AC,
858       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
859       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
860       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
861       GeneratedRTChecks &Checks)
862       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
863                                        EPI, LVL, CM, BFI, PSI, Checks) {
864     TripCount = EPI.TripCount;
865   }
866   /// Implements the interface for creating a vectorized skeleton using the
867   /// *epilogue loop* strategy (ie the second pass of vplan execution).
868   std::pair<BasicBlock *, Value *>
869   createEpilogueVectorizedLoopSkeleton() final override;
870 
871 protected:
872   /// Emits an iteration count bypass check after the main vector loop has
873   /// finished to see if there are any iterations left to execute by either
874   /// the vector epilogue or the scalar epilogue.
875   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(
876                                                       BasicBlock *Bypass,
877                                                       BasicBlock *Insert);
878   void printDebugTracesAtStart() override;
879   void printDebugTracesAtEnd() override;
880 };
881 } // end namespace llvm
882 
883 /// Look for a meaningful debug location on the instruction or it's
884 /// operands.
885 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
886   if (!I)
887     return I;
888 
889   DebugLoc Empty;
890   if (I->getDebugLoc() != Empty)
891     return I;
892 
893   for (Use &Op : I->operands()) {
894     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
895       if (OpInst->getDebugLoc() != Empty)
896         return OpInst;
897   }
898 
899   return I;
900 }
901 
902 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
903 /// is passed, the message relates to that particular instruction.
904 #ifndef NDEBUG
905 static void debugVectorizationMessage(const StringRef Prefix,
906                                       const StringRef DebugMsg,
907                                       Instruction *I) {
908   dbgs() << "LV: " << Prefix << DebugMsg;
909   if (I != nullptr)
910     dbgs() << " " << *I;
911   else
912     dbgs() << '.';
913   dbgs() << '\n';
914 }
915 #endif
916 
917 /// Create an analysis remark that explains why vectorization failed
918 ///
919 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
920 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
921 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
922 /// the location of the remark.  \return the remark object that can be
923 /// streamed to.
924 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
925     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
926   Value *CodeRegion = TheLoop->getHeader();
927   DebugLoc DL = TheLoop->getStartLoc();
928 
929   if (I) {
930     CodeRegion = I->getParent();
931     // If there is no debug location attached to the instruction, revert back to
932     // using the loop's.
933     if (I->getDebugLoc())
934       DL = I->getDebugLoc();
935   }
936 
937   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
938 }
939 
940 namespace llvm {
941 
942 /// Return a value for Step multiplied by VF.
943 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF,
944                        int64_t Step) {
945   assert(Ty->isIntegerTy() && "Expected an integer step");
946   Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
947   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
948 }
949 
950 /// Return the runtime value for VF.
951 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) {
952   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
953   return VF.isScalable() ? B.CreateVScale(EC) : EC;
954 }
955 
956 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy,
957                                   ElementCount VF) {
958   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
959   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
960   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
961   return B.CreateUIToFP(RuntimeVF, FTy);
962 }
963 
964 void reportVectorizationFailure(const StringRef DebugMsg,
965                                 const StringRef OREMsg, const StringRef ORETag,
966                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
967                                 Instruction *I) {
968   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
969   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
970   ORE->emit(
971       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
972       << "loop not vectorized: " << OREMsg);
973 }
974 
975 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
976                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
977                              Instruction *I) {
978   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
979   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
980   ORE->emit(
981       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
982       << Msg);
983 }
984 
985 } // end namespace llvm
986 
987 #ifndef NDEBUG
988 /// \return string containing a file name and a line # for the given loop.
989 static std::string getDebugLocString(const Loop *L) {
990   std::string Result;
991   if (L) {
992     raw_string_ostream OS(Result);
993     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
994       LoopDbgLoc.print(OS);
995     else
996       // Just print the module name.
997       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
998     OS.flush();
999   }
1000   return Result;
1001 }
1002 #endif
1003 
1004 void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
1005     VPTransformState &State) {
1006 
1007   // Collect recipes in the backward slice of `Root` that may generate a poison
1008   // value that is used after vectorization.
1009   SmallPtrSet<VPRecipeBase *, 16> Visited;
1010   auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
1011     SmallVector<VPRecipeBase *, 16> Worklist;
1012     Worklist.push_back(Root);
1013 
1014     // Traverse the backward slice of Root through its use-def chain.
1015     while (!Worklist.empty()) {
1016       VPRecipeBase *CurRec = Worklist.back();
1017       Worklist.pop_back();
1018 
1019       if (!Visited.insert(CurRec).second)
1020         continue;
1021 
1022       // Prune search if we find another recipe generating a widen memory
1023       // instruction. Widen memory instructions involved in address computation
1024       // will lead to gather/scatter instructions, which don't need to be
1025       // handled.
1026       if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
1027           isa<VPInterleaveRecipe>(CurRec) ||
1028           isa<VPScalarIVStepsRecipe>(CurRec) ||
1029           isa<VPCanonicalIVPHIRecipe>(CurRec) ||
1030           isa<VPActiveLaneMaskPHIRecipe>(CurRec))
1031         continue;
1032 
1033       // This recipe contributes to the address computation of a widen
1034       // load/store. Collect recipe if its underlying instruction has
1035       // poison-generating flags.
1036       Instruction *Instr = CurRec->getUnderlyingInstr();
1037       if (Instr && Instr->hasPoisonGeneratingFlags())
1038         State.MayGeneratePoisonRecipes.insert(CurRec);
1039 
1040       // Add new definitions to the worklist.
1041       for (VPValue *operand : CurRec->operands())
1042         if (VPDef *OpDef = operand->getDef())
1043           Worklist.push_back(cast<VPRecipeBase>(OpDef));
1044     }
1045   });
1046 
1047   // Traverse all the recipes in the VPlan and collect the poison-generating
1048   // recipes in the backward slice starting at the address of a VPWidenRecipe or
1049   // VPInterleaveRecipe.
1050   auto Iter = depth_first(
1051       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry()));
1052   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
1053     for (VPRecipeBase &Recipe : *VPBB) {
1054       if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
1055         Instruction &UnderlyingInstr = WidenRec->getIngredient();
1056         VPDef *AddrDef = WidenRec->getAddr()->getDef();
1057         if (AddrDef && WidenRec->isConsecutive() &&
1058             Legal->blockNeedsPredication(UnderlyingInstr.getParent()))
1059           collectPoisonGeneratingInstrsInBackwardSlice(
1060               cast<VPRecipeBase>(AddrDef));
1061       } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
1062         VPDef *AddrDef = InterleaveRec->getAddr()->getDef();
1063         if (AddrDef) {
1064           // Check if any member of the interleave group needs predication.
1065           const InterleaveGroup<Instruction> *InterGroup =
1066               InterleaveRec->getInterleaveGroup();
1067           bool NeedPredication = false;
1068           for (int I = 0, NumMembers = InterGroup->getNumMembers();
1069                I < NumMembers; ++I) {
1070             Instruction *Member = InterGroup->getMember(I);
1071             if (Member)
1072               NeedPredication |=
1073                   Legal->blockNeedsPredication(Member->getParent());
1074           }
1075 
1076           if (NeedPredication)
1077             collectPoisonGeneratingInstrsInBackwardSlice(
1078                 cast<VPRecipeBase>(AddrDef));
1079         }
1080       }
1081     }
1082   }
1083 }
1084 
1085 PHINode *InnerLoopVectorizer::getReductionResumeValue(
1086     const RecurrenceDescriptor &RdxDesc) {
1087   auto It = ReductionResumeValues.find(&RdxDesc);
1088   assert(It != ReductionResumeValues.end() &&
1089          "Expected to find a resume value for the reduction.");
1090   return It->second;
1091 }
1092 
1093 namespace llvm {
1094 
1095 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1096 // lowered.
1097 enum ScalarEpilogueLowering {
1098 
1099   // The default: allowing scalar epilogues.
1100   CM_ScalarEpilogueAllowed,
1101 
1102   // Vectorization with OptForSize: don't allow epilogues.
1103   CM_ScalarEpilogueNotAllowedOptSize,
1104 
1105   // A special case of vectorisation with OptForSize: loops with a very small
1106   // trip count are considered for vectorization under OptForSize, thereby
1107   // making sure the cost of their loop body is dominant, free of runtime
1108   // guards and scalar iteration overheads.
1109   CM_ScalarEpilogueNotAllowedLowTripLoop,
1110 
1111   // Loop hint predicate indicating an epilogue is undesired.
1112   CM_ScalarEpilogueNotNeededUsePredicate,
1113 
1114   // Directive indicating we must either tail fold or not vectorize
1115   CM_ScalarEpilogueNotAllowedUsePredicate
1116 };
1117 
1118 /// ElementCountComparator creates a total ordering for ElementCount
1119 /// for the purposes of using it in a set structure.
1120 struct ElementCountComparator {
1121   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1122     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1123            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1124   }
1125 };
1126 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1127 
1128 /// LoopVectorizationCostModel - estimates the expected speedups due to
1129 /// vectorization.
1130 /// In many cases vectorization is not profitable. This can happen because of
1131 /// a number of reasons. In this class we mainly attempt to predict the
1132 /// expected speedup/slowdowns due to the supported instruction set. We use the
1133 /// TargetTransformInfo to query the different backends for the cost of
1134 /// different operations.
1135 class LoopVectorizationCostModel {
1136 public:
1137   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1138                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1139                              LoopVectorizationLegality *Legal,
1140                              const TargetTransformInfo &TTI,
1141                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1142                              AssumptionCache *AC,
1143                              OptimizationRemarkEmitter *ORE, const Function *F,
1144                              const LoopVectorizeHints *Hints,
1145                              InterleavedAccessInfo &IAI)
1146       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1147         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1148         Hints(Hints), InterleaveInfo(IAI) {}
1149 
1150   /// \return An upper bound for the vectorization factors (both fixed and
1151   /// scalable). If the factors are 0, vectorization and interleaving should be
1152   /// avoided up front.
1153   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1154 
1155   /// \return True if runtime checks are required for vectorization, and false
1156   /// otherwise.
1157   bool runtimeChecksRequired();
1158 
1159   /// \return The most profitable vectorization factor and the cost of that VF.
1160   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1161   /// then this vectorization factor will be selected if vectorization is
1162   /// possible.
1163   VectorizationFactor
1164   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1165 
1166   VectorizationFactor
1167   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1168                                     const LoopVectorizationPlanner &LVP);
1169 
1170   /// Setup cost-based decisions for user vectorization factor.
1171   /// \return true if the UserVF is a feasible VF to be chosen.
1172   bool selectUserVectorizationFactor(ElementCount UserVF) {
1173     collectUniformsAndScalars(UserVF);
1174     collectInstsToScalarize(UserVF);
1175     return expectedCost(UserVF).first.isValid();
1176   }
1177 
1178   /// \return The size (in bits) of the smallest and widest types in the code
1179   /// that needs to be vectorized. We ignore values that remain scalar such as
1180   /// 64 bit loop indices.
1181   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1182 
1183   /// \return The desired interleave count.
1184   /// If interleave count has been specified by metadata it will be returned.
1185   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1186   /// are the selected vectorization factor and the cost of the selected VF.
1187   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1188 
1189   /// Memory access instruction may be vectorized in more than one way.
1190   /// Form of instruction after vectorization depends on cost.
1191   /// This function takes cost-based decisions for Load/Store instructions
1192   /// and collects them in a map. This decisions map is used for building
1193   /// the lists of loop-uniform and loop-scalar instructions.
1194   /// The calculated cost is saved with widening decision in order to
1195   /// avoid redundant calculations.
1196   void setCostBasedWideningDecision(ElementCount VF);
1197 
1198   /// A struct that represents some properties of the register usage
1199   /// of a loop.
1200   struct RegisterUsage {
1201     /// Holds the number of loop invariant values that are used in the loop.
1202     /// The key is ClassID of target-provided register class.
1203     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1204     /// Holds the maximum number of concurrent live intervals in the loop.
1205     /// The key is ClassID of target-provided register class.
1206     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1207   };
1208 
1209   /// \return Returns information about the register usages of the loop for the
1210   /// given vectorization factors.
1211   SmallVector<RegisterUsage, 8>
1212   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1213 
1214   /// Collect values we want to ignore in the cost model.
1215   void collectValuesToIgnore();
1216 
1217   /// Collect all element types in the loop for which widening is needed.
1218   void collectElementTypesForWidening();
1219 
1220   /// Split reductions into those that happen in the loop, and those that happen
1221   /// outside. In loop reductions are collected into InLoopReductionChains.
1222   void collectInLoopReductions();
1223 
1224   /// Returns true if we should use strict in-order reductions for the given
1225   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1226   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1227   /// of FP operations.
1228   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const {
1229     return !Hints->allowReordering() && RdxDesc.isOrdered();
1230   }
1231 
1232   /// \returns The smallest bitwidth each instruction can be represented with.
1233   /// The vector equivalents of these instructions should be truncated to this
1234   /// type.
1235   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1236     return MinBWs;
1237   }
1238 
1239   /// \returns True if it is more profitable to scalarize instruction \p I for
1240   /// vectorization factor \p VF.
1241   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1242     assert(VF.isVector() &&
1243            "Profitable to scalarize relevant only for VF > 1.");
1244 
1245     // Cost model is not run in the VPlan-native path - return conservative
1246     // result until this changes.
1247     if (EnableVPlanNativePath)
1248       return false;
1249 
1250     auto Scalars = InstsToScalarize.find(VF);
1251     assert(Scalars != InstsToScalarize.end() &&
1252            "VF not yet analyzed for scalarization profitability");
1253     return Scalars->second.find(I) != Scalars->second.end();
1254   }
1255 
1256   /// Returns true if \p I is known to be uniform after vectorization.
1257   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1258     if (VF.isScalar())
1259       return true;
1260 
1261     // Cost model is not run in the VPlan-native path - return conservative
1262     // result until this changes.
1263     if (EnableVPlanNativePath)
1264       return false;
1265 
1266     auto UniformsPerVF = Uniforms.find(VF);
1267     assert(UniformsPerVF != Uniforms.end() &&
1268            "VF not yet analyzed for uniformity");
1269     return UniformsPerVF->second.count(I);
1270   }
1271 
1272   /// Returns true if \p I is known to be scalar after vectorization.
1273   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1274     if (VF.isScalar())
1275       return true;
1276 
1277     // Cost model is not run in the VPlan-native path - return conservative
1278     // result until this changes.
1279     if (EnableVPlanNativePath)
1280       return false;
1281 
1282     auto ScalarsPerVF = Scalars.find(VF);
1283     assert(ScalarsPerVF != Scalars.end() &&
1284            "Scalar values are not calculated for VF");
1285     return ScalarsPerVF->second.count(I);
1286   }
1287 
1288   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1289   /// for vectorization factor \p VF.
1290   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1291     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1292            !isProfitableToScalarize(I, VF) &&
1293            !isScalarAfterVectorization(I, VF);
1294   }
1295 
1296   /// Decision that was taken during cost calculation for memory instruction.
1297   enum InstWidening {
1298     CM_Unknown,
1299     CM_Widen,         // For consecutive accesses with stride +1.
1300     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1301     CM_Interleave,
1302     CM_GatherScatter,
1303     CM_Scalarize
1304   };
1305 
1306   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1307   /// instruction \p I and vector width \p VF.
1308   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1309                            InstructionCost Cost) {
1310     assert(VF.isVector() && "Expected VF >=2");
1311     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1312   }
1313 
1314   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1315   /// interleaving group \p Grp and vector width \p VF.
1316   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1317                            ElementCount VF, InstWidening W,
1318                            InstructionCost Cost) {
1319     assert(VF.isVector() && "Expected VF >=2");
1320     /// Broadcast this decicion to all instructions inside the group.
1321     /// But the cost will be assigned to one instruction only.
1322     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1323       if (auto *I = Grp->getMember(i)) {
1324         if (Grp->getInsertPos() == I)
1325           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1326         else
1327           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1328       }
1329     }
1330   }
1331 
1332   /// Return the cost model decision for the given instruction \p I and vector
1333   /// width \p VF. Return CM_Unknown if this instruction did not pass
1334   /// through the cost modeling.
1335   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1336     assert(VF.isVector() && "Expected VF to be a vector VF");
1337     // Cost model is not run in the VPlan-native path - return conservative
1338     // result until this changes.
1339     if (EnableVPlanNativePath)
1340       return CM_GatherScatter;
1341 
1342     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1343     auto Itr = WideningDecisions.find(InstOnVF);
1344     if (Itr == WideningDecisions.end())
1345       return CM_Unknown;
1346     return Itr->second.first;
1347   }
1348 
1349   /// Return the vectorization cost for the given instruction \p I and vector
1350   /// width \p VF.
1351   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1352     assert(VF.isVector() && "Expected VF >=2");
1353     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1354     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1355            "The cost is not calculated");
1356     return WideningDecisions[InstOnVF].second;
1357   }
1358 
1359   /// Return True if instruction \p I is an optimizable truncate whose operand
1360   /// is an induction variable. Such a truncate will be removed by adding a new
1361   /// induction variable with the destination type.
1362   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1363     // If the instruction is not a truncate, return false.
1364     auto *Trunc = dyn_cast<TruncInst>(I);
1365     if (!Trunc)
1366       return false;
1367 
1368     // Get the source and destination types of the truncate.
1369     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1370     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1371 
1372     // If the truncate is free for the given types, return false. Replacing a
1373     // free truncate with an induction variable would add an induction variable
1374     // update instruction to each iteration of the loop. We exclude from this
1375     // check the primary induction variable since it will need an update
1376     // instruction regardless.
1377     Value *Op = Trunc->getOperand(0);
1378     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1379       return false;
1380 
1381     // If the truncated value is not an induction variable, return false.
1382     return Legal->isInductionPhi(Op);
1383   }
1384 
1385   /// Collects the instructions to scalarize for each predicated instruction in
1386   /// the loop.
1387   void collectInstsToScalarize(ElementCount VF);
1388 
1389   /// Collect Uniform and Scalar values for the given \p VF.
1390   /// The sets depend on CM decision for Load/Store instructions
1391   /// that may be vectorized as interleave, gather-scatter or scalarized.
1392   void collectUniformsAndScalars(ElementCount VF) {
1393     // Do the analysis once.
1394     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1395       return;
1396     setCostBasedWideningDecision(VF);
1397     collectLoopUniforms(VF);
1398     collectLoopScalars(VF);
1399   }
1400 
1401   /// Returns true if the target machine supports masked store operation
1402   /// for the given \p DataType and kind of access to \p Ptr.
1403   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1404     return Legal->isConsecutivePtr(DataType, Ptr) &&
1405            TTI.isLegalMaskedStore(DataType, Alignment);
1406   }
1407 
1408   /// Returns true if the target machine supports masked load operation
1409   /// for the given \p DataType and kind of access to \p Ptr.
1410   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1411     return Legal->isConsecutivePtr(DataType, Ptr) &&
1412            TTI.isLegalMaskedLoad(DataType, Alignment);
1413   }
1414 
1415   /// Returns true if the target machine can represent \p V as a masked gather
1416   /// or scatter operation.
1417   bool isLegalGatherOrScatter(Value *V,
1418                               ElementCount VF = ElementCount::getFixed(1)) {
1419     bool LI = isa<LoadInst>(V);
1420     bool SI = isa<StoreInst>(V);
1421     if (!LI && !SI)
1422       return false;
1423     auto *Ty = getLoadStoreType(V);
1424     Align Align = getLoadStoreAlignment(V);
1425     if (VF.isVector())
1426       Ty = VectorType::get(Ty, VF);
1427     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1428            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1429   }
1430 
1431   /// Returns true if the target machine supports all of the reduction
1432   /// variables found for the given VF.
1433   bool canVectorizeReductions(ElementCount VF) const {
1434     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1435       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1436       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1437     }));
1438   }
1439 
1440   /// Returns true if \p I is an instruction that will be scalarized with
1441   /// predication when vectorizing \p I with vectorization factor \p VF. Such
1442   /// instructions include conditional stores and instructions that may divide
1443   /// by zero.
1444   bool isScalarWithPredication(Instruction *I, ElementCount VF) const;
1445 
1446   // Returns true if \p I is an instruction that will be predicated either
1447   // through scalar predication or masked load/store or masked gather/scatter.
1448   // \p VF is the vectorization factor that will be used to vectorize \p I.
1449   // Superset of instructions that return true for isScalarWithPredication.
1450   bool isPredicatedInst(Instruction *I, ElementCount VF,
1451                         bool IsKnownUniform = false) {
1452     // When we know the load is uniform and the original scalar loop was not
1453     // predicated we don't need to mark it as a predicated instruction. Any
1454     // vectorised blocks created when tail-folding are something artificial we
1455     // have introduced and we know there is always at least one active lane.
1456     // That's why we call Legal->blockNeedsPredication here because it doesn't
1457     // query tail-folding.
1458     if (IsKnownUniform && isa<LoadInst>(I) &&
1459         !Legal->blockNeedsPredication(I->getParent()))
1460       return false;
1461     if (!blockNeedsPredicationForAnyReason(I->getParent()))
1462       return false;
1463     // Loads and stores that need some form of masked operation are predicated
1464     // instructions.
1465     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1466       return Legal->isMaskRequired(I);
1467     return isScalarWithPredication(I, VF);
1468   }
1469 
1470   /// Returns true if \p I is a memory instruction with consecutive memory
1471   /// access that can be widened.
1472   bool
1473   memoryInstructionCanBeWidened(Instruction *I,
1474                                 ElementCount VF = ElementCount::getFixed(1));
1475 
1476   /// Returns true if \p I is a memory instruction in an interleaved-group
1477   /// of memory accesses that can be vectorized with wide vector loads/stores
1478   /// and shuffles.
1479   bool
1480   interleavedAccessCanBeWidened(Instruction *I,
1481                                 ElementCount VF = ElementCount::getFixed(1));
1482 
1483   /// Check if \p Instr belongs to any interleaved access group.
1484   bool isAccessInterleaved(Instruction *Instr) {
1485     return InterleaveInfo.isInterleaved(Instr);
1486   }
1487 
1488   /// Get the interleaved access group that \p Instr belongs to.
1489   const InterleaveGroup<Instruction> *
1490   getInterleavedAccessGroup(Instruction *Instr) {
1491     return InterleaveInfo.getInterleaveGroup(Instr);
1492   }
1493 
1494   /// Returns true if we're required to use a scalar epilogue for at least
1495   /// the final iteration of the original loop.
1496   bool requiresScalarEpilogue(ElementCount VF) const {
1497     if (!isScalarEpilogueAllowed())
1498       return false;
1499     // If we might exit from anywhere but the latch, must run the exiting
1500     // iteration in scalar form.
1501     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1502       return true;
1503     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1504   }
1505 
1506   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1507   /// loop hint annotation.
1508   bool isScalarEpilogueAllowed() const {
1509     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1510   }
1511 
1512   /// Returns true if all loop blocks should be masked to fold tail loop.
1513   bool foldTailByMasking() const { return FoldTailByMasking; }
1514 
1515   /// Returns true if were tail-folding and want to use the active lane mask
1516   /// for vector loop control flow.
1517   bool useActiveLaneMaskForControlFlow() const {
1518     return FoldTailByMasking &&
1519            TTI.emitGetActiveLaneMask() == PredicationStyle::DataAndControlFlow;
1520   }
1521 
1522   /// Returns true if the instructions in this block requires predication
1523   /// for any reason, e.g. because tail folding now requires a predicate
1524   /// or because the block in the original loop was predicated.
1525   bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
1526     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1527   }
1528 
1529   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1530   /// nodes to the chain of instructions representing the reductions. Uses a
1531   /// MapVector to ensure deterministic iteration order.
1532   using ReductionChainMap =
1533       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1534 
1535   /// Return the chain of instructions representing an inloop reduction.
1536   const ReductionChainMap &getInLoopReductionChains() const {
1537     return InLoopReductionChains;
1538   }
1539 
1540   /// Returns true if the Phi is part of an inloop reduction.
1541   bool isInLoopReduction(PHINode *Phi) const {
1542     return InLoopReductionChains.count(Phi);
1543   }
1544 
1545   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1546   /// with factor VF.  Return the cost of the instruction, including
1547   /// scalarization overhead if it's needed.
1548   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1549 
1550   /// Estimate cost of a call instruction CI if it were vectorized with factor
1551   /// VF. Return the cost of the instruction, including scalarization overhead
1552   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1553   /// scalarized -
1554   /// i.e. either vector version isn't available, or is too expensive.
1555   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1556                                     bool &NeedToScalarize) const;
1557 
1558   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1559   /// that of B.
1560   bool isMoreProfitable(const VectorizationFactor &A,
1561                         const VectorizationFactor &B) const;
1562 
1563   /// Invalidates decisions already taken by the cost model.
1564   void invalidateCostModelingDecisions() {
1565     WideningDecisions.clear();
1566     Uniforms.clear();
1567     Scalars.clear();
1568   }
1569 
1570   /// Convenience function that returns the value of vscale_range iff
1571   /// vscale_range.min == vscale_range.max or otherwise returns the value
1572   /// returned by the corresponding TLI method.
1573   Optional<unsigned> getVScaleForTuning() const;
1574 
1575 private:
1576   unsigned NumPredStores = 0;
1577 
1578   /// \return An upper bound for the vectorization factors for both
1579   /// fixed and scalable vectorization, where the minimum-known number of
1580   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1581   /// disabled or unsupported, then the scalable part will be equal to
1582   /// ElementCount::getScalable(0).
1583   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1584                                            ElementCount UserVF,
1585                                            bool FoldTailByMasking);
1586 
1587   /// \return the maximized element count based on the targets vector
1588   /// registers and the loop trip-count, but limited to a maximum safe VF.
1589   /// This is a helper function of computeFeasibleMaxVF.
1590   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1591                                        unsigned SmallestType,
1592                                        unsigned WidestType,
1593                                        ElementCount MaxSafeVF,
1594                                        bool FoldTailByMasking);
1595 
1596   /// \return the maximum legal scalable VF, based on the safe max number
1597   /// of elements.
1598   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1599 
1600   /// The vectorization cost is a combination of the cost itself and a boolean
1601   /// indicating whether any of the contributing operations will actually
1602   /// operate on vector values after type legalization in the backend. If this
1603   /// latter value is false, then all operations will be scalarized (i.e. no
1604   /// vectorization has actually taken place).
1605   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1606 
1607   /// Returns the expected execution cost. The unit of the cost does
1608   /// not matter because we use the 'cost' units to compare different
1609   /// vector widths. The cost that is returned is *not* normalized by
1610   /// the factor width. If \p Invalid is not nullptr, this function
1611   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1612   /// each instruction that has an Invalid cost for the given VF.
1613   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1614   VectorizationCostTy
1615   expectedCost(ElementCount VF,
1616                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1617 
1618   /// Returns the execution time cost of an instruction for a given vector
1619   /// width. Vector width of one means scalar.
1620   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1621 
1622   /// The cost-computation logic from getInstructionCost which provides
1623   /// the vector type as an output parameter.
1624   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1625                                      Type *&VectorTy);
1626 
1627   /// Return the cost of instructions in an inloop reduction pattern, if I is
1628   /// part of that pattern.
1629   Optional<InstructionCost>
1630   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1631                           TTI::TargetCostKind CostKind);
1632 
1633   /// Calculate vectorization cost of memory instruction \p I.
1634   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1635 
1636   /// The cost computation for scalarized memory instruction.
1637   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1638 
1639   /// The cost computation for interleaving group of memory instructions.
1640   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1641 
1642   /// The cost computation for Gather/Scatter instruction.
1643   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1644 
1645   /// The cost computation for widening instruction \p I with consecutive
1646   /// memory access.
1647   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1648 
1649   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1650   /// Load: scalar load + broadcast.
1651   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1652   /// element)
1653   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1654 
1655   /// Estimate the overhead of scalarizing an instruction. This is a
1656   /// convenience wrapper for the type-based getScalarizationOverhead API.
1657   InstructionCost getScalarizationOverhead(Instruction *I,
1658                                            ElementCount VF) const;
1659 
1660   /// Returns whether the instruction is a load or store and will be a emitted
1661   /// as a vector operation.
1662   bool isConsecutiveLoadOrStore(Instruction *I);
1663 
1664   /// Returns true if an artificially high cost for emulated masked memrefs
1665   /// should be used.
1666   bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1667 
1668   /// Map of scalar integer values to the smallest bitwidth they can be legally
1669   /// represented as. The vector equivalents of these values should be truncated
1670   /// to this type.
1671   MapVector<Instruction *, uint64_t> MinBWs;
1672 
1673   /// A type representing the costs for instructions if they were to be
1674   /// scalarized rather than vectorized. The entries are Instruction-Cost
1675   /// pairs.
1676   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1677 
1678   /// A set containing all BasicBlocks that are known to present after
1679   /// vectorization as a predicated block.
1680   DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1681       PredicatedBBsAfterVectorization;
1682 
1683   /// Records whether it is allowed to have the original scalar loop execute at
1684   /// least once. This may be needed as a fallback loop in case runtime
1685   /// aliasing/dependence checks fail, or to handle the tail/remainder
1686   /// iterations when the trip count is unknown or doesn't divide by the VF,
1687   /// or as a peel-loop to handle gaps in interleave-groups.
1688   /// Under optsize and when the trip count is very small we don't allow any
1689   /// iterations to execute in the scalar loop.
1690   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1691 
1692   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1693   bool FoldTailByMasking = false;
1694 
1695   /// A map holding scalar costs for different vectorization factors. The
1696   /// presence of a cost for an instruction in the mapping indicates that the
1697   /// instruction will be scalarized when vectorizing with the associated
1698   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1699   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1700 
1701   /// Holds the instructions known to be uniform after vectorization.
1702   /// The data is collected per VF.
1703   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1704 
1705   /// Holds the instructions known to be scalar after vectorization.
1706   /// The data is collected per VF.
1707   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1708 
1709   /// Holds the instructions (address computations) that are forced to be
1710   /// scalarized.
1711   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1712 
1713   /// PHINodes of the reductions that should be expanded in-loop along with
1714   /// their associated chains of reduction operations, in program order from top
1715   /// (PHI) to bottom
1716   ReductionChainMap InLoopReductionChains;
1717 
1718   /// A Map of inloop reduction operations and their immediate chain operand.
1719   /// FIXME: This can be removed once reductions can be costed correctly in
1720   /// vplan. This was added to allow quick lookup to the inloop operations,
1721   /// without having to loop through InLoopReductionChains.
1722   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1723 
1724   /// Returns the expected difference in cost from scalarizing the expression
1725   /// feeding a predicated instruction \p PredInst. The instructions to
1726   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1727   /// non-negative return value implies the expression will be scalarized.
1728   /// Currently, only single-use chains are considered for scalarization.
1729   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1730                               ElementCount VF);
1731 
1732   /// Collect the instructions that are uniform after vectorization. An
1733   /// instruction is uniform if we represent it with a single scalar value in
1734   /// the vectorized loop corresponding to each vector iteration. Examples of
1735   /// uniform instructions include pointer operands of consecutive or
1736   /// interleaved memory accesses. Note that although uniformity implies an
1737   /// instruction will be scalar, the reverse is not true. In general, a
1738   /// scalarized instruction will be represented by VF scalar values in the
1739   /// vectorized loop, each corresponding to an iteration of the original
1740   /// scalar loop.
1741   void collectLoopUniforms(ElementCount VF);
1742 
1743   /// Collect the instructions that are scalar after vectorization. An
1744   /// instruction is scalar if it is known to be uniform or will be scalarized
1745   /// during vectorization. collectLoopScalars should only add non-uniform nodes
1746   /// to the list if they are used by a load/store instruction that is marked as
1747   /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1748   /// VF values in the vectorized loop, each corresponding to an iteration of
1749   /// the original scalar loop.
1750   void collectLoopScalars(ElementCount VF);
1751 
1752   /// Keeps cost model vectorization decision and cost for instructions.
1753   /// Right now it is used for memory instructions only.
1754   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1755                                 std::pair<InstWidening, InstructionCost>>;
1756 
1757   DecisionList WideningDecisions;
1758 
1759   /// Returns true if \p V is expected to be vectorized and it needs to be
1760   /// extracted.
1761   bool needsExtract(Value *V, ElementCount VF) const {
1762     Instruction *I = dyn_cast<Instruction>(V);
1763     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1764         TheLoop->isLoopInvariant(I))
1765       return false;
1766 
1767     // Assume we can vectorize V (and hence we need extraction) if the
1768     // scalars are not computed yet. This can happen, because it is called
1769     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1770     // the scalars are collected. That should be a safe assumption in most
1771     // cases, because we check if the operands have vectorizable types
1772     // beforehand in LoopVectorizationLegality.
1773     return Scalars.find(VF) == Scalars.end() ||
1774            !isScalarAfterVectorization(I, VF);
1775   };
1776 
1777   /// Returns a range containing only operands needing to be extracted.
1778   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1779                                                    ElementCount VF) const {
1780     return SmallVector<Value *, 4>(make_filter_range(
1781         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1782   }
1783 
1784   /// Determines if we have the infrastructure to vectorize loop \p L and its
1785   /// epilogue, assuming the main loop is vectorized by \p VF.
1786   bool isCandidateForEpilogueVectorization(const Loop &L,
1787                                            const ElementCount VF) const;
1788 
1789   /// Returns true if epilogue vectorization is considered profitable, and
1790   /// false otherwise.
1791   /// \p VF is the vectorization factor chosen for the original loop.
1792   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1793 
1794 public:
1795   /// The loop that we evaluate.
1796   Loop *TheLoop;
1797 
1798   /// Predicated scalar evolution analysis.
1799   PredicatedScalarEvolution &PSE;
1800 
1801   /// Loop Info analysis.
1802   LoopInfo *LI;
1803 
1804   /// Vectorization legality.
1805   LoopVectorizationLegality *Legal;
1806 
1807   /// Vector target information.
1808   const TargetTransformInfo &TTI;
1809 
1810   /// Target Library Info.
1811   const TargetLibraryInfo *TLI;
1812 
1813   /// Demanded bits analysis.
1814   DemandedBits *DB;
1815 
1816   /// Assumption cache.
1817   AssumptionCache *AC;
1818 
1819   /// Interface to emit optimization remarks.
1820   OptimizationRemarkEmitter *ORE;
1821 
1822   const Function *TheFunction;
1823 
1824   /// Loop Vectorize Hint.
1825   const LoopVectorizeHints *Hints;
1826 
1827   /// The interleave access information contains groups of interleaved accesses
1828   /// with the same stride and close to each other.
1829   InterleavedAccessInfo &InterleaveInfo;
1830 
1831   /// Values to ignore in the cost model.
1832   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1833 
1834   /// Values to ignore in the cost model when VF > 1.
1835   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1836 
1837   /// All element types found in the loop.
1838   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1839 
1840   /// Profitable vector factors.
1841   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1842 };
1843 } // end namespace llvm
1844 
1845 /// Helper struct to manage generating runtime checks for vectorization.
1846 ///
1847 /// The runtime checks are created up-front in temporary blocks to allow better
1848 /// estimating the cost and un-linked from the existing IR. After deciding to
1849 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1850 /// temporary blocks are completely removed.
1851 class GeneratedRTChecks {
1852   /// Basic block which contains the generated SCEV checks, if any.
1853   BasicBlock *SCEVCheckBlock = nullptr;
1854 
1855   /// The value representing the result of the generated SCEV checks. If it is
1856   /// nullptr, either no SCEV checks have been generated or they have been used.
1857   Value *SCEVCheckCond = nullptr;
1858 
1859   /// Basic block which contains the generated memory runtime checks, if any.
1860   BasicBlock *MemCheckBlock = nullptr;
1861 
1862   /// The value representing the result of the generated memory runtime checks.
1863   /// If it is nullptr, either no memory runtime checks have been generated or
1864   /// they have been used.
1865   Value *MemRuntimeCheckCond = nullptr;
1866 
1867   DominatorTree *DT;
1868   LoopInfo *LI;
1869   TargetTransformInfo *TTI;
1870 
1871   SCEVExpander SCEVExp;
1872   SCEVExpander MemCheckExp;
1873 
1874   bool CostTooHigh = false;
1875 
1876 public:
1877   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1878                     TargetTransformInfo *TTI, const DataLayout &DL)
1879       : DT(DT), LI(LI), TTI(TTI), SCEVExp(SE, DL, "scev.check"),
1880         MemCheckExp(SE, DL, "scev.check") {}
1881 
1882   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1883   /// accurately estimate the cost of the runtime checks. The blocks are
1884   /// un-linked from the IR and is added back during vector code generation. If
1885   /// there is no vector code generation, the check blocks are removed
1886   /// completely.
1887   void Create(Loop *L, const LoopAccessInfo &LAI,
1888               const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) {
1889 
1890     // Hard cutoff to limit compile-time increase in case a very large number of
1891     // runtime checks needs to be generated.
1892     // TODO: Skip cutoff if the loop is guaranteed to execute, e.g. due to
1893     // profile info.
1894     CostTooHigh =
1895         LAI.getNumRuntimePointerChecks() > VectorizeMemoryCheckThreshold;
1896     if (CostTooHigh)
1897       return;
1898 
1899     BasicBlock *LoopHeader = L->getHeader();
1900     BasicBlock *Preheader = L->getLoopPreheader();
1901 
1902     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1903     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1904     // may be used by SCEVExpander. The blocks will be un-linked from their
1905     // predecessors and removed from LI & DT at the end of the function.
1906     if (!UnionPred.isAlwaysTrue()) {
1907       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1908                                   nullptr, "vector.scevcheck");
1909 
1910       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1911           &UnionPred, SCEVCheckBlock->getTerminator());
1912     }
1913 
1914     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1915     if (RtPtrChecking.Need) {
1916       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1917       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1918                                  "vector.memcheck");
1919 
1920       auto DiffChecks = RtPtrChecking.getDiffChecks();
1921       if (DiffChecks) {
1922         Value *RuntimeVF = nullptr;
1923         MemRuntimeCheckCond = addDiffRuntimeChecks(
1924             MemCheckBlock->getTerminator(), L, *DiffChecks, MemCheckExp,
1925             [VF, &RuntimeVF](IRBuilderBase &B, unsigned Bits) {
1926               if (!RuntimeVF)
1927                 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1928               return RuntimeVF;
1929             },
1930             IC);
1931       } else {
1932         MemRuntimeCheckCond =
1933             addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1934                              RtPtrChecking.getChecks(), MemCheckExp);
1935       }
1936       assert(MemRuntimeCheckCond &&
1937              "no RT checks generated although RtPtrChecking "
1938              "claimed checks are required");
1939     }
1940 
1941     if (!MemCheckBlock && !SCEVCheckBlock)
1942       return;
1943 
1944     // Unhook the temporary block with the checks, update various places
1945     // accordingly.
1946     if (SCEVCheckBlock)
1947       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1948     if (MemCheckBlock)
1949       MemCheckBlock->replaceAllUsesWith(Preheader);
1950 
1951     if (SCEVCheckBlock) {
1952       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1953       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1954       Preheader->getTerminator()->eraseFromParent();
1955     }
1956     if (MemCheckBlock) {
1957       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1958       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1959       Preheader->getTerminator()->eraseFromParent();
1960     }
1961 
1962     DT->changeImmediateDominator(LoopHeader, Preheader);
1963     if (MemCheckBlock) {
1964       DT->eraseNode(MemCheckBlock);
1965       LI->removeBlock(MemCheckBlock);
1966     }
1967     if (SCEVCheckBlock) {
1968       DT->eraseNode(SCEVCheckBlock);
1969       LI->removeBlock(SCEVCheckBlock);
1970     }
1971   }
1972 
1973   InstructionCost getCost() {
1974     if (SCEVCheckBlock || MemCheckBlock)
1975       LLVM_DEBUG(dbgs() << "Calculating cost of runtime checks:\n");
1976 
1977     if (CostTooHigh) {
1978       InstructionCost Cost;
1979       Cost.setInvalid();
1980       LLVM_DEBUG(dbgs() << "  number of checks exceeded threshold\n");
1981       return Cost;
1982     }
1983 
1984     InstructionCost RTCheckCost = 0;
1985     if (SCEVCheckBlock)
1986       for (Instruction &I : *SCEVCheckBlock) {
1987         if (SCEVCheckBlock->getTerminator() == &I)
1988           continue;
1989         InstructionCost C =
1990             TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput);
1991         LLVM_DEBUG(dbgs() << "  " << C << "  for " << I << "\n");
1992         RTCheckCost += C;
1993       }
1994     if (MemCheckBlock)
1995       for (Instruction &I : *MemCheckBlock) {
1996         if (MemCheckBlock->getTerminator() == &I)
1997           continue;
1998         InstructionCost C =
1999             TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput);
2000         LLVM_DEBUG(dbgs() << "  " << C << "  for " << I << "\n");
2001         RTCheckCost += C;
2002       }
2003 
2004     if (SCEVCheckBlock || MemCheckBlock)
2005       LLVM_DEBUG(dbgs() << "Total cost of runtime checks: " << RTCheckCost
2006                         << "\n");
2007 
2008     return RTCheckCost;
2009   }
2010 
2011   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2012   /// unused.
2013   ~GeneratedRTChecks() {
2014     SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2015     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2016     if (!SCEVCheckCond)
2017       SCEVCleaner.markResultUsed();
2018 
2019     if (!MemRuntimeCheckCond)
2020       MemCheckCleaner.markResultUsed();
2021 
2022     if (MemRuntimeCheckCond) {
2023       auto &SE = *MemCheckExp.getSE();
2024       // Memory runtime check generation creates compares that use expanded
2025       // values. Remove them before running the SCEVExpanderCleaners.
2026       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2027         if (MemCheckExp.isInsertedInstruction(&I))
2028           continue;
2029         SE.forgetValue(&I);
2030         I.eraseFromParent();
2031       }
2032     }
2033     MemCheckCleaner.cleanup();
2034     SCEVCleaner.cleanup();
2035 
2036     if (SCEVCheckCond)
2037       SCEVCheckBlock->eraseFromParent();
2038     if (MemRuntimeCheckCond)
2039       MemCheckBlock->eraseFromParent();
2040   }
2041 
2042   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2043   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2044   /// depending on the generated condition.
2045   BasicBlock *emitSCEVChecks(BasicBlock *Bypass,
2046                              BasicBlock *LoopVectorPreHeader,
2047                              BasicBlock *LoopExitBlock) {
2048     if (!SCEVCheckCond)
2049       return nullptr;
2050 
2051     Value *Cond = SCEVCheckCond;
2052     // Mark the check as used, to prevent it from being removed during cleanup.
2053     SCEVCheckCond = nullptr;
2054     if (auto *C = dyn_cast<ConstantInt>(Cond))
2055       if (C->isZero())
2056         return nullptr;
2057 
2058     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2059 
2060     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2061     // Create new preheader for vector loop.
2062     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2063       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2064 
2065     SCEVCheckBlock->getTerminator()->eraseFromParent();
2066     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2067     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2068                                                 SCEVCheckBlock);
2069 
2070     DT->addNewBlock(SCEVCheckBlock, Pred);
2071     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2072 
2073     ReplaceInstWithInst(SCEVCheckBlock->getTerminator(),
2074                         BranchInst::Create(Bypass, LoopVectorPreHeader, Cond));
2075     return SCEVCheckBlock;
2076   }
2077 
2078   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2079   /// the branches to branch to the vector preheader or \p Bypass, depending on
2080   /// the generated condition.
