1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/Metadata.h" 116 #include "llvm/IR/Module.h" 117 #include "llvm/IR/Operator.h" 118 #include "llvm/IR/PatternMatch.h" 119 #include "llvm/IR/Type.h" 120 #include "llvm/IR/Use.h" 121 #include "llvm/IR/User.h" 122 #include "llvm/IR/Value.h" 123 #include "llvm/IR/ValueHandle.h" 124 #include "llvm/IR/Verifier.h" 125 #include "llvm/InitializePasses.h" 126 #include "llvm/Pass.h" 127 #include "llvm/Support/Casting.h" 128 #include "llvm/Support/CommandLine.h" 129 #include "llvm/Support/Compiler.h" 130 #include "llvm/Support/Debug.h" 131 #include "llvm/Support/ErrorHandling.h" 132 #include "llvm/Support/InstructionCost.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <functional> 147 #include <iterator> 148 #include <limits> 149 #include <map> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 #ifndef NDEBUG 161 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 162 #endif 163 164 /// @{ 165 /// Metadata attribute names 166 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 167 const char LLVMLoopVectorizeFollowupVectorized[] = 168 "llvm.loop.vectorize.followup_vectorized"; 169 const char LLVMLoopVectorizeFollowupEpilogue[] = 170 "llvm.loop.vectorize.followup_epilogue"; 171 /// @} 172 173 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 174 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 175 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 176 177 static cl::opt<bool> EnableEpilogueVectorization( 178 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 179 cl::desc("Enable vectorization of epilogue loops.")); 180 181 static cl::opt<unsigned> EpilogueVectorizationForceVF( 182 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 183 cl::desc("When epilogue vectorization is enabled, and a value greater than " 184 "1 is specified, forces the given VF for all applicable epilogue " 185 "loops.")); 186 187 static cl::opt<unsigned> EpilogueVectorizationMinVF( 188 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 189 cl::desc("Only loops with vectorization factor equal to or larger than " 190 "the specified value are considered for epilogue vectorization.")); 191 192 /// Loops with a known constant trip count below this number are vectorized only 193 /// if no scalar iteration overheads are incurred. 194 static cl::opt<unsigned> TinyTripCountVectorThreshold( 195 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 196 cl::desc("Loops with a constant trip count that is smaller than this " 197 "value are vectorized only if no scalar iteration overheads " 198 "are incurred.")); 199 200 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 201 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 202 cl::desc("The maximum allowed number of runtime memory checks with a " 203 "vectorize(enable) pragma.")); 204 205 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 206 // that predication is preferred, and this lists all options. I.e., the 207 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 208 // and predicate the instructions accordingly. If tail-folding fails, there are 209 // different fallback strategies depending on these values: 210 namespace PreferPredicateTy { 211 enum Option { 212 ScalarEpilogue = 0, 213 PredicateElseScalarEpilogue, 214 PredicateOrDontVectorize 215 }; 216 } // namespace PreferPredicateTy 217 218 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 219 "prefer-predicate-over-epilogue", 220 cl::init(PreferPredicateTy::ScalarEpilogue), 221 cl::Hidden, 222 cl::desc("Tail-folding and predication preferences over creating a scalar " 223 "epilogue loop."), 224 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 225 "scalar-epilogue", 226 "Don't tail-predicate loops, create scalar epilogue"), 227 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 228 "predicate-else-scalar-epilogue", 229 "prefer tail-folding, create scalar epilogue if tail " 230 "folding fails."), 231 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 232 "predicate-dont-vectorize", 233 "prefers tail-folding, don't attempt vectorization if " 234 "tail-folding fails."))); 235 236 static cl::opt<bool> MaximizeBandwidth( 237 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 238 cl::desc("Maximize bandwidth when selecting vectorization factor which " 239 "will be determined by the smallest type in loop.")); 240 241 static cl::opt<bool> EnableInterleavedMemAccesses( 242 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 243 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 244 245 /// An interleave-group may need masking if it resides in a block that needs 246 /// predication, or in order to mask away gaps. 247 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 248 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 249 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 250 251 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 252 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 253 cl::desc("We don't interleave loops with a estimated constant trip count " 254 "below this number")); 255 256 static cl::opt<unsigned> ForceTargetNumScalarRegs( 257 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 258 cl::desc("A flag that overrides the target's number of scalar registers.")); 259 260 static cl::opt<unsigned> ForceTargetNumVectorRegs( 261 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 262 cl::desc("A flag that overrides the target's number of vector registers.")); 263 264 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 265 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 266 cl::desc("A flag that overrides the target's max interleave factor for " 267 "scalar loops.")); 268 269 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 270 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 271 cl::desc("A flag that overrides the target's max interleave factor for " 272 "vectorized loops.")); 273 274 static cl::opt<unsigned> ForceTargetInstructionCost( 275 "force-target-instruction-cost", cl::init(0), cl::Hidden, 276 cl::desc("A flag that overrides the target's expected cost for " 277 "an instruction to a single constant value. Mostly " 278 "useful for getting consistent testing.")); 279 280 static cl::opt<bool> ForceTargetSupportsScalableVectors( 281 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 282 cl::desc( 283 "Pretend that scalable vectors are supported, even if the target does " 284 "not support them. This flag should only be used for testing.")); 285 286 static cl::opt<unsigned> SmallLoopCost( 287 "small-loop-cost", cl::init(20), cl::Hidden, 288 cl::desc( 289 "The cost of a loop that is considered 'small' by the interleaver.")); 290 291 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 292 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 293 cl::desc("Enable the use of the block frequency analysis to access PGO " 294 "heuristics minimizing code growth in cold regions and being more " 295 "aggressive in hot regions.")); 296 297 // Runtime interleave loops for load/store throughput. 298 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 299 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 300 cl::desc( 301 "Enable runtime interleaving until load/store ports are saturated")); 302 303 /// Interleave small loops with scalar reductions. 304 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 305 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 306 cl::desc("Enable interleaving for loops with small iteration counts that " 307 "contain scalar reductions to expose ILP.")); 308 309 /// The number of stores in a loop that are allowed to need predication. 310 static cl::opt<unsigned> NumberOfStoresToPredicate( 311 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 312 cl::desc("Max number of stores to be predicated behind an if.")); 313 314 static cl::opt<bool> EnableIndVarRegisterHeur( 315 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 316 cl::desc("Count the induction variable only once when interleaving")); 317 318 static cl::opt<bool> EnableCondStoresVectorization( 319 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 320 cl::desc("Enable if predication of stores during vectorization.")); 321 322 static cl::opt<unsigned> MaxNestedScalarReductionIC( 323 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 324 cl::desc("The maximum interleave count to use when interleaving a scalar " 325 "reduction in a nested loop.")); 326 327 static cl::opt<bool> 328 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 329 cl::Hidden, 330 cl::desc("Prefer in-loop vector reductions, " 331 "overriding the targets preference.")); 332 333 static cl::opt<bool> ForceOrderedReductions( 334 "force-ordered-reductions", cl::init(false), cl::Hidden, 335 cl::desc("Enable the vectorisation of loops with in-order (strict) " 336 "FP reductions")); 337 338 static cl::opt<bool> PreferPredicatedReductionSelect( 339 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 340 cl::desc( 341 "Prefer predicating a reduction operation over an after loop select.")); 342 343 cl::opt<bool> EnableVPlanNativePath( 344 "enable-vplan-native-path", cl::init(false), cl::Hidden, 345 cl::desc("Enable VPlan-native vectorization path with " 346 "support for outer loop vectorization.")); 347 348 // FIXME: Remove this switch once we have divergence analysis. Currently we 349 // assume divergent non-backedge branches when this switch is true. 350 cl::opt<bool> EnableVPlanPredication( 351 "enable-vplan-predication", cl::init(false), cl::Hidden, 352 cl::desc("Enable VPlan-native vectorization path predicator with " 353 "support for outer loop vectorization.")); 354 355 // This flag enables the stress testing of the VPlan H-CFG construction in the 356 // VPlan-native vectorization path. It must be used in conjuction with 357 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 358 // verification of the H-CFGs built. 359 static cl::opt<bool> VPlanBuildStressTest( 360 "vplan-build-stress-test", cl::init(false), cl::Hidden, 361 cl::desc( 362 "Build VPlan for every supported loop nest in the function and bail " 363 "out right after the build (stress test the VPlan H-CFG construction " 364 "in the VPlan-native vectorization path).")); 365 366 cl::opt<bool> llvm::EnableLoopInterleaving( 367 "interleave-loops", cl::init(true), cl::Hidden, 368 cl::desc("Enable loop interleaving in Loop vectorization passes")); 369 cl::opt<bool> llvm::EnableLoopVectorization( 370 "vectorize-loops", cl::init(true), cl::Hidden, 371 cl::desc("Run the Loop vectorization passes")); 372 373 cl::opt<bool> PrintVPlansInDotFormat( 374 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 375 cl::desc("Use dot format instead of plain text when dumping VPlans")); 376 377 /// A helper function that returns true if the given type is irregular. The 378 /// type is irregular if its allocated size doesn't equal the store size of an 379 /// element of the corresponding vector type. 380 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 381 // Determine if an array of N elements of type Ty is "bitcast compatible" 382 // with a <N x Ty> vector. 383 // This is only true if there is no padding between the array elements. 384 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 385 } 386 387 /// A helper function that returns the reciprocal of the block probability of 388 /// predicated blocks. If we return X, we are assuming the predicated block 389 /// will execute once for every X iterations of the loop header. 390 /// 391 /// TODO: We should use actual block probability here, if available. Currently, 392 /// we always assume predicated blocks have a 50% chance of executing. 393 static unsigned getReciprocalPredBlockProb() { return 2; } 394 395 /// A helper function that returns an integer or floating-point constant with 396 /// value C. 397 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 398 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 399 : ConstantFP::get(Ty, C); 400 } 401 402 /// Returns "best known" trip count for the specified loop \p L as defined by 403 /// the following procedure: 404 /// 1) Returns exact trip count if it is known. 405 /// 2) Returns expected trip count according to profile data if any. 406 /// 3) Returns upper bound estimate if it is known. 407 /// 4) Returns None if all of the above failed. 408 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 409 // Check if exact trip count is known. 410 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 411 return ExpectedTC; 412 413 // Check if there is an expected trip count available from profile data. 414 if (LoopVectorizeWithBlockFrequency) 415 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 416 return EstimatedTC; 417 418 // Check if upper bound estimate is known. 419 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 420 return ExpectedTC; 421 422 return None; 423 } 424 425 // Forward declare GeneratedRTChecks. 426 class GeneratedRTChecks; 427 428 namespace llvm { 429 430 AnalysisKey ShouldRunExtraVectorPasses::Key; 431 432 /// InnerLoopVectorizer vectorizes loops which contain only one basic 433 /// block to a specified vectorization factor (VF). 434 /// This class performs the widening of scalars into vectors, or multiple 435 /// scalars. This class also implements the following features: 436 /// * It inserts an epilogue loop for handling loops that don't have iteration 437 /// counts that are known to be a multiple of the vectorization factor. 438 /// * It handles the code generation for reduction variables. 439 /// * Scalarization (implementation using scalars) of un-vectorizable 440 /// instructions. 441 /// InnerLoopVectorizer does not perform any vectorization-legality 442 /// checks, and relies on the caller to check for the different legality 443 /// aspects. The InnerLoopVectorizer relies on the 444 /// LoopVectorizationLegality class to provide information about the induction 445 /// and reduction variables that were found to a given vectorization factor. 446 class InnerLoopVectorizer { 447 public: 448 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 449 LoopInfo *LI, DominatorTree *DT, 450 const TargetLibraryInfo *TLI, 451 const TargetTransformInfo *TTI, AssumptionCache *AC, 452 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 453 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 454 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 455 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 456 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 457 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 458 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 459 PSI(PSI), RTChecks(RTChecks) { 460 // Query this against the original loop and save it here because the profile 461 // of the original loop header may change as the transformation happens. 462 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 463 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 464 } 465 466 virtual ~InnerLoopVectorizer() = default; 467 468 /// Create a new empty loop that will contain vectorized instructions later 469 /// on, while the old loop will be used as the scalar remainder. Control flow 470 /// is generated around the vectorized (and scalar epilogue) loops consisting 471 /// of various checks and bypasses. Return the pre-header block of the new 472 /// loop and the start value for the canonical induction, if it is != 0. The 473 /// latter is the case when vectorizing the epilogue loop. In the case of 474 /// epilogue vectorization, this function is overriden to handle the more 475 /// complex control flow around the loops. 476 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 477 478 /// Widen a single call instruction within the innermost loop. 479 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 480 VPTransformState &State); 481 482 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 483 void fixVectorizedLoop(VPTransformState &State, VPlan &Plan); 484 485 // Return true if any runtime check is added. 486 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 487 488 /// A type for vectorized values in the new loop. Each value from the 489 /// original loop, when vectorized, is represented by UF vector values in the 490 /// new unrolled loop, where UF is the unroll factor. 491 using VectorParts = SmallVector<Value *, 2>; 492 493 /// Vectorize a single vector PHINode in a block in the VPlan-native path 494 /// only. 495 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 496 VPTransformState &State); 497 498 /// A helper function to scalarize a single Instruction in the innermost loop. 499 /// Generates a sequence of scalar instances for each lane between \p MinLane 500 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 501 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 502 /// Instr's operands. 503 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 504 const VPIteration &Instance, bool IfPredicateInstr, 505 VPTransformState &State); 506 507 /// Construct the vector value of a scalarized value \p V one lane at a time. 508 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 509 VPTransformState &State); 510 511 /// Try to vectorize interleaved access group \p Group with the base address 512 /// given in \p Addr, optionally masking the vector operations if \p 513 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 514 /// values in the vectorized loop. 515 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 516 ArrayRef<VPValue *> VPDefs, 517 VPTransformState &State, VPValue *Addr, 518 ArrayRef<VPValue *> StoredValues, 519 VPValue *BlockInMask = nullptr); 520 521 /// Set the debug location in the builder \p Ptr using the debug location in 522 /// \p V. If \p Ptr is None then it uses the class member's Builder. 523 void setDebugLocFromInst(const Value *V, 524 Optional<IRBuilderBase *> CustomBuilder = None); 525 526 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 527 void fixNonInductionPHIs(VPTransformState &State); 528 529 /// Returns true if the reordering of FP operations is not allowed, but we are 530 /// able to vectorize with strict in-order reductions for the given RdxDesc. 531 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 532 533 /// Create a broadcast instruction. This method generates a broadcast 534 /// instruction (shuffle) for loop invariant values and for the induction 535 /// value. If this is the induction variable then we extend it to N, N+1, ... 536 /// this is needed because each iteration in the loop corresponds to a SIMD 537 /// element. 538 virtual Value *getBroadcastInstrs(Value *V); 539 540 /// Add metadata from one instruction to another. 541 /// 542 /// This includes both the original MDs from \p From and additional ones (\see 543 /// addNewMetadata). Use this for *newly created* instructions in the vector 544 /// loop. 545 void addMetadata(Instruction *To, Instruction *From); 546 547 /// Similar to the previous function but it adds the metadata to a 548 /// vector of instructions. 549 void addMetadata(ArrayRef<Value *> To, Instruction *From); 550 551 // Returns the resume value (bc.merge.rdx) for a reduction as 552 // generated by fixReduction. 553 PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc); 554 555 protected: 556 friend class LoopVectorizationPlanner; 557 558 /// A small list of PHINodes. 559 using PhiVector = SmallVector<PHINode *, 4>; 560 561 /// A type for scalarized values in the new loop. Each value from the 562 /// original loop, when scalarized, is represented by UF x VF scalar values 563 /// in the new unrolled loop, where UF is the unroll factor and VF is the 564 /// vectorization factor. 565 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 566 567 /// Set up the values of the IVs correctly when exiting the vector loop. 568 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 569 Value *VectorTripCount, Value *EndValue, 570 BasicBlock *MiddleBlock, BasicBlock *VectorHeader); 571 572 /// Handle all cross-iteration phis in the header. 573 void fixCrossIterationPHIs(VPTransformState &State); 574 575 /// Create the exit value of first order recurrences in the middle block and 576 /// update their users. 577 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 578 VPTransformState &State); 579 580 /// Create code for the loop exit value of the reduction. 581 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 582 583 /// Clear NSW/NUW flags from reduction instructions if necessary. 584 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 585 VPTransformState &State); 586 587 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 588 /// means we need to add the appropriate incoming value from the middle 589 /// block as exiting edges from the scalar epilogue loop (if present) are 590 /// already in place, and we exit the vector loop exclusively to the middle 591 /// block. 592 void fixLCSSAPHIs(VPTransformState &State); 593 594 /// Iteratively sink the scalarized operands of a predicated instruction into 595 /// the block that was created for it. 596 void sinkScalarOperands(Instruction *PredInst); 597 598 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 599 /// represented as. 600 void truncateToMinimalBitwidths(VPTransformState &State); 601 602 /// Returns (and creates if needed) the original loop trip count. 603 Value *getOrCreateTripCount(BasicBlock *InsertBlock); 604 605 /// Returns (and creates if needed) the trip count of the widened loop. 606 Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock); 607 608 /// Returns a bitcasted value to the requested vector type. 609 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 610 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 611 const DataLayout &DL); 612 613 /// Emit a bypass check to see if the vector trip count is zero, including if 614 /// it overflows. 615 void emitMinimumIterationCountCheck(BasicBlock *Bypass); 616 617 /// Emit a bypass check to see if all of the SCEV assumptions we've 618 /// had to make are correct. Returns the block containing the checks or 619 /// nullptr if no checks have been added. 620 BasicBlock *emitSCEVChecks(BasicBlock *Bypass); 621 622 /// Emit bypass checks to check any memory assumptions we may have made. 623 /// Returns the block containing the checks or nullptr if no checks have been 624 /// added. 625 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass); 626 627 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 628 /// vector loop preheader, middle block and scalar preheader. 629 void createVectorLoopSkeleton(StringRef Prefix); 630 631 /// Create new phi nodes for the induction variables to resume iteration count 632 /// in the scalar epilogue, from where the vectorized loop left off. 633 /// In cases where the loop skeleton is more complicated (eg. epilogue 634 /// vectorization) and the resume values can come from an additional bypass 635 /// block, the \p AdditionalBypass pair provides information about the bypass 636 /// block and the end value on the edge from bypass to this loop. 637 void createInductionResumeValues( 638 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 639 640 /// Complete the loop skeleton by adding debug MDs, creating appropriate 641 /// conditional branches in the middle block, preparing the builder and 642 /// running the verifier. Return the preheader of the completed vector loop. 643 BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID); 644 645 /// Add additional metadata to \p To that was not present on \p Orig. 646 /// 647 /// Currently this is used to add the noalias annotations based on the 648 /// inserted memchecks. Use this for instructions that are *cloned* into the 649 /// vector loop. 650 void addNewMetadata(Instruction *To, const Instruction *Orig); 651 652 /// Collect poison-generating recipes that may generate a poison value that is 653 /// used after vectorization, even when their operands are not poison. Those 654 /// recipes meet the following conditions: 655 /// * Contribute to the address computation of a recipe generating a widen 656 /// memory load/store (VPWidenMemoryInstructionRecipe or 657 /// VPInterleaveRecipe). 658 /// * Such a widen memory load/store has at least one underlying Instruction 659 /// that is in a basic block that needs predication and after vectorization 660 /// the generated instruction won't be predicated. 661 void collectPoisonGeneratingRecipes(VPTransformState &State); 662 663 /// Allow subclasses to override and print debug traces before/after vplan 664 /// execution, when trace information is requested. 665 virtual void printDebugTracesAtStart(){}; 666 virtual void printDebugTracesAtEnd(){}; 667 668 /// The original loop. 669 Loop *OrigLoop; 670 671 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 672 /// dynamic knowledge to simplify SCEV expressions and converts them to a 673 /// more usable form. 674 PredicatedScalarEvolution &PSE; 675 676 /// Loop Info. 677 LoopInfo *LI; 678 679 /// Dominator Tree. 680 DominatorTree *DT; 681 682 /// Alias Analysis. 683 AAResults *AA; 684 685 /// Target Library Info. 686 const TargetLibraryInfo *TLI; 687 688 /// Target Transform Info. 689 const TargetTransformInfo *TTI; 690 691 /// Assumption Cache. 692 AssumptionCache *AC; 693 694 /// Interface to emit optimization remarks. 695 OptimizationRemarkEmitter *ORE; 696 697 /// LoopVersioning. It's only set up (non-null) if memchecks were 698 /// used. 699 /// 700 /// This is currently only used to add no-alias metadata based on the 701 /// memchecks. The actually versioning is performed manually. 702 std::unique_ptr<LoopVersioning> LVer; 703 704 /// The vectorization SIMD factor to use. Each vector will have this many 705 /// vector elements. 706 ElementCount VF; 707 708 /// The vectorization unroll factor to use. Each scalar is vectorized to this 709 /// many different vector instructions. 710 unsigned UF; 711 712 /// The builder that we use 713 IRBuilder<> Builder; 714 715 // --- Vectorization state --- 716 717 /// The vector-loop preheader. 718 BasicBlock *LoopVectorPreHeader; 719 720 /// The scalar-loop preheader. 721 BasicBlock *LoopScalarPreHeader; 722 723 /// Middle Block between the vector and the scalar. 724 BasicBlock *LoopMiddleBlock; 725 726 /// The unique ExitBlock of the scalar loop if one exists. Note that 727 /// there can be multiple exiting edges reaching this block. 728 BasicBlock *LoopExitBlock; 729 730 /// The scalar loop body. 731 BasicBlock *LoopScalarBody; 732 733 /// A list of all bypass blocks. The first block is the entry of the loop. 734 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 735 736 /// Store instructions that were predicated. 737 SmallVector<Instruction *, 4> PredicatedInstructions; 738 739 /// Trip count of the original loop. 740 Value *TripCount = nullptr; 741 742 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 743 Value *VectorTripCount = nullptr; 744 745 /// The legality analysis. 746 LoopVectorizationLegality *Legal; 747 748 /// The profitablity analysis. 749 LoopVectorizationCostModel *Cost; 750 751 // Record whether runtime checks are added. 752 bool AddedSafetyChecks = false; 753 754 // Holds the end values for each induction variable. We save the end values 755 // so we can later fix-up the external users of the induction variables. 756 DenseMap<PHINode *, Value *> IVEndValues; 757 758 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 759 // fixed up at the end of vector code generation. 760 SmallVector<PHINode *, 8> OrigPHIsToFix; 761 762 /// BFI and PSI are used to check for profile guided size optimizations. 763 BlockFrequencyInfo *BFI; 764 ProfileSummaryInfo *PSI; 765 766 // Whether this loop should be optimized for size based on profile guided size 767 // optimizatios. 768 bool OptForSizeBasedOnProfile; 769 770 /// Structure to hold information about generated runtime checks, responsible 771 /// for cleaning the checks, if vectorization turns out unprofitable. 772 GeneratedRTChecks &RTChecks; 773 774 // Holds the resume values for reductions in the loops, used to set the 775 // correct start value of reduction PHIs when vectorizing the epilogue. 776 SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4> 777 ReductionResumeValues; 778 }; 779 780 class InnerLoopUnroller : public InnerLoopVectorizer { 781 public: 782 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 783 LoopInfo *LI, DominatorTree *DT, 784 const TargetLibraryInfo *TLI, 785 const TargetTransformInfo *TTI, AssumptionCache *AC, 786 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 787 LoopVectorizationLegality *LVL, 788 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 789 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 790 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 791 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 792 BFI, PSI, Check) {} 793 794 private: 795 Value *getBroadcastInstrs(Value *V) override; 796 }; 797 798 /// Encapsulate information regarding vectorization of a loop and its epilogue. 799 /// This information is meant to be updated and used across two stages of 800 /// epilogue vectorization. 801 struct EpilogueLoopVectorizationInfo { 802 ElementCount MainLoopVF = ElementCount::getFixed(0); 803 unsigned MainLoopUF = 0; 804 ElementCount EpilogueVF = ElementCount::getFixed(0); 805 unsigned EpilogueUF = 0; 806 BasicBlock *MainLoopIterationCountCheck = nullptr; 807 BasicBlock *EpilogueIterationCountCheck = nullptr; 808 BasicBlock *SCEVSafetyCheck = nullptr; 809 BasicBlock *MemSafetyCheck = nullptr; 810 Value *TripCount = nullptr; 811 Value *VectorTripCount = nullptr; 812 813 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 814 ElementCount EVF, unsigned EUF) 815 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 816 assert(EUF == 1 && 817 "A high UF for the epilogue loop is likely not beneficial."); 818 } 819 }; 820 821 /// An extension of the inner loop vectorizer that creates a skeleton for a 822 /// vectorized loop that has its epilogue (residual) also vectorized. 823 /// The idea is to run the vplan on a given loop twice, firstly to setup the 824 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 825 /// from the first step and vectorize the epilogue. This is achieved by 826 /// deriving two concrete strategy classes from this base class and invoking 827 /// them in succession from the loop vectorizer planner. 828 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 829 public: 830 InnerLoopAndEpilogueVectorizer( 831 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 832 DominatorTree *DT, const TargetLibraryInfo *TLI, 833 const TargetTransformInfo *TTI, AssumptionCache *AC, 834 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 835 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 836 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 837 GeneratedRTChecks &Checks) 838 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 839 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 840 Checks), 841 EPI(EPI) {} 842 843 // Override this function to handle the more complex control flow around the 844 // three loops. 845 std::pair<BasicBlock *, Value *> 846 createVectorizedLoopSkeleton() final override { 847 return createEpilogueVectorizedLoopSkeleton(); 848 } 849 850 /// The interface for creating a vectorized skeleton using one of two 851 /// different strategies, each corresponding to one execution of the vplan 852 /// as described above. 853 virtual std::pair<BasicBlock *, Value *> 854 createEpilogueVectorizedLoopSkeleton() = 0; 855 856 /// Holds and updates state information required to vectorize the main loop 857 /// and its epilogue in two separate passes. This setup helps us avoid 858 /// regenerating and recomputing runtime safety checks. It also helps us to 859 /// shorten the iteration-count-check path length for the cases where the 860 /// iteration count of the loop is so small that the main vector loop is 861 /// completely skipped. 862 EpilogueLoopVectorizationInfo &EPI; 863 }; 864 865 /// A specialized derived class of inner loop vectorizer that performs 866 /// vectorization of *main* loops in the process of vectorizing loops and their 867 /// epilogues. 868 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 869 public: 870 EpilogueVectorizerMainLoop( 871 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 872 DominatorTree *DT, const TargetLibraryInfo *TLI, 873 const TargetTransformInfo *TTI, AssumptionCache *AC, 874 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 875 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 876 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 877 GeneratedRTChecks &Check) 878 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 879 EPI, LVL, CM, BFI, PSI, Check) {} 880 /// Implements the interface for creating a vectorized skeleton using the 881 /// *main loop* strategy (ie the first pass of vplan execution). 882 std::pair<BasicBlock *, Value *> 883 createEpilogueVectorizedLoopSkeleton() final override; 884 885 protected: 886 /// Emits an iteration count bypass check once for the main loop (when \p 887 /// ForEpilogue is false) and once for the epilogue loop (when \p 888 /// ForEpilogue is true). 889 BasicBlock *emitMinimumIterationCountCheck(BasicBlock *Bypass, 890 bool ForEpilogue); 891 void printDebugTracesAtStart() override; 892 void printDebugTracesAtEnd() override; 893 }; 894 895 // A specialized derived class of inner loop vectorizer that performs 896 // vectorization of *epilogue* loops in the process of vectorizing loops and 897 // their epilogues. 898 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 899 public: 900 EpilogueVectorizerEpilogueLoop( 901 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 902 DominatorTree *DT, const TargetLibraryInfo *TLI, 903 const TargetTransformInfo *TTI, AssumptionCache *AC, 904 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 905 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 906 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 907 GeneratedRTChecks &Checks) 908 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 909 EPI, LVL, CM, BFI, PSI, Checks) { 910 TripCount = EPI.TripCount; 911 } 912 /// Implements the interface for creating a vectorized skeleton using the 913 /// *epilogue loop* strategy (ie the second pass of vplan execution). 914 std::pair<BasicBlock *, Value *> 915 createEpilogueVectorizedLoopSkeleton() final override; 916 917 protected: 918 /// Emits an iteration count bypass check after the main vector loop has 919 /// finished to see if there are any iterations left to execute by either 920 /// the vector epilogue or the scalar epilogue. 921 BasicBlock *emitMinimumVectorEpilogueIterCountCheck( 922 BasicBlock *Bypass, 923 BasicBlock *Insert); 924 void printDebugTracesAtStart() override; 925 void printDebugTracesAtEnd() override; 926 }; 927 } // end namespace llvm 928 929 /// Look for a meaningful debug location on the instruction or it's 930 /// operands. 931 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 932 if (!I) 933 return I; 934 935 DebugLoc Empty; 936 if (I->getDebugLoc() != Empty) 937 return I; 938 939 for (Use &Op : I->operands()) { 940 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 941 if (OpInst->getDebugLoc() != Empty) 942 return OpInst; 943 } 944 945 return I; 946 } 947 948 void InnerLoopVectorizer::setDebugLocFromInst( 949 const Value *V, Optional<IRBuilderBase *> CustomBuilder) { 950 IRBuilderBase *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 951 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 952 const DILocation *DIL = Inst->getDebugLoc(); 953 954 // When a FSDiscriminator is enabled, we don't need to add the multiply 955 // factors to the discriminators. 956 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 957 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 958 // FIXME: For scalable vectors, assume vscale=1. 959 auto NewDIL = 960 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 961 if (NewDIL) 962 B->SetCurrentDebugLocation(NewDIL.getValue()); 963 else 964 LLVM_DEBUG(dbgs() 965 << "Failed to create new discriminator: " 966 << DIL->getFilename() << " Line: " << DIL->getLine()); 967 } else 968 B->SetCurrentDebugLocation(DIL); 969 } else 970 B->SetCurrentDebugLocation(DebugLoc()); 971 } 972 973 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 974 /// is passed, the message relates to that particular instruction. 975 #ifndef NDEBUG 976 static void debugVectorizationMessage(const StringRef Prefix, 977 const StringRef DebugMsg, 978 Instruction *I) { 979 dbgs() << "LV: " << Prefix << DebugMsg; 980 if (I != nullptr) 981 dbgs() << " " << *I; 982 else 983 dbgs() << '.'; 984 dbgs() << '\n'; 985 } 986 #endif 987 988 /// Create an analysis remark that explains why vectorization failed 989 /// 990 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 991 /// RemarkName is the identifier for the remark. If \p I is passed it is an 992 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 993 /// the location of the remark. \return the remark object that can be 994 /// streamed to. 995 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 996 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 997 Value *CodeRegion = TheLoop->getHeader(); 998 DebugLoc DL = TheLoop->getStartLoc(); 999 1000 if (I) { 1001 CodeRegion = I->getParent(); 1002 // If there is no debug location attached to the instruction, revert back to 1003 // using the loop's. 1004 if (I->getDebugLoc()) 1005 DL = I->getDebugLoc(); 1006 } 1007 1008 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1009 } 1010 1011 namespace llvm { 1012 1013 /// Return a value for Step multiplied by VF. 1014 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, 1015 int64_t Step) { 1016 assert(Ty->isIntegerTy() && "Expected an integer step"); 1017 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 1018 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1019 } 1020 1021 /// Return the runtime value for VF. 1022 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) { 1023 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1024 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1025 } 1026 1027 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy, 1028 ElementCount VF) { 1029 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 1030 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 1031 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 1032 return B.CreateUIToFP(RuntimeVF, FTy); 1033 } 1034 1035 void reportVectorizationFailure(const StringRef DebugMsg, 1036 const StringRef OREMsg, const StringRef ORETag, 1037 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1038 Instruction *I) { 1039 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1040 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1041 ORE->emit( 1042 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1043 << "loop not vectorized: " << OREMsg); 1044 } 1045 1046 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1047 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1048 Instruction *I) { 1049 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1050 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1051 ORE->emit( 1052 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1053 << Msg); 1054 } 1055 1056 } // end namespace llvm 1057 1058 #ifndef NDEBUG 1059 /// \return string containing a file name and a line # for the given loop. 1060 static std::string getDebugLocString(const Loop *L) { 1061 std::string Result; 1062 if (L) { 1063 raw_string_ostream OS(Result); 1064 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1065 LoopDbgLoc.print(OS); 1066 else 1067 // Just print the module name. 1068 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1069 OS.flush(); 1070 } 1071 return Result; 1072 } 1073 #endif 1074 1075 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1076 const Instruction *Orig) { 1077 // If the loop was versioned with memchecks, add the corresponding no-alias 1078 // metadata. 1079 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1080 LVer->annotateInstWithNoAlias(To, Orig); 1081 } 1082 1083 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1084 VPTransformState &State) { 1085 1086 // Collect recipes in the backward slice of `Root` that may generate a poison 1087 // value that is used after vectorization. 1088 SmallPtrSet<VPRecipeBase *, 16> Visited; 1089 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1090 SmallVector<VPRecipeBase *, 16> Worklist; 1091 Worklist.push_back(Root); 1092 1093 // Traverse the backward slice of Root through its use-def chain. 1094 while (!Worklist.empty()) { 1095 VPRecipeBase *CurRec = Worklist.back(); 1096 Worklist.pop_back(); 1097 1098 if (!Visited.insert(CurRec).second) 1099 continue; 1100 1101 // Prune search if we find another recipe generating a widen memory 1102 // instruction. Widen memory instructions involved in address computation 1103 // will lead to gather/scatter instructions, which don't need to be 1104 // handled. 1105 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1106 isa<VPInterleaveRecipe>(CurRec) || 1107 isa<VPScalarIVStepsRecipe>(CurRec) || 1108 isa<VPCanonicalIVPHIRecipe>(CurRec)) 1109 continue; 1110 1111 // This recipe contributes to the address computation of a widen 1112 // load/store. Collect recipe if its underlying instruction has 1113 // poison-generating flags. 1114 Instruction *Instr = CurRec->getUnderlyingInstr(); 1115 if (Instr && Instr->hasPoisonGeneratingFlags()) 1116 State.MayGeneratePoisonRecipes.insert(CurRec); 1117 1118 // Add new definitions to the worklist. 1119 for (VPValue *operand : CurRec->operands()) 1120 if (VPDef *OpDef = operand->getDef()) 1121 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1122 } 1123 }); 1124 1125 // Traverse all the recipes in the VPlan and collect the poison-generating 1126 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1127 // VPInterleaveRecipe. 1128 auto Iter = depth_first( 1129 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1130 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1131 for (VPRecipeBase &Recipe : *VPBB) { 1132 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1133 Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr(); 1134 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1135 if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr && 1136 Legal->blockNeedsPredication(UnderlyingInstr->getParent())) 1137 collectPoisonGeneratingInstrsInBackwardSlice( 1138 cast<VPRecipeBase>(AddrDef)); 1139 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1140 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1141 if (AddrDef) { 1142 // Check if any member of the interleave group needs predication. 1143 const InterleaveGroup<Instruction> *InterGroup = 1144 InterleaveRec->getInterleaveGroup(); 1145 bool NeedPredication = false; 1146 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1147 I < NumMembers; ++I) { 1148 Instruction *Member = InterGroup->getMember(I); 1149 if (Member) 1150 NeedPredication |= 1151 Legal->blockNeedsPredication(Member->getParent()); 1152 } 1153 1154 if (NeedPredication) 1155 collectPoisonGeneratingInstrsInBackwardSlice( 1156 cast<VPRecipeBase>(AddrDef)); 1157 } 1158 } 1159 } 1160 } 1161 } 1162 1163 void InnerLoopVectorizer::addMetadata(Instruction *To, 1164 Instruction *From) { 1165 propagateMetadata(To, From); 1166 addNewMetadata(To, From); 1167 } 1168 1169 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1170 Instruction *From) { 1171 for (Value *V : To) { 1172 if (Instruction *I = dyn_cast<Instruction>(V)) 1173 addMetadata(I, From); 1174 } 1175 } 1176 1177 PHINode *InnerLoopVectorizer::getReductionResumeValue( 1178 const RecurrenceDescriptor &RdxDesc) { 1179 auto It = ReductionResumeValues.find(&RdxDesc); 1180 assert(It != ReductionResumeValues.end() && 1181 "Expected to find a resume value for the reduction."); 1182 return It->second; 1183 } 1184 1185 namespace llvm { 1186 1187 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1188 // lowered. 1189 enum ScalarEpilogueLowering { 1190 1191 // The default: allowing scalar epilogues. 1192 CM_ScalarEpilogueAllowed, 1193 1194 // Vectorization with OptForSize: don't allow epilogues. 1195 CM_ScalarEpilogueNotAllowedOptSize, 1196 1197 // A special case of vectorisation with OptForSize: loops with a very small 1198 // trip count are considered for vectorization under OptForSize, thereby 1199 // making sure the cost of their loop body is dominant, free of runtime 1200 // guards and scalar iteration overheads. 1201 CM_ScalarEpilogueNotAllowedLowTripLoop, 1202 1203 // Loop hint predicate indicating an epilogue is undesired. 1204 CM_ScalarEpilogueNotNeededUsePredicate, 1205 1206 // Directive indicating we must either tail fold or not vectorize 1207 CM_ScalarEpilogueNotAllowedUsePredicate 1208 }; 1209 1210 /// ElementCountComparator creates a total ordering for ElementCount 1211 /// for the purposes of using it in a set structure. 1212 struct ElementCountComparator { 1213 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1214 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1215 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1216 } 1217 }; 1218 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1219 1220 /// LoopVectorizationCostModel - estimates the expected speedups due to 1221 /// vectorization. 1222 /// In many cases vectorization is not profitable. This can happen because of 1223 /// a number of reasons. In this class we mainly attempt to predict the 1224 /// expected speedup/slowdowns due to the supported instruction set. We use the 1225 /// TargetTransformInfo to query the different backends for the cost of 1226 /// different operations. 1227 class LoopVectorizationCostModel { 1228 public: 1229 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1230 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1231 LoopVectorizationLegality *Legal, 1232 const TargetTransformInfo &TTI, 1233 const TargetLibraryInfo *TLI, DemandedBits *DB, 1234 AssumptionCache *AC, 1235 OptimizationRemarkEmitter *ORE, const Function *F, 1236 const LoopVectorizeHints *Hints, 1237 InterleavedAccessInfo &IAI) 1238 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1239 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1240 Hints(Hints), InterleaveInfo(IAI) {} 1241 1242 /// \return An upper bound for the vectorization factors (both fixed and 1243 /// scalable). If the factors are 0, vectorization and interleaving should be 1244 /// avoided up front. 1245 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1246 1247 /// \return True if runtime checks are required for vectorization, and false 1248 /// otherwise. 1249 bool runtimeChecksRequired(); 1250 1251 /// \return The most profitable vectorization factor and the cost of that VF. 1252 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1253 /// then this vectorization factor will be selected if vectorization is 1254 /// possible. 1255 VectorizationFactor 1256 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1257 1258 VectorizationFactor 1259 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1260 const LoopVectorizationPlanner &LVP); 1261 1262 /// Setup cost-based decisions for user vectorization factor. 1263 /// \return true if the UserVF is a feasible VF to be chosen. 1264 bool selectUserVectorizationFactor(ElementCount UserVF) { 1265 collectUniformsAndScalars(UserVF); 1266 collectInstsToScalarize(UserVF); 1267 return expectedCost(UserVF).first.isValid(); 1268 } 1269 1270 /// \return The size (in bits) of the smallest and widest types in the code 1271 /// that needs to be vectorized. We ignore values that remain scalar such as 1272 /// 64 bit loop indices. 1273 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1274 1275 /// \return The desired interleave count. 1276 /// If interleave count has been specified by metadata it will be returned. 1277 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1278 /// are the selected vectorization factor and the cost of the selected VF. 1279 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1280 1281 /// Memory access instruction may be vectorized in more than one way. 1282 /// Form of instruction after vectorization depends on cost. 1283 /// This function takes cost-based decisions for Load/Store instructions 1284 /// and collects them in a map. This decisions map is used for building 1285 /// the lists of loop-uniform and loop-scalar instructions. 1286 /// The calculated cost is saved with widening decision in order to 1287 /// avoid redundant calculations. 1288 void setCostBasedWideningDecision(ElementCount VF); 1289 1290 /// A struct that represents some properties of the register usage 1291 /// of a loop. 1292 struct RegisterUsage { 1293 /// Holds the number of loop invariant values that are used in the loop. 1294 /// The key is ClassID of target-provided register class. 1295 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1296 /// Holds the maximum number of concurrent live intervals in the loop. 1297 /// The key is ClassID of target-provided register class. 1298 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1299 }; 1300 1301 /// \return Returns information about the register usages of the loop for the 1302 /// given vectorization factors. 1303 SmallVector<RegisterUsage, 8> 1304 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1305 1306 /// Collect values we want to ignore in the cost model. 1307 void collectValuesToIgnore(); 1308 1309 /// Collect all element types in the loop for which widening is needed. 1310 void collectElementTypesForWidening(); 1311 1312 /// Split reductions into those that happen in the loop, and those that happen 1313 /// outside. In loop reductions are collected into InLoopReductionChains. 1314 void collectInLoopReductions(); 1315 1316 /// Returns true if we should use strict in-order reductions for the given 1317 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1318 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1319 /// of FP operations. 1320 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1321 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1322 } 1323 1324 /// \returns The smallest bitwidth each instruction can be represented with. 1325 /// The vector equivalents of these instructions should be truncated to this 1326 /// type. 1327 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1328 return MinBWs; 1329 } 1330 1331 /// \returns True if it is more profitable to scalarize instruction \p I for 1332 /// vectorization factor \p VF. 1333 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1334 assert(VF.isVector() && 1335 "Profitable to scalarize relevant only for VF > 1."); 1336 1337 // Cost model is not run in the VPlan-native path - return conservative 1338 // result until this changes. 1339 if (EnableVPlanNativePath) 1340 return false; 1341 1342 auto Scalars = InstsToScalarize.find(VF); 1343 assert(Scalars != InstsToScalarize.end() && 1344 "VF not yet analyzed for scalarization profitability"); 1345 return Scalars->second.find(I) != Scalars->second.end(); 1346 } 1347 1348 /// Returns true if \p I is known to be uniform after vectorization. 1349 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1350 if (VF.isScalar()) 1351 return true; 1352 1353 // Cost model is not run in the VPlan-native path - return conservative 1354 // result until this changes. 1355 if (EnableVPlanNativePath) 1356 return false; 1357 1358 auto UniformsPerVF = Uniforms.find(VF); 1359 assert(UniformsPerVF != Uniforms.end() && 1360 "VF not yet analyzed for uniformity"); 1361 return UniformsPerVF->second.count(I); 1362 } 1363 1364 /// Returns true if \p I is known to be scalar after vectorization. 1365 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1366 if (VF.isScalar()) 1367 return true; 1368 1369 // Cost model is not run in the VPlan-native path - return conservative 1370 // result until this changes. 1371 if (EnableVPlanNativePath) 1372 return false; 1373 1374 auto ScalarsPerVF = Scalars.find(VF); 1375 assert(ScalarsPerVF != Scalars.end() && 1376 "Scalar values are not calculated for VF"); 1377 return ScalarsPerVF->second.count(I); 1378 } 1379 1380 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1381 /// for vectorization factor \p VF. 1382 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1383 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1384 !isProfitableToScalarize(I, VF) && 1385 !isScalarAfterVectorization(I, VF); 1386 } 1387 1388 /// Decision that was taken during cost calculation for memory instruction. 1389 enum InstWidening { 1390 CM_Unknown, 1391 CM_Widen, // For consecutive accesses with stride +1. 1392 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1393 CM_Interleave, 1394 CM_GatherScatter, 1395 CM_Scalarize 1396 }; 1397 1398 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1399 /// instruction \p I and vector width \p VF. 1400 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1401 InstructionCost Cost) { 1402 assert(VF.isVector() && "Expected VF >=2"); 1403 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1404 } 1405 1406 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1407 /// interleaving group \p Grp and vector width \p VF. 1408 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1409 ElementCount VF, InstWidening W, 1410 InstructionCost Cost) { 1411 assert(VF.isVector() && "Expected VF >=2"); 1412 /// Broadcast this decicion to all instructions inside the group. 1413 /// But the cost will be assigned to one instruction only. 1414 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1415 if (auto *I = Grp->getMember(i)) { 1416 if (Grp->getInsertPos() == I) 1417 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1418 else 1419 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1420 } 1421 } 1422 } 1423 1424 /// Return the cost model decision for the given instruction \p I and vector 1425 /// width \p VF. Return CM_Unknown if this instruction did not pass 1426 /// through the cost modeling. 1427 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1428 assert(VF.isVector() && "Expected VF to be a vector VF"); 1429 // Cost model is not run in the VPlan-native path - return conservative 1430 // result until this changes. 