1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallVector.h"
74 #include "llvm/ADT/Statistic.h"
75 #include "llvm/ADT/StringRef.h"
76 #include "llvm/ADT/Twine.h"
77 #include "llvm/ADT/iterator_range.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/BasicAliasAnalysis.h"
80 #include "llvm/Analysis/BlockFrequencyInfo.h"
81 #include "llvm/Analysis/CFG.h"
82 #include "llvm/Analysis/CodeMetrics.h"
83 #include "llvm/Analysis/DemandedBits.h"
84 #include "llvm/Analysis/GlobalsModRef.h"
85 #include "llvm/Analysis/LoopAccessAnalysis.h"
86 #include "llvm/Analysis/LoopAnalysisManager.h"
87 #include "llvm/Analysis/LoopInfo.h"
88 #include "llvm/Analysis/LoopIterator.h"
89 #include "llvm/Analysis/MemorySSA.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 /// The number of stores in a loop that are allowed to need predication.
311 static cl::opt<unsigned> NumberOfStoresToPredicate(
312     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
313     cl::desc("Max number of stores to be predicated behind an if."));
314 
315 static cl::opt<bool> EnableIndVarRegisterHeur(
316     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
317     cl::desc("Count the induction variable only once when interleaving"));
318 
319 static cl::opt<bool> EnableCondStoresVectorization(
320     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
321     cl::desc("Enable if predication of stores during vectorization."));
322 
323 static cl::opt<unsigned> MaxNestedScalarReductionIC(
324     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
325     cl::desc("The maximum interleave count to use when interleaving a scalar "
326              "reduction in a nested loop."));
327 
328 static cl::opt<bool>
329     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
330                            cl::Hidden,
331                            cl::desc("Prefer in-loop vector reductions, "
332                                     "overriding the targets preference."));
333 
334 cl::opt<bool> EnableStrictReductions(
335     "enable-strict-reductions", cl::init(false), cl::Hidden,
336     cl::desc("Enable the vectorisation of loops with in-order (strict) "
337              "FP reductions"));
338 
339 static cl::opt<bool> PreferPredicatedReductionSelect(
340     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
341     cl::desc(
342         "Prefer predicating a reduction operation over an after loop select."));
343 
344 cl::opt<bool> EnableVPlanNativePath(
345     "enable-vplan-native-path", cl::init(false), cl::Hidden,
346     cl::desc("Enable VPlan-native vectorization path with "
347              "support for outer loop vectorization."));
348 
349 // FIXME: Remove this switch once we have divergence analysis. Currently we
350 // assume divergent non-backedge branches when this switch is true.
351 cl::opt<bool> EnableVPlanPredication(
352     "enable-vplan-predication", cl::init(false), cl::Hidden,
353     cl::desc("Enable VPlan-native vectorization path predicator with "
354              "support for outer loop vectorization."));
355 
356 // This flag enables the stress testing of the VPlan H-CFG construction in the
357 // VPlan-native vectorization path. It must be used in conjuction with
358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
359 // verification of the H-CFGs built.
360 static cl::opt<bool> VPlanBuildStressTest(
361     "vplan-build-stress-test", cl::init(false), cl::Hidden,
362     cl::desc(
363         "Build VPlan for every supported loop nest in the function and bail "
364         "out right after the build (stress test the VPlan H-CFG construction "
365         "in the VPlan-native vectorization path)."));
366 
367 cl::opt<bool> llvm::EnableLoopInterleaving(
368     "interleave-loops", cl::init(true), cl::Hidden,
369     cl::desc("Enable loop interleaving in Loop vectorization passes"));
370 cl::opt<bool> llvm::EnableLoopVectorization(
371     "vectorize-loops", cl::init(true), cl::Hidden,
372     cl::desc("Run the Loop vectorization passes"));
373 
374 cl::opt<bool> PrintVPlansInDotFormat(
375     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
376     cl::desc("Use dot format instead of plain text when dumping VPlans"));
377 
378 /// A helper function that returns the type of loaded or stored value.
379 static Type *getMemInstValueType(Value *I) {
380   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
381          "Expected Load or Store instruction");
382   if (auto *LI = dyn_cast<LoadInst>(I))
383     return LI->getType();
384   return cast<StoreInst>(I)->getValueOperand()->getType();
385 }
386 
387 /// A helper function that returns true if the given type is irregular. The
388 /// type is irregular if its allocated size doesn't equal the store size of an
389 /// element of the corresponding vector type.
390 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
391   // Determine if an array of N elements of type Ty is "bitcast compatible"
392   // with a <N x Ty> vector.
393   // This is only true if there is no padding between the array elements.
394   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
395 }
396 
397 /// A helper function that returns the reciprocal of the block probability of
398 /// predicated blocks. If we return X, we are assuming the predicated block
399 /// will execute once for every X iterations of the loop header.
400 ///
401 /// TODO: We should use actual block probability here, if available. Currently,
402 ///       we always assume predicated blocks have a 50% chance of executing.
403 static unsigned getReciprocalPredBlockProb() { return 2; }
404 
405 /// A helper function that returns an integer or floating-point constant with
406 /// value C.
407 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
408   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
409                            : ConstantFP::get(Ty, C);
410 }
411 
412 /// Returns "best known" trip count for the specified loop \p L as defined by
413 /// the following procedure:
414 ///   1) Returns exact trip count if it is known.
415 ///   2) Returns expected trip count according to profile data if any.
416 ///   3) Returns upper bound estimate if it is known.
417 ///   4) Returns None if all of the above failed.
418 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
419   // Check if exact trip count is known.
420   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
421     return ExpectedTC;
422 
423   // Check if there is an expected trip count available from profile data.
424   if (LoopVectorizeWithBlockFrequency)
425     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
426       return EstimatedTC;
427 
428   // Check if upper bound estimate is known.
429   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
430     return ExpectedTC;
431 
432   return None;
433 }
434 
435 // Forward declare GeneratedRTChecks.
436 class GeneratedRTChecks;
437 
438 namespace llvm {
439 
440 /// InnerLoopVectorizer vectorizes loops which contain only one basic
441 /// block to a specified vectorization factor (VF).
442 /// This class performs the widening of scalars into vectors, or multiple
443 /// scalars. This class also implements the following features:
444 /// * It inserts an epilogue loop for handling loops that don't have iteration
445 ///   counts that are known to be a multiple of the vectorization factor.
446 /// * It handles the code generation for reduction variables.
447 /// * Scalarization (implementation using scalars) of un-vectorizable
448 ///   instructions.
449 /// InnerLoopVectorizer does not perform any vectorization-legality
450 /// checks, and relies on the caller to check for the different legality
451 /// aspects. The InnerLoopVectorizer relies on the
452 /// LoopVectorizationLegality class to provide information about the induction
453 /// and reduction variables that were found to a given vectorization factor.
454 class InnerLoopVectorizer {
455 public:
456   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
457                       LoopInfo *LI, DominatorTree *DT,
458                       const TargetLibraryInfo *TLI,
459                       const TargetTransformInfo *TTI, AssumptionCache *AC,
460                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
461                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
462                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
463                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
464       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
465         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
466         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
467         PSI(PSI), RTChecks(RTChecks) {
468     // Query this against the original loop and save it here because the profile
469     // of the original loop header may change as the transformation happens.
470     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
471         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
472   }
473 
474   virtual ~InnerLoopVectorizer() = default;
475 
476   /// Create a new empty loop that will contain vectorized instructions later
477   /// on, while the old loop will be used as the scalar remainder. Control flow
478   /// is generated around the vectorized (and scalar epilogue) loops consisting
479   /// of various checks and bypasses. Return the pre-header block of the new
480   /// loop.
481   /// In the case of epilogue vectorization, this function is overriden to
482   /// handle the more complex control flow around the loops.
483   virtual BasicBlock *createVectorizedLoopSkeleton();
484 
485   /// Widen a single instruction within the innermost loop.
486   void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
487                         VPTransformState &State);
488 
489   /// Widen a single call instruction within the innermost loop.
490   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
491                             VPTransformState &State);
492 
493   /// Widen a single select instruction within the innermost loop.
494   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
495                               bool InvariantCond, VPTransformState &State);
496 
497   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
498   void fixVectorizedLoop(VPTransformState &State);
499 
500   // Return true if any runtime check is added.
501   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
502 
503   /// A type for vectorized values in the new loop. Each value from the
504   /// original loop, when vectorized, is represented by UF vector values in the
505   /// new unrolled loop, where UF is the unroll factor.
506   using VectorParts = SmallVector<Value *, 2>;
507 
508   /// Vectorize a single GetElementPtrInst based on information gathered and
509   /// decisions taken during planning.
510   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
511                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
512                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
513 
514   /// Vectorize a single PHINode in a block. This method handles the induction
515   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
516   /// arbitrary length vectors.
517   void widenPHIInstruction(Instruction *PN, RecurrenceDescriptor *RdxDesc,
518                            VPWidenPHIRecipe *PhiR, VPTransformState &State);
519 
520   /// A helper function to scalarize a single Instruction in the innermost loop.
521   /// Generates a sequence of scalar instances for each lane between \p MinLane
522   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
523   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
524   /// Instr's operands.
525   void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands,
526                             const VPIteration &Instance, bool IfPredicateInstr,
527                             VPTransformState &State);
528 
529   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
530   /// is provided, the integer induction variable will first be truncated to
531   /// the corresponding type.
532   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
533                              VPValue *Def, VPValue *CastDef,
534                              VPTransformState &State);
535 
536   /// Construct the vector value of a scalarized value \p V one lane at a time.
537   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
538                                  VPTransformState &State);
539 
540   /// Try to vectorize interleaved access group \p Group with the base address
541   /// given in \p Addr, optionally masking the vector operations if \p
542   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
543   /// values in the vectorized loop.
544   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
545                                 ArrayRef<VPValue *> VPDefs,
546                                 VPTransformState &State, VPValue *Addr,
547                                 ArrayRef<VPValue *> StoredValues,
548                                 VPValue *BlockInMask = nullptr);
549 
550   /// Vectorize Load and Store instructions with the base address given in \p
551   /// Addr, optionally masking the vector operations if \p BlockInMask is
552   /// non-null. Use \p State to translate given VPValues to IR values in the
553   /// vectorized loop.
554   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
555                                   VPValue *Def, VPValue *Addr,
556                                   VPValue *StoredValue, VPValue *BlockInMask);
557 
558   /// Set the debug location in the builder using the debug location in
559   /// the instruction.
560   void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);
561 
562   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
563   void fixNonInductionPHIs(VPTransformState &State);
564 
565   /// Create a broadcast instruction. This method generates a broadcast
566   /// instruction (shuffle) for loop invariant values and for the induction
567   /// value. If this is the induction variable then we extend it to N, N+1, ...
568   /// this is needed because each iteration in the loop corresponds to a SIMD
569   /// element.
570   virtual Value *getBroadcastInstrs(Value *V);
571 
572 protected:
573   friend class LoopVectorizationPlanner;
574 
575   /// A small list of PHINodes.
576   using PhiVector = SmallVector<PHINode *, 4>;
577 
578   /// A type for scalarized values in the new loop. Each value from the
579   /// original loop, when scalarized, is represented by UF x VF scalar values
580   /// in the new unrolled loop, where UF is the unroll factor and VF is the
581   /// vectorization factor.
582   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
583 
584   /// Set up the values of the IVs correctly when exiting the vector loop.
585   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
586                     Value *CountRoundDown, Value *EndValue,
587                     BasicBlock *MiddleBlock);
588 
589   /// Create a new induction variable inside L.
590   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
591                                    Value *Step, Instruction *DL);
592 
593   /// Handle all cross-iteration phis in the header.
594   void fixCrossIterationPHIs(VPTransformState &State);
595 
596   /// Fix a first-order recurrence. This is the second phase of vectorizing
597   /// this phi node.
598   void fixFirstOrderRecurrence(PHINode *Phi, VPTransformState &State);
599 
600   /// Fix a reduction cross-iteration phi. This is the second phase of
601   /// vectorizing this phi node.
602   void fixReduction(PHINode *Phi, VPTransformState &State);
603 
604   /// Clear NSW/NUW flags from reduction instructions if necessary.
605   void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc,
606                                VPTransformState &State);
607 
608   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
609   /// means we need to add the appropriate incoming value from the middle
610   /// block as exiting edges from the scalar epilogue loop (if present) are
611   /// already in place, and we exit the vector loop exclusively to the middle
612   /// block.
613   void fixLCSSAPHIs(VPTransformState &State);
614 
615   /// Iteratively sink the scalarized operands of a predicated instruction into
616   /// the block that was created for it.
617   void sinkScalarOperands(Instruction *PredInst);
618 
619   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
620   /// represented as.
621   void truncateToMinimalBitwidths(VPTransformState &State);
622 
623   /// This function adds
624   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
625   /// to each vector element of Val. The sequence starts at StartIndex.
626   /// \p Opcode is relevant for FP induction variable.
627   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
628                                Instruction::BinaryOps Opcode =
629                                Instruction::BinaryOpsEnd);
630 
631   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
632   /// variable on which to base the steps, \p Step is the size of the step, and
633   /// \p EntryVal is the value from the original loop that maps to the steps.
634   /// Note that \p EntryVal doesn't have to be an induction variable - it
635   /// can also be a truncate instruction.
636   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
637                         const InductionDescriptor &ID, VPValue *Def,
638                         VPValue *CastDef, VPTransformState &State);
639 
640   /// Create a vector induction phi node based on an existing scalar one. \p
641   /// EntryVal is the value from the original loop that maps to the vector phi
642   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
643   /// truncate instruction, instead of widening the original IV, we widen a
644   /// version of the IV truncated to \p EntryVal's type.
645   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
646                                        Value *Step, Value *Start,
647                                        Instruction *EntryVal, VPValue *Def,
648                                        VPValue *CastDef,
649                                        VPTransformState &State);
650 
651   /// Returns true if an instruction \p I should be scalarized instead of
652   /// vectorized for the chosen vectorization factor.
653   bool shouldScalarizeInstruction(Instruction *I) const;
654 
655   /// Returns true if we should generate a scalar version of \p IV.
656   bool needsScalarInduction(Instruction *IV) const;
657 
658   /// If there is a cast involved in the induction variable \p ID, which should
659   /// be ignored in the vectorized loop body, this function records the
660   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
661   /// cast. We had already proved that the casted Phi is equal to the uncasted
662   /// Phi in the vectorized loop (under a runtime guard), and therefore
663   /// there is no need to vectorize the cast - the same value can be used in the
664   /// vector loop for both the Phi and the cast.
665   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
666   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
667   ///
668   /// \p EntryVal is the value from the original loop that maps to the vector
669   /// phi node and is used to distinguish what is the IV currently being
670   /// processed - original one (if \p EntryVal is a phi corresponding to the
671   /// original IV) or the "newly-created" one based on the proof mentioned above
672   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
673   /// latter case \p EntryVal is a TruncInst and we must not record anything for
674   /// that IV, but it's error-prone to expect callers of this routine to care
675   /// about that, hence this explicit parameter.
676   void recordVectorLoopValueForInductionCast(
677       const InductionDescriptor &ID, const Instruction *EntryVal,
678       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
679       unsigned Part, unsigned Lane = UINT_MAX);
680 
681   /// Generate a shuffle sequence that will reverse the vector Vec.
682   virtual Value *reverseVector(Value *Vec);
683 
684   /// Returns (and creates if needed) the original loop trip count.
685   Value *getOrCreateTripCount(Loop *NewLoop);
686 
687   /// Returns (and creates if needed) the trip count of the widened loop.
688   Value *getOrCreateVectorTripCount(Loop *NewLoop);
689 
690   /// Returns a bitcasted value to the requested vector type.
691   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
692   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
693                                 const DataLayout &DL);
694 
695   /// Emit a bypass check to see if the vector trip count is zero, including if
696   /// it overflows.
697   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
698 
699   /// Emit a bypass check to see if all of the SCEV assumptions we've
700   /// had to make are correct. Returns the block containing the checks or
701   /// nullptr if no checks have been added.
702   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
703 
704   /// Emit bypass checks to check any memory assumptions we may have made.
705   /// Returns the block containing the checks or nullptr if no checks have been
706   /// added.
707   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
708 
709   /// Compute the transformed value of Index at offset StartValue using step
710   /// StepValue.
711   /// For integer induction, returns StartValue + Index * StepValue.
712   /// For pointer induction, returns StartValue[Index * StepValue].
713   /// FIXME: The newly created binary instructions should contain nsw/nuw
714   /// flags, which can be found from the original scalar operations.
715   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
716                               const DataLayout &DL,
717                               const InductionDescriptor &ID) const;
718 
719   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
720   /// vector loop preheader, middle block and scalar preheader. Also
721   /// allocate a loop object for the new vector loop and return it.
722   Loop *createVectorLoopSkeleton(StringRef Prefix);
723 
724   /// Create new phi nodes for the induction variables to resume iteration count
725   /// in the scalar epilogue, from where the vectorized loop left off (given by
726   /// \p VectorTripCount).
727   /// In cases where the loop skeleton is more complicated (eg. epilogue
728   /// vectorization) and the resume values can come from an additional bypass
729   /// block, the \p AdditionalBypass pair provides information about the bypass
730   /// block and the end value on the edge from bypass to this loop.
731   void createInductionResumeValues(
732       Loop *L, Value *VectorTripCount,
733       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
734 
735   /// Complete the loop skeleton by adding debug MDs, creating appropriate
736   /// conditional branches in the middle block, preparing the builder and
737   /// running the verifier. Take in the vector loop \p L as argument, and return
738   /// the preheader of the completed vector loop.
739   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
740 
741   /// Add additional metadata to \p To that was not present on \p Orig.
742   ///
743   /// Currently this is used to add the noalias annotations based on the
744   /// inserted memchecks.  Use this for instructions that are *cloned* into the
745   /// vector loop.
746   void addNewMetadata(Instruction *To, const Instruction *Orig);
747 
748   /// Add metadata from one instruction to another.
749   ///
750   /// This includes both the original MDs from \p From and additional ones (\see
751   /// addNewMetadata).  Use this for *newly created* instructions in the vector
752   /// loop.
753   void addMetadata(Instruction *To, Instruction *From);
754 
755   /// Similar to the previous function but it adds the metadata to a
756   /// vector of instructions.
757   void addMetadata(ArrayRef<Value *> To, Instruction *From);
758 
759   /// Allow subclasses to override and print debug traces before/after vplan
760   /// execution, when trace information is requested.
761   virtual void printDebugTracesAtStart(){};
762   virtual void printDebugTracesAtEnd(){};
763 
764   /// The original loop.
765   Loop *OrigLoop;
766 
767   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
768   /// dynamic knowledge to simplify SCEV expressions and converts them to a
769   /// more usable form.
770   PredicatedScalarEvolution &PSE;
771 
772   /// Loop Info.
773   LoopInfo *LI;
774 
775   /// Dominator Tree.
776   DominatorTree *DT;
777 
778   /// Alias Analysis.
779   AAResults *AA;
780 
781   /// Target Library Info.
782   const TargetLibraryInfo *TLI;
783 
784   /// Target Transform Info.
785   const TargetTransformInfo *TTI;
786 
787   /// Assumption Cache.
788   AssumptionCache *AC;
789 
790   /// Interface to emit optimization remarks.
791   OptimizationRemarkEmitter *ORE;
792 
793   /// LoopVersioning.  It's only set up (non-null) if memchecks were
794   /// used.
795   ///
796   /// This is currently only used to add no-alias metadata based on the
797   /// memchecks.  The actually versioning is performed manually.
798   std::unique_ptr<LoopVersioning> LVer;
799 
800   /// The vectorization SIMD factor to use. Each vector will have this many
801   /// vector elements.
802   ElementCount VF;
803 
804   /// The vectorization unroll factor to use. Each scalar is vectorized to this
805   /// many different vector instructions.
806   unsigned UF;
807 
808   /// The builder that we use
809   IRBuilder<> Builder;
810 
811   // --- Vectorization state ---
812 
813   /// The vector-loop preheader.
814   BasicBlock *LoopVectorPreHeader;
815 
816   /// The scalar-loop preheader.
817   BasicBlock *LoopScalarPreHeader;
818 
819   /// Middle Block between the vector and the scalar.
820   BasicBlock *LoopMiddleBlock;
821 
822   /// The (unique) ExitBlock of the scalar loop.  Note that
823   /// there can be multiple exiting edges reaching this block.
824   BasicBlock *LoopExitBlock;
825 
826   /// The vector loop body.
827   BasicBlock *LoopVectorBody;
828 
829   /// The scalar loop body.
830   BasicBlock *LoopScalarBody;
831 
832   /// A list of all bypass blocks. The first block is the entry of the loop.
833   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
834 
835   /// The new Induction variable which was added to the new block.
836   PHINode *Induction = nullptr;
837 
838   /// The induction variable of the old basic block.
839   PHINode *OldInduction = nullptr;
840 
841   /// Store instructions that were predicated.
842   SmallVector<Instruction *, 4> PredicatedInstructions;
843 
844   /// Trip count of the original loop.
845   Value *TripCount = nullptr;
846 
847   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
848   Value *VectorTripCount = nullptr;
849 
850   /// The legality analysis.
851   LoopVectorizationLegality *Legal;
852 
853   /// The profitablity analysis.
854   LoopVectorizationCostModel *Cost;
855 
856   // Record whether runtime checks are added.
857   bool AddedSafetyChecks = false;
858 
859   // Holds the end values for each induction variable. We save the end values
860   // so we can later fix-up the external users of the induction variables.
861   DenseMap<PHINode *, Value *> IVEndValues;
862 
863   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
864   // fixed up at the end of vector code generation.
865   SmallVector<PHINode *, 8> OrigPHIsToFix;
866 
867   /// BFI and PSI are used to check for profile guided size optimizations.
868   BlockFrequencyInfo *BFI;
869   ProfileSummaryInfo *PSI;
870 
871   // Whether this loop should be optimized for size based on profile guided size
872   // optimizatios.
873   bool OptForSizeBasedOnProfile;
874 
875   /// Structure to hold information about generated runtime checks, responsible
876   /// for cleaning the checks, if vectorization turns out unprofitable.
877   GeneratedRTChecks &RTChecks;
878 };
879 
880 class InnerLoopUnroller : public InnerLoopVectorizer {
881 public:
882   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
883                     LoopInfo *LI, DominatorTree *DT,
884                     const TargetLibraryInfo *TLI,
885                     const TargetTransformInfo *TTI, AssumptionCache *AC,
886                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
887                     LoopVectorizationLegality *LVL,
888                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
889                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
890       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
891                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
892                             BFI, PSI, Check) {}
893 
894 private:
895   Value *getBroadcastInstrs(Value *V) override;
896   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
897                        Instruction::BinaryOps Opcode =
898                        Instruction::BinaryOpsEnd) override;
899   Value *reverseVector(Value *Vec) override;
900 };
901 
902 /// Encapsulate information regarding vectorization of a loop and its epilogue.
903 /// This information is meant to be updated and used across two stages of
904 /// epilogue vectorization.
905 struct EpilogueLoopVectorizationInfo {
906   ElementCount MainLoopVF = ElementCount::getFixed(0);
907   unsigned MainLoopUF = 0;
908   ElementCount EpilogueVF = ElementCount::getFixed(0);
909   unsigned EpilogueUF = 0;
910   BasicBlock *MainLoopIterationCountCheck = nullptr;
911   BasicBlock *EpilogueIterationCountCheck = nullptr;
912   BasicBlock *SCEVSafetyCheck = nullptr;
913   BasicBlock *MemSafetyCheck = nullptr;
914   Value *TripCount = nullptr;
915   Value *VectorTripCount = nullptr;
916 
917   EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF,
918                                 unsigned EUF)
919       : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF),
920         EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) {
921     assert(EUF == 1 &&
922            "A high UF for the epilogue loop is likely not beneficial.");
923   }
924 };
925 
926 /// An extension of the inner loop vectorizer that creates a skeleton for a
927 /// vectorized loop that has its epilogue (residual) also vectorized.
928 /// The idea is to run the vplan on a given loop twice, firstly to setup the
929 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
930 /// from the first step and vectorize the epilogue.  This is achieved by
931 /// deriving two concrete strategy classes from this base class and invoking
932 /// them in succession from the loop vectorizer planner.
933 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
934 public:
935   InnerLoopAndEpilogueVectorizer(
936       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
937       DominatorTree *DT, const TargetLibraryInfo *TLI,
938       const TargetTransformInfo *TTI, AssumptionCache *AC,
939       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
940       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
941       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
942       GeneratedRTChecks &Checks)
943       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
944                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
945                             Checks),
946         EPI(EPI) {}
947 
948   // Override this function to handle the more complex control flow around the
949   // three loops.
950   BasicBlock *createVectorizedLoopSkeleton() final override {
951     return createEpilogueVectorizedLoopSkeleton();
952   }
953 
954   /// The interface for creating a vectorized skeleton using one of two
955   /// different strategies, each corresponding to one execution of the vplan
956   /// as described above.
957   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
958 
959   /// Holds and updates state information required to vectorize the main loop
960   /// and its epilogue in two separate passes. This setup helps us avoid
961   /// regenerating and recomputing runtime safety checks. It also helps us to
962   /// shorten the iteration-count-check path length for the cases where the
963   /// iteration count of the loop is so small that the main vector loop is
964   /// completely skipped.
965   EpilogueLoopVectorizationInfo &EPI;
966 };
967 
968 /// A specialized derived class of inner loop vectorizer that performs
969 /// vectorization of *main* loops in the process of vectorizing loops and their
970 /// epilogues.
971 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
972 public:
973   EpilogueVectorizerMainLoop(
974       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
975       DominatorTree *DT, const TargetLibraryInfo *TLI,
976       const TargetTransformInfo *TTI, AssumptionCache *AC,
977       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
978       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
979       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
980       GeneratedRTChecks &Check)
981       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
982                                        EPI, LVL, CM, BFI, PSI, Check) {}
983   /// Implements the interface for creating a vectorized skeleton using the
984   /// *main loop* strategy (ie the first pass of vplan execution).
985   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
986 
987 protected:
988   /// Emits an iteration count bypass check once for the main loop (when \p
989   /// ForEpilogue is false) and once for the epilogue loop (when \p
990   /// ForEpilogue is true).
991   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
992                                              bool ForEpilogue);
993   void printDebugTracesAtStart() override;
994   void printDebugTracesAtEnd() override;
995 };
996 
997 // A specialized derived class of inner loop vectorizer that performs
998 // vectorization of *epilogue* loops in the process of vectorizing loops and
999 // their epilogues.
1000 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
1001 public:
1002   EpilogueVectorizerEpilogueLoop(
1003       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
1004       DominatorTree *DT, const TargetLibraryInfo *TLI,
1005       const TargetTransformInfo *TTI, AssumptionCache *AC,
1006       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
1007       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
1008       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
1009       GeneratedRTChecks &Checks)
1010       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1011                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1012   /// Implements the interface for creating a vectorized skeleton using the
1013   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1014   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1015 
1016 protected:
1017   /// Emits an iteration count bypass check after the main vector loop has
1018   /// finished to see if there are any iterations left to execute by either
1019   /// the vector epilogue or the scalar epilogue.
1020   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1021                                                       BasicBlock *Bypass,
1022                                                       BasicBlock *Insert);
1023   void printDebugTracesAtStart() override;
1024   void printDebugTracesAtEnd() override;
1025 };
1026 } // end namespace llvm
1027 
1028 /// Look for a meaningful debug location on the instruction or it's
1029 /// operands.
1030 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1031   if (!I)
1032     return I;
1033 
1034   DebugLoc Empty;
1035   if (I->getDebugLoc() != Empty)
1036     return I;
1037 
1038   for (Use &Op : I->operands()) {
1039     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1040       if (OpInst->getDebugLoc() != Empty)
1041         return OpInst;
1042   }
1043 
1044   return I;
1045 }
1046 
1047 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
1048   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
1049     const DILocation *DIL = Inst->getDebugLoc();
1050     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1051         !isa<DbgInfoIntrinsic>(Inst)) {
1052       assert(!VF.isScalable() && "scalable vectors not yet supported.");
1053       auto NewDIL =
1054           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1055       if (NewDIL)
1056         B.SetCurrentDebugLocation(NewDIL.getValue());
1057       else
1058         LLVM_DEBUG(dbgs()
1059                    << "Failed to create new discriminator: "
1060                    << DIL->getFilename() << " Line: " << DIL->getLine());
1061     }
1062     else
1063       B.SetCurrentDebugLocation(DIL);
1064   } else
1065     B.SetCurrentDebugLocation(DebugLoc());
1066 }
1067 
1068 /// Write a record \p DebugMsg about vectorization failure to the debug
1069 /// output stream. If \p I is passed, it is an instruction that prevents
1070 /// vectorization.
1071 #ifndef NDEBUG
1072 static void debugVectorizationFailure(const StringRef DebugMsg,
1073     Instruction *I) {
1074   dbgs() << "LV: Not vectorizing: " << DebugMsg;
1075   if (I != nullptr)
1076     dbgs() << " " << *I;
1077   else
1078     dbgs() << '.';
1079   dbgs() << '\n';
1080 }
1081 #endif
1082 
1083 /// Create an analysis remark that explains why vectorization failed
1084 ///
1085 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1086 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1087 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1088 /// the location of the remark.  \return the remark object that can be
1089 /// streamed to.
1090 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1091     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1092   Value *CodeRegion = TheLoop->getHeader();
1093   DebugLoc DL = TheLoop->getStartLoc();
1094 
1095   if (I) {
1096     CodeRegion = I->getParent();
1097     // If there is no debug location attached to the instruction, revert back to
1098     // using the loop's.
1099     if (I->getDebugLoc())
1100       DL = I->getDebugLoc();
1101   }
1102 
1103   OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
1104   R << "loop not vectorized: ";
1105   return R;
1106 }
1107 
1108 /// Return a value for Step multiplied by VF.
1109 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) {
1110   assert(isa<ConstantInt>(Step) && "Expected an integer step");
1111   Constant *StepVal = ConstantInt::get(
1112       Step->getType(),
1113       cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue());
1114   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1115 }
1116 
1117 namespace llvm {
1118 
1119 /// Return the runtime value for VF.
1120 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1121   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1122   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1123 }
1124 
1125 void reportVectorizationFailure(const StringRef DebugMsg,
1126     const StringRef OREMsg, const StringRef ORETag,
1127     OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) {
1128   LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I));
1129   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1130   ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(),
1131                 ORETag, TheLoop, I) << OREMsg);
1132 }
1133 
1134 } // end namespace llvm
1135 
1136 #ifndef NDEBUG
1137 /// \return string containing a file name and a line # for the given loop.
1138 static std::string getDebugLocString(const Loop *L) {
1139   std::string Result;
1140   if (L) {
1141     raw_string_ostream OS(Result);
1142     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1143       LoopDbgLoc.print(OS);
1144     else
1145       // Just print the module name.
1146       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1147     OS.flush();
1148   }
1149   return Result;
1150 }
1151 #endif
1152 
1153 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1154                                          const Instruction *Orig) {
1155   // If the loop was versioned with memchecks, add the corresponding no-alias
1156   // metadata.
1157   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1158     LVer->annotateInstWithNoAlias(To, Orig);
1159 }
1160 
1161 void InnerLoopVectorizer::addMetadata(Instruction *To,
1162                                       Instruction *From) {
1163   propagateMetadata(To, From);
1164   addNewMetadata(To, From);
1165 }
1166 
1167 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1168                                       Instruction *From) {
1169   for (Value *V : To) {
1170     if (Instruction *I = dyn_cast<Instruction>(V))
1171       addMetadata(I, From);
1172   }
1173 }
1174 
1175 namespace llvm {
1176 
1177 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1178 // lowered.
1179 enum ScalarEpilogueLowering {
1180 
1181   // The default: allowing scalar epilogues.
1182   CM_ScalarEpilogueAllowed,
1183 
1184   // Vectorization with OptForSize: don't allow epilogues.
1185   CM_ScalarEpilogueNotAllowedOptSize,
1186 
1187   // A special case of vectorisation with OptForSize: loops with a very small
1188   // trip count are considered for vectorization under OptForSize, thereby
1189   // making sure the cost of their loop body is dominant, free of runtime
1190   // guards and scalar iteration overheads.
1191   CM_ScalarEpilogueNotAllowedLowTripLoop,
1192 
1193   // Loop hint predicate indicating an epilogue is undesired.
1194   CM_ScalarEpilogueNotNeededUsePredicate,
1195 
1196   // Directive indicating we must either tail fold or not vectorize
1197   CM_ScalarEpilogueNotAllowedUsePredicate
1198 };
1199 
1200 /// LoopVectorizationCostModel - estimates the expected speedups due to
1201 /// vectorization.
1202 /// In many cases vectorization is not profitable. This can happen because of
1203 /// a number of reasons. In this class we mainly attempt to predict the
1204 /// expected speedup/slowdowns due to the supported instruction set. We use the
1205 /// TargetTransformInfo to query the different backends for the cost of
1206 /// different operations.
1207 class LoopVectorizationCostModel {
1208 public:
1209   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1210                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1211                              LoopVectorizationLegality *Legal,
1212                              const TargetTransformInfo &TTI,
1213                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1214                              AssumptionCache *AC,
1215                              OptimizationRemarkEmitter *ORE, const Function *F,
1216                              const LoopVectorizeHints *Hints,
1217                              InterleavedAccessInfo &IAI)
1218       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1219         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1220         Hints(Hints), InterleaveInfo(IAI) {}
1221 
1222   /// \return An upper bound for the vectorization factor, or None if
1223   /// vectorization and interleaving should be avoided up front.
1224   Optional<ElementCount> computeMaxVF(ElementCount UserVF, unsigned UserIC);
1225 
1226   /// \return True if runtime checks are required for vectorization, and false
1227   /// otherwise.
1228   bool runtimeChecksRequired();
1229 
1230   /// \return The most profitable vectorization factor and the cost of that VF.
1231   /// This method checks every power of two up to MaxVF. If UserVF is not ZERO
1232   /// then this vectorization factor will be selected if vectorization is
1233   /// possible.
1234   VectorizationFactor selectVectorizationFactor(ElementCount MaxVF);
1235   VectorizationFactor
1236   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1237                                     const LoopVectorizationPlanner &LVP);
1238 
1239   /// Setup cost-based decisions for user vectorization factor.
1240   void selectUserVectorizationFactor(ElementCount UserVF) {
1241     collectUniformsAndScalars(UserVF);
1242     collectInstsToScalarize(UserVF);
1243   }
1244 
1245   /// \return The size (in bits) of the smallest and widest types in the code
1246   /// that needs to be vectorized. We ignore values that remain scalar such as
1247   /// 64 bit loop indices.
1248   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1249 
1250   /// \return The desired interleave count.
1251   /// If interleave count has been specified by metadata it will be returned.
1252   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1253   /// are the selected vectorization factor and the cost of the selected VF.
1254   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1255 
1256   /// Memory access instruction may be vectorized in more than one way.
1257   /// Form of instruction after vectorization depends on cost.
1258   /// This function takes cost-based decisions for Load/Store instructions
1259   /// and collects them in a map. This decisions map is used for building
1260   /// the lists of loop-uniform and loop-scalar instructions.
1261   /// The calculated cost is saved with widening decision in order to
1262   /// avoid redundant calculations.
1263   void setCostBasedWideningDecision(ElementCount VF);
1264 
1265   /// A struct that represents some properties of the register usage
1266   /// of a loop.
1267   struct RegisterUsage {
1268     /// Holds the number of loop invariant values that are used in the loop.
1269     /// The key is ClassID of target-provided register class.
1270     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1271     /// Holds the maximum number of concurrent live intervals in the loop.
1272     /// The key is ClassID of target-provided register class.
1273     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1274   };
1275 
1276   /// \return Returns information about the register usages of the loop for the
1277   /// given vectorization factors.
1278   SmallVector<RegisterUsage, 8>
1279   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1280 
1281   /// Collect values we want to ignore in the cost model.
1282   void collectValuesToIgnore();
1283 
1284   /// Split reductions into those that happen in the loop, and those that happen
1285   /// outside. In loop reductions are collected into InLoopReductionChains.
1286   void collectInLoopReductions();
1287 
1288   /// \returns The smallest bitwidth each instruction can be represented with.
1289   /// The vector equivalents of these instructions should be truncated to this
1290   /// type.
1291   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1292     return MinBWs;
1293   }
1294 
1295   /// \returns True if it is more profitable to scalarize instruction \p I for
1296   /// vectorization factor \p VF.
1297   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1298     assert(VF.isVector() &&
1299            "Profitable to scalarize relevant only for VF > 1.");
1300 
1301     // Cost model is not run in the VPlan-native path - return conservative
1302     // result until this changes.
1303     if (EnableVPlanNativePath)
1304       return false;
1305 
1306     auto Scalars = InstsToScalarize.find(VF);
1307     assert(Scalars != InstsToScalarize.end() &&
1308            "VF not yet analyzed for scalarization profitability");
1309     return Scalars->second.find(I) != Scalars->second.end();
1310   }
1311 
1312   /// Returns true if \p I is known to be uniform after vectorization.
1313   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1314     if (VF.isScalar())
1315       return true;
1316 
1317     // Cost model is not run in the VPlan-native path - return conservative
1318     // result until this changes.
1319     if (EnableVPlanNativePath)
1320       return false;
1321 
1322     auto UniformsPerVF = Uniforms.find(VF);
1323     assert(UniformsPerVF != Uniforms.end() &&
1324            "VF not yet analyzed for uniformity");
1325     return UniformsPerVF->second.count(I);
1326   }
1327 
1328   /// Returns true if \p I is known to be scalar after vectorization.
1329   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1330     if (VF.isScalar())
1331       return true;
1332 
1333     // Cost model is not run in the VPlan-native path - return conservative
1334     // result until this changes.
1335     if (EnableVPlanNativePath)
1336       return false;
1337 
1338     auto ScalarsPerVF = Scalars.find(VF);
1339     assert(ScalarsPerVF != Scalars.end() &&
1340            "Scalar values are not calculated for VF");
1341     return ScalarsPerVF->second.count(I);
1342   }
1343 
1344   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1345   /// for vectorization factor \p VF.
1346   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1347     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1348            !isProfitableToScalarize(I, VF) &&
1349            !isScalarAfterVectorization(I, VF);
1350   }
1351 
1352   /// Decision that was taken during cost calculation for memory instruction.
1353   enum InstWidening {
1354     CM_Unknown,
1355     CM_Widen,         // For consecutive accesses with stride +1.
1356     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1357     CM_Interleave,
1358     CM_GatherScatter,
1359     CM_Scalarize
1360   };
1361 
1362   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1363   /// instruction \p I and vector width \p VF.
1364   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1365                            InstructionCost Cost) {
1366     assert(VF.isVector() && "Expected VF >=2");
1367     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1368   }
1369 
1370   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1371   /// interleaving group \p Grp and vector width \p VF.
1372   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1373                            ElementCount VF, InstWidening W,
1374                            InstructionCost Cost) {
1375     assert(VF.isVector() && "Expected VF >=2");
1376     /// Broadcast this decicion to all instructions inside the group.
1377     /// But the cost will be assigned to one instruction only.
1378     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1379       if (auto *I = Grp->getMember(i)) {
1380         if (Grp->getInsertPos() == I)
1381           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1382         else
1383           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1384       }
1385     }
1386   }
1387 
1388   /// Return the cost model decision for the given instruction \p I and vector
1389   /// width \p VF. Return CM_Unknown if this instruction did not pass
1390   /// through the cost modeling.
1391   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1392     assert(VF.isVector() && "Expected VF to be a vector VF");
1393     // Cost model is not run in the VPlan-native path - return conservative
1394     // result until this changes.
1395     if (EnableVPlanNativePath)
1396       return CM_GatherScatter;
1397 
1398     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1399     auto Itr = WideningDecisions.find(InstOnVF);
1400     if (Itr == WideningDecisions.end())
1401       return CM_Unknown;
1402     return Itr->second.first;
1403   }
1404 
1405   /// Return the vectorization cost for the given instruction \p I and vector
1406   /// width \p VF.
1407   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1408     assert(VF.isVector() && "Expected VF >=2");
1409     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1410     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1411            "The cost is not calculated");
1412     return WideningDecisions[InstOnVF].second;
1413   }
1414 
1415   /// Return True if instruction \p I is an optimizable truncate whose operand
1416   /// is an induction variable. Such a truncate will be removed by adding a new
1417   /// induction variable with the destination type.
1418   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1419     // If the instruction is not a truncate, return false.
1420     auto *Trunc = dyn_cast<TruncInst>(I);
1421     if (!Trunc)
1422       return false;
1423 
1424     // Get the source and destination types of the truncate.
1425     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1426     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1427 
1428     // If the truncate is free for the given types, return false. Replacing a
1429     // free truncate with an induction variable would add an induction variable
1430     // update instruction to each iteration of the loop. We exclude from this
1431     // check the primary induction variable since it will need an update
1432     // instruction regardless.
1433     Value *Op = Trunc->getOperand(0);
1434     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1435       return false;
1436 
1437     // If the truncated value is not an induction variable, return false.
1438     return Legal->isInductionPhi(Op);
1439   }
1440 
1441   /// Collects the instructions to scalarize for each predicated instruction in
1442   /// the loop.
1443   void collectInstsToScalarize(ElementCount VF);
1444 
1445   /// Collect Uniform and Scalar values for the given \p VF.
1446   /// The sets depend on CM decision for Load/Store instructions
1447   /// that may be vectorized as interleave, gather-scatter or scalarized.
1448   void collectUniformsAndScalars(ElementCount VF) {
1449     // Do the analysis once.
1450     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1451       return;
1452     setCostBasedWideningDecision(VF);
1453     collectLoopUniforms(VF);
1454     collectLoopScalars(VF);
1455   }
1456 
1457   /// Returns true if the target machine supports masked store operation
1458   /// for the given \p DataType and kind of access to \p Ptr.
1459   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1460     return Legal->isConsecutivePtr(Ptr) &&
1461            TTI.isLegalMaskedStore(DataType, Alignment);
1462   }
1463 
1464   /// Returns true if the target machine supports masked load operation
1465   /// for the given \p DataType and kind of access to \p Ptr.
1466   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1467     return Legal->isConsecutivePtr(Ptr) &&
1468            TTI.isLegalMaskedLoad(DataType, Alignment);
1469   }
1470 
1471   /// Returns true if the target machine supports masked scatter operation
1472   /// for the given \p DataType.
1473   bool isLegalMaskedScatter(Type *DataType, Align Alignment) const {
1474     return TTI.isLegalMaskedScatter(DataType, Alignment);
1475   }
1476 
1477   /// Returns true if the target machine supports masked gather operation
1478   /// for the given \p DataType.