2081   BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass,
2082                                    BasicBlock *LoopVectorPreHeader) {
2083     // Check if we generated code that checks in runtime if arrays overlap.
2084     if (!MemRuntimeCheckCond)
2085       return nullptr;
2086 
2087     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2088     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2089                                                 MemCheckBlock);
2090 
2091     DT->addNewBlock(MemCheckBlock, Pred);
2092     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2093     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2094 
2095     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2096       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2097 
2098     ReplaceInstWithInst(
2099         MemCheckBlock->getTerminator(),
2100         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2101     MemCheckBlock->getTerminator()->setDebugLoc(
2102         Pred->getTerminator()->getDebugLoc());
2103 
2104     // Mark the check as used, to prevent it from being removed during cleanup.
2105     MemRuntimeCheckCond = nullptr;
2106     return MemCheckBlock;
2107   }
2108 };
2109 
2110 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2111 // vectorization. The loop needs to be annotated with #pragma omp simd
2112 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2113 // vector length information is not provided, vectorization is not considered
2114 // explicit. Interleave hints are not allowed either. These limitations will be
2115 // relaxed in the future.
2116 // Please, note that we are currently forced to abuse the pragma 'clang
2117 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2118 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2119 // provides *explicit vectorization hints* (LV can bypass legal checks and
2120 // assume that vectorization is legal). However, both hints are implemented
2121 // using the same metadata (llvm.loop.vectorize, processed by
2122 // LoopVectorizeHints). This will be fixed in the future when the native IR
2123 // representation for pragma 'omp simd' is introduced.
2124 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2125                                    OptimizationRemarkEmitter *ORE) {
2126   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2127   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2128 
2129   // Only outer loops with an explicit vectorization hint are supported.
2130   // Unannotated outer loops are ignored.
2131   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2132     return false;
2133 
2134   Function *Fn = OuterLp->getHeader()->getParent();
2135   if (!Hints.allowVectorization(Fn, OuterLp,
2136                                 true /*VectorizeOnlyWhenForced*/)) {
2137     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2138     return false;
2139   }
2140 
2141   if (Hints.getInterleave() > 1) {
2142     // TODO: Interleave support is future work.
2143     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2144                          "outer loops.\n");
2145     Hints.emitRemarkWithHints();
2146     return false;
2147   }
2148 
2149   return true;
2150 }
2151 
2152 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2153                                   OptimizationRemarkEmitter *ORE,
2154                                   SmallVectorImpl<Loop *> &V) {
2155   // Collect inner loops and outer loops without irreducible control flow. For
2156   // now, only collect outer loops that have explicit vectorization hints. If we
2157   // are stress testing the VPlan H-CFG construction, we collect the outermost
2158   // loop of every loop nest.
2159   if (L.isInnermost() || VPlanBuildStressTest ||
2160       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2161     LoopBlocksRPO RPOT(&L);
2162     RPOT.perform(LI);
2163     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2164       V.push_back(&L);
2165       // TODO: Collect inner loops inside marked outer loops in case
2166       // vectorization fails for the outer loop. Do not invoke
2167       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2168       // already known to be reducible. We can use an inherited attribute for
2169       // that.
2170       return;
2171     }
2172   }
2173   for (Loop *InnerL : L)
2174     collectSupportedLoops(*InnerL, LI, ORE, V);
2175 }
2176 
2177 namespace {
2178 
2179 /// The LoopVectorize Pass.
2180 struct LoopVectorize : public FunctionPass {
2181   /// Pass identification, replacement for typeid
2182   static char ID;
2183 
2184   LoopVectorizePass Impl;
2185 
2186   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2187                          bool VectorizeOnlyWhenForced = false)
2188       : FunctionPass(ID),
2189         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2190     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2191   }
2192 
2193   bool runOnFunction(Function &F) override {
2194     if (skipFunction(F))
2195       return false;
2196 
2197     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2198     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2199     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2200     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2201     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2202     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2203     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2204     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2205     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2206     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2207     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2208     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2209     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2210 
2211     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2212         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2213 
2214     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2215                         GetLAA, *ORE, PSI).MadeAnyChange;
2216   }
2217 
2218   void getAnalysisUsage(AnalysisUsage &AU) const override {
2219     AU.addRequired<AssumptionCacheTracker>();
2220     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2221     AU.addRequired<DominatorTreeWrapperPass>();
2222     AU.addRequired<LoopInfoWrapperPass>();
2223     AU.addRequired<ScalarEvolutionWrapperPass>();
2224     AU.addRequired<TargetTransformInfoWrapperPass>();
2225     AU.addRequired<AAResultsWrapperPass>();
2226     AU.addRequired<LoopAccessLegacyAnalysis>();
2227     AU.addRequired<DemandedBitsWrapperPass>();
2228     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2229     AU.addRequired<InjectTLIMappingsLegacy>();
2230 
2231     // We currently do not preserve loopinfo/dominator analyses with outer loop
2232     // vectorization. Until this is addressed, mark these analyses as preserved
2233     // only for non-VPlan-native path.
2234     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2235     if (!EnableVPlanNativePath) {
2236       AU.addPreserved<LoopInfoWrapperPass>();
2237       AU.addPreserved<DominatorTreeWrapperPass>();
2238     }
2239 
2240     AU.addPreserved<BasicAAWrapperPass>();
2241     AU.addPreserved<GlobalsAAWrapperPass>();
2242     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2243   }
2244 };
2245 
2246 } // end anonymous namespace
2247 
2248 //===----------------------------------------------------------------------===//
2249 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2250 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2251 //===----------------------------------------------------------------------===//
2252 
2253 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2254   // We need to place the broadcast of invariant variables outside the loop,
2255   // but only if it's proven safe to do so. Else, broadcast will be inside
2256   // vector loop body.
2257   Instruction *Instr = dyn_cast<Instruction>(V);
2258   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2259                      (!Instr ||
2260                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2261   // Place the code for broadcasting invariant variables in the new preheader.
2262   IRBuilder<>::InsertPointGuard Guard(Builder);
2263   if (SafeToHoist)
2264     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2265 
2266   // Broadcast the scalar into all locations in the vector.
2267   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2268 
2269   return Shuf;
2270 }
2271 
2272 /// This function adds
2273 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
2274 /// to each vector element of Val. The sequence starts at StartIndex.
2275 /// \p Opcode is relevant for FP induction variable.
2276 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step,
2277                             Instruction::BinaryOps BinOp, ElementCount VF,
2278                             IRBuilderBase &Builder) {
2279   assert(VF.isVector() && "only vector VFs are supported");
2280 
2281   // Create and check the types.
2282   auto *ValVTy = cast<VectorType>(Val->getType());
2283   ElementCount VLen = ValVTy->getElementCount();
2284 
2285   Type *STy = Val->getType()->getScalarType();
2286   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2287          "Induction Step must be an integer or FP");
2288   assert(Step->getType() == STy && "Step has wrong type");
2289 
2290   SmallVector<Constant *, 8> Indices;
2291 
2292   // Create a vector of consecutive numbers from zero to VF.
2293   VectorType *InitVecValVTy = ValVTy;
2294   if (STy->isFloatingPointTy()) {
2295     Type *InitVecValSTy =
2296         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2297     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2298   }
2299   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2300 
2301   // Splat the StartIdx
2302   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2303 
2304   if (STy->isIntegerTy()) {
2305     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2306     Step = Builder.CreateVectorSplat(VLen, Step);
2307     assert(Step->getType() == Val->getType() && "Invalid step vec");
2308     // FIXME: The newly created binary instructions should contain nsw/nuw
2309     // flags, which can be found from the original scalar operations.
2310     Step = Builder.CreateMul(InitVec, Step);
2311     return Builder.CreateAdd(Val, Step, "induction");
2312   }
2313 
2314   // Floating point induction.
2315   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2316          "Binary Opcode should be specified for FP induction");
2317   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2318   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2319 
2320   Step = Builder.CreateVectorSplat(VLen, Step);
2321   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2322   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2323 }
2324 
2325 /// Compute scalar induction steps. \p ScalarIV is the scalar induction
2326 /// variable on which to base the steps, \p Step is the size of the step.
2327 static void buildScalarSteps(Value *ScalarIV, Value *Step,
2328                              const InductionDescriptor &ID, VPValue *Def,
2329                              VPTransformState &State) {
2330   IRBuilderBase &Builder = State.Builder;
2331   // We shouldn't have to build scalar steps if we aren't vectorizing.
2332   assert(State.VF.isVector() && "VF should be greater than one");
2333   // Get the value type and ensure it and the step have the same integer type.
2334   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2335   assert(ScalarIVTy == Step->getType() &&
2336          "Val and Step should have the same type");
2337 
2338   // We build scalar steps for both integer and floating-point induction
2339   // variables. Here, we determine the kind of arithmetic we will perform.
2340   Instruction::BinaryOps AddOp;
2341   Instruction::BinaryOps MulOp;
2342   if (ScalarIVTy->isIntegerTy()) {
2343     AddOp = Instruction::Add;
2344     MulOp = Instruction::Mul;
2345   } else {
2346     AddOp = ID.getInductionOpcode();
2347     MulOp = Instruction::FMul;
2348   }
2349 
2350   // Determine the number of scalars we need to generate for each unroll
2351   // iteration.
2352   bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def);
2353   unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2354   // Compute the scalar steps and save the results in State.
2355   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2356                                      ScalarIVTy->getScalarSizeInBits());
2357   Type *VecIVTy = nullptr;
2358   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2359   if (!FirstLaneOnly && State.VF.isScalable()) {
2360     VecIVTy = VectorType::get(ScalarIVTy, State.VF);
2361     UnitStepVec =
2362         Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
2363     SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2364     SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV);
2365   }
2366 
2367   for (unsigned Part = 0; Part < State.UF; ++Part) {
2368     Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part);
2369 
2370     if (!FirstLaneOnly && State.VF.isScalable()) {
2371       auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2372       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2373       if (ScalarIVTy->isFloatingPointTy())
2374         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2375       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2376       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2377       State.set(Def, Add, Part);
2378       // It's useful to record the lane values too for the known minimum number
2379       // of elements so we do those below. This improves the code quality when
2380       // trying to extract the first element, for example.
2381     }
2382 
2383     if (ScalarIVTy->isFloatingPointTy())
2384       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2385 
2386     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2387       Value *StartIdx = Builder.CreateBinOp(
2388           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2389       // The step returned by `createStepForVF` is a runtime-evaluated value
2390       // when VF is scalable. Otherwise, it should be folded into a Constant.
2391       assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
2392              "Expected StartIdx to be folded to a constant when VF is not "
2393              "scalable");
2394       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2395       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2396       State.set(Def, Add, VPIteration(Part, Lane));
2397     }
2398   }
2399 }
2400 
2401 // Generate code for the induction step. Note that induction steps are
2402 // required to be loop-invariant
2403 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE,
2404                               Instruction *InsertBefore,
2405                               Loop *OrigLoop = nullptr) {
2406   const DataLayout &DL = SE.getDataLayout();
2407   assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) &&
2408          "Induction step should be loop invariant");
2409   if (auto *E = dyn_cast<SCEVUnknown>(Step))
2410     return E->getValue();
2411 
2412   SCEVExpander Exp(SE, DL, "induction");
2413   return Exp.expandCodeFor(Step, Step->getType(), InsertBefore);
2414 }
2415 
2416 /// Compute the transformed value of Index at offset StartValue using step
2417 /// StepValue.
2418 /// For integer induction, returns StartValue + Index * StepValue.
2419 /// For pointer induction, returns StartValue[Index * StepValue].
2420 /// FIXME: The newly created binary instructions should contain nsw/nuw
2421 /// flags, which can be found from the original scalar operations.
2422 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index,
2423                                    Value *StartValue, Value *Step,
2424                                    const InductionDescriptor &ID) {
2425   assert(Index->getType()->getScalarType() == Step->getType() &&
2426          "Index scalar type does not match StepValue type");
2427 
2428   // Note: the IR at this point is broken. We cannot use SE to create any new
2429   // SCEV and then expand it, hoping that SCEV's simplification will give us
2430   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2431   // lead to various SCEV crashes. So all we can do is to use builder and rely
2432   // on InstCombine for future simplifications. Here we handle some trivial
2433   // cases only.
2434   auto CreateAdd = [&B](Value *X, Value *Y) {
2435     assert(X->getType() == Y->getType() && "Types don't match!");
2436     if (auto *CX = dyn_cast<ConstantInt>(X))
2437       if (CX->isZero())
2438         return Y;
2439     if (auto *CY = dyn_cast<ConstantInt>(Y))
2440       if (CY->isZero())
2441         return X;
2442     return B.CreateAdd(X, Y);
2443   };
2444 
2445   // We allow X to be a vector type, in which case Y will potentially be
2446   // splatted into a vector with the same element count.
2447   auto CreateMul = [&B](Value *X, Value *Y) {
2448     assert(X->getType()->getScalarType() == Y->getType() &&
2449            "Types don't match!");
2450     if (auto *CX = dyn_cast<ConstantInt>(X))
2451       if (CX->isOne())
2452         return Y;
2453     if (auto *CY = dyn_cast<ConstantInt>(Y))
2454       if (CY->isOne())
2455         return X;
2456     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
2457     if (XVTy && !isa<VectorType>(Y->getType()))
2458       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
2459     return B.CreateMul(X, Y);
2460   };
2461 
2462   switch (ID.getKind()) {
2463   case InductionDescriptor::IK_IntInduction: {
2464     assert(!isa<VectorType>(Index->getType()) &&
2465            "Vector indices not supported for integer inductions yet");
2466     assert(Index->getType() == StartValue->getType() &&
2467            "Index type does not match StartValue type");
2468     if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2469       return B.CreateSub(StartValue, Index);
2470     auto *Offset = CreateMul(Index, Step);
2471     return CreateAdd(StartValue, Offset);
2472   }
2473   case InductionDescriptor::IK_PtrInduction: {
2474     assert(isa<Constant>(Step) &&
2475            "Expected constant step for pointer induction");
2476     return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step));
2477   }
2478   case InductionDescriptor::IK_FpInduction: {
2479     assert(!isa<VectorType>(Index->getType()) &&
2480            "Vector indices not supported for FP inductions yet");
2481     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2482     auto InductionBinOp = ID.getInductionBinOp();
2483     assert(InductionBinOp &&
2484            (InductionBinOp->getOpcode() == Instruction::FAdd ||
2485             InductionBinOp->getOpcode() == Instruction::FSub) &&
2486            "Original bin op should be defined for FP induction");
2487 
2488     Value *MulExp = B.CreateFMul(Step, Index);
2489     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2490                          "induction");
2491   }
2492   case InductionDescriptor::IK_NoInduction:
2493     return nullptr;
2494   }
2495   llvm_unreachable("invalid enum");
2496 }
2497 
2498 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2499                                                     const VPIteration &Instance,
2500                                                     VPTransformState &State) {
2501   Value *ScalarInst = State.get(Def, Instance);
2502   Value *VectorValue = State.get(Def, Instance.Part);
2503   VectorValue = Builder.CreateInsertElement(
2504       VectorValue, ScalarInst,
2505       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2506   State.set(Def, VectorValue, Instance.Part);
2507 }
2508 
2509 // Return whether we allow using masked interleave-groups (for dealing with
2510 // strided loads/stores that reside in predicated blocks, or for dealing
2511 // with gaps).
2512 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2513   // If an override option has been passed in for interleaved accesses, use it.
2514   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2515     return EnableMaskedInterleavedMemAccesses;
2516 
2517   return TTI.enableMaskedInterleavedAccessVectorization();
2518 }
2519 
2520 // Try to vectorize the interleave group that \p Instr belongs to.
2521 //
2522 // E.g. Translate following interleaved load group (factor = 3):
2523 //   for (i = 0; i < N; i+=3) {
2524 //     R = Pic[i];             // Member of index 0
2525 //     G = Pic[i+1];           // Member of index 1
2526 //     B = Pic[i+2];           // Member of index 2
2527 //     ... // do something to R, G, B
2528 //   }
2529 // To:
2530 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2531 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2532 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2533 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2534 //
2535 // Or translate following interleaved store group (factor = 3):
2536 //   for (i = 0; i < N; i+=3) {
2537 //     ... do something to R, G, B
2538 //     Pic[i]   = R;           // Member of index 0
2539 //     Pic[i+1] = G;           // Member of index 1
2540 //     Pic[i+2] = B;           // Member of index 2
2541 //   }
2542 // To:
2543 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2544 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2545 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2546 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2547 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2548 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2549     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2550     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2551     VPValue *BlockInMask) {
2552   Instruction *Instr = Group->getInsertPos();
2553   const DataLayout &DL = Instr->getModule()->getDataLayout();
2554 
2555   // Prepare for the vector type of the interleaved load/store.
2556   Type *ScalarTy = getLoadStoreType(Instr);
2557   unsigned InterleaveFactor = Group->getFactor();
2558   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2559   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2560 
2561   // Prepare for the new pointers.
2562   SmallVector<Value *, 2> AddrParts;
2563   unsigned Index = Group->getIndex(Instr);
2564 
2565   // TODO: extend the masked interleaved-group support to reversed access.
2566   assert((!BlockInMask || !Group->isReverse()) &&
2567          "Reversed masked interleave-group not supported.");
2568 
2569   // If the group is reverse, adjust the index to refer to the last vector lane
2570   // instead of the first. We adjust the index from the first vector lane,
2571   // rather than directly getting the pointer for lane VF - 1, because the
2572   // pointer operand of the interleaved access is supposed to be uniform. For
2573   // uniform instructions, we're only required to generate a value for the
2574   // first vector lane in each unroll iteration.
2575   if (Group->isReverse())
2576     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2577 
2578   for (unsigned Part = 0; Part < UF; Part++) {
2579     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2580     State.setDebugLocFromInst(AddrPart);
2581 
2582     // Notice current instruction could be any index. Need to adjust the address
2583     // to the member of index 0.
2584     //
2585     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2586     //       b = A[i];       // Member of index 0
2587     // Current pointer is pointed to A[i+1], adjust it to A[i].
2588     //
2589     // E.g.  A[i+1] = a;     // Member of index 1
2590     //       A[i]   = b;     // Member of index 0
2591     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2592     // Current pointer is pointed to A[i+2], adjust it to A[i].
2593 
2594     bool InBounds = false;
2595     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2596       InBounds = gep->isInBounds();
2597     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2598     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2599 
2600     // Cast to the vector pointer type.
2601     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2602     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2603     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2604   }
2605 
2606   State.setDebugLocFromInst(Instr);
2607   Value *PoisonVec = PoisonValue::get(VecTy);
2608 
2609   Value *MaskForGaps = nullptr;
2610   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2611     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2612     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2613   }
2614 
2615   // Vectorize the interleaved load group.
2616   if (isa<LoadInst>(Instr)) {
2617     // For each unroll part, create a wide load for the group.
2618     SmallVector<Value *, 2> NewLoads;
2619     for (unsigned Part = 0; Part < UF; Part++) {
2620       Instruction *NewLoad;
2621       if (BlockInMask || MaskForGaps) {
2622         assert(useMaskedInterleavedAccesses(*TTI) &&
2623                "masked interleaved groups are not allowed.");
2624         Value *GroupMask = MaskForGaps;
2625         if (BlockInMask) {
2626           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2627           Value *ShuffledMask = Builder.CreateShuffleVector(
2628               BlockInMaskPart,
2629               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2630               "interleaved.mask");
2631           GroupMask = MaskForGaps
2632                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2633                                                 MaskForGaps)
2634                           : ShuffledMask;
2635         }
2636         NewLoad =
2637             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2638                                      GroupMask, PoisonVec, "wide.masked.vec");
2639       }
2640       else
2641         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2642                                             Group->getAlign(), "wide.vec");
2643       Group->addMetadata(NewLoad);
2644       NewLoads.push_back(NewLoad);
2645     }
2646 
2647     // For each member in the group, shuffle out the appropriate data from the
2648     // wide loads.
2649     unsigned J = 0;
2650     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2651       Instruction *Member = Group->getMember(I);
2652 
2653       // Skip the gaps in the group.
2654       if (!Member)
2655         continue;
2656 
2657       auto StrideMask =
2658           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2659       for (unsigned Part = 0; Part < UF; Part++) {
2660         Value *StridedVec = Builder.CreateShuffleVector(
2661             NewLoads[Part], StrideMask, "strided.vec");
2662 
2663         // If this member has different type, cast the result type.
2664         if (Member->getType() != ScalarTy) {
2665           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2666           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2667           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2668         }
2669 
2670         if (Group->isReverse())
2671           StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse");
2672 
2673         State.set(VPDefs[J], StridedVec, Part);
2674       }
2675       ++J;
2676     }
2677     return;
2678   }
2679 
2680   // The sub vector type for current instruction.
2681   auto *SubVT = VectorType::get(ScalarTy, VF);
2682 
2683   // Vectorize the interleaved store group.
2684   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2685   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2686          "masked interleaved groups are not allowed.");
2687   assert((!MaskForGaps || !VF.isScalable()) &&
2688          "masking gaps for scalable vectors is not yet supported.");
2689   for (unsigned Part = 0; Part < UF; Part++) {
2690     // Collect the stored vector from each member.
2691     SmallVector<Value *, 4> StoredVecs;
2692     for (unsigned i = 0; i < InterleaveFactor; i++) {
2693       assert((Group->getMember(i) || MaskForGaps) &&
2694              "Fail to get a member from an interleaved store group");
2695       Instruction *Member = Group->getMember(i);
2696 
2697       // Skip the gaps in the group.
2698       if (!Member) {
2699         Value *Undef = PoisonValue::get(SubVT);
2700         StoredVecs.push_back(Undef);
2701         continue;
2702       }
2703 
2704       Value *StoredVec = State.get(StoredValues[i], Part);
2705 
2706       if (Group->isReverse())
2707         StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse");
2708 
2709       // If this member has different type, cast it to a unified type.
2710 
2711       if (StoredVec->getType() != SubVT)
2712         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2713 
2714       StoredVecs.push_back(StoredVec);
2715     }
2716 
2717     // Concatenate all vectors into a wide vector.
2718     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2719 
2720     // Interleave the elements in the wide vector.
2721     Value *IVec = Builder.CreateShuffleVector(
2722         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2723         "interleaved.vec");
2724 
2725     Instruction *NewStoreInstr;
2726     if (BlockInMask || MaskForGaps) {
2727       Value *GroupMask = MaskForGaps;
2728       if (BlockInMask) {
2729         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2730         Value *ShuffledMask = Builder.CreateShuffleVector(
2731             BlockInMaskPart,
2732             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2733             "interleaved.mask");
2734         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2735                                                       ShuffledMask, MaskForGaps)
2736                                 : ShuffledMask;
2737       }
2738       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2739                                                 Group->getAlign(), GroupMask);
2740     } else
2741       NewStoreInstr =
2742           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2743 
2744     Group->addMetadata(NewStoreInstr);
2745   }
2746 }
2747 
2748 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2749                                                VPReplicateRecipe *RepRecipe,
2750                                                const VPIteration &Instance,
2751                                                bool IfPredicateInstr,
2752                                                VPTransformState &State) {
2753   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2754 
2755   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
2756   // the first lane and part.
2757   if (isa<NoAliasScopeDeclInst>(Instr))
2758     if (!Instance.isFirstIteration())
2759       return;
2760 
2761   // Does this instruction return a value ?
2762   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2763 
2764   Instruction *Cloned = Instr->clone();
2765   if (!IsVoidRetTy)
2766     Cloned->setName(Instr->getName() + ".cloned");
2767 
2768   // If the scalarized instruction contributes to the address computation of a
2769   // widen masked load/store which was in a basic block that needed predication
2770   // and is not predicated after vectorization, we can't propagate
2771   // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized
2772   // instruction could feed a poison value to the base address of the widen
2773   // load/store.
2774   if (State.MayGeneratePoisonRecipes.contains(RepRecipe))
2775     Cloned->dropPoisonGeneratingFlags();
2776 
2777   if (Instr->getDebugLoc())
2778     State.setDebugLocFromInst(Instr);
2779 
2780   // Replace the operands of the cloned instructions with their scalar
2781   // equivalents in the new loop.
2782   for (auto &I : enumerate(RepRecipe->operands())) {
2783     auto InputInstance = Instance;
2784     VPValue *Operand = I.value();
2785     VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand);
2786     if (OperandR && OperandR->isUniform())
2787       InputInstance.Lane = VPLane::getFirstLane();
2788     Cloned->setOperand(I.index(), State.get(Operand, InputInstance));
2789   }
2790   State.addNewMetadata(Cloned, Instr);
2791 
2792   // Place the cloned scalar in the new loop.
2793   State.Builder.Insert(Cloned);
2794 
2795   State.set(RepRecipe, Cloned, Instance);
2796 
2797   // If we just cloned a new assumption, add it the assumption cache.
2798   if (auto *II = dyn_cast<AssumeInst>(Cloned))
2799     AC->registerAssumption(II);
2800 
2801   // End if-block.
2802   if (IfPredicateInstr)
2803     PredicatedInstructions.push_back(Cloned);
2804 }
2805 
2806 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) {
2807   if (TripCount)
2808     return TripCount;
2809 
2810   assert(InsertBlock);
2811   IRBuilder<> Builder(InsertBlock->getTerminator());
2812   // Find the loop boundaries.
2813   ScalarEvolution *SE = PSE.getSE();
2814   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2815   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
2816          "Invalid loop count");
2817 
2818   Type *IdxTy = Legal->getWidestInductionType();
2819   assert(IdxTy && "No type for induction");
2820 
2821   // The exit count might have the type of i64 while the phi is i32. This can
2822   // happen if we have an induction variable that is sign extended before the
2823   // compare. The only way that we get a backedge taken count is that the
2824   // induction variable was signed and as such will not overflow. In such a case
2825   // truncation is legal.
2826   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
2827       IdxTy->getPrimitiveSizeInBits())
2828     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2829   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2830 
2831   // Get the total trip count from the count by adding 1.
2832   const SCEV *ExitCount = SE->getAddExpr(
2833       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2834 
2835   const DataLayout &DL = InsertBlock->getModule()->getDataLayout();
2836 
2837   // Expand the trip count and place the new instructions in the preheader.
2838   // Notice that the pre-header does not change, only the loop body.
2839   SCEVExpander Exp(*SE, DL, "induction");
2840 
2841   // Count holds the overall loop count (N).
2842   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2843                                 InsertBlock->getTerminator());
2844 
2845   if (TripCount->getType()->isPointerTy())
2846     TripCount =
2847         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
2848                                     InsertBlock->getTerminator());
2849 
2850   return TripCount;
2851 }
2852 
2853 Value *
2854 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) {
2855   if (VectorTripCount)
2856     return VectorTripCount;
2857 
2858   Value *TC = getOrCreateTripCount(InsertBlock);
2859   IRBuilder<> Builder(InsertBlock->getTerminator());
2860 
2861   Type *Ty = TC->getType();
2862   // This is where we can make the step a runtime constant.
2863   Value *Step = createStepForVF(Builder, Ty, VF, UF);
2864 
2865   // If the tail is to be folded by masking, round the number of iterations N
2866   // up to a multiple of Step instead of rounding down. This is done by first
2867   // adding Step-1 and then rounding down. Note that it's ok if this addition
2868   // overflows: the vector induction variable will eventually wrap to zero given
2869   // that it starts at zero and its Step is a power of two; the loop will then
2870   // exit, with the last early-exit vector comparison also producing all-true.
2871   // For scalable vectors the VF is not guaranteed to be a power of 2, but this
2872   // is accounted for in emitIterationCountCheck that adds an overflow check.
2873   if (Cost->foldTailByMasking()) {
2874     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
2875            "VF*UF must be a power of 2 when folding tail by masking");
2876     Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF);
2877     TC = Builder.CreateAdd(
2878         TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up");
2879   }
2880 
2881   // Now we need to generate the expression for the part of the loop that the
2882   // vectorized body will execute. This is equal to N - (N % Step) if scalar
2883   // iterations are not required for correctness, or N - Step, otherwise. Step
2884   // is equal to the vectorization factor (number of SIMD elements) times the
2885   // unroll factor (number of SIMD instructions).
2886   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2887 
2888   // There are cases where we *must* run at least one iteration in the remainder
2889   // loop.  See the cost model for when this can happen.  If the step evenly
2890   // divides the trip count, we set the remainder to be equal to the step. If
2891   // the step does not evenly divide the trip count, no adjustment is necessary
2892   // since there will already be scalar iterations. Note that the minimum
2893   // iterations check ensures that N >= Step.
2894   if (Cost->requiresScalarEpilogue(VF)) {
2895     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
2896     R = Builder.CreateSelect(IsZero, Step, R);
2897   }
2898 
2899   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2900 
2901   return VectorTripCount;
2902 }
2903 
2904 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
2905                                                    const DataLayout &DL) {
2906   // Verify that V is a vector type with same number of elements as DstVTy.
2907   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
2908   unsigned VF = DstFVTy->getNumElements();
2909   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
2910   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
2911   Type *SrcElemTy = SrcVecTy->getElementType();
2912   Type *DstElemTy = DstFVTy->getElementType();
2913   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
2914          "Vector elements must have same size");
2915 
2916   // Do a direct cast if element types are castable.
2917   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
2918     return Builder.CreateBitOrPointerCast(V, DstFVTy);
2919   }
2920   // V cannot be directly casted to desired vector type.
2921   // May happen when V is a floating point vector but DstVTy is a vector of
2922   // pointers or vice-versa. Handle this using a two-step bitcast using an
2923   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
2924   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
2925          "Only one type should be a pointer type");
2926   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
2927          "Only one type should be a floating point type");
2928   Type *IntTy =
2929       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
2930   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
2931   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
2932   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
2933 }
2934 
2935 void InnerLoopVectorizer::emitIterationCountCheck(BasicBlock *Bypass) {
2936   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
2937   // Reuse existing vector loop preheader for TC checks.
2938   // Note that new preheader block is generated for vector loop.
2939   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
2940   IRBuilder<> Builder(TCCheckBlock->getTerminator());
2941 
2942   // Generate code to check if the loop's trip count is less than VF * UF, or
2943   // equal to it in case a scalar epilogue is required; this implies that the
2944   // vector trip count is zero. This check also covers the case where adding one
2945   // to the backedge-taken count overflowed leading to an incorrect trip count
2946   // of zero. In this case we will also jump to the scalar loop.
2947   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
2948                                             : ICmpInst::ICMP_ULT;
2949 
2950   // If tail is to be folded, vector loop takes care of all iterations.
2951   Type *CountTy = Count->getType();
2952   Value *CheckMinIters = Builder.getFalse();
2953   auto CreateStep = [&]() -> Value * {
2954     // Create step with max(MinProTripCount, UF * VF).
2955     if (UF * VF.getKnownMinValue() >= MinProfitableTripCount.getKnownMinValue())
2956       return createStepForVF(Builder, CountTy, VF, UF);
2957 
2958     Value *MinProfTC =
2959         createStepForVF(Builder, CountTy, MinProfitableTripCount, 1);
2960     if (!VF.isScalable())
2961       return MinProfTC;
2962     return Builder.CreateBinaryIntrinsic(
2963         Intrinsic::umax, MinProfTC, createStepForVF(Builder, CountTy, VF, UF));
2964   };
2965 
2966   if (!Cost->foldTailByMasking())
2967     CheckMinIters =
2968         Builder.CreateICmp(P, Count, CreateStep(), "min.iters.check");
2969   else if (VF.isScalable()) {
2970     // vscale is not necessarily a power-of-2, which means we cannot guarantee
2971     // an overflow to zero when updating induction variables and so an
2972     // additional overflow check is required before entering the vector loop.
2973 
2974     // Get the maximum unsigned value for the type.
2975     Value *MaxUIntTripCount =
2976         ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask());
2977     Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count);
2978 
2979     // Don't execute the vector loop if (UMax - n) < (VF * UF).
2980     CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, CreateStep());
2981   }
2982 
2983   // Create new preheader for vector loop.
2984   LoopVectorPreHeader =
2985       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
2986                  "vector.ph");
2987 
2988   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
2989                                DT->getNode(Bypass)->getIDom()) &&
2990          "TC check is expected to dominate Bypass");
2991 
2992   // Update dominator for Bypass & LoopExit (if needed).
2993   DT->changeImmediateDominator(Bypass, TCCheckBlock);
2994   if (!Cost->requiresScalarEpilogue(VF))
2995     // If there is an epilogue which must run, there's no edge from the
2996     // middle block to exit blocks  and thus no need to update the immediate
2997     // dominator of the exit blocks.
2998     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
2999 
3000   ReplaceInstWithInst(
3001       TCCheckBlock->getTerminator(),
3002       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3003   LoopBypassBlocks.push_back(TCCheckBlock);
3004 }
3005 
3006 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) {
3007   BasicBlock *const SCEVCheckBlock =
3008       RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock);
3009   if (!SCEVCheckBlock)
3010     return nullptr;
3011 
3012   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3013            (OptForSizeBasedOnProfile &&
3014             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3015          "Cannot SCEV check stride or overflow when optimizing for size");
3016 
3017 
3018   // Update dominator only if this is first RT check.
3019   if (LoopBypassBlocks.empty()) {
3020     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3021     if (!Cost->requiresScalarEpilogue(VF))
3022       // If there is an epilogue which must run, there's no edge from the
3023       // middle block to exit blocks  and thus no need to update the immediate
3024       // dominator of the exit blocks.
3025       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3026   }
3027 
3028   LoopBypassBlocks.push_back(SCEVCheckBlock);
3029   AddedSafetyChecks = true;
3030   return SCEVCheckBlock;
3031 }
3032 
3033 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) {
3034   // VPlan-native path does not do any analysis for runtime checks currently.
3035   if (EnableVPlanNativePath)
3036     return nullptr;
3037 
3038   BasicBlock *const MemCheckBlock =
3039       RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader);
3040 
3041   // Check if we generated code that checks in runtime if arrays overlap. We put
3042   // the checks into a separate block to make the more common case of few
3043   // elements faster.
3044   if (!MemCheckBlock)
3045     return nullptr;
3046 
3047   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3048     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3049            "Cannot emit memory checks when optimizing for size, unless forced "
3050            "to vectorize.");
3051     ORE->emit([&]() {
3052       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3053                                         OrigLoop->getStartLoc(),
3054                                         OrigLoop->getHeader())
3055              << "Code-size may be reduced by not forcing "
3056                 "vectorization, or by source-code modifications "
3057                 "eliminating the need for runtime checks "
3058                 "(e.g., adding 'restrict').";
3059     });
3060   }
3061 
3062   LoopBypassBlocks.push_back(MemCheckBlock);
3063 
3064   AddedSafetyChecks = true;
3065 
3066   return MemCheckBlock;
3067 }
3068 
3069 void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3070   LoopScalarBody = OrigLoop->getHeader();
3071   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3072   assert(LoopVectorPreHeader && "Invalid loop structure");
3073   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3074   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3075          "multiple exit loop without required epilogue?");
3076 
3077   LoopMiddleBlock =
3078       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3079                  LI, nullptr, Twine(Prefix) + "middle.block");
3080   LoopScalarPreHeader =
3081       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3082                  nullptr, Twine(Prefix) + "scalar.ph");
3083 
3084   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3085 
3086   // Set up the middle block terminator.  Two cases:
3087   // 1) If we know that we must execute the scalar epilogue, emit an
3088   //    unconditional branch.
3089   // 2) Otherwise, we must have a single unique exit block (due to how we
3090   //    implement the multiple exit case).  In this case, set up a conditonal
3091   //    branch from the middle block to the loop scalar preheader, and the
3092   //    exit block.  completeLoopSkeleton will update the condition to use an
3093   //    iteration check, if required to decide whether to execute the remainder.
3094   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3095     BranchInst::Create(LoopScalarPreHeader) :
3096     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3097                        Builder.getTrue());
3098   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3099   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3100 
3101   // Update dominator for loop exit. During skeleton creation, only the vector
3102   // pre-header and the middle block are created. The vector loop is entirely
3103   // created during VPlan exection.
3104   if (!Cost->requiresScalarEpilogue(VF))
3105     // If there is an epilogue which must run, there's no edge from the
3106     // middle block to exit blocks  and thus no need to update the immediate
3107     // dominator of the exit blocks.
3108     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3109 }
3110 
3111 void InnerLoopVectorizer::createInductionResumeValues(
3112     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3113   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3114           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3115          "Inconsistent information about additional bypass.");
3116 
3117   Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
3118   assert(VectorTripCount && "Expected valid arguments");
3119   // We are going to resume the execution of the scalar loop.
3120   // Go over all of the induction variables that we found and fix the
3121   // PHIs that are left in the scalar version of the loop.
3122   // The starting values of PHI nodes depend on the counter of the last
3123   // iteration in the vectorized loop.
3124   // If we come from a bypass edge then we need to start from the original
3125   // start value.
3126   Instruction *OldInduction = Legal->getPrimaryInduction();
3127   for (auto &InductionEntry : Legal->getInductionVars()) {
3128     PHINode *OrigPhi = InductionEntry.first;
3129     InductionDescriptor II = InductionEntry.second;
3130 
3131     Value *&EndValue = IVEndValues[OrigPhi];
3132     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3133     if (OrigPhi == OldInduction) {
3134       // We know what the end value is.
3135       EndValue = VectorTripCount;
3136     } else {
3137       IRBuilder<> B(LoopVectorPreHeader->getTerminator());
3138 
3139       // Fast-math-flags propagate from the original induction instruction.
3140       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3141         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3142 
3143       Type *StepType = II.getStep()->getType();
3144       Instruction::CastOps CastOp =
3145           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3146       Value *VTC = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.vtc");
3147       Value *Step =
3148           CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3149       EndValue = emitTransformedIndex(B, VTC, II.getStartValue(), Step, II);
3150       EndValue->setName("ind.end");
3151 
3152       // Compute the end value for the additional bypass (if applicable).
3153       if (AdditionalBypass.first) {
3154         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3155         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3156                                          StepType, true);
3157         Value *Step =
3158             CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3159         VTC =
3160             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.vtc");
3161         EndValueFromAdditionalBypass =
3162             emitTransformedIndex(B, VTC, II.getStartValue(), Step, II);
3163         EndValueFromAdditionalBypass->setName("ind.end");
3164       }
3165     }
3166 
3167     // Create phi nodes to merge from the  backedge-taken check block.
3168     PHINode *BCResumeVal =
3169         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3170                         LoopScalarPreHeader->getTerminator());
3171     // Copy original phi DL over to the new one.
3172     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3173 
3174     // The new PHI merges the original incoming value, in case of a bypass,
3175     // or the value at the end of the vectorized loop.
3176     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3177 
3178     // Fix the scalar body counter (PHI node).
3179     // The old induction's phi node in the scalar body needs the truncated
3180     // value.
3181     for (BasicBlock *BB : LoopBypassBlocks)
3182       BCResumeVal->addIncoming(II.getStartValue(), BB);
3183 
3184     if (AdditionalBypass.first)
3185       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3186                                             EndValueFromAdditionalBypass);
3187 
3188     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3189   }
3190 }
3191 
3192 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) {
3193   // The trip counts should be cached by now.
3194   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
3195   Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
3196 
3197   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3198 
3199   // Add a check in the middle block to see if we have completed
3200   // all of the iterations in the first vector loop.  Three cases:
3201   // 1) If we require a scalar epilogue, there is no conditional branch as
3202   //    we unconditionally branch to the scalar preheader.  Do nothing.
3203   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3204   //    Thus if tail is to be folded, we know we don't need to run the
3205   //    remainder and we can use the previous value for the condition (true).
3206   // 3) Otherwise, construct a runtime check.
3207   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3208     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3209                                         Count, VectorTripCount, "cmp.n",
3210                                         LoopMiddleBlock->getTerminator());
3211 
3212     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3213     // of the corresponding compare because they may have ended up with
3214     // different line numbers and we want to avoid awkward line stepping while
3215     // debugging. Eg. if the compare has got a line number inside the loop.
3216     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3217     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3218   }
3219 
3220 #ifdef EXPENSIVE_CHECKS
3221   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3222 #endif
3223 
3224   return LoopVectorPreHeader;
3225 }
3226 
3227 std::pair<BasicBlock *, Value *>
3228 InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3229   /*
3230    In this function we generate a new loop. The new loop will contain
3231    the vectorized instructions while the old loop will continue to run the
3232    scalar remainder.
3233 
3234        [ ] <-- loop iteration number check.
3235     /   |
3236    /    v
3237   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3238   |  /  |
3239   | /   v
3240   ||   [ ]     <-- vector pre header.
3241   |/    |
3242   |     v
3243   |    [  ] \
3244   |    [  ]_|   <-- vector loop (created during VPlan execution).
3245   |     |
3246   |     v
3247   \   -[ ]   <--- middle-block.
3248    \/   |
3249    /\   v
3250    | ->[ ]     <--- new preheader.
3251    |    |
3252  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3253    |   [ ] \
3254    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3255     \   |
3256      \  v
3257       >[ ]     <-- exit block(s).
3258    ...
3259    */
3260 
3261   // Get the metadata of the original loop before it gets modified.
3262   MDNode *OrigLoopID = OrigLoop->getLoopID();
3263 
3264   // Workaround!  Compute the trip count of the original loop and cache it
3265   // before we start modifying the CFG.  This code has a systemic problem
3266   // wherein it tries to run analysis over partially constructed IR; this is
3267   // wrong, and not simply for SCEV.  The trip count of the original loop
3268   // simply happens to be prone to hitting this in practice.  In theory, we
3269   // can hit the same issue for any SCEV, or ValueTracking query done during
3270   // mutation.  See PR49900.
3271   getOrCreateTripCount(OrigLoop->getLoopPreheader());
3272 
3273   // Create an empty vector loop, and prepare basic blocks for the runtime
3274   // checks.
3275   createVectorLoopSkeleton("");
3276 
3277   // Now, compare the new count to zero. If it is zero skip the vector loop and
3278   // jump to the scalar loop. This check also covers the case where the
3279   // backedge-taken count is uint##_max: adding one to it will overflow leading
3280   // to an incorrect trip count of zero. In this (rare) case we will also jump
3281   // to the scalar loop.
3282   emitIterationCountCheck(LoopScalarPreHeader);
3283 
3284   // Generate the code to check any assumptions that we've made for SCEV
3285   // expressions.
3286   emitSCEVChecks(LoopScalarPreHeader);
3287 
3288   // Generate the code that checks in runtime if arrays overlap. We put the
3289   // checks into a separate block to make the more common case of few elements
3290   // faster.
3291   emitMemRuntimeChecks(LoopScalarPreHeader);
3292 
3293   // Emit phis for the new starting index of the scalar loop.
3294   createInductionResumeValues();
3295 
3296   return {completeLoopSkeleton(OrigLoopID), nullptr};
3297 }
3298 
3299 // Fix up external users of the induction variable. At this point, we are
3300 // in LCSSA form, with all external PHIs that use the IV having one input value,
3301 // coming from the remainder loop. We need those PHIs to also have a correct
3302 // value for the IV when arriving directly from the middle block.