1431 if (EnableVPlanNativePath) 1432 return CM_GatherScatter; 1433 1434 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1435 auto Itr = WideningDecisions.find(InstOnVF); 1436 if (Itr == WideningDecisions.end()) 1437 return CM_Unknown; 1438 return Itr->second.first; 1439 } 1440 1441 /// Return the vectorization cost for the given instruction \p I and vector 1442 /// width \p VF. 1443 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1444 assert(VF.isVector() && "Expected VF >=2"); 1445 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1446 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1447 "The cost is not calculated"); 1448 return WideningDecisions[InstOnVF].second; 1449 } 1450 1451 /// Return True if instruction \p I is an optimizable truncate whose operand 1452 /// is an induction variable. Such a truncate will be removed by adding a new 1453 /// induction variable with the destination type. 1454 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1455 // If the instruction is not a truncate, return false. 1456 auto *Trunc = dyn_cast<TruncInst>(I); 1457 if (!Trunc) 1458 return false; 1459 1460 // Get the source and destination types of the truncate. 1461 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1462 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1463 1464 // If the truncate is free for the given types, return false. Replacing a 1465 // free truncate with an induction variable would add an induction variable 1466 // update instruction to each iteration of the loop. We exclude from this 1467 // check the primary induction variable since it will need an update 1468 // instruction regardless. 1469 Value *Op = Trunc->getOperand(0); 1470 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1471 return false; 1472 1473 // If the truncated value is not an induction variable, return false. 1474 return Legal->isInductionPhi(Op); 1475 } 1476 1477 /// Collects the instructions to scalarize for each predicated instruction in 1478 /// the loop. 1479 void collectInstsToScalarize(ElementCount VF); 1480 1481 /// Collect Uniform and Scalar values for the given \p VF. 1482 /// The sets depend on CM decision for Load/Store instructions 1483 /// that may be vectorized as interleave, gather-scatter or scalarized. 1484 void collectUniformsAndScalars(ElementCount VF) { 1485 // Do the analysis once. 1486 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1487 return; 1488 setCostBasedWideningDecision(VF); 1489 collectLoopUniforms(VF); 1490 collectLoopScalars(VF); 1491 } 1492 1493 /// Returns true if the target machine supports masked store operation 1494 /// for the given \p DataType and kind of access to \p Ptr. 1495 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1496 return Legal->isConsecutivePtr(DataType, Ptr) && 1497 TTI.isLegalMaskedStore(DataType, Alignment); 1498 } 1499 1500 /// Returns true if the target machine supports masked load operation 1501 /// for the given \p DataType and kind of access to \p Ptr. 1502 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1503 return Legal->isConsecutivePtr(DataType, Ptr) && 1504 TTI.isLegalMaskedLoad(DataType, Alignment); 1505 } 1506 1507 /// Returns true if the target machine can represent \p V as a masked gather 1508 /// or scatter operation. 1509 bool isLegalGatherOrScatter(Value *V, 1510 ElementCount VF = ElementCount::getFixed(1)) { 1511 bool LI = isa<LoadInst>(V); 1512 bool SI = isa<StoreInst>(V); 1513 if (!LI && !SI) 1514 return false; 1515 auto *Ty = getLoadStoreType(V); 1516 Align Align = getLoadStoreAlignment(V); 1517 if (VF.isVector()) 1518 Ty = VectorType::get(Ty, VF); 1519 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1520 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1521 } 1522 1523 /// Returns true if the target machine supports all of the reduction 1524 /// variables found for the given VF. 1525 bool canVectorizeReductions(ElementCount VF) const { 1526 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1527 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1528 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1529 })); 1530 } 1531 1532 /// Returns true if \p I is an instruction that will be scalarized with 1533 /// predication when vectorizing \p I with vectorization factor \p VF. Such 1534 /// instructions include conditional stores and instructions that may divide 1535 /// by zero. 1536 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1537 1538 // Returns true if \p I is an instruction that will be predicated either 1539 // through scalar predication or masked load/store or masked gather/scatter. 1540 // \p VF is the vectorization factor that will be used to vectorize \p I. 1541 // Superset of instructions that return true for isScalarWithPredication. 1542 bool isPredicatedInst(Instruction *I, ElementCount VF, 1543 bool IsKnownUniform = false) { 1544 // When we know the load is uniform and the original scalar loop was not 1545 // predicated we don't need to mark it as a predicated instruction. Any 1546 // vectorised blocks created when tail-folding are something artificial we 1547 // have introduced and we know there is always at least one active lane. 1548 // That's why we call Legal->blockNeedsPredication here because it doesn't 1549 // query tail-folding. 1550 if (IsKnownUniform && isa<LoadInst>(I) && 1551 !Legal->blockNeedsPredication(I->getParent())) 1552 return false; 1553 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1554 return false; 1555 // Loads and stores that need some form of masked operation are predicated 1556 // instructions. 1557 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1558 return Legal->isMaskRequired(I); 1559 return isScalarWithPredication(I, VF); 1560 } 1561 1562 /// Returns true if \p I is a memory instruction with consecutive memory 1563 /// access that can be widened. 1564 bool 1565 memoryInstructionCanBeWidened(Instruction *I, 1566 ElementCount VF = ElementCount::getFixed(1)); 1567 1568 /// Returns true if \p I is a memory instruction in an interleaved-group 1569 /// of memory accesses that can be vectorized with wide vector loads/stores 1570 /// and shuffles. 1571 bool 1572 interleavedAccessCanBeWidened(Instruction *I, 1573 ElementCount VF = ElementCount::getFixed(1)); 1574 1575 /// Check if \p Instr belongs to any interleaved access group. 1576 bool isAccessInterleaved(Instruction *Instr) { 1577 return InterleaveInfo.isInterleaved(Instr); 1578 } 1579 1580 /// Get the interleaved access group that \p Instr belongs to. 1581 const InterleaveGroup<Instruction> * 1582 getInterleavedAccessGroup(Instruction *Instr) { 1583 return InterleaveInfo.getInterleaveGroup(Instr); 1584 } 1585 1586 /// Returns true if we're required to use a scalar epilogue for at least 1587 /// the final iteration of the original loop. 1588 bool requiresScalarEpilogue(ElementCount VF) const { 1589 if (!isScalarEpilogueAllowed()) 1590 return false; 1591 // If we might exit from anywhere but the latch, must run the exiting 1592 // iteration in scalar form. 1593 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1594 return true; 1595 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1596 } 1597 1598 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1599 /// loop hint annotation. 1600 bool isScalarEpilogueAllowed() const { 1601 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1602 } 1603 1604 /// Returns true if all loop blocks should be masked to fold tail loop. 1605 bool foldTailByMasking() const { return FoldTailByMasking; } 1606 1607 /// Returns true if the instructions in this block requires predication 1608 /// for any reason, e.g. because tail folding now requires a predicate 1609 /// or because the block in the original loop was predicated. 1610 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1611 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1612 } 1613 1614 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1615 /// nodes to the chain of instructions representing the reductions. Uses a 1616 /// MapVector to ensure deterministic iteration order. 1617 using ReductionChainMap = 1618 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1619 1620 /// Return the chain of instructions representing an inloop reduction. 1621 const ReductionChainMap &getInLoopReductionChains() const { 1622 return InLoopReductionChains; 1623 } 1624 1625 /// Returns true if the Phi is part of an inloop reduction. 1626 bool isInLoopReduction(PHINode *Phi) const { 1627 return InLoopReductionChains.count(Phi); 1628 } 1629 1630 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1631 /// with factor VF. Return the cost of the instruction, including 1632 /// scalarization overhead if it's needed. 1633 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1634 1635 /// Estimate cost of a call instruction CI if it were vectorized with factor 1636 /// VF. Return the cost of the instruction, including scalarization overhead 1637 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1638 /// scalarized - 1639 /// i.e. either vector version isn't available, or is too expensive. 1640 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1641 bool &NeedToScalarize) const; 1642 1643 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1644 /// that of B. 1645 bool isMoreProfitable(const VectorizationFactor &A, 1646 const VectorizationFactor &B) const; 1647 1648 /// Invalidates decisions already taken by the cost model. 1649 void invalidateCostModelingDecisions() { 1650 WideningDecisions.clear(); 1651 Uniforms.clear(); 1652 Scalars.clear(); 1653 } 1654 1655 private: 1656 unsigned NumPredStores = 0; 1657 1658 /// Convenience function that returns the value of vscale_range iff 1659 /// vscale_range.min == vscale_range.max or otherwise returns the value 1660 /// returned by the corresponding TLI method. 1661 Optional<unsigned> getVScaleForTuning() const; 1662 1663 /// \return An upper bound for the vectorization factors for both 1664 /// fixed and scalable vectorization, where the minimum-known number of 1665 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1666 /// disabled or unsupported, then the scalable part will be equal to 1667 /// ElementCount::getScalable(0). 1668 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1669 ElementCount UserVF, 1670 bool FoldTailByMasking); 1671 1672 /// \return the maximized element count based on the targets vector 1673 /// registers and the loop trip-count, but limited to a maximum safe VF. 1674 /// This is a helper function of computeFeasibleMaxVF. 1675 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1676 /// issue that occurred on one of the buildbots which cannot be reproduced 1677 /// without having access to the properietary compiler (see comments on 1678 /// D98509). The issue is currently under investigation and this workaround 1679 /// will be removed as soon as possible. 1680 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1681 unsigned SmallestType, 1682 unsigned WidestType, 1683 const ElementCount &MaxSafeVF, 1684 bool FoldTailByMasking); 1685 1686 /// \return the maximum legal scalable VF, based on the safe max number 1687 /// of elements. 1688 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1689 1690 /// The vectorization cost is a combination of the cost itself and a boolean 1691 /// indicating whether any of the contributing operations will actually 1692 /// operate on vector values after type legalization in the backend. If this 1693 /// latter value is false, then all operations will be scalarized (i.e. no 1694 /// vectorization has actually taken place). 1695 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1696 1697 /// Returns the expected execution cost. The unit of the cost does 1698 /// not matter because we use the 'cost' units to compare different 1699 /// vector widths. The cost that is returned is *not* normalized by 1700 /// the factor width. If \p Invalid is not nullptr, this function 1701 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1702 /// each instruction that has an Invalid cost for the given VF. 1703 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1704 VectorizationCostTy 1705 expectedCost(ElementCount VF, 1706 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1707 1708 /// Returns the execution time cost of an instruction for a given vector 1709 /// width. Vector width of one means scalar. 1710 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1711 1712 /// The cost-computation logic from getInstructionCost which provides 1713 /// the vector type as an output parameter. 1714 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1715 Type *&VectorTy); 1716 1717 /// Return the cost of instructions in an inloop reduction pattern, if I is 1718 /// part of that pattern. 1719 Optional<InstructionCost> 1720 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1721 TTI::TargetCostKind CostKind); 1722 1723 /// Calculate vectorization cost of memory instruction \p I. 1724 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1725 1726 /// The cost computation for scalarized memory instruction. 1727 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1728 1729 /// The cost computation for interleaving group of memory instructions. 1730 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1731 1732 /// The cost computation for Gather/Scatter instruction. 1733 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1734 1735 /// The cost computation for widening instruction \p I with consecutive 1736 /// memory access. 1737 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1738 1739 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1740 /// Load: scalar load + broadcast. 1741 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1742 /// element) 1743 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1744 1745 /// Estimate the overhead of scalarizing an instruction. This is a 1746 /// convenience wrapper for the type-based getScalarizationOverhead API. 1747 InstructionCost getScalarizationOverhead(Instruction *I, 1748 ElementCount VF) const; 1749 1750 /// Returns whether the instruction is a load or store and will be a emitted 1751 /// as a vector operation. 1752 bool isConsecutiveLoadOrStore(Instruction *I); 1753 1754 /// Returns true if an artificially high cost for emulated masked memrefs 1755 /// should be used. 1756 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); 1757 1758 /// Map of scalar integer values to the smallest bitwidth they can be legally 1759 /// represented as. The vector equivalents of these values should be truncated 1760 /// to this type. 1761 MapVector<Instruction *, uint64_t> MinBWs; 1762 1763 /// A type representing the costs for instructions if they were to be 1764 /// scalarized rather than vectorized. The entries are Instruction-Cost 1765 /// pairs. 1766 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1767 1768 /// A set containing all BasicBlocks that are known to present after 1769 /// vectorization as a predicated block. 1770 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1771 1772 /// Records whether it is allowed to have the original scalar loop execute at 1773 /// least once. This may be needed as a fallback loop in case runtime 1774 /// aliasing/dependence checks fail, or to handle the tail/remainder 1775 /// iterations when the trip count is unknown or doesn't divide by the VF, 1776 /// or as a peel-loop to handle gaps in interleave-groups. 1777 /// Under optsize and when the trip count is very small we don't allow any 1778 /// iterations to execute in the scalar loop. 1779 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1780 1781 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1782 bool FoldTailByMasking = false; 1783 1784 /// A map holding scalar costs for different vectorization factors. The 1785 /// presence of a cost for an instruction in the mapping indicates that the 1786 /// instruction will be scalarized when vectorizing with the associated 1787 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1788 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1789 1790 /// Holds the instructions known to be uniform after vectorization. 1791 /// The data is collected per VF. 1792 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1793 1794 /// Holds the instructions known to be scalar after vectorization. 1795 /// The data is collected per VF. 1796 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1797 1798 /// Holds the instructions (address computations) that are forced to be 1799 /// scalarized. 1800 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1801 1802 /// PHINodes of the reductions that should be expanded in-loop along with 1803 /// their associated chains of reduction operations, in program order from top 1804 /// (PHI) to bottom 1805 ReductionChainMap InLoopReductionChains; 1806 1807 /// A Map of inloop reduction operations and their immediate chain operand. 1808 /// FIXME: This can be removed once reductions can be costed correctly in 1809 /// vplan. This was added to allow quick lookup to the inloop operations, 1810 /// without having to loop through InLoopReductionChains. 1811 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1812 1813 /// Returns the expected difference in cost from scalarizing the expression 1814 /// feeding a predicated instruction \p PredInst. The instructions to 1815 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1816 /// non-negative return value implies the expression will be scalarized. 1817 /// Currently, only single-use chains are considered for scalarization. 1818 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1819 ElementCount VF); 1820 1821 /// Collect the instructions that are uniform after vectorization. An 1822 /// instruction is uniform if we represent it with a single scalar value in 1823 /// the vectorized loop corresponding to each vector iteration. Examples of 1824 /// uniform instructions include pointer operands of consecutive or 1825 /// interleaved memory accesses. Note that although uniformity implies an 1826 /// instruction will be scalar, the reverse is not true. In general, a 1827 /// scalarized instruction will be represented by VF scalar values in the 1828 /// vectorized loop, each corresponding to an iteration of the original 1829 /// scalar loop. 1830 void collectLoopUniforms(ElementCount VF); 1831 1832 /// Collect the instructions that are scalar after vectorization. An 1833 /// instruction is scalar if it is known to be uniform or will be scalarized 1834 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1835 /// to the list if they are used by a load/store instruction that is marked as 1836 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1837 /// VF values in the vectorized loop, each corresponding to an iteration of 1838 /// the original scalar loop. 1839 void collectLoopScalars(ElementCount VF); 1840 1841 /// Keeps cost model vectorization decision and cost for instructions. 1842 /// Right now it is used for memory instructions only. 1843 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1844 std::pair<InstWidening, InstructionCost>>; 1845 1846 DecisionList WideningDecisions; 1847 1848 /// Returns true if \p V is expected to be vectorized and it needs to be 1849 /// extracted. 1850 bool needsExtract(Value *V, ElementCount VF) const { 1851 Instruction *I = dyn_cast<Instruction>(V); 1852 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1853 TheLoop->isLoopInvariant(I)) 1854 return false; 1855 1856 // Assume we can vectorize V (and hence we need extraction) if the 1857 // scalars are not computed yet. This can happen, because it is called 1858 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1859 // the scalars are collected. That should be a safe assumption in most 1860 // cases, because we check if the operands have vectorizable types 1861 // beforehand in LoopVectorizationLegality. 1862 return Scalars.find(VF) == Scalars.end() || 1863 !isScalarAfterVectorization(I, VF); 1864 }; 1865 1866 /// Returns a range containing only operands needing to be extracted. 1867 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1868 ElementCount VF) const { 1869 return SmallVector<Value *, 4>(make_filter_range( 1870 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1871 } 1872 1873 /// Determines if we have the infrastructure to vectorize loop \p L and its 1874 /// epilogue, assuming the main loop is vectorized by \p VF. 1875 bool isCandidateForEpilogueVectorization(const Loop &L, 1876 const ElementCount VF) const; 1877 1878 /// Returns true if epilogue vectorization is considered profitable, and 1879 /// false otherwise. 1880 /// \p VF is the vectorization factor chosen for the original loop. 1881 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1882 1883 public: 1884 /// The loop that we evaluate. 1885 Loop *TheLoop; 1886 1887 /// Predicated scalar evolution analysis. 1888 PredicatedScalarEvolution &PSE; 1889 1890 /// Loop Info analysis. 1891 LoopInfo *LI; 1892 1893 /// Vectorization legality. 1894 LoopVectorizationLegality *Legal; 1895 1896 /// Vector target information. 1897 const TargetTransformInfo &TTI; 1898 1899 /// Target Library Info. 1900 const TargetLibraryInfo *TLI; 1901 1902 /// Demanded bits analysis. 1903 DemandedBits *DB; 1904 1905 /// Assumption cache. 1906 AssumptionCache *AC; 1907 1908 /// Interface to emit optimization remarks. 1909 OptimizationRemarkEmitter *ORE; 1910 1911 const Function *TheFunction; 1912 1913 /// Loop Vectorize Hint. 1914 const LoopVectorizeHints *Hints; 1915 1916 /// The interleave access information contains groups of interleaved accesses 1917 /// with the same stride and close to each other. 1918 InterleavedAccessInfo &InterleaveInfo; 1919 1920 /// Values to ignore in the cost model. 1921 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1922 1923 /// Values to ignore in the cost model when VF > 1. 1924 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1925 1926 /// All element types found in the loop. 1927 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1928 1929 /// Profitable vector factors. 1930 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1931 }; 1932 } // end namespace llvm 1933 1934 /// Helper struct to manage generating runtime checks for vectorization. 1935 /// 1936 /// The runtime checks are created up-front in temporary blocks to allow better 1937 /// estimating the cost and un-linked from the existing IR. After deciding to 1938 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1939 /// temporary blocks are completely removed. 1940 class GeneratedRTChecks { 1941 /// Basic block which contains the generated SCEV checks, if any. 1942 BasicBlock *SCEVCheckBlock = nullptr; 1943 1944 /// The value representing the result of the generated SCEV checks. If it is 1945 /// nullptr, either no SCEV checks have been generated or they have been used. 1946 Value *SCEVCheckCond = nullptr; 1947 1948 /// Basic block which contains the generated memory runtime checks, if any. 1949 BasicBlock *MemCheckBlock = nullptr; 1950 1951 /// The value representing the result of the generated memory runtime checks. 1952 /// If it is nullptr, either no memory runtime checks have been generated or 1953 /// they have been used. 1954 Value *MemRuntimeCheckCond = nullptr; 1955 1956 DominatorTree *DT; 1957 LoopInfo *LI; 1958 1959 SCEVExpander SCEVExp; 1960 SCEVExpander MemCheckExp; 1961 1962 public: 1963 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1964 const DataLayout &DL) 1965 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1966 MemCheckExp(SE, DL, "scev.check") {} 1967 1968 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1969 /// accurately estimate the cost of the runtime checks. The blocks are 1970 /// un-linked from the IR and is added back during vector code generation. If 1971 /// there is no vector code generation, the check blocks are removed 1972 /// completely. 1973 void Create(Loop *L, const LoopAccessInfo &LAI, 1974 const SCEVPredicate &Pred) { 1975 1976 BasicBlock *LoopHeader = L->getHeader(); 1977 BasicBlock *Preheader = L->getLoopPreheader(); 1978 1979 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1980 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1981 // may be used by SCEVExpander. The blocks will be un-linked from their 1982 // predecessors and removed from LI & DT at the end of the function. 1983 if (!Pred.isAlwaysTrue()) { 1984 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1985 nullptr, "vector.scevcheck"); 1986 1987 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1988 &Pred, SCEVCheckBlock->getTerminator()); 1989 } 1990 1991 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1992 if (RtPtrChecking.Need) { 1993 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1994 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1995 "vector.memcheck"); 1996 1997 MemRuntimeCheckCond = 1998 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1999 RtPtrChecking.getChecks(), MemCheckExp); 2000 assert(MemRuntimeCheckCond && 2001 "no RT checks generated although RtPtrChecking " 2002 "claimed checks are required"); 2003 } 2004 2005 if (!MemCheckBlock && !SCEVCheckBlock) 2006 return; 2007 2008 // Unhook the temporary block with the checks, update various places 2009 // accordingly. 2010 if (SCEVCheckBlock) 2011 SCEVCheckBlock->replaceAllUsesWith(Preheader); 2012 if (MemCheckBlock) 2013 MemCheckBlock->replaceAllUsesWith(Preheader); 2014 2015 if (SCEVCheckBlock) { 2016 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2017 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 2018 Preheader->getTerminator()->eraseFromParent(); 2019 } 2020 if (MemCheckBlock) { 2021 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2022 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 2023 Preheader->getTerminator()->eraseFromParent(); 2024 } 2025 2026 DT->changeImmediateDominator(LoopHeader, Preheader); 2027 if (MemCheckBlock) { 2028 DT->eraseNode(MemCheckBlock); 2029 LI->removeBlock(MemCheckBlock); 2030 } 2031 if (SCEVCheckBlock) { 2032 DT->eraseNode(SCEVCheckBlock); 2033 LI->removeBlock(SCEVCheckBlock); 2034 } 2035 } 2036 2037 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2038 /// unused. 2039 ~GeneratedRTChecks() { 2040 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2041 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2042 if (!SCEVCheckCond) 2043 SCEVCleaner.markResultUsed(); 2044 2045 if (!MemRuntimeCheckCond) 2046 MemCheckCleaner.markResultUsed(); 2047 2048 if (MemRuntimeCheckCond) { 2049 auto &SE = *MemCheckExp.getSE(); 2050 // Memory runtime check generation creates compares that use expanded 2051 // values. Remove them before running the SCEVExpanderCleaners. 2052 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2053 if (MemCheckExp.isInsertedInstruction(&I)) 2054 continue; 2055 SE.forgetValue(&I); 2056 I.eraseFromParent(); 2057 } 2058 } 2059 MemCheckCleaner.cleanup(); 2060 SCEVCleaner.cleanup(); 2061 2062 if (SCEVCheckCond) 2063 SCEVCheckBlock->eraseFromParent(); 2064 if (MemRuntimeCheckCond) 2065 MemCheckBlock->eraseFromParent(); 2066 } 2067 2068 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2069 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2070 /// depending on the generated condition. 2071 BasicBlock *emitSCEVChecks(BasicBlock *Bypass, 2072 BasicBlock *LoopVectorPreHeader, 2073 BasicBlock *LoopExitBlock) { 2074 if (!SCEVCheckCond) 2075 return nullptr; 2076 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2077 if (C->isZero()) 2078 return nullptr; 2079 2080 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2081 2082 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2083 // Create new preheader for vector loop. 2084 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2085 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2086 2087 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2088 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2089 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2090 SCEVCheckBlock); 2091 2092 DT->addNewBlock(SCEVCheckBlock, Pred); 2093 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2094 2095 ReplaceInstWithInst( 2096 SCEVCheckBlock->getTerminator(), 2097 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2098 // Mark the check as used, to prevent it from being removed during cleanup. 2099 SCEVCheckCond = nullptr; 2100 return SCEVCheckBlock; 2101 } 2102 2103 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2104 /// the branches to branch to the vector preheader or \p Bypass, depending on 2105 /// the generated condition. 2106 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass, 2107 BasicBlock *LoopVectorPreHeader) { 2108 // Check if we generated code that checks in runtime if arrays overlap. 2109 if (!MemRuntimeCheckCond) 2110 return nullptr; 2111 2112 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2113 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2114 MemCheckBlock); 2115 2116 DT->addNewBlock(MemCheckBlock, Pred); 2117 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2118 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2119 2120 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2121 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2122 2123 ReplaceInstWithInst( 2124 MemCheckBlock->getTerminator(), 2125 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2126 MemCheckBlock->getTerminator()->setDebugLoc( 2127 Pred->getTerminator()->getDebugLoc()); 2128 2129 // Mark the check as used, to prevent it from being removed during cleanup. 2130 MemRuntimeCheckCond = nullptr; 2131 return MemCheckBlock; 2132 } 2133 }; 2134 2135 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2136 // vectorization. The loop needs to be annotated with #pragma omp simd 2137 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2138 // vector length information is not provided, vectorization is not considered 2139 // explicit. Interleave hints are not allowed either. These limitations will be 2140 // relaxed in the future. 2141 // Please, note that we are currently forced to abuse the pragma 'clang 2142 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2143 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2144 // provides *explicit vectorization hints* (LV can bypass legal checks and 2145 // assume that vectorization is legal). However, both hints are implemented 2146 // using the same metadata (llvm.loop.vectorize, processed by 2147 // LoopVectorizeHints). This will be fixed in the future when the native IR 2148 // representation for pragma 'omp simd' is introduced. 2149 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2150 OptimizationRemarkEmitter *ORE) { 2151 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2152 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2153 2154 // Only outer loops with an explicit vectorization hint are supported. 2155 // Unannotated outer loops are ignored. 2156 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2157 return false; 2158 2159 Function *Fn = OuterLp->getHeader()->getParent(); 2160 if (!Hints.allowVectorization(Fn, OuterLp, 2161 true /*VectorizeOnlyWhenForced*/)) { 2162 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2163 return false; 2164 } 2165 2166 if (Hints.getInterleave() > 1) { 2167 // TODO: Interleave support is future work. 2168 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2169 "outer loops.\n"); 2170 Hints.emitRemarkWithHints(); 2171 return false; 2172 } 2173 2174 return true; 2175 } 2176 2177 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2178 OptimizationRemarkEmitter *ORE, 2179 SmallVectorImpl<Loop *> &V) { 2180 // Collect inner loops and outer loops without irreducible control flow. For 2181 // now, only collect outer loops that have explicit vectorization hints. If we 2182 // are stress testing the VPlan H-CFG construction, we collect the outermost 2183 // loop of every loop nest. 2184 if (L.isInnermost() || VPlanBuildStressTest || 2185 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2186 LoopBlocksRPO RPOT(&L); 2187 RPOT.perform(LI); 2188 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2189 V.push_back(&L); 2190 // TODO: Collect inner loops inside marked outer loops in case 2191 // vectorization fails for the outer loop. Do not invoke 2192 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2193 // already known to be reducible. We can use an inherited attribute for 2194 // that. 2195 return; 2196 } 2197 } 2198 for (Loop *InnerL : L) 2199 collectSupportedLoops(*InnerL, LI, ORE, V); 2200 } 2201 2202 namespace { 2203 2204 /// The LoopVectorize Pass. 2205 struct LoopVectorize : public FunctionPass { 2206 /// Pass identification, replacement for typeid 2207 static char ID; 2208 2209 LoopVectorizePass Impl; 2210 2211 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2212 bool VectorizeOnlyWhenForced = false) 2213 : FunctionPass(ID), 2214 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2215 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2216 } 2217 2218 bool runOnFunction(Function &F) override { 2219 if (skipFunction(F)) 2220 return false; 2221 2222 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2223 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2224 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2225 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2226 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2227 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2228 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2229 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2230 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2231 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2232 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2233 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2234 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2235 2236 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2237 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2238 2239 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2240 GetLAA, *ORE, PSI).MadeAnyChange; 2241 } 2242 2243 void getAnalysisUsage(AnalysisUsage &AU) const override { 2244 AU.addRequired<AssumptionCacheTracker>(); 2245 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2246 AU.addRequired<DominatorTreeWrapperPass>(); 2247 AU.addRequired<LoopInfoWrapperPass>(); 2248 AU.addRequired<ScalarEvolutionWrapperPass>(); 2249 AU.addRequired<TargetTransformInfoWrapperPass>(); 2250 AU.addRequired<AAResultsWrapperPass>(); 2251 AU.addRequired<LoopAccessLegacyAnalysis>(); 2252 AU.addRequired<DemandedBitsWrapperPass>(); 2253 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2254 AU.addRequired<InjectTLIMappingsLegacy>(); 2255 2256 // We currently do not preserve loopinfo/dominator analyses with outer loop 2257 // vectorization. Until this is addressed, mark these analyses as preserved 2258 // only for non-VPlan-native path. 2259 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2260 if (!EnableVPlanNativePath) { 2261 AU.addPreserved<LoopInfoWrapperPass>(); 2262 AU.addPreserved<DominatorTreeWrapperPass>(); 2263 } 2264 2265 AU.addPreserved<BasicAAWrapperPass>(); 2266 AU.addPreserved<GlobalsAAWrapperPass>(); 2267 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2268 } 2269 }; 2270 2271 } // end anonymous namespace 2272 2273 //===----------------------------------------------------------------------===// 2274 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2275 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2276 //===----------------------------------------------------------------------===// 2277 2278 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2279 // We need to place the broadcast of invariant variables outside the loop, 2280 // but only if it's proven safe to do so. Else, broadcast will be inside 2281 // vector loop body. 2282 Instruction *Instr = dyn_cast<Instruction>(V); 2283 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2284 (!Instr || 2285 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2286 // Place the code for broadcasting invariant variables in the new preheader. 2287 IRBuilder<>::InsertPointGuard Guard(Builder); 2288 if (SafeToHoist) 2289 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2290 2291 // Broadcast the scalar into all locations in the vector. 2292 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2293 2294 return Shuf; 2295 } 2296 2297 /// This function adds 2298 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2299 /// to each vector element of Val. The sequence starts at StartIndex. 2300 /// \p Opcode is relevant for FP induction variable. 2301 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2302 Instruction::BinaryOps BinOp, ElementCount VF, 2303 IRBuilderBase &Builder) { 2304 assert(VF.isVector() && "only vector VFs are supported"); 2305 2306 // Create and check the types. 2307 auto *ValVTy = cast<VectorType>(Val->getType()); 2308 ElementCount VLen = ValVTy->getElementCount(); 2309 2310 Type *STy = Val->getType()->getScalarType(); 2311 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2312 "Induction Step must be an integer or FP"); 2313 assert(Step->getType() == STy && "Step has wrong type"); 2314 2315 SmallVector<Constant *, 8> Indices; 2316 2317 // Create a vector of consecutive numbers from zero to VF. 2318 VectorType *InitVecValVTy = ValVTy; 2319 if (STy->isFloatingPointTy()) { 2320 Type *InitVecValSTy = 2321 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2322 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2323 } 2324 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2325 2326 // Splat the StartIdx 2327 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2328 2329 if (STy->isIntegerTy()) { 2330 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2331 Step = Builder.CreateVectorSplat(VLen, Step); 2332 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2333 // FIXME: The newly created binary instructions should contain nsw/nuw 2334 // flags, which can be found from the original scalar operations. 2335 Step = Builder.CreateMul(InitVec, Step); 2336 return Builder.CreateAdd(Val, Step, "induction"); 2337 } 2338 2339 // Floating point induction. 2340 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2341 "Binary Opcode should be specified for FP induction"); 2342 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2343 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2344 2345 Step = Builder.CreateVectorSplat(VLen, Step); 2346 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2347 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2348 } 2349 2350 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 2351 /// variable on which to base the steps, \p Step is the size of the step. 2352 static void buildScalarSteps(Value *ScalarIV, Value *Step, 2353 const InductionDescriptor &ID, VPValue *Def, 2354 VPTransformState &State) { 2355 IRBuilderBase &Builder = State.Builder; 2356 // We shouldn't have to build scalar steps if we aren't vectorizing. 2357 assert(State.VF.isVector() && "VF should be greater than one"); 2358 // Get the value type and ensure it and the step have the same integer type. 2359 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2360 assert(ScalarIVTy == Step->getType() && 2361 "Val and Step should have the same type"); 2362 2363 // We build scalar steps for both integer and floating-point induction 2364 // variables. Here, we determine the kind of arithmetic we will perform. 2365 Instruction::BinaryOps AddOp; 2366 Instruction::BinaryOps MulOp; 2367 if (ScalarIVTy->isIntegerTy()) { 2368 AddOp = Instruction::Add; 2369 MulOp = Instruction::Mul; 2370 } else { 2371 AddOp = ID.getInductionOpcode(); 2372 MulOp = Instruction::FMul; 2373 } 2374 2375 // Determine the number of scalars we need to generate for each unroll 2376 // iteration. 2377 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def); 2378 unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue(); 2379 // Compute the scalar steps and save the results in State. 2380 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2381 ScalarIVTy->getScalarSizeInBits()); 2382 Type *VecIVTy = nullptr; 2383 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2384 if (!FirstLaneOnly && State.VF.isScalable()) { 2385 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2386 UnitStepVec = 2387 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2388 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2389 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2390 } 2391 2392 for (unsigned Part = 0; Part < State.UF; ++Part) { 2393 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2394 2395 if (!FirstLaneOnly && State.VF.isScalable()) { 2396 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2397 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2398 if (ScalarIVTy->isFloatingPointTy()) 2399 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2400 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2401 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2402 State.set(Def, Add, Part); 2403 // It's useful to record the lane values too for the known minimum number 2404 // of elements so we do those below. This improves the code quality when 2405 // trying to extract the first element, for example. 2406 } 2407 2408 if (ScalarIVTy->isFloatingPointTy()) 2409 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2410 2411 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2412 Value *StartIdx = Builder.CreateBinOp( 2413 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2414 // The step returned by `createStepForVF` is a runtime-evaluated value 2415 // when VF is scalable. Otherwise, it should be folded into a Constant. 2416 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2417 "Expected StartIdx to be folded to a constant when VF is not " 2418 "scalable"); 2419 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2420 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2421 State.set(Def, Add, VPIteration(Part, Lane)); 2422 } 2423 } 2424 } 2425 2426 // Generate code for the induction step. Note that induction steps are 2427 // required to be loop-invariant 2428 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE, 2429 Instruction *InsertBefore, 2430 Loop *OrigLoop = nullptr) { 2431 const DataLayout &DL = SE.getDataLayout(); 2432 assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) && 2433 "Induction step should be loop invariant"); 2434 if (auto *E = dyn_cast<SCEVUnknown>(Step)) 2435 return E->getValue(); 2436 2437 SCEVExpander Exp(SE, DL, "induction"); 2438 return Exp.expandCodeFor(Step, Step->getType(), InsertBefore); 2439 } 2440 2441 /// Compute the transformed value of Index at offset StartValue using step 2442 /// StepValue. 2443 /// For integer induction, returns StartValue + Index * StepValue. 2444 /// For pointer induction, returns StartValue[Index * StepValue]. 2445 /// FIXME: The newly created binary instructions should contain nsw/nuw 2446 /// flags, which can be found from the original scalar operations. 2447 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index, 2448 Value *StartValue, Value *Step, 2449 const InductionDescriptor &ID) { 2450 assert(Index->getType()->getScalarType() == Step->getType() && 2451 "Index scalar type does not match StepValue type"); 2452 2453 // Note: the IR at this point is broken. We cannot use SE to create any new 2454 // SCEV and then expand it, hoping that SCEV's simplification will give us 2455 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2456 // lead to various SCEV crashes. So all we can do is to use builder and rely 2457 // on InstCombine for future simplifications. Here we handle some trivial 2458 // cases only. 2459 auto CreateAdd = [&B](Value *X, Value *Y) { 2460 assert(X->getType() == Y->getType() && "Types don't match!"); 2461 if (auto *CX = dyn_cast<ConstantInt>(X)) 2462 if (CX->isZero()) 2463 return Y; 2464 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2465 if (CY->isZero()) 2466 return X; 2467 return B.CreateAdd(X, Y); 2468 }; 2469 2470 // We allow X to be a vector type, in which case Y will potentially be 2471 // splatted into a vector with the same element count. 2472 auto CreateMul = [&B](Value *X, Value *Y) { 2473 assert(X->getType()->getScalarType() == Y->getType() && 2474 "Types don't match!"); 2475 if (auto *CX = dyn_cast<ConstantInt>(X)) 2476 if (CX->isOne()) 2477 return Y; 2478 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2479 if (CY->isOne()) 2480 return X; 2481 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 2482 if (XVTy && !isa<VectorType>(Y->getType())) 2483 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 2484 return B.CreateMul(X, Y); 2485 }; 2486 2487 switch (ID.getKind()) { 2488 case InductionDescriptor::IK_IntInduction: { 2489 assert(!isa<VectorType>(Index->getType()) && 2490 "Vector indices not supported for integer inductions yet"); 2491 assert(Index->getType() == StartValue->getType() && 2492 "Index type does not match StartValue type"); 2493 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne()) 2494 return B.CreateSub(StartValue, Index); 2495 auto *Offset = CreateMul(Index, Step); 2496 return CreateAdd(StartValue, Offset); 2497 } 2498 case InductionDescriptor::IK_PtrInduction: { 2499 assert(isa<Constant>(Step) && 2500 "Expected constant step for pointer induction"); 2501 return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step)); 2502 } 2503 case InductionDescriptor::IK_FpInduction: { 2504 assert(!isa<VectorType>(Index->getType()) && 2505 "Vector indices not supported for FP inductions yet"); 2506 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2507 auto InductionBinOp = ID.getInductionBinOp(); 2508 assert(InductionBinOp && 2509 (InductionBinOp->getOpcode() == Instruction::FAdd || 2510 InductionBinOp->getOpcode() == Instruction::FSub) && 2511 "Original bin op should be defined for FP induction"); 2512 2513 Value *MulExp = B.CreateFMul(Step, Index); 2514 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2515 "induction"); 2516 } 2517 case InductionDescriptor::IK_NoInduction: 2518 return nullptr; 2519 } 2520 llvm_unreachable("invalid enum"); 2521 } 2522 2523 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2524 const VPIteration &Instance, 2525 VPTransformState &State) { 2526 Value *ScalarInst = State.get(Def, Instance); 2527 Value *VectorValue = State.get(Def, Instance.Part); 2528 VectorValue = Builder.CreateInsertElement( 2529 VectorValue, ScalarInst, 2530 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2531 State.set(Def, VectorValue, Instance.Part); 2532 } 2533 2534 // Return whether we allow using masked interleave-groups (for dealing with 2535 // strided loads/stores that reside in predicated blocks, or for dealing 2536 // with gaps). 2537 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2538 // If an override option has been passed in for interleaved accesses, use it. 2539 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2540 return EnableMaskedInterleavedMemAccesses; 2541 2542 return TTI.enableMaskedInterleavedAccessVectorization(); 2543 } 2544 2545 // Try to vectorize the interleave group that \p Instr belongs to. 2546 // 2547 // E.g. Translate following interleaved load group (factor = 3): 2548 // for (i = 0; i < N; i+=3) { 2549 // R = Pic[i]; // Member of index 0 2550 // G = Pic[i+1]; // Member of index 1 2551 // B = Pic[i+2]; // Member of index 2 2552 // ... // do something to R, G, B 2553 // } 2554 // To: 2555 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2556 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2557 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2558 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2559 // 2560 // Or translate following interleaved store group (factor = 3): 2561 // for (i = 0; i < N; i+=3) { 2562 // ... do something to R, G, B 2563 // Pic[i] = R; // Member of index 0 2564 // Pic[i+1] = G; // Member of index 1 2565 // Pic[i+2] = B; // Member of index 2 2566 // } 2567 // To: 2568 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2569 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2570 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2571 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2572 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2573 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2574 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2575 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2576 VPValue *BlockInMask) { 2577 Instruction *Instr = Group->getInsertPos(); 2578 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2579 2580 // Prepare for the vector type of the interleaved load/store. 2581 Type *ScalarTy = getLoadStoreType(Instr); 2582 unsigned InterleaveFactor = Group->getFactor(); 2583 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2584 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2585 2586 // Prepare for the new pointers. 2587 SmallVector<Value *, 2> AddrParts; 2588 unsigned Index = Group->getIndex(Instr); 2589 2590 // TODO: extend the masked interleaved-group support to reversed access. 2591 assert((!BlockInMask || !Group->isReverse()) && 2592 "Reversed masked interleave-group not supported."); 2593 2594 // If the group is reverse, adjust the index to refer to the last vector lane 2595 // instead of the first. We adjust the index from the first vector lane, 2596 // rather than directly getting the pointer for lane VF - 1, because the 2597 // pointer operand of the interleaved access is supposed to be uniform. For 2598 // uniform instructions, we're only required to generate a value for the 2599 // first vector lane in each unroll iteration. 2600 if (Group->isReverse()) 2601 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2602 2603 for (unsigned Part = 0; Part < UF; Part++) { 2604 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2605 setDebugLocFromInst(AddrPart); 2606 2607 // Notice current instruction could be any index. Need to adjust the address 2608 // to the member of index 0. 2609 // 2610 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2611 // b = A[i]; // Member of index 0 2612 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2613 // 2614 // E.g. A[i+1] = a; // Member of index 1 2615 // A[i] = b; // Member of index 0 2616 // A[i+2] = c; // Member of index 2 (Current instruction) 2617 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2618 2619 bool InBounds = false; 2620 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2621 InBounds = gep->isInBounds(); 2622 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2623 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2624 2625 // Cast to the vector pointer type. 2626 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2627 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2628 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2629 } 2630 2631 setDebugLocFromInst(Instr); 2632 Value *PoisonVec = PoisonValue::get(VecTy); 2633 2634 Value *MaskForGaps = nullptr; 2635 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2636 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2637 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2638 } 2639 2640 // Vectorize the interleaved load group. 2641 if (isa<LoadInst>(Instr)) { 2642 // For each unroll part, create a wide load for the group. 2643 SmallVector<Value *, 2> NewLoads; 2644 for (unsigned Part = 0; Part < UF; Part++) { 2645 Instruction *NewLoad; 2646 if (BlockInMask || MaskForGaps) { 2647 assert(useMaskedInterleavedAccesses(*TTI) && 2648 "masked interleaved groups are not allowed."); 2649 Value *GroupMask = MaskForGaps; 2650 if (BlockInMask) { 2651 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2652 Value *ShuffledMask = Builder.CreateShuffleVector( 2653 BlockInMaskPart, 2654 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2655 "interleaved.mask"); 2656 GroupMask = MaskForGaps 2657 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2658 MaskForGaps) 2659 : ShuffledMask; 2660 } 2661 NewLoad = 2662 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2663 GroupMask, PoisonVec, "wide.masked.vec"); 2664 } 2665 else 2666 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2667 Group->getAlign(), "wide.vec"); 2668 Group->addMetadata(NewLoad); 2669 NewLoads.push_back(NewLoad); 2670 } 2671 2672 // For each member in the group, shuffle out the appropriate data from the 2673 // wide loads. 2674 unsigned J = 0; 2675 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2676 Instruction *Member = Group->getMember(I); 2677 2678 // Skip the gaps in the group. 2679 if (!Member) 2680 continue; 2681 2682 auto StrideMask = 2683 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2684 for (unsigned Part = 0; Part < UF; Part++) { 2685 Value *StridedVec = Builder.CreateShuffleVector( 2686 NewLoads[Part], StrideMask, "strided.vec"); 2687 2688 // If this member has different type, cast the result type. 2689 if (Member->getType() != ScalarTy) { 2690 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2691 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2692 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2693 } 2694 2695 if (Group->isReverse()) 2696 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2697 2698 State.set(VPDefs[J], StridedVec, Part); 2699 } 2700 ++J; 2701 } 2702 return; 2703 } 2704 2705 // The sub vector type for current instruction. 2706 auto *SubVT = VectorType::get(ScalarTy, VF); 2707 2708 // Vectorize the interleaved store group. 2709 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2710 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2711 "masked interleaved groups are not allowed."); 2712 assert((!MaskForGaps || !VF.isScalable()) && 2713 "masking gaps for scalable vectors is not yet supported."); 2714 for (unsigned Part = 0; Part < UF; Part++) { 2715 // Collect the stored vector from each member. 2716 SmallVector<Value *, 4> StoredVecs; 2717 for (unsigned i = 0; i < InterleaveFactor; i++) { 2718 assert((Group->getMember(i) || MaskForGaps) && 2719 "Fail to get a member from an interleaved store group"); 2720 Instruction *Member = Group->getMember(i); 2721 2722 // Skip the gaps in the group. 2723 if (!Member) { 2724 Value *Undef = PoisonValue::get(SubVT); 2725 StoredVecs.push_back(Undef); 2726 continue; 2727 } 2728 2729 Value *StoredVec = State.get(StoredValues[i], Part); 2730 2731 if (Group->isReverse()) 2732 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2733 2734 // If this member has different type, cast it to a unified type. 2735 2736 if (StoredVec->getType() != SubVT) 2737 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2738 2739 StoredVecs.push_back(StoredVec); 2740 } 2741 2742 // Concatenate all vectors into a wide vector. 