1479   bool isLegalMaskedGather(Type *DataType, Align Alignment) const {
1480     return TTI.isLegalMaskedGather(DataType, Alignment);
1481   }
1482 
1483   /// Returns true if the target machine can represent \p V as a masked gather
1484   /// or scatter operation.
1485   bool isLegalGatherOrScatter(Value *V) {
1486     bool LI = isa<LoadInst>(V);
1487     bool SI = isa<StoreInst>(V);
1488     if (!LI && !SI)
1489       return false;
1490     auto *Ty = getMemInstValueType(V);
1491     Align Align = getLoadStoreAlignment(V);
1492     return (LI && isLegalMaskedGather(Ty, Align)) ||
1493            (SI && isLegalMaskedScatter(Ty, Align));
1494   }
1495 
1496   /// Returns true if the target machine supports all of the reduction
1497   /// variables found for the given VF.
1498   bool canVectorizeReductions(ElementCount VF) {
1499     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1500       RecurrenceDescriptor RdxDesc = Reduction.second;
1501       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1502     }));
1503   }
1504 
1505   /// Returns true if \p I is an instruction that will be scalarized with
1506   /// predication. Such instructions include conditional stores and
1507   /// instructions that may divide by zero.
1508   /// If a non-zero VF has been calculated, we check if I will be scalarized
1509   /// predication for that VF.
1510   bool
1511   isScalarWithPredication(Instruction *I,
1512                           ElementCount VF = ElementCount::getFixed(1)) const;
1513 
1514   // Returns true if \p I is an instruction that will be predicated either
1515   // through scalar predication or masked load/store or masked gather/scatter.
1516   // Superset of instructions that return true for isScalarWithPredication.
1517   bool isPredicatedInst(Instruction *I, ElementCount VF) {
1518     if (!blockNeedsPredication(I->getParent()))
1519       return false;
1520     // Loads and stores that need some form of masked operation are predicated
1521     // instructions.
1522     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1523       return Legal->isMaskRequired(I);
1524     return isScalarWithPredication(I, VF);
1525   }
1526 
1527   /// Returns true if \p I is a memory instruction with consecutive memory
1528   /// access that can be widened.
1529   bool
1530   memoryInstructionCanBeWidened(Instruction *I,
1531                                 ElementCount VF = ElementCount::getFixed(1));
1532 
1533   /// Returns true if \p I is a memory instruction in an interleaved-group
1534   /// of memory accesses that can be vectorized with wide vector loads/stores
1535   /// and shuffles.
1536   bool
1537   interleavedAccessCanBeWidened(Instruction *I,
1538                                 ElementCount VF = ElementCount::getFixed(1));
1539 
1540   /// Check if \p Instr belongs to any interleaved access group.
1541   bool isAccessInterleaved(Instruction *Instr) {
1542     return InterleaveInfo.isInterleaved(Instr);
1543   }
1544 
1545   /// Get the interleaved access group that \p Instr belongs to.
1546   const InterleaveGroup<Instruction> *
1547   getInterleavedAccessGroup(Instruction *Instr) {
1548     return InterleaveInfo.getInterleaveGroup(Instr);
1549   }
1550 
1551   /// Returns true if we're required to use a scalar epilogue for at least
1552   /// the final iteration of the original loop.
1553   bool requiresScalarEpilogue() const {
1554     if (!isScalarEpilogueAllowed())
1555       return false;
1556     // If we might exit from anywhere but the latch, must run the exiting
1557     // iteration in scalar form.
1558     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1559       return true;
1560     return InterleaveInfo.requiresScalarEpilogue();
1561   }
1562 
1563   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1564   /// loop hint annotation.
1565   bool isScalarEpilogueAllowed() const {
1566     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1567   }
1568 
1569   /// Returns true if all loop blocks should be masked to fold tail loop.
1570   bool foldTailByMasking() const { return FoldTailByMasking; }
1571 
1572   bool blockNeedsPredication(BasicBlock *BB) const {
1573     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1574   }
1575 
1576   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1577   /// nodes to the chain of instructions representing the reductions. Uses a
1578   /// MapVector to ensure deterministic iteration order.
1579   using ReductionChainMap =
1580       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1581 
1582   /// Return the chain of instructions representing an inloop reduction.
1583   const ReductionChainMap &getInLoopReductionChains() const {
1584     return InLoopReductionChains;
1585   }
1586 
1587   /// Returns true if the Phi is part of an inloop reduction.
1588   bool isInLoopReduction(PHINode *Phi) const {
1589     return InLoopReductionChains.count(Phi);
1590   }
1591 
1592   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1593   /// with factor VF.  Return the cost of the instruction, including
1594   /// scalarization overhead if it's needed.
1595   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1596 
1597   /// Estimate cost of a call instruction CI if it were vectorized with factor
1598   /// VF. Return the cost of the instruction, including scalarization overhead
1599   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1600   /// scalarized -
1601   /// i.e. either vector version isn't available, or is too expensive.
1602   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1603                                     bool &NeedToScalarize) const;
1604 
1605   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1606   /// that of B.
1607   bool isMoreProfitable(const VectorizationFactor &A,
1608                         const VectorizationFactor &B) const;
1609 
1610   /// Invalidates decisions already taken by the cost model.
1611   void invalidateCostModelingDecisions() {
1612     WideningDecisions.clear();
1613     Uniforms.clear();
1614     Scalars.clear();
1615   }
1616 
1617 private:
1618   unsigned NumPredStores = 0;
1619 
1620   /// \return An upper bound for the vectorization factor, a power-of-2 larger
1621   /// than zero. One is returned if vectorization should best be avoided due
1622   /// to cost.
1623   ElementCount computeFeasibleMaxVF(unsigned ConstTripCount,
1624                                     ElementCount UserVF);
1625 
1626   /// The vectorization cost is a combination of the cost itself and a boolean
1627   /// indicating whether any of the contributing operations will actually
1628   /// operate on
1629   /// vector values after type legalization in the backend. If this latter value
1630   /// is
1631   /// false, then all operations will be scalarized (i.e. no vectorization has
1632   /// actually taken place).
1633   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1634 
1635   /// Returns the expected execution cost. The unit of the cost does
1636   /// not matter because we use the 'cost' units to compare different
1637   /// vector widths. The cost that is returned is *not* normalized by
1638   /// the factor width.
1639   VectorizationCostTy expectedCost(ElementCount VF);
1640 
1641   /// Returns the execution time cost of an instruction for a given vector
1642   /// width. Vector width of one means scalar.
1643   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1644 
1645   /// The cost-computation logic from getInstructionCost which provides
1646   /// the vector type as an output parameter.
1647   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1648                                      Type *&VectorTy);
1649 
1650   /// Return the cost of instructions in an inloop reduction pattern, if I is
1651   /// part of that pattern.
1652   InstructionCost getReductionPatternCost(Instruction *I, ElementCount VF,
1653                                           Type *VectorTy,
1654                                           TTI::TargetCostKind CostKind);
1655 
1656   /// Calculate vectorization cost of memory instruction \p I.
1657   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1658 
1659   /// The cost computation for scalarized memory instruction.
1660   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1661 
1662   /// The cost computation for interleaving group of memory instructions.
1663   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1664 
1665   /// The cost computation for Gather/Scatter instruction.
1666   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1667 
1668   /// The cost computation for widening instruction \p I with consecutive
1669   /// memory access.
1670   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1671 
1672   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1673   /// Load: scalar load + broadcast.
1674   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1675   /// element)
1676   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1677 
1678   /// Estimate the overhead of scalarizing an instruction. This is a
1679   /// convenience wrapper for the type-based getScalarizationOverhead API.
1680   InstructionCost getScalarizationOverhead(Instruction *I,
1681                                            ElementCount VF) const;
1682 
1683   /// Returns whether the instruction is a load or store and will be a emitted
1684   /// as a vector operation.
1685   bool isConsecutiveLoadOrStore(Instruction *I);
1686 
1687   /// Returns true if an artificially high cost for emulated masked memrefs
1688   /// should be used.
1689   bool useEmulatedMaskMemRefHack(Instruction *I);
1690 
1691   /// Map of scalar integer values to the smallest bitwidth they can be legally
1692   /// represented as. The vector equivalents of these values should be truncated
1693   /// to this type.
1694   MapVector<Instruction *, uint64_t> MinBWs;
1695 
1696   /// A type representing the costs for instructions if they were to be
1697   /// scalarized rather than vectorized. The entries are Instruction-Cost
1698   /// pairs.
1699   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1700 
1701   /// A set containing all BasicBlocks that are known to present after
1702   /// vectorization as a predicated block.
1703   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1704 
1705   /// Records whether it is allowed to have the original scalar loop execute at
1706   /// least once. This may be needed as a fallback loop in case runtime
1707   /// aliasing/dependence checks fail, or to handle the tail/remainder
1708   /// iterations when the trip count is unknown or doesn't divide by the VF,
1709   /// or as a peel-loop to handle gaps in interleave-groups.
1710   /// Under optsize and when the trip count is very small we don't allow any
1711   /// iterations to execute in the scalar loop.
1712   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1713 
1714   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1715   bool FoldTailByMasking = false;
1716 
1717   /// A map holding scalar costs for different vectorization factors. The
1718   /// presence of a cost for an instruction in the mapping indicates that the
1719   /// instruction will be scalarized when vectorizing with the associated
1720   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1721   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1722 
1723   /// Holds the instructions known to be uniform after vectorization.
1724   /// The data is collected per VF.
1725   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1726 
1727   /// Holds the instructions known to be scalar after vectorization.
1728   /// The data is collected per VF.
1729   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1730 
1731   /// Holds the instructions (address computations) that are forced to be
1732   /// scalarized.
1733   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1734 
1735   /// PHINodes of the reductions that should be expanded in-loop along with
1736   /// their associated chains of reduction operations, in program order from top
1737   /// (PHI) to bottom
1738   ReductionChainMap InLoopReductionChains;
1739 
1740   /// A Map of inloop reduction operations and their immediate chain operand.
1741   /// FIXME: This can be removed once reductions can be costed correctly in
1742   /// vplan. This was added to allow quick lookup to the inloop operations,
1743   /// without having to loop through InLoopReductionChains.
1744   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1745 
1746   /// Returns the expected difference in cost from scalarizing the expression
1747   /// feeding a predicated instruction \p PredInst. The instructions to
1748   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1749   /// non-negative return value implies the expression will be scalarized.
1750   /// Currently, only single-use chains are considered for scalarization.
1751   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1752                               ElementCount VF);
1753 
1754   /// Collect the instructions that are uniform after vectorization. An
1755   /// instruction is uniform if we represent it with a single scalar value in
1756   /// the vectorized loop corresponding to each vector iteration. Examples of
1757   /// uniform instructions include pointer operands of consecutive or
1758   /// interleaved memory accesses. Note that although uniformity implies an
1759   /// instruction will be scalar, the reverse is not true. In general, a
1760   /// scalarized instruction will be represented by VF scalar values in the
1761   /// vectorized loop, each corresponding to an iteration of the original
1762   /// scalar loop.
1763   void collectLoopUniforms(ElementCount VF);
1764 
1765   /// Collect the instructions that are scalar after vectorization. An
1766   /// instruction is scalar if it is known to be uniform or will be scalarized
1767   /// during vectorization. Non-uniform scalarized instructions will be
1768   /// represented by VF values in the vectorized loop, each corresponding to an
1769   /// iteration of the original scalar loop.
1770   void collectLoopScalars(ElementCount VF);
1771 
1772   /// Keeps cost model vectorization decision and cost for instructions.
1773   /// Right now it is used for memory instructions only.
1774   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1775                                 std::pair<InstWidening, InstructionCost>>;
1776 
1777   DecisionList WideningDecisions;
1778 
1779   /// Returns true if \p V is expected to be vectorized and it needs to be
1780   /// extracted.
1781   bool needsExtract(Value *V, ElementCount VF) const {
1782     Instruction *I = dyn_cast<Instruction>(V);
1783     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1784         TheLoop->isLoopInvariant(I))
1785       return false;
1786 
1787     // Assume we can vectorize V (and hence we need extraction) if the
1788     // scalars are not computed yet. This can happen, because it is called
1789     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1790     // the scalars are collected. That should be a safe assumption in most
1791     // cases, because we check if the operands have vectorizable types
1792     // beforehand in LoopVectorizationLegality.
1793     return Scalars.find(VF) == Scalars.end() ||
1794            !isScalarAfterVectorization(I, VF);
1795   };
1796 
1797   /// Returns a range containing only operands needing to be extracted.
1798   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1799                                                    ElementCount VF) const {
1800     return SmallVector<Value *, 4>(make_filter_range(
1801         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1802   }
1803 
1804   /// Determines if we have the infrastructure to vectorize loop \p L and its
1805   /// epilogue, assuming the main loop is vectorized by \p VF.
1806   bool isCandidateForEpilogueVectorization(const Loop &L,
1807                                            const ElementCount VF) const;
1808 
1809   /// Returns true if epilogue vectorization is considered profitable, and
1810   /// false otherwise.
1811   /// \p VF is the vectorization factor chosen for the original loop.
1812   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1813 
1814 public:
1815   /// The loop that we evaluate.
1816   Loop *TheLoop;
1817 
1818   /// Predicated scalar evolution analysis.
1819   PredicatedScalarEvolution &PSE;
1820 
1821   /// Loop Info analysis.
1822   LoopInfo *LI;
1823 
1824   /// Vectorization legality.
1825   LoopVectorizationLegality *Legal;
1826 
1827   /// Vector target information.
1828   const TargetTransformInfo &TTI;
1829 
1830   /// Target Library Info.
1831   const TargetLibraryInfo *TLI;
1832 
1833   /// Demanded bits analysis.
1834   DemandedBits *DB;
1835 
1836   /// Assumption cache.
1837   AssumptionCache *AC;
1838 
1839   /// Interface to emit optimization remarks.
1840   OptimizationRemarkEmitter *ORE;
1841 
1842   const Function *TheFunction;
1843 
1844   /// Loop Vectorize Hint.
1845   const LoopVectorizeHints *Hints;
1846 
1847   /// The interleave access information contains groups of interleaved accesses
1848   /// with the same stride and close to each other.
1849   InterleavedAccessInfo &InterleaveInfo;
1850 
1851   /// Values to ignore in the cost model.
1852   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1853 
1854   /// Values to ignore in the cost model when VF > 1.
1855   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1856 
1857   /// Profitable vector factors.
1858   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1859 };
1860 } // end namespace llvm
1861 
1862 /// Helper struct to manage generating runtime checks for vectorization.
1863 ///
1864 /// The runtime checks are created up-front in temporary blocks to allow better
1865 /// estimating the cost and un-linked from the existing IR. After deciding to
1866 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1867 /// temporary blocks are completely removed.
1868 class GeneratedRTChecks {
1869   /// Basic block which contains the generated SCEV checks, if any.
1870   BasicBlock *SCEVCheckBlock = nullptr;
1871 
1872   /// The value representing the result of the generated SCEV checks. If it is
1873   /// nullptr, either no SCEV checks have been generated or they have been used.
1874   Value *SCEVCheckCond = nullptr;
1875 
1876   /// Basic block which contains the generated memory runtime checks, if any.
1877   BasicBlock *MemCheckBlock = nullptr;
1878 
1879   /// The value representing the result of the generated memory runtime checks.
1880   /// If it is nullptr, either no memory runtime checks have been generated or
1881   /// they have been used.
1882   Instruction *MemRuntimeCheckCond = nullptr;
1883 
1884   DominatorTree *DT;
1885   LoopInfo *LI;
1886 
1887   SCEVExpander SCEVExp;
1888   SCEVExpander MemCheckExp;
1889 
1890 public:
1891   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1892                     const DataLayout &DL)
1893       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1894         MemCheckExp(SE, DL, "scev.check") {}
1895 
1896   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1897   /// accurately estimate the cost of the runtime checks. The blocks are
1898   /// un-linked from the IR and is added back during vector code generation. If
1899   /// there is no vector code generation, the check blocks are removed
1900   /// completely.
1901   void Create(Loop *L, const LoopAccessInfo &LAI,
1902               const SCEVUnionPredicate &UnionPred) {
1903 
1904     BasicBlock *LoopHeader = L->getHeader();
1905     BasicBlock *Preheader = L->getLoopPreheader();
1906 
1907     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1908     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1909     // may be used by SCEVExpander. The blocks will be un-linked from their
1910     // predecessors and removed from LI & DT at the end of the function.
1911     if (!UnionPred.isAlwaysTrue()) {
1912       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1913                                   nullptr, "vector.scevcheck");
1914 
1915       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1916           &UnionPred, SCEVCheckBlock->getTerminator());
1917     }
1918 
1919     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1920     if (RtPtrChecking.Need) {
1921       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1922       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1923                                  "vector.memcheck");
1924 
1925       std::tie(std::ignore, MemRuntimeCheckCond) =
1926           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1927                            RtPtrChecking.getChecks(), MemCheckExp);
1928       assert(MemRuntimeCheckCond &&
1929              "no RT checks generated although RtPtrChecking "
1930              "claimed checks are required");
1931     }
1932 
1933     if (!MemCheckBlock && !SCEVCheckBlock)
1934       return;
1935 
1936     // Unhook the temporary block with the checks, update various places
1937     // accordingly.
1938     if (SCEVCheckBlock)
1939       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1940     if (MemCheckBlock)
1941       MemCheckBlock->replaceAllUsesWith(Preheader);
1942 
1943     if (SCEVCheckBlock) {
1944       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1945       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1946       Preheader->getTerminator()->eraseFromParent();
1947     }
1948     if (MemCheckBlock) {
1949       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1950       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1951       Preheader->getTerminator()->eraseFromParent();
1952     }
1953 
1954     DT->changeImmediateDominator(LoopHeader, Preheader);
1955     if (MemCheckBlock) {
1956       DT->eraseNode(MemCheckBlock);
1957       LI->removeBlock(MemCheckBlock);
1958     }
1959     if (SCEVCheckBlock) {
1960       DT->eraseNode(SCEVCheckBlock);
1961       LI->removeBlock(SCEVCheckBlock);
1962     }
1963   }
1964 
1965   /// Remove the created SCEV & memory runtime check blocks & instructions, if
1966   /// unused.
1967   ~GeneratedRTChecks() {
1968     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
1969     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
1970     if (!SCEVCheckCond)
1971       SCEVCleaner.markResultUsed();
1972 
1973     if (!MemRuntimeCheckCond)
1974       MemCheckCleaner.markResultUsed();
1975 
1976     if (MemRuntimeCheckCond) {
1977       auto &SE = *MemCheckExp.getSE();
1978       // Memory runtime check generation creates compares that use expanded
1979       // values. Remove them before running the SCEVExpanderCleaners.
1980       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
1981         if (MemCheckExp.isInsertedInstruction(&I))
1982           continue;
1983         SE.forgetValue(&I);
1984         SE.eraseValueFromMap(&I);
1985         I.eraseFromParent();
1986       }
1987     }
1988     MemCheckCleaner.cleanup();
1989     SCEVCleaner.cleanup();
1990 
1991     if (SCEVCheckCond)
1992       SCEVCheckBlock->eraseFromParent();
1993     if (MemRuntimeCheckCond)
1994       MemCheckBlock->eraseFromParent();
1995   }
1996 
1997   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
1998   /// adjusts the branches to branch to the vector preheader or \p Bypass,
1999   /// depending on the generated condition.
2000   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2001                              BasicBlock *LoopVectorPreHeader,
2002                              BasicBlock *LoopExitBlock) {
2003     if (!SCEVCheckCond)
2004       return nullptr;
2005     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2006       if (C->isZero())
2007         return nullptr;
2008 
2009     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2010 
2011     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2012     // Create new preheader for vector loop.
2013     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2014       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2015 
2016     SCEVCheckBlock->getTerminator()->eraseFromParent();
2017     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2018     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2019                                                 SCEVCheckBlock);
2020 
2021     DT->addNewBlock(SCEVCheckBlock, Pred);
2022     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2023 
2024     ReplaceInstWithInst(
2025         SCEVCheckBlock->getTerminator(),
2026         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2027     // Mark the check as used, to prevent it from being removed during cleanup.
2028     SCEVCheckCond = nullptr;
2029     return SCEVCheckBlock;
2030   }
2031 
2032   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2033   /// the branches to branch to the vector preheader or \p Bypass, depending on
2034   /// the generated condition.
2035   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2036                                    BasicBlock *LoopVectorPreHeader) {
2037     // Check if we generated code that checks in runtime if arrays overlap.
2038     if (!MemRuntimeCheckCond)
2039       return nullptr;
2040 
2041     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2042     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2043                                                 MemCheckBlock);
2044 
2045     DT->addNewBlock(MemCheckBlock, Pred);
2046     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2047     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2048 
2049     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2050       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2051 
2052     ReplaceInstWithInst(
2053         MemCheckBlock->getTerminator(),
2054         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2055     MemCheckBlock->getTerminator()->setDebugLoc(
2056         Pred->getTerminator()->getDebugLoc());
2057 
2058     // Mark the check as used, to prevent it from being removed during cleanup.
2059     MemRuntimeCheckCond = nullptr;
2060     return MemCheckBlock;
2061   }
2062 };
2063 
2064 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2065 // vectorization. The loop needs to be annotated with #pragma omp simd
2066 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2067 // vector length information is not provided, vectorization is not considered
2068 // explicit. Interleave hints are not allowed either. These limitations will be
2069 // relaxed in the future.
2070 // Please, note that we are currently forced to abuse the pragma 'clang
2071 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2072 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2073 // provides *explicit vectorization hints* (LV can bypass legal checks and
2074 // assume that vectorization is legal). However, both hints are implemented
2075 // using the same metadata (llvm.loop.vectorize, processed by
2076 // LoopVectorizeHints). This will be fixed in the future when the native IR
2077 // representation for pragma 'omp simd' is introduced.
2078 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2079                                    OptimizationRemarkEmitter *ORE) {
2080   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2081   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2082 
2083   // Only outer loops with an explicit vectorization hint are supported.
2084   // Unannotated outer loops are ignored.
2085   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2086     return false;
2087 
2088   Function *Fn = OuterLp->getHeader()->getParent();
2089   if (!Hints.allowVectorization(Fn, OuterLp,
2090                                 true /*VectorizeOnlyWhenForced*/)) {
2091     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2092     return false;
2093   }
2094 
2095   if (Hints.getInterleave() > 1) {
2096     // TODO: Interleave support is future work.
2097     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2098                          "outer loops.\n");
2099     Hints.emitRemarkWithHints();
2100     return false;
2101   }
2102 
2103   return true;
2104 }
2105 
2106 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2107                                   OptimizationRemarkEmitter *ORE,
2108                                   SmallVectorImpl<Loop *> &V) {
2109   // Collect inner loops and outer loops without irreducible control flow. For
2110   // now, only collect outer loops that have explicit vectorization hints. If we
2111   // are stress testing the VPlan H-CFG construction, we collect the outermost
2112   // loop of every loop nest.
2113   if (L.isInnermost() || VPlanBuildStressTest ||
2114       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2115     LoopBlocksRPO RPOT(&L);
2116     RPOT.perform(LI);
2117     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2118       V.push_back(&L);
2119       // TODO: Collect inner loops inside marked outer loops in case
2120       // vectorization fails for the outer loop. Do not invoke
2121       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2122       // already known to be reducible. We can use an inherited attribute for
2123       // that.
2124       return;
2125     }
2126   }
2127   for (Loop *InnerL : L)
2128     collectSupportedLoops(*InnerL, LI, ORE, V);
2129 }
2130 
2131 namespace {
2132 
2133 /// The LoopVectorize Pass.
2134 struct LoopVectorize : public FunctionPass {
2135   /// Pass identification, replacement for typeid
2136   static char ID;
2137 
2138   LoopVectorizePass Impl;
2139 
2140   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2141                          bool VectorizeOnlyWhenForced = false)
2142       : FunctionPass(ID),
2143         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2144     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2145   }
2146 
2147   bool runOnFunction(Function &F) override {
2148     if (skipFunction(F))
2149       return false;
2150 
2151     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2152     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2153     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2154     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2155     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2156     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2157     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2158     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2159     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2160     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2161     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2162     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2163     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2164 
2165     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2166         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2167 
2168     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2169                         GetLAA, *ORE, PSI).MadeAnyChange;
2170   }
2171 
2172   void getAnalysisUsage(AnalysisUsage &AU) const override {
2173     AU.addRequired<AssumptionCacheTracker>();
2174     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2175     AU.addRequired<DominatorTreeWrapperPass>();
2176     AU.addRequired<LoopInfoWrapperPass>();
2177     AU.addRequired<ScalarEvolutionWrapperPass>();
2178     AU.addRequired<TargetTransformInfoWrapperPass>();
2179     AU.addRequired<AAResultsWrapperPass>();
2180     AU.addRequired<LoopAccessLegacyAnalysis>();
2181     AU.addRequired<DemandedBitsWrapperPass>();
2182     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2183     AU.addRequired<InjectTLIMappingsLegacy>();
2184 
2185     // We currently do not preserve loopinfo/dominator analyses with outer loop
2186     // vectorization. Until this is addressed, mark these analyses as preserved
2187     // only for non-VPlan-native path.
2188     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2189     if (!EnableVPlanNativePath) {
2190       AU.addPreserved<LoopInfoWrapperPass>();
2191       AU.addPreserved<DominatorTreeWrapperPass>();
2192     }
2193 
2194     AU.addPreserved<BasicAAWrapperPass>();
2195     AU.addPreserved<GlobalsAAWrapperPass>();
2196     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2197   }
2198 };
2199 
2200 } // end anonymous namespace
2201 
2202 //===----------------------------------------------------------------------===//
2203 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2204 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2205 //===----------------------------------------------------------------------===//
2206 
2207 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2208   // We need to place the broadcast of invariant variables outside the loop,
2209   // but only if it's proven safe to do so. Else, broadcast will be inside
2210   // vector loop body.
2211   Instruction *Instr = dyn_cast<Instruction>(V);
2212   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2213                      (!Instr ||
2214                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2215   // Place the code for broadcasting invariant variables in the new preheader.
2216   IRBuilder<>::InsertPointGuard Guard(Builder);
2217   if (SafeToHoist)
2218     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2219 
2220   // Broadcast the scalar into all locations in the vector.
2221   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2222 
2223   return Shuf;
2224 }
2225 
2226 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2227     const InductionDescriptor &II, Value *Step, Value *Start,
2228     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2229     VPTransformState &State) {
2230   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2231          "Expected either an induction phi-node or a truncate of it!");
2232 
2233   // Construct the initial value of the vector IV in the vector loop preheader
2234   auto CurrIP = Builder.saveIP();
2235   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2236   if (isa<TruncInst>(EntryVal)) {
2237     assert(Start->getType()->isIntegerTy() &&
2238            "Truncation requires an integer type");
2239     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2240     Step = Builder.CreateTrunc(Step, TruncType);
2241     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2242   }
2243   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2244   Value *SteppedStart =
2245       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
2246 
2247   // We create vector phi nodes for both integer and floating-point induction
2248   // variables. Here, we determine the kind of arithmetic we will perform.
2249   Instruction::BinaryOps AddOp;
2250   Instruction::BinaryOps MulOp;
2251   if (Step->getType()->isIntegerTy()) {
2252     AddOp = Instruction::Add;
2253     MulOp = Instruction::Mul;
2254   } else {
2255     AddOp = II.getInductionOpcode();
2256     MulOp = Instruction::FMul;
2257   }
2258 
2259   // Multiply the vectorization factor by the step using integer or
2260   // floating-point arithmetic as appropriate.
2261   Type *StepType = Step->getType();
2262   if (Step->getType()->isFloatingPointTy())
2263     StepType = IntegerType::get(StepType->getContext(),
2264                                 StepType->getScalarSizeInBits());
2265   Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF);
2266   if (Step->getType()->isFloatingPointTy())
2267     RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType());
2268   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2269 
2270   // Create a vector splat to use in the induction update.
2271   //
2272   // FIXME: If the step is non-constant, we create the vector splat with
2273   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2274   //        handle a constant vector splat.
2275   Value *SplatVF = isa<Constant>(Mul)
2276                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2277                        : Builder.CreateVectorSplat(VF, Mul);
2278   Builder.restoreIP(CurrIP);
2279 
2280   // We may need to add the step a number of times, depending on the unroll
2281   // factor. The last of those goes into the PHI.
2282   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2283                                     &*LoopVectorBody->getFirstInsertionPt());
2284   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2285   Instruction *LastInduction = VecInd;
2286   for (unsigned Part = 0; Part < UF; ++Part) {
2287     State.set(Def, LastInduction, Part);
2288 
2289     if (isa<TruncInst>(EntryVal))
2290       addMetadata(LastInduction, EntryVal);
2291     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2292                                           State, Part);
2293 
2294     LastInduction = cast<Instruction>(
2295         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2296     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2297   }
2298 
2299   // Move the last step to the end of the latch block. This ensures consistent
2300   // placement of all induction updates.
2301   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2302   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2303   auto *ICmp = cast<Instruction>(Br->getCondition());
2304   LastInduction->moveBefore(ICmp);
2305   LastInduction->setName("vec.ind.next");
2306 
2307   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2308   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2309 }
2310 
2311 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2312   return Cost->isScalarAfterVectorization(I, VF) ||
2313          Cost->isProfitableToScalarize(I, VF);
2314 }
2315 
2316 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2317   if (shouldScalarizeInstruction(IV))
2318     return true;
2319   auto isScalarInst = [&](User *U) -> bool {
2320     auto *I = cast<Instruction>(U);
2321     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2322   };
2323   return llvm::any_of(IV->users(), isScalarInst);
2324 }
2325 
2326 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2327     const InductionDescriptor &ID, const Instruction *EntryVal,
2328     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2329     unsigned Part, unsigned Lane) {
2330   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2331          "Expected either an induction phi-node or a truncate of it!");
2332 
2333   // This induction variable is not the phi from the original loop but the
2334   // newly-created IV based on the proof that casted Phi is equal to the
2335   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2336   // re-uses the same InductionDescriptor that original IV uses but we don't
2337   // have to do any recording in this case - that is done when original IV is
2338   // processed.
2339   if (isa<TruncInst>(EntryVal))
2340     return;
2341 
2342   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
2343   if (Casts.empty())
2344     return;
2345   // Only the first Cast instruction in the Casts vector is of interest.
2346   // The rest of the Casts (if exist) have no uses outside the
2347   // induction update chain itself.
2348   if (Lane < UINT_MAX)
2349     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2350   else
2351     State.set(CastDef, VectorLoopVal, Part);
2352 }
2353 
2354 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2355                                                 TruncInst *Trunc, VPValue *Def,
2356                                                 VPValue *CastDef,
2357                                                 VPTransformState &State) {
2358   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2359          "Primary induction variable must have an integer type");
2360 
2361   auto II = Legal->getInductionVars().find(IV);
2362   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2363 
2364   auto ID = II->second;
2365   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2366 
2367   // The value from the original loop to which we are mapping the new induction
2368   // variable.
2369   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2370 
2371   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2372 
2373   // Generate code for the induction step. Note that induction steps are
2374   // required to be loop-invariant
2375   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2376     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2377            "Induction step should be loop invariant");
2378     if (PSE.getSE()->isSCEVable(IV->getType())) {
2379       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2380       return Exp.expandCodeFor(Step, Step->getType(),
2381                                LoopVectorPreHeader->getTerminator());
2382     }
2383     return cast<SCEVUnknown>(Step)->getValue();
2384   };
2385 
2386   // The scalar value to broadcast. This is derived from the canonical
2387   // induction variable. If a truncation type is given, truncate the canonical
2388   // induction variable and step. Otherwise, derive these values from the
2389   // induction descriptor.
2390   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2391     Value *ScalarIV = Induction;
2392     if (IV != OldInduction) {
2393       ScalarIV = IV->getType()->isIntegerTy()
2394                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2395                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2396                                           IV->getType());
2397       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2398       ScalarIV->setName("offset.idx");
2399     }
2400     if (Trunc) {
2401       auto *TruncType = cast<IntegerType>(Trunc->getType());
2402       assert(Step->getType()->isIntegerTy() &&
2403              "Truncation requires an integer step");
2404       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2405       Step = Builder.CreateTrunc(Step, TruncType);
2406     }
2407     return ScalarIV;
2408   };
2409 
2410   // Create the vector values from the scalar IV, in the absence of creating a
2411   // vector IV.
2412   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2413     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2414     for (unsigned Part = 0; Part < UF; ++Part) {
2415       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2416       Value *EntryPart =
2417           getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step,
2418                         ID.getInductionOpcode());
2419       State.set(Def, EntryPart, Part);
2420       if (Trunc)
2421         addMetadata(EntryPart, Trunc);
2422       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2423                                             State, Part);
2424     }
2425   };
2426 
2427   // Fast-math-flags propagate from the original induction instruction.
2428   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2429   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2430     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2431 
2432   // Now do the actual transformations, and start with creating the step value.
2433   Value *Step = CreateStepValue(ID.getStep());
2434   if (VF.isZero() || VF.isScalar()) {
2435     Value *ScalarIV = CreateScalarIV(Step);
2436     CreateSplatIV(ScalarIV, Step);
2437     return;
2438   }
2439 
2440   // Determine if we want a scalar version of the induction variable. This is
2441   // true if the induction variable itself is not widened, or if it has at
2442   // least one user in the loop that is not widened.
2443   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2444   if (!NeedsScalarIV) {
2445     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2446                                     State);
2447     return;
2448   }
2449 
2450   // Try to create a new independent vector induction variable. If we can't
2451   // create the phi node, we will splat the scalar induction variable in each
2452   // loop iteration.
2453   if (!shouldScalarizeInstruction(EntryVal)) {
2454     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2455                                     State);
2456     Value *ScalarIV = CreateScalarIV(Step);
2457     // Create scalar steps that can be used by instructions we will later
2458     // scalarize. Note that the addition of the scalar steps will not increase
2459     // the number of instructions in the loop in the common case prior to
2460     // InstCombine. We will be trading one vector extract for each scalar step.
2461     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2462     return;
2463   }
2464 
2465   // All IV users are scalar instructions, so only emit a scalar IV, not a
2466   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2467   // predicate used by the masked loads/stores.
2468   Value *ScalarIV = CreateScalarIV(Step);
2469   if (!Cost->isScalarEpilogueAllowed())
2470     CreateSplatIV(ScalarIV, Step);
2471   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2472 }
2473 
2474 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2475                                           Instruction::BinaryOps BinOp) {
2476   // Create and check the types.
2477   auto *ValVTy = cast<VectorType>(Val->getType());
2478   ElementCount VLen = ValVTy->getElementCount();
2479 
2480   Type *STy = Val->getType()->getScalarType();
2481   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2482          "Induction Step must be an integer or FP");
2483   assert(Step->getType() == STy && "Step has wrong type");
2484 
2485   SmallVector<Constant *, 8> Indices;
2486 
2487   // Create a vector of consecutive numbers from zero to VF.
2488   VectorType *InitVecValVTy = ValVTy;
2489   Type *InitVecValSTy = STy;
2490   if (STy->isFloatingPointTy()) {
2491     InitVecValSTy =
2492         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2493     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2494   }
2495   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2496 
2497   // Add on StartIdx
2498   Value *StartIdxSplat = Builder.CreateVectorSplat(
2499       VLen, ConstantInt::get(InitVecValSTy, StartIdx));
2500   InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2501 
2502   if (STy->isIntegerTy()) {
2503     Step = Builder.CreateVectorSplat(VLen, Step);
2504     assert(Step->getType() == Val->getType() && "Invalid step vec");
2505     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2506     // which can be found from the original scalar operations.
2507     Step = Builder.CreateMul(InitVec, Step);
2508     return Builder.CreateAdd(Val, Step, "induction");
2509   }
2510 
2511   // Floating point induction.
2512   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2513          "Binary Opcode should be specified for FP induction");
2514   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2515   Step = Builder.CreateVectorSplat(VLen, Step);
2516   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2517   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2518 }
2519 
2520 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2521                                            Instruction *EntryVal,
2522                                            const InductionDescriptor &ID,
2523                                            VPValue *Def, VPValue *CastDef,
2524                                            VPTransformState &State) {
2525   // We shouldn't have to build scalar steps if we aren't vectorizing.
2526   assert(VF.isVector() && "VF should be greater than one");
2527   // Get the value type and ensure it and the step have the same integer type.
2528   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2529   assert(ScalarIVTy == Step->getType() &&
2530          "Val and Step should have the same type");
2531 
2532   // We build scalar steps for both integer and floating-point induction
2533   // variables. Here, we determine the kind of arithmetic we will perform.
2534   Instruction::BinaryOps AddOp;
2535   Instruction::BinaryOps MulOp;
2536   if (ScalarIVTy->isIntegerTy()) {
2537     AddOp = Instruction::Add;
2538     MulOp = Instruction::Mul;
2539   } else {
2540     AddOp = ID.getInductionOpcode();
2541     MulOp = Instruction::FMul;
2542   }
2543 
2544   // Determine the number of scalars we need to generate for each unroll
2545   // iteration. If EntryVal is uniform, we only need to generate the first
2546   // lane. Otherwise, we generate all VF values.
2547   bool IsUniform =
2548       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
2549   unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
2550   // Compute the scalar steps and save the results in State.
2551   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2552                                      ScalarIVTy->getScalarSizeInBits());
2553   Type *VecIVTy = nullptr;
2554   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2555   if (!IsUniform && VF.isScalable()) {
2556     VecIVTy = VectorType::get(ScalarIVTy, VF);
2557     UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
2558     SplatStep = Builder.CreateVectorSplat(VF, Step);
2559     SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
2560   }
2561 
2562   for (unsigned Part = 0; Part < UF; ++Part) {
2563     Value *StartIdx0 =
2564         createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF);
2565 
2566     if (!IsUniform && VF.isScalable()) {
2567       auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
2568       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2569       if (ScalarIVTy->isFloatingPointTy())
2570         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2571       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2572       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2573       State.set(Def, Add, Part);
2574       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2575                                             Part);
2576       // It's useful to record the lane values too for the known minimum number
2577       // of elements so we do those below. This improves the code quality when
2578       // trying to extract the first element, for example.
2579     }
2580 
2581     if (ScalarIVTy->isFloatingPointTy())
2582       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2583 
2584     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2585       Value *StartIdx = Builder.CreateBinOp(
2586           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2587       // The step returned by `createStepForVF` is a runtime-evaluated value
2588       // when VF is scalable. Otherwise, it should be folded into a Constant.
2589       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2590              "Expected StartIdx to be folded to a constant when VF is not "
2591              "scalable");
2592       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2593       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2594       State.set(Def, Add, VPIteration(Part, Lane));
2595       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2596                                             Part, Lane);
2597     }
2598   }
2599 }
2600 
2601 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2602                                                     const VPIteration &Instance,
2603                                                     VPTransformState &State) {
2604   Value *ScalarInst = State.get(Def, Instance);
2605   Value *VectorValue = State.get(Def, Instance.Part);
2606   VectorValue = Builder.CreateInsertElement(
2607       VectorValue, ScalarInst,
2608       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2609   State.set(Def, VectorValue, Instance.Part);
2610 }
2611 
2612 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2613   assert(Vec->getType()->isVectorTy() && "Invalid type");
2614   return Builder.CreateVectorReverse(Vec, "reverse");
2615 }
2616 
2617 // Return whether we allow using masked interleave-groups (for dealing with
2618 // strided loads/stores that reside in predicated blocks, or for dealing
2619 // with gaps).
2620 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2621   // If an override option has been passed in for interleaved accesses, use it.
2622   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2623     return EnableMaskedInterleavedMemAccesses;
2624 
2625   return TTI.enableMaskedInterleavedAccessVectorization();
2626 }
2627 
2628 // Try to vectorize the interleave group that \p Instr belongs to.
2629 //
2630 // E.g. Translate following interleaved load group (factor = 3):
2631 //   for (i = 0; i < N; i+=3) {
2632 //     R = Pic[i];             // Member of index 0
2633 //     G = Pic[i+1];           // Member of index 1
2634 //     B = Pic[i+2];           // Member of index 2
2635 //     ... // do something to R, G, B
2636 //   }
2637 // To:
2638 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2639 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2640 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2641 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2642 //
2643 // Or translate following interleaved store group (factor = 3):
2644 //   for (i = 0; i < N; i+=3) {
2645 //     ... do something to R, G, B
2646 //     Pic[i]   = R;           // Member of index 0
2647 //     Pic[i+1] = G;           // Member of index 1
2648 //     Pic[i+2] = B;           // Member of index 2
2649 //   }
2650 // To:
2651 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2652 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2653 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2654 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2655 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2656 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2657     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2658     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2659     VPValue *BlockInMask) {
2660   Instruction *Instr = Group->getInsertPos();
2661   const DataLayout &DL = Instr->getModule()->getDataLayout();
2662 
2663   // Prepare for the vector type of the interleaved load/store.
2664   Type *ScalarTy = getMemInstValueType(Instr);
2665   unsigned InterleaveFactor = Group->getFactor();
2666   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2667   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2668 
2669   // Prepare for the new pointers.
2670   SmallVector<Value *, 2> AddrParts;
2671   unsigned Index = Group->getIndex(Instr);
2672 
2673   // TODO: extend the masked interleaved-group support to reversed access.
2674   assert((!BlockInMask || !Group->isReverse()) &&
2675          "Reversed masked interleave-group not supported.");
2676 
2677   // If the group is reverse, adjust the index to refer to the last vector lane
2678   // instead of the first. We adjust the index from the first vector lane,
2679   // rather than directly getting the pointer for lane VF - 1, because the
2680   // pointer operand of the interleaved access is supposed to be uniform. For
2681   // uniform instructions, we're only required to generate a value for the
2682   // first vector lane in each unroll iteration.
2683   if (Group->isReverse())
2684     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2685 
2686   for (unsigned Part = 0; Part < UF; Part++) {
2687     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2688     setDebugLocFromInst(Builder, AddrPart);
2689 
2690     // Notice current instruction could be any index. Need to adjust the address
2691     // to the member of index 0.
2692     //
2693     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2694     //       b = A[i];       // Member of index 0
2695     // Current pointer is pointed to A[i+1], adjust it to A[i].
2696     //
2697     // E.g.  A[i+1] = a;     // Member of index 1
2698     //       A[i]   = b;     // Member of index 0
2699     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2700     // Current pointer is pointed to A[i+2], adjust it to A[i].
2701 
2702     bool InBounds = false;
2703     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2704       InBounds = gep->isInBounds();
2705     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2706     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2707 
2708     // Cast to the vector pointer type.