3303 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3304                                        const InductionDescriptor &II,
3305                                        Value *VectorTripCount, Value *EndValue,
3306                                        BasicBlock *MiddleBlock,
3307                                        BasicBlock *VectorHeader, VPlan &Plan) {
3308   // There are two kinds of external IV usages - those that use the value
3309   // computed in the last iteration (the PHI) and those that use the penultimate
3310   // value (the value that feeds into the phi from the loop latch).
3311   // We allow both, but they, obviously, have different values.
3312 
3313   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3314 
3315   DenseMap<Value *, Value *> MissingVals;
3316 
3317   // An external user of the last iteration's value should see the value that
3318   // the remainder loop uses to initialize its own IV.
3319   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3320   for (User *U : PostInc->users()) {
3321     Instruction *UI = cast<Instruction>(U);
3322     if (!OrigLoop->contains(UI)) {
3323       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3324       MissingVals[UI] = EndValue;
3325     }
3326   }
3327 
3328   // An external user of the penultimate value need to see EndValue - Step.
3329   // The simplest way to get this is to recompute it from the constituent SCEVs,
3330   // that is Start + (Step * (CRD - 1)).
3331   for (User *U : OrigPhi->users()) {
3332     auto *UI = cast<Instruction>(U);
3333     if (!OrigLoop->contains(UI)) {
3334       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3335 
3336       IRBuilder<> B(MiddleBlock->getTerminator());
3337 
3338       // Fast-math-flags propagate from the original induction instruction.
3339       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3340         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3341 
3342       Value *CountMinusOne = B.CreateSub(
3343           VectorTripCount, ConstantInt::get(VectorTripCount->getType(), 1));
3344       Value *CMO =
3345           !II.getStep()->getType()->isIntegerTy()
3346               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3347                              II.getStep()->getType())
3348               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3349       CMO->setName("cast.cmo");
3350 
3351       Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(),
3352                                     VectorHeader->getTerminator());
3353       Value *Escape =
3354           emitTransformedIndex(B, CMO, II.getStartValue(), Step, II);
3355       Escape->setName("ind.escape");
3356       MissingVals[UI] = Escape;
3357     }
3358   }
3359 
3360   for (auto &I : MissingVals) {
3361     PHINode *PHI = cast<PHINode>(I.first);
3362     // One corner case we have to handle is two IVs "chasing" each-other,
3363     // that is %IV2 = phi [...], [ %IV1, %latch ]
3364     // In this case, if IV1 has an external use, we need to avoid adding both
3365     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3366     // don't already have an incoming value for the middle block.
3367     if (PHI->getBasicBlockIndex(MiddleBlock) == -1) {
3368       PHI->addIncoming(I.second, MiddleBlock);
3369       Plan.removeLiveOut(PHI);
3370     }
3371   }
3372 }
3373 
3374 namespace {
3375 
3376 struct CSEDenseMapInfo {
3377   static bool canHandle(const Instruction *I) {
3378     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3379            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3380   }
3381 
3382   static inline Instruction *getEmptyKey() {
3383     return DenseMapInfo<Instruction *>::getEmptyKey();
3384   }
3385 
3386   static inline Instruction *getTombstoneKey() {
3387     return DenseMapInfo<Instruction *>::getTombstoneKey();
3388   }
3389 
3390   static unsigned getHashValue(const Instruction *I) {
3391     assert(canHandle(I) && "Unknown instruction!");
3392     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3393                                                            I->value_op_end()));
3394   }
3395 
3396   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3397     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3398         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3399       return LHS == RHS;
3400     return LHS->isIdenticalTo(RHS);
3401   }
3402 };
3403 
3404 } // end anonymous namespace
3405 
3406 ///Perform cse of induction variable instructions.
3407 static void cse(BasicBlock *BB) {
3408   // Perform simple cse.
3409   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3410   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3411     if (!CSEDenseMapInfo::canHandle(&In))
3412       continue;
3413 
3414     // Check if we can replace this instruction with any of the
3415     // visited instructions.
3416     if (Instruction *V = CSEMap.lookup(&In)) {
3417       In.replaceAllUsesWith(V);
3418       In.eraseFromParent();
3419       continue;
3420     }
3421 
3422     CSEMap[&In] = &In;
3423   }
3424 }
3425 
3426 InstructionCost
3427 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3428                                               bool &NeedToScalarize) const {
3429   Function *F = CI->getCalledFunction();
3430   Type *ScalarRetTy = CI->getType();
3431   SmallVector<Type *, 4> Tys, ScalarTys;
3432   for (auto &ArgOp : CI->args())
3433     ScalarTys.push_back(ArgOp->getType());
3434 
3435   // Estimate cost of scalarized vector call. The source operands are assumed
3436   // to be vectors, so we need to extract individual elements from there,
3437   // execute VF scalar calls, and then gather the result into the vector return
3438   // value.
3439   InstructionCost ScalarCallCost =
3440       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3441   if (VF.isScalar())
3442     return ScalarCallCost;
3443 
3444   // Compute corresponding vector type for return value and arguments.
3445   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3446   for (Type *ScalarTy : ScalarTys)
3447     Tys.push_back(ToVectorTy(ScalarTy, VF));
3448 
3449   // Compute costs of unpacking argument values for the scalar calls and
3450   // packing the return values to a vector.
3451   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3452 
3453   InstructionCost Cost =
3454       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3455 
3456   // If we can't emit a vector call for this function, then the currently found
3457   // cost is the cost we need to return.
3458   NeedToScalarize = true;
3459   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3460   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3461 
3462   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3463     return Cost;
3464 
3465   // If the corresponding vector cost is cheaper, return its cost.
3466   InstructionCost VectorCallCost =
3467       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3468   if (VectorCallCost < Cost) {
3469     NeedToScalarize = false;
3470     Cost = VectorCallCost;
3471   }
3472   return Cost;
3473 }
3474 
3475 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3476   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3477     return Elt;
3478   return VectorType::get(Elt, VF);
3479 }
3480 
3481 InstructionCost
3482 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3483                                                    ElementCount VF) const {
3484   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3485   assert(ID && "Expected intrinsic call!");
3486   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3487   FastMathFlags FMF;
3488   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3489     FMF = FPMO->getFastMathFlags();
3490 
3491   SmallVector<const Value *> Arguments(CI->args());
3492   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3493   SmallVector<Type *> ParamTys;
3494   std::transform(FTy->param_begin(), FTy->param_end(),
3495                  std::back_inserter(ParamTys),
3496                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3497 
3498   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3499                                     dyn_cast<IntrinsicInst>(CI));
3500   return TTI.getIntrinsicInstrCost(CostAttrs,
3501                                    TargetTransformInfo::TCK_RecipThroughput);
3502 }
3503 
3504 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3505   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3506   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3507   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3508 }
3509 
3510 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3511   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3512   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3513   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3514 }
3515 
3516 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3517   // For every instruction `I` in MinBWs, truncate the operands, create a
3518   // truncated version of `I` and reextend its result. InstCombine runs
3519   // later and will remove any ext/trunc pairs.
3520   SmallPtrSet<Value *, 4> Erased;
3521   for (const auto &KV : Cost->getMinimalBitwidths()) {
3522     // If the value wasn't vectorized, we must maintain the original scalar
3523     // type. The absence of the value from State indicates that it
3524     // wasn't vectorized.
3525     // FIXME: Should not rely on getVPValue at this point.
3526     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3527     if (!State.hasAnyVectorValue(Def))
3528       continue;
3529     for (unsigned Part = 0; Part < UF; ++Part) {
3530       Value *I = State.get(Def, Part);
3531       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3532         continue;
3533       Type *OriginalTy = I->getType();
3534       Type *ScalarTruncatedTy =
3535           IntegerType::get(OriginalTy->getContext(), KV.second);
3536       auto *TruncatedTy = VectorType::get(
3537           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3538       if (TruncatedTy == OriginalTy)
3539         continue;
3540 
3541       IRBuilder<> B(cast<Instruction>(I));
3542       auto ShrinkOperand = [&](Value *V) -> Value * {
3543         if (auto *ZI = dyn_cast<ZExtInst>(V))
3544           if (ZI->getSrcTy() == TruncatedTy)
3545             return ZI->getOperand(0);
3546         return B.CreateZExtOrTrunc(V, TruncatedTy);
3547       };
3548 
3549       // The actual instruction modification depends on the instruction type,
3550       // unfortunately.
3551       Value *NewI = nullptr;
3552       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3553         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3554                              ShrinkOperand(BO->getOperand(1)));
3555 
3556         // Any wrapping introduced by shrinking this operation shouldn't be
3557         // considered undefined behavior. So, we can't unconditionally copy
3558         // arithmetic wrapping flags to NewI.
3559         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3560       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3561         NewI =
3562             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3563                          ShrinkOperand(CI->getOperand(1)));
3564       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3565         NewI = B.CreateSelect(SI->getCondition(),
3566                               ShrinkOperand(SI->getTrueValue()),
3567                               ShrinkOperand(SI->getFalseValue()));
3568       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3569         switch (CI->getOpcode()) {
3570         default:
3571           llvm_unreachable("Unhandled cast!");
3572         case Instruction::Trunc:
3573           NewI = ShrinkOperand(CI->getOperand(0));
3574           break;
3575         case Instruction::SExt:
3576           NewI = B.CreateSExtOrTrunc(
3577               CI->getOperand(0),
3578               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3579           break;
3580         case Instruction::ZExt:
3581           NewI = B.CreateZExtOrTrunc(
3582               CI->getOperand(0),
3583               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3584           break;
3585         }
3586       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3587         auto Elements0 =
3588             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
3589         auto *O0 = B.CreateZExtOrTrunc(
3590             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3591         auto Elements1 =
3592             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
3593         auto *O1 = B.CreateZExtOrTrunc(
3594             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3595 
3596         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3597       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3598         // Don't do anything with the operands, just extend the result.
3599         continue;
3600       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3601         auto Elements =
3602             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
3603         auto *O0 = B.CreateZExtOrTrunc(
3604             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3605         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3606         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3607       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3608         auto Elements =
3609             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
3610         auto *O0 = B.CreateZExtOrTrunc(
3611             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3612         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3613       } else {
3614         // If we don't know what to do, be conservative and don't do anything.
3615         continue;
3616       }
3617 
3618       // Lastly, extend the result.
3619       NewI->takeName(cast<Instruction>(I));
3620       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3621       I->replaceAllUsesWith(Res);
3622       cast<Instruction>(I)->eraseFromParent();
3623       Erased.insert(I);
3624       State.reset(Def, Res, Part);
3625     }
3626   }
3627 
3628   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3629   for (const auto &KV : Cost->getMinimalBitwidths()) {
3630     // If the value wasn't vectorized, we must maintain the original scalar
3631     // type. The absence of the value from State indicates that it
3632     // wasn't vectorized.
3633     // FIXME: Should not rely on getVPValue at this point.
3634     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3635     if (!State.hasAnyVectorValue(Def))
3636       continue;
3637     for (unsigned Part = 0; Part < UF; ++Part) {
3638       Value *I = State.get(Def, Part);
3639       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3640       if (Inst && Inst->use_empty()) {
3641         Value *NewI = Inst->getOperand(0);
3642         Inst->eraseFromParent();
3643         State.reset(Def, NewI, Part);
3644       }
3645     }
3646   }
3647 }
3648 
3649 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State,
3650                                             VPlan &Plan) {
3651   // Insert truncates and extends for any truncated instructions as hints to
3652   // InstCombine.
3653   if (VF.isVector())
3654     truncateToMinimalBitwidths(State);
3655 
3656   // Fix widened non-induction PHIs by setting up the PHI operands.
3657   if (EnableVPlanNativePath)
3658     fixNonInductionPHIs(Plan, State);
3659 
3660   // At this point every instruction in the original loop is widened to a
3661   // vector form. Now we need to fix the recurrences in the loop. These PHI
3662   // nodes are currently empty because we did not want to introduce cycles.
3663   // This is the second stage of vectorizing recurrences.
3664   fixCrossIterationPHIs(State);
3665 
3666   // Forget the original basic block.
3667   PSE.getSE()->forgetLoop(OrigLoop);
3668 
3669   VPBasicBlock *LatchVPBB = Plan.getVectorLoopRegion()->getExitingBasicBlock();
3670   Loop *VectorLoop = LI->getLoopFor(State.CFG.VPBB2IRBB[LatchVPBB]);
3671   if (Cost->requiresScalarEpilogue(VF)) {
3672     // No edge from the middle block to the unique exit block has been inserted
3673     // and there is nothing to fix from vector loop; phis should have incoming
3674     // from scalar loop only.
3675     Plan.clearLiveOuts();
3676   } else {
3677     // If we inserted an edge from the middle block to the unique exit block,
3678     // update uses outside the loop (phis) to account for the newly inserted
3679     // edge.
3680 
3681     // Fix-up external users of the induction variables.
3682     for (auto &Entry : Legal->getInductionVars())
3683       fixupIVUsers(Entry.first, Entry.second,
3684                    getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()),
3685                    IVEndValues[Entry.first], LoopMiddleBlock,
3686                    VectorLoop->getHeader(), Plan);
3687   }
3688 
3689   // Fix LCSSA phis not already fixed earlier. Extracts may need to be generated
3690   // in the exit block, so update the builder.
3691   State.Builder.SetInsertPoint(State.CFG.ExitBB->getFirstNonPHI());
3692   for (auto &KV : Plan.getLiveOuts())
3693     KV.second->fixPhi(Plan, State);
3694 
3695   for (Instruction *PI : PredicatedInstructions)
3696     sinkScalarOperands(&*PI);
3697 
3698   // Remove redundant induction instructions.
3699   cse(VectorLoop->getHeader());
3700 
3701   // Set/update profile weights for the vector and remainder loops as original
3702   // loop iterations are now distributed among them. Note that original loop
3703   // represented by LoopScalarBody becomes remainder loop after vectorization.
3704   //
3705   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3706   // end up getting slightly roughened result but that should be OK since
3707   // profile is not inherently precise anyway. Note also possible bypass of
3708   // vector code caused by legality checks is ignored, assigning all the weight
3709   // to the vector loop, optimistically.
3710   //
3711   // For scalable vectorization we can't know at compile time how many iterations
3712   // of the loop are handled in one vector iteration, so instead assume a pessimistic
3713   // vscale of '1'.
3714   setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop,
3715                                LI->getLoopFor(LoopScalarBody),
3716                                VF.getKnownMinValue() * UF);
3717 }
3718 
3719 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
3720   // In order to support recurrences we need to be able to vectorize Phi nodes.
3721   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3722   // stage #2: We now need to fix the recurrences by adding incoming edges to
3723   // the currently empty PHI nodes. At this point every instruction in the
3724   // original loop is widened to a vector form so we can use them to construct
3725   // the incoming edges.
3726   VPBasicBlock *Header =
3727       State.Plan->getVectorLoopRegion()->getEntryBasicBlock();
3728   for (VPRecipeBase &R : Header->phis()) {
3729     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
3730       fixReduction(ReductionPhi, State);
3731     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
3732       fixFirstOrderRecurrence(FOR, State);
3733   }
3734 }
3735 
3736 void InnerLoopVectorizer::fixFirstOrderRecurrence(
3737     VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) {
3738   // This is the second phase of vectorizing first-order recurrences. An
3739   // overview of the transformation is described below. Suppose we have the
3740   // following loop.
3741   //
3742   //   for (int i = 0; i < n; ++i)
3743   //     b[i] = a[i] - a[i - 1];
3744   //
3745   // There is a first-order recurrence on "a". For this loop, the shorthand
3746   // scalar IR looks like:
3747   //
3748   //   scalar.ph:
3749   //     s_init = a[-1]
3750   //     br scalar.body
3751   //
3752   //   scalar.body:
3753   //     i = phi [0, scalar.ph], [i+1, scalar.body]
3754   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3755   //     s2 = a[i]
3756   //     b[i] = s2 - s1
3757   //     br cond, scalar.body, ...
3758   //
3759   // In this example, s1 is a recurrence because it's value depends on the
3760   // previous iteration. In the first phase of vectorization, we created a
3761   // vector phi v1 for s1. We now complete the vectorization and produce the
3762   // shorthand vector IR shown below (for VF = 4, UF = 1).
3763   //
3764   //   vector.ph:
3765   //     v_init = vector(..., ..., ..., a[-1])
3766   //     br vector.body
3767   //
3768   //   vector.body
3769   //     i = phi [0, vector.ph], [i+4, vector.body]
3770   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
3771   //     v2 = a[i, i+1, i+2, i+3];
3772   //     v3 = vector(v1(3), v2(0, 1, 2))
3773   //     b[i, i+1, i+2, i+3] = v2 - v3
3774   //     br cond, vector.body, middle.block
3775   //
3776   //   middle.block:
3777   //     x = v2(3)
3778   //     br scalar.ph
3779   //
3780   //   scalar.ph:
3781   //     s_init = phi [x, middle.block], [a[-1], otherwise]
3782   //     br scalar.body
3783   //
3784   // After execution completes the vector loop, we extract the next value of
3785   // the recurrence (x) to use as the initial value in the scalar loop.
3786 
3787   // Extract the last vector element in the middle block. This will be the
3788   // initial value for the recurrence when jumping to the scalar loop.
3789   VPValue *PreviousDef = PhiR->getBackedgeValue();
3790   Value *Incoming = State.get(PreviousDef, UF - 1);
3791   auto *ExtractForScalar = Incoming;
3792   auto *IdxTy = Builder.getInt32Ty();
3793   if (VF.isVector()) {
3794     auto *One = ConstantInt::get(IdxTy, 1);
3795     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3796     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
3797     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
3798     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
3799                                                     "vector.recur.extract");
3800   }
3801   // Extract the second last element in the middle block if the
3802   // Phi is used outside the loop. We need to extract the phi itself
3803   // and not the last element (the phi update in the current iteration). This
3804   // will be the value when jumping to the exit block from the LoopMiddleBlock,
3805   // when the scalar loop is not run at all.
3806   Value *ExtractForPhiUsedOutsideLoop = nullptr;
3807   if (VF.isVector()) {
3808     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
3809     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
3810     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
3811         Incoming, Idx, "vector.recur.extract.for.phi");
3812   } else if (UF > 1)
3813     // When loop is unrolled without vectorizing, initialize
3814     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
3815     // of `Incoming`. This is analogous to the vectorized case above: extracting
3816     // the second last element when VF > 1.
3817     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
3818 
3819   // Fix the initial value of the original recurrence in the scalar loop.
3820   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
3821   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
3822   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
3823   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
3824   for (auto *BB : predecessors(LoopScalarPreHeader)) {
3825     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
3826     Start->addIncoming(Incoming, BB);
3827   }
3828 
3829   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
3830   Phi->setName("scalar.recur");
3831 
3832   // Finally, fix users of the recurrence outside the loop. The users will need
3833   // either the last value of the scalar recurrence or the last value of the
3834   // vector recurrence we extracted in the middle block. Since the loop is in
3835   // LCSSA form, we just need to find all the phi nodes for the original scalar
3836   // recurrence in the exit block, and then add an edge for the middle block.
3837   // Note that LCSSA does not imply single entry when the original scalar loop
3838   // had multiple exiting edges (as we always run the last iteration in the
3839   // scalar epilogue); in that case, there is no edge from middle to exit and
3840   // and thus no phis which needed updated.
3841   if (!Cost->requiresScalarEpilogue(VF))
3842     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
3843       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) {
3844         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
3845         State.Plan->removeLiveOut(&LCSSAPhi);
3846       }
3847 }
3848 
3849 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
3850                                        VPTransformState &State) {
3851   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
3852   // Get it's reduction variable descriptor.
3853   assert(Legal->isReductionVariable(OrigPhi) &&
3854          "Unable to find the reduction variable");
3855   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
3856 
3857   RecurKind RK = RdxDesc.getRecurrenceKind();
3858   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3859   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3860   State.setDebugLocFromInst(ReductionStartValue);
3861 
3862   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
3863   // This is the vector-clone of the value that leaves the loop.
3864   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
3865 
3866   // Wrap flags are in general invalid after vectorization, clear them.
3867   clearReductionWrapFlags(PhiR, State);
3868 
3869   // Before each round, move the insertion point right between
3870   // the PHIs and the values we are going to write.
3871   // This allows us to write both PHINodes and the extractelement
3872   // instructions.
3873   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3874 
3875   State.setDebugLocFromInst(LoopExitInst);
3876 
3877   Type *PhiTy = OrigPhi->getType();
3878 
3879   VPBasicBlock *LatchVPBB =
3880       PhiR->getParent()->getEnclosingLoopRegion()->getExitingBasicBlock();
3881   BasicBlock *VectorLoopLatch = State.CFG.VPBB2IRBB[LatchVPBB];
3882   // If tail is folded by masking, the vector value to leave the loop should be
3883   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
3884   // instead of the former. For an inloop reduction the reduction will already
3885   // be predicated, and does not need to be handled here.
3886   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
3887     for (unsigned Part = 0; Part < UF; ++Part) {
3888       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
3889       SelectInst *Sel = nullptr;
3890       for (User *U : VecLoopExitInst->users()) {
3891         if (isa<SelectInst>(U)) {
3892           assert(!Sel && "Reduction exit feeding two selects");
3893           Sel = cast<SelectInst>(U);
3894         } else
3895           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
3896       }
3897       assert(Sel && "Reduction exit feeds no select");
3898       State.reset(LoopExitInstDef, Sel, Part);
3899 
3900       if (isa<FPMathOperator>(Sel))
3901         Sel->setFastMathFlags(RdxDesc.getFastMathFlags());
3902 
3903       // If the target can create a predicated operator for the reduction at no
3904       // extra cost in the loop (for example a predicated vadd), it can be
3905       // cheaper for the select to remain in the loop than be sunk out of it,
3906       // and so use the select value for the phi instead of the old
3907       // LoopExitValue.
3908       if (PreferPredicatedReductionSelect ||
3909           TTI->preferPredicatedReductionSelect(
3910               RdxDesc.getOpcode(), PhiTy,
3911               TargetTransformInfo::ReductionFlags())) {
3912         auto *VecRdxPhi =
3913             cast<PHINode>(State.get(PhiR, Part));
3914         VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel);
3915       }
3916     }
3917   }
3918 
3919   // If the vector reduction can be performed in a smaller type, we truncate
3920   // then extend the loop exit value to enable InstCombine to evaluate the
3921   // entire expression in the smaller type.
3922   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
3923     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
3924     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
3925     Builder.SetInsertPoint(VectorLoopLatch->getTerminator());
3926     VectorParts RdxParts(UF);
3927     for (unsigned Part = 0; Part < UF; ++Part) {
3928       RdxParts[Part] = State.get(LoopExitInstDef, Part);
3929       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3930       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
3931                                         : Builder.CreateZExt(Trunc, VecTy);
3932       for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
3933         if (U != Trunc) {
3934           U->replaceUsesOfWith(RdxParts[Part], Extnd);
3935           RdxParts[Part] = Extnd;
3936         }
3937     }
3938     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3939     for (unsigned Part = 0; Part < UF; ++Part) {
3940       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3941       State.reset(LoopExitInstDef, RdxParts[Part], Part);
3942     }
3943   }
3944 
3945   // Reduce all of the unrolled parts into a single vector.
3946   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
3947   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
3948 
3949   // The middle block terminator has already been assigned a DebugLoc here (the
3950   // OrigLoop's single latch terminator). We want the whole middle block to
3951   // appear to execute on this line because: (a) it is all compiler generated,
3952   // (b) these instructions are always executed after evaluating the latch
3953   // conditional branch, and (c) other passes may add new predecessors which
3954   // terminate on this line. This is the easiest way to ensure we don't
3955   // accidentally cause an extra step back into the loop while debugging.
3956   State.setDebugLocFromInst(LoopMiddleBlock->getTerminator());
3957   if (PhiR->isOrdered())
3958     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
3959   else {
3960     // Floating-point operations should have some FMF to enable the reduction.
3961     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
3962     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
3963     for (unsigned Part = 1; Part < UF; ++Part) {
3964       Value *RdxPart = State.get(LoopExitInstDef, Part);
3965       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
3966         ReducedPartRdx = Builder.CreateBinOp(
3967             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
3968       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
3969         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
3970                                            ReducedPartRdx, RdxPart);
3971       else
3972         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
3973     }
3974   }
3975 
3976   // Create the reduction after the loop. Note that inloop reductions create the
3977   // target reduction in the loop using a Reduction recipe.
3978   if (VF.isVector() && !PhiR->isInLoop()) {
3979     ReducedPartRdx =
3980         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
3981     // If the reduction can be performed in a smaller type, we need to extend
3982     // the reduction to the wider type before we branch to the original loop.
3983     if (PhiTy != RdxDesc.getRecurrenceType())
3984       ReducedPartRdx = RdxDesc.isSigned()
3985                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
3986                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
3987   }
3988 
3989   PHINode *ResumePhi =
3990       dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue());
3991 
3992   // Create a phi node that merges control-flow from the backedge-taken check
3993   // block and the middle block.
3994   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
3995                                         LoopScalarPreHeader->getTerminator());
3996 
3997   // If we are fixing reductions in the epilogue loop then we should already
3998   // have created a bc.merge.rdx Phi after the main vector body. Ensure that
3999   // we carry over the incoming values correctly.
4000   for (auto *Incoming : predecessors(LoopScalarPreHeader)) {
4001     if (Incoming == LoopMiddleBlock)
4002       BCBlockPhi->addIncoming(ReducedPartRdx, Incoming);
4003     else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming))
4004       BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming),
4005                               Incoming);
4006     else
4007       BCBlockPhi->addIncoming(ReductionStartValue, Incoming);
4008   }
4009 
4010   // Set the resume value for this reduction
4011   ReductionResumeValues.insert({&RdxDesc, BCBlockPhi});
4012 
4013   // If there were stores of the reduction value to a uniform memory address
4014   // inside the loop, create the final store here.
4015   if (StoreInst *SI = RdxDesc.IntermediateStore) {
4016     StoreInst *NewSI =
4017         Builder.CreateStore(ReducedPartRdx, SI->getPointerOperand());
4018     propagateMetadata(NewSI, SI);
4019 
4020     // If the reduction value is used in other places,
4021     // then let the code below create PHI's for that.
4022   }
4023 
4024   // Now, we need to fix the users of the reduction variable
4025   // inside and outside of the scalar remainder loop.
4026 
4027   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4028   // in the exit blocks.  See comment on analogous loop in
4029   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4030   if (!Cost->requiresScalarEpilogue(VF))
4031     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4032       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) {
4033         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4034         State.Plan->removeLiveOut(&LCSSAPhi);
4035       }
4036 
4037   // Fix the scalar loop reduction variable with the incoming reduction sum
4038   // from the vector body and from the backedge value.
4039   int IncomingEdgeBlockIdx =
4040       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4041   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4042   // Pick the other block.
4043   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4044   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4045   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4046 }
4047 
4048 void InnerLoopVectorizer::clearReductionWrapFlags(VPReductionPHIRecipe *PhiR,
4049                                                   VPTransformState &State) {
4050   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4051   RecurKind RK = RdxDesc.getRecurrenceKind();
4052   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4053     return;
4054 
4055   SmallVector<VPValue *, 8> Worklist;
4056   SmallPtrSet<VPValue *, 8> Visited;
4057   Worklist.push_back(PhiR);
4058   Visited.insert(PhiR);
4059 
4060   while (!Worklist.empty()) {
4061     VPValue *Cur = Worklist.pop_back_val();
4062     for (unsigned Part = 0; Part < UF; ++Part) {
4063       Value *V = State.get(Cur, Part);
4064       if (!isa<OverflowingBinaryOperator>(V))
4065         break;
4066       cast<Instruction>(V)->dropPoisonGeneratingFlags();
4067       }
4068 
4069       for (VPUser *U : Cur->users()) {
4070         auto *UserRecipe = dyn_cast<VPRecipeBase>(U);
4071         if (!UserRecipe)
4072           continue;
4073         for (VPValue *V : UserRecipe->definedValues())
4074           if (Visited.insert(V).second)
4075             Worklist.push_back(V);
4076       }
4077   }
4078 }
4079 
4080 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4081   // The basic block and loop containing the predicated instruction.
4082   auto *PredBB = PredInst->getParent();
4083   auto *VectorLoop = LI->getLoopFor(PredBB);
4084 
4085   // Initialize a worklist with the operands of the predicated instruction.
4086   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4087 
4088   // Holds instructions that we need to analyze again. An instruction may be
4089   // reanalyzed if we don't yet know if we can sink it or not.
4090   SmallVector<Instruction *, 8> InstsToReanalyze;
4091 
4092   // Returns true if a given use occurs in the predicated block. Phi nodes use
4093   // their operands in their corresponding predecessor blocks.
4094   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4095     auto *I = cast<Instruction>(U.getUser());
4096     BasicBlock *BB = I->getParent();
4097     if (auto *Phi = dyn_cast<PHINode>(I))
4098       BB = Phi->getIncomingBlock(
4099           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4100     return BB == PredBB;
4101   };
4102 
4103   // Iteratively sink the scalarized operands of the predicated instruction
4104   // into the block we created for it. When an instruction is sunk, it's
4105   // operands are then added to the worklist. The algorithm ends after one pass
4106   // through the worklist doesn't sink a single instruction.
4107   bool Changed;
4108   do {
4109     // Add the instructions that need to be reanalyzed to the worklist, and
4110     // reset the changed indicator.
4111     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4112     InstsToReanalyze.clear();
4113     Changed = false;
4114 
4115     while (!Worklist.empty()) {
4116       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4117 
4118       // We can't sink an instruction if it is a phi node, is not in the loop,
4119       // or may have side effects.
4120       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4121           I->mayHaveSideEffects())
4122         continue;
4123 
4124       // If the instruction is already in PredBB, check if we can sink its
4125       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4126       // sinking the scalar instruction I, hence it appears in PredBB; but it
4127       // may have failed to sink I's operands (recursively), which we try
4128       // (again) here.
4129       if (I->getParent() == PredBB) {
4130         Worklist.insert(I->op_begin(), I->op_end());
4131         continue;
4132       }
4133 
4134       // It's legal to sink the instruction if all its uses occur in the
4135       // predicated block. Otherwise, there's nothing to do yet, and we may
4136       // need to reanalyze the instruction.
4137       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4138         InstsToReanalyze.push_back(I);
4139         continue;
4140       }
4141 
4142       // Move the instruction to the beginning of the predicated block, and add
4143       // it's operands to the worklist.
4144       I->moveBefore(&*PredBB->getFirstInsertionPt());
4145       Worklist.insert(I->op_begin(), I->op_end());
4146 
4147       // The sinking may have enabled other instructions to be sunk, so we will
4148       // need to iterate.
4149       Changed = true;
4150     }
4151   } while (Changed);
4152 }
4153 
4154 void InnerLoopVectorizer::fixNonInductionPHIs(VPlan &Plan,
4155                                               VPTransformState &State) {
4156   auto Iter = depth_first(
4157       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(Plan.getEntry()));
4158   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
4159     for (VPRecipeBase &P : VPBB->phis()) {
4160       VPWidenPHIRecipe *VPPhi = dyn_cast<VPWidenPHIRecipe>(&P);
4161       if (!VPPhi)
4162         continue;
4163       PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4164       // Make sure the builder has a valid insert point.
4165       Builder.SetInsertPoint(NewPhi);
4166       for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4167         VPValue *Inc = VPPhi->getIncomingValue(i);
4168         VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4169         NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4170       }
4171     }
4172   }
4173 }
4174 
4175 bool InnerLoopVectorizer::useOrderedReductions(
4176     const RecurrenceDescriptor &RdxDesc) {
4177   return Cost->useOrderedReductions(RdxDesc);
4178 }
4179 
4180 /// A helper function for checking whether an integer division-related
4181 /// instruction may divide by zero (in which case it must be predicated if
4182 /// executed conditionally in the scalar code).
4183 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4184 /// Non-zero divisors that are non compile-time constants will not be
4185 /// converted into multiplication, so we will still end up scalarizing
4186 /// the division, but can do so w/o predication.
4187 static bool mayDivideByZero(Instruction &I) {
4188   assert((I.getOpcode() == Instruction::UDiv ||
4189           I.getOpcode() == Instruction::SDiv ||
4190           I.getOpcode() == Instruction::URem ||
4191           I.getOpcode() == Instruction::SRem) &&
4192          "Unexpected instruction");
4193   Value *Divisor = I.getOperand(1);
4194   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4195   return !CInt || CInt->isZero();
4196 }
4197 
4198 void InnerLoopVectorizer::widenCallInstruction(CallInst &CI, VPValue *Def,
4199                                                VPUser &ArgOperands,
4200                                                VPTransformState &State) {
4201   assert(!isa<DbgInfoIntrinsic>(CI) &&
4202          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4203   State.setDebugLocFromInst(&CI);
4204 
4205   SmallVector<Type *, 4> Tys;
4206   for (Value *ArgOperand : CI.args())
4207     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4208 
4209   Intrinsic::ID ID = getVectorIntrinsicIDForCall(&CI, TLI);
4210 
4211   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4212   // version of the instruction.
4213   // Is it beneficial to perform intrinsic call compared to lib call?
4214   bool NeedToScalarize = false;
4215   InstructionCost CallCost = Cost->getVectorCallCost(&CI, VF, NeedToScalarize);
4216   InstructionCost IntrinsicCost =
4217       ID ? Cost->getVectorIntrinsicCost(&CI, VF) : 0;
4218   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4219   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4220          "Instruction should be scalarized elsewhere.");
4221   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4222          "Either the intrinsic cost or vector call cost must be valid");
4223 
4224   for (unsigned Part = 0; Part < UF; ++Part) {
4225     SmallVector<Type *, 2> TysForDecl = {CI.getType()};
4226     SmallVector<Value *, 4> Args;
4227     for (auto &I : enumerate(ArgOperands.operands())) {
4228       // Some intrinsics have a scalar argument - don't replace it with a
4229       // vector.
4230       Value *Arg;
4231       if (!UseVectorIntrinsic ||
4232           !isVectorIntrinsicWithScalarOpAtArg(ID, I.index()))
4233         Arg = State.get(I.value(), Part);
4234       else
4235         Arg = State.get(I.value(), VPIteration(0, 0));
4236       if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I.index()))
4237         TysForDecl.push_back(Arg->getType());
4238       Args.push_back(Arg);
4239     }
4240 
4241     Function *VectorF;
4242     if (UseVectorIntrinsic) {
4243       // Use vector version of the intrinsic.
4244       if (VF.isVector())
4245         TysForDecl[0] = VectorType::get(CI.getType()->getScalarType(), VF);
4246       Module *M = State.Builder.GetInsertBlock()->getModule();
4247       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4248       assert(VectorF && "Can't retrieve vector intrinsic.");
4249     } else {
4250       // Use vector version of the function call.
4251       const VFShape Shape = VFShape::get(CI, VF, false /*HasGlobalPred*/);
4252 #ifndef NDEBUG
4253       assert(VFDatabase(CI).getVectorizedFunction(Shape) != nullptr &&
4254              "Can't create vector function.");
4255 #endif
4256       VectorF = VFDatabase(CI).getVectorizedFunction(Shape);
4257     }
4258       SmallVector<OperandBundleDef, 1> OpBundles;
4259       CI.getOperandBundlesAsDefs(OpBundles);
4260       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4261 
4262       if (isa<FPMathOperator>(V))
4263         V->copyFastMathFlags(&CI);
4264 
4265       State.set(Def, V, Part);
4266       State.addMetadata(V, &CI);
4267   }
4268 }
4269 
4270 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
4271   // We should not collect Scalars more than once per VF. Right now, this
4272   // function is called from collectUniformsAndScalars(), which already does
4273   // this check. Collecting Scalars for VF=1 does not make any sense.
4274   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
4275          "This function should not be visited twice for the same VF");
4276 
4277   // This avoids any chances of creating a REPLICATE recipe during planning
4278   // since that would result in generation of scalarized code during execution,
4279   // which is not supported for scalable vectors.
4280   if (VF.isScalable()) {
4281     Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end());
4282     return;
4283   }
4284 
4285   SmallSetVector<Instruction *, 8> Worklist;
4286 
4287   // These sets are used to seed the analysis with pointers used by memory
4288   // accesses that will remain scalar.
4289   SmallSetVector<Instruction *, 8> ScalarPtrs;
4290   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4291   auto *Latch = TheLoop->getLoopLatch();
4292 
4293   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4294   // The pointer operands of loads and stores will be scalar as long as the
4295   // memory access is not a gather or scatter operation. The value operand of a
4296   // store will remain scalar if the store is scalarized.
4297   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4298     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4299     assert(WideningDecision != CM_Unknown &&
4300            "Widening decision should be ready at this moment");
4301     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4302       if (Ptr == Store->getValueOperand())
4303         return WideningDecision == CM_Scalarize;
4304     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4305            "Ptr is neither a value or pointer operand");
4306     return WideningDecision != CM_GatherScatter;
4307   };
4308 
4309   // A helper that returns true if the given value is a bitcast or
4310   // getelementptr instruction contained in the loop.
4311   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4312     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4313             isa<GetElementPtrInst>(V)) &&
4314            !TheLoop->isLoopInvariant(V);
4315   };
4316 
4317   // A helper that evaluates a memory access's use of a pointer. If the use will
4318   // be a scalar use and the pointer is only used by memory accesses, we place
4319   // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4320   // PossibleNonScalarPtrs.
4321   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4322     // We only care about bitcast and getelementptr instructions contained in
4323     // the loop.
4324     if (!isLoopVaryingBitCastOrGEP(Ptr))
4325       return;
4326 
4327     // If the pointer has already been identified as scalar (e.g., if it was
4328     // also identified as uniform), there's nothing to do.
4329     auto *I = cast<Instruction>(Ptr);
4330     if (Worklist.count(I))
4331       return;
4332 
4333     // If the use of the pointer will be a scalar use, and all users of the
4334     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4335     // place the pointer in PossibleNonScalarPtrs.
4336     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4337           return isa<LoadInst>(U) || isa<StoreInst>(U);
4338         }))
4339       ScalarPtrs.insert(I);
4340     else
4341       PossibleNonScalarPtrs.insert(I);
4342   };
4343 
4344   // We seed the scalars analysis with three classes of instructions: (1)
4345   // instructions marked uniform-after-vectorization and (2) bitcast,
4346   // getelementptr and (pointer) phi instructions used by memory accesses
4347   // requiring a scalar use.
4348   //
4349   // (1) Add to the worklist all instructions that have been identified as
4350   // uniform-after-vectorization.
4351   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4352 
4353   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4354   // memory accesses requiring a scalar use. The pointer operands of loads and
4355   // stores will be scalar as long as the memory accesses is not a gather or
4356   // scatter operation. The value operand of a store will remain scalar if the
4357   // store is scalarized.
4358   for (auto *BB : TheLoop->blocks())
4359     for (auto &I : *BB) {
4360       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4361         evaluatePtrUse(Load, Load->getPointerOperand());
4362       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4363         evaluatePtrUse(Store, Store->getPointerOperand());
4364         evaluatePtrUse(Store, Store->getValueOperand());
4365       }
4366     }
4367   for (auto *I : ScalarPtrs)
4368     if (!PossibleNonScalarPtrs.count(I)) {
4369       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4370       Worklist.insert(I);
4371     }
4372 
4373   // Insert the forced scalars.
4374   // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector
4375   // induction variable when the PHI user is scalarized.
4376   auto ForcedScalar = ForcedScalars.find(VF);
4377   if (ForcedScalar != ForcedScalars.end())
4378     for (auto *I : ForcedScalar->second)
4379       Worklist.insert(I);
4380 
4381   // Expand the worklist by looking through any bitcasts and getelementptr
4382   // instructions we've already identified as scalar. This is similar to the
4383   // expansion step in collectLoopUniforms(); however, here we're only
4384   // expanding to include additional bitcasts and getelementptr instructions.
4385   unsigned Idx = 0;
4386   while (Idx != Worklist.size()) {
4387     Instruction *Dst = Worklist[Idx++];
4388     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4389       continue;
4390     auto *Src = cast<Instruction>(Dst->getOperand(0));
4391     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4392           auto *J = cast<Instruction>(U);
4393           return !TheLoop->contains(J) || Worklist.count(J) ||
4394                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4395                   isScalarUse(J, Src));
4396         })) {
4397       Worklist.insert(Src);
4398       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4399     }
4400   }
4401 
4402   // An induction variable will remain scalar if all users of the induction
4403   // variable and induction variable update remain scalar.
4404   for (auto &Induction : Legal->getInductionVars()) {
4405     auto *Ind = Induction.first;
4406     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4407 
4408     // If tail-folding is applied, the primary induction variable will be used
4409     // to feed a vector compare.
4410     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4411       continue;
4412 
4413     // Returns true if \p Indvar is a pointer induction that is used directly by
4414     // load/store instruction \p I.
4415     auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
4416                                               Instruction *I) {
4417       return Induction.second.getKind() ==
4418                  InductionDescriptor::IK_PtrInduction &&
4419              (isa<LoadInst>(I) || isa<StoreInst>(I)) &&
4420              Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar);
4421     };
4422 
4423     // Determine if all users of the induction variable are scalar after
4424     // vectorization.
4425     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4426       auto *I = cast<Instruction>(U);
4427       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4428              IsDirectLoadStoreFromPtrIndvar(Ind, I);
4429     });
4430     if (!ScalarInd)
4431       continue;
4432 
4433     // Determine if all users of the induction variable update instruction are
4434     // scalar after vectorization.
4435     auto ScalarIndUpdate =
4436         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4437           auto *I = cast<Instruction>(U);
4438           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4439                  IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
4440         });
4441     if (!ScalarIndUpdate)
4442       continue;
4443 
4444     // The induction variable and its update instruction will remain scalar.
4445     Worklist.insert(Ind);
4446     Worklist.insert(IndUpdate);
4447     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4448     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4449                       << "\n");
4450   }
4451 
4452   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4453 }
4454 
4455 bool LoopVectorizationCostModel::isScalarWithPredication(
4456     Instruction *I, ElementCount VF) const {
4457   if (!blockNeedsPredicationForAnyReason(I->getParent()))
4458     return false;
4459   switch(I->getOpcode()) {
4460   default:
4461     break;
4462   case Instruction::Load:
4463   case Instruction::Store: {
4464     if (!Legal->isMaskRequired(I))
4465       return false;
4466     auto *Ptr = getLoadStorePointerOperand(I);
4467     auto *Ty = getLoadStoreType(I);
4468     Type *VTy = Ty;
4469     if (VF.isVector())
4470       VTy = VectorType::get(Ty, VF);
4471     const Align Alignment = getLoadStoreAlignment(I);
4472     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4473                                 TTI.isLegalMaskedGather(VTy, Alignment))
4474                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4475                                 TTI.isLegalMaskedScatter(VTy, Alignment));
4476   }
4477   case Instruction::UDiv:
4478   case Instruction::SDiv:
4479   case Instruction::SRem:
4480   case Instruction::URem:
4481     return mayDivideByZero(*I);
4482   }
4483   return false;
4484 }
4485 
4486 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
4487     Instruction *I, ElementCount VF) {
4488   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4489   assert(getWideningDecision(I, VF) == CM_Unknown &&
4490          "Decision should not be set yet.");
4491   auto *Group = getInterleavedAccessGroup(I);
4492   assert(Group && "Must have a group.");
4493 
4494   // If the instruction's allocated size doesn't equal it's type size, it
4495   // requires padding and will be scalarized.
