1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanTransforms.h"
62 #include "llvm/ADT/APInt.h"
63 #include "llvm/ADT/ArrayRef.h"
64 #include "llvm/ADT/DenseMap.h"
65 #include "llvm/ADT/DenseMapInfo.h"
66 #include "llvm/ADT/Hashing.h"
67 #include "llvm/ADT/MapVector.h"
68 #include "llvm/ADT/None.h"
69 #include "llvm/ADT/Optional.h"
70 #include "llvm/ADT/STLExtras.h"
71 #include "llvm/ADT/SmallPtrSet.h"
72 #include "llvm/ADT/SmallSet.h"
73 #include "llvm/ADT/SmallVector.h"
74 #include "llvm/ADT/Statistic.h"
75 #include "llvm/ADT/StringRef.h"
76 #include "llvm/ADT/Twine.h"
77 #include "llvm/ADT/iterator_range.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/BasicAliasAnalysis.h"
80 #include "llvm/Analysis/BlockFrequencyInfo.h"
81 #include "llvm/Analysis/CFG.h"
82 #include "llvm/Analysis/CodeMetrics.h"
83 #include "llvm/Analysis/DemandedBits.h"
84 #include "llvm/Analysis/GlobalsModRef.h"
85 #include "llvm/Analysis/LoopAccessAnalysis.h"
86 #include "llvm/Analysis/LoopAnalysisManager.h"
87 #include "llvm/Analysis/LoopInfo.h"
88 #include "llvm/Analysis/LoopIterator.h"
89 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
90 #include "llvm/Analysis/ProfileSummaryInfo.h"
91 #include "llvm/Analysis/ScalarEvolution.h"
92 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
93 #include "llvm/Analysis/TargetLibraryInfo.h"
94 #include "llvm/Analysis/TargetTransformInfo.h"
95 #include "llvm/Analysis/VectorUtils.h"
96 #include "llvm/IR/Attributes.h"
97 #include "llvm/IR/BasicBlock.h"
98 #include "llvm/IR/CFG.h"
99 #include "llvm/IR/Constant.h"
100 #include "llvm/IR/Constants.h"
101 #include "llvm/IR/DataLayout.h"
102 #include "llvm/IR/DebugInfoMetadata.h"
103 #include "llvm/IR/DebugLoc.h"
104 #include "llvm/IR/DerivedTypes.h"
105 #include "llvm/IR/DiagnosticInfo.h"
106 #include "llvm/IR/Dominators.h"
107 #include "llvm/IR/Function.h"
108 #include "llvm/IR/IRBuilder.h"
109 #include "llvm/IR/InstrTypes.h"
110 #include "llvm/IR/Instruction.h"
111 #include "llvm/IR/Instructions.h"
112 #include "llvm/IR/IntrinsicInst.h"
113 #include "llvm/IR/Intrinsics.h"
114 #include "llvm/IR/Metadata.h"
115 #include "llvm/IR/Module.h"
116 #include "llvm/IR/Operator.h"
117 #include "llvm/IR/PatternMatch.h"
118 #include "llvm/IR/Type.h"
119 #include "llvm/IR/Use.h"
120 #include "llvm/IR/User.h"
121 #include "llvm/IR/Value.h"
122 #include "llvm/IR/ValueHandle.h"
123 #include "llvm/IR/Verifier.h"
124 #include "llvm/InitializePasses.h"
125 #include "llvm/Pass.h"
126 #include "llvm/Support/Casting.h"
127 #include "llvm/Support/CommandLine.h"
128 #include "llvm/Support/Compiler.h"
129 #include "llvm/Support/Debug.h"
130 #include "llvm/Support/ErrorHandling.h"
131 #include "llvm/Support/InstructionCost.h"
132 #include "llvm/Support/MathExtras.h"
133 #include "llvm/Support/raw_ostream.h"
134 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
135 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
136 #include "llvm/Transforms/Utils/LoopSimplify.h"
137 #include "llvm/Transforms/Utils/LoopUtils.h"
138 #include "llvm/Transforms/Utils/LoopVersioning.h"
139 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
140 #include "llvm/Transforms/Utils/SizeOpts.h"
141 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
142 #include <algorithm>
143 #include <cassert>
144 #include <cstdint>
145 #include <functional>
146 #include <iterator>
147 #include <limits>
148 #include <map>
149 #include <memory>
150 #include <string>
151 #include <tuple>
152 #include <utility>
153 
154 using namespace llvm;
155 
156 #define LV_NAME "loop-vectorize"
157 #define DEBUG_TYPE LV_NAME
158 
159 #ifndef NDEBUG
160 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
161 #endif
162 
163 /// @{
164 /// Metadata attribute names
165 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
166 const char LLVMLoopVectorizeFollowupVectorized[] =
167     "llvm.loop.vectorize.followup_vectorized";
168 const char LLVMLoopVectorizeFollowupEpilogue[] =
169     "llvm.loop.vectorize.followup_epilogue";
170 /// @}
171 
172 STATISTIC(LoopsVectorized, "Number of loops vectorized");
173 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
174 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
175 
176 static cl::opt<bool> EnableEpilogueVectorization(
177     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
178     cl::desc("Enable vectorization of epilogue loops."));
179 
180 static cl::opt<unsigned> EpilogueVectorizationForceVF(
181     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
182     cl::desc("When epilogue vectorization is enabled, and a value greater than "
183              "1 is specified, forces the given VF for all applicable epilogue "
184              "loops."));
185 
186 static cl::opt<unsigned> EpilogueVectorizationMinVF(
187     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
188     cl::desc("Only loops with vectorization factor equal to or larger than "
189              "the specified value are considered for epilogue vectorization."));
190 
191 /// Loops with a known constant trip count below this number are vectorized only
192 /// if no scalar iteration overheads are incurred.
193 static cl::opt<unsigned> TinyTripCountVectorThreshold(
194     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
195     cl::desc("Loops with a constant trip count that is smaller than this "
196              "value are vectorized only if no scalar iteration overheads "
197              "are incurred."));
198 
199 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
200     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
201     cl::desc("The maximum allowed number of runtime memory checks with a "
202              "vectorize(enable) pragma."));
203 
204 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
205 // that predication is preferred, and this lists all options. I.e., the
206 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
207 // and predicate the instructions accordingly. If tail-folding fails, there are
208 // different fallback strategies depending on these values:
209 namespace PreferPredicateTy {
210   enum Option {
211     ScalarEpilogue = 0,
212     PredicateElseScalarEpilogue,
213     PredicateOrDontVectorize
214   };
215 } // namespace PreferPredicateTy
216 
217 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
218     "prefer-predicate-over-epilogue",
219     cl::init(PreferPredicateTy::ScalarEpilogue),
220     cl::Hidden,
221     cl::desc("Tail-folding and predication preferences over creating a scalar "
222              "epilogue loop."),
223     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
224                          "scalar-epilogue",
225                          "Don't tail-predicate loops, create scalar epilogue"),
226               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
227                          "predicate-else-scalar-epilogue",
228                          "prefer tail-folding, create scalar epilogue if tail "
229                          "folding fails."),
230               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
231                          "predicate-dont-vectorize",
232                          "prefers tail-folding, don't attempt vectorization if "
233                          "tail-folding fails.")));
234 
235 static cl::opt<bool> MaximizeBandwidth(
236     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
237     cl::desc("Maximize bandwidth when selecting vectorization factor which "
238              "will be determined by the smallest type in loop."));
239 
240 static cl::opt<bool> EnableInterleavedMemAccesses(
241     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
242     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
243 
244 /// An interleave-group may need masking if it resides in a block that needs
245 /// predication, or in order to mask away gaps.
246 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
247     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
248     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
249 
250 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
251     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
252     cl::desc("We don't interleave loops with a estimated constant trip count "
253              "below this number"));
254 
255 static cl::opt<unsigned> ForceTargetNumScalarRegs(
256     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
257     cl::desc("A flag that overrides the target's number of scalar registers."));
258 
259 static cl::opt<unsigned> ForceTargetNumVectorRegs(
260     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
261     cl::desc("A flag that overrides the target's number of vector registers."));
262 
263 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
264     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
265     cl::desc("A flag that overrides the target's max interleave factor for "
266              "scalar loops."));
267 
268 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
269     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
270     cl::desc("A flag that overrides the target's max interleave factor for "
271              "vectorized loops."));
272 
273 static cl::opt<unsigned> ForceTargetInstructionCost(
274     "force-target-instruction-cost", cl::init(0), cl::Hidden,
275     cl::desc("A flag that overrides the target's expected cost for "
276              "an instruction to a single constant value. Mostly "
277              "useful for getting consistent testing."));
278 
279 static cl::opt<bool> ForceTargetSupportsScalableVectors(
280     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
281     cl::desc(
282         "Pretend that scalable vectors are supported, even if the target does "
283         "not support them. This flag should only be used for testing."));
284 
285 static cl::opt<unsigned> SmallLoopCost(
286     "small-loop-cost", cl::init(20), cl::Hidden,
287     cl::desc(
288         "The cost of a loop that is considered 'small' by the interleaver."));
289 
290 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
291     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
292     cl::desc("Enable the use of the block frequency analysis to access PGO "
293              "heuristics minimizing code growth in cold regions and being more "
294              "aggressive in hot regions."));
295 
296 // Runtime interleave loops for load/store throughput.
297 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
298     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
299     cl::desc(
300         "Enable runtime interleaving until load/store ports are saturated"));
301 
302 /// Interleave small loops with scalar reductions.
303 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
304     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
305     cl::desc("Enable interleaving for loops with small iteration counts that "
306              "contain scalar reductions to expose ILP."));
307 
308 /// The number of stores in a loop that are allowed to need predication.
309 static cl::opt<unsigned> NumberOfStoresToPredicate(
310     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
311     cl::desc("Max number of stores to be predicated behind an if."));
312 
313 static cl::opt<bool> EnableIndVarRegisterHeur(
314     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
315     cl::desc("Count the induction variable only once when interleaving"));
316 
317 static cl::opt<bool> EnableCondStoresVectorization(
318     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
319     cl::desc("Enable if predication of stores during vectorization."));
320 
321 static cl::opt<unsigned> MaxNestedScalarReductionIC(
322     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
323     cl::desc("The maximum interleave count to use when interleaving a scalar "
324              "reduction in a nested loop."));
325 
326 static cl::opt<bool>
327     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
328                            cl::Hidden,
329                            cl::desc("Prefer in-loop vector reductions, "
330                                     "overriding the targets preference."));
331 
332 static cl::opt<bool> ForceOrderedReductions(
333     "force-ordered-reductions", cl::init(false), cl::Hidden,
334     cl::desc("Enable the vectorisation of loops with in-order (strict) "
335              "FP reductions"));
336 
337 static cl::opt<bool> PreferPredicatedReductionSelect(
338     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
339     cl::desc(
340         "Prefer predicating a reduction operation over an after loop select."));
341 
342 cl::opt<bool> EnableVPlanNativePath(
343     "enable-vplan-native-path", cl::init(false), cl::Hidden,
344     cl::desc("Enable VPlan-native vectorization path with "
345              "support for outer loop vectorization."));
346 
347 // This flag enables the stress testing of the VPlan H-CFG construction in the
348 // VPlan-native vectorization path. It must be used in conjuction with
349 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
350 // verification of the H-CFGs built.
351 static cl::opt<bool> VPlanBuildStressTest(
352     "vplan-build-stress-test", cl::init(false), cl::Hidden,
353     cl::desc(
354         "Build VPlan for every supported loop nest in the function and bail "
355         "out right after the build (stress test the VPlan H-CFG construction "
356         "in the VPlan-native vectorization path)."));
357 
358 cl::opt<bool> llvm::EnableLoopInterleaving(
359     "interleave-loops", cl::init(true), cl::Hidden,
360     cl::desc("Enable loop interleaving in Loop vectorization passes"));
361 cl::opt<bool> llvm::EnableLoopVectorization(
362     "vectorize-loops", cl::init(true), cl::Hidden,
363     cl::desc("Run the Loop vectorization passes"));
364 
365 cl::opt<bool> PrintVPlansInDotFormat(
366     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
367     cl::desc("Use dot format instead of plain text when dumping VPlans"));
368 
369 /// A helper function that returns true if the given type is irregular. The
370 /// type is irregular if its allocated size doesn't equal the store size of an
371 /// element of the corresponding vector type.
372 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
373   // Determine if an array of N elements of type Ty is "bitcast compatible"
374   // with a <N x Ty> vector.
375   // This is only true if there is no padding between the array elements.
376   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
377 }
378 
379 /// A helper function that returns the reciprocal of the block probability of
380 /// predicated blocks. If we return X, we are assuming the predicated block
381 /// will execute once for every X iterations of the loop header.
382 ///
383 /// TODO: We should use actual block probability here, if available. Currently,
384 ///       we always assume predicated blocks have a 50% chance of executing.
385 static unsigned getReciprocalPredBlockProb() { return 2; }
386 
387 /// A helper function that returns an integer or floating-point constant with
388 /// value C.
389 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
390   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
391                            : ConstantFP::get(Ty, C);
392 }
393 
394 /// Returns "best known" trip count for the specified loop \p L as defined by
395 /// the following procedure:
396 ///   1) Returns exact trip count if it is known.
397 ///   2) Returns expected trip count according to profile data if any.
398 ///   3) Returns upper bound estimate if it is known.
399 ///   4) Returns None if all of the above failed.
400 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
401   // Check if exact trip count is known.
402   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
403     return ExpectedTC;
404 
405   // Check if there is an expected trip count available from profile data.
406   if (LoopVectorizeWithBlockFrequency)
407     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
408       return EstimatedTC;
409 
410   // Check if upper bound estimate is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
412     return ExpectedTC;
413 
414   return None;
415 }
416 
417 // Forward declare GeneratedRTChecks.
418 class GeneratedRTChecks;
419 
420 namespace llvm {
421 
422 AnalysisKey ShouldRunExtraVectorPasses::Key;
423 
424 /// InnerLoopVectorizer vectorizes loops which contain only one basic
425 /// block to a specified vectorization factor (VF).
426 /// This class performs the widening of scalars into vectors, or multiple
427 /// scalars. This class also implements the following features:
428 /// * It inserts an epilogue loop for handling loops that don't have iteration
429 ///   counts that are known to be a multiple of the vectorization factor.
430 /// * It handles the code generation for reduction variables.
431 /// * Scalarization (implementation using scalars) of un-vectorizable
432 ///   instructions.
433 /// InnerLoopVectorizer does not perform any vectorization-legality
434 /// checks, and relies on the caller to check for the different legality
435 /// aspects. The InnerLoopVectorizer relies on the
436 /// LoopVectorizationLegality class to provide information about the induction
437 /// and reduction variables that were found to a given vectorization factor.
438 class InnerLoopVectorizer {
439 public:
440   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
441                       LoopInfo *LI, DominatorTree *DT,
442                       const TargetLibraryInfo *TLI,
443                       const TargetTransformInfo *TTI, AssumptionCache *AC,
444                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
445                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
446                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
447                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
448       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
449         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
450         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
451         PSI(PSI), RTChecks(RTChecks) {
452     // Query this against the original loop and save it here because the profile
453     // of the original loop header may change as the transformation happens.
454     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
455         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
456   }
457 
458   virtual ~InnerLoopVectorizer() = default;
459 
460   /// Create a new empty loop that will contain vectorized instructions later
461   /// on, while the old loop will be used as the scalar remainder. Control flow
462   /// is generated around the vectorized (and scalar epilogue) loops consisting
463   /// of various checks and bypasses. Return the pre-header block of the new
464   /// loop and the start value for the canonical induction, if it is != 0. The
465   /// latter is the case when vectorizing the epilogue loop. In the case of
466   /// epilogue vectorization, this function is overriden to handle the more
467   /// complex control flow around the loops.
468   virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton();
469 
470   /// Widen a single call instruction within the innermost loop.
471   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
472                             VPTransformState &State);
473 
474   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
475   void fixVectorizedLoop(VPTransformState &State, VPlan &Plan);
476 
477   // Return true if any runtime check is added.
478   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
479 
480   /// A type for vectorized values in the new loop. Each value from the
481   /// original loop, when vectorized, is represented by UF vector values in the
482   /// new unrolled loop, where UF is the unroll factor.
483   using VectorParts = SmallVector<Value *, 2>;
484 
485   /// A helper function to scalarize a single Instruction in the innermost loop.
486   /// Generates a sequence of scalar instances for each lane between \p MinLane
487   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
488   /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
489   /// Instr's operands.
490   void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe,
491                             const VPIteration &Instance, bool IfPredicateInstr,
492                             VPTransformState &State);
493 
494   /// Construct the vector value of a scalarized value \p V one lane at a time.
495   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
496                                  VPTransformState &State);
497 
498   /// Try to vectorize interleaved access group \p Group with the base address
499   /// given in \p Addr, optionally masking the vector operations if \p
500   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
501   /// values in the vectorized loop.
502   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
503                                 ArrayRef<VPValue *> VPDefs,
504                                 VPTransformState &State, VPValue *Addr,
505                                 ArrayRef<VPValue *> StoredValues,
506                                 VPValue *BlockInMask = nullptr);
507 
508   /// Set the debug location in the builder \p Ptr using the debug location in
509   /// \p V. If \p Ptr is None then it uses the class member's Builder.
510   void setDebugLocFromInst(const Value *V);
511 
512   /// Fix the non-induction PHIs in \p Plan.
513   void fixNonInductionPHIs(VPlan &Plan, VPTransformState &State);
514 
515   /// Returns true if the reordering of FP operations is not allowed, but we are
516   /// able to vectorize with strict in-order reductions for the given RdxDesc.
517   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc);
518 
519   /// Create a broadcast instruction. This method generates a broadcast
520   /// instruction (shuffle) for loop invariant values and for the induction
521   /// value. If this is the induction variable then we extend it to N, N+1, ...
522   /// this is needed because each iteration in the loop corresponds to a SIMD
523   /// element.
524   virtual Value *getBroadcastInstrs(Value *V);
525 
526   /// Add metadata from one instruction to another.
527   ///
528   /// This includes both the original MDs from \p From and additional ones (\see
529   /// addNewMetadata).  Use this for *newly created* instructions in the vector
530   /// loop.
531   void addMetadata(Instruction *To, Instruction *From);
532 
533   /// Similar to the previous function but it adds the metadata to a
534   /// vector of instructions.
535   void addMetadata(ArrayRef<Value *> To, Instruction *From);
536 
537   // Returns the resume value (bc.merge.rdx) for a reduction as
538   // generated by fixReduction.
539   PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc);
540 
541 protected:
542   friend class LoopVectorizationPlanner;
543 
544   /// A small list of PHINodes.
545   using PhiVector = SmallVector<PHINode *, 4>;
546 
547   /// A type for scalarized values in the new loop. Each value from the
548   /// original loop, when scalarized, is represented by UF x VF scalar values
549   /// in the new unrolled loop, where UF is the unroll factor and VF is the
550   /// vectorization factor.
551   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
552 
553   /// Set up the values of the IVs correctly when exiting the vector loop.
554   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
555                     Value *VectorTripCount, Value *EndValue,
556                     BasicBlock *MiddleBlock, BasicBlock *VectorHeader,
557                     VPlan &Plan);
558 
559   /// Handle all cross-iteration phis in the header.
560   void fixCrossIterationPHIs(VPTransformState &State);
561 
562   /// Create the exit value of first order recurrences in the middle block and
563   /// update their users.
564   void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR,
565                                VPTransformState &State);
566 
567   /// Create code for the loop exit value of the reduction.
568   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
569 
570   /// Clear NSW/NUW flags from reduction instructions if necessary.
571   void clearReductionWrapFlags(VPReductionPHIRecipe *PhiR,
572                                VPTransformState &State);
573 
574   /// Iteratively sink the scalarized operands of a predicated instruction into
575   /// the block that was created for it.
576   void sinkScalarOperands(Instruction *PredInst);
577 
578   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
579   /// represented as.
580   void truncateToMinimalBitwidths(VPTransformState &State);
581 
582   /// Returns (and creates if needed) the original loop trip count.
583   Value *getOrCreateTripCount(BasicBlock *InsertBlock);
584 
585   /// Returns (and creates if needed) the trip count of the widened loop.
586   Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock);
587 
588   /// Returns a bitcasted value to the requested vector type.
589   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
590   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
591                                 const DataLayout &DL);
592 
593   /// Emit a bypass check to see if the vector trip count is zero, including if
594   /// it overflows.
595   void emitIterationCountCheck(BasicBlock *Bypass);
596 
597   /// Emit a bypass check to see if all of the SCEV assumptions we've
598   /// had to make are correct. Returns the block containing the checks or
599   /// nullptr if no checks have been added.
600   BasicBlock *emitSCEVChecks(BasicBlock *Bypass);
601 
602   /// Emit bypass checks to check any memory assumptions we may have made.
603   /// Returns the block containing the checks or nullptr if no checks have been
604   /// added.
605   BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass);
606 
607   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
608   /// vector loop preheader, middle block and scalar preheader.
609   void createVectorLoopSkeleton(StringRef Prefix);
610 
611   /// Create new phi nodes for the induction variables to resume iteration count
612   /// in the scalar epilogue, from where the vectorized loop left off.
613   /// In cases where the loop skeleton is more complicated (eg. epilogue
614   /// vectorization) and the resume values can come from an additional bypass
615   /// block, the \p AdditionalBypass pair provides information about the bypass
616   /// block and the end value on the edge from bypass to this loop.
617   void createInductionResumeValues(
618       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
619 
620   /// Complete the loop skeleton by adding debug MDs, creating appropriate
621   /// conditional branches in the middle block, preparing the builder and
622   /// running the verifier. Return the preheader of the completed vector loop.
623   BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID);
624 
625   /// Add additional metadata to \p To that was not present on \p Orig.
626   ///
627   /// Currently this is used to add the noalias annotations based on the
628   /// inserted memchecks.  Use this for instructions that are *cloned* into the
629   /// vector loop.
630   void addNewMetadata(Instruction *To, const Instruction *Orig);
631 
632   /// Collect poison-generating recipes that may generate a poison value that is
633   /// used after vectorization, even when their operands are not poison. Those
634   /// recipes meet the following conditions:
635   ///  * Contribute to the address computation of a recipe generating a widen
636   ///    memory load/store (VPWidenMemoryInstructionRecipe or
637   ///    VPInterleaveRecipe).
638   ///  * Such a widen memory load/store has at least one underlying Instruction
639   ///    that is in a basic block that needs predication and after vectorization
640   ///    the generated instruction won't be predicated.
641   void collectPoisonGeneratingRecipes(VPTransformState &State);
642 
643   /// Allow subclasses to override and print debug traces before/after vplan
644   /// execution, when trace information is requested.
645   virtual void printDebugTracesAtStart(){};
646   virtual void printDebugTracesAtEnd(){};
647 
648   /// The original loop.
649   Loop *OrigLoop;
650 
651   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
652   /// dynamic knowledge to simplify SCEV expressions and converts them to a
653   /// more usable form.
654   PredicatedScalarEvolution &PSE;
655 
656   /// Loop Info.
657   LoopInfo *LI;
658 
659   /// Dominator Tree.
660   DominatorTree *DT;
661 
662   /// Alias Analysis.
663   AAResults *AA;
664 
665   /// Target Library Info.
666   const TargetLibraryInfo *TLI;
667 
668   /// Target Transform Info.
669   const TargetTransformInfo *TTI;
670 
671   /// Assumption Cache.
672   AssumptionCache *AC;
673 
674   /// Interface to emit optimization remarks.
675   OptimizationRemarkEmitter *ORE;
676 
677   /// LoopVersioning.  It's only set up (non-null) if memchecks were
678   /// used.
679   ///
680   /// This is currently only used to add no-alias metadata based on the
681   /// memchecks.  The actually versioning is performed manually.
682   std::unique_ptr<LoopVersioning> LVer;
683 
684   /// The vectorization SIMD factor to use. Each vector will have this many
685   /// vector elements.
686   ElementCount VF;
687 
688   /// The vectorization unroll factor to use. Each scalar is vectorized to this
689   /// many different vector instructions.
690   unsigned UF;
691 
692   /// The builder that we use
693   IRBuilder<> Builder;
694 
695   // --- Vectorization state ---
696 
697   /// The vector-loop preheader.
698   BasicBlock *LoopVectorPreHeader;
699 
700   /// The scalar-loop preheader.
701   BasicBlock *LoopScalarPreHeader;
702 
703   /// Middle Block between the vector and the scalar.
704   BasicBlock *LoopMiddleBlock;
705 
706   /// The unique ExitBlock of the scalar loop if one exists.  Note that
707   /// there can be multiple exiting edges reaching this block.
708   BasicBlock *LoopExitBlock;
709 
710   /// The scalar loop body.
711   BasicBlock *LoopScalarBody;
712 
713   /// A list of all bypass blocks. The first block is the entry of the loop.
714   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
715 
716   /// Store instructions that were predicated.
717   SmallVector<Instruction *, 4> PredicatedInstructions;
718 
719   /// Trip count of the original loop.
720   Value *TripCount = nullptr;
721 
722   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
723   Value *VectorTripCount = nullptr;
724 
725   /// The legality analysis.
726   LoopVectorizationLegality *Legal;
727 
728   /// The profitablity analysis.
729   LoopVectorizationCostModel *Cost;
730 
731   // Record whether runtime checks are added.
732   bool AddedSafetyChecks = false;
733 
734   // Holds the end values for each induction variable. We save the end values
735   // so we can later fix-up the external users of the induction variables.
736   DenseMap<PHINode *, Value *> IVEndValues;
737 
738   /// BFI and PSI are used to check for profile guided size optimizations.
739   BlockFrequencyInfo *BFI;
740   ProfileSummaryInfo *PSI;
741 
742   // Whether this loop should be optimized for size based on profile guided size
743   // optimizatios.
744   bool OptForSizeBasedOnProfile;
745 
746   /// Structure to hold information about generated runtime checks, responsible
747   /// for cleaning the checks, if vectorization turns out unprofitable.
748   GeneratedRTChecks &RTChecks;
749 
750   // Holds the resume values for reductions in the loops, used to set the
751   // correct start value of reduction PHIs when vectorizing the epilogue.
752   SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4>
753       ReductionResumeValues;
754 };
755 
756 class InnerLoopUnroller : public InnerLoopVectorizer {
757 public:
758   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
759                     LoopInfo *LI, DominatorTree *DT,
760                     const TargetLibraryInfo *TLI,
761                     const TargetTransformInfo *TTI, AssumptionCache *AC,
762                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
763                     LoopVectorizationLegality *LVL,
764                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
765                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
766       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
767                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
768                             BFI, PSI, Check) {}
769 
770 private:
771   Value *getBroadcastInstrs(Value *V) override;
772 };
773 
774 /// Encapsulate information regarding vectorization of a loop and its epilogue.
775 /// This information is meant to be updated and used across two stages of
776 /// epilogue vectorization.
777 struct EpilogueLoopVectorizationInfo {
778   ElementCount MainLoopVF = ElementCount::getFixed(0);
779   unsigned MainLoopUF = 0;
780   ElementCount EpilogueVF = ElementCount::getFixed(0);
781   unsigned EpilogueUF = 0;
782   BasicBlock *MainLoopIterationCountCheck = nullptr;
783   BasicBlock *EpilogueIterationCountCheck = nullptr;
784   BasicBlock *SCEVSafetyCheck = nullptr;
785   BasicBlock *MemSafetyCheck = nullptr;
786   Value *TripCount = nullptr;
787   Value *VectorTripCount = nullptr;
788 
789   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
790                                 ElementCount EVF, unsigned EUF)
791       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
792     assert(EUF == 1 &&
793            "A high UF for the epilogue loop is likely not beneficial.");
794   }
795 };
796 
797 /// An extension of the inner loop vectorizer that creates a skeleton for a
798 /// vectorized loop that has its epilogue (residual) also vectorized.
799 /// The idea is to run the vplan on a given loop twice, firstly to setup the
800 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
801 /// from the first step and vectorize the epilogue.  This is achieved by
802 /// deriving two concrete strategy classes from this base class and invoking
803 /// them in succession from the loop vectorizer planner.
804 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
805 public:
806   InnerLoopAndEpilogueVectorizer(
807       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
808       DominatorTree *DT, const TargetLibraryInfo *TLI,
809       const TargetTransformInfo *TTI, AssumptionCache *AC,
810       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
811       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
812       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
813       GeneratedRTChecks &Checks)
814       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
815                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
816                             Checks),
817         EPI(EPI) {}
818 
819   // Override this function to handle the more complex control flow around the
820   // three loops.
821   std::pair<BasicBlock *, Value *>
822   createVectorizedLoopSkeleton() final override {
823     return createEpilogueVectorizedLoopSkeleton();
824   }
825 
826   /// The interface for creating a vectorized skeleton using one of two
827   /// different strategies, each corresponding to one execution of the vplan
828   /// as described above.
829   virtual std::pair<BasicBlock *, Value *>
830   createEpilogueVectorizedLoopSkeleton() = 0;
831 
832   /// Holds and updates state information required to vectorize the main loop
833   /// and its epilogue in two separate passes. This setup helps us avoid
834   /// regenerating and recomputing runtime safety checks. It also helps us to
835   /// shorten the iteration-count-check path length for the cases where the
836   /// iteration count of the loop is so small that the main vector loop is
837   /// completely skipped.
838   EpilogueLoopVectorizationInfo &EPI;
839 };
840 
841 /// A specialized derived class of inner loop vectorizer that performs
842 /// vectorization of *main* loops in the process of vectorizing loops and their
843 /// epilogues.
844 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
845 public:
846   EpilogueVectorizerMainLoop(
847       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
848       DominatorTree *DT, const TargetLibraryInfo *TLI,
849       const TargetTransformInfo *TTI, AssumptionCache *AC,
850       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
851       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
852       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
853       GeneratedRTChecks &Check)
854       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
855                                        EPI, LVL, CM, BFI, PSI, Check) {}
856   /// Implements the interface for creating a vectorized skeleton using the
857   /// *main loop* strategy (ie the first pass of vplan execution).
858   std::pair<BasicBlock *, Value *>
859   createEpilogueVectorizedLoopSkeleton() final override;
860 
861 protected:
862   /// Emits an iteration count bypass check once for the main loop (when \p
863   /// ForEpilogue is false) and once for the epilogue loop (when \p
864   /// ForEpilogue is true).
865   BasicBlock *emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue);
866   void printDebugTracesAtStart() override;
867   void printDebugTracesAtEnd() override;
868 };
869 
870 // A specialized derived class of inner loop vectorizer that performs
871 // vectorization of *epilogue* loops in the process of vectorizing loops and
872 // their epilogues.
873 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
874 public:
875   EpilogueVectorizerEpilogueLoop(
876       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
877       DominatorTree *DT, const TargetLibraryInfo *TLI,
878       const TargetTransformInfo *TTI, AssumptionCache *AC,
879       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
880       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
881       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
882       GeneratedRTChecks &Checks)
883       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
884                                        EPI, LVL, CM, BFI, PSI, Checks) {
885     TripCount = EPI.TripCount;
886   }
887   /// Implements the interface for creating a vectorized skeleton using the
888   /// *epilogue loop* strategy (ie the second pass of vplan execution).
889   std::pair<BasicBlock *, Value *>
890   createEpilogueVectorizedLoopSkeleton() final override;
891 
892 protected:
893   /// Emits an iteration count bypass check after the main vector loop has
894   /// finished to see if there are any iterations left to execute by either
895   /// the vector epilogue or the scalar epilogue.
896   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(
897                                                       BasicBlock *Bypass,
898                                                       BasicBlock *Insert);
899   void printDebugTracesAtStart() override;
900   void printDebugTracesAtEnd() override;
901 };
902 } // end namespace llvm
903 
904 /// Look for a meaningful debug location on the instruction or it's
905 /// operands.
906 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
907   if (!I)
908     return I;
909 
910   DebugLoc Empty;
911   if (I->getDebugLoc() != Empty)
912     return I;
913 
914   for (Use &Op : I->operands()) {
915     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
916       if (OpInst->getDebugLoc() != Empty)
917         return OpInst;
918   }
919 
920   return I;
921 }
922 
923 void InnerLoopVectorizer::setDebugLocFromInst(
924     const Value *V) {
925   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
926     const DILocation *DIL = Inst->getDebugLoc();
927 
928     // When a FSDiscriminator is enabled, we don't need to add the multiply
929     // factors to the discriminators.
930     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
931         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
932       // FIXME: For scalable vectors, assume vscale=1.
933       auto NewDIL =
934           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
935       if (NewDIL)
936         Builder.SetCurrentDebugLocation(*NewDIL);
937       else
938         LLVM_DEBUG(dbgs()
939                    << "Failed to create new discriminator: "
940                    << DIL->getFilename() << " Line: " << DIL->getLine());
941     } else
942       Builder.SetCurrentDebugLocation(DIL);
943   } else
944     Builder.SetCurrentDebugLocation(DebugLoc());
945 }
946 
947 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
948 /// is passed, the message relates to that particular instruction.
949 #ifndef NDEBUG
950 static void debugVectorizationMessage(const StringRef Prefix,
951                                       const StringRef DebugMsg,
952                                       Instruction *I) {
953   dbgs() << "LV: " << Prefix << DebugMsg;
954   if (I != nullptr)
955     dbgs() << " " << *I;
956   else
957     dbgs() << '.';
958   dbgs() << '\n';
959 }
960 #endif
961 
962 /// Create an analysis remark that explains why vectorization failed
963 ///
964 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
965 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
966 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
967 /// the location of the remark.  \return the remark object that can be
968 /// streamed to.
969 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
970     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
971   Value *CodeRegion = TheLoop->getHeader();
972   DebugLoc DL = TheLoop->getStartLoc();
973 
974   if (I) {
975     CodeRegion = I->getParent();
976     // If there is no debug location attached to the instruction, revert back to
977     // using the loop's.
978     if (I->getDebugLoc())
979       DL = I->getDebugLoc();
980   }
981 
982   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
983 }
984 
985 namespace llvm {
986 
987 /// Return a value for Step multiplied by VF.
988 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF,
989                        int64_t Step) {
990   assert(Ty->isIntegerTy() && "Expected an integer step");
991   Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
992   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
993 }
994 
995 /// Return the runtime value for VF.
996 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) {
997   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
998   return VF.isScalable() ? B.CreateVScale(EC) : EC;
999 }
1000 
1001 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy,
1002                                   ElementCount VF) {
1003   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
1004   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
1005   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
1006   return B.CreateUIToFP(RuntimeVF, FTy);
1007 }
1008 
1009 void reportVectorizationFailure(const StringRef DebugMsg,
1010                                 const StringRef OREMsg, const StringRef ORETag,
1011                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1012                                 Instruction *I) {
1013   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1014   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1015   ORE->emit(
1016       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1017       << "loop not vectorized: " << OREMsg);
1018 }
1019 
1020 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1021                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1022                              Instruction *I) {
1023   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1024   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1025   ORE->emit(
1026       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1027       << Msg);
1028 }
1029 
1030 } // end namespace llvm
1031 
1032 #ifndef NDEBUG
1033 /// \return string containing a file name and a line # for the given loop.