2709     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2710     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2711     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2712   }
2713 
2714   setDebugLocFromInst(Builder, Instr);
2715   Value *PoisonVec = PoisonValue::get(VecTy);
2716 
2717   Value *MaskForGaps = nullptr;
2718   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2719     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2720     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2721   }
2722 
2723   // Vectorize the interleaved load group.
2724   if (isa<LoadInst>(Instr)) {
2725     // For each unroll part, create a wide load for the group.
2726     SmallVector<Value *, 2> NewLoads;
2727     for (unsigned Part = 0; Part < UF; Part++) {
2728       Instruction *NewLoad;
2729       if (BlockInMask || MaskForGaps) {
2730         assert(useMaskedInterleavedAccesses(*TTI) &&
2731                "masked interleaved groups are not allowed.");
2732         Value *GroupMask = MaskForGaps;
2733         if (BlockInMask) {
2734           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2735           Value *ShuffledMask = Builder.CreateShuffleVector(
2736               BlockInMaskPart,
2737               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2738               "interleaved.mask");
2739           GroupMask = MaskForGaps
2740                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2741                                                 MaskForGaps)
2742                           : ShuffledMask;
2743         }
2744         NewLoad =
2745             Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(),
2746                                      GroupMask, PoisonVec, "wide.masked.vec");
2747       }
2748       else
2749         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2750                                             Group->getAlign(), "wide.vec");
2751       Group->addMetadata(NewLoad);
2752       NewLoads.push_back(NewLoad);
2753     }
2754 
2755     // For each member in the group, shuffle out the appropriate data from the
2756     // wide loads.
2757     unsigned J = 0;
2758     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2759       Instruction *Member = Group->getMember(I);
2760 
2761       // Skip the gaps in the group.
2762       if (!Member)
2763         continue;
2764 
2765       auto StrideMask =
2766           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2767       for (unsigned Part = 0; Part < UF; Part++) {
2768         Value *StridedVec = Builder.CreateShuffleVector(
2769             NewLoads[Part], StrideMask, "strided.vec");
2770 
2771         // If this member has different type, cast the result type.
2772         if (Member->getType() != ScalarTy) {
2773           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2774           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2775           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2776         }
2777 
2778         if (Group->isReverse())
2779           StridedVec = reverseVector(StridedVec);
2780 
2781         State.set(VPDefs[J], StridedVec, Part);
2782       }
2783       ++J;
2784     }
2785     return;
2786   }
2787 
2788   // The sub vector type for current instruction.
2789   auto *SubVT = VectorType::get(ScalarTy, VF);
2790 
2791   // Vectorize the interleaved store group.
2792   for (unsigned Part = 0; Part < UF; Part++) {
2793     // Collect the stored vector from each member.
2794     SmallVector<Value *, 4> StoredVecs;
2795     for (unsigned i = 0; i < InterleaveFactor; i++) {
2796       // Interleaved store group doesn't allow a gap, so each index has a member
2797       assert(Group->getMember(i) && "Fail to get a member from an interleaved store group");
2798 
2799       Value *StoredVec = State.get(StoredValues[i], Part);
2800 
2801       if (Group->isReverse())
2802         StoredVec = reverseVector(StoredVec);
2803 
2804       // If this member has different type, cast it to a unified type.
2805 
2806       if (StoredVec->getType() != SubVT)
2807         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2808 
2809       StoredVecs.push_back(StoredVec);
2810     }
2811 
2812     // Concatenate all vectors into a wide vector.
2813     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2814 
2815     // Interleave the elements in the wide vector.
2816     Value *IVec = Builder.CreateShuffleVector(
2817         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2818         "interleaved.vec");
2819 
2820     Instruction *NewStoreInstr;
2821     if (BlockInMask) {
2822       Value *BlockInMaskPart = State.get(BlockInMask, Part);
2823       Value *ShuffledMask = Builder.CreateShuffleVector(
2824           BlockInMaskPart,
2825           createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2826           "interleaved.mask");
2827       NewStoreInstr = Builder.CreateMaskedStore(
2828           IVec, AddrParts[Part], Group->getAlign(), ShuffledMask);
2829     }
2830     else
2831       NewStoreInstr =
2832           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2833 
2834     Group->addMetadata(NewStoreInstr);
2835   }
2836 }
2837 
2838 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2839     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2840     VPValue *StoredValue, VPValue *BlockInMask) {
2841   // Attempt to issue a wide load.
2842   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2843   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2844 
2845   assert((LI || SI) && "Invalid Load/Store instruction");
2846   assert((!SI || StoredValue) && "No stored value provided for widened store");
2847   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2848 
2849   LoopVectorizationCostModel::InstWidening Decision =
2850       Cost->getWideningDecision(Instr, VF);
2851   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2852           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2853           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2854          "CM decision is not to widen the memory instruction");
2855 
2856   Type *ScalarDataTy = getMemInstValueType(Instr);
2857 
2858   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2859   const Align Alignment = getLoadStoreAlignment(Instr);
2860 
2861   // Determine if the pointer operand of the access is either consecutive or
2862   // reverse consecutive.
2863   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2864   bool ConsecutiveStride =
2865       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2866   bool CreateGatherScatter =
2867       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2868 
2869   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2870   // gather/scatter. Otherwise Decision should have been to Scalarize.
2871   assert((ConsecutiveStride || CreateGatherScatter) &&
2872          "The instruction should be scalarized");
2873   (void)ConsecutiveStride;
2874 
2875   VectorParts BlockInMaskParts(UF);
2876   bool isMaskRequired = BlockInMask;
2877   if (isMaskRequired)
2878     for (unsigned Part = 0; Part < UF; ++Part)
2879       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2880 
2881   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2882     // Calculate the pointer for the specific unroll-part.
2883     GetElementPtrInst *PartPtr = nullptr;
2884 
2885     bool InBounds = false;
2886     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2887       InBounds = gep->isInBounds();
2888     if (Reverse) {
2889       // If the address is consecutive but reversed, then the
2890       // wide store needs to start at the last vector element.
2891       // RunTimeVF =  VScale * VF.getKnownMinValue()
2892       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
2893       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
2894       // NumElt = -Part * RunTimeVF
2895       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
2896       // LastLane = 1 - RunTimeVF
2897       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
2898       PartPtr =
2899           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
2900       PartPtr->setIsInBounds(InBounds);
2901       PartPtr = cast<GetElementPtrInst>(
2902           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
2903       PartPtr->setIsInBounds(InBounds);
2904       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2905         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2906     } else {
2907       Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF);
2908       PartPtr = cast<GetElementPtrInst>(
2909           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
2910       PartPtr->setIsInBounds(InBounds);
2911     }
2912 
2913     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2914     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2915   };
2916 
2917   // Handle Stores:
2918   if (SI) {
2919     setDebugLocFromInst(Builder, SI);
2920 
2921     for (unsigned Part = 0; Part < UF; ++Part) {
2922       Instruction *NewSI = nullptr;
2923       Value *StoredVal = State.get(StoredValue, Part);
2924       if (CreateGatherScatter) {
2925         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2926         Value *VectorGep = State.get(Addr, Part);
2927         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2928                                             MaskPart);
2929       } else {
2930         if (Reverse) {
2931           // If we store to reverse consecutive memory locations, then we need
2932           // to reverse the order of elements in the stored value.
2933           StoredVal = reverseVector(StoredVal);
2934           // We don't want to update the value in the map as it might be used in
2935           // another expression. So don't call resetVectorValue(StoredVal).
2936         }
2937         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
2938         if (isMaskRequired)
2939           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
2940                                             BlockInMaskParts[Part]);
2941         else
2942           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
2943       }
2944       addMetadata(NewSI, SI);
2945     }
2946     return;
2947   }
2948 
2949   // Handle loads.
2950   assert(LI && "Must have a load instruction");
2951   setDebugLocFromInst(Builder, LI);
2952   for (unsigned Part = 0; Part < UF; ++Part) {
2953     Value *NewLI;
2954     if (CreateGatherScatter) {
2955       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2956       Value *VectorGep = State.get(Addr, Part);
2957       NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart,
2958                                          nullptr, "wide.masked.gather");
2959       addMetadata(NewLI, LI);
2960     } else {
2961       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
2962       if (isMaskRequired)
2963         NewLI = Builder.CreateMaskedLoad(
2964             VecPtr, Alignment, BlockInMaskParts[Part], PoisonValue::get(DataTy),
2965             "wide.masked.load");
2966       else
2967         NewLI =
2968             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
2969 
2970       // Add metadata to the load, but setVectorValue to the reverse shuffle.
2971       addMetadata(NewLI, LI);
2972       if (Reverse)
2973         NewLI = reverseVector(NewLI);
2974     }
2975 
2976     State.set(Def, NewLI, Part);
2977   }
2978 }
2979 
2980 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def,
2981                                                VPUser &User,
2982                                                const VPIteration &Instance,
2983                                                bool IfPredicateInstr,
2984                                                VPTransformState &State) {
2985   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2986 
2987   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
2988   // the first lane and part.
2989   if (isa<NoAliasScopeDeclInst>(Instr))
2990     if (!Instance.isFirstIteration())
2991       return;
2992 
2993   setDebugLocFromInst(Builder, Instr);
2994 
2995   // Does this instruction return a value ?
2996   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2997 
2998   Instruction *Cloned = Instr->clone();
2999   if (!IsVoidRetTy)
3000     Cloned->setName(Instr->getName() + ".cloned");
3001 
3002   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3003                                Builder.GetInsertPoint());
3004   // Replace the operands of the cloned instructions with their scalar
3005   // equivalents in the new loop.
3006   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
3007     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
3008     auto InputInstance = Instance;
3009     if (!Operand || !OrigLoop->contains(Operand) ||
3010         (Cost->isUniformAfterVectorization(Operand, State.VF)))
3011       InputInstance.Lane = VPLane::getFirstLane();
3012     auto *NewOp = State.get(User.getOperand(op), InputInstance);
3013     Cloned->setOperand(op, NewOp);
3014   }
3015   addNewMetadata(Cloned, Instr);
3016 
3017   // Place the cloned scalar in the new loop.
3018   Builder.Insert(Cloned);
3019 
3020   State.set(Def, Cloned, Instance);
3021 
3022   // If we just cloned a new assumption, add it the assumption cache.
3023   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3024     AC->registerAssumption(II);
3025 
3026   // End if-block.
3027   if (IfPredicateInstr)
3028     PredicatedInstructions.push_back(Cloned);
3029 }
3030 
3031 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3032                                                       Value *End, Value *Step,
3033                                                       Instruction *DL) {
3034   BasicBlock *Header = L->getHeader();
3035   BasicBlock *Latch = L->getLoopLatch();
3036   // As we're just creating this loop, it's possible no latch exists
3037   // yet. If so, use the header as this will be a single block loop.
3038   if (!Latch)
3039     Latch = Header;
3040 
3041   IRBuilder<> Builder(&*Header->getFirstInsertionPt());
3042   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3043   setDebugLocFromInst(Builder, OldInst);
3044   auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
3045 
3046   Builder.SetInsertPoint(Latch->getTerminator());
3047   setDebugLocFromInst(Builder, OldInst);
3048 
3049   // Create i+1 and fill the PHINode.
3050   Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
3051   Induction->addIncoming(Start, L->getLoopPreheader());
3052   Induction->addIncoming(Next, Latch);
3053   // Create the compare.
3054   Value *ICmp = Builder.CreateICmpEQ(Next, End);
3055   Builder.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3056 
3057   // Now we have two terminators. Remove the old one from the block.
3058   Latch->getTerminator()->eraseFromParent();
3059 
3060   return Induction;
3061 }
3062 
3063 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3064   if (TripCount)
3065     return TripCount;
3066 
3067   assert(L && "Create Trip Count for null loop.");
3068   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3069   // Find the loop boundaries.
3070   ScalarEvolution *SE = PSE.getSE();
3071   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3072   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3073          "Invalid loop count");
3074 
3075   Type *IdxTy = Legal->getWidestInductionType();
3076   assert(IdxTy && "No type for induction");
3077 
3078   // The exit count might have the type of i64 while the phi is i32. This can
3079   // happen if we have an induction variable that is sign extended before the
3080   // compare. The only way that we get a backedge taken count is that the
3081   // induction variable was signed and as such will not overflow. In such a case
3082   // truncation is legal.
3083   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3084       IdxTy->getPrimitiveSizeInBits())
3085     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3086   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3087 
3088   // Get the total trip count from the count by adding 1.
3089   const SCEV *ExitCount = SE->getAddExpr(
3090       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3091 
3092   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3093 
3094   // Expand the trip count and place the new instructions in the preheader.
3095   // Notice that the pre-header does not change, only the loop body.
3096   SCEVExpander Exp(*SE, DL, "induction");
3097 
3098   // Count holds the overall loop count (N).
3099   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3100                                 L->getLoopPreheader()->getTerminator());
3101 
3102   if (TripCount->getType()->isPointerTy())
3103     TripCount =
3104         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3105                                     L->getLoopPreheader()->getTerminator());
3106 
3107   return TripCount;
3108 }
3109 
3110 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3111   if (VectorTripCount)
3112     return VectorTripCount;
3113 
3114   Value *TC = getOrCreateTripCount(L);
3115   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3116 
3117   Type *Ty = TC->getType();
3118   // This is where we can make the step a runtime constant.
3119   Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF);
3120 
3121   // If the tail is to be folded by masking, round the number of iterations N
3122   // up to a multiple of Step instead of rounding down. This is done by first
3123   // adding Step-1 and then rounding down. Note that it's ok if this addition
3124   // overflows: the vector induction variable will eventually wrap to zero given
3125   // that it starts at zero and its Step is a power of two; the loop will then
3126   // exit, with the last early-exit vector comparison also producing all-true.
3127   if (Cost->foldTailByMasking()) {
3128     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3129            "VF*UF must be a power of 2 when folding tail by masking");
3130     assert(!VF.isScalable() &&
3131            "Tail folding not yet supported for scalable vectors");
3132     TC = Builder.CreateAdd(
3133         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3134   }
3135 
3136   // Now we need to generate the expression for the part of the loop that the
3137   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3138   // iterations are not required for correctness, or N - Step, otherwise. Step
3139   // is equal to the vectorization factor (number of SIMD elements) times the
3140   // unroll factor (number of SIMD instructions).
3141   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3142 
3143   // There are two cases where we need to ensure (at least) the last iteration
3144   // runs in the scalar remainder loop. Thus, if the step evenly divides
3145   // the trip count, we set the remainder to be equal to the step. If the step
3146   // does not evenly divide the trip count, no adjustment is necessary since
3147   // there will already be scalar iterations. Note that the minimum iterations
3148   // check ensures that N >= Step. The cases are:
3149   // 1) If there is a non-reversed interleaved group that may speculatively
3150   //    access memory out-of-bounds.
3151   // 2) If any instruction may follow a conditionally taken exit. That is, if
3152   //    the loop contains multiple exiting blocks, or a single exiting block
3153   //    which is not the latch.
3154   if (VF.isVector() && Cost->requiresScalarEpilogue()) {
3155     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3156     R = Builder.CreateSelect(IsZero, Step, R);
3157   }
3158 
3159   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3160 
3161   return VectorTripCount;
3162 }
3163 
3164 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3165                                                    const DataLayout &DL) {
3166   // Verify that V is a vector type with same number of elements as DstVTy.
3167   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3168   unsigned VF = DstFVTy->getNumElements();
3169   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3170   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3171   Type *SrcElemTy = SrcVecTy->getElementType();
3172   Type *DstElemTy = DstFVTy->getElementType();
3173   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3174          "Vector elements must have same size");
3175 
3176   // Do a direct cast if element types are castable.
3177   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3178     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3179   }
3180   // V cannot be directly casted to desired vector type.
3181   // May happen when V is a floating point vector but DstVTy is a vector of
3182   // pointers or vice-versa. Handle this using a two-step bitcast using an
3183   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3184   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3185          "Only one type should be a pointer type");
3186   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3187          "Only one type should be a floating point type");
3188   Type *IntTy =
3189       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3190   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3191   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3192   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3193 }
3194 
3195 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3196                                                          BasicBlock *Bypass) {
3197   Value *Count = getOrCreateTripCount(L);
3198   // Reuse existing vector loop preheader for TC checks.
3199   // Note that new preheader block is generated for vector loop.
3200   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3201   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3202 
3203   // Generate code to check if the loop's trip count is less than VF * UF, or
3204   // equal to it in case a scalar epilogue is required; this implies that the
3205   // vector trip count is zero. This check also covers the case where adding one
3206   // to the backedge-taken count overflowed leading to an incorrect trip count
3207   // of zero. In this case we will also jump to the scalar loop.
3208   auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE
3209                                           : ICmpInst::ICMP_ULT;
3210 
3211   // If tail is to be folded, vector loop takes care of all iterations.
3212   Value *CheckMinIters = Builder.getFalse();
3213   if (!Cost->foldTailByMasking()) {
3214     Value *Step =
3215         createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF);
3216     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3217   }
3218   // Create new preheader for vector loop.
3219   LoopVectorPreHeader =
3220       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3221                  "vector.ph");
3222 
3223   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3224                                DT->getNode(Bypass)->getIDom()) &&
3225          "TC check is expected to dominate Bypass");
3226 
3227   // Update dominator for Bypass & LoopExit.
3228   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3229   DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3230 
3231   ReplaceInstWithInst(
3232       TCCheckBlock->getTerminator(),
3233       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3234   LoopBypassBlocks.push_back(TCCheckBlock);
3235 }
3236 
3237 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3238 
3239   BasicBlock *const SCEVCheckBlock =
3240       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3241   if (!SCEVCheckBlock)
3242     return nullptr;
3243 
3244   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3245            (OptForSizeBasedOnProfile &&
3246             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3247          "Cannot SCEV check stride or overflow when optimizing for size");
3248 
3249 
3250   // Update dominator only if this is first RT check.
3251   if (LoopBypassBlocks.empty()) {
3252     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3253     DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3254   }
3255 
3256   LoopBypassBlocks.push_back(SCEVCheckBlock);
3257   AddedSafetyChecks = true;
3258   return SCEVCheckBlock;
3259 }
3260 
3261 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3262                                                       BasicBlock *Bypass) {
3263   // VPlan-native path does not do any analysis for runtime checks currently.
3264   if (EnableVPlanNativePath)
3265     return nullptr;
3266 
3267   BasicBlock *const MemCheckBlock =
3268       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3269 
3270   // Check if we generated code that checks in runtime if arrays overlap. We put
3271   // the checks into a separate block to make the more common case of few
3272   // elements faster.
3273   if (!MemCheckBlock)
3274     return nullptr;
3275 
3276   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3277     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3278            "Cannot emit memory checks when optimizing for size, unless forced "
3279            "to vectorize.");
3280     ORE->emit([&]() {
3281       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3282                                         L->getStartLoc(), L->getHeader())
3283              << "Code-size may be reduced by not forcing "
3284                 "vectorization, or by source-code modifications "
3285                 "eliminating the need for runtime checks "
3286                 "(e.g., adding 'restrict').";
3287     });
3288   }
3289 
3290   LoopBypassBlocks.push_back(MemCheckBlock);
3291 
3292   AddedSafetyChecks = true;
3293 
3294   // We currently don't use LoopVersioning for the actual loop cloning but we
3295   // still use it to add the noalias metadata.
3296   LVer = std::make_unique<LoopVersioning>(
3297       *Legal->getLAI(),
3298       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3299       DT, PSE.getSE());
3300   LVer->prepareNoAliasMetadata();
3301   return MemCheckBlock;
3302 }
3303 
3304 Value *InnerLoopVectorizer::emitTransformedIndex(
3305     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3306     const InductionDescriptor &ID) const {
3307 
3308   SCEVExpander Exp(*SE, DL, "induction");
3309   auto Step = ID.getStep();
3310   auto StartValue = ID.getStartValue();
3311   assert(Index->getType() == Step->getType() &&
3312          "Index type does not match StepValue type");
3313 
3314   // Note: the IR at this point is broken. We cannot use SE to create any new
3315   // SCEV and then expand it, hoping that SCEV's simplification will give us
3316   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3317   // lead to various SCEV crashes. So all we can do is to use builder and rely
3318   // on InstCombine for future simplifications. Here we handle some trivial
3319   // cases only.
3320   auto CreateAdd = [&B](Value *X, Value *Y) {
3321     assert(X->getType() == Y->getType() && "Types don't match!");
3322     if (auto *CX = dyn_cast<ConstantInt>(X))
3323       if (CX->isZero())
3324         return Y;
3325     if (auto *CY = dyn_cast<ConstantInt>(Y))
3326       if (CY->isZero())
3327         return X;
3328     return B.CreateAdd(X, Y);
3329   };
3330 
3331   auto CreateMul = [&B](Value *X, Value *Y) {
3332     assert(X->getType() == Y->getType() && "Types don't match!");
3333     if (auto *CX = dyn_cast<ConstantInt>(X))
3334       if (CX->isOne())
3335         return Y;
3336     if (auto *CY = dyn_cast<ConstantInt>(Y))
3337       if (CY->isOne())
3338         return X;
3339     return B.CreateMul(X, Y);
3340   };
3341 
3342   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3343   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3344   // the DomTree is not kept up-to-date for additional blocks generated in the
3345   // vector loop. By using the header as insertion point, we guarantee that the
3346   // expanded instructions dominate all their uses.
3347   auto GetInsertPoint = [this, &B]() {
3348     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3349     if (InsertBB != LoopVectorBody &&
3350         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3351       return LoopVectorBody->getTerminator();
3352     return &*B.GetInsertPoint();
3353   };
3354 
3355   switch (ID.getKind()) {
3356   case InductionDescriptor::IK_IntInduction: {
3357     assert(Index->getType() == StartValue->getType() &&
3358            "Index type does not match StartValue type");
3359     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3360       return B.CreateSub(StartValue, Index);
3361     auto *Offset = CreateMul(
3362         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3363     return CreateAdd(StartValue, Offset);
3364   }
3365   case InductionDescriptor::IK_PtrInduction: {
3366     assert(isa<SCEVConstant>(Step) &&
3367            "Expected constant step for pointer induction");
3368     return B.CreateGEP(
3369         StartValue->getType()->getPointerElementType(), StartValue,
3370         CreateMul(Index,
3371                   Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())));
3372   }
3373   case InductionDescriptor::IK_FpInduction: {
3374     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3375     auto InductionBinOp = ID.getInductionBinOp();
3376     assert(InductionBinOp &&
3377            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3378             InductionBinOp->getOpcode() == Instruction::FSub) &&
3379            "Original bin op should be defined for FP induction");
3380 
3381     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3382     Value *MulExp = B.CreateFMul(StepValue, Index);
3383     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3384                          "induction");
3385   }
3386   case InductionDescriptor::IK_NoInduction:
3387     return nullptr;
3388   }
3389   llvm_unreachable("invalid enum");
3390 }
3391 
3392 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3393   LoopScalarBody = OrigLoop->getHeader();
3394   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3395   LoopExitBlock = OrigLoop->getUniqueExitBlock();
3396   assert(LoopExitBlock && "Must have an exit block");
3397   assert(LoopVectorPreHeader && "Invalid loop structure");
3398 
3399   LoopMiddleBlock =
3400       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3401                  LI, nullptr, Twine(Prefix) + "middle.block");
3402   LoopScalarPreHeader =
3403       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3404                  nullptr, Twine(Prefix) + "scalar.ph");
3405 
3406   // Set up branch from middle block to the exit and scalar preheader blocks.
3407   // completeLoopSkeleton will update the condition to use an iteration check,
3408   // if required to decide whether to execute the remainder.
3409   BranchInst *BrInst =
3410       BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, Builder.getTrue());
3411   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3412   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3413   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3414 
3415   // We intentionally don't let SplitBlock to update LoopInfo since
3416   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3417   // LoopVectorBody is explicitly added to the correct place few lines later.
3418   LoopVectorBody =
3419       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3420                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3421 
3422   // Update dominator for loop exit.
3423   DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3424 
3425   // Create and register the new vector loop.
3426   Loop *Lp = LI->AllocateLoop();
3427   Loop *ParentLoop = OrigLoop->getParentLoop();
3428 
3429   // Insert the new loop into the loop nest and register the new basic blocks
3430   // before calling any utilities such as SCEV that require valid LoopInfo.
3431   if (ParentLoop) {
3432     ParentLoop->addChildLoop(Lp);
3433   } else {
3434     LI->addTopLevelLoop(Lp);
3435   }
3436   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3437   return Lp;
3438 }
3439 
3440 void InnerLoopVectorizer::createInductionResumeValues(
3441     Loop *L, Value *VectorTripCount,
3442     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3443   assert(VectorTripCount && L && "Expected valid arguments");
3444   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3445           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3446          "Inconsistent information about additional bypass.");
3447   // We are going to resume the execution of the scalar loop.
3448   // Go over all of the induction variables that we found and fix the
3449   // PHIs that are left in the scalar version of the loop.
3450   // The starting values of PHI nodes depend on the counter of the last
3451   // iteration in the vectorized loop.
3452   // If we come from a bypass edge then we need to start from the original
3453   // start value.
3454   for (auto &InductionEntry : Legal->getInductionVars()) {
3455     PHINode *OrigPhi = InductionEntry.first;
3456     InductionDescriptor II = InductionEntry.second;
3457 
3458     // Create phi nodes to merge from the  backedge-taken check block.
3459     PHINode *BCResumeVal =
3460         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3461                         LoopScalarPreHeader->getTerminator());
3462     // Copy original phi DL over to the new one.
3463     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3464     Value *&EndValue = IVEndValues[OrigPhi];
3465     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3466     if (OrigPhi == OldInduction) {
3467       // We know what the end value is.
3468       EndValue = VectorTripCount;
3469     } else {
3470       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3471 
3472       // Fast-math-flags propagate from the original induction instruction.
3473       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3474         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3475 
3476       Type *StepType = II.getStep()->getType();
3477       Instruction::CastOps CastOp =
3478           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3479       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3480       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3481       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3482       EndValue->setName("ind.end");
3483 
3484       // Compute the end value for the additional bypass (if applicable).
3485       if (AdditionalBypass.first) {
3486         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3487         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3488                                          StepType, true);
3489         CRD =
3490             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3491         EndValueFromAdditionalBypass =
3492             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3493         EndValueFromAdditionalBypass->setName("ind.end");
3494       }
3495     }
3496     // The new PHI merges the original incoming value, in case of a bypass,
3497     // or the value at the end of the vectorized loop.
3498     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3499 
3500     // Fix the scalar body counter (PHI node).
3501     // The old induction's phi node in the scalar body needs the truncated
3502     // value.
3503     for (BasicBlock *BB : LoopBypassBlocks)
3504       BCResumeVal->addIncoming(II.getStartValue(), BB);
3505 
3506     if (AdditionalBypass.first)
3507       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3508                                             EndValueFromAdditionalBypass);
3509 
3510     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3511   }
3512 }
3513 
3514 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3515                                                       MDNode *OrigLoopID) {
3516   assert(L && "Expected valid loop.");
3517 
3518   // The trip counts should be cached by now.
3519   Value *Count = getOrCreateTripCount(L);
3520   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3521 
3522   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3523 
3524   // Add a check in the middle block to see if we have completed
3525   // all of the iterations in the first vector loop.
3526   // If (N - N%VF) == N, then we *don't* need to run the remainder.
3527   // If tail is to be folded, we know we don't need to run the remainder.
3528   if (!Cost->foldTailByMasking()) {
3529     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3530                                         Count, VectorTripCount, "cmp.n",
3531                                         LoopMiddleBlock->getTerminator());
3532 
3533     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3534     // of the corresponding compare because they may have ended up with
3535     // different line numbers and we want to avoid awkward line stepping while
3536     // debugging. Eg. if the compare has got a line number inside the loop.
3537     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3538     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3539   }
3540 
3541   // Get ready to start creating new instructions into the vectorized body.
3542   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3543          "Inconsistent vector loop preheader");
3544   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3545 
3546   Optional<MDNode *> VectorizedLoopID =
3547       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3548                                       LLVMLoopVectorizeFollowupVectorized});
3549   if (VectorizedLoopID.hasValue()) {
3550     L->setLoopID(VectorizedLoopID.getValue());
3551 
3552     // Do not setAlreadyVectorized if loop attributes have been defined
3553     // explicitly.
3554     return LoopVectorPreHeader;
3555   }
3556 
3557   // Keep all loop hints from the original loop on the vector loop (we'll
3558   // replace the vectorizer-specific hints below).
3559   if (MDNode *LID = OrigLoop->getLoopID())
3560     L->setLoopID(LID);
3561 
3562   LoopVectorizeHints Hints(L, true, *ORE);
3563   Hints.setAlreadyVectorized();
3564 
3565 #ifdef EXPENSIVE_CHECKS
3566   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3567   LI->verify(*DT);
3568 #endif
3569 
3570   return LoopVectorPreHeader;
3571 }
3572 
3573 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3574   /*
3575    In this function we generate a new loop. The new loop will contain
3576    the vectorized instructions while the old loop will continue to run the
3577    scalar remainder.
3578 
3579        [ ] <-- loop iteration number check.
3580     /   |
3581    /    v
3582   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3583   |  /  |
3584   | /   v
3585   ||   [ ]     <-- vector pre header.
3586   |/    |
3587   |     v
3588   |    [  ] \
3589   |    [  ]_|   <-- vector loop.
3590   |     |
3591   |     v
3592   |   -[ ]   <--- middle-block.
3593   |  /  |
3594   | /   v
3595   -|- >[ ]     <--- new preheader.
3596    |    |
3597    |    v
3598    |   [ ] \
3599    |   [ ]_|   <-- old scalar loop to handle remainder.
3600     \   |
3601      \  v
3602       >[ ]     <-- exit block.
3603    ...
3604    */
3605 
3606   // Get the metadata of the original loop before it gets modified.
3607   MDNode *OrigLoopID = OrigLoop->getLoopID();
3608 
3609   // Create an empty vector loop, and prepare basic blocks for the runtime
3610   // checks.
3611   Loop *Lp = createVectorLoopSkeleton("");
3612 
3613   // Now, compare the new count to zero. If it is zero skip the vector loop and
3614   // jump to the scalar loop. This check also covers the case where the
3615   // backedge-taken count is uint##_max: adding one to it will overflow leading
3616   // to an incorrect trip count of zero. In this (rare) case we will also jump
3617   // to the scalar loop.
3618   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3619 
3620   // Generate the code to check any assumptions that we've made for SCEV
3621   // expressions.
3622   emitSCEVChecks(Lp, LoopScalarPreHeader);
3623 
3624   // Generate the code that checks in runtime if arrays overlap. We put the
3625   // checks into a separate block to make the more common case of few elements
3626   // faster.
3627   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3628 
3629   // Some loops have a single integer induction variable, while other loops
3630   // don't. One example is c++ iterators that often have multiple pointer
3631   // induction variables. In the code below we also support a case where we
3632   // don't have a single induction variable.
3633   //
3634   // We try to obtain an induction variable from the original loop as hard
3635   // as possible. However if we don't find one that:
3636   //   - is an integer
3637   //   - counts from zero, stepping by one
3638   //   - is the size of the widest induction variable type
3639   // then we create a new one.
3640   OldInduction = Legal->getPrimaryInduction();
3641   Type *IdxTy = Legal->getWidestInductionType();
3642   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3643   // The loop step is equal to the vectorization factor (num of SIMD elements)
3644   // times the unroll factor (num of SIMD instructions).
3645   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3646   Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF);
3647   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3648   Induction =
3649       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3650                               getDebugLocFromInstOrOperands(OldInduction));
3651 
3652   // Emit phis for the new starting index of the scalar loop.
3653   createInductionResumeValues(Lp, CountRoundDown);
3654 
3655   return completeLoopSkeleton(Lp, OrigLoopID);
3656 }
3657 
3658 // Fix up external users of the induction variable. At this point, we are
3659 // in LCSSA form, with all external PHIs that use the IV having one input value,
3660 // coming from the remainder loop. We need those PHIs to also have a correct
3661 // value for the IV when arriving directly from the middle block.
3662 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3663                                        const InductionDescriptor &II,
3664                                        Value *CountRoundDown, Value *EndValue,
3665                                        BasicBlock *MiddleBlock) {
3666   // There are two kinds of external IV usages - those that use the value
3667   // computed in the last iteration (the PHI) and those that use the penultimate
3668   // value (the value that feeds into the phi from the loop latch).
3669   // We allow both, but they, obviously, have different values.
3670 
3671   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3672 
3673   DenseMap<Value *, Value *> MissingVals;
3674 
3675   // An external user of the last iteration's value should see the value that
3676   // the remainder loop uses to initialize its own IV.
3677   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3678   for (User *U : PostInc->users()) {
3679     Instruction *UI = cast<Instruction>(U);
3680     if (!OrigLoop->contains(UI)) {
3681       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3682       MissingVals[UI] = EndValue;
3683     }
3684   }
3685 
3686   // An external user of the penultimate value need to see EndValue - Step.
3687   // The simplest way to get this is to recompute it from the constituent SCEVs,
3688   // that is Start + (Step * (CRD - 1)).
3689   for (User *U : OrigPhi->users()) {
3690     auto *UI = cast<Instruction>(U);
3691     if (!OrigLoop->contains(UI)) {
3692       const DataLayout &DL =
3693           OrigLoop->getHeader()->getModule()->getDataLayout();
3694       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3695 
3696       IRBuilder<> B(MiddleBlock->getTerminator());
3697 
3698       // Fast-math-flags propagate from the original induction instruction.
3699       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3700         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3701 
3702       Value *CountMinusOne = B.CreateSub(
3703           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3704       Value *CMO =
3705           !II.getStep()->getType()->isIntegerTy()
3706               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3707                              II.getStep()->getType())
3708               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3709       CMO->setName("cast.cmo");
3710       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3711       Escape->setName("ind.escape");
3712       MissingVals[UI] = Escape;
3713     }
3714   }
3715 
3716   for (auto &I : MissingVals) {
3717     PHINode *PHI = cast<PHINode>(I.first);
3718     // One corner case we have to handle is two IVs "chasing" each-other,
3719     // that is %IV2 = phi [...], [ %IV1, %latch ]
3720     // In this case, if IV1 has an external use, we need to avoid adding both
3721     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3722     // don't already have an incoming value for the middle block.
3723     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3724       PHI->addIncoming(I.second, MiddleBlock);
3725   }
3726 }
3727 
3728 namespace {
3729 
3730 struct CSEDenseMapInfo {
3731   static bool canHandle(const Instruction *I) {
3732     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3733            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3734   }
3735 
3736   static inline Instruction *getEmptyKey() {
3737     return DenseMapInfo<Instruction *>::getEmptyKey();
3738   }
3739 
3740   static inline Instruction *getTombstoneKey() {
3741     return DenseMapInfo<Instruction *>::getTombstoneKey();
3742   }
3743 
3744   static unsigned getHashValue(const Instruction *I) {
3745     assert(canHandle(I) && "Unknown instruction!");
3746     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3747                                                            I->value_op_end()));
3748   }
3749 
3750   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3751     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3752         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3753       return LHS == RHS;
3754     return LHS->isIdenticalTo(RHS);
3755   }
3756 };
3757 
3758 } // end anonymous namespace
3759 
3760 ///Perform cse of induction variable instructions.
3761 static void cse(BasicBlock *BB) {
3762   // Perform simple cse.
3763   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3764   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3765     Instruction *In = &*I++;
3766 
3767     if (!CSEDenseMapInfo::canHandle(In))
3768       continue;
3769 
3770     // Check if we can replace this instruction with any of the
3771     // visited instructions.
3772     if (Instruction *V = CSEMap.lookup(In)) {
3773       In->replaceAllUsesWith(V);
3774       In->eraseFromParent();
3775       continue;
3776     }
3777 
3778     CSEMap[In] = In;
3779   }
3780 }
3781 
3782 InstructionCost
3783 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3784                                               bool &NeedToScalarize) const {
3785   Function *F = CI->getCalledFunction();
3786   Type *ScalarRetTy = CI->getType();
3787   SmallVector<Type *, 4> Tys, ScalarTys;
3788   for (auto &ArgOp : CI->arg_operands())
3789     ScalarTys.push_back(ArgOp->getType());
3790 
3791   // Estimate cost of scalarized vector call. The source operands are assumed
3792   // to be vectors, so we need to extract individual elements from there,
3793   // execute VF scalar calls, and then gather the result into the vector return
3794   // value.
3795   InstructionCost ScalarCallCost =
3796       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3797   if (VF.isScalar())
3798     return ScalarCallCost;
3799 
3800   // Compute corresponding vector type for return value and arguments.
3801   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3802   for (Type *ScalarTy : ScalarTys)
3803     Tys.push_back(ToVectorTy(ScalarTy, VF));
3804 
3805   // Compute costs of unpacking argument values for the scalar calls and
3806   // packing the return values to a vector.
3807   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3808 
3809   InstructionCost Cost =
3810       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3811 
3812   // If we can't emit a vector call for this function, then the currently found
3813   // cost is the cost we need to return.
3814   NeedToScalarize = true;
3815   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3816   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3817 
3818   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3819     return Cost;
3820 
3821   // If the corresponding vector cost is cheaper, return its cost.
3822   InstructionCost VectorCallCost =
3823       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3824   if (VectorCallCost < Cost) {
3825     NeedToScalarize = false;
3826     Cost = VectorCallCost;
3827   }
3828   return Cost;
3829 }
3830 
3831 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3832   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3833     return Elt;
3834   return VectorType::get(Elt, VF);
3835 }
3836 
3837 InstructionCost
3838 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3839                                                    ElementCount VF) const {
3840   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3841   assert(ID && "Expected intrinsic call!");
3842   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3843   FastMathFlags FMF;
3844   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3845     FMF = FPMO->getFastMathFlags();
3846 
3847   SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end());
3848   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3849   SmallVector<Type *> ParamTys;
3850   std::transform(FTy->param_begin(), FTy->param_end(),
3851                  std::back_inserter(ParamTys),
3852                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3853 
3854   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3855                                     dyn_cast<IntrinsicInst>(CI));
3856   return TTI.getIntrinsicInstrCost(CostAttrs,
3857                                    TargetTransformInfo::TCK_RecipThroughput);
3858 }
3859 
3860 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3861   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3862   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3863   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3864 }
3865 
3866 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3867   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3868   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3869   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3870 }
3871 
3872 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3873   // For every instruction `I` in MinBWs, truncate the operands, create a
3874   // truncated version of `I` and reextend its result. InstCombine runs
3875   // later and will remove any ext/trunc pairs.
3876   SmallPtrSet<Value *, 4> Erased;
3877   for (const auto &KV : Cost->getMinimalBitwidths()) {
3878     // If the value wasn't vectorized, we must maintain the original scalar
3879     // type. The absence of the value from State indicates that it
3880     // wasn't vectorized.
3881     VPValue *Def = State.Plan->getVPValue(KV.first);
3882     if (!State.hasAnyVectorValue(Def))
3883       continue;
3884     for (unsigned Part = 0; Part < UF; ++Part) {
3885       Value *I = State.get(Def, Part);
3886       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3887         continue;
3888       Type *OriginalTy = I->getType();
3889       Type *ScalarTruncatedTy =
3890           IntegerType::get(OriginalTy->getContext(), KV.second);
3891       auto *TruncatedTy = FixedVectorType::get(
3892           ScalarTruncatedTy,
3893           cast<FixedVectorType>(OriginalTy)->getNumElements());
3894       if (TruncatedTy == OriginalTy)
3895         continue;
3896 
3897       IRBuilder<> B(cast<Instruction>(I));
3898       auto ShrinkOperand = [&](Value *V) -> Value * {
3899         if (auto *ZI = dyn_cast<ZExtInst>(V))
3900           if (ZI->getSrcTy() == TruncatedTy)
3901             return ZI->getOperand(0);
3902         return B.CreateZExtOrTrunc(V, TruncatedTy);
3903       };
3904 
3905       // The actual instruction modification depends on the instruction type,
3906       // unfortunately.
3907       Value *NewI = nullptr;
3908       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3909         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3910                              ShrinkOperand(BO->getOperand(1)));
3911 
3912         // Any wrapping introduced by shrinking this operation shouldn't be
3913         // considered undefined behavior. So, we can't unconditionally copy
3914         // arithmetic wrapping flags to NewI.
3915         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3916       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3917         NewI =
3918             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3919                          ShrinkOperand(CI->getOperand(1)));
3920       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3921         NewI = B.CreateSelect(SI->getCondition(),
3922                               ShrinkOperand(SI->getTrueValue()),
3923                               ShrinkOperand(SI->getFalseValue()));
3924       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3925         switch (CI->getOpcode()) {
3926         default:
3927           llvm_unreachable("Unhandled cast!");
3928         case Instruction::Trunc:
3929           NewI = ShrinkOperand(CI->getOperand(0));
3930           break;
3931         case Instruction::SExt:
3932           NewI = B.CreateSExtOrTrunc(
3933               CI->getOperand(0),
3934               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3935           break;
3936         case Instruction::ZExt:
3937           NewI = B.CreateZExtOrTrunc(
3938               CI->getOperand(0),
3939               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3940           break;
3941         }
3942       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3943         auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType())
3944                              ->getNumElements();
3945         auto *O0 = B.CreateZExtOrTrunc(
3946             SI->getOperand(0),
3947             FixedVectorType::get(ScalarTruncatedTy, Elements0));
3948         auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType())
3949                              ->getNumElements();
3950         auto *O1 = B.CreateZExtOrTrunc(
3951             SI->getOperand(1),
3952             FixedVectorType::get(ScalarTruncatedTy, Elements1));
3953 
3954         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3955       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3956         // Don't do anything with the operands, just extend the result.
3957         continue;
3958       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3959         auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType())
3960                             ->getNumElements();
3961         auto *O0 = B.CreateZExtOrTrunc(
3962             IE->getOperand(0),
3963             FixedVectorType::get(ScalarTruncatedTy, Elements));
3964         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3965         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3966       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3967         auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType())
3968                             ->getNumElements();
3969         auto *O0 = B.CreateZExtOrTrunc(
3970             EE->getOperand(0),
3971             FixedVectorType::get(ScalarTruncatedTy, Elements));
3972         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3973       } else {
3974         // If we don't know what to do, be conservative and don't do anything.
3975         continue;
3976       }
3977 
3978       // Lastly, extend the result.
3979       NewI->takeName(cast<Instruction>(I));
3980       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3981       I->replaceAllUsesWith(Res);
3982       cast<Instruction>(I)->eraseFromParent();
3983       Erased.insert(I);
3984       State.reset(Def, Res, Part);
3985     }
3986   }
3987 
3988   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3989   for (const auto &KV : Cost->getMinimalBitwidths()) {
3990     // If the value wasn't vectorized, we must maintain the original scalar
3991     // type. The absence of the value from State indicates that it
3992     // wasn't vectorized.