4496   auto &DL = I->getModule()->getDataLayout();
4497   auto *ScalarTy = getLoadStoreType(I);
4498   if (hasIrregularType(ScalarTy, DL))
4499     return false;
4500 
4501   // If the group involves a non-integral pointer, we may not be able to
4502   // losslessly cast all values to a common type.
4503   unsigned InterleaveFactor = Group->getFactor();
4504   bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy);
4505   for (unsigned i = 0; i < InterleaveFactor; i++) {
4506     Instruction *Member = Group->getMember(i);
4507     if (!Member)
4508       continue;
4509     auto *MemberTy = getLoadStoreType(Member);
4510     bool MemberNI = DL.isNonIntegralPointerType(MemberTy);
4511     // Don't coerce non-integral pointers to integers or vice versa.
4512     if (MemberNI != ScalarNI) {
4513       // TODO: Consider adding special nullptr value case here
4514       return false;
4515     } else if (MemberNI && ScalarNI &&
4516                ScalarTy->getPointerAddressSpace() !=
4517                MemberTy->getPointerAddressSpace()) {
4518       return false;
4519     }
4520   }
4521 
4522   // Check if masking is required.
4523   // A Group may need masking for one of two reasons: it resides in a block that
4524   // needs predication, or it was decided to use masking to deal with gaps
4525   // (either a gap at the end of a load-access that may result in a speculative
4526   // load, or any gaps in a store-access).
4527   bool PredicatedAccessRequiresMasking =
4528       blockNeedsPredicationForAnyReason(I->getParent()) &&
4529       Legal->isMaskRequired(I);
4530   bool LoadAccessWithGapsRequiresEpilogMasking =
4531       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
4532       !isScalarEpilogueAllowed();
4533   bool StoreAccessWithGapsRequiresMasking =
4534       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
4535   if (!PredicatedAccessRequiresMasking &&
4536       !LoadAccessWithGapsRequiresEpilogMasking &&
4537       !StoreAccessWithGapsRequiresMasking)
4538     return true;
4539 
4540   // If masked interleaving is required, we expect that the user/target had
4541   // enabled it, because otherwise it either wouldn't have been created or
4542   // it should have been invalidated by the CostModel.
4543   assert(useMaskedInterleavedAccesses(TTI) &&
4544          "Masked interleave-groups for predicated accesses are not enabled.");
4545 
4546   if (Group->isReverse())
4547     return false;
4548 
4549   auto *Ty = getLoadStoreType(I);
4550   const Align Alignment = getLoadStoreAlignment(I);
4551   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4552                           : TTI.isLegalMaskedStore(Ty, Alignment);
4553 }
4554 
4555 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
4556     Instruction *I, ElementCount VF) {
4557   // Get and ensure we have a valid memory instruction.
4558   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
4559 
4560   auto *Ptr = getLoadStorePointerOperand(I);
4561   auto *ScalarTy = getLoadStoreType(I);
4562 
4563   // In order to be widened, the pointer should be consecutive, first of all.
4564   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
4565     return false;
4566 
4567   // If the instruction is a store located in a predicated block, it will be
4568   // scalarized.
4569   if (isScalarWithPredication(I, VF))
4570     return false;
4571 
4572   // If the instruction's allocated size doesn't equal it's type size, it
4573   // requires padding and will be scalarized.
4574   auto &DL = I->getModule()->getDataLayout();
4575   if (hasIrregularType(ScalarTy, DL))
4576     return false;
4577 
4578   return true;
4579 }
4580 
4581 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
4582   // We should not collect Uniforms more than once per VF. Right now,
4583   // this function is called from collectUniformsAndScalars(), which
4584   // already does this check. Collecting Uniforms for VF=1 does not make any
4585   // sense.
4586 
4587   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
4588          "This function should not be visited twice for the same VF");
4589 
4590   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4591   // not analyze again.  Uniforms.count(VF) will return 1.
4592   Uniforms[VF].clear();
4593 
4594   // We now know that the loop is vectorizable!
4595   // Collect instructions inside the loop that will remain uniform after
4596   // vectorization.
4597 
4598   // Global values, params and instructions outside of current loop are out of
4599   // scope.
4600   auto isOutOfScope = [&](Value *V) -> bool {
4601     Instruction *I = dyn_cast<Instruction>(V);
4602     return (!I || !TheLoop->contains(I));
4603   };
4604 
4605   // Worklist containing uniform instructions demanding lane 0.
4606   SetVector<Instruction *> Worklist;
4607   BasicBlock *Latch = TheLoop->getLoopLatch();
4608 
4609   // Add uniform instructions demanding lane 0 to the worklist. Instructions
4610   // that are scalar with predication must not be considered uniform after
4611   // vectorization, because that would create an erroneous replicating region
4612   // where only a single instance out of VF should be formed.
4613   // TODO: optimize such seldom cases if found important, see PR40816.
4614   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
4615     if (isOutOfScope(I)) {
4616       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
4617                         << *I << "\n");
4618       return;
4619     }
4620     if (isScalarWithPredication(I, VF)) {
4621       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
4622                         << *I << "\n");
4623       return;
4624     }
4625     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
4626     Worklist.insert(I);
4627   };
4628 
4629   // Start with the conditional branch. If the branch condition is an
4630   // instruction contained in the loop that is only used by the branch, it is
4631   // uniform.
4632   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
4633   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
4634     addToWorklistIfAllowed(Cmp);
4635 
4636   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
4637     InstWidening WideningDecision = getWideningDecision(I, VF);
4638     assert(WideningDecision != CM_Unknown &&
4639            "Widening decision should be ready at this moment");
4640 
4641     // A uniform memory op is itself uniform.  We exclude uniform stores
4642     // here as they demand the last lane, not the first one.
4643     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
4644       assert(WideningDecision == CM_Scalarize);
4645       return true;
4646     }
4647 
4648     return (WideningDecision == CM_Widen ||
4649             WideningDecision == CM_Widen_Reverse ||
4650             WideningDecision == CM_Interleave);
4651   };
4652 
4653 
4654   // Returns true if Ptr is the pointer operand of a memory access instruction
4655   // I, and I is known to not require scalarization.
4656   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
4657     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
4658   };
4659 
4660   // Holds a list of values which are known to have at least one uniform use.
4661   // Note that there may be other uses which aren't uniform.  A "uniform use"
4662   // here is something which only demands lane 0 of the unrolled iterations;
4663   // it does not imply that all lanes produce the same value (e.g. this is not
4664   // the usual meaning of uniform)
4665   SetVector<Value *> HasUniformUse;
4666 
4667   // Scan the loop for instructions which are either a) known to have only
4668   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
4669   for (auto *BB : TheLoop->blocks())
4670     for (auto &I : *BB) {
4671       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
4672         switch (II->getIntrinsicID()) {
4673         case Intrinsic::sideeffect:
4674         case Intrinsic::experimental_noalias_scope_decl:
4675         case Intrinsic::assume:
4676         case Intrinsic::lifetime_start:
4677         case Intrinsic::lifetime_end:
4678           if (TheLoop->hasLoopInvariantOperands(&I))
4679             addToWorklistIfAllowed(&I);
4680           break;
4681         default:
4682           break;
4683         }
4684       }
4685 
4686       // ExtractValue instructions must be uniform, because the operands are
4687       // known to be loop-invariant.
4688       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
4689         assert(isOutOfScope(EVI->getAggregateOperand()) &&
4690                "Expected aggregate value to be loop invariant");
4691         addToWorklistIfAllowed(EVI);
4692         continue;
4693       }
4694 
4695       // If there's no pointer operand, there's nothing to do.
4696       auto *Ptr = getLoadStorePointerOperand(&I);
4697       if (!Ptr)
4698         continue;
4699 
4700       // A uniform memory op is itself uniform.  We exclude uniform stores
4701       // here as they demand the last lane, not the first one.
4702       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
4703         addToWorklistIfAllowed(&I);
4704 
4705       if (isUniformDecision(&I, VF)) {
4706         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
4707         HasUniformUse.insert(Ptr);
4708       }
4709     }
4710 
4711   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
4712   // demanding) users.  Since loops are assumed to be in LCSSA form, this
4713   // disallows uses outside the loop as well.
4714   for (auto *V : HasUniformUse) {
4715     if (isOutOfScope(V))
4716       continue;
4717     auto *I = cast<Instruction>(V);
4718     auto UsersAreMemAccesses =
4719       llvm::all_of(I->users(), [&](User *U) -> bool {
4720         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
4721       });
4722     if (UsersAreMemAccesses)
4723       addToWorklistIfAllowed(I);
4724   }
4725 
4726   // Expand Worklist in topological order: whenever a new instruction
4727   // is added , its users should be already inside Worklist.  It ensures
4728   // a uniform instruction will only be used by uniform instructions.
4729   unsigned idx = 0;
4730   while (idx != Worklist.size()) {
4731     Instruction *I = Worklist[idx++];
4732 
4733     for (auto OV : I->operand_values()) {
4734       // isOutOfScope operands cannot be uniform instructions.
4735       if (isOutOfScope(OV))
4736         continue;
4737       // First order recurrence Phi's should typically be considered
4738       // non-uniform.
4739       auto *OP = dyn_cast<PHINode>(OV);
4740       if (OP && Legal->isFirstOrderRecurrence(OP))
4741         continue;
4742       // If all the users of the operand are uniform, then add the
4743       // operand into the uniform worklist.
4744       auto *OI = cast<Instruction>(OV);
4745       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
4746             auto *J = cast<Instruction>(U);
4747             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
4748           }))
4749         addToWorklistIfAllowed(OI);
4750     }
4751   }
4752 
4753   // For an instruction to be added into Worklist above, all its users inside
4754   // the loop should also be in Worklist. However, this condition cannot be
4755   // true for phi nodes that form a cyclic dependence. We must process phi
4756   // nodes separately. An induction variable will remain uniform if all users
4757   // of the induction variable and induction variable update remain uniform.
4758   // The code below handles both pointer and non-pointer induction variables.
4759   for (auto &Induction : Legal->getInductionVars()) {
4760     auto *Ind = Induction.first;
4761     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4762 
4763     // Determine if all users of the induction variable are uniform after
4764     // vectorization.
4765     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4766       auto *I = cast<Instruction>(U);
4767       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4768              isVectorizedMemAccessUse(I, Ind);
4769     });
4770     if (!UniformInd)
4771       continue;
4772 
4773     // Determine if all users of the induction variable update instruction are
4774     // uniform after vectorization.
4775     auto UniformIndUpdate =
4776         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4777           auto *I = cast<Instruction>(U);
4778           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4779                  isVectorizedMemAccessUse(I, IndUpdate);
4780         });
4781     if (!UniformIndUpdate)
4782       continue;
4783 
4784     // The induction variable and its update instruction will remain uniform.
4785     addToWorklistIfAllowed(Ind);
4786     addToWorklistIfAllowed(IndUpdate);
4787   }
4788 
4789   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
4790 }
4791 
4792 bool LoopVectorizationCostModel::runtimeChecksRequired() {
4793   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
4794 
4795   if (Legal->getRuntimePointerChecking()->Need) {
4796     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
4797         "runtime pointer checks needed. Enable vectorization of this "
4798         "loop with '#pragma clang loop vectorize(enable)' when "
4799         "compiling with -Os/-Oz",
4800         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4801     return true;
4802   }
4803 
4804   if (!PSE.getPredicate().isAlwaysTrue()) {
4805     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
4806         "runtime SCEV checks needed. Enable vectorization of this "
4807         "loop with '#pragma clang loop vectorize(enable)' when "
4808         "compiling with -Os/-Oz",
4809         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4810     return true;
4811   }
4812 
4813   // FIXME: Avoid specializing for stride==1 instead of bailing out.
4814   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
4815     reportVectorizationFailure("Runtime stride check for small trip count",
4816         "runtime stride == 1 checks needed. Enable vectorization of "
4817         "this loop without such check by compiling with -Os/-Oz",
4818         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4819     return true;
4820   }
4821 
4822   return false;
4823 }
4824 
4825 ElementCount
4826 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
4827   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
4828     return ElementCount::getScalable(0);
4829 
4830   if (Hints->isScalableVectorizationDisabled()) {
4831     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
4832                             "ScalableVectorizationDisabled", ORE, TheLoop);
4833     return ElementCount::getScalable(0);
4834   }
4835 
4836   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
4837 
4838   auto MaxScalableVF = ElementCount::getScalable(
4839       std::numeric_limits<ElementCount::ScalarTy>::max());
4840 
4841   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
4842   // FIXME: While for scalable vectors this is currently sufficient, this should
4843   // be replaced by a more detailed mechanism that filters out specific VFs,
4844   // instead of invalidating vectorization for a whole set of VFs based on the
4845   // MaxVF.
4846 
4847   // Disable scalable vectorization if the loop contains unsupported reductions.
4848   if (!canVectorizeReductions(MaxScalableVF)) {
4849     reportVectorizationInfo(
4850         "Scalable vectorization not supported for the reduction "
4851         "operations found in this loop.",
4852         "ScalableVFUnfeasible", ORE, TheLoop);
4853     return ElementCount::getScalable(0);
4854   }
4855 
4856   // Disable scalable vectorization if the loop contains any instructions
4857   // with element types not supported for scalable vectors.
4858   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
4859         return !Ty->isVoidTy() &&
4860                !this->TTI.isElementTypeLegalForScalableVector(Ty);
4861       })) {
4862     reportVectorizationInfo("Scalable vectorization is not supported "
4863                             "for all element types found in this loop.",
4864                             "ScalableVFUnfeasible", ORE, TheLoop);
4865     return ElementCount::getScalable(0);
4866   }
4867 
4868   if (Legal->isSafeForAnyVectorWidth())
4869     return MaxScalableVF;
4870 
4871   // Limit MaxScalableVF by the maximum safe dependence distance.
4872   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
4873   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange))
4874     MaxVScale =
4875         TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
4876   MaxScalableVF = ElementCount::getScalable(
4877       MaxVScale ? (MaxSafeElements / MaxVScale.value()) : 0);
4878   if (!MaxScalableVF)
4879     reportVectorizationInfo(
4880         "Max legal vector width too small, scalable vectorization "
4881         "unfeasible.",
4882         "ScalableVFUnfeasible", ORE, TheLoop);
4883 
4884   return MaxScalableVF;
4885 }
4886 
4887 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
4888     unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) {
4889   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
4890   unsigned SmallestType, WidestType;
4891   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
4892 
4893   // Get the maximum safe dependence distance in bits computed by LAA.
4894   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
4895   // the memory accesses that is most restrictive (involved in the smallest
4896   // dependence distance).
4897   unsigned MaxSafeElements =
4898       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
4899 
4900   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
4901   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
4902 
4903   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
4904                     << ".\n");
4905   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
4906                     << ".\n");
4907 
4908   // First analyze the UserVF, fall back if the UserVF should be ignored.
4909   if (UserVF) {
4910     auto MaxSafeUserVF =
4911         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
4912 
4913     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
4914       // If `VF=vscale x N` is safe, then so is `VF=N`
4915       if (UserVF.isScalable())
4916         return FixedScalableVFPair(
4917             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
4918       else
4919         return UserVF;
4920     }
4921 
4922     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
4923 
4924     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
4925     // is better to ignore the hint and let the compiler choose a suitable VF.
4926     if (!UserVF.isScalable()) {
4927       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4928                         << " is unsafe, clamping to max safe VF="
4929                         << MaxSafeFixedVF << ".\n");
4930       ORE->emit([&]() {
4931         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4932                                           TheLoop->getStartLoc(),
4933                                           TheLoop->getHeader())
4934                << "User-specified vectorization factor "
4935                << ore::NV("UserVectorizationFactor", UserVF)
4936                << " is unsafe, clamping to maximum safe vectorization factor "
4937                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
4938       });
4939       return MaxSafeFixedVF;
4940     }
4941 
4942     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
4943       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4944                         << " is ignored because scalable vectors are not "
4945                            "available.\n");
4946       ORE->emit([&]() {
4947         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4948                                           TheLoop->getStartLoc(),
4949                                           TheLoop->getHeader())
4950                << "User-specified vectorization factor "
4951                << ore::NV("UserVectorizationFactor", UserVF)
4952                << " is ignored because the target does not support scalable "
4953                   "vectors. The compiler will pick a more suitable value.";
4954       });
4955     } else {
4956       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4957                         << " is unsafe. Ignoring scalable UserVF.\n");
4958       ORE->emit([&]() {
4959         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4960                                           TheLoop->getStartLoc(),
4961                                           TheLoop->getHeader())
4962                << "User-specified vectorization factor "
4963                << ore::NV("UserVectorizationFactor", UserVF)
4964                << " is unsafe. Ignoring the hint to let the compiler pick a "
4965                   "more suitable value.";
4966       });
4967     }
4968   }
4969 
4970   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
4971                     << " / " << WidestType << " bits.\n");
4972 
4973   FixedScalableVFPair Result(ElementCount::getFixed(1),
4974                              ElementCount::getScalable(0));
4975   if (auto MaxVF =
4976           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
4977                                   MaxSafeFixedVF, FoldTailByMasking))
4978     Result.FixedVF = MaxVF;
4979 
4980   if (auto MaxVF =
4981           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
4982                                   MaxSafeScalableVF, FoldTailByMasking))
4983     if (MaxVF.isScalable()) {
4984       Result.ScalableVF = MaxVF;
4985       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
4986                         << "\n");
4987     }
4988 
4989   return Result;
4990 }
4991 
4992 FixedScalableVFPair
4993 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
4994   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
4995     // TODO: It may by useful to do since it's still likely to be dynamically
4996     // uniform if the target can skip.
4997     reportVectorizationFailure(
4998         "Not inserting runtime ptr check for divergent target",
4999         "runtime pointer checks needed. Not enabled for divergent target",
5000         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5001     return FixedScalableVFPair::getNone();
5002   }
5003 
5004   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5005   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5006   if (TC == 1) {
5007     reportVectorizationFailure("Single iteration (non) loop",
5008         "loop trip count is one, irrelevant for vectorization",
5009         "SingleIterationLoop", ORE, TheLoop);
5010     return FixedScalableVFPair::getNone();
5011   }
5012 
5013   switch (ScalarEpilogueStatus) {
5014   case CM_ScalarEpilogueAllowed:
5015     return computeFeasibleMaxVF(TC, UserVF, false);
5016   case CM_ScalarEpilogueNotAllowedUsePredicate:
5017     LLVM_FALLTHROUGH;
5018   case CM_ScalarEpilogueNotNeededUsePredicate:
5019     LLVM_DEBUG(
5020         dbgs() << "LV: vector predicate hint/switch found.\n"
5021                << "LV: Not allowing scalar epilogue, creating predicated "
5022                << "vector loop.\n");
5023     break;
5024   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5025     // fallthrough as a special case of OptForSize
5026   case CM_ScalarEpilogueNotAllowedOptSize:
5027     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5028       LLVM_DEBUG(
5029           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5030     else
5031       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5032                         << "count.\n");
5033 
5034     // Bail if runtime checks are required, which are not good when optimising
5035     // for size.
5036     if (runtimeChecksRequired())
5037       return FixedScalableVFPair::getNone();
5038 
5039     break;
5040   }
5041 
5042   // The only loops we can vectorize without a scalar epilogue, are loops with
5043   // a bottom-test and a single exiting block. We'd have to handle the fact
5044   // that not every instruction executes on the last iteration.  This will
5045   // require a lane mask which varies through the vector loop body.  (TODO)
5046   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5047     // If there was a tail-folding hint/switch, but we can't fold the tail by
5048     // masking, fallback to a vectorization with a scalar epilogue.
5049     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5050       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5051                            "scalar epilogue instead.\n");
5052       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5053       return computeFeasibleMaxVF(TC, UserVF, false);
5054     }
5055     return FixedScalableVFPair::getNone();
5056   }
5057 
5058   // Now try the tail folding
5059 
5060   // Invalidate interleave groups that require an epilogue if we can't mask
5061   // the interleave-group.
5062   if (!useMaskedInterleavedAccesses(TTI)) {
5063     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5064            "No decisions should have been taken at this point");
5065     // Note: There is no need to invalidate any cost modeling decisions here, as
5066     // non where taken so far.
5067     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5068   }
5069 
5070   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true);
5071   // Avoid tail folding if the trip count is known to be a multiple of any VF
5072   // we chose.
5073   // FIXME: The condition below pessimises the case for fixed-width vectors,
5074   // when scalable VFs are also candidates for vectorization.
5075   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5076     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5077     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5078            "MaxFixedVF must be a power of 2");
5079     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5080                                    : MaxFixedVF.getFixedValue();
5081     ScalarEvolution *SE = PSE.getSE();
5082     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5083     const SCEV *ExitCount = SE->getAddExpr(
5084         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5085     const SCEV *Rem = SE->getURemExpr(
5086         SE->applyLoopGuards(ExitCount, TheLoop),
5087         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5088     if (Rem->isZero()) {
5089       // Accept MaxFixedVF if we do not have a tail.
5090       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5091       return MaxFactors;
5092     }
5093   }
5094 
5095   // If we don't know the precise trip count, or if the trip count that we
5096   // found modulo the vectorization factor is not zero, try to fold the tail
5097   // by masking.
5098   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5099   if (Legal->prepareToFoldTailByMasking()) {
5100     FoldTailByMasking = true;
5101     return MaxFactors;
5102   }
5103 
5104   // If there was a tail-folding hint/switch, but we can't fold the tail by
5105   // masking, fallback to a vectorization with a scalar epilogue.
5106   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5107     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5108                          "scalar epilogue instead.\n");
5109     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5110     return MaxFactors;
5111   }
5112 
5113   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5114     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5115     return FixedScalableVFPair::getNone();
5116   }
5117 
5118   if (TC == 0) {
5119     reportVectorizationFailure(
5120         "Unable to calculate the loop count due to complex control flow",
5121         "unable to calculate the loop count due to complex control flow",
5122         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5123     return FixedScalableVFPair::getNone();
5124   }
5125 
5126   reportVectorizationFailure(
5127       "Cannot optimize for size and vectorize at the same time.",
5128       "cannot optimize for size and vectorize at the same time. "
5129       "Enable vectorization of this loop with '#pragma clang loop "
5130       "vectorize(enable)' when compiling with -Os/-Oz",
5131       "NoTailLoopWithOptForSize", ORE, TheLoop);
5132   return FixedScalableVFPair::getNone();
5133 }
5134 
5135 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5136     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5137     ElementCount MaxSafeVF, bool FoldTailByMasking) {
5138   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5139   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5140       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5141                            : TargetTransformInfo::RGK_FixedWidthVector);
5142 
5143   // Convenience function to return the minimum of two ElementCounts.
5144   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5145     assert((LHS.isScalable() == RHS.isScalable()) &&
5146            "Scalable flags must match");
5147     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5148   };
5149 
5150   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5151   // Note that both WidestRegister and WidestType may not be a powers of 2.
5152   auto MaxVectorElementCount = ElementCount::get(
5153       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5154       ComputeScalableMaxVF);
5155   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5156   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5157                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5158 
5159   if (!MaxVectorElementCount) {
5160     LLVM_DEBUG(dbgs() << "LV: The target has no "
5161                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5162                       << " vector registers.\n");
5163     return ElementCount::getFixed(1);
5164   }
5165 
5166   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5167   if (ConstTripCount &&
5168       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5169       (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) {
5170     // If loop trip count (TC) is known at compile time there is no point in
5171     // choosing VF greater than TC (as done in the loop below). Select maximum
5172     // power of two which doesn't exceed TC.
5173     // If MaxVectorElementCount is scalable, we only fall back on a fixed VF
5174     // when the TC is less than or equal to the known number of lanes.
5175     auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount);
5176     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
5177                          "exceeding the constant trip count: "
5178                       << ClampedConstTripCount << "\n");
5179     return ElementCount::getFixed(ClampedConstTripCount);
5180   }
5181 
5182   TargetTransformInfo::RegisterKind RegKind =
5183       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5184                            : TargetTransformInfo::RGK_FixedWidthVector;
5185   ElementCount MaxVF = MaxVectorElementCount;
5186   if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 &&
5187                             TTI.shouldMaximizeVectorBandwidth(RegKind))) {
5188     auto MaxVectorElementCountMaxBW = ElementCount::get(
5189         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5190         ComputeScalableMaxVF);
5191     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5192 
5193     // Collect all viable vectorization factors larger than the default MaxVF
5194     // (i.e. MaxVectorElementCount).
5195     SmallVector<ElementCount, 8> VFs;
5196     for (ElementCount VS = MaxVectorElementCount * 2;
5197          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5198       VFs.push_back(VS);
5199 
5200     // For each VF calculate its register usage.
5201     auto RUs = calculateRegisterUsage(VFs);
5202 
5203     // Select the largest VF which doesn't require more registers than existing
5204     // ones.
5205     for (int i = RUs.size() - 1; i >= 0; --i) {
5206       bool Selected = true;
5207       for (auto &pair : RUs[i].MaxLocalUsers) {
5208         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5209         if (pair.second > TargetNumRegisters)
5210           Selected = false;
5211       }
5212       if (Selected) {
5213         MaxVF = VFs[i];
5214         break;
5215       }
5216     }
5217     if (ElementCount MinVF =
5218             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5219       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5220         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5221                           << ") with target's minimum: " << MinVF << '\n');
5222         MaxVF = MinVF;
5223       }
5224     }
5225 
5226     // Invalidate any widening decisions we might have made, in case the loop
5227     // requires prediction (decided later), but we have already made some
5228     // load/store widening decisions.
5229     invalidateCostModelingDecisions();
5230   }
5231   return MaxVF;
5232 }
5233 
5234 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const {
5235   if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5236     auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
5237     auto Min = Attr.getVScaleRangeMin();
5238     auto Max = Attr.getVScaleRangeMax();
5239     if (Max && Min == Max)
5240       return Max;
5241   }
5242 
5243   return TTI.getVScaleForTuning();
5244 }
5245 
5246 bool LoopVectorizationCostModel::isMoreProfitable(
5247     const VectorizationFactor &A, const VectorizationFactor &B) const {
5248   InstructionCost CostA = A.Cost;
5249   InstructionCost CostB = B.Cost;
5250 
5251   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5252 
5253   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5254       MaxTripCount) {
5255     // If we are folding the tail and the trip count is a known (possibly small)
5256     // constant, the trip count will be rounded up to an integer number of
5257     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
5258     // which we compare directly. When not folding the tail, the total cost will
5259     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
5260     // approximated with the per-lane cost below instead of using the tripcount
5261     // as here.
5262     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
5263     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
5264     return RTCostA < RTCostB;
5265   }
5266 
5267   // Improve estimate for the vector width if it is scalable.
5268   unsigned EstimatedWidthA = A.Width.getKnownMinValue();
5269   unsigned EstimatedWidthB = B.Width.getKnownMinValue();
5270   if (Optional<unsigned> VScale = getVScaleForTuning()) {
5271     if (A.Width.isScalable())
5272       EstimatedWidthA *= VScale.value();
5273     if (B.Width.isScalable())
5274       EstimatedWidthB *= VScale.value();
5275   }
5276 
5277   // Assume vscale may be larger than 1 (or the value being tuned for),
5278   // so that scalable vectorization is slightly favorable over fixed-width
5279   // vectorization.
5280   if (A.Width.isScalable() && !B.Width.isScalable())
5281     return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
5282 
5283   // To avoid the need for FP division:
5284   //      (CostA / A.Width) < (CostB / B.Width)
5285   // <=>  (CostA * B.Width) < (CostB * A.Width)
5286   return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
5287 }
5288 
5289 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
5290     const ElementCountSet &VFCandidates) {
5291   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5292   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5293   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5294   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
5295          "Expected Scalar VF to be a candidate");
5296 
5297   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost,
5298                                        ExpectedCost);
5299   VectorizationFactor ChosenFactor = ScalarCost;
5300 
5301   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5302   if (ForceVectorization && VFCandidates.size() > 1) {
5303     // Ignore scalar width, because the user explicitly wants vectorization.
5304     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5305     // evaluation.
5306     ChosenFactor.Cost = InstructionCost::getMax();
5307   }
5308 
5309   SmallVector<InstructionVFPair> InvalidCosts;
5310   for (const auto &i : VFCandidates) {
5311     // The cost for scalar VF=1 is already calculated, so ignore it.
5312     if (i.isScalar())
5313       continue;
5314 
5315     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
5316     VectorizationFactor Candidate(i, C.first, ScalarCost.ScalarCost);
5317 
5318 #ifndef NDEBUG
5319     unsigned AssumedMinimumVscale = 1;
5320     if (Optional<unsigned> VScale = getVScaleForTuning())
5321       AssumedMinimumVscale = *VScale;
5322     unsigned Width =
5323         Candidate.Width.isScalable()
5324             ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
5325             : Candidate.Width.getFixedValue();
5326     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5327                       << " costs: " << (Candidate.Cost / Width));
5328     if (i.isScalable())
5329       LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
5330                         << AssumedMinimumVscale << ")");
5331     LLVM_DEBUG(dbgs() << ".\n");
5332 #endif
5333 
5334     if (!C.second && !ForceVectorization) {
5335       LLVM_DEBUG(
5336           dbgs() << "LV: Not considering vector loop of width " << i
5337                  << " because it will not generate any vector instructions.\n");
5338       continue;
5339     }
5340 
5341     // If profitable add it to ProfitableVF list.
5342     if (isMoreProfitable(Candidate, ScalarCost))
5343       ProfitableVFs.push_back(Candidate);
5344 
5345     if (isMoreProfitable(Candidate, ChosenFactor))
5346       ChosenFactor = Candidate;
5347   }
5348 
5349   // Emit a report of VFs with invalid costs in the loop.
5350   if (!InvalidCosts.empty()) {
5351     // Group the remarks per instruction, keeping the instruction order from
5352     // InvalidCosts.
5353     std::map<Instruction *, unsigned> Numbering;
5354     unsigned I = 0;
5355     for (auto &Pair : InvalidCosts)
5356       if (!Numbering.count(Pair.first))
5357         Numbering[Pair.first] = I++;
5358 
5359     // Sort the list, first on instruction(number) then on VF.
5360     llvm::sort(InvalidCosts,
5361                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
5362                  if (Numbering[A.first] != Numbering[B.first])
5363                    return Numbering[A.first] < Numbering[B.first];
5364                  ElementCountComparator ECC;
5365                  return ECC(A.second, B.second);
5366                });
5367 
5368     // For a list of ordered instruction-vf pairs:
5369     //   [(load, vf1), (load, vf2), (store, vf1)]
5370     // Group the instructions together to emit separate remarks for:
5371     //   load  (vf1, vf2)
5372     //   store (vf1)
5373     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
5374     auto Subset = ArrayRef<InstructionVFPair>();
5375     do {
5376       if (Subset.empty())
5377         Subset = Tail.take_front(1);
5378 
5379       Instruction *I = Subset.front().first;
5380 
5381       // If the next instruction is different, or if there are no other pairs,
5382       // emit a remark for the collated subset. e.g.
5383       //   [(load, vf1), (load, vf2))]
5384       // to emit:
5385       //  remark: invalid costs for 'load' at VF=(vf, vf2)
5386       if (Subset == Tail || Tail[Subset.size()].first != I) {
5387         std::string OutString;
5388         raw_string_ostream OS(OutString);
5389         assert(!Subset.empty() && "Unexpected empty range");
5390         OS << "Instruction with invalid costs prevented vectorization at VF=(";
5391         for (auto &Pair : Subset)
5392           OS << (Pair.second == Subset.front().second ? "" : ", ")
5393              << Pair.second;
5394         OS << "):";
5395         if (auto *CI = dyn_cast<CallInst>(I))
5396           OS << " call to " << CI->getCalledFunction()->getName();
5397         else
5398           OS << " " << I->getOpcodeName();
5399         OS.flush();
5400         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
5401         Tail = Tail.drop_front(Subset.size());
5402         Subset = {};
5403       } else
5404         // Grow the subset by one element
5405         Subset = Tail.take_front(Subset.size() + 1);
5406     } while (!Tail.empty());
5407   }
5408 
5409   if (!EnableCondStoresVectorization && NumPredStores) {
5410     reportVectorizationFailure("There are conditional stores.",
5411         "store that is conditionally executed prevents vectorization",
5412         "ConditionalStore", ORE, TheLoop);
5413     ChosenFactor = ScalarCost;
5414   }
5415 
5416   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
5417                  !isMoreProfitable(ChosenFactor, ScalarCost)) dbgs()
5418              << "LV: Vectorization seems to be not beneficial, "
5419              << "but was forced by a user.\n");
5420   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
5421   return ChosenFactor;
5422 }
5423 
5424 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
5425     const Loop &L, ElementCount VF) const {
5426   // Cross iteration phis such as reductions need special handling and are
5427   // currently unsupported.
5428   if (any_of(L.getHeader()->phis(),
5429              [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); }))
5430     return false;
5431 
5432   // Phis with uses outside of the loop require special handling and are
5433   // currently unsupported.
5434   for (auto &Entry : Legal->getInductionVars()) {
5435     // Look for uses of the value of the induction at the last iteration.
5436     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
5437     for (User *U : PostInc->users())
5438       if (!L.contains(cast<Instruction>(U)))
5439         return false;
5440     // Look for uses of penultimate value of the induction.
5441     for (User *U : Entry.first->users())
5442       if (!L.contains(cast<Instruction>(U)))
5443         return false;
5444   }
5445 
5446   // Induction variables that are widened require special handling that is
5447   // currently not supported.
5448   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
5449         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
5450                  this->isProfitableToScalarize(Entry.first, VF));
5451       }))
5452     return false;
5453 
5454   // Epilogue vectorization code has not been auditted to ensure it handles
5455   // non-latch exits properly.  It may be fine, but it needs auditted and
5456   // tested.
5457   if (L.getExitingBlock() != L.getLoopLatch())
5458     return false;
5459 
5460   return true;
5461 }
5462 
5463 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
5464     const ElementCount VF) const {
5465   // FIXME: We need a much better cost-model to take different parameters such
5466   // as register pressure, code size increase and cost of extra branches into
5467   // account. For now we apply a very crude heuristic and only consider loops
5468   // with vectorization factors larger than a certain value.
5469   // We also consider epilogue vectorization unprofitable for targets that don't
5470   // consider interleaving beneficial (eg. MVE).
5471   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
5472     return false;
5473   // FIXME: We should consider changing the threshold for scalable
5474   // vectors to take VScaleForTuning into account.
5475   if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF)
5476     return true;
5477   return false;
5478 }
5479 
5480 VectorizationFactor
5481 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
5482     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
5483   VectorizationFactor Result = VectorizationFactor::Disabled();
5484   if (!EnableEpilogueVectorization) {
5485     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
5486     return Result;
5487   }
5488 
5489   if (!isScalarEpilogueAllowed()) {
5490     LLVM_DEBUG(
5491         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
5492                   "allowed.\n";);
5493     return Result;
5494   }
5495 
5496   // Not really a cost consideration, but check for unsupported cases here to
5497   // simplify the logic.
5498   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
5499     LLVM_DEBUG(
5500         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
5501                   "not a supported candidate.\n";);
5502     return Result;
5503   }
5504 
5505   if (EpilogueVectorizationForceVF > 1) {
5506     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
5507     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
5508     if (LVP.hasPlanWithVF(ForcedEC))
5509       return {ForcedEC, 0, 0};
5510     else {
5511       LLVM_DEBUG(
5512           dbgs()
5513               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
5514       return Result;
5515     }
5516   }
5517 
5518   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
5519       TheLoop->getHeader()->getParent()->hasMinSize()) {
5520     LLVM_DEBUG(
5521         dbgs()
5522             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
5523     return Result;
5524   }
5525 
5526   if (!isEpilogueVectorizationProfitable(MainLoopVF)) {
5527     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
5528                          "this loop\n");
5529     return Result;
5530   }
5531 
5532   // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
5533   // the main loop handles 8 lanes per iteration. We could still benefit from
5534   // vectorizing the epilogue loop with VF=4.
5535   ElementCount EstimatedRuntimeVF = MainLoopVF;
5536   if (MainLoopVF.isScalable()) {
5537     EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
5538     if (Optional<unsigned> VScale = getVScaleForTuning())
5539       EstimatedRuntimeVF *= *VScale;
5540   }
5541 
5542   for (auto &NextVF : ProfitableVFs)
5543     if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
5544           ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) ||
5545          ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) &&
5546         (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) &&
5547         LVP.hasPlanWithVF(NextVF.Width))
5548       Result = NextVF;
5549 
5550   if (Result != VectorizationFactor::Disabled())
5551     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
5552                       << Result.Width << "\n";);
5553   return Result;
5554 }
5555 
5556 std::pair<unsigned, unsigned>
5557 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5558   unsigned MinWidth = -1U;
5559   unsigned MaxWidth = 8;
5560   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5561   // For in-loop reductions, no element types are added to ElementTypesInLoop
5562   // if there are no loads/stores in the loop. In this case, check through the
5563   // reduction variables to determine the maximum width.
5564   if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
5565     // Reset MaxWidth so that we can find the smallest type used by recurrences
5566     // in the loop.
5567     MaxWidth = -1U;
5568     for (auto &PhiDescriptorPair : Legal->getReductionVars()) {
5569       const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
5570       // When finding the min width used by the recurrence we need to account
5571       // for casts on the input operands of the recurrence.
5572       MaxWidth = std::min<unsigned>(
5573           MaxWidth, std::min<unsigned>(
5574                         RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
5575                         RdxDesc.getRecurrenceType()->getScalarSizeInBits()));
5576     }
5577   } else {
5578     for (Type *T : ElementTypesInLoop) {
5579       MinWidth = std::min<unsigned>(
5580           MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5581       MaxWidth = std::max<unsigned>(
5582           MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5583     }
5584   }
5585   return {MinWidth, MaxWidth};
5586 }
5587 
5588 void LoopVectorizationCostModel::collectElementTypesForWidening() {
5589   ElementTypesInLoop.clear();
5590   // For each block.
5591   for (BasicBlock *BB : TheLoop->blocks()) {
5592     // For each instruction in the loop.
5593     for (Instruction &I : BB->instructionsWithoutDebug()) {
5594       Type *T = I.getType();
5595 
5596       // Skip ignored values.
5597       if (ValuesToIgnore.count(&I))
5598         continue;
5599 
5600       // Only examine Loads, Stores and PHINodes.
5601       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5602         continue;
5603 
5604       // Examine PHI nodes that are reduction variables. Update the type to
5605       // account for the recurrence type.
5606       if (auto *PN = dyn_cast<PHINode>(&I)) {
5607         if (!Legal->isReductionVariable(PN))
5608           continue;
5609         const RecurrenceDescriptor &RdxDesc =
5610             Legal->getReductionVars().find(PN)->second;
5611         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
5612             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
5613                                       RdxDesc.getRecurrenceType(),
5614                                       TargetTransformInfo::ReductionFlags()))
5615           continue;
5616         T = RdxDesc.getRecurrenceType();
5617       }
5618 
5619       // Examine the stored values.
5620       if (auto *ST = dyn_cast<StoreInst>(&I))
5621         T = ST->getValueOperand()->getType();
5622 
5623       assert(T->isSized() &&
5624              "Expected the load/store/recurrence type to be sized");
5625 
5626       ElementTypesInLoop.insert(T);
5627     }
5628   }
5629 }
5630 
5631 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
5632                                                            unsigned LoopCost) {
5633   // -- The interleave heuristics --
5634   // We interleave the loop in order to expose ILP and reduce the loop overhead.
5635   // There are many micro-architectural considerations that we can't predict
5636   // at this level. For example, frontend pressure (on decode or fetch) due to
5637   // code size, or the number and capabilities of the execution ports.
5638   //
5639   // We use the following heuristics to select the interleave count:
5640   // 1. If the code has reductions, then we interleave to break the cross
5641   // iteration dependency.
5642   // 2. If the loop is really small, then we interleave to reduce the loop
5643   // overhead.
5644   // 3. We don't interleave if we think that we will spill registers to memory
5645   // due to the increased register pressure.
5646 
5647   if (!isScalarEpilogueAllowed())
5648     return 1;
5649 
5650   // We used the distance for the interleave count.
5651   if (Legal->getMaxSafeDepDistBytes() != -1U)
5652     return 1;
5653 
5654   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
5655   const bool HasReductions = !Legal->getReductionVars().empty();
5656   // Do not interleave loops with a relatively small known or estimated trip
5657   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
5658   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
5659   // because with the above conditions interleaving can expose ILP and break
5660   // cross iteration dependences for reductions.
5661   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
5662       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
5663     return 1;
5664 
5665   // If we did not calculate the cost for VF (because the user selected the VF)
5666   // then we calculate the cost of VF here.
5667   if (LoopCost == 0) {
5668     InstructionCost C = expectedCost(VF).first;
5669     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
5670     LoopCost = *C.getValue();
5671 
5672     // Loop body is free and there is no need for interleaving.
5673     if (LoopCost == 0)
5674       return 1;
5675   }
5676 
5677   RegisterUsage R = calculateRegisterUsage({VF})[0];
5678   // We divide by these constants so assume that we have at least one
5679   // instruction that uses at least one register.
5680   for (auto& pair : R.MaxLocalUsers) {
5681     pair.second = std::max(pair.second, 1U);
5682   }
5683 
5684   // We calculate the interleave count using the following formula.
5685   // Subtract the number of loop invariants from the number of available
5686   // registers. These registers are used by all of the interleaved instances.
5687   // Next, divide the remaining registers by the number of registers that is
5688   // required by the loop, in order to estimate how many parallel instances
5689   // fit without causing spills. All of this is rounded down if necessary to be
5690   // a power of two. We want power of two interleave count to simplify any
5691   // addressing operations or alignment considerations.
5692   // We also want power of two interleave counts to ensure that the induction
5693   // variable of the vector loop wraps to zero, when tail is folded by masking;
5694   // this currently happens when OptForSize, in which case IC is set to 1 above.
5695   unsigned IC = UINT_MAX;
5696 
5697   for (auto& pair : R.MaxLocalUsers) {
5698     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5699     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
5700                       << " registers of "
5701                       << TTI.getRegisterClassName(pair.first) << " register class\n");
5702     if (VF.isScalar()) {
5703       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5704         TargetNumRegisters = ForceTargetNumScalarRegs;
5705     } else {
5706       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5707         TargetNumRegisters = ForceTargetNumVectorRegs;
5708     }
5709     unsigned MaxLocalUsers = pair.second;
5710     unsigned LoopInvariantRegs = 0;
5711     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
5712       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
5713 
5714     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
5715     // Don't count the induction variable as interleaved.
5716     if (EnableIndVarRegisterHeur) {
5717       TmpIC =
5718           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
5719                         std::max(1U, (MaxLocalUsers - 1)));
5720     }
5721 
5722     IC = std::min(IC, TmpIC);
5723   }
5724 
5725   // Clamp the interleave ranges to reasonable counts.
5726   unsigned MaxInterleaveCount =
5727       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
5728 
5729   // Check if the user has overridden the max.
