1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanTransforms.h" 62 #include "llvm/ADT/APInt.h" 63 #include "llvm/ADT/ArrayRef.h" 64 #include "llvm/ADT/DenseMap.h" 65 #include "llvm/ADT/DenseMapInfo.h" 66 #include "llvm/ADT/Hashing.h" 67 #include "llvm/ADT/MapVector.h" 68 #include "llvm/ADT/None.h" 69 #include "llvm/ADT/Optional.h" 70 #include "llvm/ADT/STLExtras.h" 71 #include "llvm/ADT/SmallPtrSet.h" 72 #include "llvm/ADT/SmallSet.h" 73 #include "llvm/ADT/SmallVector.h" 74 #include "llvm/ADT/Statistic.h" 75 #include "llvm/ADT/StringRef.h" 76 #include "llvm/ADT/Twine.h" 77 #include "llvm/ADT/iterator_range.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/BasicAliasAnalysis.h" 80 #include "llvm/Analysis/BlockFrequencyInfo.h" 81 #include "llvm/Analysis/CFG.h" 82 #include "llvm/Analysis/CodeMetrics.h" 83 #include "llvm/Analysis/DemandedBits.h" 84 #include "llvm/Analysis/GlobalsModRef.h" 85 #include "llvm/Analysis/LoopAccessAnalysis.h" 86 #include "llvm/Analysis/LoopAnalysisManager.h" 87 #include "llvm/Analysis/LoopInfo.h" 88 #include "llvm/Analysis/LoopIterator.h" 89 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 90 #include "llvm/Analysis/ProfileSummaryInfo.h" 91 #include "llvm/Analysis/ScalarEvolution.h" 92 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 93 #include "llvm/Analysis/TargetLibraryInfo.h" 94 #include "llvm/Analysis/TargetTransformInfo.h" 95 #include "llvm/Analysis/VectorUtils.h" 96 #include "llvm/IR/Attributes.h" 97 #include "llvm/IR/BasicBlock.h" 98 #include "llvm/IR/CFG.h" 99 #include "llvm/IR/Constant.h" 100 #include "llvm/IR/Constants.h" 101 #include "llvm/IR/DataLayout.h" 102 #include "llvm/IR/DebugInfoMetadata.h" 103 #include "llvm/IR/DebugLoc.h" 104 #include "llvm/IR/DerivedTypes.h" 105 #include "llvm/IR/DiagnosticInfo.h" 106 #include "llvm/IR/Dominators.h" 107 #include "llvm/IR/Function.h" 108 #include "llvm/IR/IRBuilder.h" 109 #include "llvm/IR/InstrTypes.h" 110 #include "llvm/IR/Instruction.h" 111 #include "llvm/IR/Instructions.h" 112 #include "llvm/IR/IntrinsicInst.h" 113 #include "llvm/IR/Intrinsics.h" 114 #include "llvm/IR/Metadata.h" 115 #include "llvm/IR/Module.h" 116 #include "llvm/IR/Operator.h" 117 #include "llvm/IR/PatternMatch.h" 118 #include "llvm/IR/Type.h" 119 #include "llvm/IR/Use.h" 120 #include "llvm/IR/User.h" 121 #include "llvm/IR/Value.h" 122 #include "llvm/IR/ValueHandle.h" 123 #include "llvm/IR/Verifier.h" 124 #include "llvm/InitializePasses.h" 125 #include "llvm/Pass.h" 126 #include "llvm/Support/Casting.h" 127 #include "llvm/Support/CommandLine.h" 128 #include "llvm/Support/Compiler.h" 129 #include "llvm/Support/Debug.h" 130 #include "llvm/Support/ErrorHandling.h" 131 #include "llvm/Support/InstructionCost.h" 132 #include "llvm/Support/MathExtras.h" 133 #include "llvm/Support/raw_ostream.h" 134 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 135 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 136 #include "llvm/Transforms/Utils/LoopSimplify.h" 137 #include "llvm/Transforms/Utils/LoopUtils.h" 138 #include "llvm/Transforms/Utils/LoopVersioning.h" 139 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 140 #include "llvm/Transforms/Utils/SizeOpts.h" 141 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 142 #include <algorithm> 143 #include <cassert> 144 #include <cstdint> 145 #include <functional> 146 #include <iterator> 147 #include <limits> 148 #include <map> 149 #include <memory> 150 #include <string> 151 #include <tuple> 152 #include <utility> 153 154 using namespace llvm; 155 156 #define LV_NAME "loop-vectorize" 157 #define DEBUG_TYPE LV_NAME 158 159 #ifndef NDEBUG 160 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 161 #endif 162 163 /// @{ 164 /// Metadata attribute names 165 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 166 const char LLVMLoopVectorizeFollowupVectorized[] = 167 "llvm.loop.vectorize.followup_vectorized"; 168 const char LLVMLoopVectorizeFollowupEpilogue[] = 169 "llvm.loop.vectorize.followup_epilogue"; 170 /// @} 171 172 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 173 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 174 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 175 176 static cl::opt<bool> EnableEpilogueVectorization( 177 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 178 cl::desc("Enable vectorization of epilogue loops.")); 179 180 static cl::opt<unsigned> EpilogueVectorizationForceVF( 181 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 182 cl::desc("When epilogue vectorization is enabled, and a value greater than " 183 "1 is specified, forces the given VF for all applicable epilogue " 184 "loops.")); 185 186 static cl::opt<unsigned> EpilogueVectorizationMinVF( 187 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 188 cl::desc("Only loops with vectorization factor equal to or larger than " 189 "the specified value are considered for epilogue vectorization.")); 190 191 /// Loops with a known constant trip count below this number are vectorized only 192 /// if no scalar iteration overheads are incurred. 193 static cl::opt<unsigned> TinyTripCountVectorThreshold( 194 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 195 cl::desc("Loops with a constant trip count that is smaller than this " 196 "value are vectorized only if no scalar iteration overheads " 197 "are incurred.")); 198 199 static cl::opt<unsigned> VectorizeMemoryCheckThreshold( 200 "vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 201 cl::desc("The maximum allowed number of runtime memory checks")); 202 203 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 204 // that predication is preferred, and this lists all options. I.e., the 205 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 206 // and predicate the instructions accordingly. If tail-folding fails, there are 207 // different fallback strategies depending on these values: 208 namespace PreferPredicateTy { 209 enum Option { 210 ScalarEpilogue = 0, 211 PredicateElseScalarEpilogue, 212 PredicateOrDontVectorize 213 }; 214 } // namespace PreferPredicateTy 215 216 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 217 "prefer-predicate-over-epilogue", 218 cl::init(PreferPredicateTy::ScalarEpilogue), 219 cl::Hidden, 220 cl::desc("Tail-folding and predication preferences over creating a scalar " 221 "epilogue loop."), 222 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 223 "scalar-epilogue", 224 "Don't tail-predicate loops, create scalar epilogue"), 225 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 226 "predicate-else-scalar-epilogue", 227 "prefer tail-folding, create scalar epilogue if tail " 228 "folding fails."), 229 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 230 "predicate-dont-vectorize", 231 "prefers tail-folding, don't attempt vectorization if " 232 "tail-folding fails."))); 233 234 static cl::opt<bool> MaximizeBandwidth( 235 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 236 cl::desc("Maximize bandwidth when selecting vectorization factor which " 237 "will be determined by the smallest type in loop.")); 238 239 static cl::opt<bool> EnableInterleavedMemAccesses( 240 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 241 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 242 243 /// An interleave-group may need masking if it resides in a block that needs 244 /// predication, or in order to mask away gaps. 245 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 246 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 247 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 248 249 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 250 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 251 cl::desc("We don't interleave loops with a estimated constant trip count " 252 "below this number")); 253 254 static cl::opt<unsigned> ForceTargetNumScalarRegs( 255 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 256 cl::desc("A flag that overrides the target's number of scalar registers.")); 257 258 static cl::opt<unsigned> ForceTargetNumVectorRegs( 259 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 260 cl::desc("A flag that overrides the target's number of vector registers.")); 261 262 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 263 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 264 cl::desc("A flag that overrides the target's max interleave factor for " 265 "scalar loops.")); 266 267 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 268 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 269 cl::desc("A flag that overrides the target's max interleave factor for " 270 "vectorized loops.")); 271 272 static cl::opt<unsigned> ForceTargetInstructionCost( 273 "force-target-instruction-cost", cl::init(0), cl::Hidden, 274 cl::desc("A flag that overrides the target's expected cost for " 275 "an instruction to a single constant value. Mostly " 276 "useful for getting consistent testing.")); 277 278 static cl::opt<bool> ForceTargetSupportsScalableVectors( 279 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 280 cl::desc( 281 "Pretend that scalable vectors are supported, even if the target does " 282 "not support them. This flag should only be used for testing.")); 283 284 static cl::opt<unsigned> SmallLoopCost( 285 "small-loop-cost", cl::init(20), cl::Hidden, 286 cl::desc( 287 "The cost of a loop that is considered 'small' by the interleaver.")); 288 289 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 290 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 291 cl::desc("Enable the use of the block frequency analysis to access PGO " 292 "heuristics minimizing code growth in cold regions and being more " 293 "aggressive in hot regions.")); 294 295 // Runtime interleave loops for load/store throughput. 296 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 297 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 298 cl::desc( 299 "Enable runtime interleaving until load/store ports are saturated")); 300 301 /// Interleave small loops with scalar reductions. 302 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 303 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 304 cl::desc("Enable interleaving for loops with small iteration counts that " 305 "contain scalar reductions to expose ILP.")); 306 307 /// The number of stores in a loop that are allowed to need predication. 308 static cl::opt<unsigned> NumberOfStoresToPredicate( 309 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 310 cl::desc("Max number of stores to be predicated behind an if.")); 311 312 static cl::opt<bool> EnableIndVarRegisterHeur( 313 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 314 cl::desc("Count the induction variable only once when interleaving")); 315 316 static cl::opt<bool> EnableCondStoresVectorization( 317 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 318 cl::desc("Enable if predication of stores during vectorization.")); 319 320 static cl::opt<unsigned> MaxNestedScalarReductionIC( 321 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 322 cl::desc("The maximum interleave count to use when interleaving a scalar " 323 "reduction in a nested loop.")); 324 325 static cl::opt<bool> 326 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 327 cl::Hidden, 328 cl::desc("Prefer in-loop vector reductions, " 329 "overriding the targets preference.")); 330 331 static cl::opt<bool> ForceOrderedReductions( 332 "force-ordered-reductions", cl::init(false), cl::Hidden, 333 cl::desc("Enable the vectorisation of loops with in-order (strict) " 334 "FP reductions")); 335 336 static cl::opt<bool> PreferPredicatedReductionSelect( 337 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 338 cl::desc( 339 "Prefer predicating a reduction operation over an after loop select.")); 340 341 cl::opt<bool> EnableVPlanNativePath( 342 "enable-vplan-native-path", cl::init(false), cl::Hidden, 343 cl::desc("Enable VPlan-native vectorization path with " 344 "support for outer loop vectorization.")); 345 346 // This flag enables the stress testing of the VPlan H-CFG construction in the 347 // VPlan-native vectorization path. It must be used in conjuction with 348 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 349 // verification of the H-CFGs built. 350 static cl::opt<bool> VPlanBuildStressTest( 351 "vplan-build-stress-test", cl::init(false), cl::Hidden, 352 cl::desc( 353 "Build VPlan for every supported loop nest in the function and bail " 354 "out right after the build (stress test the VPlan H-CFG construction " 355 "in the VPlan-native vectorization path).")); 356 357 cl::opt<bool> llvm::EnableLoopInterleaving( 358 "interleave-loops", cl::init(true), cl::Hidden, 359 cl::desc("Enable loop interleaving in Loop vectorization passes")); 360 cl::opt<bool> llvm::EnableLoopVectorization( 361 "vectorize-loops", cl::init(true), cl::Hidden, 362 cl::desc("Run the Loop vectorization passes")); 363 364 cl::opt<bool> PrintVPlansInDotFormat( 365 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 366 cl::desc("Use dot format instead of plain text when dumping VPlans")); 367 368 /// A helper function that returns true if the given type is irregular. The 369 /// type is irregular if its allocated size doesn't equal the store size of an 370 /// element of the corresponding vector type. 371 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 372 // Determine if an array of N elements of type Ty is "bitcast compatible" 373 // with a <N x Ty> vector. 374 // This is only true if there is no padding between the array elements. 375 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 376 } 377 378 /// A helper function that returns the reciprocal of the block probability of 379 /// predicated blocks. If we return X, we are assuming the predicated block 380 /// will execute once for every X iterations of the loop header. 381 /// 382 /// TODO: We should use actual block probability here, if available. Currently, 383 /// we always assume predicated blocks have a 50% chance of executing. 384 static unsigned getReciprocalPredBlockProb() { return 2; } 385 386 /// A helper function that returns an integer or floating-point constant with 387 /// value C. 388 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 389 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 390 : ConstantFP::get(Ty, C); 391 } 392 393 /// Returns "best known" trip count for the specified loop \p L as defined by 394 /// the following procedure: 395 /// 1) Returns exact trip count if it is known. 396 /// 2) Returns expected trip count according to profile data if any. 397 /// 3) Returns upper bound estimate if it is known. 398 /// 4) Returns None if all of the above failed. 399 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 400 // Check if exact trip count is known. 401 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 402 return ExpectedTC; 403 404 // Check if there is an expected trip count available from profile data. 405 if (LoopVectorizeWithBlockFrequency) 406 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 407 return EstimatedTC; 408 409 // Check if upper bound estimate is known. 410 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 411 return ExpectedTC; 412 413 return None; 414 } 415 416 // Forward declare GeneratedRTChecks. 417 class GeneratedRTChecks; 418 419 namespace llvm { 420 421 AnalysisKey ShouldRunExtraVectorPasses::Key; 422 423 /// InnerLoopVectorizer vectorizes loops which contain only one basic 424 /// block to a specified vectorization factor (VF). 425 /// This class performs the widening of scalars into vectors, or multiple 426 /// scalars. This class also implements the following features: 427 /// * It inserts an epilogue loop for handling loops that don't have iteration 428 /// counts that are known to be a multiple of the vectorization factor. 429 /// * It handles the code generation for reduction variables. 430 /// * Scalarization (implementation using scalars) of un-vectorizable 431 /// instructions. 432 /// InnerLoopVectorizer does not perform any vectorization-legality 433 /// checks, and relies on the caller to check for the different legality 434 /// aspects. The InnerLoopVectorizer relies on the 435 /// LoopVectorizationLegality class to provide information about the induction 436 /// and reduction variables that were found to a given vectorization factor. 437 class InnerLoopVectorizer { 438 public: 439 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 440 LoopInfo *LI, DominatorTree *DT, 441 const TargetLibraryInfo *TLI, 442 const TargetTransformInfo *TTI, AssumptionCache *AC, 443 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 444 ElementCount MinProfitableTripCount, 445 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 446 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 447 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 448 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 449 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 450 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 451 PSI(PSI), RTChecks(RTChecks) { 452 // Query this against the original loop and save it here because the profile 453 // of the original loop header may change as the transformation happens. 454 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 455 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 456 457 if (MinProfitableTripCount.isZero()) 458 this->MinProfitableTripCount = VecWidth; 459 else 460 this->MinProfitableTripCount = MinProfitableTripCount; 461 } 462 463 virtual ~InnerLoopVectorizer() = default; 464 465 /// Create a new empty loop that will contain vectorized instructions later 466 /// on, while the old loop will be used as the scalar remainder. Control flow 467 /// is generated around the vectorized (and scalar epilogue) loops consisting 468 /// of various checks and bypasses. Return the pre-header block of the new 469 /// loop and the start value for the canonical induction, if it is != 0. The 470 /// latter is the case when vectorizing the epilogue loop. In the case of 471 /// epilogue vectorization, this function is overriden to handle the more 472 /// complex control flow around the loops. 473 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 474 475 /// Widen a single call instruction within the innermost loop. 476 void widenCallInstruction(CallInst &CI, VPValue *Def, VPUser &ArgOperands, 477 VPTransformState &State); 478 479 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 480 void fixVectorizedLoop(VPTransformState &State, VPlan &Plan); 481 482 // Return true if any runtime check is added. 483 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 484 485 /// A type for vectorized values in the new loop. Each value from the 486 /// original loop, when vectorized, is represented by UF vector values in the 487 /// new unrolled loop, where UF is the unroll factor. 488 using VectorParts = SmallVector<Value *, 2>; 489 490 /// A helper function to scalarize a single Instruction in the innermost loop. 491 /// Generates a sequence of scalar instances for each lane between \p MinLane 492 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 493 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 494 /// Instr's operands. 495 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 496 const VPIteration &Instance, bool IfPredicateInstr, 497 VPTransformState &State); 498 499 /// Construct the vector value of a scalarized value \p V one lane at a time. 500 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 501 VPTransformState &State); 502 503 /// Try to vectorize interleaved access group \p Group with the base address 504 /// given in \p Addr, optionally masking the vector operations if \p 505 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 506 /// values in the vectorized loop. 507 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 508 ArrayRef<VPValue *> VPDefs, 509 VPTransformState &State, VPValue *Addr, 510 ArrayRef<VPValue *> StoredValues, 511 VPValue *BlockInMask = nullptr); 512 513 /// Fix the non-induction PHIs in \p Plan. 514 void fixNonInductionPHIs(VPlan &Plan, VPTransformState &State); 515 516 /// Returns true if the reordering of FP operations is not allowed, but we are 517 /// able to vectorize with strict in-order reductions for the given RdxDesc. 518 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 519 520 /// Create a broadcast instruction. This method generates a broadcast 521 /// instruction (shuffle) for loop invariant values and for the induction 522 /// value. If this is the induction variable then we extend it to N, N+1, ... 523 /// this is needed because each iteration in the loop corresponds to a SIMD 524 /// element. 525 virtual Value *getBroadcastInstrs(Value *V); 526 527 // Returns the resume value (bc.merge.rdx) for a reduction as 528 // generated by fixReduction. 529 PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc); 530 531 protected: 532 friend class LoopVectorizationPlanner; 533 534 /// A small list of PHINodes. 535 using PhiVector = SmallVector<PHINode *, 4>; 536 537 /// A type for scalarized values in the new loop. Each value from the 538 /// original loop, when scalarized, is represented by UF x VF scalar values 539 /// in the new unrolled loop, where UF is the unroll factor and VF is the 540 /// vectorization factor. 541 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 542 543 /// Set up the values of the IVs correctly when exiting the vector loop. 544 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 545 Value *VectorTripCount, Value *EndValue, 546 BasicBlock *MiddleBlock, BasicBlock *VectorHeader, 547 VPlan &Plan); 548 549 /// Handle all cross-iteration phis in the header. 550 void fixCrossIterationPHIs(VPTransformState &State); 551 552 /// Create the exit value of first order recurrences in the middle block and 553 /// update their users. 554 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 555 VPTransformState &State); 556 557 /// Create code for the loop exit value of the reduction. 558 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 559 560 /// Clear NSW/NUW flags from reduction instructions if necessary. 561 void clearReductionWrapFlags(VPReductionPHIRecipe *PhiR, 562 VPTransformState &State); 563 564 /// Iteratively sink the scalarized operands of a predicated instruction into 565 /// the block that was created for it. 566 void sinkScalarOperands(Instruction *PredInst); 567 568 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 569 /// represented as. 570 void truncateToMinimalBitwidths(VPTransformState &State); 571 572 /// Returns (and creates if needed) the original loop trip count. 573 Value *getOrCreateTripCount(BasicBlock *InsertBlock); 574 575 /// Returns (and creates if needed) the trip count of the widened loop. 576 Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock); 577 578 /// Returns a bitcasted value to the requested vector type. 579 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 580 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 581 const DataLayout &DL); 582 583 /// Emit a bypass check to see if the vector trip count is zero, including if 584 /// it overflows. 585 void emitIterationCountCheck(BasicBlock *Bypass); 586 587 /// Emit a bypass check to see if all of the SCEV assumptions we've 588 /// had to make are correct. Returns the block containing the checks or 589 /// nullptr if no checks have been added. 590 BasicBlock *emitSCEVChecks(BasicBlock *Bypass); 591 592 /// Emit bypass checks to check any memory assumptions we may have made. 593 /// Returns the block containing the checks or nullptr if no checks have been 594 /// added. 595 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass); 596 597 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 598 /// vector loop preheader, middle block and scalar preheader. 599 void createVectorLoopSkeleton(StringRef Prefix); 600 601 /// Create new phi nodes for the induction variables to resume iteration count 602 /// in the scalar epilogue, from where the vectorized loop left off. 603 /// In cases where the loop skeleton is more complicated (eg. epilogue 604 /// vectorization) and the resume values can come from an additional bypass 605 /// block, the \p AdditionalBypass pair provides information about the bypass 606 /// block and the end value on the edge from bypass to this loop. 607 void createInductionResumeValues( 608 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 609 610 /// Complete the loop skeleton by adding debug MDs, creating appropriate 611 /// conditional branches in the middle block, preparing the builder and 612 /// running the verifier. Return the preheader of the completed vector loop. 613 BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID); 614 615 /// Collect poison-generating recipes that may generate a poison value that is 616 /// used after vectorization, even when their operands are not poison. Those 617 /// recipes meet the following conditions: 618 /// * Contribute to the address computation of a recipe generating a widen 619 /// memory load/store (VPWidenMemoryInstructionRecipe or 620 /// VPInterleaveRecipe). 621 /// * Such a widen memory load/store has at least one underlying Instruction 622 /// that is in a basic block that needs predication and after vectorization 623 /// the generated instruction won't be predicated. 624 void collectPoisonGeneratingRecipes(VPTransformState &State); 625 626 /// Allow subclasses to override and print debug traces before/after vplan 627 /// execution, when trace information is requested. 628 virtual void printDebugTracesAtStart(){}; 629 virtual void printDebugTracesAtEnd(){}; 630 631 /// The original loop. 632 Loop *OrigLoop; 633 634 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 635 /// dynamic knowledge to simplify SCEV expressions and converts them to a 636 /// more usable form. 637 PredicatedScalarEvolution &PSE; 638 639 /// Loop Info. 640 LoopInfo *LI; 641 642 /// Dominator Tree. 643 DominatorTree *DT; 644 645 /// Alias Analysis. 646 AAResults *AA; 647 648 /// Target Library Info. 649 const TargetLibraryInfo *TLI; 650 651 /// Target Transform Info. 652 const TargetTransformInfo *TTI; 653 654 /// Assumption Cache. 655 AssumptionCache *AC; 656 657 /// Interface to emit optimization remarks. 658 OptimizationRemarkEmitter *ORE; 659 660 /// The vectorization SIMD factor to use. Each vector will have this many 661 /// vector elements. 662 ElementCount VF; 663 664 ElementCount MinProfitableTripCount; 665 666 /// The vectorization unroll factor to use. Each scalar is vectorized to this 667 /// many different vector instructions. 668 unsigned UF; 669 670 /// The builder that we use 671 IRBuilder<> Builder; 672 673 // --- Vectorization state --- 674 675 /// The vector-loop preheader. 676 BasicBlock *LoopVectorPreHeader; 677 678 /// The scalar-loop preheader. 679 BasicBlock *LoopScalarPreHeader; 680 681 /// Middle Block between the vector and the scalar. 682 BasicBlock *LoopMiddleBlock; 683 684 /// The unique ExitBlock of the scalar loop if one exists. Note that 685 /// there can be multiple exiting edges reaching this block. 686 BasicBlock *LoopExitBlock; 687 688 /// The scalar loop body. 689 BasicBlock *LoopScalarBody; 690 691 /// A list of all bypass blocks. The first block is the entry of the loop. 692 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 693 694 /// Store instructions that were predicated. 695 SmallVector<Instruction *, 4> PredicatedInstructions; 696 697 /// Trip count of the original loop. 698 Value *TripCount = nullptr; 699 700 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 701 Value *VectorTripCount = nullptr; 702 703 /// The legality analysis. 704 LoopVectorizationLegality *Legal; 705 706 /// The profitablity analysis. 707 LoopVectorizationCostModel *Cost; 708 709 // Record whether runtime checks are added. 710 bool AddedSafetyChecks = false; 711 712 // Holds the end values for each induction variable. We save the end values 713 // so we can later fix-up the external users of the induction variables. 714 DenseMap<PHINode *, Value *> IVEndValues; 715 716 /// BFI and PSI are used to check for profile guided size optimizations. 717 BlockFrequencyInfo *BFI; 718 ProfileSummaryInfo *PSI; 719 720 // Whether this loop should be optimized for size based on profile guided size 721 // optimizatios. 722 bool OptForSizeBasedOnProfile; 723 724 /// Structure to hold information about generated runtime checks, responsible 725 /// for cleaning the checks, if vectorization turns out unprofitable. 726 GeneratedRTChecks &RTChecks; 727 728 // Holds the resume values for reductions in the loops, used to set the 729 // correct start value of reduction PHIs when vectorizing the epilogue. 730 SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4> 731 ReductionResumeValues; 732 }; 733 734 class InnerLoopUnroller : public InnerLoopVectorizer { 735 public: 736 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 737 LoopInfo *LI, DominatorTree *DT, 738 const TargetLibraryInfo *TLI, 739 const TargetTransformInfo *TTI, AssumptionCache *AC, 740 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 741 LoopVectorizationLegality *LVL, 742 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 743 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 744 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 745 ElementCount::getFixed(1), 746 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 747 BFI, PSI, Check) {} 748 749 private: 750 Value *getBroadcastInstrs(Value *V) override; 751 }; 752 753 /// Encapsulate information regarding vectorization of a loop and its epilogue. 754 /// This information is meant to be updated and used across two stages of 755 /// epilogue vectorization. 756 struct EpilogueLoopVectorizationInfo { 757 ElementCount MainLoopVF = ElementCount::getFixed(0); 758 unsigned MainLoopUF = 0; 759 ElementCount EpilogueVF = ElementCount::getFixed(0); 760 unsigned EpilogueUF = 0; 761 BasicBlock *MainLoopIterationCountCheck = nullptr; 762 BasicBlock *EpilogueIterationCountCheck = nullptr; 763 BasicBlock *SCEVSafetyCheck = nullptr; 764 BasicBlock *MemSafetyCheck = nullptr; 765 Value *TripCount = nullptr; 766 Value *VectorTripCount = nullptr; 767 768 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 769 ElementCount EVF, unsigned EUF) 770 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 771 assert(EUF == 1 && 772 "A high UF for the epilogue loop is likely not beneficial."); 773 } 774 }; 775 776 /// An extension of the inner loop vectorizer that creates a skeleton for a 777 /// vectorized loop that has its epilogue (residual) also vectorized. 778 /// The idea is to run the vplan on a given loop twice, firstly to setup the 779 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 780 /// from the first step and vectorize the epilogue. This is achieved by 781 /// deriving two concrete strategy classes from this base class and invoking 782 /// them in succession from the loop vectorizer planner. 783 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 784 public: 785 InnerLoopAndEpilogueVectorizer( 786 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 787 DominatorTree *DT, const TargetLibraryInfo *TLI, 788 const TargetTransformInfo *TTI, AssumptionCache *AC, 789 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 790 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 791 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 792 GeneratedRTChecks &Checks) 793 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 794 EPI.MainLoopVF, EPI.MainLoopVF, EPI.MainLoopUF, LVL, 795 CM, BFI, PSI, Checks), 796 EPI(EPI) {} 797 798 // Override this function to handle the more complex control flow around the 799 // three loops. 800 std::pair<BasicBlock *, Value *> 801 createVectorizedLoopSkeleton() final override { 802 return createEpilogueVectorizedLoopSkeleton(); 803 } 804 805 /// The interface for creating a vectorized skeleton using one of two 806 /// different strategies, each corresponding to one execution of the vplan 807 /// as described above. 808 virtual std::pair<BasicBlock *, Value *> 809 createEpilogueVectorizedLoopSkeleton() = 0; 810 811 /// Holds and updates state information required to vectorize the main loop 812 /// and its epilogue in two separate passes. This setup helps us avoid 813 /// regenerating and recomputing runtime safety checks. It also helps us to 814 /// shorten the iteration-count-check path length for the cases where the 815 /// iteration count of the loop is so small that the main vector loop is 816 /// completely skipped. 817 EpilogueLoopVectorizationInfo &EPI; 818 }; 819 820 /// A specialized derived class of inner loop vectorizer that performs 821 /// vectorization of *main* loops in the process of vectorizing loops and their 822 /// epilogues. 823 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 824 public: 825 EpilogueVectorizerMainLoop( 826 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 827 DominatorTree *DT, const TargetLibraryInfo *TLI, 828 const TargetTransformInfo *TTI, AssumptionCache *AC, 829 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 830 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 831 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 832 GeneratedRTChecks &Check) 833 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 834 EPI, LVL, CM, BFI, PSI, Check) {} 835 /// Implements the interface for creating a vectorized skeleton using the 836 /// *main loop* strategy (ie the first pass of vplan execution). 837 std::pair<BasicBlock *, Value *> 838 createEpilogueVectorizedLoopSkeleton() final override; 839 840 protected: 841 /// Emits an iteration count bypass check once for the main loop (when \p 842 /// ForEpilogue is false) and once for the epilogue loop (when \p 843 /// ForEpilogue is true). 844 BasicBlock *emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue); 845 void printDebugTracesAtStart() override; 846 void printDebugTracesAtEnd() override; 847 }; 848 849 // A specialized derived class of inner loop vectorizer that performs 850 // vectorization of *epilogue* loops in the process of vectorizing loops and 851 // their epilogues. 852 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 853 public: 854 EpilogueVectorizerEpilogueLoop( 855 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 856 DominatorTree *DT, const TargetLibraryInfo *TLI, 857 const TargetTransformInfo *TTI, AssumptionCache *AC, 858 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 859 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 860 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 861 GeneratedRTChecks &Checks) 862 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 863 EPI, LVL, CM, BFI, PSI, Checks) { 864 TripCount = EPI.TripCount; 865 } 866 /// Implements the interface for creating a vectorized skeleton using the 867 /// *epilogue loop* strategy (ie the second pass of vplan execution). 868 std::pair<BasicBlock *, Value *> 869 createEpilogueVectorizedLoopSkeleton() final override; 870 871 protected: 872 /// Emits an iteration count bypass check after the main vector loop has 873 /// finished to see if there are any iterations left to execute by either 874 /// the vector epilogue or the scalar epilogue. 875 BasicBlock *emitMinimumVectorEpilogueIterCountCheck( 876 BasicBlock *Bypass, 877 BasicBlock *Insert); 878 void printDebugTracesAtStart() override; 879 void printDebugTracesAtEnd() override; 880 }; 881 } // end namespace llvm 882 883 /// Look for a meaningful debug location on the instruction or it's 884 /// operands. 885 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 886 if (!I) 887 return I; 888 889 DebugLoc Empty; 890 if (I->getDebugLoc() != Empty) 891 return I; 892 893 for (Use &Op : I->operands()) { 894 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 895 if (OpInst->getDebugLoc() != Empty) 896 return OpInst; 897 } 898 899 return I; 900 } 901 902 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 903 /// is passed, the message relates to that particular instruction. 904 #ifndef NDEBUG 905 static void debugVectorizationMessage(const StringRef Prefix, 906 const StringRef DebugMsg, 907 Instruction *I) { 908 dbgs() << "LV: " << Prefix << DebugMsg; 909 if (I != nullptr) 910 dbgs() << " " << *I; 911 else 912 dbgs() << '.'; 913 dbgs() << '\n'; 914 } 915 #endif 916 917 /// Create an analysis remark that explains why vectorization failed 918 /// 919 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 920 /// RemarkName is the identifier for the remark. If \p I is passed it is an 921 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 922 /// the location of the remark. \return the remark object that can be 923 /// streamed to. 924 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 925 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 926 Value *CodeRegion = TheLoop->getHeader(); 927 DebugLoc DL = TheLoop->getStartLoc(); 928 929 if (I) { 930 CodeRegion = I->getParent(); 931 // If there is no debug location attached to the instruction, revert back to 932 // using the loop's. 933 if (I->getDebugLoc()) 934 DL = I->getDebugLoc(); 935 } 936 937 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 938 } 939 940 namespace llvm { 941 942 /// Return a value for Step multiplied by VF. 943 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, 944 int64_t Step) { 945 assert(Ty->isIntegerTy() && "Expected an integer step"); 946 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 947 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 948 } 949 950 /// Return the runtime value for VF. 951 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) { 952 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 953 return VF.isScalable() ? B.CreateVScale(EC) : EC; 954 } 955 956 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy, 957 ElementCount VF) { 958 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 959 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 960 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 961 return B.CreateUIToFP(RuntimeVF, FTy); 962 } 963 964 void reportVectorizationFailure(const StringRef DebugMsg, 965 const StringRef OREMsg, const StringRef ORETag, 966 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 967 Instruction *I) { 968 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 969 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 970 ORE->emit( 971 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 972 << "loop not vectorized: " << OREMsg); 973 } 974 975 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 976 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 977 Instruction *I) { 978 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 979 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 980 ORE->emit( 981 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 982 << Msg); 983 } 984 985 } // end namespace llvm 986 987 #ifndef NDEBUG 988 /// \return string containing a file name and a line # for the given loop. 989 static std::string getDebugLocString(const Loop *L) { 990 std::string Result; 991 if (L) { 992 raw_string_ostream OS(Result); 993 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 994 LoopDbgLoc.print(OS); 995 else 996 // Just print the module name. 997 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 998 OS.flush(); 999 } 1000 return Result; 1001 } 1002 #endif 1003 1004 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1005 VPTransformState &State) { 1006 1007 // Collect recipes in the backward slice of `Root` that may generate a poison 1008 // value that is used after vectorization. 1009 SmallPtrSet<VPRecipeBase *, 16> Visited; 1010 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1011 SmallVector<VPRecipeBase *, 16> Worklist; 1012 Worklist.push_back(Root); 1013 1014 // Traverse the backward slice of Root through its use-def chain. 1015 while (!Worklist.empty()) { 1016 VPRecipeBase *CurRec = Worklist.back(); 1017 Worklist.pop_back(); 1018 1019 if (!Visited.insert(CurRec).second) 1020 continue; 1021 1022 // Prune search if we find another recipe generating a widen memory 1023 // instruction. Widen memory instructions involved in address computation 1024 // will lead to gather/scatter instructions, which don't need to be 1025 // handled. 1026 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1027 isa<VPInterleaveRecipe>(CurRec) || 1028 isa<VPScalarIVStepsRecipe>(CurRec) || 1029 isa<VPCanonicalIVPHIRecipe>(CurRec) || 1030 isa<VPActiveLaneMaskPHIRecipe>(CurRec)) 1031 continue; 1032 1033 // This recipe contributes to the address computation of a widen 1034 // load/store. Collect recipe if its underlying instruction has 1035 // poison-generating flags. 1036 Instruction *Instr = CurRec->getUnderlyingInstr(); 1037 if (Instr && Instr->hasPoisonGeneratingFlags()) 1038 State.MayGeneratePoisonRecipes.insert(CurRec); 1039 1040 // Add new definitions to the worklist. 1041 for (VPValue *operand : CurRec->operands()) 1042 if (VPDef *OpDef = operand->getDef()) 1043 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1044 } 1045 }); 1046 1047 // Traverse all the recipes in the VPlan and collect the poison-generating 1048 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1049 // VPInterleaveRecipe. 1050 auto Iter = depth_first( 1051 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1052 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1053 for (VPRecipeBase &Recipe : *VPBB) { 1054 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1055 Instruction &UnderlyingInstr = WidenRec->getIngredient(); 1056 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1057 if (AddrDef && WidenRec->isConsecutive() && 1058 Legal->blockNeedsPredication(UnderlyingInstr.getParent())) 1059 collectPoisonGeneratingInstrsInBackwardSlice( 1060 cast<VPRecipeBase>(AddrDef)); 1061 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1062 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1063 if (AddrDef) { 1064 // Check if any member of the interleave group needs predication. 1065 const InterleaveGroup<Instruction> *InterGroup = 1066 InterleaveRec->getInterleaveGroup(); 1067 bool NeedPredication = false; 1068 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1069 I < NumMembers; ++I) { 1070 Instruction *Member = InterGroup->getMember(I); 1071 if (Member) 1072 NeedPredication |= 1073 Legal->blockNeedsPredication(Member->getParent()); 1074 } 1075 1076 if (NeedPredication) 1077 collectPoisonGeneratingInstrsInBackwardSlice( 1078 cast<VPRecipeBase>(AddrDef)); 1079 } 1080 } 1081 } 1082 } 1083 } 1084 1085 PHINode *InnerLoopVectorizer::getReductionResumeValue( 1086 const RecurrenceDescriptor &RdxDesc) { 1087 auto It = ReductionResumeValues.find(&RdxDesc); 1088 assert(It != ReductionResumeValues.end() && 1089 "Expected to find a resume value for the reduction."); 1090 return It->second; 1091 } 1092 1093 namespace llvm { 1094 1095 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1096 // lowered. 1097 enum ScalarEpilogueLowering { 1098 1099 // The default: allowing scalar epilogues. 1100 CM_ScalarEpilogueAllowed, 1101 1102 // Vectorization with OptForSize: don't allow epilogues. 1103 CM_ScalarEpilogueNotAllowedOptSize, 1104 1105 // A special case of vectorisation with OptForSize: loops with a very small 1106 // trip count are considered for vectorization under OptForSize, thereby 1107 // making sure the cost of their loop body is dominant, free of runtime 1108 // guards and scalar iteration overheads. 1109 CM_ScalarEpilogueNotAllowedLowTripLoop, 1110 1111 // Loop hint predicate indicating an epilogue is undesired. 1112 CM_ScalarEpilogueNotNeededUsePredicate, 1113 1114 // Directive indicating we must either tail fold or not vectorize 1115 CM_ScalarEpilogueNotAllowedUsePredicate 1116 }; 1117 1118 /// ElementCountComparator creates a total ordering for ElementCount 1119 /// for the purposes of using it in a set structure. 1120 struct ElementCountComparator { 1121 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1122 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1123 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1124 } 1125 }; 1126 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1127 1128 /// LoopVectorizationCostModel - estimates the expected speedups due to 1129 /// vectorization. 1130 /// In many cases vectorization is not profitable. This can happen because of 1131 /// a number of reasons. In this class we mainly attempt to predict the 1132 /// expected speedup/slowdowns due to the supported instruction set. We use the 1133 /// TargetTransformInfo to query the different backends for the cost of 1134 /// different operations. 1135 class LoopVectorizationCostModel { 1136 public: 1137 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1138 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1139 LoopVectorizationLegality *Legal, 1140 const TargetTransformInfo &TTI, 1141 const TargetLibraryInfo *TLI, DemandedBits *DB, 1142 AssumptionCache *AC, 1143 OptimizationRemarkEmitter *ORE, const Function *F, 1144 const LoopVectorizeHints *Hints, 1145 InterleavedAccessInfo &IAI) 1146 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1147 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1148 Hints(Hints), InterleaveInfo(IAI) {} 1149 1150 /// \return An upper bound for the vectorization factors (both fixed and 1151 /// scalable). If the factors are 0, vectorization and interleaving should be 1152 /// avoided up front. 1153 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1154 1155 /// \return True if runtime checks are required for vectorization, and false 1156 /// otherwise. 1157 bool runtimeChecksRequired(); 1158 1159 /// \return The most profitable vectorization factor and the cost of that VF. 1160 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1161 /// then this vectorization factor will be selected if vectorization is 1162 /// possible. 1163 VectorizationFactor 1164 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1165 1166 VectorizationFactor 1167 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1168 const LoopVectorizationPlanner &LVP); 1169 1170 /// Setup cost-based decisions for user vectorization factor. 1171 /// \return true if the UserVF is a feasible VF to be chosen. 1172 bool selectUserVectorizationFactor(ElementCount UserVF) { 1173 collectUniformsAndScalars(UserVF); 1174 collectInstsToScalarize(UserVF); 1175 return expectedCost(UserVF).first.isValid(); 1176 } 1177 1178 /// \return The size (in bits) of the smallest and widest types in the code 1179 /// that needs to be vectorized. We ignore values that remain scalar such as 1180 /// 64 bit loop indices. 1181 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1182 1183 /// \return The desired interleave count. 1184 /// If interleave count has been specified by metadata it will be returned. 1185 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1186 /// are the selected vectorization factor and the cost of the selected VF. 1187 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1188 1189 /// Memory access instruction may be vectorized in more than one way. 1190 /// Form of instruction after vectorization depends on cost. 1191 /// This function takes cost-based decisions for Load/Store instructions 1192 /// and collects them in a map. This decisions map is used for building 1193 /// the lists of loop-uniform and loop-scalar instructions. 1194 /// The calculated cost is saved with widening decision in order to 1195 /// avoid redundant calculations. 1196 void setCostBasedWideningDecision(ElementCount VF); 1197 1198 /// A struct that represents some properties of the register usage 1199 /// of a loop. 1200 struct RegisterUsage { 1201 /// Holds the number of loop invariant values that are used in the loop. 1202 /// The key is ClassID of target-provided register class. 1203 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1204 /// Holds the maximum number of concurrent live intervals in the loop. 1205 /// The key is ClassID of target-provided register class. 1206 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1207 }; 1208 1209 /// \return Returns information about the register usages of the loop for the 1210 /// given vectorization factors. 1211 SmallVector<RegisterUsage, 8> 1212 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1213 1214 /// Collect values we want to ignore in the cost model. 1215 void collectValuesToIgnore(); 1216 1217 /// Collect all element types in the loop for which widening is needed. 1218 void collectElementTypesForWidening(); 1219 1220 /// Split reductions into those that happen in the loop, and those that happen 1221 /// outside. In loop reductions are collected into InLoopReductionChains. 1222 void collectInLoopReductions(); 1223 1224 /// Returns true if we should use strict in-order reductions for the given 1225 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1226 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1227 /// of FP operations. 1228 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const { 1229 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1230 } 1231 1232 /// \returns The smallest bitwidth each instruction can be represented with. 1233 /// The vector equivalents of these instructions should be truncated to this 1234 /// type. 1235 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1236 return MinBWs; 1237 } 1238 1239 /// \returns True if it is more profitable to scalarize instruction \p I for 1240 /// vectorization factor \p VF. 1241 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1242 assert(VF.isVector() && 1243 "Profitable to scalarize relevant only for VF > 1."); 1244 1245 // Cost model is not run in the VPlan-native path - return conservative 1246 // result until this changes. 1247 if (EnableVPlanNativePath) 1248 return false; 1249 1250 auto Scalars = InstsToScalarize.find(VF); 1251 assert(Scalars != InstsToScalarize.end() && 1252 "VF not yet analyzed for scalarization profitability"); 1253 return Scalars->second.find(I) != Scalars->second.end(); 1254 } 1255 1256 /// Returns true if \p I is known to be uniform after vectorization. 1257 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1258 if (VF.isScalar()) 1259 return true; 1260 1261 // Cost model is not run in the VPlan-native path - return conservative 1262 // result until this changes. 1263 if (EnableVPlanNativePath) 1264 return false; 1265 1266 auto UniformsPerVF = Uniforms.find(VF); 1267 assert(UniformsPerVF != Uniforms.end() && 1268 "VF not yet analyzed for uniformity"); 1269 return UniformsPerVF->second.count(I); 1270 } 1271 1272 /// Returns true if \p I is known to be scalar after vectorization. 1273 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1274 if (VF.isScalar()) 1275 return true; 1276 1277 // Cost model is not run in the VPlan-native path - return conservative 1278 // result until this changes. 1279 if (EnableVPlanNativePath) 1280 return false; 1281 1282 auto ScalarsPerVF = Scalars.find(VF); 1283 assert(ScalarsPerVF != Scalars.end() && 1284 "Scalar values are not calculated for VF"); 1285 return ScalarsPerVF->second.count(I); 1286 } 1287 1288 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1289 /// for vectorization factor \p VF. 1290 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1291 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1292 !isProfitableToScalarize(I, VF) && 1293 !isScalarAfterVectorization(I, VF); 1294 } 1295 1296 /// Decision that was taken during cost calculation for memory instruction. 1297 enum InstWidening { 1298 CM_Unknown, 1299 CM_Widen, // For consecutive accesses with stride +1. 1300 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1301 CM_Interleave, 1302 CM_GatherScatter, 1303 CM_Scalarize 1304 }; 1305 1306 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1307 /// instruction \p I and vector width \p VF. 1308 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1309 InstructionCost Cost) { 1310 assert(VF.isVector() && "Expected VF >=2"); 1311 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1312 } 1313 1314 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1315 /// interleaving group \p Grp and vector width \p VF. 1316 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1317 ElementCount VF, InstWidening W, 1318 InstructionCost Cost) { 1319 assert(VF.isVector() && "Expected VF >=2"); 1320 /// Broadcast this decicion to all instructions inside the group. 1321 /// But the cost will be assigned to one instruction only. 1322 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1323 if (auto *I = Grp->getMember(i)) { 1324 if (Grp->getInsertPos() == I) 1325 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1326 else 1327 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1328 } 1329 } 1330 } 1331 1332 /// Return the cost model decision for the given instruction \p I and vector 1333 /// width \p VF. Return CM_Unknown if this instruction did not pass 1334 /// through the cost modeling. 1335 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1336 assert(VF.isVector() && "Expected VF to be a vector VF"); 1337 // Cost model is not run in the VPlan-native path - return conservative 1338 // result until this changes. 