2743 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2744 2745 // Interleave the elements in the wide vector. 2746 Value *IVec = Builder.CreateShuffleVector( 2747 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2748 "interleaved.vec"); 2749 2750 Instruction *NewStoreInstr; 2751 if (BlockInMask || MaskForGaps) { 2752 Value *GroupMask = MaskForGaps; 2753 if (BlockInMask) { 2754 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2755 Value *ShuffledMask = Builder.CreateShuffleVector( 2756 BlockInMaskPart, 2757 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2758 "interleaved.mask"); 2759 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2760 ShuffledMask, MaskForGaps) 2761 : ShuffledMask; 2762 } 2763 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2764 Group->getAlign(), GroupMask); 2765 } else 2766 NewStoreInstr = 2767 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2768 2769 Group->addMetadata(NewStoreInstr); 2770 } 2771 } 2772 2773 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2774 VPReplicateRecipe *RepRecipe, 2775 const VPIteration &Instance, 2776 bool IfPredicateInstr, 2777 VPTransformState &State) { 2778 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2779 2780 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2781 // the first lane and part. 2782 if (isa<NoAliasScopeDeclInst>(Instr)) 2783 if (!Instance.isFirstIteration()) 2784 return; 2785 2786 // Does this instruction return a value ? 2787 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2788 2789 Instruction *Cloned = Instr->clone(); 2790 if (!IsVoidRetTy) 2791 Cloned->setName(Instr->getName() + ".cloned"); 2792 2793 // If the scalarized instruction contributes to the address computation of a 2794 // widen masked load/store which was in a basic block that needed predication 2795 // and is not predicated after vectorization, we can't propagate 2796 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 2797 // instruction could feed a poison value to the base address of the widen 2798 // load/store. 2799 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 2800 Cloned->dropPoisonGeneratingFlags(); 2801 2802 if (Instr->getDebugLoc()) 2803 setDebugLocFromInst(Instr); 2804 2805 // Replace the operands of the cloned instructions with their scalar 2806 // equivalents in the new loop. 2807 for (auto &I : enumerate(RepRecipe->operands())) { 2808 auto InputInstance = Instance; 2809 VPValue *Operand = I.value(); 2810 VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand); 2811 if (OperandR && OperandR->isUniform()) 2812 InputInstance.Lane = VPLane::getFirstLane(); 2813 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 2814 } 2815 addNewMetadata(Cloned, Instr); 2816 2817 // Place the cloned scalar in the new loop. 2818 State.Builder.Insert(Cloned); 2819 2820 State.set(RepRecipe, Cloned, Instance); 2821 2822 // If we just cloned a new assumption, add it the assumption cache. 2823 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 2824 AC->registerAssumption(II); 2825 2826 // End if-block. 2827 if (IfPredicateInstr) 2828 PredicatedInstructions.push_back(Cloned); 2829 } 2830 2831 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) { 2832 if (TripCount) 2833 return TripCount; 2834 2835 assert(InsertBlock); 2836 IRBuilder<> Builder(InsertBlock->getTerminator()); 2837 // Find the loop boundaries. 2838 ScalarEvolution *SE = PSE.getSE(); 2839 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2840 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2841 "Invalid loop count"); 2842 2843 Type *IdxTy = Legal->getWidestInductionType(); 2844 assert(IdxTy && "No type for induction"); 2845 2846 // The exit count might have the type of i64 while the phi is i32. This can 2847 // happen if we have an induction variable that is sign extended before the 2848 // compare. The only way that we get a backedge taken count is that the 2849 // induction variable was signed and as such will not overflow. In such a case 2850 // truncation is legal. 2851 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2852 IdxTy->getPrimitiveSizeInBits()) 2853 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2854 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2855 2856 // Get the total trip count from the count by adding 1. 2857 const SCEV *ExitCount = SE->getAddExpr( 2858 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2859 2860 const DataLayout &DL = InsertBlock->getModule()->getDataLayout(); 2861 2862 // Expand the trip count and place the new instructions in the preheader. 2863 // Notice that the pre-header does not change, only the loop body. 2864 SCEVExpander Exp(*SE, DL, "induction"); 2865 2866 // Count holds the overall loop count (N). 2867 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2868 InsertBlock->getTerminator()); 2869 2870 if (TripCount->getType()->isPointerTy()) 2871 TripCount = 2872 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2873 InsertBlock->getTerminator()); 2874 2875 return TripCount; 2876 } 2877 2878 Value * 2879 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) { 2880 if (VectorTripCount) 2881 return VectorTripCount; 2882 2883 Value *TC = getOrCreateTripCount(InsertBlock); 2884 IRBuilder<> Builder(InsertBlock->getTerminator()); 2885 2886 Type *Ty = TC->getType(); 2887 // This is where we can make the step a runtime constant. 2888 Value *Step = createStepForVF(Builder, Ty, VF, UF); 2889 2890 // If the tail is to be folded by masking, round the number of iterations N 2891 // up to a multiple of Step instead of rounding down. This is done by first 2892 // adding Step-1 and then rounding down. Note that it's ok if this addition 2893 // overflows: the vector induction variable will eventually wrap to zero given 2894 // that it starts at zero and its Step is a power of two; the loop will then 2895 // exit, with the last early-exit vector comparison also producing all-true. 2896 if (Cost->foldTailByMasking()) { 2897 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2898 "VF*UF must be a power of 2 when folding tail by masking"); 2899 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 2900 TC = Builder.CreateAdd( 2901 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 2902 } 2903 2904 // Now we need to generate the expression for the part of the loop that the 2905 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2906 // iterations are not required for correctness, or N - Step, otherwise. Step 2907 // is equal to the vectorization factor (number of SIMD elements) times the 2908 // unroll factor (number of SIMD instructions). 2909 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2910 2911 // There are cases where we *must* run at least one iteration in the remainder 2912 // loop. See the cost model for when this can happen. If the step evenly 2913 // divides the trip count, we set the remainder to be equal to the step. If 2914 // the step does not evenly divide the trip count, no adjustment is necessary 2915 // since there will already be scalar iterations. Note that the minimum 2916 // iterations check ensures that N >= Step. 2917 if (Cost->requiresScalarEpilogue(VF)) { 2918 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2919 R = Builder.CreateSelect(IsZero, Step, R); 2920 } 2921 2922 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2923 2924 return VectorTripCount; 2925 } 2926 2927 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2928 const DataLayout &DL) { 2929 // Verify that V is a vector type with same number of elements as DstVTy. 2930 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 2931 unsigned VF = DstFVTy->getNumElements(); 2932 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 2933 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2934 Type *SrcElemTy = SrcVecTy->getElementType(); 2935 Type *DstElemTy = DstFVTy->getElementType(); 2936 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2937 "Vector elements must have same size"); 2938 2939 // Do a direct cast if element types are castable. 2940 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2941 return Builder.CreateBitOrPointerCast(V, DstFVTy); 2942 } 2943 // V cannot be directly casted to desired vector type. 2944 // May happen when V is a floating point vector but DstVTy is a vector of 2945 // pointers or vice-versa. Handle this using a two-step bitcast using an 2946 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2947 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2948 "Only one type should be a pointer type"); 2949 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2950 "Only one type should be a floating point type"); 2951 Type *IntTy = 2952 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2953 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2954 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2955 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 2956 } 2957 2958 void InnerLoopVectorizer::emitMinimumIterationCountCheck(BasicBlock *Bypass) { 2959 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 2960 // Reuse existing vector loop preheader for TC checks. 2961 // Note that new preheader block is generated for vector loop. 2962 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2963 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2964 2965 // Generate code to check if the loop's trip count is less than VF * UF, or 2966 // equal to it in case a scalar epilogue is required; this implies that the 2967 // vector trip count is zero. This check also covers the case where adding one 2968 // to the backedge-taken count overflowed leading to an incorrect trip count 2969 // of zero. In this case we will also jump to the scalar loop. 2970 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 2971 : ICmpInst::ICMP_ULT; 2972 2973 // If tail is to be folded, vector loop takes care of all iterations. 2974 Value *CheckMinIters = Builder.getFalse(); 2975 if (!Cost->foldTailByMasking()) { 2976 Value *Step = createStepForVF(Builder, Count->getType(), VF, UF); 2977 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 2978 } 2979 // Create new preheader for vector loop. 2980 LoopVectorPreHeader = 2981 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2982 "vector.ph"); 2983 2984 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2985 DT->getNode(Bypass)->getIDom()) && 2986 "TC check is expected to dominate Bypass"); 2987 2988 // Update dominator for Bypass & LoopExit (if needed). 2989 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2990 if (!Cost->requiresScalarEpilogue(VF)) 2991 // If there is an epilogue which must run, there's no edge from the 2992 // middle block to exit blocks and thus no need to update the immediate 2993 // dominator of the exit blocks. 2994 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2995 2996 ReplaceInstWithInst( 2997 TCCheckBlock->getTerminator(), 2998 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 2999 LoopBypassBlocks.push_back(TCCheckBlock); 3000 } 3001 3002 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) { 3003 3004 BasicBlock *const SCEVCheckBlock = 3005 RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock); 3006 if (!SCEVCheckBlock) 3007 return nullptr; 3008 3009 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3010 (OptForSizeBasedOnProfile && 3011 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3012 "Cannot SCEV check stride or overflow when optimizing for size"); 3013 3014 3015 // Update dominator only if this is first RT check. 3016 if (LoopBypassBlocks.empty()) { 3017 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3018 if (!Cost->requiresScalarEpilogue(VF)) 3019 // If there is an epilogue which must run, there's no edge from the 3020 // middle block to exit blocks and thus no need to update the immediate 3021 // dominator of the exit blocks. 3022 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3023 } 3024 3025 LoopBypassBlocks.push_back(SCEVCheckBlock); 3026 AddedSafetyChecks = true; 3027 return SCEVCheckBlock; 3028 } 3029 3030 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) { 3031 // VPlan-native path does not do any analysis for runtime checks currently. 3032 if (EnableVPlanNativePath) 3033 return nullptr; 3034 3035 BasicBlock *const MemCheckBlock = 3036 RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader); 3037 3038 // Check if we generated code that checks in runtime if arrays overlap. We put 3039 // the checks into a separate block to make the more common case of few 3040 // elements faster. 3041 if (!MemCheckBlock) 3042 return nullptr; 3043 3044 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3045 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3046 "Cannot emit memory checks when optimizing for size, unless forced " 3047 "to vectorize."); 3048 ORE->emit([&]() { 3049 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3050 OrigLoop->getStartLoc(), 3051 OrigLoop->getHeader()) 3052 << "Code-size may be reduced by not forcing " 3053 "vectorization, or by source-code modifications " 3054 "eliminating the need for runtime checks " 3055 "(e.g., adding 'restrict')."; 3056 }); 3057 } 3058 3059 LoopBypassBlocks.push_back(MemCheckBlock); 3060 3061 AddedSafetyChecks = true; 3062 3063 // We currently don't use LoopVersioning for the actual loop cloning but we 3064 // still use it to add the noalias metadata. 3065 LVer = std::make_unique<LoopVersioning>( 3066 *Legal->getLAI(), 3067 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3068 DT, PSE.getSE()); 3069 LVer->prepareNoAliasMetadata(); 3070 return MemCheckBlock; 3071 } 3072 3073 void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3074 LoopScalarBody = OrigLoop->getHeader(); 3075 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3076 assert(LoopVectorPreHeader && "Invalid loop structure"); 3077 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3078 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3079 "multiple exit loop without required epilogue?"); 3080 3081 LoopMiddleBlock = 3082 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3083 LI, nullptr, Twine(Prefix) + "middle.block"); 3084 LoopScalarPreHeader = 3085 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3086 nullptr, Twine(Prefix) + "scalar.ph"); 3087 3088 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3089 3090 // Set up the middle block terminator. Two cases: 3091 // 1) If we know that we must execute the scalar epilogue, emit an 3092 // unconditional branch. 3093 // 2) Otherwise, we must have a single unique exit block (due to how we 3094 // implement the multiple exit case). In this case, set up a conditonal 3095 // branch from the middle block to the loop scalar preheader, and the 3096 // exit block. completeLoopSkeleton will update the condition to use an 3097 // iteration check, if required to decide whether to execute the remainder. 3098 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3099 BranchInst::Create(LoopScalarPreHeader) : 3100 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3101 Builder.getTrue()); 3102 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3103 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3104 3105 // Update dominator for loop exit. During skeleton creation, only the vector 3106 // pre-header and the middle block are created. The vector loop is entirely 3107 // created during VPlan exection. 3108 if (!Cost->requiresScalarEpilogue(VF)) 3109 // If there is an epilogue which must run, there's no edge from the 3110 // middle block to exit blocks and thus no need to update the immediate 3111 // dominator of the exit blocks. 3112 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3113 } 3114 3115 void InnerLoopVectorizer::createInductionResumeValues( 3116 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3117 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3118 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3119 "Inconsistent information about additional bypass."); 3120 3121 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3122 assert(VectorTripCount && "Expected valid arguments"); 3123 // We are going to resume the execution of the scalar loop. 3124 // Go over all of the induction variables that we found and fix the 3125 // PHIs that are left in the scalar version of the loop. 3126 // The starting values of PHI nodes depend on the counter of the last 3127 // iteration in the vectorized loop. 3128 // If we come from a bypass edge then we need to start from the original 3129 // start value. 3130 Instruction *OldInduction = Legal->getPrimaryInduction(); 3131 for (auto &InductionEntry : Legal->getInductionVars()) { 3132 PHINode *OrigPhi = InductionEntry.first; 3133 InductionDescriptor II = InductionEntry.second; 3134 3135 // Create phi nodes to merge from the backedge-taken check block. 3136 PHINode *BCResumeVal = 3137 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3138 LoopScalarPreHeader->getTerminator()); 3139 // Copy original phi DL over to the new one. 3140 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3141 Value *&EndValue = IVEndValues[OrigPhi]; 3142 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3143 if (OrigPhi == OldInduction) { 3144 // We know what the end value is. 3145 EndValue = VectorTripCount; 3146 } else { 3147 IRBuilder<> B(LoopVectorPreHeader->getTerminator()); 3148 3149 // Fast-math-flags propagate from the original induction instruction. 3150 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3151 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3152 3153 Type *StepType = II.getStep()->getType(); 3154 Instruction::CastOps CastOp = 3155 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3156 Value *VTC = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.vtc"); 3157 Value *Step = 3158 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3159 EndValue = emitTransformedIndex(B, VTC, II.getStartValue(), Step, II); 3160 EndValue->setName("ind.end"); 3161 3162 // Compute the end value for the additional bypass (if applicable). 3163 if (AdditionalBypass.first) { 3164 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3165 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3166 StepType, true); 3167 Value *Step = 3168 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3169 VTC = 3170 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.vtc"); 3171 EndValueFromAdditionalBypass = 3172 emitTransformedIndex(B, VTC, II.getStartValue(), Step, II); 3173 EndValueFromAdditionalBypass->setName("ind.end"); 3174 } 3175 } 3176 // The new PHI merges the original incoming value, in case of a bypass, 3177 // or the value at the end of the vectorized loop. 3178 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3179 3180 // Fix the scalar body counter (PHI node). 3181 // The old induction's phi node in the scalar body needs the truncated 3182 // value. 3183 for (BasicBlock *BB : LoopBypassBlocks) 3184 BCResumeVal->addIncoming(II.getStartValue(), BB); 3185 3186 if (AdditionalBypass.first) 3187 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3188 EndValueFromAdditionalBypass); 3189 3190 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3191 } 3192 } 3193 3194 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) { 3195 // The trip counts should be cached by now. 3196 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 3197 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3198 3199 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3200 3201 // Add a check in the middle block to see if we have completed 3202 // all of the iterations in the first vector loop. Three cases: 3203 // 1) If we require a scalar epilogue, there is no conditional branch as 3204 // we unconditionally branch to the scalar preheader. Do nothing. 3205 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3206 // Thus if tail is to be folded, we know we don't need to run the 3207 // remainder and we can use the previous value for the condition (true). 3208 // 3) Otherwise, construct a runtime check. 3209 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3210 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3211 Count, VectorTripCount, "cmp.n", 3212 LoopMiddleBlock->getTerminator()); 3213 3214 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3215 // of the corresponding compare because they may have ended up with 3216 // different line numbers and we want to avoid awkward line stepping while 3217 // debugging. Eg. if the compare has got a line number inside the loop. 3218 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3219 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3220 } 3221 3222 #ifdef EXPENSIVE_CHECKS 3223 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3224 #endif 3225 3226 return LoopVectorPreHeader; 3227 } 3228 3229 std::pair<BasicBlock *, Value *> 3230 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3231 /* 3232 In this function we generate a new loop. The new loop will contain 3233 the vectorized instructions while the old loop will continue to run the 3234 scalar remainder. 3235 3236 [ ] <-- loop iteration number check. 3237 / | 3238 / v 3239 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3240 | / | 3241 | / v 3242 || [ ] <-- vector pre header. 3243 |/ | 3244 | v 3245 | [ ] \ 3246 | [ ]_| <-- vector loop (created during VPlan execution). 3247 | | 3248 | v 3249 \ -[ ] <--- middle-block. 3250 \/ | 3251 /\ v 3252 | ->[ ] <--- new preheader. 3253 | | 3254 (opt) v <-- edge from middle to exit iff epilogue is not required. 3255 | [ ] \ 3256 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3257 \ | 3258 \ v 3259 >[ ] <-- exit block(s). 3260 ... 3261 */ 3262 3263 // Get the metadata of the original loop before it gets modified. 3264 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3265 3266 // Workaround! Compute the trip count of the original loop and cache it 3267 // before we start modifying the CFG. This code has a systemic problem 3268 // wherein it tries to run analysis over partially constructed IR; this is 3269 // wrong, and not simply for SCEV. The trip count of the original loop 3270 // simply happens to be prone to hitting this in practice. In theory, we 3271 // can hit the same issue for any SCEV, or ValueTracking query done during 3272 // mutation. See PR49900. 3273 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 3274 3275 // Create an empty vector loop, and prepare basic blocks for the runtime 3276 // checks. 3277 createVectorLoopSkeleton(""); 3278 3279 // Now, compare the new count to zero. If it is zero skip the vector loop and 3280 // jump to the scalar loop. This check also covers the case where the 3281 // backedge-taken count is uint##_max: adding one to it will overflow leading 3282 // to an incorrect trip count of zero. In this (rare) case we will also jump 3283 // to the scalar loop. 3284 emitMinimumIterationCountCheck(LoopScalarPreHeader); 3285 3286 // Generate the code to check any assumptions that we've made for SCEV 3287 // expressions. 3288 emitSCEVChecks(LoopScalarPreHeader); 3289 3290 // Generate the code that checks in runtime if arrays overlap. We put the 3291 // checks into a separate block to make the more common case of few elements 3292 // faster. 3293 emitMemRuntimeChecks(LoopScalarPreHeader); 3294 3295 // Emit phis for the new starting index of the scalar loop. 3296 createInductionResumeValues(); 3297 3298 return {completeLoopSkeleton(OrigLoopID), nullptr}; 3299 } 3300 3301 // Fix up external users of the induction variable. At this point, we are 3302 // in LCSSA form, with all external PHIs that use the IV having one input value, 3303 // coming from the remainder loop. We need those PHIs to also have a correct 3304 // value for the IV when arriving directly from the middle block. 3305 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3306 const InductionDescriptor &II, 3307 Value *VectorTripCount, Value *EndValue, 3308 BasicBlock *MiddleBlock, 3309 BasicBlock *VectorHeader) { 3310 // There are two kinds of external IV usages - those that use the value 3311 // computed in the last iteration (the PHI) and those that use the penultimate 3312 // value (the value that feeds into the phi from the loop latch). 3313 // We allow both, but they, obviously, have different values. 3314 3315 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3316 3317 DenseMap<Value *, Value *> MissingVals; 3318 3319 // An external user of the last iteration's value should see the value that 3320 // the remainder loop uses to initialize its own IV. 3321 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3322 for (User *U : PostInc->users()) { 3323 Instruction *UI = cast<Instruction>(U); 3324 if (!OrigLoop->contains(UI)) { 3325 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3326 MissingVals[UI] = EndValue; 3327 } 3328 } 3329 3330 // An external user of the penultimate value need to see EndValue - Step. 3331 // The simplest way to get this is to recompute it from the constituent SCEVs, 3332 // that is Start + (Step * (CRD - 1)). 3333 for (User *U : OrigPhi->users()) { 3334 auto *UI = cast<Instruction>(U); 3335 if (!OrigLoop->contains(UI)) { 3336 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3337 3338 IRBuilder<> B(MiddleBlock->getTerminator()); 3339 3340 // Fast-math-flags propagate from the original induction instruction. 3341 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3342 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3343 3344 Value *CountMinusOne = B.CreateSub( 3345 VectorTripCount, ConstantInt::get(VectorTripCount->getType(), 1)); 3346 Value *CMO = 3347 !II.getStep()->getType()->isIntegerTy() 3348 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3349 II.getStep()->getType()) 3350 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3351 CMO->setName("cast.cmo"); 3352 3353 Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(), 3354 VectorHeader->getTerminator()); 3355 Value *Escape = 3356 emitTransformedIndex(B, CMO, II.getStartValue(), Step, II); 3357 Escape->setName("ind.escape"); 3358 MissingVals[UI] = Escape; 3359 } 3360 } 3361 3362 for (auto &I : MissingVals) { 3363 PHINode *PHI = cast<PHINode>(I.first); 3364 // One corner case we have to handle is two IVs "chasing" each-other, 3365 // that is %IV2 = phi [...], [ %IV1, %latch ] 3366 // In this case, if IV1 has an external use, we need to avoid adding both 3367 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3368 // don't already have an incoming value for the middle block. 3369 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3370 PHI->addIncoming(I.second, MiddleBlock); 3371 } 3372 } 3373 3374 namespace { 3375 3376 struct CSEDenseMapInfo { 3377 static bool canHandle(const Instruction *I) { 3378 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3379 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3380 } 3381 3382 static inline Instruction *getEmptyKey() { 3383 return DenseMapInfo<Instruction *>::getEmptyKey(); 3384 } 3385 3386 static inline Instruction *getTombstoneKey() { 3387 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3388 } 3389 3390 static unsigned getHashValue(const Instruction *I) { 3391 assert(canHandle(I) && "Unknown instruction!"); 3392 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3393 I->value_op_end())); 3394 } 3395 3396 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3397 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3398 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3399 return LHS == RHS; 3400 return LHS->isIdenticalTo(RHS); 3401 } 3402 }; 3403 3404 } // end anonymous namespace 3405 3406 ///Perform cse of induction variable instructions. 3407 static void cse(BasicBlock *BB) { 3408 // Perform simple cse. 3409 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3410 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3411 if (!CSEDenseMapInfo::canHandle(&In)) 3412 continue; 3413 3414 // Check if we can replace this instruction with any of the 3415 // visited instructions. 3416 if (Instruction *V = CSEMap.lookup(&In)) { 3417 In.replaceAllUsesWith(V); 3418 In.eraseFromParent(); 3419 continue; 3420 } 3421 3422 CSEMap[&In] = &In; 3423 } 3424 } 3425 3426 InstructionCost 3427 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3428 bool &NeedToScalarize) const { 3429 Function *F = CI->getCalledFunction(); 3430 Type *ScalarRetTy = CI->getType(); 3431 SmallVector<Type *, 4> Tys, ScalarTys; 3432 for (auto &ArgOp : CI->args()) 3433 ScalarTys.push_back(ArgOp->getType()); 3434 3435 // Estimate cost of scalarized vector call. The source operands are assumed 3436 // to be vectors, so we need to extract individual elements from there, 3437 // execute VF scalar calls, and then gather the result into the vector return 3438 // value. 3439 InstructionCost ScalarCallCost = 3440 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3441 if (VF.isScalar()) 3442 return ScalarCallCost; 3443 3444 // Compute corresponding vector type for return value and arguments. 3445 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3446 for (Type *ScalarTy : ScalarTys) 3447 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3448 3449 // Compute costs of unpacking argument values for the scalar calls and 3450 // packing the return values to a vector. 3451 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3452 3453 InstructionCost Cost = 3454 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3455 3456 // If we can't emit a vector call for this function, then the currently found 3457 // cost is the cost we need to return. 3458 NeedToScalarize = true; 3459 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3460 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3461 3462 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3463 return Cost; 3464 3465 // If the corresponding vector cost is cheaper, return its cost. 3466 InstructionCost VectorCallCost = 3467 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3468 if (VectorCallCost < Cost) { 3469 NeedToScalarize = false; 3470 Cost = VectorCallCost; 3471 } 3472 return Cost; 3473 } 3474 3475 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3476 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3477 return Elt; 3478 return VectorType::get(Elt, VF); 3479 } 3480 3481 InstructionCost 3482 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3483 ElementCount VF) const { 3484 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3485 assert(ID && "Expected intrinsic call!"); 3486 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3487 FastMathFlags FMF; 3488 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3489 FMF = FPMO->getFastMathFlags(); 3490 3491 SmallVector<const Value *> Arguments(CI->args()); 3492 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3493 SmallVector<Type *> ParamTys; 3494 std::transform(FTy->param_begin(), FTy->param_end(), 3495 std::back_inserter(ParamTys), 3496 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3497 3498 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3499 dyn_cast<IntrinsicInst>(CI)); 3500 return TTI.getIntrinsicInstrCost(CostAttrs, 3501 TargetTransformInfo::TCK_RecipThroughput); 3502 } 3503 3504 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3505 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3506 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3507 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3508 } 3509 3510 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3511 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3512 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3513 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3514 } 3515 3516 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3517 // For every instruction `I` in MinBWs, truncate the operands, create a 3518 // truncated version of `I` and reextend its result. InstCombine runs 3519 // later and will remove any ext/trunc pairs. 3520 SmallPtrSet<Value *, 4> Erased; 3521 for (const auto &KV : Cost->getMinimalBitwidths()) { 3522 // If the value wasn't vectorized, we must maintain the original scalar 3523 // type. The absence of the value from State indicates that it 3524 // wasn't vectorized. 3525 // FIXME: Should not rely on getVPValue at this point. 3526 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3527 if (!State.hasAnyVectorValue(Def)) 3528 continue; 3529 for (unsigned Part = 0; Part < UF; ++Part) { 3530 Value *I = State.get(Def, Part); 3531 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3532 continue; 3533 Type *OriginalTy = I->getType(); 3534 Type *ScalarTruncatedTy = 3535 IntegerType::get(OriginalTy->getContext(), KV.second); 3536 auto *TruncatedTy = VectorType::get( 3537 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3538 if (TruncatedTy == OriginalTy) 3539 continue; 3540 3541 IRBuilder<> B(cast<Instruction>(I)); 3542 auto ShrinkOperand = [&](Value *V) -> Value * { 3543 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3544 if (ZI->getSrcTy() == TruncatedTy) 3545 return ZI->getOperand(0); 3546 return B.CreateZExtOrTrunc(V, TruncatedTy); 3547 }; 3548 3549 // The actual instruction modification depends on the instruction type, 3550 // unfortunately. 3551 Value *NewI = nullptr; 3552 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3553 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3554 ShrinkOperand(BO->getOperand(1))); 3555 3556 // Any wrapping introduced by shrinking this operation shouldn't be 3557 // considered undefined behavior. So, we can't unconditionally copy 3558 // arithmetic wrapping flags to NewI. 3559 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3560 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3561 NewI = 3562 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3563 ShrinkOperand(CI->getOperand(1))); 3564 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3565 NewI = B.CreateSelect(SI->getCondition(), 3566 ShrinkOperand(SI->getTrueValue()), 3567 ShrinkOperand(SI->getFalseValue())); 3568 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3569 switch (CI->getOpcode()) { 3570 default: 3571 llvm_unreachable("Unhandled cast!"); 3572 case Instruction::Trunc: 3573 NewI = ShrinkOperand(CI->getOperand(0)); 3574 break; 3575 case Instruction::SExt: 3576 NewI = B.CreateSExtOrTrunc( 3577 CI->getOperand(0), 3578 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3579 break; 3580 case Instruction::ZExt: 3581 NewI = B.CreateZExtOrTrunc( 3582 CI->getOperand(0), 3583 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3584 break; 3585 } 3586 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3587 auto Elements0 = 3588 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3589 auto *O0 = B.CreateZExtOrTrunc( 3590 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3591 auto Elements1 = 3592 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3593 auto *O1 = B.CreateZExtOrTrunc( 3594 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3595 3596 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3597 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3598 // Don't do anything with the operands, just extend the result. 3599 continue; 3600 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3601 auto Elements = 3602 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3603 auto *O0 = B.CreateZExtOrTrunc( 3604 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3605 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3606 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3607 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3608 auto Elements = 3609 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3610 auto *O0 = B.CreateZExtOrTrunc( 3611 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3612 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3613 } else { 3614 // If we don't know what to do, be conservative and don't do anything. 3615 continue; 3616 } 3617 3618 // Lastly, extend the result. 3619 NewI->takeName(cast<Instruction>(I)); 3620 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3621 I->replaceAllUsesWith(Res); 3622 cast<Instruction>(I)->eraseFromParent(); 3623 Erased.insert(I); 3624 State.reset(Def, Res, Part); 3625 } 3626 } 3627 3628 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3629 for (const auto &KV : Cost->getMinimalBitwidths()) { 3630 // If the value wasn't vectorized, we must maintain the original scalar 3631 // type. The absence of the value from State indicates that it 3632 // wasn't vectorized. 3633 // FIXME: Should not rely on getVPValue at this point. 3634 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3635 if (!State.hasAnyVectorValue(Def)) 3636 continue; 3637 for (unsigned Part = 0; Part < UF; ++Part) { 3638 Value *I = State.get(Def, Part); 3639 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3640 if (Inst && Inst->use_empty()) { 3641 Value *NewI = Inst->getOperand(0); 3642 Inst->eraseFromParent(); 3643 State.reset(Def, NewI, Part); 3644 } 3645 } 3646 } 3647 } 3648 3649 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State, 3650 VPlan &Plan) { 3651 // Insert truncates and extends for any truncated instructions as hints to 3652 // InstCombine. 3653 if (VF.isVector()) 3654 truncateToMinimalBitwidths(State); 3655 3656 // Fix widened non-induction PHIs by setting up the PHI operands. 3657 if (OrigPHIsToFix.size()) { 3658 assert(EnableVPlanNativePath && 3659 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3660 fixNonInductionPHIs(State); 3661 } 3662 3663 // At this point every instruction in the original loop is widened to a 3664 // vector form. Now we need to fix the recurrences in the loop. These PHI 3665 // nodes are currently empty because we did not want to introduce cycles. 3666 // This is the second stage of vectorizing recurrences. 3667 fixCrossIterationPHIs(State); 3668 3669 // Forget the original basic block. 3670 PSE.getSE()->forgetLoop(OrigLoop); 3671 3672 VPBasicBlock *LatchVPBB = Plan.getVectorLoopRegion()->getExitBasicBlock(); 3673 Loop *VectorLoop = LI->getLoopFor(State.CFG.VPBB2IRBB[LatchVPBB]); 3674 // If we inserted an edge from the middle block to the unique exit block, 3675 // update uses outside the loop (phis) to account for the newly inserted 3676 // edge. 3677 if (!Cost->requiresScalarEpilogue(VF)) { 3678 // Fix-up external users of the induction variables. 3679 for (auto &Entry : Legal->getInductionVars()) 3680 fixupIVUsers(Entry.first, Entry.second, 3681 getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()), 3682 IVEndValues[Entry.first], LoopMiddleBlock, 3683 VectorLoop->getHeader()); 3684 3685 fixLCSSAPHIs(State); 3686 } 3687 3688 for (Instruction *PI : PredicatedInstructions) 3689 sinkScalarOperands(&*PI); 3690 3691 // Remove redundant induction instructions. 3692 cse(VectorLoop->getHeader()); 3693 3694 // Set/update profile weights for the vector and remainder loops as original 3695 // loop iterations are now distributed among them. Note that original loop 3696 // represented by LoopScalarBody becomes remainder loop after vectorization. 3697 // 3698 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3699 // end up getting slightly roughened result but that should be OK since 3700 // profile is not inherently precise anyway. Note also possible bypass of 3701 // vector code caused by legality checks is ignored, assigning all the weight 3702 // to the vector loop, optimistically. 3703 // 3704 // For scalable vectorization we can't know at compile time how many iterations 3705 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3706 // vscale of '1'. 3707 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop, 3708 LI->getLoopFor(LoopScalarBody), 3709 VF.getKnownMinValue() * UF); 3710 } 3711 3712 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 3713 // In order to support recurrences we need to be able to vectorize Phi nodes. 3714 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3715 // stage #2: We now need to fix the recurrences by adding incoming edges to 3716 // the currently empty PHI nodes. At this point every instruction in the 3717 // original loop is widened to a vector form so we can use them to construct 3718 // the incoming edges. 3719 VPBasicBlock *Header = 3720 State.Plan->getVectorLoopRegion()->getEntryBasicBlock(); 3721 for (VPRecipeBase &R : Header->phis()) { 3722 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 3723 fixReduction(ReductionPhi, State); 3724 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 3725 fixFirstOrderRecurrence(FOR, State); 3726 } 3727 } 3728 3729 void InnerLoopVectorizer::fixFirstOrderRecurrence( 3730 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 3731 // This is the second phase of vectorizing first-order recurrences. An 3732 // overview of the transformation is described below. Suppose we have the 3733 // following loop. 3734 // 3735 // for (int i = 0; i < n; ++i) 3736 // b[i] = a[i] - a[i - 1]; 3737 // 3738 // There is a first-order recurrence on "a". For this loop, the shorthand 3739 // scalar IR looks like: 3740 // 3741 // scalar.ph: 3742 // s_init = a[-1] 3743 // br scalar.body 3744 // 3745 // scalar.body: 3746 // i = phi [0, scalar.ph], [i+1, scalar.body] 3747 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3748 // s2 = a[i] 3749 // b[i] = s2 - s1 3750 // br cond, scalar.body, ... 3751 // 3752 // In this example, s1 is a recurrence because it's value depends on the 3753 // previous iteration. In the first phase of vectorization, we created a 3754 // vector phi v1 for s1. We now complete the vectorization and produce the 3755 // shorthand vector IR shown below (for VF = 4, UF = 1). 3756 // 3757 // vector.ph: 3758 // v_init = vector(..., ..., ..., a[-1]) 3759 // br vector.body 3760 // 3761 // vector.body 3762 // i = phi [0, vector.ph], [i+4, vector.body] 3763 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3764 // v2 = a[i, i+1, i+2, i+3]; 3765 // v3 = vector(v1(3), v2(0, 1, 2)) 3766 // b[i, i+1, i+2, i+3] = v2 - v3 3767 // br cond, vector.body, middle.block 3768 // 3769 // middle.block: 3770 // x = v2(3) 3771 // br scalar.ph 3772 // 3773 // scalar.ph: 3774 // s_init = phi [x, middle.block], [a[-1], otherwise] 3775 // br scalar.body 3776 // 3777 // After execution completes the vector loop, we extract the next value of 3778 // the recurrence (x) to use as the initial value in the scalar loop. 3779 3780 // Extract the last vector element in the middle block. This will be the 3781 // initial value for the recurrence when jumping to the scalar loop. 3782 VPValue *PreviousDef = PhiR->getBackedgeValue(); 3783 Value *Incoming = State.get(PreviousDef, UF - 1); 3784 auto *ExtractForScalar = Incoming; 3785 auto *IdxTy = Builder.getInt32Ty(); 3786 if (VF.isVector()) { 3787 auto *One = ConstantInt::get(IdxTy, 1); 3788 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3789 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3790 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 3791 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 3792 "vector.recur.extract"); 3793 } 3794 // Extract the second last element in the middle block if the 3795 // Phi is used outside the loop. We need to extract the phi itself 3796 // and not the last element (the phi update in the current iteration). This 3797 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3798 // when the scalar loop is not run at all. 3799 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3800 if (VF.isVector()) { 3801 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3802 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 3803 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3804 Incoming, Idx, "vector.recur.extract.for.phi"); 3805 } else if (UF > 1) 3806 // When loop is unrolled without vectorizing, initialize 3807 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 3808 // of `Incoming`. This is analogous to the vectorized case above: extracting 3809 // the second last element when VF > 1. 3810 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 3811 3812 // Fix the initial value of the original recurrence in the scalar loop. 3813 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3814 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 3815 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3816 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 3817 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3818 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3819 Start->addIncoming(Incoming, BB); 3820 } 3821 3822 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3823 Phi->setName("scalar.recur"); 3824 3825 // Finally, fix users of the recurrence outside the loop. The users will need 3826 // either the last value of the scalar recurrence or the last value of the 3827 // vector recurrence we extracted in the middle block. Since the loop is in 3828 // LCSSA form, we just need to find all the phi nodes for the original scalar 3829 // recurrence in the exit block, and then add an edge for the middle block. 3830 // Note that LCSSA does not imply single entry when the original scalar loop 3831 // had multiple exiting edges (as we always run the last iteration in the 3832 // scalar epilogue); in that case, there is no edge from middle to exit and 3833 // and thus no phis which needed updated. 3834 if (!Cost->requiresScalarEpilogue(VF)) 3835 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 3836 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) 3837 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3838 } 3839 3840 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 3841 VPTransformState &State) { 3842 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 3843 // Get it's reduction variable descriptor. 3844 assert(Legal->isReductionVariable(OrigPhi) && 3845 "Unable to find the reduction variable"); 3846 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 3847 3848 RecurKind RK = RdxDesc.getRecurrenceKind(); 3849 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3850 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3851 setDebugLocFromInst(ReductionStartValue); 3852 3853 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 3854 // This is the vector-clone of the value that leaves the loop. 3855 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 3856 3857 // Wrap flags are in general invalid after vectorization, clear them. 3858 clearReductionWrapFlags(RdxDesc, State); 3859 3860 // Before each round, move the insertion point right between 3861 // the PHIs and the values we are going to write. 3862 // This allows us to write both PHINodes and the extractelement 3863 // instructions. 3864 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3865 3866 setDebugLocFromInst(LoopExitInst); 3867 3868 Type *PhiTy = OrigPhi->getType(); 3869 3870 VPBasicBlock *LatchVPBB = 3871 PhiR->getParent()->getEnclosingLoopRegion()->getExitBasicBlock(); 3872 BasicBlock *VectorLoopLatch = State.CFG.VPBB2IRBB[LatchVPBB]; 3873 // If tail is folded by masking, the vector value to leave the loop should be 3874 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3875 // instead of the former. For an inloop reduction the reduction will already 3876 // be predicated, and does not need to be handled here. 3877 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 3878 for (unsigned Part = 0; Part < UF; ++Part) { 3879 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 3880 Value *Sel = nullptr; 3881 for (User *U : VecLoopExitInst->users()) { 3882 if (isa<SelectInst>(U)) { 3883 assert(!Sel && "Reduction exit feeding two selects"); 3884 Sel = U; 3885 } else 3886 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3887 } 3888 assert(Sel && "Reduction exit feeds no select"); 3889 State.reset(LoopExitInstDef, Sel, Part); 3890 3891 // If the target can create a predicated operator for the reduction at no 3892 // extra cost in the loop (for example a predicated vadd), it can be 3893 // cheaper for the select to remain in the loop than be sunk out of it, 3894 // and so use the select value for the phi instead of the old 3895 // LoopExitValue. 3896 if (PreferPredicatedReductionSelect || 3897 TTI->preferPredicatedReductionSelect( 3898 RdxDesc.getOpcode(), PhiTy, 3899 TargetTransformInfo::ReductionFlags())) { 3900 auto *VecRdxPhi = 3901 cast<PHINode>(State.get(PhiR, Part)); 3902 VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel); 3903 } 3904 } 3905 } 3906 3907 // If the vector reduction can be performed in a smaller type, we truncate 3908 // then extend the loop exit value to enable InstCombine to evaluate the 3909 // entire expression in the smaller type. 3910 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 3911 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 3912 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3913 Builder.SetInsertPoint(VectorLoopLatch->getTerminator()); 3914 VectorParts RdxParts(UF); 3915 for (unsigned Part = 0; Part < UF; ++Part) { 3916 RdxParts[Part] = State.get(LoopExitInstDef, Part); 3917 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3918 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3919 : Builder.CreateZExt(Trunc, VecTy); 3920 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 3921 if (U != Trunc) { 3922 U->replaceUsesOfWith(RdxParts[Part], Extnd); 3923 RdxParts[Part] = Extnd; 3924 } 3925 } 3926 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3927 for (unsigned Part = 0; Part < UF; ++Part) { 3928 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3929 State.reset(LoopExitInstDef, RdxParts[Part], Part); 3930 } 3931 } 3932 3933 // Reduce all of the unrolled parts into a single vector. 3934 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 3935 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 3936 3937 // The middle block terminator has already been assigned a DebugLoc here (the 3938 // OrigLoop's single latch terminator). We want the whole middle block to 3939 // appear to execute on this line because: (a) it is all compiler generated, 3940 // (b) these instructions are always executed after evaluating the latch 3941 // conditional branch, and (c) other passes may add new predecessors which 3942 // terminate on this line. This is the easiest way to ensure we don't 3943 // accidentally cause an extra step back into the loop while debugging. 3944 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 3945 if (PhiR->isOrdered()) 3946 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 3947 else { 3948 // Floating-point operations should have some FMF to enable the reduction. 3949 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 3950 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 3951 for (unsigned Part = 1; Part < UF; ++Part) { 3952 Value *RdxPart = State.get(LoopExitInstDef, Part); 3953 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 3954 ReducedPartRdx = Builder.CreateBinOp( 3955 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 3956 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 3957 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 3958 ReducedPartRdx, RdxPart); 3959 else 3960 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 3961 } 3962 } 3963 3964 // Create the reduction after the loop. Note that inloop reductions create the 3965 // target reduction in the loop using a Reduction recipe. 3966 if (VF.isVector() && !PhiR->isInLoop()) { 3967 ReducedPartRdx = 3968 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 3969 // If the reduction can be performed in a smaller type, we need to extend 3970 // the reduction to the wider type before we branch to the original loop. 3971 if (PhiTy != RdxDesc.getRecurrenceType()) 3972 ReducedPartRdx = RdxDesc.isSigned() 3973 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 3974 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 3975 } 3976 3977 PHINode *ResumePhi = 3978 dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue()); 3979 3980 // Create a phi node that merges control-flow from the backedge-taken check 3981 // block and the middle block. 3982 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 3983 LoopScalarPreHeader->getTerminator()); 3984 3985 // If we are fixing reductions in the epilogue loop then we should already 3986 // have created a bc.merge.rdx Phi after the main vector body. Ensure that 3987 // we carry over the incoming values correctly. 3988 for (auto *Incoming : predecessors(LoopScalarPreHeader)) { 3989 if (Incoming == LoopMiddleBlock) 3990 BCBlockPhi->addIncoming(ReducedPartRdx, Incoming); 3991 else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming)) 3992 BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming), 3993 Incoming); 3994 else 3995 BCBlockPhi->addIncoming(ReductionStartValue, Incoming); 3996 } 3997 3998 // Set the resume value for this reduction 3999 ReductionResumeValues.insert({&RdxDesc, BCBlockPhi}); 4000 4001 // If there were stores of the reduction value to a uniform memory address 4002 // inside the loop, create the final store here. 4003 if (StoreInst *SI = RdxDesc.IntermediateStore) { 4004 StoreInst *NewSI = 4005 Builder.CreateStore(ReducedPartRdx, SI->getPointerOperand()); 4006 propagateMetadata(NewSI, SI); 4007 4008 // If the reduction value is used in other places, 4009 // then let the code below create PHI's for that. 4010 } 4011 4012 // Now, we need to fix the users of the reduction variable 4013 // inside and outside of the scalar remainder loop. 4014 4015 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4016 // in the exit blocks. See comment on analogous loop in 4017 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4018 if (!Cost->requiresScalarEpilogue(VF)) 4019 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4020 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) 4021 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4022 4023 // Fix the scalar loop reduction variable with the incoming reduction sum 4024 // from the vector body and from the backedge value. 4025 int IncomingEdgeBlockIdx = 4026 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4027 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4028 // Pick the other block. 4029 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4030 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4031 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4032 } 4033 4034 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4035 VPTransformState &State) { 4036 RecurKind RK = RdxDesc.getRecurrenceKind(); 4037 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4038 return; 4039 4040 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4041 assert(LoopExitInstr && "null loop exit instruction"); 4042 SmallVector<Instruction *, 8> Worklist; 4043 SmallPtrSet<Instruction *, 8> Visited; 4044 Worklist.push_back(LoopExitInstr); 4045 Visited.insert(LoopExitInstr); 4046 4047 while (!Worklist.empty()) { 4048 Instruction *Cur = Worklist.pop_back_val(); 4049 if (isa<OverflowingBinaryOperator>(Cur)) 4050 for (unsigned Part = 0; Part < UF; ++Part) { 4051 // FIXME: Should not rely on getVPValue at this point. 