3993     VPValue *Def = State.Plan->getVPValue(KV.first);
3994     if (!State.hasAnyVectorValue(Def))
3995       continue;
3996     for (unsigned Part = 0; Part < UF; ++Part) {
3997       Value *I = State.get(Def, Part);
3998       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3999       if (Inst && Inst->use_empty()) {
4000         Value *NewI = Inst->getOperand(0);
4001         Inst->eraseFromParent();
4002         State.reset(Def, NewI, Part);
4003       }
4004     }
4005   }
4006 }
4007 
4008 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
4009   // Insert truncates and extends for any truncated instructions as hints to
4010   // InstCombine.
4011   if (VF.isVector())
4012     truncateToMinimalBitwidths(State);
4013 
4014   // Fix widened non-induction PHIs by setting up the PHI operands.
4015   if (OrigPHIsToFix.size()) {
4016     assert(EnableVPlanNativePath &&
4017            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
4018     fixNonInductionPHIs(State);
4019   }
4020 
4021   // At this point every instruction in the original loop is widened to a
4022   // vector form. Now we need to fix the recurrences in the loop. These PHI
4023   // nodes are currently empty because we did not want to introduce cycles.
4024   // This is the second stage of vectorizing recurrences.
4025   fixCrossIterationPHIs(State);
4026 
4027   // Forget the original basic block.
4028   PSE.getSE()->forgetLoop(OrigLoop);
4029 
4030   // Fix-up external users of the induction variables.
4031   for (auto &Entry : Legal->getInductionVars())
4032     fixupIVUsers(Entry.first, Entry.second,
4033                  getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4034                  IVEndValues[Entry.first], LoopMiddleBlock);
4035 
4036   fixLCSSAPHIs(State);
4037   for (Instruction *PI : PredicatedInstructions)
4038     sinkScalarOperands(&*PI);
4039 
4040   // Remove redundant induction instructions.
4041   cse(LoopVectorBody);
4042 
4043   // Set/update profile weights for the vector and remainder loops as original
4044   // loop iterations are now distributed among them. Note that original loop
4045   // represented by LoopScalarBody becomes remainder loop after vectorization.
4046   //
4047   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4048   // end up getting slightly roughened result but that should be OK since
4049   // profile is not inherently precise anyway. Note also possible bypass of
4050   // vector code caused by legality checks is ignored, assigning all the weight
4051   // to the vector loop, optimistically.
4052   //
4053   // For scalable vectorization we can't know at compile time how many iterations
4054   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4055   // vscale of '1'.
4056   setProfileInfoAfterUnrolling(
4057       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4058       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4059 }
4060 
4061 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4062   // In order to support recurrences we need to be able to vectorize Phi nodes.
4063   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4064   // stage #2: We now need to fix the recurrences by adding incoming edges to
4065   // the currently empty PHI nodes. At this point every instruction in the
4066   // original loop is widened to a vector form so we can use them to construct
4067   // the incoming edges.
4068   for (PHINode &Phi : OrigLoop->getHeader()->phis()) {
4069     // Handle first-order recurrences and reductions that need to be fixed.
4070     if (Legal->isFirstOrderRecurrence(&Phi))
4071       fixFirstOrderRecurrence(&Phi, State);
4072     else if (Legal->isReductionVariable(&Phi))
4073       fixReduction(&Phi, State);
4074   }
4075 }
4076 
4077 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi,
4078                                                   VPTransformState &State) {
4079   // This is the second phase of vectorizing first-order recurrences. An
4080   // overview of the transformation is described below. Suppose we have the
4081   // following loop.
4082   //
4083   //   for (int i = 0; i < n; ++i)
4084   //     b[i] = a[i] - a[i - 1];
4085   //
4086   // There is a first-order recurrence on "a". For this loop, the shorthand
4087   // scalar IR looks like:
4088   //
4089   //   scalar.ph:
4090   //     s_init = a[-1]
4091   //     br scalar.body
4092   //
4093   //   scalar.body:
4094   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4095   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4096   //     s2 = a[i]
4097   //     b[i] = s2 - s1
4098   //     br cond, scalar.body, ...
4099   //
4100   // In this example, s1 is a recurrence because it's value depends on the
4101   // previous iteration. In the first phase of vectorization, we created a
4102   // temporary value for s1. We now complete the vectorization and produce the
4103   // shorthand vector IR shown below (for VF = 4, UF = 1).
4104   //
4105   //   vector.ph:
4106   //     v_init = vector(..., ..., ..., a[-1])
4107   //     br vector.body
4108   //
4109   //   vector.body
4110   //     i = phi [0, vector.ph], [i+4, vector.body]
4111   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4112   //     v2 = a[i, i+1, i+2, i+3];
4113   //     v3 = vector(v1(3), v2(0, 1, 2))
4114   //     b[i, i+1, i+2, i+3] = v2 - v3
4115   //     br cond, vector.body, middle.block
4116   //
4117   //   middle.block:
4118   //     x = v2(3)
4119   //     br scalar.ph
4120   //
4121   //   scalar.ph:
4122   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4123   //     br scalar.body
4124   //
4125   // After execution completes the vector loop, we extract the next value of
4126   // the recurrence (x) to use as the initial value in the scalar loop.
4127 
4128   // Get the original loop preheader and single loop latch.
4129   auto *Preheader = OrigLoop->getLoopPreheader();
4130   auto *Latch = OrigLoop->getLoopLatch();
4131 
4132   // Get the initial and previous values of the scalar recurrence.
4133   auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
4134   auto *Previous = Phi->getIncomingValueForBlock(Latch);
4135 
4136   // Create a vector from the initial value.
4137   auto *VectorInit = ScalarInit;
4138   if (VF.isVector()) {
4139     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4140     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
4141     VectorInit = Builder.CreateInsertElement(
4142         PoisonValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit,
4143         Builder.getInt32(VF.getKnownMinValue() - 1), "vector.recur.init");
4144   }
4145 
4146   VPValue *PhiDef = State.Plan->getVPValue(Phi);
4147   VPValue *PreviousDef = State.Plan->getVPValue(Previous);
4148   // We constructed a temporary phi node in the first phase of vectorization.
4149   // This phi node will eventually be deleted.
4150   Builder.SetInsertPoint(cast<Instruction>(State.get(PhiDef, 0)));
4151 
4152   // Create a phi node for the new recurrence. The current value will either be
4153   // the initial value inserted into a vector or loop-varying vector value.
4154   auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
4155   VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
4156 
4157   // Get the vectorized previous value of the last part UF - 1. It appears last
4158   // among all unrolled iterations, due to the order of their construction.
4159   Value *PreviousLastPart = State.get(PreviousDef, UF - 1);
4160 
4161   // Find and set the insertion point after the previous value if it is an
4162   // instruction.
4163   BasicBlock::iterator InsertPt;
4164   // Note that the previous value may have been constant-folded so it is not
4165   // guaranteed to be an instruction in the vector loop.
4166   // FIXME: Loop invariant values do not form recurrences. We should deal with
4167   //        them earlier.
4168   if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart))
4169     InsertPt = LoopVectorBody->getFirstInsertionPt();
4170   else {
4171     Instruction *PreviousInst = cast<Instruction>(PreviousLastPart);
4172     if (isa<PHINode>(PreviousLastPart))
4173       // If the previous value is a phi node, we should insert after all the phi
4174       // nodes in the block containing the PHI to avoid breaking basic block
4175       // verification. Note that the basic block may be different to
4176       // LoopVectorBody, in case we predicate the loop.
4177       InsertPt = PreviousInst->getParent()->getFirstInsertionPt();
4178     else
4179       InsertPt = ++PreviousInst->getIterator();
4180   }
4181   Builder.SetInsertPoint(&*InsertPt);
4182 
4183   // We will construct a vector for the recurrence by combining the values for
4184   // the current and previous iterations. This is the required shuffle mask.
4185   assert(!VF.isScalable());
4186   SmallVector<int, 8> ShuffleMask(VF.getKnownMinValue());
4187   ShuffleMask[0] = VF.getKnownMinValue() - 1;
4188   for (unsigned I = 1; I < VF.getKnownMinValue(); ++I)
4189     ShuffleMask[I] = I + VF.getKnownMinValue() - 1;
4190 
4191   // The vector from which to take the initial value for the current iteration
4192   // (actual or unrolled). Initially, this is the vector phi node.
4193   Value *Incoming = VecPhi;
4194 
4195   // Shuffle the current and previous vector and update the vector parts.
4196   for (unsigned Part = 0; Part < UF; ++Part) {
4197     Value *PreviousPart = State.get(PreviousDef, Part);
4198     Value *PhiPart = State.get(PhiDef, Part);
4199     auto *Shuffle =
4200         VF.isVector()
4201             ? Builder.CreateShuffleVector(Incoming, PreviousPart, ShuffleMask)
4202             : Incoming;
4203     PhiPart->replaceAllUsesWith(Shuffle);
4204     cast<Instruction>(PhiPart)->eraseFromParent();
4205     State.reset(PhiDef, Shuffle, Part);
4206     Incoming = PreviousPart;
4207   }
4208 
4209   // Fix the latch value of the new recurrence in the vector loop.
4210   VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4211 
4212   // Extract the last vector element in the middle block. This will be the
4213   // initial value for the recurrence when jumping to the scalar loop.
4214   auto *ExtractForScalar = Incoming;
4215   if (VF.isVector()) {
4216     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4217     ExtractForScalar = Builder.CreateExtractElement(
4218         ExtractForScalar, Builder.getInt32(VF.getKnownMinValue() - 1),
4219         "vector.recur.extract");
4220   }
4221   // Extract the second last element in the middle block if the
4222   // Phi is used outside the loop. We need to extract the phi itself
4223   // and not the last element (the phi update in the current iteration). This
4224   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4225   // when the scalar loop is not run at all.
4226   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4227   if (VF.isVector())
4228     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4229         Incoming, Builder.getInt32(VF.getKnownMinValue() - 2),
4230         "vector.recur.extract.for.phi");
4231   // When loop is unrolled without vectorizing, initialize
4232   // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of
4233   // `Incoming`. This is analogous to the vectorized case above: extracting the
4234   // second last element when VF > 1.
4235   else if (UF > 1)
4236     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4237 
4238   // Fix the initial value of the original recurrence in the scalar loop.
4239   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4240   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4241   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4242     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4243     Start->addIncoming(Incoming, BB);
4244   }
4245 
4246   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4247   Phi->setName("scalar.recur");
4248 
4249   // Finally, fix users of the recurrence outside the loop. The users will need
4250   // either the last value of the scalar recurrence or the last value of the
4251   // vector recurrence we extracted in the middle block. Since the loop is in
4252   // LCSSA form, we just need to find all the phi nodes for the original scalar
4253   // recurrence in the exit block, and then add an edge for the middle block.
4254   // Note that LCSSA does not imply single entry when the original scalar loop
4255   // had multiple exiting edges (as we always run the last iteration in the
4256   // scalar epilogue); in that case, the exiting path through middle will be
4257   // dynamically dead and the value picked for the phi doesn't matter.
4258   for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4259     if (any_of(LCSSAPhi.incoming_values(),
4260                [Phi](Value *V) { return V == Phi; }))
4261       LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4262 }
4263 
4264 static bool useOrderedReductions(RecurrenceDescriptor &RdxDesc) {
4265   return EnableStrictReductions && RdxDesc.isOrdered();
4266 }
4267 
4268 void InnerLoopVectorizer::fixReduction(PHINode *Phi, VPTransformState &State) {
4269   // Get it's reduction variable descriptor.
4270   assert(Legal->isReductionVariable(Phi) &&
4271          "Unable to find the reduction variable");
4272   RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi];
4273 
4274   RecurKind RK = RdxDesc.getRecurrenceKind();
4275   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4276   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4277   setDebugLocFromInst(Builder, ReductionStartValue);
4278   bool IsInLoopReductionPhi = Cost->isInLoopReduction(Phi);
4279 
4280   VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst);
4281   // This is the vector-clone of the value that leaves the loop.
4282   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4283 
4284   // Wrap flags are in general invalid after vectorization, clear them.
4285   clearReductionWrapFlags(RdxDesc, State);
4286 
4287   // Fix the vector-loop phi.
4288 
4289   // Reductions do not have to start at zero. They can start with
4290   // any loop invariant values.
4291   BasicBlock *Latch = OrigLoop->getLoopLatch();
4292   Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
4293 
4294   for (unsigned Part = 0; Part < UF; ++Part) {
4295     Value *VecRdxPhi = State.get(State.Plan->getVPValue(Phi), Part);
4296     Value *Val = State.get(State.Plan->getVPValue(LoopVal), Part);
4297     if (IsInLoopReductionPhi && useOrderedReductions(RdxDesc) &&
4298         State.VF.isVector())
4299       Val = State.get(State.Plan->getVPValue(LoopVal), UF - 1);
4300     cast<PHINode>(VecRdxPhi)
4301       ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4302   }
4303 
4304   // Before each round, move the insertion point right between
4305   // the PHIs and the values we are going to write.
4306   // This allows us to write both PHINodes and the extractelement
4307   // instructions.
4308   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4309 
4310   setDebugLocFromInst(Builder, LoopExitInst);
4311 
4312   Type *PhiTy = Phi->getType();
4313   // If tail is folded by masking, the vector value to leave the loop should be
4314   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4315   // instead of the former. For an inloop reduction the reduction will already
4316   // be predicated, and does not need to be handled here.
4317   if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) {
4318     for (unsigned Part = 0; Part < UF; ++Part) {
4319       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4320       Value *Sel = nullptr;
4321       for (User *U : VecLoopExitInst->users()) {
4322         if (isa<SelectInst>(U)) {
4323           assert(!Sel && "Reduction exit feeding two selects");
4324           Sel = U;
4325         } else
4326           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4327       }
4328       assert(Sel && "Reduction exit feeds no select");
4329       State.reset(LoopExitInstDef, Sel, Part);
4330 
4331       // If the target can create a predicated operator for the reduction at no
4332       // extra cost in the loop (for example a predicated vadd), it can be
4333       // cheaper for the select to remain in the loop than be sunk out of it,
4334       // and so use the select value for the phi instead of the old
4335       // LoopExitValue.
4336       if (PreferPredicatedReductionSelect ||
4337           TTI->preferPredicatedReductionSelect(
4338               RdxDesc.getOpcode(), PhiTy,
4339               TargetTransformInfo::ReductionFlags())) {
4340         auto *VecRdxPhi =
4341             cast<PHINode>(State.get(State.Plan->getVPValue(Phi), Part));
4342         VecRdxPhi->setIncomingValueForBlock(
4343             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4344       }
4345     }
4346   }
4347 
4348   // If the vector reduction can be performed in a smaller type, we truncate
4349   // then extend the loop exit value to enable InstCombine to evaluate the
4350   // entire expression in the smaller type.
4351   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4352     assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!");
4353     assert(!VF.isScalable() && "scalable vectors not yet supported.");
4354     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4355     Builder.SetInsertPoint(
4356         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4357     VectorParts RdxParts(UF);
4358     for (unsigned Part = 0; Part < UF; ++Part) {
4359       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4360       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4361       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4362                                         : Builder.CreateZExt(Trunc, VecTy);
4363       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4364            UI != RdxParts[Part]->user_end();)
4365         if (*UI != Trunc) {
4366           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4367           RdxParts[Part] = Extnd;
4368         } else {
4369           ++UI;
4370         }
4371     }
4372     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4373     for (unsigned Part = 0; Part < UF; ++Part) {
4374       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4375       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4376     }
4377   }
4378 
4379   // Reduce all of the unrolled parts into a single vector.
4380   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4381   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4382 
4383   // The middle block terminator has already been assigned a DebugLoc here (the
4384   // OrigLoop's single latch terminator). We want the whole middle block to
4385   // appear to execute on this line because: (a) it is all compiler generated,
4386   // (b) these instructions are always executed after evaluating the latch
4387   // conditional branch, and (c) other passes may add new predecessors which
4388   // terminate on this line. This is the easiest way to ensure we don't
4389   // accidentally cause an extra step back into the loop while debugging.
4390   setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator());
4391   if (IsInLoopReductionPhi && useOrderedReductions(RdxDesc))
4392     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4393   else {
4394     // Floating-point operations should have some FMF to enable the reduction.
4395     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4396     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4397     for (unsigned Part = 1; Part < UF; ++Part) {
4398       Value *RdxPart = State.get(LoopExitInstDef, Part);
4399       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4400         ReducedPartRdx = Builder.CreateBinOp(
4401             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4402       } else {
4403         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4404       }
4405     }
4406   }
4407 
4408   // Create the reduction after the loop. Note that inloop reductions create the
4409   // target reduction in the loop using a Reduction recipe.
4410   if (VF.isVector() && !IsInLoopReductionPhi) {
4411     ReducedPartRdx =
4412         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx);
4413     // If the reduction can be performed in a smaller type, we need to extend
4414     // the reduction to the wider type before we branch to the original loop.
4415     if (PhiTy != RdxDesc.getRecurrenceType())
4416       ReducedPartRdx = RdxDesc.isSigned()
4417                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4418                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4419   }
4420 
4421   // Create a phi node that merges control-flow from the backedge-taken check
4422   // block and the middle block.
4423   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4424                                         LoopScalarPreHeader->getTerminator());
4425   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4426     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4427   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4428 
4429   // Now, we need to fix the users of the reduction variable
4430   // inside and outside of the scalar remainder loop.
4431 
4432   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4433   // in the exit blocks.  See comment on analogous loop in
4434   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4435   for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4436     if (any_of(LCSSAPhi.incoming_values(),
4437                [LoopExitInst](Value *V) { return V == LoopExitInst; }))
4438       LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4439 
4440   // Fix the scalar loop reduction variable with the incoming reduction sum
4441   // from the vector body and from the backedge value.
4442   int IncomingEdgeBlockIdx =
4443     Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4444   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4445   // Pick the other block.
4446   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4447   Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4448   Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4449 }
4450 
4451 void InnerLoopVectorizer::clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc,
4452                                                   VPTransformState &State) {
4453   RecurKind RK = RdxDesc.getRecurrenceKind();
4454   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4455     return;
4456 
4457   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4458   assert(LoopExitInstr && "null loop exit instruction");
4459   SmallVector<Instruction *, 8> Worklist;
4460   SmallPtrSet<Instruction *, 8> Visited;
4461   Worklist.push_back(LoopExitInstr);
4462   Visited.insert(LoopExitInstr);
4463 
4464   while (!Worklist.empty()) {
4465     Instruction *Cur = Worklist.pop_back_val();
4466     if (isa<OverflowingBinaryOperator>(Cur))
4467       for (unsigned Part = 0; Part < UF; ++Part) {
4468         Value *V = State.get(State.Plan->getVPValue(Cur), Part);
4469         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4470       }
4471 
4472     for (User *U : Cur->users()) {
4473       Instruction *UI = cast<Instruction>(U);
4474       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4475           Visited.insert(UI).second)
4476         Worklist.push_back(UI);
4477     }
4478   }
4479 }
4480 
4481 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4482   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4483     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4484       // Some phis were already hand updated by the reduction and recurrence
4485       // code above, leave them alone.
4486       continue;
4487 
4488     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4489     // Non-instruction incoming values will have only one value.
4490 
4491     VPLane Lane = VPLane::getFirstLane();
4492     if (isa<Instruction>(IncomingValue) &&
4493         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4494                                            VF))
4495       Lane = VPLane::getLastLaneForVF(VF);
4496 
4497     // Can be a loop invariant incoming value or the last scalar value to be
4498     // extracted from the vectorized loop.
4499     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4500     Value *lastIncomingValue =
4501         OrigLoop->isLoopInvariant(IncomingValue)
4502             ? IncomingValue
4503             : State.get(State.Plan->getVPValue(IncomingValue),
4504                         VPIteration(UF - 1, Lane));
4505     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4506   }
4507 }
4508 
4509 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4510   // The basic block and loop containing the predicated instruction.
4511   auto *PredBB = PredInst->getParent();
4512   auto *VectorLoop = LI->getLoopFor(PredBB);
4513 
4514   // Initialize a worklist with the operands of the predicated instruction.
4515   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4516 
4517   // Holds instructions that we need to analyze again. An instruction may be
4518   // reanalyzed if we don't yet know if we can sink it or not.
4519   SmallVector<Instruction *, 8> InstsToReanalyze;
4520 
4521   // Returns true if a given use occurs in the predicated block. Phi nodes use
4522   // their operands in their corresponding predecessor blocks.
4523   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4524     auto *I = cast<Instruction>(U.getUser());
4525     BasicBlock *BB = I->getParent();
4526     if (auto *Phi = dyn_cast<PHINode>(I))
4527       BB = Phi->getIncomingBlock(
4528           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4529     return BB == PredBB;
4530   };
4531 
4532   // Iteratively sink the scalarized operands of the predicated instruction
4533   // into the block we created for it. When an instruction is sunk, it's
4534   // operands are then added to the worklist. The algorithm ends after one pass
4535   // through the worklist doesn't sink a single instruction.
4536   bool Changed;
4537   do {
4538     // Add the instructions that need to be reanalyzed to the worklist, and
4539     // reset the changed indicator.
4540     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4541     InstsToReanalyze.clear();
4542     Changed = false;
4543 
4544     while (!Worklist.empty()) {
4545       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4546 
4547       // We can't sink an instruction if it is a phi node, is already in the
4548       // predicated block, is not in the loop, or may have side effects.
4549       if (!I || isa<PHINode>(I) || I->getParent() == PredBB ||
4550           !VectorLoop->contains(I) || I->mayHaveSideEffects())
4551         continue;
4552 
4553       // It's legal to sink the instruction if all its uses occur in the
4554       // predicated block. Otherwise, there's nothing to do yet, and we may
4555       // need to reanalyze the instruction.
4556       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4557         InstsToReanalyze.push_back(I);
4558         continue;
4559       }
4560 
4561       // Move the instruction to the beginning of the predicated block, and add
4562       // it's operands to the worklist.
4563       I->moveBefore(&*PredBB->getFirstInsertionPt());
4564       Worklist.insert(I->op_begin(), I->op_end());
4565 
4566       // The sinking may have enabled other instructions to be sunk, so we will
4567       // need to iterate.
4568       Changed = true;
4569     }
4570   } while (Changed);
4571 }
4572 
4573 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4574   for (PHINode *OrigPhi : OrigPHIsToFix) {
4575     VPWidenPHIRecipe *VPPhi =
4576         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4577     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4578     // Make sure the builder has a valid insert point.
4579     Builder.SetInsertPoint(NewPhi);
4580     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4581       VPValue *Inc = VPPhi->getIncomingValue(i);
4582       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4583       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4584     }
4585   }
4586 }
4587 
4588 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4589                                    VPUser &Operands, unsigned UF,
4590                                    ElementCount VF, bool IsPtrLoopInvariant,
4591                                    SmallBitVector &IsIndexLoopInvariant,
4592                                    VPTransformState &State) {
4593   // Construct a vector GEP by widening the operands of the scalar GEP as
4594   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4595   // results in a vector of pointers when at least one operand of the GEP
4596   // is vector-typed. Thus, to keep the representation compact, we only use
4597   // vector-typed operands for loop-varying values.
4598 
4599   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4600     // If we are vectorizing, but the GEP has only loop-invariant operands,
4601     // the GEP we build (by only using vector-typed operands for
4602     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4603     // produce a vector of pointers, we need to either arbitrarily pick an
4604     // operand to broadcast, or broadcast a clone of the original GEP.
4605     // Here, we broadcast a clone of the original.
4606     //
4607     // TODO: If at some point we decide to scalarize instructions having
4608     //       loop-invariant operands, this special case will no longer be
4609     //       required. We would add the scalarization decision to
4610     //       collectLoopScalars() and teach getVectorValue() to broadcast
4611     //       the lane-zero scalar value.
4612     auto *Clone = Builder.Insert(GEP->clone());
4613     for (unsigned Part = 0; Part < UF; ++Part) {
4614       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4615       State.set(VPDef, EntryPart, Part);
4616       addMetadata(EntryPart, GEP);
4617     }
4618   } else {
4619     // If the GEP has at least one loop-varying operand, we are sure to
4620     // produce a vector of pointers. But if we are only unrolling, we want
4621     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4622     // produce with the code below will be scalar (if VF == 1) or vector
4623     // (otherwise). Note that for the unroll-only case, we still maintain
4624     // values in the vector mapping with initVector, as we do for other
4625     // instructions.
4626     for (unsigned Part = 0; Part < UF; ++Part) {
4627       // The pointer operand of the new GEP. If it's loop-invariant, we
4628       // won't broadcast it.
4629       auto *Ptr = IsPtrLoopInvariant
4630                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4631                       : State.get(Operands.getOperand(0), Part);
4632 
4633       // Collect all the indices for the new GEP. If any index is
4634       // loop-invariant, we won't broadcast it.
4635       SmallVector<Value *, 4> Indices;
4636       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4637         VPValue *Operand = Operands.getOperand(I);
4638         if (IsIndexLoopInvariant[I - 1])
4639           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4640         else
4641           Indices.push_back(State.get(Operand, Part));
4642       }
4643 
4644       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4645       // but it should be a vector, otherwise.
4646       auto *NewGEP =
4647           GEP->isInBounds()
4648               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4649                                           Indices)
4650               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4651       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4652              "NewGEP is not a pointer vector");
4653       State.set(VPDef, NewGEP, Part);
4654       addMetadata(NewGEP, GEP);
4655     }
4656   }
4657 }
4658 
4659 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4660                                               RecurrenceDescriptor *RdxDesc,
4661                                               VPWidenPHIRecipe *PhiR,
4662                                               VPTransformState &State) {
4663   PHINode *P = cast<PHINode>(PN);
4664   if (EnableVPlanNativePath) {
4665     // Currently we enter here in the VPlan-native path for non-induction
4666     // PHIs where all control flow is uniform. We simply widen these PHIs.
4667     // Create a vector phi with no operands - the vector phi operands will be
4668     // set at the end of vector code generation.
4669     Type *VecTy = (State.VF.isScalar())
4670                       ? PN->getType()
4671                       : VectorType::get(PN->getType(), State.VF);
4672     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4673     State.set(PhiR, VecPhi, 0);
4674     OrigPHIsToFix.push_back(P);
4675 
4676     return;
4677   }
4678 
4679   assert(PN->getParent() == OrigLoop->getHeader() &&
4680          "Non-header phis should have been handled elsewhere");
4681 
4682   VPValue *StartVPV = PhiR->getStartValue();
4683   Value *StartV = StartVPV ? StartVPV->getLiveInIRValue() : nullptr;
4684   // In order to support recurrences we need to be able to vectorize Phi nodes.
4685   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4686   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4687   // this value when we vectorize all of the instructions that use the PHI.
4688   if (RdxDesc || Legal->isFirstOrderRecurrence(P)) {
4689     Value *Iden = nullptr;
4690     bool ScalarPHI =
4691         (State.VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN));
4692     Type *VecTy =
4693         ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF);
4694 
4695     if (RdxDesc) {
4696       assert(Legal->isReductionVariable(P) && StartV &&
4697              "RdxDesc should only be set for reduction variables; in that case "
4698              "a StartV is also required");
4699       RecurKind RK = RdxDesc->getRecurrenceKind();
4700       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK)) {
4701         // MinMax reduction have the start value as their identify.
4702         if (ScalarPHI) {
4703           Iden = StartV;
4704         } else {
4705           IRBuilderBase::InsertPointGuard IPBuilder(Builder);
4706           Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4707           StartV = Iden =
4708               Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident");
4709         }
4710       } else {
4711         Constant *IdenC = RecurrenceDescriptor::getRecurrenceIdentity(
4712             RK, VecTy->getScalarType(), RdxDesc->getFastMathFlags());
4713         Iden = IdenC;
4714 
4715         if (!ScalarPHI) {
4716           Iden = ConstantVector::getSplat(State.VF, IdenC);
4717           IRBuilderBase::InsertPointGuard IPBuilder(Builder);
4718           Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4719           Constant *Zero = Builder.getInt32(0);
4720           StartV = Builder.CreateInsertElement(Iden, StartV, Zero);
4721         }
4722       }
4723     }
4724 
4725     for (unsigned Part = 0; Part < State.UF; ++Part) {
4726       // This is phase one of vectorizing PHIs.
4727       Value *EntryPart = PHINode::Create(
4728           VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
4729       State.set(PhiR, EntryPart, Part);
4730       if (StartV) {
4731         // Make sure to add the reduction start value only to the
4732         // first unroll part.
4733         Value *StartVal = (Part == 0) ? StartV : Iden;
4734         cast<PHINode>(EntryPart)->addIncoming(StartVal, LoopVectorPreHeader);
4735       }
4736     }
4737     return;
4738   }
4739 
4740   assert(!Legal->isReductionVariable(P) &&
4741          "reductions should be handled above");
4742 
4743   setDebugLocFromInst(Builder, P);
4744 
4745   // This PHINode must be an induction variable.
4746   // Make sure that we know about it.
4747   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4748 
4749   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4750   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4751 
4752   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4753   // which can be found from the original scalar operations.
4754   switch (II.getKind()) {
4755   case InductionDescriptor::IK_NoInduction:
4756     llvm_unreachable("Unknown induction");
4757   case InductionDescriptor::IK_IntInduction:
4758   case InductionDescriptor::IK_FpInduction:
4759     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4760   case InductionDescriptor::IK_PtrInduction: {
4761     // Handle the pointer induction variable case.
4762     assert(P->getType()->isPointerTy() && "Unexpected type.");
4763 
4764     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4765       // This is the normalized GEP that starts counting at zero.
4766       Value *PtrInd =
4767           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4768       // Determine the number of scalars we need to generate for each unroll
4769       // iteration. If the instruction is uniform, we only need to generate the
4770       // first lane. Otherwise, we generate all VF values.
4771       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4772       assert((IsUniform || !VF.isScalable()) &&
4773              "Currently unsupported for scalable vectors");
4774       unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
4775 
4776       for (unsigned Part = 0; Part < UF; ++Part) {
4777         Value *PartStart = createStepForVF(
4778             Builder, ConstantInt::get(PtrInd->getType(), Part), VF);
4779         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4780           Value *Idx = Builder.CreateAdd(
4781               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4782           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4783           Value *SclrGep =
4784               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4785           SclrGep->setName("next.gep");
4786           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4787         }
4788       }
4789       return;
4790     }
4791     assert(isa<SCEVConstant>(II.getStep()) &&
4792            "Induction step not a SCEV constant!");
4793     Type *PhiType = II.getStep()->getType();
4794 
4795     // Build a pointer phi
4796     Value *ScalarStartValue = II.getStartValue();
4797     Type *ScStValueType = ScalarStartValue->getType();
4798     PHINode *NewPointerPhi =
4799         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4800     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4801 
4802     // A pointer induction, performed by using a gep
4803     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4804     Instruction *InductionLoc = LoopLatch->getTerminator();
4805     const SCEV *ScalarStep = II.getStep();
4806     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4807     Value *ScalarStepValue =
4808         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4809     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4810     Value *NumUnrolledElems =
4811         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4812     Value *InductionGEP = GetElementPtrInst::Create(
4813         ScStValueType->getPointerElementType(), NewPointerPhi,
4814         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4815         InductionLoc);
4816     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4817 
4818     // Create UF many actual address geps that use the pointer
4819     // phi as base and a vectorized version of the step value
4820     // (<step*0, ..., step*N>) as offset.
4821     for (unsigned Part = 0; Part < State.UF; ++Part) {
4822       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4823       Value *StartOffsetScalar =
4824           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4825       Value *StartOffset =
4826           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4827       // Create a vector of consecutive numbers from zero to VF.
4828       StartOffset =
4829           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4830 
4831       Value *GEP = Builder.CreateGEP(
4832           ScStValueType->getPointerElementType(), NewPointerPhi,
4833           Builder.CreateMul(
4834               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4835               "vector.gep"));
4836       State.set(PhiR, GEP, Part);
4837     }
4838   }
4839   }
4840 }
4841 
4842 /// A helper function for checking whether an integer division-related
4843 /// instruction may divide by zero (in which case it must be predicated if
4844 /// executed conditionally in the scalar code).
4845 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4846 /// Non-zero divisors that are non compile-time constants will not be
4847 /// converted into multiplication, so we will still end up scalarizing
4848 /// the division, but can do so w/o predication.
4849 static bool mayDivideByZero(Instruction &I) {
4850   assert((I.getOpcode() == Instruction::UDiv ||
4851           I.getOpcode() == Instruction::SDiv ||
4852           I.getOpcode() == Instruction::URem ||
4853           I.getOpcode() == Instruction::SRem) &&
4854          "Unexpected instruction");
4855   Value *Divisor = I.getOperand(1);
4856   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4857   return !CInt || CInt->isZero();
4858 }
4859 
4860 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
4861                                            VPUser &User,
4862                                            VPTransformState &State) {
4863   switch (I.getOpcode()) {
4864   case Instruction::Call:
4865   case Instruction::Br:
4866   case Instruction::PHI:
4867   case Instruction::GetElementPtr:
4868   case Instruction::Select:
4869     llvm_unreachable("This instruction is handled by a different recipe.");
4870   case Instruction::UDiv:
4871   case Instruction::SDiv:
4872   case Instruction::SRem:
4873   case Instruction::URem:
4874   case Instruction::Add:
4875   case Instruction::FAdd:
4876   case Instruction::Sub:
4877   case Instruction::FSub:
4878   case Instruction::FNeg:
4879   case Instruction::Mul:
4880   case Instruction::FMul:
4881   case Instruction::FDiv:
4882   case Instruction::FRem:
4883   case Instruction::Shl:
4884   case Instruction::LShr:
4885   case Instruction::AShr:
4886   case Instruction::And:
4887   case Instruction::Or:
4888   case Instruction::Xor: {
4889     // Just widen unops and binops.
4890     setDebugLocFromInst(Builder, &I);
4891 
4892     for (unsigned Part = 0; Part < UF; ++Part) {
4893       SmallVector<Value *, 2> Ops;
4894       for (VPValue *VPOp : User.operands())
4895         Ops.push_back(State.get(VPOp, Part));
4896 
4897       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4898 
4899       if (auto *VecOp = dyn_cast<Instruction>(V))
4900         VecOp->copyIRFlags(&I);
4901 
4902       // Use this vector value for all users of the original instruction.
4903       State.set(Def, V, Part);
4904       addMetadata(V, &I);
4905     }
4906 
4907     break;
4908   }
4909   case Instruction::ICmp:
4910   case Instruction::FCmp: {
4911     // Widen compares. Generate vector compares.
4912     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4913     auto *Cmp = cast<CmpInst>(&I);
4914     setDebugLocFromInst(Builder, Cmp);
4915     for (unsigned Part = 0; Part < UF; ++Part) {
4916       Value *A = State.get(User.getOperand(0), Part);
4917       Value *B = State.get(User.getOperand(1), Part);
4918       Value *C = nullptr;
4919       if (FCmp) {
4920         // Propagate fast math flags.
4921         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4922         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4923         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4924       } else {
4925         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4926       }
4927       State.set(Def, C, Part);
4928       addMetadata(C, &I);
4929     }
4930 
4931     break;
4932   }
4933 
4934   case Instruction::ZExt:
4935   case Instruction::SExt:
4936   case Instruction::FPToUI:
4937   case Instruction::FPToSI:
4938   case Instruction::FPExt:
4939   case Instruction::PtrToInt:
4940   case Instruction::IntToPtr:
4941   case Instruction::SIToFP:
4942   case Instruction::UIToFP:
4943   case Instruction::Trunc:
4944   case Instruction::FPTrunc:
4945   case Instruction::BitCast: {
4946     auto *CI = cast<CastInst>(&I);
4947     setDebugLocFromInst(Builder, CI);
4948 
4949     /// Vectorize casts.
4950     Type *DestTy =
4951         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
4952 
4953     for (unsigned Part = 0; Part < UF; ++Part) {
4954       Value *A = State.get(User.getOperand(0), Part);
4955       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4956       State.set(Def, Cast, Part);
4957       addMetadata(Cast, &I);
4958     }
4959     break;
4960   }
4961   default:
4962     // This instruction is not vectorized by simple widening.
4963     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4964     llvm_unreachable("Unhandled instruction!");
4965   } // end of switch.
4966 }
4967 
4968 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4969                                                VPUser &ArgOperands,
4970                                                VPTransformState &State) {
4971   assert(!isa<DbgInfoIntrinsic>(I) &&
4972          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4973   setDebugLocFromInst(Builder, &I);
4974 
4975   Module *M = I.getParent()->getParent()->getParent();
4976   auto *CI = cast<CallInst>(&I);
4977 
4978   SmallVector<Type *, 4> Tys;
4979   for (Value *ArgOperand : CI->arg_operands())
4980     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4981 
4982   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4983 
4984   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4985   // version of the instruction.
4986   // Is it beneficial to perform intrinsic call compared to lib call?
4987   bool NeedToScalarize = false;
4988   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4989   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4990   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4991   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4992          "Instruction should be scalarized elsewhere.");
4993   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4994          "Either the intrinsic cost or vector call cost must be valid");
4995 
4996   for (unsigned Part = 0; Part < UF; ++Part) {
4997     SmallVector<Value *, 4> Args;
4998     for (auto &I : enumerate(ArgOperands.operands())) {
4999       // Some intrinsics have a scalar argument - don't replace it with a
5000       // vector.
5001       Value *Arg;
5002       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
5003         Arg = State.get(I.value(), Part);
5004       else
5005         Arg = State.get(I.value(), VPIteration(0, 0));
5006       Args.push_back(Arg);
5007     }
5008 
5009     Function *VectorF;
5010     if (UseVectorIntrinsic) {
5011       // Use vector version of the intrinsic.
5012       Type *TysForDecl[] = {CI->getType()};
5013       if (VF.isVector())
5014         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
5015       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
5016       assert(VectorF && "Can't retrieve vector intrinsic.");
5017     } else {
5018       // Use vector version of the function call.
5019       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
5020 #ifndef NDEBUG
5021       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
5022              "Can't create vector function.");
5023 #endif
5024         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
5025     }
5026       SmallVector<OperandBundleDef, 1> OpBundles;
5027       CI->getOperandBundlesAsDefs(OpBundles);
5028       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
5029 
5030       if (isa<FPMathOperator>(V))
5031         V->copyFastMathFlags(CI);
5032 
5033       State.set(Def, V, Part);
5034       addMetadata(V, &I);
5035   }
5036 }
5037 
5038 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
5039                                                  VPUser &Operands,
5040                                                  bool InvariantCond,
5041                                                  VPTransformState &State) {
5042   setDebugLocFromInst(Builder, &I);
5043 
5044   // The condition can be loop invariant  but still defined inside the
5045   // loop. This means that we can't just use the original 'cond' value.
5046   // We have to take the 'vectorized' value and pick the first lane.
5047   // Instcombine will make this a no-op.
5048   auto *InvarCond = InvariantCond
5049                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5050                         : nullptr;
5051 
5052   for (unsigned Part = 0; Part < UF; ++Part) {
5053     Value *Cond =
5054         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5055     Value *Op0 = State.get(Operands.getOperand(1), Part);
5056     Value *Op1 = State.get(Operands.getOperand(2), Part);
5057     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5058     State.set(VPDef, Sel, Part);
5059     addMetadata(Sel, &I);
5060   }
5061 }
5062 
5063 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5064   // We should not collect Scalars more than once per VF. Right now, this
5065   // function is called from collectUniformsAndScalars(), which already does
5066   // this check. Collecting Scalars for VF=1 does not make any sense.
5067   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5068          "This function should not be visited twice for the same VF");
5069 
5070   SmallSetVector<Instruction *, 8> Worklist;
5071 
5072   // These sets are used to seed the analysis with pointers used by memory
5073   // accesses that will remain scalar.
5074   SmallSetVector<Instruction *, 8> ScalarPtrs;
5075   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5076   auto *Latch = TheLoop->getLoopLatch();
5077 
5078   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5079   // The pointer operands of loads and stores will be scalar as long as the
5080   // memory access is not a gather or scatter operation. The value operand of a
5081   // store will remain scalar if the store is scalarized.
5082   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5083     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5084     assert(WideningDecision != CM_Unknown &&
5085            "Widening decision should be ready at this moment");
5086     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5087       if (Ptr == Store->getValueOperand())
5088         return WideningDecision == CM_Scalarize;
5089     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5090            "Ptr is neither a value or pointer operand");
5091     return WideningDecision != CM_GatherScatter;
5092   };
5093 
5094   // A helper that returns true if the given value is a bitcast or
5095   // getelementptr instruction contained in the loop.
5096   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5097     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5098             isa<GetElementPtrInst>(V)) &&
5099            !TheLoop->isLoopInvariant(V);
5100   };
5101 
5102   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5103     if (!isa<PHINode>(Ptr) ||
5104         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5105       return false;
5106     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5107     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5108       return false;
5109     return isScalarUse(MemAccess, Ptr);
5110   };
5111 
5112   // A helper that evaluates a memory access's use of a pointer. If the
5113   // pointer is actually the pointer induction of a loop, it is being
5114   // inserted into Worklist. If the use will be a scalar use, and the
5115   // pointer is only used by memory accesses, we place the pointer in
5116   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5117   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5118     if (isScalarPtrInduction(MemAccess, Ptr)) {
5119       Worklist.insert(cast<Instruction>(Ptr));
5120       Instruction *Update = cast<Instruction>(
5121           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5122       Worklist.insert(Update);
5123       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5124                         << "\n");
5125       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update
5126                         << "\n");
5127       return;
5128     }
5129     // We only care about bitcast and getelementptr instructions contained in
5130     // the loop.
5131     if (!isLoopVaryingBitCastOrGEP(Ptr))
5132       return;
5133 
5134     // If the pointer has already been identified as scalar (e.g., if it was
5135     // also identified as uniform), there's nothing to do.
5136     auto *I = cast<Instruction>(Ptr);
5137     if (Worklist.count(I))
5138       return;
5139 
5140     // If the use of the pointer will be a scalar use, and all users of the
5141     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5142     // place the pointer in PossibleNonScalarPtrs.
5143     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5144           return isa<LoadInst>(U) || isa<StoreInst>(U);
5145         }))
5146       ScalarPtrs.insert(I);
5147     else
5148       PossibleNonScalarPtrs.insert(I);
5149   };
5150 
5151   // We seed the scalars analysis with three classes of instructions: (1)
5152   // instructions marked uniform-after-vectorization and (2) bitcast,
5153   // getelementptr and (pointer) phi instructions used by memory accesses
5154   // requiring a scalar use.