1339 if (EnableVPlanNativePath) 1340 return CM_GatherScatter; 1341 1342 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1343 auto Itr = WideningDecisions.find(InstOnVF); 1344 if (Itr == WideningDecisions.end()) 1345 return CM_Unknown; 1346 return Itr->second.first; 1347 } 1348 1349 /// Return the vectorization cost for the given instruction \p I and vector 1350 /// width \p VF. 1351 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1352 assert(VF.isVector() && "Expected VF >=2"); 1353 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1354 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1355 "The cost is not calculated"); 1356 return WideningDecisions[InstOnVF].second; 1357 } 1358 1359 /// Return True if instruction \p I is an optimizable truncate whose operand 1360 /// is an induction variable. Such a truncate will be removed by adding a new 1361 /// induction variable with the destination type. 1362 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1363 // If the instruction is not a truncate, return false. 1364 auto *Trunc = dyn_cast<TruncInst>(I); 1365 if (!Trunc) 1366 return false; 1367 1368 // Get the source and destination types of the truncate. 1369 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1370 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1371 1372 // If the truncate is free for the given types, return false. Replacing a 1373 // free truncate with an induction variable would add an induction variable 1374 // update instruction to each iteration of the loop. We exclude from this 1375 // check the primary induction variable since it will need an update 1376 // instruction regardless. 1377 Value *Op = Trunc->getOperand(0); 1378 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1379 return false; 1380 1381 // If the truncated value is not an induction variable, return false. 1382 return Legal->isInductionPhi(Op); 1383 } 1384 1385 /// Collects the instructions to scalarize for each predicated instruction in 1386 /// the loop. 1387 void collectInstsToScalarize(ElementCount VF); 1388 1389 /// Collect Uniform and Scalar values for the given \p VF. 1390 /// The sets depend on CM decision for Load/Store instructions 1391 /// that may be vectorized as interleave, gather-scatter or scalarized. 1392 void collectUniformsAndScalars(ElementCount VF) { 1393 // Do the analysis once. 1394 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1395 return; 1396 setCostBasedWideningDecision(VF); 1397 collectLoopUniforms(VF); 1398 collectLoopScalars(VF); 1399 } 1400 1401 /// Returns true if the target machine supports masked store operation 1402 /// for the given \p DataType and kind of access to \p Ptr. 1403 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1404 return Legal->isConsecutivePtr(DataType, Ptr) && 1405 TTI.isLegalMaskedStore(DataType, Alignment); 1406 } 1407 1408 /// Returns true if the target machine supports masked load operation 1409 /// for the given \p DataType and kind of access to \p Ptr. 1410 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1411 return Legal->isConsecutivePtr(DataType, Ptr) && 1412 TTI.isLegalMaskedLoad(DataType, Alignment); 1413 } 1414 1415 /// Returns true if the target machine can represent \p V as a masked gather 1416 /// or scatter operation. 1417 bool isLegalGatherOrScatter(Value *V, 1418 ElementCount VF = ElementCount::getFixed(1)) { 1419 bool LI = isa<LoadInst>(V); 1420 bool SI = isa<StoreInst>(V); 1421 if (!LI && !SI) 1422 return false; 1423 auto *Ty = getLoadStoreType(V); 1424 Align Align = getLoadStoreAlignment(V); 1425 if (VF.isVector()) 1426 Ty = VectorType::get(Ty, VF); 1427 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1428 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1429 } 1430 1431 /// Returns true if the target machine supports all of the reduction 1432 /// variables found for the given VF. 1433 bool canVectorizeReductions(ElementCount VF) const { 1434 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1435 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1436 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1437 })); 1438 } 1439 1440 /// Returns true if \p I is an instruction that will be scalarized with 1441 /// predication when vectorizing \p I with vectorization factor \p VF. Such 1442 /// instructions include conditional stores and instructions that may divide 1443 /// by zero. 1444 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1445 1446 // Returns true if \p I is an instruction that will be predicated either 1447 // through scalar predication or masked load/store or masked gather/scatter. 1448 // \p VF is the vectorization factor that will be used to vectorize \p I. 1449 // Superset of instructions that return true for isScalarWithPredication. 1450 bool isPredicatedInst(Instruction *I, ElementCount VF, 1451 bool IsKnownUniform = false) { 1452 // When we know the load is uniform and the original scalar loop was not 1453 // predicated we don't need to mark it as a predicated instruction. Any 1454 // vectorised blocks created when tail-folding are something artificial we 1455 // have introduced and we know there is always at least one active lane. 1456 // That's why we call Legal->blockNeedsPredication here because it doesn't 1457 // query tail-folding. 1458 if (IsKnownUniform && isa<LoadInst>(I) && 1459 !Legal->blockNeedsPredication(I->getParent())) 1460 return false; 1461 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1462 return false; 1463 // Loads and stores that need some form of masked operation are predicated 1464 // instructions. 1465 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1466 return Legal->isMaskRequired(I); 1467 return isScalarWithPredication(I, VF); 1468 } 1469 1470 /// Returns true if \p I is a memory instruction with consecutive memory 1471 /// access that can be widened. 1472 bool 1473 memoryInstructionCanBeWidened(Instruction *I, 1474 ElementCount VF = ElementCount::getFixed(1)); 1475 1476 /// Returns true if \p I is a memory instruction in an interleaved-group 1477 /// of memory accesses that can be vectorized with wide vector loads/stores 1478 /// and shuffles. 1479 bool 1480 interleavedAccessCanBeWidened(Instruction *I, 1481 ElementCount VF = ElementCount::getFixed(1)); 1482 1483 /// Check if \p Instr belongs to any interleaved access group. 1484 bool isAccessInterleaved(Instruction *Instr) { 1485 return InterleaveInfo.isInterleaved(Instr); 1486 } 1487 1488 /// Get the interleaved access group that \p Instr belongs to. 1489 const InterleaveGroup<Instruction> * 1490 getInterleavedAccessGroup(Instruction *Instr) { 1491 return InterleaveInfo.getInterleaveGroup(Instr); 1492 } 1493 1494 /// Returns true if we're required to use a scalar epilogue for at least 1495 /// the final iteration of the original loop. 1496 bool requiresScalarEpilogue(ElementCount VF) const { 1497 if (!isScalarEpilogueAllowed()) 1498 return false; 1499 // If we might exit from anywhere but the latch, must run the exiting 1500 // iteration in scalar form. 1501 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1502 return true; 1503 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1504 } 1505 1506 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1507 /// loop hint annotation. 1508 bool isScalarEpilogueAllowed() const { 1509 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1510 } 1511 1512 /// Returns true if all loop blocks should be masked to fold tail loop. 1513 bool foldTailByMasking() const { return FoldTailByMasking; } 1514 1515 /// Returns true if were tail-folding and want to use the active lane mask 1516 /// for vector loop control flow. 1517 bool useActiveLaneMaskForControlFlow() const { 1518 return FoldTailByMasking && 1519 TTI.emitGetActiveLaneMask() == PredicationStyle::DataAndControlFlow; 1520 } 1521 1522 /// Returns true if the instructions in this block requires predication 1523 /// for any reason, e.g. because tail folding now requires a predicate 1524 /// or because the block in the original loop was predicated. 1525 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1526 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1527 } 1528 1529 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1530 /// nodes to the chain of instructions representing the reductions. Uses a 1531 /// MapVector to ensure deterministic iteration order. 1532 using ReductionChainMap = 1533 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1534 1535 /// Return the chain of instructions representing an inloop reduction. 1536 const ReductionChainMap &getInLoopReductionChains() const { 1537 return InLoopReductionChains; 1538 } 1539 1540 /// Returns true if the Phi is part of an inloop reduction. 1541 bool isInLoopReduction(PHINode *Phi) const { 1542 return InLoopReductionChains.count(Phi); 1543 } 1544 1545 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1546 /// with factor VF. Return the cost of the instruction, including 1547 /// scalarization overhead if it's needed. 1548 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1549 1550 /// Estimate cost of a call instruction CI if it were vectorized with factor 1551 /// VF. Return the cost of the instruction, including scalarization overhead 1552 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1553 /// scalarized - 1554 /// i.e. either vector version isn't available, or is too expensive. 1555 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1556 bool &NeedToScalarize) const; 1557 1558 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1559 /// that of B. 1560 bool isMoreProfitable(const VectorizationFactor &A, 1561 const VectorizationFactor &B) const; 1562 1563 /// Invalidates decisions already taken by the cost model. 1564 void invalidateCostModelingDecisions() { 1565 WideningDecisions.clear(); 1566 Uniforms.clear(); 1567 Scalars.clear(); 1568 } 1569 1570 /// Convenience function that returns the value of vscale_range iff 1571 /// vscale_range.min == vscale_range.max or otherwise returns the value 1572 /// returned by the corresponding TLI method. 1573 Optional<unsigned> getVScaleForTuning() const; 1574 1575 private: 1576 unsigned NumPredStores = 0; 1577 1578 /// \return An upper bound for the vectorization factors for both 1579 /// fixed and scalable vectorization, where the minimum-known number of 1580 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1581 /// disabled or unsupported, then the scalable part will be equal to 1582 /// ElementCount::getScalable(0). 1583 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1584 ElementCount UserVF, 1585 bool FoldTailByMasking); 1586 1587 /// \return the maximized element count based on the targets vector 1588 /// registers and the loop trip-count, but limited to a maximum safe VF. 1589 /// This is a helper function of computeFeasibleMaxVF. 1590 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1591 unsigned SmallestType, 1592 unsigned WidestType, 1593 ElementCount MaxSafeVF, 1594 bool FoldTailByMasking); 1595 1596 /// \return the maximum legal scalable VF, based on the safe max number 1597 /// of elements. 1598 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1599 1600 /// The vectorization cost is a combination of the cost itself and a boolean 1601 /// indicating whether any of the contributing operations will actually 1602 /// operate on vector values after type legalization in the backend. If this 1603 /// latter value is false, then all operations will be scalarized (i.e. no 1604 /// vectorization has actually taken place). 1605 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1606 1607 /// Returns the expected execution cost. The unit of the cost does 1608 /// not matter because we use the 'cost' units to compare different 1609 /// vector widths. The cost that is returned is *not* normalized by 1610 /// the factor width. If \p Invalid is not nullptr, this function 1611 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1612 /// each instruction that has an Invalid cost for the given VF. 1613 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1614 VectorizationCostTy 1615 expectedCost(ElementCount VF, 1616 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1617 1618 /// Returns the execution time cost of an instruction for a given vector 1619 /// width. Vector width of one means scalar. 1620 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1621 1622 /// The cost-computation logic from getInstructionCost which provides 1623 /// the vector type as an output parameter. 1624 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1625 Type *&VectorTy); 1626 1627 /// Return the cost of instructions in an inloop reduction pattern, if I is 1628 /// part of that pattern. 1629 Optional<InstructionCost> 1630 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1631 TTI::TargetCostKind CostKind); 1632 1633 /// Calculate vectorization cost of memory instruction \p I. 1634 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1635 1636 /// The cost computation for scalarized memory instruction. 1637 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1638 1639 /// The cost computation for interleaving group of memory instructions. 1640 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1641 1642 /// The cost computation for Gather/Scatter instruction. 1643 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1644 1645 /// The cost computation for widening instruction \p I with consecutive 1646 /// memory access. 1647 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1648 1649 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1650 /// Load: scalar load + broadcast. 1651 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1652 /// element) 1653 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1654 1655 /// Estimate the overhead of scalarizing an instruction. This is a 1656 /// convenience wrapper for the type-based getScalarizationOverhead API. 1657 InstructionCost getScalarizationOverhead(Instruction *I, 1658 ElementCount VF) const; 1659 1660 /// Returns whether the instruction is a load or store and will be a emitted 1661 /// as a vector operation. 1662 bool isConsecutiveLoadOrStore(Instruction *I); 1663 1664 /// Returns true if an artificially high cost for emulated masked memrefs 1665 /// should be used. 1666 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); 1667 1668 /// Map of scalar integer values to the smallest bitwidth they can be legally 1669 /// represented as. The vector equivalents of these values should be truncated 1670 /// to this type. 1671 MapVector<Instruction *, uint64_t> MinBWs; 1672 1673 /// A type representing the costs for instructions if they were to be 1674 /// scalarized rather than vectorized. The entries are Instruction-Cost 1675 /// pairs. 1676 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1677 1678 /// A set containing all BasicBlocks that are known to present after 1679 /// vectorization as a predicated block. 1680 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>> 1681 PredicatedBBsAfterVectorization; 1682 1683 /// Records whether it is allowed to have the original scalar loop execute at 1684 /// least once. This may be needed as a fallback loop in case runtime 1685 /// aliasing/dependence checks fail, or to handle the tail/remainder 1686 /// iterations when the trip count is unknown or doesn't divide by the VF, 1687 /// or as a peel-loop to handle gaps in interleave-groups. 1688 /// Under optsize and when the trip count is very small we don't allow any 1689 /// iterations to execute in the scalar loop. 1690 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1691 1692 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1693 bool FoldTailByMasking = false; 1694 1695 /// A map holding scalar costs for different vectorization factors. The 1696 /// presence of a cost for an instruction in the mapping indicates that the 1697 /// instruction will be scalarized when vectorizing with the associated 1698 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1699 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1700 1701 /// Holds the instructions known to be uniform after vectorization. 1702 /// The data is collected per VF. 1703 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1704 1705 /// Holds the instructions known to be scalar after vectorization. 1706 /// The data is collected per VF. 1707 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1708 1709 /// Holds the instructions (address computations) that are forced to be 1710 /// scalarized. 1711 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1712 1713 /// PHINodes of the reductions that should be expanded in-loop along with 1714 /// their associated chains of reduction operations, in program order from top 1715 /// (PHI) to bottom 1716 ReductionChainMap InLoopReductionChains; 1717 1718 /// A Map of inloop reduction operations and their immediate chain operand. 1719 /// FIXME: This can be removed once reductions can be costed correctly in 1720 /// vplan. This was added to allow quick lookup to the inloop operations, 1721 /// without having to loop through InLoopReductionChains. 1722 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1723 1724 /// Returns the expected difference in cost from scalarizing the expression 1725 /// feeding a predicated instruction \p PredInst. The instructions to 1726 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1727 /// non-negative return value implies the expression will be scalarized. 1728 /// Currently, only single-use chains are considered for scalarization. 1729 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1730 ElementCount VF); 1731 1732 /// Collect the instructions that are uniform after vectorization. An 1733 /// instruction is uniform if we represent it with a single scalar value in 1734 /// the vectorized loop corresponding to each vector iteration. Examples of 1735 /// uniform instructions include pointer operands of consecutive or 1736 /// interleaved memory accesses. Note that although uniformity implies an 1737 /// instruction will be scalar, the reverse is not true. In general, a 1738 /// scalarized instruction will be represented by VF scalar values in the 1739 /// vectorized loop, each corresponding to an iteration of the original 1740 /// scalar loop. 1741 void collectLoopUniforms(ElementCount VF); 1742 1743 /// Collect the instructions that are scalar after vectorization. An 1744 /// instruction is scalar if it is known to be uniform or will be scalarized 1745 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1746 /// to the list if they are used by a load/store instruction that is marked as 1747 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1748 /// VF values in the vectorized loop, each corresponding to an iteration of 1749 /// the original scalar loop. 1750 void collectLoopScalars(ElementCount VF); 1751 1752 /// Keeps cost model vectorization decision and cost for instructions. 1753 /// Right now it is used for memory instructions only. 1754 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1755 std::pair<InstWidening, InstructionCost>>; 1756 1757 DecisionList WideningDecisions; 1758 1759 /// Returns true if \p V is expected to be vectorized and it needs to be 1760 /// extracted. 1761 bool needsExtract(Value *V, ElementCount VF) const { 1762 Instruction *I = dyn_cast<Instruction>(V); 1763 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1764 TheLoop->isLoopInvariant(I)) 1765 return false; 1766 1767 // Assume we can vectorize V (and hence we need extraction) if the 1768 // scalars are not computed yet. This can happen, because it is called 1769 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1770 // the scalars are collected. That should be a safe assumption in most 1771 // cases, because we check if the operands have vectorizable types 1772 // beforehand in LoopVectorizationLegality. 1773 return Scalars.find(VF) == Scalars.end() || 1774 !isScalarAfterVectorization(I, VF); 1775 }; 1776 1777 /// Returns a range containing only operands needing to be extracted. 1778 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1779 ElementCount VF) const { 1780 return SmallVector<Value *, 4>(make_filter_range( 1781 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1782 } 1783 1784 /// Determines if we have the infrastructure to vectorize loop \p L and its 1785 /// epilogue, assuming the main loop is vectorized by \p VF. 1786 bool isCandidateForEpilogueVectorization(const Loop &L, 1787 const ElementCount VF) const; 1788 1789 /// Returns true if epilogue vectorization is considered profitable, and 1790 /// false otherwise. 1791 /// \p VF is the vectorization factor chosen for the original loop. 1792 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1793 1794 public: 1795 /// The loop that we evaluate. 1796 Loop *TheLoop; 1797 1798 /// Predicated scalar evolution analysis. 1799 PredicatedScalarEvolution &PSE; 1800 1801 /// Loop Info analysis. 1802 LoopInfo *LI; 1803 1804 /// Vectorization legality. 1805 LoopVectorizationLegality *Legal; 1806 1807 /// Vector target information. 1808 const TargetTransformInfo &TTI; 1809 1810 /// Target Library Info. 1811 const TargetLibraryInfo *TLI; 1812 1813 /// Demanded bits analysis. 1814 DemandedBits *DB; 1815 1816 /// Assumption cache. 1817 AssumptionCache *AC; 1818 1819 /// Interface to emit optimization remarks. 1820 OptimizationRemarkEmitter *ORE; 1821 1822 const Function *TheFunction; 1823 1824 /// Loop Vectorize Hint. 1825 const LoopVectorizeHints *Hints; 1826 1827 /// The interleave access information contains groups of interleaved accesses 1828 /// with the same stride and close to each other. 1829 InterleavedAccessInfo &InterleaveInfo; 1830 1831 /// Values to ignore in the cost model. 1832 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1833 1834 /// Values to ignore in the cost model when VF > 1. 1835 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1836 1837 /// All element types found in the loop. 1838 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1839 1840 /// Profitable vector factors. 1841 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1842 }; 1843 } // end namespace llvm 1844 1845 /// Helper struct to manage generating runtime checks for vectorization. 1846 /// 1847 /// The runtime checks are created up-front in temporary blocks to allow better 1848 /// estimating the cost and un-linked from the existing IR. After deciding to 1849 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1850 /// temporary blocks are completely removed. 1851 class GeneratedRTChecks { 1852 /// Basic block which contains the generated SCEV checks, if any. 1853 BasicBlock *SCEVCheckBlock = nullptr; 1854 1855 /// The value representing the result of the generated SCEV checks. If it is 1856 /// nullptr, either no SCEV checks have been generated or they have been used. 1857 Value *SCEVCheckCond = nullptr; 1858 1859 /// Basic block which contains the generated memory runtime checks, if any. 1860 BasicBlock *MemCheckBlock = nullptr; 1861 1862 /// The value representing the result of the generated memory runtime checks. 1863 /// If it is nullptr, either no memory runtime checks have been generated or 1864 /// they have been used. 1865 Value *MemRuntimeCheckCond = nullptr; 1866 1867 DominatorTree *DT; 1868 LoopInfo *LI; 1869 TargetTransformInfo *TTI; 1870 1871 SCEVExpander SCEVExp; 1872 SCEVExpander MemCheckExp; 1873 1874 bool CostTooHigh = false; 1875 1876 public: 1877 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1878 TargetTransformInfo *TTI, const DataLayout &DL) 1879 : DT(DT), LI(LI), TTI(TTI), SCEVExp(SE, DL, "scev.check"), 1880 MemCheckExp(SE, DL, "scev.check") {} 1881 1882 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1883 /// accurately estimate the cost of the runtime checks. The blocks are 1884 /// un-linked from the IR and is added back during vector code generation. If 1885 /// there is no vector code generation, the check blocks are removed 1886 /// completely. 1887 void Create(Loop *L, const LoopAccessInfo &LAI, 1888 const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) { 1889 1890 // Hard cutoff to limit compile-time increase in case a very large number of 1891 // runtime checks needs to be generated. 1892 // TODO: Skip cutoff if the loop is guaranteed to execute, e.g. due to 1893 // profile info. 1894 CostTooHigh = 1895 LAI.getNumRuntimePointerChecks() > VectorizeMemoryCheckThreshold; 1896 if (CostTooHigh) 1897 return; 1898 1899 BasicBlock *LoopHeader = L->getHeader(); 1900 BasicBlock *Preheader = L->getLoopPreheader(); 1901 1902 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1903 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1904 // may be used by SCEVExpander. The blocks will be un-linked from their 1905 // predecessors and removed from LI & DT at the end of the function. 1906 if (!UnionPred.isAlwaysTrue()) { 1907 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1908 nullptr, "vector.scevcheck"); 1909 1910 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1911 &UnionPred, SCEVCheckBlock->getTerminator()); 1912 } 1913 1914 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1915 if (RtPtrChecking.Need) { 1916 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1917 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1918 "vector.memcheck"); 1919 1920 auto DiffChecks = RtPtrChecking.getDiffChecks(); 1921 if (DiffChecks) { 1922 Value *RuntimeVF = nullptr; 1923 MemRuntimeCheckCond = addDiffRuntimeChecks( 1924 MemCheckBlock->getTerminator(), L, *DiffChecks, MemCheckExp, 1925 [VF, &RuntimeVF](IRBuilderBase &B, unsigned Bits) { 1926 if (!RuntimeVF) 1927 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF); 1928 return RuntimeVF; 1929 }, 1930 IC); 1931 } else { 1932 MemRuntimeCheckCond = 1933 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1934 RtPtrChecking.getChecks(), MemCheckExp); 1935 } 1936 assert(MemRuntimeCheckCond && 1937 "no RT checks generated although RtPtrChecking " 1938 "claimed checks are required"); 1939 } 1940 1941 if (!MemCheckBlock && !SCEVCheckBlock) 1942 return; 1943 1944 // Unhook the temporary block with the checks, update various places 1945 // accordingly. 1946 if (SCEVCheckBlock) 1947 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1948 if (MemCheckBlock) 1949 MemCheckBlock->replaceAllUsesWith(Preheader); 1950 1951 if (SCEVCheckBlock) { 1952 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1953 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1954 Preheader->getTerminator()->eraseFromParent(); 1955 } 1956 if (MemCheckBlock) { 1957 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1958 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 1959 Preheader->getTerminator()->eraseFromParent(); 1960 } 1961 1962 DT->changeImmediateDominator(LoopHeader, Preheader); 1963 if (MemCheckBlock) { 1964 DT->eraseNode(MemCheckBlock); 1965 LI->removeBlock(MemCheckBlock); 1966 } 1967 if (SCEVCheckBlock) { 1968 DT->eraseNode(SCEVCheckBlock); 1969 LI->removeBlock(SCEVCheckBlock); 1970 } 1971 } 1972 1973 InstructionCost getCost() { 1974 if (SCEVCheckBlock || MemCheckBlock) 1975 LLVM_DEBUG(dbgs() << "Calculating cost of runtime checks:\n"); 1976 1977 if (CostTooHigh) { 1978 InstructionCost Cost; 1979 Cost.setInvalid(); 1980 LLVM_DEBUG(dbgs() << " number of checks exceeded threshold\n"); 1981 return Cost; 1982 } 1983 1984 InstructionCost RTCheckCost = 0; 1985 if (SCEVCheckBlock) 1986 for (Instruction &I : *SCEVCheckBlock) { 1987 if (SCEVCheckBlock->getTerminator() == &I) 1988 continue; 1989 InstructionCost C = 1990 TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput); 1991 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n"); 1992 RTCheckCost += C; 1993 } 1994 if (MemCheckBlock) 1995 for (Instruction &I : *MemCheckBlock) { 1996 if (MemCheckBlock->getTerminator() == &I) 1997 continue; 1998 InstructionCost C = 1999 TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput); 2000 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n"); 2001 RTCheckCost += C; 2002 } 2003 2004 if (SCEVCheckBlock || MemCheckBlock) 2005 LLVM_DEBUG(dbgs() << "Total cost of runtime checks: " << RTCheckCost 2006 << "\n"); 2007 2008 return RTCheckCost; 2009 } 2010 2011 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2012 /// unused. 2013 ~GeneratedRTChecks() { 2014 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2015 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2016 if (!SCEVCheckCond) 2017 SCEVCleaner.markResultUsed(); 2018 2019 if (!MemRuntimeCheckCond) 2020 MemCheckCleaner.markResultUsed(); 2021 2022 if (MemRuntimeCheckCond) { 2023 auto &SE = *MemCheckExp.getSE(); 2024 // Memory runtime check generation creates compares that use expanded 2025 // values. Remove them before running the SCEVExpanderCleaners. 2026 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2027 if (MemCheckExp.isInsertedInstruction(&I)) 2028 continue; 2029 SE.forgetValue(&I); 2030 I.eraseFromParent(); 2031 } 2032 } 2033 MemCheckCleaner.cleanup(); 2034 SCEVCleaner.cleanup(); 2035 2036 if (SCEVCheckCond) 2037 SCEVCheckBlock->eraseFromParent(); 2038 if (MemRuntimeCheckCond) 2039 MemCheckBlock->eraseFromParent(); 2040 } 2041 2042 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2043 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2044 /// depending on the generated condition. 2045 BasicBlock *emitSCEVChecks(BasicBlock *Bypass, 2046 BasicBlock *LoopVectorPreHeader, 2047 BasicBlock *LoopExitBlock) { 2048 if (!SCEVCheckCond) 2049 return nullptr; 2050 2051 Value *Cond = SCEVCheckCond; 2052 // Mark the check as used, to prevent it from being removed during cleanup. 2053 SCEVCheckCond = nullptr; 2054 if (auto *C = dyn_cast<ConstantInt>(Cond)) 2055 if (C->isZero()) 2056 return nullptr; 2057 2058 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2059 2060 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2061 // Create new preheader for vector loop. 2062 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2063 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2064 2065 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2066 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2067 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2068 SCEVCheckBlock); 2069 2070 DT->addNewBlock(SCEVCheckBlock, Pred); 2071 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2072 2073 ReplaceInstWithInst(SCEVCheckBlock->getTerminator(), 2074 BranchInst::Create(Bypass, LoopVectorPreHeader, Cond)); 2075 return SCEVCheckBlock; 2076 } 2077 2078 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2079 /// the branches to branch to the vector preheader or \p Bypass, depending on 2080 /// the generated condition. 2081 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass, 2082 BasicBlock *LoopVectorPreHeader) { 2083 // Check if we generated code that checks in runtime if arrays overlap. 2084 if (!MemRuntimeCheckCond) 2085 return nullptr; 2086 2087 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2088 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2089 MemCheckBlock); 2090 2091 DT->addNewBlock(MemCheckBlock, Pred); 2092 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2093 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2094 2095 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2096 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2097 2098 ReplaceInstWithInst( 2099 MemCheckBlock->getTerminator(), 2100 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2101 MemCheckBlock->getTerminator()->setDebugLoc( 2102 Pred->getTerminator()->getDebugLoc()); 2103 2104 // Mark the check as used, to prevent it from being removed during cleanup. 2105 MemRuntimeCheckCond = nullptr; 2106 return MemCheckBlock; 2107 } 2108 }; 2109 2110 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2111 // vectorization. The loop needs to be annotated with #pragma omp simd 2112 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2113 // vector length information is not provided, vectorization is not considered 2114 // explicit. Interleave hints are not allowed either. These limitations will be 2115 // relaxed in the future. 2116 // Please, note that we are currently forced to abuse the pragma 'clang 2117 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2118 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2119 // provides *explicit vectorization hints* (LV can bypass legal checks and 2120 // assume that vectorization is legal). However, both hints are implemented 2121 // using the same metadata (llvm.loop.vectorize, processed by 2122 // LoopVectorizeHints). This will be fixed in the future when the native IR 2123 // representation for pragma 'omp simd' is introduced. 2124 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2125 OptimizationRemarkEmitter *ORE) { 2126 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2127 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2128 2129 // Only outer loops with an explicit vectorization hint are supported. 2130 // Unannotated outer loops are ignored. 2131 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2132 return false; 2133 2134 Function *Fn = OuterLp->getHeader()->getParent(); 2135 if (!Hints.allowVectorization(Fn, OuterLp, 2136 true /*VectorizeOnlyWhenForced*/)) { 2137 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2138 return false; 2139 } 2140 2141 if (Hints.getInterleave() > 1) { 2142 // TODO: Interleave support is future work. 2143 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2144 "outer loops.\n"); 2145 Hints.emitRemarkWithHints(); 2146 return false; 2147 } 2148 2149 return true; 2150 } 2151 2152 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2153 OptimizationRemarkEmitter *ORE, 2154 SmallVectorImpl<Loop *> &V) { 2155 // Collect inner loops and outer loops without irreducible control flow. For 2156 // now, only collect outer loops that have explicit vectorization hints. If we 2157 // are stress testing the VPlan H-CFG construction, we collect the outermost 2158 // loop of every loop nest. 2159 if (L.isInnermost() || VPlanBuildStressTest || 2160 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2161 LoopBlocksRPO RPOT(&L); 2162 RPOT.perform(LI); 2163 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2164 V.push_back(&L); 2165 // TODO: Collect inner loops inside marked outer loops in case 2166 // vectorization fails for the outer loop. Do not invoke 2167 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2168 // already known to be reducible. We can use an inherited attribute for 2169 // that. 2170 return; 2171 } 2172 } 2173 for (Loop *InnerL : L) 2174 collectSupportedLoops(*InnerL, LI, ORE, V); 2175 } 2176 2177 namespace { 2178 2179 /// The LoopVectorize Pass. 2180 struct LoopVectorize : public FunctionPass { 2181 /// Pass identification, replacement for typeid 2182 static char ID; 2183 2184 LoopVectorizePass Impl; 2185 2186 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2187 bool VectorizeOnlyWhenForced = false) 2188 : FunctionPass(ID), 2189 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2190 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2191 } 2192 2193 bool runOnFunction(Function &F) override { 2194 if (skipFunction(F)) 2195 return false; 2196 2197 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2198 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2199 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2200 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2201 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2202 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2203 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2204 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2205 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2206 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2207 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2208 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2209 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2210 2211 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2212 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2213 2214 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2215 GetLAA, *ORE, PSI).MadeAnyChange; 2216 } 2217 2218 void getAnalysisUsage(AnalysisUsage &AU) const override { 2219 AU.addRequired<AssumptionCacheTracker>(); 2220 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2221 AU.addRequired<DominatorTreeWrapperPass>(); 2222 AU.addRequired<LoopInfoWrapperPass>(); 2223 AU.addRequired<ScalarEvolutionWrapperPass>(); 2224 AU.addRequired<TargetTransformInfoWrapperPass>(); 2225 AU.addRequired<AAResultsWrapperPass>(); 2226 AU.addRequired<LoopAccessLegacyAnalysis>(); 2227 AU.addRequired<DemandedBitsWrapperPass>(); 2228 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2229 AU.addRequired<InjectTLIMappingsLegacy>(); 2230 2231 // We currently do not preserve loopinfo/dominator analyses with outer loop 2232 // vectorization. Until this is addressed, mark these analyses as preserved 2233 // only for non-VPlan-native path. 2234 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2235 if (!EnableVPlanNativePath) { 2236 AU.addPreserved<LoopInfoWrapperPass>(); 2237 AU.addPreserved<DominatorTreeWrapperPass>(); 2238 } 2239 2240 AU.addPreserved<BasicAAWrapperPass>(); 2241 AU.addPreserved<GlobalsAAWrapperPass>(); 2242 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2243 } 2244 }; 2245 2246 } // end anonymous namespace 2247 2248 //===----------------------------------------------------------------------===// 2249 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2250 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2251 //===----------------------------------------------------------------------===// 2252 2253 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2254 // We need to place the broadcast of invariant variables outside the loop, 2255 // but only if it's proven safe to do so. Else, broadcast will be inside 2256 // vector loop body. 2257 Instruction *Instr = dyn_cast<Instruction>(V); 2258 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2259 (!Instr || 2260 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2261 // Place the code for broadcasting invariant variables in the new preheader. 2262 IRBuilder<>::InsertPointGuard Guard(Builder); 2263 if (SafeToHoist) 2264 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2265 2266 // Broadcast the scalar into all locations in the vector. 2267 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2268 2269 return Shuf; 2270 } 2271 2272 /// This function adds 2273 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2274 /// to each vector element of Val. The sequence starts at StartIndex. 2275 /// \p Opcode is relevant for FP induction variable. 2276 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2277 Instruction::BinaryOps BinOp, ElementCount VF, 2278 IRBuilderBase &Builder) { 2279 assert(VF.isVector() && "only vector VFs are supported"); 2280 2281 // Create and check the types. 2282 auto *ValVTy = cast<VectorType>(Val->getType()); 2283 ElementCount VLen = ValVTy->getElementCount(); 2284 2285 Type *STy = Val->getType()->getScalarType(); 2286 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2287 "Induction Step must be an integer or FP"); 2288 assert(Step->getType() == STy && "Step has wrong type"); 2289 2290 SmallVector<Constant *, 8> Indices; 2291 2292 // Create a vector of consecutive numbers from zero to VF. 2293 VectorType *InitVecValVTy = ValVTy; 2294 if (STy->isFloatingPointTy()) { 2295 Type *InitVecValSTy = 2296 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2297 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2298 } 2299 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2300 2301 // Splat the StartIdx 2302 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2303 2304 if (STy->isIntegerTy()) { 2305 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2306 Step = Builder.CreateVectorSplat(VLen, Step); 2307 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2308 // FIXME: The newly created binary instructions should contain nsw/nuw 2309 // flags, which can be found from the original scalar operations. 2310 Step = Builder.CreateMul(InitVec, Step); 2311 return Builder.CreateAdd(Val, Step, "induction"); 2312 } 2313 2314 // Floating point induction. 2315 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2316 "Binary Opcode should be specified for FP induction"); 2317 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2318 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2319 2320 Step = Builder.CreateVectorSplat(VLen, Step); 2321 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2322 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2323 } 2324 2325 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 2326 /// variable on which to base the steps, \p Step is the size of the step. 2327 static void buildScalarSteps(Value *ScalarIV, Value *Step, 2328 const InductionDescriptor &ID, VPValue *Def, 2329 VPTransformState &State) { 2330 IRBuilderBase &Builder = State.Builder; 2331 // We shouldn't have to build scalar steps if we aren't vectorizing. 2332 assert(State.VF.isVector() && "VF should be greater than one"); 2333 // Get the value type and ensure it and the step have the same integer type. 2334 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2335 assert(ScalarIVTy == Step->getType() && 2336 "Val and Step should have the same type"); 2337 2338 // We build scalar steps for both integer and floating-point induction 2339 // variables. Here, we determine the kind of arithmetic we will perform. 2340 Instruction::BinaryOps AddOp; 2341 Instruction::BinaryOps MulOp; 2342 if (ScalarIVTy->isIntegerTy()) { 2343 AddOp = Instruction::Add; 2344 MulOp = Instruction::Mul; 2345 } else { 2346 AddOp = ID.getInductionOpcode(); 2347 MulOp = Instruction::FMul; 2348 } 2349 2350 // Determine the number of scalars we need to generate for each unroll 2351 // iteration. 2352 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def); 2353 unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue(); 2354 // Compute the scalar steps and save the results in State. 2355 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2356 ScalarIVTy->getScalarSizeInBits()); 2357 Type *VecIVTy = nullptr; 2358 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2359 if (!FirstLaneOnly && State.VF.isScalable()) { 2360 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2361 UnitStepVec = 2362 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2363 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2364 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2365 } 2366 2367 for (unsigned Part = 0; Part < State.UF; ++Part) { 2368 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2369 2370 if (!FirstLaneOnly && State.VF.isScalable()) { 2371 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2372 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2373 if (ScalarIVTy->isFloatingPointTy()) 2374 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2375 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2376 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2377 State.set(Def, Add, Part); 2378 // It's useful to record the lane values too for the known minimum number 2379 // of elements so we do those below. This improves the code quality when 2380 // trying to extract the first element, for example. 2381 } 2382 2383 if (ScalarIVTy->isFloatingPointTy()) 2384 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2385 2386 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2387 Value *StartIdx = Builder.CreateBinOp( 2388 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2389 // The step returned by `createStepForVF` is a runtime-evaluated value 2390 // when VF is scalable. Otherwise, it should be folded into a Constant. 2391 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2392 "Expected StartIdx to be folded to a constant when VF is not " 2393 "scalable"); 2394 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2395 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2396 State.set(Def, Add, VPIteration(Part, Lane)); 2397 } 2398 } 2399 } 2400 2401 // Generate code for the induction step. Note that induction steps are 2402 // required to be loop-invariant 2403 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE, 2404 Instruction *InsertBefore, 2405 Loop *OrigLoop = nullptr) { 2406 const DataLayout &DL = SE.getDataLayout(); 2407 assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) && 2408 "Induction step should be loop invariant"); 2409 if (auto *E = dyn_cast<SCEVUnknown>(Step)) 2410 return E->getValue(); 2411 2412 SCEVExpander Exp(SE, DL, "induction"); 2413 return Exp.expandCodeFor(Step, Step->getType(), InsertBefore); 2414 } 2415 2416 /// Compute the transformed value of Index at offset StartValue using step 2417 /// StepValue. 2418 /// For integer induction, returns StartValue + Index * StepValue. 2419 /// For pointer induction, returns StartValue[Index * StepValue]. 2420 /// FIXME: The newly created binary instructions should contain nsw/nuw 2421 /// flags, which can be found from the original scalar operations. 2422 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index, 2423 Value *StartValue, Value *Step, 2424 const InductionDescriptor &ID) { 2425 assert(Index->getType()->getScalarType() == Step->getType() && 2426 "Index scalar type does not match StepValue type"); 2427 2428 // Note: the IR at this point is broken. We cannot use SE to create any new 2429 // SCEV and then expand it, hoping that SCEV's simplification will give us 2430 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2431 // lead to various SCEV crashes. So all we can do is to use builder and rely 2432 // on InstCombine for future simplifications. Here we handle some trivial 2433 // cases only. 2434 auto CreateAdd = [&B](Value *X, Value *Y) { 2435 assert(X->getType() == Y->getType() && "Types don't match!"); 2436 if (auto *CX = dyn_cast<ConstantInt>(X)) 2437 if (CX->isZero()) 2438 return Y; 2439 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2440 if (CY->isZero()) 2441 return X; 2442 return B.CreateAdd(X, Y); 2443 }; 2444 2445 // We allow X to be a vector type, in which case Y will potentially be 2446 // splatted into a vector with the same element count. 2447 auto CreateMul = [&B](Value *X, Value *Y) { 2448 assert(X->getType()->getScalarType() == Y->getType() && 2449 "Types don't match!"); 2450 if (auto *CX = dyn_cast<ConstantInt>(X)) 2451 if (CX->isOne()) 2452 return Y; 2453 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2454 if (CY->isOne()) 2455 return X; 2456 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 2457 if (XVTy && !isa<VectorType>(Y->getType())) 2458 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 2459 return B.CreateMul(X, Y); 2460 }; 2461 2462 switch (ID.getKind()) { 2463 case InductionDescriptor::IK_IntInduction: { 2464 assert(!isa<VectorType>(Index->getType()) && 2465 "Vector indices not supported for integer inductions yet"); 2466 assert(Index->getType() == StartValue->getType() && 2467 "Index type does not match StartValue type"); 2468 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne()) 2469 return B.CreateSub(StartValue, Index); 2470 auto *Offset = CreateMul(Index, Step); 2471 return CreateAdd(StartValue, Offset); 2472 } 2473 case InductionDescriptor::IK_PtrInduction: { 2474 assert(isa<Constant>(Step) && 2475 "Expected constant step for pointer induction"); 2476 return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step)); 2477 } 2478 case InductionDescriptor::IK_FpInduction: { 2479 assert(!isa<VectorType>(Index->getType()) && 2480 "Vector indices not supported for FP inductions yet"); 2481 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2482 auto InductionBinOp = ID.getInductionBinOp(); 2483 assert(InductionBinOp && 2484 (InductionBinOp->getOpcode() == Instruction::FAdd || 2485 InductionBinOp->getOpcode() == Instruction::FSub) && 2486 "Original bin op should be defined for FP induction"); 2487 2488 Value *MulExp = B.CreateFMul(Step, Index); 2489 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2490 "induction"); 2491 } 2492 case InductionDescriptor::IK_NoInduction: 2493 return nullptr; 2494 } 2495 llvm_unreachable("invalid enum"); 2496 } 2497 2498 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2499 const VPIteration &Instance, 2500 VPTransformState &State) { 2501 Value *ScalarInst = State.get(Def, Instance); 2502 Value *VectorValue = State.get(Def, Instance.Part); 2503 VectorValue = Builder.CreateInsertElement( 2504 VectorValue, ScalarInst, 2505 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2506 State.set(Def, VectorValue, Instance.Part); 2507 } 2508 2509 // Return whether we allow using masked interleave-groups (for dealing with 2510 // strided loads/stores that reside in predicated blocks, or for dealing 2511 // with gaps). 2512 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2513 // If an override option has been passed in for interleaved accesses, use it. 2514 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2515 return EnableMaskedInterleavedMemAccesses; 2516 2517 return TTI.enableMaskedInterleavedAccessVectorization(); 2518 } 2519 2520 // Try to vectorize the interleave group that \p Instr belongs to. 2521 // 2522 // E.g. Translate following interleaved load group (factor = 3): 2523 // for (i = 0; i < N; i+=3) { 2524 // R = Pic[i]; // Member of index 0 2525 // G = Pic[i+1]; // Member of index 1 2526 // B = Pic[i+2]; // Member of index 2 2527 // ... // do something to R, G, B 2528 // } 2529 // To: 2530 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2531 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2532 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2533 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2534 // 2535 // Or translate following interleaved store group (factor = 3): 2536 // for (i = 0; i < N; i+=3) { 2537 // ... do something to R, G, B 2538 // Pic[i] = R; // Member of index 0 2539 // Pic[i+1] = G; // Member of index 1 2540 // Pic[i+2] = B; // Member of index 2 2541 // } 2542 // To: 2543 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2544 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2545 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2546 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2547 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2548 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2549 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2550 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2551 VPValue *BlockInMask) { 2552 Instruction *Instr = Group->getInsertPos(); 2553 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2554 2555 // Prepare for the vector type of the interleaved load/store. 2556 Type *ScalarTy = getLoadStoreType(Instr); 2557 unsigned InterleaveFactor = Group->getFactor(); 2558 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2559 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2560 2561 // Prepare for the new pointers. 2562 SmallVector<Value *, 2> AddrParts; 2563 unsigned Index = Group->getIndex(Instr); 2564 2565 // TODO: extend the masked interleaved-group support to reversed access. 2566 assert((!BlockInMask || !Group->isReverse()) && 2567 "Reversed masked interleave-group not supported."); 2568 2569 // If the group is reverse, adjust the index to refer to the last vector lane 2570 // instead of the first. We adjust the index from the first vector lane, 2571 // rather than directly getting the pointer for lane VF - 1, because the 2572 // pointer operand of the interleaved access is supposed to be uniform. For 2573 // uniform instructions, we're only required to generate a value for the 2574 // first vector lane in each unroll iteration. 2575 if (Group->isReverse()) 2576 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2577 2578 for (unsigned Part = 0; Part < UF; Part++) { 2579 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2580 State.setDebugLocFromInst(AddrPart); 2581 2582 // Notice current instruction could be any index. Need to adjust the address 2583 // to the member of index 0. 2584 // 2585 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2586 // b = A[i]; // Member of index 0 2587 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2588 // 2589 // E.g. A[i+1] = a; // Member of index 1 2590 // A[i] = b; // Member of index 0 2591 // A[i+2] = c; // Member of index 2 (Current instruction) 2592 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2593 2594 bool InBounds = false; 2595 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2596 InBounds = gep->isInBounds(); 2597 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2598 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2599 2600 // Cast to the vector pointer type. 2601 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2602 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2603 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2604 } 2605 2606 State.setDebugLocFromInst(Instr); 2607 Value *PoisonVec = PoisonValue::get(VecTy); 2608 2609 Value *MaskForGaps = nullptr; 2610 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2611 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2612 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2613 } 2614 2615 // Vectorize the interleaved load group. 2616 if (isa<LoadInst>(Instr)) { 2617 // For each unroll part, create a wide load for the group. 