1034 static std::string getDebugLocString(const Loop *L) {
1035   std::string Result;
1036   if (L) {
1037     raw_string_ostream OS(Result);
1038     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1039       LoopDbgLoc.print(OS);
1040     else
1041       // Just print the module name.
1042       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1043     OS.flush();
1044   }
1045   return Result;
1046 }
1047 #endif
1048 
1049 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1050                                          const Instruction *Orig) {
1051   // If the loop was versioned with memchecks, add the corresponding no-alias
1052   // metadata.
1053   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1054     LVer->annotateInstWithNoAlias(To, Orig);
1055 }
1056 
1057 void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
1058     VPTransformState &State) {
1059 
1060   // Collect recipes in the backward slice of `Root` that may generate a poison
1061   // value that is used after vectorization.
1062   SmallPtrSet<VPRecipeBase *, 16> Visited;
1063   auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
1064     SmallVector<VPRecipeBase *, 16> Worklist;
1065     Worklist.push_back(Root);
1066 
1067     // Traverse the backward slice of Root through its use-def chain.
1068     while (!Worklist.empty()) {
1069       VPRecipeBase *CurRec = Worklist.back();
1070       Worklist.pop_back();
1071 
1072       if (!Visited.insert(CurRec).second)
1073         continue;
1074 
1075       // Prune search if we find another recipe generating a widen memory
1076       // instruction. Widen memory instructions involved in address computation
1077       // will lead to gather/scatter instructions, which don't need to be
1078       // handled.
1079       if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
1080           isa<VPInterleaveRecipe>(CurRec) ||
1081           isa<VPScalarIVStepsRecipe>(CurRec) ||
1082           isa<VPCanonicalIVPHIRecipe>(CurRec))
1083         continue;
1084 
1085       // This recipe contributes to the address computation of a widen
1086       // load/store. Collect recipe if its underlying instruction has
1087       // poison-generating flags.
1088       Instruction *Instr = CurRec->getUnderlyingInstr();
1089       if (Instr && Instr->hasPoisonGeneratingFlags())
1090         State.MayGeneratePoisonRecipes.insert(CurRec);
1091 
1092       // Add new definitions to the worklist.
1093       for (VPValue *operand : CurRec->operands())
1094         if (VPDef *OpDef = operand->getDef())
1095           Worklist.push_back(cast<VPRecipeBase>(OpDef));
1096     }
1097   });
1098 
1099   // Traverse all the recipes in the VPlan and collect the poison-generating
1100   // recipes in the backward slice starting at the address of a VPWidenRecipe or
1101   // VPInterleaveRecipe.
1102   auto Iter = depth_first(
1103       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry()));
1104   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
1105     for (VPRecipeBase &Recipe : *VPBB) {
1106       if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
1107         Instruction &UnderlyingInstr = WidenRec->getIngredient();
1108         VPDef *AddrDef = WidenRec->getAddr()->getDef();
1109         if (AddrDef && WidenRec->isConsecutive() &&
1110             Legal->blockNeedsPredication(UnderlyingInstr.getParent()))
1111           collectPoisonGeneratingInstrsInBackwardSlice(
1112               cast<VPRecipeBase>(AddrDef));
1113       } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
1114         VPDef *AddrDef = InterleaveRec->getAddr()->getDef();
1115         if (AddrDef) {
1116           // Check if any member of the interleave group needs predication.
1117           const InterleaveGroup<Instruction> *InterGroup =
1118               InterleaveRec->getInterleaveGroup();
1119           bool NeedPredication = false;
1120           for (int I = 0, NumMembers = InterGroup->getNumMembers();
1121                I < NumMembers; ++I) {
1122             Instruction *Member = InterGroup->getMember(I);
1123             if (Member)
1124               NeedPredication |=
1125                   Legal->blockNeedsPredication(Member->getParent());
1126           }
1127 
1128           if (NeedPredication)
1129             collectPoisonGeneratingInstrsInBackwardSlice(
1130                 cast<VPRecipeBase>(AddrDef));
1131         }
1132       }
1133     }
1134   }
1135 }
1136 
1137 void InnerLoopVectorizer::addMetadata(Instruction *To,
1138                                       Instruction *From) {
1139   propagateMetadata(To, From);
1140   addNewMetadata(To, From);
1141 }
1142 
1143 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1144                                       Instruction *From) {
1145   for (Value *V : To) {
1146     if (Instruction *I = dyn_cast<Instruction>(V))
1147       addMetadata(I, From);
1148   }
1149 }
1150 
1151 PHINode *InnerLoopVectorizer::getReductionResumeValue(
1152     const RecurrenceDescriptor &RdxDesc) {
1153   auto It = ReductionResumeValues.find(&RdxDesc);
1154   assert(It != ReductionResumeValues.end() &&
1155          "Expected to find a resume value for the reduction.");
1156   return It->second;
1157 }
1158 
1159 namespace llvm {
1160 
1161 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1162 // lowered.
1163 enum ScalarEpilogueLowering {
1164 
1165   // The default: allowing scalar epilogues.
1166   CM_ScalarEpilogueAllowed,
1167 
1168   // Vectorization with OptForSize: don't allow epilogues.
1169   CM_ScalarEpilogueNotAllowedOptSize,
1170 
1171   // A special case of vectorisation with OptForSize: loops with a very small
1172   // trip count are considered for vectorization under OptForSize, thereby
1173   // making sure the cost of their loop body is dominant, free of runtime
1174   // guards and scalar iteration overheads.
1175   CM_ScalarEpilogueNotAllowedLowTripLoop,
1176 
1177   // Loop hint predicate indicating an epilogue is undesired.
1178   CM_ScalarEpilogueNotNeededUsePredicate,
1179 
1180   // Directive indicating we must either tail fold or not vectorize
1181   CM_ScalarEpilogueNotAllowedUsePredicate
1182 };
1183 
1184 /// ElementCountComparator creates a total ordering for ElementCount
1185 /// for the purposes of using it in a set structure.
1186 struct ElementCountComparator {
1187   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1188     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1189            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1190   }
1191 };
1192 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1193 
1194 /// LoopVectorizationCostModel - estimates the expected speedups due to
1195 /// vectorization.
1196 /// In many cases vectorization is not profitable. This can happen because of
1197 /// a number of reasons. In this class we mainly attempt to predict the
1198 /// expected speedup/slowdowns due to the supported instruction set. We use the
1199 /// TargetTransformInfo to query the different backends for the cost of
1200 /// different operations.
1201 class LoopVectorizationCostModel {
1202 public:
1203   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1204                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1205                              LoopVectorizationLegality *Legal,
1206                              const TargetTransformInfo &TTI,
1207                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1208                              AssumptionCache *AC,
1209                              OptimizationRemarkEmitter *ORE, const Function *F,
1210                              const LoopVectorizeHints *Hints,
1211                              InterleavedAccessInfo &IAI)
1212       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1213         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1214         Hints(Hints), InterleaveInfo(IAI) {}
1215 
1216   /// \return An upper bound for the vectorization factors (both fixed and
1217   /// scalable). If the factors are 0, vectorization and interleaving should be
1218   /// avoided up front.
1219   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1220 
1221   /// \return True if runtime checks are required for vectorization, and false
1222   /// otherwise.
1223   bool runtimeChecksRequired();
1224 
1225   /// \return The most profitable vectorization factor and the cost of that VF.
1226   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1227   /// then this vectorization factor will be selected if vectorization is
1228   /// possible.
1229   VectorizationFactor
1230   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1231 
1232   VectorizationFactor
1233   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1234                                     const LoopVectorizationPlanner &LVP);
1235 
1236   /// Setup cost-based decisions for user vectorization factor.
1237   /// \return true if the UserVF is a feasible VF to be chosen.
1238   bool selectUserVectorizationFactor(ElementCount UserVF) {
1239     collectUniformsAndScalars(UserVF);
1240     collectInstsToScalarize(UserVF);
1241     return expectedCost(UserVF).first.isValid();
1242   }
1243 
1244   /// \return The size (in bits) of the smallest and widest types in the code
1245   /// that needs to be vectorized. We ignore values that remain scalar such as
1246   /// 64 bit loop indices.
1247   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1248 
1249   /// \return The desired interleave count.
1250   /// If interleave count has been specified by metadata it will be returned.
1251   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1252   /// are the selected vectorization factor and the cost of the selected VF.
1253   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1254 
1255   /// Memory access instruction may be vectorized in more than one way.
1256   /// Form of instruction after vectorization depends on cost.
1257   /// This function takes cost-based decisions for Load/Store instructions
1258   /// and collects them in a map. This decisions map is used for building
1259   /// the lists of loop-uniform and loop-scalar instructions.
1260   /// The calculated cost is saved with widening decision in order to
1261   /// avoid redundant calculations.
1262   void setCostBasedWideningDecision(ElementCount VF);
1263 
1264   /// A struct that represents some properties of the register usage
1265   /// of a loop.
1266   struct RegisterUsage {
1267     /// Holds the number of loop invariant values that are used in the loop.
1268     /// The key is ClassID of target-provided register class.
1269     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1270     /// Holds the maximum number of concurrent live intervals in the loop.
1271     /// The key is ClassID of target-provided register class.
1272     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1273   };
1274 
1275   /// \return Returns information about the register usages of the loop for the
1276   /// given vectorization factors.
1277   SmallVector<RegisterUsage, 8>
1278   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1279 
1280   /// Collect values we want to ignore in the cost model.
1281   void collectValuesToIgnore();
1282 
1283   /// Collect all element types in the loop for which widening is needed.
1284   void collectElementTypesForWidening();
1285 
1286   /// Split reductions into those that happen in the loop, and those that happen
1287   /// outside. In loop reductions are collected into InLoopReductionChains.
1288   void collectInLoopReductions();
1289 
1290   /// Returns true if we should use strict in-order reductions for the given
1291   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1292   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1293   /// of FP operations.
1294   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const {
1295     return !Hints->allowReordering() && RdxDesc.isOrdered();
1296   }
1297 
1298   /// \returns The smallest bitwidth each instruction can be represented with.
1299   /// The vector equivalents of these instructions should be truncated to this
1300   /// type.
1301   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1302     return MinBWs;
1303   }
1304 
1305   /// \returns True if it is more profitable to scalarize instruction \p I for
1306   /// vectorization factor \p VF.
1307   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1308     assert(VF.isVector() &&
1309            "Profitable to scalarize relevant only for VF > 1.");
1310 
1311     // Cost model is not run in the VPlan-native path - return conservative
1312     // result until this changes.
1313     if (EnableVPlanNativePath)
1314       return false;
1315 
1316     auto Scalars = InstsToScalarize.find(VF);
1317     assert(Scalars != InstsToScalarize.end() &&
1318            "VF not yet analyzed for scalarization profitability");
1319     return Scalars->second.find(I) != Scalars->second.end();
1320   }
1321 
1322   /// Returns true if \p I is known to be uniform after vectorization.
1323   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1324     if (VF.isScalar())
1325       return true;
1326 
1327     // Cost model is not run in the VPlan-native path - return conservative
1328     // result until this changes.
1329     if (EnableVPlanNativePath)
1330       return false;
1331 
1332     auto UniformsPerVF = Uniforms.find(VF);
1333     assert(UniformsPerVF != Uniforms.end() &&
1334            "VF not yet analyzed for uniformity");
1335     return UniformsPerVF->second.count(I);
1336   }
1337 
1338   /// Returns true if \p I is known to be scalar after vectorization.
1339   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1340     if (VF.isScalar())
1341       return true;
1342 
1343     // Cost model is not run in the VPlan-native path - return conservative
1344     // result until this changes.
1345     if (EnableVPlanNativePath)
1346       return false;
1347 
1348     auto ScalarsPerVF = Scalars.find(VF);
1349     assert(ScalarsPerVF != Scalars.end() &&
1350            "Scalar values are not calculated for VF");
1351     return ScalarsPerVF->second.count(I);
1352   }
1353 
1354   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1355   /// for vectorization factor \p VF.
1356   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1357     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1358            !isProfitableToScalarize(I, VF) &&
1359            !isScalarAfterVectorization(I, VF);
1360   }
1361 
1362   /// Decision that was taken during cost calculation for memory instruction.
1363   enum InstWidening {
1364     CM_Unknown,
1365     CM_Widen,         // For consecutive accesses with stride +1.
1366     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1367     CM_Interleave,
1368     CM_GatherScatter,
1369     CM_Scalarize
1370   };
1371 
1372   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1373   /// instruction \p I and vector width \p VF.
1374   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1375                            InstructionCost Cost) {
1376     assert(VF.isVector() && "Expected VF >=2");
1377     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1378   }
1379 
1380   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1381   /// interleaving group \p Grp and vector width \p VF.
1382   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1383                            ElementCount VF, InstWidening W,
1384                            InstructionCost Cost) {
1385     assert(VF.isVector() && "Expected VF >=2");
1386     /// Broadcast this decicion to all instructions inside the group.
1387     /// But the cost will be assigned to one instruction only.
1388     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1389       if (auto *I = Grp->getMember(i)) {
1390         if (Grp->getInsertPos() == I)
1391           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1392         else
1393           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1394       }
1395     }
1396   }
1397 
1398   /// Return the cost model decision for the given instruction \p I and vector
1399   /// width \p VF. Return CM_Unknown if this instruction did not pass
1400   /// through the cost modeling.
1401   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1402     assert(VF.isVector() && "Expected VF to be a vector VF");
1403     // Cost model is not run in the VPlan-native path - return conservative
1404     // result until this changes.
1405     if (EnableVPlanNativePath)
1406       return CM_GatherScatter;
1407 
1408     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1409     auto Itr = WideningDecisions.find(InstOnVF);
1410     if (Itr == WideningDecisions.end())
1411       return CM_Unknown;
1412     return Itr->second.first;
1413   }
1414 
1415   /// Return the vectorization cost for the given instruction \p I and vector
1416   /// width \p VF.
1417   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1418     assert(VF.isVector() && "Expected VF >=2");
1419     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1420     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1421            "The cost is not calculated");
1422     return WideningDecisions[InstOnVF].second;
1423   }
1424 
1425   /// Return True if instruction \p I is an optimizable truncate whose operand
1426   /// is an induction variable. Such a truncate will be removed by adding a new
1427   /// induction variable with the destination type.
1428   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1429     // If the instruction is not a truncate, return false.
1430     auto *Trunc = dyn_cast<TruncInst>(I);
1431     if (!Trunc)
1432       return false;
1433 
1434     // Get the source and destination types of the truncate.
1435     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1436     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1437 
1438     // If the truncate is free for the given types, return false. Replacing a
1439     // free truncate with an induction variable would add an induction variable
1440     // update instruction to each iteration of the loop. We exclude from this
1441     // check the primary induction variable since it will need an update
1442     // instruction regardless.
1443     Value *Op = Trunc->getOperand(0);
1444     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1445       return false;
1446 
1447     // If the truncated value is not an induction variable, return false.
1448     return Legal->isInductionPhi(Op);
1449   }
1450 
1451   /// Collects the instructions to scalarize for each predicated instruction in
1452   /// the loop.
1453   void collectInstsToScalarize(ElementCount VF);
1454 
1455   /// Collect Uniform and Scalar values for the given \p VF.
1456   /// The sets depend on CM decision for Load/Store instructions
1457   /// that may be vectorized as interleave, gather-scatter or scalarized.
1458   void collectUniformsAndScalars(ElementCount VF) {
1459     // Do the analysis once.
1460     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1461       return;
1462     setCostBasedWideningDecision(VF);
1463     collectLoopUniforms(VF);
1464     collectLoopScalars(VF);
1465   }
1466 
1467   /// Returns true if the target machine supports masked store operation
1468   /// for the given \p DataType and kind of access to \p Ptr.
1469   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1470     return Legal->isConsecutivePtr(DataType, Ptr) &&
1471            TTI.isLegalMaskedStore(DataType, Alignment);
1472   }
1473 
1474   /// Returns true if the target machine supports masked load operation
1475   /// for the given \p DataType and kind of access to \p Ptr.
1476   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1477     return Legal->isConsecutivePtr(DataType, Ptr) &&
1478            TTI.isLegalMaskedLoad(DataType, Alignment);
1479   }
1480 
1481   /// Returns true if the target machine can represent \p V as a masked gather
1482   /// or scatter operation.
1483   bool isLegalGatherOrScatter(Value *V,
1484                               ElementCount VF = ElementCount::getFixed(1)) {
1485     bool LI = isa<LoadInst>(V);
1486     bool SI = isa<StoreInst>(V);
1487     if (!LI && !SI)
1488       return false;
1489     auto *Ty = getLoadStoreType(V);
1490     Align Align = getLoadStoreAlignment(V);
1491     if (VF.isVector())
1492       Ty = VectorType::get(Ty, VF);
1493     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1494            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1495   }
1496 
1497   /// Returns true if the target machine supports all of the reduction
1498   /// variables found for the given VF.
1499   bool canVectorizeReductions(ElementCount VF) const {
1500     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1501       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1502       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1503     }));
1504   }
1505 
1506   /// Returns true if \p I is an instruction that will be scalarized with
1507   /// predication when vectorizing \p I with vectorization factor \p VF. Such
1508   /// instructions include conditional stores and instructions that may divide
1509   /// by zero.
1510   bool isScalarWithPredication(Instruction *I, ElementCount VF) const;
1511 
1512   // Returns true if \p I is an instruction that will be predicated either
1513   // through scalar predication or masked load/store or masked gather/scatter.
1514   // \p VF is the vectorization factor that will be used to vectorize \p I.
1515   // Superset of instructions that return true for isScalarWithPredication.
1516   bool isPredicatedInst(Instruction *I, ElementCount VF,
1517                         bool IsKnownUniform = false) {
1518     // When we know the load is uniform and the original scalar loop was not
1519     // predicated we don't need to mark it as a predicated instruction. Any
1520     // vectorised blocks created when tail-folding are something artificial we
1521     // have introduced and we know there is always at least one active lane.
1522     // That's why we call Legal->blockNeedsPredication here because it doesn't
1523     // query tail-folding.
1524     if (IsKnownUniform && isa<LoadInst>(I) &&
1525         !Legal->blockNeedsPredication(I->getParent()))
1526       return false;
1527     if (!blockNeedsPredicationForAnyReason(I->getParent()))
1528       return false;
1529     // Loads and stores that need some form of masked operation are predicated
1530     // instructions.
1531     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1532       return Legal->isMaskRequired(I);
1533     return isScalarWithPredication(I, VF);
1534   }
1535 
1536   /// Returns true if \p I is a memory instruction with consecutive memory
1537   /// access that can be widened.
1538   bool
1539   memoryInstructionCanBeWidened(Instruction *I,
1540                                 ElementCount VF = ElementCount::getFixed(1));
1541 
1542   /// Returns true if \p I is a memory instruction in an interleaved-group
1543   /// of memory accesses that can be vectorized with wide vector loads/stores
1544   /// and shuffles.
1545   bool
1546   interleavedAccessCanBeWidened(Instruction *I,
1547                                 ElementCount VF = ElementCount::getFixed(1));
1548 
1549   /// Check if \p Instr belongs to any interleaved access group.
1550   bool isAccessInterleaved(Instruction *Instr) {
1551     return InterleaveInfo.isInterleaved(Instr);
1552   }
1553 
1554   /// Get the interleaved access group that \p Instr belongs to.
1555   const InterleaveGroup<Instruction> *
1556   getInterleavedAccessGroup(Instruction *Instr) {
1557     return InterleaveInfo.getInterleaveGroup(Instr);
1558   }
1559 
1560   /// Returns true if we're required to use a scalar epilogue for at least
1561   /// the final iteration of the original loop.
1562   bool requiresScalarEpilogue(ElementCount VF) const {
1563     if (!isScalarEpilogueAllowed())
1564       return false;
1565     // If we might exit from anywhere but the latch, must run the exiting
1566     // iteration in scalar form.
1567     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1568       return true;
1569     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1570   }
1571 
1572   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1573   /// loop hint annotation.
1574   bool isScalarEpilogueAllowed() const {
1575     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1576   }
1577 
1578   /// Returns true if all loop blocks should be masked to fold tail loop.
1579   bool foldTailByMasking() const { return FoldTailByMasking; }
1580 
1581   /// Returns true if the instructions in this block requires predication
1582   /// for any reason, e.g. because tail folding now requires a predicate
1583   /// or because the block in the original loop was predicated.
1584   bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
1585     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1586   }
1587 
1588   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1589   /// nodes to the chain of instructions representing the reductions. Uses a
1590   /// MapVector to ensure deterministic iteration order.
1591   using ReductionChainMap =
1592       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1593 
1594   /// Return the chain of instructions representing an inloop reduction.
1595   const ReductionChainMap &getInLoopReductionChains() const {
1596     return InLoopReductionChains;
1597   }
1598 
1599   /// Returns true if the Phi is part of an inloop reduction.
1600   bool isInLoopReduction(PHINode *Phi) const {
1601     return InLoopReductionChains.count(Phi);
1602   }
1603 
1604   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1605   /// with factor VF.  Return the cost of the instruction, including
1606   /// scalarization overhead if it's needed.
1607   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1608 
1609   /// Estimate cost of a call instruction CI if it were vectorized with factor
1610   /// VF. Return the cost of the instruction, including scalarization overhead
1611   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1612   /// scalarized -
1613   /// i.e. either vector version isn't available, or is too expensive.
1614   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1615                                     bool &NeedToScalarize) const;
1616 
1617   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1618   /// that of B.
1619   bool isMoreProfitable(const VectorizationFactor &A,
1620                         const VectorizationFactor &B) const;
1621 
1622   /// Invalidates decisions already taken by the cost model.
1623   void invalidateCostModelingDecisions() {
1624     WideningDecisions.clear();
1625     Uniforms.clear();
1626     Scalars.clear();
1627   }
1628 
1629 private:
1630   unsigned NumPredStores = 0;
1631 
1632   /// Convenience function that returns the value of vscale_range iff
1633   /// vscale_range.min == vscale_range.max or otherwise returns the value
1634   /// returned by the corresponding TLI method.
1635   Optional<unsigned> getVScaleForTuning() const;
1636 
1637   /// \return An upper bound for the vectorization factors for both
1638   /// fixed and scalable vectorization, where the minimum-known number of
1639   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1640   /// disabled or unsupported, then the scalable part will be equal to
1641   /// ElementCount::getScalable(0).
1642   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1643                                            ElementCount UserVF,
1644                                            bool FoldTailByMasking);
1645 
1646   /// \return the maximized element count based on the targets vector
1647   /// registers and the loop trip-count, but limited to a maximum safe VF.
1648   /// This is a helper function of computeFeasibleMaxVF.
1649   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1650                                        unsigned SmallestType,
1651                                        unsigned WidestType,
1652                                        ElementCount MaxSafeVF,
1653                                        bool FoldTailByMasking);
1654 
1655   /// \return the maximum legal scalable VF, based on the safe max number
1656   /// of elements.
1657   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1658 
1659   /// The vectorization cost is a combination of the cost itself and a boolean
1660   /// indicating whether any of the contributing operations will actually
1661   /// operate on vector values after type legalization in the backend. If this
1662   /// latter value is false, then all operations will be scalarized (i.e. no
1663   /// vectorization has actually taken place).
1664   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1665 
1666   /// Returns the expected execution cost. The unit of the cost does
1667   /// not matter because we use the 'cost' units to compare different
1668   /// vector widths. The cost that is returned is *not* normalized by
1669   /// the factor width. If \p Invalid is not nullptr, this function
1670   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1671   /// each instruction that has an Invalid cost for the given VF.
1672   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1673   VectorizationCostTy
1674   expectedCost(ElementCount VF,
1675                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1676 
1677   /// Returns the execution time cost of an instruction for a given vector
1678   /// width. Vector width of one means scalar.
1679   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1680 
1681   /// The cost-computation logic from getInstructionCost which provides
1682   /// the vector type as an output parameter.
1683   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1684                                      Type *&VectorTy);
1685 
1686   /// Return the cost of instructions in an inloop reduction pattern, if I is
1687   /// part of that pattern.
1688   Optional<InstructionCost>
1689   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1690                           TTI::TargetCostKind CostKind);
1691 
1692   /// Calculate vectorization cost of memory instruction \p I.
1693   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1694 
1695   /// The cost computation for scalarized memory instruction.
1696   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1697 
1698   /// The cost computation for interleaving group of memory instructions.
1699   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1700 
1701   /// The cost computation for Gather/Scatter instruction.
1702   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1703 
1704   /// The cost computation for widening instruction \p I with consecutive
1705   /// memory access.
1706   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1707 
1708   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1709   /// Load: scalar load + broadcast.
1710   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1711   /// element)
1712   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1713 
1714   /// Estimate the overhead of scalarizing an instruction. This is a
1715   /// convenience wrapper for the type-based getScalarizationOverhead API.
1716   InstructionCost getScalarizationOverhead(Instruction *I,
1717                                            ElementCount VF) const;
1718 
1719   /// Returns whether the instruction is a load or store and will be a emitted
1720   /// as a vector operation.
1721   bool isConsecutiveLoadOrStore(Instruction *I);
1722 
1723   /// Returns true if an artificially high cost for emulated masked memrefs
1724   /// should be used.
1725   bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1726 
1727   /// Map of scalar integer values to the smallest bitwidth they can be legally
1728   /// represented as. The vector equivalents of these values should be truncated
1729   /// to this type.
1730   MapVector<Instruction *, uint64_t> MinBWs;
1731 
1732   /// A type representing the costs for instructions if they were to be
1733   /// scalarized rather than vectorized. The entries are Instruction-Cost
1734   /// pairs.
1735   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1736 
1737   /// A set containing all BasicBlocks that are known to present after
1738   /// vectorization as a predicated block.
1739   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1740 
1741   /// Records whether it is allowed to have the original scalar loop execute at
1742   /// least once. This may be needed as a fallback loop in case runtime
1743   /// aliasing/dependence checks fail, or to handle the tail/remainder
1744   /// iterations when the trip count is unknown or doesn't divide by the VF,
1745   /// or as a peel-loop to handle gaps in interleave-groups.
1746   /// Under optsize and when the trip count is very small we don't allow any
1747   /// iterations to execute in the scalar loop.
1748   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1749 
1750   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1751   bool FoldTailByMasking = false;
1752 
1753   /// A map holding scalar costs for different vectorization factors. The
1754   /// presence of a cost for an instruction in the mapping indicates that the
1755   /// instruction will be scalarized when vectorizing with the associated
1756   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1757   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1758 
1759   /// Holds the instructions known to be uniform after vectorization.
1760   /// The data is collected per VF.
1761   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1762 
1763   /// Holds the instructions known to be scalar after vectorization.
1764   /// The data is collected per VF.
1765   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1766 
1767   /// Holds the instructions (address computations) that are forced to be
1768   /// scalarized.
1769   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1770 
1771   /// PHINodes of the reductions that should be expanded in-loop along with
1772   /// their associated chains of reduction operations, in program order from top
1773   /// (PHI) to bottom
1774   ReductionChainMap InLoopReductionChains;
1775 
1776   /// A Map of inloop reduction operations and their immediate chain operand.
1777   /// FIXME: This can be removed once reductions can be costed correctly in
1778   /// vplan. This was added to allow quick lookup to the inloop operations,
1779   /// without having to loop through InLoopReductionChains.
1780   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1781 
1782   /// Returns the expected difference in cost from scalarizing the expression
1783   /// feeding a predicated instruction \p PredInst. The instructions to
1784   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1785   /// non-negative return value implies the expression will be scalarized.
1786   /// Currently, only single-use chains are considered for scalarization.
1787   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1788                               ElementCount VF);
1789 
1790   /// Collect the instructions that are uniform after vectorization. An
1791   /// instruction is uniform if we represent it with a single scalar value in
1792   /// the vectorized loop corresponding to each vector iteration. Examples of
1793   /// uniform instructions include pointer operands of consecutive or
1794   /// interleaved memory accesses. Note that although uniformity implies an
1795   /// instruction will be scalar, the reverse is not true. In general, a
1796   /// scalarized instruction will be represented by VF scalar values in the
1797   /// vectorized loop, each corresponding to an iteration of the original
1798   /// scalar loop.
1799   void collectLoopUniforms(ElementCount VF);
1800 
1801   /// Collect the instructions that are scalar after vectorization. An
1802   /// instruction is scalar if it is known to be uniform or will be scalarized
1803   /// during vectorization. collectLoopScalars should only add non-uniform nodes
1804   /// to the list if they are used by a load/store instruction that is marked as
1805   /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1806   /// VF values in the vectorized loop, each corresponding to an iteration of
1807   /// the original scalar loop.
1808   void collectLoopScalars(ElementCount VF);
1809 
1810   /// Keeps cost model vectorization decision and cost for instructions.
1811   /// Right now it is used for memory instructions only.
1812   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1813                                 std::pair<InstWidening, InstructionCost>>;
1814 
1815   DecisionList WideningDecisions;
1816 
1817   /// Returns true if \p V is expected to be vectorized and it needs to be
1818   /// extracted.
1819   bool needsExtract(Value *V, ElementCount VF) const {
1820     Instruction *I = dyn_cast<Instruction>(V);
1821     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1822         TheLoop->isLoopInvariant(I))
1823       return false;
1824 
1825     // Assume we can vectorize V (and hence we need extraction) if the
1826     // scalars are not computed yet. This can happen, because it is called
1827     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1828     // the scalars are collected. That should be a safe assumption in most
1829     // cases, because we check if the operands have vectorizable types
1830     // beforehand in LoopVectorizationLegality.
1831     return Scalars.find(VF) == Scalars.end() ||
1832            !isScalarAfterVectorization(I, VF);
1833   };
1834 
1835   /// Returns a range containing only operands needing to be extracted.
1836   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1837                                                    ElementCount VF) const {
1838     return SmallVector<Value *, 4>(make_filter_range(
1839         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1840   }
1841 
1842   /// Determines if we have the infrastructure to vectorize loop \p L and its
1843   /// epilogue, assuming the main loop is vectorized by \p VF.
1844   bool isCandidateForEpilogueVectorization(const Loop &L,
1845                                            const ElementCount VF) const;
1846 
1847   /// Returns true if epilogue vectorization is considered profitable, and
1848   /// false otherwise.
1849   /// \p VF is the vectorization factor chosen for the original loop.
1850   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1851 
1852 public:
1853   /// The loop that we evaluate.
1854   Loop *TheLoop;
1855 
1856   /// Predicated scalar evolution analysis.
1857   PredicatedScalarEvolution &PSE;
1858 
1859   /// Loop Info analysis.
1860   LoopInfo *LI;
1861 
1862   /// Vectorization legality.
1863   LoopVectorizationLegality *Legal;
1864 
1865   /// Vector target information.
1866   const TargetTransformInfo &TTI;
1867 
1868   /// Target Library Info.
1869   const TargetLibraryInfo *TLI;
1870 
1871   /// Demanded bits analysis.
1872   DemandedBits *DB;
1873 
1874   /// Assumption cache.
1875   AssumptionCache *AC;
1876 
1877   /// Interface to emit optimization remarks.
1878   OptimizationRemarkEmitter *ORE;
1879 
1880   const Function *TheFunction;
1881 
1882   /// Loop Vectorize Hint.
1883   const LoopVectorizeHints *Hints;
1884 
1885   /// The interleave access information contains groups of interleaved accesses
1886   /// with the same stride and close to each other.
1887   InterleavedAccessInfo &InterleaveInfo;
1888 
1889   /// Values to ignore in the cost model.
1890   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1891 
1892   /// Values to ignore in the cost model when VF > 1.
1893   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1894 
1895   /// All element types found in the loop.
1896   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1897 
1898   /// Profitable vector factors.
1899   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1900 };
1901 } // end namespace llvm
1902 
1903 /// Helper struct to manage generating runtime checks for vectorization.
1904 ///
1905 /// The runtime checks are created up-front in temporary blocks to allow better
1906 /// estimating the cost and un-linked from the existing IR. After deciding to
1907 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1908 /// temporary blocks are completely removed.
1909 class GeneratedRTChecks {
1910   /// Basic block which contains the generated SCEV checks, if any.
1911   BasicBlock *SCEVCheckBlock = nullptr;
1912 
1913   /// The value representing the result of the generated SCEV checks. If it is
1914   /// nullptr, either no SCEV checks have been generated or they have been used.
1915   Value *SCEVCheckCond = nullptr;
1916 
1917   /// Basic block which contains the generated memory runtime checks, if any.
1918   BasicBlock *MemCheckBlock = nullptr;
1919 
1920   /// The value representing the result of the generated memory runtime checks.
1921   /// If it is nullptr, either no memory runtime checks have been generated or
1922   /// they have been used.
1923   Value *MemRuntimeCheckCond = nullptr;
1924 
1925   DominatorTree *DT;
1926   LoopInfo *LI;
1927 
1928   SCEVExpander SCEVExp;
1929   SCEVExpander MemCheckExp;
1930 
1931 public:
1932   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1933                     const DataLayout &DL)
1934       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1935         MemCheckExp(SE, DL, "scev.check") {}
1936 
1937   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1938   /// accurately estimate the cost of the runtime checks. The blocks are
1939   /// un-linked from the IR and is added back during vector code generation. If
1940   /// there is no vector code generation, the check blocks are removed
1941   /// completely.
1942   void Create(Loop *L, const LoopAccessInfo &LAI,
1943               const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) {
1944 
1945     BasicBlock *LoopHeader = L->getHeader();
1946     BasicBlock *Preheader = L->getLoopPreheader();
1947 
1948     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1949     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1950     // may be used by SCEVExpander. The blocks will be un-linked from their
1951     // predecessors and removed from LI & DT at the end of the function.
1952     if (!UnionPred.isAlwaysTrue()) {
1953       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1954                                   nullptr, "vector.scevcheck");
1955 
1956       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1957           &UnionPred, SCEVCheckBlock->getTerminator());
1958     }
1959 
1960     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1961     if (RtPtrChecking.Need) {
1962       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1963       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1964                                  "vector.memcheck");
1965 
1966       auto DiffChecks = RtPtrChecking.getDiffChecks();
1967       if (DiffChecks) {
1968         MemRuntimeCheckCond = addDiffRuntimeChecks(
1969             MemCheckBlock->getTerminator(), L, *DiffChecks, MemCheckExp,
1970             [VF](IRBuilderBase &B, unsigned Bits) {
1971               return getRuntimeVF(B, B.getIntNTy(Bits), VF);
1972             },
1973             IC);
1974       } else {
1975         MemRuntimeCheckCond =
1976             addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1977                              RtPtrChecking.getChecks(), MemCheckExp);
1978       }
1979       assert(MemRuntimeCheckCond &&
1980              "no RT checks generated although RtPtrChecking "
1981              "claimed checks are required");
1982     }
1983 
1984     if (!MemCheckBlock && !SCEVCheckBlock)
1985       return;
1986 
1987     // Unhook the temporary block with the checks, update various places
1988     // accordingly.