5730   if (VF.isScalar()) {
5731     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5732       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
5733   } else {
5734     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5735       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
5736   }
5737 
5738   // If trip count is known or estimated compile time constant, limit the
5739   // interleave count to be less than the trip count divided by VF, provided it
5740   // is at least 1.
5741   //
5742   // For scalable vectors we can't know if interleaving is beneficial. It may
5743   // not be beneficial for small loops if none of the lanes in the second vector
5744   // iterations is enabled. However, for larger loops, there is likely to be a
5745   // similar benefit as for fixed-width vectors. For now, we choose to leave
5746   // the InterleaveCount as if vscale is '1', although if some information about
5747   // the vector is known (e.g. min vector size), we can make a better decision.
5748   if (BestKnownTC) {
5749     MaxInterleaveCount =
5750         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
5751     // Make sure MaxInterleaveCount is greater than 0.
5752     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
5753   }
5754 
5755   assert(MaxInterleaveCount > 0 &&
5756          "Maximum interleave count must be greater than 0");
5757 
5758   // Clamp the calculated IC to be between the 1 and the max interleave count
5759   // that the target and trip count allows.
5760   if (IC > MaxInterleaveCount)
5761     IC = MaxInterleaveCount;
5762   else
5763     // Make sure IC is greater than 0.
5764     IC = std::max(1u, IC);
5765 
5766   assert(IC > 0 && "Interleave count must be greater than 0.");
5767 
5768   // Interleave if we vectorized this loop and there is a reduction that could
5769   // benefit from interleaving.
5770   if (VF.isVector() && HasReductions) {
5771     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5772     return IC;
5773   }
5774 
5775   // For any scalar loop that either requires runtime checks or predication we
5776   // are better off leaving this to the unroller. Note that if we've already
5777   // vectorized the loop we will have done the runtime check and so interleaving
5778   // won't require further checks.
5779   bool ScalarInterleavingRequiresPredication =
5780       (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) {
5781          return Legal->blockNeedsPredication(BB);
5782        }));
5783   bool ScalarInterleavingRequiresRuntimePointerCheck =
5784       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
5785 
5786   // We want to interleave small loops in order to reduce the loop overhead and
5787   // potentially expose ILP opportunities.
5788   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
5789                     << "LV: IC is " << IC << '\n'
5790                     << "LV: VF is " << VF << '\n');
5791   const bool AggressivelyInterleaveReductions =
5792       TTI.enableAggressiveInterleaving(HasReductions);
5793   if (!ScalarInterleavingRequiresRuntimePointerCheck &&
5794       !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
5795     // We assume that the cost overhead is 1 and we use the cost model
5796     // to estimate the cost of the loop and interleave until the cost of the
5797     // loop overhead is about 5% of the cost of the loop.
5798     unsigned SmallIC =
5799         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5800 
5801     // Interleave until store/load ports (estimated by max interleave count) are
5802     // saturated.
5803     unsigned NumStores = Legal->getNumStores();
5804     unsigned NumLoads = Legal->getNumLoads();
5805     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5806     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5807 
5808     // There is little point in interleaving for reductions containing selects
5809     // and compares when VF=1 since it may just create more overhead than it's
5810     // worth for loops with small trip counts. This is because we still have to
5811     // do the final reduction after the loop.
5812     bool HasSelectCmpReductions =
5813         HasReductions &&
5814         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
5815           const RecurrenceDescriptor &RdxDesc = Reduction.second;
5816           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
5817               RdxDesc.getRecurrenceKind());
5818         });
5819     if (HasSelectCmpReductions) {
5820       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
5821       return 1;
5822     }
5823 
5824     // If we have a scalar reduction (vector reductions are already dealt with
5825     // by this point), we can increase the critical path length if the loop
5826     // we're interleaving is inside another loop. For tree-wise reductions
5827     // set the limit to 2, and for ordered reductions it's best to disable
5828     // interleaving entirely.
5829     if (HasReductions && TheLoop->getLoopDepth() > 1) {
5830       bool HasOrderedReductions =
5831           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
5832             const RecurrenceDescriptor &RdxDesc = Reduction.second;
5833             return RdxDesc.isOrdered();
5834           });
5835       if (HasOrderedReductions) {
5836         LLVM_DEBUG(
5837             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
5838         return 1;
5839       }
5840 
5841       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5842       SmallIC = std::min(SmallIC, F);
5843       StoresIC = std::min(StoresIC, F);
5844       LoadsIC = std::min(LoadsIC, F);
5845     }
5846 
5847     if (EnableLoadStoreRuntimeInterleave &&
5848         std::max(StoresIC, LoadsIC) > SmallIC) {
5849       LLVM_DEBUG(
5850           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
5851       return std::max(StoresIC, LoadsIC);
5852     }
5853 
5854     // If there are scalar reductions and TTI has enabled aggressive
5855     // interleaving for reductions, we will interleave to expose ILP.
5856     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
5857         AggressivelyInterleaveReductions) {
5858       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5859       // Interleave no less than SmallIC but not as aggressive as the normal IC
5860       // to satisfy the rare situation when resources are too limited.
5861       return std::max(IC / 2, SmallIC);
5862     } else {
5863       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
5864       return SmallIC;
5865     }
5866   }
5867 
5868   // Interleave if this is a large loop (small loops are already dealt with by
5869   // this point) that could benefit from interleaving.
5870   if (AggressivelyInterleaveReductions) {
5871     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5872     return IC;
5873   }
5874 
5875   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
5876   return 1;
5877 }
5878 
5879 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
5880 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
5881   // This function calculates the register usage by measuring the highest number
5882   // of values that are alive at a single location. Obviously, this is a very
5883   // rough estimation. We scan the loop in a topological order in order and
5884   // assign a number to each instruction. We use RPO to ensure that defs are
5885   // met before their users. We assume that each instruction that has in-loop
5886   // users starts an interval. We record every time that an in-loop value is
5887   // used, so we have a list of the first and last occurrences of each
5888   // instruction. Next, we transpose this data structure into a multi map that
5889   // holds the list of intervals that *end* at a specific location. This multi
5890   // map allows us to perform a linear search. We scan the instructions linearly
5891   // and record each time that a new interval starts, by placing it in a set.
5892   // If we find this value in the multi-map then we remove it from the set.
5893   // The max register usage is the maximum size of the set.
5894   // We also search for instructions that are defined outside the loop, but are
5895   // used inside the loop. We need this number separately from the max-interval
5896   // usage number because when we unroll, loop-invariant values do not take
5897   // more register.
5898   LoopBlocksDFS DFS(TheLoop);
5899   DFS.perform(LI);
5900 
5901   RegisterUsage RU;
5902 
5903   // Each 'key' in the map opens a new interval. The values
5904   // of the map are the index of the 'last seen' usage of the
5905   // instruction that is the key.
5906   using IntervalMap = DenseMap<Instruction *, unsigned>;
5907 
5908   // Maps instruction to its index.
5909   SmallVector<Instruction *, 64> IdxToInstr;
5910   // Marks the end of each interval.
5911   IntervalMap EndPoint;
5912   // Saves the list of instruction indices that are used in the loop.
5913   SmallPtrSet<Instruction *, 8> Ends;
5914   // Saves the list of values that are used in the loop but are
5915   // defined outside the loop, such as arguments and constants.
5916   SmallPtrSet<Value *, 8> LoopInvariants;
5917 
5918   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
5919     for (Instruction &I : BB->instructionsWithoutDebug()) {
5920       IdxToInstr.push_back(&I);
5921 
5922       // Save the end location of each USE.
5923       for (Value *U : I.operands()) {
5924         auto *Instr = dyn_cast<Instruction>(U);
5925 
5926         // Ignore non-instruction values such as arguments, constants, etc.
5927         if (!Instr)
5928           continue;
5929 
5930         // If this instruction is outside the loop then record it and continue.
5931         if (!TheLoop->contains(Instr)) {
5932           LoopInvariants.insert(Instr);
5933           continue;
5934         }
5935 
5936         // Overwrite previous end points.
5937         EndPoint[Instr] = IdxToInstr.size();
5938         Ends.insert(Instr);
5939       }
5940     }
5941   }
5942 
5943   // Saves the list of intervals that end with the index in 'key'.
5944   using InstrList = SmallVector<Instruction *, 2>;
5945   DenseMap<unsigned, InstrList> TransposeEnds;
5946 
5947   // Transpose the EndPoints to a list of values that end at each index.
5948   for (auto &Interval : EndPoint)
5949     TransposeEnds[Interval.second].push_back(Interval.first);
5950 
5951   SmallPtrSet<Instruction *, 8> OpenIntervals;
5952   SmallVector<RegisterUsage, 8> RUs(VFs.size());
5953   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
5954 
5955   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5956 
5957   const auto &TTICapture = TTI;
5958   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
5959     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
5960       return 0;
5961     return TTICapture.getRegUsageForType(VectorType::get(Ty, VF));
5962   };
5963 
5964   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
5965     Instruction *I = IdxToInstr[i];
5966 
5967     // Remove all of the instructions that end at this location.
5968     InstrList &List = TransposeEnds[i];
5969     for (Instruction *ToRemove : List)
5970       OpenIntervals.erase(ToRemove);
5971 
5972     // Ignore instructions that are never used within the loop.
5973     if (!Ends.count(I))
5974       continue;
5975 
5976     // Skip ignored values.
5977     if (ValuesToIgnore.count(I))
5978       continue;
5979 
5980     // For each VF find the maximum usage of registers.
5981     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
5982       // Count the number of live intervals.
5983       SmallMapVector<unsigned, unsigned, 4> RegUsage;
5984 
5985       if (VFs[j].isScalar()) {
5986         for (auto Inst : OpenIntervals) {
5987           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
5988           if (RegUsage.find(ClassID) == RegUsage.end())
5989             RegUsage[ClassID] = 1;
5990           else
5991             RegUsage[ClassID] += 1;
5992         }
5993       } else {
5994         collectUniformsAndScalars(VFs[j]);
5995         for (auto Inst : OpenIntervals) {
5996           // Skip ignored values for VF > 1.
5997           if (VecValuesToIgnore.count(Inst))
5998             continue;
5999           if (isScalarAfterVectorization(Inst, VFs[j])) {
6000             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6001             if (RegUsage.find(ClassID) == RegUsage.end())
6002               RegUsage[ClassID] = 1;
6003             else
6004               RegUsage[ClassID] += 1;
6005           } else {
6006             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6007             if (RegUsage.find(ClassID) == RegUsage.end())
6008               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6009             else
6010               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6011           }
6012         }
6013       }
6014 
6015       for (auto& pair : RegUsage) {
6016         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6017           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6018         else
6019           MaxUsages[j][pair.first] = pair.second;
6020       }
6021     }
6022 
6023     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6024                       << OpenIntervals.size() << '\n');
6025 
6026     // Add the current instruction to the list of open intervals.
6027     OpenIntervals.insert(I);
6028   }
6029 
6030   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6031     SmallMapVector<unsigned, unsigned, 4> Invariant;
6032 
6033     for (auto Inst : LoopInvariants) {
6034       unsigned Usage =
6035           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6036       unsigned ClassID =
6037           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6038       if (Invariant.find(ClassID) == Invariant.end())
6039         Invariant[ClassID] = Usage;
6040       else
6041         Invariant[ClassID] += Usage;
6042     }
6043 
6044     LLVM_DEBUG({
6045       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6046       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6047              << " item\n";
6048       for (const auto &pair : MaxUsages[i]) {
6049         dbgs() << "LV(REG): RegisterClass: "
6050                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6051                << " registers\n";
6052       }
6053       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6054              << " item\n";
6055       for (const auto &pair : Invariant) {
6056         dbgs() << "LV(REG): RegisterClass: "
6057                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6058                << " registers\n";
6059       }
6060     });
6061 
6062     RU.LoopInvariantRegs = Invariant;
6063     RU.MaxLocalUsers = MaxUsages[i];
6064     RUs[i] = RU;
6065   }
6066 
6067   return RUs;
6068 }
6069 
6070 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
6071                                                            ElementCount VF) {
6072   // TODO: Cost model for emulated masked load/store is completely
6073   // broken. This hack guides the cost model to use an artificially
6074   // high enough value to practically disable vectorization with such
6075   // operations, except where previously deployed legality hack allowed
6076   // using very low cost values. This is to avoid regressions coming simply
6077   // from moving "masked load/store" check from legality to cost model.
6078   // Masked Load/Gather emulation was previously never allowed.
6079   // Limited number of Masked Store/Scatter emulation was allowed.
6080   assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction");
6081   return isa<LoadInst>(I) ||
6082          (isa<StoreInst>(I) &&
6083           NumPredStores > NumberOfStoresToPredicate);
6084 }
6085 
6086 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6087   // If we aren't vectorizing the loop, or if we've already collected the
6088   // instructions to scalarize, there's nothing to do. Collection may already
6089   // have occurred if we have a user-selected VF and are now computing the
6090   // expected cost for interleaving.
6091   if (VF.isScalar() || VF.isZero() ||
6092       InstsToScalarize.find(VF) != InstsToScalarize.end())
6093     return;
6094 
6095   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6096   // not profitable to scalarize any instructions, the presence of VF in the
6097   // map will indicate that we've analyzed it already.
6098   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6099 
6100   PredicatedBBsAfterVectorization[VF].clear();
6101 
6102   // Find all the instructions that are scalar with predication in the loop and
6103   // determine if it would be better to not if-convert the blocks they are in.
6104   // If so, we also record the instructions to scalarize.
6105   for (BasicBlock *BB : TheLoop->blocks()) {
6106     if (!blockNeedsPredicationForAnyReason(BB))
6107       continue;
6108     for (Instruction &I : *BB)
6109       if (isScalarWithPredication(&I, VF)) {
6110         ScalarCostsTy ScalarCosts;
6111         // Do not apply discount if scalable, because that would lead to
6112         // invalid scalarization costs.
6113         // Do not apply discount logic if hacked cost is needed
6114         // for emulated masked memrefs.
6115         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) &&
6116             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6117           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6118         // Remember that BB will remain after vectorization.
6119         PredicatedBBsAfterVectorization[VF].insert(BB);
6120       }
6121   }
6122 }
6123 
6124 int LoopVectorizationCostModel::computePredInstDiscount(
6125     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6126   assert(!isUniformAfterVectorization(PredInst, VF) &&
6127          "Instruction marked uniform-after-vectorization will be predicated");
6128 
6129   // Initialize the discount to zero, meaning that the scalar version and the
6130   // vector version cost the same.
6131   InstructionCost Discount = 0;
6132 
6133   // Holds instructions to analyze. The instructions we visit are mapped in
6134   // ScalarCosts. Those instructions are the ones that would be scalarized if
6135   // we find that the scalar version costs less.
6136   SmallVector<Instruction *, 8> Worklist;
6137 
6138   // Returns true if the given instruction can be scalarized.
6139   auto canBeScalarized = [&](Instruction *I) -> bool {
6140     // We only attempt to scalarize instructions forming a single-use chain
6141     // from the original predicated block that would otherwise be vectorized.
6142     // Although not strictly necessary, we give up on instructions we know will
6143     // already be scalar to avoid traversing chains that are unlikely to be
6144     // beneficial.
6145     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6146         isScalarAfterVectorization(I, VF))
6147       return false;
6148 
6149     // If the instruction is scalar with predication, it will be analyzed
6150     // separately. We ignore it within the context of PredInst.
6151     if (isScalarWithPredication(I, VF))
6152       return false;
6153 
6154     // If any of the instruction's operands are uniform after vectorization,
6155     // the instruction cannot be scalarized. This prevents, for example, a
6156     // masked load from being scalarized.
6157     //
6158     // We assume we will only emit a value for lane zero of an instruction
6159     // marked uniform after vectorization, rather than VF identical values.
6160     // Thus, if we scalarize an instruction that uses a uniform, we would
6161     // create uses of values corresponding to the lanes we aren't emitting code
6162     // for. This behavior can be changed by allowing getScalarValue to clone
6163     // the lane zero values for uniforms rather than asserting.
6164     for (Use &U : I->operands())
6165       if (auto *J = dyn_cast<Instruction>(U.get()))
6166         if (isUniformAfterVectorization(J, VF))
6167           return false;
6168 
6169     // Otherwise, we can scalarize the instruction.
6170     return true;
6171   };
6172 
6173   // Compute the expected cost discount from scalarizing the entire expression
6174   // feeding the predicated instruction. We currently only consider expressions
6175   // that are single-use instruction chains.
6176   Worklist.push_back(PredInst);
6177   while (!Worklist.empty()) {
6178     Instruction *I = Worklist.pop_back_val();
6179 
6180     // If we've already analyzed the instruction, there's nothing to do.
6181     if (ScalarCosts.find(I) != ScalarCosts.end())
6182       continue;
6183 
6184     // Compute the cost of the vector instruction. Note that this cost already
6185     // includes the scalarization overhead of the predicated instruction.
6186     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6187 
6188     // Compute the cost of the scalarized instruction. This cost is the cost of
6189     // the instruction as if it wasn't if-converted and instead remained in the
6190     // predicated block. We will scale this cost by block probability after
6191     // computing the scalarization overhead.
6192     InstructionCost ScalarCost =
6193         VF.getFixedValue() *
6194         getInstructionCost(I, ElementCount::getFixed(1)).first;
6195 
6196     // Compute the scalarization overhead of needed insertelement instructions
6197     // and phi nodes.
6198     if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
6199       ScalarCost += TTI.getScalarizationOverhead(
6200           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6201           APInt::getAllOnes(VF.getFixedValue()), true, false);
6202       ScalarCost +=
6203           VF.getFixedValue() *
6204           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6205     }
6206 
6207     // Compute the scalarization overhead of needed extractelement
6208     // instructions. For each of the instruction's operands, if the operand can
6209     // be scalarized, add it to the worklist; otherwise, account for the
6210     // overhead.
6211     for (Use &U : I->operands())
6212       if (auto *J = dyn_cast<Instruction>(U.get())) {
6213         assert(VectorType::isValidElementType(J->getType()) &&
6214                "Instruction has non-scalar type");
6215         if (canBeScalarized(J))
6216           Worklist.push_back(J);
6217         else if (needsExtract(J, VF)) {
6218           ScalarCost += TTI.getScalarizationOverhead(
6219               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6220               APInt::getAllOnes(VF.getFixedValue()), false, true);
6221         }
6222       }
6223 
6224     // Scale the total scalar cost by block probability.
6225     ScalarCost /= getReciprocalPredBlockProb();
6226 
6227     // Compute the discount. A non-negative discount means the vector version
6228     // of the instruction costs more, and scalarizing would be beneficial.
6229     Discount += VectorCost - ScalarCost;
6230     ScalarCosts[I] = ScalarCost;
6231   }
6232 
6233   return *Discount.getValue();
6234 }
6235 
6236 LoopVectorizationCostModel::VectorizationCostTy
6237 LoopVectorizationCostModel::expectedCost(
6238     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6239   VectorizationCostTy Cost;
6240 
6241   // For each block.
6242   for (BasicBlock *BB : TheLoop->blocks()) {
6243     VectorizationCostTy BlockCost;
6244 
6245     // For each instruction in the old loop.
6246     for (Instruction &I : BB->instructionsWithoutDebug()) {
6247       // Skip ignored values.
6248       if (ValuesToIgnore.count(&I) ||
6249           (VF.isVector() && VecValuesToIgnore.count(&I)))
6250         continue;
6251 
6252       VectorizationCostTy C = getInstructionCost(&I, VF);
6253 
6254       // Check if we should override the cost.
6255       if (C.first.isValid() &&
6256           ForceTargetInstructionCost.getNumOccurrences() > 0)
6257         C.first = InstructionCost(ForceTargetInstructionCost);
6258 
6259       // Keep a list of instructions with invalid costs.
6260       if (Invalid && !C.first.isValid())
6261         Invalid->emplace_back(&I, VF);
6262 
6263       BlockCost.first += C.first;
6264       BlockCost.second |= C.second;
6265       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6266                         << " for VF " << VF << " For instruction: " << I
6267                         << '\n');
6268     }
6269 
6270     // If we are vectorizing a predicated block, it will have been
6271     // if-converted. This means that the block's instructions (aside from
6272     // stores and instructions that may divide by zero) will now be
6273     // unconditionally executed. For the scalar case, we may not always execute
6274     // the predicated block, if it is an if-else block. Thus, scale the block's
6275     // cost by the probability of executing it. blockNeedsPredication from
6276     // Legal is used so as to not include all blocks in tail folded loops.
6277     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6278       BlockCost.first /= getReciprocalPredBlockProb();
6279 
6280     Cost.first += BlockCost.first;
6281     Cost.second |= BlockCost.second;
6282   }
6283 
6284   return Cost;
6285 }
6286 
6287 /// Gets Address Access SCEV after verifying that the access pattern
6288 /// is loop invariant except the induction variable dependence.
6289 ///
6290 /// This SCEV can be sent to the Target in order to estimate the address
6291 /// calculation cost.
6292 static const SCEV *getAddressAccessSCEV(
6293               Value *Ptr,
6294               LoopVectorizationLegality *Legal,
6295               PredicatedScalarEvolution &PSE,
6296               const Loop *TheLoop) {
6297 
6298   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6299   if (!Gep)
6300     return nullptr;
6301 
6302   // We are looking for a gep with all loop invariant indices except for one
6303   // which should be an induction variable.
6304   auto SE = PSE.getSE();
6305   unsigned NumOperands = Gep->getNumOperands();
6306   for (unsigned i = 1; i < NumOperands; ++i) {
6307     Value *Opd = Gep->getOperand(i);
6308     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6309         !Legal->isInductionVariable(Opd))
6310       return nullptr;
6311   }
6312 
6313   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6314   return PSE.getSCEV(Ptr);
6315 }
6316 
6317 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6318   return Legal->hasStride(I->getOperand(0)) ||
6319          Legal->hasStride(I->getOperand(1));
6320 }
6321 
6322 InstructionCost
6323 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6324                                                         ElementCount VF) {
6325   assert(VF.isVector() &&
6326          "Scalarization cost of instruction implies vectorization.");
6327   if (VF.isScalable())
6328     return InstructionCost::getInvalid();
6329 
6330   Type *ValTy = getLoadStoreType(I);
6331   auto SE = PSE.getSE();
6332 
6333   unsigned AS = getLoadStoreAddressSpace(I);
6334   Value *Ptr = getLoadStorePointerOperand(I);
6335   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6336   // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
6337   //       that it is being called from this specific place.
6338 
6339   // Figure out whether the access is strided and get the stride value
6340   // if it's known in compile time
6341   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6342 
6343   // Get the cost of the scalar memory instruction and address computation.
6344   InstructionCost Cost =
6345       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6346 
6347   // Don't pass *I here, since it is scalar but will actually be part of a
6348   // vectorized loop where the user of it is a vectorized instruction.
6349   const Align Alignment = getLoadStoreAlignment(I);
6350   Cost += VF.getKnownMinValue() *
6351           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6352                               AS, TTI::TCK_RecipThroughput);
6353 
6354   // Get the overhead of the extractelement and insertelement instructions
6355   // we might create due to scalarization.
6356   Cost += getScalarizationOverhead(I, VF);
6357 
6358   // If we have a predicated load/store, it will need extra i1 extracts and
6359   // conditional branches, but may not be executed for each vector lane. Scale
6360   // the cost by the probability of executing the predicated block.
6361   if (isPredicatedInst(I, VF)) {
6362     Cost /= getReciprocalPredBlockProb();
6363 
6364     // Add the cost of an i1 extract and a branch
6365     auto *Vec_i1Ty =
6366         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6367     Cost += TTI.getScalarizationOverhead(
6368         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
6369         /*Insert=*/false, /*Extract=*/true);
6370     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6371 
6372     if (useEmulatedMaskMemRefHack(I, VF))
6373       // Artificially setting to a high enough value to practically disable
6374       // vectorization with such operations.
6375       Cost = 3000000;
6376   }
6377 
6378   return Cost;
6379 }
6380 
6381 InstructionCost
6382 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6383                                                     ElementCount VF) {
6384   Type *ValTy = getLoadStoreType(I);
6385   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6386   Value *Ptr = getLoadStorePointerOperand(I);
6387   unsigned AS = getLoadStoreAddressSpace(I);
6388   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
6389   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6390 
6391   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6392          "Stride should be 1 or -1 for consecutive memory access");
6393   const Align Alignment = getLoadStoreAlignment(I);
6394   InstructionCost Cost = 0;
6395   if (Legal->isMaskRequired(I))
6396     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6397                                       CostKind);
6398   else
6399     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6400                                 CostKind, I);
6401 
6402   bool Reverse = ConsecutiveStride < 0;
6403   if (Reverse)
6404     Cost +=
6405         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6406   return Cost;
6407 }
6408 
6409 InstructionCost
6410 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6411                                                 ElementCount VF) {
6412   assert(Legal->isUniformMemOp(*I));
6413 
6414   Type *ValTy = getLoadStoreType(I);
6415   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6416   const Align Alignment = getLoadStoreAlignment(I);
6417   unsigned AS = getLoadStoreAddressSpace(I);
6418   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6419   if (isa<LoadInst>(I)) {
6420     return TTI.getAddressComputationCost(ValTy) +
6421            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6422                                CostKind) +
6423            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6424   }
6425   StoreInst *SI = cast<StoreInst>(I);
6426 
6427   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6428   return TTI.getAddressComputationCost(ValTy) +
6429          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6430                              CostKind) +
6431          (isLoopInvariantStoreValue
6432               ? 0
6433               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6434                                        VF.getKnownMinValue() - 1));
6435 }
6436 
6437 InstructionCost
6438 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6439                                                  ElementCount VF) {
6440   Type *ValTy = getLoadStoreType(I);
6441   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6442   const Align Alignment = getLoadStoreAlignment(I);
6443   const Value *Ptr = getLoadStorePointerOperand(I);
6444 
6445   return TTI.getAddressComputationCost(VectorTy) +
6446          TTI.getGatherScatterOpCost(
6447              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6448              TargetTransformInfo::TCK_RecipThroughput, I);
6449 }
6450 
6451 InstructionCost
6452 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6453                                                    ElementCount VF) {
6454   // TODO: Once we have support for interleaving with scalable vectors
6455   // we can calculate the cost properly here.
6456   if (VF.isScalable())
6457     return InstructionCost::getInvalid();
6458 
6459   Type *ValTy = getLoadStoreType(I);
6460   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6461   unsigned AS = getLoadStoreAddressSpace(I);
6462 
6463   auto Group = getInterleavedAccessGroup(I);
6464   assert(Group && "Fail to get an interleaved access group.");
6465 
6466   unsigned InterleaveFactor = Group->getFactor();
6467   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6468 
6469   // Holds the indices of existing members in the interleaved group.
6470   SmallVector<unsigned, 4> Indices;
6471   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
6472     if (Group->getMember(IF))
6473       Indices.push_back(IF);
6474 
6475   // Calculate the cost of the whole interleaved group.
6476   bool UseMaskForGaps =
6477       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
6478       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
6479   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
6480       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6481       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6482 
6483   if (Group->isReverse()) {
6484     // TODO: Add support for reversed masked interleaved access.
6485     assert(!Legal->isMaskRequired(I) &&
6486            "Reverse masked interleaved access not supported.");
6487     Cost +=
6488         Group->getNumMembers() *
6489         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6490   }
6491   return Cost;
6492 }
6493 
6494 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
6495     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
6496   using namespace llvm::PatternMatch;
6497   // Early exit for no inloop reductions
6498   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
6499     return None;
6500   auto *VectorTy = cast<VectorType>(Ty);
6501 
6502   // We are looking for a pattern of, and finding the minimal acceptable cost:
6503   //  reduce(mul(ext(A), ext(B))) or
6504   //  reduce(mul(A, B)) or
6505   //  reduce(ext(A)) or
6506   //  reduce(A).
6507   // The basic idea is that we walk down the tree to do that, finding the root
6508   // reduction instruction in InLoopReductionImmediateChains. From there we find
6509   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
6510   // of the components. If the reduction cost is lower then we return it for the
6511   // reduction instruction and 0 for the other instructions in the pattern. If
6512   // it is not we return an invalid cost specifying the orignal cost method
6513   // should be used.
6514   Instruction *RetI = I;
6515   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
6516     if (!RetI->hasOneUser())
6517       return None;
6518     RetI = RetI->user_back();
6519   }
6520   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
6521       RetI->user_back()->getOpcode() == Instruction::Add) {
6522     if (!RetI->hasOneUser())
6523       return None;
6524     RetI = RetI->user_back();
6525   }
6526 
6527   // Test if the found instruction is a reduction, and if not return an invalid
6528   // cost specifying the parent to use the original cost modelling.
6529   if (!InLoopReductionImmediateChains.count(RetI))
6530     return None;
6531 
6532   // Find the reduction this chain is a part of and calculate the basic cost of
6533   // the reduction on its own.
6534   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
6535   Instruction *ReductionPhi = LastChain;
6536   while (!isa<PHINode>(ReductionPhi))
6537     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
6538 
6539   const RecurrenceDescriptor &RdxDesc =
6540       Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second;
6541 
6542   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
6543       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
6544 
6545   // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
6546   // normal fmul instruction to the cost of the fadd reduction.
6547   if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd)
6548     BaseCost +=
6549         TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
6550 
6551   // If we're using ordered reductions then we can just return the base cost
6552   // here, since getArithmeticReductionCost calculates the full ordered
6553   // reduction cost when FP reassociation is not allowed.
6554   if (useOrderedReductions(RdxDesc))
6555     return BaseCost;
6556 
6557   // Get the operand that was not the reduction chain and match it to one of the
6558   // patterns, returning the better cost if it is found.
6559   Instruction *RedOp = RetI->getOperand(1) == LastChain
6560                            ? dyn_cast<Instruction>(RetI->getOperand(0))
6561                            : dyn_cast<Instruction>(RetI->getOperand(1));
6562 
6563   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
6564 
6565   Instruction *Op0, *Op1;
6566   if (RedOp &&
6567       match(RedOp,
6568             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
6569       match(Op0, m_ZExtOrSExt(m_Value())) &&
6570       Op0->getOpcode() == Op1->getOpcode() &&
6571       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
6572       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
6573       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
6574 
6575     // Matched reduce(ext(mul(ext(A), ext(B)))
6576     // Note that the extend opcodes need to all match, or if A==B they will have
6577     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
6578     // which is equally fine.
6579     bool IsUnsigned = isa<ZExtInst>(Op0);
6580     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
6581     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
6582 
6583     InstructionCost ExtCost =
6584         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
6585                              TTI::CastContextHint::None, CostKind, Op0);
6586     InstructionCost MulCost =
6587         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
6588     InstructionCost Ext2Cost =
6589         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
6590                              TTI::CastContextHint::None, CostKind, RedOp);
6591 
6592     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6593         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6594         CostKind);
6595 
6596     if (RedCost.isValid() &&
6597         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
6598       return I == RetI ? RedCost : 0;
6599   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
6600              !TheLoop->isLoopInvariant(RedOp)) {
6601     // Matched reduce(ext(A))
6602     bool IsUnsigned = isa<ZExtInst>(RedOp);
6603     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
6604     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6605         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6606         CostKind);
6607 
6608     InstructionCost ExtCost =
6609         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
6610                              TTI::CastContextHint::None, CostKind, RedOp);
6611     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
6612       return I == RetI ? RedCost : 0;
6613   } else if (RedOp &&
6614              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
6615     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
6616         Op0->getOpcode() == Op1->getOpcode() &&
6617         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
6618       bool IsUnsigned = isa<ZExtInst>(Op0);
6619       Type *Op0Ty = Op0->getOperand(0)->getType();
6620       Type *Op1Ty = Op1->getOperand(0)->getType();
6621       Type *LargestOpTy =
6622           Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
6623                                                                     : Op0Ty;
6624       auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
6625 
6626       // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of
6627       // different sizes. We take the largest type as the ext to reduce, and add
6628       // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
6629       InstructionCost ExtCost0 = TTI.getCastInstrCost(
6630           Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
6631           TTI::CastContextHint::None, CostKind, Op0);
6632       InstructionCost ExtCost1 = TTI.getCastInstrCost(
6633           Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
6634           TTI::CastContextHint::None, CostKind, Op1);
6635       InstructionCost MulCost =
6636           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6637 
6638       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6639           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6640           CostKind);
6641       InstructionCost ExtraExtCost = 0;
6642       if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
6643         Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
6644         ExtraExtCost = TTI.getCastInstrCost(
6645             ExtraExtOp->getOpcode(), ExtType,
6646             VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
6647             TTI::CastContextHint::None, CostKind, ExtraExtOp);
6648       }
6649 
6650       if (RedCost.isValid() &&
6651           (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
6652         return I == RetI ? RedCost : 0;
6653     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
6654       // Matched reduce(mul())
6655       InstructionCost MulCost =
6656           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6657 
6658       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6659           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
6660           CostKind);
6661 
6662       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
6663         return I == RetI ? RedCost : 0;
6664     }
6665   }
6666 
6667   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
6668 }
6669 
6670 InstructionCost
6671 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
6672                                                      ElementCount VF) {
6673   // Calculate scalar cost only. Vectorization cost should be ready at this
6674   // moment.
6675   if (VF.isScalar()) {
6676     Type *ValTy = getLoadStoreType(I);
6677     const Align Alignment = getLoadStoreAlignment(I);
6678     unsigned AS = getLoadStoreAddressSpace(I);
6679 
6680     return TTI.getAddressComputationCost(ValTy) +
6681            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
6682                                TTI::TCK_RecipThroughput, I);
6683   }
6684   return getWideningCost(I, VF);
6685 }
6686 
6687 LoopVectorizationCostModel::VectorizationCostTy
6688 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
6689                                                ElementCount VF) {
6690   // If we know that this instruction will remain uniform, check the cost of
6691   // the scalar version.
6692   if (isUniformAfterVectorization(I, VF))
6693     VF = ElementCount::getFixed(1);
6694 
6695   if (VF.isVector() && isProfitableToScalarize(I, VF))
6696     return VectorizationCostTy(InstsToScalarize[VF][I], false);
6697 
6698   // Forced scalars do not have any scalarization overhead.
6699   auto ForcedScalar = ForcedScalars.find(VF);
6700   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
6701     auto InstSet = ForcedScalar->second;
6702     if (InstSet.count(I))
6703       return VectorizationCostTy(
6704           (getInstructionCost(I, ElementCount::getFixed(1)).first *
6705            VF.getKnownMinValue()),
6706           false);
6707   }
6708 
6709   Type *VectorTy;
6710   InstructionCost C = getInstructionCost(I, VF, VectorTy);
6711 
6712   bool TypeNotScalarized = false;
6713   if (VF.isVector() && VectorTy->isVectorTy()) {
6714     if (unsigned NumParts = TTI.getNumberOfParts(VectorTy)) {
6715       if (VF.isScalable())
6716         // <vscale x 1 x iN> is assumed to be profitable over iN because
6717         // scalable registers are a distinct register class from scalar ones.
6718         // If we ever find a target which wants to lower scalable vectors
6719         // back to scalars, we'll need to update this code to explicitly
6720         // ask TTI about the register class uses for each part.
6721         TypeNotScalarized = NumParts <= VF.getKnownMinValue();
6722       else
6723         TypeNotScalarized = NumParts < VF.getKnownMinValue();
6724     } else
6725       C = InstructionCost::getInvalid();
6726   }
6727   return VectorizationCostTy(C, TypeNotScalarized);
6728 }
6729 
6730 InstructionCost
6731 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
6732                                                      ElementCount VF) const {
6733 
6734   // There is no mechanism yet to create a scalable scalarization loop,
6735   // so this is currently Invalid.
6736   if (VF.isScalable())
6737     return InstructionCost::getInvalid();
6738 
6739   if (VF.isScalar())
6740     return 0;
6741 
6742   InstructionCost Cost = 0;
6743   Type *RetTy = ToVectorTy(I->getType(), VF);
6744   if (!RetTy->isVoidTy() &&
6745       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
6746     Cost += TTI.getScalarizationOverhead(
6747         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
6748         false);
6749 
6750   // Some targets keep addresses scalar.
6751   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
6752     return Cost;
6753 
6754   // Some targets support efficient element stores.
6755   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
6756     return Cost;
6757 
6758   // Collect operands to consider.
6759   CallInst *CI = dyn_cast<CallInst>(I);
6760   Instruction::op_range Ops = CI ? CI->args() : I->operands();
6761 
6762   // Skip operands that do not require extraction/scalarization and do not incur
6763   // any overhead.
6764   SmallVector<Type *> Tys;
6765   for (auto *V : filterExtractingOperands(Ops, VF))
6766     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
6767   return Cost + TTI.getOperandsScalarizationOverhead(
6768                     filterExtractingOperands(Ops, VF), Tys);
6769 }
6770 
6771 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
6772   if (VF.isScalar())
6773     return;
6774   NumPredStores = 0;
6775   for (BasicBlock *BB : TheLoop->blocks()) {
6776     // For each instruction in the old loop.
6777     for (Instruction &I : *BB) {
6778       Value *Ptr =  getLoadStorePointerOperand(&I);
6779       if (!Ptr)
6780         continue;
6781 
6782       // TODO: We should generate better code and update the cost model for
6783       // predicated uniform stores. Today they are treated as any other
6784       // predicated store (see added test cases in
6785       // invariant-store-vectorization.ll).
6786       if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF))
6787         NumPredStores++;
6788 
6789       if (Legal->isUniformMemOp(I)) {
6790         // TODO: Avoid replicating loads and stores instead of
6791         // relying on instcombine to remove them.
6792         // Load: Scalar load + broadcast
6793         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
6794         InstructionCost Cost;
6795         if (isa<StoreInst>(&I) && VF.isScalable() &&
6796             isLegalGatherOrScatter(&I, VF)) {
6797           Cost = getGatherScatterCost(&I, VF);
6798           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
6799         } else {
6800           Cost = getUniformMemOpCost(&I, VF);
6801           setWideningDecision(&I, VF, CM_Scalarize, Cost);
6802         }
6803         continue;
6804       }
6805 
6806       // We assume that widening is the best solution when possible.
6807       if (memoryInstructionCanBeWidened(&I, VF)) {
6808         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
6809         int ConsecutiveStride = Legal->isConsecutivePtr(
6810             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
6811         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6812                "Expected consecutive stride.");
6813         InstWidening Decision =
6814             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
6815         setWideningDecision(&I, VF, Decision, Cost);
6816         continue;
6817       }
6818 
6819       // Choose between Interleaving, Gather/Scatter or Scalarization.
6820       InstructionCost InterleaveCost = InstructionCost::getInvalid();
6821       unsigned NumAccesses = 1;
6822       if (isAccessInterleaved(&I)) {
6823         auto Group = getInterleavedAccessGroup(&I);
6824         assert(Group && "Fail to get an interleaved access group.");
6825 
6826         // Make one decision for the whole group.
6827         if (getWideningDecision(&I, VF) != CM_Unknown)
6828           continue;
6829 
6830         NumAccesses = Group->getNumMembers();
6831         if (interleavedAccessCanBeWidened(&I, VF))
6832           InterleaveCost = getInterleaveGroupCost(&I, VF);
6833       }
6834 
6835       InstructionCost GatherScatterCost =
6836           isLegalGatherOrScatter(&I, VF)
6837               ? getGatherScatterCost(&I, VF) * NumAccesses
6838               : InstructionCost::getInvalid();
6839 
6840       InstructionCost ScalarizationCost =
6841           getMemInstScalarizationCost(&I, VF) * NumAccesses;
6842 
6843       // Choose better solution for the current VF,
6844       // write down this decision and use it during vectorization.
6845       InstructionCost Cost;
6846       InstWidening Decision;
6847       if (InterleaveCost <= GatherScatterCost &&
6848           InterleaveCost < ScalarizationCost) {
6849         Decision = CM_Interleave;
6850         Cost = InterleaveCost;
6851       } else if (GatherScatterCost < ScalarizationCost) {
6852         Decision = CM_GatherScatter;
6853         Cost = GatherScatterCost;
6854       } else {
6855         Decision = CM_Scalarize;
6856         Cost = ScalarizationCost;
6857       }
6858       // If the instructions belongs to an interleave group, the whole group
6859       // receives the same decision. The whole group receives the cost, but
6860       // the cost will actually be assigned to one instruction.
6861       if (auto Group = getInterleavedAccessGroup(&I))
6862         setWideningDecision(Group, VF, Decision, Cost);
6863       else
6864         setWideningDecision(&I, VF, Decision, Cost);
6865     }
6866   }
6867 
6868   // Make sure that any load of address and any other address computation
6869   // remains scalar unless there is gather/scatter support. This avoids
6870   // inevitable extracts into address registers, and also has the benefit of
6871   // activating LSR more, since that pass can't optimize vectorized
6872   // addresses.
6873   if (TTI.prefersVectorizedAddressing())
6874     return;
6875 
6876   // Start with all scalar pointer uses.
6877   SmallPtrSet<Instruction *, 8> AddrDefs;
6878   for (BasicBlock *BB : TheLoop->blocks())
6879     for (Instruction &I : *BB) {
6880       Instruction *PtrDef =
6881         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
6882       if (PtrDef && TheLoop->contains(PtrDef) &&
6883           getWideningDecision(&I, VF) != CM_GatherScatter)
6884         AddrDefs.insert(PtrDef);
6885     }
6886 
6887   // Add all instructions used to generate the addresses.
6888   SmallVector<Instruction *, 4> Worklist;
6889   append_range(Worklist, AddrDefs);
6890   while (!Worklist.empty()) {
6891     Instruction *I = Worklist.pop_back_val();
6892     for (auto &Op : I->operands())
6893       if (auto *InstOp = dyn_cast<Instruction>(Op))
6894         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
6895             AddrDefs.insert(InstOp).second)
6896           Worklist.push_back(InstOp);
6897   }
6898 
6899   for (auto *I : AddrDefs) {
6900     if (isa<LoadInst>(I)) {
6901       // Setting the desired widening decision should ideally be handled in
6902       // by cost functions, but since this involves the task of finding out
6903       // if the loaded register is involved in an address computation, it is
6904       // instead changed here when we know this is the case.
6905       InstWidening Decision = getWideningDecision(I, VF);
6906       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
6907         // Scalarize a widened load of address.
6908         setWideningDecision(
6909             I, VF, CM_Scalarize,
6910             (VF.getKnownMinValue() *
6911              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
6912       else if (auto Group = getInterleavedAccessGroup(I)) {
6913         // Scalarize an interleave group of address loads.
6914         for (unsigned I = 0; I < Group->getFactor(); ++I) {
6915           if (Instruction *Member = Group->getMember(I))
6916             setWideningDecision(
6917                 Member, VF, CM_Scalarize,
6918                 (VF.getKnownMinValue() *
6919                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
6920         }
6921       }
6922     } else
6923       // Make sure I gets scalarized and a cost estimate without
6924       // scalarization overhead.