2618 SmallVector<Value *, 2> NewLoads; 2619 for (unsigned Part = 0; Part < UF; Part++) { 2620 Instruction *NewLoad; 2621 if (BlockInMask || MaskForGaps) { 2622 assert(useMaskedInterleavedAccesses(*TTI) && 2623 "masked interleaved groups are not allowed."); 2624 Value *GroupMask = MaskForGaps; 2625 if (BlockInMask) { 2626 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2627 Value *ShuffledMask = Builder.CreateShuffleVector( 2628 BlockInMaskPart, 2629 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2630 "interleaved.mask"); 2631 GroupMask = MaskForGaps 2632 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2633 MaskForGaps) 2634 : ShuffledMask; 2635 } 2636 NewLoad = 2637 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2638 GroupMask, PoisonVec, "wide.masked.vec"); 2639 } 2640 else 2641 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2642 Group->getAlign(), "wide.vec"); 2643 Group->addMetadata(NewLoad); 2644 NewLoads.push_back(NewLoad); 2645 } 2646 2647 // For each member in the group, shuffle out the appropriate data from the 2648 // wide loads. 2649 unsigned J = 0; 2650 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2651 Instruction *Member = Group->getMember(I); 2652 2653 // Skip the gaps in the group. 2654 if (!Member) 2655 continue; 2656 2657 auto StrideMask = 2658 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2659 for (unsigned Part = 0; Part < UF; Part++) { 2660 Value *StridedVec = Builder.CreateShuffleVector( 2661 NewLoads[Part], StrideMask, "strided.vec"); 2662 2663 // If this member has different type, cast the result type. 2664 if (Member->getType() != ScalarTy) { 2665 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2666 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2667 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2668 } 2669 2670 if (Group->isReverse()) 2671 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2672 2673 State.set(VPDefs[J], StridedVec, Part); 2674 } 2675 ++J; 2676 } 2677 return; 2678 } 2679 2680 // The sub vector type for current instruction. 2681 auto *SubVT = VectorType::get(ScalarTy, VF); 2682 2683 // Vectorize the interleaved store group. 2684 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2685 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2686 "masked interleaved groups are not allowed."); 2687 assert((!MaskForGaps || !VF.isScalable()) && 2688 "masking gaps for scalable vectors is not yet supported."); 2689 for (unsigned Part = 0; Part < UF; Part++) { 2690 // Collect the stored vector from each member. 2691 SmallVector<Value *, 4> StoredVecs; 2692 for (unsigned i = 0; i < InterleaveFactor; i++) { 2693 assert((Group->getMember(i) || MaskForGaps) && 2694 "Fail to get a member from an interleaved store group"); 2695 Instruction *Member = Group->getMember(i); 2696 2697 // Skip the gaps in the group. 2698 if (!Member) { 2699 Value *Undef = PoisonValue::get(SubVT); 2700 StoredVecs.push_back(Undef); 2701 continue; 2702 } 2703 2704 Value *StoredVec = State.get(StoredValues[i], Part); 2705 2706 if (Group->isReverse()) 2707 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2708 2709 // If this member has different type, cast it to a unified type. 2710 2711 if (StoredVec->getType() != SubVT) 2712 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2713 2714 StoredVecs.push_back(StoredVec); 2715 } 2716 2717 // Concatenate all vectors into a wide vector. 2718 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2719 2720 // Interleave the elements in the wide vector. 2721 Value *IVec = Builder.CreateShuffleVector( 2722 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2723 "interleaved.vec"); 2724 2725 Instruction *NewStoreInstr; 2726 if (BlockInMask || MaskForGaps) { 2727 Value *GroupMask = MaskForGaps; 2728 if (BlockInMask) { 2729 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2730 Value *ShuffledMask = Builder.CreateShuffleVector( 2731 BlockInMaskPart, 2732 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2733 "interleaved.mask"); 2734 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2735 ShuffledMask, MaskForGaps) 2736 : ShuffledMask; 2737 } 2738 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2739 Group->getAlign(), GroupMask); 2740 } else 2741 NewStoreInstr = 2742 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2743 2744 Group->addMetadata(NewStoreInstr); 2745 } 2746 } 2747 2748 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2749 VPReplicateRecipe *RepRecipe, 2750 const VPIteration &Instance, 2751 bool IfPredicateInstr, 2752 VPTransformState &State) { 2753 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2754 2755 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2756 // the first lane and part. 2757 if (isa<NoAliasScopeDeclInst>(Instr)) 2758 if (!Instance.isFirstIteration()) 2759 return; 2760 2761 // Does this instruction return a value ? 2762 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2763 2764 Instruction *Cloned = Instr->clone(); 2765 if (!IsVoidRetTy) 2766 Cloned->setName(Instr->getName() + ".cloned"); 2767 2768 // If the scalarized instruction contributes to the address computation of a 2769 // widen masked load/store which was in a basic block that needed predication 2770 // and is not predicated after vectorization, we can't propagate 2771 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 2772 // instruction could feed a poison value to the base address of the widen 2773 // load/store. 2774 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 2775 Cloned->dropPoisonGeneratingFlags(); 2776 2777 if (Instr->getDebugLoc()) 2778 State.setDebugLocFromInst(Instr); 2779 2780 // Replace the operands of the cloned instructions with their scalar 2781 // equivalents in the new loop. 2782 for (auto &I : enumerate(RepRecipe->operands())) { 2783 auto InputInstance = Instance; 2784 VPValue *Operand = I.value(); 2785 VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand); 2786 if (OperandR && OperandR->isUniform()) 2787 InputInstance.Lane = VPLane::getFirstLane(); 2788 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 2789 } 2790 State.addNewMetadata(Cloned, Instr); 2791 2792 // Place the cloned scalar in the new loop. 2793 State.Builder.Insert(Cloned); 2794 2795 State.set(RepRecipe, Cloned, Instance); 2796 2797 // If we just cloned a new assumption, add it the assumption cache. 2798 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 2799 AC->registerAssumption(II); 2800 2801 // End if-block. 2802 if (IfPredicateInstr) 2803 PredicatedInstructions.push_back(Cloned); 2804 } 2805 2806 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) { 2807 if (TripCount) 2808 return TripCount; 2809 2810 assert(InsertBlock); 2811 IRBuilder<> Builder(InsertBlock->getTerminator()); 2812 // Find the loop boundaries. 2813 ScalarEvolution *SE = PSE.getSE(); 2814 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2815 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2816 "Invalid loop count"); 2817 2818 Type *IdxTy = Legal->getWidestInductionType(); 2819 assert(IdxTy && "No type for induction"); 2820 2821 // The exit count might have the type of i64 while the phi is i32. This can 2822 // happen if we have an induction variable that is sign extended before the 2823 // compare. The only way that we get a backedge taken count is that the 2824 // induction variable was signed and as such will not overflow. In such a case 2825 // truncation is legal. 2826 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2827 IdxTy->getPrimitiveSizeInBits()) 2828 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2829 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2830 2831 // Get the total trip count from the count by adding 1. 2832 const SCEV *ExitCount = SE->getAddExpr( 2833 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2834 2835 const DataLayout &DL = InsertBlock->getModule()->getDataLayout(); 2836 2837 // Expand the trip count and place the new instructions in the preheader. 2838 // Notice that the pre-header does not change, only the loop body. 2839 SCEVExpander Exp(*SE, DL, "induction"); 2840 2841 // Count holds the overall loop count (N). 2842 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2843 InsertBlock->getTerminator()); 2844 2845 if (TripCount->getType()->isPointerTy()) 2846 TripCount = 2847 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2848 InsertBlock->getTerminator()); 2849 2850 return TripCount; 2851 } 2852 2853 Value * 2854 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) { 2855 if (VectorTripCount) 2856 return VectorTripCount; 2857 2858 Value *TC = getOrCreateTripCount(InsertBlock); 2859 IRBuilder<> Builder(InsertBlock->getTerminator()); 2860 2861 Type *Ty = TC->getType(); 2862 // This is where we can make the step a runtime constant. 2863 Value *Step = createStepForVF(Builder, Ty, VF, UF); 2864 2865 // If the tail is to be folded by masking, round the number of iterations N 2866 // up to a multiple of Step instead of rounding down. This is done by first 2867 // adding Step-1 and then rounding down. Note that it's ok if this addition 2868 // overflows: the vector induction variable will eventually wrap to zero given 2869 // that it starts at zero and its Step is a power of two; the loop will then 2870 // exit, with the last early-exit vector comparison also producing all-true. 2871 // For scalable vectors the VF is not guaranteed to be a power of 2, but this 2872 // is accounted for in emitIterationCountCheck that adds an overflow check. 2873 if (Cost->foldTailByMasking()) { 2874 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2875 "VF*UF must be a power of 2 when folding tail by masking"); 2876 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 2877 TC = Builder.CreateAdd( 2878 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 2879 } 2880 2881 // Now we need to generate the expression for the part of the loop that the 2882 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2883 // iterations are not required for correctness, or N - Step, otherwise. Step 2884 // is equal to the vectorization factor (number of SIMD elements) times the 2885 // unroll factor (number of SIMD instructions). 2886 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2887 2888 // There are cases where we *must* run at least one iteration in the remainder 2889 // loop. See the cost model for when this can happen. If the step evenly 2890 // divides the trip count, we set the remainder to be equal to the step. If 2891 // the step does not evenly divide the trip count, no adjustment is necessary 2892 // since there will already be scalar iterations. Note that the minimum 2893 // iterations check ensures that N >= Step. 2894 if (Cost->requiresScalarEpilogue(VF)) { 2895 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2896 R = Builder.CreateSelect(IsZero, Step, R); 2897 } 2898 2899 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2900 2901 return VectorTripCount; 2902 } 2903 2904 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2905 const DataLayout &DL) { 2906 // Verify that V is a vector type with same number of elements as DstVTy. 2907 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 2908 unsigned VF = DstFVTy->getNumElements(); 2909 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 2910 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2911 Type *SrcElemTy = SrcVecTy->getElementType(); 2912 Type *DstElemTy = DstFVTy->getElementType(); 2913 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2914 "Vector elements must have same size"); 2915 2916 // Do a direct cast if element types are castable. 2917 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2918 return Builder.CreateBitOrPointerCast(V, DstFVTy); 2919 } 2920 // V cannot be directly casted to desired vector type. 2921 // May happen when V is a floating point vector but DstVTy is a vector of 2922 // pointers or vice-versa. Handle this using a two-step bitcast using an 2923 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2924 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2925 "Only one type should be a pointer type"); 2926 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2927 "Only one type should be a floating point type"); 2928 Type *IntTy = 2929 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2930 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2931 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2932 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 2933 } 2934 2935 void InnerLoopVectorizer::emitIterationCountCheck(BasicBlock *Bypass) { 2936 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 2937 // Reuse existing vector loop preheader for TC checks. 2938 // Note that new preheader block is generated for vector loop. 2939 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2940 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2941 2942 // Generate code to check if the loop's trip count is less than VF * UF, or 2943 // equal to it in case a scalar epilogue is required; this implies that the 2944 // vector trip count is zero. This check also covers the case where adding one 2945 // to the backedge-taken count overflowed leading to an incorrect trip count 2946 // of zero. In this case we will also jump to the scalar loop. 2947 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 2948 : ICmpInst::ICMP_ULT; 2949 2950 // If tail is to be folded, vector loop takes care of all iterations. 2951 Type *CountTy = Count->getType(); 2952 Value *CheckMinIters = Builder.getFalse(); 2953 auto CreateStep = [&]() -> Value * { 2954 // Create step with max(MinProTripCount, UF * VF). 2955 if (UF * VF.getKnownMinValue() >= MinProfitableTripCount.getKnownMinValue()) 2956 return createStepForVF(Builder, CountTy, VF, UF); 2957 2958 Value *MinProfTC = 2959 createStepForVF(Builder, CountTy, MinProfitableTripCount, 1); 2960 if (!VF.isScalable()) 2961 return MinProfTC; 2962 return Builder.CreateBinaryIntrinsic( 2963 Intrinsic::umax, MinProfTC, createStepForVF(Builder, CountTy, VF, UF)); 2964 }; 2965 2966 if (!Cost->foldTailByMasking()) 2967 CheckMinIters = 2968 Builder.CreateICmp(P, Count, CreateStep(), "min.iters.check"); 2969 else if (VF.isScalable()) { 2970 // vscale is not necessarily a power-of-2, which means we cannot guarantee 2971 // an overflow to zero when updating induction variables and so an 2972 // additional overflow check is required before entering the vector loop. 2973 2974 // Get the maximum unsigned value for the type. 2975 Value *MaxUIntTripCount = 2976 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask()); 2977 Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count); 2978 2979 // Don't execute the vector loop if (UMax - n) < (VF * UF). 2980 CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, CreateStep()); 2981 } 2982 2983 // Create new preheader for vector loop. 2984 LoopVectorPreHeader = 2985 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2986 "vector.ph"); 2987 2988 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2989 DT->getNode(Bypass)->getIDom()) && 2990 "TC check is expected to dominate Bypass"); 2991 2992 // Update dominator for Bypass & LoopExit (if needed). 2993 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2994 if (!Cost->requiresScalarEpilogue(VF)) 2995 // If there is an epilogue which must run, there's no edge from the 2996 // middle block to exit blocks and thus no need to update the immediate 2997 // dominator of the exit blocks. 2998 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2999 3000 ReplaceInstWithInst( 3001 TCCheckBlock->getTerminator(), 3002 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3003 LoopBypassBlocks.push_back(TCCheckBlock); 3004 } 3005 3006 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) { 3007 BasicBlock *const SCEVCheckBlock = 3008 RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock); 3009 if (!SCEVCheckBlock) 3010 return nullptr; 3011 3012 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3013 (OptForSizeBasedOnProfile && 3014 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3015 "Cannot SCEV check stride or overflow when optimizing for size"); 3016 3017 3018 // Update dominator only if this is first RT check. 3019 if (LoopBypassBlocks.empty()) { 3020 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3021 if (!Cost->requiresScalarEpilogue(VF)) 3022 // If there is an epilogue which must run, there's no edge from the 3023 // middle block to exit blocks and thus no need to update the immediate 3024 // dominator of the exit blocks. 3025 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3026 } 3027 3028 LoopBypassBlocks.push_back(SCEVCheckBlock); 3029 AddedSafetyChecks = true; 3030 return SCEVCheckBlock; 3031 } 3032 3033 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) { 3034 // VPlan-native path does not do any analysis for runtime checks currently. 3035 if (EnableVPlanNativePath) 3036 return nullptr; 3037 3038 BasicBlock *const MemCheckBlock = 3039 RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader); 3040 3041 // Check if we generated code that checks in runtime if arrays overlap. We put 3042 // the checks into a separate block to make the more common case of few 3043 // elements faster. 3044 if (!MemCheckBlock) 3045 return nullptr; 3046 3047 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3048 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3049 "Cannot emit memory checks when optimizing for size, unless forced " 3050 "to vectorize."); 3051 ORE->emit([&]() { 3052 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3053 OrigLoop->getStartLoc(), 3054 OrigLoop->getHeader()) 3055 << "Code-size may be reduced by not forcing " 3056 "vectorization, or by source-code modifications " 3057 "eliminating the need for runtime checks " 3058 "(e.g., adding 'restrict')."; 3059 }); 3060 } 3061 3062 LoopBypassBlocks.push_back(MemCheckBlock); 3063 3064 AddedSafetyChecks = true; 3065 3066 return MemCheckBlock; 3067 } 3068 3069 void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3070 LoopScalarBody = OrigLoop->getHeader(); 3071 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3072 assert(LoopVectorPreHeader && "Invalid loop structure"); 3073 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3074 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3075 "multiple exit loop without required epilogue?"); 3076 3077 LoopMiddleBlock = 3078 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3079 LI, nullptr, Twine(Prefix) + "middle.block"); 3080 LoopScalarPreHeader = 3081 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3082 nullptr, Twine(Prefix) + "scalar.ph"); 3083 3084 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3085 3086 // Set up the middle block terminator. Two cases: 3087 // 1) If we know that we must execute the scalar epilogue, emit an 3088 // unconditional branch. 3089 // 2) Otherwise, we must have a single unique exit block (due to how we 3090 // implement the multiple exit case). In this case, set up a conditonal 3091 // branch from the middle block to the loop scalar preheader, and the 3092 // exit block. completeLoopSkeleton will update the condition to use an 3093 // iteration check, if required to decide whether to execute the remainder. 3094 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3095 BranchInst::Create(LoopScalarPreHeader) : 3096 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3097 Builder.getTrue()); 3098 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3099 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3100 3101 // Update dominator for loop exit. During skeleton creation, only the vector 3102 // pre-header and the middle block are created. The vector loop is entirely 3103 // created during VPlan exection. 3104 if (!Cost->requiresScalarEpilogue(VF)) 3105 // If there is an epilogue which must run, there's no edge from the 3106 // middle block to exit blocks and thus no need to update the immediate 3107 // dominator of the exit blocks. 3108 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3109 } 3110 3111 void InnerLoopVectorizer::createInductionResumeValues( 3112 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3113 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3114 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3115 "Inconsistent information about additional bypass."); 3116 3117 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3118 assert(VectorTripCount && "Expected valid arguments"); 3119 // We are going to resume the execution of the scalar loop. 3120 // Go over all of the induction variables that we found and fix the 3121 // PHIs that are left in the scalar version of the loop. 3122 // The starting values of PHI nodes depend on the counter of the last 3123 // iteration in the vectorized loop. 3124 // If we come from a bypass edge then we need to start from the original 3125 // start value. 3126 Instruction *OldInduction = Legal->getPrimaryInduction(); 3127 for (auto &InductionEntry : Legal->getInductionVars()) { 3128 PHINode *OrigPhi = InductionEntry.first; 3129 InductionDescriptor II = InductionEntry.second; 3130 3131 Value *&EndValue = IVEndValues[OrigPhi]; 3132 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3133 if (OrigPhi == OldInduction) { 3134 // We know what the end value is. 3135 EndValue = VectorTripCount; 3136 } else { 3137 IRBuilder<> B(LoopVectorPreHeader->getTerminator()); 3138 3139 // Fast-math-flags propagate from the original induction instruction. 3140 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3141 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3142 3143 Type *StepType = II.getStep()->getType(); 3144 Instruction::CastOps CastOp = 3145 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3146 Value *VTC = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.vtc"); 3147 Value *Step = 3148 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3149 EndValue = emitTransformedIndex(B, VTC, II.getStartValue(), Step, II); 3150 EndValue->setName("ind.end"); 3151 3152 // Compute the end value for the additional bypass (if applicable). 3153 if (AdditionalBypass.first) { 3154 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3155 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3156 StepType, true); 3157 Value *Step = 3158 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3159 VTC = 3160 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.vtc"); 3161 EndValueFromAdditionalBypass = 3162 emitTransformedIndex(B, VTC, II.getStartValue(), Step, II); 3163 EndValueFromAdditionalBypass->setName("ind.end"); 3164 } 3165 } 3166 3167 // Create phi nodes to merge from the backedge-taken check block. 3168 PHINode *BCResumeVal = 3169 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3170 LoopScalarPreHeader->getTerminator()); 3171 // Copy original phi DL over to the new one. 3172 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3173 3174 // The new PHI merges the original incoming value, in case of a bypass, 3175 // or the value at the end of the vectorized loop. 3176 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3177 3178 // Fix the scalar body counter (PHI node). 3179 // The old induction's phi node in the scalar body needs the truncated 3180 // value. 3181 for (BasicBlock *BB : LoopBypassBlocks) 3182 BCResumeVal->addIncoming(II.getStartValue(), BB); 3183 3184 if (AdditionalBypass.first) 3185 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3186 EndValueFromAdditionalBypass); 3187 3188 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3189 } 3190 } 3191 3192 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) { 3193 // The trip counts should be cached by now. 3194 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 3195 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3196 3197 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3198 3199 // Add a check in the middle block to see if we have completed 3200 // all of the iterations in the first vector loop. Three cases: 3201 // 1) If we require a scalar epilogue, there is no conditional branch as 3202 // we unconditionally branch to the scalar preheader. Do nothing. 3203 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3204 // Thus if tail is to be folded, we know we don't need to run the 3205 // remainder and we can use the previous value for the condition (true). 3206 // 3) Otherwise, construct a runtime check. 3207 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3208 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3209 Count, VectorTripCount, "cmp.n", 3210 LoopMiddleBlock->getTerminator()); 3211 3212 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3213 // of the corresponding compare because they may have ended up with 3214 // different line numbers and we want to avoid awkward line stepping while 3215 // debugging. Eg. if the compare has got a line number inside the loop. 3216 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3217 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3218 } 3219 3220 #ifdef EXPENSIVE_CHECKS 3221 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3222 #endif 3223 3224 return LoopVectorPreHeader; 3225 } 3226 3227 std::pair<BasicBlock *, Value *> 3228 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3229 /* 3230 In this function we generate a new loop. The new loop will contain 3231 the vectorized instructions while the old loop will continue to run the 3232 scalar remainder. 3233 3234 [ ] <-- loop iteration number check. 3235 / | 3236 / v 3237 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3238 | / | 3239 | / v 3240 || [ ] <-- vector pre header. 3241 |/ | 3242 | v 3243 | [ ] \ 3244 | [ ]_| <-- vector loop (created during VPlan execution). 3245 | | 3246 | v 3247 \ -[ ] <--- middle-block. 3248 \/ | 3249 /\ v 3250 | ->[ ] <--- new preheader. 3251 | | 3252 (opt) v <-- edge from middle to exit iff epilogue is not required. 3253 | [ ] \ 3254 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3255 \ | 3256 \ v 3257 >[ ] <-- exit block(s). 3258 ... 3259 */ 3260 3261 // Get the metadata of the original loop before it gets modified. 3262 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3263 3264 // Workaround! Compute the trip count of the original loop and cache it 3265 // before we start modifying the CFG. This code has a systemic problem 3266 // wherein it tries to run analysis over partially constructed IR; this is 3267 // wrong, and not simply for SCEV. The trip count of the original loop 3268 // simply happens to be prone to hitting this in practice. In theory, we 3269 // can hit the same issue for any SCEV, or ValueTracking query done during 3270 // mutation. See PR49900. 3271 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 3272 3273 // Create an empty vector loop, and prepare basic blocks for the runtime 3274 // checks. 3275 createVectorLoopSkeleton(""); 3276 3277 // Now, compare the new count to zero. If it is zero skip the vector loop and 3278 // jump to the scalar loop. This check also covers the case where the 3279 // backedge-taken count is uint##_max: adding one to it will overflow leading 3280 // to an incorrect trip count of zero. In this (rare) case we will also jump 3281 // to the scalar loop. 3282 emitIterationCountCheck(LoopScalarPreHeader); 3283 3284 // Generate the code to check any assumptions that we've made for SCEV 3285 // expressions. 3286 emitSCEVChecks(LoopScalarPreHeader); 3287 3288 // Generate the code that checks in runtime if arrays overlap. We put the 3289 // checks into a separate block to make the more common case of few elements 3290 // faster. 3291 emitMemRuntimeChecks(LoopScalarPreHeader); 3292 3293 // Emit phis for the new starting index of the scalar loop. 3294 createInductionResumeValues(); 3295 3296 return {completeLoopSkeleton(OrigLoopID), nullptr}; 3297 } 3298 3299 // Fix up external users of the induction variable. At this point, we are 3300 // in LCSSA form, with all external PHIs that use the IV having one input value, 3301 // coming from the remainder loop. We need those PHIs to also have a correct 3302 // value for the IV when arriving directly from the middle block. 3303 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3304 const InductionDescriptor &II, 3305 Value *VectorTripCount, Value *EndValue, 3306 BasicBlock *MiddleBlock, 3307 BasicBlock *VectorHeader, VPlan &Plan) { 3308 // There are two kinds of external IV usages - those that use the value 3309 // computed in the last iteration (the PHI) and those that use the penultimate 3310 // value (the value that feeds into the phi from the loop latch). 3311 // We allow both, but they, obviously, have different values. 3312 3313 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3314 3315 DenseMap<Value *, Value *> MissingVals; 3316 3317 // An external user of the last iteration's value should see the value that 3318 // the remainder loop uses to initialize its own IV. 3319 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3320 for (User *U : PostInc->users()) { 3321 Instruction *UI = cast<Instruction>(U); 3322 if (!OrigLoop->contains(UI)) { 3323 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3324 MissingVals[UI] = EndValue; 3325 } 3326 } 3327 3328 // An external user of the penultimate value need to see EndValue - Step. 3329 // The simplest way to get this is to recompute it from the constituent SCEVs, 3330 // that is Start + (Step * (CRD - 1)). 3331 for (User *U : OrigPhi->users()) { 3332 auto *UI = cast<Instruction>(U); 3333 if (!OrigLoop->contains(UI)) { 3334 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3335 3336 IRBuilder<> B(MiddleBlock->getTerminator()); 3337 3338 // Fast-math-flags propagate from the original induction instruction. 3339 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3340 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3341 3342 Value *CountMinusOne = B.CreateSub( 3343 VectorTripCount, ConstantInt::get(VectorTripCount->getType(), 1)); 3344 Value *CMO = 3345 !II.getStep()->getType()->isIntegerTy() 3346 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3347 II.getStep()->getType()) 3348 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3349 CMO->setName("cast.cmo"); 3350 3351 Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(), 3352 VectorHeader->getTerminator()); 3353 Value *Escape = 3354 emitTransformedIndex(B, CMO, II.getStartValue(), Step, II); 3355 Escape->setName("ind.escape"); 3356 MissingVals[UI] = Escape; 3357 } 3358 } 3359 3360 for (auto &I : MissingVals) { 3361 PHINode *PHI = cast<PHINode>(I.first); 3362 // One corner case we have to handle is two IVs "chasing" each-other, 3363 // that is %IV2 = phi [...], [ %IV1, %latch ] 3364 // In this case, if IV1 has an external use, we need to avoid adding both 3365 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3366 // don't already have an incoming value for the middle block. 3367 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) { 3368 PHI->addIncoming(I.second, MiddleBlock); 3369 Plan.removeLiveOut(PHI); 3370 } 3371 } 3372 } 3373 3374 namespace { 3375 3376 struct CSEDenseMapInfo { 3377 static bool canHandle(const Instruction *I) { 3378 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3379 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3380 } 3381 3382 static inline Instruction *getEmptyKey() { 3383 return DenseMapInfo<Instruction *>::getEmptyKey(); 3384 } 3385 3386 static inline Instruction *getTombstoneKey() { 3387 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3388 } 3389 3390 static unsigned getHashValue(const Instruction *I) { 3391 assert(canHandle(I) && "Unknown instruction!"); 3392 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3393 I->value_op_end())); 3394 } 3395 3396 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3397 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3398 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3399 return LHS == RHS; 3400 return LHS->isIdenticalTo(RHS); 3401 } 3402 }; 3403 3404 } // end anonymous namespace 3405 3406 ///Perform cse of induction variable instructions. 3407 static void cse(BasicBlock *BB) { 3408 // Perform simple cse. 3409 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3410 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3411 if (!CSEDenseMapInfo::canHandle(&In)) 3412 continue; 3413 3414 // Check if we can replace this instruction with any of the 3415 // visited instructions. 3416 if (Instruction *V = CSEMap.lookup(&In)) { 3417 In.replaceAllUsesWith(V); 3418 In.eraseFromParent(); 3419 continue; 3420 } 3421 3422 CSEMap[&In] = &In; 3423 } 3424 } 3425 3426 InstructionCost 3427 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3428 bool &NeedToScalarize) const { 3429 Function *F = CI->getCalledFunction(); 3430 Type *ScalarRetTy = CI->getType(); 3431 SmallVector<Type *, 4> Tys, ScalarTys; 3432 for (auto &ArgOp : CI->args()) 3433 ScalarTys.push_back(ArgOp->getType()); 3434 3435 // Estimate cost of scalarized vector call. The source operands are assumed 3436 // to be vectors, so we need to extract individual elements from there, 3437 // execute VF scalar calls, and then gather the result into the vector return 3438 // value. 3439 InstructionCost ScalarCallCost = 3440 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3441 if (VF.isScalar()) 3442 return ScalarCallCost; 3443 3444 // Compute corresponding vector type for return value and arguments. 3445 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3446 for (Type *ScalarTy : ScalarTys) 3447 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3448 3449 // Compute costs of unpacking argument values for the scalar calls and 3450 // packing the return values to a vector. 3451 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3452 3453 InstructionCost Cost = 3454 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3455 3456 // If we can't emit a vector call for this function, then the currently found 3457 // cost is the cost we need to return. 3458 NeedToScalarize = true; 3459 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3460 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3461 3462 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3463 return Cost; 3464 3465 // If the corresponding vector cost is cheaper, return its cost. 3466 InstructionCost VectorCallCost = 3467 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3468 if (VectorCallCost < Cost) { 3469 NeedToScalarize = false; 3470 Cost = VectorCallCost; 3471 } 3472 return Cost; 3473 } 3474 3475 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3476 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3477 return Elt; 3478 return VectorType::get(Elt, VF); 3479 } 3480 3481 InstructionCost 3482 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3483 ElementCount VF) const { 3484 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3485 assert(ID && "Expected intrinsic call!"); 3486 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3487 FastMathFlags FMF; 3488 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3489 FMF = FPMO->getFastMathFlags(); 3490 3491 SmallVector<const Value *> Arguments(CI->args()); 3492 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3493 SmallVector<Type *> ParamTys; 3494 std::transform(FTy->param_begin(), FTy->param_end(), 3495 std::back_inserter(ParamTys), 3496 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3497 3498 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3499 dyn_cast<IntrinsicInst>(CI)); 3500 return TTI.getIntrinsicInstrCost(CostAttrs, 3501 TargetTransformInfo::TCK_RecipThroughput); 3502 } 3503 3504 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3505 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3506 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3507 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3508 } 3509 3510 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3511 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3512 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3513 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3514 } 3515 3516 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3517 // For every instruction `I` in MinBWs, truncate the operands, create a 3518 // truncated version of `I` and reextend its result. InstCombine runs 3519 // later and will remove any ext/trunc pairs. 3520 SmallPtrSet<Value *, 4> Erased; 3521 for (const auto &KV : Cost->getMinimalBitwidths()) { 3522 // If the value wasn't vectorized, we must maintain the original scalar 3523 // type. The absence of the value from State indicates that it 3524 // wasn't vectorized. 3525 // FIXME: Should not rely on getVPValue at this point. 3526 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3527 if (!State.hasAnyVectorValue(Def)) 3528 continue; 3529 for (unsigned Part = 0; Part < UF; ++Part) { 3530 Value *I = State.get(Def, Part); 3531 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3532 continue; 3533 Type *OriginalTy = I->getType(); 3534 Type *ScalarTruncatedTy = 3535 IntegerType::get(OriginalTy->getContext(), KV.second); 3536 auto *TruncatedTy = VectorType::get( 3537 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3538 if (TruncatedTy == OriginalTy) 3539 continue; 3540 3541 IRBuilder<> B(cast<Instruction>(I)); 3542 auto ShrinkOperand = [&](Value *V) -> Value * { 3543 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3544 if (ZI->getSrcTy() == TruncatedTy) 3545 return ZI->getOperand(0); 3546 return B.CreateZExtOrTrunc(V, TruncatedTy); 3547 }; 3548 3549 // The actual instruction modification depends on the instruction type, 3550 // unfortunately. 3551 Value *NewI = nullptr; 3552 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3553 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3554 ShrinkOperand(BO->getOperand(1))); 3555 3556 // Any wrapping introduced by shrinking this operation shouldn't be 3557 // considered undefined behavior. So, we can't unconditionally copy 3558 // arithmetic wrapping flags to NewI. 3559 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3560 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3561 NewI = 3562 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3563 ShrinkOperand(CI->getOperand(1))); 3564 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3565 NewI = B.CreateSelect(SI->getCondition(), 3566 ShrinkOperand(SI->getTrueValue()), 3567 ShrinkOperand(SI->getFalseValue())); 3568 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3569 switch (CI->getOpcode()) { 3570 default: 3571 llvm_unreachable("Unhandled cast!"); 3572 case Instruction::Trunc: 3573 NewI = ShrinkOperand(CI->getOperand(0)); 3574 break; 3575 case Instruction::SExt: 3576 NewI = B.CreateSExtOrTrunc( 3577 CI->getOperand(0), 3578 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3579 break; 3580 case Instruction::ZExt: 3581 NewI = B.CreateZExtOrTrunc( 3582 CI->getOperand(0), 3583 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3584 break; 3585 } 3586 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3587 auto Elements0 = 3588 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3589 auto *O0 = B.CreateZExtOrTrunc( 3590 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3591 auto Elements1 = 3592 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3593 auto *O1 = B.CreateZExtOrTrunc( 3594 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3595 3596 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3597 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3598 // Don't do anything with the operands, just extend the result. 3599 continue; 3600 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3601 auto Elements = 3602 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3603 auto *O0 = B.CreateZExtOrTrunc( 3604 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3605 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3606 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3607 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3608 auto Elements = 3609 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3610 auto *O0 = B.CreateZExtOrTrunc( 3611 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3612 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3613 } else { 3614 // If we don't know what to do, be conservative and don't do anything. 3615 continue; 3616 } 3617 3618 // Lastly, extend the result. 3619 NewI->takeName(cast<Instruction>(I)); 3620 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3621 I->replaceAllUsesWith(Res); 3622 cast<Instruction>(I)->eraseFromParent(); 3623 Erased.insert(I); 3624 State.reset(Def, Res, Part); 3625 } 3626 } 3627 3628 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3629 for (const auto &KV : Cost->getMinimalBitwidths()) { 3630 // If the value wasn't vectorized, we must maintain the original scalar 3631 // type. The absence of the value from State indicates that it 3632 // wasn't vectorized. 3633 // FIXME: Should not rely on getVPValue at this point. 3634 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3635 if (!State.hasAnyVectorValue(Def)) 3636 continue; 3637 for (unsigned Part = 0; Part < UF; ++Part) { 3638 Value *I = State.get(Def, Part); 3639 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3640 if (Inst && Inst->use_empty()) { 3641 Value *NewI = Inst->getOperand(0); 3642 Inst->eraseFromParent(); 3643 State.reset(Def, NewI, Part); 3644 } 3645 } 3646 } 3647 } 3648 3649 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State, 3650 VPlan &Plan) { 3651 // Insert truncates and extends for any truncated instructions as hints to 3652 // InstCombine. 3653 if (VF.isVector()) 3654 truncateToMinimalBitwidths(State); 3655 3656 // Fix widened non-induction PHIs by setting up the PHI operands. 3657 if (EnableVPlanNativePath) 3658 fixNonInductionPHIs(Plan, State); 3659 3660 // At this point every instruction in the original loop is widened to a 3661 // vector form. Now we need to fix the recurrences in the loop. These PHI 3662 // nodes are currently empty because we did not want to introduce cycles. 3663 // This is the second stage of vectorizing recurrences. 3664 fixCrossIterationPHIs(State); 3665 3666 // Forget the original basic block. 3667 PSE.getSE()->forgetLoop(OrigLoop); 3668 3669 VPBasicBlock *LatchVPBB = Plan.getVectorLoopRegion()->getExitingBasicBlock(); 3670 Loop *VectorLoop = LI->getLoopFor(State.CFG.VPBB2IRBB[LatchVPBB]); 3671 if (Cost->requiresScalarEpilogue(VF)) { 3672 // No edge from the middle block to the unique exit block has been inserted 3673 // and there is nothing to fix from vector loop; phis should have incoming 3674 // from scalar loop only. 3675 Plan.clearLiveOuts(); 3676 } else { 3677 // If we inserted an edge from the middle block to the unique exit block, 3678 // update uses outside the loop (phis) to account for the newly inserted 3679 // edge. 3680 3681 // Fix-up external users of the induction variables. 3682 for (auto &Entry : Legal->getInductionVars()) 3683 fixupIVUsers(Entry.first, Entry.second, 3684 getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()), 3685 IVEndValues[Entry.first], LoopMiddleBlock, 3686 VectorLoop->getHeader(), Plan); 3687 } 3688 3689 // Fix LCSSA phis not already fixed earlier. Extracts may need to be generated 3690 // in the exit block, so update the builder. 3691 State.Builder.SetInsertPoint(State.CFG.ExitBB->getFirstNonPHI()); 3692 for (auto &KV : Plan.getLiveOuts()) 3693 KV.second->fixPhi(Plan, State); 3694 3695 for (Instruction *PI : PredicatedInstructions) 3696 sinkScalarOperands(&*PI); 3697 3698 // Remove redundant induction instructions. 3699 cse(VectorLoop->getHeader()); 3700 3701 // Set/update profile weights for the vector and remainder loops as original 3702 // loop iterations are now distributed among them. Note that original loop 3703 // represented by LoopScalarBody becomes remainder loop after vectorization. 3704 // 3705 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3706 // end up getting slightly roughened result but that should be OK since 3707 // profile is not inherently precise anyway. Note also possible bypass of 3708 // vector code caused by legality checks is ignored, assigning all the weight 3709 // to the vector loop, optimistically. 3710 // 3711 // For scalable vectorization we can't know at compile time how many iterations 3712 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3713 // vscale of '1'. 3714 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop, 3715 LI->getLoopFor(LoopScalarBody), 3716 VF.getKnownMinValue() * UF); 3717 } 3718 3719 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 3720 // In order to support recurrences we need to be able to vectorize Phi nodes. 3721 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3722 // stage #2: We now need to fix the recurrences by adding incoming edges to 3723 // the currently empty PHI nodes. At this point every instruction in the 3724 // original loop is widened to a vector form so we can use them to construct 3725 // the incoming edges. 3726 VPBasicBlock *Header = 3727 State.Plan->getVectorLoopRegion()->getEntryBasicBlock(); 3728 for (VPRecipeBase &R : Header->phis()) { 3729 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 3730 fixReduction(ReductionPhi, State); 3731 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 3732 fixFirstOrderRecurrence(FOR, State); 3733 } 3734 } 3735 3736 void InnerLoopVectorizer::fixFirstOrderRecurrence( 3737 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 3738 // This is the second phase of vectorizing first-order recurrences. An 3739 // overview of the transformation is described below. Suppose we have the 3740 // following loop. 3741 // 3742 // for (int i = 0; i < n; ++i) 3743 // b[i] = a[i] - a[i - 1]; 3744 // 3745 // There is a first-order recurrence on "a". For this loop, the shorthand 3746 // scalar IR looks like: 3747 // 3748 // scalar.ph: 3749 // s_init = a[-1] 3750 // br scalar.body 3751 // 3752 // scalar.body: 3753 // i = phi [0, scalar.ph], [i+1, scalar.body] 3754 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3755 // s2 = a[i] 3756 // b[i] = s2 - s1 3757 // br cond, scalar.body, ... 3758 // 3759 // In this example, s1 is a recurrence because it's value depends on the 3760 // previous iteration. In the first phase of vectorization, we created a 3761 // vector phi v1 for s1. We now complete the vectorization and produce the 3762 // shorthand vector IR shown below (for VF = 4, UF = 1). 3763 // 3764 // vector.ph: 3765 // v_init = vector(..., ..., ..., a[-1]) 3766 // br vector.body 3767 // 3768 // vector.body 3769 // i = phi [0, vector.ph], [i+4, vector.body] 3770 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3771 // v2 = a[i, i+1, i+2, i+3]; 3772 // v3 = vector(v1(3), v2(0, 1, 2)) 3773 // b[i, i+1, i+2, i+3] = v2 - v3 3774 // br cond, vector.body, middle.block 3775 // 3776 // middle.block: 3777 // x = v2(3) 3778 // br scalar.ph 3779 // 3780 // scalar.ph: 3781 // s_init = phi [x, middle.block], [a[-1], otherwise] 3782 // br scalar.body 3783 // 3784 // After execution completes the vector loop, we extract the next value of 3785 // the recurrence (x) to use as the initial value in the scalar loop. 3786 3787 // Extract the last vector element in the middle block. This will be the 3788 // initial value for the recurrence when jumping to the scalar loop. 3789 VPValue *PreviousDef = PhiR->getBackedgeValue(); 3790 Value *Incoming = State.get(PreviousDef, UF - 1); 3791 auto *ExtractForScalar = Incoming; 3792 auto *IdxTy = Builder.getInt32Ty(); 3793 if (VF.isVector()) { 3794 auto *One = ConstantInt::get(IdxTy, 1); 3795 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3796 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3797 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 3798 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 3799 "vector.recur.extract"); 3800 } 3801 // Extract the second last element in the middle block if the 3802 // Phi is used outside the loop. We need to extract the phi itself 3803 // and not the last element (the phi update in the current iteration). This 3804 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3805 // when the scalar loop is not run at all. 3806 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3807 if (VF.isVector()) { 3808 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3809 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 3810 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3811 Incoming, Idx, "vector.recur.extract.for.phi"); 3812 } else if (UF > 1) 3813 // When loop is unrolled without vectorizing, initialize 3814 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 3815 // of `Incoming`. This is analogous to the vectorized case above: extracting 3816 // the second last element when VF > 1. 3817 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 3818 3819 // Fix the initial value of the original recurrence in the scalar loop. 3820 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3821 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 3822 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3823 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 3824 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3825 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3826 Start->addIncoming(Incoming, BB); 3827 } 3828 3829 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3830 Phi->setName("scalar.recur"); 3831 3832 // Finally, fix users of the recurrence outside the loop. The users will need 3833 // either the last value of the scalar recurrence or the last value of the 3834 // vector recurrence we extracted in the middle block. Since the loop is in 3835 // LCSSA form, we just need to find all the phi nodes for the original scalar 3836 // recurrence in the exit block, and then add an edge for the middle block. 3837 // Note that LCSSA does not imply single entry when the original scalar loop 3838 // had multiple exiting edges (as we always run the last iteration in the 3839 // scalar epilogue); in that case, there is no edge from middle to exit and 3840 // and thus no phis which needed updated. 3841 if (!Cost->requiresScalarEpilogue(VF)) 3842 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 3843 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) { 3844 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3845 State.Plan->removeLiveOut(&LCSSAPhi); 3846 } 3847 } 3848 3849 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 3850 VPTransformState &State) { 3851 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 3852 // Get it's reduction variable descriptor. 3853 assert(Legal->isReductionVariable(OrigPhi) && 3854 "Unable to find the reduction variable"); 3855 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 3856 3857 RecurKind RK = RdxDesc.getRecurrenceKind(); 3858 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3859 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3860 State.setDebugLocFromInst(ReductionStartValue); 3861 3862 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 3863 // This is the vector-clone of the value that leaves the loop. 3864 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 3865 3866 // Wrap flags are in general invalid after vectorization, clear them. 3867 clearReductionWrapFlags(PhiR, State); 3868 3869 // Before each round, move the insertion point right between 3870 // the PHIs and the values we are going to write. 3871 // This allows us to write both PHINodes and the extractelement 3872 // instructions. 3873 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3874 3875 State.setDebugLocFromInst(LoopExitInst); 3876 3877 Type *PhiTy = OrigPhi->getType(); 3878 3879 VPBasicBlock *LatchVPBB = 3880 PhiR->getParent()->getEnclosingLoopRegion()->getExitingBasicBlock(); 3881 BasicBlock *VectorLoopLatch = State.CFG.VPBB2IRBB[LatchVPBB]; 3882 // If tail is folded by masking, the vector value to leave the loop should be 3883 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3884 // instead of the former. For an inloop reduction the reduction will already 3885 // be predicated, and does not need to be handled here. 3886 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 3887 for (unsigned Part = 0; Part < UF; ++Part) { 3888 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 3889 SelectInst *Sel = nullptr; 3890 for (User *U : VecLoopExitInst->users()) { 3891 if (isa<SelectInst>(U)) { 3892 assert(!Sel && "Reduction exit feeding two selects"); 3893 Sel = cast<SelectInst>(U); 3894 } else 3895 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3896 } 3897 assert(Sel && "Reduction exit feeds no select"); 3898 State.reset(LoopExitInstDef, Sel, Part); 3899 3900 if (isa<FPMathOperator>(Sel)) 3901 Sel->setFastMathFlags(RdxDesc.getFastMathFlags()); 3902 3903 // If the target can create a predicated operator for the reduction at no 3904 // extra cost in the loop (for example a predicated vadd), it can be 3905 // cheaper for the select to remain in the loop than be sunk out of it, 3906 // and so use the select value for the phi instead of the old 3907 // LoopExitValue. 3908 if (PreferPredicatedReductionSelect || 3909 TTI->preferPredicatedReductionSelect( 3910 RdxDesc.getOpcode(), PhiTy, 3911 TargetTransformInfo::ReductionFlags())) { 3912 auto *VecRdxPhi = 3913 cast<PHINode>(State.get(PhiR, Part)); 3914 VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel); 3915 } 3916 } 3917 } 3918 3919 // If the vector reduction can be performed in a smaller type, we truncate 3920 // then extend the loop exit value to enable InstCombine to evaluate the 3921 // entire expression in the smaller type. 3922 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 3923 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 3924 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3925 Builder.SetInsertPoint(VectorLoopLatch->getTerminator()); 3926 VectorParts RdxParts(UF); 3927 for (unsigned Part = 0; Part < UF; ++Part) { 3928 RdxParts[Part] = State.get(LoopExitInstDef, Part); 3929 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3930 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3931 : Builder.CreateZExt(Trunc, VecTy); 3932 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 3933 if (U != Trunc) { 3934 U->replaceUsesOfWith(RdxParts[Part], Extnd); 3935 RdxParts[Part] = Extnd; 3936 } 3937 } 3938 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3939 for (unsigned Part = 0; Part < UF; ++Part) { 3940 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3941 State.reset(LoopExitInstDef, RdxParts[Part], Part); 3942 } 3943 } 3944 3945 // Reduce all of the unrolled parts into a single vector. 