1989     if (SCEVCheckBlock)
1990       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1991     if (MemCheckBlock)
1992       MemCheckBlock->replaceAllUsesWith(Preheader);
1993 
1994     if (SCEVCheckBlock) {
1995       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1996       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1997       Preheader->getTerminator()->eraseFromParent();
1998     }
1999     if (MemCheckBlock) {
2000       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2001       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2002       Preheader->getTerminator()->eraseFromParent();
2003     }
2004 
2005     DT->changeImmediateDominator(LoopHeader, Preheader);
2006     if (MemCheckBlock) {
2007       DT->eraseNode(MemCheckBlock);
2008       LI->removeBlock(MemCheckBlock);
2009     }
2010     if (SCEVCheckBlock) {
2011       DT->eraseNode(SCEVCheckBlock);
2012       LI->removeBlock(SCEVCheckBlock);
2013     }
2014   }
2015 
2016   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2017   /// unused.
2018   ~GeneratedRTChecks() {
2019     SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2020     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2021     if (!SCEVCheckCond)
2022       SCEVCleaner.markResultUsed();
2023 
2024     if (!MemRuntimeCheckCond)
2025       MemCheckCleaner.markResultUsed();
2026 
2027     if (MemRuntimeCheckCond) {
2028       auto &SE = *MemCheckExp.getSE();
2029       // Memory runtime check generation creates compares that use expanded
2030       // values. Remove them before running the SCEVExpanderCleaners.
2031       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2032         if (MemCheckExp.isInsertedInstruction(&I))
2033           continue;
2034         SE.forgetValue(&I);
2035         I.eraseFromParent();
2036       }
2037     }
2038     MemCheckCleaner.cleanup();
2039     SCEVCleaner.cleanup();
2040 
2041     if (SCEVCheckCond)
2042       SCEVCheckBlock->eraseFromParent();
2043     if (MemRuntimeCheckCond)
2044       MemCheckBlock->eraseFromParent();
2045   }
2046 
2047   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2048   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2049   /// depending on the generated condition.
2050   BasicBlock *emitSCEVChecks(BasicBlock *Bypass,
2051                              BasicBlock *LoopVectorPreHeader,
2052                              BasicBlock *LoopExitBlock) {
2053     if (!SCEVCheckCond)
2054       return nullptr;
2055 
2056     Value *Cond = SCEVCheckCond;
2057     // Mark the check as used, to prevent it from being removed during cleanup.
2058     SCEVCheckCond = nullptr;
2059     if (auto *C = dyn_cast<ConstantInt>(Cond))
2060       if (C->isZero())
2061         return nullptr;
2062 
2063     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2064 
2065     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2066     // Create new preheader for vector loop.
2067     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2068       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2069 
2070     SCEVCheckBlock->getTerminator()->eraseFromParent();
2071     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2072     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2073                                                 SCEVCheckBlock);
2074 
2075     DT->addNewBlock(SCEVCheckBlock, Pred);
2076     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2077 
2078     ReplaceInstWithInst(SCEVCheckBlock->getTerminator(),
2079                         BranchInst::Create(Bypass, LoopVectorPreHeader, Cond));
2080     return SCEVCheckBlock;
2081   }
2082 
2083   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2084   /// the branches to branch to the vector preheader or \p Bypass, depending on
2085   /// the generated condition.
2086   BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass,
2087                                    BasicBlock *LoopVectorPreHeader) {
2088     // Check if we generated code that checks in runtime if arrays overlap.
2089     if (!MemRuntimeCheckCond)
2090       return nullptr;
2091 
2092     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2093     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2094                                                 MemCheckBlock);
2095 
2096     DT->addNewBlock(MemCheckBlock, Pred);
2097     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2098     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2099 
2100     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2101       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2102 
2103     ReplaceInstWithInst(
2104         MemCheckBlock->getTerminator(),
2105         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2106     MemCheckBlock->getTerminator()->setDebugLoc(
2107         Pred->getTerminator()->getDebugLoc());
2108 
2109     // Mark the check as used, to prevent it from being removed during cleanup.
2110     MemRuntimeCheckCond = nullptr;
2111     return MemCheckBlock;
2112   }
2113 };
2114 
2115 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2116 // vectorization. The loop needs to be annotated with #pragma omp simd
2117 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2118 // vector length information is not provided, vectorization is not considered
2119 // explicit. Interleave hints are not allowed either. These limitations will be
2120 // relaxed in the future.
2121 // Please, note that we are currently forced to abuse the pragma 'clang
2122 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2123 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2124 // provides *explicit vectorization hints* (LV can bypass legal checks and
2125 // assume that vectorization is legal). However, both hints are implemented
2126 // using the same metadata (llvm.loop.vectorize, processed by
2127 // LoopVectorizeHints). This will be fixed in the future when the native IR
2128 // representation for pragma 'omp simd' is introduced.
2129 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2130                                    OptimizationRemarkEmitter *ORE) {
2131   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2132   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2133 
2134   // Only outer loops with an explicit vectorization hint are supported.
2135   // Unannotated outer loops are ignored.
2136   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2137     return false;
2138 
2139   Function *Fn = OuterLp->getHeader()->getParent();
2140   if (!Hints.allowVectorization(Fn, OuterLp,
2141                                 true /*VectorizeOnlyWhenForced*/)) {
2142     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2143     return false;
2144   }
2145 
2146   if (Hints.getInterleave() > 1) {
2147     // TODO: Interleave support is future work.
2148     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2149                          "outer loops.\n");
2150     Hints.emitRemarkWithHints();
2151     return false;
2152   }
2153 
2154   return true;
2155 }
2156 
2157 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2158                                   OptimizationRemarkEmitter *ORE,
2159                                   SmallVectorImpl<Loop *> &V) {
2160   // Collect inner loops and outer loops without irreducible control flow. For
2161   // now, only collect outer loops that have explicit vectorization hints. If we
2162   // are stress testing the VPlan H-CFG construction, we collect the outermost
2163   // loop of every loop nest.
2164   if (L.isInnermost() || VPlanBuildStressTest ||
2165       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2166     LoopBlocksRPO RPOT(&L);
2167     RPOT.perform(LI);
2168     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2169       V.push_back(&L);
2170       // TODO: Collect inner loops inside marked outer loops in case
2171       // vectorization fails for the outer loop. Do not invoke
2172       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2173       // already known to be reducible. We can use an inherited attribute for
2174       // that.
2175       return;
2176     }
2177   }
2178   for (Loop *InnerL : L)
2179     collectSupportedLoops(*InnerL, LI, ORE, V);
2180 }
2181 
2182 namespace {
2183 
2184 /// The LoopVectorize Pass.
2185 struct LoopVectorize : public FunctionPass {
2186   /// Pass identification, replacement for typeid
2187   static char ID;
2188 
2189   LoopVectorizePass Impl;
2190 
2191   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2192                          bool VectorizeOnlyWhenForced = false)
2193       : FunctionPass(ID),
2194         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2195     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2196   }
2197 
2198   bool runOnFunction(Function &F) override {
2199     if (skipFunction(F))
2200       return false;
2201 
2202     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2203     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2204     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2205     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2206     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2207     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2208     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2209     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2210     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2211     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2212     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2213     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2214     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2215 
2216     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2217         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2218 
2219     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2220                         GetLAA, *ORE, PSI).MadeAnyChange;
2221   }
2222 
2223   void getAnalysisUsage(AnalysisUsage &AU) const override {
2224     AU.addRequired<AssumptionCacheTracker>();
2225     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2226     AU.addRequired<DominatorTreeWrapperPass>();
2227     AU.addRequired<LoopInfoWrapperPass>();
2228     AU.addRequired<ScalarEvolutionWrapperPass>();
2229     AU.addRequired<TargetTransformInfoWrapperPass>();
2230     AU.addRequired<AAResultsWrapperPass>();
2231     AU.addRequired<LoopAccessLegacyAnalysis>();
2232     AU.addRequired<DemandedBitsWrapperPass>();
2233     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2234     AU.addRequired<InjectTLIMappingsLegacy>();
2235 
2236     // We currently do not preserve loopinfo/dominator analyses with outer loop
2237     // vectorization. Until this is addressed, mark these analyses as preserved
2238     // only for non-VPlan-native path.
2239     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2240     if (!EnableVPlanNativePath) {
2241       AU.addPreserved<LoopInfoWrapperPass>();
2242       AU.addPreserved<DominatorTreeWrapperPass>();
2243     }
2244 
2245     AU.addPreserved<BasicAAWrapperPass>();
2246     AU.addPreserved<GlobalsAAWrapperPass>();
2247     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2248   }
2249 };
2250 
2251 } // end anonymous namespace
2252 
2253 //===----------------------------------------------------------------------===//
2254 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2255 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2256 //===----------------------------------------------------------------------===//
2257 
2258 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2259   // We need to place the broadcast of invariant variables outside the loop,
2260   // but only if it's proven safe to do so. Else, broadcast will be inside
2261   // vector loop body.
2262   Instruction *Instr = dyn_cast<Instruction>(V);
2263   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2264                      (!Instr ||
2265                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2266   // Place the code for broadcasting invariant variables in the new preheader.
2267   IRBuilder<>::InsertPointGuard Guard(Builder);
2268   if (SafeToHoist)
2269     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2270 
2271   // Broadcast the scalar into all locations in the vector.
2272   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2273 
2274   return Shuf;
2275 }
2276 
2277 /// This function adds
2278 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
2279 /// to each vector element of Val. The sequence starts at StartIndex.
2280 /// \p Opcode is relevant for FP induction variable.
2281 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step,
2282                             Instruction::BinaryOps BinOp, ElementCount VF,
2283                             IRBuilderBase &Builder) {
2284   assert(VF.isVector() && "only vector VFs are supported");
2285 
2286   // Create and check the types.
2287   auto *ValVTy = cast<VectorType>(Val->getType());
2288   ElementCount VLen = ValVTy->getElementCount();
2289 
2290   Type *STy = Val->getType()->getScalarType();
2291   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2292          "Induction Step must be an integer or FP");
2293   assert(Step->getType() == STy && "Step has wrong type");
2294 
2295   SmallVector<Constant *, 8> Indices;
2296 
2297   // Create a vector of consecutive numbers from zero to VF.
2298   VectorType *InitVecValVTy = ValVTy;
2299   if (STy->isFloatingPointTy()) {
2300     Type *InitVecValSTy =
2301         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2302     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2303   }
2304   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2305 
2306   // Splat the StartIdx
2307   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2308 
2309   if (STy->isIntegerTy()) {
2310     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2311     Step = Builder.CreateVectorSplat(VLen, Step);
2312     assert(Step->getType() == Val->getType() && "Invalid step vec");
2313     // FIXME: The newly created binary instructions should contain nsw/nuw
2314     // flags, which can be found from the original scalar operations.
2315     Step = Builder.CreateMul(InitVec, Step);
2316     return Builder.CreateAdd(Val, Step, "induction");
2317   }
2318 
2319   // Floating point induction.
2320   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2321          "Binary Opcode should be specified for FP induction");
2322   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2323   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2324 
2325   Step = Builder.CreateVectorSplat(VLen, Step);
2326   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2327   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2328 }
2329 
2330 /// Compute scalar induction steps. \p ScalarIV is the scalar induction
2331 /// variable on which to base the steps, \p Step is the size of the step.
2332 static void buildScalarSteps(Value *ScalarIV, Value *Step,
2333                              const InductionDescriptor &ID, VPValue *Def,
2334                              VPTransformState &State) {
2335   IRBuilderBase &Builder = State.Builder;
2336   // We shouldn't have to build scalar steps if we aren't vectorizing.
2337   assert(State.VF.isVector() && "VF should be greater than one");
2338   // Get the value type and ensure it and the step have the same integer type.
2339   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2340   assert(ScalarIVTy == Step->getType() &&
2341          "Val and Step should have the same type");
2342 
2343   // We build scalar steps for both integer and floating-point induction
2344   // variables. Here, we determine the kind of arithmetic we will perform.
2345   Instruction::BinaryOps AddOp;
2346   Instruction::BinaryOps MulOp;
2347   if (ScalarIVTy->isIntegerTy()) {
2348     AddOp = Instruction::Add;
2349     MulOp = Instruction::Mul;
2350   } else {
2351     AddOp = ID.getInductionOpcode();
2352     MulOp = Instruction::FMul;
2353   }
2354 
2355   // Determine the number of scalars we need to generate for each unroll
2356   // iteration.
2357   bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def);
2358   unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2359   // Compute the scalar steps and save the results in State.
2360   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2361                                      ScalarIVTy->getScalarSizeInBits());
2362   Type *VecIVTy = nullptr;
2363   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2364   if (!FirstLaneOnly && State.VF.isScalable()) {
2365     VecIVTy = VectorType::get(ScalarIVTy, State.VF);
2366     UnitStepVec =
2367         Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
2368     SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2369     SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV);
2370   }
2371 
2372   for (unsigned Part = 0; Part < State.UF; ++Part) {
2373     Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part);
2374 
2375     if (!FirstLaneOnly && State.VF.isScalable()) {
2376       auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2377       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2378       if (ScalarIVTy->isFloatingPointTy())
2379         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2380       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2381       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2382       State.set(Def, Add, Part);
2383       // It's useful to record the lane values too for the known minimum number
2384       // of elements so we do those below. This improves the code quality when
2385       // trying to extract the first element, for example.
2386     }
2387 
2388     if (ScalarIVTy->isFloatingPointTy())
2389       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2390 
2391     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2392       Value *StartIdx = Builder.CreateBinOp(
2393           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2394       // The step returned by `createStepForVF` is a runtime-evaluated value
2395       // when VF is scalable. Otherwise, it should be folded into a Constant.
2396       assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
2397              "Expected StartIdx to be folded to a constant when VF is not "
2398              "scalable");
2399       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2400       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2401       State.set(Def, Add, VPIteration(Part, Lane));
2402     }
2403   }
2404 }
2405 
2406 // Generate code for the induction step. Note that induction steps are
2407 // required to be loop-invariant
2408 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE,
2409                               Instruction *InsertBefore,
2410                               Loop *OrigLoop = nullptr) {
2411   const DataLayout &DL = SE.getDataLayout();
2412   assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) &&
2413          "Induction step should be loop invariant");
2414   if (auto *E = dyn_cast<SCEVUnknown>(Step))
2415     return E->getValue();
2416 
2417   SCEVExpander Exp(SE, DL, "induction");
2418   return Exp.expandCodeFor(Step, Step->getType(), InsertBefore);
2419 }
2420 
2421 /// Compute the transformed value of Index at offset StartValue using step
2422 /// StepValue.
2423 /// For integer induction, returns StartValue + Index * StepValue.
2424 /// For pointer induction, returns StartValue[Index * StepValue].
2425 /// FIXME: The newly created binary instructions should contain nsw/nuw
2426 /// flags, which can be found from the original scalar operations.
2427 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index,
2428                                    Value *StartValue, Value *Step,
2429                                    const InductionDescriptor &ID) {
2430   assert(Index->getType()->getScalarType() == Step->getType() &&
2431          "Index scalar type does not match StepValue type");
2432 
2433   // Note: the IR at this point is broken. We cannot use SE to create any new
2434   // SCEV and then expand it, hoping that SCEV's simplification will give us
2435   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2436   // lead to various SCEV crashes. So all we can do is to use builder and rely
2437   // on InstCombine for future simplifications. Here we handle some trivial
2438   // cases only.
2439   auto CreateAdd = [&B](Value *X, Value *Y) {
2440     assert(X->getType() == Y->getType() && "Types don't match!");
2441     if (auto *CX = dyn_cast<ConstantInt>(X))
2442       if (CX->isZero())
2443         return Y;
2444     if (auto *CY = dyn_cast<ConstantInt>(Y))
2445       if (CY->isZero())
2446         return X;
2447     return B.CreateAdd(X, Y);
2448   };
2449 
2450   // We allow X to be a vector type, in which case Y will potentially be
2451   // splatted into a vector with the same element count.
2452   auto CreateMul = [&B](Value *X, Value *Y) {
2453     assert(X->getType()->getScalarType() == Y->getType() &&
2454            "Types don't match!");
2455     if (auto *CX = dyn_cast<ConstantInt>(X))
2456       if (CX->isOne())
2457         return Y;
2458     if (auto *CY = dyn_cast<ConstantInt>(Y))
2459       if (CY->isOne())
2460         return X;
2461     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
2462     if (XVTy && !isa<VectorType>(Y->getType()))
2463       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
2464     return B.CreateMul(X, Y);
2465   };
2466 
2467   switch (ID.getKind()) {
2468   case InductionDescriptor::IK_IntInduction: {
2469     assert(!isa<VectorType>(Index->getType()) &&
2470            "Vector indices not supported for integer inductions yet");
2471     assert(Index->getType() == StartValue->getType() &&
2472            "Index type does not match StartValue type");
2473     if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2474       return B.CreateSub(StartValue, Index);
2475     auto *Offset = CreateMul(Index, Step);
2476     return CreateAdd(StartValue, Offset);
2477   }
2478   case InductionDescriptor::IK_PtrInduction: {
2479     assert(isa<Constant>(Step) &&
2480            "Expected constant step for pointer induction");
2481     return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step));
2482   }
2483   case InductionDescriptor::IK_FpInduction: {
2484     assert(!isa<VectorType>(Index->getType()) &&
2485            "Vector indices not supported for FP inductions yet");
2486     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2487     auto InductionBinOp = ID.getInductionBinOp();
2488     assert(InductionBinOp &&
2489            (InductionBinOp->getOpcode() == Instruction::FAdd ||
2490             InductionBinOp->getOpcode() == Instruction::FSub) &&
2491            "Original bin op should be defined for FP induction");
2492 
2493     Value *MulExp = B.CreateFMul(Step, Index);
2494     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2495                          "induction");
2496   }
2497   case InductionDescriptor::IK_NoInduction:
2498     return nullptr;
2499   }
2500   llvm_unreachable("invalid enum");
2501 }
2502 
2503 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2504                                                     const VPIteration &Instance,
2505                                                     VPTransformState &State) {
2506   Value *ScalarInst = State.get(Def, Instance);
2507   Value *VectorValue = State.get(Def, Instance.Part);
2508   VectorValue = Builder.CreateInsertElement(
2509       VectorValue, ScalarInst,
2510       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2511   State.set(Def, VectorValue, Instance.Part);
2512 }
2513 
2514 // Return whether we allow using masked interleave-groups (for dealing with
2515 // strided loads/stores that reside in predicated blocks, or for dealing
2516 // with gaps).
2517 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2518   // If an override option has been passed in for interleaved accesses, use it.
2519   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2520     return EnableMaskedInterleavedMemAccesses;
2521 
2522   return TTI.enableMaskedInterleavedAccessVectorization();
2523 }
2524 
2525 // Try to vectorize the interleave group that \p Instr belongs to.
2526 //
2527 // E.g. Translate following interleaved load group (factor = 3):
2528 //   for (i = 0; i < N; i+=3) {
2529 //     R = Pic[i];             // Member of index 0
2530 //     G = Pic[i+1];           // Member of index 1
2531 //     B = Pic[i+2];           // Member of index 2
2532 //     ... // do something to R, G, B
2533 //   }
2534 // To:
2535 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2536 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2537 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2538 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2539 //
2540 // Or translate following interleaved store group (factor = 3):
2541 //   for (i = 0; i < N; i+=3) {
2542 //     ... do something to R, G, B
2543 //     Pic[i]   = R;           // Member of index 0
2544 //     Pic[i+1] = G;           // Member of index 1
2545 //     Pic[i+2] = B;           // Member of index 2
2546 //   }
2547 // To:
2548 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2549 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2550 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2551 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2552 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2553 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2554     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2555     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2556     VPValue *BlockInMask) {
2557   Instruction *Instr = Group->getInsertPos();
2558   const DataLayout &DL = Instr->getModule()->getDataLayout();
2559 
2560   // Prepare for the vector type of the interleaved load/store.
2561   Type *ScalarTy = getLoadStoreType(Instr);
2562   unsigned InterleaveFactor = Group->getFactor();
2563   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2564   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2565 
2566   // Prepare for the new pointers.
2567   SmallVector<Value *, 2> AddrParts;
2568   unsigned Index = Group->getIndex(Instr);
2569 
2570   // TODO: extend the masked interleaved-group support to reversed access.
2571   assert((!BlockInMask || !Group->isReverse()) &&
2572          "Reversed masked interleave-group not supported.");
2573 
2574   // If the group is reverse, adjust the index to refer to the last vector lane
2575   // instead of the first. We adjust the index from the first vector lane,
2576   // rather than directly getting the pointer for lane VF - 1, because the
2577   // pointer operand of the interleaved access is supposed to be uniform. For
2578   // uniform instructions, we're only required to generate a value for the
2579   // first vector lane in each unroll iteration.
2580   if (Group->isReverse())
2581     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2582 
2583   for (unsigned Part = 0; Part < UF; Part++) {
2584     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2585     setDebugLocFromInst(AddrPart);
2586 
2587     // Notice current instruction could be any index. Need to adjust the address
2588     // to the member of index 0.
2589     //
2590     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2591     //       b = A[i];       // Member of index 0
2592     // Current pointer is pointed to A[i+1], adjust it to A[i].
2593     //
2594     // E.g.  A[i+1] = a;     // Member of index 1
2595     //       A[i]   = b;     // Member of index 0
2596     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2597     // Current pointer is pointed to A[i+2], adjust it to A[i].
2598 
2599     bool InBounds = false;
2600     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2601       InBounds = gep->isInBounds();
2602     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2603     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2604 
2605     // Cast to the vector pointer type.
2606     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2607     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2608     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2609   }
2610 
2611   setDebugLocFromInst(Instr);
2612   Value *PoisonVec = PoisonValue::get(VecTy);
2613 
2614   Value *MaskForGaps = nullptr;
2615   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2616     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2617     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2618   }
2619 
2620   // Vectorize the interleaved load group.
2621   if (isa<LoadInst>(Instr)) {
2622     // For each unroll part, create a wide load for the group.
2623     SmallVector<Value *, 2> NewLoads;
2624     for (unsigned Part = 0; Part < UF; Part++) {
2625       Instruction *NewLoad;
2626       if (BlockInMask || MaskForGaps) {
2627         assert(useMaskedInterleavedAccesses(*TTI) &&
2628                "masked interleaved groups are not allowed.");
2629         Value *GroupMask = MaskForGaps;
2630         if (BlockInMask) {
2631           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2632           Value *ShuffledMask = Builder.CreateShuffleVector(
2633               BlockInMaskPart,
2634               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2635               "interleaved.mask");
2636           GroupMask = MaskForGaps
2637                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2638                                                 MaskForGaps)
2639                           : ShuffledMask;
2640         }
2641         NewLoad =
2642             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2643                                      GroupMask, PoisonVec, "wide.masked.vec");
2644       }
2645       else
2646         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2647                                             Group->getAlign(), "wide.vec");
2648       Group->addMetadata(NewLoad);
2649       NewLoads.push_back(NewLoad);
2650     }
2651 
2652     // For each member in the group, shuffle out the appropriate data from the
2653     // wide loads.
2654     unsigned J = 0;
2655     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2656       Instruction *Member = Group->getMember(I);
2657 
2658       // Skip the gaps in the group.
2659       if (!Member)
2660         continue;
2661 
2662       auto StrideMask =
2663           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2664       for (unsigned Part = 0; Part < UF; Part++) {
2665         Value *StridedVec = Builder.CreateShuffleVector(
2666             NewLoads[Part], StrideMask, "strided.vec");
2667 
2668         // If this member has different type, cast the result type.
2669         if (Member->getType() != ScalarTy) {
2670           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2671           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2672           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2673         }
2674 
2675         if (Group->isReverse())
2676           StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse");
2677 
2678         State.set(VPDefs[J], StridedVec, Part);
2679       }
2680       ++J;
2681     }
2682     return;
2683   }
2684 
2685   // The sub vector type for current instruction.
2686   auto *SubVT = VectorType::get(ScalarTy, VF);
2687 
2688   // Vectorize the interleaved store group.
2689   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2690   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2691          "masked interleaved groups are not allowed.");
2692   assert((!MaskForGaps || !VF.isScalable()) &&
2693          "masking gaps for scalable vectors is not yet supported.");
2694   for (unsigned Part = 0; Part < UF; Part++) {
2695     // Collect the stored vector from each member.
2696     SmallVector<Value *, 4> StoredVecs;
2697     for (unsigned i = 0; i < InterleaveFactor; i++) {
2698       assert((Group->getMember(i) || MaskForGaps) &&
2699              "Fail to get a member from an interleaved store group");
2700       Instruction *Member = Group->getMember(i);
2701 
2702       // Skip the gaps in the group.
2703       if (!Member) {
2704         Value *Undef = PoisonValue::get(SubVT);
2705         StoredVecs.push_back(Undef);
2706         continue;
2707       }
2708 
2709       Value *StoredVec = State.get(StoredValues[i], Part);
2710 
2711       if (Group->isReverse())
2712         StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse");
2713 
2714       // If this member has different type, cast it to a unified type.
2715 
2716       if (StoredVec->getType() != SubVT)
2717         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2718 
2719       StoredVecs.push_back(StoredVec);
2720     }
2721 
2722     // Concatenate all vectors into a wide vector.
2723     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2724 
2725     // Interleave the elements in the wide vector.
2726     Value *IVec = Builder.CreateShuffleVector(
2727         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2728         "interleaved.vec");
2729 
2730     Instruction *NewStoreInstr;
2731     if (BlockInMask || MaskForGaps) {
2732       Value *GroupMask = MaskForGaps;
2733       if (BlockInMask) {
2734         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2735         Value *ShuffledMask = Builder.CreateShuffleVector(
2736             BlockInMaskPart,
2737             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2738             "interleaved.mask");
2739         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2740                                                       ShuffledMask, MaskForGaps)
2741                                 : ShuffledMask;
2742       }
2743       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2744                                                 Group->getAlign(), GroupMask);
2745     } else
2746       NewStoreInstr =
2747           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2748 
2749     Group->addMetadata(NewStoreInstr);
2750   }
2751 }
2752 
2753 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2754                                                VPReplicateRecipe *RepRecipe,
2755                                                const VPIteration &Instance,
2756                                                bool IfPredicateInstr,
2757                                                VPTransformState &State) {
2758   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2759 
2760   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
2761   // the first lane and part.
2762   if (isa<NoAliasScopeDeclInst>(Instr))
2763     if (!Instance.isFirstIteration())
2764       return;
2765 
2766   // Does this instruction return a value ?
2767   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2768 
2769   Instruction *Cloned = Instr->clone();
2770   if (!IsVoidRetTy)
2771     Cloned->setName(Instr->getName() + ".cloned");
2772 
2773   // If the scalarized instruction contributes to the address computation of a
2774   // widen masked load/store which was in a basic block that needed predication
2775   // and is not predicated after vectorization, we can't propagate
2776   // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized
2777   // instruction could feed a poison value to the base address of the widen
2778   // load/store.
2779   if (State.MayGeneratePoisonRecipes.contains(RepRecipe))
2780     Cloned->dropPoisonGeneratingFlags();
2781 
2782   if (Instr->getDebugLoc())
2783     setDebugLocFromInst(Instr);
2784 
2785   // Replace the operands of the cloned instructions with their scalar
2786   // equivalents in the new loop.
2787   for (auto &I : enumerate(RepRecipe->operands())) {
2788     auto InputInstance = Instance;
2789     VPValue *Operand = I.value();
2790     VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand);
2791     if (OperandR && OperandR->isUniform())
2792       InputInstance.Lane = VPLane::getFirstLane();
2793     Cloned->setOperand(I.index(), State.get(Operand, InputInstance));
2794   }
2795   addNewMetadata(Cloned, Instr);
2796 
2797   // Place the cloned scalar in the new loop.
2798   State.Builder.Insert(Cloned);
2799 
2800   State.set(RepRecipe, Cloned, Instance);
2801 
2802   // If we just cloned a new assumption, add it the assumption cache.
2803   if (auto *II = dyn_cast<AssumeInst>(Cloned))
2804     AC->registerAssumption(II);
2805 
2806   // End if-block.
2807   if (IfPredicateInstr)
2808     PredicatedInstructions.push_back(Cloned);
2809 }
2810 
2811 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) {
2812   if (TripCount)
2813     return TripCount;
2814 
2815   assert(InsertBlock);
2816   IRBuilder<> Builder(InsertBlock->getTerminator());
2817   // Find the loop boundaries.
2818   ScalarEvolution *SE = PSE.getSE();
2819   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2820   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
2821          "Invalid loop count");
2822 
2823   Type *IdxTy = Legal->getWidestInductionType();
2824   assert(IdxTy && "No type for induction");
2825 
2826   // The exit count might have the type of i64 while the phi is i32. This can
2827   // happen if we have an induction variable that is sign extended before the
2828   // compare. The only way that we get a backedge taken count is that the
2829   // induction variable was signed and as such will not overflow. In such a case
2830   // truncation is legal.
2831   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
2832       IdxTy->getPrimitiveSizeInBits())
2833     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2834   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2835 
2836   // Get the total trip count from the count by adding 1.
2837   const SCEV *ExitCount = SE->getAddExpr(
2838       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2839 
2840   const DataLayout &DL = InsertBlock->getModule()->getDataLayout();
2841 
2842   // Expand the trip count and place the new instructions in the preheader.
2843   // Notice that the pre-header does not change, only the loop body.
2844   SCEVExpander Exp(*SE, DL, "induction");
2845 
2846   // Count holds the overall loop count (N).
2847   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2848                                 InsertBlock->getTerminator());
2849 
2850   if (TripCount->getType()->isPointerTy())
2851     TripCount =
2852         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
2853                                     InsertBlock->getTerminator());
2854 
2855   return TripCount;
2856 }
2857 
2858 Value *
2859 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) {
2860   if (VectorTripCount)
2861     return VectorTripCount;
2862 
2863   Value *TC = getOrCreateTripCount(InsertBlock);
2864   IRBuilder<> Builder(InsertBlock->getTerminator());
2865 
2866   Type *Ty = TC->getType();
2867   // This is where we can make the step a runtime constant.
2868   Value *Step = createStepForVF(Builder, Ty, VF, UF);
2869 
2870   // If the tail is to be folded by masking, round the number of iterations N
2871   // up to a multiple of Step instead of rounding down. This is done by first
2872   // adding Step-1 and then rounding down. Note that it's ok if this addition
2873   // overflows: the vector induction variable will eventually wrap to zero given
2874   // that it starts at zero and its Step is a power of two; the loop will then
2875   // exit, with the last early-exit vector comparison also producing all-true.
2876   // For scalable vectors the VF is not guaranteed to be a power of 2, but this
2877   // is accounted for in emitIterationCountCheck that adds an overflow check.
2878   if (Cost->foldTailByMasking()) {
2879     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
2880            "VF*UF must be a power of 2 when folding tail by masking");
2881     Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF);
2882     TC = Builder.CreateAdd(
2883         TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up");
2884   }
2885 
2886   // Now we need to generate the expression for the part of the loop that the
2887   // vectorized body will execute. This is equal to N - (N % Step) if scalar
2888   // iterations are not required for correctness, or N - Step, otherwise. Step
2889   // is equal to the vectorization factor (number of SIMD elements) times the
2890   // unroll factor (number of SIMD instructions).
2891   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2892 
2893   // There are cases where we *must* run at least one iteration in the remainder
2894   // loop.  See the cost model for when this can happen.  If the step evenly
2895   // divides the trip count, we set the remainder to be equal to the step. If
2896   // the step does not evenly divide the trip count, no adjustment is necessary
2897   // since there will already be scalar iterations. Note that the minimum
2898   // iterations check ensures that N >= Step.
2899   if (Cost->requiresScalarEpilogue(VF)) {
2900     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
2901     R = Builder.CreateSelect(IsZero, Step, R);
2902   }
2903 
2904   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2905 
2906   return VectorTripCount;
2907 }
2908 
2909 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
2910                                                    const DataLayout &DL) {
2911   // Verify that V is a vector type with same number of elements as DstVTy.
2912   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
2913   unsigned VF = DstFVTy->getNumElements();
2914   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
2915   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
2916   Type *SrcElemTy = SrcVecTy->getElementType();
2917   Type *DstElemTy = DstFVTy->getElementType();
2918   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
2919          "Vector elements must have same size");
2920 
2921   // Do a direct cast if element types are castable.
2922   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
2923     return Builder.CreateBitOrPointerCast(V, DstFVTy);
2924   }
2925   // V cannot be directly casted to desired vector type.
2926   // May happen when V is a floating point vector but DstVTy is a vector of
2927   // pointers or vice-versa. Handle this using a two-step bitcast using an
2928   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
2929   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
2930          "Only one type should be a pointer type");
2931   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
2932          "Only one type should be a floating point type");
2933   Type *IntTy =
2934       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
2935   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
2936   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
2937   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
2938 }
2939 
2940 void InnerLoopVectorizer::emitIterationCountCheck(BasicBlock *Bypass) {
2941   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
2942   // Reuse existing vector loop preheader for TC checks.
2943   // Note that new preheader block is generated for vector loop.
2944   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
2945   IRBuilder<> Builder(TCCheckBlock->getTerminator());
2946 
2947   // Generate code to check if the loop's trip count is less than VF * UF, or
2948   // equal to it in case a scalar epilogue is required; this implies that the
2949   // vector trip count is zero. This check also covers the case where adding one
2950   // to the backedge-taken count overflowed leading to an incorrect trip count
2951   // of zero. In this case we will also jump to the scalar loop.
2952   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
2953                                             : ICmpInst::ICMP_ULT;
2954 
2955   // If tail is to be folded, vector loop takes care of all iterations.
2956   Type *CountTy = Count->getType();
2957   Value *CheckMinIters = Builder.getFalse();
2958   Value *Step = createStepForVF(Builder, CountTy, VF, UF);
2959   if (!Cost->foldTailByMasking())
2960     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
2961   else if (VF.isScalable()) {
2962     // vscale is not necessarily a power-of-2, which means we cannot guarantee
2963     // an overflow to zero when updating induction variables and so an
2964     // additional overflow check is required before entering the vector loop.
2965 
2966     // Get the maximum unsigned value for the type.
2967     Value *MaxUIntTripCount =
2968         ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask());
2969     Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count);
2970 
2971     // Don't execute the vector loop if (UMax - n) < (VF * UF).
2972     CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, Step);
2973   }
2974   // Create new preheader for vector loop.
2975   LoopVectorPreHeader =
2976       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
2977                  "vector.ph");
2978 
2979   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
2980                                DT->getNode(Bypass)->getIDom()) &&
2981          "TC check is expected to dominate Bypass");
2982 
2983   // Update dominator for Bypass & LoopExit (if needed).
2984   DT->changeImmediateDominator(Bypass, TCCheckBlock);
2985   if (!Cost->requiresScalarEpilogue(VF))
2986     // If there is an epilogue which must run, there's no edge from the
2987     // middle block to exit blocks  and thus no need to update the immediate
2988     // dominator of the exit blocks.