4052 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4053 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4054 } 4055 4056 for (User *U : Cur->users()) { 4057 Instruction *UI = cast<Instruction>(U); 4058 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4059 Visited.insert(UI).second) 4060 Worklist.push_back(UI); 4061 } 4062 } 4063 } 4064 4065 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4066 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4067 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4068 // Some phis were already hand updated by the reduction and recurrence 4069 // code above, leave them alone. 4070 continue; 4071 4072 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4073 // Non-instruction incoming values will have only one value. 4074 4075 VPLane Lane = VPLane::getFirstLane(); 4076 if (isa<Instruction>(IncomingValue) && 4077 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4078 VF)) 4079 Lane = VPLane::getLastLaneForVF(VF); 4080 4081 // Can be a loop invariant incoming value or the last scalar value to be 4082 // extracted from the vectorized loop. 4083 // FIXME: Should not rely on getVPValue at this point. 4084 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4085 Value *lastIncomingValue = 4086 OrigLoop->isLoopInvariant(IncomingValue) 4087 ? IncomingValue 4088 : State.get(State.Plan->getVPValue(IncomingValue, true), 4089 VPIteration(UF - 1, Lane)); 4090 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4091 } 4092 } 4093 4094 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4095 // The basic block and loop containing the predicated instruction. 4096 auto *PredBB = PredInst->getParent(); 4097 auto *VectorLoop = LI->getLoopFor(PredBB); 4098 4099 // Initialize a worklist with the operands of the predicated instruction. 4100 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4101 4102 // Holds instructions that we need to analyze again. An instruction may be 4103 // reanalyzed if we don't yet know if we can sink it or not. 4104 SmallVector<Instruction *, 8> InstsToReanalyze; 4105 4106 // Returns true if a given use occurs in the predicated block. Phi nodes use 4107 // their operands in their corresponding predecessor blocks. 4108 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4109 auto *I = cast<Instruction>(U.getUser()); 4110 BasicBlock *BB = I->getParent(); 4111 if (auto *Phi = dyn_cast<PHINode>(I)) 4112 BB = Phi->getIncomingBlock( 4113 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4114 return BB == PredBB; 4115 }; 4116 4117 // Iteratively sink the scalarized operands of the predicated instruction 4118 // into the block we created for it. When an instruction is sunk, it's 4119 // operands are then added to the worklist. The algorithm ends after one pass 4120 // through the worklist doesn't sink a single instruction. 4121 bool Changed; 4122 do { 4123 // Add the instructions that need to be reanalyzed to the worklist, and 4124 // reset the changed indicator. 4125 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4126 InstsToReanalyze.clear(); 4127 Changed = false; 4128 4129 while (!Worklist.empty()) { 4130 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4131 4132 // We can't sink an instruction if it is a phi node, is not in the loop, 4133 // or may have side effects. 4134 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4135 I->mayHaveSideEffects()) 4136 continue; 4137 4138 // If the instruction is already in PredBB, check if we can sink its 4139 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4140 // sinking the scalar instruction I, hence it appears in PredBB; but it 4141 // may have failed to sink I's operands (recursively), which we try 4142 // (again) here. 4143 if (I->getParent() == PredBB) { 4144 Worklist.insert(I->op_begin(), I->op_end()); 4145 continue; 4146 } 4147 4148 // It's legal to sink the instruction if all its uses occur in the 4149 // predicated block. Otherwise, there's nothing to do yet, and we may 4150 // need to reanalyze the instruction. 4151 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4152 InstsToReanalyze.push_back(I); 4153 continue; 4154 } 4155 4156 // Move the instruction to the beginning of the predicated block, and add 4157 // it's operands to the worklist. 4158 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4159 Worklist.insert(I->op_begin(), I->op_end()); 4160 4161 // The sinking may have enabled other instructions to be sunk, so we will 4162 // need to iterate. 4163 Changed = true; 4164 } 4165 } while (Changed); 4166 } 4167 4168 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4169 for (PHINode *OrigPhi : OrigPHIsToFix) { 4170 VPWidenPHIRecipe *VPPhi = 4171 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4172 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4173 // Make sure the builder has a valid insert point. 4174 Builder.SetInsertPoint(NewPhi); 4175 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4176 VPValue *Inc = VPPhi->getIncomingValue(i); 4177 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4178 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4179 } 4180 } 4181 } 4182 4183 bool InnerLoopVectorizer::useOrderedReductions( 4184 const RecurrenceDescriptor &RdxDesc) { 4185 return Cost->useOrderedReductions(RdxDesc); 4186 } 4187 4188 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4189 VPWidenPHIRecipe *PhiR, 4190 VPTransformState &State) { 4191 assert(EnableVPlanNativePath && 4192 "Non-native vplans are not expected to have VPWidenPHIRecipes."); 4193 // Currently we enter here in the VPlan-native path for non-induction 4194 // PHIs where all control flow is uniform. We simply widen these PHIs. 4195 // Create a vector phi with no operands - the vector phi operands will be 4196 // set at the end of vector code generation. 4197 Type *VecTy = (State.VF.isScalar()) 4198 ? PN->getType() 4199 : VectorType::get(PN->getType(), State.VF); 4200 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4201 State.set(PhiR, VecPhi, 0); 4202 OrigPHIsToFix.push_back(cast<PHINode>(PN)); 4203 } 4204 4205 /// A helper function for checking whether an integer division-related 4206 /// instruction may divide by zero (in which case it must be predicated if 4207 /// executed conditionally in the scalar code). 4208 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4209 /// Non-zero divisors that are non compile-time constants will not be 4210 /// converted into multiplication, so we will still end up scalarizing 4211 /// the division, but can do so w/o predication. 4212 static bool mayDivideByZero(Instruction &I) { 4213 assert((I.getOpcode() == Instruction::UDiv || 4214 I.getOpcode() == Instruction::SDiv || 4215 I.getOpcode() == Instruction::URem || 4216 I.getOpcode() == Instruction::SRem) && 4217 "Unexpected instruction"); 4218 Value *Divisor = I.getOperand(1); 4219 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4220 return !CInt || CInt->isZero(); 4221 } 4222 4223 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4224 VPUser &ArgOperands, 4225 VPTransformState &State) { 4226 assert(!isa<DbgInfoIntrinsic>(I) && 4227 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4228 setDebugLocFromInst(&I); 4229 4230 Module *M = I.getParent()->getParent()->getParent(); 4231 auto *CI = cast<CallInst>(&I); 4232 4233 SmallVector<Type *, 4> Tys; 4234 for (Value *ArgOperand : CI->args()) 4235 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4236 4237 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4238 4239 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4240 // version of the instruction. 4241 // Is it beneficial to perform intrinsic call compared to lib call? 4242 bool NeedToScalarize = false; 4243 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4244 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4245 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4246 assert((UseVectorIntrinsic || !NeedToScalarize) && 4247 "Instruction should be scalarized elsewhere."); 4248 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4249 "Either the intrinsic cost or vector call cost must be valid"); 4250 4251 for (unsigned Part = 0; Part < UF; ++Part) { 4252 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4253 SmallVector<Value *, 4> Args; 4254 for (auto &I : enumerate(ArgOperands.operands())) { 4255 // Some intrinsics have a scalar argument - don't replace it with a 4256 // vector. 4257 Value *Arg; 4258 if (!UseVectorIntrinsic || 4259 !isVectorIntrinsicWithScalarOpAtArg(ID, I.index())) 4260 Arg = State.get(I.value(), Part); 4261 else 4262 Arg = State.get(I.value(), VPIteration(0, 0)); 4263 if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I.index())) 4264 TysForDecl.push_back(Arg->getType()); 4265 Args.push_back(Arg); 4266 } 4267 4268 Function *VectorF; 4269 if (UseVectorIntrinsic) { 4270 // Use vector version of the intrinsic. 4271 if (VF.isVector()) 4272 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4273 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4274 assert(VectorF && "Can't retrieve vector intrinsic."); 4275 } else { 4276 // Use vector version of the function call. 4277 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4278 #ifndef NDEBUG 4279 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4280 "Can't create vector function."); 4281 #endif 4282 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4283 } 4284 SmallVector<OperandBundleDef, 1> OpBundles; 4285 CI->getOperandBundlesAsDefs(OpBundles); 4286 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4287 4288 if (isa<FPMathOperator>(V)) 4289 V->copyFastMathFlags(CI); 4290 4291 State.set(Def, V, Part); 4292 addMetadata(V, &I); 4293 } 4294 } 4295 4296 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4297 // We should not collect Scalars more than once per VF. Right now, this 4298 // function is called from collectUniformsAndScalars(), which already does 4299 // this check. Collecting Scalars for VF=1 does not make any sense. 4300 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4301 "This function should not be visited twice for the same VF"); 4302 4303 // This avoids any chances of creating a REPLICATE recipe during planning 4304 // since that would result in generation of scalarized code during execution, 4305 // which is not supported for scalable vectors. 4306 if (VF.isScalable()) { 4307 Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4308 return; 4309 } 4310 4311 SmallSetVector<Instruction *, 8> Worklist; 4312 4313 // These sets are used to seed the analysis with pointers used by memory 4314 // accesses that will remain scalar. 4315 SmallSetVector<Instruction *, 8> ScalarPtrs; 4316 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4317 auto *Latch = TheLoop->getLoopLatch(); 4318 4319 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4320 // The pointer operands of loads and stores will be scalar as long as the 4321 // memory access is not a gather or scatter operation. The value operand of a 4322 // store will remain scalar if the store is scalarized. 4323 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4324 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4325 assert(WideningDecision != CM_Unknown && 4326 "Widening decision should be ready at this moment"); 4327 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4328 if (Ptr == Store->getValueOperand()) 4329 return WideningDecision == CM_Scalarize; 4330 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4331 "Ptr is neither a value or pointer operand"); 4332 return WideningDecision != CM_GatherScatter; 4333 }; 4334 4335 // A helper that returns true if the given value is a bitcast or 4336 // getelementptr instruction contained in the loop. 4337 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4338 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4339 isa<GetElementPtrInst>(V)) && 4340 !TheLoop->isLoopInvariant(V); 4341 }; 4342 4343 // A helper that evaluates a memory access's use of a pointer. If the use will 4344 // be a scalar use and the pointer is only used by memory accesses, we place 4345 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4346 // PossibleNonScalarPtrs. 4347 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4348 // We only care about bitcast and getelementptr instructions contained in 4349 // the loop. 4350 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4351 return; 4352 4353 // If the pointer has already been identified as scalar (e.g., if it was 4354 // also identified as uniform), there's nothing to do. 4355 auto *I = cast<Instruction>(Ptr); 4356 if (Worklist.count(I)) 4357 return; 4358 4359 // If the use of the pointer will be a scalar use, and all users of the 4360 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4361 // place the pointer in PossibleNonScalarPtrs. 4362 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4363 return isa<LoadInst>(U) || isa<StoreInst>(U); 4364 })) 4365 ScalarPtrs.insert(I); 4366 else 4367 PossibleNonScalarPtrs.insert(I); 4368 }; 4369 4370 // We seed the scalars analysis with three classes of instructions: (1) 4371 // instructions marked uniform-after-vectorization and (2) bitcast, 4372 // getelementptr and (pointer) phi instructions used by memory accesses 4373 // requiring a scalar use. 4374 // 4375 // (1) Add to the worklist all instructions that have been identified as 4376 // uniform-after-vectorization. 4377 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4378 4379 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4380 // memory accesses requiring a scalar use. The pointer operands of loads and 4381 // stores will be scalar as long as the memory accesses is not a gather or 4382 // scatter operation. The value operand of a store will remain scalar if the 4383 // store is scalarized. 4384 for (auto *BB : TheLoop->blocks()) 4385 for (auto &I : *BB) { 4386 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4387 evaluatePtrUse(Load, Load->getPointerOperand()); 4388 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4389 evaluatePtrUse(Store, Store->getPointerOperand()); 4390 evaluatePtrUse(Store, Store->getValueOperand()); 4391 } 4392 } 4393 for (auto *I : ScalarPtrs) 4394 if (!PossibleNonScalarPtrs.count(I)) { 4395 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4396 Worklist.insert(I); 4397 } 4398 4399 // Insert the forced scalars. 4400 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4401 // induction variable when the PHI user is scalarized. 4402 auto ForcedScalar = ForcedScalars.find(VF); 4403 if (ForcedScalar != ForcedScalars.end()) 4404 for (auto *I : ForcedScalar->second) 4405 Worklist.insert(I); 4406 4407 // Expand the worklist by looking through any bitcasts and getelementptr 4408 // instructions we've already identified as scalar. This is similar to the 4409 // expansion step in collectLoopUniforms(); however, here we're only 4410 // expanding to include additional bitcasts and getelementptr instructions. 4411 unsigned Idx = 0; 4412 while (Idx != Worklist.size()) { 4413 Instruction *Dst = Worklist[Idx++]; 4414 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4415 continue; 4416 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4417 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4418 auto *J = cast<Instruction>(U); 4419 return !TheLoop->contains(J) || Worklist.count(J) || 4420 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4421 isScalarUse(J, Src)); 4422 })) { 4423 Worklist.insert(Src); 4424 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4425 } 4426 } 4427 4428 // An induction variable will remain scalar if all users of the induction 4429 // variable and induction variable update remain scalar. 4430 for (auto &Induction : Legal->getInductionVars()) { 4431 auto *Ind = Induction.first; 4432 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4433 4434 // If tail-folding is applied, the primary induction variable will be used 4435 // to feed a vector compare. 4436 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4437 continue; 4438 4439 // Returns true if \p Indvar is a pointer induction that is used directly by 4440 // load/store instruction \p I. 4441 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4442 Instruction *I) { 4443 return Induction.second.getKind() == 4444 InductionDescriptor::IK_PtrInduction && 4445 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4446 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4447 }; 4448 4449 // Determine if all users of the induction variable are scalar after 4450 // vectorization. 4451 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4452 auto *I = cast<Instruction>(U); 4453 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4454 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4455 }); 4456 if (!ScalarInd) 4457 continue; 4458 4459 // Determine if all users of the induction variable update instruction are 4460 // scalar after vectorization. 4461 auto ScalarIndUpdate = 4462 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4463 auto *I = cast<Instruction>(U); 4464 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4465 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4466 }); 4467 if (!ScalarIndUpdate) 4468 continue; 4469 4470 // The induction variable and its update instruction will remain scalar. 4471 Worklist.insert(Ind); 4472 Worklist.insert(IndUpdate); 4473 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4474 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4475 << "\n"); 4476 } 4477 4478 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4479 } 4480 4481 bool LoopVectorizationCostModel::isScalarWithPredication( 4482 Instruction *I, ElementCount VF) const { 4483 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4484 return false; 4485 switch(I->getOpcode()) { 4486 default: 4487 break; 4488 case Instruction::Load: 4489 case Instruction::Store: { 4490 if (!Legal->isMaskRequired(I)) 4491 return false; 4492 auto *Ptr = getLoadStorePointerOperand(I); 4493 auto *Ty = getLoadStoreType(I); 4494 Type *VTy = Ty; 4495 if (VF.isVector()) 4496 VTy = VectorType::get(Ty, VF); 4497 const Align Alignment = getLoadStoreAlignment(I); 4498 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4499 TTI.isLegalMaskedGather(VTy, Alignment)) 4500 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4501 TTI.isLegalMaskedScatter(VTy, Alignment)); 4502 } 4503 case Instruction::UDiv: 4504 case Instruction::SDiv: 4505 case Instruction::SRem: 4506 case Instruction::URem: 4507 return mayDivideByZero(*I); 4508 } 4509 return false; 4510 } 4511 4512 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4513 Instruction *I, ElementCount VF) { 4514 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4515 assert(getWideningDecision(I, VF) == CM_Unknown && 4516 "Decision should not be set yet."); 4517 auto *Group = getInterleavedAccessGroup(I); 4518 assert(Group && "Must have a group."); 4519 4520 // If the instruction's allocated size doesn't equal it's type size, it 4521 // requires padding and will be scalarized. 4522 auto &DL = I->getModule()->getDataLayout(); 4523 auto *ScalarTy = getLoadStoreType(I); 4524 if (hasIrregularType(ScalarTy, DL)) 4525 return false; 4526 4527 // If the group involves a non-integral pointer, we may not be able to 4528 // losslessly cast all values to a common type. 4529 unsigned InterleaveFactor = Group->getFactor(); 4530 bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy); 4531 for (unsigned i = 0; i < InterleaveFactor; i++) { 4532 Instruction *Member = Group->getMember(i); 4533 if (!Member) 4534 continue; 4535 auto *MemberTy = getLoadStoreType(Member); 4536 bool MemberNI = DL.isNonIntegralPointerType(MemberTy); 4537 // Don't coerce non-integral pointers to integers or vice versa. 4538 if (MemberNI != ScalarNI) { 4539 // TODO: Consider adding special nullptr value case here 4540 return false; 4541 } else if (MemberNI && ScalarNI && 4542 ScalarTy->getPointerAddressSpace() != 4543 MemberTy->getPointerAddressSpace()) { 4544 return false; 4545 } 4546 } 4547 4548 // Check if masking is required. 4549 // A Group may need masking for one of two reasons: it resides in a block that 4550 // needs predication, or it was decided to use masking to deal with gaps 4551 // (either a gap at the end of a load-access that may result in a speculative 4552 // load, or any gaps in a store-access). 4553 bool PredicatedAccessRequiresMasking = 4554 blockNeedsPredicationForAnyReason(I->getParent()) && 4555 Legal->isMaskRequired(I); 4556 bool LoadAccessWithGapsRequiresEpilogMasking = 4557 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4558 !isScalarEpilogueAllowed(); 4559 bool StoreAccessWithGapsRequiresMasking = 4560 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4561 if (!PredicatedAccessRequiresMasking && 4562 !LoadAccessWithGapsRequiresEpilogMasking && 4563 !StoreAccessWithGapsRequiresMasking) 4564 return true; 4565 4566 // If masked interleaving is required, we expect that the user/target had 4567 // enabled it, because otherwise it either wouldn't have been created or 4568 // it should have been invalidated by the CostModel. 4569 assert(useMaskedInterleavedAccesses(TTI) && 4570 "Masked interleave-groups for predicated accesses are not enabled."); 4571 4572 if (Group->isReverse()) 4573 return false; 4574 4575 auto *Ty = getLoadStoreType(I); 4576 const Align Alignment = getLoadStoreAlignment(I); 4577 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4578 : TTI.isLegalMaskedStore(Ty, Alignment); 4579 } 4580 4581 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4582 Instruction *I, ElementCount VF) { 4583 // Get and ensure we have a valid memory instruction. 4584 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4585 4586 auto *Ptr = getLoadStorePointerOperand(I); 4587 auto *ScalarTy = getLoadStoreType(I); 4588 4589 // In order to be widened, the pointer should be consecutive, first of all. 4590 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4591 return false; 4592 4593 // If the instruction is a store located in a predicated block, it will be 4594 // scalarized. 4595 if (isScalarWithPredication(I, VF)) 4596 return false; 4597 4598 // If the instruction's allocated size doesn't equal it's type size, it 4599 // requires padding and will be scalarized. 4600 auto &DL = I->getModule()->getDataLayout(); 4601 if (hasIrregularType(ScalarTy, DL)) 4602 return false; 4603 4604 return true; 4605 } 4606 4607 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4608 // We should not collect Uniforms more than once per VF. Right now, 4609 // this function is called from collectUniformsAndScalars(), which 4610 // already does this check. Collecting Uniforms for VF=1 does not make any 4611 // sense. 4612 4613 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 4614 "This function should not be visited twice for the same VF"); 4615 4616 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4617 // not analyze again. Uniforms.count(VF) will return 1. 4618 Uniforms[VF].clear(); 4619 4620 // We now know that the loop is vectorizable! 4621 // Collect instructions inside the loop that will remain uniform after 4622 // vectorization. 4623 4624 // Global values, params and instructions outside of current loop are out of 4625 // scope. 4626 auto isOutOfScope = [&](Value *V) -> bool { 4627 Instruction *I = dyn_cast<Instruction>(V); 4628 return (!I || !TheLoop->contains(I)); 4629 }; 4630 4631 // Worklist containing uniform instructions demanding lane 0. 4632 SetVector<Instruction *> Worklist; 4633 BasicBlock *Latch = TheLoop->getLoopLatch(); 4634 4635 // Add uniform instructions demanding lane 0 to the worklist. Instructions 4636 // that are scalar with predication must not be considered uniform after 4637 // vectorization, because that would create an erroneous replicating region 4638 // where only a single instance out of VF should be formed. 4639 // TODO: optimize such seldom cases if found important, see PR40816. 4640 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4641 if (isOutOfScope(I)) { 4642 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 4643 << *I << "\n"); 4644 return; 4645 } 4646 if (isScalarWithPredication(I, VF)) { 4647 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4648 << *I << "\n"); 4649 return; 4650 } 4651 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4652 Worklist.insert(I); 4653 }; 4654 4655 // Start with the conditional branch. If the branch condition is an 4656 // instruction contained in the loop that is only used by the branch, it is 4657 // uniform. 4658 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4659 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4660 addToWorklistIfAllowed(Cmp); 4661 4662 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 4663 InstWidening WideningDecision = getWideningDecision(I, VF); 4664 assert(WideningDecision != CM_Unknown && 4665 "Widening decision should be ready at this moment"); 4666 4667 // A uniform memory op is itself uniform. We exclude uniform stores 4668 // here as they demand the last lane, not the first one. 4669 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 4670 assert(WideningDecision == CM_Scalarize); 4671 return true; 4672 } 4673 4674 return (WideningDecision == CM_Widen || 4675 WideningDecision == CM_Widen_Reverse || 4676 WideningDecision == CM_Interleave); 4677 }; 4678 4679 4680 // Returns true if Ptr is the pointer operand of a memory access instruction 4681 // I, and I is known to not require scalarization. 4682 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4683 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4684 }; 4685 4686 // Holds a list of values which are known to have at least one uniform use. 4687 // Note that there may be other uses which aren't uniform. A "uniform use" 4688 // here is something which only demands lane 0 of the unrolled iterations; 4689 // it does not imply that all lanes produce the same value (e.g. this is not 4690 // the usual meaning of uniform) 4691 SetVector<Value *> HasUniformUse; 4692 4693 // Scan the loop for instructions which are either a) known to have only 4694 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 4695 for (auto *BB : TheLoop->blocks()) 4696 for (auto &I : *BB) { 4697 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 4698 switch (II->getIntrinsicID()) { 4699 case Intrinsic::sideeffect: 4700 case Intrinsic::experimental_noalias_scope_decl: 4701 case Intrinsic::assume: 4702 case Intrinsic::lifetime_start: 4703 case Intrinsic::lifetime_end: 4704 if (TheLoop->hasLoopInvariantOperands(&I)) 4705 addToWorklistIfAllowed(&I); 4706 break; 4707 default: 4708 break; 4709 } 4710 } 4711 4712 // ExtractValue instructions must be uniform, because the operands are 4713 // known to be loop-invariant. 4714 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 4715 assert(isOutOfScope(EVI->getAggregateOperand()) && 4716 "Expected aggregate value to be loop invariant"); 4717 addToWorklistIfAllowed(EVI); 4718 continue; 4719 } 4720 4721 // If there's no pointer operand, there's nothing to do. 4722 auto *Ptr = getLoadStorePointerOperand(&I); 4723 if (!Ptr) 4724 continue; 4725 4726 // A uniform memory op is itself uniform. We exclude uniform stores 4727 // here as they demand the last lane, not the first one. 4728 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 4729 addToWorklistIfAllowed(&I); 4730 4731 if (isUniformDecision(&I, VF)) { 4732 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 4733 HasUniformUse.insert(Ptr); 4734 } 4735 } 4736 4737 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 4738 // demanding) users. Since loops are assumed to be in LCSSA form, this 4739 // disallows uses outside the loop as well. 4740 for (auto *V : HasUniformUse) { 4741 if (isOutOfScope(V)) 4742 continue; 4743 auto *I = cast<Instruction>(V); 4744 auto UsersAreMemAccesses = 4745 llvm::all_of(I->users(), [&](User *U) -> bool { 4746 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 4747 }); 4748 if (UsersAreMemAccesses) 4749 addToWorklistIfAllowed(I); 4750 } 4751 4752 // Expand Worklist in topological order: whenever a new instruction 4753 // is added , its users should be already inside Worklist. It ensures 4754 // a uniform instruction will only be used by uniform instructions. 4755 unsigned idx = 0; 4756 while (idx != Worklist.size()) { 4757 Instruction *I = Worklist[idx++]; 4758 4759 for (auto OV : I->operand_values()) { 4760 // isOutOfScope operands cannot be uniform instructions. 4761 if (isOutOfScope(OV)) 4762 continue; 4763 // First order recurrence Phi's should typically be considered 4764 // non-uniform. 4765 auto *OP = dyn_cast<PHINode>(OV); 4766 if (OP && Legal->isFirstOrderRecurrence(OP)) 4767 continue; 4768 // If all the users of the operand are uniform, then add the 4769 // operand into the uniform worklist. 4770 auto *OI = cast<Instruction>(OV); 4771 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4772 auto *J = cast<Instruction>(U); 4773 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 4774 })) 4775 addToWorklistIfAllowed(OI); 4776 } 4777 } 4778 4779 // For an instruction to be added into Worklist above, all its users inside 4780 // the loop should also be in Worklist. However, this condition cannot be 4781 // true for phi nodes that form a cyclic dependence. We must process phi 4782 // nodes separately. An induction variable will remain uniform if all users 4783 // of the induction variable and induction variable update remain uniform. 4784 // The code below handles both pointer and non-pointer induction variables. 4785 for (auto &Induction : Legal->getInductionVars()) { 4786 auto *Ind = Induction.first; 4787 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4788 4789 // Determine if all users of the induction variable are uniform after 4790 // vectorization. 4791 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4792 auto *I = cast<Instruction>(U); 4793 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4794 isVectorizedMemAccessUse(I, Ind); 4795 }); 4796 if (!UniformInd) 4797 continue; 4798 4799 // Determine if all users of the induction variable update instruction are 4800 // uniform after vectorization. 4801 auto UniformIndUpdate = 4802 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4803 auto *I = cast<Instruction>(U); 4804 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4805 isVectorizedMemAccessUse(I, IndUpdate); 4806 }); 4807 if (!UniformIndUpdate) 4808 continue; 4809 4810 // The induction variable and its update instruction will remain uniform. 4811 addToWorklistIfAllowed(Ind); 4812 addToWorklistIfAllowed(IndUpdate); 4813 } 4814 4815 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4816 } 4817 4818 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4819 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4820 4821 if (Legal->getRuntimePointerChecking()->Need) { 4822 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4823 "runtime pointer checks needed. Enable vectorization of this " 4824 "loop with '#pragma clang loop vectorize(enable)' when " 4825 "compiling with -Os/-Oz", 4826 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4827 return true; 4828 } 4829 4830 if (!PSE.getPredicate().isAlwaysTrue()) { 4831 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4832 "runtime SCEV checks needed. Enable vectorization of this " 4833 "loop with '#pragma clang loop vectorize(enable)' when " 4834 "compiling with -Os/-Oz", 4835 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4836 return true; 4837 } 4838 4839 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4840 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4841 reportVectorizationFailure("Runtime stride check for small trip count", 4842 "runtime stride == 1 checks needed. Enable vectorization of " 4843 "this loop without such check by compiling with -Os/-Oz", 4844 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4845 return true; 4846 } 4847 4848 return false; 4849 } 4850 4851 ElementCount 4852 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 4853 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 4854 return ElementCount::getScalable(0); 4855 4856 if (Hints->isScalableVectorizationDisabled()) { 4857 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 4858 "ScalableVectorizationDisabled", ORE, TheLoop); 4859 return ElementCount::getScalable(0); 4860 } 4861 4862 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 4863 4864 auto MaxScalableVF = ElementCount::getScalable( 4865 std::numeric_limits<ElementCount::ScalarTy>::max()); 4866 4867 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 4868 // FIXME: While for scalable vectors this is currently sufficient, this should 4869 // be replaced by a more detailed mechanism that filters out specific VFs, 4870 // instead of invalidating vectorization for a whole set of VFs based on the 4871 // MaxVF. 4872 4873 // Disable scalable vectorization if the loop contains unsupported reductions. 4874 if (!canVectorizeReductions(MaxScalableVF)) { 4875 reportVectorizationInfo( 4876 "Scalable vectorization not supported for the reduction " 4877 "operations found in this loop.", 4878 "ScalableVFUnfeasible", ORE, TheLoop); 4879 return ElementCount::getScalable(0); 4880 } 4881 4882 // Disable scalable vectorization if the loop contains any instructions 4883 // with element types not supported for scalable vectors. 4884 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 4885 return !Ty->isVoidTy() && 4886 !this->TTI.isElementTypeLegalForScalableVector(Ty); 4887 })) { 4888 reportVectorizationInfo("Scalable vectorization is not supported " 4889 "for all element types found in this loop.", 4890 "ScalableVFUnfeasible", ORE, TheLoop); 4891 return ElementCount::getScalable(0); 4892 } 4893 4894 if (Legal->isSafeForAnyVectorWidth()) 4895 return MaxScalableVF; 4896 4897 // Limit MaxScalableVF by the maximum safe dependence distance. 4898 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 4899 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 4900 MaxVScale = 4901 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 4902 MaxScalableVF = ElementCount::getScalable( 4903 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 4904 if (!MaxScalableVF) 4905 reportVectorizationInfo( 4906 "Max legal vector width too small, scalable vectorization " 4907 "unfeasible.", 4908 "ScalableVFUnfeasible", ORE, TheLoop); 4909 4910 return MaxScalableVF; 4911 } 4912 4913 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 4914 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 4915 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4916 unsigned SmallestType, WidestType; 4917 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4918 4919 // Get the maximum safe dependence distance in bits computed by LAA. 4920 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4921 // the memory accesses that is most restrictive (involved in the smallest 4922 // dependence distance). 4923 unsigned MaxSafeElements = 4924 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 4925 4926 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 4927 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 4928 4929 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 4930 << ".\n"); 4931 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 4932 << ".\n"); 4933 4934 // First analyze the UserVF, fall back if the UserVF should be ignored. 4935 if (UserVF) { 4936 auto MaxSafeUserVF = 4937 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 4938 4939 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 4940 // If `VF=vscale x N` is safe, then so is `VF=N` 4941 if (UserVF.isScalable()) 4942 return FixedScalableVFPair( 4943 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 4944 else 4945 return UserVF; 4946 } 4947 4948 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 4949 4950 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 4951 // is better to ignore the hint and let the compiler choose a suitable VF. 4952 if (!UserVF.isScalable()) { 4953 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4954 << " is unsafe, clamping to max safe VF=" 4955 << MaxSafeFixedVF << ".\n"); 4956 ORE->emit([&]() { 4957 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4958 TheLoop->getStartLoc(), 4959 TheLoop->getHeader()) 4960 << "User-specified vectorization factor " 4961 << ore::NV("UserVectorizationFactor", UserVF) 4962 << " is unsafe, clamping to maximum safe vectorization factor " 4963 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 4964 }); 4965 return MaxSafeFixedVF; 4966 } 4967 4968 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 4969 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4970 << " is ignored because scalable vectors are not " 4971 "available.\n"); 4972 ORE->emit([&]() { 4973 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4974 TheLoop->getStartLoc(), 4975 TheLoop->getHeader()) 4976 << "User-specified vectorization factor " 4977 << ore::NV("UserVectorizationFactor", UserVF) 4978 << " is ignored because the target does not support scalable " 4979 "vectors. The compiler will pick a more suitable value."; 4980 }); 4981 } else { 4982 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4983 << " is unsafe. Ignoring scalable UserVF.\n"); 4984 ORE->emit([&]() { 4985 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4986 TheLoop->getStartLoc(), 4987 TheLoop->getHeader()) 4988 << "User-specified vectorization factor " 4989 << ore::NV("UserVectorizationFactor", UserVF) 4990 << " is unsafe. Ignoring the hint to let the compiler pick a " 4991 "more suitable value."; 4992 }); 4993 } 4994 } 4995 4996 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4997 << " / " << WidestType << " bits.\n"); 4998 4999 FixedScalableVFPair Result(ElementCount::getFixed(1), 5000 ElementCount::getScalable(0)); 5001 if (auto MaxVF = 5002 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5003 MaxSafeFixedVF, FoldTailByMasking)) 5004 Result.FixedVF = MaxVF; 5005 5006 if (auto MaxVF = 5007 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5008 MaxSafeScalableVF, FoldTailByMasking)) 5009 if (MaxVF.isScalable()) { 5010 Result.ScalableVF = MaxVF; 5011 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5012 << "\n"); 5013 } 5014 5015 return Result; 5016 } 5017 5018 FixedScalableVFPair 5019 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5020 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5021 // TODO: It may by useful to do since it's still likely to be dynamically 5022 // uniform if the target can skip. 5023 reportVectorizationFailure( 5024 "Not inserting runtime ptr check for divergent target", 5025 "runtime pointer checks needed. Not enabled for divergent target", 5026 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5027 return FixedScalableVFPair::getNone(); 5028 } 5029 5030 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5031 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5032 if (TC == 1) { 5033 reportVectorizationFailure("Single iteration (non) loop", 5034 "loop trip count is one, irrelevant for vectorization", 5035 "SingleIterationLoop", ORE, TheLoop); 5036 return FixedScalableVFPair::getNone(); 5037 } 5038 5039 switch (ScalarEpilogueStatus) { 5040 case CM_ScalarEpilogueAllowed: 5041 return computeFeasibleMaxVF(TC, UserVF, false); 5042 case CM_ScalarEpilogueNotAllowedUsePredicate: 5043 LLVM_FALLTHROUGH; 5044 case CM_ScalarEpilogueNotNeededUsePredicate: 5045 LLVM_DEBUG( 5046 dbgs() << "LV: vector predicate hint/switch found.\n" 5047 << "LV: Not allowing scalar epilogue, creating predicated " 5048 << "vector loop.\n"); 5049 break; 5050 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5051 // fallthrough as a special case of OptForSize 5052 case CM_ScalarEpilogueNotAllowedOptSize: 5053 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5054 LLVM_DEBUG( 5055 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5056 else 5057 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5058 << "count.\n"); 5059 5060 // Bail if runtime checks are required, which are not good when optimising 5061 // for size. 5062 if (runtimeChecksRequired()) 5063 return FixedScalableVFPair::getNone(); 5064 5065 break; 5066 } 5067 5068 // The only loops we can vectorize without a scalar epilogue, are loops with 5069 // a bottom-test and a single exiting block. We'd have to handle the fact 5070 // that not every instruction executes on the last iteration. This will 5071 // require a lane mask which varies through the vector loop body. (TODO) 5072 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5073 // If there was a tail-folding hint/switch, but we can't fold the tail by 5074 // masking, fallback to a vectorization with a scalar epilogue. 5075 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5076 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5077 "scalar epilogue instead.\n"); 5078 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5079 return computeFeasibleMaxVF(TC, UserVF, false); 5080 } 5081 return FixedScalableVFPair::getNone(); 5082 } 5083 5084 // Now try the tail folding 5085 5086 // Invalidate interleave groups that require an epilogue if we can't mask 5087 // the interleave-group. 5088 if (!useMaskedInterleavedAccesses(TTI)) { 5089 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5090 "No decisions should have been taken at this point"); 5091 // Note: There is no need to invalidate any cost modeling decisions here, as 5092 // non where taken so far. 5093 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5094 } 5095 5096 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5097 // Avoid tail folding if the trip count is known to be a multiple of any VF 5098 // we chose. 5099 // FIXME: The condition below pessimises the case for fixed-width vectors, 5100 // when scalable VFs are also candidates for vectorization. 5101 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5102 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5103 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5104 "MaxFixedVF must be a power of 2"); 5105 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5106 : MaxFixedVF.getFixedValue(); 5107 ScalarEvolution *SE = PSE.getSE(); 5108 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5109 const SCEV *ExitCount = SE->getAddExpr( 5110 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5111 const SCEV *Rem = SE->getURemExpr( 5112 SE->applyLoopGuards(ExitCount, TheLoop), 5113 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5114 if (Rem->isZero()) { 5115 // Accept MaxFixedVF if we do not have a tail. 5116 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5117 return MaxFactors; 5118 } 5119 } 5120 5121 // For scalable vectors don't use tail folding for low trip counts or 5122 // optimizing for code size. We only permit this if the user has explicitly 5123 // requested it. 5124 if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate && 5125 ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate && 5126 MaxFactors.ScalableVF.isVector()) 5127 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5128 5129 // If we don't know the precise trip count, or if the trip count that we 5130 // found modulo the vectorization factor is not zero, try to fold the tail 5131 // by masking. 5132 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5133 if (Legal->prepareToFoldTailByMasking()) { 5134 FoldTailByMasking = true; 5135 return MaxFactors; 5136 } 5137 5138 // If there was a tail-folding hint/switch, but we can't fold the tail by 5139 // masking, fallback to a vectorization with a scalar epilogue. 5140 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5141 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5142 "scalar epilogue instead.\n"); 5143 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5144 return MaxFactors; 5145 } 5146 5147 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5148 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5149 return FixedScalableVFPair::getNone(); 5150 } 5151 5152 if (TC == 0) { 5153 reportVectorizationFailure( 5154 "Unable to calculate the loop count due to complex control flow", 5155 "unable to calculate the loop count due to complex control flow", 5156 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5157 return FixedScalableVFPair::getNone(); 5158 } 5159 5160 reportVectorizationFailure( 5161 "Cannot optimize for size and vectorize at the same time.", 5162 "cannot optimize for size and vectorize at the same time. " 5163 "Enable vectorization of this loop with '#pragma clang loop " 5164 "vectorize(enable)' when compiling with -Os/-Oz", 5165 "NoTailLoopWithOptForSize", ORE, TheLoop); 5166 return FixedScalableVFPair::getNone(); 5167 } 5168 5169 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5170 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5171 const ElementCount &MaxSafeVF, bool FoldTailByMasking) { 5172 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5173 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5174 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5175 : TargetTransformInfo::RGK_FixedWidthVector); 5176 5177 // Convenience function to return the minimum of two ElementCounts. 5178 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5179 assert((LHS.isScalable() == RHS.isScalable()) && 5180 "Scalable flags must match"); 5181 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5182 }; 5183 5184 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5185 // Note that both WidestRegister and WidestType may not be a powers of 2. 5186 auto MaxVectorElementCount = ElementCount::get( 5187 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5188 ComputeScalableMaxVF); 5189 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5190 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5191 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5192 5193 if (!MaxVectorElementCount) { 5194 LLVM_DEBUG(dbgs() << "LV: The target has no " 5195 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5196 << " vector registers.\n"); 5197 return ElementCount::getFixed(1); 5198 } 5199 5200 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5201 if (ConstTripCount && 5202 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5203 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5204 // If loop trip count (TC) is known at compile time there is no point in 5205 // choosing VF greater than TC (as done in the loop below). Select maximum 5206 // power of two which doesn't exceed TC. 5207 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5208 // when the TC is less than or equal to the known number of lanes. 5209 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5210 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5211 "exceeding the constant trip count: " 5212 << ClampedConstTripCount << "\n"); 5213 return ElementCount::getFixed(ClampedConstTripCount); 5214 } 5215 5216 ElementCount MaxVF = MaxVectorElementCount; 5217 if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 && 5218 TTI.shouldMaximizeVectorBandwidth())) { 5219 auto MaxVectorElementCountMaxBW = ElementCount::get( 5220 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5221 ComputeScalableMaxVF); 5222 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5223 5224 // Collect all viable vectorization factors larger than the default MaxVF 5225 // (i.e. MaxVectorElementCount). 5226 SmallVector<ElementCount, 8> VFs; 5227 for (ElementCount VS = MaxVectorElementCount * 2; 5228 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5229 VFs.push_back(VS); 5230 5231 // For each VF calculate its register usage. 5232 auto RUs = calculateRegisterUsage(VFs); 5233 5234 // Select the largest VF which doesn't require more registers than existing 5235 // ones. 5236 for (int i = RUs.size() - 1; i >= 0; --i) { 5237 bool Selected = true; 5238 for (auto &pair : RUs[i].MaxLocalUsers) { 5239 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5240 if (pair.second > TargetNumRegisters) 5241 Selected = false; 5242 } 5243 if (Selected) { 5244 MaxVF = VFs[i]; 5245 break; 5246 } 5247 } 5248 if (ElementCount MinVF = 5249 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5250 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5251 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5252 << ") with target's minimum: " << MinVF << '\n'); 5253 MaxVF = MinVF; 5254 } 5255 } 5256 5257 // Invalidate any widening decisions we might have made, in case the loop 5258 // requires prediction (decided later), but we have already made some 5259 // load/store widening decisions. 5260 invalidateCostModelingDecisions(); 5261 } 5262 return MaxVF; 5263 } 5264 5265 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const { 5266 if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5267 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); 5268 auto Min = Attr.getVScaleRangeMin(); 5269 auto Max = Attr.getVScaleRangeMax(); 5270 if (Max && Min == Max) 5271 return Max; 5272 } 5273 5274 return TTI.getVScaleForTuning(); 5275 } 5276 5277 bool LoopVectorizationCostModel::isMoreProfitable( 5278 const VectorizationFactor &A, const VectorizationFactor &B) const { 5279 InstructionCost CostA = A.Cost; 5280 InstructionCost CostB = B.Cost; 5281 5282 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5283 5284 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5285 MaxTripCount) { 5286 // If we are folding the tail and the trip count is a known (possibly small) 5287 // constant, the trip count will be rounded up to an integer number of 5288 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5289 // which we compare directly. When not folding the tail, the total cost will 5290 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5291 // approximated with the per-lane cost below instead of using the tripcount 5292 // as here. 5293 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5294 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5295 return RTCostA < RTCostB; 5296 } 5297 5298 // Improve estimate for the vector width if it is scalable. 5299 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5300 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5301 if (Optional<unsigned> VScale = getVScaleForTuning()) { 5302 if (A.Width.isScalable()) 5303 EstimatedWidthA *= VScale.getValue(); 5304 if (B.Width.isScalable()) 5305 EstimatedWidthB *= VScale.getValue(); 5306 } 5307 5308 // Assume vscale may be larger than 1 (or the value being tuned for), 5309 // so that scalable vectorization is slightly favorable over fixed-width 5310 // vectorization. 5311 if (A.Width.isScalable() && !B.Width.isScalable()) 5312 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5313 5314 // To avoid the need for FP division: 5315 // (CostA / A.Width) < (CostB / B.Width) 5316 // <=> (CostA * B.Width) < (CostB * A.Width) 5317 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5318 } 5319 5320 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5321 const ElementCountSet &VFCandidates) { 5322 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5323 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5324 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5325 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5326 "Expected Scalar VF to be a candidate"); 5327 5328 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 5329 VectorizationFactor ChosenFactor = ScalarCost; 5330 5331 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5332 if (ForceVectorization && VFCandidates.size() > 1) { 5333 // Ignore scalar width, because the user explicitly wants vectorization. 5334 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5335 // evaluation. 5336 ChosenFactor.Cost = InstructionCost::getMax(); 5337 } 5338 5339 SmallVector<InstructionVFPair> InvalidCosts; 5340 for (const auto &i : VFCandidates) { 5341 // The cost for scalar VF=1 is already calculated, so ignore it. 5342 if (i.isScalar()) 5343 continue; 5344 5345 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5346 VectorizationFactor Candidate(i, C.first); 5347 5348 #ifndef NDEBUG 5349 unsigned AssumedMinimumVscale = 1; 5350 if (Optional<unsigned> VScale = getVScaleForTuning()) 5351 AssumedMinimumVscale = VScale.getValue(); 5352 unsigned Width = 5353 Candidate.Width.isScalable() 5354 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5355 : Candidate.Width.getFixedValue(); 5356 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5357 << " costs: " << (Candidate.Cost / Width)); 5358 if (i.isScalable()) 5359 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5360 << AssumedMinimumVscale << ")"); 5361 LLVM_DEBUG(dbgs() << ".\n"); 5362 #endif 5363 5364 if (!C.second && !ForceVectorization) { 5365 LLVM_DEBUG( 5366 dbgs() << "LV: Not considering vector loop of width " << i 5367 << " because it will not generate any vector instructions.\n"); 5368 continue; 5369 } 5370 5371 // If profitable add it to ProfitableVF list. 5372 if (isMoreProfitable(Candidate, ScalarCost)) 5373 ProfitableVFs.push_back(Candidate); 5374 5375 if (isMoreProfitable(Candidate, ChosenFactor)) 5376 ChosenFactor = Candidate; 5377 } 5378 5379 // Emit a report of VFs with invalid costs in the loop. 5380 if (!InvalidCosts.empty()) { 5381 // Group the remarks per instruction, keeping the instruction order from 5382 // InvalidCosts. 