3946 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 3947 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 3948 3949 // The middle block terminator has already been assigned a DebugLoc here (the 3950 // OrigLoop's single latch terminator). We want the whole middle block to 3951 // appear to execute on this line because: (a) it is all compiler generated, 3952 // (b) these instructions are always executed after evaluating the latch 3953 // conditional branch, and (c) other passes may add new predecessors which 3954 // terminate on this line. This is the easiest way to ensure we don't 3955 // accidentally cause an extra step back into the loop while debugging. 3956 State.setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 3957 if (PhiR->isOrdered()) 3958 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 3959 else { 3960 // Floating-point operations should have some FMF to enable the reduction. 3961 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 3962 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 3963 for (unsigned Part = 1; Part < UF; ++Part) { 3964 Value *RdxPart = State.get(LoopExitInstDef, Part); 3965 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 3966 ReducedPartRdx = Builder.CreateBinOp( 3967 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 3968 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 3969 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 3970 ReducedPartRdx, RdxPart); 3971 else 3972 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 3973 } 3974 } 3975 3976 // Create the reduction after the loop. Note that inloop reductions create the 3977 // target reduction in the loop using a Reduction recipe. 3978 if (VF.isVector() && !PhiR->isInLoop()) { 3979 ReducedPartRdx = 3980 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 3981 // If the reduction can be performed in a smaller type, we need to extend 3982 // the reduction to the wider type before we branch to the original loop. 3983 if (PhiTy != RdxDesc.getRecurrenceType()) 3984 ReducedPartRdx = RdxDesc.isSigned() 3985 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 3986 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 3987 } 3988 3989 PHINode *ResumePhi = 3990 dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue()); 3991 3992 // Create a phi node that merges control-flow from the backedge-taken check 3993 // block and the middle block. 3994 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 3995 LoopScalarPreHeader->getTerminator()); 3996 3997 // If we are fixing reductions in the epilogue loop then we should already 3998 // have created a bc.merge.rdx Phi after the main vector body. Ensure that 3999 // we carry over the incoming values correctly. 4000 for (auto *Incoming : predecessors(LoopScalarPreHeader)) { 4001 if (Incoming == LoopMiddleBlock) 4002 BCBlockPhi->addIncoming(ReducedPartRdx, Incoming); 4003 else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming)) 4004 BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming), 4005 Incoming); 4006 else 4007 BCBlockPhi->addIncoming(ReductionStartValue, Incoming); 4008 } 4009 4010 // Set the resume value for this reduction 4011 ReductionResumeValues.insert({&RdxDesc, BCBlockPhi}); 4012 4013 // If there were stores of the reduction value to a uniform memory address 4014 // inside the loop, create the final store here. 4015 if (StoreInst *SI = RdxDesc.IntermediateStore) { 4016 StoreInst *NewSI = 4017 Builder.CreateStore(ReducedPartRdx, SI->getPointerOperand()); 4018 propagateMetadata(NewSI, SI); 4019 4020 // If the reduction value is used in other places, 4021 // then let the code below create PHI's for that. 4022 } 4023 4024 // Now, we need to fix the users of the reduction variable 4025 // inside and outside of the scalar remainder loop. 4026 4027 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4028 // in the exit blocks. See comment on analogous loop in 4029 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4030 if (!Cost->requiresScalarEpilogue(VF)) 4031 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4032 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) { 4033 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4034 State.Plan->removeLiveOut(&LCSSAPhi); 4035 } 4036 4037 // Fix the scalar loop reduction variable with the incoming reduction sum 4038 // from the vector body and from the backedge value. 4039 int IncomingEdgeBlockIdx = 4040 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4041 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4042 // Pick the other block. 4043 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4044 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4045 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4046 } 4047 4048 void InnerLoopVectorizer::clearReductionWrapFlags(VPReductionPHIRecipe *PhiR, 4049 VPTransformState &State) { 4050 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4051 RecurKind RK = RdxDesc.getRecurrenceKind(); 4052 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4053 return; 4054 4055 SmallVector<VPValue *, 8> Worklist; 4056 SmallPtrSet<VPValue *, 8> Visited; 4057 Worklist.push_back(PhiR); 4058 Visited.insert(PhiR); 4059 4060 while (!Worklist.empty()) { 4061 VPValue *Cur = Worklist.pop_back_val(); 4062 for (unsigned Part = 0; Part < UF; ++Part) { 4063 Value *V = State.get(Cur, Part); 4064 if (!isa<OverflowingBinaryOperator>(V)) 4065 break; 4066 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4067 } 4068 4069 for (VPUser *U : Cur->users()) { 4070 auto *UserRecipe = dyn_cast<VPRecipeBase>(U); 4071 if (!UserRecipe) 4072 continue; 4073 for (VPValue *V : UserRecipe->definedValues()) 4074 if (Visited.insert(V).second) 4075 Worklist.push_back(V); 4076 } 4077 } 4078 } 4079 4080 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4081 // The basic block and loop containing the predicated instruction. 4082 auto *PredBB = PredInst->getParent(); 4083 auto *VectorLoop = LI->getLoopFor(PredBB); 4084 4085 // Initialize a worklist with the operands of the predicated instruction. 4086 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4087 4088 // Holds instructions that we need to analyze again. An instruction may be 4089 // reanalyzed if we don't yet know if we can sink it or not. 4090 SmallVector<Instruction *, 8> InstsToReanalyze; 4091 4092 // Returns true if a given use occurs in the predicated block. Phi nodes use 4093 // their operands in their corresponding predecessor blocks. 4094 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4095 auto *I = cast<Instruction>(U.getUser()); 4096 BasicBlock *BB = I->getParent(); 4097 if (auto *Phi = dyn_cast<PHINode>(I)) 4098 BB = Phi->getIncomingBlock( 4099 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4100 return BB == PredBB; 4101 }; 4102 4103 // Iteratively sink the scalarized operands of the predicated instruction 4104 // into the block we created for it. When an instruction is sunk, it's 4105 // operands are then added to the worklist. The algorithm ends after one pass 4106 // through the worklist doesn't sink a single instruction. 4107 bool Changed; 4108 do { 4109 // Add the instructions that need to be reanalyzed to the worklist, and 4110 // reset the changed indicator. 4111 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4112 InstsToReanalyze.clear(); 4113 Changed = false; 4114 4115 while (!Worklist.empty()) { 4116 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4117 4118 // We can't sink an instruction if it is a phi node, is not in the loop, 4119 // or may have side effects. 4120 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4121 I->mayHaveSideEffects()) 4122 continue; 4123 4124 // If the instruction is already in PredBB, check if we can sink its 4125 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4126 // sinking the scalar instruction I, hence it appears in PredBB; but it 4127 // may have failed to sink I's operands (recursively), which we try 4128 // (again) here. 4129 if (I->getParent() == PredBB) { 4130 Worklist.insert(I->op_begin(), I->op_end()); 4131 continue; 4132 } 4133 4134 // It's legal to sink the instruction if all its uses occur in the 4135 // predicated block. Otherwise, there's nothing to do yet, and we may 4136 // need to reanalyze the instruction. 4137 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4138 InstsToReanalyze.push_back(I); 4139 continue; 4140 } 4141 4142 // Move the instruction to the beginning of the predicated block, and add 4143 // it's operands to the worklist. 4144 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4145 Worklist.insert(I->op_begin(), I->op_end()); 4146 4147 // The sinking may have enabled other instructions to be sunk, so we will 4148 // need to iterate. 4149 Changed = true; 4150 } 4151 } while (Changed); 4152 } 4153 4154 void InnerLoopVectorizer::fixNonInductionPHIs(VPlan &Plan, 4155 VPTransformState &State) { 4156 auto Iter = depth_first( 4157 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(Plan.getEntry())); 4158 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 4159 for (VPRecipeBase &P : VPBB->phis()) { 4160 VPWidenPHIRecipe *VPPhi = dyn_cast<VPWidenPHIRecipe>(&P); 4161 if (!VPPhi) 4162 continue; 4163 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4164 // Make sure the builder has a valid insert point. 4165 Builder.SetInsertPoint(NewPhi); 4166 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4167 VPValue *Inc = VPPhi->getIncomingValue(i); 4168 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4169 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4170 } 4171 } 4172 } 4173 } 4174 4175 bool InnerLoopVectorizer::useOrderedReductions( 4176 const RecurrenceDescriptor &RdxDesc) { 4177 return Cost->useOrderedReductions(RdxDesc); 4178 } 4179 4180 /// A helper function for checking whether an integer division-related 4181 /// instruction may divide by zero (in which case it must be predicated if 4182 /// executed conditionally in the scalar code). 4183 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4184 /// Non-zero divisors that are non compile-time constants will not be 4185 /// converted into multiplication, so we will still end up scalarizing 4186 /// the division, but can do so w/o predication. 4187 static bool mayDivideByZero(Instruction &I) { 4188 assert((I.getOpcode() == Instruction::UDiv || 4189 I.getOpcode() == Instruction::SDiv || 4190 I.getOpcode() == Instruction::URem || 4191 I.getOpcode() == Instruction::SRem) && 4192 "Unexpected instruction"); 4193 Value *Divisor = I.getOperand(1); 4194 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4195 return !CInt || CInt->isZero(); 4196 } 4197 4198 void InnerLoopVectorizer::widenCallInstruction(CallInst &CI, VPValue *Def, 4199 VPUser &ArgOperands, 4200 VPTransformState &State) { 4201 assert(!isa<DbgInfoIntrinsic>(CI) && 4202 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4203 State.setDebugLocFromInst(&CI); 4204 4205 SmallVector<Type *, 4> Tys; 4206 for (Value *ArgOperand : CI.args()) 4207 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4208 4209 Intrinsic::ID ID = getVectorIntrinsicIDForCall(&CI, TLI); 4210 4211 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4212 // version of the instruction. 4213 // Is it beneficial to perform intrinsic call compared to lib call? 4214 bool NeedToScalarize = false; 4215 InstructionCost CallCost = Cost->getVectorCallCost(&CI, VF, NeedToScalarize); 4216 InstructionCost IntrinsicCost = 4217 ID ? Cost->getVectorIntrinsicCost(&CI, VF) : 0; 4218 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4219 assert((UseVectorIntrinsic || !NeedToScalarize) && 4220 "Instruction should be scalarized elsewhere."); 4221 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4222 "Either the intrinsic cost or vector call cost must be valid"); 4223 4224 for (unsigned Part = 0; Part < UF; ++Part) { 4225 SmallVector<Type *, 2> TysForDecl = {CI.getType()}; 4226 SmallVector<Value *, 4> Args; 4227 for (auto &I : enumerate(ArgOperands.operands())) { 4228 // Some intrinsics have a scalar argument - don't replace it with a 4229 // vector. 4230 Value *Arg; 4231 if (!UseVectorIntrinsic || 4232 !isVectorIntrinsicWithScalarOpAtArg(ID, I.index())) 4233 Arg = State.get(I.value(), Part); 4234 else 4235 Arg = State.get(I.value(), VPIteration(0, 0)); 4236 if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I.index())) 4237 TysForDecl.push_back(Arg->getType()); 4238 Args.push_back(Arg); 4239 } 4240 4241 Function *VectorF; 4242 if (UseVectorIntrinsic) { 4243 // Use vector version of the intrinsic. 4244 if (VF.isVector()) 4245 TysForDecl[0] = VectorType::get(CI.getType()->getScalarType(), VF); 4246 Module *M = State.Builder.GetInsertBlock()->getModule(); 4247 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4248 assert(VectorF && "Can't retrieve vector intrinsic."); 4249 } else { 4250 // Use vector version of the function call. 4251 const VFShape Shape = VFShape::get(CI, VF, false /*HasGlobalPred*/); 4252 #ifndef NDEBUG 4253 assert(VFDatabase(CI).getVectorizedFunction(Shape) != nullptr && 4254 "Can't create vector function."); 4255 #endif 4256 VectorF = VFDatabase(CI).getVectorizedFunction(Shape); 4257 } 4258 SmallVector<OperandBundleDef, 1> OpBundles; 4259 CI.getOperandBundlesAsDefs(OpBundles); 4260 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4261 4262 if (isa<FPMathOperator>(V)) 4263 V->copyFastMathFlags(&CI); 4264 4265 State.set(Def, V, Part); 4266 State.addMetadata(V, &CI); 4267 } 4268 } 4269 4270 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4271 // We should not collect Scalars more than once per VF. Right now, this 4272 // function is called from collectUniformsAndScalars(), which already does 4273 // this check. Collecting Scalars for VF=1 does not make any sense. 4274 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4275 "This function should not be visited twice for the same VF"); 4276 4277 // This avoids any chances of creating a REPLICATE recipe during planning 4278 // since that would result in generation of scalarized code during execution, 4279 // which is not supported for scalable vectors. 4280 if (VF.isScalable()) { 4281 Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4282 return; 4283 } 4284 4285 SmallSetVector<Instruction *, 8> Worklist; 4286 4287 // These sets are used to seed the analysis with pointers used by memory 4288 // accesses that will remain scalar. 4289 SmallSetVector<Instruction *, 8> ScalarPtrs; 4290 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4291 auto *Latch = TheLoop->getLoopLatch(); 4292 4293 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4294 // The pointer operands of loads and stores will be scalar as long as the 4295 // memory access is not a gather or scatter operation. The value operand of a 4296 // store will remain scalar if the store is scalarized. 4297 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4298 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4299 assert(WideningDecision != CM_Unknown && 4300 "Widening decision should be ready at this moment"); 4301 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4302 if (Ptr == Store->getValueOperand()) 4303 return WideningDecision == CM_Scalarize; 4304 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4305 "Ptr is neither a value or pointer operand"); 4306 return WideningDecision != CM_GatherScatter; 4307 }; 4308 4309 // A helper that returns true if the given value is a bitcast or 4310 // getelementptr instruction contained in the loop. 4311 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4312 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4313 isa<GetElementPtrInst>(V)) && 4314 !TheLoop->isLoopInvariant(V); 4315 }; 4316 4317 // A helper that evaluates a memory access's use of a pointer. If the use will 4318 // be a scalar use and the pointer is only used by memory accesses, we place 4319 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4320 // PossibleNonScalarPtrs. 4321 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4322 // We only care about bitcast and getelementptr instructions contained in 4323 // the loop. 4324 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4325 return; 4326 4327 // If the pointer has already been identified as scalar (e.g., if it was 4328 // also identified as uniform), there's nothing to do. 4329 auto *I = cast<Instruction>(Ptr); 4330 if (Worklist.count(I)) 4331 return; 4332 4333 // If the use of the pointer will be a scalar use, and all users of the 4334 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4335 // place the pointer in PossibleNonScalarPtrs. 4336 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4337 return isa<LoadInst>(U) || isa<StoreInst>(U); 4338 })) 4339 ScalarPtrs.insert(I); 4340 else 4341 PossibleNonScalarPtrs.insert(I); 4342 }; 4343 4344 // We seed the scalars analysis with three classes of instructions: (1) 4345 // instructions marked uniform-after-vectorization and (2) bitcast, 4346 // getelementptr and (pointer) phi instructions used by memory accesses 4347 // requiring a scalar use. 4348 // 4349 // (1) Add to the worklist all instructions that have been identified as 4350 // uniform-after-vectorization. 4351 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4352 4353 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4354 // memory accesses requiring a scalar use. The pointer operands of loads and 4355 // stores will be scalar as long as the memory accesses is not a gather or 4356 // scatter operation. The value operand of a store will remain scalar if the 4357 // store is scalarized. 4358 for (auto *BB : TheLoop->blocks()) 4359 for (auto &I : *BB) { 4360 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4361 evaluatePtrUse(Load, Load->getPointerOperand()); 4362 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4363 evaluatePtrUse(Store, Store->getPointerOperand()); 4364 evaluatePtrUse(Store, Store->getValueOperand()); 4365 } 4366 } 4367 for (auto *I : ScalarPtrs) 4368 if (!PossibleNonScalarPtrs.count(I)) { 4369 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4370 Worklist.insert(I); 4371 } 4372 4373 // Insert the forced scalars. 4374 // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector 4375 // induction variable when the PHI user is scalarized. 4376 auto ForcedScalar = ForcedScalars.find(VF); 4377 if (ForcedScalar != ForcedScalars.end()) 4378 for (auto *I : ForcedScalar->second) 4379 Worklist.insert(I); 4380 4381 // Expand the worklist by looking through any bitcasts and getelementptr 4382 // instructions we've already identified as scalar. This is similar to the 4383 // expansion step in collectLoopUniforms(); however, here we're only 4384 // expanding to include additional bitcasts and getelementptr instructions. 4385 unsigned Idx = 0; 4386 while (Idx != Worklist.size()) { 4387 Instruction *Dst = Worklist[Idx++]; 4388 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4389 continue; 4390 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4391 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4392 auto *J = cast<Instruction>(U); 4393 return !TheLoop->contains(J) || Worklist.count(J) || 4394 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4395 isScalarUse(J, Src)); 4396 })) { 4397 Worklist.insert(Src); 4398 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4399 } 4400 } 4401 4402 // An induction variable will remain scalar if all users of the induction 4403 // variable and induction variable update remain scalar. 4404 for (auto &Induction : Legal->getInductionVars()) { 4405 auto *Ind = Induction.first; 4406 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4407 4408 // If tail-folding is applied, the primary induction variable will be used 4409 // to feed a vector compare. 4410 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4411 continue; 4412 4413 // Returns true if \p Indvar is a pointer induction that is used directly by 4414 // load/store instruction \p I. 4415 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4416 Instruction *I) { 4417 return Induction.second.getKind() == 4418 InductionDescriptor::IK_PtrInduction && 4419 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4420 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4421 }; 4422 4423 // Determine if all users of the induction variable are scalar after 4424 // vectorization. 4425 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4426 auto *I = cast<Instruction>(U); 4427 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4428 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4429 }); 4430 if (!ScalarInd) 4431 continue; 4432 4433 // Determine if all users of the induction variable update instruction are 4434 // scalar after vectorization. 4435 auto ScalarIndUpdate = 4436 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4437 auto *I = cast<Instruction>(U); 4438 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4439 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4440 }); 4441 if (!ScalarIndUpdate) 4442 continue; 4443 4444 // The induction variable and its update instruction will remain scalar. 4445 Worklist.insert(Ind); 4446 Worklist.insert(IndUpdate); 4447 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4448 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4449 << "\n"); 4450 } 4451 4452 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4453 } 4454 4455 bool LoopVectorizationCostModel::isScalarWithPredication( 4456 Instruction *I, ElementCount VF) const { 4457 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4458 return false; 4459 switch(I->getOpcode()) { 4460 default: 4461 break; 4462 case Instruction::Load: 4463 case Instruction::Store: { 4464 if (!Legal->isMaskRequired(I)) 4465 return false; 4466 auto *Ptr = getLoadStorePointerOperand(I); 4467 auto *Ty = getLoadStoreType(I); 4468 Type *VTy = Ty; 4469 if (VF.isVector()) 4470 VTy = VectorType::get(Ty, VF); 4471 const Align Alignment = getLoadStoreAlignment(I); 4472 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4473 TTI.isLegalMaskedGather(VTy, Alignment)) 4474 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4475 TTI.isLegalMaskedScatter(VTy, Alignment)); 4476 } 4477 case Instruction::UDiv: 4478 case Instruction::SDiv: 4479 case Instruction::SRem: 4480 case Instruction::URem: 4481 return mayDivideByZero(*I); 4482 } 4483 return false; 4484 } 4485 4486 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4487 Instruction *I, ElementCount VF) { 4488 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4489 assert(getWideningDecision(I, VF) == CM_Unknown && 4490 "Decision should not be set yet."); 4491 auto *Group = getInterleavedAccessGroup(I); 4492 assert(Group && "Must have a group."); 4493 4494 // If the instruction's allocated size doesn't equal it's type size, it 4495 // requires padding and will be scalarized. 4496 auto &DL = I->getModule()->getDataLayout(); 4497 auto *ScalarTy = getLoadStoreType(I); 4498 if (hasIrregularType(ScalarTy, DL)) 4499 return false; 4500 4501 // If the group involves a non-integral pointer, we may not be able to 4502 // losslessly cast all values to a common type. 4503 unsigned InterleaveFactor = Group->getFactor(); 4504 bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy); 4505 for (unsigned i = 0; i < InterleaveFactor; i++) { 4506 Instruction *Member = Group->getMember(i); 4507 if (!Member) 4508 continue; 4509 auto *MemberTy = getLoadStoreType(Member); 4510 bool MemberNI = DL.isNonIntegralPointerType(MemberTy); 4511 // Don't coerce non-integral pointers to integers or vice versa. 4512 if (MemberNI != ScalarNI) { 4513 // TODO: Consider adding special nullptr value case here 4514 return false; 4515 } else if (MemberNI && ScalarNI && 4516 ScalarTy->getPointerAddressSpace() != 4517 MemberTy->getPointerAddressSpace()) { 4518 return false; 4519 } 4520 } 4521 4522 // Check if masking is required. 4523 // A Group may need masking for one of two reasons: it resides in a block that 4524 // needs predication, or it was decided to use masking to deal with gaps 4525 // (either a gap at the end of a load-access that may result in a speculative 4526 // load, or any gaps in a store-access). 4527 bool PredicatedAccessRequiresMasking = 4528 blockNeedsPredicationForAnyReason(I->getParent()) && 4529 Legal->isMaskRequired(I); 4530 bool LoadAccessWithGapsRequiresEpilogMasking = 4531 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4532 !isScalarEpilogueAllowed(); 4533 bool StoreAccessWithGapsRequiresMasking = 4534 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4535 if (!PredicatedAccessRequiresMasking && 4536 !LoadAccessWithGapsRequiresEpilogMasking && 4537 !StoreAccessWithGapsRequiresMasking) 4538 return true; 4539 4540 // If masked interleaving is required, we expect that the user/target had 4541 // enabled it, because otherwise it either wouldn't have been created or 4542 // it should have been invalidated by the CostModel. 4543 assert(useMaskedInterleavedAccesses(TTI) && 4544 "Masked interleave-groups for predicated accesses are not enabled."); 4545 4546 if (Group->isReverse()) 4547 return false; 4548 4549 auto *Ty = getLoadStoreType(I); 4550 const Align Alignment = getLoadStoreAlignment(I); 4551 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4552 : TTI.isLegalMaskedStore(Ty, Alignment); 4553 } 4554 4555 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4556 Instruction *I, ElementCount VF) { 4557 // Get and ensure we have a valid memory instruction. 4558 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4559 4560 auto *Ptr = getLoadStorePointerOperand(I); 4561 auto *ScalarTy = getLoadStoreType(I); 4562 4563 // In order to be widened, the pointer should be consecutive, first of all. 4564 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4565 return false; 4566 4567 // If the instruction is a store located in a predicated block, it will be 4568 // scalarized. 4569 if (isScalarWithPredication(I, VF)) 4570 return false; 4571 4572 // If the instruction's allocated size doesn't equal it's type size, it 4573 // requires padding and will be scalarized. 4574 auto &DL = I->getModule()->getDataLayout(); 4575 if (hasIrregularType(ScalarTy, DL)) 4576 return false; 4577 4578 return true; 4579 } 4580 4581 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4582 // We should not collect Uniforms more than once per VF. Right now, 4583 // this function is called from collectUniformsAndScalars(), which 4584 // already does this check. Collecting Uniforms for VF=1 does not make any 4585 // sense. 4586 4587 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 4588 "This function should not be visited twice for the same VF"); 4589 4590 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4591 // not analyze again. Uniforms.count(VF) will return 1. 4592 Uniforms[VF].clear(); 4593 4594 // We now know that the loop is vectorizable! 4595 // Collect instructions inside the loop that will remain uniform after 4596 // vectorization. 4597 4598 // Global values, params and instructions outside of current loop are out of 4599 // scope. 4600 auto isOutOfScope = [&](Value *V) -> bool { 4601 Instruction *I = dyn_cast<Instruction>(V); 4602 return (!I || !TheLoop->contains(I)); 4603 }; 4604 4605 // Worklist containing uniform instructions demanding lane 0. 4606 SetVector<Instruction *> Worklist; 4607 BasicBlock *Latch = TheLoop->getLoopLatch(); 4608 4609 // Add uniform instructions demanding lane 0 to the worklist. Instructions 4610 // that are scalar with predication must not be considered uniform after 4611 // vectorization, because that would create an erroneous replicating region 4612 // where only a single instance out of VF should be formed. 4613 // TODO: optimize such seldom cases if found important, see PR40816. 4614 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4615 if (isOutOfScope(I)) { 4616 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 4617 << *I << "\n"); 4618 return; 4619 } 4620 if (isScalarWithPredication(I, VF)) { 4621 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4622 << *I << "\n"); 4623 return; 4624 } 4625 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4626 Worklist.insert(I); 4627 }; 4628 4629 // Start with the conditional branch. If the branch condition is an 4630 // instruction contained in the loop that is only used by the branch, it is 4631 // uniform. 4632 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4633 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4634 addToWorklistIfAllowed(Cmp); 4635 4636 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 4637 InstWidening WideningDecision = getWideningDecision(I, VF); 4638 assert(WideningDecision != CM_Unknown && 4639 "Widening decision should be ready at this moment"); 4640 4641 // A uniform memory op is itself uniform. We exclude uniform stores 4642 // here as they demand the last lane, not the first one. 4643 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 4644 assert(WideningDecision == CM_Scalarize); 4645 return true; 4646 } 4647 4648 return (WideningDecision == CM_Widen || 4649 WideningDecision == CM_Widen_Reverse || 4650 WideningDecision == CM_Interleave); 4651 }; 4652 4653 4654 // Returns true if Ptr is the pointer operand of a memory access instruction 4655 // I, and I is known to not require scalarization. 4656 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4657 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4658 }; 4659 4660 // Holds a list of values which are known to have at least one uniform use. 4661 // Note that there may be other uses which aren't uniform. A "uniform use" 4662 // here is something which only demands lane 0 of the unrolled iterations; 4663 // it does not imply that all lanes produce the same value (e.g. this is not 4664 // the usual meaning of uniform) 4665 SetVector<Value *> HasUniformUse; 4666 4667 // Scan the loop for instructions which are either a) known to have only 4668 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 4669 for (auto *BB : TheLoop->blocks()) 4670 for (auto &I : *BB) { 4671 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 4672 switch (II->getIntrinsicID()) { 4673 case Intrinsic::sideeffect: 4674 case Intrinsic::experimental_noalias_scope_decl: 4675 case Intrinsic::assume: 4676 case Intrinsic::lifetime_start: 4677 case Intrinsic::lifetime_end: 4678 if (TheLoop->hasLoopInvariantOperands(&I)) 4679 addToWorklistIfAllowed(&I); 4680 break; 4681 default: 4682 break; 4683 } 4684 } 4685 4686 // ExtractValue instructions must be uniform, because the operands are 4687 // known to be loop-invariant. 4688 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 4689 assert(isOutOfScope(EVI->getAggregateOperand()) && 4690 "Expected aggregate value to be loop invariant"); 4691 addToWorklistIfAllowed(EVI); 4692 continue; 4693 } 4694 4695 // If there's no pointer operand, there's nothing to do. 4696 auto *Ptr = getLoadStorePointerOperand(&I); 4697 if (!Ptr) 4698 continue; 4699 4700 // A uniform memory op is itself uniform. We exclude uniform stores 4701 // here as they demand the last lane, not the first one. 4702 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 4703 addToWorklistIfAllowed(&I); 4704 4705 if (isUniformDecision(&I, VF)) { 4706 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 4707 HasUniformUse.insert(Ptr); 4708 } 4709 } 4710 4711 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 4712 // demanding) users. Since loops are assumed to be in LCSSA form, this 4713 // disallows uses outside the loop as well. 4714 for (auto *V : HasUniformUse) { 4715 if (isOutOfScope(V)) 4716 continue; 4717 auto *I = cast<Instruction>(V); 4718 auto UsersAreMemAccesses = 4719 llvm::all_of(I->users(), [&](User *U) -> bool { 4720 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 4721 }); 4722 if (UsersAreMemAccesses) 4723 addToWorklistIfAllowed(I); 4724 } 4725 4726 // Expand Worklist in topological order: whenever a new instruction 4727 // is added , its users should be already inside Worklist. It ensures 4728 // a uniform instruction will only be used by uniform instructions. 4729 unsigned idx = 0; 4730 while (idx != Worklist.size()) { 4731 Instruction *I = Worklist[idx++]; 4732 4733 for (auto OV : I->operand_values()) { 4734 // isOutOfScope operands cannot be uniform instructions. 4735 if (isOutOfScope(OV)) 4736 continue; 4737 // First order recurrence Phi's should typically be considered 4738 // non-uniform. 4739 auto *OP = dyn_cast<PHINode>(OV); 4740 if (OP && Legal->isFirstOrderRecurrence(OP)) 4741 continue; 4742 // If all the users of the operand are uniform, then add the 4743 // operand into the uniform worklist. 4744 auto *OI = cast<Instruction>(OV); 4745 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4746 auto *J = cast<Instruction>(U); 4747 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 4748 })) 4749 addToWorklistIfAllowed(OI); 4750 } 4751 } 4752 4753 // For an instruction to be added into Worklist above, all its users inside 4754 // the loop should also be in Worklist. However, this condition cannot be 4755 // true for phi nodes that form a cyclic dependence. We must process phi 4756 // nodes separately. An induction variable will remain uniform if all users 4757 // of the induction variable and induction variable update remain uniform. 4758 // The code below handles both pointer and non-pointer induction variables. 4759 for (auto &Induction : Legal->getInductionVars()) { 4760 auto *Ind = Induction.first; 4761 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4762 4763 // Determine if all users of the induction variable are uniform after 4764 // vectorization. 4765 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4766 auto *I = cast<Instruction>(U); 4767 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4768 isVectorizedMemAccessUse(I, Ind); 4769 }); 4770 if (!UniformInd) 4771 continue; 4772 4773 // Determine if all users of the induction variable update instruction are 4774 // uniform after vectorization. 4775 auto UniformIndUpdate = 4776 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4777 auto *I = cast<Instruction>(U); 4778 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4779 isVectorizedMemAccessUse(I, IndUpdate); 4780 }); 4781 if (!UniformIndUpdate) 4782 continue; 4783 4784 // The induction variable and its update instruction will remain uniform. 4785 addToWorklistIfAllowed(Ind); 4786 addToWorklistIfAllowed(IndUpdate); 4787 } 4788 4789 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4790 } 4791 4792 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4793 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4794 4795 if (Legal->getRuntimePointerChecking()->Need) { 4796 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4797 "runtime pointer checks needed. Enable vectorization of this " 4798 "loop with '#pragma clang loop vectorize(enable)' when " 4799 "compiling with -Os/-Oz", 4800 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4801 return true; 4802 } 4803 4804 if (!PSE.getPredicate().isAlwaysTrue()) { 4805 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4806 "runtime SCEV checks needed. Enable vectorization of this " 4807 "loop with '#pragma clang loop vectorize(enable)' when " 4808 "compiling with -Os/-Oz", 4809 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4810 return true; 4811 } 4812 4813 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4814 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4815 reportVectorizationFailure("Runtime stride check for small trip count", 4816 "runtime stride == 1 checks needed. Enable vectorization of " 4817 "this loop without such check by compiling with -Os/-Oz", 4818 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4819 return true; 4820 } 4821 4822 return false; 4823 } 4824 4825 ElementCount 4826 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 4827 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 4828 return ElementCount::getScalable(0); 4829 4830 if (Hints->isScalableVectorizationDisabled()) { 4831 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 4832 "ScalableVectorizationDisabled", ORE, TheLoop); 4833 return ElementCount::getScalable(0); 4834 } 4835 4836 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 4837 4838 auto MaxScalableVF = ElementCount::getScalable( 4839 std::numeric_limits<ElementCount::ScalarTy>::max()); 4840 4841 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 4842 // FIXME: While for scalable vectors this is currently sufficient, this should 4843 // be replaced by a more detailed mechanism that filters out specific VFs, 4844 // instead of invalidating vectorization for a whole set of VFs based on the 4845 // MaxVF. 4846 4847 // Disable scalable vectorization if the loop contains unsupported reductions. 4848 if (!canVectorizeReductions(MaxScalableVF)) { 4849 reportVectorizationInfo( 4850 "Scalable vectorization not supported for the reduction " 4851 "operations found in this loop.", 4852 "ScalableVFUnfeasible", ORE, TheLoop); 4853 return ElementCount::getScalable(0); 4854 } 4855 4856 // Disable scalable vectorization if the loop contains any instructions 4857 // with element types not supported for scalable vectors. 4858 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 4859 return !Ty->isVoidTy() && 4860 !this->TTI.isElementTypeLegalForScalableVector(Ty); 4861 })) { 4862 reportVectorizationInfo("Scalable vectorization is not supported " 4863 "for all element types found in this loop.", 4864 "ScalableVFUnfeasible", ORE, TheLoop); 4865 return ElementCount::getScalable(0); 4866 } 4867 4868 if (Legal->isSafeForAnyVectorWidth()) 4869 return MaxScalableVF; 4870 4871 // Limit MaxScalableVF by the maximum safe dependence distance. 4872 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 4873 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 4874 MaxVScale = 4875 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 4876 MaxScalableVF = ElementCount::getScalable( 4877 MaxVScale ? (MaxSafeElements / MaxVScale.value()) : 0); 4878 if (!MaxScalableVF) 4879 reportVectorizationInfo( 4880 "Max legal vector width too small, scalable vectorization " 4881 "unfeasible.", 4882 "ScalableVFUnfeasible", ORE, TheLoop); 4883 4884 return MaxScalableVF; 4885 } 4886 4887 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 4888 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 4889 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4890 unsigned SmallestType, WidestType; 4891 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4892 4893 // Get the maximum safe dependence distance in bits computed by LAA. 4894 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4895 // the memory accesses that is most restrictive (involved in the smallest 4896 // dependence distance). 4897 unsigned MaxSafeElements = 4898 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 4899 4900 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 4901 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 4902 4903 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 4904 << ".\n"); 4905 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 4906 << ".\n"); 4907 4908 // First analyze the UserVF, fall back if the UserVF should be ignored. 4909 if (UserVF) { 4910 auto MaxSafeUserVF = 4911 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 4912 4913 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 4914 // If `VF=vscale x N` is safe, then so is `VF=N` 4915 if (UserVF.isScalable()) 4916 return FixedScalableVFPair( 4917 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 4918 else 4919 return UserVF; 4920 } 4921 4922 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 4923 4924 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 4925 // is better to ignore the hint and let the compiler choose a suitable VF. 4926 if (!UserVF.isScalable()) { 4927 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4928 << " is unsafe, clamping to max safe VF=" 4929 << MaxSafeFixedVF << ".\n"); 4930 ORE->emit([&]() { 4931 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4932 TheLoop->getStartLoc(), 4933 TheLoop->getHeader()) 4934 << "User-specified vectorization factor " 4935 << ore::NV("UserVectorizationFactor", UserVF) 4936 << " is unsafe, clamping to maximum safe vectorization factor " 4937 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 4938 }); 4939 return MaxSafeFixedVF; 4940 } 4941 4942 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 4943 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4944 << " is ignored because scalable vectors are not " 4945 "available.\n"); 4946 ORE->emit([&]() { 4947 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4948 TheLoop->getStartLoc(), 4949 TheLoop->getHeader()) 4950 << "User-specified vectorization factor " 4951 << ore::NV("UserVectorizationFactor", UserVF) 4952 << " is ignored because the target does not support scalable " 4953 "vectors. The compiler will pick a more suitable value."; 4954 }); 4955 } else { 4956 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4957 << " is unsafe. Ignoring scalable UserVF.\n"); 4958 ORE->emit([&]() { 4959 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4960 TheLoop->getStartLoc(), 4961 TheLoop->getHeader()) 4962 << "User-specified vectorization factor " 4963 << ore::NV("UserVectorizationFactor", UserVF) 4964 << " is unsafe. Ignoring the hint to let the compiler pick a " 4965 "more suitable value."; 4966 }); 4967 } 4968 } 4969 4970 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4971 << " / " << WidestType << " bits.\n"); 4972 4973 FixedScalableVFPair Result(ElementCount::getFixed(1), 4974 ElementCount::getScalable(0)); 4975 if (auto MaxVF = 4976 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 4977 MaxSafeFixedVF, FoldTailByMasking)) 4978 Result.FixedVF = MaxVF; 4979 4980 if (auto MaxVF = 4981 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 4982 MaxSafeScalableVF, FoldTailByMasking)) 4983 if (MaxVF.isScalable()) { 4984 Result.ScalableVF = MaxVF; 4985 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 4986 << "\n"); 4987 } 4988 4989 return Result; 4990 } 4991 4992 FixedScalableVFPair 4993 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 4994 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4995 // TODO: It may by useful to do since it's still likely to be dynamically 4996 // uniform if the target can skip. 4997 reportVectorizationFailure( 4998 "Not inserting runtime ptr check for divergent target", 4999 "runtime pointer checks needed. Not enabled for divergent target", 5000 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5001 return FixedScalableVFPair::getNone(); 5002 } 5003 5004 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5005 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5006 if (TC == 1) { 5007 reportVectorizationFailure("Single iteration (non) loop", 5008 "loop trip count is one, irrelevant for vectorization", 5009 "SingleIterationLoop", ORE, TheLoop); 5010 return FixedScalableVFPair::getNone(); 5011 } 5012 5013 switch (ScalarEpilogueStatus) { 5014 case CM_ScalarEpilogueAllowed: 5015 return computeFeasibleMaxVF(TC, UserVF, false); 5016 case CM_ScalarEpilogueNotAllowedUsePredicate: 5017 LLVM_FALLTHROUGH; 5018 case CM_ScalarEpilogueNotNeededUsePredicate: 5019 LLVM_DEBUG( 5020 dbgs() << "LV: vector predicate hint/switch found.\n" 5021 << "LV: Not allowing scalar epilogue, creating predicated " 5022 << "vector loop.\n"); 5023 break; 5024 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5025 // fallthrough as a special case of OptForSize 5026 case CM_ScalarEpilogueNotAllowedOptSize: 5027 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5028 LLVM_DEBUG( 5029 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5030 else 5031 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5032 << "count.\n"); 5033 5034 // Bail if runtime checks are required, which are not good when optimising 5035 // for size. 5036 if (runtimeChecksRequired()) 5037 return FixedScalableVFPair::getNone(); 5038 5039 break; 5040 } 5041 5042 // The only loops we can vectorize without a scalar epilogue, are loops with 5043 // a bottom-test and a single exiting block. We'd have to handle the fact 5044 // that not every instruction executes on the last iteration. This will 5045 // require a lane mask which varies through the vector loop body. (TODO) 5046 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5047 // If there was a tail-folding hint/switch, but we can't fold the tail by 5048 // masking, fallback to a vectorization with a scalar epilogue. 5049 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5050 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5051 "scalar epilogue instead.\n"); 5052 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5053 return computeFeasibleMaxVF(TC, UserVF, false); 5054 } 5055 return FixedScalableVFPair::getNone(); 5056 } 5057 5058 // Now try the tail folding 5059 5060 // Invalidate interleave groups that require an epilogue if we can't mask 5061 // the interleave-group. 5062 if (!useMaskedInterleavedAccesses(TTI)) { 5063 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5064 "No decisions should have been taken at this point"); 5065 // Note: There is no need to invalidate any cost modeling decisions here, as 5066 // non where taken so far. 5067 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5068 } 5069 5070 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5071 // Avoid tail folding if the trip count is known to be a multiple of any VF 5072 // we chose. 5073 // FIXME: The condition below pessimises the case for fixed-width vectors, 5074 // when scalable VFs are also candidates for vectorization. 5075 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5076 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5077 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5078 "MaxFixedVF must be a power of 2"); 5079 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5080 : MaxFixedVF.getFixedValue(); 5081 ScalarEvolution *SE = PSE.getSE(); 5082 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5083 const SCEV *ExitCount = SE->getAddExpr( 5084 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5085 const SCEV *Rem = SE->getURemExpr( 5086 SE->applyLoopGuards(ExitCount, TheLoop), 5087 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5088 if (Rem->isZero()) { 5089 // Accept MaxFixedVF if we do not have a tail. 5090 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5091 return MaxFactors; 5092 } 5093 } 5094 5095 // If we don't know the precise trip count, or if the trip count that we 5096 // found modulo the vectorization factor is not zero, try to fold the tail 5097 // by masking. 5098 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5099 if (Legal->prepareToFoldTailByMasking()) { 5100 FoldTailByMasking = true; 5101 return MaxFactors; 5102 } 5103 5104 // If there was a tail-folding hint/switch, but we can't fold the tail by 5105 // masking, fallback to a vectorization with a scalar epilogue. 5106 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5107 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5108 "scalar epilogue instead.\n"); 5109 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5110 return MaxFactors; 5111 } 5112 5113 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5114 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5115 return FixedScalableVFPair::getNone(); 5116 } 5117 5118 if (TC == 0) { 5119 reportVectorizationFailure( 5120 "Unable to calculate the loop count due to complex control flow", 5121 "unable to calculate the loop count due to complex control flow", 5122 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5123 return FixedScalableVFPair::getNone(); 5124 } 5125 5126 reportVectorizationFailure( 5127 "Cannot optimize for size and vectorize at the same time.", 5128 "cannot optimize for size and vectorize at the same time. " 5129 "Enable vectorization of this loop with '#pragma clang loop " 5130 "vectorize(enable)' when compiling with -Os/-Oz", 5131 "NoTailLoopWithOptForSize", ORE, TheLoop); 5132 return FixedScalableVFPair::getNone(); 5133 } 5134 5135 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5136 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5137 ElementCount MaxSafeVF, bool FoldTailByMasking) { 5138 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5139 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5140 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5141 : TargetTransformInfo::RGK_FixedWidthVector); 5142 5143 // Convenience function to return the minimum of two ElementCounts. 5144 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5145 assert((LHS.isScalable() == RHS.isScalable()) && 5146 "Scalable flags must match"); 5147 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5148 }; 5149 5150 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5151 // Note that both WidestRegister and WidestType may not be a powers of 2. 5152 auto MaxVectorElementCount = ElementCount::get( 5153 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5154 ComputeScalableMaxVF); 5155 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5156 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5157 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5158 5159 if (!MaxVectorElementCount) { 5160 LLVM_DEBUG(dbgs() << "LV: The target has no " 5161 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5162 << " vector registers.\n"); 5163 return ElementCount::getFixed(1); 5164 } 5165 5166 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5167 if (ConstTripCount && 5168 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5169 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5170 // If loop trip count (TC) is known at compile time there is no point in 5171 // choosing VF greater than TC (as done in the loop below). Select maximum 5172 // power of two which doesn't exceed TC. 5173 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5174 // when the TC is less than or equal to the known number of lanes. 5175 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5176 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5177 "exceeding the constant trip count: " 5178 << ClampedConstTripCount << "\n"); 5179 return ElementCount::getFixed(ClampedConstTripCount); 5180 } 5181 5182 TargetTransformInfo::RegisterKind RegKind = 5183 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5184 : TargetTransformInfo::RGK_FixedWidthVector; 5185 ElementCount MaxVF = MaxVectorElementCount; 5186 if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 && 5187 TTI.shouldMaximizeVectorBandwidth(RegKind))) { 5188 auto MaxVectorElementCountMaxBW = ElementCount::get( 5189 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5190 ComputeScalableMaxVF); 5191 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5192 5193 // Collect all viable vectorization factors larger than the default MaxVF 5194 // (i.e. MaxVectorElementCount). 5195 SmallVector<ElementCount, 8> VFs; 5196 for (ElementCount VS = MaxVectorElementCount * 2; 5197 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5198 VFs.push_back(VS); 5199 5200 // For each VF calculate its register usage. 5201 auto RUs = calculateRegisterUsage(VFs); 5202 5203 // Select the largest VF which doesn't require more registers than existing 5204 // ones. 5205 for (int i = RUs.size() - 1; i >= 0; --i) { 5206 bool Selected = true; 5207 for (auto &pair : RUs[i].MaxLocalUsers) { 5208 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5209 if (pair.second > TargetNumRegisters) 5210 Selected = false; 5211 } 5212 if (Selected) { 5213 MaxVF = VFs[i]; 5214 break; 5215 } 5216 } 5217 if (ElementCount MinVF = 5218 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5219 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5220 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5221 << ") with target's minimum: " << MinVF << '\n'); 5222 MaxVF = MinVF; 5223 } 5224 } 5225 5226 // Invalidate any widening decisions we might have made, in case the loop 5227 // requires prediction (decided later), but we have already made some 5228 // load/store widening decisions. 5229 invalidateCostModelingDecisions(); 5230 } 5231 return MaxVF; 5232 } 5233 5234 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const { 5235 if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5236 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); 5237 auto Min = Attr.getVScaleRangeMin(); 5238 auto Max = Attr.getVScaleRangeMax(); 5239 if (Max && Min == Max) 5240 return Max; 5241 } 5242 5243 return TTI.getVScaleForTuning(); 5244 } 5245 5246 bool LoopVectorizationCostModel::isMoreProfitable( 5247 const VectorizationFactor &A, const VectorizationFactor &B) const { 5248 InstructionCost CostA = A.Cost; 5249 InstructionCost CostB = B.Cost; 5250 5251 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5252 5253 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5254 MaxTripCount) { 5255 // If we are folding the tail and the trip count is a known (possibly small) 5256 // constant, the trip count will be rounded up to an integer number of 5257 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5258 // which we compare directly. When not folding the tail, the total cost will 5259 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5260 // approximated with the per-lane cost below instead of using the tripcount 5261 // as here. 5262 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5263 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5264 return RTCostA < RTCostB; 5265 } 5266 5267 // Improve estimate for the vector width if it is scalable. 