2989     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
2990 
2991   ReplaceInstWithInst(
2992       TCCheckBlock->getTerminator(),
2993       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
2994   LoopBypassBlocks.push_back(TCCheckBlock);
2995 }
2996 
2997 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) {
2998 
2999   BasicBlock *const SCEVCheckBlock =
3000       RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock);
3001   if (!SCEVCheckBlock)
3002     return nullptr;
3003 
3004   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3005            (OptForSizeBasedOnProfile &&
3006             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3007          "Cannot SCEV check stride or overflow when optimizing for size");
3008 
3009 
3010   // Update dominator only if this is first RT check.
3011   if (LoopBypassBlocks.empty()) {
3012     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3013     if (!Cost->requiresScalarEpilogue(VF))
3014       // If there is an epilogue which must run, there's no edge from the
3015       // middle block to exit blocks  and thus no need to update the immediate
3016       // dominator of the exit blocks.
3017       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3018   }
3019 
3020   LoopBypassBlocks.push_back(SCEVCheckBlock);
3021   AddedSafetyChecks = true;
3022   return SCEVCheckBlock;
3023 }
3024 
3025 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) {
3026   // VPlan-native path does not do any analysis for runtime checks currently.
3027   if (EnableVPlanNativePath)
3028     return nullptr;
3029 
3030   BasicBlock *const MemCheckBlock =
3031       RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader);
3032 
3033   // Check if we generated code that checks in runtime if arrays overlap. We put
3034   // the checks into a separate block to make the more common case of few
3035   // elements faster.
3036   if (!MemCheckBlock)
3037     return nullptr;
3038 
3039   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3040     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3041            "Cannot emit memory checks when optimizing for size, unless forced "
3042            "to vectorize.");
3043     ORE->emit([&]() {
3044       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3045                                         OrigLoop->getStartLoc(),
3046                                         OrigLoop->getHeader())
3047              << "Code-size may be reduced by not forcing "
3048                 "vectorization, or by source-code modifications "
3049                 "eliminating the need for runtime checks "
3050                 "(e.g., adding 'restrict').";
3051     });
3052   }
3053 
3054   LoopBypassBlocks.push_back(MemCheckBlock);
3055 
3056   AddedSafetyChecks = true;
3057 
3058   // Only use noalias metadata when using memory checks guaranteeing no overlap
3059   // across all iterations.
3060   if (!Legal->getLAI()->getRuntimePointerChecking()->getDiffChecks()) {
3061     //  We currently don't use LoopVersioning for the actual loop cloning but we
3062     //  still use it to add the noalias metadata.
3063     LVer = std::make_unique<LoopVersioning>(
3064         *Legal->getLAI(),
3065         Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3066         DT, PSE.getSE());
3067     LVer->prepareNoAliasMetadata();
3068   }
3069   return MemCheckBlock;
3070 }
3071 
3072 void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3073   LoopScalarBody = OrigLoop->getHeader();
3074   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3075   assert(LoopVectorPreHeader && "Invalid loop structure");
3076   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3077   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3078          "multiple exit loop without required epilogue?");
3079 
3080   LoopMiddleBlock =
3081       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3082                  LI, nullptr, Twine(Prefix) + "middle.block");
3083   LoopScalarPreHeader =
3084       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3085                  nullptr, Twine(Prefix) + "scalar.ph");
3086 
3087   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3088 
3089   // Set up the middle block terminator.  Two cases:
3090   // 1) If we know that we must execute the scalar epilogue, emit an
3091   //    unconditional branch.
3092   // 2) Otherwise, we must have a single unique exit block (due to how we
3093   //    implement the multiple exit case).  In this case, set up a conditonal
3094   //    branch from the middle block to the loop scalar preheader, and the
3095   //    exit block.  completeLoopSkeleton will update the condition to use an
3096   //    iteration check, if required to decide whether to execute the remainder.
3097   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3098     BranchInst::Create(LoopScalarPreHeader) :
3099     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3100                        Builder.getTrue());
3101   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3102   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3103 
3104   // Update dominator for loop exit. During skeleton creation, only the vector
3105   // pre-header and the middle block are created. The vector loop is entirely
3106   // created during VPlan exection.
3107   if (!Cost->requiresScalarEpilogue(VF))
3108     // If there is an epilogue which must run, there's no edge from the
3109     // middle block to exit blocks  and thus no need to update the immediate
3110     // dominator of the exit blocks.
3111     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3112 }
3113 
3114 void InnerLoopVectorizer::createInductionResumeValues(
3115     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3116   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3117           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3118          "Inconsistent information about additional bypass.");
3119 
3120   Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
3121   assert(VectorTripCount && "Expected valid arguments");
3122   // We are going to resume the execution of the scalar loop.
3123   // Go over all of the induction variables that we found and fix the
3124   // PHIs that are left in the scalar version of the loop.
3125   // The starting values of PHI nodes depend on the counter of the last
3126   // iteration in the vectorized loop.
3127   // If we come from a bypass edge then we need to start from the original
3128   // start value.
3129   Instruction *OldInduction = Legal->getPrimaryInduction();
3130   for (auto &InductionEntry : Legal->getInductionVars()) {
3131     PHINode *OrigPhi = InductionEntry.first;
3132     InductionDescriptor II = InductionEntry.second;
3133 
3134     Value *&EndValue = IVEndValues[OrigPhi];
3135     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3136     if (OrigPhi == OldInduction) {
3137       // We know what the end value is.
3138       EndValue = VectorTripCount;
3139     } else {
3140       IRBuilder<> B(LoopVectorPreHeader->getTerminator());
3141 
3142       // Fast-math-flags propagate from the original induction instruction.
3143       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3144         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3145 
3146       Type *StepType = II.getStep()->getType();
3147       Instruction::CastOps CastOp =
3148           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3149       Value *VTC = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.vtc");
3150       Value *Step =
3151           CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3152       EndValue = emitTransformedIndex(B, VTC, II.getStartValue(), Step, II);
3153       EndValue->setName("ind.end");
3154 
3155       // Compute the end value for the additional bypass (if applicable).
3156       if (AdditionalBypass.first) {
3157         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3158         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3159                                          StepType, true);
3160         Value *Step =
3161             CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3162         VTC =
3163             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.vtc");
3164         EndValueFromAdditionalBypass =
3165             emitTransformedIndex(B, VTC, II.getStartValue(), Step, II);
3166         EndValueFromAdditionalBypass->setName("ind.end");
3167       }
3168     }
3169 
3170     // Create phi nodes to merge from the  backedge-taken check block.
3171     PHINode *BCResumeVal =
3172         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3173                         LoopScalarPreHeader->getTerminator());
3174     // Copy original phi DL over to the new one.
3175     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3176 
3177     // The new PHI merges the original incoming value, in case of a bypass,
3178     // or the value at the end of the vectorized loop.
3179     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3180 
3181     // Fix the scalar body counter (PHI node).
3182     // The old induction's phi node in the scalar body needs the truncated
3183     // value.
3184     for (BasicBlock *BB : LoopBypassBlocks)
3185       BCResumeVal->addIncoming(II.getStartValue(), BB);
3186 
3187     if (AdditionalBypass.first)
3188       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3189                                             EndValueFromAdditionalBypass);
3190 
3191     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3192   }
3193 }
3194 
3195 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) {
3196   // The trip counts should be cached by now.
3197   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
3198   Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
3199 
3200   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3201 
3202   // Add a check in the middle block to see if we have completed
3203   // all of the iterations in the first vector loop.  Three cases:
3204   // 1) If we require a scalar epilogue, there is no conditional branch as
3205   //    we unconditionally branch to the scalar preheader.  Do nothing.
3206   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3207   //    Thus if tail is to be folded, we know we don't need to run the
3208   //    remainder and we can use the previous value for the condition (true).
3209   // 3) Otherwise, construct a runtime check.
3210   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3211     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3212                                         Count, VectorTripCount, "cmp.n",
3213                                         LoopMiddleBlock->getTerminator());
3214 
3215     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3216     // of the corresponding compare because they may have ended up with
3217     // different line numbers and we want to avoid awkward line stepping while
3218     // debugging. Eg. if the compare has got a line number inside the loop.
3219     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3220     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3221   }
3222 
3223 #ifdef EXPENSIVE_CHECKS
3224   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3225 #endif
3226 
3227   return LoopVectorPreHeader;
3228 }
3229 
3230 std::pair<BasicBlock *, Value *>
3231 InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3232   /*
3233    In this function we generate a new loop. The new loop will contain
3234    the vectorized instructions while the old loop will continue to run the
3235    scalar remainder.
3236 
3237        [ ] <-- loop iteration number check.
3238     /   |
3239    /    v
3240   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3241   |  /  |
3242   | /   v
3243   ||   [ ]     <-- vector pre header.
3244   |/    |
3245   |     v
3246   |    [  ] \
3247   |    [  ]_|   <-- vector loop (created during VPlan execution).
3248   |     |
3249   |     v
3250   \   -[ ]   <--- middle-block.
3251    \/   |
3252    /\   v
3253    | ->[ ]     <--- new preheader.
3254    |    |
3255  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3256    |   [ ] \
3257    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3258     \   |
3259      \  v
3260       >[ ]     <-- exit block(s).
3261    ...
3262    */
3263 
3264   // Get the metadata of the original loop before it gets modified.
3265   MDNode *OrigLoopID = OrigLoop->getLoopID();
3266 
3267   // Workaround!  Compute the trip count of the original loop and cache it
3268   // before we start modifying the CFG.  This code has a systemic problem
3269   // wherein it tries to run analysis over partially constructed IR; this is
3270   // wrong, and not simply for SCEV.  The trip count of the original loop
3271   // simply happens to be prone to hitting this in practice.  In theory, we
3272   // can hit the same issue for any SCEV, or ValueTracking query done during
3273   // mutation.  See PR49900.
3274   getOrCreateTripCount(OrigLoop->getLoopPreheader());
3275 
3276   // Create an empty vector loop, and prepare basic blocks for the runtime
3277   // checks.
3278   createVectorLoopSkeleton("");
3279 
3280   // Now, compare the new count to zero. If it is zero skip the vector loop and
3281   // jump to the scalar loop. This check also covers the case where the
3282   // backedge-taken count is uint##_max: adding one to it will overflow leading
3283   // to an incorrect trip count of zero. In this (rare) case we will also jump
3284   // to the scalar loop.
3285   emitIterationCountCheck(LoopScalarPreHeader);
3286 
3287   // Generate the code to check any assumptions that we've made for SCEV
3288   // expressions.
3289   emitSCEVChecks(LoopScalarPreHeader);
3290 
3291   // Generate the code that checks in runtime if arrays overlap. We put the
3292   // checks into a separate block to make the more common case of few elements
3293   // faster.
3294   emitMemRuntimeChecks(LoopScalarPreHeader);
3295 
3296   // Emit phis for the new starting index of the scalar loop.
3297   createInductionResumeValues();
3298 
3299   return {completeLoopSkeleton(OrigLoopID), nullptr};
3300 }
3301 
3302 // Fix up external users of the induction variable. At this point, we are
3303 // in LCSSA form, with all external PHIs that use the IV having one input value,
3304 // coming from the remainder loop. We need those PHIs to also have a correct
3305 // value for the IV when arriving directly from the middle block.
3306 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3307                                        const InductionDescriptor &II,
3308                                        Value *VectorTripCount, Value *EndValue,
3309                                        BasicBlock *MiddleBlock,
3310                                        BasicBlock *VectorHeader, VPlan &Plan) {
3311   // There are two kinds of external IV usages - those that use the value
3312   // computed in the last iteration (the PHI) and those that use the penultimate
3313   // value (the value that feeds into the phi from the loop latch).
3314   // We allow both, but they, obviously, have different values.
3315 
3316   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3317 
3318   DenseMap<Value *, Value *> MissingVals;
3319 
3320   // An external user of the last iteration's value should see the value that
3321   // the remainder loop uses to initialize its own IV.
3322   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3323   for (User *U : PostInc->users()) {
3324     Instruction *UI = cast<Instruction>(U);
3325     if (!OrigLoop->contains(UI)) {
3326       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3327       MissingVals[UI] = EndValue;
3328     }
3329   }
3330 
3331   // An external user of the penultimate value need to see EndValue - Step.
3332   // The simplest way to get this is to recompute it from the constituent SCEVs,
3333   // that is Start + (Step * (CRD - 1)).
3334   for (User *U : OrigPhi->users()) {
3335     auto *UI = cast<Instruction>(U);
3336     if (!OrigLoop->contains(UI)) {
3337       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3338 
3339       IRBuilder<> B(MiddleBlock->getTerminator());
3340 
3341       // Fast-math-flags propagate from the original induction instruction.
3342       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3343         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3344 
3345       Value *CountMinusOne = B.CreateSub(
3346           VectorTripCount, ConstantInt::get(VectorTripCount->getType(), 1));
3347       Value *CMO =
3348           !II.getStep()->getType()->isIntegerTy()
3349               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3350                              II.getStep()->getType())
3351               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3352       CMO->setName("cast.cmo");
3353 
3354       Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(),
3355                                     VectorHeader->getTerminator());
3356       Value *Escape =
3357           emitTransformedIndex(B, CMO, II.getStartValue(), Step, II);
3358       Escape->setName("ind.escape");
3359       MissingVals[UI] = Escape;
3360     }
3361   }
3362 
3363   for (auto &I : MissingVals) {
3364     PHINode *PHI = cast<PHINode>(I.first);
3365     // One corner case we have to handle is two IVs "chasing" each-other,
3366     // that is %IV2 = phi [...], [ %IV1, %latch ]
3367     // In this case, if IV1 has an external use, we need to avoid adding both
3368     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3369     // don't already have an incoming value for the middle block.
3370     if (PHI->getBasicBlockIndex(MiddleBlock) == -1) {
3371       PHI->addIncoming(I.second, MiddleBlock);
3372       Plan.removeLiveOut(PHI);
3373     }
3374   }
3375 }
3376 
3377 namespace {
3378 
3379 struct CSEDenseMapInfo {
3380   static bool canHandle(const Instruction *I) {
3381     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3382            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3383   }
3384 
3385   static inline Instruction *getEmptyKey() {
3386     return DenseMapInfo<Instruction *>::getEmptyKey();
3387   }
3388 
3389   static inline Instruction *getTombstoneKey() {
3390     return DenseMapInfo<Instruction *>::getTombstoneKey();
3391   }
3392 
3393   static unsigned getHashValue(const Instruction *I) {
3394     assert(canHandle(I) && "Unknown instruction!");
3395     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3396                                                            I->value_op_end()));
3397   }
3398 
3399   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3400     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3401         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3402       return LHS == RHS;
3403     return LHS->isIdenticalTo(RHS);
3404   }
3405 };
3406 
3407 } // end anonymous namespace
3408 
3409 ///Perform cse of induction variable instructions.
3410 static void cse(BasicBlock *BB) {
3411   // Perform simple cse.
3412   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3413   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3414     if (!CSEDenseMapInfo::canHandle(&In))
3415       continue;
3416 
3417     // Check if we can replace this instruction with any of the
3418     // visited instructions.
3419     if (Instruction *V = CSEMap.lookup(&In)) {
3420       In.replaceAllUsesWith(V);
3421       In.eraseFromParent();
3422       continue;
3423     }
3424 
3425     CSEMap[&In] = &In;
3426   }
3427 }
3428 
3429 InstructionCost
3430 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3431                                               bool &NeedToScalarize) const {
3432   Function *F = CI->getCalledFunction();
3433   Type *ScalarRetTy = CI->getType();
3434   SmallVector<Type *, 4> Tys, ScalarTys;
3435   for (auto &ArgOp : CI->args())
3436     ScalarTys.push_back(ArgOp->getType());
3437 
3438   // Estimate cost of scalarized vector call. The source operands are assumed
3439   // to be vectors, so we need to extract individual elements from there,
3440   // execute VF scalar calls, and then gather the result into the vector return
3441   // value.
3442   InstructionCost ScalarCallCost =
3443       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3444   if (VF.isScalar())
3445     return ScalarCallCost;
3446 
3447   // Compute corresponding vector type for return value and arguments.
3448   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3449   for (Type *ScalarTy : ScalarTys)
3450     Tys.push_back(ToVectorTy(ScalarTy, VF));
3451 
3452   // Compute costs of unpacking argument values for the scalar calls and
3453   // packing the return values to a vector.
3454   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3455 
3456   InstructionCost Cost =
3457       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3458 
3459   // If we can't emit a vector call for this function, then the currently found
3460   // cost is the cost we need to return.
3461   NeedToScalarize = true;
3462   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3463   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3464 
3465   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3466     return Cost;
3467 
3468   // If the corresponding vector cost is cheaper, return its cost.
3469   InstructionCost VectorCallCost =
3470       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3471   if (VectorCallCost < Cost) {
3472     NeedToScalarize = false;
3473     Cost = VectorCallCost;
3474   }
3475   return Cost;
3476 }
3477 
3478 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3479   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3480     return Elt;
3481   return VectorType::get(Elt, VF);
3482 }
3483 
3484 InstructionCost
3485 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3486                                                    ElementCount VF) const {
3487   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3488   assert(ID && "Expected intrinsic call!");
3489   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3490   FastMathFlags FMF;
3491   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3492     FMF = FPMO->getFastMathFlags();
3493 
3494   SmallVector<const Value *> Arguments(CI->args());
3495   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3496   SmallVector<Type *> ParamTys;
3497   std::transform(FTy->param_begin(), FTy->param_end(),
3498                  std::back_inserter(ParamTys),
3499                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3500 
3501   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3502                                     dyn_cast<IntrinsicInst>(CI));
3503   return TTI.getIntrinsicInstrCost(CostAttrs,
3504                                    TargetTransformInfo::TCK_RecipThroughput);
3505 }
3506 
3507 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3508   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3509   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3510   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3511 }
3512 
3513 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3514   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3515   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3516   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3517 }
3518 
3519 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3520   // For every instruction `I` in MinBWs, truncate the operands, create a
3521   // truncated version of `I` and reextend its result. InstCombine runs
3522   // later and will remove any ext/trunc pairs.
3523   SmallPtrSet<Value *, 4> Erased;
3524   for (const auto &KV : Cost->getMinimalBitwidths()) {
3525     // If the value wasn't vectorized, we must maintain the original scalar
3526     // type. The absence of the value from State indicates that it
3527     // wasn't vectorized.
3528     // FIXME: Should not rely on getVPValue at this point.
3529     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3530     if (!State.hasAnyVectorValue(Def))
3531       continue;
3532     for (unsigned Part = 0; Part < UF; ++Part) {
3533       Value *I = State.get(Def, Part);
3534       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3535         continue;
3536       Type *OriginalTy = I->getType();
3537       Type *ScalarTruncatedTy =
3538           IntegerType::get(OriginalTy->getContext(), KV.second);
3539       auto *TruncatedTy = VectorType::get(
3540           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3541       if (TruncatedTy == OriginalTy)
3542         continue;
3543 
3544       IRBuilder<> B(cast<Instruction>(I));
3545       auto ShrinkOperand = [&](Value *V) -> Value * {
3546         if (auto *ZI = dyn_cast<ZExtInst>(V))
3547           if (ZI->getSrcTy() == TruncatedTy)
3548             return ZI->getOperand(0);
3549         return B.CreateZExtOrTrunc(V, TruncatedTy);
3550       };
3551 
3552       // The actual instruction modification depends on the instruction type,
3553       // unfortunately.
3554       Value *NewI = nullptr;
3555       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3556         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3557                              ShrinkOperand(BO->getOperand(1)));
3558 
3559         // Any wrapping introduced by shrinking this operation shouldn't be
3560         // considered undefined behavior. So, we can't unconditionally copy
3561         // arithmetic wrapping flags to NewI.
3562         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3563       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3564         NewI =
3565             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3566                          ShrinkOperand(CI->getOperand(1)));
3567       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3568         NewI = B.CreateSelect(SI->getCondition(),
3569                               ShrinkOperand(SI->getTrueValue()),
3570                               ShrinkOperand(SI->getFalseValue()));
3571       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3572         switch (CI->getOpcode()) {
3573         default:
3574           llvm_unreachable("Unhandled cast!");
3575         case Instruction::Trunc:
3576           NewI = ShrinkOperand(CI->getOperand(0));
3577           break;
3578         case Instruction::SExt:
3579           NewI = B.CreateSExtOrTrunc(
3580               CI->getOperand(0),
3581               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3582           break;
3583         case Instruction::ZExt:
3584           NewI = B.CreateZExtOrTrunc(
3585               CI->getOperand(0),
3586               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3587           break;
3588         }
3589       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3590         auto Elements0 =
3591             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
3592         auto *O0 = B.CreateZExtOrTrunc(
3593             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3594         auto Elements1 =
3595             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
3596         auto *O1 = B.CreateZExtOrTrunc(
3597             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3598 
3599         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3600       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3601         // Don't do anything with the operands, just extend the result.
3602         continue;
3603       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3604         auto Elements =
3605             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
3606         auto *O0 = B.CreateZExtOrTrunc(
3607             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3608         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3609         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3610       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3611         auto Elements =
3612             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
3613         auto *O0 = B.CreateZExtOrTrunc(
3614             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3615         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3616       } else {
3617         // If we don't know what to do, be conservative and don't do anything.
3618         continue;
3619       }
3620 
3621       // Lastly, extend the result.
3622       NewI->takeName(cast<Instruction>(I));
3623       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3624       I->replaceAllUsesWith(Res);
3625       cast<Instruction>(I)->eraseFromParent();
3626       Erased.insert(I);
3627       State.reset(Def, Res, Part);
3628     }
3629   }
3630 
3631   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3632   for (const auto &KV : Cost->getMinimalBitwidths()) {
3633     // If the value wasn't vectorized, we must maintain the original scalar
3634     // type. The absence of the value from State indicates that it
3635     // wasn't vectorized.
3636     // FIXME: Should not rely on getVPValue at this point.
3637     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3638     if (!State.hasAnyVectorValue(Def))
3639       continue;
3640     for (unsigned Part = 0; Part < UF; ++Part) {
3641       Value *I = State.get(Def, Part);
3642       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3643       if (Inst && Inst->use_empty()) {
3644         Value *NewI = Inst->getOperand(0);
3645         Inst->eraseFromParent();
3646         State.reset(Def, NewI, Part);
3647       }
3648     }
3649   }
3650 }
3651 
3652 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State,
3653                                             VPlan &Plan) {
3654   // Insert truncates and extends for any truncated instructions as hints to
3655   // InstCombine.
3656   if (VF.isVector())
3657     truncateToMinimalBitwidths(State);
3658 
3659   // Fix widened non-induction PHIs by setting up the PHI operands.
3660   if (EnableVPlanNativePath)
3661     fixNonInductionPHIs(Plan, State);
3662 
3663   // At this point every instruction in the original loop is widened to a
3664   // vector form. Now we need to fix the recurrences in the loop. These PHI
3665   // nodes are currently empty because we did not want to introduce cycles.
3666   // This is the second stage of vectorizing recurrences.
3667   fixCrossIterationPHIs(State);
3668 
3669   // Forget the original basic block.
3670   PSE.getSE()->forgetLoop(OrigLoop);
3671 
3672   VPBasicBlock *LatchVPBB = Plan.getVectorLoopRegion()->getExitingBasicBlock();
3673   Loop *VectorLoop = LI->getLoopFor(State.CFG.VPBB2IRBB[LatchVPBB]);
3674   if (Cost->requiresScalarEpilogue(VF)) {
3675     // No edge from the middle block to the unique exit block has been inserted
3676     // and there is nothing to fix from vector loop; phis should have incoming
3677     // from scalar loop only.
3678     Plan.clearLiveOuts();
3679   } else {
3680     // If we inserted an edge from the middle block to the unique exit block,
3681     // update uses outside the loop (phis) to account for the newly inserted
3682     // edge.
3683 
3684     // Fix-up external users of the induction variables.
3685     for (auto &Entry : Legal->getInductionVars())
3686       fixupIVUsers(Entry.first, Entry.second,
3687                    getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()),
3688                    IVEndValues[Entry.first], LoopMiddleBlock,
3689                    VectorLoop->getHeader(), Plan);
3690   }
3691 
3692   // Fix LCSSA phis not already fixed earlier. Extracts may need to be generated
3693   // in the exit block, so update the builder.
3694   State.Builder.SetInsertPoint(State.CFG.ExitBB->getFirstNonPHI());
3695   for (auto &KV : Plan.getLiveOuts())
3696     KV.second->fixPhi(Plan, State);
3697 
3698   for (Instruction *PI : PredicatedInstructions)
3699     sinkScalarOperands(&*PI);
3700 
3701   // Remove redundant induction instructions.
3702   cse(VectorLoop->getHeader());
3703 
3704   // Set/update profile weights for the vector and remainder loops as original
3705   // loop iterations are now distributed among them. Note that original loop
3706   // represented by LoopScalarBody becomes remainder loop after vectorization.
3707   //
3708   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3709   // end up getting slightly roughened result but that should be OK since
3710   // profile is not inherently precise anyway. Note also possible bypass of
3711   // vector code caused by legality checks is ignored, assigning all the weight
3712   // to the vector loop, optimistically.
3713   //
3714   // For scalable vectorization we can't know at compile time how many iterations
3715   // of the loop are handled in one vector iteration, so instead assume a pessimistic
3716   // vscale of '1'.
3717   setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop,
3718                                LI->getLoopFor(LoopScalarBody),
3719                                VF.getKnownMinValue() * UF);
3720 }
3721 
3722 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
3723   // In order to support recurrences we need to be able to vectorize Phi nodes.
3724   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3725   // stage #2: We now need to fix the recurrences by adding incoming edges to
3726   // the currently empty PHI nodes. At this point every instruction in the
3727   // original loop is widened to a vector form so we can use them to construct
3728   // the incoming edges.
3729   VPBasicBlock *Header =
3730       State.Plan->getVectorLoopRegion()->getEntryBasicBlock();
3731   for (VPRecipeBase &R : Header->phis()) {
3732     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
3733       fixReduction(ReductionPhi, State);
3734     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
3735       fixFirstOrderRecurrence(FOR, State);
3736   }
3737 }
3738 
3739 void InnerLoopVectorizer::fixFirstOrderRecurrence(
3740     VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) {
3741   // This is the second phase of vectorizing first-order recurrences. An
3742   // overview of the transformation is described below. Suppose we have the
3743   // following loop.
3744   //
3745   //   for (int i = 0; i < n; ++i)
3746   //     b[i] = a[i] - a[i - 1];
3747   //
3748   // There is a first-order recurrence on "a". For this loop, the shorthand
3749   // scalar IR looks like:
3750   //
3751   //   scalar.ph:
3752   //     s_init = a[-1]
3753   //     br scalar.body
3754   //
3755   //   scalar.body:
3756   //     i = phi [0, scalar.ph], [i+1, scalar.body]
3757   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3758   //     s2 = a[i]
3759   //     b[i] = s2 - s1
3760   //     br cond, scalar.body, ...
3761   //
3762   // In this example, s1 is a recurrence because it's value depends on the
3763   // previous iteration. In the first phase of vectorization, we created a
3764   // vector phi v1 for s1. We now complete the vectorization and produce the
3765   // shorthand vector IR shown below (for VF = 4, UF = 1).
3766   //
3767   //   vector.ph:
3768   //     v_init = vector(..., ..., ..., a[-1])
3769   //     br vector.body
3770   //
3771   //   vector.body
3772   //     i = phi [0, vector.ph], [i+4, vector.body]
3773   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
3774   //     v2 = a[i, i+1, i+2, i+3];
3775   //     v3 = vector(v1(3), v2(0, 1, 2))
3776   //     b[i, i+1, i+2, i+3] = v2 - v3
3777   //     br cond, vector.body, middle.block
3778   //
3779   //   middle.block:
3780   //     x = v2(3)
3781   //     br scalar.ph
3782   //
3783   //   scalar.ph:
3784   //     s_init = phi [x, middle.block], [a[-1], otherwise]
3785   //     br scalar.body
3786   //
3787   // After execution completes the vector loop, we extract the next value of
3788   // the recurrence (x) to use as the initial value in the scalar loop.
3789 
3790   // Extract the last vector element in the middle block. This will be the
3791   // initial value for the recurrence when jumping to the scalar loop.
3792   VPValue *PreviousDef = PhiR->getBackedgeValue();
3793   Value *Incoming = State.get(PreviousDef, UF - 1);
3794   auto *ExtractForScalar = Incoming;
3795   auto *IdxTy = Builder.getInt32Ty();
3796   if (VF.isVector()) {
3797     auto *One = ConstantInt::get(IdxTy, 1);
3798     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3799     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
3800     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
3801     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
3802                                                     "vector.recur.extract");
3803   }
3804   // Extract the second last element in the middle block if the
3805   // Phi is used outside the loop. We need to extract the phi itself
3806   // and not the last element (the phi update in the current iteration). This
3807   // will be the value when jumping to the exit block from the LoopMiddleBlock,
3808   // when the scalar loop is not run at all.
3809   Value *ExtractForPhiUsedOutsideLoop = nullptr;
3810   if (VF.isVector()) {
3811     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
3812     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
3813     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
3814         Incoming, Idx, "vector.recur.extract.for.phi");
3815   } else if (UF > 1)
3816     // When loop is unrolled without vectorizing, initialize
3817     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
3818     // of `Incoming`. This is analogous to the vectorized case above: extracting
3819     // the second last element when VF > 1.
3820     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
3821 
3822   // Fix the initial value of the original recurrence in the scalar loop.
3823   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
3824   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
3825   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
3826   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
3827   for (auto *BB : predecessors(LoopScalarPreHeader)) {
3828     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
3829     Start->addIncoming(Incoming, BB);
3830   }
3831 
3832   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
3833   Phi->setName("scalar.recur");
3834 
3835   // Finally, fix users of the recurrence outside the loop. The users will need
3836   // either the last value of the scalar recurrence or the last value of the
3837   // vector recurrence we extracted in the middle block. Since the loop is in
3838   // LCSSA form, we just need to find all the phi nodes for the original scalar
3839   // recurrence in the exit block, and then add an edge for the middle block.
3840   // Note that LCSSA does not imply single entry when the original scalar loop
3841   // had multiple exiting edges (as we always run the last iteration in the
3842   // scalar epilogue); in that case, there is no edge from middle to exit and
3843   // and thus no phis which needed updated.
3844   if (!Cost->requiresScalarEpilogue(VF))
3845     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
3846       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) {
3847         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
3848         State.Plan->removeLiveOut(&LCSSAPhi);
3849       }
3850 }
3851 
3852 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
3853                                        VPTransformState &State) {
3854   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
3855   // Get it's reduction variable descriptor.
3856   assert(Legal->isReductionVariable(OrigPhi) &&
3857          "Unable to find the reduction variable");
3858   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
3859 
3860   RecurKind RK = RdxDesc.getRecurrenceKind();
3861   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3862   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3863   setDebugLocFromInst(ReductionStartValue);
3864 
3865   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
3866   // This is the vector-clone of the value that leaves the loop.
3867   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
3868 
3869   // Wrap flags are in general invalid after vectorization, clear them.
3870   clearReductionWrapFlags(PhiR, State);
3871 
3872   // Before each round, move the insertion point right between
3873   // the PHIs and the values we are going to write.
3874   // This allows us to write both PHINodes and the extractelement
3875   // instructions.
3876   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3877 
3878   setDebugLocFromInst(LoopExitInst);
3879 
3880   Type *PhiTy = OrigPhi->getType();
3881 
3882   VPBasicBlock *LatchVPBB =
3883       PhiR->getParent()->getEnclosingLoopRegion()->getExitingBasicBlock();
3884   BasicBlock *VectorLoopLatch = State.CFG.VPBB2IRBB[LatchVPBB];
3885   // If tail is folded by masking, the vector value to leave the loop should be
3886   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
3887   // instead of the former. For an inloop reduction the reduction will already
3888   // be predicated, and does not need to be handled here.
3889   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
3890     for (unsigned Part = 0; Part < UF; ++Part) {
3891       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
3892       SelectInst *Sel = nullptr;
3893       for (User *U : VecLoopExitInst->users()) {
3894         if (isa<SelectInst>(U)) {
3895           assert(!Sel && "Reduction exit feeding two selects");
3896           Sel = cast<SelectInst>(U);
3897         } else
3898           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
3899       }
3900       assert(Sel && "Reduction exit feeds no select");
3901       State.reset(LoopExitInstDef, Sel, Part);
3902 
3903       if (isa<FPMathOperator>(Sel))
3904         Sel->setFastMathFlags(RdxDesc.getFastMathFlags());
3905 
3906       // If the target can create a predicated operator for the reduction at no
3907       // extra cost in the loop (for example a predicated vadd), it can be
3908       // cheaper for the select to remain in the loop than be sunk out of it,
3909       // and so use the select value for the phi instead of the old
3910       // LoopExitValue.
3911       if (PreferPredicatedReductionSelect ||
3912           TTI->preferPredicatedReductionSelect(
3913               RdxDesc.getOpcode(), PhiTy,
3914               TargetTransformInfo::ReductionFlags())) {
3915         auto *VecRdxPhi =
3916             cast<PHINode>(State.get(PhiR, Part));
3917         VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel);
3918       }
3919     }
3920   }
3921 
3922   // If the vector reduction can be performed in a smaller type, we truncate
3923   // then extend the loop exit value to enable InstCombine to evaluate the
3924   // entire expression in the smaller type.
3925   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
3926     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
3927     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
3928     Builder.SetInsertPoint(VectorLoopLatch->getTerminator());
3929     VectorParts RdxParts(UF);
3930     for (unsigned Part = 0; Part < UF; ++Part) {
3931       RdxParts[Part] = State.get(LoopExitInstDef, Part);
3932       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3933       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
3934                                         : Builder.CreateZExt(Trunc, VecTy);
3935       for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
3936         if (U != Trunc) {
3937           U->replaceUsesOfWith(RdxParts[Part], Extnd);
3938           RdxParts[Part] = Extnd;
3939         }
3940     }
3941     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3942     for (unsigned Part = 0; Part < UF; ++Part) {
3943       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3944       State.reset(LoopExitInstDef, RdxParts[Part], Part);
3945     }
3946   }
3947 
3948   // Reduce all of the unrolled parts into a single vector.
3949   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
3950   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
3951 
3952   // The middle block terminator has already been assigned a DebugLoc here (the
3953   // OrigLoop's single latch terminator). We want the whole middle block to
3954   // appear to execute on this line because: (a) it is all compiler generated,
3955   // (b) these instructions are always executed after evaluating the latch
3956   // conditional branch, and (c) other passes may add new predecessors which
3957   // terminate on this line. This is the easiest way to ensure we don't
3958   // accidentally cause an extra step back into the loop while debugging.
3959   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
3960   if (PhiR->isOrdered())
3961     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
3962   else {
3963     // Floating-point operations should have some FMF to enable the reduction.