6925       ForcedScalars[VF].insert(I);
6926   }
6927 }
6928 
6929 InstructionCost
6930 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
6931                                                Type *&VectorTy) {
6932   Type *RetTy = I->getType();
6933   if (canTruncateToMinimalBitwidth(I, VF))
6934     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6935   auto SE = PSE.getSE();
6936   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6937 
6938   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
6939                                                 ElementCount VF) -> bool {
6940     if (VF.isScalar())
6941       return true;
6942 
6943     auto Scalarized = InstsToScalarize.find(VF);
6944     assert(Scalarized != InstsToScalarize.end() &&
6945            "VF not yet analyzed for scalarization profitability");
6946     return !Scalarized->second.count(I) &&
6947            llvm::all_of(I->users(), [&](User *U) {
6948              auto *UI = cast<Instruction>(U);
6949              return !Scalarized->second.count(UI);
6950            });
6951   };
6952   (void) hasSingleCopyAfterVectorization;
6953 
6954   if (isScalarAfterVectorization(I, VF)) {
6955     // With the exception of GEPs and PHIs, after scalarization there should
6956     // only be one copy of the instruction generated in the loop. This is
6957     // because the VF is either 1, or any instructions that need scalarizing
6958     // have already been dealt with by the the time we get here. As a result,
6959     // it means we don't have to multiply the instruction cost by VF.
6960     assert(I->getOpcode() == Instruction::GetElementPtr ||
6961            I->getOpcode() == Instruction::PHI ||
6962            (I->getOpcode() == Instruction::BitCast &&
6963             I->getType()->isPointerTy()) ||
6964            hasSingleCopyAfterVectorization(I, VF));
6965     VectorTy = RetTy;
6966   } else
6967     VectorTy = ToVectorTy(RetTy, VF);
6968 
6969   // TODO: We need to estimate the cost of intrinsic calls.
6970   switch (I->getOpcode()) {
6971   case Instruction::GetElementPtr:
6972     // We mark this instruction as zero-cost because the cost of GEPs in
6973     // vectorized code depends on whether the corresponding memory instruction
6974     // is scalarized or not. Therefore, we handle GEPs with the memory
6975     // instruction cost.
6976     return 0;
6977   case Instruction::Br: {
6978     // In cases of scalarized and predicated instructions, there will be VF
6979     // predicated blocks in the vectorized loop. Each branch around these
6980     // blocks requires also an extract of its vector compare i1 element.
6981     bool ScalarPredicatedBB = false;
6982     BranchInst *BI = cast<BranchInst>(I);
6983     if (VF.isVector() && BI->isConditional() &&
6984         (PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(0)) ||
6985          PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(1))))
6986       ScalarPredicatedBB = true;
6987 
6988     if (ScalarPredicatedBB) {
6989       // Not possible to scalarize scalable vector with predicated instructions.
6990       if (VF.isScalable())
6991         return InstructionCost::getInvalid();
6992       // Return cost for branches around scalarized and predicated blocks.
6993       auto *Vec_i1Ty =
6994           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
6995       return (
6996           TTI.getScalarizationOverhead(
6997               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
6998           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
6999     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7000       // The back-edge branch will remain, as will all scalar branches.
7001       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7002     else
7003       // This branch will be eliminated by if-conversion.
7004       return 0;
7005     // Note: We currently assume zero cost for an unconditional branch inside
7006     // a predicated block since it will become a fall-through, although we
7007     // may decide in the future to call TTI for all branches.
7008   }
7009   case Instruction::PHI: {
7010     auto *Phi = cast<PHINode>(I);
7011 
7012     // First-order recurrences are replaced by vector shuffles inside the loop.
7013     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7014     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7015       return TTI.getShuffleCost(
7016           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7017           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7018 
7019     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7020     // converted into select instructions. We require N - 1 selects per phi
7021     // node, where N is the number of incoming values.
7022     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7023       return (Phi->getNumIncomingValues() - 1) *
7024              TTI.getCmpSelInstrCost(
7025                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7026                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7027                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7028 
7029     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7030   }
7031   case Instruction::UDiv:
7032   case Instruction::SDiv:
7033   case Instruction::URem:
7034   case Instruction::SRem:
7035     // If we have a predicated instruction, it may not be executed for each
7036     // vector lane. Get the scalarization cost and scale this amount by the
7037     // probability of executing the predicated block. If the instruction is not
7038     // predicated, we fall through to the next case.
7039     if (VF.isVector() && isScalarWithPredication(I, VF)) {
7040       InstructionCost Cost = 0;
7041 
7042       // These instructions have a non-void type, so account for the phi nodes
7043       // that we will create. This cost is likely to be zero. The phi node
7044       // cost, if any, should be scaled by the block probability because it
7045       // models a copy at the end of each predicated block.
7046       Cost += VF.getKnownMinValue() *
7047               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7048 
7049       // The cost of the non-predicated instruction.
7050       Cost += VF.getKnownMinValue() *
7051               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7052 
7053       // The cost of insertelement and extractelement instructions needed for
7054       // scalarization.
7055       Cost += getScalarizationOverhead(I, VF);
7056 
7057       // Scale the cost by the probability of executing the predicated blocks.
7058       // This assumes the predicated block for each vector lane is equally
7059       // likely.
7060       return Cost / getReciprocalPredBlockProb();
7061     }
7062     LLVM_FALLTHROUGH;
7063   case Instruction::Add:
7064   case Instruction::FAdd:
7065   case Instruction::Sub:
7066   case Instruction::FSub:
7067   case Instruction::Mul:
7068   case Instruction::FMul:
7069   case Instruction::FDiv:
7070   case Instruction::FRem:
7071   case Instruction::Shl:
7072   case Instruction::LShr:
7073   case Instruction::AShr:
7074   case Instruction::And:
7075   case Instruction::Or:
7076   case Instruction::Xor: {
7077     // Since we will replace the stride by 1 the multiplication should go away.
7078     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7079       return 0;
7080 
7081     // Detect reduction patterns
7082     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7083       return *RedCost;
7084 
7085     // Certain instructions can be cheaper to vectorize if they have a constant
7086     // second vector operand. One example of this are shifts on x86.
7087     Value *Op2 = I->getOperand(1);
7088     TargetTransformInfo::OperandValueProperties Op2VP;
7089     TargetTransformInfo::OperandValueKind Op2VK =
7090         TTI.getOperandInfo(Op2, Op2VP);
7091     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7092       Op2VK = TargetTransformInfo::OK_UniformValue;
7093 
7094     SmallVector<const Value *, 4> Operands(I->operand_values());
7095     return TTI.getArithmeticInstrCost(
7096         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7097         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7098   }
7099   case Instruction::FNeg: {
7100     return TTI.getArithmeticInstrCost(
7101         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7102         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7103         TargetTransformInfo::OP_None, I->getOperand(0), I);
7104   }
7105   case Instruction::Select: {
7106     SelectInst *SI = cast<SelectInst>(I);
7107     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7108     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7109 
7110     const Value *Op0, *Op1;
7111     using namespace llvm::PatternMatch;
7112     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7113                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7114       // select x, y, false --> x & y
7115       // select x, true, y --> x | y
7116       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7117       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7118       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7119       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7120       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7121               Op1->getType()->getScalarSizeInBits() == 1);
7122 
7123       SmallVector<const Value *, 2> Operands{Op0, Op1};
7124       return TTI.getArithmeticInstrCost(
7125           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7126           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7127     }
7128 
7129     Type *CondTy = SI->getCondition()->getType();
7130     if (!ScalarCond)
7131       CondTy = VectorType::get(CondTy, VF);
7132 
7133     CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
7134     if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
7135       Pred = Cmp->getPredicate();
7136     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
7137                                   CostKind, I);
7138   }
7139   case Instruction::ICmp:
7140   case Instruction::FCmp: {
7141     Type *ValTy = I->getOperand(0)->getType();
7142     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7143     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7144       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7145     VectorTy = ToVectorTy(ValTy, VF);
7146     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7147                                   cast<CmpInst>(I)->getPredicate(), CostKind,
7148                                   I);
7149   }
7150   case Instruction::Store:
7151   case Instruction::Load: {
7152     ElementCount Width = VF;
7153     if (Width.isVector()) {
7154       InstWidening Decision = getWideningDecision(I, Width);
7155       assert(Decision != CM_Unknown &&
7156              "CM decision should be taken at this point");
7157       if (Decision == CM_Scalarize) {
7158         if (VF.isScalable() && isa<StoreInst>(I))
7159           // We can't scalarize a scalable vector store (even a uniform one
7160           // currently), return an invalid cost so as to prevent vectorization.
7161           return InstructionCost::getInvalid();
7162         Width = ElementCount::getFixed(1);
7163       }
7164     }
7165     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7166     return getMemoryInstructionCost(I, VF);
7167   }
7168   case Instruction::BitCast:
7169     if (I->getType()->isPointerTy())
7170       return 0;
7171     LLVM_FALLTHROUGH;
7172   case Instruction::ZExt:
7173   case Instruction::SExt:
7174   case Instruction::FPToUI:
7175   case Instruction::FPToSI:
7176   case Instruction::FPExt:
7177   case Instruction::PtrToInt:
7178   case Instruction::IntToPtr:
7179   case Instruction::SIToFP:
7180   case Instruction::UIToFP:
7181   case Instruction::Trunc:
7182   case Instruction::FPTrunc: {
7183     // Computes the CastContextHint from a Load/Store instruction.
7184     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7185       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7186              "Expected a load or a store!");
7187 
7188       if (VF.isScalar() || !TheLoop->contains(I))
7189         return TTI::CastContextHint::Normal;
7190 
7191       switch (getWideningDecision(I, VF)) {
7192       case LoopVectorizationCostModel::CM_GatherScatter:
7193         return TTI::CastContextHint::GatherScatter;
7194       case LoopVectorizationCostModel::CM_Interleave:
7195         return TTI::CastContextHint::Interleave;
7196       case LoopVectorizationCostModel::CM_Scalarize:
7197       case LoopVectorizationCostModel::CM_Widen:
7198         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7199                                         : TTI::CastContextHint::Normal;
7200       case LoopVectorizationCostModel::CM_Widen_Reverse:
7201         return TTI::CastContextHint::Reversed;
7202       case LoopVectorizationCostModel::CM_Unknown:
7203         llvm_unreachable("Instr did not go through cost modelling?");
7204       }
7205 
7206       llvm_unreachable("Unhandled case!");
7207     };
7208 
7209     unsigned Opcode = I->getOpcode();
7210     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7211     // For Trunc, the context is the only user, which must be a StoreInst.
7212     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7213       if (I->hasOneUse())
7214         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7215           CCH = ComputeCCH(Store);
7216     }
7217     // For Z/Sext, the context is the operand, which must be a LoadInst.
7218     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7219              Opcode == Instruction::FPExt) {
7220       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7221         CCH = ComputeCCH(Load);
7222     }
7223 
7224     // We optimize the truncation of induction variables having constant
7225     // integer steps. The cost of these truncations is the same as the scalar
7226     // operation.
7227     if (isOptimizableIVTruncate(I, VF)) {
7228       auto *Trunc = cast<TruncInst>(I);
7229       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7230                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7231     }
7232 
7233     // Detect reduction patterns
7234     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7235       return *RedCost;
7236 
7237     Type *SrcScalarTy = I->getOperand(0)->getType();
7238     Type *SrcVecTy =
7239         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7240     if (canTruncateToMinimalBitwidth(I, VF)) {
7241       // This cast is going to be shrunk. This may remove the cast or it might
7242       // turn it into slightly different cast. For example, if MinBW == 16,
7243       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7244       //
7245       // Calculate the modified src and dest types.
7246       Type *MinVecTy = VectorTy;
7247       if (Opcode == Instruction::Trunc) {
7248         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7249         VectorTy =
7250             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7251       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7252         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7253         VectorTy =
7254             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7255       }
7256     }
7257 
7258     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7259   }
7260   case Instruction::Call: {
7261     if (RecurrenceDescriptor::isFMulAddIntrinsic(I))
7262       if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7263         return *RedCost;
7264     bool NeedToScalarize;
7265     CallInst *CI = cast<CallInst>(I);
7266     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7267     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7268       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7269       return std::min(CallCost, IntrinsicCost);
7270     }
7271     return CallCost;
7272   }
7273   case Instruction::ExtractValue:
7274     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7275   case Instruction::Alloca:
7276     // We cannot easily widen alloca to a scalable alloca, as
7277     // the result would need to be a vector of pointers.
7278     if (VF.isScalable())
7279       return InstructionCost::getInvalid();
7280     LLVM_FALLTHROUGH;
7281   default:
7282     // This opcode is unknown. Assume that it is the same as 'mul'.
7283     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7284   } // end of switch.
7285 }
7286 
7287 char LoopVectorize::ID = 0;
7288 
7289 static const char lv_name[] = "Loop Vectorization";
7290 
7291 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7292 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7293 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7294 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7295 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7296 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7297 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7298 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7299 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7300 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7301 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7302 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7303 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7304 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7305 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7306 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7307 
7308 namespace llvm {
7309 
7310 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7311 
7312 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7313                               bool VectorizeOnlyWhenForced) {
7314   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7315 }
7316 
7317 } // end namespace llvm
7318 
7319 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7320   // Check if the pointer operand of a load or store instruction is
7321   // consecutive.
7322   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7323     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7324   return false;
7325 }
7326 
7327 void LoopVectorizationCostModel::collectValuesToIgnore() {
7328   // Ignore ephemeral values.
7329   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7330 
7331   // Find all stores to invariant variables. Since they are going to sink
7332   // outside the loop we do not need calculate cost for them.
7333   for (BasicBlock *BB : TheLoop->blocks())
7334     for (Instruction &I : *BB) {
7335       StoreInst *SI;
7336       if ((SI = dyn_cast<StoreInst>(&I)) &&
7337           Legal->isInvariantAddressOfReduction(SI->getPointerOperand()))
7338         ValuesToIgnore.insert(&I);
7339     }
7340 
7341   // Ignore type-promoting instructions we identified during reduction
7342   // detection.
7343   for (auto &Reduction : Legal->getReductionVars()) {
7344     const RecurrenceDescriptor &RedDes = Reduction.second;
7345     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7346     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7347   }
7348   // Ignore type-casting instructions we identified during induction
7349   // detection.
7350   for (auto &Induction : Legal->getInductionVars()) {
7351     const InductionDescriptor &IndDes = Induction.second;
7352     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7353     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7354   }
7355 }
7356 
7357 void LoopVectorizationCostModel::collectInLoopReductions() {
7358   for (auto &Reduction : Legal->getReductionVars()) {
7359     PHINode *Phi = Reduction.first;
7360     const RecurrenceDescriptor &RdxDesc = Reduction.second;
7361 
7362     // We don't collect reductions that are type promoted (yet).
7363     if (RdxDesc.getRecurrenceType() != Phi->getType())
7364       continue;
7365 
7366     // If the target would prefer this reduction to happen "in-loop", then we
7367     // want to record it as such.
7368     unsigned Opcode = RdxDesc.getOpcode();
7369     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7370         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7371                                    TargetTransformInfo::ReductionFlags()))
7372       continue;
7373 
7374     // Check that we can correctly put the reductions into the loop, by
7375     // finding the chain of operations that leads from the phi to the loop
7376     // exit value.
7377     SmallVector<Instruction *, 4> ReductionOperations =
7378         RdxDesc.getReductionOpChain(Phi, TheLoop);
7379     bool InLoop = !ReductionOperations.empty();
7380     if (InLoop) {
7381       InLoopReductionChains[Phi] = ReductionOperations;
7382       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7383       Instruction *LastChain = Phi;
7384       for (auto *I : ReductionOperations) {
7385         InLoopReductionImmediateChains[I] = LastChain;
7386         LastChain = I;
7387       }
7388     }
7389     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7390                       << " reduction for phi: " << *Phi << "\n");
7391   }
7392 }
7393 
7394 // TODO: we could return a pair of values that specify the max VF and
7395 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7396 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7397 // doesn't have a cost model that can choose which plan to execute if
7398 // more than one is generated.
7399 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7400                                  LoopVectorizationCostModel &CM) {
7401   unsigned WidestType;
7402   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7403   return WidestVectorRegBits / WidestType;
7404 }
7405 
7406 VectorizationFactor
7407 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7408   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7409   ElementCount VF = UserVF;
7410   // Outer loop handling: They may require CFG and instruction level
7411   // transformations before even evaluating whether vectorization is profitable.
7412   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7413   // the vectorization pipeline.
7414   if (!OrigLoop->isInnermost()) {
7415     // If the user doesn't provide a vectorization factor, determine a
7416     // reasonable one.
7417     if (UserVF.isZero()) {
7418       VF = ElementCount::getFixed(determineVPlanVF(
7419           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7420               .getFixedSize(),
7421           CM));
7422       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7423 
7424       // Make sure we have a VF > 1 for stress testing.
7425       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7426         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7427                           << "overriding computed VF.\n");
7428         VF = ElementCount::getFixed(4);
7429       }
7430     }
7431     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7432     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7433            "VF needs to be a power of two");
7434     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7435                       << "VF " << VF << " to build VPlans.\n");
7436     buildVPlans(VF, VF);
7437 
7438     // For VPlan build stress testing, we bail out after VPlan construction.
7439     if (VPlanBuildStressTest)
7440       return VectorizationFactor::Disabled();
7441 
7442     return {VF, 0 /*Cost*/, 0 /* ScalarCost */};
7443   }
7444 
7445   LLVM_DEBUG(
7446       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7447                 "VPlan-native path.\n");
7448   return VectorizationFactor::Disabled();
7449 }
7450 
7451 Optional<VectorizationFactor>
7452 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7453   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7454   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
7455   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
7456     return None;
7457 
7458   // Invalidate interleave groups if all blocks of loop will be predicated.
7459   if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
7460       !useMaskedInterleavedAccesses(*TTI)) {
7461     LLVM_DEBUG(
7462         dbgs()
7463         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7464            "which requires masked-interleaved support.\n");
7465     if (CM.InterleaveInfo.invalidateGroups())
7466       // Invalidating interleave groups also requires invalidating all decisions
7467       // based on them, which includes widening decisions and uniform and scalar
7468       // values.
7469       CM.invalidateCostModelingDecisions();
7470   }
7471 
7472   ElementCount MaxUserVF =
7473       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
7474   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
7475   if (!UserVF.isZero() && UserVFIsLegal) {
7476     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
7477            "VF needs to be a power of two");
7478     // Collect the instructions (and their associated costs) that will be more
7479     // profitable to scalarize.
7480     if (CM.selectUserVectorizationFactor(UserVF)) {
7481       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7482       CM.collectInLoopReductions();
7483       buildVPlansWithVPRecipes(UserVF, UserVF);
7484       LLVM_DEBUG(printPlans(dbgs()));
7485       return {{UserVF, 0, 0}};
7486     } else
7487       reportVectorizationInfo("UserVF ignored because of invalid costs.",
7488                               "InvalidCost", ORE, OrigLoop);
7489   }
7490 
7491   // Populate the set of Vectorization Factor Candidates.
7492   ElementCountSet VFCandidates;
7493   for (auto VF = ElementCount::getFixed(1);
7494        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
7495     VFCandidates.insert(VF);
7496   for (auto VF = ElementCount::getScalable(1);
7497        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
7498     VFCandidates.insert(VF);
7499 
7500   for (const auto &VF : VFCandidates) {
7501     // Collect Uniform and Scalar instructions after vectorization with VF.
7502     CM.collectUniformsAndScalars(VF);
7503 
7504     // Collect the instructions (and their associated costs) that will be more
7505     // profitable to scalarize.
7506     if (VF.isVector())
7507       CM.collectInstsToScalarize(VF);
7508   }
7509 
7510   CM.collectInLoopReductions();
7511   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
7512   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
7513 
7514   LLVM_DEBUG(printPlans(dbgs()));
7515   if (!MaxFactors.hasVector())
7516     return VectorizationFactor::Disabled();
7517 
7518   // Select the optimal vectorization factor.
7519   VectorizationFactor VF = CM.selectVectorizationFactor(VFCandidates);
7520   assert((VF.Width.isScalar() || VF.ScalarCost > 0) && "when vectorizing, the scalar cost must be non-zero.");
7521   return VF;
7522 }
7523 
7524 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
7525   assert(count_if(VPlans,
7526                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
7527              1 &&
7528          "Best VF has not a single VPlan.");
7529 
7530   for (const VPlanPtr &Plan : VPlans) {
7531     if (Plan->hasVF(VF))
7532       return *Plan.get();
7533   }
7534   llvm_unreachable("No plan found!");
7535 }
7536 
7537 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7538   SmallVector<Metadata *, 4> MDs;
7539   // Reserve first location for self reference to the LoopID metadata node.
7540   MDs.push_back(nullptr);
7541   bool IsUnrollMetadata = false;
7542   MDNode *LoopID = L->getLoopID();
7543   if (LoopID) {
7544     // First find existing loop unrolling disable metadata.
7545     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7546       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7547       if (MD) {
7548         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7549         IsUnrollMetadata =
7550             S && S->getString().startswith("llvm.loop.unroll.disable");
7551       }
7552       MDs.push_back(LoopID->getOperand(i));
7553     }
7554   }
7555 
7556   if (!IsUnrollMetadata) {
7557     // Add runtime unroll disable metadata.
7558     LLVMContext &Context = L->getHeader()->getContext();
7559     SmallVector<Metadata *, 1> DisableOperands;
7560     DisableOperands.push_back(
7561         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7562     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7563     MDs.push_back(DisableNode);
7564     MDNode *NewLoopID = MDNode::get(Context, MDs);
7565     // Set operand 0 to refer to the loop id itself.
7566     NewLoopID->replaceOperandWith(0, NewLoopID);
7567     L->setLoopID(NewLoopID);
7568   }
7569 }
7570 
7571 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
7572                                            VPlan &BestVPlan,
7573                                            InnerLoopVectorizer &ILV,
7574                                            DominatorTree *DT,
7575                                            bool IsEpilogueVectorization) {
7576   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
7577                     << '\n');
7578 
7579   // Perform the actual loop transformation.
7580 
7581   // 1. Set up the skeleton for vectorization, including vector pre-header and
7582   // middle block. The vector loop is created during VPlan execution.
7583   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
7584   Value *CanonicalIVStartValue;
7585   std::tie(State.CFG.PrevBB, CanonicalIVStartValue) =
7586       ILV.createVectorizedLoopSkeleton();
7587 
7588   // Only use noalias metadata when using memory checks guaranteeing no overlap
7589   // across all iterations.
7590   const LoopAccessInfo *LAI = ILV.Legal->getLAI();
7591   if (LAI && !LAI->getRuntimePointerChecking()->getChecks().empty() &&
7592       !LAI->getRuntimePointerChecking()->getDiffChecks()) {
7593 
7594     //  We currently don't use LoopVersioning for the actual loop cloning but we
7595     //  still use it to add the noalias metadata.
7596     //  TODO: Find a better way to re-use LoopVersioning functionality to add
7597     //        metadata.
7598     State.LVer = std::make_unique<LoopVersioning>(
7599         *LAI, LAI->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, DT,
7600         PSE.getSE());
7601     State.LVer->prepareNoAliasMetadata();
7602   }
7603 
7604   ILV.collectPoisonGeneratingRecipes(State);
7605 
7606   ILV.printDebugTracesAtStart();
7607 
7608   //===------------------------------------------------===//
7609   //
7610   // Notice: any optimization or new instruction that go
7611   // into the code below should also be implemented in
7612   // the cost-model.
7613   //
7614   //===------------------------------------------------===//
7615 
7616   // 2. Copy and widen instructions from the old loop into the new loop.
7617   BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr),
7618                              ILV.getOrCreateVectorTripCount(nullptr),
7619                              CanonicalIVStartValue, State,
7620                              IsEpilogueVectorization);
7621 
7622   BestVPlan.execute(&State);
7623 
7624   // Keep all loop hints from the original loop on the vector loop (we'll
7625   // replace the vectorizer-specific hints below).
7626   MDNode *OrigLoopID = OrigLoop->getLoopID();
7627 
7628   Optional<MDNode *> VectorizedLoopID =
7629       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7630                                       LLVMLoopVectorizeFollowupVectorized});
7631 
7632   VPBasicBlock *HeaderVPBB =
7633       BestVPlan.getVectorLoopRegion()->getEntryBasicBlock();
7634   Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]);
7635   if (VectorizedLoopID)
7636     L->setLoopID(VectorizedLoopID.value());
7637   else {
7638     // Keep all loop hints from the original loop on the vector loop (we'll
7639     // replace the vectorizer-specific hints below).
7640     if (MDNode *LID = OrigLoop->getLoopID())
7641       L->setLoopID(LID);
7642 
7643     LoopVectorizeHints Hints(L, true, *ORE);
7644     Hints.setAlreadyVectorized();
7645   }
7646   // Disable runtime unrolling when vectorizing the epilogue loop.
7647   if (CanonicalIVStartValue)
7648     AddRuntimeUnrollDisableMetaData(L);
7649 
7650   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7651   //    predication, updating analyses.
7652   ILV.fixVectorizedLoop(State, BestVPlan);
7653 
7654   ILV.printDebugTracesAtEnd();
7655 }
7656 
7657 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
7658 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
7659   for (const auto &Plan : VPlans)
7660     if (PrintVPlansInDotFormat)
7661       Plan->printDOT(O);
7662     else
7663       Plan->print(O);
7664 }
7665 #endif
7666 
7667 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
7668 
7669 //===--------------------------------------------------------------------===//
7670 // EpilogueVectorizerMainLoop
7671 //===--------------------------------------------------------------------===//
7672 
7673 /// This function is partially responsible for generating the control flow
7674 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7675 std::pair<BasicBlock *, Value *>
7676 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
7677   MDNode *OrigLoopID = OrigLoop->getLoopID();
7678 
7679   // Workaround!  Compute the trip count of the original loop and cache it
7680   // before we start modifying the CFG.  This code has a systemic problem
7681   // wherein it tries to run analysis over partially constructed IR; this is
7682   // wrong, and not simply for SCEV.  The trip count of the original loop
7683   // simply happens to be prone to hitting this in practice.  In theory, we
7684   // can hit the same issue for any SCEV, or ValueTracking query done during
7685   // mutation.  See PR49900.
7686   getOrCreateTripCount(OrigLoop->getLoopPreheader());
7687   createVectorLoopSkeleton("");
7688 
7689   // Generate the code to check the minimum iteration count of the vector
7690   // epilogue (see below).
7691   EPI.EpilogueIterationCountCheck =
7692       emitIterationCountCheck(LoopScalarPreHeader, true);
7693   EPI.EpilogueIterationCountCheck->setName("iter.check");
7694 
7695   // Generate the code to check any assumptions that we've made for SCEV
7696   // expressions.
7697   EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader);
7698 
7699   // Generate the code that checks at runtime if arrays overlap. We put the
7700   // checks into a separate block to make the more common case of few elements
7701   // faster.
7702   EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader);
7703 
7704   // Generate the iteration count check for the main loop, *after* the check
7705   // for the epilogue loop, so that the path-length is shorter for the case
7706   // that goes directly through the vector epilogue. The longer-path length for
7707   // the main loop is compensated for, by the gain from vectorizing the larger
7708   // trip count. Note: the branch will get updated later on when we vectorize
7709   // the epilogue.
7710   EPI.MainLoopIterationCountCheck =
7711       emitIterationCountCheck(LoopScalarPreHeader, false);
7712 
7713   // Generate the induction variable.
7714   EPI.VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
7715 
7716   // Skip induction resume value creation here because they will be created in
7717   // the second pass. If we created them here, they wouldn't be used anyway,
7718   // because the vplan in the second pass still contains the inductions from the
7719   // original loop.
7720 
7721   return {completeLoopSkeleton(OrigLoopID), nullptr};
7722 }
7723 
7724 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
7725   LLVM_DEBUG({
7726     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
7727            << "Main Loop VF:" << EPI.MainLoopVF
7728            << ", Main Loop UF:" << EPI.MainLoopUF
7729            << ", Epilogue Loop VF:" << EPI.EpilogueVF
7730            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7731   });
7732 }
7733 
7734 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
7735   DEBUG_WITH_TYPE(VerboseDebug, {
7736     dbgs() << "intermediate fn:\n"
7737            << *OrigLoop->getHeader()->getParent() << "\n";
7738   });
7739 }
7740 
7741 BasicBlock *
7742 EpilogueVectorizerMainLoop::emitIterationCountCheck(BasicBlock *Bypass,
7743                                                     bool ForEpilogue) {
7744   assert(Bypass && "Expected valid bypass basic block.");
7745   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
7746   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
7747   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
7748   // Reuse existing vector loop preheader for TC checks.
7749   // Note that new preheader block is generated for vector loop.
7750   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
7751   IRBuilder<> Builder(TCCheckBlock->getTerminator());
7752 
7753   // Generate code to check if the loop's trip count is less than VF * UF of the
7754   // main vector loop.
7755   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
7756       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
7757 
7758   Value *CheckMinIters = Builder.CreateICmp(
7759       P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
7760       "min.iters.check");
7761 
7762   if (!ForEpilogue)
7763     TCCheckBlock->setName("vector.main.loop.iter.check");
7764 
7765   // Create new preheader for vector loop.
7766   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
7767                                    DT, LI, nullptr, "vector.ph");
7768 
7769   if (ForEpilogue) {
7770     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
7771                                  DT->getNode(Bypass)->getIDom()) &&
7772            "TC check is expected to dominate Bypass");
7773 
7774     // Update dominator for Bypass & LoopExit.
7775     DT->changeImmediateDominator(Bypass, TCCheckBlock);
7776     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
7777       // For loops with multiple exits, there's no edge from the middle block
7778       // to exit blocks (as the epilogue must run) and thus no need to update
7779       // the immediate dominator of the exit blocks.
7780       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
7781 
7782     LoopBypassBlocks.push_back(TCCheckBlock);
7783 
7784     // Save the trip count so we don't have to regenerate it in the
7785     // vec.epilog.iter.check. This is safe to do because the trip count
7786     // generated here dominates the vector epilog iter check.
7787     EPI.TripCount = Count;
7788   }
7789 
7790   ReplaceInstWithInst(
7791       TCCheckBlock->getTerminator(),
7792       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
7793 
7794   return TCCheckBlock;
7795 }
7796 
7797 //===--------------------------------------------------------------------===//
7798 // EpilogueVectorizerEpilogueLoop
7799 //===--------------------------------------------------------------------===//
7800 
7801 /// This function is partially responsible for generating the control flow
7802 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7803 std::pair<BasicBlock *, Value *>
7804 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
7805   MDNode *OrigLoopID = OrigLoop->getLoopID();
7806   createVectorLoopSkeleton("vec.epilog.");
7807 
7808   // Now, compare the remaining count and if there aren't enough iterations to
7809   // execute the vectorized epilogue skip to the scalar part.
7810   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
7811   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
7812   LoopVectorPreHeader =
7813       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
7814                  LI, nullptr, "vec.epilog.ph");
7815   emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader,
7816                                           VecEpilogueIterationCountCheck);
7817 
7818   // Adjust the control flow taking the state info from the main loop
7819   // vectorization into account.
7820   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
7821          "expected this to be saved from the previous pass.");
7822   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
7823       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
7824 
7825   DT->changeImmediateDominator(LoopVectorPreHeader,
7826                                EPI.MainLoopIterationCountCheck);
7827 
7828   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
7829       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7830 
7831   if (EPI.SCEVSafetyCheck)
7832     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
7833         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7834   if (EPI.MemSafetyCheck)
7835     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
7836         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7837 
7838   DT->changeImmediateDominator(
7839       VecEpilogueIterationCountCheck,
7840       VecEpilogueIterationCountCheck->getSinglePredecessor());
7841 
7842   DT->changeImmediateDominator(LoopScalarPreHeader,
7843                                EPI.EpilogueIterationCountCheck);
7844   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
7845     // If there is an epilogue which must run, there's no edge from the
7846     // middle block to exit blocks  and thus no need to update the immediate
7847     // dominator of the exit blocks.
7848     DT->changeImmediateDominator(LoopExitBlock,
7849                                  EPI.EpilogueIterationCountCheck);
7850 
7851   // Keep track of bypass blocks, as they feed start values to the induction
7852   // phis in the scalar loop preheader.
7853   if (EPI.SCEVSafetyCheck)
7854     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
7855   if (EPI.MemSafetyCheck)
7856     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
7857   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
7858 
7859   // The vec.epilog.iter.check block may contain Phi nodes from reductions which
7860   // merge control-flow from the latch block and the middle block. Update the
7861   // incoming values here and move the Phi into the preheader.
7862   SmallVector<PHINode *, 4> PhisInBlock;
7863   for (PHINode &Phi : VecEpilogueIterationCountCheck->phis())
7864     PhisInBlock.push_back(&Phi);
7865 
7866   for (PHINode *Phi : PhisInBlock) {
7867     Phi->replaceIncomingBlockWith(
7868         VecEpilogueIterationCountCheck->getSinglePredecessor(),
7869         VecEpilogueIterationCountCheck);
7870     Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
7871     if (EPI.SCEVSafetyCheck)
7872       Phi->removeIncomingValue(EPI.SCEVSafetyCheck);
7873     if (EPI.MemSafetyCheck)
7874       Phi->removeIncomingValue(EPI.MemSafetyCheck);
7875     Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI());
7876   }
7877 
7878   // Generate a resume induction for the vector epilogue and put it in the
7879   // vector epilogue preheader
7880   Type *IdxTy = Legal->getWidestInductionType();
7881   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
7882                                          LoopVectorPreHeader->getFirstNonPHI());
7883   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
7884   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
7885                            EPI.MainLoopIterationCountCheck);
7886 
7887   // Generate induction resume values. These variables save the new starting
7888   // indexes for the scalar loop. They are used to test if there are any tail
7889   // iterations left once the vector loop has completed.
7890   // Note that when the vectorized epilogue is skipped due to iteration count
7891   // check, then the resume value for the induction variable comes from
7892   // the trip count of the main vector loop, hence passing the AdditionalBypass
7893   // argument.
7894   createInductionResumeValues({VecEpilogueIterationCountCheck,
7895                                EPI.VectorTripCount} /* AdditionalBypass */);
7896 
7897   return {completeLoopSkeleton(OrigLoopID), EPResumeVal};
7898 }
7899 
7900 BasicBlock *
7901 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
7902     BasicBlock *Bypass, BasicBlock *Insert) {
7903 
7904   assert(EPI.TripCount &&
7905          "Expected trip count to have been safed in the first pass.");
7906   assert(
7907       (!isa<Instruction>(EPI.TripCount) ||
7908        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
7909       "saved trip count does not dominate insertion point.");
7910   Value *TC = EPI.TripCount;
7911   IRBuilder<> Builder(Insert->getTerminator());
7912   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
7913 
7914   // Generate code to check if the loop's trip count is less than VF * UF of the
7915   // vector epilogue loop.
7916   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
7917       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
7918 
7919   Value *CheckMinIters =
7920       Builder.CreateICmp(P, Count,
7921                          createStepForVF(Builder, Count->getType(),
7922                                          EPI.EpilogueVF, EPI.EpilogueUF),
7923                          "min.epilog.iters.check");
7924 
7925   ReplaceInstWithInst(
7926       Insert->getTerminator(),
7927       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
7928 
7929   LoopBypassBlocks.push_back(Insert);
7930   return Insert;
7931 }
7932 
7933 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
7934   LLVM_DEBUG({
7935     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
7936            << "Epilogue Loop VF:" << EPI.EpilogueVF
7937            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7938   });
7939 }
7940 
7941 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
7942   DEBUG_WITH_TYPE(VerboseDebug, {
7943     dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
7944   });
7945 }
7946 
7947 bool LoopVectorizationPlanner::getDecisionAndClampRange(
7948     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
7949   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
7950   bool PredicateAtRangeStart = Predicate(Range.Start);
7951 
7952   for (ElementCount TmpVF = Range.Start * 2;
7953        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
7954     if (Predicate(TmpVF) != PredicateAtRangeStart) {
7955       Range.End = TmpVF;
7956       break;
7957     }
7958 
7959   return PredicateAtRangeStart;
7960 }
7961 
7962 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
7963 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
7964 /// of VF's starting at a given VF and extending it as much as possible. Each
7965 /// vectorization decision can potentially shorten this sub-range during
7966 /// buildVPlan().
7967 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
7968                                            ElementCount MaxVF) {
7969   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
7970   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
7971     VFRange SubRange = {VF, MaxVFPlusOne};
7972     VPlans.push_back(buildVPlan(SubRange));
7973     VF = SubRange.End;
7974   }
7975 }
7976 
7977 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
7978                                          VPlanPtr &Plan) {
7979   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
7980 
7981   // Look for cached value.
7982   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
7983   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
7984   if (ECEntryIt != EdgeMaskCache.end())
7985     return ECEntryIt->second;
7986 
7987   VPValue *SrcMask = createBlockInMask(Src, Plan);
7988 
7989   // The terminator has to be a branch inst!
7990   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
7991   assert(BI && "Unexpected terminator found");
7992 
7993   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
7994     return EdgeMaskCache[Edge] = SrcMask;
7995 
7996   // If source is an exiting block, we know the exit edge is dynamically dead
7997   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
7998   // adding uses of an otherwise potentially dead instruction.
7999   if (OrigLoop->isLoopExiting(Src))
8000     return EdgeMaskCache[Edge] = SrcMask;
8001 
8002   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8003   assert(EdgeMask && "No Edge Mask found for condition");
8004 
8005   if (BI->getSuccessor(0) != Dst)
8006     EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc());
8007 
8008   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8009     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8010     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8011     // The select version does not introduce new UB if SrcMask is false and
8012     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8013     VPValue *False = Plan->getOrAddVPValue(
8014         ConstantInt::getFalse(BI->getCondition()->getType()));
8015     EdgeMask =
8016         Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc());
8017   }
8018 
8019   return EdgeMaskCache[Edge] = EdgeMask;
8020 }
8021 
8022 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8023   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8024 
8025   // Look for cached value.
8026   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8027   if (BCEntryIt != BlockMaskCache.end())
8028     return BCEntryIt->second;
8029 
8030   // All-one mask is modelled as no-mask following the convention for masked
8031   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8032   VPValue *BlockMask = nullptr;
8033 
8034   if (OrigLoop->getHeader() == BB) {
8035     if (!CM.blockNeedsPredicationForAnyReason(BB))
8036       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8037 
8038     assert(CM.foldTailByMasking() && "must fold the tail");
8039 
8040     // If we're using the active lane mask for control flow, then we get the
8041     // mask from the active lane mask PHI that is cached in the VPlan.
8042     PredicationStyle EmitGetActiveLaneMask = CM.TTI.emitGetActiveLaneMask();
8043     if (EmitGetActiveLaneMask == PredicationStyle::DataAndControlFlow)
8044       return BlockMaskCache[BB] = Plan->getActiveLaneMaskPhi();
8045 
8046     // Introduce the early-exit compare IV <= BTC to form header block mask.
8047     // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by
8048     // constructing the desired canonical IV in the header block as its first
8049     // non-phi instructions.
8050 
8051     VPBasicBlock *HeaderVPBB =
8052         Plan->getVectorLoopRegion()->getEntryBasicBlock();
8053     auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi();
8054     auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV());
8055     HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi());
8056 
8057     VPBuilder::InsertPointGuard Guard(Builder);
8058     Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint);
8059     if (EmitGetActiveLaneMask != PredicationStyle::None) {
8060       VPValue *TC = Plan->getOrCreateTripCount();
8061       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC},
8062                                        nullptr, "active.lane.mask");
8063     } else {
8064       VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8065       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8066     }
8067     return BlockMaskCache[BB] = BlockMask;
8068   }
8069 
8070   // This is the block mask. We OR all incoming edges.
8071   for (auto *Predecessor : predecessors(BB)) {
8072     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8073     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8074       return BlockMaskCache[BB] = EdgeMask;
8075 
8076     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8077       BlockMask = EdgeMask;
8078       continue;
8079     }
8080 
8081     BlockMask = Builder.createOr(BlockMask, EdgeMask, {});
8082   }
8083 
8084   return BlockMaskCache[BB] = BlockMask;
8085 }
8086 
8087 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8088                                                 ArrayRef<VPValue *> Operands,
8089                                                 VFRange &Range,
8090                                                 VPlanPtr &Plan) {
8091   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8092          "Must be called with either a load or store");
8093 
8094   auto willWiden = [&](ElementCount VF) -> bool {
8095     LoopVectorizationCostModel::InstWidening Decision =
8096         CM.getWideningDecision(I, VF);
8097     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8098            "CM decision should be taken at this point.");
8099     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8100       return true;
8101     if (CM.isScalarAfterVectorization(I, VF) ||
8102         CM.isProfitableToScalarize(I, VF))
8103       return false;
8104     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8105   };
8106 
8107   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8108     return nullptr;
8109 
8110   VPValue *Mask = nullptr;
8111   if (Legal->isMaskRequired(I))
8112     Mask = createBlockInMask(I->getParent(), Plan);
8113 
8114   // Determine if the pointer operand of the access is either consecutive or
8115   // reverse consecutive.
8116   LoopVectorizationCostModel::InstWidening Decision =
8117       CM.getWideningDecision(I, Range.Start);
8118   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8119   bool Consecutive =
8120       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8121 
8122   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8123     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8124                                               Consecutive, Reverse);
8125 
8126   StoreInst *Store = cast<StoreInst>(I);
8127   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8128                                             Mask, Consecutive, Reverse);
8129 }
8130 
8131 /// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also
8132 /// insert a recipe to expand the step for the induction recipe.
8133 static VPWidenIntOrFpInductionRecipe *createWidenInductionRecipes(
8134     PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start,
8135     const InductionDescriptor &IndDesc, LoopVectorizationCostModel &CM,
8136     VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop, VFRange &Range) {
8137   // Returns true if an instruction \p I should be scalarized instead of
8138   // vectorized for the chosen vectorization factor.
8139   auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) {
8140     return CM.isScalarAfterVectorization(I, VF) ||
8141            CM.isProfitableToScalarize(I, VF);
8142   };
8143 
8144   bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange(
8145       [&](ElementCount VF) {
8146         return ShouldScalarizeInstruction(PhiOrTrunc, VF);
8147       },
8148       Range);
8149   assert(IndDesc.getStartValue() ==
8150          Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()));
8151   assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) &&
8152          "step must be loop invariant");
8153 
8154   VPValue *Step =
8155       vputils::getOrCreateVPValueForSCEVExpr(Plan, IndDesc.getStep(), SE);
8156   if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
8157     return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, TruncI,
8158                                              !NeedsScalarIVOnly);
8159   }
8160   assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here");
8161   return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc,
8162                                            !NeedsScalarIVOnly);
8163 }
8164 
8165 VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI(
8166     PHINode *Phi, ArrayRef<VPValue *> Operands, VPlan &Plan, VFRange &Range) {
8167 
8168   // Check if this is an integer or fp induction. If so, build the recipe that
8169   // produces its scalar and vector values.
8170   if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
8171     return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, CM, Plan,
8172                                        *PSE.getSE(), *OrigLoop, Range);
8173 
8174   // Check if this is pointer induction. If so, build the recipe for it.
8175   if (auto *II = Legal->getPointerInductionDescriptor(Phi))
8176     return new VPWidenPointerInductionRecipe(Phi, Operands[0], *II,
8177                                              *PSE.getSE());
8178   return nullptr;
8179 }
8180 
8181 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8182     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, VPlan &Plan) {
8183   // Optimize the special case where the source is a constant integer
8184   // induction variable. Notice that we can only optimize the 'trunc' case
8185   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8186   // (c) other casts depend on pointer size.
8187 
8188   // Determine whether \p K is a truncation based on an induction variable that
8189   // can be optimized.