5383 std::map<Instruction *, unsigned> Numbering; 5384 unsigned I = 0; 5385 for (auto &Pair : InvalidCosts) 5386 if (!Numbering.count(Pair.first)) 5387 Numbering[Pair.first] = I++; 5388 5389 // Sort the list, first on instruction(number) then on VF. 5390 llvm::sort(InvalidCosts, 5391 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5392 if (Numbering[A.first] != Numbering[B.first]) 5393 return Numbering[A.first] < Numbering[B.first]; 5394 ElementCountComparator ECC; 5395 return ECC(A.second, B.second); 5396 }); 5397 5398 // For a list of ordered instruction-vf pairs: 5399 // [(load, vf1), (load, vf2), (store, vf1)] 5400 // Group the instructions together to emit separate remarks for: 5401 // load (vf1, vf2) 5402 // store (vf1) 5403 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5404 auto Subset = ArrayRef<InstructionVFPair>(); 5405 do { 5406 if (Subset.empty()) 5407 Subset = Tail.take_front(1); 5408 5409 Instruction *I = Subset.front().first; 5410 5411 // If the next instruction is different, or if there are no other pairs, 5412 // emit a remark for the collated subset. e.g. 5413 // [(load, vf1), (load, vf2))] 5414 // to emit: 5415 // remark: invalid costs for 'load' at VF=(vf, vf2) 5416 if (Subset == Tail || Tail[Subset.size()].first != I) { 5417 std::string OutString; 5418 raw_string_ostream OS(OutString); 5419 assert(!Subset.empty() && "Unexpected empty range"); 5420 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5421 for (auto &Pair : Subset) 5422 OS << (Pair.second == Subset.front().second ? "" : ", ") 5423 << Pair.second; 5424 OS << "):"; 5425 if (auto *CI = dyn_cast<CallInst>(I)) 5426 OS << " call to " << CI->getCalledFunction()->getName(); 5427 else 5428 OS << " " << I->getOpcodeName(); 5429 OS.flush(); 5430 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5431 Tail = Tail.drop_front(Subset.size()); 5432 Subset = {}; 5433 } else 5434 // Grow the subset by one element 5435 Subset = Tail.take_front(Subset.size() + 1); 5436 } while (!Tail.empty()); 5437 } 5438 5439 if (!EnableCondStoresVectorization && NumPredStores) { 5440 reportVectorizationFailure("There are conditional stores.", 5441 "store that is conditionally executed prevents vectorization", 5442 "ConditionalStore", ORE, TheLoop); 5443 ChosenFactor = ScalarCost; 5444 } 5445 5446 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5447 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 5448 << "LV: Vectorization seems to be not beneficial, " 5449 << "but was forced by a user.\n"); 5450 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5451 return ChosenFactor; 5452 } 5453 5454 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5455 const Loop &L, ElementCount VF) const { 5456 // Cross iteration phis such as reductions need special handling and are 5457 // currently unsupported. 5458 if (any_of(L.getHeader()->phis(), 5459 [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); })) 5460 return false; 5461 5462 // Phis with uses outside of the loop require special handling and are 5463 // currently unsupported. 5464 for (auto &Entry : Legal->getInductionVars()) { 5465 // Look for uses of the value of the induction at the last iteration. 5466 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5467 for (User *U : PostInc->users()) 5468 if (!L.contains(cast<Instruction>(U))) 5469 return false; 5470 // Look for uses of penultimate value of the induction. 5471 for (User *U : Entry.first->users()) 5472 if (!L.contains(cast<Instruction>(U))) 5473 return false; 5474 } 5475 5476 // Induction variables that are widened require special handling that is 5477 // currently not supported. 5478 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5479 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5480 this->isProfitableToScalarize(Entry.first, VF)); 5481 })) 5482 return false; 5483 5484 // Epilogue vectorization code has not been auditted to ensure it handles 5485 // non-latch exits properly. It may be fine, but it needs auditted and 5486 // tested. 5487 if (L.getExitingBlock() != L.getLoopLatch()) 5488 return false; 5489 5490 return true; 5491 } 5492 5493 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5494 const ElementCount VF) const { 5495 // FIXME: We need a much better cost-model to take different parameters such 5496 // as register pressure, code size increase and cost of extra branches into 5497 // account. For now we apply a very crude heuristic and only consider loops 5498 // with vectorization factors larger than a certain value. 5499 // We also consider epilogue vectorization unprofitable for targets that don't 5500 // consider interleaving beneficial (eg. MVE). 5501 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5502 return false; 5503 // FIXME: We should consider changing the threshold for scalable 5504 // vectors to take VScaleForTuning into account. 5505 if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF) 5506 return true; 5507 return false; 5508 } 5509 5510 VectorizationFactor 5511 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5512 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5513 VectorizationFactor Result = VectorizationFactor::Disabled(); 5514 if (!EnableEpilogueVectorization) { 5515 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5516 return Result; 5517 } 5518 5519 if (!isScalarEpilogueAllowed()) { 5520 LLVM_DEBUG( 5521 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5522 "allowed.\n";); 5523 return Result; 5524 } 5525 5526 // Not really a cost consideration, but check for unsupported cases here to 5527 // simplify the logic. 5528 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5529 LLVM_DEBUG( 5530 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5531 "not a supported candidate.\n";); 5532 return Result; 5533 } 5534 5535 if (EpilogueVectorizationForceVF > 1) { 5536 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5537 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5538 if (LVP.hasPlanWithVF(ForcedEC)) 5539 return {ForcedEC, 0}; 5540 else { 5541 LLVM_DEBUG( 5542 dbgs() 5543 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5544 return Result; 5545 } 5546 } 5547 5548 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5549 TheLoop->getHeader()->getParent()->hasMinSize()) { 5550 LLVM_DEBUG( 5551 dbgs() 5552 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5553 return Result; 5554 } 5555 5556 if (!isEpilogueVectorizationProfitable(MainLoopVF)) { 5557 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5558 "this loop\n"); 5559 return Result; 5560 } 5561 5562 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know 5563 // the main loop handles 8 lanes per iteration. We could still benefit from 5564 // vectorizing the epilogue loop with VF=4. 5565 ElementCount EstimatedRuntimeVF = MainLoopVF; 5566 if (MainLoopVF.isScalable()) { 5567 EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 5568 if (Optional<unsigned> VScale = getVScaleForTuning()) 5569 EstimatedRuntimeVF *= VScale.getValue(); 5570 } 5571 5572 for (auto &NextVF : ProfitableVFs) 5573 if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() && 5574 ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) || 5575 ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) && 5576 (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) && 5577 LVP.hasPlanWithVF(NextVF.Width)) 5578 Result = NextVF; 5579 5580 if (Result != VectorizationFactor::Disabled()) 5581 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5582 << Result.Width << "\n";); 5583 return Result; 5584 } 5585 5586 std::pair<unsigned, unsigned> 5587 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5588 unsigned MinWidth = -1U; 5589 unsigned MaxWidth = 8; 5590 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5591 // For in-loop reductions, no element types are added to ElementTypesInLoop 5592 // if there are no loads/stores in the loop. In this case, check through the 5593 // reduction variables to determine the maximum width. 5594 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5595 // Reset MaxWidth so that we can find the smallest type used by recurrences 5596 // in the loop. 5597 MaxWidth = -1U; 5598 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5599 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5600 // When finding the min width used by the recurrence we need to account 5601 // for casts on the input operands of the recurrence. 5602 MaxWidth = std::min<unsigned>( 5603 MaxWidth, std::min<unsigned>( 5604 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5605 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5606 } 5607 } else { 5608 for (Type *T : ElementTypesInLoop) { 5609 MinWidth = std::min<unsigned>( 5610 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5611 MaxWidth = std::max<unsigned>( 5612 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5613 } 5614 } 5615 return {MinWidth, MaxWidth}; 5616 } 5617 5618 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5619 ElementTypesInLoop.clear(); 5620 // For each block. 5621 for (BasicBlock *BB : TheLoop->blocks()) { 5622 // For each instruction in the loop. 5623 for (Instruction &I : BB->instructionsWithoutDebug()) { 5624 Type *T = I.getType(); 5625 5626 // Skip ignored values. 5627 if (ValuesToIgnore.count(&I)) 5628 continue; 5629 5630 // Only examine Loads, Stores and PHINodes. 5631 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5632 continue; 5633 5634 // Examine PHI nodes that are reduction variables. Update the type to 5635 // account for the recurrence type. 5636 if (auto *PN = dyn_cast<PHINode>(&I)) { 5637 if (!Legal->isReductionVariable(PN)) 5638 continue; 5639 const RecurrenceDescriptor &RdxDesc = 5640 Legal->getReductionVars().find(PN)->second; 5641 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 5642 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5643 RdxDesc.getRecurrenceType(), 5644 TargetTransformInfo::ReductionFlags())) 5645 continue; 5646 T = RdxDesc.getRecurrenceType(); 5647 } 5648 5649 // Examine the stored values. 5650 if (auto *ST = dyn_cast<StoreInst>(&I)) 5651 T = ST->getValueOperand()->getType(); 5652 5653 assert(T->isSized() && 5654 "Expected the load/store/recurrence type to be sized"); 5655 5656 ElementTypesInLoop.insert(T); 5657 } 5658 } 5659 } 5660 5661 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5662 unsigned LoopCost) { 5663 // -- The interleave heuristics -- 5664 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5665 // There are many micro-architectural considerations that we can't predict 5666 // at this level. For example, frontend pressure (on decode or fetch) due to 5667 // code size, or the number and capabilities of the execution ports. 5668 // 5669 // We use the following heuristics to select the interleave count: 5670 // 1. If the code has reductions, then we interleave to break the cross 5671 // iteration dependency. 5672 // 2. If the loop is really small, then we interleave to reduce the loop 5673 // overhead. 5674 // 3. We don't interleave if we think that we will spill registers to memory 5675 // due to the increased register pressure. 5676 5677 if (!isScalarEpilogueAllowed()) 5678 return 1; 5679 5680 // We used the distance for the interleave count. 5681 if (Legal->getMaxSafeDepDistBytes() != -1U) 5682 return 1; 5683 5684 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5685 const bool HasReductions = !Legal->getReductionVars().empty(); 5686 // Do not interleave loops with a relatively small known or estimated trip 5687 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5688 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5689 // because with the above conditions interleaving can expose ILP and break 5690 // cross iteration dependences for reductions. 5691 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5692 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5693 return 1; 5694 5695 // If we did not calculate the cost for VF (because the user selected the VF) 5696 // then we calculate the cost of VF here. 5697 if (LoopCost == 0) { 5698 InstructionCost C = expectedCost(VF).first; 5699 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 5700 LoopCost = *C.getValue(); 5701 5702 // Loop body is free and there is no need for interleaving. 5703 if (LoopCost == 0) 5704 return 1; 5705 } 5706 5707 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5708 // We divide by these constants so assume that we have at least one 5709 // instruction that uses at least one register. 5710 for (auto& pair : R.MaxLocalUsers) { 5711 pair.second = std::max(pair.second, 1U); 5712 } 5713 5714 // We calculate the interleave count using the following formula. 5715 // Subtract the number of loop invariants from the number of available 5716 // registers. These registers are used by all of the interleaved instances. 5717 // Next, divide the remaining registers by the number of registers that is 5718 // required by the loop, in order to estimate how many parallel instances 5719 // fit without causing spills. All of this is rounded down if necessary to be 5720 // a power of two. We want power of two interleave count to simplify any 5721 // addressing operations or alignment considerations. 5722 // We also want power of two interleave counts to ensure that the induction 5723 // variable of the vector loop wraps to zero, when tail is folded by masking; 5724 // this currently happens when OptForSize, in which case IC is set to 1 above. 5725 unsigned IC = UINT_MAX; 5726 5727 for (auto& pair : R.MaxLocalUsers) { 5728 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5729 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5730 << " registers of " 5731 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5732 if (VF.isScalar()) { 5733 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5734 TargetNumRegisters = ForceTargetNumScalarRegs; 5735 } else { 5736 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5737 TargetNumRegisters = ForceTargetNumVectorRegs; 5738 } 5739 unsigned MaxLocalUsers = pair.second; 5740 unsigned LoopInvariantRegs = 0; 5741 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5742 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5743 5744 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5745 // Don't count the induction variable as interleaved. 5746 if (EnableIndVarRegisterHeur) { 5747 TmpIC = 5748 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5749 std::max(1U, (MaxLocalUsers - 1))); 5750 } 5751 5752 IC = std::min(IC, TmpIC); 5753 } 5754 5755 // Clamp the interleave ranges to reasonable counts. 5756 unsigned MaxInterleaveCount = 5757 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5758 5759 // Check if the user has overridden the max. 5760 if (VF.isScalar()) { 5761 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5762 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5763 } else { 5764 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5765 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5766 } 5767 5768 // If trip count is known or estimated compile time constant, limit the 5769 // interleave count to be less than the trip count divided by VF, provided it 5770 // is at least 1. 5771 // 5772 // For scalable vectors we can't know if interleaving is beneficial. It may 5773 // not be beneficial for small loops if none of the lanes in the second vector 5774 // iterations is enabled. However, for larger loops, there is likely to be a 5775 // similar benefit as for fixed-width vectors. For now, we choose to leave 5776 // the InterleaveCount as if vscale is '1', although if some information about 5777 // the vector is known (e.g. min vector size), we can make a better decision. 5778 if (BestKnownTC) { 5779 MaxInterleaveCount = 5780 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 5781 // Make sure MaxInterleaveCount is greater than 0. 5782 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 5783 } 5784 5785 assert(MaxInterleaveCount > 0 && 5786 "Maximum interleave count must be greater than 0"); 5787 5788 // Clamp the calculated IC to be between the 1 and the max interleave count 5789 // that the target and trip count allows. 5790 if (IC > MaxInterleaveCount) 5791 IC = MaxInterleaveCount; 5792 else 5793 // Make sure IC is greater than 0. 5794 IC = std::max(1u, IC); 5795 5796 assert(IC > 0 && "Interleave count must be greater than 0."); 5797 5798 // Interleave if we vectorized this loop and there is a reduction that could 5799 // benefit from interleaving. 5800 if (VF.isVector() && HasReductions) { 5801 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5802 return IC; 5803 } 5804 5805 // For any scalar loop that either requires runtime checks or predication we 5806 // are better off leaving this to the unroller. Note that if we've already 5807 // vectorized the loop we will have done the runtime check and so interleaving 5808 // won't require further checks. 5809 bool ScalarInterleavingRequiresPredication = 5810 (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) { 5811 return Legal->blockNeedsPredication(BB); 5812 })); 5813 bool ScalarInterleavingRequiresRuntimePointerCheck = 5814 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 5815 5816 // We want to interleave small loops in order to reduce the loop overhead and 5817 // potentially expose ILP opportunities. 5818 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 5819 << "LV: IC is " << IC << '\n' 5820 << "LV: VF is " << VF << '\n'); 5821 const bool AggressivelyInterleaveReductions = 5822 TTI.enableAggressiveInterleaving(HasReductions); 5823 if (!ScalarInterleavingRequiresRuntimePointerCheck && 5824 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) { 5825 // We assume that the cost overhead is 1 and we use the cost model 5826 // to estimate the cost of the loop and interleave until the cost of the 5827 // loop overhead is about 5% of the cost of the loop. 5828 unsigned SmallIC = 5829 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5830 5831 // Interleave until store/load ports (estimated by max interleave count) are 5832 // saturated. 5833 unsigned NumStores = Legal->getNumStores(); 5834 unsigned NumLoads = Legal->getNumLoads(); 5835 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5836 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5837 5838 // There is little point in interleaving for reductions containing selects 5839 // and compares when VF=1 since it may just create more overhead than it's 5840 // worth for loops with small trip counts. This is because we still have to 5841 // do the final reduction after the loop. 5842 bool HasSelectCmpReductions = 5843 HasReductions && 5844 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5845 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5846 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 5847 RdxDesc.getRecurrenceKind()); 5848 }); 5849 if (HasSelectCmpReductions) { 5850 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 5851 return 1; 5852 } 5853 5854 // If we have a scalar reduction (vector reductions are already dealt with 5855 // by this point), we can increase the critical path length if the loop 5856 // we're interleaving is inside another loop. For tree-wise reductions 5857 // set the limit to 2, and for ordered reductions it's best to disable 5858 // interleaving entirely. 5859 if (HasReductions && TheLoop->getLoopDepth() > 1) { 5860 bool HasOrderedReductions = 5861 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5862 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5863 return RdxDesc.isOrdered(); 5864 }); 5865 if (HasOrderedReductions) { 5866 LLVM_DEBUG( 5867 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 5868 return 1; 5869 } 5870 5871 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5872 SmallIC = std::min(SmallIC, F); 5873 StoresIC = std::min(StoresIC, F); 5874 LoadsIC = std::min(LoadsIC, F); 5875 } 5876 5877 if (EnableLoadStoreRuntimeInterleave && 5878 std::max(StoresIC, LoadsIC) > SmallIC) { 5879 LLVM_DEBUG( 5880 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5881 return std::max(StoresIC, LoadsIC); 5882 } 5883 5884 // If there are scalar reductions and TTI has enabled aggressive 5885 // interleaving for reductions, we will interleave to expose ILP. 5886 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 5887 AggressivelyInterleaveReductions) { 5888 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5889 // Interleave no less than SmallIC but not as aggressive as the normal IC 5890 // to satisfy the rare situation when resources are too limited. 5891 return std::max(IC / 2, SmallIC); 5892 } else { 5893 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5894 return SmallIC; 5895 } 5896 } 5897 5898 // Interleave if this is a large loop (small loops are already dealt with by 5899 // this point) that could benefit from interleaving. 5900 if (AggressivelyInterleaveReductions) { 5901 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5902 return IC; 5903 } 5904 5905 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5906 return 1; 5907 } 5908 5909 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5910 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 5911 // This function calculates the register usage by measuring the highest number 5912 // of values that are alive at a single location. Obviously, this is a very 5913 // rough estimation. We scan the loop in a topological order in order and 5914 // assign a number to each instruction. We use RPO to ensure that defs are 5915 // met before their users. We assume that each instruction that has in-loop 5916 // users starts an interval. We record every time that an in-loop value is 5917 // used, so we have a list of the first and last occurrences of each 5918 // instruction. Next, we transpose this data structure into a multi map that 5919 // holds the list of intervals that *end* at a specific location. This multi 5920 // map allows us to perform a linear search. We scan the instructions linearly 5921 // and record each time that a new interval starts, by placing it in a set. 5922 // If we find this value in the multi-map then we remove it from the set. 5923 // The max register usage is the maximum size of the set. 5924 // We also search for instructions that are defined outside the loop, but are 5925 // used inside the loop. We need this number separately from the max-interval 5926 // usage number because when we unroll, loop-invariant values do not take 5927 // more register. 5928 LoopBlocksDFS DFS(TheLoop); 5929 DFS.perform(LI); 5930 5931 RegisterUsage RU; 5932 5933 // Each 'key' in the map opens a new interval. The values 5934 // of the map are the index of the 'last seen' usage of the 5935 // instruction that is the key. 5936 using IntervalMap = DenseMap<Instruction *, unsigned>; 5937 5938 // Maps instruction to its index. 5939 SmallVector<Instruction *, 64> IdxToInstr; 5940 // Marks the end of each interval. 5941 IntervalMap EndPoint; 5942 // Saves the list of instruction indices that are used in the loop. 5943 SmallPtrSet<Instruction *, 8> Ends; 5944 // Saves the list of values that are used in the loop but are 5945 // defined outside the loop, such as arguments and constants. 5946 SmallPtrSet<Value *, 8> LoopInvariants; 5947 5948 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5949 for (Instruction &I : BB->instructionsWithoutDebug()) { 5950 IdxToInstr.push_back(&I); 5951 5952 // Save the end location of each USE. 5953 for (Value *U : I.operands()) { 5954 auto *Instr = dyn_cast<Instruction>(U); 5955 5956 // Ignore non-instruction values such as arguments, constants, etc. 5957 if (!Instr) 5958 continue; 5959 5960 // If this instruction is outside the loop then record it and continue. 5961 if (!TheLoop->contains(Instr)) { 5962 LoopInvariants.insert(Instr); 5963 continue; 5964 } 5965 5966 // Overwrite previous end points. 5967 EndPoint[Instr] = IdxToInstr.size(); 5968 Ends.insert(Instr); 5969 } 5970 } 5971 } 5972 5973 // Saves the list of intervals that end with the index in 'key'. 5974 using InstrList = SmallVector<Instruction *, 2>; 5975 DenseMap<unsigned, InstrList> TransposeEnds; 5976 5977 // Transpose the EndPoints to a list of values that end at each index. 5978 for (auto &Interval : EndPoint) 5979 TransposeEnds[Interval.second].push_back(Interval.first); 5980 5981 SmallPtrSet<Instruction *, 8> OpenIntervals; 5982 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5983 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5984 5985 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5986 5987 // A lambda that gets the register usage for the given type and VF. 5988 const auto &TTICapture = TTI; 5989 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 5990 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 5991 return 0; 5992 InstructionCost::CostType RegUsage = 5993 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 5994 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 5995 "Nonsensical values for register usage."); 5996 return RegUsage; 5997 }; 5998 5999 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6000 Instruction *I = IdxToInstr[i]; 6001 6002 // Remove all of the instructions that end at this location. 6003 InstrList &List = TransposeEnds[i]; 6004 for (Instruction *ToRemove : List) 6005 OpenIntervals.erase(ToRemove); 6006 6007 // Ignore instructions that are never used within the loop. 6008 if (!Ends.count(I)) 6009 continue; 6010 6011 // Skip ignored values. 6012 if (ValuesToIgnore.count(I)) 6013 continue; 6014 6015 // For each VF find the maximum usage of registers. 6016 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6017 // Count the number of live intervals. 6018 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6019 6020 if (VFs[j].isScalar()) { 6021 for (auto Inst : OpenIntervals) { 6022 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6023 if (RegUsage.find(ClassID) == RegUsage.end()) 6024 RegUsage[ClassID] = 1; 6025 else 6026 RegUsage[ClassID] += 1; 6027 } 6028 } else { 6029 collectUniformsAndScalars(VFs[j]); 6030 for (auto Inst : OpenIntervals) { 6031 // Skip ignored values for VF > 1. 6032 if (VecValuesToIgnore.count(Inst)) 6033 continue; 6034 if (isScalarAfterVectorization(Inst, VFs[j])) { 6035 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6036 if (RegUsage.find(ClassID) == RegUsage.end()) 6037 RegUsage[ClassID] = 1; 6038 else 6039 RegUsage[ClassID] += 1; 6040 } else { 6041 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6042 if (RegUsage.find(ClassID) == RegUsage.end()) 6043 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6044 else 6045 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6046 } 6047 } 6048 } 6049 6050 for (auto& pair : RegUsage) { 6051 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6052 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6053 else 6054 MaxUsages[j][pair.first] = pair.second; 6055 } 6056 } 6057 6058 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6059 << OpenIntervals.size() << '\n'); 6060 6061 // Add the current instruction to the list of open intervals. 6062 OpenIntervals.insert(I); 6063 } 6064 6065 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6066 SmallMapVector<unsigned, unsigned, 4> Invariant; 6067 6068 for (auto Inst : LoopInvariants) { 6069 unsigned Usage = 6070 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6071 unsigned ClassID = 6072 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6073 if (Invariant.find(ClassID) == Invariant.end()) 6074 Invariant[ClassID] = Usage; 6075 else 6076 Invariant[ClassID] += Usage; 6077 } 6078 6079 LLVM_DEBUG({ 6080 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6081 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6082 << " item\n"; 6083 for (const auto &pair : MaxUsages[i]) { 6084 dbgs() << "LV(REG): RegisterClass: " 6085 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6086 << " registers\n"; 6087 } 6088 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6089 << " item\n"; 6090 for (const auto &pair : Invariant) { 6091 dbgs() << "LV(REG): RegisterClass: " 6092 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6093 << " registers\n"; 6094 } 6095 }); 6096 6097 RU.LoopInvariantRegs = Invariant; 6098 RU.MaxLocalUsers = MaxUsages[i]; 6099 RUs[i] = RU; 6100 } 6101 6102 return RUs; 6103 } 6104 6105 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, 6106 ElementCount VF) { 6107 // TODO: Cost model for emulated masked load/store is completely 6108 // broken. This hack guides the cost model to use an artificially 6109 // high enough value to practically disable vectorization with such 6110 // operations, except where previously deployed legality hack allowed 6111 // using very low cost values. This is to avoid regressions coming simply 6112 // from moving "masked load/store" check from legality to cost model. 6113 // Masked Load/Gather emulation was previously never allowed. 6114 // Limited number of Masked Store/Scatter emulation was allowed. 6115 assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction"); 6116 return isa<LoadInst>(I) || 6117 (isa<StoreInst>(I) && 6118 NumPredStores > NumberOfStoresToPredicate); 6119 } 6120 6121 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6122 // If we aren't vectorizing the loop, or if we've already collected the 6123 // instructions to scalarize, there's nothing to do. Collection may already 6124 // have occurred if we have a user-selected VF and are now computing the 6125 // expected cost for interleaving. 6126 if (VF.isScalar() || VF.isZero() || 6127 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6128 return; 6129 6130 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6131 // not profitable to scalarize any instructions, the presence of VF in the 6132 // map will indicate that we've analyzed it already. 6133 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6134 6135 // Find all the instructions that are scalar with predication in the loop and 6136 // determine if it would be better to not if-convert the blocks they are in. 6137 // If so, we also record the instructions to scalarize. 6138 for (BasicBlock *BB : TheLoop->blocks()) { 6139 if (!blockNeedsPredicationForAnyReason(BB)) 6140 continue; 6141 for (Instruction &I : *BB) 6142 if (isScalarWithPredication(&I, VF)) { 6143 ScalarCostsTy ScalarCosts; 6144 // Do not apply discount if scalable, because that would lead to 6145 // invalid scalarization costs. 6146 // Do not apply discount logic if hacked cost is needed 6147 // for emulated masked memrefs. 6148 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) && 6149 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6150 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6151 // Remember that BB will remain after vectorization. 6152 PredicatedBBsAfterVectorization.insert(BB); 6153 } 6154 } 6155 } 6156 6157 int LoopVectorizationCostModel::computePredInstDiscount( 6158 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6159 assert(!isUniformAfterVectorization(PredInst, VF) && 6160 "Instruction marked uniform-after-vectorization will be predicated"); 6161 6162 // Initialize the discount to zero, meaning that the scalar version and the 6163 // vector version cost the same. 6164 InstructionCost Discount = 0; 6165 6166 // Holds instructions to analyze. The instructions we visit are mapped in 6167 // ScalarCosts. Those instructions are the ones that would be scalarized if 6168 // we find that the scalar version costs less. 6169 SmallVector<Instruction *, 8> Worklist; 6170 6171 // Returns true if the given instruction can be scalarized. 6172 auto canBeScalarized = [&](Instruction *I) -> bool { 6173 // We only attempt to scalarize instructions forming a single-use chain 6174 // from the original predicated block that would otherwise be vectorized. 6175 // Although not strictly necessary, we give up on instructions we know will 6176 // already be scalar to avoid traversing chains that are unlikely to be 6177 // beneficial. 6178 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6179 isScalarAfterVectorization(I, VF)) 6180 return false; 6181 6182 // If the instruction is scalar with predication, it will be analyzed 6183 // separately. We ignore it within the context of PredInst. 6184 if (isScalarWithPredication(I, VF)) 6185 return false; 6186 6187 // If any of the instruction's operands are uniform after vectorization, 6188 // the instruction cannot be scalarized. This prevents, for example, a 6189 // masked load from being scalarized. 6190 // 6191 // We assume we will only emit a value for lane zero of an instruction 6192 // marked uniform after vectorization, rather than VF identical values. 6193 // Thus, if we scalarize an instruction that uses a uniform, we would 6194 // create uses of values corresponding to the lanes we aren't emitting code 6195 // for. This behavior can be changed by allowing getScalarValue to clone 6196 // the lane zero values for uniforms rather than asserting. 6197 for (Use &U : I->operands()) 6198 if (auto *J = dyn_cast<Instruction>(U.get())) 6199 if (isUniformAfterVectorization(J, VF)) 6200 return false; 6201 6202 // Otherwise, we can scalarize the instruction. 6203 return true; 6204 }; 6205 6206 // Compute the expected cost discount from scalarizing the entire expression 6207 // feeding the predicated instruction. We currently only consider expressions 6208 // that are single-use instruction chains. 6209 Worklist.push_back(PredInst); 6210 while (!Worklist.empty()) { 6211 Instruction *I = Worklist.pop_back_val(); 6212 6213 // If we've already analyzed the instruction, there's nothing to do. 6214 if (ScalarCosts.find(I) != ScalarCosts.end()) 6215 continue; 6216 6217 // Compute the cost of the vector instruction. Note that this cost already 6218 // includes the scalarization overhead of the predicated instruction. 6219 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6220 6221 // Compute the cost of the scalarized instruction. This cost is the cost of 6222 // the instruction as if it wasn't if-converted and instead remained in the 6223 // predicated block. We will scale this cost by block probability after 6224 // computing the scalarization overhead. 6225 InstructionCost ScalarCost = 6226 VF.getFixedValue() * 6227 getInstructionCost(I, ElementCount::getFixed(1)).first; 6228 6229 // Compute the scalarization overhead of needed insertelement instructions 6230 // and phi nodes. 6231 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 6232 ScalarCost += TTI.getScalarizationOverhead( 6233 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6234 APInt::getAllOnes(VF.getFixedValue()), true, false); 6235 ScalarCost += 6236 VF.getFixedValue() * 6237 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6238 } 6239 6240 // Compute the scalarization overhead of needed extractelement 6241 // instructions. For each of the instruction's operands, if the operand can 6242 // be scalarized, add it to the worklist; otherwise, account for the 6243 // overhead. 6244 for (Use &U : I->operands()) 6245 if (auto *J = dyn_cast<Instruction>(U.get())) { 6246 assert(VectorType::isValidElementType(J->getType()) && 6247 "Instruction has non-scalar type"); 6248 if (canBeScalarized(J)) 6249 Worklist.push_back(J); 6250 else if (needsExtract(J, VF)) { 6251 ScalarCost += TTI.getScalarizationOverhead( 6252 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6253 APInt::getAllOnes(VF.getFixedValue()), false, true); 6254 } 6255 } 6256 6257 // Scale the total scalar cost by block probability. 6258 ScalarCost /= getReciprocalPredBlockProb(); 6259 6260 // Compute the discount. A non-negative discount means the vector version 6261 // of the instruction costs more, and scalarizing would be beneficial. 6262 Discount += VectorCost - ScalarCost; 6263 ScalarCosts[I] = ScalarCost; 6264 } 6265 6266 return *Discount.getValue(); 6267 } 6268 6269 LoopVectorizationCostModel::VectorizationCostTy 6270 LoopVectorizationCostModel::expectedCost( 6271 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6272 VectorizationCostTy Cost; 6273 6274 // For each block. 6275 for (BasicBlock *BB : TheLoop->blocks()) { 6276 VectorizationCostTy BlockCost; 6277 6278 // For each instruction in the old loop. 6279 for (Instruction &I : BB->instructionsWithoutDebug()) { 6280 // Skip ignored values. 6281 if (ValuesToIgnore.count(&I) || 6282 (VF.isVector() && VecValuesToIgnore.count(&I))) 6283 continue; 6284 6285 VectorizationCostTy C = getInstructionCost(&I, VF); 6286 6287 // Check if we should override the cost. 6288 if (C.first.isValid() && 6289 ForceTargetInstructionCost.getNumOccurrences() > 0) 6290 C.first = InstructionCost(ForceTargetInstructionCost); 6291 6292 // Keep a list of instructions with invalid costs. 6293 if (Invalid && !C.first.isValid()) 6294 Invalid->emplace_back(&I, VF); 6295 6296 BlockCost.first += C.first; 6297 BlockCost.second |= C.second; 6298 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6299 << " for VF " << VF << " For instruction: " << I 6300 << '\n'); 6301 } 6302 6303 // If we are vectorizing a predicated block, it will have been 6304 // if-converted. This means that the block's instructions (aside from 6305 // stores and instructions that may divide by zero) will now be 6306 // unconditionally executed. For the scalar case, we may not always execute 6307 // the predicated block, if it is an if-else block. Thus, scale the block's 6308 // cost by the probability of executing it. blockNeedsPredication from 6309 // Legal is used so as to not include all blocks in tail folded loops. 6310 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6311 BlockCost.first /= getReciprocalPredBlockProb(); 6312 6313 Cost.first += BlockCost.first; 6314 Cost.second |= BlockCost.second; 6315 } 6316 6317 return Cost; 6318 } 6319 6320 /// Gets Address Access SCEV after verifying that the access pattern 6321 /// is loop invariant except the induction variable dependence. 6322 /// 6323 /// This SCEV can be sent to the Target in order to estimate the address 6324 /// calculation cost. 6325 static const SCEV *getAddressAccessSCEV( 6326 Value *Ptr, 6327 LoopVectorizationLegality *Legal, 6328 PredicatedScalarEvolution &PSE, 6329 const Loop *TheLoop) { 6330 6331 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6332 if (!Gep) 6333 return nullptr; 6334 6335 // We are looking for a gep with all loop invariant indices except for one 6336 // which should be an induction variable. 6337 auto SE = PSE.getSE(); 6338 unsigned NumOperands = Gep->getNumOperands(); 6339 for (unsigned i = 1; i < NumOperands; ++i) { 6340 Value *Opd = Gep->getOperand(i); 6341 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6342 !Legal->isInductionVariable(Opd)) 6343 return nullptr; 6344 } 6345 6346 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6347 return PSE.getSCEV(Ptr); 6348 } 6349 6350 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6351 return Legal->hasStride(I->getOperand(0)) || 6352 Legal->hasStride(I->getOperand(1)); 6353 } 6354 6355 InstructionCost 6356 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6357 ElementCount VF) { 6358 assert(VF.isVector() && 6359 "Scalarization cost of instruction implies vectorization."); 6360 if (VF.isScalable()) 6361 return InstructionCost::getInvalid(); 6362 6363 Type *ValTy = getLoadStoreType(I); 6364 auto SE = PSE.getSE(); 6365 6366 unsigned AS = getLoadStoreAddressSpace(I); 6367 Value *Ptr = getLoadStorePointerOperand(I); 6368 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6369 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6370 // that it is being called from this specific place. 6371 6372 // Figure out whether the access is strided and get the stride value 6373 // if it's known in compile time 6374 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6375 6376 // Get the cost of the scalar memory instruction and address computation. 6377 InstructionCost Cost = 6378 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6379 6380 // Don't pass *I here, since it is scalar but will actually be part of a 6381 // vectorized loop where the user of it is a vectorized instruction. 6382 const Align Alignment = getLoadStoreAlignment(I); 6383 Cost += VF.getKnownMinValue() * 6384 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6385 AS, TTI::TCK_RecipThroughput); 6386 6387 // Get the overhead of the extractelement and insertelement instructions 6388 // we might create due to scalarization. 6389 Cost += getScalarizationOverhead(I, VF); 6390 6391 // If we have a predicated load/store, it will need extra i1 extracts and 6392 // conditional branches, but may not be executed for each vector lane. Scale 6393 // the cost by the probability of executing the predicated block. 6394 if (isPredicatedInst(I, VF)) { 6395 Cost /= getReciprocalPredBlockProb(); 6396 6397 // Add the cost of an i1 extract and a branch 6398 auto *Vec_i1Ty = 6399 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6400 Cost += TTI.getScalarizationOverhead( 6401 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6402 /*Insert=*/false, /*Extract=*/true); 6403 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6404 6405 if (useEmulatedMaskMemRefHack(I, VF)) 6406 // Artificially setting to a high enough value to practically disable 6407 // vectorization with such operations. 6408 Cost = 3000000; 6409 } 6410 6411 return Cost; 6412 } 6413 6414 InstructionCost 6415 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6416 ElementCount VF) { 6417 Type *ValTy = getLoadStoreType(I); 6418 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6419 Value *Ptr = getLoadStorePointerOperand(I); 6420 unsigned AS = getLoadStoreAddressSpace(I); 6421 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6422 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6423 6424 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6425 "Stride should be 1 or -1 for consecutive memory access"); 6426 const Align Alignment = getLoadStoreAlignment(I); 6427 InstructionCost Cost = 0; 6428 if (Legal->isMaskRequired(I)) 6429 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6430 CostKind); 6431 else 6432 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6433 CostKind, I); 6434 6435 bool Reverse = ConsecutiveStride < 0; 6436 if (Reverse) 6437 Cost += 6438 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6439 return Cost; 6440 } 6441 6442 InstructionCost 6443 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6444 ElementCount VF) { 6445 assert(Legal->isUniformMemOp(*I)); 6446 6447 Type *ValTy = getLoadStoreType(I); 6448 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6449 const Align Alignment = getLoadStoreAlignment(I); 6450 unsigned AS = getLoadStoreAddressSpace(I); 6451 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6452 if (isa<LoadInst>(I)) { 6453 return TTI.getAddressComputationCost(ValTy) + 6454 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6455 CostKind) + 6456 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6457 } 6458 StoreInst *SI = cast<StoreInst>(I); 6459 6460 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6461 return TTI.getAddressComputationCost(ValTy) + 6462 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6463 CostKind) + 6464 (isLoopInvariantStoreValue 6465 ? 0 6466 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6467 VF.getKnownMinValue() - 1)); 6468 } 6469 6470 InstructionCost 6471 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6472 ElementCount VF) { 6473 Type *ValTy = getLoadStoreType(I); 6474 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6475 const Align Alignment = getLoadStoreAlignment(I); 6476 const Value *Ptr = getLoadStorePointerOperand(I); 6477 6478 return TTI.getAddressComputationCost(VectorTy) + 6479 TTI.getGatherScatterOpCost( 6480 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6481 TargetTransformInfo::TCK_RecipThroughput, I); 6482 } 6483 6484 InstructionCost 6485 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6486 ElementCount VF) { 6487 // TODO: Once we have support for interleaving with scalable vectors 6488 // we can calculate the cost properly here. 6489 if (VF.isScalable()) 6490 return InstructionCost::getInvalid(); 6491 6492 Type *ValTy = getLoadStoreType(I); 6493 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6494 unsigned AS = getLoadStoreAddressSpace(I); 6495 6496 auto Group = getInterleavedAccessGroup(I); 6497 assert(Group && "Fail to get an interleaved access group."); 6498 6499 unsigned InterleaveFactor = Group->getFactor(); 6500 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6501 6502 // Holds the indices of existing members in the interleaved group. 6503 SmallVector<unsigned, 4> Indices; 6504 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6505 if (Group->getMember(IF)) 6506 Indices.push_back(IF); 6507 6508 // Calculate the cost of the whole interleaved group. 6509 bool UseMaskForGaps = 6510 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6511 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6512 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6513 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6514 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6515 6516 if (Group->isReverse()) { 6517 // TODO: Add support for reversed masked interleaved access. 6518 assert(!Legal->isMaskRequired(I) && 6519 "Reverse masked interleaved access not supported."); 6520 Cost += 6521 Group->getNumMembers() * 6522 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6523 } 6524 return Cost; 6525 } 6526 6527 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6528 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6529 using namespace llvm::PatternMatch; 6530 // Early exit for no inloop reductions 6531 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6532 return None; 6533 auto *VectorTy = cast<VectorType>(Ty); 6534 6535 // We are looking for a pattern of, and finding the minimal acceptable cost: 6536 // reduce(mul(ext(A), ext(B))) or 6537 // reduce(mul(A, B)) or 6538 // reduce(ext(A)) or 6539 // reduce(A). 6540 // The basic idea is that we walk down the tree to do that, finding the root 6541 // reduction instruction in InLoopReductionImmediateChains. From there we find 6542 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6543 // of the components. If the reduction cost is lower then we return it for the 6544 // reduction instruction and 0 for the other instructions in the pattern. If 6545 // it is not we return an invalid cost specifying the orignal cost method 6546 // should be used. 6547 Instruction *RetI = I; 6548 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6549 if (!RetI->hasOneUser()) 6550 return None; 6551 RetI = RetI->user_back(); 6552 } 6553 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6554 RetI->user_back()->getOpcode() == Instruction::Add) { 6555 if (!RetI->hasOneUser()) 6556 return None; 6557 RetI = RetI->user_back(); 6558 } 6559 6560 // Test if the found instruction is a reduction, and if not return an invalid 6561 // cost specifying the parent to use the original cost modelling. 6562 if (!InLoopReductionImmediateChains.count(RetI)) 6563 return None; 6564 6565 // Find the reduction this chain is a part of and calculate the basic cost of 6566 // the reduction on its own. 6567 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6568 Instruction *ReductionPhi = LastChain; 6569 while (!isa<PHINode>(ReductionPhi)) 6570 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6571 6572 const RecurrenceDescriptor &RdxDesc = 6573 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6574 6575 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6576 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6577 6578 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6579 // normal fmul instruction to the cost of the fadd reduction. 6580 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6581 BaseCost += 6582 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6583 6584 // If we're using ordered reductions then we can just return the base cost 6585 // here, since getArithmeticReductionCost calculates the full ordered 6586 // reduction cost when FP reassociation is not allowed. 6587 if (useOrderedReductions(RdxDesc)) 6588 return BaseCost; 6589 6590 // Get the operand that was not the reduction chain and match it to one of the 6591 // patterns, returning the better cost if it is found. 6592 Instruction *RedOp = RetI->getOperand(1) == LastChain 6593 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6594 : dyn_cast<Instruction>(RetI->getOperand(1)); 6595 6596 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6597 6598 Instruction *Op0, *Op1; 6599 if (RedOp && 6600 match(RedOp, 6601 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6602 match(Op0, m_ZExtOrSExt(m_Value())) && 6603 Op0->getOpcode() == Op1->getOpcode() && 6604 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6605 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6606 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6607 6608 // Matched reduce(ext(mul(ext(A), ext(B))) 6609 // Note that the extend opcodes need to all match, or if A==B they will have 6610 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6611 // which is equally fine. 6612 bool IsUnsigned = isa<ZExtInst>(Op0); 6613 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6614 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6615 6616 InstructionCost ExtCost = 6617 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6618 TTI::CastContextHint::None, CostKind, Op0); 6619 InstructionCost MulCost = 6620 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6621 InstructionCost Ext2Cost = 6622 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6623 TTI::CastContextHint::None, CostKind, RedOp); 6624 6625 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6626 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6627 CostKind); 6628 6629 if (RedCost.isValid() && 6630 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6631 return I == RetI ? RedCost : 0; 6632 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6633 !TheLoop->isLoopInvariant(RedOp)) { 6634 // Matched reduce(ext(A)) 6635 bool IsUnsigned = isa<ZExtInst>(RedOp); 6636 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6637 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6638 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6639 CostKind); 6640 6641 InstructionCost ExtCost = 6642 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6643 TTI::CastContextHint::None, CostKind, RedOp); 6644 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6645 return I == RetI ? RedCost : 0; 6646 } else if (RedOp && 6647 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6648 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6649 Op0->getOpcode() == Op1->getOpcode() && 6650 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6651 bool IsUnsigned = isa<ZExtInst>(Op0); 6652 Type *Op0Ty = Op0->getOperand(0)->getType(); 6653 Type *Op1Ty = Op1->getOperand(0)->getType(); 6654 Type *LargestOpTy = 6655 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 6656 : Op0Ty; 6657 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 6658 6659 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 6660 // different sizes. We take the largest type as the ext to reduce, and add 6661 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 6662 InstructionCost ExtCost0 = TTI.getCastInstrCost( 6663 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 6664 TTI::CastContextHint::None, CostKind, Op0); 6665 InstructionCost ExtCost1 = TTI.getCastInstrCost( 6666 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 6667 TTI::CastContextHint::None, CostKind, Op1); 6668 InstructionCost MulCost = 6669 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6670 6671 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6672 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6673 CostKind); 6674 InstructionCost ExtraExtCost = 0; 6675 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 6676 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 6677 ExtraExtCost = TTI.getCastInstrCost( 6678 ExtraExtOp->getOpcode(), ExtType, 6679 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 6680 TTI::CastContextHint::None, CostKind, ExtraExtOp); 6681 } 6682 6683 if (RedCost.isValid() && 6684 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 6685 return I == RetI ? RedCost : 0; 6686 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 6687 // Matched reduce(mul()) 6688 InstructionCost MulCost = 6689 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6690 6691 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6692 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 6693 CostKind); 6694 6695 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 6696 return I == RetI ? RedCost : 0; 6697 } 6698 } 6699 6700 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 6701 } 6702 6703 InstructionCost 6704 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6705 ElementCount VF) { 6706 // Calculate scalar cost only. Vectorization cost should be ready at this 6707 // moment. 6708 if (VF.isScalar()) { 6709 Type *ValTy = getLoadStoreType(I); 6710 const Align Alignment = getLoadStoreAlignment(I); 6711 unsigned AS = getLoadStoreAddressSpace(I); 6712 6713 return TTI.getAddressComputationCost(ValTy) + 6714 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6715 TTI::TCK_RecipThroughput, I); 6716 } 6717 return getWideningCost(I, VF); 6718 } 6719 6720 LoopVectorizationCostModel::VectorizationCostTy 6721 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6722 ElementCount VF) { 6723 // If we know that this instruction will remain uniform, check the cost of 6724 // the scalar version. 6725 if (isUniformAfterVectorization(I, VF)) 6726 VF = ElementCount::getFixed(1); 6727 6728 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6729 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6730 6731 // Forced scalars do not have any scalarization overhead. 6732 auto ForcedScalar = ForcedScalars.find(VF); 6733 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6734 auto InstSet = ForcedScalar->second; 6735 if (InstSet.count(I)) 6736 return VectorizationCostTy( 6737 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6738 VF.getKnownMinValue()), 6739 false); 6740 } 6741 6742 Type *VectorTy; 6743 InstructionCost C = getInstructionCost(I, VF, VectorTy); 6744 6745 bool TypeNotScalarized = false; 6746 if (VF.isVector() && VectorTy->isVectorTy()) { 6747 unsigned NumParts = TTI.getNumberOfParts(VectorTy); 6748 if (NumParts) 6749 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 6750 else 6751 C = InstructionCost::getInvalid(); 6752 } 6753 return VectorizationCostTy(C, TypeNotScalarized); 6754 } 6755 6756 InstructionCost 6757 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6758 ElementCount VF) const { 6759 6760 // There is no mechanism yet to create a scalable scalarization loop, 6761 // so this is currently Invalid. 6762 if (VF.isScalable()) 6763 return InstructionCost::getInvalid(); 6764 6765 if (VF.isScalar()) 6766 return 0; 6767 6768 InstructionCost Cost = 0; 6769 Type *RetTy = ToVectorTy(I->getType(), VF); 6770 if (!RetTy->isVoidTy() && 6771 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6772 Cost += TTI.getScalarizationOverhead( 6773 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 6774 false); 6775 6776 // Some targets keep addresses scalar. 