3964     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
3965     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
3966     for (unsigned Part = 1; Part < UF; ++Part) {
3967       Value *RdxPart = State.get(LoopExitInstDef, Part);
3968       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
3969         ReducedPartRdx = Builder.CreateBinOp(
3970             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
3971       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
3972         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
3973                                            ReducedPartRdx, RdxPart);
3974       else
3975         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
3976     }
3977   }
3978 
3979   // Create the reduction after the loop. Note that inloop reductions create the
3980   // target reduction in the loop using a Reduction recipe.
3981   if (VF.isVector() && !PhiR->isInLoop()) {
3982     ReducedPartRdx =
3983         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
3984     // If the reduction can be performed in a smaller type, we need to extend
3985     // the reduction to the wider type before we branch to the original loop.
3986     if (PhiTy != RdxDesc.getRecurrenceType())
3987       ReducedPartRdx = RdxDesc.isSigned()
3988                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
3989                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
3990   }
3991 
3992   PHINode *ResumePhi =
3993       dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue());
3994 
3995   // Create a phi node that merges control-flow from the backedge-taken check
3996   // block and the middle block.
3997   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
3998                                         LoopScalarPreHeader->getTerminator());
3999 
4000   // If we are fixing reductions in the epilogue loop then we should already
4001   // have created a bc.merge.rdx Phi after the main vector body. Ensure that
4002   // we carry over the incoming values correctly.
4003   for (auto *Incoming : predecessors(LoopScalarPreHeader)) {
4004     if (Incoming == LoopMiddleBlock)
4005       BCBlockPhi->addIncoming(ReducedPartRdx, Incoming);
4006     else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming))
4007       BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming),
4008                               Incoming);
4009     else
4010       BCBlockPhi->addIncoming(ReductionStartValue, Incoming);
4011   }
4012 
4013   // Set the resume value for this reduction
4014   ReductionResumeValues.insert({&RdxDesc, BCBlockPhi});
4015 
4016   // If there were stores of the reduction value to a uniform memory address
4017   // inside the loop, create the final store here.
4018   if (StoreInst *SI = RdxDesc.IntermediateStore) {
4019     StoreInst *NewSI =
4020         Builder.CreateStore(ReducedPartRdx, SI->getPointerOperand());
4021     propagateMetadata(NewSI, SI);
4022 
4023     // If the reduction value is used in other places,
4024     // then let the code below create PHI's for that.
4025   }
4026 
4027   // Now, we need to fix the users of the reduction variable
4028   // inside and outside of the scalar remainder loop.
4029 
4030   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4031   // in the exit blocks.  See comment on analogous loop in
4032   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4033   if (!Cost->requiresScalarEpilogue(VF))
4034     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4035       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) {
4036         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4037         State.Plan->removeLiveOut(&LCSSAPhi);
4038       }
4039 
4040   // Fix the scalar loop reduction variable with the incoming reduction sum
4041   // from the vector body and from the backedge value.
4042   int IncomingEdgeBlockIdx =
4043       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4044   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4045   // Pick the other block.
4046   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4047   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4048   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4049 }
4050 
4051 void InnerLoopVectorizer::clearReductionWrapFlags(VPReductionPHIRecipe *PhiR,
4052                                                   VPTransformState &State) {
4053   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4054   RecurKind RK = RdxDesc.getRecurrenceKind();
4055   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4056     return;
4057 
4058   SmallVector<VPValue *, 8> Worklist;
4059   SmallPtrSet<VPValue *, 8> Visited;
4060   Worklist.push_back(PhiR);
4061   Visited.insert(PhiR);
4062 
4063   while (!Worklist.empty()) {
4064     VPValue *Cur = Worklist.pop_back_val();
4065     for (unsigned Part = 0; Part < UF; ++Part) {
4066       Value *V = State.get(Cur, Part);
4067       if (!isa<OverflowingBinaryOperator>(V))
4068         break;
4069       cast<Instruction>(V)->dropPoisonGeneratingFlags();
4070       }
4071 
4072       for (VPUser *U : Cur->users()) {
4073         auto *UserRecipe = dyn_cast<VPRecipeBase>(U);
4074         if (!UserRecipe)
4075           continue;
4076         for (VPValue *V : UserRecipe->definedValues())
4077           if (Visited.insert(V).second)
4078             Worklist.push_back(V);
4079       }
4080   }
4081 }
4082 
4083 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4084   // The basic block and loop containing the predicated instruction.
4085   auto *PredBB = PredInst->getParent();
4086   auto *VectorLoop = LI->getLoopFor(PredBB);
4087 
4088   // Initialize a worklist with the operands of the predicated instruction.
4089   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4090 
4091   // Holds instructions that we need to analyze again. An instruction may be
4092   // reanalyzed if we don't yet know if we can sink it or not.
4093   SmallVector<Instruction *, 8> InstsToReanalyze;
4094 
4095   // Returns true if a given use occurs in the predicated block. Phi nodes use
4096   // their operands in their corresponding predecessor blocks.
4097   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4098     auto *I = cast<Instruction>(U.getUser());
4099     BasicBlock *BB = I->getParent();
4100     if (auto *Phi = dyn_cast<PHINode>(I))
4101       BB = Phi->getIncomingBlock(
4102           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4103     return BB == PredBB;
4104   };
4105 
4106   // Iteratively sink the scalarized operands of the predicated instruction
4107   // into the block we created for it. When an instruction is sunk, it's
4108   // operands are then added to the worklist. The algorithm ends after one pass
4109   // through the worklist doesn't sink a single instruction.
4110   bool Changed;
4111   do {
4112     // Add the instructions that need to be reanalyzed to the worklist, and
4113     // reset the changed indicator.
4114     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4115     InstsToReanalyze.clear();
4116     Changed = false;
4117 
4118     while (!Worklist.empty()) {
4119       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4120 
4121       // We can't sink an instruction if it is a phi node, is not in the loop,
4122       // or may have side effects.
4123       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4124           I->mayHaveSideEffects())
4125         continue;
4126 
4127       // If the instruction is already in PredBB, check if we can sink its
4128       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4129       // sinking the scalar instruction I, hence it appears in PredBB; but it
4130       // may have failed to sink I's operands (recursively), which we try
4131       // (again) here.
4132       if (I->getParent() == PredBB) {
4133         Worklist.insert(I->op_begin(), I->op_end());
4134         continue;
4135       }
4136 
4137       // It's legal to sink the instruction if all its uses occur in the
4138       // predicated block. Otherwise, there's nothing to do yet, and we may
4139       // need to reanalyze the instruction.
4140       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4141         InstsToReanalyze.push_back(I);
4142         continue;
4143       }
4144 
4145       // Move the instruction to the beginning of the predicated block, and add
4146       // it's operands to the worklist.
4147       I->moveBefore(&*PredBB->getFirstInsertionPt());
4148       Worklist.insert(I->op_begin(), I->op_end());
4149 
4150       // The sinking may have enabled other instructions to be sunk, so we will
4151       // need to iterate.
4152       Changed = true;
4153     }
4154   } while (Changed);
4155 }
4156 
4157 void InnerLoopVectorizer::fixNonInductionPHIs(VPlan &Plan,
4158                                               VPTransformState &State) {
4159   auto Iter = depth_first(
4160       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(Plan.getEntry()));
4161   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
4162     for (VPRecipeBase &P : VPBB->phis()) {
4163       VPWidenPHIRecipe *VPPhi = dyn_cast<VPWidenPHIRecipe>(&P);
4164       if (!VPPhi)
4165         continue;
4166       PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4167       // Make sure the builder has a valid insert point.
4168       Builder.SetInsertPoint(NewPhi);
4169       for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4170         VPValue *Inc = VPPhi->getIncomingValue(i);
4171         VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4172         NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4173       }
4174     }
4175   }
4176 }
4177 
4178 bool InnerLoopVectorizer::useOrderedReductions(
4179     const RecurrenceDescriptor &RdxDesc) {
4180   return Cost->useOrderedReductions(RdxDesc);
4181 }
4182 
4183 /// A helper function for checking whether an integer division-related
4184 /// instruction may divide by zero (in which case it must be predicated if
4185 /// executed conditionally in the scalar code).
4186 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4187 /// Non-zero divisors that are non compile-time constants will not be
4188 /// converted into multiplication, so we will still end up scalarizing
4189 /// the division, but can do so w/o predication.
4190 static bool mayDivideByZero(Instruction &I) {
4191   assert((I.getOpcode() == Instruction::UDiv ||
4192           I.getOpcode() == Instruction::SDiv ||
4193           I.getOpcode() == Instruction::URem ||
4194           I.getOpcode() == Instruction::SRem) &&
4195          "Unexpected instruction");
4196   Value *Divisor = I.getOperand(1);
4197   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4198   return !CInt || CInt->isZero();
4199 }
4200 
4201 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4202                                                VPUser &ArgOperands,
4203                                                VPTransformState &State) {
4204   assert(!isa<DbgInfoIntrinsic>(I) &&
4205          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4206   setDebugLocFromInst(&I);
4207 
4208   Module *M = I.getParent()->getParent()->getParent();
4209   auto *CI = cast<CallInst>(&I);
4210 
4211   SmallVector<Type *, 4> Tys;
4212   for (Value *ArgOperand : CI->args())
4213     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4214 
4215   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4216 
4217   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4218   // version of the instruction.
4219   // Is it beneficial to perform intrinsic call compared to lib call?
4220   bool NeedToScalarize = false;
4221   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4222   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4223   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4224   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4225          "Instruction should be scalarized elsewhere.");
4226   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4227          "Either the intrinsic cost or vector call cost must be valid");
4228 
4229   for (unsigned Part = 0; Part < UF; ++Part) {
4230     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4231     SmallVector<Value *, 4> Args;
4232     for (auto &I : enumerate(ArgOperands.operands())) {
4233       // Some intrinsics have a scalar argument - don't replace it with a
4234       // vector.
4235       Value *Arg;
4236       if (!UseVectorIntrinsic ||
4237           !isVectorIntrinsicWithScalarOpAtArg(ID, I.index()))
4238         Arg = State.get(I.value(), Part);
4239       else
4240         Arg = State.get(I.value(), VPIteration(0, 0));
4241       if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I.index()))
4242         TysForDecl.push_back(Arg->getType());
4243       Args.push_back(Arg);
4244     }
4245 
4246     Function *VectorF;
4247     if (UseVectorIntrinsic) {
4248       // Use vector version of the intrinsic.
4249       if (VF.isVector())
4250         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4251       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4252       assert(VectorF && "Can't retrieve vector intrinsic.");
4253     } else {
4254       // Use vector version of the function call.
4255       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
4256 #ifndef NDEBUG
4257       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4258              "Can't create vector function.");
4259 #endif
4260         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4261     }
4262       SmallVector<OperandBundleDef, 1> OpBundles;
4263       CI->getOperandBundlesAsDefs(OpBundles);
4264       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4265 
4266       if (isa<FPMathOperator>(V))
4267         V->copyFastMathFlags(CI);
4268 
4269       State.set(Def, V, Part);
4270       addMetadata(V, &I);
4271   }
4272 }
4273 
4274 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
4275   // We should not collect Scalars more than once per VF. Right now, this
4276   // function is called from collectUniformsAndScalars(), which already does
4277   // this check. Collecting Scalars for VF=1 does not make any sense.
4278   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
4279          "This function should not be visited twice for the same VF");
4280 
4281   // This avoids any chances of creating a REPLICATE recipe during planning
4282   // since that would result in generation of scalarized code during execution,
4283   // which is not supported for scalable vectors.
4284   if (VF.isScalable()) {
4285     Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end());
4286     return;
4287   }
4288 
4289   SmallSetVector<Instruction *, 8> Worklist;
4290 
4291   // These sets are used to seed the analysis with pointers used by memory
4292   // accesses that will remain scalar.
4293   SmallSetVector<Instruction *, 8> ScalarPtrs;
4294   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4295   auto *Latch = TheLoop->getLoopLatch();
4296 
4297   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4298   // The pointer operands of loads and stores will be scalar as long as the
4299   // memory access is not a gather or scatter operation. The value operand of a
4300   // store will remain scalar if the store is scalarized.
4301   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4302     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4303     assert(WideningDecision != CM_Unknown &&
4304            "Widening decision should be ready at this moment");
4305     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4306       if (Ptr == Store->getValueOperand())
4307         return WideningDecision == CM_Scalarize;
4308     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4309            "Ptr is neither a value or pointer operand");
4310     return WideningDecision != CM_GatherScatter;
4311   };
4312 
4313   // A helper that returns true if the given value is a bitcast or
4314   // getelementptr instruction contained in the loop.
4315   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4316     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4317             isa<GetElementPtrInst>(V)) &&
4318            !TheLoop->isLoopInvariant(V);
4319   };
4320 
4321   // A helper that evaluates a memory access's use of a pointer. If the use will
4322   // be a scalar use and the pointer is only used by memory accesses, we place
4323   // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4324   // PossibleNonScalarPtrs.
4325   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4326     // We only care about bitcast and getelementptr instructions contained in
4327     // the loop.
4328     if (!isLoopVaryingBitCastOrGEP(Ptr))
4329       return;
4330 
4331     // If the pointer has already been identified as scalar (e.g., if it was
4332     // also identified as uniform), there's nothing to do.
4333     auto *I = cast<Instruction>(Ptr);
4334     if (Worklist.count(I))
4335       return;
4336 
4337     // If the use of the pointer will be a scalar use, and all users of the
4338     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4339     // place the pointer in PossibleNonScalarPtrs.
4340     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4341           return isa<LoadInst>(U) || isa<StoreInst>(U);
4342         }))
4343       ScalarPtrs.insert(I);
4344     else
4345       PossibleNonScalarPtrs.insert(I);
4346   };
4347 
4348   // We seed the scalars analysis with three classes of instructions: (1)
4349   // instructions marked uniform-after-vectorization and (2) bitcast,
4350   // getelementptr and (pointer) phi instructions used by memory accesses
4351   // requiring a scalar use.
4352   //
4353   // (1) Add to the worklist all instructions that have been identified as
4354   // uniform-after-vectorization.
4355   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4356 
4357   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4358   // memory accesses requiring a scalar use. The pointer operands of loads and
4359   // stores will be scalar as long as the memory accesses is not a gather or
4360   // scatter operation. The value operand of a store will remain scalar if the
4361   // store is scalarized.
4362   for (auto *BB : TheLoop->blocks())
4363     for (auto &I : *BB) {
4364       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4365         evaluatePtrUse(Load, Load->getPointerOperand());
4366       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4367         evaluatePtrUse(Store, Store->getPointerOperand());
4368         evaluatePtrUse(Store, Store->getValueOperand());
4369       }
4370     }
4371   for (auto *I : ScalarPtrs)
4372     if (!PossibleNonScalarPtrs.count(I)) {
4373       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4374       Worklist.insert(I);
4375     }
4376 
4377   // Insert the forced scalars.
4378   // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector
4379   // induction variable when the PHI user is scalarized.
4380   auto ForcedScalar = ForcedScalars.find(VF);
4381   if (ForcedScalar != ForcedScalars.end())
4382     for (auto *I : ForcedScalar->second)
4383       Worklist.insert(I);
4384 
4385   // Expand the worklist by looking through any bitcasts and getelementptr
4386   // instructions we've already identified as scalar. This is similar to the
4387   // expansion step in collectLoopUniforms(); however, here we're only
4388   // expanding to include additional bitcasts and getelementptr instructions.
4389   unsigned Idx = 0;
4390   while (Idx != Worklist.size()) {
4391     Instruction *Dst = Worklist[Idx++];
4392     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4393       continue;
4394     auto *Src = cast<Instruction>(Dst->getOperand(0));
4395     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4396           auto *J = cast<Instruction>(U);
4397           return !TheLoop->contains(J) || Worklist.count(J) ||
4398                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4399                   isScalarUse(J, Src));
4400         })) {
4401       Worklist.insert(Src);
4402       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4403     }
4404   }
4405 
4406   // An induction variable will remain scalar if all users of the induction
4407   // variable and induction variable update remain scalar.
4408   for (auto &Induction : Legal->getInductionVars()) {
4409     auto *Ind = Induction.first;
4410     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4411 
4412     // If tail-folding is applied, the primary induction variable will be used
4413     // to feed a vector compare.
4414     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4415       continue;
4416 
4417     // Returns true if \p Indvar is a pointer induction that is used directly by
4418     // load/store instruction \p I.
4419     auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
4420                                               Instruction *I) {
4421       return Induction.second.getKind() ==
4422                  InductionDescriptor::IK_PtrInduction &&
4423              (isa<LoadInst>(I) || isa<StoreInst>(I)) &&
4424              Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar);
4425     };
4426 
4427     // Determine if all users of the induction variable are scalar after
4428     // vectorization.
4429     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4430       auto *I = cast<Instruction>(U);
4431       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4432              IsDirectLoadStoreFromPtrIndvar(Ind, I);
4433     });
4434     if (!ScalarInd)
4435       continue;
4436 
4437     // Determine if all users of the induction variable update instruction are
4438     // scalar after vectorization.
4439     auto ScalarIndUpdate =
4440         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4441           auto *I = cast<Instruction>(U);
4442           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4443                  IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
4444         });
4445     if (!ScalarIndUpdate)
4446       continue;
4447 
4448     // The induction variable and its update instruction will remain scalar.
4449     Worklist.insert(Ind);
4450     Worklist.insert(IndUpdate);
4451     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4452     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4453                       << "\n");
4454   }
4455 
4456   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4457 }
4458 
4459 bool LoopVectorizationCostModel::isScalarWithPredication(
4460     Instruction *I, ElementCount VF) const {
4461   if (!blockNeedsPredicationForAnyReason(I->getParent()))
4462     return false;
4463   switch(I->getOpcode()) {
4464   default:
4465     break;
4466   case Instruction::Load:
4467   case Instruction::Store: {
4468     if (!Legal->isMaskRequired(I))
4469       return false;
4470     auto *Ptr = getLoadStorePointerOperand(I);
4471     auto *Ty = getLoadStoreType(I);
4472     Type *VTy = Ty;
4473     if (VF.isVector())
4474       VTy = VectorType::get(Ty, VF);
4475     const Align Alignment = getLoadStoreAlignment(I);
4476     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4477                                 TTI.isLegalMaskedGather(VTy, Alignment))
4478                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4479                                 TTI.isLegalMaskedScatter(VTy, Alignment));
4480   }
4481   case Instruction::UDiv:
4482   case Instruction::SDiv:
4483   case Instruction::SRem:
4484   case Instruction::URem:
4485     return mayDivideByZero(*I);
4486   }
4487   return false;
4488 }
4489 
4490 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
4491     Instruction *I, ElementCount VF) {
4492   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4493   assert(getWideningDecision(I, VF) == CM_Unknown &&
4494          "Decision should not be set yet.");
4495   auto *Group = getInterleavedAccessGroup(I);
4496   assert(Group && "Must have a group.");
4497 
4498   // If the instruction's allocated size doesn't equal it's type size, it
4499   // requires padding and will be scalarized.
4500   auto &DL = I->getModule()->getDataLayout();
4501   auto *ScalarTy = getLoadStoreType(I);
4502   if (hasIrregularType(ScalarTy, DL))
4503     return false;
4504 
4505   // If the group involves a non-integral pointer, we may not be able to
4506   // losslessly cast all values to a common type.
4507   unsigned InterleaveFactor = Group->getFactor();
4508   bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy);
4509   for (unsigned i = 0; i < InterleaveFactor; i++) {
4510     Instruction *Member = Group->getMember(i);
4511     if (!Member)
4512       continue;
4513     auto *MemberTy = getLoadStoreType(Member);
4514     bool MemberNI = DL.isNonIntegralPointerType(MemberTy);
4515     // Don't coerce non-integral pointers to integers or vice versa.
4516     if (MemberNI != ScalarNI) {
4517       // TODO: Consider adding special nullptr value case here
4518       return false;
4519     } else if (MemberNI && ScalarNI &&
4520                ScalarTy->getPointerAddressSpace() !=
4521                MemberTy->getPointerAddressSpace()) {
4522       return false;
4523     }
4524   }
4525 
4526   // Check if masking is required.
4527   // A Group may need masking for one of two reasons: it resides in a block that
4528   // needs predication, or it was decided to use masking to deal with gaps
4529   // (either a gap at the end of a load-access that may result in a speculative
4530   // load, or any gaps in a store-access).
4531   bool PredicatedAccessRequiresMasking =
4532       blockNeedsPredicationForAnyReason(I->getParent()) &&
4533       Legal->isMaskRequired(I);
4534   bool LoadAccessWithGapsRequiresEpilogMasking =
4535       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
4536       !isScalarEpilogueAllowed();
4537   bool StoreAccessWithGapsRequiresMasking =
4538       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
4539   if (!PredicatedAccessRequiresMasking &&
4540       !LoadAccessWithGapsRequiresEpilogMasking &&
4541       !StoreAccessWithGapsRequiresMasking)
4542     return true;
4543 
4544   // If masked interleaving is required, we expect that the user/target had
4545   // enabled it, because otherwise it either wouldn't have been created or
4546   // it should have been invalidated by the CostModel.
4547   assert(useMaskedInterleavedAccesses(TTI) &&
4548          "Masked interleave-groups for predicated accesses are not enabled.");
4549 
4550   if (Group->isReverse())
4551     return false;
4552 
4553   auto *Ty = getLoadStoreType(I);
4554   const Align Alignment = getLoadStoreAlignment(I);
4555   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4556                           : TTI.isLegalMaskedStore(Ty, Alignment);
4557 }
4558 
4559 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
4560     Instruction *I, ElementCount VF) {
4561   // Get and ensure we have a valid memory instruction.
4562   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
4563 
4564   auto *Ptr = getLoadStorePointerOperand(I);
4565   auto *ScalarTy = getLoadStoreType(I);
4566 
4567   // In order to be widened, the pointer should be consecutive, first of all.
4568   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
4569     return false;
4570 
4571   // If the instruction is a store located in a predicated block, it will be
4572   // scalarized.
4573   if (isScalarWithPredication(I, VF))
4574     return false;
4575 
4576   // If the instruction's allocated size doesn't equal it's type size, it
4577   // requires padding and will be scalarized.
4578   auto &DL = I->getModule()->getDataLayout();
4579   if (hasIrregularType(ScalarTy, DL))
4580     return false;
4581 
4582   return true;
4583 }
4584 
4585 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
4586   // We should not collect Uniforms more than once per VF. Right now,
4587   // this function is called from collectUniformsAndScalars(), which
4588   // already does this check. Collecting Uniforms for VF=1 does not make any
4589   // sense.
4590 
4591   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
4592          "This function should not be visited twice for the same VF");
4593 
4594   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4595   // not analyze again.  Uniforms.count(VF) will return 1.
4596   Uniforms[VF].clear();
4597 
4598   // We now know that the loop is vectorizable!
4599   // Collect instructions inside the loop that will remain uniform after
4600   // vectorization.
4601 
4602   // Global values, params and instructions outside of current loop are out of
4603   // scope.
4604   auto isOutOfScope = [&](Value *V) -> bool {
4605     Instruction *I = dyn_cast<Instruction>(V);
4606     return (!I || !TheLoop->contains(I));
4607   };
4608 
4609   // Worklist containing uniform instructions demanding lane 0.
4610   SetVector<Instruction *> Worklist;
4611   BasicBlock *Latch = TheLoop->getLoopLatch();
4612 
4613   // Add uniform instructions demanding lane 0 to the worklist. Instructions
4614   // that are scalar with predication must not be considered uniform after
4615   // vectorization, because that would create an erroneous replicating region
4616   // where only a single instance out of VF should be formed.
4617   // TODO: optimize such seldom cases if found important, see PR40816.
4618   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
4619     if (isOutOfScope(I)) {
4620       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
4621                         << *I << "\n");
4622       return;
4623     }
4624     if (isScalarWithPredication(I, VF)) {
4625       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
4626                         << *I << "\n");
4627       return;
4628     }
4629     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
4630     Worklist.insert(I);
4631   };
4632 
4633   // Start with the conditional branch. If the branch condition is an
4634   // instruction contained in the loop that is only used by the branch, it is
4635   // uniform.
4636   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
4637   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
4638     addToWorklistIfAllowed(Cmp);
4639 
4640   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
4641     InstWidening WideningDecision = getWideningDecision(I, VF);
4642     assert(WideningDecision != CM_Unknown &&
4643            "Widening decision should be ready at this moment");
4644 
4645     // A uniform memory op is itself uniform.  We exclude uniform stores
4646     // here as they demand the last lane, not the first one.
4647     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
4648       assert(WideningDecision == CM_Scalarize);
4649       return true;
4650     }
4651 
4652     return (WideningDecision == CM_Widen ||
4653             WideningDecision == CM_Widen_Reverse ||
4654             WideningDecision == CM_Interleave);
4655   };
4656 
4657 
4658   // Returns true if Ptr is the pointer operand of a memory access instruction
4659   // I, and I is known to not require scalarization.
4660   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
4661     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
4662   };
4663 
4664   // Holds a list of values which are known to have at least one uniform use.
4665   // Note that there may be other uses which aren't uniform.  A "uniform use"
4666   // here is something which only demands lane 0 of the unrolled iterations;
4667   // it does not imply that all lanes produce the same value (e.g. this is not
4668   // the usual meaning of uniform)
4669   SetVector<Value *> HasUniformUse;
4670 
4671   // Scan the loop for instructions which are either a) known to have only
4672   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
4673   for (auto *BB : TheLoop->blocks())
4674     for (auto &I : *BB) {
4675       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
4676         switch (II->getIntrinsicID()) {
4677         case Intrinsic::sideeffect:
4678         case Intrinsic::experimental_noalias_scope_decl:
4679         case Intrinsic::assume:
4680         case Intrinsic::lifetime_start:
4681         case Intrinsic::lifetime_end:
4682           if (TheLoop->hasLoopInvariantOperands(&I))
4683             addToWorklistIfAllowed(&I);
4684           break;
4685         default:
4686           break;
4687         }
4688       }
4689 
4690       // ExtractValue instructions must be uniform, because the operands are
4691       // known to be loop-invariant.
4692       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
4693         assert(isOutOfScope(EVI->getAggregateOperand()) &&
4694                "Expected aggregate value to be loop invariant");
4695         addToWorklistIfAllowed(EVI);
4696         continue;
4697       }
4698 
4699       // If there's no pointer operand, there's nothing to do.
4700       auto *Ptr = getLoadStorePointerOperand(&I);
4701       if (!Ptr)
4702         continue;
4703 
4704       // A uniform memory op is itself uniform.  We exclude uniform stores
4705       // here as they demand the last lane, not the first one.
4706       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
4707         addToWorklistIfAllowed(&I);
4708 
4709       if (isUniformDecision(&I, VF)) {
4710         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
4711         HasUniformUse.insert(Ptr);
4712       }
4713     }
4714 
4715   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
4716   // demanding) users.  Since loops are assumed to be in LCSSA form, this
4717   // disallows uses outside the loop as well.
4718   for (auto *V : HasUniformUse) {
4719     if (isOutOfScope(V))
4720       continue;
4721     auto *I = cast<Instruction>(V);
4722     auto UsersAreMemAccesses =
4723       llvm::all_of(I->users(), [&](User *U) -> bool {
4724         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
4725       });
4726     if (UsersAreMemAccesses)
4727       addToWorklistIfAllowed(I);
4728   }
4729 
4730   // Expand Worklist in topological order: whenever a new instruction
4731   // is added , its users should be already inside Worklist.  It ensures
4732   // a uniform instruction will only be used by uniform instructions.
4733   unsigned idx = 0;
4734   while (idx != Worklist.size()) {
4735     Instruction *I = Worklist[idx++];
4736 
4737     for (auto OV : I->operand_values()) {
4738       // isOutOfScope operands cannot be uniform instructions.
4739       if (isOutOfScope(OV))
4740         continue;
4741       // First order recurrence Phi's should typically be considered
4742       // non-uniform.
4743       auto *OP = dyn_cast<PHINode>(OV);
4744       if (OP && Legal->isFirstOrderRecurrence(OP))
4745         continue;
4746       // If all the users of the operand are uniform, then add the
4747       // operand into the uniform worklist.
4748       auto *OI = cast<Instruction>(OV);
4749       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
4750             auto *J = cast<Instruction>(U);
4751             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
4752           }))
4753         addToWorklistIfAllowed(OI);
4754     }
4755   }
4756 
4757   // For an instruction to be added into Worklist above, all its users inside
4758   // the loop should also be in Worklist. However, this condition cannot be
4759   // true for phi nodes that form a cyclic dependence. We must process phi
4760   // nodes separately. An induction variable will remain uniform if all users
4761   // of the induction variable and induction variable update remain uniform.
4762   // The code below handles both pointer and non-pointer induction variables.
4763   for (auto &Induction : Legal->getInductionVars()) {
4764     auto *Ind = Induction.first;
4765     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4766 
4767     // Determine if all users of the induction variable are uniform after
4768     // vectorization.
4769     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4770       auto *I = cast<Instruction>(U);
4771       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4772              isVectorizedMemAccessUse(I, Ind);
4773     });
4774     if (!UniformInd)
4775       continue;
4776 
4777     // Determine if all users of the induction variable update instruction are
4778     // uniform after vectorization.
4779     auto UniformIndUpdate =
4780         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4781           auto *I = cast<Instruction>(U);
4782           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4783                  isVectorizedMemAccessUse(I, IndUpdate);
4784         });
4785     if (!UniformIndUpdate)
4786       continue;
4787 
4788     // The induction variable and its update instruction will remain uniform.
4789     addToWorklistIfAllowed(Ind);
4790     addToWorklistIfAllowed(IndUpdate);
4791   }
4792 
4793   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
4794 }
4795 
4796 bool LoopVectorizationCostModel::runtimeChecksRequired() {
4797   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
4798 
4799   if (Legal->getRuntimePointerChecking()->Need) {
4800     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
4801         "runtime pointer checks needed. Enable vectorization of this "
4802         "loop with '#pragma clang loop vectorize(enable)' when "
4803         "compiling with -Os/-Oz",
4804         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4805     return true;
4806   }
4807 
4808   if (!PSE.getPredicate().isAlwaysTrue()) {
4809     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
4810         "runtime SCEV checks needed. Enable vectorization of this "
4811         "loop with '#pragma clang loop vectorize(enable)' when "
4812         "compiling with -Os/-Oz",
4813         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4814     return true;
4815   }
4816 
4817   // FIXME: Avoid specializing for stride==1 instead of bailing out.
4818   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
4819     reportVectorizationFailure("Runtime stride check for small trip count",
4820         "runtime stride == 1 checks needed. Enable vectorization of "
4821         "this loop without such check by compiling with -Os/-Oz",
4822         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4823     return true;
4824   }
4825 
4826   return false;
4827 }
4828 
4829 ElementCount
4830 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
4831   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
4832     return ElementCount::getScalable(0);
4833 
4834   if (Hints->isScalableVectorizationDisabled()) {
4835     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
4836                             "ScalableVectorizationDisabled", ORE, TheLoop);
4837     return ElementCount::getScalable(0);
4838   }
4839 
4840   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
4841 
4842   auto MaxScalableVF = ElementCount::getScalable(
4843       std::numeric_limits<ElementCount::ScalarTy>::max());
4844 
4845   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
4846   // FIXME: While for scalable vectors this is currently sufficient, this should
4847   // be replaced by a more detailed mechanism that filters out specific VFs,
4848   // instead of invalidating vectorization for a whole set of VFs based on the
4849   // MaxVF.
4850 
4851   // Disable scalable vectorization if the loop contains unsupported reductions.
4852   if (!canVectorizeReductions(MaxScalableVF)) {
4853     reportVectorizationInfo(
4854         "Scalable vectorization not supported for the reduction "
4855         "operations found in this loop.",
4856         "ScalableVFUnfeasible", ORE, TheLoop);
4857     return ElementCount::getScalable(0);
4858   }
4859 
4860   // Disable scalable vectorization if the loop contains any instructions
4861   // with element types not supported for scalable vectors.
4862   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
4863         return !Ty->isVoidTy() &&
4864                !this->TTI.isElementTypeLegalForScalableVector(Ty);
4865       })) {
4866     reportVectorizationInfo("Scalable vectorization is not supported "
4867                             "for all element types found in this loop.",
4868                             "ScalableVFUnfeasible", ORE, TheLoop);
4869     return ElementCount::getScalable(0);
4870   }
4871 
4872   if (Legal->isSafeForAnyVectorWidth())
4873     return MaxScalableVF;
4874 
4875   // Limit MaxScalableVF by the maximum safe dependence distance.
4876   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
4877   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange))
4878     MaxVScale =
4879         TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
4880   MaxScalableVF = ElementCount::getScalable(
4881       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
4882   if (!MaxScalableVF)
4883     reportVectorizationInfo(
4884         "Max legal vector width too small, scalable vectorization "
4885         "unfeasible.",
4886         "ScalableVFUnfeasible", ORE, TheLoop);
4887 
4888   return MaxScalableVF;
4889 }
4890 
4891 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
4892     unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) {
4893   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
4894   unsigned SmallestType, WidestType;
4895   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
4896 
4897   // Get the maximum safe dependence distance in bits computed by LAA.
4898   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
4899   // the memory accesses that is most restrictive (involved in the smallest
4900   // dependence distance).
4901   unsigned MaxSafeElements =
4902       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
4903 
4904   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
4905   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
4906 
4907   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
4908                     << ".\n");
4909   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
4910                     << ".\n");
4911 
4912   // First analyze the UserVF, fall back if the UserVF should be ignored.
4913   if (UserVF) {
4914     auto MaxSafeUserVF =
4915         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
4916 
4917     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
4918       // If `VF=vscale x N` is safe, then so is `VF=N`
4919       if (UserVF.isScalable())
4920         return FixedScalableVFPair(
4921             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
4922       else
4923         return UserVF;
4924     }
4925 
4926     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
4927 
4928     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
4929     // is better to ignore the hint and let the compiler choose a suitable VF.