5268 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5269 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5270 if (Optional<unsigned> VScale = getVScaleForTuning()) { 5271 if (A.Width.isScalable()) 5272 EstimatedWidthA *= VScale.value(); 5273 if (B.Width.isScalable()) 5274 EstimatedWidthB *= VScale.value(); 5275 } 5276 5277 // Assume vscale may be larger than 1 (or the value being tuned for), 5278 // so that scalable vectorization is slightly favorable over fixed-width 5279 // vectorization. 5280 if (A.Width.isScalable() && !B.Width.isScalable()) 5281 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5282 5283 // To avoid the need for FP division: 5284 // (CostA / A.Width) < (CostB / B.Width) 5285 // <=> (CostA * B.Width) < (CostB * A.Width) 5286 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5287 } 5288 5289 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5290 const ElementCountSet &VFCandidates) { 5291 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5292 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5293 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5294 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5295 "Expected Scalar VF to be a candidate"); 5296 5297 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost, 5298 ExpectedCost); 5299 VectorizationFactor ChosenFactor = ScalarCost; 5300 5301 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5302 if (ForceVectorization && VFCandidates.size() > 1) { 5303 // Ignore scalar width, because the user explicitly wants vectorization. 5304 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5305 // evaluation. 5306 ChosenFactor.Cost = InstructionCost::getMax(); 5307 } 5308 5309 SmallVector<InstructionVFPair> InvalidCosts; 5310 for (const auto &i : VFCandidates) { 5311 // The cost for scalar VF=1 is already calculated, so ignore it. 5312 if (i.isScalar()) 5313 continue; 5314 5315 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5316 VectorizationFactor Candidate(i, C.first, ScalarCost.ScalarCost); 5317 5318 #ifndef NDEBUG 5319 unsigned AssumedMinimumVscale = 1; 5320 if (Optional<unsigned> VScale = getVScaleForTuning()) 5321 AssumedMinimumVscale = *VScale; 5322 unsigned Width = 5323 Candidate.Width.isScalable() 5324 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5325 : Candidate.Width.getFixedValue(); 5326 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5327 << " costs: " << (Candidate.Cost / Width)); 5328 if (i.isScalable()) 5329 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5330 << AssumedMinimumVscale << ")"); 5331 LLVM_DEBUG(dbgs() << ".\n"); 5332 #endif 5333 5334 if (!C.second && !ForceVectorization) { 5335 LLVM_DEBUG( 5336 dbgs() << "LV: Not considering vector loop of width " << i 5337 << " because it will not generate any vector instructions.\n"); 5338 continue; 5339 } 5340 5341 // If profitable add it to ProfitableVF list. 5342 if (isMoreProfitable(Candidate, ScalarCost)) 5343 ProfitableVFs.push_back(Candidate); 5344 5345 if (isMoreProfitable(Candidate, ChosenFactor)) 5346 ChosenFactor = Candidate; 5347 } 5348 5349 // Emit a report of VFs with invalid costs in the loop. 5350 if (!InvalidCosts.empty()) { 5351 // Group the remarks per instruction, keeping the instruction order from 5352 // InvalidCosts. 5353 std::map<Instruction *, unsigned> Numbering; 5354 unsigned I = 0; 5355 for (auto &Pair : InvalidCosts) 5356 if (!Numbering.count(Pair.first)) 5357 Numbering[Pair.first] = I++; 5358 5359 // Sort the list, first on instruction(number) then on VF. 5360 llvm::sort(InvalidCosts, 5361 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5362 if (Numbering[A.first] != Numbering[B.first]) 5363 return Numbering[A.first] < Numbering[B.first]; 5364 ElementCountComparator ECC; 5365 return ECC(A.second, B.second); 5366 }); 5367 5368 // For a list of ordered instruction-vf pairs: 5369 // [(load, vf1), (load, vf2), (store, vf1)] 5370 // Group the instructions together to emit separate remarks for: 5371 // load (vf1, vf2) 5372 // store (vf1) 5373 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5374 auto Subset = ArrayRef<InstructionVFPair>(); 5375 do { 5376 if (Subset.empty()) 5377 Subset = Tail.take_front(1); 5378 5379 Instruction *I = Subset.front().first; 5380 5381 // If the next instruction is different, or if there are no other pairs, 5382 // emit a remark for the collated subset. e.g. 5383 // [(load, vf1), (load, vf2))] 5384 // to emit: 5385 // remark: invalid costs for 'load' at VF=(vf, vf2) 5386 if (Subset == Tail || Tail[Subset.size()].first != I) { 5387 std::string OutString; 5388 raw_string_ostream OS(OutString); 5389 assert(!Subset.empty() && "Unexpected empty range"); 5390 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5391 for (auto &Pair : Subset) 5392 OS << (Pair.second == Subset.front().second ? "" : ", ") 5393 << Pair.second; 5394 OS << "):"; 5395 if (auto *CI = dyn_cast<CallInst>(I)) 5396 OS << " call to " << CI->getCalledFunction()->getName(); 5397 else 5398 OS << " " << I->getOpcodeName(); 5399 OS.flush(); 5400 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5401 Tail = Tail.drop_front(Subset.size()); 5402 Subset = {}; 5403 } else 5404 // Grow the subset by one element 5405 Subset = Tail.take_front(Subset.size() + 1); 5406 } while (!Tail.empty()); 5407 } 5408 5409 if (!EnableCondStoresVectorization && NumPredStores) { 5410 reportVectorizationFailure("There are conditional stores.", 5411 "store that is conditionally executed prevents vectorization", 5412 "ConditionalStore", ORE, TheLoop); 5413 ChosenFactor = ScalarCost; 5414 } 5415 5416 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5417 !isMoreProfitable(ChosenFactor, ScalarCost)) dbgs() 5418 << "LV: Vectorization seems to be not beneficial, " 5419 << "but was forced by a user.\n"); 5420 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5421 return ChosenFactor; 5422 } 5423 5424 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5425 const Loop &L, ElementCount VF) const { 5426 // Cross iteration phis such as reductions need special handling and are 5427 // currently unsupported. 5428 if (any_of(L.getHeader()->phis(), 5429 [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); })) 5430 return false; 5431 5432 // Phis with uses outside of the loop require special handling and are 5433 // currently unsupported. 5434 for (auto &Entry : Legal->getInductionVars()) { 5435 // Look for uses of the value of the induction at the last iteration. 5436 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5437 for (User *U : PostInc->users()) 5438 if (!L.contains(cast<Instruction>(U))) 5439 return false; 5440 // Look for uses of penultimate value of the induction. 5441 for (User *U : Entry.first->users()) 5442 if (!L.contains(cast<Instruction>(U))) 5443 return false; 5444 } 5445 5446 // Induction variables that are widened require special handling that is 5447 // currently not supported. 5448 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5449 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5450 this->isProfitableToScalarize(Entry.first, VF)); 5451 })) 5452 return false; 5453 5454 // Epilogue vectorization code has not been auditted to ensure it handles 5455 // non-latch exits properly. It may be fine, but it needs auditted and 5456 // tested. 5457 if (L.getExitingBlock() != L.getLoopLatch()) 5458 return false; 5459 5460 return true; 5461 } 5462 5463 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5464 const ElementCount VF) const { 5465 // FIXME: We need a much better cost-model to take different parameters such 5466 // as register pressure, code size increase and cost of extra branches into 5467 // account. For now we apply a very crude heuristic and only consider loops 5468 // with vectorization factors larger than a certain value. 5469 // We also consider epilogue vectorization unprofitable for targets that don't 5470 // consider interleaving beneficial (eg. MVE). 5471 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5472 return false; 5473 // FIXME: We should consider changing the threshold for scalable 5474 // vectors to take VScaleForTuning into account. 5475 if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF) 5476 return true; 5477 return false; 5478 } 5479 5480 VectorizationFactor 5481 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5482 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5483 VectorizationFactor Result = VectorizationFactor::Disabled(); 5484 if (!EnableEpilogueVectorization) { 5485 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5486 return Result; 5487 } 5488 5489 if (!isScalarEpilogueAllowed()) { 5490 LLVM_DEBUG( 5491 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5492 "allowed.\n";); 5493 return Result; 5494 } 5495 5496 // Not really a cost consideration, but check for unsupported cases here to 5497 // simplify the logic. 5498 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5499 LLVM_DEBUG( 5500 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5501 "not a supported candidate.\n";); 5502 return Result; 5503 } 5504 5505 if (EpilogueVectorizationForceVF > 1) { 5506 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5507 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5508 if (LVP.hasPlanWithVF(ForcedEC)) 5509 return {ForcedEC, 0, 0}; 5510 else { 5511 LLVM_DEBUG( 5512 dbgs() 5513 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5514 return Result; 5515 } 5516 } 5517 5518 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5519 TheLoop->getHeader()->getParent()->hasMinSize()) { 5520 LLVM_DEBUG( 5521 dbgs() 5522 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5523 return Result; 5524 } 5525 5526 if (!isEpilogueVectorizationProfitable(MainLoopVF)) { 5527 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5528 "this loop\n"); 5529 return Result; 5530 } 5531 5532 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know 5533 // the main loop handles 8 lanes per iteration. We could still benefit from 5534 // vectorizing the epilogue loop with VF=4. 5535 ElementCount EstimatedRuntimeVF = MainLoopVF; 5536 if (MainLoopVF.isScalable()) { 5537 EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 5538 if (Optional<unsigned> VScale = getVScaleForTuning()) 5539 EstimatedRuntimeVF *= *VScale; 5540 } 5541 5542 for (auto &NextVF : ProfitableVFs) 5543 if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() && 5544 ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) || 5545 ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) && 5546 (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) && 5547 LVP.hasPlanWithVF(NextVF.Width)) 5548 Result = NextVF; 5549 5550 if (Result != VectorizationFactor::Disabled()) 5551 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5552 << Result.Width << "\n";); 5553 return Result; 5554 } 5555 5556 std::pair<unsigned, unsigned> 5557 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5558 unsigned MinWidth = -1U; 5559 unsigned MaxWidth = 8; 5560 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5561 // For in-loop reductions, no element types are added to ElementTypesInLoop 5562 // if there are no loads/stores in the loop. In this case, check through the 5563 // reduction variables to determine the maximum width. 5564 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5565 // Reset MaxWidth so that we can find the smallest type used by recurrences 5566 // in the loop. 5567 MaxWidth = -1U; 5568 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5569 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5570 // When finding the min width used by the recurrence we need to account 5571 // for casts on the input operands of the recurrence. 5572 MaxWidth = std::min<unsigned>( 5573 MaxWidth, std::min<unsigned>( 5574 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5575 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5576 } 5577 } else { 5578 for (Type *T : ElementTypesInLoop) { 5579 MinWidth = std::min<unsigned>( 5580 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5581 MaxWidth = std::max<unsigned>( 5582 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5583 } 5584 } 5585 return {MinWidth, MaxWidth}; 5586 } 5587 5588 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5589 ElementTypesInLoop.clear(); 5590 // For each block. 5591 for (BasicBlock *BB : TheLoop->blocks()) { 5592 // For each instruction in the loop. 5593 for (Instruction &I : BB->instructionsWithoutDebug()) { 5594 Type *T = I.getType(); 5595 5596 // Skip ignored values. 5597 if (ValuesToIgnore.count(&I)) 5598 continue; 5599 5600 // Only examine Loads, Stores and PHINodes. 5601 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5602 continue; 5603 5604 // Examine PHI nodes that are reduction variables. Update the type to 5605 // account for the recurrence type. 5606 if (auto *PN = dyn_cast<PHINode>(&I)) { 5607 if (!Legal->isReductionVariable(PN)) 5608 continue; 5609 const RecurrenceDescriptor &RdxDesc = 5610 Legal->getReductionVars().find(PN)->second; 5611 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 5612 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5613 RdxDesc.getRecurrenceType(), 5614 TargetTransformInfo::ReductionFlags())) 5615 continue; 5616 T = RdxDesc.getRecurrenceType(); 5617 } 5618 5619 // Examine the stored values. 5620 if (auto *ST = dyn_cast<StoreInst>(&I)) 5621 T = ST->getValueOperand()->getType(); 5622 5623 assert(T->isSized() && 5624 "Expected the load/store/recurrence type to be sized"); 5625 5626 ElementTypesInLoop.insert(T); 5627 } 5628 } 5629 } 5630 5631 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5632 unsigned LoopCost) { 5633 // -- The interleave heuristics -- 5634 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5635 // There are many micro-architectural considerations that we can't predict 5636 // at this level. For example, frontend pressure (on decode or fetch) due to 5637 // code size, or the number and capabilities of the execution ports. 5638 // 5639 // We use the following heuristics to select the interleave count: 5640 // 1. If the code has reductions, then we interleave to break the cross 5641 // iteration dependency. 5642 // 2. If the loop is really small, then we interleave to reduce the loop 5643 // overhead. 5644 // 3. We don't interleave if we think that we will spill registers to memory 5645 // due to the increased register pressure. 5646 5647 if (!isScalarEpilogueAllowed()) 5648 return 1; 5649 5650 // We used the distance for the interleave count. 5651 if (Legal->getMaxSafeDepDistBytes() != -1U) 5652 return 1; 5653 5654 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5655 const bool HasReductions = !Legal->getReductionVars().empty(); 5656 // Do not interleave loops with a relatively small known or estimated trip 5657 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5658 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5659 // because with the above conditions interleaving can expose ILP and break 5660 // cross iteration dependences for reductions. 5661 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5662 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5663 return 1; 5664 5665 // If we did not calculate the cost for VF (because the user selected the VF) 5666 // then we calculate the cost of VF here. 5667 if (LoopCost == 0) { 5668 InstructionCost C = expectedCost(VF).first; 5669 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 5670 LoopCost = *C.getValue(); 5671 5672 // Loop body is free and there is no need for interleaving. 5673 if (LoopCost == 0) 5674 return 1; 5675 } 5676 5677 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5678 // We divide by these constants so assume that we have at least one 5679 // instruction that uses at least one register. 5680 for (auto& pair : R.MaxLocalUsers) { 5681 pair.second = std::max(pair.second, 1U); 5682 } 5683 5684 // We calculate the interleave count using the following formula. 5685 // Subtract the number of loop invariants from the number of available 5686 // registers. These registers are used by all of the interleaved instances. 5687 // Next, divide the remaining registers by the number of registers that is 5688 // required by the loop, in order to estimate how many parallel instances 5689 // fit without causing spills. All of this is rounded down if necessary to be 5690 // a power of two. We want power of two interleave count to simplify any 5691 // addressing operations or alignment considerations. 5692 // We also want power of two interleave counts to ensure that the induction 5693 // variable of the vector loop wraps to zero, when tail is folded by masking; 5694 // this currently happens when OptForSize, in which case IC is set to 1 above. 5695 unsigned IC = UINT_MAX; 5696 5697 for (auto& pair : R.MaxLocalUsers) { 5698 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5699 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5700 << " registers of " 5701 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5702 if (VF.isScalar()) { 5703 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5704 TargetNumRegisters = ForceTargetNumScalarRegs; 5705 } else { 5706 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5707 TargetNumRegisters = ForceTargetNumVectorRegs; 5708 } 5709 unsigned MaxLocalUsers = pair.second; 5710 unsigned LoopInvariantRegs = 0; 5711 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5712 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5713 5714 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5715 // Don't count the induction variable as interleaved. 5716 if (EnableIndVarRegisterHeur) { 5717 TmpIC = 5718 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5719 std::max(1U, (MaxLocalUsers - 1))); 5720 } 5721 5722 IC = std::min(IC, TmpIC); 5723 } 5724 5725 // Clamp the interleave ranges to reasonable counts. 5726 unsigned MaxInterleaveCount = 5727 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5728 5729 // Check if the user has overridden the max. 5730 if (VF.isScalar()) { 5731 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5732 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5733 } else { 5734 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5735 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5736 } 5737 5738 // If trip count is known or estimated compile time constant, limit the 5739 // interleave count to be less than the trip count divided by VF, provided it 5740 // is at least 1. 5741 // 5742 // For scalable vectors we can't know if interleaving is beneficial. It may 5743 // not be beneficial for small loops if none of the lanes in the second vector 5744 // iterations is enabled. However, for larger loops, there is likely to be a 5745 // similar benefit as for fixed-width vectors. For now, we choose to leave 5746 // the InterleaveCount as if vscale is '1', although if some information about 5747 // the vector is known (e.g. min vector size), we can make a better decision. 5748 if (BestKnownTC) { 5749 MaxInterleaveCount = 5750 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 5751 // Make sure MaxInterleaveCount is greater than 0. 5752 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 5753 } 5754 5755 assert(MaxInterleaveCount > 0 && 5756 "Maximum interleave count must be greater than 0"); 5757 5758 // Clamp the calculated IC to be between the 1 and the max interleave count 5759 // that the target and trip count allows. 5760 if (IC > MaxInterleaveCount) 5761 IC = MaxInterleaveCount; 5762 else 5763 // Make sure IC is greater than 0. 5764 IC = std::max(1u, IC); 5765 5766 assert(IC > 0 && "Interleave count must be greater than 0."); 5767 5768 // Interleave if we vectorized this loop and there is a reduction that could 5769 // benefit from interleaving. 5770 if (VF.isVector() && HasReductions) { 5771 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5772 return IC; 5773 } 5774 5775 // For any scalar loop that either requires runtime checks or predication we 5776 // are better off leaving this to the unroller. Note that if we've already 5777 // vectorized the loop we will have done the runtime check and so interleaving 5778 // won't require further checks. 5779 bool ScalarInterleavingRequiresPredication = 5780 (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) { 5781 return Legal->blockNeedsPredication(BB); 5782 })); 5783 bool ScalarInterleavingRequiresRuntimePointerCheck = 5784 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 5785 5786 // We want to interleave small loops in order to reduce the loop overhead and 5787 // potentially expose ILP opportunities. 5788 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 5789 << "LV: IC is " << IC << '\n' 5790 << "LV: VF is " << VF << '\n'); 5791 const bool AggressivelyInterleaveReductions = 5792 TTI.enableAggressiveInterleaving(HasReductions); 5793 if (!ScalarInterleavingRequiresRuntimePointerCheck && 5794 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) { 5795 // We assume that the cost overhead is 1 and we use the cost model 5796 // to estimate the cost of the loop and interleave until the cost of the 5797 // loop overhead is about 5% of the cost of the loop. 5798 unsigned SmallIC = 5799 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5800 5801 // Interleave until store/load ports (estimated by max interleave count) are 5802 // saturated. 5803 unsigned NumStores = Legal->getNumStores(); 5804 unsigned NumLoads = Legal->getNumLoads(); 5805 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5806 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5807 5808 // There is little point in interleaving for reductions containing selects 5809 // and compares when VF=1 since it may just create more overhead than it's 5810 // worth for loops with small trip counts. This is because we still have to 5811 // do the final reduction after the loop. 5812 bool HasSelectCmpReductions = 5813 HasReductions && 5814 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5815 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5816 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 5817 RdxDesc.getRecurrenceKind()); 5818 }); 5819 if (HasSelectCmpReductions) { 5820 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 5821 return 1; 5822 } 5823 5824 // If we have a scalar reduction (vector reductions are already dealt with 5825 // by this point), we can increase the critical path length if the loop 5826 // we're interleaving is inside another loop. For tree-wise reductions 5827 // set the limit to 2, and for ordered reductions it's best to disable 5828 // interleaving entirely. 5829 if (HasReductions && TheLoop->getLoopDepth() > 1) { 5830 bool HasOrderedReductions = 5831 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5832 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5833 return RdxDesc.isOrdered(); 5834 }); 5835 if (HasOrderedReductions) { 5836 LLVM_DEBUG( 5837 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 5838 return 1; 5839 } 5840 5841 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5842 SmallIC = std::min(SmallIC, F); 5843 StoresIC = std::min(StoresIC, F); 5844 LoadsIC = std::min(LoadsIC, F); 5845 } 5846 5847 if (EnableLoadStoreRuntimeInterleave && 5848 std::max(StoresIC, LoadsIC) > SmallIC) { 5849 LLVM_DEBUG( 5850 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5851 return std::max(StoresIC, LoadsIC); 5852 } 5853 5854 // If there are scalar reductions and TTI has enabled aggressive 5855 // interleaving for reductions, we will interleave to expose ILP. 5856 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 5857 AggressivelyInterleaveReductions) { 5858 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5859 // Interleave no less than SmallIC but not as aggressive as the normal IC 5860 // to satisfy the rare situation when resources are too limited. 5861 return std::max(IC / 2, SmallIC); 5862 } else { 5863 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5864 return SmallIC; 5865 } 5866 } 5867 5868 // Interleave if this is a large loop (small loops are already dealt with by 5869 // this point) that could benefit from interleaving. 5870 if (AggressivelyInterleaveReductions) { 5871 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5872 return IC; 5873 } 5874 5875 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5876 return 1; 5877 } 5878 5879 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5880 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 5881 // This function calculates the register usage by measuring the highest number 5882 // of values that are alive at a single location. Obviously, this is a very 5883 // rough estimation. We scan the loop in a topological order in order and 5884 // assign a number to each instruction. We use RPO to ensure that defs are 5885 // met before their users. We assume that each instruction that has in-loop 5886 // users starts an interval. We record every time that an in-loop value is 5887 // used, so we have a list of the first and last occurrences of each 5888 // instruction. Next, we transpose this data structure into a multi map that 5889 // holds the list of intervals that *end* at a specific location. This multi 5890 // map allows us to perform a linear search. We scan the instructions linearly 5891 // and record each time that a new interval starts, by placing it in a set. 5892 // If we find this value in the multi-map then we remove it from the set. 5893 // The max register usage is the maximum size of the set. 5894 // We also search for instructions that are defined outside the loop, but are 5895 // used inside the loop. We need this number separately from the max-interval 5896 // usage number because when we unroll, loop-invariant values do not take 5897 // more register. 5898 LoopBlocksDFS DFS(TheLoop); 5899 DFS.perform(LI); 5900 5901 RegisterUsage RU; 5902 5903 // Each 'key' in the map opens a new interval. The values 5904 // of the map are the index of the 'last seen' usage of the 5905 // instruction that is the key. 5906 using IntervalMap = DenseMap<Instruction *, unsigned>; 5907 5908 // Maps instruction to its index. 5909 SmallVector<Instruction *, 64> IdxToInstr; 5910 // Marks the end of each interval. 5911 IntervalMap EndPoint; 5912 // Saves the list of instruction indices that are used in the loop. 5913 SmallPtrSet<Instruction *, 8> Ends; 5914 // Saves the list of values that are used in the loop but are 5915 // defined outside the loop, such as arguments and constants. 5916 SmallPtrSet<Value *, 8> LoopInvariants; 5917 5918 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5919 for (Instruction &I : BB->instructionsWithoutDebug()) { 5920 IdxToInstr.push_back(&I); 5921 5922 // Save the end location of each USE. 5923 for (Value *U : I.operands()) { 5924 auto *Instr = dyn_cast<Instruction>(U); 5925 5926 // Ignore non-instruction values such as arguments, constants, etc. 5927 if (!Instr) 5928 continue; 5929 5930 // If this instruction is outside the loop then record it and continue. 5931 if (!TheLoop->contains(Instr)) { 5932 LoopInvariants.insert(Instr); 5933 continue; 5934 } 5935 5936 // Overwrite previous end points. 5937 EndPoint[Instr] = IdxToInstr.size(); 5938 Ends.insert(Instr); 5939 } 5940 } 5941 } 5942 5943 // Saves the list of intervals that end with the index in 'key'. 5944 using InstrList = SmallVector<Instruction *, 2>; 5945 DenseMap<unsigned, InstrList> TransposeEnds; 5946 5947 // Transpose the EndPoints to a list of values that end at each index. 5948 for (auto &Interval : EndPoint) 5949 TransposeEnds[Interval.second].push_back(Interval.first); 5950 5951 SmallPtrSet<Instruction *, 8> OpenIntervals; 5952 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5953 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5954 5955 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5956 5957 const auto &TTICapture = TTI; 5958 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 5959 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 5960 return 0; 5961 return TTICapture.getRegUsageForType(VectorType::get(Ty, VF)); 5962 }; 5963 5964 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5965 Instruction *I = IdxToInstr[i]; 5966 5967 // Remove all of the instructions that end at this location. 5968 InstrList &List = TransposeEnds[i]; 5969 for (Instruction *ToRemove : List) 5970 OpenIntervals.erase(ToRemove); 5971 5972 // Ignore instructions that are never used within the loop. 5973 if (!Ends.count(I)) 5974 continue; 5975 5976 // Skip ignored values. 5977 if (ValuesToIgnore.count(I)) 5978 continue; 5979 5980 // For each VF find the maximum usage of registers. 5981 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5982 // Count the number of live intervals. 5983 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5984 5985 if (VFs[j].isScalar()) { 5986 for (auto Inst : OpenIntervals) { 5987 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5988 if (RegUsage.find(ClassID) == RegUsage.end()) 5989 RegUsage[ClassID] = 1; 5990 else 5991 RegUsage[ClassID] += 1; 5992 } 5993 } else { 5994 collectUniformsAndScalars(VFs[j]); 5995 for (auto Inst : OpenIntervals) { 5996 // Skip ignored values for VF > 1. 5997 if (VecValuesToIgnore.count(Inst)) 5998 continue; 5999 if (isScalarAfterVectorization(Inst, VFs[j])) { 6000 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6001 if (RegUsage.find(ClassID) == RegUsage.end()) 6002 RegUsage[ClassID] = 1; 6003 else 6004 RegUsage[ClassID] += 1; 6005 } else { 6006 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6007 if (RegUsage.find(ClassID) == RegUsage.end()) 6008 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6009 else 6010 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6011 } 6012 } 6013 } 6014 6015 for (auto& pair : RegUsage) { 6016 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6017 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6018 else 6019 MaxUsages[j][pair.first] = pair.second; 6020 } 6021 } 6022 6023 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6024 << OpenIntervals.size() << '\n'); 6025 6026 // Add the current instruction to the list of open intervals. 6027 OpenIntervals.insert(I); 6028 } 6029 6030 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6031 SmallMapVector<unsigned, unsigned, 4> Invariant; 6032 6033 for (auto Inst : LoopInvariants) { 6034 unsigned Usage = 6035 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6036 unsigned ClassID = 6037 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6038 if (Invariant.find(ClassID) == Invariant.end()) 6039 Invariant[ClassID] = Usage; 6040 else 6041 Invariant[ClassID] += Usage; 6042 } 6043 6044 LLVM_DEBUG({ 6045 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6046 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6047 << " item\n"; 6048 for (const auto &pair : MaxUsages[i]) { 6049 dbgs() << "LV(REG): RegisterClass: " 6050 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6051 << " registers\n"; 6052 } 6053 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6054 << " item\n"; 6055 for (const auto &pair : Invariant) { 6056 dbgs() << "LV(REG): RegisterClass: " 6057 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6058 << " registers\n"; 6059 } 6060 }); 6061 6062 RU.LoopInvariantRegs = Invariant; 6063 RU.MaxLocalUsers = MaxUsages[i]; 6064 RUs[i] = RU; 6065 } 6066 6067 return RUs; 6068 } 6069 6070 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, 6071 ElementCount VF) { 6072 // TODO: Cost model for emulated masked load/store is completely 6073 // broken. This hack guides the cost model to use an artificially 6074 // high enough value to practically disable vectorization with such 6075 // operations, except where previously deployed legality hack allowed 6076 // using very low cost values. This is to avoid regressions coming simply 6077 // from moving "masked load/store" check from legality to cost model. 6078 // Masked Load/Gather emulation was previously never allowed. 6079 // Limited number of Masked Store/Scatter emulation was allowed. 6080 assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction"); 6081 return isa<LoadInst>(I) || 6082 (isa<StoreInst>(I) && 6083 NumPredStores > NumberOfStoresToPredicate); 6084 } 6085 6086 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6087 // If we aren't vectorizing the loop, or if we've already collected the 6088 // instructions to scalarize, there's nothing to do. Collection may already 6089 // have occurred if we have a user-selected VF and are now computing the 6090 // expected cost for interleaving. 6091 if (VF.isScalar() || VF.isZero() || 6092 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6093 return; 6094 6095 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6096 // not profitable to scalarize any instructions, the presence of VF in the 6097 // map will indicate that we've analyzed it already. 6098 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6099 6100 PredicatedBBsAfterVectorization[VF].clear(); 6101 6102 // Find all the instructions that are scalar with predication in the loop and 6103 // determine if it would be better to not if-convert the blocks they are in. 6104 // If so, we also record the instructions to scalarize. 6105 for (BasicBlock *BB : TheLoop->blocks()) { 6106 if (!blockNeedsPredicationForAnyReason(BB)) 6107 continue; 6108 for (Instruction &I : *BB) 6109 if (isScalarWithPredication(&I, VF)) { 6110 ScalarCostsTy ScalarCosts; 6111 // Do not apply discount if scalable, because that would lead to 6112 // invalid scalarization costs. 6113 // Do not apply discount logic if hacked cost is needed 6114 // for emulated masked memrefs. 6115 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) && 6116 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6117 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6118 // Remember that BB will remain after vectorization. 6119 PredicatedBBsAfterVectorization[VF].insert(BB); 6120 } 6121 } 6122 } 6123 6124 int LoopVectorizationCostModel::computePredInstDiscount( 6125 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6126 assert(!isUniformAfterVectorization(PredInst, VF) && 6127 "Instruction marked uniform-after-vectorization will be predicated"); 6128 6129 // Initialize the discount to zero, meaning that the scalar version and the 6130 // vector version cost the same. 6131 InstructionCost Discount = 0; 6132 6133 // Holds instructions to analyze. The instructions we visit are mapped in 6134 // ScalarCosts. Those instructions are the ones that would be scalarized if 6135 // we find that the scalar version costs less. 6136 SmallVector<Instruction *, 8> Worklist; 6137 6138 // Returns true if the given instruction can be scalarized. 6139 auto canBeScalarized = [&](Instruction *I) -> bool { 6140 // We only attempt to scalarize instructions forming a single-use chain 6141 // from the original predicated block that would otherwise be vectorized. 6142 // Although not strictly necessary, we give up on instructions we know will 6143 // already be scalar to avoid traversing chains that are unlikely to be 6144 // beneficial. 6145 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6146 isScalarAfterVectorization(I, VF)) 6147 return false; 6148 6149 // If the instruction is scalar with predication, it will be analyzed 6150 // separately. We ignore it within the context of PredInst. 6151 if (isScalarWithPredication(I, VF)) 6152 return false; 6153 6154 // If any of the instruction's operands are uniform after vectorization, 6155 // the instruction cannot be scalarized. This prevents, for example, a 6156 // masked load from being scalarized. 6157 // 6158 // We assume we will only emit a value for lane zero of an instruction 6159 // marked uniform after vectorization, rather than VF identical values. 6160 // Thus, if we scalarize an instruction that uses a uniform, we would 6161 // create uses of values corresponding to the lanes we aren't emitting code 6162 // for. This behavior can be changed by allowing getScalarValue to clone 6163 // the lane zero values for uniforms rather than asserting. 6164 for (Use &U : I->operands()) 6165 if (auto *J = dyn_cast<Instruction>(U.get())) 6166 if (isUniformAfterVectorization(J, VF)) 6167 return false; 6168 6169 // Otherwise, we can scalarize the instruction. 6170 return true; 6171 }; 6172 6173 // Compute the expected cost discount from scalarizing the entire expression 6174 // feeding the predicated instruction. We currently only consider expressions 6175 // that are single-use instruction chains. 6176 Worklist.push_back(PredInst); 6177 while (!Worklist.empty()) { 6178 Instruction *I = Worklist.pop_back_val(); 6179 6180 // If we've already analyzed the instruction, there's nothing to do. 6181 if (ScalarCosts.find(I) != ScalarCosts.end()) 6182 continue; 6183 6184 // Compute the cost of the vector instruction. Note that this cost already 6185 // includes the scalarization overhead of the predicated instruction. 6186 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6187 6188 // Compute the cost of the scalarized instruction. This cost is the cost of 6189 // the instruction as if it wasn't if-converted and instead remained in the 6190 // predicated block. We will scale this cost by block probability after 6191 // computing the scalarization overhead. 6192 InstructionCost ScalarCost = 6193 VF.getFixedValue() * 6194 getInstructionCost(I, ElementCount::getFixed(1)).first; 6195 6196 // Compute the scalarization overhead of needed insertelement instructions 6197 // and phi nodes. 6198 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 6199 ScalarCost += TTI.getScalarizationOverhead( 6200 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6201 APInt::getAllOnes(VF.getFixedValue()), true, false); 6202 ScalarCost += 6203 VF.getFixedValue() * 6204 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6205 } 6206 6207 // Compute the scalarization overhead of needed extractelement 6208 // instructions. For each of the instruction's operands, if the operand can 6209 // be scalarized, add it to the worklist; otherwise, account for the 6210 // overhead. 6211 for (Use &U : I->operands()) 6212 if (auto *J = dyn_cast<Instruction>(U.get())) { 6213 assert(VectorType::isValidElementType(J->getType()) && 6214 "Instruction has non-scalar type"); 6215 if (canBeScalarized(J)) 6216 Worklist.push_back(J); 6217 else if (needsExtract(J, VF)) { 6218 ScalarCost += TTI.getScalarizationOverhead( 6219 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6220 APInt::getAllOnes(VF.getFixedValue()), false, true); 6221 } 6222 } 6223 6224 // Scale the total scalar cost by block probability. 6225 ScalarCost /= getReciprocalPredBlockProb(); 6226 6227 // Compute the discount. A non-negative discount means the vector version 6228 // of the instruction costs more, and scalarizing would be beneficial. 6229 Discount += VectorCost - ScalarCost; 6230 ScalarCosts[I] = ScalarCost; 6231 } 6232 6233 return *Discount.getValue(); 6234 } 6235 6236 LoopVectorizationCostModel::VectorizationCostTy 6237 LoopVectorizationCostModel::expectedCost( 6238 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6239 VectorizationCostTy Cost; 6240 6241 // For each block. 6242 for (BasicBlock *BB : TheLoop->blocks()) { 6243 VectorizationCostTy BlockCost; 6244 6245 // For each instruction in the old loop. 6246 for (Instruction &I : BB->instructionsWithoutDebug()) { 6247 // Skip ignored values. 6248 if (ValuesToIgnore.count(&I) || 6249 (VF.isVector() && VecValuesToIgnore.count(&I))) 6250 continue; 6251 6252 VectorizationCostTy C = getInstructionCost(&I, VF); 6253 6254 // Check if we should override the cost. 6255 if (C.first.isValid() && 6256 ForceTargetInstructionCost.getNumOccurrences() > 0) 6257 C.first = InstructionCost(ForceTargetInstructionCost); 6258 6259 // Keep a list of instructions with invalid costs. 6260 if (Invalid && !C.first.isValid()) 6261 Invalid->emplace_back(&I, VF); 6262 6263 BlockCost.first += C.first; 6264 BlockCost.second |= C.second; 6265 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6266 << " for VF " << VF << " For instruction: " << I 6267 << '\n'); 6268 } 6269 6270 // If we are vectorizing a predicated block, it will have been 6271 // if-converted. This means that the block's instructions (aside from 6272 // stores and instructions that may divide by zero) will now be 6273 // unconditionally executed. For the scalar case, we may not always execute 6274 // the predicated block, if it is an if-else block. Thus, scale the block's 6275 // cost by the probability of executing it. blockNeedsPredication from 6276 // Legal is used so as to not include all blocks in tail folded loops. 6277 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6278 BlockCost.first /= getReciprocalPredBlockProb(); 6279 6280 Cost.first += BlockCost.first; 6281 Cost.second |= BlockCost.second; 6282 } 6283 6284 return Cost; 6285 } 6286 6287 /// Gets Address Access SCEV after verifying that the access pattern 6288 /// is loop invariant except the induction variable dependence. 6289 /// 6290 /// This SCEV can be sent to the Target in order to estimate the address 6291 /// calculation cost. 6292 static const SCEV *getAddressAccessSCEV( 6293 Value *Ptr, 6294 LoopVectorizationLegality *Legal, 6295 PredicatedScalarEvolution &PSE, 6296 const Loop *TheLoop) { 6297 6298 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6299 if (!Gep) 6300 return nullptr; 6301 6302 // We are looking for a gep with all loop invariant indices except for one 6303 // which should be an induction variable. 6304 auto SE = PSE.getSE(); 6305 unsigned NumOperands = Gep->getNumOperands(); 6306 for (unsigned i = 1; i < NumOperands; ++i) { 6307 Value *Opd = Gep->getOperand(i); 6308 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6309 !Legal->isInductionVariable(Opd)) 6310 return nullptr; 6311 } 6312 6313 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6314 return PSE.getSCEV(Ptr); 6315 } 6316 6317 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6318 return Legal->hasStride(I->getOperand(0)) || 6319 Legal->hasStride(I->getOperand(1)); 6320 } 6321 6322 InstructionCost 6323 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6324 ElementCount VF) { 6325 assert(VF.isVector() && 6326 "Scalarization cost of instruction implies vectorization."); 6327 if (VF.isScalable()) 6328 return InstructionCost::getInvalid(); 6329 6330 Type *ValTy = getLoadStoreType(I); 6331 auto SE = PSE.getSE(); 6332 6333 unsigned AS = getLoadStoreAddressSpace(I); 6334 Value *Ptr = getLoadStorePointerOperand(I); 6335 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6336 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6337 // that it is being called from this specific place. 6338 6339 // Figure out whether the access is strided and get the stride value 6340 // if it's known in compile time 6341 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6342 6343 // Get the cost of the scalar memory instruction and address computation. 6344 InstructionCost Cost = 6345 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6346 6347 // Don't pass *I here, since it is scalar but will actually be part of a 6348 // vectorized loop where the user of it is a vectorized instruction. 6349 const Align Alignment = getLoadStoreAlignment(I); 6350 Cost += VF.getKnownMinValue() * 6351 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6352 AS, TTI::TCK_RecipThroughput); 6353 6354 // Get the overhead of the extractelement and insertelement instructions 6355 // we might create due to scalarization. 6356 Cost += getScalarizationOverhead(I, VF); 6357 6358 // If we have a predicated load/store, it will need extra i1 extracts and 6359 // conditional branches, but may not be executed for each vector lane. Scale 6360 // the cost by the probability of executing the predicated block. 6361 if (isPredicatedInst(I, VF)) { 6362 Cost /= getReciprocalPredBlockProb(); 6363 6364 // Add the cost of an i1 extract and a branch 6365 auto *Vec_i1Ty = 6366 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6367 Cost += TTI.getScalarizationOverhead( 6368 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6369 /*Insert=*/false, /*Extract=*/true); 6370 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6371 6372 if (useEmulatedMaskMemRefHack(I, VF)) 6373 // Artificially setting to a high enough value to practically disable 6374 // vectorization with such operations. 6375 Cost = 3000000; 6376 } 6377 6378 return Cost; 6379 } 6380 6381 InstructionCost 6382 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6383 ElementCount VF) { 6384 Type *ValTy = getLoadStoreType(I); 6385 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6386 Value *Ptr = getLoadStorePointerOperand(I); 6387 unsigned AS = getLoadStoreAddressSpace(I); 6388 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6389 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6390 6391 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6392 "Stride should be 1 or -1 for consecutive memory access"); 6393 const Align Alignment = getLoadStoreAlignment(I); 6394 InstructionCost Cost = 0; 6395 if (Legal->isMaskRequired(I)) 6396 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6397 CostKind); 6398 else 6399 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6400 CostKind, I); 6401 6402 bool Reverse = ConsecutiveStride < 0; 6403 if (Reverse) 6404 Cost += 6405 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6406 return Cost; 6407 } 6408 6409 InstructionCost 6410 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6411 ElementCount VF) { 6412 assert(Legal->isUniformMemOp(*I)); 6413 6414 Type *ValTy = getLoadStoreType(I); 6415 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6416 const Align Alignment = getLoadStoreAlignment(I); 6417 unsigned AS = getLoadStoreAddressSpace(I); 6418 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6419 if (isa<LoadInst>(I)) { 6420 return TTI.getAddressComputationCost(ValTy) + 6421 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6422 CostKind) + 6423 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6424 } 6425 StoreInst *SI = cast<StoreInst>(I); 6426 6427 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6428 return TTI.getAddressComputationCost(ValTy) + 6429 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6430 CostKind) + 6431 (isLoopInvariantStoreValue 6432 ? 0 6433 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6434 VF.getKnownMinValue() - 1)); 6435 } 6436 6437 InstructionCost 6438 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6439 ElementCount VF) { 6440 Type *ValTy = getLoadStoreType(I); 6441 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6442 const Align Alignment = getLoadStoreAlignment(I); 6443 const Value *Ptr = getLoadStorePointerOperand(I); 6444 6445 return TTI.getAddressComputationCost(VectorTy) + 6446 TTI.getGatherScatterOpCost( 6447 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6448 TargetTransformInfo::TCK_RecipThroughput, I); 6449 } 6450 6451 InstructionCost 6452 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6453 ElementCount VF) { 6454 // TODO: Once we have support for interleaving with scalable vectors 6455 // we can calculate the cost properly here. 6456 if (VF.isScalable()) 6457 return InstructionCost::getInvalid(); 6458 6459 Type *ValTy = getLoadStoreType(I); 6460 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6461 unsigned AS = getLoadStoreAddressSpace(I); 6462 6463 auto Group = getInterleavedAccessGroup(I); 6464 assert(Group && "Fail to get an interleaved access group."); 6465 6466 unsigned InterleaveFactor = Group->getFactor(); 6467 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6468 6469 // Holds the indices of existing members in the interleaved group. 6470 SmallVector<unsigned, 4> Indices; 6471 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6472 if (Group->getMember(IF)) 6473 Indices.push_back(IF); 6474 6475 // Calculate the cost of the whole interleaved group. 6476 bool UseMaskForGaps = 6477 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6478 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6479 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6480 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6481 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6482 6483 if (Group->isReverse()) { 6484 // TODO: Add support for reversed masked interleaved access. 6485 assert(!Legal->isMaskRequired(I) && 6486 "Reverse masked interleaved access not supported."); 6487 Cost += 6488 Group->getNumMembers() * 6489 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6490 } 6491 return Cost; 6492 } 6493 6494 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6495 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6496 using namespace llvm::PatternMatch; 6497 // Early exit for no inloop reductions 6498 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6499 return None; 6500 auto *VectorTy = cast<VectorType>(Ty); 6501 6502 // We are looking for a pattern of, and finding the minimal acceptable cost: 6503 // reduce(mul(ext(A), ext(B))) or 6504 // reduce(mul(A, B)) or 6505 // reduce(ext(A)) or 6506 // reduce(A). 6507 // The basic idea is that we walk down the tree to do that, finding the root 6508 // reduction instruction in InLoopReductionImmediateChains. From there we find 6509 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6510 // of the components. If the reduction cost is lower then we return it for the 6511 // reduction instruction and 0 for the other instructions in the pattern. If 6512 // it is not we return an invalid cost specifying the orignal cost method 6513 // should be used. 6514 Instruction *RetI = I; 6515 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6516 if (!RetI->hasOneUser()) 6517 return None; 6518 RetI = RetI->user_back(); 6519 } 6520 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6521 RetI->user_back()->getOpcode() == Instruction::Add) { 6522 if (!RetI->hasOneUser()) 6523 return None; 6524 RetI = RetI->user_back(); 6525 } 6526 6527 // Test if the found instruction is a reduction, and if not return an invalid 6528 // cost specifying the parent to use the original cost modelling. 6529 if (!InLoopReductionImmediateChains.count(RetI)) 6530 return None; 6531 6532 // Find the reduction this chain is a part of and calculate the basic cost of 6533 // the reduction on its own. 6534 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6535 Instruction *ReductionPhi = LastChain; 6536 while (!isa<PHINode>(ReductionPhi)) 6537 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6538 6539 const RecurrenceDescriptor &RdxDesc = 6540 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6541 6542 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6543 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6544 6545 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6546 // normal fmul instruction to the cost of the fadd reduction. 6547 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6548 BaseCost += 6549 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6550 6551 // If we're using ordered reductions then we can just return the base cost 6552 // here, since getArithmeticReductionCost calculates the full ordered 6553 // reduction cost when FP reassociation is not allowed. 6554 if (useOrderedReductions(RdxDesc)) 6555 return BaseCost; 6556 6557 // Get the operand that was not the reduction chain and match it to one of the 6558 // patterns, returning the better cost if it is found. 