6777 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6778 return Cost; 6779 6780 // Some targets support efficient element stores. 6781 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6782 return Cost; 6783 6784 // Collect operands to consider. 6785 CallInst *CI = dyn_cast<CallInst>(I); 6786 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 6787 6788 // Skip operands that do not require extraction/scalarization and do not incur 6789 // any overhead. 6790 SmallVector<Type *> Tys; 6791 for (auto *V : filterExtractingOperands(Ops, VF)) 6792 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 6793 return Cost + TTI.getOperandsScalarizationOverhead( 6794 filterExtractingOperands(Ops, VF), Tys); 6795 } 6796 6797 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6798 if (VF.isScalar()) 6799 return; 6800 NumPredStores = 0; 6801 for (BasicBlock *BB : TheLoop->blocks()) { 6802 // For each instruction in the old loop. 6803 for (Instruction &I : *BB) { 6804 Value *Ptr = getLoadStorePointerOperand(&I); 6805 if (!Ptr) 6806 continue; 6807 6808 // TODO: We should generate better code and update the cost model for 6809 // predicated uniform stores. Today they are treated as any other 6810 // predicated store (see added test cases in 6811 // invariant-store-vectorization.ll). 6812 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 6813 NumPredStores++; 6814 6815 if (Legal->isUniformMemOp(I)) { 6816 // TODO: Avoid replicating loads and stores instead of 6817 // relying on instcombine to remove them. 6818 // Load: Scalar load + broadcast 6819 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6820 InstructionCost Cost; 6821 if (isa<StoreInst>(&I) && VF.isScalable() && 6822 isLegalGatherOrScatter(&I, VF)) { 6823 Cost = getGatherScatterCost(&I, VF); 6824 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 6825 } else { 6826 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 6827 "Cannot yet scalarize uniform stores"); 6828 Cost = getUniformMemOpCost(&I, VF); 6829 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6830 } 6831 continue; 6832 } 6833 6834 // We assume that widening is the best solution when possible. 6835 if (memoryInstructionCanBeWidened(&I, VF)) { 6836 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 6837 int ConsecutiveStride = Legal->isConsecutivePtr( 6838 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 6839 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6840 "Expected consecutive stride."); 6841 InstWidening Decision = 6842 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6843 setWideningDecision(&I, VF, Decision, Cost); 6844 continue; 6845 } 6846 6847 // Choose between Interleaving, Gather/Scatter or Scalarization. 6848 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 6849 unsigned NumAccesses = 1; 6850 if (isAccessInterleaved(&I)) { 6851 auto Group = getInterleavedAccessGroup(&I); 6852 assert(Group && "Fail to get an interleaved access group."); 6853 6854 // Make one decision for the whole group. 6855 if (getWideningDecision(&I, VF) != CM_Unknown) 6856 continue; 6857 6858 NumAccesses = Group->getNumMembers(); 6859 if (interleavedAccessCanBeWidened(&I, VF)) 6860 InterleaveCost = getInterleaveGroupCost(&I, VF); 6861 } 6862 6863 InstructionCost GatherScatterCost = 6864 isLegalGatherOrScatter(&I, VF) 6865 ? getGatherScatterCost(&I, VF) * NumAccesses 6866 : InstructionCost::getInvalid(); 6867 6868 InstructionCost ScalarizationCost = 6869 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6870 6871 // Choose better solution for the current VF, 6872 // write down this decision and use it during vectorization. 6873 InstructionCost Cost; 6874 InstWidening Decision; 6875 if (InterleaveCost <= GatherScatterCost && 6876 InterleaveCost < ScalarizationCost) { 6877 Decision = CM_Interleave; 6878 Cost = InterleaveCost; 6879 } else if (GatherScatterCost < ScalarizationCost) { 6880 Decision = CM_GatherScatter; 6881 Cost = GatherScatterCost; 6882 } else { 6883 Decision = CM_Scalarize; 6884 Cost = ScalarizationCost; 6885 } 6886 // If the instructions belongs to an interleave group, the whole group 6887 // receives the same decision. The whole group receives the cost, but 6888 // the cost will actually be assigned to one instruction. 6889 if (auto Group = getInterleavedAccessGroup(&I)) 6890 setWideningDecision(Group, VF, Decision, Cost); 6891 else 6892 setWideningDecision(&I, VF, Decision, Cost); 6893 } 6894 } 6895 6896 // Make sure that any load of address and any other address computation 6897 // remains scalar unless there is gather/scatter support. This avoids 6898 // inevitable extracts into address registers, and also has the benefit of 6899 // activating LSR more, since that pass can't optimize vectorized 6900 // addresses. 6901 if (TTI.prefersVectorizedAddressing()) 6902 return; 6903 6904 // Start with all scalar pointer uses. 6905 SmallPtrSet<Instruction *, 8> AddrDefs; 6906 for (BasicBlock *BB : TheLoop->blocks()) 6907 for (Instruction &I : *BB) { 6908 Instruction *PtrDef = 6909 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6910 if (PtrDef && TheLoop->contains(PtrDef) && 6911 getWideningDecision(&I, VF) != CM_GatherScatter) 6912 AddrDefs.insert(PtrDef); 6913 } 6914 6915 // Add all instructions used to generate the addresses. 6916 SmallVector<Instruction *, 4> Worklist; 6917 append_range(Worklist, AddrDefs); 6918 while (!Worklist.empty()) { 6919 Instruction *I = Worklist.pop_back_val(); 6920 for (auto &Op : I->operands()) 6921 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6922 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6923 AddrDefs.insert(InstOp).second) 6924 Worklist.push_back(InstOp); 6925 } 6926 6927 for (auto *I : AddrDefs) { 6928 if (isa<LoadInst>(I)) { 6929 // Setting the desired widening decision should ideally be handled in 6930 // by cost functions, but since this involves the task of finding out 6931 // if the loaded register is involved in an address computation, it is 6932 // instead changed here when we know this is the case. 6933 InstWidening Decision = getWideningDecision(I, VF); 6934 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6935 // Scalarize a widened load of address. 6936 setWideningDecision( 6937 I, VF, CM_Scalarize, 6938 (VF.getKnownMinValue() * 6939 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 6940 else if (auto Group = getInterleavedAccessGroup(I)) { 6941 // Scalarize an interleave group of address loads. 6942 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6943 if (Instruction *Member = Group->getMember(I)) 6944 setWideningDecision( 6945 Member, VF, CM_Scalarize, 6946 (VF.getKnownMinValue() * 6947 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 6948 } 6949 } 6950 } else 6951 // Make sure I gets scalarized and a cost estimate without 6952 // scalarization overhead. 6953 ForcedScalars[VF].insert(I); 6954 } 6955 } 6956 6957 InstructionCost 6958 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 6959 Type *&VectorTy) { 6960 Type *RetTy = I->getType(); 6961 if (canTruncateToMinimalBitwidth(I, VF)) 6962 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6963 auto SE = PSE.getSE(); 6964 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6965 6966 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 6967 ElementCount VF) -> bool { 6968 if (VF.isScalar()) 6969 return true; 6970 6971 auto Scalarized = InstsToScalarize.find(VF); 6972 assert(Scalarized != InstsToScalarize.end() && 6973 "VF not yet analyzed for scalarization profitability"); 6974 return !Scalarized->second.count(I) && 6975 llvm::all_of(I->users(), [&](User *U) { 6976 auto *UI = cast<Instruction>(U); 6977 return !Scalarized->second.count(UI); 6978 }); 6979 }; 6980 (void) hasSingleCopyAfterVectorization; 6981 6982 if (isScalarAfterVectorization(I, VF)) { 6983 // With the exception of GEPs and PHIs, after scalarization there should 6984 // only be one copy of the instruction generated in the loop. This is 6985 // because the VF is either 1, or any instructions that need scalarizing 6986 // have already been dealt with by the the time we get here. As a result, 6987 // it means we don't have to multiply the instruction cost by VF. 6988 assert(I->getOpcode() == Instruction::GetElementPtr || 6989 I->getOpcode() == Instruction::PHI || 6990 (I->getOpcode() == Instruction::BitCast && 6991 I->getType()->isPointerTy()) || 6992 hasSingleCopyAfterVectorization(I, VF)); 6993 VectorTy = RetTy; 6994 } else 6995 VectorTy = ToVectorTy(RetTy, VF); 6996 6997 // TODO: We need to estimate the cost of intrinsic calls. 6998 switch (I->getOpcode()) { 6999 case Instruction::GetElementPtr: 7000 // We mark this instruction as zero-cost because the cost of GEPs in 7001 // vectorized code depends on whether the corresponding memory instruction 7002 // is scalarized or not. Therefore, we handle GEPs with the memory 7003 // instruction cost. 7004 return 0; 7005 case Instruction::Br: { 7006 // In cases of scalarized and predicated instructions, there will be VF 7007 // predicated blocks in the vectorized loop. Each branch around these 7008 // blocks requires also an extract of its vector compare i1 element. 7009 bool ScalarPredicatedBB = false; 7010 BranchInst *BI = cast<BranchInst>(I); 7011 if (VF.isVector() && BI->isConditional() && 7012 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7013 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7014 ScalarPredicatedBB = true; 7015 7016 if (ScalarPredicatedBB) { 7017 // Not possible to scalarize scalable vector with predicated instructions. 7018 if (VF.isScalable()) 7019 return InstructionCost::getInvalid(); 7020 // Return cost for branches around scalarized and predicated blocks. 7021 auto *Vec_i1Ty = 7022 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7023 return ( 7024 TTI.getScalarizationOverhead( 7025 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7026 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7027 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7028 // The back-edge branch will remain, as will all scalar branches. 7029 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7030 else 7031 // This branch will be eliminated by if-conversion. 7032 return 0; 7033 // Note: We currently assume zero cost for an unconditional branch inside 7034 // a predicated block since it will become a fall-through, although we 7035 // may decide in the future to call TTI for all branches. 7036 } 7037 case Instruction::PHI: { 7038 auto *Phi = cast<PHINode>(I); 7039 7040 // First-order recurrences are replaced by vector shuffles inside the loop. 7041 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7042 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7043 return TTI.getShuffleCost( 7044 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7045 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7046 7047 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7048 // converted into select instructions. We require N - 1 selects per phi 7049 // node, where N is the number of incoming values. 7050 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7051 return (Phi->getNumIncomingValues() - 1) * 7052 TTI.getCmpSelInstrCost( 7053 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7054 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7055 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7056 7057 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7058 } 7059 case Instruction::UDiv: 7060 case Instruction::SDiv: 7061 case Instruction::URem: 7062 case Instruction::SRem: 7063 // If we have a predicated instruction, it may not be executed for each 7064 // vector lane. Get the scalarization cost and scale this amount by the 7065 // probability of executing the predicated block. If the instruction is not 7066 // predicated, we fall through to the next case. 7067 if (VF.isVector() && isScalarWithPredication(I, VF)) { 7068 InstructionCost Cost = 0; 7069 7070 // These instructions have a non-void type, so account for the phi nodes 7071 // that we will create. This cost is likely to be zero. The phi node 7072 // cost, if any, should be scaled by the block probability because it 7073 // models a copy at the end of each predicated block. 7074 Cost += VF.getKnownMinValue() * 7075 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7076 7077 // The cost of the non-predicated instruction. 7078 Cost += VF.getKnownMinValue() * 7079 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7080 7081 // The cost of insertelement and extractelement instructions needed for 7082 // scalarization. 7083 Cost += getScalarizationOverhead(I, VF); 7084 7085 // Scale the cost by the probability of executing the predicated blocks. 7086 // This assumes the predicated block for each vector lane is equally 7087 // likely. 7088 return Cost / getReciprocalPredBlockProb(); 7089 } 7090 LLVM_FALLTHROUGH; 7091 case Instruction::Add: 7092 case Instruction::FAdd: 7093 case Instruction::Sub: 7094 case Instruction::FSub: 7095 case Instruction::Mul: 7096 case Instruction::FMul: 7097 case Instruction::FDiv: 7098 case Instruction::FRem: 7099 case Instruction::Shl: 7100 case Instruction::LShr: 7101 case Instruction::AShr: 7102 case Instruction::And: 7103 case Instruction::Or: 7104 case Instruction::Xor: { 7105 // Since we will replace the stride by 1 the multiplication should go away. 7106 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7107 return 0; 7108 7109 // Detect reduction patterns 7110 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7111 return *RedCost; 7112 7113 // Certain instructions can be cheaper to vectorize if they have a constant 7114 // second vector operand. One example of this are shifts on x86. 7115 Value *Op2 = I->getOperand(1); 7116 TargetTransformInfo::OperandValueProperties Op2VP; 7117 TargetTransformInfo::OperandValueKind Op2VK = 7118 TTI.getOperandInfo(Op2, Op2VP); 7119 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7120 Op2VK = TargetTransformInfo::OK_UniformValue; 7121 7122 SmallVector<const Value *, 4> Operands(I->operand_values()); 7123 return TTI.getArithmeticInstrCost( 7124 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7125 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7126 } 7127 case Instruction::FNeg: { 7128 return TTI.getArithmeticInstrCost( 7129 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7130 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7131 TargetTransformInfo::OP_None, I->getOperand(0), I); 7132 } 7133 case Instruction::Select: { 7134 SelectInst *SI = cast<SelectInst>(I); 7135 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7136 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7137 7138 const Value *Op0, *Op1; 7139 using namespace llvm::PatternMatch; 7140 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7141 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7142 // select x, y, false --> x & y 7143 // select x, true, y --> x | y 7144 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7145 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7146 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7147 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7148 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7149 Op1->getType()->getScalarSizeInBits() == 1); 7150 7151 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7152 return TTI.getArithmeticInstrCost( 7153 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7154 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7155 } 7156 7157 Type *CondTy = SI->getCondition()->getType(); 7158 if (!ScalarCond) 7159 CondTy = VectorType::get(CondTy, VF); 7160 7161 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7162 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7163 Pred = Cmp->getPredicate(); 7164 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7165 CostKind, I); 7166 } 7167 case Instruction::ICmp: 7168 case Instruction::FCmp: { 7169 Type *ValTy = I->getOperand(0)->getType(); 7170 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7171 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7172 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7173 VectorTy = ToVectorTy(ValTy, VF); 7174 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7175 cast<CmpInst>(I)->getPredicate(), CostKind, 7176 I); 7177 } 7178 case Instruction::Store: 7179 case Instruction::Load: { 7180 ElementCount Width = VF; 7181 if (Width.isVector()) { 7182 InstWidening Decision = getWideningDecision(I, Width); 7183 assert(Decision != CM_Unknown && 7184 "CM decision should be taken at this point"); 7185 if (Decision == CM_Scalarize) 7186 Width = ElementCount::getFixed(1); 7187 } 7188 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7189 return getMemoryInstructionCost(I, VF); 7190 } 7191 case Instruction::BitCast: 7192 if (I->getType()->isPointerTy()) 7193 return 0; 7194 LLVM_FALLTHROUGH; 7195 case Instruction::ZExt: 7196 case Instruction::SExt: 7197 case Instruction::FPToUI: 7198 case Instruction::FPToSI: 7199 case Instruction::FPExt: 7200 case Instruction::PtrToInt: 7201 case Instruction::IntToPtr: 7202 case Instruction::SIToFP: 7203 case Instruction::UIToFP: 7204 case Instruction::Trunc: 7205 case Instruction::FPTrunc: { 7206 // Computes the CastContextHint from a Load/Store instruction. 7207 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7208 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7209 "Expected a load or a store!"); 7210 7211 if (VF.isScalar() || !TheLoop->contains(I)) 7212 return TTI::CastContextHint::Normal; 7213 7214 switch (getWideningDecision(I, VF)) { 7215 case LoopVectorizationCostModel::CM_GatherScatter: 7216 return TTI::CastContextHint::GatherScatter; 7217 case LoopVectorizationCostModel::CM_Interleave: 7218 return TTI::CastContextHint::Interleave; 7219 case LoopVectorizationCostModel::CM_Scalarize: 7220 case LoopVectorizationCostModel::CM_Widen: 7221 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7222 : TTI::CastContextHint::Normal; 7223 case LoopVectorizationCostModel::CM_Widen_Reverse: 7224 return TTI::CastContextHint::Reversed; 7225 case LoopVectorizationCostModel::CM_Unknown: 7226 llvm_unreachable("Instr did not go through cost modelling?"); 7227 } 7228 7229 llvm_unreachable("Unhandled case!"); 7230 }; 7231 7232 unsigned Opcode = I->getOpcode(); 7233 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7234 // For Trunc, the context is the only user, which must be a StoreInst. 7235 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7236 if (I->hasOneUse()) 7237 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7238 CCH = ComputeCCH(Store); 7239 } 7240 // For Z/Sext, the context is the operand, which must be a LoadInst. 7241 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7242 Opcode == Instruction::FPExt) { 7243 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7244 CCH = ComputeCCH(Load); 7245 } 7246 7247 // We optimize the truncation of induction variables having constant 7248 // integer steps. The cost of these truncations is the same as the scalar 7249 // operation. 7250 if (isOptimizableIVTruncate(I, VF)) { 7251 auto *Trunc = cast<TruncInst>(I); 7252 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7253 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7254 } 7255 7256 // Detect reduction patterns 7257 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7258 return *RedCost; 7259 7260 Type *SrcScalarTy = I->getOperand(0)->getType(); 7261 Type *SrcVecTy = 7262 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7263 if (canTruncateToMinimalBitwidth(I, VF)) { 7264 // This cast is going to be shrunk. This may remove the cast or it might 7265 // turn it into slightly different cast. For example, if MinBW == 16, 7266 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7267 // 7268 // Calculate the modified src and dest types. 7269 Type *MinVecTy = VectorTy; 7270 if (Opcode == Instruction::Trunc) { 7271 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7272 VectorTy = 7273 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7274 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7275 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7276 VectorTy = 7277 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7278 } 7279 } 7280 7281 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7282 } 7283 case Instruction::Call: { 7284 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7285 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7286 return *RedCost; 7287 bool NeedToScalarize; 7288 CallInst *CI = cast<CallInst>(I); 7289 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7290 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7291 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7292 return std::min(CallCost, IntrinsicCost); 7293 } 7294 return CallCost; 7295 } 7296 case Instruction::ExtractValue: 7297 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7298 case Instruction::Alloca: 7299 // We cannot easily widen alloca to a scalable alloca, as 7300 // the result would need to be a vector of pointers. 7301 if (VF.isScalable()) 7302 return InstructionCost::getInvalid(); 7303 LLVM_FALLTHROUGH; 7304 default: 7305 // This opcode is unknown. Assume that it is the same as 'mul'. 7306 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7307 } // end of switch. 7308 } 7309 7310 char LoopVectorize::ID = 0; 7311 7312 static const char lv_name[] = "Loop Vectorization"; 7313 7314 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7315 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7316 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7317 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7318 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7319 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7320 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7321 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7322 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7323 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7324 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7325 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7326 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7327 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7328 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7329 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7330 7331 namespace llvm { 7332 7333 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7334 7335 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7336 bool VectorizeOnlyWhenForced) { 7337 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7338 } 7339 7340 } // end namespace llvm 7341 7342 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7343 // Check if the pointer operand of a load or store instruction is 7344 // consecutive. 7345 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7346 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7347 return false; 7348 } 7349 7350 void LoopVectorizationCostModel::collectValuesToIgnore() { 7351 // Ignore ephemeral values. 7352 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7353 7354 // Find all stores to invariant variables. Since they are going to sink 7355 // outside the loop we do not need calculate cost for them. 7356 for (BasicBlock *BB : TheLoop->blocks()) 7357 for (Instruction &I : *BB) { 7358 StoreInst *SI; 7359 if ((SI = dyn_cast<StoreInst>(&I)) && 7360 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) 7361 ValuesToIgnore.insert(&I); 7362 } 7363 7364 // Ignore type-promoting instructions we identified during reduction 7365 // detection. 7366 for (auto &Reduction : Legal->getReductionVars()) { 7367 const RecurrenceDescriptor &RedDes = Reduction.second; 7368 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7369 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7370 } 7371 // Ignore type-casting instructions we identified during induction 7372 // detection. 7373 for (auto &Induction : Legal->getInductionVars()) { 7374 const InductionDescriptor &IndDes = Induction.second; 7375 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7376 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7377 } 7378 } 7379 7380 void LoopVectorizationCostModel::collectInLoopReductions() { 7381 for (auto &Reduction : Legal->getReductionVars()) { 7382 PHINode *Phi = Reduction.first; 7383 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7384 7385 // We don't collect reductions that are type promoted (yet). 7386 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7387 continue; 7388 7389 // If the target would prefer this reduction to happen "in-loop", then we 7390 // want to record it as such. 7391 unsigned Opcode = RdxDesc.getOpcode(); 7392 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7393 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7394 TargetTransformInfo::ReductionFlags())) 7395 continue; 7396 7397 // Check that we can correctly put the reductions into the loop, by 7398 // finding the chain of operations that leads from the phi to the loop 7399 // exit value. 7400 SmallVector<Instruction *, 4> ReductionOperations = 7401 RdxDesc.getReductionOpChain(Phi, TheLoop); 7402 bool InLoop = !ReductionOperations.empty(); 7403 if (InLoop) { 7404 InLoopReductionChains[Phi] = ReductionOperations; 7405 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7406 Instruction *LastChain = Phi; 7407 for (auto *I : ReductionOperations) { 7408 InLoopReductionImmediateChains[I] = LastChain; 7409 LastChain = I; 7410 } 7411 } 7412 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7413 << " reduction for phi: " << *Phi << "\n"); 7414 } 7415 } 7416 7417 // TODO: we could return a pair of values that specify the max VF and 7418 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7419 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7420 // doesn't have a cost model that can choose which plan to execute if 7421 // more than one is generated. 7422 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7423 LoopVectorizationCostModel &CM) { 7424 unsigned WidestType; 7425 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7426 return WidestVectorRegBits / WidestType; 7427 } 7428 7429 VectorizationFactor 7430 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7431 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7432 ElementCount VF = UserVF; 7433 // Outer loop handling: They may require CFG and instruction level 7434 // transformations before even evaluating whether vectorization is profitable. 7435 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7436 // the vectorization pipeline. 7437 if (!OrigLoop->isInnermost()) { 7438 // If the user doesn't provide a vectorization factor, determine a 7439 // reasonable one. 7440 if (UserVF.isZero()) { 7441 VF = ElementCount::getFixed(determineVPlanVF( 7442 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7443 .getFixedSize(), 7444 CM)); 7445 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7446 7447 // Make sure we have a VF > 1 for stress testing. 7448 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7449 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7450 << "overriding computed VF.\n"); 7451 VF = ElementCount::getFixed(4); 7452 } 7453 } 7454 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7455 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7456 "VF needs to be a power of two"); 7457 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7458 << "VF " << VF << " to build VPlans.\n"); 7459 buildVPlans(VF, VF); 7460 7461 // For VPlan build stress testing, we bail out after VPlan construction. 7462 if (VPlanBuildStressTest) 7463 return VectorizationFactor::Disabled(); 7464 7465 return {VF, 0 /*Cost*/}; 7466 } 7467 7468 LLVM_DEBUG( 7469 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7470 "VPlan-native path.\n"); 7471 return VectorizationFactor::Disabled(); 7472 } 7473 7474 Optional<VectorizationFactor> 7475 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7476 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7477 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7478 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7479 return None; 7480 7481 // Invalidate interleave groups if all blocks of loop will be predicated. 7482 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7483 !useMaskedInterleavedAccesses(*TTI)) { 7484 LLVM_DEBUG( 7485 dbgs() 7486 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7487 "which requires masked-interleaved support.\n"); 7488 if (CM.InterleaveInfo.invalidateGroups()) 7489 // Invalidating interleave groups also requires invalidating all decisions 7490 // based on them, which includes widening decisions and uniform and scalar 7491 // values. 7492 CM.invalidateCostModelingDecisions(); 7493 } 7494 7495 ElementCount MaxUserVF = 7496 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7497 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7498 if (!UserVF.isZero() && UserVFIsLegal) { 7499 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7500 "VF needs to be a power of two"); 7501 // Collect the instructions (and their associated costs) that will be more 7502 // profitable to scalarize. 7503 if (CM.selectUserVectorizationFactor(UserVF)) { 7504 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7505 CM.collectInLoopReductions(); 7506 buildVPlansWithVPRecipes(UserVF, UserVF); 7507 LLVM_DEBUG(printPlans(dbgs())); 7508 return {{UserVF, 0}}; 7509 } else 7510 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7511 "InvalidCost", ORE, OrigLoop); 7512 } 7513 7514 // Populate the set of Vectorization Factor Candidates. 7515 ElementCountSet VFCandidates; 7516 for (auto VF = ElementCount::getFixed(1); 7517 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7518 VFCandidates.insert(VF); 7519 for (auto VF = ElementCount::getScalable(1); 7520 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7521 VFCandidates.insert(VF); 7522 7523 for (const auto &VF : VFCandidates) { 7524 // Collect Uniform and Scalar instructions after vectorization with VF. 7525 CM.collectUniformsAndScalars(VF); 7526 7527 // Collect the instructions (and their associated costs) that will be more 7528 // profitable to scalarize. 7529 if (VF.isVector()) 7530 CM.collectInstsToScalarize(VF); 7531 } 7532 7533 CM.collectInLoopReductions(); 7534 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7535 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7536 7537 LLVM_DEBUG(printPlans(dbgs())); 7538 if (!MaxFactors.hasVector()) 7539 return VectorizationFactor::Disabled(); 7540 7541 // Select the optimal vectorization factor. 7542 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 7543 7544 // Check if it is profitable to vectorize with runtime checks. 7545 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 7546 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 7547 bool PragmaThresholdReached = 7548 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 7549 bool ThresholdReached = 7550 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 7551 if ((ThresholdReached && !Hints.allowReordering()) || 7552 PragmaThresholdReached) { 7553 ORE->emit([&]() { 7554 return OptimizationRemarkAnalysisAliasing( 7555 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 7556 OrigLoop->getHeader()) 7557 << "loop not vectorized: cannot prove it is safe to reorder " 7558 "memory operations"; 7559 }); 7560 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 7561 Hints.emitRemarkWithHints(); 7562 return VectorizationFactor::Disabled(); 7563 } 7564 } 7565 return SelectedVF; 7566 } 7567 7568 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7569 assert(count_if(VPlans, 7570 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7571 1 && 7572 "Best VF has not a single VPlan."); 7573 7574 for (const VPlanPtr &Plan : VPlans) { 7575 if (Plan->hasVF(VF)) 7576 return *Plan.get(); 7577 } 7578 llvm_unreachable("No plan found!"); 7579 } 7580 7581 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7582 SmallVector<Metadata *, 4> MDs; 7583 // Reserve first location for self reference to the LoopID metadata node. 7584 MDs.push_back(nullptr); 7585 bool IsUnrollMetadata = false; 7586 MDNode *LoopID = L->getLoopID(); 7587 if (LoopID) { 7588 // First find existing loop unrolling disable metadata. 7589 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7590 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7591 if (MD) { 7592 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7593 IsUnrollMetadata = 7594 S && S->getString().startswith("llvm.loop.unroll.disable"); 7595 } 7596 MDs.push_back(LoopID->getOperand(i)); 7597 } 7598 } 7599 7600 if (!IsUnrollMetadata) { 7601 // Add runtime unroll disable metadata. 7602 LLVMContext &Context = L->getHeader()->getContext(); 7603 SmallVector<Metadata *, 1> DisableOperands; 7604 DisableOperands.push_back( 7605 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7606 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7607 MDs.push_back(DisableNode); 7608 MDNode *NewLoopID = MDNode::get(Context, MDs); 7609 // Set operand 0 to refer to the loop id itself. 7610 NewLoopID->replaceOperandWith(0, NewLoopID); 7611 L->setLoopID(NewLoopID); 7612 } 7613 } 7614 7615 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7616 VPlan &BestVPlan, 7617 InnerLoopVectorizer &ILV, 7618 DominatorTree *DT) { 7619 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7620 << '\n'); 7621 7622 // Perform the actual loop transformation. 7623 7624 // 1. Set up the skeleton for vectorization, including vector pre-header and 7625 // middle block. The vector loop is created during VPlan execution. 7626 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7627 Value *CanonicalIVStartValue; 7628 std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = 7629 ILV.createVectorizedLoopSkeleton(); 7630 ILV.collectPoisonGeneratingRecipes(State); 7631 7632 ILV.printDebugTracesAtStart(); 7633 7634 //===------------------------------------------------===// 7635 // 7636 // Notice: any optimization or new instruction that go 7637 // into the code below should also be implemented in 7638 // the cost-model. 7639 // 7640 //===------------------------------------------------===// 7641 7642 // 2. Copy and widen instructions from the old loop into the new loop. 7643 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7644 ILV.getOrCreateVectorTripCount(nullptr), 7645 CanonicalIVStartValue, State); 7646 BestVPlan.execute(&State); 7647 7648 // Keep all loop hints from the original loop on the vector loop (we'll 7649 // replace the vectorizer-specific hints below). 7650 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7651 7652 Optional<MDNode *> VectorizedLoopID = 7653 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7654 LLVMLoopVectorizeFollowupVectorized}); 7655 7656 VPBasicBlock *HeaderVPBB = 7657 BestVPlan.getVectorLoopRegion()->getEntryBasicBlock(); 7658 Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]); 7659 if (VectorizedLoopID.hasValue()) 7660 L->setLoopID(VectorizedLoopID.getValue()); 7661 else { 7662 // Keep all loop hints from the original loop on the vector loop (we'll 7663 // replace the vectorizer-specific hints below). 7664 if (MDNode *LID = OrigLoop->getLoopID()) 7665 L->setLoopID(LID); 7666 7667 LoopVectorizeHints Hints(L, true, *ORE); 7668 Hints.setAlreadyVectorized(); 7669 } 7670 // Disable runtime unrolling when vectorizing the epilogue loop. 7671 if (CanonicalIVStartValue) 7672 AddRuntimeUnrollDisableMetaData(L); 7673 7674 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7675 // predication, updating analyses. 7676 ILV.fixVectorizedLoop(State, BestVPlan); 7677 7678 ILV.printDebugTracesAtEnd(); 7679 } 7680 7681 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7682 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 7683 for (const auto &Plan : VPlans) 7684 if (PrintVPlansInDotFormat) 7685 Plan->printDOT(O); 7686 else 7687 Plan->print(O); 7688 } 7689 #endif 7690 7691 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7692 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7693 7694 // We create new control-flow for the vectorized loop, so the original exit 7695 // conditions will be dead after vectorization if it's only used by the 7696 // terminator 7697 SmallVector<BasicBlock*> ExitingBlocks; 7698 OrigLoop->getExitingBlocks(ExitingBlocks); 7699 for (auto *BB : ExitingBlocks) { 7700 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 7701 if (!Cmp || !Cmp->hasOneUse()) 7702 continue; 7703 7704 // TODO: we should introduce a getUniqueExitingBlocks on Loop 7705 if (!DeadInstructions.insert(Cmp).second) 7706 continue; 7707 7708 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7709 // TODO: can recurse through operands in general 7710 for (Value *Op : Cmp->operands()) { 7711 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7712 DeadInstructions.insert(cast<Instruction>(Op)); 7713 } 7714 } 7715 7716 // We create new "steps" for induction variable updates to which the original 7717 // induction variables map. An original update instruction will be dead if 7718 // all its users except the induction variable are dead. 7719 auto *Latch = OrigLoop->getLoopLatch(); 7720 for (auto &Induction : Legal->getInductionVars()) { 7721 PHINode *Ind = Induction.first; 7722 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7723 7724 // If the tail is to be folded by masking, the primary induction variable, 7725 // if exists, isn't dead: it will be used for masking. Don't kill it. 7726 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 7727 continue; 7728 7729 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7730 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7731 })) 7732 DeadInstructions.insert(IndUpdate); 7733 } 7734 } 7735 7736 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7737 7738 //===--------------------------------------------------------------------===// 7739 // EpilogueVectorizerMainLoop 7740 //===--------------------------------------------------------------------===// 7741 7742 /// This function is partially responsible for generating the control flow 7743 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7744 std::pair<BasicBlock *, Value *> 7745 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 7746 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7747 7748 // Workaround! Compute the trip count of the original loop and cache it 7749 // before we start modifying the CFG. This code has a systemic problem 7750 // wherein it tries to run analysis over partially constructed IR; this is 7751 // wrong, and not simply for SCEV. The trip count of the original loop 7752 // simply happens to be prone to hitting this in practice. In theory, we 7753 // can hit the same issue for any SCEV, or ValueTracking query done during 7754 // mutation. See PR49900. 7755 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 7756 createVectorLoopSkeleton(""); 7757 7758 // Generate the code to check the minimum iteration count of the vector 7759 // epilogue (see below). 7760 EPI.EpilogueIterationCountCheck = 7761 emitMinimumIterationCountCheck(LoopScalarPreHeader, true); 7762 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7763 7764 // Generate the code to check any assumptions that we've made for SCEV 7765 // expressions. 7766 EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader); 7767 7768 // Generate the code that checks at runtime if arrays overlap. We put the 7769 // checks into a separate block to make the more common case of few elements 7770 // faster. 7771 EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader); 7772 7773 // Generate the iteration count check for the main loop, *after* the check 7774 // for the epilogue loop, so that the path-length is shorter for the case 7775 // that goes directly through the vector epilogue. The longer-path length for 7776 // the main loop is compensated for, by the gain from vectorizing the larger 7777 // trip count. Note: the branch will get updated later on when we vectorize 7778 // the epilogue. 7779 EPI.MainLoopIterationCountCheck = 7780 emitMinimumIterationCountCheck(LoopScalarPreHeader, false); 7781 7782 // Generate the induction variable. 7783 EPI.VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 7784 7785 // Skip induction resume value creation here because they will be created in 7786 // the second pass. If we created them here, they wouldn't be used anyway, 7787 // because the vplan in the second pass still contains the inductions from the 7788 // original loop. 7789 7790 return {completeLoopSkeleton(OrigLoopID), nullptr}; 7791 } 7792 7793 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 7794 LLVM_DEBUG({ 7795 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 7796 << "Main Loop VF:" << EPI.MainLoopVF 7797 << ", Main Loop UF:" << EPI.MainLoopUF 7798 << ", Epilogue Loop VF:" << EPI.EpilogueVF 7799 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7800 }); 7801 } 7802 7803 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 7804 DEBUG_WITH_TYPE(VerboseDebug, { 7805 dbgs() << "intermediate fn:\n" 7806 << *OrigLoop->getHeader()->getParent() << "\n"; 7807 }); 7808 } 7809 7810 BasicBlock * 7811 EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(BasicBlock *Bypass, 7812 bool ForEpilogue) { 7813 assert(Bypass && "Expected valid bypass basic block."); 7814 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 7815 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 7816 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 7817 // Reuse existing vector loop preheader for TC checks. 7818 // Note that new preheader block is generated for vector loop. 7819 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 7820 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 7821 7822 // Generate code to check if the loop's trip count is less than VF * UF of the 7823 // main vector loop. 7824 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 7825 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7826 7827 Value *CheckMinIters = Builder.CreateICmp( 7828 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 7829 "min.iters.check"); 7830 7831 if (!ForEpilogue) 7832 TCCheckBlock->setName("vector.main.loop.iter.check"); 7833 7834 // Create new preheader for vector loop. 7835 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 7836 DT, LI, nullptr, "vector.ph"); 7837 7838 if (ForEpilogue) { 7839 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 7840 DT->getNode(Bypass)->getIDom()) && 7841 "TC check is expected to dominate Bypass"); 7842 7843 // Update dominator for Bypass & LoopExit. 7844 DT->changeImmediateDominator(Bypass, TCCheckBlock); 7845 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7846 // For loops with multiple exits, there's no edge from the middle block 7847 // to exit blocks (as the epilogue must run) and thus no need to update 7848 // the immediate dominator of the exit blocks. 7849 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 7850 7851 LoopBypassBlocks.push_back(TCCheckBlock); 7852 7853 // Save the trip count so we don't have to regenerate it in the 7854 // vec.epilog.iter.check. This is safe to do because the trip count 7855 // generated here dominates the vector epilog iter check. 7856 EPI.TripCount = Count; 7857 } 7858 7859 ReplaceInstWithInst( 7860 TCCheckBlock->getTerminator(), 7861 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7862 7863 return TCCheckBlock; 7864 } 7865 7866 //===--------------------------------------------------------------------===// 7867 // EpilogueVectorizerEpilogueLoop 7868 //===--------------------------------------------------------------------===// 7869 7870 /// This function is partially responsible for generating the control flow 7871 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7872 std::pair<BasicBlock *, Value *> 7873 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 7874 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7875 createVectorLoopSkeleton("vec.epilog."); 7876 7877 // Now, compare the remaining count and if there aren't enough iterations to 7878 // execute the vectorized epilogue skip to the scalar part. 7879 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 7880 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 7881 LoopVectorPreHeader = 7882 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 7883 LI, nullptr, "vec.epilog.ph"); 7884 emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader, 7885 VecEpilogueIterationCountCheck); 7886 7887 // Adjust the control flow taking the state info from the main loop 7888 // vectorization into account. 7889 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 7890 "expected this to be saved from the previous pass."); 7891 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 7892 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 7893 7894 DT->changeImmediateDominator(LoopVectorPreHeader, 7895 EPI.MainLoopIterationCountCheck); 7896 7897 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 7898 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7899 7900 if (EPI.SCEVSafetyCheck) 7901 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 7902 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7903 if (EPI.MemSafetyCheck) 7904 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 7905 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7906 7907 DT->changeImmediateDominator( 7908 VecEpilogueIterationCountCheck, 7909 VecEpilogueIterationCountCheck->getSinglePredecessor()); 7910 7911 DT->changeImmediateDominator(LoopScalarPreHeader, 7912 EPI.EpilogueIterationCountCheck); 7913 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7914 // If there is an epilogue which must run, there's no edge from the 7915 // middle block to exit blocks and thus no need to update the immediate 7916 // dominator of the exit blocks. 7917 DT->changeImmediateDominator(LoopExitBlock, 7918 EPI.EpilogueIterationCountCheck); 7919 7920 // Keep track of bypass blocks, as they feed start values to the induction 7921 // phis in the scalar loop preheader. 7922 if (EPI.SCEVSafetyCheck) 7923 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 7924 if (EPI.MemSafetyCheck) 7925 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 7926 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 7927 7928 // The vec.epilog.iter.check block may contain Phi nodes from reductions which 7929 // merge control-flow from the latch block and the middle block. Update the 7930 // incoming values here and move the Phi into the preheader. 7931 SmallVector<PHINode *, 4> PhisInBlock; 7932 for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) 7933 PhisInBlock.push_back(&Phi); 7934 7935 for (PHINode *Phi : PhisInBlock) { 7936 Phi->replaceIncomingBlockWith( 7937 VecEpilogueIterationCountCheck->getSinglePredecessor(), 7938 VecEpilogueIterationCountCheck); 7939 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); 7940 if (EPI.SCEVSafetyCheck) 7941 Phi->removeIncomingValue(EPI.SCEVSafetyCheck); 7942 if (EPI.MemSafetyCheck) 7943 Phi->removeIncomingValue(EPI.MemSafetyCheck); 7944 Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); 7945 } 7946 7947 // Generate a resume induction for the vector epilogue and put it in the 7948 // vector epilogue preheader 7949 Type *IdxTy = Legal->getWidestInductionType(); 7950 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 7951 LoopVectorPreHeader->getFirstNonPHI()); 7952 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 7953 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 7954 EPI.MainLoopIterationCountCheck); 7955 7956 // Generate induction resume values. These variables save the new starting 7957 // indexes for the scalar loop. They are used to test if there are any tail 7958 // iterations left once the vector loop has completed. 7959 // Note that when the vectorized epilogue is skipped due to iteration count 7960 // check, then the resume value for the induction variable comes from 7961 // the trip count of the main vector loop, hence passing the AdditionalBypass 7962 // argument. 7963 createInductionResumeValues({VecEpilogueIterationCountCheck, 7964 EPI.VectorTripCount} /* AdditionalBypass */); 7965 7966 return {completeLoopSkeleton(OrigLoopID), EPResumeVal}; 7967 } 7968 7969 BasicBlock * 7970 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 7971 BasicBlock *Bypass, BasicBlock *Insert) { 7972 7973 assert(EPI.TripCount && 7974 "Expected trip count to have been safed in the first pass."); 7975 assert( 7976 (!isa<Instruction>(EPI.TripCount) || 7977 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 7978 "saved trip count does not dominate insertion point."); 7979 Value *TC = EPI.TripCount; 7980 IRBuilder<> Builder(Insert->getTerminator()); 7981 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 7982 7983 // Generate code to check if the loop's trip count is less than VF * UF of the 7984 // vector epilogue loop. 7985 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 7986 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7987 7988 Value *CheckMinIters = 7989 Builder.CreateICmp(P, Count, 7990 createStepForVF(Builder, Count->getType(), 7991 EPI.EpilogueVF, EPI.EpilogueUF), 7992 "min.epilog.iters.check"); 7993 7994 ReplaceInstWithInst( 7995 Insert->getTerminator(), 7996 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7997 7998 LoopBypassBlocks.push_back(Insert); 7999 return Insert; 8000 } 8001 8002 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8003 LLVM_DEBUG({ 8004 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8005 << "Epilogue Loop VF:" << EPI.EpilogueVF 8006 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8007 }); 8008 } 8009 8010 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8011 DEBUG_WITH_TYPE(VerboseDebug, { 8012 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 8013 }); 8014 } 8015 8016 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8017 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8018 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8019 bool PredicateAtRangeStart = Predicate(Range.Start); 8020 8021 for (ElementCount TmpVF = Range.Start * 2; 8022 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8023 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8024 Range.End = TmpVF; 8025 break; 8026 } 8027 8028 return PredicateAtRangeStart; 8029 } 8030 8031 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8032 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8033 /// of VF's starting at a given VF and extending it as much as possible. Each 8034 /// vectorization decision can potentially shorten this sub-range during 8035 /// buildVPlan(). 8036 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8037 ElementCount MaxVF) { 8038 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8039 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8040 VFRange SubRange = {VF, MaxVFPlusOne}; 8041 VPlans.push_back(buildVPlan(SubRange)); 8042 VF = SubRange.End; 8043 } 8044 } 8045 8046 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8047 VPlanPtr &Plan) { 8048 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8049 8050 // Look for cached value. 8051 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8052 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8053 if (ECEntryIt != EdgeMaskCache.end()) 8054 return ECEntryIt->second; 8055 8056 VPValue *SrcMask = createBlockInMask(Src, Plan); 8057 8058 // The terminator has to be a branch inst! 8059 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8060 assert(BI && "Unexpected terminator found"); 8061 8062 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8063 return EdgeMaskCache[Edge] = SrcMask; 8064 8065 // If source is an exiting block, we know the exit edge is dynamically dead 8066 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8067 // adding uses of an otherwise potentially dead instruction. 8068 if (OrigLoop->isLoopExiting(Src)) 8069 return EdgeMaskCache[Edge] = SrcMask; 8070 8071 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8072 assert(EdgeMask && "No Edge Mask found for condition"); 8073 8074 if (BI->getSuccessor(0) != Dst) 8075 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 8076 8077 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8078 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8079 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8080 // The select version does not introduce new UB if SrcMask is false and 8081 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8082 VPValue *False = Plan->getOrAddVPValue( 8083 ConstantInt::getFalse(BI->getCondition()->getType())); 8084 EdgeMask = 8085 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8086 } 8087 8088 return EdgeMaskCache[Edge] = EdgeMask; 8089 } 8090 8091 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8092 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8093 8094 // Look for cached value. 8095 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8096 if (BCEntryIt != BlockMaskCache.end()) 8097 return BCEntryIt->second; 8098 8099 // All-one mask is modelled as no-mask following the convention for masked 8100 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8101 VPValue *BlockMask = nullptr; 8102 8103 if (OrigLoop->getHeader() == BB) { 8104 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8105 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8106 8107 // Introduce the early-exit compare IV <= BTC to form header block mask. 8108 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8109 // constructing the desired canonical IV in the header block as its first 8110 // non-phi instructions. 8111 assert(CM.foldTailByMasking() && "must fold the tail"); 8112 VPBasicBlock *HeaderVPBB = 8113 Plan->getVectorLoopRegion()->getEntryBasicBlock(); 8114 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8115 auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); 8116 HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi()); 8117 8118 VPBuilder::InsertPointGuard Guard(Builder); 8119 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8120 if (CM.TTI.emitGetActiveLaneMask()) { 8121 VPValue *TC = Plan->getOrCreateTripCount(); 8122 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}); 8123 } else { 8124 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8125 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8126 } 8127 return BlockMaskCache[BB] = BlockMask; 8128 } 8129 8130 // This is the block mask. We OR all incoming edges. 