4930     if (!UserVF.isScalable()) {
4931       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4932                         << " is unsafe, clamping to max safe VF="
4933                         << MaxSafeFixedVF << ".\n");
4934       ORE->emit([&]() {
4935         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4936                                           TheLoop->getStartLoc(),
4937                                           TheLoop->getHeader())
4938                << "User-specified vectorization factor "
4939                << ore::NV("UserVectorizationFactor", UserVF)
4940                << " is unsafe, clamping to maximum safe vectorization factor "
4941                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
4942       });
4943       return MaxSafeFixedVF;
4944     }
4945 
4946     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
4947       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4948                         << " is ignored because scalable vectors are not "
4949                            "available.\n");
4950       ORE->emit([&]() {
4951         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4952                                           TheLoop->getStartLoc(),
4953                                           TheLoop->getHeader())
4954                << "User-specified vectorization factor "
4955                << ore::NV("UserVectorizationFactor", UserVF)
4956                << " is ignored because the target does not support scalable "
4957                   "vectors. The compiler will pick a more suitable value.";
4958       });
4959     } else {
4960       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4961                         << " is unsafe. Ignoring scalable UserVF.\n");
4962       ORE->emit([&]() {
4963         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4964                                           TheLoop->getStartLoc(),
4965                                           TheLoop->getHeader())
4966                << "User-specified vectorization factor "
4967                << ore::NV("UserVectorizationFactor", UserVF)
4968                << " is unsafe. Ignoring the hint to let the compiler pick a "
4969                   "more suitable value.";
4970       });
4971     }
4972   }
4973 
4974   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
4975                     << " / " << WidestType << " bits.\n");
4976 
4977   FixedScalableVFPair Result(ElementCount::getFixed(1),
4978                              ElementCount::getScalable(0));
4979   if (auto MaxVF =
4980           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
4981                                   MaxSafeFixedVF, FoldTailByMasking))
4982     Result.FixedVF = MaxVF;
4983 
4984   if (auto MaxVF =
4985           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
4986                                   MaxSafeScalableVF, FoldTailByMasking))
4987     if (MaxVF.isScalable()) {
4988       Result.ScalableVF = MaxVF;
4989       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
4990                         << "\n");
4991     }
4992 
4993   return Result;
4994 }
4995 
4996 FixedScalableVFPair
4997 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
4998   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
4999     // TODO: It may by useful to do since it's still likely to be dynamically
5000     // uniform if the target can skip.
5001     reportVectorizationFailure(
5002         "Not inserting runtime ptr check for divergent target",
5003         "runtime pointer checks needed. Not enabled for divergent target",
5004         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5005     return FixedScalableVFPair::getNone();
5006   }
5007 
5008   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5009   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5010   if (TC == 1) {
5011     reportVectorizationFailure("Single iteration (non) loop",
5012         "loop trip count is one, irrelevant for vectorization",
5013         "SingleIterationLoop", ORE, TheLoop);
5014     return FixedScalableVFPair::getNone();
5015   }
5016 
5017   switch (ScalarEpilogueStatus) {
5018   case CM_ScalarEpilogueAllowed:
5019     return computeFeasibleMaxVF(TC, UserVF, false);
5020   case CM_ScalarEpilogueNotAllowedUsePredicate:
5021     LLVM_FALLTHROUGH;
5022   case CM_ScalarEpilogueNotNeededUsePredicate:
5023     LLVM_DEBUG(
5024         dbgs() << "LV: vector predicate hint/switch found.\n"
5025                << "LV: Not allowing scalar epilogue, creating predicated "
5026                << "vector loop.\n");
5027     break;
5028   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5029     // fallthrough as a special case of OptForSize
5030   case CM_ScalarEpilogueNotAllowedOptSize:
5031     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5032       LLVM_DEBUG(
5033           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5034     else
5035       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5036                         << "count.\n");
5037 
5038     // Bail if runtime checks are required, which are not good when optimising
5039     // for size.
5040     if (runtimeChecksRequired())
5041       return FixedScalableVFPair::getNone();
5042 
5043     break;
5044   }
5045 
5046   // The only loops we can vectorize without a scalar epilogue, are loops with
5047   // a bottom-test and a single exiting block. We'd have to handle the fact
5048   // that not every instruction executes on the last iteration.  This will
5049   // require a lane mask which varies through the vector loop body.  (TODO)
5050   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5051     // If there was a tail-folding hint/switch, but we can't fold the tail by
5052     // masking, fallback to a vectorization with a scalar epilogue.
5053     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5054       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5055                            "scalar epilogue instead.\n");
5056       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5057       return computeFeasibleMaxVF(TC, UserVF, false);
5058     }
5059     return FixedScalableVFPair::getNone();
5060   }
5061 
5062   // Now try the tail folding
5063 
5064   // Invalidate interleave groups that require an epilogue if we can't mask
5065   // the interleave-group.
5066   if (!useMaskedInterleavedAccesses(TTI)) {
5067     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5068            "No decisions should have been taken at this point");
5069     // Note: There is no need to invalidate any cost modeling decisions here, as
5070     // non where taken so far.
5071     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5072   }
5073 
5074   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true);
5075   // Avoid tail folding if the trip count is known to be a multiple of any VF
5076   // we chose.
5077   // FIXME: The condition below pessimises the case for fixed-width vectors,
5078   // when scalable VFs are also candidates for vectorization.
5079   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5080     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5081     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5082            "MaxFixedVF must be a power of 2");
5083     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5084                                    : MaxFixedVF.getFixedValue();
5085     ScalarEvolution *SE = PSE.getSE();
5086     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5087     const SCEV *ExitCount = SE->getAddExpr(
5088         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5089     const SCEV *Rem = SE->getURemExpr(
5090         SE->applyLoopGuards(ExitCount, TheLoop),
5091         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5092     if (Rem->isZero()) {
5093       // Accept MaxFixedVF if we do not have a tail.
5094       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5095       return MaxFactors;
5096     }
5097   }
5098 
5099   // If we don't know the precise trip count, or if the trip count that we
5100   // found modulo the vectorization factor is not zero, try to fold the tail
5101   // by masking.
5102   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5103   if (Legal->prepareToFoldTailByMasking()) {
5104     FoldTailByMasking = true;
5105     return MaxFactors;
5106   }
5107 
5108   // If there was a tail-folding hint/switch, but we can't fold the tail by
5109   // masking, fallback to a vectorization with a scalar epilogue.
5110   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5111     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5112                          "scalar epilogue instead.\n");
5113     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5114     return MaxFactors;
5115   }
5116 
5117   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5118     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5119     return FixedScalableVFPair::getNone();
5120   }
5121 
5122   if (TC == 0) {
5123     reportVectorizationFailure(
5124         "Unable to calculate the loop count due to complex control flow",
5125         "unable to calculate the loop count due to complex control flow",
5126         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5127     return FixedScalableVFPair::getNone();
5128   }
5129 
5130   reportVectorizationFailure(
5131       "Cannot optimize for size and vectorize at the same time.",
5132       "cannot optimize for size and vectorize at the same time. "
5133       "Enable vectorization of this loop with '#pragma clang loop "
5134       "vectorize(enable)' when compiling with -Os/-Oz",
5135       "NoTailLoopWithOptForSize", ORE, TheLoop);
5136   return FixedScalableVFPair::getNone();
5137 }
5138 
5139 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5140     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5141     ElementCount MaxSafeVF, bool FoldTailByMasking) {
5142   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5143   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5144       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5145                            : TargetTransformInfo::RGK_FixedWidthVector);
5146 
5147   // Convenience function to return the minimum of two ElementCounts.
5148   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5149     assert((LHS.isScalable() == RHS.isScalable()) &&
5150            "Scalable flags must match");
5151     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5152   };
5153 
5154   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5155   // Note that both WidestRegister and WidestType may not be a powers of 2.
5156   auto MaxVectorElementCount = ElementCount::get(
5157       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5158       ComputeScalableMaxVF);
5159   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5160   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5161                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5162 
5163   if (!MaxVectorElementCount) {
5164     LLVM_DEBUG(dbgs() << "LV: The target has no "
5165                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5166                       << " vector registers.\n");
5167     return ElementCount::getFixed(1);
5168   }
5169 
5170   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5171   if (ConstTripCount &&
5172       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5173       (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) {
5174     // If loop trip count (TC) is known at compile time there is no point in
5175     // choosing VF greater than TC (as done in the loop below). Select maximum
5176     // power of two which doesn't exceed TC.
5177     // If MaxVectorElementCount is scalable, we only fall back on a fixed VF
5178     // when the TC is less than or equal to the known number of lanes.
5179     auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount);
5180     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
5181                          "exceeding the constant trip count: "
5182                       << ClampedConstTripCount << "\n");
5183     return ElementCount::getFixed(ClampedConstTripCount);
5184   }
5185 
5186   TargetTransformInfo::RegisterKind RegKind =
5187       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5188                            : TargetTransformInfo::RGK_FixedWidthVector;
5189   ElementCount MaxVF = MaxVectorElementCount;
5190   if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 &&
5191                             TTI.shouldMaximizeVectorBandwidth(RegKind))) {
5192     auto MaxVectorElementCountMaxBW = ElementCount::get(
5193         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5194         ComputeScalableMaxVF);
5195     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5196 
5197     // Collect all viable vectorization factors larger than the default MaxVF
5198     // (i.e. MaxVectorElementCount).
5199     SmallVector<ElementCount, 8> VFs;
5200     for (ElementCount VS = MaxVectorElementCount * 2;
5201          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5202       VFs.push_back(VS);
5203 
5204     // For each VF calculate its register usage.
5205     auto RUs = calculateRegisterUsage(VFs);
5206 
5207     // Select the largest VF which doesn't require more registers than existing
5208     // ones.
5209     for (int i = RUs.size() - 1; i >= 0; --i) {
5210       bool Selected = true;
5211       for (auto &pair : RUs[i].MaxLocalUsers) {
5212         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5213         if (pair.second > TargetNumRegisters)
5214           Selected = false;
5215       }
5216       if (Selected) {
5217         MaxVF = VFs[i];
5218         break;
5219       }
5220     }
5221     if (ElementCount MinVF =
5222             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5223       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5224         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5225                           << ") with target's minimum: " << MinVF << '\n');
5226         MaxVF = MinVF;
5227       }
5228     }
5229 
5230     // Invalidate any widening decisions we might have made, in case the loop
5231     // requires prediction (decided later), but we have already made some
5232     // load/store widening decisions.
5233     invalidateCostModelingDecisions();
5234   }
5235   return MaxVF;
5236 }
5237 
5238 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const {
5239   if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5240     auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
5241     auto Min = Attr.getVScaleRangeMin();
5242     auto Max = Attr.getVScaleRangeMax();
5243     if (Max && Min == Max)
5244       return Max;
5245   }
5246 
5247   return TTI.getVScaleForTuning();
5248 }
5249 
5250 bool LoopVectorizationCostModel::isMoreProfitable(
5251     const VectorizationFactor &A, const VectorizationFactor &B) const {
5252   InstructionCost CostA = A.Cost;
5253   InstructionCost CostB = B.Cost;
5254 
5255   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5256 
5257   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5258       MaxTripCount) {
5259     // If we are folding the tail and the trip count is a known (possibly small)
5260     // constant, the trip count will be rounded up to an integer number of
5261     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
5262     // which we compare directly. When not folding the tail, the total cost will
5263     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
5264     // approximated with the per-lane cost below instead of using the tripcount
5265     // as here.
5266     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
5267     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
5268     return RTCostA < RTCostB;
5269   }
5270 
5271   // Improve estimate for the vector width if it is scalable.
5272   unsigned EstimatedWidthA = A.Width.getKnownMinValue();
5273   unsigned EstimatedWidthB = B.Width.getKnownMinValue();
5274   if (Optional<unsigned> VScale = getVScaleForTuning()) {
5275     if (A.Width.isScalable())
5276       EstimatedWidthA *= VScale.getValue();
5277     if (B.Width.isScalable())
5278       EstimatedWidthB *= VScale.getValue();
5279   }
5280 
5281   // Assume vscale may be larger than 1 (or the value being tuned for),
5282   // so that scalable vectorization is slightly favorable over fixed-width
5283   // vectorization.
5284   if (A.Width.isScalable() && !B.Width.isScalable())
5285     return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
5286 
5287   // To avoid the need for FP division:
5288   //      (CostA / A.Width) < (CostB / B.Width)
5289   // <=>  (CostA * B.Width) < (CostB * A.Width)
5290   return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
5291 }
5292 
5293 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
5294     const ElementCountSet &VFCandidates) {
5295   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5296   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5297   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5298   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
5299          "Expected Scalar VF to be a candidate");
5300 
5301   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost,
5302                                        ExpectedCost);
5303   VectorizationFactor ChosenFactor = ScalarCost;
5304 
5305   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5306   if (ForceVectorization && VFCandidates.size() > 1) {
5307     // Ignore scalar width, because the user explicitly wants vectorization.
5308     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5309     // evaluation.
5310     ChosenFactor.Cost = InstructionCost::getMax();
5311   }
5312 
5313   SmallVector<InstructionVFPair> InvalidCosts;
5314   for (const auto &i : VFCandidates) {
5315     // The cost for scalar VF=1 is already calculated, so ignore it.
5316     if (i.isScalar())
5317       continue;
5318 
5319     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
5320     VectorizationFactor Candidate(i, C.first, ScalarCost.ScalarCost);
5321 
5322 #ifndef NDEBUG
5323     unsigned AssumedMinimumVscale = 1;
5324     if (Optional<unsigned> VScale = getVScaleForTuning())
5325       AssumedMinimumVscale = *VScale;
5326     unsigned Width =
5327         Candidate.Width.isScalable()
5328             ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
5329             : Candidate.Width.getFixedValue();
5330     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5331                       << " costs: " << (Candidate.Cost / Width));
5332     if (i.isScalable())
5333       LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
5334                         << AssumedMinimumVscale << ")");
5335     LLVM_DEBUG(dbgs() << ".\n");
5336 #endif
5337 
5338     if (!C.second && !ForceVectorization) {
5339       LLVM_DEBUG(
5340           dbgs() << "LV: Not considering vector loop of width " << i
5341                  << " because it will not generate any vector instructions.\n");
5342       continue;
5343     }
5344 
5345     // If profitable add it to ProfitableVF list.
5346     if (isMoreProfitable(Candidate, ScalarCost))
5347       ProfitableVFs.push_back(Candidate);
5348 
5349     if (isMoreProfitable(Candidate, ChosenFactor))
5350       ChosenFactor = Candidate;
5351   }
5352 
5353   // Emit a report of VFs with invalid costs in the loop.
5354   if (!InvalidCosts.empty()) {
5355     // Group the remarks per instruction, keeping the instruction order from
5356     // InvalidCosts.
5357     std::map<Instruction *, unsigned> Numbering;
5358     unsigned I = 0;
5359     for (auto &Pair : InvalidCosts)
5360       if (!Numbering.count(Pair.first))
5361         Numbering[Pair.first] = I++;
5362 
5363     // Sort the list, first on instruction(number) then on VF.
5364     llvm::sort(InvalidCosts,
5365                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
5366                  if (Numbering[A.first] != Numbering[B.first])
5367                    return Numbering[A.first] < Numbering[B.first];
5368                  ElementCountComparator ECC;
5369                  return ECC(A.second, B.second);
5370                });
5371 
5372     // For a list of ordered instruction-vf pairs:
5373     //   [(load, vf1), (load, vf2), (store, vf1)]
5374     // Group the instructions together to emit separate remarks for:
5375     //   load  (vf1, vf2)
5376     //   store (vf1)
5377     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
5378     auto Subset = ArrayRef<InstructionVFPair>();
5379     do {
5380       if (Subset.empty())
5381         Subset = Tail.take_front(1);
5382 
5383       Instruction *I = Subset.front().first;
5384 
5385       // If the next instruction is different, or if there are no other pairs,
5386       // emit a remark for the collated subset. e.g.
5387       //   [(load, vf1), (load, vf2))]
5388       // to emit:
5389       //  remark: invalid costs for 'load' at VF=(vf, vf2)
5390       if (Subset == Tail || Tail[Subset.size()].first != I) {
5391         std::string OutString;
5392         raw_string_ostream OS(OutString);
5393         assert(!Subset.empty() && "Unexpected empty range");
5394         OS << "Instruction with invalid costs prevented vectorization at VF=(";
5395         for (auto &Pair : Subset)
5396           OS << (Pair.second == Subset.front().second ? "" : ", ")
5397              << Pair.second;
5398         OS << "):";
5399         if (auto *CI = dyn_cast<CallInst>(I))
5400           OS << " call to " << CI->getCalledFunction()->getName();
5401         else
5402           OS << " " << I->getOpcodeName();
5403         OS.flush();
5404         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
5405         Tail = Tail.drop_front(Subset.size());
5406         Subset = {};
5407       } else
5408         // Grow the subset by one element
5409         Subset = Tail.take_front(Subset.size() + 1);
5410     } while (!Tail.empty());
5411   }
5412 
5413   if (!EnableCondStoresVectorization && NumPredStores) {
5414     reportVectorizationFailure("There are conditional stores.",
5415         "store that is conditionally executed prevents vectorization",
5416         "ConditionalStore", ORE, TheLoop);
5417     ChosenFactor = ScalarCost;
5418   }
5419 
5420   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
5421                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
5422              << "LV: Vectorization seems to be not beneficial, "
5423              << "but was forced by a user.\n");
5424   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
5425   return ChosenFactor;
5426 }
5427 
5428 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
5429     const Loop &L, ElementCount VF) const {
5430   // Cross iteration phis such as reductions need special handling and are
5431   // currently unsupported.
5432   if (any_of(L.getHeader()->phis(),
5433              [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); }))
5434     return false;
5435 
5436   // Phis with uses outside of the loop require special handling and are
5437   // currently unsupported.
5438   for (auto &Entry : Legal->getInductionVars()) {
5439     // Look for uses of the value of the induction at the last iteration.
5440     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
5441     for (User *U : PostInc->users())
5442       if (!L.contains(cast<Instruction>(U)))
5443         return false;
5444     // Look for uses of penultimate value of the induction.
5445     for (User *U : Entry.first->users())
5446       if (!L.contains(cast<Instruction>(U)))
5447         return false;
5448   }
5449 
5450   // Induction variables that are widened require special handling that is
5451   // currently not supported.
5452   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
5453         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
5454                  this->isProfitableToScalarize(Entry.first, VF));
5455       }))
5456     return false;
5457 
5458   // Epilogue vectorization code has not been auditted to ensure it handles
5459   // non-latch exits properly.  It may be fine, but it needs auditted and
5460   // tested.
5461   if (L.getExitingBlock() != L.getLoopLatch())
5462     return false;
5463 
5464   return true;
5465 }
5466 
5467 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
5468     const ElementCount VF) const {
5469   // FIXME: We need a much better cost-model to take different parameters such
5470   // as register pressure, code size increase and cost of extra branches into
5471   // account. For now we apply a very crude heuristic and only consider loops
5472   // with vectorization factors larger than a certain value.
5473   // We also consider epilogue vectorization unprofitable for targets that don't
5474   // consider interleaving beneficial (eg. MVE).
5475   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
5476     return false;
5477   // FIXME: We should consider changing the threshold for scalable
5478   // vectors to take VScaleForTuning into account.
5479   if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF)
5480     return true;
5481   return false;
5482 }
5483 
5484 VectorizationFactor
5485 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
5486     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
5487   VectorizationFactor Result = VectorizationFactor::Disabled();
5488   if (!EnableEpilogueVectorization) {
5489     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
5490     return Result;
5491   }
5492 
5493   if (!isScalarEpilogueAllowed()) {
5494     LLVM_DEBUG(
5495         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
5496                   "allowed.\n";);
5497     return Result;
5498   }
5499 
5500   // Not really a cost consideration, but check for unsupported cases here to
5501   // simplify the logic.
5502   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
5503     LLVM_DEBUG(
5504         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
5505                   "not a supported candidate.\n";);
5506     return Result;
5507   }
5508 
5509   if (EpilogueVectorizationForceVF > 1) {
5510     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
5511     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
5512     if (LVP.hasPlanWithVF(ForcedEC))
5513       return {ForcedEC, 0, 0};
5514     else {
5515       LLVM_DEBUG(
5516           dbgs()
5517               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
5518       return Result;
5519     }
5520   }
5521 
5522   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
5523       TheLoop->getHeader()->getParent()->hasMinSize()) {
5524     LLVM_DEBUG(
5525         dbgs()
5526             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
5527     return Result;
5528   }
5529 
5530   if (!isEpilogueVectorizationProfitable(MainLoopVF)) {
5531     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
5532                          "this loop\n");
5533     return Result;
5534   }
5535 
5536   // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
5537   // the main loop handles 8 lanes per iteration. We could still benefit from
5538   // vectorizing the epilogue loop with VF=4.
5539   ElementCount EstimatedRuntimeVF = MainLoopVF;
5540   if (MainLoopVF.isScalable()) {
5541     EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
5542     if (Optional<unsigned> VScale = getVScaleForTuning())
5543       EstimatedRuntimeVF *= *VScale;
5544   }
5545 
5546   for (auto &NextVF : ProfitableVFs)
5547     if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
5548           ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) ||
5549          ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) &&
5550         (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) &&
5551         LVP.hasPlanWithVF(NextVF.Width))
5552       Result = NextVF;
5553 
5554   if (Result != VectorizationFactor::Disabled())
5555     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
5556                       << Result.Width << "\n";);
5557   return Result;
5558 }
5559 
5560 std::pair<unsigned, unsigned>
5561 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5562   unsigned MinWidth = -1U;
5563   unsigned MaxWidth = 8;
5564   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5565   // For in-loop reductions, no element types are added to ElementTypesInLoop
5566   // if there are no loads/stores in the loop. In this case, check through the
5567   // reduction variables to determine the maximum width.
5568   if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
5569     // Reset MaxWidth so that we can find the smallest type used by recurrences
5570     // in the loop.
5571     MaxWidth = -1U;
5572     for (auto &PhiDescriptorPair : Legal->getReductionVars()) {
5573       const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
5574       // When finding the min width used by the recurrence we need to account
5575       // for casts on the input operands of the recurrence.
5576       MaxWidth = std::min<unsigned>(
5577           MaxWidth, std::min<unsigned>(
5578                         RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
5579                         RdxDesc.getRecurrenceType()->getScalarSizeInBits()));
5580     }
5581   } else {
5582     for (Type *T : ElementTypesInLoop) {
5583       MinWidth = std::min<unsigned>(
5584           MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5585       MaxWidth = std::max<unsigned>(
5586           MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5587     }
5588   }
5589   return {MinWidth, MaxWidth};
5590 }
5591 
5592 void LoopVectorizationCostModel::collectElementTypesForWidening() {
5593   ElementTypesInLoop.clear();
5594   // For each block.
5595   for (BasicBlock *BB : TheLoop->blocks()) {
5596     // For each instruction in the loop.
5597     for (Instruction &I : BB->instructionsWithoutDebug()) {
5598       Type *T = I.getType();
5599 
5600       // Skip ignored values.
5601       if (ValuesToIgnore.count(&I))
5602         continue;
5603 
5604       // Only examine Loads, Stores and PHINodes.
5605       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5606         continue;
5607 
5608       // Examine PHI nodes that are reduction variables. Update the type to
5609       // account for the recurrence type.
5610       if (auto *PN = dyn_cast<PHINode>(&I)) {
5611         if (!Legal->isReductionVariable(PN))
5612           continue;
5613         const RecurrenceDescriptor &RdxDesc =
5614             Legal->getReductionVars().find(PN)->second;
5615         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
5616             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
5617                                       RdxDesc.getRecurrenceType(),
5618                                       TargetTransformInfo::ReductionFlags()))
5619           continue;
5620         T = RdxDesc.getRecurrenceType();
5621       }
5622 
5623       // Examine the stored values.
5624       if (auto *ST = dyn_cast<StoreInst>(&I))
5625         T = ST->getValueOperand()->getType();
5626 
5627       assert(T->isSized() &&
5628              "Expected the load/store/recurrence type to be sized");
5629 
5630       ElementTypesInLoop.insert(T);
5631     }
5632   }
5633 }
5634 
5635 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
5636                                                            unsigned LoopCost) {
5637   // -- The interleave heuristics --
5638   // We interleave the loop in order to expose ILP and reduce the loop overhead.
5639   // There are many micro-architectural considerations that we can't predict
5640   // at this level. For example, frontend pressure (on decode or fetch) due to
5641   // code size, or the number and capabilities of the execution ports.
5642   //
5643   // We use the following heuristics to select the interleave count:
5644   // 1. If the code has reductions, then we interleave to break the cross
5645   // iteration dependency.
5646   // 2. If the loop is really small, then we interleave to reduce the loop
5647   // overhead.
5648   // 3. We don't interleave if we think that we will spill registers to memory
5649   // due to the increased register pressure.
5650 
5651   if (!isScalarEpilogueAllowed())
5652     return 1;
5653 
5654   // We used the distance for the interleave count.
5655   if (Legal->getMaxSafeDepDistBytes() != -1U)
5656     return 1;
5657 
5658   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
5659   const bool HasReductions = !Legal->getReductionVars().empty();
5660   // Do not interleave loops with a relatively small known or estimated trip
5661   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
5662   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
5663   // because with the above conditions interleaving can expose ILP and break
5664   // cross iteration dependences for reductions.
5665   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
5666       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
5667     return 1;
5668 
5669   // If we did not calculate the cost for VF (because the user selected the VF)
5670   // then we calculate the cost of VF here.
5671   if (LoopCost == 0) {
5672     InstructionCost C = expectedCost(VF).first;
5673     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
5674     LoopCost = *C.getValue();
5675 
5676     // Loop body is free and there is no need for interleaving.
5677     if (LoopCost == 0)
5678       return 1;
5679   }
5680 
5681   RegisterUsage R = calculateRegisterUsage({VF})[0];
5682   // We divide by these constants so assume that we have at least one
5683   // instruction that uses at least one register.
5684   for (auto& pair : R.MaxLocalUsers) {
5685     pair.second = std::max(pair.second, 1U);
5686   }
5687 
5688   // We calculate the interleave count using the following formula.
5689   // Subtract the number of loop invariants from the number of available
5690   // registers. These registers are used by all of the interleaved instances.
5691   // Next, divide the remaining registers by the number of registers that is
5692   // required by the loop, in order to estimate how many parallel instances
5693   // fit without causing spills. All of this is rounded down if necessary to be
5694   // a power of two. We want power of two interleave count to simplify any
5695   // addressing operations or alignment considerations.
5696   // We also want power of two interleave counts to ensure that the induction
5697   // variable of the vector loop wraps to zero, when tail is folded by masking;
5698   // this currently happens when OptForSize, in which case IC is set to 1 above.
5699   unsigned IC = UINT_MAX;
5700 
5701   for (auto& pair : R.MaxLocalUsers) {
5702     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5703     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
5704                       << " registers of "
5705                       << TTI.getRegisterClassName(pair.first) << " register class\n");
5706     if (VF.isScalar()) {
5707       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5708         TargetNumRegisters = ForceTargetNumScalarRegs;
5709     } else {
5710       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5711         TargetNumRegisters = ForceTargetNumVectorRegs;
5712     }
5713     unsigned MaxLocalUsers = pair.second;
5714     unsigned LoopInvariantRegs = 0;
5715     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
5716       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
5717 
5718     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
5719     // Don't count the induction variable as interleaved.
5720     if (EnableIndVarRegisterHeur) {
5721       TmpIC =
5722           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
5723                         std::max(1U, (MaxLocalUsers - 1)));
5724     }
5725 
5726     IC = std::min(IC, TmpIC);
5727   }
5728 
5729   // Clamp the interleave ranges to reasonable counts.
5730   unsigned MaxInterleaveCount =
5731       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
5732 
5733   // Check if the user has overridden the max.
5734   if (VF.isScalar()) {
5735     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5736       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
5737   } else {
5738     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5739       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
5740   }
5741 
5742   // If trip count is known or estimated compile time constant, limit the
5743   // interleave count to be less than the trip count divided by VF, provided it
5744   // is at least 1.
5745   //
5746   // For scalable vectors we can't know if interleaving is beneficial. It may
5747   // not be beneficial for small loops if none of the lanes in the second vector
5748   // iterations is enabled. However, for larger loops, there is likely to be a
5749   // similar benefit as for fixed-width vectors. For now, we choose to leave
5750   // the InterleaveCount as if vscale is '1', although if some information about
5751   // the vector is known (e.g. min vector size), we can make a better decision.
5752   if (BestKnownTC) {
5753     MaxInterleaveCount =
5754         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
5755     // Make sure MaxInterleaveCount is greater than 0.
5756     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
5757   }
5758 
5759   assert(MaxInterleaveCount > 0 &&
5760          "Maximum interleave count must be greater than 0");
5761 
5762   // Clamp the calculated IC to be between the 1 and the max interleave count
5763   // that the target and trip count allows.
5764   if (IC > MaxInterleaveCount)
5765     IC = MaxInterleaveCount;
5766   else
5767     // Make sure IC is greater than 0.
5768     IC = std::max(1u, IC);
5769 
5770   assert(IC > 0 && "Interleave count must be greater than 0.");
5771 
5772   // Interleave if we vectorized this loop and there is a reduction that could
5773   // benefit from interleaving.
5774   if (VF.isVector() && HasReductions) {
5775     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5776     return IC;
5777   }
5778 
5779   // For any scalar loop that either requires runtime checks or predication we
5780   // are better off leaving this to the unroller. Note that if we've already
5781   // vectorized the loop we will have done the runtime check and so interleaving
5782   // won't require further checks.
5783   bool ScalarInterleavingRequiresPredication =
5784       (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) {
5785          return Legal->blockNeedsPredication(BB);
5786        }));
5787   bool ScalarInterleavingRequiresRuntimePointerCheck =
5788       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
5789 
5790   // We want to interleave small loops in order to reduce the loop overhead and
5791   // potentially expose ILP opportunities.
5792   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
5793                     << "LV: IC is " << IC << '\n'
5794                     << "LV: VF is " << VF << '\n');
5795   const bool AggressivelyInterleaveReductions =
5796       TTI.enableAggressiveInterleaving(HasReductions);
5797   if (!ScalarInterleavingRequiresRuntimePointerCheck &&
5798       !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
5799     // We assume that the cost overhead is 1 and we use the cost model
5800     // to estimate the cost of the loop and interleave until the cost of the
5801     // loop overhead is about 5% of the cost of the loop.
5802     unsigned SmallIC =
5803         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5804 
5805     // Interleave until store/load ports (estimated by max interleave count) are
5806     // saturated.
5807     unsigned NumStores = Legal->getNumStores();
5808     unsigned NumLoads = Legal->getNumLoads();
5809     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5810     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5811 
5812     // There is little point in interleaving for reductions containing selects
5813     // and compares when VF=1 since it may just create more overhead than it's
5814     // worth for loops with small trip counts. This is because we still have to
5815     // do the final reduction after the loop.
5816     bool HasSelectCmpReductions =
5817         HasReductions &&
5818         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
5819           const RecurrenceDescriptor &RdxDesc = Reduction.second;
5820           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
5821               RdxDesc.getRecurrenceKind());
5822         });
5823     if (HasSelectCmpReductions) {
5824       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
5825       return 1;
5826     }
5827 
5828     // If we have a scalar reduction (vector reductions are already dealt with
5829     // by this point), we can increase the critical path length if the loop
5830     // we're interleaving is inside another loop. For tree-wise reductions
5831     // set the limit to 2, and for ordered reductions it's best to disable
5832     // interleaving entirely.
5833     if (HasReductions && TheLoop->getLoopDepth() > 1) {
5834       bool HasOrderedReductions =
5835           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
5836             const RecurrenceDescriptor &RdxDesc = Reduction.second;
5837             return RdxDesc.isOrdered();
5838           });
5839       if (HasOrderedReductions) {
5840         LLVM_DEBUG(
5841             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
5842         return 1;
5843       }
5844 
5845       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5846       SmallIC = std::min(SmallIC, F);
5847       StoresIC = std::min(StoresIC, F);
5848       LoadsIC = std::min(LoadsIC, F);
5849     }
5850 
5851     if (EnableLoadStoreRuntimeInterleave &&
5852         std::max(StoresIC, LoadsIC) > SmallIC) {
5853       LLVM_DEBUG(
5854           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
5855       return std::max(StoresIC, LoadsIC);
5856     }
5857 
5858     // If there are scalar reductions and TTI has enabled aggressive
5859     // interleaving for reductions, we will interleave to expose ILP.
5860     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
5861         AggressivelyInterleaveReductions) {
5862       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5863       // Interleave no less than SmallIC but not as aggressive as the normal IC
5864       // to satisfy the rare situation when resources are too limited.
5865       return std::max(IC / 2, SmallIC);
5866     } else {
5867       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
5868       return SmallIC;
5869     }
5870   }
5871 
5872   // Interleave if this is a large loop (small loops are already dealt with by
5873   // this point) that could benefit from interleaving.
5874   if (AggressivelyInterleaveReductions) {
5875     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5876     return IC;
5877   }
5878 
5879   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
5880   return 1;
5881 }
5882 
5883 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
5884 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
5885   // This function calculates the register usage by measuring the highest number
5886   // of values that are alive at a single location. Obviously, this is a very
5887   // rough estimation. We scan the loop in a topological order in order and
5888   // assign a number to each instruction. We use RPO to ensure that defs are
5889   // met before their users. We assume that each instruction that has in-loop
5890   // users starts an interval. We record every time that an in-loop value is
5891   // used, so we have a list of the first and last occurrences of each
5892   // instruction. Next, we transpose this data structure into a multi map that
5893   // holds the list of intervals that *end* at a specific location. This multi
5894   // map allows us to perform a linear search. We scan the instructions linearly
5895   // and record each time that a new interval starts, by placing it in a set.
5896   // If we find this value in the multi-map then we remove it from the set.
5897   // The max register usage is the maximum size of the set.
5898   // We also search for instructions that are defined outside the loop, but are
5899   // used inside the loop. We need this number separately from the max-interval
5900   // usage number because when we unroll, loop-invariant values do not take
5901   // more register.
5902   LoopBlocksDFS DFS(TheLoop);
5903   DFS.perform(LI);
5904 
5905   RegisterUsage RU;
5906 
5907   // Each 'key' in the map opens a new interval. The values
5908   // of the map are the index of the 'last seen' usage of the
5909   // instruction that is the key.
5910   using IntervalMap = DenseMap<Instruction *, unsigned>;
5911 
5912   // Maps instruction to its index.
5913   SmallVector<Instruction *, 64> IdxToInstr;
5914   // Marks the end of each interval.
5915   IntervalMap EndPoint;
5916   // Saves the list of instruction indices that are used in the loop.
5917   SmallPtrSet<Instruction *, 8> Ends;
5918   // Saves the list of values that are used in the loop but are
5919   // defined outside the loop, such as arguments and constants.
5920   SmallPtrSet<Value *, 8> LoopInvariants;
5921 
5922   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
5923     for (Instruction &I : BB->instructionsWithoutDebug()) {
5924       IdxToInstr.push_back(&I);
5925 
5926       // Save the end location of each USE.
5927       for (Value *U : I.operands()) {
5928         auto *Instr = dyn_cast<Instruction>(U);
5929 
5930         // Ignore non-instruction values such as arguments, constants, etc.
5931         if (!Instr)
5932           continue;
5933 
5934         // If this instruction is outside the loop then record it and continue.
5935         if (!TheLoop->contains(Instr)) {
5936           LoopInvariants.insert(Instr);
5937           continue;
5938         }
5939 
5940         // Overwrite previous end points.
5941         EndPoint[Instr] = IdxToInstr.size();
5942         Ends.insert(Instr);
5943       }
5944     }
5945   }
5946 
5947   // Saves the list of intervals that end with the index in 'key'.