6559 Instruction *RedOp = RetI->getOperand(1) == LastChain 6560 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6561 : dyn_cast<Instruction>(RetI->getOperand(1)); 6562 6563 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6564 6565 Instruction *Op0, *Op1; 6566 if (RedOp && 6567 match(RedOp, 6568 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6569 match(Op0, m_ZExtOrSExt(m_Value())) && 6570 Op0->getOpcode() == Op1->getOpcode() && 6571 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6572 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6573 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6574 6575 // Matched reduce(ext(mul(ext(A), ext(B))) 6576 // Note that the extend opcodes need to all match, or if A==B they will have 6577 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6578 // which is equally fine. 6579 bool IsUnsigned = isa<ZExtInst>(Op0); 6580 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6581 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6582 6583 InstructionCost ExtCost = 6584 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6585 TTI::CastContextHint::None, CostKind, Op0); 6586 InstructionCost MulCost = 6587 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6588 InstructionCost Ext2Cost = 6589 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6590 TTI::CastContextHint::None, CostKind, RedOp); 6591 6592 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6593 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6594 CostKind); 6595 6596 if (RedCost.isValid() && 6597 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6598 return I == RetI ? RedCost : 0; 6599 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6600 !TheLoop->isLoopInvariant(RedOp)) { 6601 // Matched reduce(ext(A)) 6602 bool IsUnsigned = isa<ZExtInst>(RedOp); 6603 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6604 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6605 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6606 CostKind); 6607 6608 InstructionCost ExtCost = 6609 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6610 TTI::CastContextHint::None, CostKind, RedOp); 6611 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6612 return I == RetI ? RedCost : 0; 6613 } else if (RedOp && 6614 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6615 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6616 Op0->getOpcode() == Op1->getOpcode() && 6617 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6618 bool IsUnsigned = isa<ZExtInst>(Op0); 6619 Type *Op0Ty = Op0->getOperand(0)->getType(); 6620 Type *Op1Ty = Op1->getOperand(0)->getType(); 6621 Type *LargestOpTy = 6622 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 6623 : Op0Ty; 6624 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 6625 6626 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 6627 // different sizes. We take the largest type as the ext to reduce, and add 6628 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 6629 InstructionCost ExtCost0 = TTI.getCastInstrCost( 6630 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 6631 TTI::CastContextHint::None, CostKind, Op0); 6632 InstructionCost ExtCost1 = TTI.getCastInstrCost( 6633 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 6634 TTI::CastContextHint::None, CostKind, Op1); 6635 InstructionCost MulCost = 6636 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6637 6638 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6639 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6640 CostKind); 6641 InstructionCost ExtraExtCost = 0; 6642 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 6643 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 6644 ExtraExtCost = TTI.getCastInstrCost( 6645 ExtraExtOp->getOpcode(), ExtType, 6646 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 6647 TTI::CastContextHint::None, CostKind, ExtraExtOp); 6648 } 6649 6650 if (RedCost.isValid() && 6651 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 6652 return I == RetI ? RedCost : 0; 6653 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 6654 // Matched reduce(mul()) 6655 InstructionCost MulCost = 6656 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6657 6658 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6659 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 6660 CostKind); 6661 6662 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 6663 return I == RetI ? RedCost : 0; 6664 } 6665 } 6666 6667 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 6668 } 6669 6670 InstructionCost 6671 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6672 ElementCount VF) { 6673 // Calculate scalar cost only. Vectorization cost should be ready at this 6674 // moment. 6675 if (VF.isScalar()) { 6676 Type *ValTy = getLoadStoreType(I); 6677 const Align Alignment = getLoadStoreAlignment(I); 6678 unsigned AS = getLoadStoreAddressSpace(I); 6679 6680 return TTI.getAddressComputationCost(ValTy) + 6681 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6682 TTI::TCK_RecipThroughput, I); 6683 } 6684 return getWideningCost(I, VF); 6685 } 6686 6687 LoopVectorizationCostModel::VectorizationCostTy 6688 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6689 ElementCount VF) { 6690 // If we know that this instruction will remain uniform, check the cost of 6691 // the scalar version. 6692 if (isUniformAfterVectorization(I, VF)) 6693 VF = ElementCount::getFixed(1); 6694 6695 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6696 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6697 6698 // Forced scalars do not have any scalarization overhead. 6699 auto ForcedScalar = ForcedScalars.find(VF); 6700 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6701 auto InstSet = ForcedScalar->second; 6702 if (InstSet.count(I)) 6703 return VectorizationCostTy( 6704 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6705 VF.getKnownMinValue()), 6706 false); 6707 } 6708 6709 Type *VectorTy; 6710 InstructionCost C = getInstructionCost(I, VF, VectorTy); 6711 6712 bool TypeNotScalarized = false; 6713 if (VF.isVector() && VectorTy->isVectorTy()) { 6714 if (unsigned NumParts = TTI.getNumberOfParts(VectorTy)) { 6715 if (VF.isScalable()) 6716 // <vscale x 1 x iN> is assumed to be profitable over iN because 6717 // scalable registers are a distinct register class from scalar ones. 6718 // If we ever find a target which wants to lower scalable vectors 6719 // back to scalars, we'll need to update this code to explicitly 6720 // ask TTI about the register class uses for each part. 6721 TypeNotScalarized = NumParts <= VF.getKnownMinValue(); 6722 else 6723 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 6724 } else 6725 C = InstructionCost::getInvalid(); 6726 } 6727 return VectorizationCostTy(C, TypeNotScalarized); 6728 } 6729 6730 InstructionCost 6731 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6732 ElementCount VF) const { 6733 6734 // There is no mechanism yet to create a scalable scalarization loop, 6735 // so this is currently Invalid. 6736 if (VF.isScalable()) 6737 return InstructionCost::getInvalid(); 6738 6739 if (VF.isScalar()) 6740 return 0; 6741 6742 InstructionCost Cost = 0; 6743 Type *RetTy = ToVectorTy(I->getType(), VF); 6744 if (!RetTy->isVoidTy() && 6745 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6746 Cost += TTI.getScalarizationOverhead( 6747 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 6748 false); 6749 6750 // Some targets keep addresses scalar. 6751 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6752 return Cost; 6753 6754 // Some targets support efficient element stores. 6755 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6756 return Cost; 6757 6758 // Collect operands to consider. 6759 CallInst *CI = dyn_cast<CallInst>(I); 6760 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 6761 6762 // Skip operands that do not require extraction/scalarization and do not incur 6763 // any overhead. 6764 SmallVector<Type *> Tys; 6765 for (auto *V : filterExtractingOperands(Ops, VF)) 6766 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 6767 return Cost + TTI.getOperandsScalarizationOverhead( 6768 filterExtractingOperands(Ops, VF), Tys); 6769 } 6770 6771 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6772 if (VF.isScalar()) 6773 return; 6774 NumPredStores = 0; 6775 for (BasicBlock *BB : TheLoop->blocks()) { 6776 // For each instruction in the old loop. 6777 for (Instruction &I : *BB) { 6778 Value *Ptr = getLoadStorePointerOperand(&I); 6779 if (!Ptr) 6780 continue; 6781 6782 // TODO: We should generate better code and update the cost model for 6783 // predicated uniform stores. Today they are treated as any other 6784 // predicated store (see added test cases in 6785 // invariant-store-vectorization.ll). 6786 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 6787 NumPredStores++; 6788 6789 if (Legal->isUniformMemOp(I)) { 6790 // TODO: Avoid replicating loads and stores instead of 6791 // relying on instcombine to remove them. 6792 // Load: Scalar load + broadcast 6793 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6794 InstructionCost Cost; 6795 if (isa<StoreInst>(&I) && VF.isScalable() && 6796 isLegalGatherOrScatter(&I, VF)) { 6797 Cost = getGatherScatterCost(&I, VF); 6798 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 6799 } else { 6800 Cost = getUniformMemOpCost(&I, VF); 6801 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6802 } 6803 continue; 6804 } 6805 6806 // We assume that widening is the best solution when possible. 6807 if (memoryInstructionCanBeWidened(&I, VF)) { 6808 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 6809 int ConsecutiveStride = Legal->isConsecutivePtr( 6810 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 6811 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6812 "Expected consecutive stride."); 6813 InstWidening Decision = 6814 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6815 setWideningDecision(&I, VF, Decision, Cost); 6816 continue; 6817 } 6818 6819 // Choose between Interleaving, Gather/Scatter or Scalarization. 6820 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 6821 unsigned NumAccesses = 1; 6822 if (isAccessInterleaved(&I)) { 6823 auto Group = getInterleavedAccessGroup(&I); 6824 assert(Group && "Fail to get an interleaved access group."); 6825 6826 // Make one decision for the whole group. 6827 if (getWideningDecision(&I, VF) != CM_Unknown) 6828 continue; 6829 6830 NumAccesses = Group->getNumMembers(); 6831 if (interleavedAccessCanBeWidened(&I, VF)) 6832 InterleaveCost = getInterleaveGroupCost(&I, VF); 6833 } 6834 6835 InstructionCost GatherScatterCost = 6836 isLegalGatherOrScatter(&I, VF) 6837 ? getGatherScatterCost(&I, VF) * NumAccesses 6838 : InstructionCost::getInvalid(); 6839 6840 InstructionCost ScalarizationCost = 6841 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6842 6843 // Choose better solution for the current VF, 6844 // write down this decision and use it during vectorization. 6845 InstructionCost Cost; 6846 InstWidening Decision; 6847 if (InterleaveCost <= GatherScatterCost && 6848 InterleaveCost < ScalarizationCost) { 6849 Decision = CM_Interleave; 6850 Cost = InterleaveCost; 6851 } else if (GatherScatterCost < ScalarizationCost) { 6852 Decision = CM_GatherScatter; 6853 Cost = GatherScatterCost; 6854 } else { 6855 Decision = CM_Scalarize; 6856 Cost = ScalarizationCost; 6857 } 6858 // If the instructions belongs to an interleave group, the whole group 6859 // receives the same decision. The whole group receives the cost, but 6860 // the cost will actually be assigned to one instruction. 6861 if (auto Group = getInterleavedAccessGroup(&I)) 6862 setWideningDecision(Group, VF, Decision, Cost); 6863 else 6864 setWideningDecision(&I, VF, Decision, Cost); 6865 } 6866 } 6867 6868 // Make sure that any load of address and any other address computation 6869 // remains scalar unless there is gather/scatter support. This avoids 6870 // inevitable extracts into address registers, and also has the benefit of 6871 // activating LSR more, since that pass can't optimize vectorized 6872 // addresses. 6873 if (TTI.prefersVectorizedAddressing()) 6874 return; 6875 6876 // Start with all scalar pointer uses. 6877 SmallPtrSet<Instruction *, 8> AddrDefs; 6878 for (BasicBlock *BB : TheLoop->blocks()) 6879 for (Instruction &I : *BB) { 6880 Instruction *PtrDef = 6881 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6882 if (PtrDef && TheLoop->contains(PtrDef) && 6883 getWideningDecision(&I, VF) != CM_GatherScatter) 6884 AddrDefs.insert(PtrDef); 6885 } 6886 6887 // Add all instructions used to generate the addresses. 6888 SmallVector<Instruction *, 4> Worklist; 6889 append_range(Worklist, AddrDefs); 6890 while (!Worklist.empty()) { 6891 Instruction *I = Worklist.pop_back_val(); 6892 for (auto &Op : I->operands()) 6893 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6894 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6895 AddrDefs.insert(InstOp).second) 6896 Worklist.push_back(InstOp); 6897 } 6898 6899 for (auto *I : AddrDefs) { 6900 if (isa<LoadInst>(I)) { 6901 // Setting the desired widening decision should ideally be handled in 6902 // by cost functions, but since this involves the task of finding out 6903 // if the loaded register is involved in an address computation, it is 6904 // instead changed here when we know this is the case. 6905 InstWidening Decision = getWideningDecision(I, VF); 6906 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6907 // Scalarize a widened load of address. 6908 setWideningDecision( 6909 I, VF, CM_Scalarize, 6910 (VF.getKnownMinValue() * 6911 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 6912 else if (auto Group = getInterleavedAccessGroup(I)) { 6913 // Scalarize an interleave group of address loads. 6914 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6915 if (Instruction *Member = Group->getMember(I)) 6916 setWideningDecision( 6917 Member, VF, CM_Scalarize, 6918 (VF.getKnownMinValue() * 6919 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 6920 } 6921 } 6922 } else 6923 // Make sure I gets scalarized and a cost estimate without 6924 // scalarization overhead. 6925 ForcedScalars[VF].insert(I); 6926 } 6927 } 6928 6929 InstructionCost 6930 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 6931 Type *&VectorTy) { 6932 Type *RetTy = I->getType(); 6933 if (canTruncateToMinimalBitwidth(I, VF)) 6934 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6935 auto SE = PSE.getSE(); 6936 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6937 6938 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 6939 ElementCount VF) -> bool { 6940 if (VF.isScalar()) 6941 return true; 6942 6943 auto Scalarized = InstsToScalarize.find(VF); 6944 assert(Scalarized != InstsToScalarize.end() && 6945 "VF not yet analyzed for scalarization profitability"); 6946 return !Scalarized->second.count(I) && 6947 llvm::all_of(I->users(), [&](User *U) { 6948 auto *UI = cast<Instruction>(U); 6949 return !Scalarized->second.count(UI); 6950 }); 6951 }; 6952 (void) hasSingleCopyAfterVectorization; 6953 6954 if (isScalarAfterVectorization(I, VF)) { 6955 // With the exception of GEPs and PHIs, after scalarization there should 6956 // only be one copy of the instruction generated in the loop. This is 6957 // because the VF is either 1, or any instructions that need scalarizing 6958 // have already been dealt with by the the time we get here. As a result, 6959 // it means we don't have to multiply the instruction cost by VF. 6960 assert(I->getOpcode() == Instruction::GetElementPtr || 6961 I->getOpcode() == Instruction::PHI || 6962 (I->getOpcode() == Instruction::BitCast && 6963 I->getType()->isPointerTy()) || 6964 hasSingleCopyAfterVectorization(I, VF)); 6965 VectorTy = RetTy; 6966 } else 6967 VectorTy = ToVectorTy(RetTy, VF); 6968 6969 // TODO: We need to estimate the cost of intrinsic calls. 6970 switch (I->getOpcode()) { 6971 case Instruction::GetElementPtr: 6972 // We mark this instruction as zero-cost because the cost of GEPs in 6973 // vectorized code depends on whether the corresponding memory instruction 6974 // is scalarized or not. Therefore, we handle GEPs with the memory 6975 // instruction cost. 6976 return 0; 6977 case Instruction::Br: { 6978 // In cases of scalarized and predicated instructions, there will be VF 6979 // predicated blocks in the vectorized loop. Each branch around these 6980 // blocks requires also an extract of its vector compare i1 element. 6981 bool ScalarPredicatedBB = false; 6982 BranchInst *BI = cast<BranchInst>(I); 6983 if (VF.isVector() && BI->isConditional() && 6984 (PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(0)) || 6985 PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(1)))) 6986 ScalarPredicatedBB = true; 6987 6988 if (ScalarPredicatedBB) { 6989 // Not possible to scalarize scalable vector with predicated instructions. 6990 if (VF.isScalable()) 6991 return InstructionCost::getInvalid(); 6992 // Return cost for branches around scalarized and predicated blocks. 6993 auto *Vec_i1Ty = 6994 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6995 return ( 6996 TTI.getScalarizationOverhead( 6997 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 6998 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 6999 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7000 // The back-edge branch will remain, as will all scalar branches. 7001 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7002 else 7003 // This branch will be eliminated by if-conversion. 7004 return 0; 7005 // Note: We currently assume zero cost for an unconditional branch inside 7006 // a predicated block since it will become a fall-through, although we 7007 // may decide in the future to call TTI for all branches. 7008 } 7009 case Instruction::PHI: { 7010 auto *Phi = cast<PHINode>(I); 7011 7012 // First-order recurrences are replaced by vector shuffles inside the loop. 7013 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7014 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7015 return TTI.getShuffleCost( 7016 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7017 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7018 7019 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7020 // converted into select instructions. We require N - 1 selects per phi 7021 // node, where N is the number of incoming values. 7022 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7023 return (Phi->getNumIncomingValues() - 1) * 7024 TTI.getCmpSelInstrCost( 7025 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7026 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7027 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7028 7029 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7030 } 7031 case Instruction::UDiv: 7032 case Instruction::SDiv: 7033 case Instruction::URem: 7034 case Instruction::SRem: 7035 // If we have a predicated instruction, it may not be executed for each 7036 // vector lane. Get the scalarization cost and scale this amount by the 7037 // probability of executing the predicated block. If the instruction is not 7038 // predicated, we fall through to the next case. 7039 if (VF.isVector() && isScalarWithPredication(I, VF)) { 7040 InstructionCost Cost = 0; 7041 7042 // These instructions have a non-void type, so account for the phi nodes 7043 // that we will create. This cost is likely to be zero. The phi node 7044 // cost, if any, should be scaled by the block probability because it 7045 // models a copy at the end of each predicated block. 7046 Cost += VF.getKnownMinValue() * 7047 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7048 7049 // The cost of the non-predicated instruction. 7050 Cost += VF.getKnownMinValue() * 7051 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7052 7053 // The cost of insertelement and extractelement instructions needed for 7054 // scalarization. 7055 Cost += getScalarizationOverhead(I, VF); 7056 7057 // Scale the cost by the probability of executing the predicated blocks. 7058 // This assumes the predicated block for each vector lane is equally 7059 // likely. 7060 return Cost / getReciprocalPredBlockProb(); 7061 } 7062 LLVM_FALLTHROUGH; 7063 case Instruction::Add: 7064 case Instruction::FAdd: 7065 case Instruction::Sub: 7066 case Instruction::FSub: 7067 case Instruction::Mul: 7068 case Instruction::FMul: 7069 case Instruction::FDiv: 7070 case Instruction::FRem: 7071 case Instruction::Shl: 7072 case Instruction::LShr: 7073 case Instruction::AShr: 7074 case Instruction::And: 7075 case Instruction::Or: 7076 case Instruction::Xor: { 7077 // Since we will replace the stride by 1 the multiplication should go away. 7078 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7079 return 0; 7080 7081 // Detect reduction patterns 7082 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7083 return *RedCost; 7084 7085 // Certain instructions can be cheaper to vectorize if they have a constant 7086 // second vector operand. One example of this are shifts on x86. 7087 Value *Op2 = I->getOperand(1); 7088 TargetTransformInfo::OperandValueProperties Op2VP; 7089 TargetTransformInfo::OperandValueKind Op2VK = 7090 TTI.getOperandInfo(Op2, Op2VP); 7091 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7092 Op2VK = TargetTransformInfo::OK_UniformValue; 7093 7094 SmallVector<const Value *, 4> Operands(I->operand_values()); 7095 return TTI.getArithmeticInstrCost( 7096 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7097 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7098 } 7099 case Instruction::FNeg: { 7100 return TTI.getArithmeticInstrCost( 7101 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7102 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7103 TargetTransformInfo::OP_None, I->getOperand(0), I); 7104 } 7105 case Instruction::Select: { 7106 SelectInst *SI = cast<SelectInst>(I); 7107 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7108 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7109 7110 const Value *Op0, *Op1; 7111 using namespace llvm::PatternMatch; 7112 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7113 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7114 // select x, y, false --> x & y 7115 // select x, true, y --> x | y 7116 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7117 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7118 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7119 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7120 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7121 Op1->getType()->getScalarSizeInBits() == 1); 7122 7123 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7124 return TTI.getArithmeticInstrCost( 7125 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7126 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7127 } 7128 7129 Type *CondTy = SI->getCondition()->getType(); 7130 if (!ScalarCond) 7131 CondTy = VectorType::get(CondTy, VF); 7132 7133 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7134 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7135 Pred = Cmp->getPredicate(); 7136 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7137 CostKind, I); 7138 } 7139 case Instruction::ICmp: 7140 case Instruction::FCmp: { 7141 Type *ValTy = I->getOperand(0)->getType(); 7142 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7143 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7144 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7145 VectorTy = ToVectorTy(ValTy, VF); 7146 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7147 cast<CmpInst>(I)->getPredicate(), CostKind, 7148 I); 7149 } 7150 case Instruction::Store: 7151 case Instruction::Load: { 7152 ElementCount Width = VF; 7153 if (Width.isVector()) { 7154 InstWidening Decision = getWideningDecision(I, Width); 7155 assert(Decision != CM_Unknown && 7156 "CM decision should be taken at this point"); 7157 if (Decision == CM_Scalarize) { 7158 if (VF.isScalable() && isa<StoreInst>(I)) 7159 // We can't scalarize a scalable vector store (even a uniform one 7160 // currently), return an invalid cost so as to prevent vectorization. 7161 return InstructionCost::getInvalid(); 7162 Width = ElementCount::getFixed(1); 7163 } 7164 } 7165 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7166 return getMemoryInstructionCost(I, VF); 7167 } 7168 case Instruction::BitCast: 7169 if (I->getType()->isPointerTy()) 7170 return 0; 7171 LLVM_FALLTHROUGH; 7172 case Instruction::ZExt: 7173 case Instruction::SExt: 7174 case Instruction::FPToUI: 7175 case Instruction::FPToSI: 7176 case Instruction::FPExt: 7177 case Instruction::PtrToInt: 7178 case Instruction::IntToPtr: 7179 case Instruction::SIToFP: 7180 case Instruction::UIToFP: 7181 case Instruction::Trunc: 7182 case Instruction::FPTrunc: { 7183 // Computes the CastContextHint from a Load/Store instruction. 7184 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7185 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7186 "Expected a load or a store!"); 7187 7188 if (VF.isScalar() || !TheLoop->contains(I)) 7189 return TTI::CastContextHint::Normal; 7190 7191 switch (getWideningDecision(I, VF)) { 7192 case LoopVectorizationCostModel::CM_GatherScatter: 7193 return TTI::CastContextHint::GatherScatter; 7194 case LoopVectorizationCostModel::CM_Interleave: 7195 return TTI::CastContextHint::Interleave; 7196 case LoopVectorizationCostModel::CM_Scalarize: 7197 case LoopVectorizationCostModel::CM_Widen: 7198 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7199 : TTI::CastContextHint::Normal; 7200 case LoopVectorizationCostModel::CM_Widen_Reverse: 7201 return TTI::CastContextHint::Reversed; 7202 case LoopVectorizationCostModel::CM_Unknown: 7203 llvm_unreachable("Instr did not go through cost modelling?"); 7204 } 7205 7206 llvm_unreachable("Unhandled case!"); 7207 }; 7208 7209 unsigned Opcode = I->getOpcode(); 7210 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7211 // For Trunc, the context is the only user, which must be a StoreInst. 7212 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7213 if (I->hasOneUse()) 7214 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7215 CCH = ComputeCCH(Store); 7216 } 7217 // For Z/Sext, the context is the operand, which must be a LoadInst. 7218 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7219 Opcode == Instruction::FPExt) { 7220 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7221 CCH = ComputeCCH(Load); 7222 } 7223 7224 // We optimize the truncation of induction variables having constant 7225 // integer steps. The cost of these truncations is the same as the scalar 7226 // operation. 7227 if (isOptimizableIVTruncate(I, VF)) { 7228 auto *Trunc = cast<TruncInst>(I); 7229 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7230 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7231 } 7232 7233 // Detect reduction patterns 7234 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7235 return *RedCost; 7236 7237 Type *SrcScalarTy = I->getOperand(0)->getType(); 7238 Type *SrcVecTy = 7239 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7240 if (canTruncateToMinimalBitwidth(I, VF)) { 7241 // This cast is going to be shrunk. This may remove the cast or it might 7242 // turn it into slightly different cast. For example, if MinBW == 16, 7243 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7244 // 7245 // Calculate the modified src and dest types. 7246 Type *MinVecTy = VectorTy; 7247 if (Opcode == Instruction::Trunc) { 7248 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7249 VectorTy = 7250 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7251 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7252 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7253 VectorTy = 7254 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7255 } 7256 } 7257 7258 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7259 } 7260 case Instruction::Call: { 7261 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7262 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7263 return *RedCost; 7264 bool NeedToScalarize; 7265 CallInst *CI = cast<CallInst>(I); 7266 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7267 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7268 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7269 return std::min(CallCost, IntrinsicCost); 7270 } 7271 return CallCost; 7272 } 7273 case Instruction::ExtractValue: 7274 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7275 case Instruction::Alloca: 7276 // We cannot easily widen alloca to a scalable alloca, as 7277 // the result would need to be a vector of pointers. 7278 if (VF.isScalable()) 7279 return InstructionCost::getInvalid(); 7280 LLVM_FALLTHROUGH; 7281 default: 7282 // This opcode is unknown. Assume that it is the same as 'mul'. 7283 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7284 } // end of switch. 7285 } 7286 7287 char LoopVectorize::ID = 0; 7288 7289 static const char lv_name[] = "Loop Vectorization"; 7290 7291 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7292 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7293 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7294 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7295 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7296 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7297 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7298 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7299 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7300 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7301 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7302 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7303 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7304 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7305 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7306 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7307 7308 namespace llvm { 7309 7310 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7311 7312 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7313 bool VectorizeOnlyWhenForced) { 7314 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7315 } 7316 7317 } // end namespace llvm 7318 7319 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7320 // Check if the pointer operand of a load or store instruction is 7321 // consecutive. 7322 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7323 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7324 return false; 7325 } 7326 7327 void LoopVectorizationCostModel::collectValuesToIgnore() { 7328 // Ignore ephemeral values. 7329 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7330 7331 // Find all stores to invariant variables. Since they are going to sink 7332 // outside the loop we do not need calculate cost for them. 7333 for (BasicBlock *BB : TheLoop->blocks()) 7334 for (Instruction &I : *BB) { 7335 StoreInst *SI; 7336 if ((SI = dyn_cast<StoreInst>(&I)) && 7337 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) 7338 ValuesToIgnore.insert(&I); 7339 } 7340 7341 // Ignore type-promoting instructions we identified during reduction 7342 // detection. 7343 for (auto &Reduction : Legal->getReductionVars()) { 7344 const RecurrenceDescriptor &RedDes = Reduction.second; 7345 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7346 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7347 } 7348 // Ignore type-casting instructions we identified during induction 7349 // detection. 7350 for (auto &Induction : Legal->getInductionVars()) { 7351 const InductionDescriptor &IndDes = Induction.second; 7352 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7353 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7354 } 7355 } 7356 7357 void LoopVectorizationCostModel::collectInLoopReductions() { 7358 for (auto &Reduction : Legal->getReductionVars()) { 7359 PHINode *Phi = Reduction.first; 7360 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7361 7362 // We don't collect reductions that are type promoted (yet). 7363 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7364 continue; 7365 7366 // If the target would prefer this reduction to happen "in-loop", then we 7367 // want to record it as such. 7368 unsigned Opcode = RdxDesc.getOpcode(); 7369 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7370 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7371 TargetTransformInfo::ReductionFlags())) 7372 continue; 7373 7374 // Check that we can correctly put the reductions into the loop, by 7375 // finding the chain of operations that leads from the phi to the loop 7376 // exit value. 7377 SmallVector<Instruction *, 4> ReductionOperations = 7378 RdxDesc.getReductionOpChain(Phi, TheLoop); 7379 bool InLoop = !ReductionOperations.empty(); 7380 if (InLoop) { 7381 InLoopReductionChains[Phi] = ReductionOperations; 7382 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7383 Instruction *LastChain = Phi; 7384 for (auto *I : ReductionOperations) { 7385 InLoopReductionImmediateChains[I] = LastChain; 7386 LastChain = I; 7387 } 7388 } 7389 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7390 << " reduction for phi: " << *Phi << "\n"); 7391 } 7392 } 7393 7394 // TODO: we could return a pair of values that specify the max VF and 7395 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7396 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7397 // doesn't have a cost model that can choose which plan to execute if 7398 // more than one is generated. 7399 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7400 LoopVectorizationCostModel &CM) { 7401 unsigned WidestType; 7402 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7403 return WidestVectorRegBits / WidestType; 7404 } 7405 7406 VectorizationFactor 7407 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7408 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7409 ElementCount VF = UserVF; 7410 // Outer loop handling: They may require CFG and instruction level 7411 // transformations before even evaluating whether vectorization is profitable. 7412 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7413 // the vectorization pipeline. 7414 if (!OrigLoop->isInnermost()) { 7415 // If the user doesn't provide a vectorization factor, determine a 7416 // reasonable one. 7417 if (UserVF.isZero()) { 7418 VF = ElementCount::getFixed(determineVPlanVF( 7419 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7420 .getFixedSize(), 7421 CM)); 7422 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7423 7424 // Make sure we have a VF > 1 for stress testing. 7425 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7426 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7427 << "overriding computed VF.\n"); 7428 VF = ElementCount::getFixed(4); 7429 } 7430 } 7431 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7432 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7433 "VF needs to be a power of two"); 7434 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7435 << "VF " << VF << " to build VPlans.\n"); 7436 buildVPlans(VF, VF); 7437 7438 // For VPlan build stress testing, we bail out after VPlan construction. 7439 if (VPlanBuildStressTest) 7440 return VectorizationFactor::Disabled(); 7441 7442 return {VF, 0 /*Cost*/, 0 /* ScalarCost */}; 7443 } 7444 7445 LLVM_DEBUG( 7446 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7447 "VPlan-native path.\n"); 7448 return VectorizationFactor::Disabled(); 7449 } 7450 7451 Optional<VectorizationFactor> 7452 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7453 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7454 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7455 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7456 return None; 7457 7458 // Invalidate interleave groups if all blocks of loop will be predicated. 7459 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7460 !useMaskedInterleavedAccesses(*TTI)) { 7461 LLVM_DEBUG( 7462 dbgs() 7463 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7464 "which requires masked-interleaved support.\n"); 7465 if (CM.InterleaveInfo.invalidateGroups()) 7466 // Invalidating interleave groups also requires invalidating all decisions 7467 // based on them, which includes widening decisions and uniform and scalar 7468 // values. 7469 CM.invalidateCostModelingDecisions(); 7470 } 7471 7472 ElementCount MaxUserVF = 7473 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7474 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7475 if (!UserVF.isZero() && UserVFIsLegal) { 7476 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7477 "VF needs to be a power of two"); 7478 // Collect the instructions (and their associated costs) that will be more 7479 // profitable to scalarize. 7480 if (CM.selectUserVectorizationFactor(UserVF)) { 7481 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7482 CM.collectInLoopReductions(); 7483 buildVPlansWithVPRecipes(UserVF, UserVF); 7484 LLVM_DEBUG(printPlans(dbgs())); 7485 return {{UserVF, 0, 0}}; 7486 } else 7487 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7488 "InvalidCost", ORE, OrigLoop); 7489 } 7490 7491 // Populate the set of Vectorization Factor Candidates. 7492 ElementCountSet VFCandidates; 7493 for (auto VF = ElementCount::getFixed(1); 7494 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7495 VFCandidates.insert(VF); 7496 for (auto VF = ElementCount::getScalable(1); 7497 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7498 VFCandidates.insert(VF); 7499 7500 for (const auto &VF : VFCandidates) { 7501 // Collect Uniform and Scalar instructions after vectorization with VF. 7502 CM.collectUniformsAndScalars(VF); 7503 7504 // Collect the instructions (and their associated costs) that will be more 7505 // profitable to scalarize. 7506 if (VF.isVector()) 7507 CM.collectInstsToScalarize(VF); 7508 } 7509 7510 CM.collectInLoopReductions(); 7511 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7512 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7513 7514 LLVM_DEBUG(printPlans(dbgs())); 7515 if (!MaxFactors.hasVector()) 7516 return VectorizationFactor::Disabled(); 7517 7518 // Select the optimal vectorization factor. 7519 VectorizationFactor VF = CM.selectVectorizationFactor(VFCandidates); 7520 assert((VF.Width.isScalar() || VF.ScalarCost > 0) && "when vectorizing, the scalar cost must be non-zero."); 7521 return VF; 7522 } 7523 7524 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7525 assert(count_if(VPlans, 7526 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7527 1 && 7528 "Best VF has not a single VPlan."); 7529 7530 for (const VPlanPtr &Plan : VPlans) { 7531 if (Plan->hasVF(VF)) 7532 return *Plan.get(); 7533 } 7534 llvm_unreachable("No plan found!"); 7535 } 7536 7537 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7538 SmallVector<Metadata *, 4> MDs; 7539 // Reserve first location for self reference to the LoopID metadata node. 7540 MDs.push_back(nullptr); 7541 bool IsUnrollMetadata = false; 7542 MDNode *LoopID = L->getLoopID(); 7543 if (LoopID) { 7544 // First find existing loop unrolling disable metadata. 7545 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7546 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7547 if (MD) { 7548 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7549 IsUnrollMetadata = 7550 S && S->getString().startswith("llvm.loop.unroll.disable"); 7551 } 7552 MDs.push_back(LoopID->getOperand(i)); 7553 } 7554 } 7555 7556 if (!IsUnrollMetadata) { 7557 // Add runtime unroll disable metadata. 7558 LLVMContext &Context = L->getHeader()->getContext(); 7559 SmallVector<Metadata *, 1> DisableOperands; 7560 DisableOperands.push_back( 7561 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7562 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7563 MDs.push_back(DisableNode); 7564 MDNode *NewLoopID = MDNode::get(Context, MDs); 7565 // Set operand 0 to refer to the loop id itself. 7566 NewLoopID->replaceOperandWith(0, NewLoopID); 7567 L->setLoopID(NewLoopID); 7568 } 7569 } 7570 7571 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7572 VPlan &BestVPlan, 7573 InnerLoopVectorizer &ILV, 7574 DominatorTree *DT, 7575 bool IsEpilogueVectorization) { 7576 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7577 << '\n'); 7578 7579 // Perform the actual loop transformation. 7580 7581 // 1. Set up the skeleton for vectorization, including vector pre-header and 7582 // middle block. The vector loop is created during VPlan execution. 7583 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7584 Value *CanonicalIVStartValue; 7585 std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = 7586 ILV.createVectorizedLoopSkeleton(); 7587 7588 // Only use noalias metadata when using memory checks guaranteeing no overlap 7589 // across all iterations. 7590 const LoopAccessInfo *LAI = ILV.Legal->getLAI(); 7591 if (LAI && !LAI->getRuntimePointerChecking()->getChecks().empty() && 7592 !LAI->getRuntimePointerChecking()->getDiffChecks()) { 7593 7594 // We currently don't use LoopVersioning for the actual loop cloning but we 7595 // still use it to add the noalias metadata. 7596 // TODO: Find a better way to re-use LoopVersioning functionality to add 7597 // metadata. 7598 State.LVer = std::make_unique<LoopVersioning>( 7599 *LAI, LAI->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, DT, 7600 PSE.getSE()); 7601 State.LVer->prepareNoAliasMetadata(); 7602 } 7603 7604 ILV.collectPoisonGeneratingRecipes(State); 7605 7606 ILV.printDebugTracesAtStart(); 7607 7608 //===------------------------------------------------===// 7609 // 7610 // Notice: any optimization or new instruction that go 7611 // into the code below should also be implemented in 7612 // the cost-model. 7613 // 7614 //===------------------------------------------------===// 7615 7616 // 2. Copy and widen instructions from the old loop into the new loop. 7617 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7618 ILV.getOrCreateVectorTripCount(nullptr), 7619 CanonicalIVStartValue, State, 7620 IsEpilogueVectorization); 7621 7622 BestVPlan.execute(&State); 7623 7624 // Keep all loop hints from the original loop on the vector loop (we'll 7625 // replace the vectorizer-specific hints below). 7626 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7627 7628 Optional<MDNode *> VectorizedLoopID = 7629 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7630 LLVMLoopVectorizeFollowupVectorized}); 7631 7632 VPBasicBlock *HeaderVPBB = 7633 BestVPlan.getVectorLoopRegion()->getEntryBasicBlock(); 7634 Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]); 7635 if (VectorizedLoopID) 7636 L->setLoopID(VectorizedLoopID.value()); 7637 else { 7638 // Keep all loop hints from the original loop on the vector loop (we'll 7639 // replace the vectorizer-specific hints below). 7640 if (MDNode *LID = OrigLoop->getLoopID()) 7641 L->setLoopID(LID); 7642 7643 LoopVectorizeHints Hints(L, true, *ORE); 7644 Hints.setAlreadyVectorized(); 7645 } 7646 // Disable runtime unrolling when vectorizing the epilogue loop. 7647 if (CanonicalIVStartValue) 7648 AddRuntimeUnrollDisableMetaData(L); 7649 7650 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7651 // predication, updating analyses. 7652 ILV.fixVectorizedLoop(State, BestVPlan); 7653 7654 ILV.printDebugTracesAtEnd(); 7655 } 7656 7657 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7658 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 7659 for (const auto &Plan : VPlans) 7660 if (PrintVPlansInDotFormat) 7661 Plan->printDOT(O); 7662 else 7663 Plan->print(O); 7664 } 7665 #endif 7666 7667 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7668 7669 //===--------------------------------------------------------------------===// 7670 // EpilogueVectorizerMainLoop 7671 //===--------------------------------------------------------------------===// 7672 7673 /// This function is partially responsible for generating the control flow 7674 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7675 std::pair<BasicBlock *, Value *> 7676 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 7677 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7678 7679 // Workaround! Compute the trip count of the original loop and cache it 7680 // before we start modifying the CFG. This code has a systemic problem 7681 // wherein it tries to run analysis over partially constructed IR; this is 7682 // wrong, and not simply for SCEV. The trip count of the original loop 7683 // simply happens to be prone to hitting this in practice. In theory, we 7684 // can hit the same issue for any SCEV, or ValueTracking query done during 7685 // mutation. See PR49900. 7686 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 7687 createVectorLoopSkeleton(""); 7688 7689 // Generate the code to check the minimum iteration count of the vector 7690 // epilogue (see below). 7691 EPI.EpilogueIterationCountCheck = 7692 emitIterationCountCheck(LoopScalarPreHeader, true); 7693 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7694 7695 // Generate the code to check any assumptions that we've made for SCEV 7696 // expressions. 7697 EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader); 7698 7699 // Generate the code that checks at runtime if arrays overlap. We put the 7700 // checks into a separate block to make the more common case of few elements 7701 // faster. 7702 EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader); 7703 7704 // Generate the iteration count check for the main loop, *after* the check 7705 // for the epilogue loop, so that the path-length is shorter for the case 7706 // that goes directly through the vector epilogue. The longer-path length for 7707 // the main loop is compensated for, by the gain from vectorizing the larger 7708 // trip count. Note: the branch will get updated later on when we vectorize 7709 // the epilogue. 7710 EPI.MainLoopIterationCountCheck = 7711 emitIterationCountCheck(LoopScalarPreHeader, false); 7712 7713 // Generate the induction variable. 7714 EPI.VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 7715 7716 // Skip induction resume value creation here because they will be created in 7717 // the second pass. If we created them here, they wouldn't be used anyway, 7718 // because the vplan in the second pass still contains the inductions from the 7719 // original loop. 7720 7721 return {completeLoopSkeleton(OrigLoopID), nullptr}; 7722 } 7723 7724 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 7725 LLVM_DEBUG({ 7726 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 7727 << "Main Loop VF:" << EPI.MainLoopVF 7728 << ", Main Loop UF:" << EPI.MainLoopUF 7729 << ", Epilogue Loop VF:" << EPI.EpilogueVF 7730 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7731 }); 7732 } 7733 7734 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 7735 DEBUG_WITH_TYPE(VerboseDebug, { 7736 dbgs() << "intermediate fn:\n" 7737 << *OrigLoop->getHeader()->getParent() << "\n"; 7738 }); 7739 } 7740 7741 BasicBlock * 7742 EpilogueVectorizerMainLoop::emitIterationCountCheck(BasicBlock *Bypass, 7743 bool ForEpilogue) { 7744 assert(Bypass && "Expected valid bypass basic block."); 7745 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 7746 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 7747 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 7748 // Reuse existing vector loop preheader for TC checks. 7749 // Note that new preheader block is generated for vector loop. 7750 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 7751 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 7752 7753 // Generate code to check if the loop's trip count is less than VF * UF of the 7754 // main vector loop. 7755 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 7756 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7757 7758 Value *CheckMinIters = Builder.CreateICmp( 7759 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 7760 "min.iters.check"); 7761 7762 if (!ForEpilogue) 7763 TCCheckBlock->setName("vector.main.loop.iter.check"); 7764 7765 // Create new preheader for vector loop. 7766 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 7767 DT, LI, nullptr, "vector.ph"); 7768 7769 if (ForEpilogue) { 7770 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 7771 DT->getNode(Bypass)->getIDom()) && 7772 "TC check is expected to dominate Bypass"); 7773 7774 // Update dominator for Bypass & LoopExit. 7775 DT->changeImmediateDominator(Bypass, TCCheckBlock); 7776 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7777 // For loops with multiple exits, there's no edge from the middle block 7778 // to exit blocks (as the epilogue must run) and thus no need to update 7779 // the immediate dominator of the exit blocks. 7780 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 7781 7782 LoopBypassBlocks.push_back(TCCheckBlock); 7783 7784 // Save the trip count so we don't have to regenerate it in the 7785 // vec.epilog.iter.check. This is safe to do because the trip count 7786 // generated here dominates the vector epilog iter check. 7787 EPI.TripCount = Count; 7788 } 7789 7790 ReplaceInstWithInst( 7791 TCCheckBlock->getTerminator(), 7792 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7793 7794 return TCCheckBlock; 7795 } 7796 7797 //===--------------------------------------------------------------------===// 7798 // EpilogueVectorizerEpilogueLoop 7799 //===--------------------------------------------------------------------===// 7800 7801 /// This function is partially responsible for generating the control flow 7802 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7803 std::pair<BasicBlock *, Value *> 7804 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 7805 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7806 createVectorLoopSkeleton("vec.epilog."); 7807 7808 // Now, compare the remaining count and if there aren't enough iterations to 7809 // execute the vectorized epilogue skip to the scalar part. 7810 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 7811 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 7812 LoopVectorPreHeader = 7813 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 7814 LI, nullptr, "vec.epilog.ph"); 7815 emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader, 7816 VecEpilogueIterationCountCheck); 7817 7818 // Adjust the control flow taking the state info from the main loop 7819 // vectorization into account. 7820 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 7821 "expected this to be saved from the previous pass."); 7822 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 7823 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 7824 7825 DT->changeImmediateDominator(LoopVectorPreHeader, 7826 EPI.MainLoopIterationCountCheck); 7827 7828 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 7829 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7830 7831 if (EPI.SCEVSafetyCheck) 7832 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 7833 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7834 if (EPI.MemSafetyCheck) 7835 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 7836 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7837 7838 DT->changeImmediateDominator( 7839 VecEpilogueIterationCountCheck, 7840 VecEpilogueIterationCountCheck->getSinglePredecessor()); 7841 7842 DT->changeImmediateDominator(LoopScalarPreHeader, 7843 EPI.EpilogueIterationCountCheck); 7844 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7845 // If there is an epilogue which must run, there's no edge from the 7846 // middle block to exit blocks and thus no need to update the immediate 7847 // dominator of the exit blocks. 7848 DT->changeImmediateDominator(LoopExitBlock, 7849 EPI.EpilogueIterationCountCheck); 7850 7851 // Keep track of bypass blocks, as they feed start values to the induction 7852 // phis in the scalar loop preheader. 7853 if (EPI.SCEVSafetyCheck) 7854 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 7855 if (EPI.MemSafetyCheck) 7856 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 7857 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 7858 7859 // The vec.epilog.iter.check block may contain Phi nodes from reductions which 7860 // merge control-flow from the latch block and the middle block. Update the 7861 // incoming values here and move the Phi into the preheader. 7862 SmallVector<PHINode *, 4> PhisInBlock; 7863 for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) 7864 PhisInBlock.push_back(&Phi); 7865 7866 for (PHINode *Phi : PhisInBlock) { 7867 Phi->replaceIncomingBlockWith( 7868 VecEpilogueIterationCountCheck->getSinglePredecessor(), 7869 VecEpilogueIterationCountCheck); 7870 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); 7871 if (EPI.SCEVSafetyCheck) 7872 Phi->removeIncomingValue(EPI.SCEVSafetyCheck); 7873 if (EPI.MemSafetyCheck) 7874 Phi->removeIncomingValue(EPI.MemSafetyCheck); 7875 Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); 7876 } 7877 7878 // Generate a resume induction for the vector epilogue and put it in the 7879 // vector epilogue preheader 7880 Type *IdxTy = Legal->getWidestInductionType(); 7881 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 7882 LoopVectorPreHeader->getFirstNonPHI()); 7883 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 7884 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 7885 EPI.MainLoopIterationCountCheck); 7886 7887 // Generate induction resume values. These variables save the new starting 7888 // indexes for the scalar loop. They are used to test if there are any tail 7889 // iterations left once the vector loop has completed. 7890 // Note that when the vectorized epilogue is skipped due to iteration count 7891 // check, then the resume value for the induction variable comes from 7892 // the trip count of the main vector loop, hence passing the AdditionalBypass 7893 // argument. 