8190   auto isOptimizableIVTruncate =
8191       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8192     return [=](ElementCount VF) -> bool {
8193       return CM.isOptimizableIVTruncate(K, VF);
8194     };
8195   };
8196 
8197   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8198           isOptimizableIVTruncate(I), Range)) {
8199 
8200     auto *Phi = cast<PHINode>(I->getOperand(0));
8201     const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
8202     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8203     return createWidenInductionRecipes(Phi, I, Start, II, CM, Plan,
8204                                        *PSE.getSE(), *OrigLoop, Range);
8205   }
8206   return nullptr;
8207 }
8208 
8209 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8210                                                 ArrayRef<VPValue *> Operands,
8211                                                 VPlanPtr &Plan) {
8212   // If all incoming values are equal, the incoming VPValue can be used directly
8213   // instead of creating a new VPBlendRecipe.
8214   VPValue *FirstIncoming = Operands[0];
8215   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8216         return FirstIncoming == Inc;
8217       })) {
8218     return Operands[0];
8219   }
8220 
8221   unsigned NumIncoming = Phi->getNumIncomingValues();
8222   // For in-loop reductions, we do not need to create an additional select.
8223   VPValue *InLoopVal = nullptr;
8224   for (unsigned In = 0; In < NumIncoming; In++) {
8225     PHINode *PhiOp =
8226         dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue());
8227     if (PhiOp && CM.isInLoopReduction(PhiOp)) {
8228       assert(!InLoopVal && "Found more than one in-loop reduction!");
8229       InLoopVal = Operands[In];
8230     }
8231   }
8232 
8233   assert((!InLoopVal || NumIncoming == 2) &&
8234          "Found an in-loop reduction for PHI with unexpected number of "
8235          "incoming values");
8236   if (InLoopVal)
8237     return Operands[Operands[0] == InLoopVal ? 1 : 0];
8238 
8239   // We know that all PHIs in non-header blocks are converted into selects, so
8240   // we don't have to worry about the insertion order and we can just use the
8241   // builder. At this point we generate the predication tree. There may be
8242   // duplications since this is a simple recursive scan, but future
8243   // optimizations will clean it up.
8244   SmallVector<VPValue *, 2> OperandsWithMask;
8245 
8246   for (unsigned In = 0; In < NumIncoming; In++) {
8247     VPValue *EdgeMask =
8248       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8249     assert((EdgeMask || NumIncoming == 1) &&
8250            "Multiple predecessors with one having a full mask");
8251     OperandsWithMask.push_back(Operands[In]);
8252     if (EdgeMask)
8253       OperandsWithMask.push_back(EdgeMask);
8254   }
8255   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8256 }
8257 
8258 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8259                                                    ArrayRef<VPValue *> Operands,
8260                                                    VFRange &Range) const {
8261 
8262   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8263       [this, CI](ElementCount VF) {
8264         return CM.isScalarWithPredication(CI, VF);
8265       },
8266       Range);
8267 
8268   if (IsPredicated)
8269     return nullptr;
8270 
8271   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8272   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8273              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8274              ID == Intrinsic::pseudoprobe ||
8275              ID == Intrinsic::experimental_noalias_scope_decl))
8276     return nullptr;
8277 
8278   auto willWiden = [&](ElementCount VF) -> bool {
8279     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8280     // The following case may be scalarized depending on the VF.
8281     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8282     // version of the instruction.
8283     // Is it beneficial to perform intrinsic call compared to lib call?
8284     bool NeedToScalarize = false;
8285     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8286     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8287     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8288     return UseVectorIntrinsic || !NeedToScalarize;
8289   };
8290 
8291   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8292     return nullptr;
8293 
8294   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8295   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8296 }
8297 
8298 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8299   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8300          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8301   // Instruction should be widened, unless it is scalar after vectorization,
8302   // scalarization is profitable or it is predicated.
8303   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8304     return CM.isScalarAfterVectorization(I, VF) ||
8305            CM.isProfitableToScalarize(I, VF) ||
8306            CM.isScalarWithPredication(I, VF);
8307   };
8308   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8309                                                              Range);
8310 }
8311 
8312 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8313                                            ArrayRef<VPValue *> Operands) const {
8314   auto IsVectorizableOpcode = [](unsigned Opcode) {
8315     switch (Opcode) {
8316     case Instruction::Add:
8317     case Instruction::And:
8318     case Instruction::AShr:
8319     case Instruction::BitCast:
8320     case Instruction::FAdd:
8321     case Instruction::FCmp:
8322     case Instruction::FDiv:
8323     case Instruction::FMul:
8324     case Instruction::FNeg:
8325     case Instruction::FPExt:
8326     case Instruction::FPToSI:
8327     case Instruction::FPToUI:
8328     case Instruction::FPTrunc:
8329     case Instruction::FRem:
8330     case Instruction::FSub:
8331     case Instruction::ICmp:
8332     case Instruction::IntToPtr:
8333     case Instruction::LShr:
8334     case Instruction::Mul:
8335     case Instruction::Or:
8336     case Instruction::PtrToInt:
8337     case Instruction::SDiv:
8338     case Instruction::Select:
8339     case Instruction::SExt:
8340     case Instruction::Shl:
8341     case Instruction::SIToFP:
8342     case Instruction::SRem:
8343     case Instruction::Sub:
8344     case Instruction::Trunc:
8345     case Instruction::UDiv:
8346     case Instruction::UIToFP:
8347     case Instruction::URem:
8348     case Instruction::Xor:
8349     case Instruction::ZExt:
8350     case Instruction::Freeze:
8351       return true;
8352     }
8353     return false;
8354   };
8355 
8356   if (!IsVectorizableOpcode(I->getOpcode()))
8357     return nullptr;
8358 
8359   // Success: widen this instruction.
8360   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8361 }
8362 
8363 void VPRecipeBuilder::fixHeaderPhis() {
8364   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8365   for (VPHeaderPHIRecipe *R : PhisToFix) {
8366     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8367     VPRecipeBase *IncR =
8368         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8369     R->addOperand(IncR->getVPSingleValue());
8370   }
8371 }
8372 
8373 VPBasicBlock *VPRecipeBuilder::handleReplication(
8374     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8375     VPlanPtr &Plan) {
8376   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8377       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8378       Range);
8379 
8380   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8381       [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); },
8382       Range);
8383 
8384   // Even if the instruction is not marked as uniform, there are certain
8385   // intrinsic calls that can be effectively treated as such, so we check for
8386   // them here. Conservatively, we only do this for scalable vectors, since
8387   // for fixed-width VFs we can always fall back on full scalarization.
8388   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
8389     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
8390     case Intrinsic::assume:
8391     case Intrinsic::lifetime_start:
8392     case Intrinsic::lifetime_end:
8393       // For scalable vectors if one of the operands is variant then we still
8394       // want to mark as uniform, which will generate one instruction for just
8395       // the first lane of the vector. We can't scalarize the call in the same
8396       // way as for fixed-width vectors because we don't know how many lanes
8397       // there are.
8398       //
8399       // The reasons for doing it this way for scalable vectors are:
8400       //   1. For the assume intrinsic generating the instruction for the first
8401       //      lane is still be better than not generating any at all. For
8402       //      example, the input may be a splat across all lanes.
8403       //   2. For the lifetime start/end intrinsics the pointer operand only
8404       //      does anything useful when the input comes from a stack object,
8405       //      which suggests it should always be uniform. For non-stack objects
8406       //      the effect is to poison the object, which still allows us to
8407       //      remove the call.
8408       IsUniform = true;
8409       break;
8410     default:
8411       break;
8412     }
8413   }
8414 
8415   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8416                                        IsUniform, IsPredicated);
8417 
8418   // Find if I uses a predicated instruction. If so, it will use its scalar
8419   // value. Avoid hoisting the insert-element which packs the scalar value into
8420   // a vector value, as that happens iff all users use the vector value.
8421   for (VPValue *Op : Recipe->operands()) {
8422     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8423     if (!PredR)
8424       continue;
8425     auto *RepR =
8426         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8427     assert(RepR->isPredicated() &&
8428            "expected Replicate recipe to be predicated");
8429     RepR->setAlsoPack(false);
8430   }
8431 
8432   // Finalize the recipe for Instr, first if it is not predicated.
8433   if (!IsPredicated) {
8434     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8435     setRecipe(I, Recipe);
8436     Plan->addVPValue(I, Recipe);
8437     VPBB->appendRecipe(Recipe);
8438     return VPBB;
8439   }
8440   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8441 
8442   VPBlockBase *SingleSucc = VPBB->getSingleSuccessor();
8443   assert(SingleSucc && "VPBB must have a single successor when handling "
8444                        "predicated replication.");
8445   VPBlockUtils::disconnectBlocks(VPBB, SingleSucc);
8446   // Record predicated instructions for above packing optimizations.
8447   VPBlockBase *Region = createReplicateRegion(Recipe, Plan);
8448   VPBlockUtils::insertBlockAfter(Region, VPBB);
8449   auto *RegSucc = new VPBasicBlock();
8450   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8451   VPBlockUtils::connectBlocks(RegSucc, SingleSucc);
8452   return RegSucc;
8453 }
8454 
8455 VPRegionBlock *
8456 VPRecipeBuilder::createReplicateRegion(VPReplicateRecipe *PredRecipe,
8457                                        VPlanPtr &Plan) {
8458   Instruction *Instr = PredRecipe->getUnderlyingInstr();
8459   // Instructions marked for predication are replicated and placed under an
8460   // if-then construct to prevent side-effects.
8461   // Generate recipes to compute the block mask for this region.
8462   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8463 
8464   // Build the triangular if-then region.
8465   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8466   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8467   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8468   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8469   auto *PHIRecipe = Instr->getType()->isVoidTy()
8470                         ? nullptr
8471                         : new VPPredInstPHIRecipe(PredRecipe);
8472   if (PHIRecipe) {
8473     setRecipe(Instr, PHIRecipe);
8474     Plan->addVPValue(Instr, PHIRecipe);
8475   } else {
8476     setRecipe(Instr, PredRecipe);
8477     Plan->addVPValue(Instr, PredRecipe);
8478   }
8479 
8480   auto *Exiting = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8481   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8482   VPRegionBlock *Region = new VPRegionBlock(Entry, Exiting, RegionName, true);
8483 
8484   // Note: first set Entry as region entry and then connect successors starting
8485   // from it in order, to propagate the "parent" of each VPBasicBlock.
8486   VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry);
8487   VPBlockUtils::connectBlocks(Pred, Exiting);
8488 
8489   return Region;
8490 }
8491 
8492 VPRecipeOrVPValueTy
8493 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8494                                         ArrayRef<VPValue *> Operands,
8495                                         VFRange &Range, VPlanPtr &Plan) {
8496   // First, check for specific widening recipes that deal with inductions, Phi
8497   // nodes, calls and memory operations.
8498   VPRecipeBase *Recipe;
8499   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8500     if (Phi->getParent() != OrigLoop->getHeader())
8501       return tryToBlend(Phi, Operands, Plan);
8502     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, *Plan, Range)))
8503       return toVPRecipeResult(Recipe);
8504 
8505     VPHeaderPHIRecipe *PhiRecipe = nullptr;
8506     assert((Legal->isReductionVariable(Phi) ||
8507             Legal->isFirstOrderRecurrence(Phi)) &&
8508            "can only widen reductions and first-order recurrences here");
8509     VPValue *StartV = Operands[0];
8510     if (Legal->isReductionVariable(Phi)) {
8511       const RecurrenceDescriptor &RdxDesc =
8512           Legal->getReductionVars().find(Phi)->second;
8513       assert(RdxDesc.getRecurrenceStartValue() ==
8514              Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8515       PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
8516                                            CM.isInLoopReduction(Phi),
8517                                            CM.useOrderedReductions(RdxDesc));
8518     } else {
8519       PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8520     }
8521 
8522     // Record the incoming value from the backedge, so we can add the incoming
8523     // value from the backedge after all recipes have been created.
8524     recordRecipeOf(cast<Instruction>(
8525         Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
8526     PhisToFix.push_back(PhiRecipe);
8527     return toVPRecipeResult(PhiRecipe);
8528   }
8529 
8530   if (isa<TruncInst>(Instr) &&
8531       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8532                                                Range, *Plan)))
8533     return toVPRecipeResult(Recipe);
8534 
8535   // All widen recipes below deal only with VF > 1.
8536   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8537           [&](ElementCount VF) { return VF.isScalar(); }, Range))
8538     return nullptr;
8539 
8540   if (auto *CI = dyn_cast<CallInst>(Instr))
8541     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8542 
8543   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8544     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8545 
8546   if (!shouldWiden(Instr, Range))
8547     return nullptr;
8548 
8549   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8550     return toVPRecipeResult(new VPWidenGEPRecipe(
8551         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8552 
8553   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8554     bool InvariantCond =
8555         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8556     return toVPRecipeResult(new VPWidenSelectRecipe(
8557         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
8558   }
8559 
8560   return toVPRecipeResult(tryToWiden(Instr, Operands));
8561 }
8562 
8563 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8564                                                         ElementCount MaxVF) {
8565   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8566 
8567   // Add assume instructions we need to drop to DeadInstructions, to prevent
8568   // them from being added to the VPlan.
8569   // TODO: We only need to drop assumes in blocks that get flattend. If the
8570   // control flow is preserved, we should keep them.
8571   SmallPtrSet<Instruction *, 4> DeadInstructions;
8572   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8573   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8574 
8575   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8576   // Dead instructions do not need sinking. Remove them from SinkAfter.
8577   for (Instruction *I : DeadInstructions)
8578     SinkAfter.erase(I);
8579 
8580   // Cannot sink instructions after dead instructions (there won't be any
8581   // recipes for them). Instead, find the first non-dead previous instruction.
8582   for (auto &P : Legal->getSinkAfter()) {
8583     Instruction *SinkTarget = P.second;
8584     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
8585     (void)FirstInst;
8586     while (DeadInstructions.contains(SinkTarget)) {
8587       assert(
8588           SinkTarget != FirstInst &&
8589           "Must find a live instruction (at least the one feeding the "
8590           "first-order recurrence PHI) before reaching beginning of the block");
8591       SinkTarget = SinkTarget->getPrevNode();
8592       assert(SinkTarget != P.first &&
8593              "sink source equals target, no sinking required");
8594     }
8595     P.second = SinkTarget;
8596   }
8597 
8598   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8599   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8600     VFRange SubRange = {VF, MaxVFPlusOne};
8601     VPlans.push_back(
8602         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8603     VF = SubRange.End;
8604   }
8605 }
8606 
8607 // Add the necessary canonical IV and branch recipes required to control the
8608 // loop.
8609 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL,
8610                                   bool HasNUW,
8611                                   bool UseLaneMaskForLoopControlFlow) {
8612   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8613   auto *StartV = Plan.getOrAddVPValue(StartIdx);
8614 
8615   // Add a VPCanonicalIVPHIRecipe starting at 0 to the header.
8616   auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
8617   VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
8618   VPBasicBlock *Header = TopRegion->getEntryBasicBlock();
8619   Header->insert(CanonicalIVPHI, Header->begin());
8620 
8621   // Add a CanonicalIVIncrement{NUW} VPInstruction to increment the scalar
8622   // IV by VF * UF.
8623   auto *CanonicalIVIncrement =
8624       new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW
8625                                : VPInstruction::CanonicalIVIncrement,
8626                         {CanonicalIVPHI}, DL, "index.next");
8627   CanonicalIVPHI->addOperand(CanonicalIVIncrement);
8628 
8629   VPBasicBlock *EB = TopRegion->getExitingBasicBlock();
8630   EB->appendRecipe(CanonicalIVIncrement);
8631 
8632   if (UseLaneMaskForLoopControlFlow) {
8633     // Create the active lane mask instruction in the vplan preheader.
8634     VPBasicBlock *Preheader = Plan.getEntry()->getEntryBasicBlock();
8635 
8636     // We can't use StartV directly in the ActiveLaneMask VPInstruction, since
8637     // we have to take unrolling into account. Each part needs to start at
8638     //   Part * VF
8639     auto *CanonicalIVIncrementParts =
8640         new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementForPartNUW
8641                                  : VPInstruction::CanonicalIVIncrementForPart,
8642                           {StartV}, DL, "index.part.next");
8643     Preheader->appendRecipe(CanonicalIVIncrementParts);
8644 
8645     // Create the ActiveLaneMask instruction using the correct start values.
8646     VPValue *TC = Plan.getOrCreateTripCount();
8647     auto *EntryALM = new VPInstruction(VPInstruction::ActiveLaneMask,
8648                                        {CanonicalIVIncrementParts, TC}, DL,
8649                                        "active.lane.mask.entry");
8650     Preheader->appendRecipe(EntryALM);
8651 
8652     // Now create the ActiveLaneMaskPhi recipe in the main loop using the
8653     // preheader ActiveLaneMask instruction.
8654     auto *LaneMaskPhi = new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc());
8655     Header->insert(LaneMaskPhi, Header->getFirstNonPhi());
8656 
8657     // Create the active lane mask for the next iteration of the loop.
8658     CanonicalIVIncrementParts =
8659         new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementForPartNUW
8660                                  : VPInstruction::CanonicalIVIncrementForPart,
8661                           {CanonicalIVIncrement}, DL);
8662     EB->appendRecipe(CanonicalIVIncrementParts);
8663 
8664     auto *ALM = new VPInstruction(VPInstruction::ActiveLaneMask,
8665                                   {CanonicalIVIncrementParts, TC}, DL,
8666                                   "active.lane.mask.next");
8667     EB->appendRecipe(ALM);
8668     LaneMaskPhi->addOperand(ALM);
8669 
8670     // We have to invert the mask here because a true condition means jumping
8671     // to the exit block.
8672     auto *NotMask = new VPInstruction(VPInstruction::Not, ALM, DL);
8673     EB->appendRecipe(NotMask);
8674 
8675     VPInstruction *BranchBack =
8676         new VPInstruction(VPInstruction::BranchOnCond, {NotMask}, DL);
8677     EB->appendRecipe(BranchBack);
8678   } else {
8679     // Add the BranchOnCount VPInstruction to the latch.
8680     VPInstruction *BranchBack = new VPInstruction(
8681         VPInstruction::BranchOnCount,
8682         {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL);
8683     EB->appendRecipe(BranchBack);
8684   }
8685 }
8686 
8687 // Add exit values to \p Plan. VPLiveOuts are added for each LCSSA phi in the
8688 // original exit block.
8689 static void addUsersInExitBlock(VPBasicBlock *HeaderVPBB,
8690                                 VPBasicBlock *MiddleVPBB, Loop *OrigLoop,
8691                                 VPlan &Plan) {
8692   BasicBlock *ExitBB = OrigLoop->getUniqueExitBlock();
8693   BasicBlock *ExitingBB = OrigLoop->getExitingBlock();
8694   // Only handle single-exit loops with unique exit blocks for now.
8695   if (!ExitBB || !ExitBB->getSinglePredecessor() || !ExitingBB)
8696     return;
8697 
8698   // Introduce VPUsers modeling the exit values.
8699   for (PHINode &ExitPhi : ExitBB->phis()) {
8700     Value *IncomingValue =
8701         ExitPhi.getIncomingValueForBlock(ExitingBB);
8702     VPValue *V = Plan.getOrAddVPValue(IncomingValue, true);
8703     Plan.addLiveOut(&ExitPhi, V);
8704   }
8705 }
8706 
8707 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
8708     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
8709     const MapVector<Instruction *, Instruction *> &SinkAfter) {
8710 
8711   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8712 
8713   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
8714 
8715   // ---------------------------------------------------------------------------
8716   // Pre-construction: record ingredients whose recipes we'll need to further
8717   // process after constructing the initial VPlan.
8718   // ---------------------------------------------------------------------------
8719 
8720   // Mark instructions we'll need to sink later and their targets as
8721   // ingredients whose recipe we'll need to record.
8722   for (auto &Entry : SinkAfter) {
8723     RecipeBuilder.recordRecipeOf(Entry.first);
8724     RecipeBuilder.recordRecipeOf(Entry.second);
8725   }
8726   for (auto &Reduction : CM.getInLoopReductionChains()) {
8727     PHINode *Phi = Reduction.first;
8728     RecurKind Kind =
8729         Legal->getReductionVars().find(Phi)->second.getRecurrenceKind();
8730     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
8731 
8732     RecipeBuilder.recordRecipeOf(Phi);
8733     for (auto &R : ReductionOperations) {
8734       RecipeBuilder.recordRecipeOf(R);
8735       // For min/max reductions, where we have a pair of icmp/select, we also
8736       // need to record the ICmp recipe, so it can be removed later.
8737       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
8738              "Only min/max recurrences allowed for inloop reductions");
8739       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
8740         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
8741     }
8742   }
8743 
8744   // For each interleave group which is relevant for this (possibly trimmed)
8745   // Range, add it to the set of groups to be later applied to the VPlan and add
8746   // placeholders for its members' Recipes which we'll be replacing with a
8747   // single VPInterleaveRecipe.
8748   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8749     auto applyIG = [IG, this](ElementCount VF) -> bool {
8750       return (VF.isVector() && // Query is illegal for VF == 1
8751               CM.getWideningDecision(IG->getInsertPos(), VF) ==
8752                   LoopVectorizationCostModel::CM_Interleave);
8753     };
8754     if (!getDecisionAndClampRange(applyIG, Range))
8755       continue;
8756     InterleaveGroups.insert(IG);
8757     for (unsigned i = 0; i < IG->getFactor(); i++)
8758       if (Instruction *Member = IG->getMember(i))
8759         RecipeBuilder.recordRecipeOf(Member);
8760   };
8761 
8762   // ---------------------------------------------------------------------------
8763   // Build initial VPlan: Scan the body of the loop in a topological order to
8764   // visit each basic block after having visited its predecessor basic blocks.
8765   // ---------------------------------------------------------------------------
8766 
8767   // Create initial VPlan skeleton, starting with a block for the pre-header,
8768   // followed by a region for the vector loop, followed by the middle block. The
8769   // skeleton vector loop region contains a header and latch block.
8770   VPBasicBlock *Preheader = new VPBasicBlock("vector.ph");
8771   auto Plan = std::make_unique<VPlan>(Preheader);
8772 
8773   VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body");
8774   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
8775   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
8776   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop");
8777   VPBlockUtils::insertBlockAfter(TopRegion, Preheader);
8778   VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
8779   VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
8780 
8781   Instruction *DLInst =
8782       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
8783   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(),
8784                         DLInst ? DLInst->getDebugLoc() : DebugLoc(),
8785                         !CM.foldTailByMasking(),
8786                         CM.useActiveLaneMaskForControlFlow());
8787 
8788   // Scan the body of the loop in a topological order to visit each basic block
8789   // after having visited its predecessor basic blocks.
8790   LoopBlocksDFS DFS(OrigLoop);
8791   DFS.perform(LI);
8792 
8793   VPBasicBlock *VPBB = HeaderVPBB;
8794   SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove;
8795   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
8796     // Relevant instructions from basic block BB will be grouped into VPRecipe
8797     // ingredients and fill a new VPBasicBlock.
8798     unsigned VPBBsForBB = 0;
8799     if (VPBB != HeaderVPBB)
8800       VPBB->setName(BB->getName());
8801     Builder.setInsertPoint(VPBB);
8802 
8803     // Introduce each ingredient into VPlan.
8804     // TODO: Model and preserve debug intrinsics in VPlan.
8805     for (Instruction &I : BB->instructionsWithoutDebug()) {
8806       Instruction *Instr = &I;
8807 
8808       // First filter out irrelevant instructions, to ensure no recipes are
8809       // built for them.
8810       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
8811         continue;
8812 
8813       SmallVector<VPValue *, 4> Operands;
8814       auto *Phi = dyn_cast<PHINode>(Instr);
8815       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
8816         Operands.push_back(Plan->getOrAddVPValue(
8817             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
8818       } else {
8819         auto OpRange = Plan->mapToVPValues(Instr->operands());
8820         Operands = {OpRange.begin(), OpRange.end()};
8821       }
8822 
8823       // Invariant stores inside loop will be deleted and a single store
8824       // with the final reduction value will be added to the exit block
8825       StoreInst *SI;
8826       if ((SI = dyn_cast<StoreInst>(&I)) &&
8827           Legal->isInvariantAddressOfReduction(SI->getPointerOperand()))
8828         continue;
8829 
8830       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
8831               Instr, Operands, Range, Plan)) {
8832         // If Instr can be simplified to an existing VPValue, use it.
8833         if (RecipeOrValue.is<VPValue *>()) {
8834           auto *VPV = RecipeOrValue.get<VPValue *>();
8835           Plan->addVPValue(Instr, VPV);
8836           // If the re-used value is a recipe, register the recipe for the
8837           // instruction, in case the recipe for Instr needs to be recorded.
8838           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
8839             RecipeBuilder.setRecipe(Instr, R);
8840           continue;
8841         }
8842         // Otherwise, add the new recipe.
8843         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
8844         for (auto *Def : Recipe->definedValues()) {
8845           auto *UV = Def->getUnderlyingValue();
8846           Plan->addVPValue(UV, Def);
8847         }
8848 
8849         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
8850             HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
8851           // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section
8852           // of the header block. That can happen for truncates of induction
8853           // variables. Those recipes are moved to the phi section of the header
8854           // block after applying SinkAfter, which relies on the original
8855           // position of the trunc.
8856           assert(isa<TruncInst>(Instr));
8857           InductionsToMove.push_back(
8858               cast<VPWidenIntOrFpInductionRecipe>(Recipe));
8859         }
8860         RecipeBuilder.setRecipe(Instr, Recipe);
8861         VPBB->appendRecipe(Recipe);
8862         continue;
8863       }
8864 
8865       // Otherwise, if all widening options failed, Instruction is to be
8866       // replicated. This may create a successor for VPBB.
8867       VPBasicBlock *NextVPBB =
8868           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
8869       if (NextVPBB != VPBB) {
8870         VPBB = NextVPBB;
8871         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
8872                                     : "");
8873       }
8874     }
8875 
8876     VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB);
8877     VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor());
8878   }
8879 
8880   HeaderVPBB->setName("vector.body");
8881 
8882   // Fold the last, empty block into its predecessor.
8883   VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB);
8884   assert(VPBB && "expected to fold last (empty) block");
8885   // After here, VPBB should not be used.
8886   VPBB = nullptr;
8887 
8888   addUsersInExitBlock(HeaderVPBB, MiddleVPBB, OrigLoop, *Plan);
8889 
8890   assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) &&
8891          !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
8892          "entry block must be set to a VPRegionBlock having a non-empty entry "
8893          "VPBasicBlock");
8894   RecipeBuilder.fixHeaderPhis();
8895 
8896   // ---------------------------------------------------------------------------
8897   // Transform initial VPlan: Apply previously taken decisions, in order, to
8898   // bring the VPlan to its final state.
8899   // ---------------------------------------------------------------------------
8900 
8901   // Apply Sink-After legal constraints.
8902   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
8903     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
8904     if (Region && Region->isReplicator()) {
8905       assert(Region->getNumSuccessors() == 1 &&
8906              Region->getNumPredecessors() == 1 && "Expected SESE region!");
8907       assert(R->getParent()->size() == 1 &&
8908              "A recipe in an original replicator region must be the only "
8909              "recipe in its block");
8910       return Region;
8911     }
8912     return nullptr;
8913   };
8914   for (auto &Entry : SinkAfter) {
8915     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
8916     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
8917 
8918     auto *TargetRegion = GetReplicateRegion(Target);
8919     auto *SinkRegion = GetReplicateRegion(Sink);
8920     if (!SinkRegion) {
8921       // If the sink source is not a replicate region, sink the recipe directly.
8922       if (TargetRegion) {
8923         // The target is in a replication region, make sure to move Sink to
8924         // the block after it, not into the replication region itself.
8925         VPBasicBlock *NextBlock =
8926             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
8927         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
8928       } else
8929         Sink->moveAfter(Target);
8930       continue;
8931     }
8932 
8933     // The sink source is in a replicate region. Unhook the region from the CFG.
8934     auto *SinkPred = SinkRegion->getSinglePredecessor();
8935     auto *SinkSucc = SinkRegion->getSingleSuccessor();
8936     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
8937     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
8938     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
8939 
8940     if (TargetRegion) {
8941       // The target recipe is also in a replicate region, move the sink region
8942       // after the target region.
8943       auto *TargetSucc = TargetRegion->getSingleSuccessor();
8944       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
8945       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
8946       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
8947     } else {
8948       // The sink source is in a replicate region, we need to move the whole
8949       // replicate region, which should only contain a single recipe in the
8950       // main block.
8951       auto *SplitBlock =
8952           Target->getParent()->splitAt(std::next(Target->getIterator()));
8953 
8954       auto *SplitPred = SplitBlock->getSinglePredecessor();
8955 
8956       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
8957       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
8958       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
8959     }
8960   }
8961 
8962   VPlanTransforms::removeRedundantCanonicalIVs(*Plan);
8963   VPlanTransforms::removeRedundantInductionCasts(*Plan);
8964 
8965   // Now that sink-after is done, move induction recipes for optimized truncates
8966   // to the phi section of the header block.
8967   for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove)
8968     Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
8969 
8970   // Adjust the recipes for any inloop reductions.
8971   adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExiting()), Plan,
8972                              RecipeBuilder, Range.Start);
8973 
8974   // Introduce a recipe to combine the incoming and previous values of a
8975   // first-order recurrence.
8976   for (VPRecipeBase &R :
8977        Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8978     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
8979     if (!RecurPhi)
8980       continue;
8981 
8982     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
8983     VPBasicBlock *InsertBlock = PrevRecipe->getParent();
8984     auto *Region = GetReplicateRegion(PrevRecipe);
8985     if (Region)
8986       InsertBlock = dyn_cast<VPBasicBlock>(Region->getSingleSuccessor());
8987     if (!InsertBlock) {
8988       InsertBlock = new VPBasicBlock(Region->getName() + ".succ");
8989       VPBlockUtils::insertBlockAfter(InsertBlock, Region);
8990     }
8991     if (Region || PrevRecipe->isPhi())
8992       Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
8993     else
8994       Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator()));
8995 
8996     auto *RecurSplice = cast<VPInstruction>(
8997         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
8998                              {RecurPhi, RecurPhi->getBackedgeValue()}));
8999 
9000     RecurPhi->replaceAllUsesWith(RecurSplice);
9001     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9002     // all users.
9003     RecurSplice->setOperand(0, RecurPhi);
9004   }
9005 
9006   // Interleave memory: for each Interleave Group we marked earlier as relevant
9007   // for this VPlan, replace the Recipes widening its memory instructions with a
9008   // single VPInterleaveRecipe at its insertion point.
9009   for (auto IG : InterleaveGroups) {
9010     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9011         RecipeBuilder.getRecipe(IG->getInsertPos()));
9012     SmallVector<VPValue *, 4> StoredValues;
9013     for (unsigned i = 0; i < IG->getFactor(); ++i)
9014       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9015         auto *StoreR =
9016             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9017         StoredValues.push_back(StoreR->getStoredValue());
9018       }
9019 
9020     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9021                                         Recipe->getMask());
9022     VPIG->insertBefore(Recipe);
9023     unsigned J = 0;
9024     for (unsigned i = 0; i < IG->getFactor(); ++i)
9025       if (Instruction *Member = IG->getMember(i)) {
9026         if (!Member->getType()->isVoidTy()) {
9027           VPValue *OriginalV = Plan->getVPValue(Member);
9028           Plan->removeVPValueFor(Member);
9029           Plan->addVPValue(Member, VPIG->getVPValue(J));
9030           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9031           J++;
9032         }
9033         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9034       }
9035   }
9036 
9037   std::string PlanName;
9038   raw_string_ostream RSO(PlanName);
9039   ElementCount VF = Range.Start;
9040   Plan->addVF(VF);
9041   RSO << "Initial VPlan for VF={" << VF;
9042   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9043     Plan->addVF(VF);
9044     RSO << "," << VF;
9045   }
9046   RSO << "},UF>=1";
9047   RSO.flush();
9048   Plan->setName(PlanName);
9049 
9050   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9051   // in ways that accessing values using original IR values is incorrect.
9052   Plan->disableValue2VPValue();
9053 
9054   VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE());
9055   VPlanTransforms::sinkScalarOperands(*Plan);
9056   VPlanTransforms::removeDeadRecipes(*Plan);
9057   VPlanTransforms::mergeReplicateRegions(*Plan);
9058   VPlanTransforms::removeRedundantExpandSCEVRecipes(*Plan);
9059 
9060   // Fold Exit block into its predecessor if possible.
9061   // TODO: Fold block earlier once all VPlan transforms properly maintain a
9062   // VPBasicBlock as exit.
9063   VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExiting());
9064 
9065   assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
9066   return Plan;
9067 }
9068 
9069 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9070   // Outer loop handling: They may require CFG and instruction level
9071   // transformations before even evaluating whether vectorization is profitable.
9072   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9073   // the vectorization pipeline.
9074   assert(!OrigLoop->isInnermost());
9075   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9076 
9077   // Create new empty VPlan
9078   auto Plan = std::make_unique<VPlan>();
9079 
9080   // Build hierarchical CFG
9081   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9082   HCFGBuilder.buildHierarchicalCFG();
9083 
9084   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9085        VF *= 2)
9086     Plan->addVF(VF);
9087 
9088   SmallPtrSet<Instruction *, 1> DeadInstructions;
9089   VPlanTransforms::VPInstructionsToVPRecipes(
9090       OrigLoop, Plan,
9091       [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); },
9092       DeadInstructions, *PSE.getSE());
9093 
9094   // Remove the existing terminator of the exiting block of the top-most region.
9095   // A BranchOnCount will be added instead when adding the canonical IV recipes.
9096   auto *Term =
9097       Plan->getVectorLoopRegion()->getExitingBasicBlock()->getTerminator();
9098   Term->eraseFromParent();
9099 
9100   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(),
9101                         true, CM.useActiveLaneMaskForControlFlow());
9102   return Plan;
9103 }
9104 
9105 // Adjust the recipes for reductions. For in-loop reductions the chain of
9106 // instructions leading from the loop exit instr to the phi need to be converted
9107 // to reductions, with one operand being vector and the other being the scalar
9108 // reduction chain. For other reductions, a select is introduced between the phi
9109 // and live-out recipes when folding the tail.
9110 void LoopVectorizationPlanner::adjustRecipesForReductions(
9111     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9112     ElementCount MinVF) {
9113   for (auto &Reduction : CM.getInLoopReductionChains()) {
9114     PHINode *Phi = Reduction.first;
9115     const RecurrenceDescriptor &RdxDesc =
9116         Legal->getReductionVars().find(Phi)->second;
9117     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9118 
9119     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9120       continue;
9121 
9122     // ReductionOperations are orders top-down from the phi's use to the
9123     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9124     // which of the two operands will remain scalar and which will be reduced.
9125     // For minmax the chain will be the select instructions.
9126     Instruction *Chain = Phi;
9127     for (Instruction *R : ReductionOperations) {
9128       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9129       RecurKind Kind = RdxDesc.getRecurrenceKind();
9130 
9131       VPValue *ChainOp = Plan->getVPValue(Chain);
9132       unsigned FirstOpId;
9133       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9134              "Only min/max recurrences allowed for inloop reductions");
9135       // Recognize a call to the llvm.fmuladd intrinsic.
9136       bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
9137       assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) &&
9138              "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9139       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9140         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9141                "Expected to replace a VPWidenSelectSC");
9142         FirstOpId = 1;
9143       } else {
9144         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) ||
9145                 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) &&
9146                "Expected to replace a VPWidenSC");
9147         FirstOpId = 0;
9148       }
9149       unsigned VecOpId =
9150           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9151       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9152 
9153       auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent())
9154                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9155                          : nullptr;
9156 
9157       if (IsFMulAdd) {
9158         // If the instruction is a call to the llvm.fmuladd intrinsic then we
9159         // need to create an fmul recipe to use as the vector operand for the
9160         // fadd reduction.
9161         VPInstruction *FMulRecipe = new VPInstruction(
9162             Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))});
9163         FMulRecipe->setFastMathFlags(R->getFastMathFlags());
9164         WidenRecipe->getParent()->insert(FMulRecipe,
9165                                          WidenRecipe->getIterator());
9166         VecOp = FMulRecipe;
9167       }
9168       VPReductionRecipe *RedRecipe =
9169           new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9170       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9171       Plan->removeVPValueFor(R);
9172       Plan->addVPValue(R, RedRecipe);
9173       // Append the recipe to the end of the VPBasicBlock because we need to
9174       // ensure that it comes after all of it's inputs, including CondOp.
9175       WidenRecipe->getParent()->appendRecipe(RedRecipe);
9176       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9177       WidenRecipe->eraseFromParent();
9178 
9179       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9180         VPRecipeBase *CompareRecipe =
9181             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9182         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9183                "Expected to replace a VPWidenSC");
9184         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9185                "Expected no remaining users");
9186         CompareRecipe->eraseFromParent();
9187       }
9188       Chain = R;
9189     }
9190   }
9191 
9192   // If tail is folded by masking, introduce selects between the phi
9193   // and the live-out instruction of each reduction, at the beginning of the
9194   // dedicated latch block.
9195   if (CM.foldTailByMasking()) {
9196     Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin());
9197     for (VPRecipeBase &R :
9198          Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
9199       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9200       if (!PhiR || PhiR->isInLoop())
9201         continue;
9202       VPValue *Cond =
9203           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9204       VPValue *Red = PhiR->getBackedgeValue();
9205       assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB &&
9206              "reduction recipe must be defined before latch");
9207       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9208     }
9209   }
9210 }
9211 
9212 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9213 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9214                                VPSlotTracker &SlotTracker) const {
9215   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9216   IG->getInsertPos()->printAsOperand(O, false);
9217   O << ", ";
9218   getAddr()->printAsOperand(O, SlotTracker);
9219   VPValue *Mask = getMask();
9220   if (Mask) {
9221     O << ", ";
9222     Mask->printAsOperand(O, SlotTracker);
9223   }
9224 
9225   unsigned OpIdx = 0;
9226   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9227     if (!IG->getMember(i))
9228       continue;
9229     if (getNumStoreOperands() > 0) {
9230       O << "\n" << Indent << "  store ";
9231       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9232       O << " to index " << i;
9233     } else {
9234       O << "\n" << Indent << "  ";
9235       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9236       O << " = load from index " << i;
9237     }
9238     ++OpIdx;
9239   }
9240 }
9241 #endif
9242 
9243 void VPWidenCallRecipe::execute(VPTransformState &State) {
9244   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9245                                   *this, State);
9246 }
9247 
9248 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9249   assert(!State.Instance && "Int or FP induction being replicated.");
9250 
9251   Value *Start = getStartValue()->getLiveInIRValue();
9252   const InductionDescriptor &ID = getInductionDescriptor();
9253   TruncInst *Trunc = getTruncInst();
9254   IRBuilderBase &Builder = State.Builder;
9255   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
9256   assert(State.VF.isVector() && "must have vector VF");
9257 
9258   // The value from the original loop to which we are mapping the new induction
9259   // variable.
9260   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
9261 
9262   // Fast-math-flags propagate from the original induction instruction.
9263   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9264   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
9265     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
9266 
9267   // Now do the actual transformations, and start with fetching the step value.
9268   Value *Step = State.get(getStepValue(), VPIteration(0, 0));
9269 
9270   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
9271          "Expected either an induction phi-node or a truncate of it!");
9272 
9273   // Construct the initial value of the vector IV in the vector loop preheader
9274   auto CurrIP = Builder.saveIP();
9275   BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
9276   Builder.SetInsertPoint(VectorPH->getTerminator());
9277   if (isa<TruncInst>(EntryVal)) {
9278     assert(Start->getType()->isIntegerTy() &&
9279            "Truncation requires an integer type");
9280     auto *TruncType = cast<IntegerType>(EntryVal->getType());
9281     Step = Builder.CreateTrunc(Step, TruncType);
9282     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
9283   }
9284 
9285   Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
9286   Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start);
9287   Value *SteppedStart = getStepVector(
9288       SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder);
9289 
9290   // We create vector phi nodes for both integer and floating-point induction
9291   // variables. Here, we determine the kind of arithmetic we will perform.
9292   Instruction::BinaryOps AddOp;
9293   Instruction::BinaryOps MulOp;
9294   if (Step->getType()->isIntegerTy()) {
9295     AddOp = Instruction::Add;
9296     MulOp = Instruction::Mul;
9297   } else {
9298     AddOp = ID.getInductionOpcode();
9299     MulOp = Instruction::FMul;
9300   }
9301 
9302   // Multiply the vectorization factor by the step using integer or
9303   // floating-point arithmetic as appropriate.
9304   Type *StepType = Step->getType();
9305   Value *RuntimeVF;
9306   if (Step->getType()->isFloatingPointTy())
9307     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF);
9308   else
9309     RuntimeVF = getRuntimeVF(Builder, StepType, State.VF);
9310   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
9311 
9312   // Create a vector splat to use in the induction update.
9313   //
9314   // FIXME: If the step is non-constant, we create the vector splat with
9315   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
9316   //        handle a constant vector splat.
9317   Value *SplatVF = isa<Constant>(Mul)
9318                        ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul))
9319                        : Builder.CreateVectorSplat(State.VF, Mul);
9320   Builder.restoreIP(CurrIP);
9321 
9322   // We may need to add the step a number of times, depending on the unroll
9323   // factor. The last of those goes into the PHI.
9324   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
9325                                     &*State.CFG.PrevBB->getFirstInsertionPt());
9326   VecInd->setDebugLoc(EntryVal->getDebugLoc());
9327   Instruction *LastInduction = VecInd;
9328   for (unsigned Part = 0; Part < State.UF; ++Part) {
9329     State.set(this, LastInduction, Part);
9330 
9331     if (isa<TruncInst>(EntryVal))
9332       State.addMetadata(LastInduction, EntryVal);
9333 
9334     LastInduction = cast<Instruction>(
9335         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
9336     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
9337   }
9338 
9339   LastInduction->setName("vec.ind.next");
9340   VecInd->addIncoming(SteppedStart, VectorPH);
9341   // Add induction update using an incorrect block temporarily. The phi node
9342   // will be fixed after VPlan execution. Note that at this point the latch
9343   // block cannot be used, as it does not exist yet.
9344   // TODO: Model increment value in VPlan, by turning the recipe into a
9345   // multi-def and a subclass of VPHeaderPHIRecipe.
9346   VecInd->addIncoming(LastInduction, VectorPH);
9347 }
9348 
9349 void VPWidenPointerInductionRecipe::execute(VPTransformState &State) {
9350   assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction &&
9351          "Not a pointer induction according to InductionDescriptor!");
9352   assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() &&
9353          "Unexpected type.");
9354 
9355   auto *IVR = getParent()->getPlan()->getCanonicalIV();
9356   PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0));
9357 
9358   if (onlyScalarsGenerated(State.VF)) {
9359     // This is the normalized GEP that starts counting at zero.
9360     Value *PtrInd = State.Builder.CreateSExtOrTrunc(
9361         CanonicalIV, IndDesc.getStep()->getType());
9362     // Determine the number of scalars we need to generate for each unroll
9363     // iteration. If the instruction is uniform, we only need to generate the
9364     // first lane. Otherwise, we generate all VF values.