5948   using InstrList = SmallVector<Instruction *, 2>;
5949   DenseMap<unsigned, InstrList> TransposeEnds;
5950 
5951   // Transpose the EndPoints to a list of values that end at each index.
5952   for (auto &Interval : EndPoint)
5953     TransposeEnds[Interval.second].push_back(Interval.first);
5954 
5955   SmallPtrSet<Instruction *, 8> OpenIntervals;
5956   SmallVector<RegisterUsage, 8> RUs(VFs.size());
5957   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
5958 
5959   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5960 
5961   auto GetRegUsage = [&TTI = TTI](Type *Ty, ElementCount VF) -> unsigned {
5962     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
5963       return 0;
5964     return TTI.getRegUsageForType(VectorType::get(Ty, VF));
5965   };
5966 
5967   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
5968     Instruction *I = IdxToInstr[i];
5969 
5970     // Remove all of the instructions that end at this location.
5971     InstrList &List = TransposeEnds[i];
5972     for (Instruction *ToRemove : List)
5973       OpenIntervals.erase(ToRemove);
5974 
5975     // Ignore instructions that are never used within the loop.
5976     if (!Ends.count(I))
5977       continue;
5978 
5979     // Skip ignored values.
5980     if (ValuesToIgnore.count(I))
5981       continue;
5982 
5983     // For each VF find the maximum usage of registers.
5984     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
5985       // Count the number of live intervals.
5986       SmallMapVector<unsigned, unsigned, 4> RegUsage;
5987 
5988       if (VFs[j].isScalar()) {
5989         for (auto Inst : OpenIntervals) {
5990           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
5991           if (RegUsage.find(ClassID) == RegUsage.end())
5992             RegUsage[ClassID] = 1;
5993           else
5994             RegUsage[ClassID] += 1;
5995         }
5996       } else {
5997         collectUniformsAndScalars(VFs[j]);
5998         for (auto Inst : OpenIntervals) {
5999           // Skip ignored values for VF > 1.
6000           if (VecValuesToIgnore.count(Inst))
6001             continue;
6002           if (isScalarAfterVectorization(Inst, VFs[j])) {
6003             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6004             if (RegUsage.find(ClassID) == RegUsage.end())
6005               RegUsage[ClassID] = 1;
6006             else
6007               RegUsage[ClassID] += 1;
6008           } else {
6009             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6010             if (RegUsage.find(ClassID) == RegUsage.end())
6011               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6012             else
6013               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6014           }
6015         }
6016       }
6017 
6018       for (auto& pair : RegUsage) {
6019         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6020           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6021         else
6022           MaxUsages[j][pair.first] = pair.second;
6023       }
6024     }
6025 
6026     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6027                       << OpenIntervals.size() << '\n');
6028 
6029     // Add the current instruction to the list of open intervals.
6030     OpenIntervals.insert(I);
6031   }
6032 
6033   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6034     SmallMapVector<unsigned, unsigned, 4> Invariant;
6035 
6036     for (auto Inst : LoopInvariants) {
6037       unsigned Usage =
6038           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6039       unsigned ClassID =
6040           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6041       if (Invariant.find(ClassID) == Invariant.end())
6042         Invariant[ClassID] = Usage;
6043       else
6044         Invariant[ClassID] += Usage;
6045     }
6046 
6047     LLVM_DEBUG({
6048       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6049       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6050              << " item\n";
6051       for (const auto &pair : MaxUsages[i]) {
6052         dbgs() << "LV(REG): RegisterClass: "
6053                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6054                << " registers\n";
6055       }
6056       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6057              << " item\n";
6058       for (const auto &pair : Invariant) {
6059         dbgs() << "LV(REG): RegisterClass: "
6060                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6061                << " registers\n";
6062       }
6063     });
6064 
6065     RU.LoopInvariantRegs = Invariant;
6066     RU.MaxLocalUsers = MaxUsages[i];
6067     RUs[i] = RU;
6068   }
6069 
6070   return RUs;
6071 }
6072 
6073 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
6074                                                            ElementCount VF) {
6075   // TODO: Cost model for emulated masked load/store is completely
6076   // broken. This hack guides the cost model to use an artificially
6077   // high enough value to practically disable vectorization with such
6078   // operations, except where previously deployed legality hack allowed
6079   // using very low cost values. This is to avoid regressions coming simply
6080   // from moving "masked load/store" check from legality to cost model.
6081   // Masked Load/Gather emulation was previously never allowed.
6082   // Limited number of Masked Store/Scatter emulation was allowed.
6083   assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction");
6084   return isa<LoadInst>(I) ||
6085          (isa<StoreInst>(I) &&
6086           NumPredStores > NumberOfStoresToPredicate);
6087 }
6088 
6089 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6090   // If we aren't vectorizing the loop, or if we've already collected the
6091   // instructions to scalarize, there's nothing to do. Collection may already
6092   // have occurred if we have a user-selected VF and are now computing the
6093   // expected cost for interleaving.
6094   if (VF.isScalar() || VF.isZero() ||
6095       InstsToScalarize.find(VF) != InstsToScalarize.end())
6096     return;
6097 
6098   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6099   // not profitable to scalarize any instructions, the presence of VF in the
6100   // map will indicate that we've analyzed it already.
6101   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6102 
6103   // Find all the instructions that are scalar with predication in the loop and
6104   // determine if it would be better to not if-convert the blocks they are in.
6105   // If so, we also record the instructions to scalarize.
6106   for (BasicBlock *BB : TheLoop->blocks()) {
6107     if (!blockNeedsPredicationForAnyReason(BB))
6108       continue;
6109     for (Instruction &I : *BB)
6110       if (isScalarWithPredication(&I, VF)) {
6111         ScalarCostsTy ScalarCosts;
6112         // Do not apply discount if scalable, because that would lead to
6113         // invalid scalarization costs.
6114         // Do not apply discount logic if hacked cost is needed
6115         // for emulated masked memrefs.
6116         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) &&
6117             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6118           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6119         // Remember that BB will remain after vectorization.
6120         PredicatedBBsAfterVectorization.insert(BB);
6121       }
6122   }
6123 }
6124 
6125 int LoopVectorizationCostModel::computePredInstDiscount(
6126     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6127   assert(!isUniformAfterVectorization(PredInst, VF) &&
6128          "Instruction marked uniform-after-vectorization will be predicated");
6129 
6130   // Initialize the discount to zero, meaning that the scalar version and the
6131   // vector version cost the same.
6132   InstructionCost Discount = 0;
6133 
6134   // Holds instructions to analyze. The instructions we visit are mapped in
6135   // ScalarCosts. Those instructions are the ones that would be scalarized if
6136   // we find that the scalar version costs less.
6137   SmallVector<Instruction *, 8> Worklist;
6138 
6139   // Returns true if the given instruction can be scalarized.
6140   auto canBeScalarized = [&](Instruction *I) -> bool {
6141     // We only attempt to scalarize instructions forming a single-use chain
6142     // from the original predicated block that would otherwise be vectorized.
6143     // Although not strictly necessary, we give up on instructions we know will
6144     // already be scalar to avoid traversing chains that are unlikely to be
6145     // beneficial.
6146     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6147         isScalarAfterVectorization(I, VF))
6148       return false;
6149 
6150     // If the instruction is scalar with predication, it will be analyzed
6151     // separately. We ignore it within the context of PredInst.
6152     if (isScalarWithPredication(I, VF))
6153       return false;
6154 
6155     // If any of the instruction's operands are uniform after vectorization,
6156     // the instruction cannot be scalarized. This prevents, for example, a
6157     // masked load from being scalarized.
6158     //
6159     // We assume we will only emit a value for lane zero of an instruction
6160     // marked uniform after vectorization, rather than VF identical values.
6161     // Thus, if we scalarize an instruction that uses a uniform, we would
6162     // create uses of values corresponding to the lanes we aren't emitting code
6163     // for. This behavior can be changed by allowing getScalarValue to clone
6164     // the lane zero values for uniforms rather than asserting.
6165     for (Use &U : I->operands())
6166       if (auto *J = dyn_cast<Instruction>(U.get()))
6167         if (isUniformAfterVectorization(J, VF))
6168           return false;
6169 
6170     // Otherwise, we can scalarize the instruction.
6171     return true;
6172   };
6173 
6174   // Compute the expected cost discount from scalarizing the entire expression
6175   // feeding the predicated instruction. We currently only consider expressions
6176   // that are single-use instruction chains.
6177   Worklist.push_back(PredInst);
6178   while (!Worklist.empty()) {
6179     Instruction *I = Worklist.pop_back_val();
6180 
6181     // If we've already analyzed the instruction, there's nothing to do.
6182     if (ScalarCosts.find(I) != ScalarCosts.end())
6183       continue;
6184 
6185     // Compute the cost of the vector instruction. Note that this cost already
6186     // includes the scalarization overhead of the predicated instruction.
6187     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6188 
6189     // Compute the cost of the scalarized instruction. This cost is the cost of
6190     // the instruction as if it wasn't if-converted and instead remained in the
6191     // predicated block. We will scale this cost by block probability after
6192     // computing the scalarization overhead.
6193     InstructionCost ScalarCost =
6194         VF.getFixedValue() *
6195         getInstructionCost(I, ElementCount::getFixed(1)).first;
6196 
6197     // Compute the scalarization overhead of needed insertelement instructions
6198     // and phi nodes.
6199     if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
6200       ScalarCost += TTI.getScalarizationOverhead(
6201           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6202           APInt::getAllOnes(VF.getFixedValue()), true, false);
6203       ScalarCost +=
6204           VF.getFixedValue() *
6205           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6206     }
6207 
6208     // Compute the scalarization overhead of needed extractelement
6209     // instructions. For each of the instruction's operands, if the operand can
6210     // be scalarized, add it to the worklist; otherwise, account for the
6211     // overhead.
6212     for (Use &U : I->operands())
6213       if (auto *J = dyn_cast<Instruction>(U.get())) {
6214         assert(VectorType::isValidElementType(J->getType()) &&
6215                "Instruction has non-scalar type");
6216         if (canBeScalarized(J))
6217           Worklist.push_back(J);
6218         else if (needsExtract(J, VF)) {
6219           ScalarCost += TTI.getScalarizationOverhead(
6220               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6221               APInt::getAllOnes(VF.getFixedValue()), false, true);
6222         }
6223       }
6224 
6225     // Scale the total scalar cost by block probability.
6226     ScalarCost /= getReciprocalPredBlockProb();
6227 
6228     // Compute the discount. A non-negative discount means the vector version
6229     // of the instruction costs more, and scalarizing would be beneficial.
6230     Discount += VectorCost - ScalarCost;
6231     ScalarCosts[I] = ScalarCost;
6232   }
6233 
6234   return *Discount.getValue();
6235 }
6236 
6237 LoopVectorizationCostModel::VectorizationCostTy
6238 LoopVectorizationCostModel::expectedCost(
6239     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6240   VectorizationCostTy Cost;
6241 
6242   // For each block.
6243   for (BasicBlock *BB : TheLoop->blocks()) {
6244     VectorizationCostTy BlockCost;
6245 
6246     // For each instruction in the old loop.
6247     for (Instruction &I : BB->instructionsWithoutDebug()) {
6248       // Skip ignored values.
6249       if (ValuesToIgnore.count(&I) ||
6250           (VF.isVector() && VecValuesToIgnore.count(&I)))
6251         continue;
6252 
6253       VectorizationCostTy C = getInstructionCost(&I, VF);
6254 
6255       // Check if we should override the cost.
6256       if (C.first.isValid() &&
6257           ForceTargetInstructionCost.getNumOccurrences() > 0)
6258         C.first = InstructionCost(ForceTargetInstructionCost);
6259 
6260       // Keep a list of instructions with invalid costs.
6261       if (Invalid && !C.first.isValid())
6262         Invalid->emplace_back(&I, VF);
6263 
6264       BlockCost.first += C.first;
6265       BlockCost.second |= C.second;
6266       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6267                         << " for VF " << VF << " For instruction: " << I
6268                         << '\n');
6269     }
6270 
6271     // If we are vectorizing a predicated block, it will have been
6272     // if-converted. This means that the block's instructions (aside from
6273     // stores and instructions that may divide by zero) will now be
6274     // unconditionally executed. For the scalar case, we may not always execute
6275     // the predicated block, if it is an if-else block. Thus, scale the block's
6276     // cost by the probability of executing it. blockNeedsPredication from
6277     // Legal is used so as to not include all blocks in tail folded loops.
6278     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6279       BlockCost.first /= getReciprocalPredBlockProb();
6280 
6281     Cost.first += BlockCost.first;
6282     Cost.second |= BlockCost.second;
6283   }
6284 
6285   return Cost;
6286 }
6287 
6288 /// Gets Address Access SCEV after verifying that the access pattern
6289 /// is loop invariant except the induction variable dependence.
6290 ///
6291 /// This SCEV can be sent to the Target in order to estimate the address
6292 /// calculation cost.
6293 static const SCEV *getAddressAccessSCEV(
6294               Value *Ptr,
6295               LoopVectorizationLegality *Legal,
6296               PredicatedScalarEvolution &PSE,
6297               const Loop *TheLoop) {
6298 
6299   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6300   if (!Gep)
6301     return nullptr;
6302 
6303   // We are looking for a gep with all loop invariant indices except for one
6304   // which should be an induction variable.
6305   auto SE = PSE.getSE();
6306   unsigned NumOperands = Gep->getNumOperands();
6307   for (unsigned i = 1; i < NumOperands; ++i) {
6308     Value *Opd = Gep->getOperand(i);
6309     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6310         !Legal->isInductionVariable(Opd))
6311       return nullptr;
6312   }
6313 
6314   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6315   return PSE.getSCEV(Ptr);
6316 }
6317 
6318 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6319   return Legal->hasStride(I->getOperand(0)) ||
6320          Legal->hasStride(I->getOperand(1));
6321 }
6322 
6323 InstructionCost
6324 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6325                                                         ElementCount VF) {
6326   assert(VF.isVector() &&
6327          "Scalarization cost of instruction implies vectorization.");
6328   if (VF.isScalable())
6329     return InstructionCost::getInvalid();
6330 
6331   Type *ValTy = getLoadStoreType(I);
6332   auto SE = PSE.getSE();
6333 
6334   unsigned AS = getLoadStoreAddressSpace(I);
6335   Value *Ptr = getLoadStorePointerOperand(I);
6336   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6337   // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
6338   //       that it is being called from this specific place.
6339 
6340   // Figure out whether the access is strided and get the stride value
6341   // if it's known in compile time
6342   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6343 
6344   // Get the cost of the scalar memory instruction and address computation.
6345   InstructionCost Cost =
6346       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6347 
6348   // Don't pass *I here, since it is scalar but will actually be part of a
6349   // vectorized loop where the user of it is a vectorized instruction.
6350   const Align Alignment = getLoadStoreAlignment(I);
6351   Cost += VF.getKnownMinValue() *
6352           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6353                               AS, TTI::TCK_RecipThroughput);
6354 
6355   // Get the overhead of the extractelement and insertelement instructions
6356   // we might create due to scalarization.
6357   Cost += getScalarizationOverhead(I, VF);
6358 
6359   // If we have a predicated load/store, it will need extra i1 extracts and
6360   // conditional branches, but may not be executed for each vector lane. Scale
6361   // the cost by the probability of executing the predicated block.
6362   if (isPredicatedInst(I, VF)) {
6363     Cost /= getReciprocalPredBlockProb();
6364 
6365     // Add the cost of an i1 extract and a branch
6366     auto *Vec_i1Ty =
6367         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6368     Cost += TTI.getScalarizationOverhead(
6369         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
6370         /*Insert=*/false, /*Extract=*/true);
6371     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6372 
6373     if (useEmulatedMaskMemRefHack(I, VF))
6374       // Artificially setting to a high enough value to practically disable
6375       // vectorization with such operations.
6376       Cost = 3000000;
6377   }
6378 
6379   return Cost;
6380 }
6381 
6382 InstructionCost
6383 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6384                                                     ElementCount VF) {
6385   Type *ValTy = getLoadStoreType(I);
6386   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6387   Value *Ptr = getLoadStorePointerOperand(I);
6388   unsigned AS = getLoadStoreAddressSpace(I);
6389   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
6390   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6391 
6392   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6393          "Stride should be 1 or -1 for consecutive memory access");
6394   const Align Alignment = getLoadStoreAlignment(I);
6395   InstructionCost Cost = 0;
6396   if (Legal->isMaskRequired(I))
6397     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6398                                       CostKind);
6399   else
6400     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6401                                 CostKind, I);
6402 
6403   bool Reverse = ConsecutiveStride < 0;
6404   if (Reverse)
6405     Cost +=
6406         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6407   return Cost;
6408 }
6409 
6410 InstructionCost
6411 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6412                                                 ElementCount VF) {
6413   assert(Legal->isUniformMemOp(*I));
6414 
6415   Type *ValTy = getLoadStoreType(I);
6416   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6417   const Align Alignment = getLoadStoreAlignment(I);
6418   unsigned AS = getLoadStoreAddressSpace(I);
6419   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6420   if (isa<LoadInst>(I)) {
6421     return TTI.getAddressComputationCost(ValTy) +
6422            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6423                                CostKind) +
6424            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6425   }
6426   StoreInst *SI = cast<StoreInst>(I);
6427 
6428   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6429   return TTI.getAddressComputationCost(ValTy) +
6430          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6431                              CostKind) +
6432          (isLoopInvariantStoreValue
6433               ? 0
6434               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6435                                        VF.getKnownMinValue() - 1));
6436 }
6437 
6438 InstructionCost
6439 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6440                                                  ElementCount VF) {
6441   Type *ValTy = getLoadStoreType(I);
6442   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6443   const Align Alignment = getLoadStoreAlignment(I);
6444   const Value *Ptr = getLoadStorePointerOperand(I);
6445 
6446   return TTI.getAddressComputationCost(VectorTy) +
6447          TTI.getGatherScatterOpCost(
6448              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6449              TargetTransformInfo::TCK_RecipThroughput, I);
6450 }
6451 
6452 InstructionCost
6453 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6454                                                    ElementCount VF) {
6455   // TODO: Once we have support for interleaving with scalable vectors
6456   // we can calculate the cost properly here.
6457   if (VF.isScalable())
6458     return InstructionCost::getInvalid();
6459 
6460   Type *ValTy = getLoadStoreType(I);
6461   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6462   unsigned AS = getLoadStoreAddressSpace(I);
6463 
6464   auto Group = getInterleavedAccessGroup(I);
6465   assert(Group && "Fail to get an interleaved access group.");
6466 
6467   unsigned InterleaveFactor = Group->getFactor();
6468   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6469 
6470   // Holds the indices of existing members in the interleaved group.
6471   SmallVector<unsigned, 4> Indices;
6472   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
6473     if (Group->getMember(IF))
6474       Indices.push_back(IF);
6475 
6476   // Calculate the cost of the whole interleaved group.
6477   bool UseMaskForGaps =
6478       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
6479       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
6480   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
6481       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6482       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6483 
6484   if (Group->isReverse()) {
6485     // TODO: Add support for reversed masked interleaved access.
6486     assert(!Legal->isMaskRequired(I) &&
6487            "Reverse masked interleaved access not supported.");
6488     Cost +=
6489         Group->getNumMembers() *
6490         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6491   }
6492   return Cost;
6493 }
6494 
6495 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
6496     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
6497   using namespace llvm::PatternMatch;
6498   // Early exit for no inloop reductions
6499   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
6500     return None;
6501   auto *VectorTy = cast<VectorType>(Ty);
6502 
6503   // We are looking for a pattern of, and finding the minimal acceptable cost:
6504   //  reduce(mul(ext(A), ext(B))) or
6505   //  reduce(mul(A, B)) or
6506   //  reduce(ext(A)) or
6507   //  reduce(A).
6508   // The basic idea is that we walk down the tree to do that, finding the root
6509   // reduction instruction in InLoopReductionImmediateChains. From there we find
6510   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
6511   // of the components. If the reduction cost is lower then we return it for the
6512   // reduction instruction and 0 for the other instructions in the pattern. If
6513   // it is not we return an invalid cost specifying the orignal cost method
6514   // should be used.
6515   Instruction *RetI = I;
6516   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
6517     if (!RetI->hasOneUser())
6518       return None;
6519     RetI = RetI->user_back();
6520   }
6521   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
6522       RetI->user_back()->getOpcode() == Instruction::Add) {
6523     if (!RetI->hasOneUser())
6524       return None;
6525     RetI = RetI->user_back();
6526   }
6527 
6528   // Test if the found instruction is a reduction, and if not return an invalid
6529   // cost specifying the parent to use the original cost modelling.
6530   if (!InLoopReductionImmediateChains.count(RetI))
6531     return None;
6532 
6533   // Find the reduction this chain is a part of and calculate the basic cost of
6534   // the reduction on its own.
6535   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
6536   Instruction *ReductionPhi = LastChain;
6537   while (!isa<PHINode>(ReductionPhi))
6538     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
6539 
6540   const RecurrenceDescriptor &RdxDesc =
6541       Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second;
6542 
6543   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
6544       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
6545 
6546   // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
6547   // normal fmul instruction to the cost of the fadd reduction.
6548   if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd)
6549     BaseCost +=
6550         TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
6551 
6552   // If we're using ordered reductions then we can just return the base cost
6553   // here, since getArithmeticReductionCost calculates the full ordered
6554   // reduction cost when FP reassociation is not allowed.
6555   if (useOrderedReductions(RdxDesc))
6556     return BaseCost;
6557 
6558   // Get the operand that was not the reduction chain and match it to one of the
6559   // patterns, returning the better cost if it is found.
6560   Instruction *RedOp = RetI->getOperand(1) == LastChain
6561                            ? dyn_cast<Instruction>(RetI->getOperand(0))
6562                            : dyn_cast<Instruction>(RetI->getOperand(1));
6563 
6564   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
6565 
6566   Instruction *Op0, *Op1;
6567   if (RedOp &&
6568       match(RedOp,
6569             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
6570       match(Op0, m_ZExtOrSExt(m_Value())) &&
6571       Op0->getOpcode() == Op1->getOpcode() &&
6572       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
6573       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
6574       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
6575 
6576     // Matched reduce(ext(mul(ext(A), ext(B)))
6577     // Note that the extend opcodes need to all match, or if A==B they will have
6578     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
6579     // which is equally fine.
6580     bool IsUnsigned = isa<ZExtInst>(Op0);
6581     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
6582     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
6583 
6584     InstructionCost ExtCost =
6585         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
6586                              TTI::CastContextHint::None, CostKind, Op0);
6587     InstructionCost MulCost =
6588         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
6589     InstructionCost Ext2Cost =
6590         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
6591                              TTI::CastContextHint::None, CostKind, RedOp);
6592 
6593     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6594         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6595         CostKind);
6596 
6597     if (RedCost.isValid() &&
6598         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
6599       return I == RetI ? RedCost : 0;
6600   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
6601              !TheLoop->isLoopInvariant(RedOp)) {
6602     // Matched reduce(ext(A))
6603     bool IsUnsigned = isa<ZExtInst>(RedOp);
6604     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
6605     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6606         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6607         CostKind);
6608 
6609     InstructionCost ExtCost =
6610         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
6611                              TTI::CastContextHint::None, CostKind, RedOp);
6612     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
6613       return I == RetI ? RedCost : 0;
6614   } else if (RedOp &&
6615              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
6616     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
6617         Op0->getOpcode() == Op1->getOpcode() &&
6618         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
6619       bool IsUnsigned = isa<ZExtInst>(Op0);
6620       Type *Op0Ty = Op0->getOperand(0)->getType();
6621       Type *Op1Ty = Op1->getOperand(0)->getType();
6622       Type *LargestOpTy =
6623           Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
6624                                                                     : Op0Ty;
6625       auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
6626 
6627       // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of
6628       // different sizes. We take the largest type as the ext to reduce, and add
6629       // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
6630       InstructionCost ExtCost0 = TTI.getCastInstrCost(
6631           Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
6632           TTI::CastContextHint::None, CostKind, Op0);
6633       InstructionCost ExtCost1 = TTI.getCastInstrCost(
6634           Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
6635           TTI::CastContextHint::None, CostKind, Op1);
6636       InstructionCost MulCost =
6637           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6638 
6639       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6640           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6641           CostKind);
6642       InstructionCost ExtraExtCost = 0;
6643       if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
6644         Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
6645         ExtraExtCost = TTI.getCastInstrCost(
6646             ExtraExtOp->getOpcode(), ExtType,
6647             VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
6648             TTI::CastContextHint::None, CostKind, ExtraExtOp);
6649       }
6650 
6651       if (RedCost.isValid() &&
6652           (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
6653         return I == RetI ? RedCost : 0;
6654     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
6655       // Matched reduce(mul())
6656       InstructionCost MulCost =
6657           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6658 
6659       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6660           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
6661           CostKind);
6662 
6663       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
6664         return I == RetI ? RedCost : 0;
6665     }
6666   }
6667 
6668   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
6669 }
6670 
6671 InstructionCost
6672 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
6673                                                      ElementCount VF) {
6674   // Calculate scalar cost only. Vectorization cost should be ready at this
6675   // moment.
6676   if (VF.isScalar()) {
6677     Type *ValTy = getLoadStoreType(I);
6678     const Align Alignment = getLoadStoreAlignment(I);
6679     unsigned AS = getLoadStoreAddressSpace(I);
6680 
6681     return TTI.getAddressComputationCost(ValTy) +
6682            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
6683                                TTI::TCK_RecipThroughput, I);
6684   }
6685   return getWideningCost(I, VF);
6686 }
6687 
6688 LoopVectorizationCostModel::VectorizationCostTy
6689 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
6690                                                ElementCount VF) {
6691   // If we know that this instruction will remain uniform, check the cost of
6692   // the scalar version.
6693   if (isUniformAfterVectorization(I, VF))
6694     VF = ElementCount::getFixed(1);
6695 
6696   if (VF.isVector() && isProfitableToScalarize(I, VF))
6697     return VectorizationCostTy(InstsToScalarize[VF][I], false);
6698 
6699   // Forced scalars do not have any scalarization overhead.
6700   auto ForcedScalar = ForcedScalars.find(VF);
6701   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
6702     auto InstSet = ForcedScalar->second;
6703     if (InstSet.count(I))
6704       return VectorizationCostTy(
6705           (getInstructionCost(I, ElementCount::getFixed(1)).first *
6706            VF.getKnownMinValue()),
6707           false);
6708   }
6709 
6710   Type *VectorTy;
6711   InstructionCost C = getInstructionCost(I, VF, VectorTy);
6712 
6713   bool TypeNotScalarized = false;
6714   if (VF.isVector() && VectorTy->isVectorTy()) {
6715     unsigned NumParts = TTI.getNumberOfParts(VectorTy);
6716     if (NumParts)
6717       TypeNotScalarized = NumParts < VF.getKnownMinValue();
6718     else
6719       C = InstructionCost::getInvalid();
6720   }
6721   return VectorizationCostTy(C, TypeNotScalarized);
6722 }
6723 
6724 InstructionCost
6725 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
6726                                                      ElementCount VF) const {
6727 
6728   // There is no mechanism yet to create a scalable scalarization loop,
6729   // so this is currently Invalid.
6730   if (VF.isScalable())
6731     return InstructionCost::getInvalid();
6732 
6733   if (VF.isScalar())
6734     return 0;
6735 
6736   InstructionCost Cost = 0;
6737   Type *RetTy = ToVectorTy(I->getType(), VF);
6738   if (!RetTy->isVoidTy() &&
6739       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
6740     Cost += TTI.getScalarizationOverhead(
6741         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
6742         false);
6743 
6744   // Some targets keep addresses scalar.
6745   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
6746     return Cost;
6747 
6748   // Some targets support efficient element stores.
6749   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
6750     return Cost;
6751 
6752   // Collect operands to consider.
6753   CallInst *CI = dyn_cast<CallInst>(I);
6754   Instruction::op_range Ops = CI ? CI->args() : I->operands();
6755 
6756   // Skip operands that do not require extraction/scalarization and do not incur
6757   // any overhead.
6758   SmallVector<Type *> Tys;
6759   for (auto *V : filterExtractingOperands(Ops, VF))
6760     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
6761   return Cost + TTI.getOperandsScalarizationOverhead(
6762                     filterExtractingOperands(Ops, VF), Tys);
6763 }
6764 
6765 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
6766   if (VF.isScalar())
6767     return;
6768   NumPredStores = 0;
6769   for (BasicBlock *BB : TheLoop->blocks()) {
6770     // For each instruction in the old loop.
6771     for (Instruction &I : *BB) {
6772       Value *Ptr =  getLoadStorePointerOperand(&I);
6773       if (!Ptr)
6774         continue;
6775 
6776       // TODO: We should generate better code and update the cost model for
6777       // predicated uniform stores. Today they are treated as any other
6778       // predicated store (see added test cases in
6779       // invariant-store-vectorization.ll).
6780       if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF))
6781         NumPredStores++;
6782 
6783       if (Legal->isUniformMemOp(I)) {
6784         // TODO: Avoid replicating loads and stores instead of
6785         // relying on instcombine to remove them.
6786         // Load: Scalar load + broadcast
6787         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
6788         InstructionCost Cost;
6789         if (isa<StoreInst>(&I) && VF.isScalable() &&
6790             isLegalGatherOrScatter(&I, VF)) {
6791           Cost = getGatherScatterCost(&I, VF);
6792           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
6793         } else {
6794           Cost = getUniformMemOpCost(&I, VF);
6795           setWideningDecision(&I, VF, CM_Scalarize, Cost);
6796         }
6797         continue;
6798       }
6799 
6800       // We assume that widening is the best solution when possible.
6801       if (memoryInstructionCanBeWidened(&I, VF)) {
6802         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
6803         int ConsecutiveStride = Legal->isConsecutivePtr(
6804             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
6805         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6806                "Expected consecutive stride.");
6807         InstWidening Decision =
6808             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
6809         setWideningDecision(&I, VF, Decision, Cost);
6810         continue;
6811       }
6812 
6813       // Choose between Interleaving, Gather/Scatter or Scalarization.
6814       InstructionCost InterleaveCost = InstructionCost::getInvalid();
6815       unsigned NumAccesses = 1;
6816       if (isAccessInterleaved(&I)) {
6817         auto Group = getInterleavedAccessGroup(&I);
6818         assert(Group && "Fail to get an interleaved access group.");
6819 
6820         // Make one decision for the whole group.
6821         if (getWideningDecision(&I, VF) != CM_Unknown)
6822           continue;
6823 
6824         NumAccesses = Group->getNumMembers();
6825         if (interleavedAccessCanBeWidened(&I, VF))
6826           InterleaveCost = getInterleaveGroupCost(&I, VF);
6827       }
6828 
6829       InstructionCost GatherScatterCost =
6830           isLegalGatherOrScatter(&I, VF)
6831               ? getGatherScatterCost(&I, VF) * NumAccesses
6832               : InstructionCost::getInvalid();
6833 
6834       InstructionCost ScalarizationCost =
6835           getMemInstScalarizationCost(&I, VF) * NumAccesses;
6836 
6837       // Choose better solution for the current VF,
6838       // write down this decision and use it during vectorization.
6839       InstructionCost Cost;
6840       InstWidening Decision;
6841       if (InterleaveCost <= GatherScatterCost &&
6842           InterleaveCost < ScalarizationCost) {
6843         Decision = CM_Interleave;
6844         Cost = InterleaveCost;
6845       } else if (GatherScatterCost < ScalarizationCost) {
6846         Decision = CM_GatherScatter;
6847         Cost = GatherScatterCost;
6848       } else {
6849         Decision = CM_Scalarize;
6850         Cost = ScalarizationCost;
6851       }
6852       // If the instructions belongs to an interleave group, the whole group
6853       // receives the same decision. The whole group receives the cost, but
6854       // the cost will actually be assigned to one instruction.
6855       if (auto Group = getInterleavedAccessGroup(&I))
6856         setWideningDecision(Group, VF, Decision, Cost);
6857       else
6858         setWideningDecision(&I, VF, Decision, Cost);
6859     }
6860   }
6861 
6862   // Make sure that any load of address and any other address computation
6863   // remains scalar unless there is gather/scatter support. This avoids
6864   // inevitable extracts into address registers, and also has the benefit of
6865   // activating LSR more, since that pass can't optimize vectorized
6866   // addresses.
6867   if (TTI.prefersVectorizedAddressing())
6868     return;
6869 
6870   // Start with all scalar pointer uses.
6871   SmallPtrSet<Instruction *, 8> AddrDefs;
6872   for (BasicBlock *BB : TheLoop->blocks())
6873     for (Instruction &I : *BB) {
6874       Instruction *PtrDef =
6875         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
6876       if (PtrDef && TheLoop->contains(PtrDef) &&
6877           getWideningDecision(&I, VF) != CM_GatherScatter)
6878         AddrDefs.insert(PtrDef);
6879     }
6880 
6881   // Add all instructions used to generate the addresses.
6882   SmallVector<Instruction *, 4> Worklist;
6883   append_range(Worklist, AddrDefs);
6884   while (!Worklist.empty()) {
6885     Instruction *I = Worklist.pop_back_val();
6886     for (auto &Op : I->operands())
6887       if (auto *InstOp = dyn_cast<Instruction>(Op))
6888         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
6889             AddrDefs.insert(InstOp).second)
6890           Worklist.push_back(InstOp);
6891   }
6892 
6893   for (auto *I : AddrDefs) {
6894     if (isa<LoadInst>(I)) {
6895       // Setting the desired widening decision should ideally be handled in
6896       // by cost functions, but since this involves the task of finding out
6897       // if the loaded register is involved in an address computation, it is
6898       // instead changed here when we know this is the case.
6899       InstWidening Decision = getWideningDecision(I, VF);
6900       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
6901         // Scalarize a widened load of address.
6902         setWideningDecision(
6903             I, VF, CM_Scalarize,
6904             (VF.getKnownMinValue() *
6905              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
6906       else if (auto Group = getInterleavedAccessGroup(I)) {
6907         // Scalarize an interleave group of address loads.
6908         for (unsigned I = 0; I < Group->getFactor(); ++I) {
6909           if (Instruction *Member = Group->getMember(I))
6910             setWideningDecision(
6911                 Member, VF, CM_Scalarize,
6912                 (VF.getKnownMinValue() *
6913                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
6914         }
6915       }
6916     } else
6917       // Make sure I gets scalarized and a cost estimate without
6918       // scalarization overhead.