7894 createInductionResumeValues({VecEpilogueIterationCountCheck, 7895 EPI.VectorTripCount} /* AdditionalBypass */); 7896 7897 return {completeLoopSkeleton(OrigLoopID), EPResumeVal}; 7898 } 7899 7900 BasicBlock * 7901 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 7902 BasicBlock *Bypass, BasicBlock *Insert) { 7903 7904 assert(EPI.TripCount && 7905 "Expected trip count to have been safed in the first pass."); 7906 assert( 7907 (!isa<Instruction>(EPI.TripCount) || 7908 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 7909 "saved trip count does not dominate insertion point."); 7910 Value *TC = EPI.TripCount; 7911 IRBuilder<> Builder(Insert->getTerminator()); 7912 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 7913 7914 // Generate code to check if the loop's trip count is less than VF * UF of the 7915 // vector epilogue loop. 7916 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 7917 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7918 7919 Value *CheckMinIters = 7920 Builder.CreateICmp(P, Count, 7921 createStepForVF(Builder, Count->getType(), 7922 EPI.EpilogueVF, EPI.EpilogueUF), 7923 "min.epilog.iters.check"); 7924 7925 ReplaceInstWithInst( 7926 Insert->getTerminator(), 7927 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7928 7929 LoopBypassBlocks.push_back(Insert); 7930 return Insert; 7931 } 7932 7933 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 7934 LLVM_DEBUG({ 7935 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 7936 << "Epilogue Loop VF:" << EPI.EpilogueVF 7937 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7938 }); 7939 } 7940 7941 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 7942 DEBUG_WITH_TYPE(VerboseDebug, { 7943 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 7944 }); 7945 } 7946 7947 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7948 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 7949 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 7950 bool PredicateAtRangeStart = Predicate(Range.Start); 7951 7952 for (ElementCount TmpVF = Range.Start * 2; 7953 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 7954 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7955 Range.End = TmpVF; 7956 break; 7957 } 7958 7959 return PredicateAtRangeStart; 7960 } 7961 7962 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7963 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7964 /// of VF's starting at a given VF and extending it as much as possible. Each 7965 /// vectorization decision can potentially shorten this sub-range during 7966 /// buildVPlan(). 7967 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 7968 ElementCount MaxVF) { 7969 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 7970 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 7971 VFRange SubRange = {VF, MaxVFPlusOne}; 7972 VPlans.push_back(buildVPlan(SubRange)); 7973 VF = SubRange.End; 7974 } 7975 } 7976 7977 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 7978 VPlanPtr &Plan) { 7979 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 7980 7981 // Look for cached value. 7982 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 7983 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 7984 if (ECEntryIt != EdgeMaskCache.end()) 7985 return ECEntryIt->second; 7986 7987 VPValue *SrcMask = createBlockInMask(Src, Plan); 7988 7989 // The terminator has to be a branch inst! 7990 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 7991 assert(BI && "Unexpected terminator found"); 7992 7993 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 7994 return EdgeMaskCache[Edge] = SrcMask; 7995 7996 // If source is an exiting block, we know the exit edge is dynamically dead 7997 // in the vector loop, and thus we don't need to restrict the mask. Avoid 7998 // adding uses of an otherwise potentially dead instruction. 7999 if (OrigLoop->isLoopExiting(Src)) 8000 return EdgeMaskCache[Edge] = SrcMask; 8001 8002 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8003 assert(EdgeMask && "No Edge Mask found for condition"); 8004 8005 if (BI->getSuccessor(0) != Dst) 8006 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 8007 8008 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8009 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8010 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8011 // The select version does not introduce new UB if SrcMask is false and 8012 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8013 VPValue *False = Plan->getOrAddVPValue( 8014 ConstantInt::getFalse(BI->getCondition()->getType())); 8015 EdgeMask = 8016 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8017 } 8018 8019 return EdgeMaskCache[Edge] = EdgeMask; 8020 } 8021 8022 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8023 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8024 8025 // Look for cached value. 8026 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8027 if (BCEntryIt != BlockMaskCache.end()) 8028 return BCEntryIt->second; 8029 8030 // All-one mask is modelled as no-mask following the convention for masked 8031 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8032 VPValue *BlockMask = nullptr; 8033 8034 if (OrigLoop->getHeader() == BB) { 8035 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8036 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8037 8038 assert(CM.foldTailByMasking() && "must fold the tail"); 8039 8040 // If we're using the active lane mask for control flow, then we get the 8041 // mask from the active lane mask PHI that is cached in the VPlan. 8042 PredicationStyle EmitGetActiveLaneMask = CM.TTI.emitGetActiveLaneMask(); 8043 if (EmitGetActiveLaneMask == PredicationStyle::DataAndControlFlow) 8044 return BlockMaskCache[BB] = Plan->getActiveLaneMaskPhi(); 8045 8046 // Introduce the early-exit compare IV <= BTC to form header block mask. 8047 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8048 // constructing the desired canonical IV in the header block as its first 8049 // non-phi instructions. 8050 8051 VPBasicBlock *HeaderVPBB = 8052 Plan->getVectorLoopRegion()->getEntryBasicBlock(); 8053 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8054 auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); 8055 HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi()); 8056 8057 VPBuilder::InsertPointGuard Guard(Builder); 8058 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8059 if (EmitGetActiveLaneMask != PredicationStyle::None) { 8060 VPValue *TC = Plan->getOrCreateTripCount(); 8061 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}, 8062 nullptr, "active.lane.mask"); 8063 } else { 8064 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8065 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8066 } 8067 return BlockMaskCache[BB] = BlockMask; 8068 } 8069 8070 // This is the block mask. We OR all incoming edges. 8071 for (auto *Predecessor : predecessors(BB)) { 8072 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8073 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8074 return BlockMaskCache[BB] = EdgeMask; 8075 8076 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8077 BlockMask = EdgeMask; 8078 continue; 8079 } 8080 8081 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8082 } 8083 8084 return BlockMaskCache[BB] = BlockMask; 8085 } 8086 8087 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8088 ArrayRef<VPValue *> Operands, 8089 VFRange &Range, 8090 VPlanPtr &Plan) { 8091 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8092 "Must be called with either a load or store"); 8093 8094 auto willWiden = [&](ElementCount VF) -> bool { 8095 LoopVectorizationCostModel::InstWidening Decision = 8096 CM.getWideningDecision(I, VF); 8097 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8098 "CM decision should be taken at this point."); 8099 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8100 return true; 8101 if (CM.isScalarAfterVectorization(I, VF) || 8102 CM.isProfitableToScalarize(I, VF)) 8103 return false; 8104 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8105 }; 8106 8107 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8108 return nullptr; 8109 8110 VPValue *Mask = nullptr; 8111 if (Legal->isMaskRequired(I)) 8112 Mask = createBlockInMask(I->getParent(), Plan); 8113 8114 // Determine if the pointer operand of the access is either consecutive or 8115 // reverse consecutive. 8116 LoopVectorizationCostModel::InstWidening Decision = 8117 CM.getWideningDecision(I, Range.Start); 8118 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8119 bool Consecutive = 8120 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8121 8122 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8123 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8124 Consecutive, Reverse); 8125 8126 StoreInst *Store = cast<StoreInst>(I); 8127 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8128 Mask, Consecutive, Reverse); 8129 } 8130 8131 /// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also 8132 /// insert a recipe to expand the step for the induction recipe. 8133 static VPWidenIntOrFpInductionRecipe *createWidenInductionRecipes( 8134 PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, 8135 const InductionDescriptor &IndDesc, LoopVectorizationCostModel &CM, 8136 VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop, VFRange &Range) { 8137 // Returns true if an instruction \p I should be scalarized instead of 8138 // vectorized for the chosen vectorization factor. 8139 auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) { 8140 return CM.isScalarAfterVectorization(I, VF) || 8141 CM.isProfitableToScalarize(I, VF); 8142 }; 8143 8144 bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange( 8145 [&](ElementCount VF) { 8146 return ShouldScalarizeInstruction(PhiOrTrunc, VF); 8147 }, 8148 Range); 8149 assert(IndDesc.getStartValue() == 8150 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); 8151 assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) && 8152 "step must be loop invariant"); 8153 8154 VPValue *Step = 8155 vputils::getOrCreateVPValueForSCEVExpr(Plan, IndDesc.getStep(), SE); 8156 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { 8157 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, TruncI, 8158 !NeedsScalarIVOnly); 8159 } 8160 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); 8161 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, 8162 !NeedsScalarIVOnly); 8163 } 8164 8165 VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI( 8166 PHINode *Phi, ArrayRef<VPValue *> Operands, VPlan &Plan, VFRange &Range) { 8167 8168 // Check if this is an integer or fp induction. If so, build the recipe that 8169 // produces its scalar and vector values. 8170 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) 8171 return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, CM, Plan, 8172 *PSE.getSE(), *OrigLoop, Range); 8173 8174 // Check if this is pointer induction. If so, build the recipe for it. 8175 if (auto *II = Legal->getPointerInductionDescriptor(Phi)) 8176 return new VPWidenPointerInductionRecipe(Phi, Operands[0], *II, 8177 *PSE.getSE()); 8178 return nullptr; 8179 } 8180 8181 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8182 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, VPlan &Plan) { 8183 // Optimize the special case where the source is a constant integer 8184 // induction variable. Notice that we can only optimize the 'trunc' case 8185 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8186 // (c) other casts depend on pointer size. 8187 8188 // Determine whether \p K is a truncation based on an induction variable that 8189 // can be optimized. 8190 auto isOptimizableIVTruncate = 8191 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8192 return [=](ElementCount VF) -> bool { 8193 return CM.isOptimizableIVTruncate(K, VF); 8194 }; 8195 }; 8196 8197 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8198 isOptimizableIVTruncate(I), Range)) { 8199 8200 auto *Phi = cast<PHINode>(I->getOperand(0)); 8201 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8202 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8203 return createWidenInductionRecipes(Phi, I, Start, II, CM, Plan, 8204 *PSE.getSE(), *OrigLoop, Range); 8205 } 8206 return nullptr; 8207 } 8208 8209 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8210 ArrayRef<VPValue *> Operands, 8211 VPlanPtr &Plan) { 8212 // If all incoming values are equal, the incoming VPValue can be used directly 8213 // instead of creating a new VPBlendRecipe. 8214 VPValue *FirstIncoming = Operands[0]; 8215 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8216 return FirstIncoming == Inc; 8217 })) { 8218 return Operands[0]; 8219 } 8220 8221 unsigned NumIncoming = Phi->getNumIncomingValues(); 8222 // For in-loop reductions, we do not need to create an additional select. 8223 VPValue *InLoopVal = nullptr; 8224 for (unsigned In = 0; In < NumIncoming; In++) { 8225 PHINode *PhiOp = 8226 dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue()); 8227 if (PhiOp && CM.isInLoopReduction(PhiOp)) { 8228 assert(!InLoopVal && "Found more than one in-loop reduction!"); 8229 InLoopVal = Operands[In]; 8230 } 8231 } 8232 8233 assert((!InLoopVal || NumIncoming == 2) && 8234 "Found an in-loop reduction for PHI with unexpected number of " 8235 "incoming values"); 8236 if (InLoopVal) 8237 return Operands[Operands[0] == InLoopVal ? 1 : 0]; 8238 8239 // We know that all PHIs in non-header blocks are converted into selects, so 8240 // we don't have to worry about the insertion order and we can just use the 8241 // builder. At this point we generate the predication tree. There may be 8242 // duplications since this is a simple recursive scan, but future 8243 // optimizations will clean it up. 8244 SmallVector<VPValue *, 2> OperandsWithMask; 8245 8246 for (unsigned In = 0; In < NumIncoming; In++) { 8247 VPValue *EdgeMask = 8248 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8249 assert((EdgeMask || NumIncoming == 1) && 8250 "Multiple predecessors with one having a full mask"); 8251 OperandsWithMask.push_back(Operands[In]); 8252 if (EdgeMask) 8253 OperandsWithMask.push_back(EdgeMask); 8254 } 8255 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8256 } 8257 8258 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8259 ArrayRef<VPValue *> Operands, 8260 VFRange &Range) const { 8261 8262 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8263 [this, CI](ElementCount VF) { 8264 return CM.isScalarWithPredication(CI, VF); 8265 }, 8266 Range); 8267 8268 if (IsPredicated) 8269 return nullptr; 8270 8271 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8272 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8273 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8274 ID == Intrinsic::pseudoprobe || 8275 ID == Intrinsic::experimental_noalias_scope_decl)) 8276 return nullptr; 8277 8278 auto willWiden = [&](ElementCount VF) -> bool { 8279 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8280 // The following case may be scalarized depending on the VF. 8281 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8282 // version of the instruction. 8283 // Is it beneficial to perform intrinsic call compared to lib call? 8284 bool NeedToScalarize = false; 8285 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8286 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8287 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8288 return UseVectorIntrinsic || !NeedToScalarize; 8289 }; 8290 8291 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8292 return nullptr; 8293 8294 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8295 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8296 } 8297 8298 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8299 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8300 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8301 // Instruction should be widened, unless it is scalar after vectorization, 8302 // scalarization is profitable or it is predicated. 8303 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8304 return CM.isScalarAfterVectorization(I, VF) || 8305 CM.isProfitableToScalarize(I, VF) || 8306 CM.isScalarWithPredication(I, VF); 8307 }; 8308 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8309 Range); 8310 } 8311 8312 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8313 ArrayRef<VPValue *> Operands) const { 8314 auto IsVectorizableOpcode = [](unsigned Opcode) { 8315 switch (Opcode) { 8316 case Instruction::Add: 8317 case Instruction::And: 8318 case Instruction::AShr: 8319 case Instruction::BitCast: 8320 case Instruction::FAdd: 8321 case Instruction::FCmp: 8322 case Instruction::FDiv: 8323 case Instruction::FMul: 8324 case Instruction::FNeg: 8325 case Instruction::FPExt: 8326 case Instruction::FPToSI: 8327 case Instruction::FPToUI: 8328 case Instruction::FPTrunc: 8329 case Instruction::FRem: 8330 case Instruction::FSub: 8331 case Instruction::ICmp: 8332 case Instruction::IntToPtr: 8333 case Instruction::LShr: 8334 case Instruction::Mul: 8335 case Instruction::Or: 8336 case Instruction::PtrToInt: 8337 case Instruction::SDiv: 8338 case Instruction::Select: 8339 case Instruction::SExt: 8340 case Instruction::Shl: 8341 case Instruction::SIToFP: 8342 case Instruction::SRem: 8343 case Instruction::Sub: 8344 case Instruction::Trunc: 8345 case Instruction::UDiv: 8346 case Instruction::UIToFP: 8347 case Instruction::URem: 8348 case Instruction::Xor: 8349 case Instruction::ZExt: 8350 case Instruction::Freeze: 8351 return true; 8352 } 8353 return false; 8354 }; 8355 8356 if (!IsVectorizableOpcode(I->getOpcode())) 8357 return nullptr; 8358 8359 // Success: widen this instruction. 8360 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8361 } 8362 8363 void VPRecipeBuilder::fixHeaderPhis() { 8364 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8365 for (VPHeaderPHIRecipe *R : PhisToFix) { 8366 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8367 VPRecipeBase *IncR = 8368 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8369 R->addOperand(IncR->getVPSingleValue()); 8370 } 8371 } 8372 8373 VPBasicBlock *VPRecipeBuilder::handleReplication( 8374 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8375 VPlanPtr &Plan) { 8376 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8377 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8378 Range); 8379 8380 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8381 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); }, 8382 Range); 8383 8384 // Even if the instruction is not marked as uniform, there are certain 8385 // intrinsic calls that can be effectively treated as such, so we check for 8386 // them here. Conservatively, we only do this for scalable vectors, since 8387 // for fixed-width VFs we can always fall back on full scalarization. 8388 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8389 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8390 case Intrinsic::assume: 8391 case Intrinsic::lifetime_start: 8392 case Intrinsic::lifetime_end: 8393 // For scalable vectors if one of the operands is variant then we still 8394 // want to mark as uniform, which will generate one instruction for just 8395 // the first lane of the vector. We can't scalarize the call in the same 8396 // way as for fixed-width vectors because we don't know how many lanes 8397 // there are. 8398 // 8399 // The reasons for doing it this way for scalable vectors are: 8400 // 1. For the assume intrinsic generating the instruction for the first 8401 // lane is still be better than not generating any at all. For 8402 // example, the input may be a splat across all lanes. 8403 // 2. For the lifetime start/end intrinsics the pointer operand only 8404 // does anything useful when the input comes from a stack object, 8405 // which suggests it should always be uniform. For non-stack objects 8406 // the effect is to poison the object, which still allows us to 8407 // remove the call. 8408 IsUniform = true; 8409 break; 8410 default: 8411 break; 8412 } 8413 } 8414 8415 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8416 IsUniform, IsPredicated); 8417 8418 // Find if I uses a predicated instruction. If so, it will use its scalar 8419 // value. Avoid hoisting the insert-element which packs the scalar value into 8420 // a vector value, as that happens iff all users use the vector value. 8421 for (VPValue *Op : Recipe->operands()) { 8422 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8423 if (!PredR) 8424 continue; 8425 auto *RepR = 8426 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8427 assert(RepR->isPredicated() && 8428 "expected Replicate recipe to be predicated"); 8429 RepR->setAlsoPack(false); 8430 } 8431 8432 // Finalize the recipe for Instr, first if it is not predicated. 8433 if (!IsPredicated) { 8434 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8435 setRecipe(I, Recipe); 8436 Plan->addVPValue(I, Recipe); 8437 VPBB->appendRecipe(Recipe); 8438 return VPBB; 8439 } 8440 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8441 8442 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8443 assert(SingleSucc && "VPBB must have a single successor when handling " 8444 "predicated replication."); 8445 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8446 // Record predicated instructions for above packing optimizations. 8447 VPBlockBase *Region = createReplicateRegion(Recipe, Plan); 8448 VPBlockUtils::insertBlockAfter(Region, VPBB); 8449 auto *RegSucc = new VPBasicBlock(); 8450 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8451 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8452 return RegSucc; 8453 } 8454 8455 VPRegionBlock * 8456 VPRecipeBuilder::createReplicateRegion(VPReplicateRecipe *PredRecipe, 8457 VPlanPtr &Plan) { 8458 Instruction *Instr = PredRecipe->getUnderlyingInstr(); 8459 // Instructions marked for predication are replicated and placed under an 8460 // if-then construct to prevent side-effects. 8461 // Generate recipes to compute the block mask for this region. 8462 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8463 8464 // Build the triangular if-then region. 8465 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8466 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8467 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8468 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8469 auto *PHIRecipe = Instr->getType()->isVoidTy() 8470 ? nullptr 8471 : new VPPredInstPHIRecipe(PredRecipe); 8472 if (PHIRecipe) { 8473 setRecipe(Instr, PHIRecipe); 8474 Plan->addVPValue(Instr, PHIRecipe); 8475 } else { 8476 setRecipe(Instr, PredRecipe); 8477 Plan->addVPValue(Instr, PredRecipe); 8478 } 8479 8480 auto *Exiting = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8481 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8482 VPRegionBlock *Region = new VPRegionBlock(Entry, Exiting, RegionName, true); 8483 8484 // Note: first set Entry as region entry and then connect successors starting 8485 // from it in order, to propagate the "parent" of each VPBasicBlock. 8486 VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry); 8487 VPBlockUtils::connectBlocks(Pred, Exiting); 8488 8489 return Region; 8490 } 8491 8492 VPRecipeOrVPValueTy 8493 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8494 ArrayRef<VPValue *> Operands, 8495 VFRange &Range, VPlanPtr &Plan) { 8496 // First, check for specific widening recipes that deal with inductions, Phi 8497 // nodes, calls and memory operations. 8498 VPRecipeBase *Recipe; 8499 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8500 if (Phi->getParent() != OrigLoop->getHeader()) 8501 return tryToBlend(Phi, Operands, Plan); 8502 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, *Plan, Range))) 8503 return toVPRecipeResult(Recipe); 8504 8505 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8506 assert((Legal->isReductionVariable(Phi) || 8507 Legal->isFirstOrderRecurrence(Phi)) && 8508 "can only widen reductions and first-order recurrences here"); 8509 VPValue *StartV = Operands[0]; 8510 if (Legal->isReductionVariable(Phi)) { 8511 const RecurrenceDescriptor &RdxDesc = 8512 Legal->getReductionVars().find(Phi)->second; 8513 assert(RdxDesc.getRecurrenceStartValue() == 8514 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8515 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8516 CM.isInLoopReduction(Phi), 8517 CM.useOrderedReductions(RdxDesc)); 8518 } else { 8519 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8520 } 8521 8522 // Record the incoming value from the backedge, so we can add the incoming 8523 // value from the backedge after all recipes have been created. 8524 recordRecipeOf(cast<Instruction>( 8525 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8526 PhisToFix.push_back(PhiRecipe); 8527 return toVPRecipeResult(PhiRecipe); 8528 } 8529 8530 if (isa<TruncInst>(Instr) && 8531 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8532 Range, *Plan))) 8533 return toVPRecipeResult(Recipe); 8534 8535 // All widen recipes below deal only with VF > 1. 8536 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8537 [&](ElementCount VF) { return VF.isScalar(); }, Range)) 8538 return nullptr; 8539 8540 if (auto *CI = dyn_cast<CallInst>(Instr)) 8541 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8542 8543 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8544 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8545 8546 if (!shouldWiden(Instr, Range)) 8547 return nullptr; 8548 8549 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8550 return toVPRecipeResult(new VPWidenGEPRecipe( 8551 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8552 8553 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8554 bool InvariantCond = 8555 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8556 return toVPRecipeResult(new VPWidenSelectRecipe( 8557 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8558 } 8559 8560 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8561 } 8562 8563 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8564 ElementCount MaxVF) { 8565 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8566 8567 // Add assume instructions we need to drop to DeadInstructions, to prevent 8568 // them from being added to the VPlan. 8569 // TODO: We only need to drop assumes in blocks that get flattend. If the 8570 // control flow is preserved, we should keep them. 8571 SmallPtrSet<Instruction *, 4> DeadInstructions; 8572 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8573 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8574 8575 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8576 // Dead instructions do not need sinking. Remove them from SinkAfter. 8577 for (Instruction *I : DeadInstructions) 8578 SinkAfter.erase(I); 8579 8580 // Cannot sink instructions after dead instructions (there won't be any 8581 // recipes for them). Instead, find the first non-dead previous instruction. 8582 for (auto &P : Legal->getSinkAfter()) { 8583 Instruction *SinkTarget = P.second; 8584 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8585 (void)FirstInst; 8586 while (DeadInstructions.contains(SinkTarget)) { 8587 assert( 8588 SinkTarget != FirstInst && 8589 "Must find a live instruction (at least the one feeding the " 8590 "first-order recurrence PHI) before reaching beginning of the block"); 8591 SinkTarget = SinkTarget->getPrevNode(); 8592 assert(SinkTarget != P.first && 8593 "sink source equals target, no sinking required"); 8594 } 8595 P.second = SinkTarget; 8596 } 8597 8598 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8599 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8600 VFRange SubRange = {VF, MaxVFPlusOne}; 8601 VPlans.push_back( 8602 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8603 VF = SubRange.End; 8604 } 8605 } 8606 8607 // Add the necessary canonical IV and branch recipes required to control the 8608 // loop. 8609 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8610 bool HasNUW, 8611 bool UseLaneMaskForLoopControlFlow) { 8612 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8613 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8614 8615 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header. 8616 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8617 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8618 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8619 Header->insert(CanonicalIVPHI, Header->begin()); 8620 8621 // Add a CanonicalIVIncrement{NUW} VPInstruction to increment the scalar 8622 // IV by VF * UF. 8623 auto *CanonicalIVIncrement = 8624 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8625 : VPInstruction::CanonicalIVIncrement, 8626 {CanonicalIVPHI}, DL, "index.next"); 8627 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8628 8629 VPBasicBlock *EB = TopRegion->getExitingBasicBlock(); 8630 EB->appendRecipe(CanonicalIVIncrement); 8631 8632 if (UseLaneMaskForLoopControlFlow) { 8633 // Create the active lane mask instruction in the vplan preheader. 8634 VPBasicBlock *Preheader = Plan.getEntry()->getEntryBasicBlock(); 8635 8636 // We can't use StartV directly in the ActiveLaneMask VPInstruction, since 8637 // we have to take unrolling into account. Each part needs to start at 8638 // Part * VF 8639 auto *CanonicalIVIncrementParts = 8640 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementForPartNUW 8641 : VPInstruction::CanonicalIVIncrementForPart, 8642 {StartV}, DL, "index.part.next"); 8643 Preheader->appendRecipe(CanonicalIVIncrementParts); 8644 8645 // Create the ActiveLaneMask instruction using the correct start values. 8646 VPValue *TC = Plan.getOrCreateTripCount(); 8647 auto *EntryALM = new VPInstruction(VPInstruction::ActiveLaneMask, 8648 {CanonicalIVIncrementParts, TC}, DL, 8649 "active.lane.mask.entry"); 8650 Preheader->appendRecipe(EntryALM); 8651 8652 // Now create the ActiveLaneMaskPhi recipe in the main loop using the 8653 // preheader ActiveLaneMask instruction. 8654 auto *LaneMaskPhi = new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc()); 8655 Header->insert(LaneMaskPhi, Header->getFirstNonPhi()); 8656 8657 // Create the active lane mask for the next iteration of the loop. 8658 CanonicalIVIncrementParts = 8659 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementForPartNUW 8660 : VPInstruction::CanonicalIVIncrementForPart, 8661 {CanonicalIVIncrement}, DL); 8662 EB->appendRecipe(CanonicalIVIncrementParts); 8663 8664 auto *ALM = new VPInstruction(VPInstruction::ActiveLaneMask, 8665 {CanonicalIVIncrementParts, TC}, DL, 8666 "active.lane.mask.next"); 8667 EB->appendRecipe(ALM); 8668 LaneMaskPhi->addOperand(ALM); 8669 8670 // We have to invert the mask here because a true condition means jumping 8671 // to the exit block. 8672 auto *NotMask = new VPInstruction(VPInstruction::Not, ALM, DL); 8673 EB->appendRecipe(NotMask); 8674 8675 VPInstruction *BranchBack = 8676 new VPInstruction(VPInstruction::BranchOnCond, {NotMask}, DL); 8677 EB->appendRecipe(BranchBack); 8678 } else { 8679 // Add the BranchOnCount VPInstruction to the latch. 8680 VPInstruction *BranchBack = new VPInstruction( 8681 VPInstruction::BranchOnCount, 8682 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 8683 EB->appendRecipe(BranchBack); 8684 } 8685 } 8686 8687 // Add exit values to \p Plan. VPLiveOuts are added for each LCSSA phi in the 8688 // original exit block. 8689 static void addUsersInExitBlock(VPBasicBlock *HeaderVPBB, 8690 VPBasicBlock *MiddleVPBB, Loop *OrigLoop, 8691 VPlan &Plan) { 8692 BasicBlock *ExitBB = OrigLoop->getUniqueExitBlock(); 8693 BasicBlock *ExitingBB = OrigLoop->getExitingBlock(); 8694 // Only handle single-exit loops with unique exit blocks for now. 8695 if (!ExitBB || !ExitBB->getSinglePredecessor() || !ExitingBB) 8696 return; 8697 8698 // Introduce VPUsers modeling the exit values. 8699 for (PHINode &ExitPhi : ExitBB->phis()) { 8700 Value *IncomingValue = 8701 ExitPhi.getIncomingValueForBlock(ExitingBB); 8702 VPValue *V = Plan.getOrAddVPValue(IncomingValue, true); 8703 Plan.addLiveOut(&ExitPhi, V); 8704 } 8705 } 8706 8707 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8708 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8709 const MapVector<Instruction *, Instruction *> &SinkAfter) { 8710 8711 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8712 8713 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8714 8715 // --------------------------------------------------------------------------- 8716 // Pre-construction: record ingredients whose recipes we'll need to further 8717 // process after constructing the initial VPlan. 8718 // --------------------------------------------------------------------------- 8719 8720 // Mark instructions we'll need to sink later and their targets as 8721 // ingredients whose recipe we'll need to record. 8722 for (auto &Entry : SinkAfter) { 8723 RecipeBuilder.recordRecipeOf(Entry.first); 8724 RecipeBuilder.recordRecipeOf(Entry.second); 8725 } 8726 for (auto &Reduction : CM.getInLoopReductionChains()) { 8727 PHINode *Phi = Reduction.first; 8728 RecurKind Kind = 8729 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 8730 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8731 8732 RecipeBuilder.recordRecipeOf(Phi); 8733 for (auto &R : ReductionOperations) { 8734 RecipeBuilder.recordRecipeOf(R); 8735 // For min/max reductions, where we have a pair of icmp/select, we also 8736 // need to record the ICmp recipe, so it can be removed later. 8737 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 8738 "Only min/max recurrences allowed for inloop reductions"); 8739 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 8740 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8741 } 8742 } 8743 8744 // For each interleave group which is relevant for this (possibly trimmed) 8745 // Range, add it to the set of groups to be later applied to the VPlan and add 8746 // placeholders for its members' Recipes which we'll be replacing with a 8747 // single VPInterleaveRecipe. 8748 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8749 auto applyIG = [IG, this](ElementCount VF) -> bool { 8750 return (VF.isVector() && // Query is illegal for VF == 1 8751 CM.getWideningDecision(IG->getInsertPos(), VF) == 8752 LoopVectorizationCostModel::CM_Interleave); 8753 }; 8754 if (!getDecisionAndClampRange(applyIG, Range)) 8755 continue; 8756 InterleaveGroups.insert(IG); 8757 for (unsigned i = 0; i < IG->getFactor(); i++) 8758 if (Instruction *Member = IG->getMember(i)) 8759 RecipeBuilder.recordRecipeOf(Member); 8760 }; 8761 8762 // --------------------------------------------------------------------------- 8763 // Build initial VPlan: Scan the body of the loop in a topological order to 8764 // visit each basic block after having visited its predecessor basic blocks. 8765 // --------------------------------------------------------------------------- 8766 8767 // Create initial VPlan skeleton, starting with a block for the pre-header, 8768 // followed by a region for the vector loop, followed by the middle block. The 8769 // skeleton vector loop region contains a header and latch block. 8770 VPBasicBlock *Preheader = new VPBasicBlock("vector.ph"); 8771 auto Plan = std::make_unique<VPlan>(Preheader); 8772 8773 VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body"); 8774 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 8775 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 8776 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 8777 VPBlockUtils::insertBlockAfter(TopRegion, Preheader); 8778 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); 8779 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 8780 8781 Instruction *DLInst = 8782 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 8783 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 8784 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 8785 !CM.foldTailByMasking(), 8786 CM.useActiveLaneMaskForControlFlow()); 8787 8788 // Scan the body of the loop in a topological order to visit each basic block 8789 // after having visited its predecessor basic blocks. 8790 LoopBlocksDFS DFS(OrigLoop); 8791 DFS.perform(LI); 8792 8793 VPBasicBlock *VPBB = HeaderVPBB; 8794 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 8795 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8796 // Relevant instructions from basic block BB will be grouped into VPRecipe 8797 // ingredients and fill a new VPBasicBlock. 8798 unsigned VPBBsForBB = 0; 8799 if (VPBB != HeaderVPBB) 8800 VPBB->setName(BB->getName()); 8801 Builder.setInsertPoint(VPBB); 8802 8803 // Introduce each ingredient into VPlan. 8804 // TODO: Model and preserve debug intrinsics in VPlan. 8805 for (Instruction &I : BB->instructionsWithoutDebug()) { 8806 Instruction *Instr = &I; 8807 8808 // First filter out irrelevant instructions, to ensure no recipes are 8809 // built for them. 8810 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 8811 continue; 8812 8813 SmallVector<VPValue *, 4> Operands; 8814 auto *Phi = dyn_cast<PHINode>(Instr); 8815 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 8816 Operands.push_back(Plan->getOrAddVPValue( 8817 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 8818 } else { 8819 auto OpRange = Plan->mapToVPValues(Instr->operands()); 8820 Operands = {OpRange.begin(), OpRange.end()}; 8821 } 8822 8823 // Invariant stores inside loop will be deleted and a single store 8824 // with the final reduction value will be added to the exit block 8825 StoreInst *SI; 8826 if ((SI = dyn_cast<StoreInst>(&I)) && 8827 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) 8828 continue; 8829 8830 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 8831 Instr, Operands, Range, Plan)) { 8832 // If Instr can be simplified to an existing VPValue, use it. 8833 if (RecipeOrValue.is<VPValue *>()) { 8834 auto *VPV = RecipeOrValue.get<VPValue *>(); 8835 Plan->addVPValue(Instr, VPV); 8836 // If the re-used value is a recipe, register the recipe for the 8837 // instruction, in case the recipe for Instr needs to be recorded. 8838 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 8839 RecipeBuilder.setRecipe(Instr, R); 8840 continue; 8841 } 8842 // Otherwise, add the new recipe. 8843 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 8844 for (auto *Def : Recipe->definedValues()) { 8845 auto *UV = Def->getUnderlyingValue(); 8846 Plan->addVPValue(UV, Def); 8847 } 8848 8849 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 8850 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 8851 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 8852 // of the header block. That can happen for truncates of induction 8853 // variables. Those recipes are moved to the phi section of the header 8854 // block after applying SinkAfter, which relies on the original 8855 // position of the trunc. 8856 assert(isa<TruncInst>(Instr)); 8857 InductionsToMove.push_back( 8858 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 8859 } 8860 RecipeBuilder.setRecipe(Instr, Recipe); 8861 VPBB->appendRecipe(Recipe); 8862 continue; 8863 } 8864 8865 // Otherwise, if all widening options failed, Instruction is to be 8866 // replicated. This may create a successor for VPBB. 8867 VPBasicBlock *NextVPBB = 8868 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 8869 if (NextVPBB != VPBB) { 8870 VPBB = NextVPBB; 8871 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8872 : ""); 8873 } 8874 } 8875 8876 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 8877 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 8878 } 8879 8880 HeaderVPBB->setName("vector.body"); 8881 8882 // Fold the last, empty block into its predecessor. 8883 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 8884 assert(VPBB && "expected to fold last (empty) block"); 8885 // After here, VPBB should not be used. 8886 VPBB = nullptr; 8887 8888 addUsersInExitBlock(HeaderVPBB, MiddleVPBB, OrigLoop, *Plan); 8889 8890 assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) && 8891 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() && 8892 "entry block must be set to a VPRegionBlock having a non-empty entry " 8893 "VPBasicBlock"); 8894 RecipeBuilder.fixHeaderPhis(); 8895 8896 // --------------------------------------------------------------------------- 8897 // Transform initial VPlan: Apply previously taken decisions, in order, to 8898 // bring the VPlan to its final state. 8899 // --------------------------------------------------------------------------- 8900 8901 // Apply Sink-After legal constraints. 8902 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 8903 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 8904 if (Region && Region->isReplicator()) { 8905 assert(Region->getNumSuccessors() == 1 && 8906 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 8907 assert(R->getParent()->size() == 1 && 8908 "A recipe in an original replicator region must be the only " 8909 "recipe in its block"); 8910 return Region; 8911 } 8912 return nullptr; 8913 }; 8914 for (auto &Entry : SinkAfter) { 8915 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 8916 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 8917 8918 auto *TargetRegion = GetReplicateRegion(Target); 8919 auto *SinkRegion = GetReplicateRegion(Sink); 8920 if (!SinkRegion) { 8921 // If the sink source is not a replicate region, sink the recipe directly. 8922 if (TargetRegion) { 8923 // The target is in a replication region, make sure to move Sink to 8924 // the block after it, not into the replication region itself. 8925 VPBasicBlock *NextBlock = 8926 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 8927 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 8928 } else 8929 Sink->moveAfter(Target); 8930 continue; 8931 } 8932 8933 // The sink source is in a replicate region. Unhook the region from the CFG. 8934 auto *SinkPred = SinkRegion->getSinglePredecessor(); 8935 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 8936 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 8937 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 8938 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 8939 8940 if (TargetRegion) { 8941 // The target recipe is also in a replicate region, move the sink region 8942 // after the target region. 8943 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 8944 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 8945 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 8946 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 8947 } else { 8948 // The sink source is in a replicate region, we need to move the whole 8949 // replicate region, which should only contain a single recipe in the 8950 // main block. 8951 auto *SplitBlock = 8952 Target->getParent()->splitAt(std::next(Target->getIterator())); 8953 8954 auto *SplitPred = SplitBlock->getSinglePredecessor(); 8955 8956 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 8957 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 8958 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 8959 } 8960 } 8961 8962 VPlanTransforms::removeRedundantCanonicalIVs(*Plan); 8963 VPlanTransforms::removeRedundantInductionCasts(*Plan); 8964 8965 // Now that sink-after is done, move induction recipes for optimized truncates 8966 // to the phi section of the header block. 8967 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 8968 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 8969 8970 // Adjust the recipes for any inloop reductions. 8971 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExiting()), Plan, 8972 RecipeBuilder, Range.Start); 8973 8974 // Introduce a recipe to combine the incoming and previous values of a 8975 // first-order recurrence. 8976 for (VPRecipeBase &R : 8977 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 8978 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 8979 if (!RecurPhi) 8980 continue; 8981 8982 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 8983 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 8984 auto *Region = GetReplicateRegion(PrevRecipe); 8985 if (Region) 8986 InsertBlock = dyn_cast<VPBasicBlock>(Region->getSingleSuccessor()); 8987 if (!InsertBlock) { 8988 InsertBlock = new VPBasicBlock(Region->getName() + ".succ"); 8989 VPBlockUtils::insertBlockAfter(InsertBlock, Region); 8990 } 8991 if (Region || PrevRecipe->isPhi()) 8992 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 8993 else 8994 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 8995 8996 auto *RecurSplice = cast<VPInstruction>( 8997 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 8998 {RecurPhi, RecurPhi->getBackedgeValue()})); 8999 9000 RecurPhi->replaceAllUsesWith(RecurSplice); 9001 // Set the first operand of RecurSplice to RecurPhi again, after replacing 9002 // all users. 9003 RecurSplice->setOperand(0, RecurPhi); 9004 } 9005 9006 // Interleave memory: for each Interleave Group we marked earlier as relevant 9007 // for this VPlan, replace the Recipes widening its memory instructions with a 9008 // single VPInterleaveRecipe at its insertion point. 9009 for (auto IG : InterleaveGroups) { 9010 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9011 RecipeBuilder.getRecipe(IG->getInsertPos())); 9012 SmallVector<VPValue *, 4> StoredValues; 9013 for (unsigned i = 0; i < IG->getFactor(); ++i) 9014 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9015 auto *StoreR = 9016 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9017 StoredValues.push_back(StoreR->getStoredValue()); 9018 } 9019 9020 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9021 Recipe->getMask()); 9022 VPIG->insertBefore(Recipe); 9023 unsigned J = 0; 9024 for (unsigned i = 0; i < IG->getFactor(); ++i) 9025 if (Instruction *Member = IG->getMember(i)) { 9026 if (!Member->getType()->isVoidTy()) { 9027 VPValue *OriginalV = Plan->getVPValue(Member); 9028 Plan->removeVPValueFor(Member); 9029 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9030 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9031 J++; 9032 } 9033 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9034 } 9035 } 9036 9037 std::string PlanName; 9038 raw_string_ostream RSO(PlanName); 9039 ElementCount VF = Range.Start; 9040 Plan->addVF(VF); 9041 RSO << "Initial VPlan for VF={" << VF; 9042 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9043 Plan->addVF(VF); 9044 RSO << "," << VF; 9045 } 9046 RSO << "},UF>=1"; 9047 RSO.flush(); 9048 Plan->setName(PlanName); 9049 9050 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9051 // in ways that accessing values using original IR values is incorrect. 9052 Plan->disableValue2VPValue(); 9053 9054 VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE()); 9055 VPlanTransforms::sinkScalarOperands(*Plan); 9056 VPlanTransforms::removeDeadRecipes(*Plan); 9057 VPlanTransforms::mergeReplicateRegions(*Plan); 9058 VPlanTransforms::removeRedundantExpandSCEVRecipes(*Plan); 9059 9060 // Fold Exit block into its predecessor if possible. 9061 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9062 // VPBasicBlock as exit. 9063 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExiting()); 9064 9065 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9066 return Plan; 9067 } 9068 9069 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9070 // Outer loop handling: They may require CFG and instruction level 9071 // transformations before even evaluating whether vectorization is profitable. 9072 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9073 // the vectorization pipeline. 9074 assert(!OrigLoop->isInnermost()); 9075 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9076 9077 // Create new empty VPlan 9078 auto Plan = std::make_unique<VPlan>(); 9079 9080 // Build hierarchical CFG 9081 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9082 HCFGBuilder.buildHierarchicalCFG(); 9083 9084 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9085 VF *= 2) 9086 Plan->addVF(VF); 9087 9088 SmallPtrSet<Instruction *, 1> DeadInstructions; 9089 VPlanTransforms::VPInstructionsToVPRecipes( 9090 OrigLoop, Plan, 9091 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9092 DeadInstructions, *PSE.getSE()); 9093 9094 // Remove the existing terminator of the exiting block of the top-most region. 9095 // A BranchOnCount will be added instead when adding the canonical IV recipes. 9096 auto *Term = 9097 Plan->getVectorLoopRegion()->getExitingBasicBlock()->getTerminator(); 9098 Term->eraseFromParent(); 9099 9100 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9101 true, CM.useActiveLaneMaskForControlFlow()); 9102 return Plan; 9103 } 9104 9105 // Adjust the recipes for reductions. For in-loop reductions the chain of 9106 // instructions leading from the loop exit instr to the phi need to be converted 9107 // to reductions, with one operand being vector and the other being the scalar 9108 // reduction chain. For other reductions, a select is introduced between the phi 9109 // and live-out recipes when folding the tail. 9110 void LoopVectorizationPlanner::adjustRecipesForReductions( 9111 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9112 ElementCount MinVF) { 9113 for (auto &Reduction : CM.getInLoopReductionChains()) { 9114 PHINode *Phi = Reduction.first; 9115 const RecurrenceDescriptor &RdxDesc = 9116 Legal->getReductionVars().find(Phi)->second; 9117 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9118 9119 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9120 continue; 9121 9122 // ReductionOperations are orders top-down from the phi's use to the 9123 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9124 // which of the two operands will remain scalar and which will be reduced. 9125 // For minmax the chain will be the select instructions. 9126 Instruction *Chain = Phi; 9127 for (Instruction *R : ReductionOperations) { 9128 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9129 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9130 9131 VPValue *ChainOp = Plan->getVPValue(Chain); 9132 unsigned FirstOpId; 9133 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9134 "Only min/max recurrences allowed for inloop reductions"); 9135 // Recognize a call to the llvm.fmuladd intrinsic. 9136 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9137 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9138 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9139 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9140 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9141 "Expected to replace a VPWidenSelectSC"); 9142 FirstOpId = 1; 9143 } else { 9144 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9145 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9146 "Expected to replace a VPWidenSC"); 9147 FirstOpId = 0; 9148 } 9149 unsigned VecOpId = 9150 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9151 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9152 9153 auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent()) 9154 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9155 : nullptr; 9156 9157 if (IsFMulAdd) { 9158 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9159 // need to create an fmul recipe to use as the vector operand for the 9160 // fadd reduction. 9161 VPInstruction *FMulRecipe = new VPInstruction( 9162 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9163 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9164 WidenRecipe->getParent()->insert(FMulRecipe, 9165 WidenRecipe->getIterator()); 9166 VecOp = FMulRecipe; 9167 } 9168 VPReductionRecipe *RedRecipe = 9169 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9170 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9171 Plan->removeVPValueFor(R); 9172 Plan->addVPValue(R, RedRecipe); 9173 // Append the recipe to the end of the VPBasicBlock because we need to 9174 // ensure that it comes after all of it's inputs, including CondOp. 9175 WidenRecipe->getParent()->appendRecipe(RedRecipe); 9176 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9177 WidenRecipe->eraseFromParent(); 9178 9179 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9180 VPRecipeBase *CompareRecipe = 9181 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9182 assert(isa<VPWidenRecipe>(CompareRecipe) && 9183 "Expected to replace a VPWidenSC"); 9184 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9185 "Expected no remaining users"); 9186 CompareRecipe->eraseFromParent(); 9187 } 9188 Chain = R; 9189 } 9190 } 9191 9192 // If tail is folded by masking, introduce selects between the phi 9193 // and the live-out instruction of each reduction, at the beginning of the 9194 // dedicated latch block. 9195 if (CM.foldTailByMasking()) { 9196 Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); 9197 for (VPRecipeBase &R : 9198 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 9199 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9200 if (!PhiR || PhiR->isInLoop()) 9201 continue; 9202 VPValue *Cond = 9203 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9204 VPValue *Red = PhiR->getBackedgeValue(); 9205 assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB && 9206 "reduction recipe must be defined before latch"); 9207 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9208 } 9209 } 9210 } 9211 9212 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9213 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9214 VPSlotTracker &SlotTracker) const { 9215 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9216 IG->getInsertPos()->printAsOperand(O, false); 9217 O << ", "; 9218 getAddr()->printAsOperand(O, SlotTracker); 9219 VPValue *Mask = getMask(); 9220 if (Mask) { 9221 O << ", "; 9222 Mask->printAsOperand(O, SlotTracker); 9223 } 9224 9225 unsigned OpIdx = 0; 9226 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9227 if (!IG->getMember(i)) 9228 continue; 9229 if (getNumStoreOperands() > 0) { 9230 O << "\n" << Indent << " store "; 9231 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9232 O << " to index " << i; 9233 } else { 9234 O << "\n" << Indent << " "; 9235 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9236 O << " = load from index " << i; 9237 } 9238 ++OpIdx; 9239 } 9240 } 9241 #endif 9242 9243 void VPWidenCallRecipe::execute(VPTransformState &State) { 9244 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9245 *this, State); 9246 } 9247 9248 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9249 assert(!State.Instance && "Int or FP induction being replicated."); 9250 9251 Value *Start = getStartValue()->getLiveInIRValue(); 9252 const InductionDescriptor &ID = getInductionDescriptor(); 9253 TruncInst *Trunc = getTruncInst(); 9254 IRBuilderBase &Builder = State.Builder; 9255 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 9256 assert(State.VF.isVector() && "must have vector VF"); 9257 9258 // The value from the original loop to which we are mapping the new induction 9259 // variable. 