5155   //
5156   // (1) Add to the worklist all instructions that have been identified as
5157   // uniform-after-vectorization.
5158   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5159 
5160   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5161   // memory accesses requiring a scalar use. The pointer operands of loads and
5162   // stores will be scalar as long as the memory accesses is not a gather or
5163   // scatter operation. The value operand of a store will remain scalar if the
5164   // store is scalarized.
5165   for (auto *BB : TheLoop->blocks())
5166     for (auto &I : *BB) {
5167       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5168         evaluatePtrUse(Load, Load->getPointerOperand());
5169       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5170         evaluatePtrUse(Store, Store->getPointerOperand());
5171         evaluatePtrUse(Store, Store->getValueOperand());
5172       }
5173     }
5174   for (auto *I : ScalarPtrs)
5175     if (!PossibleNonScalarPtrs.count(I)) {
5176       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5177       Worklist.insert(I);
5178     }
5179 
5180   // Insert the forced scalars.
5181   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5182   // induction variable when the PHI user is scalarized.
5183   auto ForcedScalar = ForcedScalars.find(VF);
5184   if (ForcedScalar != ForcedScalars.end())
5185     for (auto *I : ForcedScalar->second)
5186       Worklist.insert(I);
5187 
5188   // Expand the worklist by looking through any bitcasts and getelementptr
5189   // instructions we've already identified as scalar. This is similar to the
5190   // expansion step in collectLoopUniforms(); however, here we're only
5191   // expanding to include additional bitcasts and getelementptr instructions.
5192   unsigned Idx = 0;
5193   while (Idx != Worklist.size()) {
5194     Instruction *Dst = Worklist[Idx++];
5195     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5196       continue;
5197     auto *Src = cast<Instruction>(Dst->getOperand(0));
5198     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5199           auto *J = cast<Instruction>(U);
5200           return !TheLoop->contains(J) || Worklist.count(J) ||
5201                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5202                   isScalarUse(J, Src));
5203         })) {
5204       Worklist.insert(Src);
5205       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5206     }
5207   }
5208 
5209   // An induction variable will remain scalar if all users of the induction
5210   // variable and induction variable update remain scalar.
5211   for (auto &Induction : Legal->getInductionVars()) {
5212     auto *Ind = Induction.first;
5213     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5214 
5215     // If tail-folding is applied, the primary induction variable will be used
5216     // to feed a vector compare.
5217     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5218       continue;
5219 
5220     // Determine if all users of the induction variable are scalar after
5221     // vectorization.
5222     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5223       auto *I = cast<Instruction>(U);
5224       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5225     });
5226     if (!ScalarInd)
5227       continue;
5228 
5229     // Determine if all users of the induction variable update instruction are
5230     // scalar after vectorization.
5231     auto ScalarIndUpdate =
5232         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5233           auto *I = cast<Instruction>(U);
5234           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5235         });
5236     if (!ScalarIndUpdate)
5237       continue;
5238 
5239     // The induction variable and its update instruction will remain scalar.
5240     Worklist.insert(Ind);
5241     Worklist.insert(IndUpdate);
5242     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5243     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5244                       << "\n");
5245   }
5246 
5247   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5248 }
5249 
5250 bool LoopVectorizationCostModel::isScalarWithPredication(
5251     Instruction *I, ElementCount VF) const {
5252   if (!blockNeedsPredication(I->getParent()))
5253     return false;
5254   switch(I->getOpcode()) {
5255   default:
5256     break;
5257   case Instruction::Load:
5258   case Instruction::Store: {
5259     if (!Legal->isMaskRequired(I))
5260       return false;
5261     auto *Ptr = getLoadStorePointerOperand(I);
5262     auto *Ty = getMemInstValueType(I);
5263     // We have already decided how to vectorize this instruction, get that
5264     // result.
5265     if (VF.isVector()) {
5266       InstWidening WideningDecision = getWideningDecision(I, VF);
5267       assert(WideningDecision != CM_Unknown &&
5268              "Widening decision should be ready at this moment");
5269       return WideningDecision == CM_Scalarize;
5270     }
5271     const Align Alignment = getLoadStoreAlignment(I);
5272     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5273                                 isLegalMaskedGather(Ty, Alignment))
5274                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5275                                 isLegalMaskedScatter(Ty, Alignment));
5276   }
5277   case Instruction::UDiv:
5278   case Instruction::SDiv:
5279   case Instruction::SRem:
5280   case Instruction::URem:
5281     return mayDivideByZero(*I);
5282   }
5283   return false;
5284 }
5285 
5286 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5287     Instruction *I, ElementCount VF) {
5288   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5289   assert(getWideningDecision(I, VF) == CM_Unknown &&
5290          "Decision should not be set yet.");
5291   auto *Group = getInterleavedAccessGroup(I);
5292   assert(Group && "Must have a group.");
5293 
5294   // If the instruction's allocated size doesn't equal it's type size, it
5295   // requires padding and will be scalarized.
5296   auto &DL = I->getModule()->getDataLayout();
5297   auto *ScalarTy = getMemInstValueType(I);
5298   if (hasIrregularType(ScalarTy, DL))
5299     return false;
5300 
5301   // Check if masking is required.
5302   // A Group may need masking for one of two reasons: it resides in a block that
5303   // needs predication, or it was decided to use masking to deal with gaps.
5304   bool PredicatedAccessRequiresMasking =
5305       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
5306   bool AccessWithGapsRequiresMasking =
5307       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
5308   if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking)
5309     return true;
5310 
5311   // If masked interleaving is required, we expect that the user/target had
5312   // enabled it, because otherwise it either wouldn't have been created or
5313   // it should have been invalidated by the CostModel.
5314   assert(useMaskedInterleavedAccesses(TTI) &&
5315          "Masked interleave-groups for predicated accesses are not enabled.");
5316 
5317   auto *Ty = getMemInstValueType(I);
5318   const Align Alignment = getLoadStoreAlignment(I);
5319   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5320                           : TTI.isLegalMaskedStore(Ty, Alignment);
5321 }
5322 
5323 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5324     Instruction *I, ElementCount VF) {
5325   // Get and ensure we have a valid memory instruction.
5326   LoadInst *LI = dyn_cast<LoadInst>(I);
5327   StoreInst *SI = dyn_cast<StoreInst>(I);
5328   assert((LI || SI) && "Invalid memory instruction");
5329 
5330   auto *Ptr = getLoadStorePointerOperand(I);
5331 
5332   // In order to be widened, the pointer should be consecutive, first of all.
5333   if (!Legal->isConsecutivePtr(Ptr))
5334     return false;
5335 
5336   // If the instruction is a store located in a predicated block, it will be
5337   // scalarized.
5338   if (isScalarWithPredication(I))
5339     return false;
5340 
5341   // If the instruction's allocated size doesn't equal it's type size, it
5342   // requires padding and will be scalarized.
5343   auto &DL = I->getModule()->getDataLayout();
5344   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
5345   if (hasIrregularType(ScalarTy, DL))
5346     return false;
5347 
5348   return true;
5349 }
5350 
5351 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5352   // We should not collect Uniforms more than once per VF. Right now,
5353   // this function is called from collectUniformsAndScalars(), which
5354   // already does this check. Collecting Uniforms for VF=1 does not make any
5355   // sense.
5356 
5357   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5358          "This function should not be visited twice for the same VF");
5359 
5360   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5361   // not analyze again.  Uniforms.count(VF) will return 1.
5362   Uniforms[VF].clear();
5363 
5364   // We now know that the loop is vectorizable!
5365   // Collect instructions inside the loop that will remain uniform after
5366   // vectorization.
5367 
5368   // Global values, params and instructions outside of current loop are out of
5369   // scope.
5370   auto isOutOfScope = [&](Value *V) -> bool {
5371     Instruction *I = dyn_cast<Instruction>(V);
5372     return (!I || !TheLoop->contains(I));
5373   };
5374 
5375   SetVector<Instruction *> Worklist;
5376   BasicBlock *Latch = TheLoop->getLoopLatch();
5377 
5378   // Instructions that are scalar with predication must not be considered
5379   // uniform after vectorization, because that would create an erroneous
5380   // replicating region where only a single instance out of VF should be formed.
5381   // TODO: optimize such seldom cases if found important, see PR40816.
5382   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5383     if (isOutOfScope(I)) {
5384       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5385                         << *I << "\n");
5386       return;
5387     }
5388     if (isScalarWithPredication(I, VF)) {
5389       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5390                         << *I << "\n");
5391       return;
5392     }
5393     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5394     Worklist.insert(I);
5395   };
5396 
5397   // Start with the conditional branch. If the branch condition is an
5398   // instruction contained in the loop that is only used by the branch, it is
5399   // uniform.
5400   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5401   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5402     addToWorklistIfAllowed(Cmp);
5403 
5404   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5405     InstWidening WideningDecision = getWideningDecision(I, VF);
5406     assert(WideningDecision != CM_Unknown &&
5407            "Widening decision should be ready at this moment");
5408 
5409     // A uniform memory op is itself uniform.  We exclude uniform stores
5410     // here as they demand the last lane, not the first one.
5411     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5412       assert(WideningDecision == CM_Scalarize);
5413       return true;
5414     }
5415 
5416     return (WideningDecision == CM_Widen ||
5417             WideningDecision == CM_Widen_Reverse ||
5418             WideningDecision == CM_Interleave);
5419   };
5420 
5421 
5422   // Returns true if Ptr is the pointer operand of a memory access instruction
5423   // I, and I is known to not require scalarization.
5424   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5425     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5426   };
5427 
5428   // Holds a list of values which are known to have at least one uniform use.
5429   // Note that there may be other uses which aren't uniform.  A "uniform use"
5430   // here is something which only demands lane 0 of the unrolled iterations;
5431   // it does not imply that all lanes produce the same value (e.g. this is not
5432   // the usual meaning of uniform)
5433   SetVector<Value *> HasUniformUse;
5434 
5435   // Scan the loop for instructions which are either a) known to have only
5436   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5437   for (auto *BB : TheLoop->blocks())
5438     for (auto &I : *BB) {
5439       // If there's no pointer operand, there's nothing to do.
5440       auto *Ptr = getLoadStorePointerOperand(&I);
5441       if (!Ptr)
5442         continue;
5443 
5444       // A uniform memory op is itself uniform.  We exclude uniform stores
5445       // here as they demand the last lane, not the first one.
5446       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5447         addToWorklistIfAllowed(&I);
5448 
5449       if (isUniformDecision(&I, VF)) {
5450         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5451         HasUniformUse.insert(Ptr);
5452       }
5453     }
5454 
5455   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5456   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5457   // disallows uses outside the loop as well.
5458   for (auto *V : HasUniformUse) {
5459     if (isOutOfScope(V))
5460       continue;
5461     auto *I = cast<Instruction>(V);
5462     auto UsersAreMemAccesses =
5463       llvm::all_of(I->users(), [&](User *U) -> bool {
5464         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5465       });
5466     if (UsersAreMemAccesses)
5467       addToWorklistIfAllowed(I);
5468   }
5469 
5470   // Expand Worklist in topological order: whenever a new instruction
5471   // is added , its users should be already inside Worklist.  It ensures
5472   // a uniform instruction will only be used by uniform instructions.
5473   unsigned idx = 0;
5474   while (idx != Worklist.size()) {
5475     Instruction *I = Worklist[idx++];
5476 
5477     for (auto OV : I->operand_values()) {
5478       // isOutOfScope operands cannot be uniform instructions.
5479       if (isOutOfScope(OV))
5480         continue;
5481       // First order recurrence Phi's should typically be considered
5482       // non-uniform.
5483       auto *OP = dyn_cast<PHINode>(OV);
5484       if (OP && Legal->isFirstOrderRecurrence(OP))
5485         continue;
5486       // If all the users of the operand are uniform, then add the
5487       // operand into the uniform worklist.
5488       auto *OI = cast<Instruction>(OV);
5489       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5490             auto *J = cast<Instruction>(U);
5491             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5492           }))
5493         addToWorklistIfAllowed(OI);
5494     }
5495   }
5496 
5497   // For an instruction to be added into Worklist above, all its users inside
5498   // the loop should also be in Worklist. However, this condition cannot be
5499   // true for phi nodes that form a cyclic dependence. We must process phi
5500   // nodes separately. An induction variable will remain uniform if all users
5501   // of the induction variable and induction variable update remain uniform.
5502   // The code below handles both pointer and non-pointer induction variables.
5503   for (auto &Induction : Legal->getInductionVars()) {
5504     auto *Ind = Induction.first;
5505     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5506 
5507     // Determine if all users of the induction variable are uniform after
5508     // vectorization.
5509     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5510       auto *I = cast<Instruction>(U);
5511       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5512              isVectorizedMemAccessUse(I, Ind);
5513     });
5514     if (!UniformInd)
5515       continue;
5516 
5517     // Determine if all users of the induction variable update instruction are
5518     // uniform after vectorization.
5519     auto UniformIndUpdate =
5520         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5521           auto *I = cast<Instruction>(U);
5522           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5523                  isVectorizedMemAccessUse(I, IndUpdate);
5524         });
5525     if (!UniformIndUpdate)
5526       continue;
5527 
5528     // The induction variable and its update instruction will remain uniform.
5529     addToWorklistIfAllowed(Ind);
5530     addToWorklistIfAllowed(IndUpdate);
5531   }
5532 
5533   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5534 }
5535 
5536 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5537   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5538 
5539   if (Legal->getRuntimePointerChecking()->Need) {
5540     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5541         "runtime pointer checks needed. Enable vectorization of this "
5542         "loop with '#pragma clang loop vectorize(enable)' when "
5543         "compiling with -Os/-Oz",
5544         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5545     return true;
5546   }
5547 
5548   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5549     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5550         "runtime SCEV checks needed. Enable vectorization of this "
5551         "loop with '#pragma clang loop vectorize(enable)' when "
5552         "compiling with -Os/-Oz",
5553         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5554     return true;
5555   }
5556 
5557   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5558   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5559     reportVectorizationFailure("Runtime stride check for small trip count",
5560         "runtime stride == 1 checks needed. Enable vectorization of "
5561         "this loop without such check by compiling with -Os/-Oz",
5562         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5563     return true;
5564   }
5565 
5566   return false;
5567 }
5568 
5569 Optional<ElementCount>
5570 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5571   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5572     // TODO: It may by useful to do since it's still likely to be dynamically
5573     // uniform if the target can skip.
5574     reportVectorizationFailure(
5575         "Not inserting runtime ptr check for divergent target",
5576         "runtime pointer checks needed. Not enabled for divergent target",
5577         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5578     return None;
5579   }
5580 
5581   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5582   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5583   if (TC == 1) {
5584     reportVectorizationFailure("Single iteration (non) loop",
5585         "loop trip count is one, irrelevant for vectorization",
5586         "SingleIterationLoop", ORE, TheLoop);
5587     return None;
5588   }
5589 
5590   switch (ScalarEpilogueStatus) {
5591   case CM_ScalarEpilogueAllowed:
5592     return computeFeasibleMaxVF(TC, UserVF);
5593   case CM_ScalarEpilogueNotAllowedUsePredicate:
5594     LLVM_FALLTHROUGH;
5595   case CM_ScalarEpilogueNotNeededUsePredicate:
5596     LLVM_DEBUG(
5597         dbgs() << "LV: vector predicate hint/switch found.\n"
5598                << "LV: Not allowing scalar epilogue, creating predicated "
5599                << "vector loop.\n");
5600     break;
5601   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5602     // fallthrough as a special case of OptForSize
5603   case CM_ScalarEpilogueNotAllowedOptSize:
5604     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5605       LLVM_DEBUG(
5606           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5607     else
5608       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5609                         << "count.\n");
5610 
5611     // Bail if runtime checks are required, which are not good when optimising
5612     // for size.
5613     if (runtimeChecksRequired())
5614       return None;
5615 
5616     break;
5617   }
5618 
5619   // The only loops we can vectorize without a scalar epilogue, are loops with
5620   // a bottom-test and a single exiting block. We'd have to handle the fact
5621   // that not every instruction executes on the last iteration.  This will
5622   // require a lane mask which varies through the vector loop body.  (TODO)
5623   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5624     // If there was a tail-folding hint/switch, but we can't fold the tail by
5625     // masking, fallback to a vectorization with a scalar epilogue.
5626     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5627       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5628                            "scalar epilogue instead.\n");
5629       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5630       return computeFeasibleMaxVF(TC, UserVF);
5631     }
5632     return None;
5633   }
5634 
5635   // Now try the tail folding
5636 
5637   // Invalidate interleave groups that require an epilogue if we can't mask
5638   // the interleave-group.
5639   if (!useMaskedInterleavedAccesses(TTI)) {
5640     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5641            "No decisions should have been taken at this point");
5642     // Note: There is no need to invalidate any cost modeling decisions here, as
5643     // non where taken so far.
5644     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5645   }
5646 
5647   ElementCount MaxVF = computeFeasibleMaxVF(TC, UserVF);
5648   assert(!MaxVF.isScalable() &&
5649          "Scalable vectors do not yet support tail folding");
5650   assert((UserVF.isNonZero() || isPowerOf2_32(MaxVF.getFixedValue())) &&
5651          "MaxVF must be a power of 2");
5652   unsigned MaxVFtimesIC =
5653       UserIC ? MaxVF.getFixedValue() * UserIC : MaxVF.getFixedValue();
5654   // Avoid tail folding if the trip count is known to be a multiple of any VF we
5655   // chose.
5656   ScalarEvolution *SE = PSE.getSE();
5657   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5658   const SCEV *ExitCount = SE->getAddExpr(
5659       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5660   const SCEV *Rem = SE->getURemExpr(
5661       SE->applyLoopGuards(ExitCount, TheLoop),
5662       SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5663   if (Rem->isZero()) {
5664     // Accept MaxVF if we do not have a tail.
5665     LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5666     return MaxVF;
5667   }
5668 
5669   // If we don't know the precise trip count, or if the trip count that we
5670   // found modulo the vectorization factor is not zero, try to fold the tail
5671   // by masking.
5672   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5673   if (Legal->prepareToFoldTailByMasking()) {
5674     FoldTailByMasking = true;
5675     return MaxVF;
5676   }
5677 
5678   // If there was a tail-folding hint/switch, but we can't fold the tail by
5679   // masking, fallback to a vectorization with a scalar epilogue.
5680   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5681     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5682                          "scalar epilogue instead.\n");
5683     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5684     return MaxVF;
5685   }
5686 
5687   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5688     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5689     return None;
5690   }
5691 
5692   if (TC == 0) {
5693     reportVectorizationFailure(
5694         "Unable to calculate the loop count due to complex control flow",
5695         "unable to calculate the loop count due to complex control flow",
5696         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5697     return None;
5698   }
5699 
5700   reportVectorizationFailure(
5701       "Cannot optimize for size and vectorize at the same time.",
5702       "cannot optimize for size and vectorize at the same time. "
5703       "Enable vectorization of this loop with '#pragma clang loop "
5704       "vectorize(enable)' when compiling with -Os/-Oz",
5705       "NoTailLoopWithOptForSize", ORE, TheLoop);
5706   return None;
5707 }
5708 
5709 ElementCount
5710 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5711                                                  ElementCount UserVF) {
5712   bool IgnoreScalableUserVF = UserVF.isScalable() &&
5713                               !TTI.supportsScalableVectors() &&
5714                               !ForceTargetSupportsScalableVectors;
5715   if (IgnoreScalableUserVF) {
5716     LLVM_DEBUG(
5717         dbgs() << "LV: Ignoring VF=" << UserVF
5718                << " because target does not support scalable vectors.\n");
5719     ORE->emit([&]() {
5720       return OptimizationRemarkAnalysis(DEBUG_TYPE, "IgnoreScalableUserVF",
5721                                         TheLoop->getStartLoc(),
5722                                         TheLoop->getHeader())
5723              << "Ignoring VF=" << ore::NV("UserVF", UserVF)
5724              << " because target does not support scalable vectors.";
5725     });
5726   }
5727 
5728   // Beyond this point two scenarios are handled. If UserVF isn't specified
5729   // then a suitable VF is chosen. If UserVF is specified and there are
5730   // dependencies, check if it's legal. However, if a UserVF is specified and
5731   // there are no dependencies, then there's nothing to do.
5732   if (UserVF.isNonZero() && !IgnoreScalableUserVF) {
5733     if (!canVectorizeReductions(UserVF)) {
5734       reportVectorizationFailure(
5735           "LV: Scalable vectorization not supported for the reduction "
5736           "operations found in this loop. Using fixed-width "
5737           "vectorization instead.",
5738           "Scalable vectorization not supported for the reduction operations "
5739           "found in this loop. Using fixed-width vectorization instead.",
5740           "ScalableVFUnfeasible", ORE, TheLoop);
5741       return computeFeasibleMaxVF(
5742           ConstTripCount, ElementCount::getFixed(UserVF.getKnownMinValue()));
5743     }
5744 
5745     if (Legal->isSafeForAnyVectorWidth())
5746       return UserVF;
5747   }
5748 
5749   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5750   unsigned SmallestType, WidestType;
5751   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5752   unsigned WidestRegister =
5753       TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
5754           .getFixedSize();
5755 
5756   // Get the maximum safe dependence distance in bits computed by LAA.
5757   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5758   // the memory accesses that is most restrictive (involved in the smallest
5759   // dependence distance).
5760   unsigned MaxSafeVectorWidthInBits = Legal->getMaxSafeVectorWidthInBits();
5761 
5762   // If the user vectorization factor is legally unsafe, clamp it to a safe
5763   // value. Otherwise, return as is.
5764   if (UserVF.isNonZero() && !IgnoreScalableUserVF) {
5765     unsigned MaxSafeElements =
5766         PowerOf2Floor(MaxSafeVectorWidthInBits / WidestType);
5767     ElementCount MaxSafeVF = ElementCount::getFixed(MaxSafeElements);
5768 
5769     if (UserVF.isScalable()) {
5770       Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5771 
5772       // Scale VF by vscale before checking if it's safe.
5773       MaxSafeVF = ElementCount::getScalable(
5774           MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5775 
5776       if (MaxSafeVF.isZero()) {
5777         // The dependence distance is too small to use scalable vectors,
5778         // fallback on fixed.
5779         LLVM_DEBUG(
5780             dbgs()
5781             << "LV: Max legal vector width too small, scalable vectorization "
5782                "unfeasible. Using fixed-width vectorization instead.\n");
5783         ORE->emit([&]() {
5784           return OptimizationRemarkAnalysis(DEBUG_TYPE, "ScalableVFUnfeasible",
5785                                             TheLoop->getStartLoc(),
5786                                             TheLoop->getHeader())
5787                  << "Max legal vector width too small, scalable vectorization "
5788                  << "unfeasible. Using fixed-width vectorization instead.";
5789         });
5790         return computeFeasibleMaxVF(
5791             ConstTripCount, ElementCount::getFixed(UserVF.getKnownMinValue()));
5792       }
5793     }
5794 
5795     LLVM_DEBUG(dbgs() << "LV: The max safe VF is: " << MaxSafeVF << ".\n");
5796 
5797     if (ElementCount::isKnownLE(UserVF, MaxSafeVF))
5798       return UserVF;
5799 
5800     LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5801                       << " is unsafe, clamping to max safe VF=" << MaxSafeVF
5802                       << ".\n");
5803     ORE->emit([&]() {
5804       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5805                                         TheLoop->getStartLoc(),
5806                                         TheLoop->getHeader())
5807              << "User-specified vectorization factor "
5808              << ore::NV("UserVectorizationFactor", UserVF)
5809              << " is unsafe, clamping to maximum safe vectorization factor "
5810              << ore::NV("VectorizationFactor", MaxSafeVF);
5811     });
5812     return MaxSafeVF;
5813   }
5814 
5815   WidestRegister = std::min(WidestRegister, MaxSafeVectorWidthInBits);
5816 
5817   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5818   // Note that both WidestRegister and WidestType may not be a powers of 2.
5819   auto MaxVectorSize =
5820       ElementCount::getFixed(PowerOf2Floor(WidestRegister / WidestType));
5821 
5822   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5823                     << " / " << WidestType << " bits.\n");
5824   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5825                     << WidestRegister << " bits.\n");
5826 
5827   assert(MaxVectorSize.getFixedValue() <= WidestRegister &&
5828          "Did not expect to pack so many elements"
5829          " into one vector!");
5830   if (MaxVectorSize.getFixedValue() == 0) {
5831     LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n");
5832     return ElementCount::getFixed(1);
5833   } else if (ConstTripCount && ConstTripCount < MaxVectorSize.getFixedValue() &&
5834              isPowerOf2_32(ConstTripCount)) {
5835     // We need to clamp the VF to be the ConstTripCount. There is no point in
5836     // choosing a higher viable VF as done in the loop below.
5837     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5838                       << ConstTripCount << "\n");
5839     return ElementCount::getFixed(ConstTripCount);
5840   }
5841 
5842   ElementCount MaxVF = MaxVectorSize;
5843   if (TTI.shouldMaximizeVectorBandwidth() ||
5844       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5845     // Collect all viable vectorization factors larger than the default MaxVF
5846     // (i.e. MaxVectorSize).
5847     SmallVector<ElementCount, 8> VFs;
5848     auto MaxVectorSizeMaxBW =
5849         ElementCount::getFixed(WidestRegister / SmallestType);
5850     for (ElementCount VS = MaxVectorSize * 2;
5851          ElementCount::isKnownLE(VS, MaxVectorSizeMaxBW); VS *= 2)
5852       VFs.push_back(VS);
5853 
5854     // For each VF calculate its register usage.
5855     auto RUs = calculateRegisterUsage(VFs);
5856 
5857     // Select the largest VF which doesn't require more registers than existing
5858     // ones.
5859     for (int i = RUs.size() - 1; i >= 0; --i) {
5860       bool Selected = true;
5861       for (auto &pair : RUs[i].MaxLocalUsers) {
5862         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5863         if (pair.second > TargetNumRegisters)
5864           Selected = false;
5865       }
5866       if (Selected) {
5867         MaxVF = VFs[i];
5868         break;
5869       }
5870     }
5871     if (ElementCount MinVF =
5872             TTI.getMinimumVF(SmallestType, /*IsScalable=*/false)) {
5873       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5874         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5875                           << ") with target's minimum: " << MinVF << '\n');
5876         MaxVF = MinVF;
5877       }
5878     }
5879   }
5880   return MaxVF;
5881 }
5882 
5883 bool LoopVectorizationCostModel::isMoreProfitable(
5884     const VectorizationFactor &A, const VectorizationFactor &B) const {
5885   InstructionCost::CostType CostA = *A.Cost.getValue();
5886   InstructionCost::CostType CostB = *B.Cost.getValue();
5887 
5888   // To avoid the need for FP division:
5889   //      (CostA / A.Width) < (CostB / B.Width)
5890   // <=>  (CostA * B.Width) < (CostB * A.Width)
5891   return (CostA * B.Width.getKnownMinValue()) <
5892          (CostB * A.Width.getKnownMinValue());
5893 }
5894 
5895 VectorizationFactor
5896 LoopVectorizationCostModel::selectVectorizationFactor(ElementCount MaxVF) {
5897   // FIXME: This can be fixed for scalable vectors later, because at this stage
5898   // the LoopVectorizer will only consider vectorizing a loop with scalable
5899   // vectors when the loop has a hint to enable vectorization for a given VF.
5900   assert(!MaxVF.isScalable() && "scalable vectors not yet supported");
5901 
5902   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5903   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5904   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5905 
5906   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
5907   VectorizationFactor ChosenFactor = ScalarCost;
5908 
5909   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5910   if (ForceVectorization && MaxVF.isVector()) {
5911     // Ignore scalar width, because the user explicitly wants vectorization.
5912     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5913     // evaluation.
5914     ChosenFactor.Cost = std::numeric_limits<InstructionCost::CostType>::max();
5915   }
5916 
5917   for (auto i = ElementCount::getFixed(2); ElementCount::isKnownLE(i, MaxVF);
5918        i *= 2) {
5919     // Notice that the vector loop needs to be executed less times, so
5920     // we need to divide the cost of the vector loops by the width of
5921     // the vector elements.
5922     VectorizationCostTy C = expectedCost(i);
5923 
5924     assert(C.first.isValid() && "Unexpected invalid cost for vector loop");
5925     VectorizationFactor Candidate(i, C.first);
5926     LLVM_DEBUG(
5927         dbgs() << "LV: Vector loop of width " << i << " costs: "
5928                << (*Candidate.Cost.getValue() / Candidate.Width.getFixedValue())
5929                << ".\n");
5930 
5931     if (!C.second && !ForceVectorization) {
5932       LLVM_DEBUG(
5933           dbgs() << "LV: Not considering vector loop of width " << i
5934                  << " because it will not generate any vector instructions.\n");
5935       continue;
5936     }
5937 
5938     // If profitable add it to ProfitableVF list.
5939     if (isMoreProfitable(Candidate, ScalarCost))
5940       ProfitableVFs.push_back(Candidate);
5941 
5942     if (isMoreProfitable(Candidate, ChosenFactor))
5943       ChosenFactor = Candidate;
5944   }
5945 
5946   if (!EnableCondStoresVectorization && NumPredStores) {
5947     reportVectorizationFailure("There are conditional stores.",
5948         "store that is conditionally executed prevents vectorization",
5949         "ConditionalStore", ORE, TheLoop);
5950     ChosenFactor = ScalarCost;
5951   }
5952 
5953   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
5954                  *ChosenFactor.Cost.getValue() >= *ScalarCost.Cost.getValue())
5955                  dbgs()
5956              << "LV: Vectorization seems to be not beneficial, "
5957              << "but was forced by a user.\n");
5958   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
5959   return ChosenFactor;
5960 }
5961 
5962 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
5963     const Loop &L, ElementCount VF) const {
5964   // Cross iteration phis such as reductions need special handling and are
5965   // currently unsupported.
5966   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
5967         return Legal->isFirstOrderRecurrence(&Phi) ||
5968                Legal->isReductionVariable(&Phi);
5969       }))
5970     return false;
5971 
5972   // Phis with uses outside of the loop require special handling and are
5973   // currently unsupported.
5974   for (auto &Entry : Legal->getInductionVars()) {
5975     // Look for uses of the value of the induction at the last iteration.
5976     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
5977     for (User *U : PostInc->users())
5978       if (!L.contains(cast<Instruction>(U)))
5979         return false;
5980     // Look for uses of penultimate value of the induction.
5981     for (User *U : Entry.first->users())
5982       if (!L.contains(cast<Instruction>(U)))
5983         return false;
5984   }
5985 
5986   // Induction variables that are widened require special handling that is
5987   // currently not supported.
5988   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
5989         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
5990                  this->isProfitableToScalarize(Entry.first, VF));
5991       }))
5992     return false;
5993 
5994   return true;
5995 }
5996 
5997 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
5998     const ElementCount VF) const {
5999   // FIXME: We need a much better cost-model to take different parameters such
6000   // as register pressure, code size increase and cost of extra branches into
6001   // account. For now we apply a very crude heuristic and only consider loops
6002   // with vectorization factors larger than a certain value.
6003   // We also consider epilogue vectorization unprofitable for targets that don't
6004   // consider interleaving beneficial (eg. MVE).
6005   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
6006     return false;
6007   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
6008     return true;
6009   return false;
6010 }
6011 
6012 VectorizationFactor
6013 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
6014     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
6015   VectorizationFactor Result = VectorizationFactor::Disabled();
6016   if (!EnableEpilogueVectorization) {
6017     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
6018     return Result;
6019   }
6020 
6021   if (!isScalarEpilogueAllowed()) {
6022     LLVM_DEBUG(
6023         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
6024                   "allowed.\n";);
6025     return Result;
6026   }
6027 
6028   // FIXME: This can be fixed for scalable vectors later, because at this stage
6029   // the LoopVectorizer will only consider vectorizing a loop with scalable
6030   // vectors when the loop has a hint to enable vectorization for a given VF.
6031   if (MainLoopVF.isScalable()) {
6032     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not "
6033                          "yet supported.\n");
6034     return Result;
6035   }
6036 
6037   // Not really a cost consideration, but check for unsupported cases here to
6038   // simplify the logic.
6039   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
6040     LLVM_DEBUG(
6041         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
6042                   "not a supported candidate.\n";);
6043     return Result;
6044   }
6045 
6046   if (EpilogueVectorizationForceVF > 1) {
6047     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
6048     if (LVP.hasPlanWithVFs(
6049             {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)}))
6050       return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0};
6051     else {
6052       LLVM_DEBUG(
6053           dbgs()
6054               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
6055       return Result;
6056     }
6057   }
6058 
6059   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
6060       TheLoop->getHeader()->getParent()->hasMinSize()) {
6061     LLVM_DEBUG(
6062         dbgs()
6063             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6064     return Result;
6065   }
6066 
6067   if (!isEpilogueVectorizationProfitable(MainLoopVF))
6068     return Result;
6069 
6070   for (auto &NextVF : ProfitableVFs)
6071     if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) &&
6072         (Result.Width.getFixedValue() == 1 ||
6073          isMoreProfitable(NextVF, Result)) &&
6074         LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width}))
6075       Result = NextVF;
6076 
6077   if (Result != VectorizationFactor::Disabled())
6078     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6079                       << Result.Width.getFixedValue() << "\n";);
6080   return Result;
6081 }
6082 
6083 std::pair<unsigned, unsigned>
6084 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6085   unsigned MinWidth = -1U;
6086   unsigned MaxWidth = 8;
6087   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6088 
6089   // For each block.
6090   for (BasicBlock *BB : TheLoop->blocks()) {
6091     // For each instruction in the loop.
6092     for (Instruction &I : BB->instructionsWithoutDebug()) {
6093       Type *T = I.getType();
6094 
6095       // Skip ignored values.
6096       if (ValuesToIgnore.count(&I))
6097         continue;
6098 
6099       // Only examine Loads, Stores and PHINodes.
6100       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6101         continue;
6102 
6103       // Examine PHI nodes that are reduction variables. Update the type to
6104       // account for the recurrence type.
6105       if (auto *PN = dyn_cast<PHINode>(&I)) {
6106         if (!Legal->isReductionVariable(PN))
6107           continue;
6108         RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN];
6109         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6110             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6111                                       RdxDesc.getRecurrenceType(),
6112                                       TargetTransformInfo::ReductionFlags()))
6113           continue;
6114         T = RdxDesc.getRecurrenceType();
6115       }
6116 
6117       // Examine the stored values.
6118       if (auto *ST = dyn_cast<StoreInst>(&I))
6119         T = ST->getValueOperand()->getType();
6120 
6121       // Ignore loaded pointer types and stored pointer types that are not
6122       // vectorizable.
6123       //
6124       // FIXME: The check here attempts to predict whether a load or store will
6125       //        be vectorized. We only know this for certain after a VF has
6126       //        been selected. Here, we assume that if an access can be
6127       //        vectorized, it will be. We should also look at extending this
6128       //        optimization to non-pointer types.
6129       //
6130       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6131           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6132         continue;
6133 
6134       MinWidth = std::min(MinWidth,
6135                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
6136       MaxWidth = std::max(MaxWidth,
6137                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
6138     }
6139   }
6140 
6141   return {MinWidth, MaxWidth};
6142 }
6143 
6144 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6145                                                            unsigned LoopCost) {
6146   // -- The interleave heuristics --
6147   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6148   // There are many micro-architectural considerations that we can't predict
6149   // at this level. For example, frontend pressure (on decode or fetch) due to
6150   // code size, or the number and capabilities of the execution ports.
6151   //
6152   // We use the following heuristics to select the interleave count:
6153   // 1. If the code has reductions, then we interleave to break the cross
6154   // iteration dependency.
6155   // 2. If the loop is really small, then we interleave to reduce the loop
6156   // overhead.
6157   // 3. We don't interleave if we think that we will spill registers to memory
6158   // due to the increased register pressure.
6159 
6160   if (!isScalarEpilogueAllowed())
6161     return 1;
6162 
6163   // We used the distance for the interleave count.
6164   if (Legal->getMaxSafeDepDistBytes() != -1U)
6165     return 1;
6166 
6167   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6168   const bool HasReductions = !Legal->getReductionVars().empty();
6169   // Do not interleave loops with a relatively small known or estimated trip
6170   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6171   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6172   // because with the above conditions interleaving can expose ILP and break
6173   // cross iteration dependences for reductions.
6174   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6175       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6176     return 1;
6177 
6178   RegisterUsage R = calculateRegisterUsage({VF})[0];
6179   // We divide by these constants so assume that we have at least one
6180   // instruction that uses at least one register.
6181   for (auto& pair : R.MaxLocalUsers) {
6182     pair.second = std::max(pair.second, 1U);
6183   }
6184 
6185   // We calculate the interleave count using the following formula.
6186   // Subtract the number of loop invariants from the number of available
6187   // registers. These registers are used by all of the interleaved instances.
6188   // Next, divide the remaining registers by the number of registers that is
6189   // required by the loop, in order to estimate how many parallel instances
6190   // fit without causing spills. All of this is rounded down if necessary to be
6191   // a power of two. We want power of two interleave count to simplify any
6192   // addressing operations or alignment considerations.
6193   // We also want power of two interleave counts to ensure that the induction
6194   // variable of the vector loop wraps to zero, when tail is folded by masking;
6195   // this currently happens when OptForSize, in which case IC is set to 1 above.
6196   unsigned IC = UINT_MAX;
6197 
6198   for (auto& pair : R.MaxLocalUsers) {
6199     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6200     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6201                       << " registers of "
6202                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6203     if (VF.isScalar()) {
6204       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6205         TargetNumRegisters = ForceTargetNumScalarRegs;
6206     } else {
6207       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6208         TargetNumRegisters = ForceTargetNumVectorRegs;
6209     }
6210     unsigned MaxLocalUsers = pair.second;
6211     unsigned LoopInvariantRegs = 0;
6212     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6213       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6214 
6215     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6216     // Don't count the induction variable as interleaved.
6217     if (EnableIndVarRegisterHeur) {
6218       TmpIC =
6219           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6220                         std::max(1U, (MaxLocalUsers - 1)));
6221     }
6222 
6223     IC = std::min(IC, TmpIC);
6224   }
6225 
6226   // Clamp the interleave ranges to reasonable counts.
6227   unsigned MaxInterleaveCount =
6228       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6229 
6230   // Check if the user has overridden the max.
6231   if (VF.isScalar()) {
6232     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6233       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6234   } else {
6235     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6236       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6237   }
6238 
6239   // If trip count is known or estimated compile time constant, limit the
6240   // interleave count to be less than the trip count divided by VF, provided it
6241   // is at least 1.
6242   //
6243   // For scalable vectors we can't know if interleaving is beneficial. It may
6244   // not be beneficial for small loops if none of the lanes in the second vector
6245   // iterations is enabled. However, for larger loops, there is likely to be a
6246   // similar benefit as for fixed-width vectors. For now, we choose to leave
6247   // the InterleaveCount as if vscale is '1', although if some information about
6248   // the vector is known (e.g. min vector size), we can make a better decision.
6249   if (BestKnownTC) {
6250     MaxInterleaveCount =
6251         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6252     // Make sure MaxInterleaveCount is greater than 0.
6253     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6254   }
6255 
6256   assert(MaxInterleaveCount > 0 &&
6257          "Maximum interleave count must be greater than 0");
6258 
6259   // Clamp the calculated IC to be between the 1 and the max interleave count
6260   // that the target and trip count allows.
6261   if (IC > MaxInterleaveCount)
6262     IC = MaxInterleaveCount;
6263   else
6264     // Make sure IC is greater than 0.
6265     IC = std::max(1u, IC);
6266 
6267   assert(IC > 0 && "Interleave count must be greater than 0.");
6268 
6269   // If we did not calculate the cost for VF (because the user selected the VF)
6270   // then we calculate the cost of VF here.
6271   if (LoopCost == 0) {
6272     assert(expectedCost(VF).first.isValid() && "Expected a valid cost");
6273     LoopCost = *expectedCost(VF).first.getValue();
6274   }
6275 
6276   assert(LoopCost && "Non-zero loop cost expected");
6277 
6278   // Interleave if we vectorized this loop and there is a reduction that could
6279   // benefit from interleaving.
6280   if (VF.isVector() && HasReductions) {
6281     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6282     return IC;
6283   }
6284 
6285   // Note that if we've already vectorized the loop we will have done the
6286   // runtime check and so interleaving won't require further checks.
6287   bool InterleavingRequiresRuntimePointerCheck =
6288       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6289 
6290   // We want to interleave small loops in order to reduce the loop overhead and
6291   // potentially expose ILP opportunities.
6292   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6293                     << "LV: IC is " << IC << '\n'
6294                     << "LV: VF is " << VF << '\n');
6295   const bool AggressivelyInterleaveReductions =
6296       TTI.enableAggressiveInterleaving(HasReductions);
6297   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6298     // We assume that the cost overhead is 1 and we use the cost model
6299     // to estimate the cost of the loop and interleave until the cost of the
6300     // loop overhead is about 5% of the cost of the loop.
6301     unsigned SmallIC =
6302         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6303 
6304     // Interleave until store/load ports (estimated by max interleave count) are
6305     // saturated.
6306     unsigned NumStores = Legal->getNumStores();
6307     unsigned NumLoads = Legal->getNumLoads();
6308     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6309     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6310 
6311     // If we have a scalar reduction (vector reductions are already dealt with
6312     // by this point), we can increase the critical path length if the loop
6313     // we're interleaving is inside another loop. Limit, by default to 2, so the
6314     // critical path only gets increased by one reduction operation.
6315     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6316       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6317       SmallIC = std::min(SmallIC, F);
6318       StoresIC = std::min(StoresIC, F);
6319       LoadsIC = std::min(LoadsIC, F);
6320     }
6321 
6322     if (EnableLoadStoreRuntimeInterleave &&
6323         std::max(StoresIC, LoadsIC) > SmallIC) {
6324       LLVM_DEBUG(
6325           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6326       return std::max(StoresIC, LoadsIC);
6327     }
6328 
6329     // If there are scalar reductions and TTI has enabled aggressive
6330     // interleaving for reductions, we will interleave to expose ILP.
6331     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6332         AggressivelyInterleaveReductions) {
6333       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6334       // Interleave no less than SmallIC but not as aggressive as the normal IC
6335       // to satisfy the rare situation when resources are too limited.
6336       return std::max(IC / 2, SmallIC);
6337     } else {
6338       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6339       return SmallIC;
6340     }
6341   }
6342 
6343   // Interleave if this is a large loop (small loops are already dealt with by
6344   // this point) that could benefit from interleaving.