8131 for (auto *Predecessor : predecessors(BB)) { 8132 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8133 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8134 return BlockMaskCache[BB] = EdgeMask; 8135 8136 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8137 BlockMask = EdgeMask; 8138 continue; 8139 } 8140 8141 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8142 } 8143 8144 return BlockMaskCache[BB] = BlockMask; 8145 } 8146 8147 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8148 ArrayRef<VPValue *> Operands, 8149 VFRange &Range, 8150 VPlanPtr &Plan) { 8151 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8152 "Must be called with either a load or store"); 8153 8154 auto willWiden = [&](ElementCount VF) -> bool { 8155 if (VF.isScalar()) 8156 return false; 8157 LoopVectorizationCostModel::InstWidening Decision = 8158 CM.getWideningDecision(I, VF); 8159 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8160 "CM decision should be taken at this point."); 8161 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8162 return true; 8163 if (CM.isScalarAfterVectorization(I, VF) || 8164 CM.isProfitableToScalarize(I, VF)) 8165 return false; 8166 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8167 }; 8168 8169 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8170 return nullptr; 8171 8172 VPValue *Mask = nullptr; 8173 if (Legal->isMaskRequired(I)) 8174 Mask = createBlockInMask(I->getParent(), Plan); 8175 8176 // Determine if the pointer operand of the access is either consecutive or 8177 // reverse consecutive. 8178 LoopVectorizationCostModel::InstWidening Decision = 8179 CM.getWideningDecision(I, Range.Start); 8180 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8181 bool Consecutive = 8182 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8183 8184 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8185 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8186 Consecutive, Reverse); 8187 8188 StoreInst *Store = cast<StoreInst>(I); 8189 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8190 Mask, Consecutive, Reverse); 8191 } 8192 8193 /// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also 8194 /// insert a recipe to expand the step for the induction recipe. 8195 static VPWidenIntOrFpInductionRecipe *createWidenInductionRecipes( 8196 PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, 8197 const InductionDescriptor &IndDesc, LoopVectorizationCostModel &CM, 8198 VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop, VFRange &Range) { 8199 // Returns true if an instruction \p I should be scalarized instead of 8200 // vectorized for the chosen vectorization factor. 8201 auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) { 8202 return CM.isScalarAfterVectorization(I, VF) || 8203 CM.isProfitableToScalarize(I, VF); 8204 }; 8205 8206 bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange( 8207 [&](ElementCount VF) { 8208 // Returns true if we should generate a scalar version of \p IV. 8209 if (ShouldScalarizeInstruction(PhiOrTrunc, VF)) 8210 return true; 8211 auto isScalarInst = [&](User *U) -> bool { 8212 auto *I = cast<Instruction>(U); 8213 return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF); 8214 }; 8215 return any_of(PhiOrTrunc->users(), isScalarInst); 8216 }, 8217 Range); 8218 bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange( 8219 [&](ElementCount VF) { 8220 return ShouldScalarizeInstruction(PhiOrTrunc, VF); 8221 }, 8222 Range); 8223 assert(IndDesc.getStartValue() == 8224 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); 8225 assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) && 8226 "step must be loop invariant"); 8227 8228 VPValue *Step = 8229 vputils::getOrCreateVPValueForSCEVExpr(Plan, IndDesc.getStep(), SE); 8230 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { 8231 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, TruncI, 8232 NeedsScalarIV, !NeedsScalarIVOnly); 8233 } 8234 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); 8235 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, 8236 NeedsScalarIV, !NeedsScalarIVOnly); 8237 } 8238 8239 VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI( 8240 PHINode *Phi, ArrayRef<VPValue *> Operands, VPlan &Plan, VFRange &Range) { 8241 8242 // Check if this is an integer or fp induction. If so, build the recipe that 8243 // produces its scalar and vector values. 8244 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) 8245 return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, CM, Plan, 8246 *PSE.getSE(), *OrigLoop, Range); 8247 8248 // Check if this is pointer induction. If so, build the recipe for it. 8249 if (auto *II = Legal->getPointerInductionDescriptor(Phi)) 8250 return new VPWidenPointerInductionRecipe(Phi, Operands[0], *II, 8251 *PSE.getSE()); 8252 return nullptr; 8253 } 8254 8255 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8256 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, VPlan &Plan) { 8257 // Optimize the special case where the source is a constant integer 8258 // induction variable. Notice that we can only optimize the 'trunc' case 8259 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8260 // (c) other casts depend on pointer size. 8261 8262 // Determine whether \p K is a truncation based on an induction variable that 8263 // can be optimized. 8264 auto isOptimizableIVTruncate = 8265 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8266 return [=](ElementCount VF) -> bool { 8267 return CM.isOptimizableIVTruncate(K, VF); 8268 }; 8269 }; 8270 8271 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8272 isOptimizableIVTruncate(I), Range)) { 8273 8274 auto *Phi = cast<PHINode>(I->getOperand(0)); 8275 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8276 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8277 return createWidenInductionRecipes(Phi, I, Start, II, CM, Plan, 8278 *PSE.getSE(), *OrigLoop, Range); 8279 } 8280 return nullptr; 8281 } 8282 8283 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8284 ArrayRef<VPValue *> Operands, 8285 VPlanPtr &Plan) { 8286 // If all incoming values are equal, the incoming VPValue can be used directly 8287 // instead of creating a new VPBlendRecipe. 8288 VPValue *FirstIncoming = Operands[0]; 8289 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8290 return FirstIncoming == Inc; 8291 })) { 8292 return Operands[0]; 8293 } 8294 8295 unsigned NumIncoming = Phi->getNumIncomingValues(); 8296 // For in-loop reductions, we do not need to create an additional select. 8297 VPValue *InLoopVal = nullptr; 8298 for (unsigned In = 0; In < NumIncoming; In++) { 8299 PHINode *PhiOp = 8300 dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue()); 8301 if (PhiOp && CM.isInLoopReduction(PhiOp)) { 8302 assert(!InLoopVal && "Found more than one in-loop reduction!"); 8303 InLoopVal = Operands[In]; 8304 } 8305 } 8306 8307 assert((!InLoopVal || NumIncoming == 2) && 8308 "Found an in-loop reduction for PHI with unexpected number of " 8309 "incoming values"); 8310 if (InLoopVal) 8311 return Operands[Operands[0] == InLoopVal ? 1 : 0]; 8312 8313 // We know that all PHIs in non-header blocks are converted into selects, so 8314 // we don't have to worry about the insertion order and we can just use the 8315 // builder. At this point we generate the predication tree. There may be 8316 // duplications since this is a simple recursive scan, but future 8317 // optimizations will clean it up. 8318 SmallVector<VPValue *, 2> OperandsWithMask; 8319 8320 for (unsigned In = 0; In < NumIncoming; In++) { 8321 VPValue *EdgeMask = 8322 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8323 assert((EdgeMask || NumIncoming == 1) && 8324 "Multiple predecessors with one having a full mask"); 8325 OperandsWithMask.push_back(Operands[In]); 8326 if (EdgeMask) 8327 OperandsWithMask.push_back(EdgeMask); 8328 } 8329 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8330 } 8331 8332 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8333 ArrayRef<VPValue *> Operands, 8334 VFRange &Range) const { 8335 8336 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8337 [this, CI](ElementCount VF) { 8338 return CM.isScalarWithPredication(CI, VF); 8339 }, 8340 Range); 8341 8342 if (IsPredicated) 8343 return nullptr; 8344 8345 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8346 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8347 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8348 ID == Intrinsic::pseudoprobe || 8349 ID == Intrinsic::experimental_noalias_scope_decl)) 8350 return nullptr; 8351 8352 auto willWiden = [&](ElementCount VF) -> bool { 8353 if (VF.isScalar()) 8354 return false; 8355 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8356 // The following case may be scalarized depending on the VF. 8357 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8358 // version of the instruction. 8359 // Is it beneficial to perform intrinsic call compared to lib call? 8360 bool NeedToScalarize = false; 8361 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8362 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8363 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8364 return UseVectorIntrinsic || !NeedToScalarize; 8365 }; 8366 8367 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8368 return nullptr; 8369 8370 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8371 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8372 } 8373 8374 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8375 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8376 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8377 // Instruction should be widened, unless it is scalar after vectorization, 8378 // scalarization is profitable or it is predicated. 8379 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8380 return CM.isScalarAfterVectorization(I, VF) || 8381 CM.isProfitableToScalarize(I, VF) || 8382 CM.isScalarWithPredication(I, VF); 8383 }; 8384 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8385 Range); 8386 } 8387 8388 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8389 ArrayRef<VPValue *> Operands) const { 8390 auto IsVectorizableOpcode = [](unsigned Opcode) { 8391 switch (Opcode) { 8392 case Instruction::Add: 8393 case Instruction::And: 8394 case Instruction::AShr: 8395 case Instruction::BitCast: 8396 case Instruction::FAdd: 8397 case Instruction::FCmp: 8398 case Instruction::FDiv: 8399 case Instruction::FMul: 8400 case Instruction::FNeg: 8401 case Instruction::FPExt: 8402 case Instruction::FPToSI: 8403 case Instruction::FPToUI: 8404 case Instruction::FPTrunc: 8405 case Instruction::FRem: 8406 case Instruction::FSub: 8407 case Instruction::ICmp: 8408 case Instruction::IntToPtr: 8409 case Instruction::LShr: 8410 case Instruction::Mul: 8411 case Instruction::Or: 8412 case Instruction::PtrToInt: 8413 case Instruction::SDiv: 8414 case Instruction::Select: 8415 case Instruction::SExt: 8416 case Instruction::Shl: 8417 case Instruction::SIToFP: 8418 case Instruction::SRem: 8419 case Instruction::Sub: 8420 case Instruction::Trunc: 8421 case Instruction::UDiv: 8422 case Instruction::UIToFP: 8423 case Instruction::URem: 8424 case Instruction::Xor: 8425 case Instruction::ZExt: 8426 return true; 8427 } 8428 return false; 8429 }; 8430 8431 if (!IsVectorizableOpcode(I->getOpcode())) 8432 return nullptr; 8433 8434 // Success: widen this instruction. 8435 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8436 } 8437 8438 void VPRecipeBuilder::fixHeaderPhis() { 8439 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8440 for (VPHeaderPHIRecipe *R : PhisToFix) { 8441 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8442 VPRecipeBase *IncR = 8443 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8444 R->addOperand(IncR->getVPSingleValue()); 8445 } 8446 } 8447 8448 VPBasicBlock *VPRecipeBuilder::handleReplication( 8449 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8450 VPlanPtr &Plan) { 8451 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8452 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8453 Range); 8454 8455 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8456 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); }, 8457 Range); 8458 8459 // Even if the instruction is not marked as uniform, there are certain 8460 // intrinsic calls that can be effectively treated as such, so we check for 8461 // them here. Conservatively, we only do this for scalable vectors, since 8462 // for fixed-width VFs we can always fall back on full scalarization. 8463 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8464 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8465 case Intrinsic::assume: 8466 case Intrinsic::lifetime_start: 8467 case Intrinsic::lifetime_end: 8468 // For scalable vectors if one of the operands is variant then we still 8469 // want to mark as uniform, which will generate one instruction for just 8470 // the first lane of the vector. We can't scalarize the call in the same 8471 // way as for fixed-width vectors because we don't know how many lanes 8472 // there are. 8473 // 8474 // The reasons for doing it this way for scalable vectors are: 8475 // 1. For the assume intrinsic generating the instruction for the first 8476 // lane is still be better than not generating any at all. For 8477 // example, the input may be a splat across all lanes. 8478 // 2. For the lifetime start/end intrinsics the pointer operand only 8479 // does anything useful when the input comes from a stack object, 8480 // which suggests it should always be uniform. For non-stack objects 8481 // the effect is to poison the object, which still allows us to 8482 // remove the call. 8483 IsUniform = true; 8484 break; 8485 default: 8486 break; 8487 } 8488 } 8489 8490 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8491 IsUniform, IsPredicated); 8492 setRecipe(I, Recipe); 8493 Plan->addVPValue(I, Recipe); 8494 8495 // Find if I uses a predicated instruction. If so, it will use its scalar 8496 // value. Avoid hoisting the insert-element which packs the scalar value into 8497 // a vector value, as that happens iff all users use the vector value. 8498 for (VPValue *Op : Recipe->operands()) { 8499 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8500 if (!PredR) 8501 continue; 8502 auto *RepR = 8503 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8504 assert(RepR->isPredicated() && 8505 "expected Replicate recipe to be predicated"); 8506 RepR->setAlsoPack(false); 8507 } 8508 8509 // Finalize the recipe for Instr, first if it is not predicated. 8510 if (!IsPredicated) { 8511 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8512 VPBB->appendRecipe(Recipe); 8513 return VPBB; 8514 } 8515 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8516 8517 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8518 assert(SingleSucc && "VPBB must have a single successor when handling " 8519 "predicated replication."); 8520 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8521 // Record predicated instructions for above packing optimizations. 8522 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8523 VPBlockUtils::insertBlockAfter(Region, VPBB); 8524 auto *RegSucc = new VPBasicBlock(); 8525 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8526 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8527 return RegSucc; 8528 } 8529 8530 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8531 VPRecipeBase *PredRecipe, 8532 VPlanPtr &Plan) { 8533 // Instructions marked for predication are replicated and placed under an 8534 // if-then construct to prevent side-effects. 8535 8536 // Generate recipes to compute the block mask for this region. 8537 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8538 8539 // Build the triangular if-then region. 8540 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8541 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8542 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8543 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8544 auto *PHIRecipe = Instr->getType()->isVoidTy() 8545 ? nullptr 8546 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8547 if (PHIRecipe) { 8548 Plan->removeVPValueFor(Instr); 8549 Plan->addVPValue(Instr, PHIRecipe); 8550 } 8551 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8552 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8553 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8554 8555 // Note: first set Entry as region entry and then connect successors starting 8556 // from it in order, to propagate the "parent" of each VPBasicBlock. 8557 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8558 VPBlockUtils::connectBlocks(Pred, Exit); 8559 8560 return Region; 8561 } 8562 8563 VPRecipeOrVPValueTy 8564 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8565 ArrayRef<VPValue *> Operands, 8566 VFRange &Range, VPlanPtr &Plan) { 8567 // First, check for specific widening recipes that deal with calls, memory 8568 // operations, inductions and Phi nodes. 8569 if (auto *CI = dyn_cast<CallInst>(Instr)) 8570 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8571 8572 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8573 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8574 8575 VPRecipeBase *Recipe; 8576 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8577 if (Phi->getParent() != OrigLoop->getHeader()) 8578 return tryToBlend(Phi, Operands, Plan); 8579 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, *Plan, Range))) 8580 return toVPRecipeResult(Recipe); 8581 8582 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8583 assert((Legal->isReductionVariable(Phi) || 8584 Legal->isFirstOrderRecurrence(Phi)) && 8585 "can only widen reductions and first-order recurrences here"); 8586 VPValue *StartV = Operands[0]; 8587 if (Legal->isReductionVariable(Phi)) { 8588 const RecurrenceDescriptor &RdxDesc = 8589 Legal->getReductionVars().find(Phi)->second; 8590 assert(RdxDesc.getRecurrenceStartValue() == 8591 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8592 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8593 CM.isInLoopReduction(Phi), 8594 CM.useOrderedReductions(RdxDesc)); 8595 } else { 8596 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8597 } 8598 8599 // Record the incoming value from the backedge, so we can add the incoming 8600 // value from the backedge after all recipes have been created. 8601 recordRecipeOf(cast<Instruction>( 8602 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8603 PhisToFix.push_back(PhiRecipe); 8604 return toVPRecipeResult(PhiRecipe); 8605 } 8606 8607 if (isa<TruncInst>(Instr) && 8608 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8609 Range, *Plan))) 8610 return toVPRecipeResult(Recipe); 8611 8612 if (!shouldWiden(Instr, Range)) 8613 return nullptr; 8614 8615 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8616 return toVPRecipeResult(new VPWidenGEPRecipe( 8617 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8618 8619 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8620 bool InvariantCond = 8621 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8622 return toVPRecipeResult(new VPWidenSelectRecipe( 8623 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8624 } 8625 8626 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8627 } 8628 8629 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8630 ElementCount MaxVF) { 8631 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8632 8633 // Collect instructions from the original loop that will become trivially dead 8634 // in the vectorized loop. We don't need to vectorize these instructions. For 8635 // example, original induction update instructions can become dead because we 8636 // separately emit induction "steps" when generating code for the new loop. 8637 // Similarly, we create a new latch condition when setting up the structure 8638 // of the new loop, so the old one can become dead. 8639 SmallPtrSet<Instruction *, 4> DeadInstructions; 8640 collectTriviallyDeadInstructions(DeadInstructions); 8641 8642 // Add assume instructions we need to drop to DeadInstructions, to prevent 8643 // them from being added to the VPlan. 8644 // TODO: We only need to drop assumes in blocks that get flattend. If the 8645 // control flow is preserved, we should keep them. 8646 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8647 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8648 8649 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8650 // Dead instructions do not need sinking. Remove them from SinkAfter. 8651 for (Instruction *I : DeadInstructions) 8652 SinkAfter.erase(I); 8653 8654 // Cannot sink instructions after dead instructions (there won't be any 8655 // recipes for them). Instead, find the first non-dead previous instruction. 8656 for (auto &P : Legal->getSinkAfter()) { 8657 Instruction *SinkTarget = P.second; 8658 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8659 (void)FirstInst; 8660 while (DeadInstructions.contains(SinkTarget)) { 8661 assert( 8662 SinkTarget != FirstInst && 8663 "Must find a live instruction (at least the one feeding the " 8664 "first-order recurrence PHI) before reaching beginning of the block"); 8665 SinkTarget = SinkTarget->getPrevNode(); 8666 assert(SinkTarget != P.first && 8667 "sink source equals target, no sinking required"); 8668 } 8669 P.second = SinkTarget; 8670 } 8671 8672 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8673 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8674 VFRange SubRange = {VF, MaxVFPlusOne}; 8675 VPlans.push_back( 8676 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8677 VF = SubRange.End; 8678 } 8679 } 8680 8681 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a 8682 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a 8683 // BranchOnCount VPInstruction to the latch. 8684 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8685 bool HasNUW, bool IsVPlanNative) { 8686 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8687 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8688 8689 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8690 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8691 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8692 Header->insert(CanonicalIVPHI, Header->begin()); 8693 8694 auto *CanonicalIVIncrement = 8695 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8696 : VPInstruction::CanonicalIVIncrement, 8697 {CanonicalIVPHI}, DL); 8698 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8699 8700 VPBasicBlock *EB = TopRegion->getExitBasicBlock(); 8701 if (IsVPlanNative) 8702 EB->setCondBit(nullptr); 8703 EB->appendRecipe(CanonicalIVIncrement); 8704 8705 auto *BranchOnCount = 8706 new VPInstruction(VPInstruction::BranchOnCount, 8707 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 8708 EB->appendRecipe(BranchOnCount); 8709 } 8710 8711 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8712 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8713 const MapVector<Instruction *, Instruction *> &SinkAfter) { 8714 8715 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8716 8717 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8718 8719 // --------------------------------------------------------------------------- 8720 // Pre-construction: record ingredients whose recipes we'll need to further 8721 // process after constructing the initial VPlan. 8722 // --------------------------------------------------------------------------- 8723 8724 // Mark instructions we'll need to sink later and their targets as 8725 // ingredients whose recipe we'll need to record. 8726 for (auto &Entry : SinkAfter) { 8727 RecipeBuilder.recordRecipeOf(Entry.first); 8728 RecipeBuilder.recordRecipeOf(Entry.second); 8729 } 8730 for (auto &Reduction : CM.getInLoopReductionChains()) { 8731 PHINode *Phi = Reduction.first; 8732 RecurKind Kind = 8733 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 8734 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8735 8736 RecipeBuilder.recordRecipeOf(Phi); 8737 for (auto &R : ReductionOperations) { 8738 RecipeBuilder.recordRecipeOf(R); 8739 // For min/max reductions, where we have a pair of icmp/select, we also 8740 // need to record the ICmp recipe, so it can be removed later. 8741 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 8742 "Only min/max recurrences allowed for inloop reductions"); 8743 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 8744 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8745 } 8746 } 8747 8748 // For each interleave group which is relevant for this (possibly trimmed) 8749 // Range, add it to the set of groups to be later applied to the VPlan and add 8750 // placeholders for its members' Recipes which we'll be replacing with a 8751 // single VPInterleaveRecipe. 8752 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8753 auto applyIG = [IG, this](ElementCount VF) -> bool { 8754 return (VF.isVector() && // Query is illegal for VF == 1 8755 CM.getWideningDecision(IG->getInsertPos(), VF) == 8756 LoopVectorizationCostModel::CM_Interleave); 8757 }; 8758 if (!getDecisionAndClampRange(applyIG, Range)) 8759 continue; 8760 InterleaveGroups.insert(IG); 8761 for (unsigned i = 0; i < IG->getFactor(); i++) 8762 if (Instruction *Member = IG->getMember(i)) 8763 RecipeBuilder.recordRecipeOf(Member); 8764 }; 8765 8766 // --------------------------------------------------------------------------- 8767 // Build initial VPlan: Scan the body of the loop in a topological order to 8768 // visit each basic block after having visited its predecessor basic blocks. 8769 // --------------------------------------------------------------------------- 8770 8771 // Create initial VPlan skeleton, starting with a block for the pre-header, 8772 // followed by a region for the vector loop, followed by the middle block. The 8773 // skeleton vector loop region contains a header and latch block. 8774 VPBasicBlock *Preheader = new VPBasicBlock("vector.ph"); 8775 auto Plan = std::make_unique<VPlan>(Preheader); 8776 8777 VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body"); 8778 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 8779 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 8780 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 8781 VPBlockUtils::insertBlockAfter(TopRegion, Preheader); 8782 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); 8783 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 8784 8785 Instruction *DLInst = 8786 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 8787 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 8788 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 8789 !CM.foldTailByMasking(), false); 8790 8791 // Scan the body of the loop in a topological order to visit each basic block 8792 // after having visited its predecessor basic blocks. 8793 LoopBlocksDFS DFS(OrigLoop); 8794 DFS.perform(LI); 8795 8796 VPBasicBlock *VPBB = HeaderVPBB; 8797 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 8798 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8799 // Relevant instructions from basic block BB will be grouped into VPRecipe 8800 // ingredients and fill a new VPBasicBlock. 8801 unsigned VPBBsForBB = 0; 8802 if (VPBB != HeaderVPBB) 8803 VPBB->setName(BB->getName()); 8804 Builder.setInsertPoint(VPBB); 8805 8806 // Introduce each ingredient into VPlan. 8807 // TODO: Model and preserve debug intrinsics in VPlan. 8808 for (Instruction &I : BB->instructionsWithoutDebug()) { 8809 Instruction *Instr = &I; 8810 8811 // First filter out irrelevant instructions, to ensure no recipes are 8812 // built for them. 8813 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 8814 continue; 8815 8816 SmallVector<VPValue *, 4> Operands; 8817 auto *Phi = dyn_cast<PHINode>(Instr); 8818 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 8819 Operands.push_back(Plan->getOrAddVPValue( 8820 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 8821 } else { 8822 auto OpRange = Plan->mapToVPValues(Instr->operands()); 8823 Operands = {OpRange.begin(), OpRange.end()}; 8824 } 8825 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 8826 Instr, Operands, Range, Plan)) { 8827 // If Instr can be simplified to an existing VPValue, use it. 8828 if (RecipeOrValue.is<VPValue *>()) { 8829 auto *VPV = RecipeOrValue.get<VPValue *>(); 8830 Plan->addVPValue(Instr, VPV); 8831 // If the re-used value is a recipe, register the recipe for the 8832 // instruction, in case the recipe for Instr needs to be recorded. 8833 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 8834 RecipeBuilder.setRecipe(Instr, R); 8835 continue; 8836 } 8837 // Otherwise, add the new recipe. 8838 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 8839 for (auto *Def : Recipe->definedValues()) { 8840 auto *UV = Def->getUnderlyingValue(); 8841 Plan->addVPValue(UV, Def); 8842 } 8843 8844 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 8845 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 8846 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 8847 // of the header block. That can happen for truncates of induction 8848 // variables. Those recipes are moved to the phi section of the header 8849 // block after applying SinkAfter, which relies on the original 8850 // position of the trunc. 8851 assert(isa<TruncInst>(Instr)); 8852 InductionsToMove.push_back( 8853 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 8854 } 8855 RecipeBuilder.setRecipe(Instr, Recipe); 8856 VPBB->appendRecipe(Recipe); 8857 continue; 8858 } 8859 8860 // Invariant stores inside loop will be deleted and a single store 8861 // with the final reduction value will be added to the exit block 8862 StoreInst *SI; 8863 if ((SI = dyn_cast<StoreInst>(&I)) && 8864 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) 8865 continue; 8866 8867 // Otherwise, if all widening options failed, Instruction is to be 8868 // replicated. This may create a successor for VPBB. 8869 VPBasicBlock *NextVPBB = 8870 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 8871 if (NextVPBB != VPBB) { 8872 VPBB = NextVPBB; 8873 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8874 : ""); 8875 } 8876 } 8877 8878 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 8879 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 8880 } 8881 8882 HeaderVPBB->setName("vector.body"); 8883 8884 // Fold the last, empty block into its predecessor. 8885 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 8886 assert(VPBB && "expected to fold last (empty) block"); 8887 // After here, VPBB should not be used. 8888 VPBB = nullptr; 8889 8890 assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) && 8891 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() && 8892 "entry block must be set to a VPRegionBlock having a non-empty entry " 8893 "VPBasicBlock"); 8894 RecipeBuilder.fixHeaderPhis(); 8895 8896 // --------------------------------------------------------------------------- 8897 // Transform initial VPlan: Apply previously taken decisions, in order, to 8898 // bring the VPlan to its final state. 8899 // --------------------------------------------------------------------------- 8900 8901 // Apply Sink-After legal constraints. 8902 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 8903 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 8904 if (Region && Region->isReplicator()) { 8905 assert(Region->getNumSuccessors() == 1 && 8906 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 8907 assert(R->getParent()->size() == 1 && 8908 "A recipe in an original replicator region must be the only " 8909 "recipe in its block"); 8910 return Region; 8911 } 8912 return nullptr; 8913 }; 8914 for (auto &Entry : SinkAfter) { 8915 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 8916 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 8917 8918 auto *TargetRegion = GetReplicateRegion(Target); 8919 auto *SinkRegion = GetReplicateRegion(Sink); 8920 if (!SinkRegion) { 8921 // If the sink source is not a replicate region, sink the recipe directly. 8922 if (TargetRegion) { 8923 // The target is in a replication region, make sure to move Sink to 8924 // the block after it, not into the replication region itself. 8925 VPBasicBlock *NextBlock = 8926 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 8927 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 8928 } else 8929 Sink->moveAfter(Target); 8930 continue; 8931 } 8932 8933 // The sink source is in a replicate region. Unhook the region from the CFG. 8934 auto *SinkPred = SinkRegion->getSinglePredecessor(); 8935 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 8936 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 8937 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 8938 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 8939 8940 if (TargetRegion) { 8941 // The target recipe is also in a replicate region, move the sink region 8942 // after the target region. 8943 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 8944 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 8945 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 8946 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 8947 } else { 8948 // The sink source is in a replicate region, we need to move the whole 8949 // replicate region, which should only contain a single recipe in the 8950 // main block. 8951 auto *SplitBlock = 8952 Target->getParent()->splitAt(std::next(Target->getIterator())); 8953 8954 auto *SplitPred = SplitBlock->getSinglePredecessor(); 8955 8956 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 8957 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 8958 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 8959 } 8960 } 8961 8962 VPlanTransforms::removeRedundantCanonicalIVs(*Plan); 8963 VPlanTransforms::removeRedundantInductionCasts(*Plan); 8964 8965 // Now that sink-after is done, move induction recipes for optimized truncates 8966 // to the phi section of the header block. 8967 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 8968 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 8969 8970 // Adjust the recipes for any inloop reductions. 8971 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan, 8972 RecipeBuilder, Range.Start); 8973 8974 // Introduce a recipe to combine the incoming and previous values of a 8975 // first-order recurrence. 8976 for (VPRecipeBase &R : 8977 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 8978 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 8979 if (!RecurPhi) 8980 continue; 8981 8982 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 8983 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 8984 auto *Region = GetReplicateRegion(PrevRecipe); 8985 if (Region) 8986 InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor()); 8987 if (Region || PrevRecipe->isPhi()) 8988 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 8989 else 8990 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 8991 8992 auto *RecurSplice = cast<VPInstruction>( 8993 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 8994 {RecurPhi, RecurPhi->getBackedgeValue()})); 8995 8996 RecurPhi->replaceAllUsesWith(RecurSplice); 8997 // Set the first operand of RecurSplice to RecurPhi again, after replacing 8998 // all users. 8999 RecurSplice->setOperand(0, RecurPhi); 9000 } 9001 9002 // Interleave memory: for each Interleave Group we marked earlier as relevant 9003 // for this VPlan, replace the Recipes widening its memory instructions with a 9004 // single VPInterleaveRecipe at its insertion point. 9005 for (auto IG : InterleaveGroups) { 9006 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9007 RecipeBuilder.getRecipe(IG->getInsertPos())); 9008 SmallVector<VPValue *, 4> StoredValues; 9009 for (unsigned i = 0; i < IG->getFactor(); ++i) 9010 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9011 auto *StoreR = 9012 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9013 StoredValues.push_back(StoreR->getStoredValue()); 9014 } 9015 9016 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9017 Recipe->getMask()); 9018 VPIG->insertBefore(Recipe); 9019 unsigned J = 0; 9020 for (unsigned i = 0; i < IG->getFactor(); ++i) 9021 if (Instruction *Member = IG->getMember(i)) { 9022 if (!Member->getType()->isVoidTy()) { 9023 VPValue *OriginalV = Plan->getVPValue(Member); 9024 Plan->removeVPValueFor(Member); 9025 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9026 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9027 J++; 9028 } 9029 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9030 } 9031 } 9032 9033 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9034 // in ways that accessing values using original IR values is incorrect. 9035 Plan->disableValue2VPValue(); 9036 9037 VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE()); 9038 VPlanTransforms::sinkScalarOperands(*Plan); 9039 VPlanTransforms::mergeReplicateRegions(*Plan); 9040 VPlanTransforms::removeDeadRecipes(*Plan, *OrigLoop); 9041 VPlanTransforms::removeRedundantExpandSCEVRecipes(*Plan); 9042 9043 std::string PlanName; 9044 raw_string_ostream RSO(PlanName); 9045 ElementCount VF = Range.Start; 9046 Plan->addVF(VF); 9047 RSO << "Initial VPlan for VF={" << VF; 9048 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9049 Plan->addVF(VF); 9050 RSO << "," << VF; 9051 } 9052 RSO << "},UF>=1"; 9053 RSO.flush(); 9054 Plan->setName(PlanName); 9055 9056 // Fold Exit block into its predecessor if possible. 9057 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9058 // VPBasicBlock as exit. 9059 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit()); 9060 9061 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9062 return Plan; 9063 } 9064 9065 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9066 // Outer loop handling: They may require CFG and instruction level 9067 // transformations before even evaluating whether vectorization is profitable. 9068 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9069 // the vectorization pipeline. 9070 assert(!OrigLoop->isInnermost()); 9071 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9072 9073 // Create new empty VPlan 9074 auto Plan = std::make_unique<VPlan>(); 9075 9076 // Build hierarchical CFG 9077 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9078 HCFGBuilder.buildHierarchicalCFG(); 9079 9080 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9081 VF *= 2) 9082 Plan->addVF(VF); 9083 9084 if (EnableVPlanPredication) { 9085 VPlanPredicator VPP(*Plan); 9086 VPP.predicate(); 9087 9088 // Avoid running transformation to recipes until masked code generation in 9089 // VPlan-native path is in place. 9090 return Plan; 9091 } 9092 9093 SmallPtrSet<Instruction *, 1> DeadInstructions; 9094 VPlanTransforms::VPInstructionsToVPRecipes( 9095 OrigLoop, Plan, 9096 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9097 DeadInstructions, *PSE.getSE()); 9098 9099 // Update plan to be compatible with the inner loop vectorizer for 9100 // code-generation. 9101 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion(); 9102 VPBasicBlock *Preheader = LoopRegion->getEntryBasicBlock(); 9103 VPBasicBlock *Exit = LoopRegion->getExitBasicBlock(); 9104 VPBlockBase *Latch = Exit->getSinglePredecessor(); 9105 VPBlockBase *Header = Preheader->getSingleSuccessor(); 9106 9107 // 1. Move preheader block out of main vector loop. 9108 Preheader->setParent(LoopRegion->getParent()); 9109 VPBlockUtils::disconnectBlocks(Preheader, Header); 9110 VPBlockUtils::connectBlocks(Preheader, LoopRegion); 9111 Plan->setEntry(Preheader); 9112 9113 // 2. Disconnect backedge and exit block. 9114 VPBlockUtils::disconnectBlocks(Latch, Header); 9115 VPBlockUtils::disconnectBlocks(Latch, Exit); 9116 9117 // 3. Update entry and exit of main vector loop region. 9118 LoopRegion->setEntry(Header); 9119 LoopRegion->setExit(Latch); 9120 9121 // 4. Remove exit block. 9122 delete Exit; 9123 9124 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9125 true, true); 9126 return Plan; 9127 } 9128 9129 // Adjust the recipes for reductions. For in-loop reductions the chain of 9130 // instructions leading from the loop exit instr to the phi need to be converted 9131 // to reductions, with one operand being vector and the other being the scalar 9132 // reduction chain. For other reductions, a select is introduced between the phi 9133 // and live-out recipes when folding the tail. 9134 void LoopVectorizationPlanner::adjustRecipesForReductions( 9135 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9136 ElementCount MinVF) { 9137 for (auto &Reduction : CM.getInLoopReductionChains()) { 9138 PHINode *Phi = Reduction.first; 9139 const RecurrenceDescriptor &RdxDesc = 9140 Legal->getReductionVars().find(Phi)->second; 9141 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9142 9143 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9144 continue; 9145 9146 // ReductionOperations are orders top-down from the phi's use to the 9147 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9148 // which of the two operands will remain scalar and which will be reduced. 9149 // For minmax the chain will be the select instructions. 9150 Instruction *Chain = Phi; 9151 for (Instruction *R : ReductionOperations) { 9152 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9153 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9154 9155 VPValue *ChainOp = Plan->getVPValue(Chain); 9156 unsigned FirstOpId; 9157 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9158 "Only min/max recurrences allowed for inloop reductions"); 9159 // Recognize a call to the llvm.fmuladd intrinsic. 9160 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9161 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9162 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9163 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9164 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9165 "Expected to replace a VPWidenSelectSC"); 9166 FirstOpId = 1; 9167 } else { 9168 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9169 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9170 "Expected to replace a VPWidenSC"); 9171 FirstOpId = 0; 9172 } 9173 unsigned VecOpId = 9174 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9175 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9176 9177 auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent()) 9178 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9179 : nullptr; 9180 9181 if (IsFMulAdd) { 9182 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9183 // need to create an fmul recipe to use as the vector operand for the 9184 // fadd reduction. 9185 VPInstruction *FMulRecipe = new VPInstruction( 9186 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9187 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9188 WidenRecipe->getParent()->insert(FMulRecipe, 9189 WidenRecipe->getIterator()); 9190 VecOp = FMulRecipe; 9191 } 9192 VPReductionRecipe *RedRecipe = 9193 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9194 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9195 Plan->removeVPValueFor(R); 9196 Plan->addVPValue(R, RedRecipe); 9197 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9198 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9199 WidenRecipe->eraseFromParent(); 9200 9201 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9202 VPRecipeBase *CompareRecipe = 9203 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9204 assert(isa<VPWidenRecipe>(CompareRecipe) && 9205 "Expected to replace a VPWidenSC"); 9206 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9207 "Expected no remaining users"); 9208 CompareRecipe->eraseFromParent(); 9209 } 9210 Chain = R; 9211 } 9212 } 9213 9214 // If tail is folded by masking, introduce selects between the phi 9215 // and the live-out instruction of each reduction, at the beginning of the 9216 // dedicated latch block. 9217 if (CM.foldTailByMasking()) { 9218 Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); 9219 for (VPRecipeBase &R : 9220 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 9221 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9222 if (!PhiR || PhiR->isInLoop()) 9223 continue; 9224 VPValue *Cond = 9225 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9226 VPValue *Red = PhiR->getBackedgeValue(); 9227 assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB && 9228 "reduction recipe must be defined before latch"); 9229 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9230 } 9231 } 9232 } 9233 9234 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9235 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9236 VPSlotTracker &SlotTracker) const { 9237 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9238 IG->getInsertPos()->printAsOperand(O, false); 9239 O << ", "; 9240 getAddr()->printAsOperand(O, SlotTracker); 9241 VPValue *Mask = getMask(); 9242 if (Mask) { 9243 O << ", "; 9244 Mask->printAsOperand(O, SlotTracker); 9245 } 9246 9247 unsigned OpIdx = 0; 9248 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9249 if (!IG->getMember(i)) 9250 continue; 9251 if (getNumStoreOperands() > 0) { 9252 O << "\n" << Indent << " store "; 9253 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9254 O << " to index " << i; 9255 } else { 9256 O << "\n" << Indent << " "; 9257 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9258 O << " = load from index " << i; 9259 } 9260 ++OpIdx; 9261 } 9262 } 9263 #endif 9264 9265 void VPWidenCallRecipe::execute(VPTransformState &State) { 9266 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9267 *this, State); 9268 } 9269 9270 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9271 auto &I = *cast<SelectInst>(getUnderlyingInstr()); 9272 State.ILV->setDebugLocFromInst(&I); 9273 9274 // The condition can be loop invariant but still defined inside the 9275 // loop. This means that we can't just use the original 'cond' value. 9276 // We have to take the 'vectorized' value and pick the first lane. 9277 // Instcombine will make this a no-op. 9278 auto *InvarCond = 9279 InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr; 9280 9281 for (unsigned Part = 0; Part < State.UF; ++Part) { 9282 Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part); 9283 Value *Op0 = State.get(getOperand(1), Part); 9284 Value *Op1 = State.get(getOperand(2), Part); 9285 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1); 9286 State.set(this, Sel, Part); 9287 State.ILV->addMetadata(Sel, &I); 9288 } 9289 } 9290 9291 void VPWidenRecipe::execute(VPTransformState &State) { 9292 auto &I = *cast<Instruction>(getUnderlyingValue()); 9293 auto &Builder = State.Builder; 9294 switch (I.getOpcode()) { 9295 case Instruction::Call: 9296 case Instruction::Br: 9297 case Instruction::PHI: 9298 case Instruction::GetElementPtr: 9299 case Instruction::Select: 9300 llvm_unreachable("This instruction is handled by a different recipe."); 9301 case Instruction::UDiv: 9302 case Instruction::SDiv: 9303 case Instruction::SRem: 9304 case Instruction::URem: 9305 case Instruction::Add: 9306 case Instruction::FAdd: 9307 case Instruction::Sub: 9308 case Instruction::FSub: 9309 case Instruction::FNeg: 9310 case Instruction::Mul: 9311 case Instruction::FMul: 9312 case Instruction::FDiv: 9313 case Instruction::FRem: 9314 case Instruction::Shl: 9315 case Instruction::LShr: 9316 case Instruction::AShr: 9317 case Instruction::And: 9318 case Instruction::Or: 9319 case Instruction::Xor: { 9320 // Just widen unops and binops. 9321 State.ILV->setDebugLocFromInst(&I); 9322 9323 for (unsigned Part = 0; Part < State.UF; ++Part) { 9324 SmallVector<Value *, 2> Ops; 9325 for (VPValue *VPOp : operands()) 9326 Ops.push_back(State.get(VPOp, Part)); 9327 9328 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 9329 9330 if (auto *VecOp = dyn_cast<Instruction>(V)) { 9331 VecOp->copyIRFlags(&I); 9332 9333 // If the instruction is vectorized and was in a basic block that needed 9334 // predication, we can't propagate poison-generating flags (nuw/nsw, 9335 // exact, etc.). The control flow has been linearized and the 9336 // instruction is no longer guarded by the predicate, which could make 9337 // the flag properties to no longer hold. 9338 if (State.MayGeneratePoisonRecipes.contains(this)) 9339 VecOp->dropPoisonGeneratingFlags(); 9340 } 9341 9342 // Use this vector value for all users of the original instruction. 9343 State.set(this, V, Part); 9344 State.ILV->addMetadata(V, &I); 9345 } 9346 9347 break; 9348 } 9349 case Instruction::ICmp: 9350 case Instruction::FCmp: { 9351 // Widen compares. Generate vector compares. 9352 bool FCmp = (I.getOpcode() == Instruction::FCmp); 9353 auto *Cmp = cast<CmpInst>(&I); 9354 State.ILV->setDebugLocFromInst(Cmp); 9355 for (unsigned Part = 0; Part < State.UF; ++Part) { 9356 Value *A = State.get(getOperand(0), Part); 9357 Value *B = State.get(getOperand(1), Part); 9358 Value *C = nullptr; 9359 if (FCmp) { 9360 // Propagate fast math flags. 9361 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9362 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 9363 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 9364 } else { 9365 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 9366 } 9367 State.set(this, C, Part); 9368 State.ILV->addMetadata(C, &I); 9369 } 9370 9371 break; 9372 } 9373 9374 case Instruction::ZExt: 9375 case Instruction::SExt: 9376 case Instruction::FPToUI: 9377 case Instruction::FPToSI: 9378 case Instruction::FPExt: 9379 case Instruction::PtrToInt: 9380 case Instruction::IntToPtr: 9381 case Instruction::SIToFP: 9382 case Instruction::UIToFP: 9383 case Instruction::Trunc: 9384 case Instruction::FPTrunc: 9385 case Instruction::BitCast: { 9386 auto *CI = cast<CastInst>(&I); 9387 State.ILV->setDebugLocFromInst(CI); 9388 9389 /// Vectorize casts. 9390 Type *DestTy = (State.VF.isScalar()) 9391 ? CI->getType() 9392 : VectorType::get(CI->getType(), State.VF); 9393 9394 for (unsigned Part = 0; Part < State.UF; ++Part) { 9395 Value *A = State.get(getOperand(0), Part); 9396 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 9397 State.set(this, Cast, Part); 9398 State.ILV->addMetadata(Cast, &I); 9399 } 9400 break; 9401 } 9402 default: 9403 // This instruction is not vectorized by simple widening. 9404 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 9405 llvm_unreachable("Unhandled instruction!"); 9406 } // end of switch. 9407 } 9408 9409 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9410 auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr()); 9411 // Construct a vector GEP by widening the operands of the scalar GEP as 9412 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 9413 // results in a vector of pointers when at least one operand of the GEP 9414 // is vector-typed. Thus, to keep the representation compact, we only use 9415 // vector-typed operands for loop-varying values. 9416 9417 if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 9418 // If we are vectorizing, but the GEP has only loop-invariant operands, 9419 // the GEP we build (by only using vector-typed operands for 9420 // loop-varying values) would be a scalar pointer. Thus, to ensure we 9421 // produce a vector of pointers, we need to either arbitrarily pick an 9422 // operand to broadcast, or broadcast a clone of the original GEP. 9423 // Here, we broadcast a clone of the original. 9424 // 9425 // TODO: If at some point we decide to scalarize instructions having 9426 // loop-invariant operands, this special case will no longer be 9427 // required. We would add the scalarization decision to 9428 // collectLoopScalars() and teach getVectorValue() to broadcast 9429 // the lane-zero scalar value. 9430 auto *Clone = State.Builder.Insert(GEP->clone()); 9431 for (unsigned Part = 0; Part < State.UF; ++Part) { 9432 Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone); 9433 State.set(this, EntryPart, Part); 9434 State.ILV->addMetadata(EntryPart, GEP); 9435 } 9436 } else { 9437 // If the GEP has at least one loop-varying operand, we are sure to 9438 // produce a vector of pointers. But if we are only unrolling, we want 9439 // to produce a scalar GEP for each unroll part. Thus, the GEP we 9440 // produce with the code below will be scalar (if VF == 1) or vector 9441 // (otherwise). Note that for the unroll-only case, we still maintain 9442 // values in the vector mapping with initVector, as we do for other 9443 // instructions. 9444 for (unsigned Part = 0; Part < State.UF; ++Part) { 9445 // The pointer operand of the new GEP. If it's loop-invariant, we 9446 // won't broadcast it. 9447 auto *Ptr = IsPtrLoopInvariant 9448 ? State.get(getOperand(0), VPIteration(0, 0)) 9449 : State.get(getOperand(0), Part); 9450 9451 // Collect all the indices for the new GEP. If any index is 9452 // loop-invariant, we won't broadcast it. 9453 SmallVector<Value *, 4> Indices; 9454 for (unsigned I = 1, E = getNumOperands(); I < E; I++) { 9455 VPValue *Operand = getOperand(I); 9456 if (IsIndexLoopInvariant[I - 1]) 9457 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 9458 else 9459 Indices.push_back(State.get(Operand, Part)); 9460 } 9461 9462 // If the GEP instruction is vectorized and was in a basic block that 9463 // needed predication, we can't propagate the poison-generating 'inbounds' 9464 // flag. The control flow has been linearized and the GEP is no longer 9465 // guarded by the predicate, which could make the 'inbounds' properties to 9466 // no longer hold. 9467 bool IsInBounds = 9468 GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0; 9469 9470 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 9471 // but it should be a vector, otherwise. 9472 auto *NewGEP = IsInBounds 9473 ? State.Builder.CreateInBoundsGEP( 9474 GEP->getSourceElementType(), Ptr, Indices) 9475 : State.Builder.CreateGEP(GEP->getSourceElementType(), 9476 Ptr, Indices); 9477 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) && 9478 "NewGEP is not a pointer vector"); 9479 State.set(this, NewGEP, Part); 9480 State.ILV->addMetadata(NewGEP, GEP); 9481 } 9482 } 9483 } 9484 9485 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9486 assert(!State.Instance && "Int or FP induction being replicated."); 9487 9488 Value *Start = getStartValue()->getLiveInIRValue(); 9489 const InductionDescriptor &ID = getInductionDescriptor(); 9490 TruncInst *Trunc = getTruncInst(); 9491 IRBuilderBase &Builder = State.Builder; 9492 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 9493 assert(State.VF.isVector() && "must have vector VF"); 9494 9495 // The value from the original loop to which we are mapping the new induction 9496 // variable. 