9260 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 9261 9262 // Fast-math-flags propagate from the original induction instruction. 9263 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9264 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 9265 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 9266 9267 // Now do the actual transformations, and start with fetching the step value. 9268 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9269 9270 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 9271 "Expected either an induction phi-node or a truncate of it!"); 9272 9273 // Construct the initial value of the vector IV in the vector loop preheader 9274 auto CurrIP = Builder.saveIP(); 9275 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 9276 Builder.SetInsertPoint(VectorPH->getTerminator()); 9277 if (isa<TruncInst>(EntryVal)) { 9278 assert(Start->getType()->isIntegerTy() && 9279 "Truncation requires an integer type"); 9280 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 9281 Step = Builder.CreateTrunc(Step, TruncType); 9282 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 9283 } 9284 9285 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 9286 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 9287 Value *SteppedStart = getStepVector( 9288 SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder); 9289 9290 // We create vector phi nodes for both integer and floating-point induction 9291 // variables. Here, we determine the kind of arithmetic we will perform. 9292 Instruction::BinaryOps AddOp; 9293 Instruction::BinaryOps MulOp; 9294 if (Step->getType()->isIntegerTy()) { 9295 AddOp = Instruction::Add; 9296 MulOp = Instruction::Mul; 9297 } else { 9298 AddOp = ID.getInductionOpcode(); 9299 MulOp = Instruction::FMul; 9300 } 9301 9302 // Multiply the vectorization factor by the step using integer or 9303 // floating-point arithmetic as appropriate. 9304 Type *StepType = Step->getType(); 9305 Value *RuntimeVF; 9306 if (Step->getType()->isFloatingPointTy()) 9307 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 9308 else 9309 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 9310 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 9311 9312 // Create a vector splat to use in the induction update. 9313 // 9314 // FIXME: If the step is non-constant, we create the vector splat with 9315 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 9316 // handle a constant vector splat. 9317 Value *SplatVF = isa<Constant>(Mul) 9318 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 9319 : Builder.CreateVectorSplat(State.VF, Mul); 9320 Builder.restoreIP(CurrIP); 9321 9322 // We may need to add the step a number of times, depending on the unroll 9323 // factor. The last of those goes into the PHI. 9324 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 9325 &*State.CFG.PrevBB->getFirstInsertionPt()); 9326 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 9327 Instruction *LastInduction = VecInd; 9328 for (unsigned Part = 0; Part < State.UF; ++Part) { 9329 State.set(this, LastInduction, Part); 9330 9331 if (isa<TruncInst>(EntryVal)) 9332 State.addMetadata(LastInduction, EntryVal); 9333 9334 LastInduction = cast<Instruction>( 9335 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 9336 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 9337 } 9338 9339 LastInduction->setName("vec.ind.next"); 9340 VecInd->addIncoming(SteppedStart, VectorPH); 9341 // Add induction update using an incorrect block temporarily. The phi node 9342 // will be fixed after VPlan execution. Note that at this point the latch 9343 // block cannot be used, as it does not exist yet. 9344 // TODO: Model increment value in VPlan, by turning the recipe into a 9345 // multi-def and a subclass of VPHeaderPHIRecipe. 9346 VecInd->addIncoming(LastInduction, VectorPH); 9347 } 9348 9349 void VPWidenPointerInductionRecipe::execute(VPTransformState &State) { 9350 assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction && 9351 "Not a pointer induction according to InductionDescriptor!"); 9352 assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() && 9353 "Unexpected type."); 9354 9355 auto *IVR = getParent()->getPlan()->getCanonicalIV(); 9356 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 9357 9358 if (onlyScalarsGenerated(State.VF)) { 9359 // This is the normalized GEP that starts counting at zero. 9360 Value *PtrInd = State.Builder.CreateSExtOrTrunc( 9361 CanonicalIV, IndDesc.getStep()->getType()); 9362 // Determine the number of scalars we need to generate for each unroll 9363 // iteration. If the instruction is uniform, we only need to generate the 9364 // first lane. Otherwise, we generate all VF values. 9365 bool IsUniform = vputils::onlyFirstLaneUsed(this); 9366 assert((IsUniform || !State.VF.isScalable()) && 9367 "Cannot scalarize a scalable VF"); 9368 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 9369 9370 for (unsigned Part = 0; Part < State.UF; ++Part) { 9371 Value *PartStart = 9372 createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part); 9373 9374 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 9375 Value *Idx = State.Builder.CreateAdd( 9376 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 9377 Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx); 9378 9379 Value *Step = CreateStepValue(IndDesc.getStep(), SE, 9380 State.CFG.PrevBB->getTerminator()); 9381 Value *SclrGep = emitTransformedIndex( 9382 State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc); 9383 SclrGep->setName("next.gep"); 9384 State.set(this, SclrGep, VPIteration(Part, Lane)); 9385 } 9386 } 9387 return; 9388 } 9389 9390 assert(isa<SCEVConstant>(IndDesc.getStep()) && 9391 "Induction step not a SCEV constant!"); 9392 Type *PhiType = IndDesc.getStep()->getType(); 9393 9394 // Build a pointer phi 9395 Value *ScalarStartValue = getStartValue()->getLiveInIRValue(); 9396 Type *ScStValueType = ScalarStartValue->getType(); 9397 PHINode *NewPointerPhi = 9398 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 9399 9400 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 9401 NewPointerPhi->addIncoming(ScalarStartValue, VectorPH); 9402 9403 // A pointer induction, performed by using a gep 9404 const DataLayout &DL = NewPointerPhi->getModule()->getDataLayout(); 9405 Instruction *InductionLoc = &*State.Builder.GetInsertPoint(); 9406 9407 const SCEV *ScalarStep = IndDesc.getStep(); 9408 SCEVExpander Exp(SE, DL, "induction"); 9409 Value *ScalarStepValue = Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 9410 Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF); 9411 Value *NumUnrolledElems = 9412 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 9413 Value *InductionGEP = GetElementPtrInst::Create( 9414 IndDesc.getElementType(), NewPointerPhi, 9415 State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 9416 InductionLoc); 9417 // Add induction update using an incorrect block temporarily. The phi node 9418 // will be fixed after VPlan execution. Note that at this point the latch 9419 // block cannot be used, as it does not exist yet. 9420 // TODO: Model increment value in VPlan, by turning the recipe into a 9421 // multi-def and a subclass of VPHeaderPHIRecipe. 9422 NewPointerPhi->addIncoming(InductionGEP, VectorPH); 9423 9424 // Create UF many actual address geps that use the pointer 9425 // phi as base and a vectorized version of the step value 9426 // (<step*0, ..., step*N>) as offset. 9427 for (unsigned Part = 0; Part < State.UF; ++Part) { 9428 Type *VecPhiType = VectorType::get(PhiType, State.VF); 9429 Value *StartOffsetScalar = 9430 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 9431 Value *StartOffset = 9432 State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 9433 // Create a vector of consecutive numbers from zero to VF. 9434 StartOffset = State.Builder.CreateAdd( 9435 StartOffset, State.Builder.CreateStepVector(VecPhiType)); 9436 9437 Value *GEP = State.Builder.CreateGEP( 9438 IndDesc.getElementType(), NewPointerPhi, 9439 State.Builder.CreateMul( 9440 StartOffset, 9441 State.Builder.CreateVectorSplat(State.VF, ScalarStepValue), 9442 "vector.gep")); 9443 State.set(this, GEP, Part); 9444 } 9445 } 9446 9447 void VPScalarIVStepsRecipe::execute(VPTransformState &State) { 9448 assert(!State.Instance && "VPScalarIVStepsRecipe being replicated."); 9449 9450 // Fast-math-flags propagate from the original induction instruction. 9451 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder); 9452 if (IndDesc.getInductionBinOp() && 9453 isa<FPMathOperator>(IndDesc.getInductionBinOp())) 9454 State.Builder.setFastMathFlags( 9455 IndDesc.getInductionBinOp()->getFastMathFlags()); 9456 9457 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9458 auto CreateScalarIV = [&](Value *&Step) -> Value * { 9459 Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0)); 9460 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9461 if (!isCanonical() || CanonicalIV->getType() != Ty) { 9462 ScalarIV = 9463 Ty->isIntegerTy() 9464 ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty) 9465 : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty); 9466 ScalarIV = emitTransformedIndex(State.Builder, ScalarIV, 9467 getStartValue()->getLiveInIRValue(), Step, 9468 IndDesc); 9469 ScalarIV->setName("offset.idx"); 9470 } 9471 if (TruncToTy) { 9472 assert(Step->getType()->isIntegerTy() && 9473 "Truncation requires an integer step"); 9474 ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy); 9475 Step = State.Builder.CreateTrunc(Step, TruncToTy); 9476 } 9477 return ScalarIV; 9478 }; 9479 9480 Value *ScalarIV = CreateScalarIV(Step); 9481 if (State.VF.isVector()) { 9482 buildScalarSteps(ScalarIV, Step, IndDesc, this, State); 9483 return; 9484 } 9485 9486 for (unsigned Part = 0; Part < State.UF; ++Part) { 9487 assert(!State.VF.isScalable() && "scalable vectors not yet supported."); 9488 Value *EntryPart; 9489 if (Step->getType()->isFloatingPointTy()) { 9490 Value *StartIdx = 9491 getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part); 9492 // Floating-point operations inherit FMF via the builder's flags. 9493 Value *MulOp = State.Builder.CreateFMul(StartIdx, Step); 9494 EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(), 9495 ScalarIV, MulOp); 9496 } else { 9497 Value *StartIdx = 9498 getRuntimeVF(State.Builder, Step->getType(), State.VF * Part); 9499 EntryPart = State.Builder.CreateAdd( 9500 ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction"); 9501 } 9502 State.set(this, EntryPart, Part); 9503 } 9504 } 9505 9506 void VPInterleaveRecipe::execute(VPTransformState &State) { 9507 assert(!State.Instance && "Interleave group being replicated."); 9508 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9509 getStoredValues(), getMask()); 9510 } 9511 9512 void VPReductionRecipe::execute(VPTransformState &State) { 9513 assert(!State.Instance && "Reduction being replicated."); 9514 Value *PrevInChain = State.get(getChainOp(), 0); 9515 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9516 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9517 // Propagate the fast-math flags carried by the underlying instruction. 9518 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9519 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9520 for (unsigned Part = 0; Part < State.UF; ++Part) { 9521 Value *NewVecOp = State.get(getVecOp(), Part); 9522 if (VPValue *Cond = getCondOp()) { 9523 Value *NewCond = State.get(Cond, Part); 9524 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9525 Value *Iden = RdxDesc->getRecurrenceIdentity( 9526 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9527 Value *IdenVec = 9528 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9529 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9530 NewVecOp = Select; 9531 } 9532 Value *NewRed; 9533 Value *NextInChain; 9534 if (IsOrdered) { 9535 if (State.VF.isVector()) 9536 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9537 PrevInChain); 9538 else 9539 NewRed = State.Builder.CreateBinOp( 9540 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9541 NewVecOp); 9542 PrevInChain = NewRed; 9543 } else { 9544 PrevInChain = State.get(getChainOp(), Part); 9545 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9546 } 9547 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9548 NextInChain = 9549 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9550 NewRed, PrevInChain); 9551 } else if (IsOrdered) 9552 NextInChain = NewRed; 9553 else 9554 NextInChain = State.Builder.CreateBinOp( 9555 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9556 PrevInChain); 9557 State.set(this, NextInChain, Part); 9558 } 9559 } 9560 9561 void VPReplicateRecipe::execute(VPTransformState &State) { 9562 if (State.Instance) { // Generate a single instance. 9563 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9564 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9565 IsPredicated, State); 9566 // Insert scalar instance packing it into a vector. 9567 if (AlsoPack && State.VF.isVector()) { 9568 // If we're constructing lane 0, initialize to start from poison. 9569 if (State.Instance->Lane.isFirstLane()) { 9570 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9571 Value *Poison = PoisonValue::get( 9572 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9573 State.set(this, Poison, State.Instance->Part); 9574 } 9575 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9576 } 9577 return; 9578 } 9579 9580 // Generate scalar instances for all VF lanes of all UF parts, unless the 9581 // instruction is uniform inwhich case generate only the first lane for each 9582 // of the UF parts. 9583 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9584 assert((!State.VF.isScalable() || IsUniform) && 9585 "Can't scalarize a scalable vector"); 9586 for (unsigned Part = 0; Part < State.UF; ++Part) 9587 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9588 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9589 VPIteration(Part, Lane), IsPredicated, 9590 State); 9591 } 9592 9593 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9594 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9595 9596 // Attempt to issue a wide load. 9597 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9598 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9599 9600 assert((LI || SI) && "Invalid Load/Store instruction"); 9601 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9602 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9603 9604 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9605 9606 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9607 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9608 bool CreateGatherScatter = !Consecutive; 9609 9610 auto &Builder = State.Builder; 9611 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9612 bool isMaskRequired = getMask(); 9613 if (isMaskRequired) 9614 for (unsigned Part = 0; Part < State.UF; ++Part) 9615 BlockInMaskParts[Part] = State.get(getMask(), Part); 9616 9617 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9618 // Calculate the pointer for the specific unroll-part. 9619 GetElementPtrInst *PartPtr = nullptr; 9620 9621 bool InBounds = false; 9622 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9623 InBounds = gep->isInBounds(); 9624 if (Reverse) { 9625 // If the address is consecutive but reversed, then the 9626 // wide store needs to start at the last vector element. 9627 // RunTimeVF = VScale * VF.getKnownMinValue() 9628 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9629 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9630 // NumElt = -Part * RunTimeVF 9631 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9632 // LastLane = 1 - RunTimeVF 9633 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 9634 PartPtr = 9635 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 9636 PartPtr->setIsInBounds(InBounds); 9637 PartPtr = cast<GetElementPtrInst>( 9638 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 9639 PartPtr->setIsInBounds(InBounds); 9640 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 9641 BlockInMaskParts[Part] = 9642 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 9643 } else { 9644 Value *Increment = 9645 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 9646 PartPtr = cast<GetElementPtrInst>( 9647 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 9648 PartPtr->setIsInBounds(InBounds); 9649 } 9650 9651 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 9652 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 9653 }; 9654 9655 // Handle Stores: 9656 if (SI) { 9657 State.setDebugLocFromInst(SI); 9658 9659 for (unsigned Part = 0; Part < State.UF; ++Part) { 9660 Instruction *NewSI = nullptr; 9661 Value *StoredVal = State.get(StoredValue, Part); 9662 if (CreateGatherScatter) { 9663 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9664 Value *VectorGep = State.get(getAddr(), Part); 9665 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 9666 MaskPart); 9667 } else { 9668 if (Reverse) { 9669 // If we store to reverse consecutive memory locations, then we need 9670 // to reverse the order of elements in the stored value. 9671 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 9672 // We don't want to update the value in the map as it might be used in 9673 // another expression. So don't call resetVectorValue(StoredVal). 9674 } 9675 auto *VecPtr = 9676 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 9677 if (isMaskRequired) 9678 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 9679 BlockInMaskParts[Part]); 9680 else 9681 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 9682 } 9683 State.addMetadata(NewSI, SI); 9684 } 9685 return; 9686 } 9687 9688 // Handle loads. 9689 assert(LI && "Must have a load instruction"); 9690 State.setDebugLocFromInst(LI); 9691 for (unsigned Part = 0; Part < State.UF; ++Part) { 9692 Value *NewLI; 9693 if (CreateGatherScatter) { 9694 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9695 Value *VectorGep = State.get(getAddr(), Part); 9696 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 9697 nullptr, "wide.masked.gather"); 9698 State.addMetadata(NewLI, LI); 9699 } else { 9700 auto *VecPtr = 9701 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 9702 if (isMaskRequired) 9703 NewLI = Builder.CreateMaskedLoad( 9704 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 9705 PoisonValue::get(DataTy), "wide.masked.load"); 9706 else 9707 NewLI = 9708 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 9709 9710 // Add metadata to the load, but setVectorValue to the reverse shuffle. 9711 State.addMetadata(NewLI, LI); 9712 if (Reverse) 9713 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 9714 } 9715 9716 State.set(getVPSingleValue(), NewLI, Part); 9717 } 9718 } 9719 9720 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9721 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9722 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9723 // for predication. 9724 static ScalarEpilogueLowering getScalarEpilogueLowering( 9725 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9726 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9727 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9728 LoopVectorizationLegality &LVL) { 9729 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9730 // don't look at hints or options, and don't request a scalar epilogue. 9731 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9732 // LoopAccessInfo (due to code dependency and not being able to reliably get 9733 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9734 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9735 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9736 // back to the old way and vectorize with versioning when forced. See D81345.) 9737 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9738 PGSOQueryType::IRPass) && 9739 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9740 return CM_ScalarEpilogueNotAllowedOptSize; 9741 9742 // 2) If set, obey the directives 9743 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9744 switch (PreferPredicateOverEpilogue) { 9745 case PreferPredicateTy::ScalarEpilogue: 9746 return CM_ScalarEpilogueAllowed; 9747 case PreferPredicateTy::PredicateElseScalarEpilogue: 9748 return CM_ScalarEpilogueNotNeededUsePredicate; 9749 case PreferPredicateTy::PredicateOrDontVectorize: 9750 return CM_ScalarEpilogueNotAllowedUsePredicate; 9751 }; 9752 } 9753 9754 // 3) If set, obey the hints 9755 switch (Hints.getPredicate()) { 9756 case LoopVectorizeHints::FK_Enabled: 9757 return CM_ScalarEpilogueNotNeededUsePredicate; 9758 case LoopVectorizeHints::FK_Disabled: 9759 return CM_ScalarEpilogueAllowed; 9760 }; 9761 9762 // 4) if the TTI hook indicates this is profitable, request predication. 9763 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 9764 LVL.getLAI())) 9765 return CM_ScalarEpilogueNotNeededUsePredicate; 9766 9767 return CM_ScalarEpilogueAllowed; 9768 } 9769 9770 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9771 // If Values have been set for this Def return the one relevant for \p Part. 9772 if (hasVectorValue(Def, Part)) 9773 return Data.PerPartOutput[Def][Part]; 9774 9775 if (!hasScalarValue(Def, {Part, 0})) { 9776 Value *IRV = Def->getLiveInIRValue(); 9777 Value *B = ILV->getBroadcastInstrs(IRV); 9778 set(Def, B, Part); 9779 return B; 9780 } 9781 9782 Value *ScalarValue = get(Def, {Part, 0}); 9783 // If we aren't vectorizing, we can just copy the scalar map values over 9784 // to the vector map. 9785 if (VF.isScalar()) { 9786 set(Def, ScalarValue, Part); 9787 return ScalarValue; 9788 } 9789 9790 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9791 bool IsUniform = RepR && RepR->isUniform(); 9792 9793 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9794 // Check if there is a scalar value for the selected lane. 9795 if (!hasScalarValue(Def, {Part, LastLane})) { 9796 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 9797 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) || 9798 isa<VPScalarIVStepsRecipe>(Def->getDef())) && 9799 "unexpected recipe found to be invariant"); 9800 IsUniform = true; 9801 LastLane = 0; 9802 } 9803 9804 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 9805 // Set the insert point after the last scalarized instruction or after the 9806 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 9807 // will directly follow the scalar definitions. 9808 auto OldIP = Builder.saveIP(); 9809 auto NewIP = 9810 isa<PHINode>(LastInst) 9811 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 9812 : std::next(BasicBlock::iterator(LastInst)); 9813 Builder.SetInsertPoint(&*NewIP); 9814 9815 // However, if we are vectorizing, we need to construct the vector values. 9816 // If the value is known to be uniform after vectorization, we can just 9817 // broadcast the scalar value corresponding to lane zero for each unroll 9818 // iteration. Otherwise, we construct the vector values using 9819 // insertelement instructions. Since the resulting vectors are stored in 9820 // State, we will only generate the insertelements once. 9821 Value *VectorValue = nullptr; 9822 if (IsUniform) { 9823 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 9824 set(Def, VectorValue, Part); 9825 } else { 9826 // Initialize packing with insertelements to start from undef. 9827 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 9828 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 9829 set(Def, Undef, Part); 9830 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 9831 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 9832 VectorValue = get(Def, Part); 9833 } 9834 Builder.restoreIP(OldIP); 9835 return VectorValue; 9836 } 9837 9838 // Process the loop in the VPlan-native vectorization path. This path builds 9839 // VPlan upfront in the vectorization pipeline, which allows to apply 9840 // VPlan-to-VPlan transformations from the very beginning without modifying the 9841 // input LLVM IR. 9842 static bool processLoopInVPlanNativePath( 9843 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 9844 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 9845 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 9846 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 9847 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 9848 LoopVectorizationRequirements &Requirements) { 9849 9850 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 9851 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 9852 return false; 9853 } 9854 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 9855 Function *F = L->getHeader()->getParent(); 9856 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 9857 9858 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9859 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 9860 9861 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 9862 &Hints, IAI); 9863 // Use the planner for outer loop vectorization. 9864 // TODO: CM is not used at this point inside the planner. Turn CM into an 9865 // optional argument if we don't need it in the future. 9866 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, ORE); 9867 9868 // Get user vectorization factor. 9869 ElementCount UserVF = Hints.getWidth(); 9870 9871 CM.collectElementTypesForWidening(); 9872 9873 // Plan how to best vectorize, return the best VF and its cost. 9874 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 9875 9876 // If we are stress testing VPlan builds, do not attempt to generate vector 9877 // code. Masked vector code generation support will follow soon. 9878 // Also, do not attempt to vectorize if no vector code will be produced. 9879 if (VPlanBuildStressTest || VectorizationFactor::Disabled() == VF) 9880 return false; 9881 9882 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 9883 9884 { 9885 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, TTI, 9886 F->getParent()->getDataLayout()); 9887 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 9888 VF.Width, 1, LVL, &CM, BFI, PSI, Checks); 9889 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 9890 << L->getHeader()->getParent()->getName() << "\"\n"); 9891 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT, false); 9892 } 9893 9894 // Mark the loop as already vectorized to avoid vectorizing again. 9895 Hints.setAlreadyVectorized(); 9896 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9897 return true; 9898 } 9899 9900 // Emit a remark if there are stores to floats that required a floating point 9901 // extension. If the vectorized loop was generated with floating point there 9902 // will be a performance penalty from the conversion overhead and the change in 9903 // the vector width. 9904 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 9905 SmallVector<Instruction *, 4> Worklist; 9906 for (BasicBlock *BB : L->getBlocks()) { 9907 for (Instruction &Inst : *BB) { 9908 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 9909 if (S->getValueOperand()->getType()->isFloatTy()) 9910 Worklist.push_back(S); 9911 } 9912 } 9913 } 9914 9915 // Traverse the floating point stores upwards searching, for floating point 9916 // conversions. 9917 SmallPtrSet<const Instruction *, 4> Visited; 9918 SmallPtrSet<const Instruction *, 4> EmittedRemark; 9919 while (!Worklist.empty()) { 9920 auto *I = Worklist.pop_back_val(); 9921 if (!L->contains(I)) 9922 continue; 9923 if (!Visited.insert(I).second) 9924 continue; 9925 9926 // Emit a remark if the floating point store required a floating 9927 // point conversion. 9928 // TODO: More work could be done to identify the root cause such as a 9929 // constant or a function return type and point the user to it. 9930 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 9931 ORE->emit([&]() { 9932 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 9933 I->getDebugLoc(), L->getHeader()) 9934 << "floating point conversion changes vector width. " 9935 << "Mixed floating point precision requires an up/down " 9936 << "cast that will negatively impact performance."; 9937 }); 9938 9939 for (Use &Op : I->operands()) 9940 if (auto *OpI = dyn_cast<Instruction>(Op)) 9941 Worklist.push_back(OpI); 9942 } 9943 } 9944 9945 static bool areRuntimeChecksProfitable(GeneratedRTChecks &Checks, 9946 VectorizationFactor &VF, 9947 Optional<unsigned> VScale, Loop *L, 9948 ScalarEvolution &SE) { 9949 InstructionCost CheckCost = Checks.getCost(); 9950 if (!CheckCost.isValid()) 9951 return false; 9952 9953 // When interleaving only scalar and vector cost will be equal, which in turn 9954 // would lead to a divide by 0. Fall back to hard threshold. 9955 if (VF.Width.isScalar()) { 9956 if (CheckCost > VectorizeMemoryCheckThreshold) { 9957 LLVM_DEBUG( 9958 dbgs() 9959 << "LV: Interleaving only is not profitable due to runtime checks\n"); 9960 return false; 9961 } 9962 return true; 9963 } 9964 9965 // The scalar cost should only be 0 when vectorizing with a user specified VF/IC. In those cases, runtime checks should always be generated. 9966 double ScalarC = *VF.ScalarCost.getValue(); 9967 if (ScalarC == 0) 9968 return true; 9969 9970 // First, compute the minimum iteration count required so that the vector 9971 // loop outperforms the scalar loop. 9972 // The total cost of the scalar loop is 9973 // ScalarC * TC 9974 // where 9975 // * TC is the actual trip count of the loop. 9976 // * ScalarC is the cost of a single scalar iteration. 9977 // 9978 // The total cost of the vector loop is 9979 // RtC + VecC * (TC / VF) + EpiC 9980 // where 9981 // * RtC is the cost of the generated runtime checks 9982 // * VecC is the cost of a single vector iteration. 9983 // * TC is the actual trip count of the loop 9984 // * VF is the vectorization factor 9985 // * EpiCost is the cost of the generated epilogue, including the cost 9986 // of the remaining scalar operations. 9987 // 9988 // Vectorization is profitable once the total vector cost is less than the 9989 // total scalar cost: 9990 // RtC + VecC * (TC / VF) + EpiC < ScalarC * TC 9991 // 9992 // Now we can compute the minimum required trip count TC as 9993 // (RtC + EpiC) / (ScalarC - (VecC / VF)) < TC 9994 // 9995 // For now we assume the epilogue cost EpiC = 0 for simplicity. Note that 9996 // the computations are performed on doubles, not integers and the result 9997 // is rounded up, hence we get an upper estimate of the TC. 9998 unsigned IntVF = VF.Width.getKnownMinValue(); 9999 if (VF.Width.isScalable()) { 10000 unsigned AssumedMinimumVscale = 1; 10001 if (VScale) 10002 AssumedMinimumVscale = *VScale; 10003 IntVF *= AssumedMinimumVscale; 10004 } 10005 double VecCOverVF = double(*VF.Cost.getValue()) / IntVF; 10006 double RtC = *CheckCost.getValue(); 10007 double MinTC1 = RtC / (ScalarC - VecCOverVF); 10008 10009 // Second, compute a minimum iteration count so that the cost of the 10010 // runtime checks is only a fraction of the total scalar loop cost. This 10011 // adds a loop-dependent bound on the overhead incurred if the runtime 10012 // checks fail. In case the runtime checks fail, the cost is RtC + ScalarC 10013 // * TC. To bound the runtime check to be a fraction 1/X of the scalar 10014 // cost, compute 10015 // RtC < ScalarC * TC * (1 / X) ==> RtC * X / ScalarC < TC 10016 double MinTC2 = RtC * 10 / ScalarC; 10017 10018 // Now pick the larger minimum. If it is not a multiple of VF, choose the 10019 // next closest multiple of VF. This should partly compensate for ignoring 10020 // the epilogue cost. 10021 uint64_t MinTC = std::ceil(std::max(MinTC1, MinTC2)); 10022 VF.MinProfitableTripCount = ElementCount::getFixed(alignTo(MinTC, IntVF)); 10023 10024 LLVM_DEBUG( 10025 dbgs() << "LV: Minimum required TC for runtime checks to be profitable:" 10026 << VF.MinProfitableTripCount << "\n"); 10027 10028 // Skip vectorization if the expected trip count is less than the minimum 10029 // required trip count. 10030 if (auto ExpectedTC = getSmallBestKnownTC(SE, L)) { 10031 if (ElementCount::isKnownLT(ElementCount::getFixed(*ExpectedTC), 10032 VF.MinProfitableTripCount)) { 10033 LLVM_DEBUG(dbgs() << "LV: Vectorization is not beneficial: expected " 10034 "trip count < minimum profitable VF (" 10035 << *ExpectedTC << " < " << VF.MinProfitableTripCount 10036 << ")\n"); 10037 10038 return false; 10039 } 10040 } 10041 return true; 10042 } 10043 10044 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10045 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10046 !EnableLoopInterleaving), 10047 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10048 !EnableLoopVectorization) {} 10049 10050 bool LoopVectorizePass::processLoop(Loop *L) { 10051 assert((EnableVPlanNativePath || L->isInnermost()) && 10052 "VPlan-native path is not enabled. Only process inner loops."); 10053 10054 #ifndef NDEBUG 10055 const std::string DebugLocStr = getDebugLocString(L); 10056 #endif /* NDEBUG */ 10057 10058 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '" 10059 << L->getHeader()->getParent()->getName() << "' from " 10060 << DebugLocStr << "\n"); 10061 10062 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10063 10064 LLVM_DEBUG( 10065 dbgs() << "LV: Loop hints:" 10066 << " force=" 10067 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10068 ? "disabled" 10069 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10070 ? "enabled" 10071 : "?")) 10072 << " width=" << Hints.getWidth() 10073 << " interleave=" << Hints.getInterleave() << "\n"); 10074 10075 // Function containing loop 10076 Function *F = L->getHeader()->getParent(); 10077 10078 // Looking at the diagnostic output is the only way to determine if a loop 10079 // was vectorized (other than looking at the IR or machine code), so it 10080 // is important to generate an optimization remark for each loop. Most of 10081 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10082 // generated as OptimizationRemark and OptimizationRemarkMissed are 10083 // less verbose reporting vectorized loops and unvectorized loops that may 10084 // benefit from vectorization, respectively. 10085 10086 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10087 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10088 return false; 10089 } 10090 10091 PredicatedScalarEvolution PSE(*SE, *L); 10092 10093 // Check if it is legal to vectorize the loop. 10094 LoopVectorizationRequirements Requirements; 10095 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10096 &Requirements, &Hints, DB, AC, BFI, PSI); 10097 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10098 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10099 Hints.emitRemarkWithHints(); 10100 return false; 10101 } 10102 10103 // Check the function attributes and profiles to find out if this function 10104 // should be optimized for size. 10105 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10106 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10107 10108 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10109 // here. They may require CFG and instruction level transformations before 10110 // even evaluating whether vectorization is profitable. Since we cannot modify 10111 // the incoming IR, we need to build VPlan upfront in the vectorization 10112 // pipeline. 10113 if (!L->isInnermost()) 10114 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10115 ORE, BFI, PSI, Hints, Requirements); 10116 10117 assert(L->isInnermost() && "Inner loop expected."); 10118 10119 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10120 // count by optimizing for size, to minimize overheads. 10121 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10122 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10123 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10124 << "This loop is worth vectorizing only if no scalar " 10125 << "iteration overheads are incurred."); 10126 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10127 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10128 else { 10129 LLVM_DEBUG(dbgs() << "\n"); 10130 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10131 } 10132 } 10133 10134 // Check the function attributes to see if implicit floats are allowed. 10135 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10136 // an integer loop and the vector instructions selected are purely integer 10137 // vector instructions? 10138 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10139 reportVectorizationFailure( 10140 "Can't vectorize when the NoImplicitFloat attribute is used", 10141 "loop not vectorized due to NoImplicitFloat attribute", 10142 "NoImplicitFloat", ORE, L); 10143 Hints.emitRemarkWithHints(); 10144 return false; 10145 } 10146 10147 // Check if the target supports potentially unsafe FP vectorization. 10148 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10149 // for the target we're vectorizing for, to make sure none of the 10150 // additional fp-math flags can help. 10151 if (Hints.isPotentiallyUnsafe() && 10152 TTI->isFPVectorizationPotentiallyUnsafe()) { 10153 reportVectorizationFailure( 10154 "Potentially unsafe FP op prevents vectorization", 10155 "loop not vectorized due to unsafe FP support.", 10156 "UnsafeFP", ORE, L); 10157 Hints.emitRemarkWithHints(); 10158 return false; 10159 } 10160 10161 bool AllowOrderedReductions; 10162 // If the flag is set, use that instead and override the TTI behaviour. 10163 if (ForceOrderedReductions.getNumOccurrences() > 0) 10164 AllowOrderedReductions = ForceOrderedReductions; 10165 else 10166 AllowOrderedReductions = TTI->enableOrderedReductions(); 10167 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10168 ORE->emit([&]() { 10169 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10170 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10171 ExactFPMathInst->getDebugLoc(), 10172 ExactFPMathInst->getParent()) 10173 << "loop not vectorized: cannot prove it is safe to reorder " 10174 "floating-point operations"; 10175 }); 10176 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10177 "reorder floating-point operations\n"); 10178 Hints.emitRemarkWithHints(); 10179 return false; 10180 } 10181 10182 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10183 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10184 10185 // If an override option has been passed in for interleaved accesses, use it. 10186 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10187 UseInterleaved = EnableInterleavedMemAccesses; 10188 10189 // Analyze interleaved memory accesses. 10190 if (UseInterleaved) { 10191 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10192 } 10193 10194 // Use the cost model. 10195 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10196 F, &Hints, IAI); 10197 CM.collectValuesToIgnore(); 10198 CM.collectElementTypesForWidening(); 10199 10200 // Use the planner for vectorization. 10201 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, ORE); 10202 10203 // Get user vectorization factor and interleave count. 10204 ElementCount UserVF = Hints.getWidth(); 10205 unsigned UserIC = Hints.getInterleave(); 10206 10207 // Plan how to best vectorize, return the best VF and its cost. 10208 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10209 10210 VectorizationFactor VF = VectorizationFactor::Disabled(); 10211 unsigned IC = 1; 10212 10213 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, TTI, 10214 F->getParent()->getDataLayout()); 10215 if (MaybeVF) { 10216 VF = *MaybeVF; 10217 // Select the interleave count. 10218 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10219 10220 unsigned SelectedIC = std::max(IC, UserIC); 10221 // Optimistically generate runtime checks if they are needed. Drop them if 10222 // they turn out to not be profitable. 10223 if (VF.Width.isVector() || SelectedIC > 1) 10224 Checks.Create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC); 10225 10226 // Check if it is profitable to vectorize with runtime checks. 10227 bool ForceVectorization = 10228 Hints.getForce() == LoopVectorizeHints::FK_Enabled; 10229 if (!ForceVectorization && 10230 !areRuntimeChecksProfitable(Checks, VF, CM.getVScaleForTuning(), L, 10231 *PSE.getSE())) { 10232 ORE->emit([&]() { 10233 return OptimizationRemarkAnalysisAliasing( 10234 DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(), 10235 L->getHeader()) 10236 << "loop not vectorized: cannot prove it is safe to reorder " 10237 "memory operations"; 10238 }); 10239 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 10240 Hints.emitRemarkWithHints(); 10241 return false; 10242 } 10243 } 10244 10245 // Identify the diagnostic messages that should be produced. 10246 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10247 bool VectorizeLoop = true, InterleaveLoop = true; 10248 if (VF.Width.isScalar()) { 10249 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10250 VecDiagMsg = std::make_pair( 10251 "VectorizationNotBeneficial", 10252 "the cost-model indicates that vectorization is not beneficial"); 10253 VectorizeLoop = false; 10254 } 10255 10256 if (!MaybeVF && UserIC > 1) { 10257 // Tell the user interleaving was avoided up-front, despite being explicitly 10258 // requested. 10259 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10260 "interleaving should be avoided up front\n"); 10261 IntDiagMsg = std::make_pair( 10262 "InterleavingAvoided", 10263 "Ignoring UserIC, because interleaving was avoided up front"); 10264 InterleaveLoop = false; 10265 } else if (IC == 1 && UserIC <= 1) { 10266 // Tell the user interleaving is not beneficial. 10267 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10268 IntDiagMsg = std::make_pair( 10269 "InterleavingNotBeneficial", 10270 "the cost-model indicates that interleaving is not beneficial"); 10271 InterleaveLoop = false; 10272 if (UserIC == 1) { 10273 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10274 IntDiagMsg.second += 10275 " and is explicitly disabled or interleave count is set to 1"; 10276 } 10277 } else if (IC > 1 && UserIC == 1) { 10278 // Tell the user interleaving is beneficial, but it explicitly disabled. 10279 LLVM_DEBUG( 10280 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10281 IntDiagMsg = std::make_pair( 10282 "InterleavingBeneficialButDisabled", 10283 "the cost-model indicates that interleaving is beneficial " 10284 "but is explicitly disabled or interleave count is set to 1"); 10285 InterleaveLoop = false; 10286 } 10287 10288 // Override IC if user provided an interleave count. 10289 IC = UserIC > 0 ? UserIC : IC; 10290 10291 // Emit diagnostic messages, if any. 10292 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10293 if (!VectorizeLoop && !InterleaveLoop) { 10294 // Do not vectorize or interleaving the loop. 10295 ORE->emit([&]() { 10296 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10297 L->getStartLoc(), L->getHeader()) 10298 << VecDiagMsg.second; 10299 }); 10300 ORE->emit([&]() { 10301 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10302 L->getStartLoc(), L->getHeader()) 10303 << IntDiagMsg.second; 10304 }); 10305 return false; 10306 } else if (!VectorizeLoop && InterleaveLoop) { 10307 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10308 ORE->emit([&]() { 10309 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10310 L->getStartLoc(), L->getHeader()) 10311 << VecDiagMsg.second; 10312 }); 10313 } else if (VectorizeLoop && !InterleaveLoop) { 10314 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10315 << ") in " << DebugLocStr << '\n'); 10316 ORE->emit([&]() { 10317 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10318 L->getStartLoc(), L->getHeader()) 10319 << IntDiagMsg.second; 10320 }); 10321 } else if (VectorizeLoop && InterleaveLoop) { 10322 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10323 << ") in " << DebugLocStr << '\n'); 10324 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10325 } 10326 10327 bool DisableRuntimeUnroll = false; 10328 MDNode *OrigLoopID = L->getLoopID(); 10329 { 10330 using namespace ore; 10331 if (!VectorizeLoop) { 10332 assert(IC > 1 && "interleave count should not be 1 or 0"); 10333 // If we decided that it is not legal to vectorize the loop, then 10334 // interleave it. 10335 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10336 &CM, BFI, PSI, Checks); 10337 10338 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10339 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT, false); 10340 10341 ORE->emit([&]() { 10342 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10343 L->getHeader()) 10344 << "interleaved loop (interleaved count: " 10345 << NV("InterleaveCount", IC) << ")"; 10346 }); 10347 } else { 10348 // If we decided that it is *legal* to vectorize the loop, then do it. 10349 10350 // Consider vectorizing the epilogue too if it's profitable. 10351 VectorizationFactor EpilogueVF = 10352 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10353 if (EpilogueVF.Width.isVector()) { 10354 10355 // The first pass vectorizes the main loop and creates a scalar epilogue 10356 // to be vectorized by executing the plan (potentially with a different 10357 // factor) again shortly afterwards. 10358 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10359 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10360 EPI, &LVL, &CM, BFI, PSI, Checks); 10361 10362 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10363 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10364 DT, true); 10365 ++LoopsVectorized; 10366 10367 // Second pass vectorizes the epilogue and adjusts the control flow 10368 // edges from the first pass. 10369 EPI.MainLoopVF = EPI.EpilogueVF; 10370 EPI.MainLoopUF = EPI.EpilogueUF; 10371 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10372 ORE, EPI, &LVL, &CM, BFI, PSI, 10373 Checks); 10374 10375 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10376 VPRegionBlock *VectorLoop = BestEpiPlan.getVectorLoopRegion(); 10377 VPBasicBlock *Header = VectorLoop->getEntryBasicBlock(); 10378 Header->setName("vec.epilog.vector.body"); 10379 10380 // Ensure that the start values for any VPReductionPHIRecipes are 10381 // updated before vectorising the epilogue loop. 10382 for (VPRecipeBase &R : Header->phis()) { 10383 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { 10384 if (auto *Resume = MainILV.getReductionResumeValue( 10385 ReductionPhi->getRecurrenceDescriptor())) { 10386 VPValue *StartVal = BestEpiPlan.getOrAddExternalDef(Resume); 10387 ReductionPhi->setOperand(0, StartVal); 10388 } 10389 } 10390 } 10391 10392 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10393 DT, true); 10394 ++LoopsEpilogueVectorized; 10395 10396 if (!MainILV.areSafetyChecksAdded()) 10397 DisableRuntimeUnroll = true; 10398 } else { 10399 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 10400 VF.MinProfitableTripCount, IC, &LVL, &CM, BFI, 10401 PSI, Checks); 10402 10403 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10404 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT, false); 10405 ++LoopsVectorized; 10406 10407 // Add metadata to disable runtime unrolling a scalar loop when there 10408 // are no runtime checks about strides and memory. A scalar loop that is 10409 // rarely used is not worth unrolling. 10410 if (!LB.areSafetyChecksAdded()) 10411 DisableRuntimeUnroll = true; 10412 } 10413 // Report the vectorization decision. 10414 ORE->emit([&]() { 10415 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10416 L->getHeader()) 10417 << "vectorized loop (vectorization width: " 10418 << NV("VectorizationFactor", VF.Width) 10419 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10420 }); 10421 } 10422 10423 if (ORE->allowExtraAnalysis(LV_NAME)) 10424 checkMixedPrecision(L, ORE); 10425 } 10426 10427 Optional<MDNode *> RemainderLoopID = 10428 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10429 LLVMLoopVectorizeFollowupEpilogue}); 10430 if (RemainderLoopID) { 10431 L->setLoopID(RemainderLoopID.value()); 10432 } else { 10433 if (DisableRuntimeUnroll) 10434 AddRuntimeUnrollDisableMetaData(L); 10435 10436 // Mark the loop as already vectorized to avoid vectorizing again. 10437 Hints.setAlreadyVectorized(); 10438 } 10439 10440 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10441 return true; 10442 } 10443 10444 LoopVectorizeResult LoopVectorizePass::runImpl( 10445 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10446 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10447 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10448 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10449 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10450 SE = &SE_; 10451 LI = &LI_; 10452 TTI = &TTI_; 10453 DT = &DT_; 10454 BFI = &BFI_; 10455 TLI = TLI_; 10456 AA = &AA_; 10457 AC = &AC_; 10458 GetLAA = &GetLAA_; 10459 DB = &DB_; 10460 ORE = &ORE_; 10461 PSI = PSI_; 10462 10463 // Don't attempt if 10464 // 1. the target claims to have no vector registers, and 10465 // 2. interleaving won't help ILP. 10466 // 10467 // The second condition is necessary because, even if the target has no 10468 // vector registers, loop vectorization may still enable scalar 10469 // interleaving. 10470 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10471 TTI->getMaxInterleaveFactor(1) < 2) 10472 return LoopVectorizeResult(false, false); 10473 10474 bool Changed = false, CFGChanged = false; 10475 10476 // The vectorizer requires loops to be in simplified form. 10477 // Since simplification may add new inner loops, it has to run before the 10478 // legality and profitability checks. This means running the loop vectorizer 10479 // will simplify all loops, regardless of whether anything end up being 10480 // vectorized. 10481 for (auto &L : *LI) 10482 Changed |= CFGChanged |= 10483 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10484 10485 // Build up a worklist of inner-loops to vectorize. This is necessary as 10486 // the act of vectorizing or partially unrolling a loop creates new loops 10487 // and can invalidate iterators across the loops. 10488 SmallVector<Loop *, 8> Worklist; 10489 10490 for (Loop *L : *LI) 10491 collectSupportedLoops(*L, LI, ORE, Worklist); 10492 10493 LoopsAnalyzed += Worklist.size(); 10494 10495 // Now walk the identified inner loops. 10496 while (!Worklist.empty()) { 10497 Loop *L = Worklist.pop_back_val(); 10498 10499 // For the inner loops we actually process, form LCSSA to simplify the 10500 // transform. 10501 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10502 10503 Changed |= CFGChanged |= processLoop(L); 10504 } 10505 10506 // Process each loop nest in the function. 10507 return LoopVectorizeResult(Changed, CFGChanged); 10508 } 10509 10510 PreservedAnalyses LoopVectorizePass::run(Function &F, 10511 FunctionAnalysisManager &AM) { 10512 auto &LI = AM.getResult<LoopAnalysis>(F); 10513 // There are no loops in the function. Return before computing other expensive 10514 // analyses. 10515 if (LI.empty()) 10516 return PreservedAnalyses::all(); 10517 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10518 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10519 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10520 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10521 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10522 auto &AA = AM.getResult<AAManager>(F); 10523 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10524 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10525 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10526 10527 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10528 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10529 [&](Loop &L) -> const LoopAccessInfo & { 10530 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10531 TLI, TTI, nullptr, nullptr, nullptr}; 10532 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10533 }; 10534 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10535 ProfileSummaryInfo *PSI = 10536 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10537 LoopVectorizeResult Result = 10538 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10539 if (!Result.MadeAnyChange) 10540 return PreservedAnalyses::all(); 10541 PreservedAnalyses PA; 10542 10543 // We currently do not preserve loopinfo/dominator analyses with outer loop 10544 // vectorization. Until this is addressed, mark these analyses as preserved 10545 // only for non-VPlan-native path. 10546 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10547 if (!EnableVPlanNativePath) { 10548 PA.preserve<LoopAnalysis>(); 10549 PA.preserve<DominatorTreeAnalysis>(); 10550 } 10551 10552 if (Result.MadeCFGChange) { 10553 // Making CFG changes likely means a loop got vectorized. Indicate that 10554 // extra simplification passes should be run. 10555 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10556 // be run if runtime checks have been added. 10557 AM.getResult<ShouldRunExtraVectorPasses>(F); 10558 PA.preserve<ShouldRunExtraVectorPasses>(); 10559 } else { 10560 PA.preserveSet<CFGAnalyses>(); 10561 } 10562 return PA; 10563 } 10564 10565 void LoopVectorizePass::printPipeline( 10566 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10567 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10568 OS, MapClassName2PassName); 10569 10570 OS << "<"; 10571 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10572 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10573 OS << ">"; 10574 } 10575