6345   if (AggressivelyInterleaveReductions) {
6346     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6347     return IC;
6348   }
6349 
6350   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6351   return 1;
6352 }
6353 
6354 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6355 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6356   // This function calculates the register usage by measuring the highest number
6357   // of values that are alive at a single location. Obviously, this is a very
6358   // rough estimation. We scan the loop in a topological order in order and
6359   // assign a number to each instruction. We use RPO to ensure that defs are
6360   // met before their users. We assume that each instruction that has in-loop
6361   // users starts an interval. We record every time that an in-loop value is
6362   // used, so we have a list of the first and last occurrences of each
6363   // instruction. Next, we transpose this data structure into a multi map that
6364   // holds the list of intervals that *end* at a specific location. This multi
6365   // map allows us to perform a linear search. We scan the instructions linearly
6366   // and record each time that a new interval starts, by placing it in a set.
6367   // If we find this value in the multi-map then we remove it from the set.
6368   // The max register usage is the maximum size of the set.
6369   // We also search for instructions that are defined outside the loop, but are
6370   // used inside the loop. We need this number separately from the max-interval
6371   // usage number because when we unroll, loop-invariant values do not take
6372   // more register.
6373   LoopBlocksDFS DFS(TheLoop);
6374   DFS.perform(LI);
6375 
6376   RegisterUsage RU;
6377 
6378   // Each 'key' in the map opens a new interval. The values
6379   // of the map are the index of the 'last seen' usage of the
6380   // instruction that is the key.
6381   using IntervalMap = DenseMap<Instruction *, unsigned>;
6382 
6383   // Maps instruction to its index.
6384   SmallVector<Instruction *, 64> IdxToInstr;
6385   // Marks the end of each interval.
6386   IntervalMap EndPoint;
6387   // Saves the list of instruction indices that are used in the loop.
6388   SmallPtrSet<Instruction *, 8> Ends;
6389   // Saves the list of values that are used in the loop but are
6390   // defined outside the loop, such as arguments and constants.
6391   SmallPtrSet<Value *, 8> LoopInvariants;
6392 
6393   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6394     for (Instruction &I : BB->instructionsWithoutDebug()) {
6395       IdxToInstr.push_back(&I);
6396 
6397       // Save the end location of each USE.
6398       for (Value *U : I.operands()) {
6399         auto *Instr = dyn_cast<Instruction>(U);
6400 
6401         // Ignore non-instruction values such as arguments, constants, etc.
6402         if (!Instr)
6403           continue;
6404 
6405         // If this instruction is outside the loop then record it and continue.
6406         if (!TheLoop->contains(Instr)) {
6407           LoopInvariants.insert(Instr);
6408           continue;
6409         }
6410 
6411         // Overwrite previous end points.
6412         EndPoint[Instr] = IdxToInstr.size();
6413         Ends.insert(Instr);
6414       }
6415     }
6416   }
6417 
6418   // Saves the list of intervals that end with the index in 'key'.
6419   using InstrList = SmallVector<Instruction *, 2>;
6420   DenseMap<unsigned, InstrList> TransposeEnds;
6421 
6422   // Transpose the EndPoints to a list of values that end at each index.
6423   for (auto &Interval : EndPoint)
6424     TransposeEnds[Interval.second].push_back(Interval.first);
6425 
6426   SmallPtrSet<Instruction *, 8> OpenIntervals;
6427   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6428   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6429 
6430   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6431 
6432   // A lambda that gets the register usage for the given type and VF.
6433   const auto &TTICapture = TTI;
6434   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) {
6435     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6436       return 0U;
6437     return TTICapture.getRegUsageForType(VectorType::get(Ty, VF));
6438   };
6439 
6440   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6441     Instruction *I = IdxToInstr[i];
6442 
6443     // Remove all of the instructions that end at this location.
6444     InstrList &List = TransposeEnds[i];
6445     for (Instruction *ToRemove : List)
6446       OpenIntervals.erase(ToRemove);
6447 
6448     // Ignore instructions that are never used within the loop.
6449     if (!Ends.count(I))
6450       continue;
6451 
6452     // Skip ignored values.
6453     if (ValuesToIgnore.count(I))
6454       continue;
6455 
6456     // For each VF find the maximum usage of registers.
6457     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6458       // Count the number of live intervals.
6459       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6460 
6461       if (VFs[j].isScalar()) {
6462         for (auto Inst : OpenIntervals) {
6463           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6464           if (RegUsage.find(ClassID) == RegUsage.end())
6465             RegUsage[ClassID] = 1;
6466           else
6467             RegUsage[ClassID] += 1;
6468         }
6469       } else {
6470         collectUniformsAndScalars(VFs[j]);
6471         for (auto Inst : OpenIntervals) {
6472           // Skip ignored values for VF > 1.
6473           if (VecValuesToIgnore.count(Inst))
6474             continue;
6475           if (isScalarAfterVectorization(Inst, VFs[j])) {
6476             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6477             if (RegUsage.find(ClassID) == RegUsage.end())
6478               RegUsage[ClassID] = 1;
6479             else
6480               RegUsage[ClassID] += 1;
6481           } else {
6482             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6483             if (RegUsage.find(ClassID) == RegUsage.end())
6484               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6485             else
6486               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6487           }
6488         }
6489       }
6490 
6491       for (auto& pair : RegUsage) {
6492         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6493           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6494         else
6495           MaxUsages[j][pair.first] = pair.second;
6496       }
6497     }
6498 
6499     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6500                       << OpenIntervals.size() << '\n');
6501 
6502     // Add the current instruction to the list of open intervals.
6503     OpenIntervals.insert(I);
6504   }
6505 
6506   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6507     SmallMapVector<unsigned, unsigned, 4> Invariant;
6508 
6509     for (auto Inst : LoopInvariants) {
6510       unsigned Usage =
6511           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6512       unsigned ClassID =
6513           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6514       if (Invariant.find(ClassID) == Invariant.end())
6515         Invariant[ClassID] = Usage;
6516       else
6517         Invariant[ClassID] += Usage;
6518     }
6519 
6520     LLVM_DEBUG({
6521       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6522       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6523              << " item\n";
6524       for (const auto &pair : MaxUsages[i]) {
6525         dbgs() << "LV(REG): RegisterClass: "
6526                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6527                << " registers\n";
6528       }
6529       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6530              << " item\n";
6531       for (const auto &pair : Invariant) {
6532         dbgs() << "LV(REG): RegisterClass: "
6533                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6534                << " registers\n";
6535       }
6536     });
6537 
6538     RU.LoopInvariantRegs = Invariant;
6539     RU.MaxLocalUsers = MaxUsages[i];
6540     RUs[i] = RU;
6541   }
6542 
6543   return RUs;
6544 }
6545 
6546 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6547   // TODO: Cost model for emulated masked load/store is completely
6548   // broken. This hack guides the cost model to use an artificially
6549   // high enough value to practically disable vectorization with such
6550   // operations, except where previously deployed legality hack allowed
6551   // using very low cost values. This is to avoid regressions coming simply
6552   // from moving "masked load/store" check from legality to cost model.
6553   // Masked Load/Gather emulation was previously never allowed.
6554   // Limited number of Masked Store/Scatter emulation was allowed.
6555   assert(isPredicatedInst(I, ElementCount::getFixed(1)) &&
6556          "Expecting a scalar emulated instruction");
6557   return isa<LoadInst>(I) ||
6558          (isa<StoreInst>(I) &&
6559           NumPredStores > NumberOfStoresToPredicate);
6560 }
6561 
6562 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6563   // If we aren't vectorizing the loop, or if we've already collected the
6564   // instructions to scalarize, there's nothing to do. Collection may already
6565   // have occurred if we have a user-selected VF and are now computing the
6566   // expected cost for interleaving.
6567   if (VF.isScalar() || VF.isZero() ||
6568       InstsToScalarize.find(VF) != InstsToScalarize.end())
6569     return;
6570 
6571   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6572   // not profitable to scalarize any instructions, the presence of VF in the
6573   // map will indicate that we've analyzed it already.
6574   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6575 
6576   // Find all the instructions that are scalar with predication in the loop and
6577   // determine if it would be better to not if-convert the blocks they are in.
6578   // If so, we also record the instructions to scalarize.
6579   for (BasicBlock *BB : TheLoop->blocks()) {
6580     if (!blockNeedsPredication(BB))
6581       continue;
6582     for (Instruction &I : *BB)
6583       if (isScalarWithPredication(&I)) {
6584         ScalarCostsTy ScalarCosts;
6585         // Do not apply discount logic if hacked cost is needed
6586         // for emulated masked memrefs.
6587         if (!useEmulatedMaskMemRefHack(&I) &&
6588             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6589           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6590         // Remember that BB will remain after vectorization.
6591         PredicatedBBsAfterVectorization.insert(BB);
6592       }
6593   }
6594 }
6595 
6596 int LoopVectorizationCostModel::computePredInstDiscount(
6597     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6598   assert(!isUniformAfterVectorization(PredInst, VF) &&
6599          "Instruction marked uniform-after-vectorization will be predicated");
6600 
6601   // Initialize the discount to zero, meaning that the scalar version and the
6602   // vector version cost the same.
6603   InstructionCost Discount = 0;
6604 
6605   // Holds instructions to analyze. The instructions we visit are mapped in
6606   // ScalarCosts. Those instructions are the ones that would be scalarized if
6607   // we find that the scalar version costs less.
6608   SmallVector<Instruction *, 8> Worklist;
6609 
6610   // Returns true if the given instruction can be scalarized.
6611   auto canBeScalarized = [&](Instruction *I) -> bool {
6612     // We only attempt to scalarize instructions forming a single-use chain
6613     // from the original predicated block that would otherwise be vectorized.
6614     // Although not strictly necessary, we give up on instructions we know will
6615     // already be scalar to avoid traversing chains that are unlikely to be
6616     // beneficial.
6617     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6618         isScalarAfterVectorization(I, VF))
6619       return false;
6620 
6621     // If the instruction is scalar with predication, it will be analyzed
6622     // separately. We ignore it within the context of PredInst.
6623     if (isScalarWithPredication(I))
6624       return false;
6625 
6626     // If any of the instruction's operands are uniform after vectorization,
6627     // the instruction cannot be scalarized. This prevents, for example, a
6628     // masked load from being scalarized.
6629     //
6630     // We assume we will only emit a value for lane zero of an instruction
6631     // marked uniform after vectorization, rather than VF identical values.
6632     // Thus, if we scalarize an instruction that uses a uniform, we would
6633     // create uses of values corresponding to the lanes we aren't emitting code
6634     // for. This behavior can be changed by allowing getScalarValue to clone
6635     // the lane zero values for uniforms rather than asserting.
6636     for (Use &U : I->operands())
6637       if (auto *J = dyn_cast<Instruction>(U.get()))
6638         if (isUniformAfterVectorization(J, VF))
6639           return false;
6640 
6641     // Otherwise, we can scalarize the instruction.
6642     return true;
6643   };
6644 
6645   // Compute the expected cost discount from scalarizing the entire expression
6646   // feeding the predicated instruction. We currently only consider expressions
6647   // that are single-use instruction chains.
6648   Worklist.push_back(PredInst);
6649   while (!Worklist.empty()) {
6650     Instruction *I = Worklist.pop_back_val();
6651 
6652     // If we've already analyzed the instruction, there's nothing to do.
6653     if (ScalarCosts.find(I) != ScalarCosts.end())
6654       continue;
6655 
6656     // Compute the cost of the vector instruction. Note that this cost already
6657     // includes the scalarization overhead of the predicated instruction.
6658     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6659 
6660     // Compute the cost of the scalarized instruction. This cost is the cost of
6661     // the instruction as if it wasn't if-converted and instead remained in the
6662     // predicated block. We will scale this cost by block probability after
6663     // computing the scalarization overhead.
6664     assert(!VF.isScalable() && "scalable vectors not yet supported.");
6665     InstructionCost ScalarCost =
6666         VF.getKnownMinValue() *
6667         getInstructionCost(I, ElementCount::getFixed(1)).first;
6668 
6669     // Compute the scalarization overhead of needed insertelement instructions
6670     // and phi nodes.
6671     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6672       ScalarCost += TTI.getScalarizationOverhead(
6673           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6674           APInt::getAllOnesValue(VF.getKnownMinValue()), true, false);
6675       assert(!VF.isScalable() && "scalable vectors not yet supported.");
6676       ScalarCost +=
6677           VF.getKnownMinValue() *
6678           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6679     }
6680 
6681     // Compute the scalarization overhead of needed extractelement
6682     // instructions. For each of the instruction's operands, if the operand can
6683     // be scalarized, add it to the worklist; otherwise, account for the
6684     // overhead.
6685     for (Use &U : I->operands())
6686       if (auto *J = dyn_cast<Instruction>(U.get())) {
6687         assert(VectorType::isValidElementType(J->getType()) &&
6688                "Instruction has non-scalar type");
6689         if (canBeScalarized(J))
6690           Worklist.push_back(J);
6691         else if (needsExtract(J, VF)) {
6692           assert(!VF.isScalable() && "scalable vectors not yet supported.");
6693           ScalarCost += TTI.getScalarizationOverhead(
6694               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6695               APInt::getAllOnesValue(VF.getKnownMinValue()), false, true);
6696         }
6697       }
6698 
6699     // Scale the total scalar cost by block probability.
6700     ScalarCost /= getReciprocalPredBlockProb();
6701 
6702     // Compute the discount. A non-negative discount means the vector version
6703     // of the instruction costs more, and scalarizing would be beneficial.
6704     Discount += VectorCost - ScalarCost;
6705     ScalarCosts[I] = ScalarCost;
6706   }
6707 
6708   return *Discount.getValue();
6709 }
6710 
6711 LoopVectorizationCostModel::VectorizationCostTy
6712 LoopVectorizationCostModel::expectedCost(ElementCount VF) {
6713   VectorizationCostTy Cost;
6714 
6715   // For each block.
6716   for (BasicBlock *BB : TheLoop->blocks()) {
6717     VectorizationCostTy BlockCost;
6718 
6719     // For each instruction in the old loop.
6720     for (Instruction &I : BB->instructionsWithoutDebug()) {
6721       // Skip ignored values.
6722       if (ValuesToIgnore.count(&I) ||
6723           (VF.isVector() && VecValuesToIgnore.count(&I)))
6724         continue;
6725 
6726       VectorizationCostTy C = getInstructionCost(&I, VF);
6727 
6728       // Check if we should override the cost.
6729       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
6730         C.first = InstructionCost(ForceTargetInstructionCost);
6731 
6732       BlockCost.first += C.first;
6733       BlockCost.second |= C.second;
6734       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6735                         << " for VF " << VF << " For instruction: " << I
6736                         << '\n');
6737     }
6738 
6739     // If we are vectorizing a predicated block, it will have been
6740     // if-converted. This means that the block's instructions (aside from
6741     // stores and instructions that may divide by zero) will now be
6742     // unconditionally executed. For the scalar case, we may not always execute
6743     // the predicated block, if it is an if-else block. Thus, scale the block's
6744     // cost by the probability of executing it. blockNeedsPredication from
6745     // Legal is used so as to not include all blocks in tail folded loops.
6746     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6747       BlockCost.first /= getReciprocalPredBlockProb();
6748 
6749     Cost.first += BlockCost.first;
6750     Cost.second |= BlockCost.second;
6751   }
6752 
6753   return Cost;
6754 }
6755 
6756 /// Gets Address Access SCEV after verifying that the access pattern
6757 /// is loop invariant except the induction variable dependence.
6758 ///
6759 /// This SCEV can be sent to the Target in order to estimate the address
6760 /// calculation cost.
6761 static const SCEV *getAddressAccessSCEV(
6762               Value *Ptr,
6763               LoopVectorizationLegality *Legal,
6764               PredicatedScalarEvolution &PSE,
6765               const Loop *TheLoop) {
6766 
6767   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6768   if (!Gep)
6769     return nullptr;
6770 
6771   // We are looking for a gep with all loop invariant indices except for one
6772   // which should be an induction variable.
6773   auto SE = PSE.getSE();
6774   unsigned NumOperands = Gep->getNumOperands();
6775   for (unsigned i = 1; i < NumOperands; ++i) {
6776     Value *Opd = Gep->getOperand(i);
6777     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6778         !Legal->isInductionVariable(Opd))
6779       return nullptr;
6780   }
6781 
6782   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6783   return PSE.getSCEV(Ptr);
6784 }
6785 
6786 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6787   return Legal->hasStride(I->getOperand(0)) ||
6788          Legal->hasStride(I->getOperand(1));
6789 }
6790 
6791 InstructionCost
6792 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6793                                                         ElementCount VF) {
6794   assert(VF.isVector() &&
6795          "Scalarization cost of instruction implies vectorization.");
6796   if (VF.isScalable())
6797     return InstructionCost::getInvalid();
6798 
6799   Type *ValTy = getMemInstValueType(I);
6800   auto SE = PSE.getSE();
6801 
6802   unsigned AS = getLoadStoreAddressSpace(I);
6803   Value *Ptr = getLoadStorePointerOperand(I);
6804   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6805 
6806   // Figure out whether the access is strided and get the stride value
6807   // if it's known in compile time
6808   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6809 
6810   // Get the cost of the scalar memory instruction and address computation.
6811   InstructionCost Cost =
6812       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6813 
6814   // Don't pass *I here, since it is scalar but will actually be part of a
6815   // vectorized loop where the user of it is a vectorized instruction.
6816   const Align Alignment = getLoadStoreAlignment(I);
6817   Cost += VF.getKnownMinValue() *
6818           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6819                               AS, TTI::TCK_RecipThroughput);
6820 
6821   // Get the overhead of the extractelement and insertelement instructions
6822   // we might create due to scalarization.
6823   Cost += getScalarizationOverhead(I, VF);
6824 
6825   // If we have a predicated load/store, it will need extra i1 extracts and
6826   // conditional branches, but may not be executed for each vector lane. Scale
6827   // the cost by the probability of executing the predicated block.
6828   if (isPredicatedInst(I, ElementCount::getFixed(1))) {
6829     Cost /= getReciprocalPredBlockProb();
6830 
6831     // Add the cost of an i1 extract and a branch
6832     auto *Vec_i1Ty =
6833         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6834     Cost += TTI.getScalarizationOverhead(
6835         Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()),
6836         /*Insert=*/false, /*Extract=*/true);
6837     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6838 
6839     if (useEmulatedMaskMemRefHack(I))
6840       // Artificially setting to a high enough value to practically disable
6841       // vectorization with such operations.
6842       Cost = 3000000;
6843   }
6844 
6845   return Cost;
6846 }
6847 
6848 InstructionCost
6849 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6850                                                     ElementCount VF) {
6851   Type *ValTy = getMemInstValueType(I);
6852   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6853   Value *Ptr = getLoadStorePointerOperand(I);
6854   unsigned AS = getLoadStoreAddressSpace(I);
6855   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
6856   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6857 
6858   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6859          "Stride should be 1 or -1 for consecutive memory access");
6860   const Align Alignment = getLoadStoreAlignment(I);
6861   InstructionCost Cost = 0;
6862   if (Legal->isMaskRequired(I))
6863     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6864                                       CostKind);
6865   else
6866     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6867                                 CostKind, I);
6868 
6869   bool Reverse = ConsecutiveStride < 0;
6870   if (Reverse)
6871     Cost +=
6872         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6873   return Cost;
6874 }
6875 
6876 InstructionCost
6877 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6878                                                 ElementCount VF) {
6879   assert(Legal->isUniformMemOp(*I));
6880 
6881   Type *ValTy = getMemInstValueType(I);
6882   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6883   const Align Alignment = getLoadStoreAlignment(I);
6884   unsigned AS = getLoadStoreAddressSpace(I);
6885   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6886   if (isa<LoadInst>(I)) {
6887     return TTI.getAddressComputationCost(ValTy) +
6888            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6889                                CostKind) +
6890            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6891   }
6892   StoreInst *SI = cast<StoreInst>(I);
6893 
6894   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6895   return TTI.getAddressComputationCost(ValTy) +
6896          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6897                              CostKind) +
6898          (isLoopInvariantStoreValue
6899               ? 0
6900               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6901                                        VF.getKnownMinValue() - 1));
6902 }
6903 
6904 InstructionCost
6905 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6906                                                  ElementCount VF) {
6907   Type *ValTy = getMemInstValueType(I);
6908   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6909   const Align Alignment = getLoadStoreAlignment(I);
6910   const Value *Ptr = getLoadStorePointerOperand(I);
6911 
6912   return TTI.getAddressComputationCost(VectorTy) +
6913          TTI.getGatherScatterOpCost(
6914              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6915              TargetTransformInfo::TCK_RecipThroughput, I);
6916 }
6917 
6918 InstructionCost
6919 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6920                                                    ElementCount VF) {
6921   // TODO: Once we have support for interleaving with scalable vectors
6922   // we can calculate the cost properly here.
6923   if (VF.isScalable())
6924     return InstructionCost::getInvalid();
6925 
6926   Type *ValTy = getMemInstValueType(I);
6927   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6928   unsigned AS = getLoadStoreAddressSpace(I);
6929 
6930   auto Group = getInterleavedAccessGroup(I);
6931   assert(Group && "Fail to get an interleaved access group.");
6932 
6933   unsigned InterleaveFactor = Group->getFactor();
6934   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6935 
6936   // Holds the indices of existing members in an interleaved load group.
6937   // An interleaved store group doesn't need this as it doesn't allow gaps.
6938   SmallVector<unsigned, 4> Indices;
6939   if (isa<LoadInst>(I)) {
6940     for (unsigned i = 0; i < InterleaveFactor; i++)
6941       if (Group->getMember(i))
6942         Indices.push_back(i);
6943   }
6944 
6945   // Calculate the cost of the whole interleaved group.
6946   bool UseMaskForGaps =
6947       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
6948   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
6949       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6950       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6951 
6952   if (Group->isReverse()) {
6953     // TODO: Add support for reversed masked interleaved access.
6954     assert(!Legal->isMaskRequired(I) &&
6955            "Reverse masked interleaved access not supported.");
6956     Cost +=
6957         Group->getNumMembers() *
6958         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6959   }
6960   return Cost;
6961 }
6962 
6963 InstructionCost LoopVectorizationCostModel::getReductionPatternCost(
6964     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
6965   // Early exit for no inloop reductions
6966   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
6967     return InstructionCost::getInvalid();
6968   auto *VectorTy = cast<VectorType>(Ty);
6969 
6970   // We are looking for a pattern of, and finding the minimal acceptable cost:
6971   //  reduce(mul(ext(A), ext(B))) or
6972   //  reduce(mul(A, B)) or
6973   //  reduce(ext(A)) or
6974   //  reduce(A).
6975   // The basic idea is that we walk down the tree to do that, finding the root
6976   // reduction instruction in InLoopReductionImmediateChains. From there we find
6977   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
6978   // of the components. If the reduction cost is lower then we return it for the
6979   // reduction instruction and 0 for the other instructions in the pattern. If
6980   // it is not we return an invalid cost specifying the orignal cost method
6981   // should be used.
6982   Instruction *RetI = I;
6983   if ((RetI->getOpcode() == Instruction::SExt ||
6984        RetI->getOpcode() == Instruction::ZExt)) {
6985     if (!RetI->hasOneUser())
6986       return InstructionCost::getInvalid();
6987     RetI = RetI->user_back();
6988   }
6989   if (RetI->getOpcode() == Instruction::Mul &&
6990       RetI->user_back()->getOpcode() == Instruction::Add) {
6991     if (!RetI->hasOneUser())
6992       return InstructionCost::getInvalid();
6993     RetI = RetI->user_back();
6994   }
6995 
6996   // Test if the found instruction is a reduction, and if not return an invalid
6997   // cost specifying the parent to use the original cost modelling.
6998   if (!InLoopReductionImmediateChains.count(RetI))
6999     return InstructionCost::getInvalid();
7000 
7001   // Find the reduction this chain is a part of and calculate the basic cost of
7002   // the reduction on its own.
7003   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
7004   Instruction *ReductionPhi = LastChain;
7005   while (!isa<PHINode>(ReductionPhi))
7006     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
7007 
7008   RecurrenceDescriptor RdxDesc =
7009       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
7010   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
7011       RdxDesc.getOpcode(), VectorTy, false, CostKind);
7012 
7013   // Get the operand that was not the reduction chain and match it to one of the
7014   // patterns, returning the better cost if it is found.
7015   Instruction *RedOp = RetI->getOperand(1) == LastChain
7016                            ? dyn_cast<Instruction>(RetI->getOperand(0))
7017                            : dyn_cast<Instruction>(RetI->getOperand(1));
7018 
7019   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
7020 
7021   if (RedOp && (isa<SExtInst>(RedOp) || isa<ZExtInst>(RedOp)) &&
7022       !TheLoop->isLoopInvariant(RedOp)) {
7023     bool IsUnsigned = isa<ZExtInst>(RedOp);
7024     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
7025     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7026         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7027         CostKind);
7028 
7029     InstructionCost ExtCost =
7030         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
7031                              TTI::CastContextHint::None, CostKind, RedOp);
7032     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
7033       return I == RetI ? *RedCost.getValue() : 0;
7034   } else if (RedOp && RedOp->getOpcode() == Instruction::Mul) {
7035     Instruction *Mul = RedOp;
7036     Instruction *Op0 = dyn_cast<Instruction>(Mul->getOperand(0));
7037     Instruction *Op1 = dyn_cast<Instruction>(Mul->getOperand(1));
7038     if (Op0 && Op1 && (isa<SExtInst>(Op0) || isa<ZExtInst>(Op0)) &&
7039         Op0->getOpcode() == Op1->getOpcode() &&
7040         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7041         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7042       bool IsUnsigned = isa<ZExtInst>(Op0);
7043       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7044       // reduce(mul(ext, ext))
7045       InstructionCost ExtCost =
7046           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
7047                                TTI::CastContextHint::None, CostKind, Op0);
7048       InstructionCost MulCost =
7049           TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind);
7050 
7051       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7052           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7053           CostKind);
7054 
7055       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
7056         return I == RetI ? *RedCost.getValue() : 0;
7057     } else {
7058       InstructionCost MulCost =
7059           TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind);
7060 
7061       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7062           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7063           CostKind);
7064 
7065       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7066         return I == RetI ? *RedCost.getValue() : 0;
7067     }
7068   }
7069 
7070   return I == RetI ? BaseCost : InstructionCost::getInvalid();
7071 }
7072 
7073 InstructionCost
7074 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7075                                                      ElementCount VF) {
7076   // Calculate scalar cost only. Vectorization cost should be ready at this
7077   // moment.
7078   if (VF.isScalar()) {
7079     Type *ValTy = getMemInstValueType(I);
7080     const Align Alignment = getLoadStoreAlignment(I);
7081     unsigned AS = getLoadStoreAddressSpace(I);
7082 
7083     return TTI.getAddressComputationCost(ValTy) +
7084            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7085                                TTI::TCK_RecipThroughput, I);
7086   }
7087   return getWideningCost(I, VF);
7088 }
7089 
7090 LoopVectorizationCostModel::VectorizationCostTy
7091 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7092                                                ElementCount VF) {
7093   // If we know that this instruction will remain uniform, check the cost of
7094   // the scalar version.
7095   if (isUniformAfterVectorization(I, VF))
7096     VF = ElementCount::getFixed(1);
7097 
7098   if (VF.isVector() && isProfitableToScalarize(I, VF))
7099     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7100 
7101   // Forced scalars do not have any scalarization overhead.
7102   auto ForcedScalar = ForcedScalars.find(VF);
7103   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7104     auto InstSet = ForcedScalar->second;
7105     if (InstSet.count(I))
7106       return VectorizationCostTy(
7107           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7108            VF.getKnownMinValue()),
7109           false);
7110   }
7111 
7112   Type *VectorTy;
7113   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7114 
7115   bool TypeNotScalarized =
7116       VF.isVector() && VectorTy->isVectorTy() &&
7117       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
7118   return VectorizationCostTy(C, TypeNotScalarized);
7119 }
7120 
7121 InstructionCost
7122 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7123                                                      ElementCount VF) const {
7124 
7125   if (VF.isScalable())
7126     return InstructionCost::getInvalid();
7127 
7128   if (VF.isScalar())
7129     return 0;
7130 
7131   InstructionCost Cost = 0;
7132   Type *RetTy = ToVectorTy(I->getType(), VF);
7133   if (!RetTy->isVoidTy() &&
7134       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7135     Cost += TTI.getScalarizationOverhead(
7136         cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()),
7137         true, false);
7138 
7139   // Some targets keep addresses scalar.
7140   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7141     return Cost;
7142 
7143   // Some targets support efficient element stores.
7144   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7145     return Cost;
7146 
7147   // Collect operands to consider.
7148   CallInst *CI = dyn_cast<CallInst>(I);
7149   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
7150 
7151   // Skip operands that do not require extraction/scalarization and do not incur
7152   // any overhead.
7153   SmallVector<Type *> Tys;
7154   for (auto *V : filterExtractingOperands(Ops, VF))
7155     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7156   return Cost + TTI.getOperandsScalarizationOverhead(
7157                     filterExtractingOperands(Ops, VF), Tys);
7158 }
7159 
7160 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7161   if (VF.isScalar())
7162     return;
7163   NumPredStores = 0;
7164   for (BasicBlock *BB : TheLoop->blocks()) {
7165     // For each instruction in the old loop.
7166     for (Instruction &I : *BB) {
7167       Value *Ptr =  getLoadStorePointerOperand(&I);
7168       if (!Ptr)
7169         continue;
7170 
7171       // TODO: We should generate better code and update the cost model for
7172       // predicated uniform stores. Today they are treated as any other
7173       // predicated store (see added test cases in
7174       // invariant-store-vectorization.ll).
7175       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7176         NumPredStores++;
7177 
7178       if (Legal->isUniformMemOp(I)) {
7179         // TODO: Avoid replicating loads and stores instead of
7180         // relying on instcombine to remove them.
7181         // Load: Scalar load + broadcast
7182         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7183         InstructionCost Cost = getUniformMemOpCost(&I, VF);
7184         setWideningDecision(&I, VF, CM_Scalarize, Cost);
7185         continue;
7186       }
7187 
7188       // We assume that widening is the best solution when possible.
7189       if (memoryInstructionCanBeWidened(&I, VF)) {
7190         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7191         int ConsecutiveStride =
7192                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
7193         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7194                "Expected consecutive stride.");
7195         InstWidening Decision =
7196             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7197         setWideningDecision(&I, VF, Decision, Cost);
7198         continue;
7199       }
7200 
7201       // Choose between Interleaving, Gather/Scatter or Scalarization.
7202       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7203       unsigned NumAccesses = 1;
7204       if (isAccessInterleaved(&I)) {
7205         auto Group = getInterleavedAccessGroup(&I);
7206         assert(Group && "Fail to get an interleaved access group.");
7207 
7208         // Make one decision for the whole group.
7209         if (getWideningDecision(&I, VF) != CM_Unknown)
7210           continue;
7211 
7212         NumAccesses = Group->getNumMembers();
7213         if (interleavedAccessCanBeWidened(&I, VF))
7214           InterleaveCost = getInterleaveGroupCost(&I, VF);
7215       }
7216 
7217       InstructionCost GatherScatterCost =
7218           isLegalGatherOrScatter(&I)
7219               ? getGatherScatterCost(&I, VF) * NumAccesses
7220               : InstructionCost::getInvalid();
7221 
7222       InstructionCost ScalarizationCost =
7223           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7224 
7225       // Choose better solution for the current VF,
7226       // write down this decision and use it during vectorization.
7227       InstructionCost Cost;
7228       InstWidening Decision;
7229       if (InterleaveCost <= GatherScatterCost &&
7230           InterleaveCost < ScalarizationCost) {
7231         Decision = CM_Interleave;
7232         Cost = InterleaveCost;
7233       } else if (GatherScatterCost < ScalarizationCost) {
7234         Decision = CM_GatherScatter;
7235         Cost = GatherScatterCost;
7236       } else {
7237         assert(!VF.isScalable() &&
7238                "We cannot yet scalarise for scalable vectors");
7239         Decision = CM_Scalarize;
7240         Cost = ScalarizationCost;
7241       }
7242       // If the instructions belongs to an interleave group, the whole group
7243       // receives the same decision. The whole group receives the cost, but
7244       // the cost will actually be assigned to one instruction.
7245       if (auto Group = getInterleavedAccessGroup(&I))
7246         setWideningDecision(Group, VF, Decision, Cost);
7247       else
7248         setWideningDecision(&I, VF, Decision, Cost);
7249     }
7250   }
7251 
7252   // Make sure that any load of address and any other address computation
7253   // remains scalar unless there is gather/scatter support. This avoids
7254   // inevitable extracts into address registers, and also has the benefit of
7255   // activating LSR more, since that pass can't optimize vectorized
7256   // addresses.
7257   if (TTI.prefersVectorizedAddressing())
7258     return;
7259 
7260   // Start with all scalar pointer uses.
7261   SmallPtrSet<Instruction *, 8> AddrDefs;
7262   for (BasicBlock *BB : TheLoop->blocks())
7263     for (Instruction &I : *BB) {
7264       Instruction *PtrDef =
7265         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7266       if (PtrDef && TheLoop->contains(PtrDef) &&
7267           getWideningDecision(&I, VF) != CM_GatherScatter)
7268         AddrDefs.insert(PtrDef);
7269     }
7270 
7271   // Add all instructions used to generate the addresses.
7272   SmallVector<Instruction *, 4> Worklist;
7273   append_range(Worklist, AddrDefs);
7274   while (!Worklist.empty()) {
7275     Instruction *I = Worklist.pop_back_val();
7276     for (auto &Op : I->operands())
7277       if (auto *InstOp = dyn_cast<Instruction>(Op))
7278         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7279             AddrDefs.insert(InstOp).second)
7280           Worklist.push_back(InstOp);
7281   }
7282 
7283   for (auto *I : AddrDefs) {
7284     if (isa<LoadInst>(I)) {
7285       // Setting the desired widening decision should ideally be handled in
7286       // by cost functions, but since this involves the task of finding out
7287       // if the loaded register is involved in an address computation, it is
7288       // instead changed here when we know this is the case.
7289       InstWidening Decision = getWideningDecision(I, VF);
7290       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7291         // Scalarize a widened load of address.
7292         setWideningDecision(
7293             I, VF, CM_Scalarize,
7294             (VF.getKnownMinValue() *
7295              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7296       else if (auto Group = getInterleavedAccessGroup(I)) {
7297         // Scalarize an interleave group of address loads.
7298         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7299           if (Instruction *Member = Group->getMember(I))
7300             setWideningDecision(
7301                 Member, VF, CM_Scalarize,
7302                 (VF.getKnownMinValue() *
7303                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7304         }
7305       }
7306     } else
7307       // Make sure I gets scalarized and a cost estimate without
7308       // scalarization overhead.
7309       ForcedScalars[VF].insert(I);
7310   }
7311 }
7312 
7313 InstructionCost
7314 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7315                                                Type *&VectorTy) {
7316   Type *RetTy = I->getType();
7317   if (canTruncateToMinimalBitwidth(I, VF))
7318     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7319   VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF);
7320   auto SE = PSE.getSE();
7321   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7322 
7323   // TODO: We need to estimate the cost of intrinsic calls.
7324   switch (I->getOpcode()) {
7325   case Instruction::GetElementPtr:
7326     // We mark this instruction as zero-cost because the cost of GEPs in
7327     // vectorized code depends on whether the corresponding memory instruction
7328     // is scalarized or not. Therefore, we handle GEPs with the memory
7329     // instruction cost.
7330     return 0;
7331   case Instruction::Br: {
7332     // In cases of scalarized and predicated instructions, there will be VF
7333     // predicated blocks in the vectorized loop. Each branch around these
7334     // blocks requires also an extract of its vector compare i1 element.
7335     bool ScalarPredicatedBB = false;
7336     BranchInst *BI = cast<BranchInst>(I);
7337     if (VF.isVector() && BI->isConditional() &&
7338         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7339          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7340       ScalarPredicatedBB = true;
7341 
7342     if (ScalarPredicatedBB) {
7343       // Return cost for branches around scalarized and predicated blocks.
7344       assert(!VF.isScalable() && "scalable vectors not yet supported.");
7345       auto *Vec_i1Ty =
7346           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7347       return (TTI.getScalarizationOverhead(
7348                   Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()),
7349                   false, true) +
7350               (TTI.getCFInstrCost(Instruction::Br, CostKind) *
7351                VF.getKnownMinValue()));
7352     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7353       // The back-edge branch will remain, as will all scalar branches.
7354       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7355     else
7356       // This branch will be eliminated by if-conversion.
7357       return 0;
7358     // Note: We currently assume zero cost for an unconditional branch inside
7359     // a predicated block since it will become a fall-through, although we
7360     // may decide in the future to call TTI for all branches.
7361   }
7362   case Instruction::PHI: {
7363     auto *Phi = cast<PHINode>(I);
7364 
7365     // First-order recurrences are replaced by vector shuffles inside the loop.
7366     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7367     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7368       return TTI.getShuffleCost(
7369           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7370           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7371 
7372     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7373     // converted into select instructions. We require N - 1 selects per phi
7374     // node, where N is the number of incoming values.
7375     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7376       return (Phi->getNumIncomingValues() - 1) *
7377              TTI.getCmpSelInstrCost(
7378                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7379                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7380                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7381 
7382     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7383   }
7384   case Instruction::UDiv:
7385   case Instruction::SDiv:
7386   case Instruction::URem:
7387   case Instruction::SRem:
7388     // If we have a predicated instruction, it may not be executed for each
7389     // vector lane. Get the scalarization cost and scale this amount by the
7390     // probability of executing the predicated block. If the instruction is not
7391     // predicated, we fall through to the next case.
7392     if (VF.isVector() && isScalarWithPredication(I)) {
7393       InstructionCost Cost = 0;
7394 
7395       // These instructions have a non-void type, so account for the phi nodes
7396       // that we will create. This cost is likely to be zero. The phi node
7397       // cost, if any, should be scaled by the block probability because it
7398       // models a copy at the end of each predicated block.
7399       Cost += VF.getKnownMinValue() *
7400               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7401 
7402       // The cost of the non-predicated instruction.
7403       Cost += VF.getKnownMinValue() *
7404               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7405 
7406       // The cost of insertelement and extractelement instructions needed for
7407       // scalarization.
7408       Cost += getScalarizationOverhead(I, VF);
7409 
7410       // Scale the cost by the probability of executing the predicated blocks.
7411       // This assumes the predicated block for each vector lane is equally
7412       // likely.
7413       return Cost / getReciprocalPredBlockProb();
7414     }
7415     LLVM_FALLTHROUGH;
7416   case Instruction::Add:
7417   case Instruction::FAdd:
7418   case Instruction::Sub:
7419   case Instruction::FSub:
7420   case Instruction::Mul:
7421   case Instruction::FMul:
7422   case Instruction::FDiv:
7423   case Instruction::FRem:
7424   case Instruction::Shl:
7425   case Instruction::LShr:
7426   case Instruction::AShr:
7427   case Instruction::And:
7428   case Instruction::Or:
7429   case Instruction::Xor: {
7430     // Since we will replace the stride by 1 the multiplication should go away.
7431     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7432       return 0;
7433 
7434     // Detect reduction patterns
7435     InstructionCost RedCost;
7436     if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7437             .isValid())
7438       return RedCost;
7439 
7440     // Certain instructions can be cheaper to vectorize if they have a constant
7441     // second vector operand. One example of this are shifts on x86.
7442     Value *Op2 = I->getOperand(1);
7443     TargetTransformInfo::OperandValueProperties Op2VP;
7444     TargetTransformInfo::OperandValueKind Op2VK =
7445         TTI.getOperandInfo(Op2, Op2VP);
7446     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7447       Op2VK = TargetTransformInfo::OK_UniformValue;
7448 
7449     SmallVector<const Value *, 4> Operands(I->operand_values());
7450     unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1;
7451     return N * TTI.getArithmeticInstrCost(
7452                    I->getOpcode(), VectorTy, CostKind,
7453                    TargetTransformInfo::OK_AnyValue,
7454                    Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7455   }
7456   case Instruction::FNeg: {
7457     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
7458     unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1;
7459     return N * TTI.getArithmeticInstrCost(
7460                    I->getOpcode(), VectorTy, CostKind,
7461                    TargetTransformInfo::OK_AnyValue,
7462                    TargetTransformInfo::OK_AnyValue,
7463                    TargetTransformInfo::OP_None, TargetTransformInfo::OP_None,
7464                    I->getOperand(0), I);
7465   }
7466   case Instruction::Select: {
7467     SelectInst *SI = cast<SelectInst>(I);
7468     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7469     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7470 
7471     const Value *Op0, *Op1;
7472     using namespace llvm::PatternMatch;
7473     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7474                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7475       // select x, y, false --> x & y
7476       // select x, true, y --> x | y
7477       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7478       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7479       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7480       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7481       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7482               Op1->getType()->getScalarSizeInBits() == 1);
7483 
7484       SmallVector<const Value *, 2> Operands{Op0, Op1};
7485       return TTI.getArithmeticInstrCost(
7486           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7487           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7488     }
7489 
7490     Type *CondTy = SI->getCondition()->getType();
7491     if (!ScalarCond)
7492       CondTy = VectorType::get(CondTy, VF);
7493     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7494                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7495   }
7496   case Instruction::ICmp:
7497   case Instruction::FCmp: {
7498     Type *ValTy = I->getOperand(0)->getType();
7499     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7500     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7501       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7502     VectorTy = ToVectorTy(ValTy, VF);
7503     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7504                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7505   }
7506   case Instruction::Store:
7507   case Instruction::Load: {
7508     ElementCount Width = VF;
7509     if (Width.isVector()) {
7510       InstWidening Decision = getWideningDecision(I, Width);
7511       assert(Decision != CM_Unknown &&
7512              "CM decision should be taken at this point");
7513       if (Decision == CM_Scalarize)
7514         Width = ElementCount::getFixed(1);
7515     }
7516     VectorTy = ToVectorTy(getMemInstValueType(I), Width);
7517     return getMemoryInstructionCost(I, VF);
7518   }
7519   case Instruction::ZExt:
7520   case Instruction::SExt:
7521   case Instruction::FPToUI:
7522   case Instruction::FPToSI:
7523   case Instruction::FPExt:
7524   case Instruction::PtrToInt:
7525   case Instruction::IntToPtr:
7526   case Instruction::SIToFP:
7527   case Instruction::UIToFP:
7528   case Instruction::Trunc:
7529   case Instruction::FPTrunc:
7530   case Instruction::BitCast: {
7531     // Computes the CastContextHint from a Load/Store instruction.