9497 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 9498 9499 // Fast-math-flags propagate from the original induction instruction. 9500 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9501 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 9502 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 9503 9504 // Now do the actual transformations, and start with fetching the step value. 9505 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9506 9507 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 9508 "Expected either an induction phi-node or a truncate of it!"); 9509 9510 // Construct the initial value of the vector IV in the vector loop preheader 9511 auto CurrIP = Builder.saveIP(); 9512 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 9513 Builder.SetInsertPoint(VectorPH->getTerminator()); 9514 if (isa<TruncInst>(EntryVal)) { 9515 assert(Start->getType()->isIntegerTy() && 9516 "Truncation requires an integer type"); 9517 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 9518 Step = Builder.CreateTrunc(Step, TruncType); 9519 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 9520 } 9521 9522 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 9523 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 9524 Value *SteppedStart = getStepVector( 9525 SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder); 9526 9527 // We create vector phi nodes for both integer and floating-point induction 9528 // variables. Here, we determine the kind of arithmetic we will perform. 9529 Instruction::BinaryOps AddOp; 9530 Instruction::BinaryOps MulOp; 9531 if (Step->getType()->isIntegerTy()) { 9532 AddOp = Instruction::Add; 9533 MulOp = Instruction::Mul; 9534 } else { 9535 AddOp = ID.getInductionOpcode(); 9536 MulOp = Instruction::FMul; 9537 } 9538 9539 // Multiply the vectorization factor by the step using integer or 9540 // floating-point arithmetic as appropriate. 9541 Type *StepType = Step->getType(); 9542 Value *RuntimeVF; 9543 if (Step->getType()->isFloatingPointTy()) 9544 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 9545 else 9546 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 9547 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 9548 9549 // Create a vector splat to use in the induction update. 9550 // 9551 // FIXME: If the step is non-constant, we create the vector splat with 9552 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 9553 // handle a constant vector splat. 9554 Value *SplatVF = isa<Constant>(Mul) 9555 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 9556 : Builder.CreateVectorSplat(State.VF, Mul); 9557 Builder.restoreIP(CurrIP); 9558 9559 // We may need to add the step a number of times, depending on the unroll 9560 // factor. The last of those goes into the PHI. 9561 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 9562 &*State.CFG.PrevBB->getFirstInsertionPt()); 9563 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 9564 Instruction *LastInduction = VecInd; 9565 for (unsigned Part = 0; Part < State.UF; ++Part) { 9566 State.set(this, LastInduction, Part); 9567 9568 if (isa<TruncInst>(EntryVal)) 9569 State.ILV->addMetadata(LastInduction, EntryVal); 9570 9571 LastInduction = cast<Instruction>( 9572 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 9573 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 9574 } 9575 9576 LastInduction->setName("vec.ind.next"); 9577 VecInd->addIncoming(SteppedStart, VectorPH); 9578 // Add induction update using an incorrect block temporarily. The phi node 9579 // will be fixed after VPlan execution. Note that at this point the latch 9580 // block cannot be used, as it does not exist yet. 9581 // TODO: Model increment value in VPlan, by turning the recipe into a 9582 // multi-def and a subclass of VPHeaderPHIRecipe. 9583 VecInd->addIncoming(LastInduction, VectorPH); 9584 } 9585 9586 void VPWidenPointerInductionRecipe::execute(VPTransformState &State) { 9587 assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction && 9588 "Not a pointer induction according to InductionDescriptor!"); 9589 assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() && 9590 "Unexpected type."); 9591 9592 auto *IVR = getParent()->getPlan()->getCanonicalIV(); 9593 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 9594 9595 if (all_of(users(), [this](const VPUser *U) { 9596 return cast<VPRecipeBase>(U)->usesScalars(this); 9597 })) { 9598 // This is the normalized GEP that starts counting at zero. 9599 Value *PtrInd = State.Builder.CreateSExtOrTrunc( 9600 CanonicalIV, IndDesc.getStep()->getType()); 9601 // Determine the number of scalars we need to generate for each unroll 9602 // iteration. If the instruction is uniform, we only need to generate the 9603 // first lane. Otherwise, we generate all VF values. 9604 bool IsUniform = vputils::onlyFirstLaneUsed(this); 9605 assert((IsUniform || !State.VF.isScalable()) && 9606 "Cannot scalarize a scalable VF"); 9607 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 9608 9609 for (unsigned Part = 0; Part < State.UF; ++Part) { 9610 Value *PartStart = 9611 createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part); 9612 9613 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 9614 Value *Idx = State.Builder.CreateAdd( 9615 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 9616 Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx); 9617 9618 Value *Step = CreateStepValue(IndDesc.getStep(), SE, 9619 State.CFG.PrevBB->getTerminator()); 9620 Value *SclrGep = emitTransformedIndex( 9621 State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc); 9622 SclrGep->setName("next.gep"); 9623 State.set(this, SclrGep, VPIteration(Part, Lane)); 9624 } 9625 } 9626 return; 9627 } 9628 9629 assert(isa<SCEVConstant>(IndDesc.getStep()) && 9630 "Induction step not a SCEV constant!"); 9631 Type *PhiType = IndDesc.getStep()->getType(); 9632 9633 // Build a pointer phi 9634 Value *ScalarStartValue = getStartValue()->getLiveInIRValue(); 9635 Type *ScStValueType = ScalarStartValue->getType(); 9636 PHINode *NewPointerPhi = 9637 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 9638 9639 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 9640 NewPointerPhi->addIncoming(ScalarStartValue, VectorPH); 9641 9642 // A pointer induction, performed by using a gep 9643 const DataLayout &DL = NewPointerPhi->getModule()->getDataLayout(); 9644 Instruction *InductionLoc = &*State.Builder.GetInsertPoint(); 9645 9646 const SCEV *ScalarStep = IndDesc.getStep(); 9647 SCEVExpander Exp(SE, DL, "induction"); 9648 Value *ScalarStepValue = Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 9649 Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF); 9650 Value *NumUnrolledElems = 9651 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 9652 Value *InductionGEP = GetElementPtrInst::Create( 9653 IndDesc.getElementType(), NewPointerPhi, 9654 State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 9655 InductionLoc); 9656 // Add induction update using an incorrect block temporarily. The phi node 9657 // will be fixed after VPlan execution. Note that at this point the latch 9658 // block cannot be used, as it does not exist yet. 9659 // TODO: Model increment value in VPlan, by turning the recipe into a 9660 // multi-def and a subclass of VPHeaderPHIRecipe. 9661 NewPointerPhi->addIncoming(InductionGEP, VectorPH); 9662 9663 // Create UF many actual address geps that use the pointer 9664 // phi as base and a vectorized version of the step value 9665 // (<step*0, ..., step*N>) as offset. 9666 for (unsigned Part = 0; Part < State.UF; ++Part) { 9667 Type *VecPhiType = VectorType::get(PhiType, State.VF); 9668 Value *StartOffsetScalar = 9669 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 9670 Value *StartOffset = 9671 State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 9672 // Create a vector of consecutive numbers from zero to VF. 9673 StartOffset = State.Builder.CreateAdd( 9674 StartOffset, State.Builder.CreateStepVector(VecPhiType)); 9675 9676 Value *GEP = State.Builder.CreateGEP( 9677 IndDesc.getElementType(), NewPointerPhi, 9678 State.Builder.CreateMul( 9679 StartOffset, 9680 State.Builder.CreateVectorSplat(State.VF, ScalarStepValue), 9681 "vector.gep")); 9682 State.set(this, GEP, Part); 9683 } 9684 } 9685 9686 void VPScalarIVStepsRecipe::execute(VPTransformState &State) { 9687 assert(!State.Instance && "VPScalarIVStepsRecipe being replicated."); 9688 9689 // Fast-math-flags propagate from the original induction instruction. 9690 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder); 9691 if (IndDesc.getInductionBinOp() && 9692 isa<FPMathOperator>(IndDesc.getInductionBinOp())) 9693 State.Builder.setFastMathFlags( 9694 IndDesc.getInductionBinOp()->getFastMathFlags()); 9695 9696 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9697 auto CreateScalarIV = [&](Value *&Step) -> Value * { 9698 Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0)); 9699 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9700 if (!isCanonical() || CanonicalIV->getType() != Ty) { 9701 ScalarIV = 9702 Ty->isIntegerTy() 9703 ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty) 9704 : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty); 9705 ScalarIV = emitTransformedIndex(State.Builder, ScalarIV, 9706 getStartValue()->getLiveInIRValue(), Step, 9707 IndDesc); 9708 ScalarIV->setName("offset.idx"); 9709 } 9710 if (TruncToTy) { 9711 assert(Step->getType()->isIntegerTy() && 9712 "Truncation requires an integer step"); 9713 ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy); 9714 Step = State.Builder.CreateTrunc(Step, TruncToTy); 9715 } 9716 return ScalarIV; 9717 }; 9718 9719 Value *ScalarIV = CreateScalarIV(Step); 9720 if (State.VF.isVector()) { 9721 buildScalarSteps(ScalarIV, Step, IndDesc, this, State); 9722 return; 9723 } 9724 9725 for (unsigned Part = 0; Part < State.UF; ++Part) { 9726 assert(!State.VF.isScalable() && "scalable vectors not yet supported."); 9727 Value *EntryPart; 9728 if (Step->getType()->isFloatingPointTy()) { 9729 Value *StartIdx = 9730 getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part); 9731 // Floating-point operations inherit FMF via the builder's flags. 9732 Value *MulOp = State.Builder.CreateFMul(StartIdx, Step); 9733 EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(), 9734 ScalarIV, MulOp); 9735 } else { 9736 Value *StartIdx = 9737 getRuntimeVF(State.Builder, Step->getType(), State.VF * Part); 9738 EntryPart = State.Builder.CreateAdd( 9739 ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction"); 9740 } 9741 State.set(this, EntryPart, Part); 9742 } 9743 } 9744 9745 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9746 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9747 State); 9748 } 9749 9750 void VPBlendRecipe::execute(VPTransformState &State) { 9751 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9752 // We know that all PHIs in non-header blocks are converted into 9753 // selects, so we don't have to worry about the insertion order and we 9754 // can just use the builder. 9755 // At this point we generate the predication tree. There may be 9756 // duplications since this is a simple recursive scan, but future 9757 // optimizations will clean it up. 9758 9759 unsigned NumIncoming = getNumIncomingValues(); 9760 9761 // Generate a sequence of selects of the form: 9762 // SELECT(Mask3, In3, 9763 // SELECT(Mask2, In2, 9764 // SELECT(Mask1, In1, 9765 // In0))) 9766 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9767 // are essentially undef are taken from In0. 9768 InnerLoopVectorizer::VectorParts Entry(State.UF); 9769 for (unsigned In = 0; In < NumIncoming; ++In) { 9770 for (unsigned Part = 0; Part < State.UF; ++Part) { 9771 // We might have single edge PHIs (blocks) - use an identity 9772 // 'select' for the first PHI operand. 9773 Value *In0 = State.get(getIncomingValue(In), Part); 9774 if (In == 0) 9775 Entry[Part] = In0; // Initialize with the first incoming value. 9776 else { 9777 // Select between the current value and the previous incoming edge 9778 // based on the incoming mask. 9779 Value *Cond = State.get(getMask(In), Part); 9780 Entry[Part] = 9781 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9782 } 9783 } 9784 } 9785 for (unsigned Part = 0; Part < State.UF; ++Part) 9786 State.set(this, Entry[Part], Part); 9787 } 9788 9789 void VPInterleaveRecipe::execute(VPTransformState &State) { 9790 assert(!State.Instance && "Interleave group being replicated."); 9791 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9792 getStoredValues(), getMask()); 9793 } 9794 9795 void VPReductionRecipe::execute(VPTransformState &State) { 9796 assert(!State.Instance && "Reduction being replicated."); 9797 Value *PrevInChain = State.get(getChainOp(), 0); 9798 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9799 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9800 // Propagate the fast-math flags carried by the underlying instruction. 9801 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9802 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9803 for (unsigned Part = 0; Part < State.UF; ++Part) { 9804 Value *NewVecOp = State.get(getVecOp(), Part); 9805 if (VPValue *Cond = getCondOp()) { 9806 Value *NewCond = State.get(Cond, Part); 9807 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9808 Value *Iden = RdxDesc->getRecurrenceIdentity( 9809 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9810 Value *IdenVec = 9811 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9812 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9813 NewVecOp = Select; 9814 } 9815 Value *NewRed; 9816 Value *NextInChain; 9817 if (IsOrdered) { 9818 if (State.VF.isVector()) 9819 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9820 PrevInChain); 9821 else 9822 NewRed = State.Builder.CreateBinOp( 9823 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9824 NewVecOp); 9825 PrevInChain = NewRed; 9826 } else { 9827 PrevInChain = State.get(getChainOp(), Part); 9828 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9829 } 9830 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9831 NextInChain = 9832 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9833 NewRed, PrevInChain); 9834 } else if (IsOrdered) 9835 NextInChain = NewRed; 9836 else 9837 NextInChain = State.Builder.CreateBinOp( 9838 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9839 PrevInChain); 9840 State.set(this, NextInChain, Part); 9841 } 9842 } 9843 9844 void VPReplicateRecipe::execute(VPTransformState &State) { 9845 if (State.Instance) { // Generate a single instance. 9846 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9847 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9848 IsPredicated, State); 9849 // Insert scalar instance packing it into a vector. 9850 if (AlsoPack && State.VF.isVector()) { 9851 // If we're constructing lane 0, initialize to start from poison. 9852 if (State.Instance->Lane.isFirstLane()) { 9853 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9854 Value *Poison = PoisonValue::get( 9855 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9856 State.set(this, Poison, State.Instance->Part); 9857 } 9858 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9859 } 9860 return; 9861 } 9862 9863 // Generate scalar instances for all VF lanes of all UF parts, unless the 9864 // instruction is uniform inwhich case generate only the first lane for each 9865 // of the UF parts. 9866 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9867 assert((!State.VF.isScalable() || IsUniform) && 9868 "Can't scalarize a scalable vector"); 9869 for (unsigned Part = 0; Part < State.UF; ++Part) 9870 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9871 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9872 VPIteration(Part, Lane), IsPredicated, 9873 State); 9874 } 9875 9876 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9877 assert(State.Instance && "Branch on Mask works only on single instance."); 9878 9879 unsigned Part = State.Instance->Part; 9880 unsigned Lane = State.Instance->Lane.getKnownLane(); 9881 9882 Value *ConditionBit = nullptr; 9883 VPValue *BlockInMask = getMask(); 9884 if (BlockInMask) { 9885 ConditionBit = State.get(BlockInMask, Part); 9886 if (ConditionBit->getType()->isVectorTy()) 9887 ConditionBit = State.Builder.CreateExtractElement( 9888 ConditionBit, State.Builder.getInt32(Lane)); 9889 } else // Block in mask is all-one. 9890 ConditionBit = State.Builder.getTrue(); 9891 9892 // Replace the temporary unreachable terminator with a new conditional branch, 9893 // whose two destinations will be set later when they are created. 9894 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9895 assert(isa<UnreachableInst>(CurrentTerminator) && 9896 "Expected to replace unreachable terminator with conditional branch."); 9897 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9898 CondBr->setSuccessor(0, nullptr); 9899 ReplaceInstWithInst(CurrentTerminator, CondBr); 9900 } 9901 9902 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9903 assert(State.Instance && "Predicated instruction PHI works per instance."); 9904 Instruction *ScalarPredInst = 9905 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9906 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9907 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9908 assert(PredicatingBB && "Predicated block has no single predecessor."); 9909 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9910 "operand must be VPReplicateRecipe"); 9911 9912 // By current pack/unpack logic we need to generate only a single phi node: if 9913 // a vector value for the predicated instruction exists at this point it means 9914 // the instruction has vector users only, and a phi for the vector value is 9915 // needed. In this case the recipe of the predicated instruction is marked to 9916 // also do that packing, thereby "hoisting" the insert-element sequence. 9917 // Otherwise, a phi node for the scalar value is needed. 9918 unsigned Part = State.Instance->Part; 9919 if (State.hasVectorValue(getOperand(0), Part)) { 9920 Value *VectorValue = State.get(getOperand(0), Part); 9921 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9922 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9923 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9924 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9925 if (State.hasVectorValue(this, Part)) 9926 State.reset(this, VPhi, Part); 9927 else 9928 State.set(this, VPhi, Part); 9929 // NOTE: Currently we need to update the value of the operand, so the next 9930 // predicated iteration inserts its generated value in the correct vector. 9931 State.reset(getOperand(0), VPhi, Part); 9932 } else { 9933 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9934 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9935 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9936 PredicatingBB); 9937 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9938 if (State.hasScalarValue(this, *State.Instance)) 9939 State.reset(this, Phi, *State.Instance); 9940 else 9941 State.set(this, Phi, *State.Instance); 9942 // NOTE: Currently we need to update the value of the operand, so the next 9943 // predicated iteration inserts its generated value in the correct vector. 9944 State.reset(getOperand(0), Phi, *State.Instance); 9945 } 9946 } 9947 9948 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9949 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9950 9951 // Attempt to issue a wide load. 9952 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9953 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9954 9955 assert((LI || SI) && "Invalid Load/Store instruction"); 9956 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9957 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9958 9959 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9960 9961 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9962 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9963 bool CreateGatherScatter = !Consecutive; 9964 9965 auto &Builder = State.Builder; 9966 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9967 bool isMaskRequired = getMask(); 9968 if (isMaskRequired) 9969 for (unsigned Part = 0; Part < State.UF; ++Part) 9970 BlockInMaskParts[Part] = State.get(getMask(), Part); 9971 9972 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9973 // Calculate the pointer for the specific unroll-part. 9974 GetElementPtrInst *PartPtr = nullptr; 9975 9976 bool InBounds = false; 9977 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9978 InBounds = gep->isInBounds(); 9979 if (Reverse) { 9980 // If the address is consecutive but reversed, then the 9981 // wide store needs to start at the last vector element. 9982 // RunTimeVF = VScale * VF.getKnownMinValue() 9983 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9984 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9985 // NumElt = -Part * RunTimeVF 9986 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9987 // LastLane = 1 - RunTimeVF 9988 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 9989 PartPtr = 9990 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 9991 PartPtr->setIsInBounds(InBounds); 9992 PartPtr = cast<GetElementPtrInst>( 9993 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 9994 PartPtr->setIsInBounds(InBounds); 9995 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 9996 BlockInMaskParts[Part] = 9997 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 9998 } else { 9999 Value *Increment = 10000 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 10001 PartPtr = cast<GetElementPtrInst>( 10002 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 10003 PartPtr->setIsInBounds(InBounds); 10004 } 10005 10006 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 10007 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 10008 }; 10009 10010 // Handle Stores: 10011 if (SI) { 10012 State.ILV->setDebugLocFromInst(SI); 10013 10014 for (unsigned Part = 0; Part < State.UF; ++Part) { 10015 Instruction *NewSI = nullptr; 10016 Value *StoredVal = State.get(StoredValue, Part); 10017 if (CreateGatherScatter) { 10018 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10019 Value *VectorGep = State.get(getAddr(), Part); 10020 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 10021 MaskPart); 10022 } else { 10023 if (Reverse) { 10024 // If we store to reverse consecutive memory locations, then we need 10025 // to reverse the order of elements in the stored value. 10026 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 10027 // We don't want to update the value in the map as it might be used in 10028 // another expression. So don't call resetVectorValue(StoredVal). 10029 } 10030 auto *VecPtr = 10031 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10032 if (isMaskRequired) 10033 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 10034 BlockInMaskParts[Part]); 10035 else 10036 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 10037 } 10038 State.ILV->addMetadata(NewSI, SI); 10039 } 10040 return; 10041 } 10042 10043 // Handle loads. 10044 assert(LI && "Must have a load instruction"); 10045 State.ILV->setDebugLocFromInst(LI); 10046 for (unsigned Part = 0; Part < State.UF; ++Part) { 10047 Value *NewLI; 10048 if (CreateGatherScatter) { 10049 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10050 Value *VectorGep = State.get(getAddr(), Part); 10051 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 10052 nullptr, "wide.masked.gather"); 10053 State.ILV->addMetadata(NewLI, LI); 10054 } else { 10055 auto *VecPtr = 10056 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10057 if (isMaskRequired) 10058 NewLI = Builder.CreateMaskedLoad( 10059 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 10060 PoisonValue::get(DataTy), "wide.masked.load"); 10061 else 10062 NewLI = 10063 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 10064 10065 // Add metadata to the load, but setVectorValue to the reverse shuffle. 10066 State.ILV->addMetadata(NewLI, LI); 10067 if (Reverse) 10068 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 10069 } 10070 10071 State.set(this, NewLI, Part); 10072 } 10073 } 10074 10075 // Determine how to lower the scalar epilogue, which depends on 1) optimising 10076 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 10077 // predication, and 4) a TTI hook that analyses whether the loop is suitable 10078 // for predication. 10079 static ScalarEpilogueLowering getScalarEpilogueLowering( 10080 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 10081 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 10082 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 10083 LoopVectorizationLegality &LVL) { 10084 // 1) OptSize takes precedence over all other options, i.e. if this is set, 10085 // don't look at hints or options, and don't request a scalar epilogue. 10086 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 10087 // LoopAccessInfo (due to code dependency and not being able to reliably get 10088 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 10089 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 10090 // versioning when the vectorization is forced, unlike hasOptSize. So revert 10091 // back to the old way and vectorize with versioning when forced. See D81345.) 10092 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 10093 PGSOQueryType::IRPass) && 10094 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 10095 return CM_ScalarEpilogueNotAllowedOptSize; 10096 10097 // 2) If set, obey the directives 10098 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 10099 switch (PreferPredicateOverEpilogue) { 10100 case PreferPredicateTy::ScalarEpilogue: 10101 return CM_ScalarEpilogueAllowed; 10102 case PreferPredicateTy::PredicateElseScalarEpilogue: 10103 return CM_ScalarEpilogueNotNeededUsePredicate; 10104 case PreferPredicateTy::PredicateOrDontVectorize: 10105 return CM_ScalarEpilogueNotAllowedUsePredicate; 10106 }; 10107 } 10108 10109 // 3) If set, obey the hints 10110 switch (Hints.getPredicate()) { 10111 case LoopVectorizeHints::FK_Enabled: 10112 return CM_ScalarEpilogueNotNeededUsePredicate; 10113 case LoopVectorizeHints::FK_Disabled: 10114 return CM_ScalarEpilogueAllowed; 10115 }; 10116 10117 // 4) if the TTI hook indicates this is profitable, request predication. 10118 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 10119 LVL.getLAI())) 10120 return CM_ScalarEpilogueNotNeededUsePredicate; 10121 10122 return CM_ScalarEpilogueAllowed; 10123 } 10124 10125 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 10126 // If Values have been set for this Def return the one relevant for \p Part. 10127 if (hasVectorValue(Def, Part)) 10128 return Data.PerPartOutput[Def][Part]; 10129 10130 if (!hasScalarValue(Def, {Part, 0})) { 10131 Value *IRV = Def->getLiveInIRValue(); 10132 Value *B = ILV->getBroadcastInstrs(IRV); 10133 set(Def, B, Part); 10134 return B; 10135 } 10136 10137 Value *ScalarValue = get(Def, {Part, 0}); 10138 // If we aren't vectorizing, we can just copy the scalar map values over 10139 // to the vector map. 10140 if (VF.isScalar()) { 10141 set(Def, ScalarValue, Part); 10142 return ScalarValue; 10143 } 10144 10145 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 10146 bool IsUniform = RepR && RepR->isUniform(); 10147 10148 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 10149 // Check if there is a scalar value for the selected lane. 10150 if (!hasScalarValue(Def, {Part, LastLane})) { 10151 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 10152 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) || 10153 isa<VPScalarIVStepsRecipe>(Def->getDef())) && 10154 "unexpected recipe found to be invariant"); 10155 IsUniform = true; 10156 LastLane = 0; 10157 } 10158 10159 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 10160 // Set the insert point after the last scalarized instruction or after the 10161 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 10162 // will directly follow the scalar definitions. 10163 auto OldIP = Builder.saveIP(); 10164 auto NewIP = 10165 isa<PHINode>(LastInst) 10166 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10167 : std::next(BasicBlock::iterator(LastInst)); 10168 Builder.SetInsertPoint(&*NewIP); 10169 10170 // However, if we are vectorizing, we need to construct the vector values. 10171 // If the value is known to be uniform after vectorization, we can just 10172 // broadcast the scalar value corresponding to lane zero for each unroll 10173 // iteration. Otherwise, we construct the vector values using 10174 // insertelement instructions. Since the resulting vectors are stored in 10175 // State, we will only generate the insertelements once. 10176 Value *VectorValue = nullptr; 10177 if (IsUniform) { 10178 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10179 set(Def, VectorValue, Part); 10180 } else { 10181 // Initialize packing with insertelements to start from undef. 10182 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10183 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10184 set(Def, Undef, Part); 10185 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10186 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10187 VectorValue = get(Def, Part); 10188 } 10189 Builder.restoreIP(OldIP); 10190 return VectorValue; 10191 } 10192 10193 // Process the loop in the VPlan-native vectorization path. This path builds 10194 // VPlan upfront in the vectorization pipeline, which allows to apply 10195 // VPlan-to-VPlan transformations from the very beginning without modifying the 10196 // input LLVM IR. 10197 static bool processLoopInVPlanNativePath( 10198 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10199 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10200 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10201 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10202 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10203 LoopVectorizationRequirements &Requirements) { 10204 10205 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10206 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10207 return false; 10208 } 10209 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10210 Function *F = L->getHeader()->getParent(); 10211 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10212 10213 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10214 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10215 10216 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10217 &Hints, IAI); 10218 // Use the planner for outer loop vectorization. 10219 // TODO: CM is not used at this point inside the planner. Turn CM into an 10220 // optional argument if we don't need it in the future. 10221 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10222 Requirements, ORE); 10223 10224 // Get user vectorization factor. 10225 ElementCount UserVF = Hints.getWidth(); 10226 10227 CM.collectElementTypesForWidening(); 10228 10229 // Plan how to best vectorize, return the best VF and its cost. 10230 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10231 10232 // If we are stress testing VPlan builds, do not attempt to generate vector 10233 // code. Masked vector code generation support will follow soon. 10234 // Also, do not attempt to vectorize if no vector code will be produced. 10235 if (VPlanBuildStressTest || EnableVPlanPredication || 10236 VectorizationFactor::Disabled() == VF) 10237 return false; 10238 10239 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10240 10241 { 10242 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10243 F->getParent()->getDataLayout()); 10244 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10245 &CM, BFI, PSI, Checks); 10246 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10247 << L->getHeader()->getParent()->getName() << "\"\n"); 10248 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT); 10249 } 10250 10251 // Mark the loop as already vectorized to avoid vectorizing again. 10252 Hints.setAlreadyVectorized(); 10253 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10254 return true; 10255 } 10256 10257 // Emit a remark if there are stores to floats that required a floating point 10258 // extension. If the vectorized loop was generated with floating point there 10259 // will be a performance penalty from the conversion overhead and the change in 10260 // the vector width. 10261 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10262 SmallVector<Instruction *, 4> Worklist; 10263 for (BasicBlock *BB : L->getBlocks()) { 10264 for (Instruction &Inst : *BB) { 10265 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10266 if (S->getValueOperand()->getType()->isFloatTy()) 10267 Worklist.push_back(S); 10268 } 10269 } 10270 } 10271 10272 // Traverse the floating point stores upwards searching, for floating point 10273 // conversions. 10274 SmallPtrSet<const Instruction *, 4> Visited; 10275 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10276 while (!Worklist.empty()) { 10277 auto *I = Worklist.pop_back_val(); 10278 if (!L->contains(I)) 10279 continue; 10280 if (!Visited.insert(I).second) 10281 continue; 10282 10283 // Emit a remark if the floating point store required a floating 10284 // point conversion. 10285 // TODO: More work could be done to identify the root cause such as a 10286 // constant or a function return type and point the user to it. 10287 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10288 ORE->emit([&]() { 10289 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10290 I->getDebugLoc(), L->getHeader()) 10291 << "floating point conversion changes vector width. " 10292 << "Mixed floating point precision requires an up/down " 10293 << "cast that will negatively impact performance."; 10294 }); 10295 10296 for (Use &Op : I->operands()) 10297 if (auto *OpI = dyn_cast<Instruction>(Op)) 10298 Worklist.push_back(OpI); 10299 } 10300 } 10301 10302 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10303 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10304 !EnableLoopInterleaving), 10305 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10306 !EnableLoopVectorization) {} 10307 10308 bool LoopVectorizePass::processLoop(Loop *L) { 10309 assert((EnableVPlanNativePath || L->isInnermost()) && 10310 "VPlan-native path is not enabled. Only process inner loops."); 10311 10312 #ifndef NDEBUG 10313 const std::string DebugLocStr = getDebugLocString(L); 10314 #endif /* NDEBUG */ 10315 10316 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '" 10317 << L->getHeader()->getParent()->getName() << "' from " 10318 << DebugLocStr << "\n"); 10319 10320 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10321 10322 LLVM_DEBUG( 10323 dbgs() << "LV: Loop hints:" 10324 << " force=" 10325 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10326 ? "disabled" 10327 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10328 ? "enabled" 10329 : "?")) 10330 << " width=" << Hints.getWidth() 10331 << " interleave=" << Hints.getInterleave() << "\n"); 10332 10333 // Function containing loop 10334 Function *F = L->getHeader()->getParent(); 10335 10336 // Looking at the diagnostic output is the only way to determine if a loop 10337 // was vectorized (other than looking at the IR or machine code), so it 10338 // is important to generate an optimization remark for each loop. Most of 10339 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10340 // generated as OptimizationRemark and OptimizationRemarkMissed are 10341 // less verbose reporting vectorized loops and unvectorized loops that may 10342 // benefit from vectorization, respectively. 10343 10344 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10345 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10346 return false; 10347 } 10348 10349 PredicatedScalarEvolution PSE(*SE, *L); 10350 10351 // Check if it is legal to vectorize the loop. 10352 LoopVectorizationRequirements Requirements; 10353 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10354 &Requirements, &Hints, DB, AC, BFI, PSI); 10355 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10356 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10357 Hints.emitRemarkWithHints(); 10358 return false; 10359 } 10360 10361 // Check the function attributes and profiles to find out if this function 10362 // should be optimized for size. 10363 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10364 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10365 10366 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10367 // here. They may require CFG and instruction level transformations before 10368 // even evaluating whether vectorization is profitable. Since we cannot modify 10369 // the incoming IR, we need to build VPlan upfront in the vectorization 10370 // pipeline. 10371 if (!L->isInnermost()) 10372 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10373 ORE, BFI, PSI, Hints, Requirements); 10374 10375 assert(L->isInnermost() && "Inner loop expected."); 10376 10377 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10378 // count by optimizing for size, to minimize overheads. 10379 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10380 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10381 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10382 << "This loop is worth vectorizing only if no scalar " 10383 << "iteration overheads are incurred."); 10384 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10385 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10386 else { 10387 LLVM_DEBUG(dbgs() << "\n"); 10388 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10389 } 10390 } 10391 10392 // Check the function attributes to see if implicit floats are allowed. 10393 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10394 // an integer loop and the vector instructions selected are purely integer 10395 // vector instructions? 10396 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10397 reportVectorizationFailure( 10398 "Can't vectorize when the NoImplicitFloat attribute is used", 10399 "loop not vectorized due to NoImplicitFloat attribute", 10400 "NoImplicitFloat", ORE, L); 10401 Hints.emitRemarkWithHints(); 10402 return false; 10403 } 10404 10405 // Check if the target supports potentially unsafe FP vectorization. 10406 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10407 // for the target we're vectorizing for, to make sure none of the 10408 // additional fp-math flags can help. 10409 if (Hints.isPotentiallyUnsafe() && 10410 TTI->isFPVectorizationPotentiallyUnsafe()) { 10411 reportVectorizationFailure( 10412 "Potentially unsafe FP op prevents vectorization", 10413 "loop not vectorized due to unsafe FP support.", 10414 "UnsafeFP", ORE, L); 10415 Hints.emitRemarkWithHints(); 10416 return false; 10417 } 10418 10419 bool AllowOrderedReductions; 10420 // If the flag is set, use that instead and override the TTI behaviour. 10421 if (ForceOrderedReductions.getNumOccurrences() > 0) 10422 AllowOrderedReductions = ForceOrderedReductions; 10423 else 10424 AllowOrderedReductions = TTI->enableOrderedReductions(); 10425 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10426 ORE->emit([&]() { 10427 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10428 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10429 ExactFPMathInst->getDebugLoc(), 10430 ExactFPMathInst->getParent()) 10431 << "loop not vectorized: cannot prove it is safe to reorder " 10432 "floating-point operations"; 10433 }); 10434 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10435 "reorder floating-point operations\n"); 10436 Hints.emitRemarkWithHints(); 10437 return false; 10438 } 10439 10440 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10441 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10442 10443 // If an override option has been passed in for interleaved accesses, use it. 10444 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10445 UseInterleaved = EnableInterleavedMemAccesses; 10446 10447 // Analyze interleaved memory accesses. 10448 if (UseInterleaved) { 10449 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10450 } 10451 10452 // Use the cost model. 10453 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10454 F, &Hints, IAI); 10455 CM.collectValuesToIgnore(); 10456 CM.collectElementTypesForWidening(); 10457 10458 // Use the planner for vectorization. 10459 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10460 Requirements, ORE); 10461 10462 // Get user vectorization factor and interleave count. 10463 ElementCount UserVF = Hints.getWidth(); 10464 unsigned UserIC = Hints.getInterleave(); 10465 10466 // Plan how to best vectorize, return the best VF and its cost. 10467 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10468 10469 VectorizationFactor VF = VectorizationFactor::Disabled(); 10470 unsigned IC = 1; 10471 10472 if (MaybeVF) { 10473 VF = *MaybeVF; 10474 // Select the interleave count. 10475 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10476 } 10477 10478 // Identify the diagnostic messages that should be produced. 10479 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10480 bool VectorizeLoop = true, InterleaveLoop = true; 10481 if (VF.Width.isScalar()) { 10482 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10483 VecDiagMsg = std::make_pair( 10484 "VectorizationNotBeneficial", 10485 "the cost-model indicates that vectorization is not beneficial"); 10486 VectorizeLoop = false; 10487 } 10488 10489 if (!MaybeVF && UserIC > 1) { 10490 // Tell the user interleaving was avoided up-front, despite being explicitly 10491 // requested. 10492 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10493 "interleaving should be avoided up front\n"); 10494 IntDiagMsg = std::make_pair( 10495 "InterleavingAvoided", 10496 "Ignoring UserIC, because interleaving was avoided up front"); 10497 InterleaveLoop = false; 10498 } else if (IC == 1 && UserIC <= 1) { 10499 // Tell the user interleaving is not beneficial. 10500 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10501 IntDiagMsg = std::make_pair( 10502 "InterleavingNotBeneficial", 10503 "the cost-model indicates that interleaving is not beneficial"); 10504 InterleaveLoop = false; 10505 if (UserIC == 1) { 10506 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10507 IntDiagMsg.second += 10508 " and is explicitly disabled or interleave count is set to 1"; 10509 } 10510 } else if (IC > 1 && UserIC == 1) { 10511 // Tell the user interleaving is beneficial, but it explicitly disabled. 10512 LLVM_DEBUG( 10513 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10514 IntDiagMsg = std::make_pair( 10515 "InterleavingBeneficialButDisabled", 10516 "the cost-model indicates that interleaving is beneficial " 10517 "but is explicitly disabled or interleave count is set to 1"); 10518 InterleaveLoop = false; 10519 } 10520 10521 // Override IC if user provided an interleave count. 10522 IC = UserIC > 0 ? UserIC : IC; 10523 10524 // Emit diagnostic messages, if any. 10525 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10526 if (!VectorizeLoop && !InterleaveLoop) { 10527 // Do not vectorize or interleaving the loop. 10528 ORE->emit([&]() { 10529 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10530 L->getStartLoc(), L->getHeader()) 10531 << VecDiagMsg.second; 10532 }); 10533 ORE->emit([&]() { 10534 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10535 L->getStartLoc(), L->getHeader()) 10536 << IntDiagMsg.second; 10537 }); 10538 return false; 10539 } else if (!VectorizeLoop && InterleaveLoop) { 10540 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10541 ORE->emit([&]() { 10542 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10543 L->getStartLoc(), L->getHeader()) 10544 << VecDiagMsg.second; 10545 }); 10546 } else if (VectorizeLoop && !InterleaveLoop) { 10547 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10548 << ") in " << DebugLocStr << '\n'); 10549 ORE->emit([&]() { 10550 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10551 L->getStartLoc(), L->getHeader()) 10552 << IntDiagMsg.second; 10553 }); 10554 } else if (VectorizeLoop && InterleaveLoop) { 10555 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10556 << ") in " << DebugLocStr << '\n'); 10557 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10558 } 10559 10560 bool DisableRuntimeUnroll = false; 10561 MDNode *OrigLoopID = L->getLoopID(); 10562 { 10563 // Optimistically generate runtime checks. Drop them if they turn out to not 10564 // be profitable. Limit the scope of Checks, so the cleanup happens 10565 // immediately after vector codegeneration is done. 10566 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10567 F->getParent()->getDataLayout()); 10568 if (!VF.Width.isScalar() || IC > 1) 10569 Checks.Create(L, *LVL.getLAI(), PSE.getPredicate()); 10570 10571 using namespace ore; 10572 if (!VectorizeLoop) { 10573 assert(IC > 1 && "interleave count should not be 1 or 0"); 10574 // If we decided that it is not legal to vectorize the loop, then 10575 // interleave it. 10576 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10577 &CM, BFI, PSI, Checks); 10578 10579 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10580 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT); 10581 10582 ORE->emit([&]() { 10583 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10584 L->getHeader()) 10585 << "interleaved loop (interleaved count: " 10586 << NV("InterleaveCount", IC) << ")"; 10587 }); 10588 } else { 10589 // If we decided that it is *legal* to vectorize the loop, then do it. 10590 10591 // Consider vectorizing the epilogue too if it's profitable. 10592 VectorizationFactor EpilogueVF = 10593 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10594 if (EpilogueVF.Width.isVector()) { 10595 10596 // The first pass vectorizes the main loop and creates a scalar epilogue 10597 // to be vectorized by executing the plan (potentially with a different 10598 // factor) again shortly afterwards. 10599 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10600 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10601 EPI, &LVL, &CM, BFI, PSI, Checks); 10602 10603 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10604 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10605 DT); 10606 ++LoopsVectorized; 10607 10608 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10609 formLCSSARecursively(*L, *DT, LI, SE); 10610 10611 // Second pass vectorizes the epilogue and adjusts the control flow 10612 // edges from the first pass. 10613 EPI.MainLoopVF = EPI.EpilogueVF; 10614 EPI.MainLoopUF = EPI.EpilogueUF; 10615 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10616 ORE, EPI, &LVL, &CM, BFI, PSI, 10617 Checks); 10618 10619 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10620 BestEpiPlan.getVectorLoopRegion()->getEntryBasicBlock()->setName( 10621 "vec.epilog.vector.body"); 10622 10623 // Ensure that the start values for any VPReductionPHIRecipes are 10624 // updated before vectorising the epilogue loop. 10625 VPBasicBlock *Header = 10626 BestEpiPlan.getVectorLoopRegion()->getEntryBasicBlock(); 10627 for (VPRecipeBase &R : Header->phis()) { 10628 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { 10629 if (auto *Resume = MainILV.getReductionResumeValue( 10630 ReductionPhi->getRecurrenceDescriptor())) { 10631 VPValue *StartVal = BestEpiPlan.getOrAddExternalDef(Resume); 10632 ReductionPhi->setOperand(0, StartVal); 10633 } 10634 } 10635 } 10636 10637 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10638 DT); 10639 ++LoopsEpilogueVectorized; 10640 10641 if (!MainILV.areSafetyChecksAdded()) 10642 DisableRuntimeUnroll = true; 10643 } else { 10644 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10645 &LVL, &CM, BFI, PSI, Checks); 10646 10647 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10648 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT); 10649 ++LoopsVectorized; 10650 10651 // Add metadata to disable runtime unrolling a scalar loop when there 10652 // are no runtime checks about strides and memory. A scalar loop that is 10653 // rarely used is not worth unrolling. 10654 if (!LB.areSafetyChecksAdded()) 10655 DisableRuntimeUnroll = true; 10656 } 10657 // Report the vectorization decision. 10658 ORE->emit([&]() { 10659 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10660 L->getHeader()) 10661 << "vectorized loop (vectorization width: " 10662 << NV("VectorizationFactor", VF.Width) 10663 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10664 }); 10665 } 10666 10667 if (ORE->allowExtraAnalysis(LV_NAME)) 10668 checkMixedPrecision(L, ORE); 10669 } 10670 10671 Optional<MDNode *> RemainderLoopID = 10672 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10673 LLVMLoopVectorizeFollowupEpilogue}); 10674 if (RemainderLoopID.hasValue()) { 10675 L->setLoopID(RemainderLoopID.getValue()); 10676 } else { 10677 if (DisableRuntimeUnroll) 10678 AddRuntimeUnrollDisableMetaData(L); 10679 10680 // Mark the loop as already vectorized to avoid vectorizing again. 10681 Hints.setAlreadyVectorized(); 10682 } 10683 10684 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10685 return true; 10686 } 10687 10688 LoopVectorizeResult LoopVectorizePass::runImpl( 10689 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10690 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10691 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10692 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10693 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10694 SE = &SE_; 10695 LI = &LI_; 10696 TTI = &TTI_; 10697 DT = &DT_; 10698 BFI = &BFI_; 10699 TLI = TLI_; 10700 AA = &AA_; 10701 AC = &AC_; 10702 GetLAA = &GetLAA_; 10703 DB = &DB_; 10704 ORE = &ORE_; 10705 PSI = PSI_; 10706 10707 // Don't attempt if 10708 // 1. the target claims to have no vector registers, and 10709 // 2. interleaving won't help ILP. 10710 // 10711 // The second condition is necessary because, even if the target has no 10712 // vector registers, loop vectorization may still enable scalar 10713 // interleaving. 10714 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10715 TTI->getMaxInterleaveFactor(1) < 2) 10716 return LoopVectorizeResult(false, false); 10717 10718 bool Changed = false, CFGChanged = false; 10719 10720 // The vectorizer requires loops to be in simplified form. 10721 // Since simplification may add new inner loops, it has to run before the 10722 // legality and profitability checks. This means running the loop vectorizer 10723 // will simplify all loops, regardless of whether anything end up being 10724 // vectorized. 10725 for (auto &L : *LI) 10726 Changed |= CFGChanged |= 10727 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10728 10729 // Build up a worklist of inner-loops to vectorize. This is necessary as 10730 // the act of vectorizing or partially unrolling a loop creates new loops 10731 // and can invalidate iterators across the loops. 10732 SmallVector<Loop *, 8> Worklist; 10733 10734 for (Loop *L : *LI) 10735 collectSupportedLoops(*L, LI, ORE, Worklist); 10736 10737 LoopsAnalyzed += Worklist.size(); 10738 10739 // Now walk the identified inner loops. 10740 while (!Worklist.empty()) { 10741 Loop *L = Worklist.pop_back_val(); 10742 10743 // For the inner loops we actually process, form LCSSA to simplify the 10744 // transform. 10745 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10746 10747 Changed |= CFGChanged |= processLoop(L); 10748 } 10749 10750 // Process each loop nest in the function. 10751 return LoopVectorizeResult(Changed, CFGChanged); 10752 } 10753 10754 PreservedAnalyses LoopVectorizePass::run(Function &F, 10755 FunctionAnalysisManager &AM) { 10756 auto &LI = AM.getResult<LoopAnalysis>(F); 10757 // There are no loops in the function. Return before computing other expensive 10758 // analyses. 10759 if (LI.empty()) 10760 return PreservedAnalyses::all(); 10761 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10762 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10763 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10764 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10765 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10766 auto &AA = AM.getResult<AAManager>(F); 10767 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10768 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10769 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10770 10771 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10772 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10773 [&](Loop &L) -> const LoopAccessInfo & { 10774 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10775 TLI, TTI, nullptr, nullptr, nullptr}; 10776 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10777 }; 10778 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10779 ProfileSummaryInfo *PSI = 10780 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10781 LoopVectorizeResult Result = 10782 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10783 if (!Result.MadeAnyChange) 10784 return PreservedAnalyses::all(); 10785 PreservedAnalyses PA; 10786 10787 // We currently do not preserve loopinfo/dominator analyses with outer loop 10788 // vectorization. Until this is addressed, mark these analyses as preserved 10789 // only for non-VPlan-native path. 10790 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10791 if (!EnableVPlanNativePath) { 10792 PA.preserve<LoopAnalysis>(); 10793 PA.preserve<DominatorTreeAnalysis>(); 10794 } 10795 10796 if (Result.MadeCFGChange) { 10797 // Making CFG changes likely means a loop got vectorized. Indicate that 10798 // extra simplification passes should be run. 10799 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10800 // be run if runtime checks have been added. 10801 AM.getResult<ShouldRunExtraVectorPasses>(F); 10802 PA.preserve<ShouldRunExtraVectorPasses>(); 10803 } else { 10804 PA.preserveSet<CFGAnalyses>(); 10805 } 10806 return PA; 10807 } 10808 10809 void LoopVectorizePass::printPipeline( 10810 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10811 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10812 OS, MapClassName2PassName); 10813 10814 OS << "<"; 10815 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10816 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10817 OS << ">"; 10818 } 10819