9365     bool IsUniform = vputils::onlyFirstLaneUsed(this);
9366     assert((IsUniform || !State.VF.isScalable()) &&
9367            "Cannot scalarize a scalable VF");
9368     unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
9369 
9370     for (unsigned Part = 0; Part < State.UF; ++Part) {
9371       Value *PartStart =
9372           createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part);
9373 
9374       for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
9375         Value *Idx = State.Builder.CreateAdd(
9376             PartStart, ConstantInt::get(PtrInd->getType(), Lane));
9377         Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx);
9378 
9379         Value *Step = CreateStepValue(IndDesc.getStep(), SE,
9380                                       State.CFG.PrevBB->getTerminator());
9381         Value *SclrGep = emitTransformedIndex(
9382             State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc);
9383         SclrGep->setName("next.gep");
9384         State.set(this, SclrGep, VPIteration(Part, Lane));
9385       }
9386     }
9387     return;
9388   }
9389 
9390   assert(isa<SCEVConstant>(IndDesc.getStep()) &&
9391          "Induction step not a SCEV constant!");
9392   Type *PhiType = IndDesc.getStep()->getType();
9393 
9394   // Build a pointer phi
9395   Value *ScalarStartValue = getStartValue()->getLiveInIRValue();
9396   Type *ScStValueType = ScalarStartValue->getType();
9397   PHINode *NewPointerPhi =
9398       PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV);
9399 
9400   BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
9401   NewPointerPhi->addIncoming(ScalarStartValue, VectorPH);
9402 
9403   // A pointer induction, performed by using a gep
9404   const DataLayout &DL = NewPointerPhi->getModule()->getDataLayout();
9405   Instruction *InductionLoc = &*State.Builder.GetInsertPoint();
9406 
9407   const SCEV *ScalarStep = IndDesc.getStep();
9408   SCEVExpander Exp(SE, DL, "induction");
9409   Value *ScalarStepValue = Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
9410   Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF);
9411   Value *NumUnrolledElems =
9412       State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
9413   Value *InductionGEP = GetElementPtrInst::Create(
9414       IndDesc.getElementType(), NewPointerPhi,
9415       State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
9416       InductionLoc);
9417   // Add induction update using an incorrect block temporarily. The phi node
9418   // will be fixed after VPlan execution. Note that at this point the latch
9419   // block cannot be used, as it does not exist yet.
9420   // TODO: Model increment value in VPlan, by turning the recipe into a
9421   // multi-def and a subclass of VPHeaderPHIRecipe.
9422   NewPointerPhi->addIncoming(InductionGEP, VectorPH);
9423 
9424   // Create UF many actual address geps that use the pointer
9425   // phi as base and a vectorized version of the step value
9426   // (<step*0, ..., step*N>) as offset.
9427   for (unsigned Part = 0; Part < State.UF; ++Part) {
9428     Type *VecPhiType = VectorType::get(PhiType, State.VF);
9429     Value *StartOffsetScalar =
9430         State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
9431     Value *StartOffset =
9432         State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
9433     // Create a vector of consecutive numbers from zero to VF.
9434     StartOffset = State.Builder.CreateAdd(
9435         StartOffset, State.Builder.CreateStepVector(VecPhiType));
9436 
9437     Value *GEP = State.Builder.CreateGEP(
9438         IndDesc.getElementType(), NewPointerPhi,
9439         State.Builder.CreateMul(
9440             StartOffset,
9441             State.Builder.CreateVectorSplat(State.VF, ScalarStepValue),
9442             "vector.gep"));
9443     State.set(this, GEP, Part);
9444   }
9445 }
9446 
9447 void VPScalarIVStepsRecipe::execute(VPTransformState &State) {
9448   assert(!State.Instance && "VPScalarIVStepsRecipe being replicated.");
9449 
9450   // Fast-math-flags propagate from the original induction instruction.
9451   IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
9452   if (IndDesc.getInductionBinOp() &&
9453       isa<FPMathOperator>(IndDesc.getInductionBinOp()))
9454     State.Builder.setFastMathFlags(
9455         IndDesc.getInductionBinOp()->getFastMathFlags());
9456 
9457   Value *Step = State.get(getStepValue(), VPIteration(0, 0));
9458   auto CreateScalarIV = [&](Value *&Step) -> Value * {
9459     Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0));
9460     auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0);
9461     if (!isCanonical() || CanonicalIV->getType() != Ty) {
9462       ScalarIV =
9463           Ty->isIntegerTy()
9464               ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty)
9465               : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty);
9466       ScalarIV = emitTransformedIndex(State.Builder, ScalarIV,
9467                                       getStartValue()->getLiveInIRValue(), Step,
9468                                       IndDesc);
9469       ScalarIV->setName("offset.idx");
9470     }
9471     if (TruncToTy) {
9472       assert(Step->getType()->isIntegerTy() &&
9473              "Truncation requires an integer step");
9474       ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy);
9475       Step = State.Builder.CreateTrunc(Step, TruncToTy);
9476     }
9477     return ScalarIV;
9478   };
9479 
9480   Value *ScalarIV = CreateScalarIV(Step);
9481   if (State.VF.isVector()) {
9482     buildScalarSteps(ScalarIV, Step, IndDesc, this, State);
9483     return;
9484   }
9485 
9486   for (unsigned Part = 0; Part < State.UF; ++Part) {
9487     assert(!State.VF.isScalable() && "scalable vectors not yet supported.");
9488     Value *EntryPart;
9489     if (Step->getType()->isFloatingPointTy()) {
9490       Value *StartIdx =
9491           getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part);
9492       // Floating-point operations inherit FMF via the builder's flags.
9493       Value *MulOp = State.Builder.CreateFMul(StartIdx, Step);
9494       EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(),
9495                                             ScalarIV, MulOp);
9496     } else {
9497       Value *StartIdx =
9498           getRuntimeVF(State.Builder, Step->getType(), State.VF * Part);
9499       EntryPart = State.Builder.CreateAdd(
9500           ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction");
9501     }
9502     State.set(this, EntryPart, Part);
9503   }
9504 }
9505 
9506 void VPInterleaveRecipe::execute(VPTransformState &State) {
9507   assert(!State.Instance && "Interleave group being replicated.");
9508   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9509                                       getStoredValues(), getMask());
9510 }
9511 
9512 void VPReductionRecipe::execute(VPTransformState &State) {
9513   assert(!State.Instance && "Reduction being replicated.");
9514   Value *PrevInChain = State.get(getChainOp(), 0);
9515   RecurKind Kind = RdxDesc->getRecurrenceKind();
9516   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9517   // Propagate the fast-math flags carried by the underlying instruction.
9518   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
9519   State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
9520   for (unsigned Part = 0; Part < State.UF; ++Part) {
9521     Value *NewVecOp = State.get(getVecOp(), Part);
9522     if (VPValue *Cond = getCondOp()) {
9523       Value *NewCond = State.get(Cond, Part);
9524       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9525       Value *Iden = RdxDesc->getRecurrenceIdentity(
9526           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9527       Value *IdenVec =
9528           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9529       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9530       NewVecOp = Select;
9531     }
9532     Value *NewRed;
9533     Value *NextInChain;
9534     if (IsOrdered) {
9535       if (State.VF.isVector())
9536         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9537                                         PrevInChain);
9538       else
9539         NewRed = State.Builder.CreateBinOp(
9540             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9541             NewVecOp);
9542       PrevInChain = NewRed;
9543     } else {
9544       PrevInChain = State.get(getChainOp(), Part);
9545       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9546     }
9547     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9548       NextInChain =
9549           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9550                          NewRed, PrevInChain);
9551     } else if (IsOrdered)
9552       NextInChain = NewRed;
9553     else
9554       NextInChain = State.Builder.CreateBinOp(
9555           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
9556           PrevInChain);
9557     State.set(this, NextInChain, Part);
9558   }
9559 }
9560 
9561 void VPReplicateRecipe::execute(VPTransformState &State) {
9562   if (State.Instance) { // Generate a single instance.
9563     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9564     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance,
9565                                     IsPredicated, State);
9566     // Insert scalar instance packing it into a vector.
9567     if (AlsoPack && State.VF.isVector()) {
9568       // If we're constructing lane 0, initialize to start from poison.
9569       if (State.Instance->Lane.isFirstLane()) {
9570         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9571         Value *Poison = PoisonValue::get(
9572             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9573         State.set(this, Poison, State.Instance->Part);
9574       }
9575       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9576     }
9577     return;
9578   }
9579 
9580   // Generate scalar instances for all VF lanes of all UF parts, unless the
9581   // instruction is uniform inwhich case generate only the first lane for each
9582   // of the UF parts.
9583   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9584   assert((!State.VF.isScalable() || IsUniform) &&
9585          "Can't scalarize a scalable vector");
9586   for (unsigned Part = 0; Part < State.UF; ++Part)
9587     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9588       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this,
9589                                       VPIteration(Part, Lane), IsPredicated,
9590                                       State);
9591 }
9592 
9593 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9594   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9595 
9596   // Attempt to issue a wide load.
9597   LoadInst *LI = dyn_cast<LoadInst>(&Ingredient);
9598   StoreInst *SI = dyn_cast<StoreInst>(&Ingredient);
9599 
9600   assert((LI || SI) && "Invalid Load/Store instruction");
9601   assert((!SI || StoredValue) && "No stored value provided for widened store");
9602   assert((!LI || !StoredValue) && "Stored value provided for widened load");
9603 
9604   Type *ScalarDataTy = getLoadStoreType(&Ingredient);
9605 
9606   auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
9607   const Align Alignment = getLoadStoreAlignment(&Ingredient);
9608   bool CreateGatherScatter = !Consecutive;
9609 
9610   auto &Builder = State.Builder;
9611   InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF);
9612   bool isMaskRequired = getMask();
9613   if (isMaskRequired)
9614     for (unsigned Part = 0; Part < State.UF; ++Part)
9615       BlockInMaskParts[Part] = State.get(getMask(), Part);
9616 
9617   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
9618     // Calculate the pointer for the specific unroll-part.
9619     GetElementPtrInst *PartPtr = nullptr;
9620 
9621     bool InBounds = false;
9622     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
9623       InBounds = gep->isInBounds();
9624     if (Reverse) {
9625       // If the address is consecutive but reversed, then the
9626       // wide store needs to start at the last vector element.
9627       // RunTimeVF =  VScale * VF.getKnownMinValue()
9628       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
9629       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF);
9630       // NumElt = -Part * RunTimeVF
9631       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
9632       // LastLane = 1 - RunTimeVF
9633       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
9634       PartPtr =
9635           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
9636       PartPtr->setIsInBounds(InBounds);
9637       PartPtr = cast<GetElementPtrInst>(
9638           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
9639       PartPtr->setIsInBounds(InBounds);
9640       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
9641         BlockInMaskParts[Part] =
9642             Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse");
9643     } else {
9644       Value *Increment =
9645           createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part);
9646       PartPtr = cast<GetElementPtrInst>(
9647           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
9648       PartPtr->setIsInBounds(InBounds);
9649     }
9650 
9651     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
9652     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
9653   };
9654 
9655   // Handle Stores:
9656   if (SI) {
9657     State.setDebugLocFromInst(SI);
9658 
9659     for (unsigned Part = 0; Part < State.UF; ++Part) {
9660       Instruction *NewSI = nullptr;
9661       Value *StoredVal = State.get(StoredValue, Part);
9662       if (CreateGatherScatter) {
9663         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
9664         Value *VectorGep = State.get(getAddr(), Part);
9665         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
9666                                             MaskPart);
9667       } else {
9668         if (Reverse) {
9669           // If we store to reverse consecutive memory locations, then we need
9670           // to reverse the order of elements in the stored value.
9671           StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
9672           // We don't want to update the value in the map as it might be used in
9673           // another expression. So don't call resetVectorValue(StoredVal).
9674         }
9675         auto *VecPtr =
9676             CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
9677         if (isMaskRequired)
9678           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
9679                                             BlockInMaskParts[Part]);
9680         else
9681           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
9682       }
9683       State.addMetadata(NewSI, SI);
9684     }
9685     return;
9686   }
9687 
9688   // Handle loads.
9689   assert(LI && "Must have a load instruction");
9690   State.setDebugLocFromInst(LI);
9691   for (unsigned Part = 0; Part < State.UF; ++Part) {
9692     Value *NewLI;
9693     if (CreateGatherScatter) {
9694       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
9695       Value *VectorGep = State.get(getAddr(), Part);
9696       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
9697                                          nullptr, "wide.masked.gather");
9698       State.addMetadata(NewLI, LI);
9699     } else {
9700       auto *VecPtr =
9701           CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
9702       if (isMaskRequired)
9703         NewLI = Builder.CreateMaskedLoad(
9704             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
9705             PoisonValue::get(DataTy), "wide.masked.load");
9706       else
9707         NewLI =
9708             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
9709 
9710       // Add metadata to the load, but setVectorValue to the reverse shuffle.
9711       State.addMetadata(NewLI, LI);
9712       if (Reverse)
9713         NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
9714     }
9715 
9716     State.set(getVPSingleValue(), NewLI, Part);
9717   }
9718 }
9719 
9720 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9721 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9722 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9723 // for predication.
9724 static ScalarEpilogueLowering getScalarEpilogueLowering(
9725     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9726     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9727     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9728     LoopVectorizationLegality &LVL) {
9729   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9730   // don't look at hints or options, and don't request a scalar epilogue.
9731   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9732   // LoopAccessInfo (due to code dependency and not being able to reliably get
9733   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9734   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9735   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9736   // back to the old way and vectorize with versioning when forced. See D81345.)
9737   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9738                                                       PGSOQueryType::IRPass) &&
9739                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9740     return CM_ScalarEpilogueNotAllowedOptSize;
9741 
9742   // 2) If set, obey the directives
9743   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9744     switch (PreferPredicateOverEpilogue) {
9745     case PreferPredicateTy::ScalarEpilogue:
9746       return CM_ScalarEpilogueAllowed;
9747     case PreferPredicateTy::PredicateElseScalarEpilogue:
9748       return CM_ScalarEpilogueNotNeededUsePredicate;
9749     case PreferPredicateTy::PredicateOrDontVectorize:
9750       return CM_ScalarEpilogueNotAllowedUsePredicate;
9751     };
9752   }
9753 
9754   // 3) If set, obey the hints
9755   switch (Hints.getPredicate()) {
9756   case LoopVectorizeHints::FK_Enabled:
9757     return CM_ScalarEpilogueNotNeededUsePredicate;
9758   case LoopVectorizeHints::FK_Disabled:
9759     return CM_ScalarEpilogueAllowed;
9760   };
9761 
9762   // 4) if the TTI hook indicates this is profitable, request predication.
9763   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
9764                                        LVL.getLAI()))
9765     return CM_ScalarEpilogueNotNeededUsePredicate;
9766 
9767   return CM_ScalarEpilogueAllowed;
9768 }
9769 
9770 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
9771   // If Values have been set for this Def return the one relevant for \p Part.
9772   if (hasVectorValue(Def, Part))
9773     return Data.PerPartOutput[Def][Part];
9774 
9775   if (!hasScalarValue(Def, {Part, 0})) {
9776     Value *IRV = Def->getLiveInIRValue();
9777     Value *B = ILV->getBroadcastInstrs(IRV);
9778     set(Def, B, Part);
9779     return B;
9780   }
9781 
9782   Value *ScalarValue = get(Def, {Part, 0});
9783   // If we aren't vectorizing, we can just copy the scalar map values over
9784   // to the vector map.
9785   if (VF.isScalar()) {
9786     set(Def, ScalarValue, Part);
9787     return ScalarValue;
9788   }
9789 
9790   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
9791   bool IsUniform = RepR && RepR->isUniform();
9792 
9793   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
9794   // Check if there is a scalar value for the selected lane.
9795   if (!hasScalarValue(Def, {Part, LastLane})) {
9796     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
9797     assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) ||
9798             isa<VPScalarIVStepsRecipe>(Def->getDef())) &&
9799            "unexpected recipe found to be invariant");
9800     IsUniform = true;
9801     LastLane = 0;
9802   }
9803 
9804   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
9805   // Set the insert point after the last scalarized instruction or after the
9806   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
9807   // will directly follow the scalar definitions.
9808   auto OldIP = Builder.saveIP();
9809   auto NewIP =
9810       isa<PHINode>(LastInst)
9811           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
9812           : std::next(BasicBlock::iterator(LastInst));
9813   Builder.SetInsertPoint(&*NewIP);
9814 
9815   // However, if we are vectorizing, we need to construct the vector values.
9816   // If the value is known to be uniform after vectorization, we can just
9817   // broadcast the scalar value corresponding to lane zero for each unroll
9818   // iteration. Otherwise, we construct the vector values using
9819   // insertelement instructions. Since the resulting vectors are stored in
9820   // State, we will only generate the insertelements once.
9821   Value *VectorValue = nullptr;
9822   if (IsUniform) {
9823     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
9824     set(Def, VectorValue, Part);
9825   } else {
9826     // Initialize packing with insertelements to start from undef.
9827     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
9828     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
9829     set(Def, Undef, Part);
9830     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
9831       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
9832     VectorValue = get(Def, Part);
9833   }
9834   Builder.restoreIP(OldIP);
9835   return VectorValue;
9836 }
9837 
9838 // Process the loop in the VPlan-native vectorization path. This path builds
9839 // VPlan upfront in the vectorization pipeline, which allows to apply
9840 // VPlan-to-VPlan transformations from the very beginning without modifying the
9841 // input LLVM IR.
9842 static bool processLoopInVPlanNativePath(
9843     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
9844     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
9845     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
9846     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
9847     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
9848     LoopVectorizationRequirements &Requirements) {
9849 
9850   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
9851     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
9852     return false;
9853   }
9854   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
9855   Function *F = L->getHeader()->getParent();
9856   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
9857 
9858   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
9859       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
9860 
9861   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
9862                                 &Hints, IAI);
9863   // Use the planner for outer loop vectorization.
9864   // TODO: CM is not used at this point inside the planner. Turn CM into an
9865   // optional argument if we don't need it in the future.
9866   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, ORE);
9867 
9868   // Get user vectorization factor.
9869   ElementCount UserVF = Hints.getWidth();
9870 
9871   CM.collectElementTypesForWidening();
9872 
9873   // Plan how to best vectorize, return the best VF and its cost.
9874   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
9875 
9876   // If we are stress testing VPlan builds, do not attempt to generate vector
9877   // code. Masked vector code generation support will follow soon.
9878   // Also, do not attempt to vectorize if no vector code will be produced.
9879   if (VPlanBuildStressTest || VectorizationFactor::Disabled() == VF)
9880     return false;
9881 
9882   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
9883 
9884   {
9885     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, TTI,
9886                              F->getParent()->getDataLayout());
9887     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width,
9888                            VF.Width, 1, LVL, &CM, BFI, PSI, Checks);
9889     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
9890                       << L->getHeader()->getParent()->getName() << "\"\n");
9891     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT, false);
9892   }
9893 
9894   // Mark the loop as already vectorized to avoid vectorizing again.
9895   Hints.setAlreadyVectorized();
9896   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9897   return true;
9898 }
9899 
9900 // Emit a remark if there are stores to floats that required a floating point
9901 // extension. If the vectorized loop was generated with floating point there
9902 // will be a performance penalty from the conversion overhead and the change in
9903 // the vector width.
9904 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
9905   SmallVector<Instruction *, 4> Worklist;
9906   for (BasicBlock *BB : L->getBlocks()) {
9907     for (Instruction &Inst : *BB) {
9908       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
9909         if (S->getValueOperand()->getType()->isFloatTy())
9910           Worklist.push_back(S);
9911       }
9912     }
9913   }
9914 
9915   // Traverse the floating point stores upwards searching, for floating point
9916   // conversions.
9917   SmallPtrSet<const Instruction *, 4> Visited;
9918   SmallPtrSet<const Instruction *, 4> EmittedRemark;
9919   while (!Worklist.empty()) {
9920     auto *I = Worklist.pop_back_val();
9921     if (!L->contains(I))
9922       continue;
9923     if (!Visited.insert(I).second)
9924       continue;
9925 
9926     // Emit a remark if the floating point store required a floating
9927     // point conversion.
9928     // TODO: More work could be done to identify the root cause such as a
9929     // constant or a function return type and point the user to it.
9930     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
9931       ORE->emit([&]() {
9932         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
9933                                           I->getDebugLoc(), L->getHeader())
9934                << "floating point conversion changes vector width. "
9935                << "Mixed floating point precision requires an up/down "
9936                << "cast that will negatively impact performance.";
9937       });
9938 
9939     for (Use &Op : I->operands())
9940       if (auto *OpI = dyn_cast<Instruction>(Op))
9941         Worklist.push_back(OpI);
9942   }
9943 }
9944 
9945 static bool areRuntimeChecksProfitable(GeneratedRTChecks &Checks,
9946                                        VectorizationFactor &VF,
9947                                        Optional<unsigned> VScale, Loop *L,
9948                                        ScalarEvolution &SE) {
9949   InstructionCost CheckCost = Checks.getCost();
9950   if (!CheckCost.isValid())
9951     return false;
9952 
9953   // When interleaving only scalar and vector cost will be equal, which in turn
9954   // would lead to a divide by 0. Fall back to hard threshold.
9955   if (VF.Width.isScalar()) {
9956     if (CheckCost > VectorizeMemoryCheckThreshold) {
9957       LLVM_DEBUG(
9958           dbgs()
9959           << "LV: Interleaving only is not profitable due to runtime checks\n");
9960       return false;
9961     }
9962     return true;
9963   }
9964 
9965   // The scalar cost should only be 0 when vectorizing with a user specified VF/IC. In those cases, runtime checks should always be generated.
9966   double ScalarC = *VF.ScalarCost.getValue();
9967   if (ScalarC == 0)
9968     return true;
9969 
9970   // First, compute the minimum iteration count required so that the vector
9971   // loop outperforms the scalar loop.
9972   //  The total cost of the scalar loop is
9973   //   ScalarC * TC
9974   //  where
9975   //  * TC is the actual trip count of the loop.
9976   //  * ScalarC is the cost of a single scalar iteration.
9977   //
9978   //  The total cost of the vector loop is
9979   //    RtC + VecC * (TC / VF) + EpiC
9980   //  where
9981   //  * RtC is the cost of the generated runtime checks
9982   //  * VecC is the cost of a single vector iteration.
9983   //  * TC is the actual trip count of the loop
9984   //  * VF is the vectorization factor
9985   //  * EpiCost is the cost of the generated epilogue, including the cost
9986   //    of the remaining scalar operations.
9987   //
9988   // Vectorization is profitable once the total vector cost is less than the
9989   // total scalar cost:
9990   //   RtC + VecC * (TC / VF) + EpiC <  ScalarC * TC
9991   //
9992   // Now we can compute the minimum required trip count TC as
9993   //   (RtC + EpiC) / (ScalarC - (VecC / VF)) < TC
9994   //
9995   // For now we assume the epilogue cost EpiC = 0 for simplicity. Note that
9996   // the computations are performed on doubles, not integers and the result
9997   // is rounded up, hence we get an upper estimate of the TC.
9998   unsigned IntVF = VF.Width.getKnownMinValue();
9999   if (VF.Width.isScalable()) {
10000     unsigned AssumedMinimumVscale = 1;
10001     if (VScale)
10002       AssumedMinimumVscale = *VScale;
10003     IntVF *= AssumedMinimumVscale;
10004   }
10005   double VecCOverVF = double(*VF.Cost.getValue()) / IntVF;
10006   double RtC = *CheckCost.getValue();
10007   double MinTC1 = RtC / (ScalarC - VecCOverVF);
10008 
10009   // Second, compute a minimum iteration count so that the cost of the
10010   // runtime checks is only a fraction of the total scalar loop cost. This
10011   // adds a loop-dependent bound on the overhead incurred if the runtime
10012   // checks fail. In case the runtime checks fail, the cost is RtC + ScalarC
10013   // * TC. To bound the runtime check to be a fraction 1/X of the scalar
10014   // cost, compute
10015   //   RtC < ScalarC * TC * (1 / X)  ==>  RtC * X / ScalarC < TC
10016   double MinTC2 = RtC * 10 / ScalarC;
10017 
10018   // Now pick the larger minimum. If it is not a multiple of VF, choose the
10019   // next closest multiple of VF. This should partly compensate for ignoring
10020   // the epilogue cost.
10021   uint64_t MinTC = std::ceil(std::max(MinTC1, MinTC2));
10022   VF.MinProfitableTripCount = ElementCount::getFixed(alignTo(MinTC, IntVF));
10023 
10024   LLVM_DEBUG(
10025       dbgs() << "LV: Minimum required TC for runtime checks to be profitable:"
10026              << VF.MinProfitableTripCount << "\n");
10027 
10028   // Skip vectorization if the expected trip count is less than the minimum
10029   // required trip count.
10030   if (auto ExpectedTC = getSmallBestKnownTC(SE, L)) {
10031     if (ElementCount::isKnownLT(ElementCount::getFixed(*ExpectedTC),
10032                                 VF.MinProfitableTripCount)) {
10033       LLVM_DEBUG(dbgs() << "LV: Vectorization is not beneficial: expected "
10034                            "trip count < minimum profitable VF ("
10035                         << *ExpectedTC << " < " << VF.MinProfitableTripCount
10036                         << ")\n");
10037 
10038       return false;
10039     }
10040   }
10041   return true;
10042 }
10043 
10044 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10045     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10046                                !EnableLoopInterleaving),
10047       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10048                               !EnableLoopVectorization) {}
10049 
10050 bool LoopVectorizePass::processLoop(Loop *L) {
10051   assert((EnableVPlanNativePath || L->isInnermost()) &&
10052          "VPlan-native path is not enabled. Only process inner loops.");
10053 
10054 #ifndef NDEBUG
10055   const std::string DebugLocStr = getDebugLocString(L);
10056 #endif /* NDEBUG */
10057 
10058   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '"
10059                     << L->getHeader()->getParent()->getName() << "' from "
10060                     << DebugLocStr << "\n");
10061 
10062   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
10063 
10064   LLVM_DEBUG(
10065       dbgs() << "LV: Loop hints:"
10066              << " force="
10067              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10068                      ? "disabled"
10069                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10070                             ? "enabled"
10071                             : "?"))
10072              << " width=" << Hints.getWidth()
10073              << " interleave=" << Hints.getInterleave() << "\n");
10074 
10075   // Function containing loop
10076   Function *F = L->getHeader()->getParent();
10077 
10078   // Looking at the diagnostic output is the only way to determine if a loop
10079   // was vectorized (other than looking at the IR or machine code), so it
10080   // is important to generate an optimization remark for each loop. Most of
10081   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10082   // generated as OptimizationRemark and OptimizationRemarkMissed are
10083   // less verbose reporting vectorized loops and unvectorized loops that may
10084   // benefit from vectorization, respectively.
10085 
10086   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10087     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10088     return false;
10089   }
10090 
10091   PredicatedScalarEvolution PSE(*SE, *L);
10092 
10093   // Check if it is legal to vectorize the loop.
10094   LoopVectorizationRequirements Requirements;
10095   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10096                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10097   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10098     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10099     Hints.emitRemarkWithHints();
10100     return false;
10101   }
10102 
10103   // Check the function attributes and profiles to find out if this function
10104   // should be optimized for size.
10105   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10106       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10107 
10108   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10109   // here. They may require CFG and instruction level transformations before
10110   // even evaluating whether vectorization is profitable. Since we cannot modify
10111   // the incoming IR, we need to build VPlan upfront in the vectorization
10112   // pipeline.
10113   if (!L->isInnermost())
10114     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10115                                         ORE, BFI, PSI, Hints, Requirements);
10116 
10117   assert(L->isInnermost() && "Inner loop expected.");
10118 
10119   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10120   // count by optimizing for size, to minimize overheads.
10121   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10122   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10123     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10124                       << "This loop is worth vectorizing only if no scalar "
10125                       << "iteration overheads are incurred.");
10126     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10127       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10128     else {
10129       LLVM_DEBUG(dbgs() << "\n");
10130       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10131     }
10132   }
10133 
10134   // Check the function attributes to see if implicit floats are allowed.
10135   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10136   // an integer loop and the vector instructions selected are purely integer
10137   // vector instructions?
10138   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10139     reportVectorizationFailure(
10140         "Can't vectorize when the NoImplicitFloat attribute is used",
10141         "loop not vectorized due to NoImplicitFloat attribute",
10142         "NoImplicitFloat", ORE, L);
10143     Hints.emitRemarkWithHints();
10144     return false;
10145   }
10146 
10147   // Check if the target supports potentially unsafe FP vectorization.
10148   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10149   // for the target we're vectorizing for, to make sure none of the
10150   // additional fp-math flags can help.
10151   if (Hints.isPotentiallyUnsafe() &&
10152       TTI->isFPVectorizationPotentiallyUnsafe()) {
10153     reportVectorizationFailure(
10154         "Potentially unsafe FP op prevents vectorization",
10155         "loop not vectorized due to unsafe FP support.",
10156         "UnsafeFP", ORE, L);
10157     Hints.emitRemarkWithHints();
10158     return false;
10159   }
10160 
10161   bool AllowOrderedReductions;
10162   // If the flag is set, use that instead and override the TTI behaviour.
10163   if (ForceOrderedReductions.getNumOccurrences() > 0)
10164     AllowOrderedReductions = ForceOrderedReductions;
10165   else
10166     AllowOrderedReductions = TTI->enableOrderedReductions();
10167   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10168     ORE->emit([&]() {
10169       auto *ExactFPMathInst = Requirements.getExactFPInst();
10170       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10171                                                  ExactFPMathInst->getDebugLoc(),
10172                                                  ExactFPMathInst->getParent())
10173              << "loop not vectorized: cannot prove it is safe to reorder "
10174                 "floating-point operations";
10175     });
10176     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10177                          "reorder floating-point operations\n");
10178     Hints.emitRemarkWithHints();
10179     return false;
10180   }
10181 
10182   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10183   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10184 
10185   // If an override option has been passed in for interleaved accesses, use it.
10186   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10187     UseInterleaved = EnableInterleavedMemAccesses;
10188 
10189   // Analyze interleaved memory accesses.
10190   if (UseInterleaved) {
10191     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10192   }
10193 
10194   // Use the cost model.
10195   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10196                                 F, &Hints, IAI);
10197   CM.collectValuesToIgnore();
10198   CM.collectElementTypesForWidening();
10199 
10200   // Use the planner for vectorization.
10201   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, ORE);
10202 
10203   // Get user vectorization factor and interleave count.
10204   ElementCount UserVF = Hints.getWidth();
10205   unsigned UserIC = Hints.getInterleave();
10206 
10207   // Plan how to best vectorize, return the best VF and its cost.
10208   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10209 
10210   VectorizationFactor VF = VectorizationFactor::Disabled();
10211   unsigned IC = 1;
10212 
10213   GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, TTI,
10214                            F->getParent()->getDataLayout());
10215   if (MaybeVF) {
10216     VF = *MaybeVF;
10217     // Select the interleave count.
10218     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10219 
10220     unsigned SelectedIC = std::max(IC, UserIC);
10221     //  Optimistically generate runtime checks if they are needed. Drop them if
10222     //  they turn out to not be profitable.
10223     if (VF.Width.isVector() || SelectedIC > 1)
10224       Checks.Create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC);
10225 
10226     // Check if it is profitable to vectorize with runtime checks.
10227     bool ForceVectorization =
10228         Hints.getForce() == LoopVectorizeHints::FK_Enabled;
10229     if (!ForceVectorization &&
10230         !areRuntimeChecksProfitable(Checks, VF, CM.getVScaleForTuning(), L,
10231                                     *PSE.getSE())) {
10232       ORE->emit([&]() {
10233         return OptimizationRemarkAnalysisAliasing(
10234                    DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(),
10235                    L->getHeader())
10236                << "loop not vectorized: cannot prove it is safe to reorder "
10237                   "memory operations";
10238       });
10239       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
10240       Hints.emitRemarkWithHints();
10241       return false;
10242     }
10243   }
10244 
10245   // Identify the diagnostic messages that should be produced.
10246   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10247   bool VectorizeLoop = true, InterleaveLoop = true;
10248   if (VF.Width.isScalar()) {
10249     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10250     VecDiagMsg = std::make_pair(
10251         "VectorizationNotBeneficial",
10252         "the cost-model indicates that vectorization is not beneficial");
10253     VectorizeLoop = false;
10254   }
10255 
10256   if (!MaybeVF && UserIC > 1) {
10257     // Tell the user interleaving was avoided up-front, despite being explicitly
10258     // requested.
10259     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10260                          "interleaving should be avoided up front\n");
10261     IntDiagMsg = std::make_pair(
10262         "InterleavingAvoided",
10263         "Ignoring UserIC, because interleaving was avoided up front");
10264     InterleaveLoop = false;
10265   } else if (IC == 1 && UserIC <= 1) {
10266     // Tell the user interleaving is not beneficial.
10267     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10268     IntDiagMsg = std::make_pair(
10269         "InterleavingNotBeneficial",
10270         "the cost-model indicates that interleaving is not beneficial");
10271     InterleaveLoop = false;
10272     if (UserIC == 1) {
10273       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10274       IntDiagMsg.second +=
10275           " and is explicitly disabled or interleave count is set to 1";
10276     }
10277   } else if (IC > 1 && UserIC == 1) {
10278     // Tell the user interleaving is beneficial, but it explicitly disabled.
10279     LLVM_DEBUG(
10280         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10281     IntDiagMsg = std::make_pair(
10282         "InterleavingBeneficialButDisabled",
10283         "the cost-model indicates that interleaving is beneficial "
10284         "but is explicitly disabled or interleave count is set to 1");
10285     InterleaveLoop = false;
10286   }
10287 
10288   // Override IC if user provided an interleave count.
10289   IC = UserIC > 0 ? UserIC : IC;
10290 
10291   // Emit diagnostic messages, if any.
10292   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10293   if (!VectorizeLoop && !InterleaveLoop) {
10294     // Do not vectorize or interleaving the loop.
10295     ORE->emit([&]() {
10296       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10297                                       L->getStartLoc(), L->getHeader())
10298              << VecDiagMsg.second;
10299     });
10300     ORE->emit([&]() {
10301       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10302                                       L->getStartLoc(), L->getHeader())
10303              << IntDiagMsg.second;
10304     });
10305     return false;
10306   } else if (!VectorizeLoop && InterleaveLoop) {
10307     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10308     ORE->emit([&]() {
10309       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10310                                         L->getStartLoc(), L->getHeader())
10311              << VecDiagMsg.second;
10312     });
10313   } else if (VectorizeLoop && !InterleaveLoop) {
10314     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10315                       << ") in " << DebugLocStr << '\n');
10316     ORE->emit([&]() {
10317       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10318                                         L->getStartLoc(), L->getHeader())
10319              << IntDiagMsg.second;
10320     });
10321   } else if (VectorizeLoop && InterleaveLoop) {
10322     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10323                       << ") in " << DebugLocStr << '\n');
10324     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10325   }
10326 
10327   bool DisableRuntimeUnroll = false;
10328   MDNode *OrigLoopID = L->getLoopID();
10329   {
10330     using namespace ore;
10331     if (!VectorizeLoop) {
10332       assert(IC > 1 && "interleave count should not be 1 or 0");
10333       // If we decided that it is not legal to vectorize the loop, then
10334       // interleave it.
10335       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10336                                  &CM, BFI, PSI, Checks);
10337 
10338       VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10339       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT, false);
10340 
10341       ORE->emit([&]() {
10342         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10343                                   L->getHeader())
10344                << "interleaved loop (interleaved count: "
10345                << NV("InterleaveCount", IC) << ")";
10346       });
10347     } else {
10348       // If we decided that it is *legal* to vectorize the loop, then do it.
10349 
10350       // Consider vectorizing the epilogue too if it's profitable.
10351       VectorizationFactor EpilogueVF =
10352           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10353       if (EpilogueVF.Width.isVector()) {
10354 
10355         // The first pass vectorizes the main loop and creates a scalar epilogue
10356         // to be vectorized by executing the plan (potentially with a different
10357         // factor) again shortly afterwards.
10358         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10359         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10360                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10361 
10362         VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
10363         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV,
10364                         DT, true);
10365         ++LoopsVectorized;
10366 
10367         // Second pass vectorizes the epilogue and adjusts the control flow
10368         // edges from the first pass.
10369         EPI.MainLoopVF = EPI.EpilogueVF;
10370         EPI.MainLoopUF = EPI.EpilogueUF;
10371         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10372                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10373                                                  Checks);
10374 
10375         VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
10376         VPRegionBlock *VectorLoop = BestEpiPlan.getVectorLoopRegion();
10377         VPBasicBlock *Header = VectorLoop->getEntryBasicBlock();
10378         Header->setName("vec.epilog.vector.body");
10379 
10380         // Ensure that the start values for any VPReductionPHIRecipes are
10381         // updated before vectorising the epilogue loop.
10382         for (VPRecipeBase &R : Header->phis()) {
10383           if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
10384             if (auto *Resume = MainILV.getReductionResumeValue(
10385                     ReductionPhi->getRecurrenceDescriptor())) {
10386               VPValue *StartVal = BestEpiPlan.getOrAddExternalDef(Resume);
10387               ReductionPhi->setOperand(0, StartVal);
10388             }
10389           }
10390         }
10391 
10392         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
10393                         DT, true);
10394         ++LoopsEpilogueVectorized;
10395 
10396         if (!MainILV.areSafetyChecksAdded())
10397           DisableRuntimeUnroll = true;
10398       } else {
10399         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width,
10400                                VF.MinProfitableTripCount, IC, &LVL, &CM, BFI,
10401                                PSI, Checks);
10402 
10403         VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10404         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT, false);
10405         ++LoopsVectorized;
10406 
10407         // Add metadata to disable runtime unrolling a scalar loop when there
10408         // are no runtime checks about strides and memory. A scalar loop that is
10409         // rarely used is not worth unrolling.
10410         if (!LB.areSafetyChecksAdded())
10411           DisableRuntimeUnroll = true;
10412       }
10413       // Report the vectorization decision.
10414       ORE->emit([&]() {
10415         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10416                                   L->getHeader())
10417                << "vectorized loop (vectorization width: "
10418                << NV("VectorizationFactor", VF.Width)
10419                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10420       });
10421     }
10422 
10423     if (ORE->allowExtraAnalysis(LV_NAME))
10424       checkMixedPrecision(L, ORE);
10425   }
10426 
10427   Optional<MDNode *> RemainderLoopID =
10428       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10429                                       LLVMLoopVectorizeFollowupEpilogue});
10430   if (RemainderLoopID) {
10431     L->setLoopID(RemainderLoopID.value());
10432   } else {
10433     if (DisableRuntimeUnroll)
10434       AddRuntimeUnrollDisableMetaData(L);
10435 
10436     // Mark the loop as already vectorized to avoid vectorizing again.
10437     Hints.setAlreadyVectorized();
10438   }
10439 
10440   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10441   return true;
10442 }
10443 
10444 LoopVectorizeResult LoopVectorizePass::runImpl(
10445     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10446     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10447     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10448     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10449     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10450   SE = &SE_;
10451   LI = &LI_;
10452   TTI = &TTI_;
10453   DT = &DT_;
10454   BFI = &BFI_;
10455   TLI = TLI_;
10456   AA = &AA_;
10457   AC = &AC_;
10458   GetLAA = &GetLAA_;
10459   DB = &DB_;
10460   ORE = &ORE_;
10461   PSI = PSI_;
10462 
10463   // Don't attempt if
10464   // 1. the target claims to have no vector registers, and
10465   // 2. interleaving won't help ILP.
10466   //
10467   // The second condition is necessary because, even if the target has no
10468   // vector registers, loop vectorization may still enable scalar
10469   // interleaving.
10470   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10471       TTI->getMaxInterleaveFactor(1) < 2)
10472     return LoopVectorizeResult(false, false);
10473 
10474   bool Changed = false, CFGChanged = false;
10475 
10476   // The vectorizer requires loops to be in simplified form.
10477   // Since simplification may add new inner loops, it has to run before the
10478   // legality and profitability checks. This means running the loop vectorizer
10479   // will simplify all loops, regardless of whether anything end up being
10480   // vectorized.
10481   for (auto &L : *LI)
10482     Changed |= CFGChanged |=
10483         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10484 
10485   // Build up a worklist of inner-loops to vectorize. This is necessary as
10486   // the act of vectorizing or partially unrolling a loop creates new loops
10487   // and can invalidate iterators across the loops.
10488   SmallVector<Loop *, 8> Worklist;
10489 
10490   for (Loop *L : *LI)
10491     collectSupportedLoops(*L, LI, ORE, Worklist);
10492 
10493   LoopsAnalyzed += Worklist.size();
10494 
10495   // Now walk the identified inner loops.
10496   while (!Worklist.empty()) {
10497     Loop *L = Worklist.pop_back_val();
10498 
10499     // For the inner loops we actually process, form LCSSA to simplify the
10500     // transform.
10501     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10502 
10503     Changed |= CFGChanged |= processLoop(L);
10504   }
10505 
10506   // Process each loop nest in the function.
10507   return LoopVectorizeResult(Changed, CFGChanged);
10508 }
10509 
10510 PreservedAnalyses LoopVectorizePass::run(Function &F,
10511                                          FunctionAnalysisManager &AM) {
10512     auto &LI = AM.getResult<LoopAnalysis>(F);
10513     // There are no loops in the function. Return before computing other expensive
10514     // analyses.
10515     if (LI.empty())
10516       return PreservedAnalyses::all();
10517     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10518     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10519     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10520     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10521     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10522     auto &AA = AM.getResult<AAManager>(F);
10523     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10524     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10525     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10526 
10527     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10528     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10529         [&](Loop &L) -> const LoopAccessInfo & {
10530       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10531                                         TLI, TTI, nullptr, nullptr, nullptr};
10532       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10533     };
10534     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10535     ProfileSummaryInfo *PSI =
10536         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10537     LoopVectorizeResult Result =
10538         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10539     if (!Result.MadeAnyChange)
10540       return PreservedAnalyses::all();
10541     PreservedAnalyses PA;
10542 
10543     // We currently do not preserve loopinfo/dominator analyses with outer loop
10544     // vectorization. Until this is addressed, mark these analyses as preserved
10545     // only for non-VPlan-native path.
10546     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10547     if (!EnableVPlanNativePath) {
10548       PA.preserve<LoopAnalysis>();
10549       PA.preserve<DominatorTreeAnalysis>();
10550     }
10551 
10552     if (Result.MadeCFGChange) {
10553       // Making CFG changes likely means a loop got vectorized. Indicate that
10554       // extra simplification passes should be run.
10555       // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10556       // be run if runtime checks have been added.
10557       AM.getResult<ShouldRunExtraVectorPasses>(F);
10558       PA.preserve<ShouldRunExtraVectorPasses>();
10559     } else {
10560       PA.preserveSet<CFGAnalyses>();
10561     }
10562     return PA;
10563 }
10564 
10565 void LoopVectorizePass::printPipeline(
10566     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10567   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10568       OS, MapClassName2PassName);
10569 
10570   OS << "<";
10571   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10572   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10573   OS << ">";
10574 }
10575