7532     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7533       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7534              "Expected a load or a store!");
7535 
7536       if (VF.isScalar() || !TheLoop->contains(I))
7537         return TTI::CastContextHint::Normal;
7538 
7539       switch (getWideningDecision(I, VF)) {
7540       case LoopVectorizationCostModel::CM_GatherScatter:
7541         return TTI::CastContextHint::GatherScatter;
7542       case LoopVectorizationCostModel::CM_Interleave:
7543         return TTI::CastContextHint::Interleave;
7544       case LoopVectorizationCostModel::CM_Scalarize:
7545       case LoopVectorizationCostModel::CM_Widen:
7546         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7547                                         : TTI::CastContextHint::Normal;
7548       case LoopVectorizationCostModel::CM_Widen_Reverse:
7549         return TTI::CastContextHint::Reversed;
7550       case LoopVectorizationCostModel::CM_Unknown:
7551         llvm_unreachable("Instr did not go through cost modelling?");
7552       }
7553 
7554       llvm_unreachable("Unhandled case!");
7555     };
7556 
7557     unsigned Opcode = I->getOpcode();
7558     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7559     // For Trunc, the context is the only user, which must be a StoreInst.
7560     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7561       if (I->hasOneUse())
7562         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7563           CCH = ComputeCCH(Store);
7564     }
7565     // For Z/Sext, the context is the operand, which must be a LoadInst.
7566     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7567              Opcode == Instruction::FPExt) {
7568       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7569         CCH = ComputeCCH(Load);
7570     }
7571 
7572     // We optimize the truncation of induction variables having constant
7573     // integer steps. The cost of these truncations is the same as the scalar
7574     // operation.
7575     if (isOptimizableIVTruncate(I, VF)) {
7576       auto *Trunc = cast<TruncInst>(I);
7577       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7578                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7579     }
7580 
7581     // Detect reduction patterns
7582     InstructionCost RedCost;
7583     if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7584             .isValid())
7585       return RedCost;
7586 
7587     Type *SrcScalarTy = I->getOperand(0)->getType();
7588     Type *SrcVecTy =
7589         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7590     if (canTruncateToMinimalBitwidth(I, VF)) {
7591       // This cast is going to be shrunk. This may remove the cast or it might
7592       // turn it into slightly different cast. For example, if MinBW == 16,
7593       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7594       //
7595       // Calculate the modified src and dest types.
7596       Type *MinVecTy = VectorTy;
7597       if (Opcode == Instruction::Trunc) {
7598         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7599         VectorTy =
7600             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7601       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7602         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7603         VectorTy =
7604             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7605       }
7606     }
7607 
7608     unsigned N;
7609     if (isScalarAfterVectorization(I, VF)) {
7610       assert(!VF.isScalable() && "VF is assumed to be non scalable");
7611       N = VF.getKnownMinValue();
7612     } else
7613       N = 1;
7614     return N *
7615            TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7616   }
7617   case Instruction::Call: {
7618     bool NeedToScalarize;
7619     CallInst *CI = cast<CallInst>(I);
7620     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7621     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7622       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7623       return std::min(CallCost, IntrinsicCost);
7624     }
7625     return CallCost;
7626   }
7627   case Instruction::ExtractValue:
7628     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7629   default:
7630     // The cost of executing VF copies of the scalar instruction. This opcode
7631     // is unknown. Assume that it is the same as 'mul'.
7632     return VF.getKnownMinValue() * TTI.getArithmeticInstrCost(
7633                                        Instruction::Mul, VectorTy, CostKind) +
7634            getScalarizationOverhead(I, VF);
7635   } // end of switch.
7636 }
7637 
7638 char LoopVectorize::ID = 0;
7639 
7640 static const char lv_name[] = "Loop Vectorization";
7641 
7642 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7643 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7644 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7645 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7646 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7647 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7648 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7649 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7650 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7651 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7652 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7653 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7654 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7655 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7656 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7657 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7658 
7659 namespace llvm {
7660 
7661 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7662 
7663 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7664                               bool VectorizeOnlyWhenForced) {
7665   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7666 }
7667 
7668 } // end namespace llvm
7669 
7670 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7671   // Check if the pointer operand of a load or store instruction is
7672   // consecutive.
7673   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7674     return Legal->isConsecutivePtr(Ptr);
7675   return false;
7676 }
7677 
7678 void LoopVectorizationCostModel::collectValuesToIgnore() {
7679   // Ignore ephemeral values.
7680   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7681 
7682   // Ignore type-promoting instructions we identified during reduction
7683   // detection.
7684   for (auto &Reduction : Legal->getReductionVars()) {
7685     RecurrenceDescriptor &RedDes = Reduction.second;
7686     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7687     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7688   }
7689   // Ignore type-casting instructions we identified during induction
7690   // detection.
7691   for (auto &Induction : Legal->getInductionVars()) {
7692     InductionDescriptor &IndDes = Induction.second;
7693     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7694     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7695   }
7696 }
7697 
7698 void LoopVectorizationCostModel::collectInLoopReductions() {
7699   for (auto &Reduction : Legal->getReductionVars()) {
7700     PHINode *Phi = Reduction.first;
7701     RecurrenceDescriptor &RdxDesc = Reduction.second;
7702 
7703     // We don't collect reductions that are type promoted (yet).
7704     if (RdxDesc.getRecurrenceType() != Phi->getType())
7705       continue;
7706 
7707     // If the target would prefer this reduction to happen "in-loop", then we
7708     // want to record it as such.
7709     unsigned Opcode = RdxDesc.getOpcode();
7710     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7711         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7712                                    TargetTransformInfo::ReductionFlags()))
7713       continue;
7714 
7715     // Check that we can correctly put the reductions into the loop, by
7716     // finding the chain of operations that leads from the phi to the loop
7717     // exit value.
7718     SmallVector<Instruction *, 4> ReductionOperations =
7719         RdxDesc.getReductionOpChain(Phi, TheLoop);
7720     bool InLoop = !ReductionOperations.empty();
7721     if (InLoop) {
7722       InLoopReductionChains[Phi] = ReductionOperations;
7723       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7724       Instruction *LastChain = Phi;
7725       for (auto *I : ReductionOperations) {
7726         InLoopReductionImmediateChains[I] = LastChain;
7727         LastChain = I;
7728       }
7729     }
7730     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7731                       << " reduction for phi: " << *Phi << "\n");
7732   }
7733 }
7734 
7735 // TODO: we could return a pair of values that specify the max VF and
7736 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7737 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7738 // doesn't have a cost model that can choose which plan to execute if
7739 // more than one is generated.
7740 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7741                                  LoopVectorizationCostModel &CM) {
7742   unsigned WidestType;
7743   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7744   return WidestVectorRegBits / WidestType;
7745 }
7746 
7747 VectorizationFactor
7748 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7749   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7750   ElementCount VF = UserVF;
7751   // Outer loop handling: They may require CFG and instruction level
7752   // transformations before even evaluating whether vectorization is profitable.
7753   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7754   // the vectorization pipeline.
7755   if (!OrigLoop->isInnermost()) {
7756     // If the user doesn't provide a vectorization factor, determine a
7757     // reasonable one.
7758     if (UserVF.isZero()) {
7759       VF = ElementCount::getFixed(determineVPlanVF(
7760           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7761               .getFixedSize(),
7762           CM));
7763       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7764 
7765       // Make sure we have a VF > 1 for stress testing.
7766       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7767         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7768                           << "overriding computed VF.\n");
7769         VF = ElementCount::getFixed(4);
7770       }
7771     }
7772     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7773     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7774            "VF needs to be a power of two");
7775     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7776                       << "VF " << VF << " to build VPlans.\n");
7777     buildVPlans(VF, VF);
7778 
7779     // For VPlan build stress testing, we bail out after VPlan construction.
7780     if (VPlanBuildStressTest)
7781       return VectorizationFactor::Disabled();
7782 
7783     return {VF, 0 /*Cost*/};
7784   }
7785 
7786   LLVM_DEBUG(
7787       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7788                 "VPlan-native path.\n");
7789   return VectorizationFactor::Disabled();
7790 }
7791 
7792 Optional<VectorizationFactor>
7793 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7794   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7795   Optional<ElementCount> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC);
7796   if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved.
7797     return None;
7798 
7799   // Invalidate interleave groups if all blocks of loop will be predicated.
7800   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
7801       !useMaskedInterleavedAccesses(*TTI)) {
7802     LLVM_DEBUG(
7803         dbgs()
7804         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7805            "which requires masked-interleaved support.\n");
7806     if (CM.InterleaveInfo.invalidateGroups())
7807       // Invalidating interleave groups also requires invalidating all decisions
7808       // based on them, which includes widening decisions and uniform and scalar
7809       // values.
7810       CM.invalidateCostModelingDecisions();
7811   }
7812 
7813   ElementCount MaxVF = MaybeMaxVF.getValue();
7814   assert(MaxVF.isNonZero() && "MaxVF is zero.");
7815 
7816   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxVF);
7817   if (!UserVF.isZero() &&
7818       (UserVFIsLegal || (UserVF.isScalable() && MaxVF.isScalable()))) {
7819     // FIXME: MaxVF is temporarily used inplace of UserVF for illegal scalable
7820     // VFs here, this should be reverted to only use legal UserVFs once the
7821     // loop below supports scalable VFs.
7822     ElementCount VF = UserVFIsLegal ? UserVF : MaxVF;
7823     LLVM_DEBUG(dbgs() << "LV: Using " << (UserVFIsLegal ? "user" : "max")
7824                       << " VF " << VF << ".\n");
7825     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7826            "VF needs to be a power of two");
7827     // Collect the instructions (and their associated costs) that will be more
7828     // profitable to scalarize.
7829     CM.selectUserVectorizationFactor(VF);
7830     CM.collectInLoopReductions();
7831     buildVPlansWithVPRecipes(VF, VF);
7832     LLVM_DEBUG(printPlans(dbgs()));
7833     return {{VF, 0}};
7834   }
7835 
7836   assert(!MaxVF.isScalable() &&
7837          "Scalable vectors not yet supported beyond this point");
7838 
7839   for (ElementCount VF = ElementCount::getFixed(1);
7840        ElementCount::isKnownLE(VF, MaxVF); VF *= 2) {
7841     // Collect Uniform and Scalar instructions after vectorization with VF.
7842     CM.collectUniformsAndScalars(VF);
7843 
7844     // Collect the instructions (and their associated costs) that will be more
7845     // profitable to scalarize.
7846     if (VF.isVector())
7847       CM.collectInstsToScalarize(VF);
7848   }
7849 
7850   CM.collectInLoopReductions();
7851 
7852   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxVF);
7853   LLVM_DEBUG(printPlans(dbgs()));
7854   if (MaxVF.isScalar())
7855     return VectorizationFactor::Disabled();
7856 
7857   // Select the optimal vectorization factor.
7858   auto SelectedVF = CM.selectVectorizationFactor(MaxVF);
7859 
7860   // Check if it is profitable to vectorize with runtime checks.
7861   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
7862   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
7863     bool PragmaThresholdReached =
7864         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
7865     bool ThresholdReached =
7866         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
7867     if ((ThresholdReached && !Hints.allowReordering()) ||
7868         PragmaThresholdReached) {
7869       ORE->emit([&]() {
7870         return OptimizationRemarkAnalysisAliasing(
7871                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
7872                    OrigLoop->getHeader())
7873                << "loop not vectorized: cannot prove it is safe to reorder "
7874                   "memory operations";
7875       });
7876       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
7877       Hints.emitRemarkWithHints();
7878       return VectorizationFactor::Disabled();
7879     }
7880   }
7881   return SelectedVF;
7882 }
7883 
7884 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) {
7885   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
7886                     << '\n');
7887   BestVF = VF;
7888   BestUF = UF;
7889 
7890   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
7891     return !Plan->hasVF(VF);
7892   });
7893   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
7894 }
7895 
7896 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
7897                                            DominatorTree *DT) {
7898   // Perform the actual loop transformation.
7899 
7900   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
7901   assert(BestVF.hasValue() && "Vectorization Factor is missing");
7902   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
7903 
7904   VPTransformState State{
7905       *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()};
7906   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
7907   State.TripCount = ILV.getOrCreateTripCount(nullptr);
7908   State.CanonicalIV = ILV.Induction;
7909 
7910   ILV.printDebugTracesAtStart();
7911 
7912   //===------------------------------------------------===//
7913   //
7914   // Notice: any optimization or new instruction that go
7915   // into the code below should also be implemented in
7916   // the cost-model.
7917   //
7918   //===------------------------------------------------===//
7919 
7920   // 2. Copy and widen instructions from the old loop into the new loop.
7921   VPlans.front()->execute(&State);
7922 
7923   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7924   //    predication, updating analyses.
7925   ILV.fixVectorizedLoop(State);
7926 
7927   ILV.printDebugTracesAtEnd();
7928 }
7929 
7930 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
7931 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
7932   for (const auto &Plan : VPlans)
7933     if (PrintVPlansInDotFormat)
7934       Plan->printDOT(O);
7935     else
7936       Plan->print(O);
7937 }
7938 #endif
7939 
7940 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
7941     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
7942 
7943   // We create new control-flow for the vectorized loop, so the original exit
7944   // conditions will be dead after vectorization if it's only used by the
7945   // terminator
7946   SmallVector<BasicBlock*> ExitingBlocks;
7947   OrigLoop->getExitingBlocks(ExitingBlocks);
7948   for (auto *BB : ExitingBlocks) {
7949     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
7950     if (!Cmp || !Cmp->hasOneUse())
7951       continue;
7952 
7953     // TODO: we should introduce a getUniqueExitingBlocks on Loop
7954     if (!DeadInstructions.insert(Cmp).second)
7955       continue;
7956 
7957     // The operands of the icmp is often a dead trunc, used by IndUpdate.
7958     // TODO: can recurse through operands in general
7959     for (Value *Op : Cmp->operands()) {
7960       if (isa<TruncInst>(Op) && Op->hasOneUse())
7961           DeadInstructions.insert(cast<Instruction>(Op));
7962     }
7963   }
7964 
7965   // We create new "steps" for induction variable updates to which the original
7966   // induction variables map. An original update instruction will be dead if
7967   // all its users except the induction variable are dead.
7968   auto *Latch = OrigLoop->getLoopLatch();
7969   for (auto &Induction : Legal->getInductionVars()) {
7970     PHINode *Ind = Induction.first;
7971     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
7972 
7973     // If the tail is to be folded by masking, the primary induction variable,
7974     // if exists, isn't dead: it will be used for masking. Don't kill it.
7975     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
7976       continue;
7977 
7978     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
7979           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
7980         }))
7981       DeadInstructions.insert(IndUpdate);
7982 
7983     // We record as "Dead" also the type-casting instructions we had identified
7984     // during induction analysis. We don't need any handling for them in the
7985     // vectorized loop because we have proven that, under a proper runtime
7986     // test guarding the vectorized loop, the value of the phi, and the casted
7987     // value of the phi, are the same. The last instruction in this casting chain
7988     // will get its scalar/vector/widened def from the scalar/vector/widened def
7989     // of the respective phi node. Any other casts in the induction def-use chain
7990     // have no other uses outside the phi update chain, and will be ignored.
7991     InductionDescriptor &IndDes = Induction.second;
7992     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7993     DeadInstructions.insert(Casts.begin(), Casts.end());
7994   }
7995 }
7996 
7997 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
7998 
7999 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8000 
8001 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
8002                                         Instruction::BinaryOps BinOp) {
8003   // When unrolling and the VF is 1, we only need to add a simple scalar.
8004   Type *Ty = Val->getType();
8005   assert(!Ty->isVectorTy() && "Val must be a scalar");
8006 
8007   if (Ty->isFloatingPointTy()) {
8008     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
8009 
8010     // Floating-point operations inherit FMF via the builder's flags.
8011     Value *MulOp = Builder.CreateFMul(C, Step);
8012     return Builder.CreateBinOp(BinOp, Val, MulOp);
8013   }
8014   Constant *C = ConstantInt::get(Ty, StartIdx);
8015   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
8016 }
8017 
8018 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
8019   SmallVector<Metadata *, 4> MDs;
8020   // Reserve first location for self reference to the LoopID metadata node.
8021   MDs.push_back(nullptr);
8022   bool IsUnrollMetadata = false;
8023   MDNode *LoopID = L->getLoopID();
8024   if (LoopID) {
8025     // First find existing loop unrolling disable metadata.
8026     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
8027       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
8028       if (MD) {
8029         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
8030         IsUnrollMetadata =
8031             S && S->getString().startswith("llvm.loop.unroll.disable");
8032       }
8033       MDs.push_back(LoopID->getOperand(i));
8034     }
8035   }
8036 
8037   if (!IsUnrollMetadata) {
8038     // Add runtime unroll disable metadata.
8039     LLVMContext &Context = L->getHeader()->getContext();
8040     SmallVector<Metadata *, 1> DisableOperands;
8041     DisableOperands.push_back(
8042         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
8043     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
8044     MDs.push_back(DisableNode);
8045     MDNode *NewLoopID = MDNode::get(Context, MDs);
8046     // Set operand 0 to refer to the loop id itself.
8047     NewLoopID->replaceOperandWith(0, NewLoopID);
8048     L->setLoopID(NewLoopID);
8049   }
8050 }
8051 
8052 //===--------------------------------------------------------------------===//
8053 // EpilogueVectorizerMainLoop
8054 //===--------------------------------------------------------------------===//
8055 
8056 /// This function is partially responsible for generating the control flow
8057 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8058 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8059   MDNode *OrigLoopID = OrigLoop->getLoopID();
8060   Loop *Lp = createVectorLoopSkeleton("");
8061 
8062   // Generate the code to check the minimum iteration count of the vector
8063   // epilogue (see below).
8064   EPI.EpilogueIterationCountCheck =
8065       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8066   EPI.EpilogueIterationCountCheck->setName("iter.check");
8067 
8068   // Generate the code to check any assumptions that we've made for SCEV
8069   // expressions.
8070   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8071 
8072   // Generate the code that checks at runtime if arrays overlap. We put the
8073   // checks into a separate block to make the more common case of few elements
8074   // faster.
8075   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8076 
8077   // Generate the iteration count check for the main loop, *after* the check
8078   // for the epilogue loop, so that the path-length is shorter for the case
8079   // that goes directly through the vector epilogue. The longer-path length for
8080   // the main loop is compensated for, by the gain from vectorizing the larger
8081   // trip count. Note: the branch will get updated later on when we vectorize
8082   // the epilogue.
8083   EPI.MainLoopIterationCountCheck =
8084       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8085 
8086   // Generate the induction variable.
8087   OldInduction = Legal->getPrimaryInduction();
8088   Type *IdxTy = Legal->getWidestInductionType();
8089   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8090   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8091   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8092   EPI.VectorTripCount = CountRoundDown;
8093   Induction =
8094       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8095                               getDebugLocFromInstOrOperands(OldInduction));
8096 
8097   // Skip induction resume value creation here because they will be created in
8098   // the second pass. If we created them here, they wouldn't be used anyway,
8099   // because the vplan in the second pass still contains the inductions from the
8100   // original loop.
8101 
8102   return completeLoopSkeleton(Lp, OrigLoopID);
8103 }
8104 
8105 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8106   LLVM_DEBUG({
8107     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8108            << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue()
8109            << ", Main Loop UF:" << EPI.MainLoopUF
8110            << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8111            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8112   });
8113 }
8114 
8115 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8116   DEBUG_WITH_TYPE(VerboseDebug, {
8117     dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
8118   });
8119 }
8120 
8121 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8122     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8123   assert(L && "Expected valid Loop.");
8124   assert(Bypass && "Expected valid bypass basic block.");
8125   unsigned VFactor =
8126       ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue();
8127   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8128   Value *Count = getOrCreateTripCount(L);
8129   // Reuse existing vector loop preheader for TC checks.
8130   // Note that new preheader block is generated for vector loop.
8131   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8132   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8133 
8134   // Generate code to check if the loop's trip count is less than VF * UF of the
8135   // main vector loop.
8136   auto P =
8137       Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8138 
8139   Value *CheckMinIters = Builder.CreateICmp(
8140       P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor),
8141       "min.iters.check");
8142 
8143   if (!ForEpilogue)
8144     TCCheckBlock->setName("vector.main.loop.iter.check");
8145 
8146   // Create new preheader for vector loop.
8147   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8148                                    DT, LI, nullptr, "vector.ph");
8149 
8150   if (ForEpilogue) {
8151     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8152                                  DT->getNode(Bypass)->getIDom()) &&
8153            "TC check is expected to dominate Bypass");
8154 
8155     // Update dominator for Bypass & LoopExit.
8156     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8157     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8158 
8159     LoopBypassBlocks.push_back(TCCheckBlock);
8160 
8161     // Save the trip count so we don't have to regenerate it in the
8162     // vec.epilog.iter.check. This is safe to do because the trip count
8163     // generated here dominates the vector epilog iter check.
8164     EPI.TripCount = Count;
8165   }
8166 
8167   ReplaceInstWithInst(
8168       TCCheckBlock->getTerminator(),
8169       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8170 
8171   return TCCheckBlock;
8172 }
8173 
8174 //===--------------------------------------------------------------------===//
8175 // EpilogueVectorizerEpilogueLoop
8176 //===--------------------------------------------------------------------===//
8177 
8178 /// This function is partially responsible for generating the control flow
8179 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8180 BasicBlock *
8181 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8182   MDNode *OrigLoopID = OrigLoop->getLoopID();
8183   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8184 
8185   // Now, compare the remaining count and if there aren't enough iterations to
8186   // execute the vectorized epilogue skip to the scalar part.
8187   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8188   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8189   LoopVectorPreHeader =
8190       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8191                  LI, nullptr, "vec.epilog.ph");
8192   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8193                                           VecEpilogueIterationCountCheck);
8194 
8195   // Adjust the control flow taking the state info from the main loop
8196   // vectorization into account.
8197   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8198          "expected this to be saved from the previous pass.");
8199   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8200       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8201 
8202   DT->changeImmediateDominator(LoopVectorPreHeader,
8203                                EPI.MainLoopIterationCountCheck);
8204 
8205   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8206       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8207 
8208   if (EPI.SCEVSafetyCheck)
8209     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8210         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8211   if (EPI.MemSafetyCheck)
8212     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8213         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8214 
8215   DT->changeImmediateDominator(
8216       VecEpilogueIterationCountCheck,
8217       VecEpilogueIterationCountCheck->getSinglePredecessor());
8218 
8219   DT->changeImmediateDominator(LoopScalarPreHeader,
8220                                EPI.EpilogueIterationCountCheck);
8221   DT->changeImmediateDominator(LoopExitBlock, EPI.EpilogueIterationCountCheck);
8222 
8223   // Keep track of bypass blocks, as they feed start values to the induction
8224   // phis in the scalar loop preheader.
8225   if (EPI.SCEVSafetyCheck)
8226     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8227   if (EPI.MemSafetyCheck)
8228     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8229   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8230 
8231   // Generate a resume induction for the vector epilogue and put it in the
8232   // vector epilogue preheader
8233   Type *IdxTy = Legal->getWidestInductionType();
8234   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8235                                          LoopVectorPreHeader->getFirstNonPHI());
8236   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8237   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8238                            EPI.MainLoopIterationCountCheck);
8239 
8240   // Generate the induction variable.
8241   OldInduction = Legal->getPrimaryInduction();
8242   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8243   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8244   Value *StartIdx = EPResumeVal;
8245   Induction =
8246       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8247                               getDebugLocFromInstOrOperands(OldInduction));
8248 
8249   // Generate induction resume values. These variables save the new starting
8250   // indexes for the scalar loop. They are used to test if there are any tail
8251   // iterations left once the vector loop has completed.
8252   // Note that when the vectorized epilogue is skipped due to iteration count
8253   // check, then the resume value for the induction variable comes from
8254   // the trip count of the main vector loop, hence passing the AdditionalBypass
8255   // argument.
8256   createInductionResumeValues(Lp, CountRoundDown,
8257                               {VecEpilogueIterationCountCheck,
8258                                EPI.VectorTripCount} /* AdditionalBypass */);
8259 
8260   AddRuntimeUnrollDisableMetaData(Lp);
8261   return completeLoopSkeleton(Lp, OrigLoopID);
8262 }
8263 
8264 BasicBlock *
8265 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8266     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8267 
8268   assert(EPI.TripCount &&
8269          "Expected trip count to have been safed in the first pass.");
8270   assert(
8271       (!isa<Instruction>(EPI.TripCount) ||
8272        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8273       "saved trip count does not dominate insertion point.");
8274   Value *TC = EPI.TripCount;
8275   IRBuilder<> Builder(Insert->getTerminator());
8276   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8277 
8278   // Generate code to check if the loop's trip count is less than VF * UF of the
8279   // vector epilogue loop.
8280   auto P =
8281       Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8282 
8283   Value *CheckMinIters = Builder.CreateICmp(
8284       P, Count,
8285       ConstantInt::get(Count->getType(),
8286                        EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF),
8287       "min.epilog.iters.check");
8288 
8289   ReplaceInstWithInst(
8290       Insert->getTerminator(),
8291       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8292 
8293   LoopBypassBlocks.push_back(Insert);
8294   return Insert;
8295 }
8296 
8297 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8298   LLVM_DEBUG({
8299     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8300            << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue()
8301            << ", Main Loop UF:" << EPI.MainLoopUF
8302            << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8303            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8304   });
8305 }
8306 
8307 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8308   DEBUG_WITH_TYPE(VerboseDebug, {
8309     dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
8310   });
8311 }
8312 
8313 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8314     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8315   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8316   bool PredicateAtRangeStart = Predicate(Range.Start);
8317 
8318   for (ElementCount TmpVF = Range.Start * 2;
8319        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8320     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8321       Range.End = TmpVF;
8322       break;
8323     }
8324 
8325   return PredicateAtRangeStart;
8326 }
8327 
8328 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8329 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8330 /// of VF's starting at a given VF and extending it as much as possible. Each
8331 /// vectorization decision can potentially shorten this sub-range during
8332 /// buildVPlan().
8333 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8334                                            ElementCount MaxVF) {
8335   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8336   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8337     VFRange SubRange = {VF, MaxVFPlusOne};
8338     VPlans.push_back(buildVPlan(SubRange));
8339     VF = SubRange.End;
8340   }
8341 }
8342 
8343 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8344                                          VPlanPtr &Plan) {
8345   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8346 
8347   // Look for cached value.
8348   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8349   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8350   if (ECEntryIt != EdgeMaskCache.end())
8351     return ECEntryIt->second;
8352 
8353   VPValue *SrcMask = createBlockInMask(Src, Plan);
8354 
8355   // The terminator has to be a branch inst!
8356   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8357   assert(BI && "Unexpected terminator found");
8358 
8359   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8360     return EdgeMaskCache[Edge] = SrcMask;
8361 
8362   // If source is an exiting block, we know the exit edge is dynamically dead
8363   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8364   // adding uses of an otherwise potentially dead instruction.
8365   if (OrigLoop->isLoopExiting(Src))
8366     return EdgeMaskCache[Edge] = SrcMask;
8367 
8368   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8369   assert(EdgeMask && "No Edge Mask found for condition");
8370 
8371   if (BI->getSuccessor(0) != Dst)
8372     EdgeMask = Builder.createNot(EdgeMask);
8373 
8374   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8375     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8376     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8377     // The select version does not introduce new UB if SrcMask is false and
8378     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8379     VPValue *False = Plan->getOrAddVPValue(
8380         ConstantInt::getFalse(BI->getCondition()->getType()));
8381     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8382   }
8383 
8384   return EdgeMaskCache[Edge] = EdgeMask;
8385 }
8386 
8387 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8388   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8389 
8390   // Look for cached value.
8391   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8392   if (BCEntryIt != BlockMaskCache.end())
8393     return BCEntryIt->second;
8394 
8395   // All-one mask is modelled as no-mask following the convention for masked
8396   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8397   VPValue *BlockMask = nullptr;
8398 
8399   if (OrigLoop->getHeader() == BB) {
8400     if (!CM.blockNeedsPredication(BB))
8401       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8402 
8403     // Create the block in mask as the first non-phi instruction in the block.
8404     VPBuilder::InsertPointGuard Guard(Builder);
8405     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8406     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8407 
8408     // Introduce the early-exit compare IV <= BTC to form header block mask.
8409     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8410     // Start by constructing the desired canonical IV.
8411     VPValue *IV = nullptr;
8412     if (Legal->getPrimaryInduction())
8413       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8414     else {
8415       auto IVRecipe = new VPWidenCanonicalIVRecipe();
8416       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8417       IV = IVRecipe->getVPValue();
8418     }
8419     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8420     bool TailFolded = !CM.isScalarEpilogueAllowed();
8421 
8422     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8423       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8424       // as a second argument, we only pass the IV here and extract the
8425       // tripcount from the transform state where codegen of the VP instructions
8426       // happen.
8427       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8428     } else {
8429       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8430     }
8431     return BlockMaskCache[BB] = BlockMask;
8432   }
8433 
8434   // This is the block mask. We OR all incoming edges.
8435   for (auto *Predecessor : predecessors(BB)) {
8436     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8437     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8438       return BlockMaskCache[BB] = EdgeMask;
8439 
8440     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8441       BlockMask = EdgeMask;
8442       continue;
8443     }
8444 
8445     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8446   }
8447 
8448   return BlockMaskCache[BB] = BlockMask;
8449 }
8450 
8451 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8452                                                 ArrayRef<VPValue *> Operands,
8453                                                 VFRange &Range,
8454                                                 VPlanPtr &Plan) {
8455   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8456          "Must be called with either a load or store");
8457 
8458   auto willWiden = [&](ElementCount VF) -> bool {
8459     if (VF.isScalar())
8460       return false;
8461     LoopVectorizationCostModel::InstWidening Decision =
8462         CM.getWideningDecision(I, VF);
8463     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8464            "CM decision should be taken at this point.");
8465     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8466       return true;
8467     if (CM.isScalarAfterVectorization(I, VF) ||
8468         CM.isProfitableToScalarize(I, VF))
8469       return false;
8470     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8471   };
8472 
8473   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8474     return nullptr;
8475 
8476   VPValue *Mask = nullptr;
8477   if (Legal->isMaskRequired(I))
8478     Mask = createBlockInMask(I->getParent(), Plan);
8479 
8480   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8481     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask);
8482 
8483   StoreInst *Store = cast<StoreInst>(I);
8484   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8485                                             Mask);
8486 }
8487 
8488 VPWidenIntOrFpInductionRecipe *
8489 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8490                                            ArrayRef<VPValue *> Operands) const {
8491   // Check if this is an integer or fp induction. If so, build the recipe that
8492   // produces its scalar and vector values.
8493   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8494   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8495       II.getKind() == InductionDescriptor::IK_FpInduction) {
8496     assert(II.getStartValue() ==
8497            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8498     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8499     return new VPWidenIntOrFpInductionRecipe(
8500         Phi, Operands[0], Casts.empty() ? nullptr : Casts.front());
8501   }
8502 
8503   return nullptr;
8504 }
8505 
8506 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8507     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8508     VPlan &Plan) const {
8509   // Optimize the special case where the source is a constant integer
8510   // induction variable. Notice that we can only optimize the 'trunc' case
8511   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8512   // (c) other casts depend on pointer size.
8513 
8514   // Determine whether \p K is a truncation based on an induction variable that
8515   // can be optimized.
8516   auto isOptimizableIVTruncate =
8517       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8518     return [=](ElementCount VF) -> bool {
8519       return CM.isOptimizableIVTruncate(K, VF);
8520     };
8521   };
8522 
8523   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8524           isOptimizableIVTruncate(I), Range)) {
8525 
8526     InductionDescriptor II =
8527         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
8528     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8529     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
8530                                              Start, nullptr, I);
8531   }
8532   return nullptr;
8533 }
8534 
8535 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8536                                                 ArrayRef<VPValue *> Operands,
8537                                                 VPlanPtr &Plan) {
8538   // If all incoming values are equal, the incoming VPValue can be used directly
8539   // instead of creating a new VPBlendRecipe.
8540   VPValue *FirstIncoming = Operands[0];
8541   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8542         return FirstIncoming == Inc;
8543       })) {
8544     return Operands[0];
8545   }
8546 
8547   // We know that all PHIs in non-header blocks are converted into selects, so
8548   // we don't have to worry about the insertion order and we can just use the
8549   // builder. At this point we generate the predication tree. There may be
8550   // duplications since this is a simple recursive scan, but future
8551   // optimizations will clean it up.
8552   SmallVector<VPValue *, 2> OperandsWithMask;
8553   unsigned NumIncoming = Phi->getNumIncomingValues();
8554 
8555   for (unsigned In = 0; In < NumIncoming; In++) {
8556     VPValue *EdgeMask =
8557       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8558     assert((EdgeMask || NumIncoming == 1) &&
8559            "Multiple predecessors with one having a full mask");
8560     OperandsWithMask.push_back(Operands[In]);
8561     if (EdgeMask)
8562       OperandsWithMask.push_back(EdgeMask);
8563   }
8564   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8565 }
8566 
8567 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8568                                                    ArrayRef<VPValue *> Operands,
8569                                                    VFRange &Range) const {
8570 
8571   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8572       [this, CI](ElementCount VF) {
8573         return CM.isScalarWithPredication(CI, VF);
8574       },
8575       Range);
8576 
8577   if (IsPredicated)
8578     return nullptr;
8579 
8580   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8581   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8582              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8583              ID == Intrinsic::pseudoprobe ||
8584              ID == Intrinsic::experimental_noalias_scope_decl))
8585     return nullptr;
8586 
8587   auto willWiden = [&](ElementCount VF) -> bool {
8588     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8589     // The following case may be scalarized depending on the VF.
8590     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8591     // version of the instruction.
8592     // Is it beneficial to perform intrinsic call compared to lib call?
8593     bool NeedToScalarize = false;
8594     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8595     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8596     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8597     assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
8598            "Either the intrinsic cost or vector call cost must be valid");
8599     return UseVectorIntrinsic || !NeedToScalarize;
8600   };
8601 
8602   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8603     return nullptr;
8604 
8605   ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands());
8606   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8607 }
8608 
8609 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8610   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8611          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8612   // Instruction should be widened, unless it is scalar after vectorization,
8613   // scalarization is profitable or it is predicated.
8614   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8615     return CM.isScalarAfterVectorization(I, VF) ||
8616            CM.isProfitableToScalarize(I, VF) ||
8617            CM.isScalarWithPredication(I, VF);
8618   };
8619   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8620                                                              Range);
8621 }
8622 
8623 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8624                                            ArrayRef<VPValue *> Operands) const {
8625   auto IsVectorizableOpcode = [](unsigned Opcode) {
8626     switch (Opcode) {
8627     case Instruction::Add:
8628     case Instruction::And:
8629     case Instruction::AShr:
8630     case Instruction::BitCast:
8631     case Instruction::FAdd:
8632     case Instruction::FCmp:
8633     case Instruction::FDiv:
8634     case Instruction::FMul:
8635     case Instruction::FNeg:
8636     case Instruction::FPExt:
8637     case Instruction::FPToSI:
8638     case Instruction::FPToUI:
8639     case Instruction::FPTrunc:
8640     case Instruction::FRem:
8641     case Instruction::FSub:
8642     case Instruction::ICmp:
8643     case Instruction::IntToPtr:
8644     case Instruction::LShr:
8645     case Instruction::Mul:
8646     case Instruction::Or:
8647     case Instruction::PtrToInt:
8648     case Instruction::SDiv:
8649     case Instruction::Select:
8650     case Instruction::SExt:
8651     case Instruction::Shl:
8652     case Instruction::SIToFP:
8653     case Instruction::SRem:
8654     case Instruction::Sub:
8655     case Instruction::Trunc:
8656     case Instruction::UDiv:
8657     case Instruction::UIToFP:
8658     case Instruction::URem:
8659     case Instruction::Xor:
8660     case Instruction::ZExt:
8661       return true;
8662     }
8663     return false;
8664   };
8665 
8666   if (!IsVectorizableOpcode(I->getOpcode()))
8667     return nullptr;
8668 
8669   // Success: widen this instruction.
8670   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8671 }
8672 
8673 VPBasicBlock *VPRecipeBuilder::handleReplication(
8674     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8675     VPlanPtr &Plan) {
8676   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8677       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8678       Range);
8679 
8680   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8681       [&](ElementCount VF) { return CM.isPredicatedInst(I, VF); }, Range);
8682 
8683   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8684                                        IsUniform, IsPredicated);
8685   setRecipe(I, Recipe);
8686   Plan->addVPValue(I, Recipe);
8687 
8688   // Find if I uses a predicated instruction. If so, it will use its scalar
8689   // value. Avoid hoisting the insert-element which packs the scalar value into
8690   // a vector value, as that happens iff all users use the vector value.
8691   for (VPValue *Op : Recipe->operands()) {
8692     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8693     if (!PredR)
8694       continue;
8695     auto *RepR =
8696         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8697     assert(RepR->isPredicated() &&
8698            "expected Replicate recipe to be predicated");
8699     RepR->setAlsoPack(false);
8700   }
8701 
8702   // Finalize the recipe for Instr, first if it is not predicated.
8703   if (!IsPredicated) {
8704     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8705     VPBB->appendRecipe(Recipe);
8706     return VPBB;
8707   }
8708   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8709   assert(VPBB->getSuccessors().empty() &&
8710          "VPBB has successors when handling predicated replication.");
8711   // Record predicated instructions for above packing optimizations.
8712   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8713   VPBlockUtils::insertBlockAfter(Region, VPBB);
8714   auto *RegSucc = new VPBasicBlock();
8715   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8716   return RegSucc;
8717 }
8718 
8719 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8720                                                       VPRecipeBase *PredRecipe,
8721                                                       VPlanPtr &Plan) {
8722   // Instructions marked for predication are replicated and placed under an
8723   // if-then construct to prevent side-effects.
8724 
8725   // Generate recipes to compute the block mask for this region.
8726   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8727 
8728   // Build the triangular if-then region.
8729   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8730   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8731   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8732   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8733   auto *PHIRecipe = Instr->getType()->isVoidTy()
8734                         ? nullptr
8735                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8736   if (PHIRecipe) {
8737     Plan->removeVPValueFor(Instr);
8738     Plan->addVPValue(Instr, PHIRecipe);
8739   }
8740   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8741   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8742   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
8743 
8744   // Note: first set Entry as region entry and then connect successors starting
8745   // from it in order, to propagate the "parent" of each VPBasicBlock.
8746   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
8747   VPBlockUtils::connectBlocks(Pred, Exit);
8748 
8749   return Region;
8750 }
8751 
8752 VPRecipeOrVPValueTy
8753 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8754                                         ArrayRef<VPValue *> Operands,
8755                                         VFRange &Range, VPlanPtr &Plan) {
8756   // First, check for specific widening recipes that deal with calls, memory
8757   // operations, inductions and Phi nodes.
8758   if (auto *CI = dyn_cast<CallInst>(Instr))
8759     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8760 
8761   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8762     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8763 
8764   VPRecipeBase *Recipe;
8765   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8766     if (Phi->getParent() != OrigLoop->getHeader())
8767       return tryToBlend(Phi, Operands, Plan);
8768     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
8769       return toVPRecipeResult(Recipe);
8770 
8771     if (Legal->isReductionVariable(Phi)) {
8772       RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
8773       assert(RdxDesc.getRecurrenceStartValue() ==
8774              Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8775       VPValue *StartV = Operands[0];
8776       return toVPRecipeResult(new VPWidenPHIRecipe(Phi, RdxDesc, *StartV));
8777     }
8778 
8779     return toVPRecipeResult(new VPWidenPHIRecipe(Phi));
8780   }
8781 
8782   if (isa<TruncInst>(Instr) &&
8783       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8784                                                Range, *Plan)))
8785     return toVPRecipeResult(Recipe);
8786 
8787   if (!shouldWiden(Instr, Range))
8788     return nullptr;
8789 
8790   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8791     return toVPRecipeResult(new VPWidenGEPRecipe(
8792         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8793 
8794   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8795     bool InvariantCond =
8796         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8797     return toVPRecipeResult(new VPWidenSelectRecipe(
8798         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
8799   }
8800 
8801   return toVPRecipeResult(tryToWiden(Instr, Operands));
8802 }
8803 
8804 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8805                                                         ElementCount MaxVF) {
8806   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8807 
8808   // Collect instructions from the original loop that will become trivially dead
8809   // in the vectorized loop. We don't need to vectorize these instructions. For
8810   // example, original induction update instructions can become dead because we
8811   // separately emit induction "steps" when generating code for the new loop.
8812   // Similarly, we create a new latch condition when setting up the structure
8813   // of the new loop, so the old one can become dead.
8814   SmallPtrSet<Instruction *, 4> DeadInstructions;
8815   collectTriviallyDeadInstructions(DeadInstructions);
8816 
8817   // Add assume instructions we need to drop to DeadInstructions, to prevent
8818   // them from being added to the VPlan.
8819   // TODO: We only need to drop assumes in blocks that get flattend. If the
8820   // control flow is preserved, we should keep them.
8821   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8822   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8823 
8824   DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8825   // Dead instructions do not need sinking. Remove them from SinkAfter.
8826   for (Instruction *I : DeadInstructions)
8827     SinkAfter.erase(I);
8828 
8829   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8830   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8831     VFRange SubRange = {VF, MaxVFPlusOne};
8832     VPlans.push_back(
8833         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8834     VF = SubRange.End;
8835   }
8836 }
8837 
8838 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
8839     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
8840     const DenseMap<Instruction *, Instruction *> &SinkAfter) {
8841 
8842   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8843 
8844   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
8845 
8846   // ---------------------------------------------------------------------------
8847   // Pre-construction: record ingredients whose recipes we'll need to further
8848   // process after constructing the initial VPlan.
8849   // ---------------------------------------------------------------------------
8850 
8851   // Mark instructions we'll need to sink later and their targets as
8852   // ingredients whose recipe we'll need to record.
8853   for (auto &Entry : SinkAfter) {
8854     RecipeBuilder.recordRecipeOf(Entry.first);
8855     RecipeBuilder.recordRecipeOf(Entry.second);
8856   }
8857   for (auto &Reduction : CM.getInLoopReductionChains()) {
8858     PHINode *Phi = Reduction.first;
8859     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
8860     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
8861 
8862     RecipeBuilder.recordRecipeOf(Phi);
8863     for (auto &R : ReductionOperations) {
8864       RecipeBuilder.recordRecipeOf(R);
8865       // For min/max reducitons, where we have a pair of icmp/select, we also
8866       // need to record the ICmp recipe, so it can be removed later.
8867       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
8868         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
8869     }
8870   }
8871 
8872   // For each interleave group which is relevant for this (possibly trimmed)
8873   // Range, add it to the set of groups to be later applied to the VPlan and add
8874   // placeholders for its members' Recipes which we'll be replacing with a
8875   // single VPInterleaveRecipe.
8876   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8877     auto applyIG = [IG, this](ElementCount VF) -> bool {
8878       return (VF.isVector() && // Query is illegal for VF == 1
8879               CM.getWideningDecision(IG->getInsertPos(), VF) ==
8880                   LoopVectorizationCostModel::CM_Interleave);
8881     };
8882     if (!getDecisionAndClampRange(applyIG, Range))
8883       continue;
8884     InterleaveGroups.insert(IG);
8885     for (unsigned i = 0; i < IG->getFactor(); i++)
8886       if (Instruction *Member = IG->getMember(i))
8887         RecipeBuilder.recordRecipeOf(Member);
8888   };
8889 
8890   // ---------------------------------------------------------------------------
8891   // Build initial VPlan: Scan the body of the loop in a topological order to
8892   // visit each basic block after having visited its predecessor basic blocks.
8893   // ---------------------------------------------------------------------------
8894 
8895   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
8896   auto Plan = std::make_unique<VPlan>();
8897   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
8898   Plan->setEntry(VPBB);
8899 
8900   // Scan the body of the loop in a topological order to visit each basic block
8901   // after having visited its predecessor basic blocks.
8902   LoopBlocksDFS DFS(OrigLoop);
8903   DFS.perform(LI);
8904 
8905   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
8906     // Relevant instructions from basic block BB will be grouped into VPRecipe
8907     // ingredients and fill a new VPBasicBlock.
8908     unsigned VPBBsForBB = 0;
8909     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
8910     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
8911     VPBB = FirstVPBBForBB;
8912     Builder.setInsertPoint(VPBB);
8913 
8914     // Introduce each ingredient into VPlan.
8915     // TODO: Model and preserve debug instrinsics in VPlan.
8916     for (Instruction &I : BB->instructionsWithoutDebug()) {
8917       Instruction *Instr = &I;
8918 
8919       // First filter out irrelevant instructions, to ensure no recipes are
8920       // built for them.
8921       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
8922         continue;
8923 
8924       SmallVector<VPValue *, 4> Operands;
8925       auto *Phi = dyn_cast<PHINode>(Instr);
8926       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
8927         Operands.push_back(Plan->getOrAddVPValue(
8928             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
8929       } else {
8930         auto OpRange = Plan->mapToVPValues(Instr->operands());
8931         Operands = {OpRange.begin(), OpRange.end()};
8932       }
8933       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
8934               Instr, Operands, Range, Plan)) {
8935         // If Instr can be simplified to an existing VPValue, use it.
8936         if (RecipeOrValue.is<VPValue *>()) {
8937           Plan->addVPValue(Instr, RecipeOrValue.get<VPValue *>());
8938           continue;
8939         }
8940         // Otherwise, add the new recipe.
8941         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
8942         for (auto *Def : Recipe->definedValues()) {
8943           auto *UV = Def->getUnderlyingValue();
8944           Plan->addVPValue(UV, Def);
8945         }
8946 
8947         RecipeBuilder.setRecipe(Instr, Recipe);
8948         VPBB->appendRecipe(Recipe);
8949         continue;
8950       }
8951 
8952       // Otherwise, if all widening options failed, Instruction is to be
8953       // replicated. This may create a successor for VPBB.
8954       VPBasicBlock *NextVPBB =
8955           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
8956       if (NextVPBB != VPBB) {
8957         VPBB = NextVPBB;
8958         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
8959                                     : "");
8960       }
8961     }
8962   }
8963 
8964   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
8965   // may also be empty, such as the last one VPBB, reflecting original
8966   // basic-blocks with no recipes.
8967   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
8968   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
8969   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
8970   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
8971   delete PreEntry;
8972 
8973   // ---------------------------------------------------------------------------
8974   // Transform initial VPlan: Apply previously taken decisions, in order, to
8975   // bring the VPlan to its final state.
8976   // ---------------------------------------------------------------------------
8977 
8978   // Apply Sink-After legal constraints.
8979   for (auto &Entry : SinkAfter) {
8980     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
8981     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
8982     // If the target is in a replication region, make sure to move Sink to the
8983     // block after it, not into the replication region itself.
8984     if (auto *Region =
8985             dyn_cast_or_null<VPRegionBlock>(Target->getParent()->getParent())) {
8986       if (Region->isReplicator()) {
8987         assert(Region->getNumSuccessors() == 1 && "Expected SESE region!");
8988         VPBasicBlock *NextBlock =
8989             cast<VPBasicBlock>(Region->getSuccessors().front());
8990         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
8991         continue;
8992       }
8993     }
8994     Sink->moveAfter(Target);
8995   }
8996 
8997   // Interleave memory: for each Interleave Group we marked earlier as relevant
8998   // for this VPlan, replace the Recipes widening its memory instructions with a
8999   // single VPInterleaveRecipe at its insertion point.
9000   for (auto IG : InterleaveGroups) {
9001     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9002         RecipeBuilder.getRecipe(IG->getInsertPos()));
9003     SmallVector<VPValue *, 4> StoredValues;
9004     for (unsigned i = 0; i < IG->getFactor(); ++i)
9005       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i)))
9006         StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0)));
9007 
9008     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9009                                         Recipe->getMask());
9010     VPIG->insertBefore(Recipe);
9011     unsigned J = 0;
9012     for (unsigned i = 0; i < IG->getFactor(); ++i)
9013       if (Instruction *Member = IG->getMember(i)) {
9014         if (!Member->getType()->isVoidTy()) {
9015           VPValue *OriginalV = Plan->getVPValue(Member);
9016           Plan->removeVPValueFor(Member);
9017           Plan->addVPValue(Member, VPIG->getVPValue(J));
9018           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9019           J++;
9020         }
9021         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9022       }
9023   }
9024 
9025   // Adjust the recipes for any inloop reductions.
9026   if (Range.Start.isVector())
9027     adjustRecipesForInLoopReductions(Plan, RecipeBuilder);
9028 
9029   // Finally, if tail is folded by masking, introduce selects between the phi
9030   // and the live-out instruction of each reduction, at the end of the latch.
9031   if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) {
9032     Builder.setInsertPoint(VPBB);
9033     auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9034     for (auto &Reduction : Legal->getReductionVars()) {
9035       if (CM.isInLoopReduction(Reduction.first))
9036         continue;
9037       VPValue *Phi = Plan->getOrAddVPValue(Reduction.first);
9038       VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr());
9039       Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi});
9040     }
9041   }
9042 
9043   std::string PlanName;
9044   raw_string_ostream RSO(PlanName);
9045   ElementCount VF = Range.Start;
9046   Plan->addVF(VF);
9047   RSO << "Initial VPlan for VF={" << VF;
9048   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9049     Plan->addVF(VF);
9050     RSO << "," << VF;
9051   }
9052   RSO << "},UF>=1";
9053   RSO.flush();
9054   Plan->setName(PlanName);
9055 
9056   return Plan;
9057 }
9058 
9059 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9060   // Outer loop handling: They may require CFG and instruction level
9061   // transformations before even evaluating whether vectorization is profitable.
9062   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9063   // the vectorization pipeline.
9064   assert(!OrigLoop->isInnermost());
9065   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9066 
9067   // Create new empty VPlan
9068   auto Plan = std::make_unique<VPlan>();
9069 
9070   // Build hierarchical CFG
9071   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9072   HCFGBuilder.buildHierarchicalCFG();
9073 
9074   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9075        VF *= 2)
9076     Plan->addVF(VF);
9077 
9078   if (EnableVPlanPredication) {
9079     VPlanPredicator VPP(*Plan);
9080     VPP.predicate();
9081 
9082     // Avoid running transformation to recipes until masked code generation in
9083     // VPlan-native path is in place.
9084     return Plan;
9085   }
9086 
9087   SmallPtrSet<Instruction *, 1> DeadInstructions;
9088   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
9089                                              Legal->getInductionVars(),
9090                                              DeadInstructions, *PSE.getSE());
9091   return Plan;
9092 }
9093 
9094 // Adjust the recipes for any inloop reductions. The chain of instructions
9095 // leading from the loop exit instr to the phi need to be converted to
9096 // reductions, with one operand being vector and the other being the scalar
9097 // reduction chain.
9098 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions(
9099     VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) {
9100   for (auto &Reduction : CM.getInLoopReductionChains()) {
9101     PHINode *Phi = Reduction.first;
9102     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9103     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9104 
9105     // ReductionOperations are orders top-down from the phi's use to the
9106     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9107     // which of the two operands will remain scalar and which will be reduced.
9108     // For minmax the chain will be the select instructions.
9109     Instruction *Chain = Phi;
9110     for (Instruction *R : ReductionOperations) {
9111       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9112       RecurKind Kind = RdxDesc.getRecurrenceKind();
9113 
9114       VPValue *ChainOp = Plan->getVPValue(Chain);
9115       unsigned FirstOpId;
9116       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9117         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9118                "Expected to replace a VPWidenSelectSC");
9119         FirstOpId = 1;
9120       } else {
9121         assert(isa<VPWidenRecipe>(WidenRecipe) &&
9122                "Expected to replace a VPWidenSC");
9123         FirstOpId = 0;
9124       }
9125       unsigned VecOpId =
9126           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9127       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9128 
9129       auto *CondOp = CM.foldTailByMasking()
9130                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9131                          : nullptr;
9132       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
9133           &RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9134       WidenRecipe->getVPValue()->replaceAllUsesWith(RedRecipe);
9135       Plan->removeVPValueFor(R);
9136       Plan->addVPValue(R, RedRecipe);
9137       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9138       WidenRecipe->getVPValue()->replaceAllUsesWith(RedRecipe);
9139       WidenRecipe->eraseFromParent();
9140 
9141       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9142         VPRecipeBase *CompareRecipe =
9143             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9144         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9145                "Expected to replace a VPWidenSC");
9146         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9147                "Expected no remaining users");
9148         CompareRecipe->eraseFromParent();
9149       }
9150       Chain = R;
9151     }
9152   }
9153 }
9154 
9155 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9156 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9157                                VPSlotTracker &SlotTracker) const {
9158   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9159   IG->getInsertPos()->printAsOperand(O, false);
9160   O << ", ";
9161   getAddr()->printAsOperand(O, SlotTracker);
9162   VPValue *Mask = getMask();
9163   if (Mask) {
9164     O << ", ";
9165     Mask->printAsOperand(O, SlotTracker);
9166   }
9167   for (unsigned i = 0; i < IG->getFactor(); ++i)
9168     if (Instruction *I = IG->getMember(i))
9169       O << "\n" << Indent << "  " << VPlanIngredient(I) << " " << i;
9170 }
9171 #endif
9172 
9173 void VPWidenCallRecipe::execute(VPTransformState &State) {
9174   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9175                                   *this, State);
9176 }
9177 
9178 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9179   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9180                                     this, *this, InvariantCond, State);
9181 }
9182 
9183 void VPWidenRecipe::execute(VPTransformState &State) {
9184   State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
9185 }
9186 
9187 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9188   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9189                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9190                       IsIndexLoopInvariant, State);
9191 }
9192 
9193 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9194   assert(!State.Instance && "Int or FP induction being replicated.");
9195   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9196                                    getTruncInst(), getVPValue(0),
9197                                    getCastValue(), State);
9198 }
9199 
9200 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9201   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), RdxDesc,
9202                                  this, State);
9203 }
9204 
9205 void VPBlendRecipe::execute(VPTransformState &State) {
9206   State.ILV->setDebugLocFromInst(State.Builder, Phi);
9207   // We know that all PHIs in non-header blocks are converted into
9208   // selects, so we don't have to worry about the insertion order and we
9209   // can just use the builder.
9210   // At this point we generate the predication tree. There may be
9211   // duplications since this is a simple recursive scan, but future
9212   // optimizations will clean it up.
9213 
9214   unsigned NumIncoming = getNumIncomingValues();
9215 
9216   // Generate a sequence of selects of the form:
9217   // SELECT(Mask3, In3,
9218   //        SELECT(Mask2, In2,
9219   //               SELECT(Mask1, In1,
9220   //                      In0)))
9221   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9222   // are essentially undef are taken from In0.
9223   InnerLoopVectorizer::VectorParts Entry(State.UF);
9224   for (unsigned In = 0; In < NumIncoming; ++In) {
9225     for (unsigned Part = 0; Part < State.UF; ++Part) {
9226       // We might have single edge PHIs (blocks) - use an identity
9227       // 'select' for the first PHI operand.
9228       Value *In0 = State.get(getIncomingValue(In), Part);
9229       if (In == 0)
9230         Entry[Part] = In0; // Initialize with the first incoming value.
9231       else {
9232         // Select between the current value and the previous incoming edge
9233         // based on the incoming mask.
9234         Value *Cond = State.get(getMask(In), Part);
9235         Entry[Part] =
9236             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9237       }
9238     }
9239   }
9240   for (unsigned Part = 0; Part < State.UF; ++Part)
9241     State.set(this, Entry[Part], Part);
9242 }
9243 
9244 void VPInterleaveRecipe::execute(VPTransformState &State) {
9245   assert(!State.Instance && "Interleave group being replicated.");
9246   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9247                                       getStoredValues(), getMask());
9248 }
9249 
9250 void VPReductionRecipe::execute(VPTransformState &State) {
9251   assert(!State.Instance && "Reduction being replicated.");
9252   Value *PrevInChain = State.get(getChainOp(), 0);
9253   for (unsigned Part = 0; Part < State.UF; ++Part) {
9254     RecurKind Kind = RdxDesc->getRecurrenceKind();
9255     bool IsOrdered = useOrderedReductions(*RdxDesc);
9256     Value *NewVecOp = State.get(getVecOp(), Part);
9257     if (VPValue *Cond = getCondOp()) {
9258       Value *NewCond = State.get(Cond, Part);
9259       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9260       Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
9261           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9262       Constant *IdenVec =
9263           ConstantVector::getSplat(VecTy->getElementCount(), Iden);
9264       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9265       NewVecOp = Select;
9266     }
9267     Value *NewRed;
9268     Value *NextInChain;
9269     if (IsOrdered) {
9270       NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9271                                       PrevInChain);
9272       PrevInChain = NewRed;
9273     } else {
9274       PrevInChain = State.get(getChainOp(), Part);
9275       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9276     }
9277     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9278       NextInChain =
9279           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9280                          NewRed, PrevInChain);
9281     } else if (IsOrdered)
9282       NextInChain = NewRed;
9283     else {
9284       NextInChain = State.Builder.CreateBinOp(
9285           (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed,
9286           PrevInChain);
9287     }
9288     State.set(this, NextInChain, Part);
9289   }
9290 }
9291 
9292 void VPReplicateRecipe::execute(VPTransformState &State) {
9293   if (State.Instance) { // Generate a single instance.
9294     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9295     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9296                                     *State.Instance, IsPredicated, State);
9297     // Insert scalar instance packing it into a vector.
9298     if (AlsoPack && State.VF.isVector()) {
9299       // If we're constructing lane 0, initialize to start from poison.
9300       if (State.Instance->Lane.isFirstLane()) {
9301         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9302         Value *Poison = PoisonValue::get(
9303             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9304         State.set(this, Poison, State.Instance->Part);
9305       }
9306       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9307     }
9308     return;
9309   }
9310 
9311   // Generate scalar instances for all VF lanes of all UF parts, unless the
9312   // instruction is uniform inwhich case generate only the first lane for each
9313   // of the UF parts.
9314   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9315   assert((!State.VF.isScalable() || IsUniform) &&
9316          "Can't scalarize a scalable vector");
9317   for (unsigned Part = 0; Part < State.UF; ++Part)
9318     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9319       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9320                                       VPIteration(Part, Lane), IsPredicated,
9321                                       State);
9322 }
9323 
9324 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9325   assert(State.Instance && "Branch on Mask works only on single instance.");
9326 
9327   unsigned Part = State.Instance->Part;
9328   unsigned Lane = State.Instance->Lane.getKnownLane();
9329 
9330   Value *ConditionBit = nullptr;
9331   VPValue *BlockInMask = getMask();
9332   if (BlockInMask) {
9333     ConditionBit = State.get(BlockInMask, Part);
9334     if (ConditionBit->getType()->isVectorTy())
9335       ConditionBit = State.Builder.CreateExtractElement(
9336           ConditionBit, State.Builder.getInt32(Lane));
9337   } else // Block in mask is all-one.
9338     ConditionBit = State.Builder.getTrue();
9339 
9340   // Replace the temporary unreachable terminator with a new conditional branch,
9341   // whose two destinations will be set later when they are created.
9342   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9343   assert(isa<UnreachableInst>(CurrentTerminator) &&
9344          "Expected to replace unreachable terminator with conditional branch.");
9345   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9346   CondBr->setSuccessor(0, nullptr);
9347   ReplaceInstWithInst(CurrentTerminator, CondBr);
9348 }
9349 
9350 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9351   assert(State.Instance && "Predicated instruction PHI works per instance.");
9352   Instruction *ScalarPredInst =
9353       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9354   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9355   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9356   assert(PredicatingBB && "Predicated block has no single predecessor.");
9357   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9358          "operand must be VPReplicateRecipe");
9359 
9360   // By current pack/unpack logic we need to generate only a single phi node: if
9361   // a vector value for the predicated instruction exists at this point it means
9362   // the instruction has vector users only, and a phi for the vector value is
9363   // needed. In this case the recipe of the predicated instruction is marked to
9364   // also do that packing, thereby "hoisting" the insert-element sequence.
9365   // Otherwise, a phi node for the scalar value is needed.
9366   unsigned Part = State.Instance->Part;
9367   if (State.hasVectorValue(getOperand(0), Part)) {
9368     Value *VectorValue = State.get(getOperand(0), Part);
9369     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9370     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9371     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9372     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9373     if (State.hasVectorValue(this, Part))
9374       State.reset(this, VPhi, Part);
9375     else
9376       State.set(this, VPhi, Part);
9377     // NOTE: Currently we need to update the value of the operand, so the next
9378     // predicated iteration inserts its generated value in the correct vector.
9379     State.reset(getOperand(0), VPhi, Part);
9380   } else {
9381     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9382     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9383     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9384                      PredicatingBB);
9385     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9386     if (State.hasScalarValue(this, *State.Instance))
9387       State.reset(this, Phi, *State.Instance);
9388     else
9389       State.set(this, Phi, *State.Instance);
9390     // NOTE: Currently we need to update the value of the operand, so the next
9391     // predicated iteration inserts its generated value in the correct vector.
9392     State.reset(getOperand(0), Phi, *State.Instance);
9393   }
9394 }
9395 
9396 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9397   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9398   State.ILV->vectorizeMemoryInstruction(&Ingredient, State,
9399                                         StoredValue ? nullptr : getVPValue(),
9400                                         getAddr(), StoredValue, getMask());
9401 }
9402 
9403 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9404 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9405 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9406 // for predication.
9407 static ScalarEpilogueLowering getScalarEpilogueLowering(
9408     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9409     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9410     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9411     LoopVectorizationLegality &LVL) {
9412   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9413   // don't look at hints or options, and don't request a scalar epilogue.
9414   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9415   // LoopAccessInfo (due to code dependency and not being able to reliably get
9416   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9417   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9418   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9419   // back to the old way and vectorize with versioning when forced. See D81345.)
9420   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9421                                                       PGSOQueryType::IRPass) &&
9422                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9423     return CM_ScalarEpilogueNotAllowedOptSize;
9424 
9425   // 2) If set, obey the directives
9426   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9427     switch (PreferPredicateOverEpilogue) {
9428     case PreferPredicateTy::ScalarEpilogue:
9429       return CM_ScalarEpilogueAllowed;
9430     case PreferPredicateTy::PredicateElseScalarEpilogue:
9431       return CM_ScalarEpilogueNotNeededUsePredicate;
9432     case PreferPredicateTy::PredicateOrDontVectorize:
9433       return CM_ScalarEpilogueNotAllowedUsePredicate;
9434     };
9435   }
9436 
9437   // 3) If set, obey the hints
9438   switch (Hints.getPredicate()) {
9439   case LoopVectorizeHints::FK_Enabled:
9440     return CM_ScalarEpilogueNotNeededUsePredicate;
9441   case LoopVectorizeHints::FK_Disabled:
9442     return CM_ScalarEpilogueAllowed;
9443   };
9444 
9445   // 4) if the TTI hook indicates this is profitable, request predication.
9446   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
9447                                        LVL.getLAI()))
9448     return CM_ScalarEpilogueNotNeededUsePredicate;
9449 
9450   return CM_ScalarEpilogueAllowed;
9451 }
9452 
9453 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
9454   // If Values have been set for this Def return the one relevant for \p Part.
9455   if (hasVectorValue(Def, Part))
9456     return Data.PerPartOutput[Def][Part];
9457 
9458   if (!hasScalarValue(Def, {Part, 0})) {
9459     Value *IRV = Def->getLiveInIRValue();
9460     Value *B = ILV->getBroadcastInstrs(IRV);
9461     set(Def, B, Part);
9462     return B;
9463   }
9464 
9465   Value *ScalarValue = get(Def, {Part, 0});
9466   // If we aren't vectorizing, we can just copy the scalar map values over
9467   // to the vector map.
9468   if (VF.isScalar()) {
9469     set(Def, ScalarValue, Part);
9470     return ScalarValue;
9471   }
9472 
9473   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
9474   bool IsUniform = RepR && RepR->isUniform();
9475 
9476   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
9477   // Check if there is a scalar value for the selected lane.
9478   if (!hasScalarValue(Def, {Part, LastLane})) {
9479     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
9480     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
9481            "unexpected recipe found to be invariant");
9482     IsUniform = true;
9483     LastLane = 0;
9484   }
9485 
9486   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
9487 
9488   // Set the insert point after the last scalarized instruction. This
9489   // ensures the insertelement sequence will directly follow the scalar
9490   // definitions.
9491   auto OldIP = Builder.saveIP();
9492   auto NewIP = std::next(BasicBlock::iterator(LastInst));
9493   Builder.SetInsertPoint(&*NewIP);
9494 
9495   // However, if we are vectorizing, we need to construct the vector values.
9496   // If the value is known to be uniform after vectorization, we can just
9497   // broadcast the scalar value corresponding to lane zero for each unroll
9498   // iteration. Otherwise, we construct the vector values using
9499   // insertelement instructions. Since the resulting vectors are stored in
9500   // State, we will only generate the insertelements once.
9501   Value *VectorValue = nullptr;
9502   if (IsUniform) {
9503     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
9504     set(Def, VectorValue, Part);
9505   } else {
9506     // Initialize packing with insertelements to start from undef.
9507     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
9508     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
9509     set(Def, Undef, Part);
9510     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
9511       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
9512     VectorValue = get(Def, Part);
9513   }
9514   Builder.restoreIP(OldIP);
9515   return VectorValue;
9516 }
9517 
9518 // Process the loop in the VPlan-native vectorization path. This path builds
9519 // VPlan upfront in the vectorization pipeline, which allows to apply
9520 // VPlan-to-VPlan transformations from the very beginning without modifying the
9521 // input LLVM IR.
9522 static bool processLoopInVPlanNativePath(
9523     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
9524     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
9525     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
9526     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
9527     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
9528     LoopVectorizationRequirements &Requirements) {
9529 
9530   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
9531     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
9532     return false;
9533   }
9534   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
9535   Function *F = L->getHeader()->getParent();
9536   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
9537 
9538   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
9539       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
9540 
9541   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
9542                                 &Hints, IAI);
9543   // Use the planner for outer loop vectorization.
9544   // TODO: CM is not used at this point inside the planner. Turn CM into an
9545   // optional argument if we don't need it in the future.
9546   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
9547                                Requirements, ORE);
9548 
9549   // Get user vectorization factor.
9550   ElementCount UserVF = Hints.getWidth();
9551 
9552   // Plan how to best vectorize, return the best VF and its cost.
9553   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
9554 
9555   // If we are stress testing VPlan builds, do not attempt to generate vector
9556   // code. Masked vector code generation support will follow soon.
9557   // Also, do not attempt to vectorize if no vector code will be produced.
9558   if (VPlanBuildStressTest || EnableVPlanPredication ||
9559       VectorizationFactor::Disabled() == VF)
9560     return false;
9561 
9562   LVP.setBestPlan(VF.Width, 1);
9563 
9564   {
9565     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
9566                              F->getParent()->getDataLayout());
9567     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
9568                            &CM, BFI, PSI, Checks);
9569     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
9570                       << L->getHeader()->getParent()->getName() << "\"\n");
9571     LVP.executePlan(LB, DT);
9572   }
9573 
9574   // Mark the loop as already vectorized to avoid vectorizing again.
9575   Hints.setAlreadyVectorized();
9576   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9577   return true;
9578 }
9579 
9580 // Emit a remark if there are stores to floats that required a floating point
9581 // extension. If the vectorized loop was generated with floating point there
9582 // will be a performance penalty from the conversion overhead and the change in
9583 // the vector width.
9584 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
9585   SmallVector<Instruction *, 4> Worklist;
9586   for (BasicBlock *BB : L->getBlocks()) {
9587     for (Instruction &Inst : *BB) {
9588       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
9589         if (S->getValueOperand()->getType()->isFloatTy())
9590           Worklist.push_back(S);
9591       }
9592     }
9593   }
9594 
9595   // Traverse the floating point stores upwards searching, for floating point
9596   // conversions.
9597   SmallPtrSet<const Instruction *, 4> Visited;
9598   SmallPtrSet<const Instruction *, 4> EmittedRemark;
9599   while (!Worklist.empty()) {
9600     auto *I = Worklist.pop_back_val();
9601     if (!L->contains(I))
9602       continue;
9603     if (!Visited.insert(I).second)
9604       continue;
9605 
9606     // Emit a remark if the floating point store required a floating
9607     // point conversion.
9608     // TODO: More work could be done to identify the root cause such as a
9609     // constant or a function return type and point the user to it.
9610     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
9611       ORE->emit([&]() {
9612         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
9613                                           I->getDebugLoc(), L->getHeader())
9614                << "floating point conversion changes vector width. "
9615                << "Mixed floating point precision requires an up/down "
9616                << "cast that will negatively impact performance.";
9617       });
9618 
9619     for (Use &Op : I->operands())
9620       if (auto *OpI = dyn_cast<Instruction>(Op))
9621         Worklist.push_back(OpI);
9622   }
9623 }
9624 
9625 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
9626     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9627                                !EnableLoopInterleaving),
9628       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9629                               !EnableLoopVectorization) {}
9630 
9631 bool LoopVectorizePass::processLoop(Loop *L) {
9632   assert((EnableVPlanNativePath || L->isInnermost()) &&
9633          "VPlan-native path is not enabled. Only process inner loops.");
9634 
9635 #ifndef NDEBUG
9636   const std::string DebugLocStr = getDebugLocString(L);
9637 #endif /* NDEBUG */
9638 
9639   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
9640                     << L->getHeader()->getParent()->getName() << "\" from "
9641                     << DebugLocStr << "\n");
9642 
9643   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
9644 
9645   LLVM_DEBUG(
9646       dbgs() << "LV: Loop hints:"
9647              << " force="
9648              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
9649                      ? "disabled"
9650                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
9651                             ? "enabled"
9652                             : "?"))
9653              << " width=" << Hints.getWidth()
9654              << " unroll=" << Hints.getInterleave() << "\n");
9655 
9656   // Function containing loop
9657   Function *F = L->getHeader()->getParent();
9658 
9659   // Looking at the diagnostic output is the only way to determine if a loop
9660   // was vectorized (other than looking at the IR or machine code), so it
9661   // is important to generate an optimization remark for each loop. Most of
9662   // these messages are generated as OptimizationRemarkAnalysis. Remarks
9663   // generated as OptimizationRemark and OptimizationRemarkMissed are
9664   // less verbose reporting vectorized loops and unvectorized loops that may
9665   // benefit from vectorization, respectively.
9666 
9667   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
9668     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
9669     return false;
9670   }
9671 
9672   PredicatedScalarEvolution PSE(*SE, *L);
9673 
9674   // Check if it is legal to vectorize the loop.
9675   LoopVectorizationRequirements Requirements;
9676   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
9677                                 &Requirements, &Hints, DB, AC, BFI, PSI);
9678   if (!LVL.canVectorize(EnableVPlanNativePath)) {
9679     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
9680     Hints.emitRemarkWithHints();
9681     return false;
9682   }
9683 
9684   // Check the function attributes and profiles to find out if this function
9685   // should be optimized for size.
9686   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
9687       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
9688 
9689   // Entrance to the VPlan-native vectorization path. Outer loops are processed
9690   // here. They may require CFG and instruction level transformations before
9691   // even evaluating whether vectorization is profitable. Since we cannot modify
9692   // the incoming IR, we need to build VPlan upfront in the vectorization
9693   // pipeline.
9694   if (!L->isInnermost())
9695     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
9696                                         ORE, BFI, PSI, Hints, Requirements);
9697 
9698   assert(L->isInnermost() && "Inner loop expected.");
9699 
9700   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
9701   // count by optimizing for size, to minimize overheads.
9702   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
9703   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
9704     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
9705                       << "This loop is worth vectorizing only if no scalar "
9706                       << "iteration overheads are incurred.");
9707     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
9708       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
9709     else {
9710       LLVM_DEBUG(dbgs() << "\n");
9711       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
9712     }
9713   }
9714 
9715   // Check the function attributes to see if implicit floats are allowed.
9716   // FIXME: This check doesn't seem possibly correct -- what if the loop is
9717   // an integer loop and the vector instructions selected are purely integer
9718   // vector instructions?
9719   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9720     reportVectorizationFailure(
9721         "Can't vectorize when the NoImplicitFloat attribute is used",
9722         "loop not vectorized due to NoImplicitFloat attribute",
9723         "NoImplicitFloat", ORE, L);
9724     Hints.emitRemarkWithHints();
9725     return false;
9726   }
9727 
9728   // Check if the target supports potentially unsafe FP vectorization.
9729   // FIXME: Add a check for the type of safety issue (denormal, signaling)
9730   // for the target we're vectorizing for, to make sure none of the
9731   // additional fp-math flags can help.
9732   if (Hints.isPotentiallyUnsafe() &&
9733       TTI->isFPVectorizationPotentiallyUnsafe()) {
9734     reportVectorizationFailure(
9735         "Potentially unsafe FP op prevents vectorization",
9736         "loop not vectorized due to unsafe FP support.",
9737         "UnsafeFP", ORE, L);
9738     Hints.emitRemarkWithHints();
9739     return false;
9740   }
9741 
9742   if (!Requirements.canVectorizeFPMath(Hints)) {
9743     ORE->emit([&]() {
9744       auto *ExactFPMathInst = Requirements.getExactFPInst();
9745       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
9746                                                  ExactFPMathInst->getDebugLoc(),
9747                                                  ExactFPMathInst->getParent())
9748              << "loop not vectorized: cannot prove it is safe to reorder "
9749                 "floating-point operations";
9750     });
9751     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
9752                          "reorder floating-point operations\n");
9753     Hints.emitRemarkWithHints();
9754     return false;
9755   }
9756 
9757   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
9758   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
9759 
9760   // If an override option has been passed in for interleaved accesses, use it.
9761   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
9762     UseInterleaved = EnableInterleavedMemAccesses;
9763 
9764   // Analyze interleaved memory accesses.
9765   if (UseInterleaved) {
9766     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
9767   }
9768 
9769   // Use the cost model.
9770   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
9771                                 F, &Hints, IAI);
9772   CM.collectValuesToIgnore();
9773 
9774   // Use the planner for vectorization.
9775   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
9776                                Requirements, ORE);
9777 
9778   // Get user vectorization factor and interleave count.
9779   ElementCount UserVF = Hints.getWidth();
9780   unsigned UserIC = Hints.getInterleave();
9781 
9782   // Plan how to best vectorize, return the best VF and its cost.
9783   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
9784 
9785   VectorizationFactor VF = VectorizationFactor::Disabled();
9786   unsigned IC = 1;
9787 
9788   if (MaybeVF) {
9789     VF = *MaybeVF;
9790     // Select the interleave count.
9791     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
9792   }
9793 
9794   // Identify the diagnostic messages that should be produced.
9795   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
9796   bool VectorizeLoop = true, InterleaveLoop = true;
9797   if (VF.Width.isScalar()) {
9798     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
9799     VecDiagMsg = std::make_pair(
9800         "VectorizationNotBeneficial",
9801         "the cost-model indicates that vectorization is not beneficial");
9802     VectorizeLoop = false;
9803   }
9804 
9805   if (!MaybeVF && UserIC > 1) {
9806     // Tell the user interleaving was avoided up-front, despite being explicitly
9807     // requested.
9808     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
9809                          "interleaving should be avoided up front\n");
9810     IntDiagMsg = std::make_pair(
9811         "InterleavingAvoided",
9812         "Ignoring UserIC, because interleaving was avoided up front");
9813     InterleaveLoop = false;
9814   } else if (IC == 1 && UserIC <= 1) {
9815     // Tell the user interleaving is not beneficial.
9816     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
9817     IntDiagMsg = std::make_pair(
9818         "InterleavingNotBeneficial",
9819         "the cost-model indicates that interleaving is not beneficial");
9820     InterleaveLoop = false;
9821     if (UserIC == 1) {
9822       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
9823       IntDiagMsg.second +=
9824           " and is explicitly disabled or interleave count is set to 1";
9825     }
9826   } else if (IC > 1 && UserIC == 1) {
9827     // Tell the user interleaving is beneficial, but it explicitly disabled.
9828     LLVM_DEBUG(
9829         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
9830     IntDiagMsg = std::make_pair(
9831         "InterleavingBeneficialButDisabled",
9832         "the cost-model indicates that interleaving is beneficial "
9833         "but is explicitly disabled or interleave count is set to 1");
9834     InterleaveLoop = false;
9835   }
9836 
9837   // Override IC if user provided an interleave count.
9838   IC = UserIC > 0 ? UserIC : IC;
9839 
9840   // Emit diagnostic messages, if any.
9841   const char *VAPassName = Hints.vectorizeAnalysisPassName();
9842   if (!VectorizeLoop && !InterleaveLoop) {
9843     // Do not vectorize or interleaving the loop.
9844     ORE->emit([&]() {
9845       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
9846                                       L->getStartLoc(), L->getHeader())
9847              << VecDiagMsg.second;
9848     });
9849     ORE->emit([&]() {
9850       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
9851                                       L->getStartLoc(), L->getHeader())
9852              << IntDiagMsg.second;
9853     });
9854     return false;
9855   } else if (!VectorizeLoop && InterleaveLoop) {
9856     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
9857     ORE->emit([&]() {
9858       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
9859                                         L->getStartLoc(), L->getHeader())
9860              << VecDiagMsg.second;
9861     });
9862   } else if (VectorizeLoop && !InterleaveLoop) {
9863     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
9864                       << ") in " << DebugLocStr << '\n');
9865     ORE->emit([&]() {
9866       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
9867                                         L->getStartLoc(), L->getHeader())
9868              << IntDiagMsg.second;
9869     });
9870   } else if (VectorizeLoop && InterleaveLoop) {
9871     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
9872                       << ") in " << DebugLocStr << '\n');
9873     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
9874   }
9875 
9876   bool DisableRuntimeUnroll = false;
9877   MDNode *OrigLoopID = L->getLoopID();
9878   {
9879     // Optimistically generate runtime checks. Drop them if they turn out to not
9880     // be profitable. Limit the scope of Checks, so the cleanup happens
9881     // immediately after vector codegeneration is done.
9882     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
9883                              F->getParent()->getDataLayout());
9884     if (!VF.Width.isScalar() || IC > 1)
9885       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
9886     LVP.setBestPlan(VF.Width, IC);
9887 
9888     using namespace ore;
9889     if (!VectorizeLoop) {
9890       assert(IC > 1 && "interleave count should not be 1 or 0");
9891       // If we decided that it is not legal to vectorize the loop, then
9892       // interleave it.
9893       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
9894                                  &CM, BFI, PSI, Checks);
9895       LVP.executePlan(Unroller, DT);
9896 
9897       ORE->emit([&]() {
9898         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
9899                                   L->getHeader())
9900                << "interleaved loop (interleaved count: "
9901                << NV("InterleaveCount", IC) << ")";
9902       });
9903     } else {
9904       // If we decided that it is *legal* to vectorize the loop, then do it.
9905 
9906       // Consider vectorizing the epilogue too if it's profitable.
9907       VectorizationFactor EpilogueVF =
9908           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
9909       if (EpilogueVF.Width.isVector()) {
9910 
9911         // The first pass vectorizes the main loop and creates a scalar epilogue
9912         // to be vectorized by executing the plan (potentially with a different
9913         // factor) again shortly afterwards.
9914         EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC,
9915                                           EpilogueVF.Width.getKnownMinValue(),
9916                                           1);
9917         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
9918                                            EPI, &LVL, &CM, BFI, PSI, Checks);
9919 
9920         LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF);
9921         LVP.executePlan(MainILV, DT);
9922         ++LoopsVectorized;
9923 
9924         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
9925         formLCSSARecursively(*L, *DT, LI, SE);
9926 
9927         // Second pass vectorizes the epilogue and adjusts the control flow
9928         // edges from the first pass.
9929         LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF);
9930         EPI.MainLoopVF = EPI.EpilogueVF;
9931         EPI.MainLoopUF = EPI.EpilogueUF;
9932         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
9933                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
9934                                                  Checks);
9935         LVP.executePlan(EpilogILV, DT);
9936         ++LoopsEpilogueVectorized;
9937 
9938         if (!MainILV.areSafetyChecksAdded())
9939           DisableRuntimeUnroll = true;
9940       } else {
9941         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
9942                                &LVL, &CM, BFI, PSI, Checks);
9943         LVP.executePlan(LB, DT);
9944         ++LoopsVectorized;
9945 
9946         // Add metadata to disable runtime unrolling a scalar loop when there
9947         // are no runtime checks about strides and memory. A scalar loop that is
9948         // rarely used is not worth unrolling.
9949         if (!LB.areSafetyChecksAdded())
9950           DisableRuntimeUnroll = true;
9951       }
9952       // Report the vectorization decision.
9953       ORE->emit([&]() {
9954         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
9955                                   L->getHeader())
9956                << "vectorized loop (vectorization width: "
9957                << NV("VectorizationFactor", VF.Width)
9958                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
9959       });
9960     }
9961 
9962     if (ORE->allowExtraAnalysis(LV_NAME))
9963       checkMixedPrecision(L, ORE);
9964   }
9965 
9966   Optional<MDNode *> RemainderLoopID =
9967       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
9968                                       LLVMLoopVectorizeFollowupEpilogue});
9969   if (RemainderLoopID.hasValue()) {
9970     L->setLoopID(RemainderLoopID.getValue());
9971   } else {
9972     if (DisableRuntimeUnroll)
9973       AddRuntimeUnrollDisableMetaData(L);
9974 
9975     // Mark the loop as already vectorized to avoid vectorizing again.
9976     Hints.setAlreadyVectorized();
9977   }
9978 
9979   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9980   return true;
9981 }
9982 
9983 LoopVectorizeResult LoopVectorizePass::runImpl(
9984     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
9985     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
9986     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
9987     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
9988     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
9989   SE = &SE_;
9990   LI = &LI_;
9991   TTI = &TTI_;
9992   DT = &DT_;
9993   BFI = &BFI_;
9994   TLI = TLI_;
9995   AA = &AA_;
9996   AC = &AC_;
9997   GetLAA = &GetLAA_;
9998   DB = &DB_;
9999   ORE = &ORE_;
10000   PSI = PSI_;
10001 
10002   // Don't attempt if
10003   // 1. the target claims to have no vector registers, and
10004   // 2. interleaving won't help ILP.
10005   //
10006   // The second condition is necessary because, even if the target has no
10007   // vector registers, loop vectorization may still enable scalar
10008   // interleaving.
10009   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10010       TTI->getMaxInterleaveFactor(1) < 2)
10011     return LoopVectorizeResult(false, false);
10012 
10013   bool Changed = false, CFGChanged = false;
10014 
10015   // The vectorizer requires loops to be in simplified form.
10016   // Since simplification may add new inner loops, it has to run before the
10017   // legality and profitability checks. This means running the loop vectorizer
10018   // will simplify all loops, regardless of whether anything end up being
10019   // vectorized.
10020   for (auto &L : *LI)
10021     Changed |= CFGChanged |=
10022         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10023 
10024   // Build up a worklist of inner-loops to vectorize. This is necessary as
10025   // the act of vectorizing or partially unrolling a loop creates new loops
10026   // and can invalidate iterators across the loops.
10027   SmallVector<Loop *, 8> Worklist;
10028 
10029   for (Loop *L : *LI)
10030     collectSupportedLoops(*L, LI, ORE, Worklist);
10031 
10032   LoopsAnalyzed += Worklist.size();
10033 
10034   // Now walk the identified inner loops.
10035   while (!Worklist.empty()) {
10036     Loop *L = Worklist.pop_back_val();
10037 
10038     // For the inner loops we actually process, form LCSSA to simplify the
10039     // transform.
10040     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10041 
10042     Changed |= CFGChanged |= processLoop(L);
10043   }
10044 
10045   // Process each loop nest in the function.
10046   return LoopVectorizeResult(Changed, CFGChanged);
10047 }
10048 
10049 PreservedAnalyses LoopVectorizePass::run(Function &F,
10050                                          FunctionAnalysisManager &AM) {
10051     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10052     auto &LI = AM.getResult<LoopAnalysis>(F);
10053     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10054     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10055     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10056     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10057     auto &AA = AM.getResult<AAManager>(F);
10058     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10059     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10060     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10061     MemorySSA *MSSA = EnableMSSALoopDependency
10062                           ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
10063                           : nullptr;
10064 
10065     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10066     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10067         [&](Loop &L) -> const LoopAccessInfo & {
10068       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,  SE,
10069                                         TLI, TTI, nullptr, MSSA};
10070       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10071     };
10072     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10073     ProfileSummaryInfo *PSI =
10074         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10075     LoopVectorizeResult Result =
10076         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10077     if (!Result.MadeAnyChange)
10078       return PreservedAnalyses::all();
10079     PreservedAnalyses PA;
10080 
10081     // We currently do not preserve loopinfo/dominator analyses with outer loop
10082     // vectorization. Until this is addressed, mark these analyses as preserved
10083     // only for non-VPlan-native path.
10084     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10085     if (!EnableVPlanNativePath) {
10086       PA.preserve<LoopAnalysis>();
10087       PA.preserve<DominatorTreeAnalysis>();
10088     }
10089     PA.preserve<BasicAA>();
10090     PA.preserve<GlobalsAA>();
10091     if (!Result.MadeCFGChange)
10092       PA.preserveSet<CFGAnalyses>();
10093     return PA;
10094 }
10095