6919       ForcedScalars[VF].insert(I);
6920   }
6921 }
6922 
6923 InstructionCost
6924 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
6925                                                Type *&VectorTy) {
6926   Type *RetTy = I->getType();
6927   if (canTruncateToMinimalBitwidth(I, VF))
6928     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6929   auto SE = PSE.getSE();
6930   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6931 
6932   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
6933                                                 ElementCount VF) -> bool {
6934     if (VF.isScalar())
6935       return true;
6936 
6937     auto Scalarized = InstsToScalarize.find(VF);
6938     assert(Scalarized != InstsToScalarize.end() &&
6939            "VF not yet analyzed for scalarization profitability");
6940     return !Scalarized->second.count(I) &&
6941            llvm::all_of(I->users(), [&](User *U) {
6942              auto *UI = cast<Instruction>(U);
6943              return !Scalarized->second.count(UI);
6944            });
6945   };
6946   (void) hasSingleCopyAfterVectorization;
6947 
6948   if (isScalarAfterVectorization(I, VF)) {
6949     // With the exception of GEPs and PHIs, after scalarization there should
6950     // only be one copy of the instruction generated in the loop. This is
6951     // because the VF is either 1, or any instructions that need scalarizing
6952     // have already been dealt with by the the time we get here. As a result,
6953     // it means we don't have to multiply the instruction cost by VF.
6954     assert(I->getOpcode() == Instruction::GetElementPtr ||
6955            I->getOpcode() == Instruction::PHI ||
6956            (I->getOpcode() == Instruction::BitCast &&
6957             I->getType()->isPointerTy()) ||
6958            hasSingleCopyAfterVectorization(I, VF));
6959     VectorTy = RetTy;
6960   } else
6961     VectorTy = ToVectorTy(RetTy, VF);
6962 
6963   // TODO: We need to estimate the cost of intrinsic calls.
6964   switch (I->getOpcode()) {
6965   case Instruction::GetElementPtr:
6966     // We mark this instruction as zero-cost because the cost of GEPs in
6967     // vectorized code depends on whether the corresponding memory instruction
6968     // is scalarized or not. Therefore, we handle GEPs with the memory
6969     // instruction cost.
6970     return 0;
6971   case Instruction::Br: {
6972     // In cases of scalarized and predicated instructions, there will be VF
6973     // predicated blocks in the vectorized loop. Each branch around these
6974     // blocks requires also an extract of its vector compare i1 element.
6975     bool ScalarPredicatedBB = false;
6976     BranchInst *BI = cast<BranchInst>(I);
6977     if (VF.isVector() && BI->isConditional() &&
6978         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
6979          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
6980       ScalarPredicatedBB = true;
6981 
6982     if (ScalarPredicatedBB) {
6983       // Not possible to scalarize scalable vector with predicated instructions.
6984       if (VF.isScalable())
6985         return InstructionCost::getInvalid();
6986       // Return cost for branches around scalarized and predicated blocks.
6987       auto *Vec_i1Ty =
6988           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
6989       return (
6990           TTI.getScalarizationOverhead(
6991               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
6992           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
6993     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
6994       // The back-edge branch will remain, as will all scalar branches.
6995       return TTI.getCFInstrCost(Instruction::Br, CostKind);
6996     else
6997       // This branch will be eliminated by if-conversion.
6998       return 0;
6999     // Note: We currently assume zero cost for an unconditional branch inside
7000     // a predicated block since it will become a fall-through, although we
7001     // may decide in the future to call TTI for all branches.
7002   }
7003   case Instruction::PHI: {
7004     auto *Phi = cast<PHINode>(I);
7005 
7006     // First-order recurrences are replaced by vector shuffles inside the loop.
7007     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7008     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7009       return TTI.getShuffleCost(
7010           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7011           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7012 
7013     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7014     // converted into select instructions. We require N - 1 selects per phi
7015     // node, where N is the number of incoming values.
7016     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7017       return (Phi->getNumIncomingValues() - 1) *
7018              TTI.getCmpSelInstrCost(
7019                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7020                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7021                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7022 
7023     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7024   }
7025   case Instruction::UDiv:
7026   case Instruction::SDiv:
7027   case Instruction::URem:
7028   case Instruction::SRem:
7029     // If we have a predicated instruction, it may not be executed for each
7030     // vector lane. Get the scalarization cost and scale this amount by the
7031     // probability of executing the predicated block. If the instruction is not
7032     // predicated, we fall through to the next case.
7033     if (VF.isVector() && isScalarWithPredication(I, VF)) {
7034       InstructionCost Cost = 0;
7035 
7036       // These instructions have a non-void type, so account for the phi nodes
7037       // that we will create. This cost is likely to be zero. The phi node
7038       // cost, if any, should be scaled by the block probability because it
7039       // models a copy at the end of each predicated block.
7040       Cost += VF.getKnownMinValue() *
7041               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7042 
7043       // The cost of the non-predicated instruction.
7044       Cost += VF.getKnownMinValue() *
7045               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7046 
7047       // The cost of insertelement and extractelement instructions needed for
7048       // scalarization.
7049       Cost += getScalarizationOverhead(I, VF);
7050 
7051       // Scale the cost by the probability of executing the predicated blocks.
7052       // This assumes the predicated block for each vector lane is equally
7053       // likely.
7054       return Cost / getReciprocalPredBlockProb();
7055     }
7056     LLVM_FALLTHROUGH;
7057   case Instruction::Add:
7058   case Instruction::FAdd:
7059   case Instruction::Sub:
7060   case Instruction::FSub:
7061   case Instruction::Mul:
7062   case Instruction::FMul:
7063   case Instruction::FDiv:
7064   case Instruction::FRem:
7065   case Instruction::Shl:
7066   case Instruction::LShr:
7067   case Instruction::AShr:
7068   case Instruction::And:
7069   case Instruction::Or:
7070   case Instruction::Xor: {
7071     // Since we will replace the stride by 1 the multiplication should go away.
7072     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7073       return 0;
7074 
7075     // Detect reduction patterns
7076     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7077       return *RedCost;
7078 
7079     // Certain instructions can be cheaper to vectorize if they have a constant
7080     // second vector operand. One example of this are shifts on x86.
7081     Value *Op2 = I->getOperand(1);
7082     TargetTransformInfo::OperandValueProperties Op2VP;
7083     TargetTransformInfo::OperandValueKind Op2VK =
7084         TTI.getOperandInfo(Op2, Op2VP);
7085     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7086       Op2VK = TargetTransformInfo::OK_UniformValue;
7087 
7088     SmallVector<const Value *, 4> Operands(I->operand_values());
7089     return TTI.getArithmeticInstrCost(
7090         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7091         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7092   }
7093   case Instruction::FNeg: {
7094     return TTI.getArithmeticInstrCost(
7095         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7096         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7097         TargetTransformInfo::OP_None, I->getOperand(0), I);
7098   }
7099   case Instruction::Select: {
7100     SelectInst *SI = cast<SelectInst>(I);
7101     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7102     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7103 
7104     const Value *Op0, *Op1;
7105     using namespace llvm::PatternMatch;
7106     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7107                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7108       // select x, y, false --> x & y
7109       // select x, true, y --> x | y
7110       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7111       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7112       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7113       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7114       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7115               Op1->getType()->getScalarSizeInBits() == 1);
7116 
7117       SmallVector<const Value *, 2> Operands{Op0, Op1};
7118       return TTI.getArithmeticInstrCost(
7119           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7120           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7121     }
7122 
7123     Type *CondTy = SI->getCondition()->getType();
7124     if (!ScalarCond)
7125       CondTy = VectorType::get(CondTy, VF);
7126 
7127     CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
7128     if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
7129       Pred = Cmp->getPredicate();
7130     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
7131                                   CostKind, I);
7132   }
7133   case Instruction::ICmp:
7134   case Instruction::FCmp: {
7135     Type *ValTy = I->getOperand(0)->getType();
7136     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7137     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7138       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7139     VectorTy = ToVectorTy(ValTy, VF);
7140     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7141                                   cast<CmpInst>(I)->getPredicate(), CostKind,
7142                                   I);
7143   }
7144   case Instruction::Store:
7145   case Instruction::Load: {
7146     ElementCount Width = VF;
7147     if (Width.isVector()) {
7148       InstWidening Decision = getWideningDecision(I, Width);
7149       assert(Decision != CM_Unknown &&
7150              "CM decision should be taken at this point");
7151       if (Decision == CM_Scalarize) {
7152         if (VF.isScalable() && isa<StoreInst>(I))
7153           // We can't scalarize a scalable vector store (even a uniform one
7154           // currently), return an invalid cost so as to prevent vectorization.
7155           return InstructionCost::getInvalid();
7156         Width = ElementCount::getFixed(1);
7157       }
7158     }
7159     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7160     return getMemoryInstructionCost(I, VF);
7161   }
7162   case Instruction::BitCast:
7163     if (I->getType()->isPointerTy())
7164       return 0;
7165     LLVM_FALLTHROUGH;
7166   case Instruction::ZExt:
7167   case Instruction::SExt:
7168   case Instruction::FPToUI:
7169   case Instruction::FPToSI:
7170   case Instruction::FPExt:
7171   case Instruction::PtrToInt:
7172   case Instruction::IntToPtr:
7173   case Instruction::SIToFP:
7174   case Instruction::UIToFP:
7175   case Instruction::Trunc:
7176   case Instruction::FPTrunc: {
7177     // Computes the CastContextHint from a Load/Store instruction.
7178     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7179       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7180              "Expected a load or a store!");
7181 
7182       if (VF.isScalar() || !TheLoop->contains(I))
7183         return TTI::CastContextHint::Normal;
7184 
7185       switch (getWideningDecision(I, VF)) {
7186       case LoopVectorizationCostModel::CM_GatherScatter:
7187         return TTI::CastContextHint::GatherScatter;
7188       case LoopVectorizationCostModel::CM_Interleave:
7189         return TTI::CastContextHint::Interleave;
7190       case LoopVectorizationCostModel::CM_Scalarize:
7191       case LoopVectorizationCostModel::CM_Widen:
7192         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7193                                         : TTI::CastContextHint::Normal;
7194       case LoopVectorizationCostModel::CM_Widen_Reverse:
7195         return TTI::CastContextHint::Reversed;
7196       case LoopVectorizationCostModel::CM_Unknown:
7197         llvm_unreachable("Instr did not go through cost modelling?");
7198       }
7199 
7200       llvm_unreachable("Unhandled case!");
7201     };
7202 
7203     unsigned Opcode = I->getOpcode();
7204     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7205     // For Trunc, the context is the only user, which must be a StoreInst.
7206     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7207       if (I->hasOneUse())
7208         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7209           CCH = ComputeCCH(Store);
7210     }
7211     // For Z/Sext, the context is the operand, which must be a LoadInst.
7212     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7213              Opcode == Instruction::FPExt) {
7214       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7215         CCH = ComputeCCH(Load);
7216     }
7217 
7218     // We optimize the truncation of induction variables having constant
7219     // integer steps. The cost of these truncations is the same as the scalar
7220     // operation.
7221     if (isOptimizableIVTruncate(I, VF)) {
7222       auto *Trunc = cast<TruncInst>(I);
7223       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7224                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7225     }
7226 
7227     // Detect reduction patterns
7228     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7229       return *RedCost;
7230 
7231     Type *SrcScalarTy = I->getOperand(0)->getType();
7232     Type *SrcVecTy =
7233         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7234     if (canTruncateToMinimalBitwidth(I, VF)) {
7235       // This cast is going to be shrunk. This may remove the cast or it might
7236       // turn it into slightly different cast. For example, if MinBW == 16,
7237       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7238       //
7239       // Calculate the modified src and dest types.
7240       Type *MinVecTy = VectorTy;
7241       if (Opcode == Instruction::Trunc) {
7242         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7243         VectorTy =
7244             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7245       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7246         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7247         VectorTy =
7248             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7249       }
7250     }
7251 
7252     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7253   }
7254   case Instruction::Call: {
7255     if (RecurrenceDescriptor::isFMulAddIntrinsic(I))
7256       if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7257         return *RedCost;
7258     bool NeedToScalarize;
7259     CallInst *CI = cast<CallInst>(I);
7260     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7261     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7262       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7263       return std::min(CallCost, IntrinsicCost);
7264     }
7265     return CallCost;
7266   }
7267   case Instruction::ExtractValue:
7268     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7269   case Instruction::Alloca:
7270     // We cannot easily widen alloca to a scalable alloca, as
7271     // the result would need to be a vector of pointers.
7272     if (VF.isScalable())
7273       return InstructionCost::getInvalid();
7274     LLVM_FALLTHROUGH;
7275   default:
7276     // This opcode is unknown. Assume that it is the same as 'mul'.
7277     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7278   } // end of switch.
7279 }
7280 
7281 char LoopVectorize::ID = 0;
7282 
7283 static const char lv_name[] = "Loop Vectorization";
7284 
7285 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7286 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7287 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7288 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7289 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7290 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7291 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7292 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7293 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7294 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7295 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7296 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7297 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7298 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7299 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7300 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7301 
7302 namespace llvm {
7303 
7304 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7305 
7306 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7307                               bool VectorizeOnlyWhenForced) {
7308   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7309 }
7310 
7311 } // end namespace llvm
7312 
7313 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7314   // Check if the pointer operand of a load or store instruction is
7315   // consecutive.
7316   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7317     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7318   return false;
7319 }
7320 
7321 void LoopVectorizationCostModel::collectValuesToIgnore() {
7322   // Ignore ephemeral values.
7323   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7324 
7325   // Find all stores to invariant variables. Since they are going to sink
7326   // outside the loop we do not need calculate cost for them.
7327   for (BasicBlock *BB : TheLoop->blocks())
7328     for (Instruction &I : *BB) {
7329       StoreInst *SI;
7330       if ((SI = dyn_cast<StoreInst>(&I)) &&
7331           Legal->isInvariantAddressOfReduction(SI->getPointerOperand()))
7332         ValuesToIgnore.insert(&I);
7333     }
7334 
7335   // Ignore type-promoting instructions we identified during reduction
7336   // detection.
7337   for (auto &Reduction : Legal->getReductionVars()) {
7338     const RecurrenceDescriptor &RedDes = Reduction.second;
7339     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7340     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7341   }
7342   // Ignore type-casting instructions we identified during induction
7343   // detection.
7344   for (auto &Induction : Legal->getInductionVars()) {
7345     const InductionDescriptor &IndDes = Induction.second;
7346     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7347     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7348   }
7349 }
7350 
7351 void LoopVectorizationCostModel::collectInLoopReductions() {
7352   for (auto &Reduction : Legal->getReductionVars()) {
7353     PHINode *Phi = Reduction.first;
7354     const RecurrenceDescriptor &RdxDesc = Reduction.second;
7355 
7356     // We don't collect reductions that are type promoted (yet).
7357     if (RdxDesc.getRecurrenceType() != Phi->getType())
7358       continue;
7359 
7360     // If the target would prefer this reduction to happen "in-loop", then we
7361     // want to record it as such.
7362     unsigned Opcode = RdxDesc.getOpcode();
7363     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7364         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7365                                    TargetTransformInfo::ReductionFlags()))
7366       continue;
7367 
7368     // Check that we can correctly put the reductions into the loop, by
7369     // finding the chain of operations that leads from the phi to the loop
7370     // exit value.
7371     SmallVector<Instruction *, 4> ReductionOperations =
7372         RdxDesc.getReductionOpChain(Phi, TheLoop);
7373     bool InLoop = !ReductionOperations.empty();
7374     if (InLoop) {
7375       InLoopReductionChains[Phi] = ReductionOperations;
7376       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7377       Instruction *LastChain = Phi;
7378       for (auto *I : ReductionOperations) {
7379         InLoopReductionImmediateChains[I] = LastChain;
7380         LastChain = I;
7381       }
7382     }
7383     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7384                       << " reduction for phi: " << *Phi << "\n");
7385   }
7386 }
7387 
7388 // TODO: we could return a pair of values that specify the max VF and
7389 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7390 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7391 // doesn't have a cost model that can choose which plan to execute if
7392 // more than one is generated.
7393 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7394                                  LoopVectorizationCostModel &CM) {
7395   unsigned WidestType;
7396   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7397   return WidestVectorRegBits / WidestType;
7398 }
7399 
7400 VectorizationFactor
7401 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7402   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7403   ElementCount VF = UserVF;
7404   // Outer loop handling: They may require CFG and instruction level
7405   // transformations before even evaluating whether vectorization is profitable.
7406   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7407   // the vectorization pipeline.
7408   if (!OrigLoop->isInnermost()) {
7409     // If the user doesn't provide a vectorization factor, determine a
7410     // reasonable one.
7411     if (UserVF.isZero()) {
7412       VF = ElementCount::getFixed(determineVPlanVF(
7413           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7414               .getFixedSize(),
7415           CM));
7416       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7417 
7418       // Make sure we have a VF > 1 for stress testing.
7419       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7420         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7421                           << "overriding computed VF.\n");
7422         VF = ElementCount::getFixed(4);
7423       }
7424     }
7425     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7426     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7427            "VF needs to be a power of two");
7428     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7429                       << "VF " << VF << " to build VPlans.\n");
7430     buildVPlans(VF, VF);
7431 
7432     // For VPlan build stress testing, we bail out after VPlan construction.
7433     if (VPlanBuildStressTest)
7434       return VectorizationFactor::Disabled();
7435 
7436     return {VF, 0 /*Cost*/, 0 /* ScalarCost */};
7437   }
7438 
7439   LLVM_DEBUG(
7440       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7441                 "VPlan-native path.\n");
7442   return VectorizationFactor::Disabled();
7443 }
7444 
7445 bool LoopVectorizationPlanner::requiresTooManyRuntimeChecks() const {
7446   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
7447   return (NumRuntimePointerChecks >
7448               VectorizerParams::RuntimeMemoryCheckThreshold &&
7449           !Hints.allowReordering()) ||
7450          NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
7451 }
7452 
7453 Optional<VectorizationFactor>
7454 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7455   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7456   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
7457   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
7458     return None;
7459 
7460   // Invalidate interleave groups if all blocks of loop will be predicated.
7461   if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
7462       !useMaskedInterleavedAccesses(*TTI)) {
7463     LLVM_DEBUG(
7464         dbgs()
7465         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7466            "which requires masked-interleaved support.\n");
7467     if (CM.InterleaveInfo.invalidateGroups())
7468       // Invalidating interleave groups also requires invalidating all decisions
7469       // based on them, which includes widening decisions and uniform and scalar
7470       // values.
7471       CM.invalidateCostModelingDecisions();
7472   }
7473 
7474   ElementCount MaxUserVF =
7475       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
7476   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
7477   if (!UserVF.isZero() && UserVFIsLegal) {
7478     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
7479            "VF needs to be a power of two");
7480     // Collect the instructions (and their associated costs) that will be more
7481     // profitable to scalarize.
7482     if (CM.selectUserVectorizationFactor(UserVF)) {
7483       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7484       CM.collectInLoopReductions();
7485       buildVPlansWithVPRecipes(UserVF, UserVF);
7486       LLVM_DEBUG(printPlans(dbgs()));
7487       return {{UserVF, 0, 0}};
7488     } else
7489       reportVectorizationInfo("UserVF ignored because of invalid costs.",
7490                               "InvalidCost", ORE, OrigLoop);
7491   }
7492 
7493   // Populate the set of Vectorization Factor Candidates.
7494   ElementCountSet VFCandidates;
7495   for (auto VF = ElementCount::getFixed(1);
7496        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
7497     VFCandidates.insert(VF);
7498   for (auto VF = ElementCount::getScalable(1);
7499        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
7500     VFCandidates.insert(VF);
7501 
7502   for (const auto &VF : VFCandidates) {
7503     // Collect Uniform and Scalar instructions after vectorization with VF.
7504     CM.collectUniformsAndScalars(VF);
7505 
7506     // Collect the instructions (and their associated costs) that will be more
7507     // profitable to scalarize.
7508     if (VF.isVector())
7509       CM.collectInstsToScalarize(VF);
7510   }
7511 
7512   CM.collectInLoopReductions();
7513   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
7514   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
7515 
7516   LLVM_DEBUG(printPlans(dbgs()));
7517   if (!MaxFactors.hasVector())
7518     return VectorizationFactor::Disabled();
7519 
7520   // Select the optimal vectorization factor.
7521   return CM.selectVectorizationFactor(VFCandidates);
7522 }
7523 
7524 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
7525   assert(count_if(VPlans,
7526                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
7527              1 &&
7528          "Best VF has not a single VPlan.");
7529 
7530   for (const VPlanPtr &Plan : VPlans) {
7531     if (Plan->hasVF(VF))
7532       return *Plan.get();
7533   }
7534   llvm_unreachable("No plan found!");
7535 }
7536 
7537 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7538   SmallVector<Metadata *, 4> MDs;
7539   // Reserve first location for self reference to the LoopID metadata node.
7540   MDs.push_back(nullptr);
7541   bool IsUnrollMetadata = false;
7542   MDNode *LoopID = L->getLoopID();
7543   if (LoopID) {
7544     // First find existing loop unrolling disable metadata.
7545     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7546       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7547       if (MD) {
7548         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7549         IsUnrollMetadata =
7550             S && S->getString().startswith("llvm.loop.unroll.disable");
7551       }
7552       MDs.push_back(LoopID->getOperand(i));
7553     }
7554   }
7555 
7556   if (!IsUnrollMetadata) {
7557     // Add runtime unroll disable metadata.
7558     LLVMContext &Context = L->getHeader()->getContext();
7559     SmallVector<Metadata *, 1> DisableOperands;
7560     DisableOperands.push_back(
7561         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7562     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7563     MDs.push_back(DisableNode);
7564     MDNode *NewLoopID = MDNode::get(Context, MDs);
7565     // Set operand 0 to refer to the loop id itself.
7566     NewLoopID->replaceOperandWith(0, NewLoopID);
7567     L->setLoopID(NewLoopID);
7568   }
7569 }
7570 
7571 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
7572                                            VPlan &BestVPlan,
7573                                            InnerLoopVectorizer &ILV,
7574                                            DominatorTree *DT) {
7575   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
7576                     << '\n');
7577 
7578   // Perform the actual loop transformation.
7579 
7580   // 1. Set up the skeleton for vectorization, including vector pre-header and
7581   // middle block. The vector loop is created during VPlan execution.
7582   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
7583   Value *CanonicalIVStartValue;
7584   std::tie(State.CFG.PrevBB, CanonicalIVStartValue) =
7585       ILV.createVectorizedLoopSkeleton();
7586   ILV.collectPoisonGeneratingRecipes(State);
7587 
7588   ILV.printDebugTracesAtStart();
7589 
7590   //===------------------------------------------------===//
7591   //
7592   // Notice: any optimization or new instruction that go
7593   // into the code below should also be implemented in
7594   // the cost-model.
7595   //
7596   //===------------------------------------------------===//
7597 
7598   // 2. Copy and widen instructions from the old loop into the new loop.
7599   BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr),
7600                              ILV.getOrCreateVectorTripCount(nullptr),
7601                              CanonicalIVStartValue, State);
7602   BestVPlan.execute(&State);
7603 
7604   // Keep all loop hints from the original loop on the vector loop (we'll
7605   // replace the vectorizer-specific hints below).
7606   MDNode *OrigLoopID = OrigLoop->getLoopID();
7607 
7608   Optional<MDNode *> VectorizedLoopID =
7609       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7610                                       LLVMLoopVectorizeFollowupVectorized});
7611 
7612   VPBasicBlock *HeaderVPBB =
7613       BestVPlan.getVectorLoopRegion()->getEntryBasicBlock();
7614   Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]);
7615   if (VectorizedLoopID.hasValue())
7616     L->setLoopID(VectorizedLoopID.getValue());
7617   else {
7618     // Keep all loop hints from the original loop on the vector loop (we'll
7619     // replace the vectorizer-specific hints below).
7620     if (MDNode *LID = OrigLoop->getLoopID())
7621       L->setLoopID(LID);
7622 
7623     LoopVectorizeHints Hints(L, true, *ORE);
7624     Hints.setAlreadyVectorized();
7625   }
7626   // Disable runtime unrolling when vectorizing the epilogue loop.
7627   if (CanonicalIVStartValue)
7628     AddRuntimeUnrollDisableMetaData(L);
7629 
7630   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7631   //    predication, updating analyses.
7632   ILV.fixVectorizedLoop(State, BestVPlan);
7633 
7634   ILV.printDebugTracesAtEnd();
7635 }
7636 
7637 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
7638 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
7639   for (const auto &Plan : VPlans)
7640     if (PrintVPlansInDotFormat)
7641       Plan->printDOT(O);
7642     else
7643       Plan->print(O);
7644 }
7645 #endif
7646 
7647 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
7648     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
7649 
7650   // We create new control-flow for the vectorized loop, so the original exit
7651   // conditions will be dead after vectorization if it's only used by the
7652   // terminator
7653   SmallVector<BasicBlock*> ExitingBlocks;
7654   OrigLoop->getExitingBlocks(ExitingBlocks);
7655   for (auto *BB : ExitingBlocks) {
7656     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
7657     if (!Cmp || !Cmp->hasOneUse())
7658       continue;
7659 
7660     // TODO: we should introduce a getUniqueExitingBlocks on Loop
7661     if (!DeadInstructions.insert(Cmp).second)
7662       continue;
7663 
7664     // The operands of the icmp is often a dead trunc, used by IndUpdate.
7665     // TODO: can recurse through operands in general
7666     for (Value *Op : Cmp->operands()) {
7667       if (isa<TruncInst>(Op) && Op->hasOneUse())
7668           DeadInstructions.insert(cast<Instruction>(Op));
7669     }
7670   }
7671 
7672   // We create new "steps" for induction variable updates to which the original
7673   // induction variables map. An original update instruction will be dead if
7674   // all its users except the induction variable are dead.
7675   auto *Latch = OrigLoop->getLoopLatch();
7676   for (auto &Induction : Legal->getInductionVars()) {
7677     PHINode *Ind = Induction.first;
7678     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
7679 
7680     // If the tail is to be folded by masking, the primary induction variable,
7681     // if exists, isn't dead: it will be used for masking. Don't kill it.
7682     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
7683       continue;
7684 
7685     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
7686           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
7687         }))
7688       DeadInstructions.insert(IndUpdate);
7689   }
7690 }
7691 
7692 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
7693 
7694 //===--------------------------------------------------------------------===//
7695 // EpilogueVectorizerMainLoop
7696 //===--------------------------------------------------------------------===//
7697 
7698 /// This function is partially responsible for generating the control flow
7699 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7700 std::pair<BasicBlock *, Value *>
7701 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
7702   MDNode *OrigLoopID = OrigLoop->getLoopID();
7703 
7704   // Workaround!  Compute the trip count of the original loop and cache it
7705   // before we start modifying the CFG.  This code has a systemic problem
7706   // wherein it tries to run analysis over partially constructed IR; this is
7707   // wrong, and not simply for SCEV.  The trip count of the original loop
7708   // simply happens to be prone to hitting this in practice.  In theory, we
7709   // can hit the same issue for any SCEV, or ValueTracking query done during
7710   // mutation.  See PR49900.
7711   getOrCreateTripCount(OrigLoop->getLoopPreheader());
7712   createVectorLoopSkeleton("");
7713 
7714   // Generate the code to check the minimum iteration count of the vector
7715   // epilogue (see below).
7716   EPI.EpilogueIterationCountCheck =
7717       emitIterationCountCheck(LoopScalarPreHeader, true);
7718   EPI.EpilogueIterationCountCheck->setName("iter.check");
7719 
7720   // Generate the code to check any assumptions that we've made for SCEV
7721   // expressions.
7722   EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader);
7723 
7724   // Generate the code that checks at runtime if arrays overlap. We put the
7725   // checks into a separate block to make the more common case of few elements
7726   // faster.
7727   EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader);
7728 
7729   // Generate the iteration count check for the main loop, *after* the check
7730   // for the epilogue loop, so that the path-length is shorter for the case
7731   // that goes directly through the vector epilogue. The longer-path length for
7732   // the main loop is compensated for, by the gain from vectorizing the larger
7733   // trip count. Note: the branch will get updated later on when we vectorize
7734   // the epilogue.
7735   EPI.MainLoopIterationCountCheck =
7736       emitIterationCountCheck(LoopScalarPreHeader, false);
7737 
7738   // Generate the induction variable.
7739   EPI.VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
7740 
7741   // Skip induction resume value creation here because they will be created in
7742   // the second pass. If we created them here, they wouldn't be used anyway,
7743   // because the vplan in the second pass still contains the inductions from the
7744   // original loop.
7745 
7746   return {completeLoopSkeleton(OrigLoopID), nullptr};
7747 }
7748 
7749 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
7750   LLVM_DEBUG({
7751     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
7752            << "Main Loop VF:" << EPI.MainLoopVF
7753            << ", Main Loop UF:" << EPI.MainLoopUF
7754            << ", Epilogue Loop VF:" << EPI.EpilogueVF
7755            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7756   });
7757 }
7758 
7759 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
7760   DEBUG_WITH_TYPE(VerboseDebug, {
7761     dbgs() << "intermediate fn:\n"
7762            << *OrigLoop->getHeader()->getParent() << "\n";
7763   });
7764 }
7765 
7766 BasicBlock *
7767 EpilogueVectorizerMainLoop::emitIterationCountCheck(BasicBlock *Bypass,
7768                                                     bool ForEpilogue) {
7769   assert(Bypass && "Expected valid bypass basic block.");
7770   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
7771   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
7772   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
7773   // Reuse existing vector loop preheader for TC checks.
7774   // Note that new preheader block is generated for vector loop.
7775   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
7776   IRBuilder<> Builder(TCCheckBlock->getTerminator());
7777 
7778   // Generate code to check if the loop's trip count is less than VF * UF of the
7779   // main vector loop.
7780   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
7781       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
7782 
7783   Value *CheckMinIters = Builder.CreateICmp(
7784       P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
7785       "min.iters.check");
7786 
7787   if (!ForEpilogue)
7788     TCCheckBlock->setName("vector.main.loop.iter.check");
7789 
7790   // Create new preheader for vector loop.
7791   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
7792                                    DT, LI, nullptr, "vector.ph");
7793 
7794   if (ForEpilogue) {
7795     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
7796                                  DT->getNode(Bypass)->getIDom()) &&
7797            "TC check is expected to dominate Bypass");
7798 
7799     // Update dominator for Bypass & LoopExit.
7800     DT->changeImmediateDominator(Bypass, TCCheckBlock);
7801     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
7802       // For loops with multiple exits, there's no edge from the middle block
7803       // to exit blocks (as the epilogue must run) and thus no need to update
7804       // the immediate dominator of the exit blocks.
7805       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
7806 
7807     LoopBypassBlocks.push_back(TCCheckBlock);
7808 
7809     // Save the trip count so we don't have to regenerate it in the
7810     // vec.epilog.iter.check. This is safe to do because the trip count
7811     // generated here dominates the vector epilog iter check.
7812     EPI.TripCount = Count;
7813   }
7814 
7815   ReplaceInstWithInst(
7816       TCCheckBlock->getTerminator(),
7817       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
7818 
7819   return TCCheckBlock;
7820 }
7821 
7822 //===--------------------------------------------------------------------===//
7823 // EpilogueVectorizerEpilogueLoop
7824 //===--------------------------------------------------------------------===//
7825 
7826 /// This function is partially responsible for generating the control flow
7827 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7828 std::pair<BasicBlock *, Value *>
7829 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
7830   MDNode *OrigLoopID = OrigLoop->getLoopID();
7831   createVectorLoopSkeleton("vec.epilog.");
7832 
7833   // Now, compare the remaining count and if there aren't enough iterations to
7834   // execute the vectorized epilogue skip to the scalar part.
7835   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
7836   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
7837   LoopVectorPreHeader =
7838       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
7839                  LI, nullptr, "vec.epilog.ph");
7840   emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader,
7841                                           VecEpilogueIterationCountCheck);
7842 
7843   // Adjust the control flow taking the state info from the main loop
7844   // vectorization into account.
7845   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
7846          "expected this to be saved from the previous pass.");
7847   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
7848       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
7849 
7850   DT->changeImmediateDominator(LoopVectorPreHeader,
7851                                EPI.MainLoopIterationCountCheck);
7852 
7853   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
7854       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7855 
7856   if (EPI.SCEVSafetyCheck)
7857     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
7858         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7859   if (EPI.MemSafetyCheck)
7860     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
7861         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7862 
7863   DT->changeImmediateDominator(
7864       VecEpilogueIterationCountCheck,
7865       VecEpilogueIterationCountCheck->getSinglePredecessor());
7866 
7867   DT->changeImmediateDominator(LoopScalarPreHeader,
7868                                EPI.EpilogueIterationCountCheck);
7869   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
7870     // If there is an epilogue which must run, there's no edge from the
7871     // middle block to exit blocks  and thus no need to update the immediate
7872     // dominator of the exit blocks.
7873     DT->changeImmediateDominator(LoopExitBlock,
7874                                  EPI.EpilogueIterationCountCheck);
7875 
7876   // Keep track of bypass blocks, as they feed start values to the induction
7877   // phis in the scalar loop preheader.
7878   if (EPI.SCEVSafetyCheck)
7879     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
7880   if (EPI.MemSafetyCheck)
7881     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
7882   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
7883 
7884   // The vec.epilog.iter.check block may contain Phi nodes from reductions which
7885   // merge control-flow from the latch block and the middle block. Update the
7886   // incoming values here and move the Phi into the preheader.
7887   SmallVector<PHINode *, 4> PhisInBlock;
7888   for (PHINode &Phi : VecEpilogueIterationCountCheck->phis())
7889     PhisInBlock.push_back(&Phi);
7890 
7891   for (PHINode *Phi : PhisInBlock) {
7892     Phi->replaceIncomingBlockWith(
7893         VecEpilogueIterationCountCheck->getSinglePredecessor(),
7894         VecEpilogueIterationCountCheck);
7895     Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
7896     if (EPI.SCEVSafetyCheck)
7897       Phi->removeIncomingValue(EPI.SCEVSafetyCheck);
7898     if (EPI.MemSafetyCheck)
7899       Phi->removeIncomingValue(EPI.MemSafetyCheck);
7900     Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI());
7901   }
7902 
7903   // Generate a resume induction for the vector epilogue and put it in the
7904   // vector epilogue preheader
7905   Type *IdxTy = Legal->getWidestInductionType();
7906   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
7907                                          LoopVectorPreHeader->getFirstNonPHI());
7908   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
7909   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
7910                            EPI.MainLoopIterationCountCheck);
7911 
7912   // Generate induction resume values. These variables save the new starting
7913   // indexes for the scalar loop. They are used to test if there are any tail
7914   // iterations left once the vector loop has completed.
7915   // Note that when the vectorized epilogue is skipped due to iteration count
7916   // check, then the resume value for the induction variable comes from
7917   // the trip count of the main vector loop, hence passing the AdditionalBypass
7918   // argument.
7919   createInductionResumeValues({VecEpilogueIterationCountCheck,
7920                                EPI.VectorTripCount} /* AdditionalBypass */);
7921 
7922   return {completeLoopSkeleton(OrigLoopID), EPResumeVal};
7923 }
7924 
7925 BasicBlock *
7926 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
7927     BasicBlock *Bypass, BasicBlock *Insert) {
7928 
7929   assert(EPI.TripCount &&
7930          "Expected trip count to have been safed in the first pass.");
7931   assert(
7932       (!isa<Instruction>(EPI.TripCount) ||
7933        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
7934       "saved trip count does not dominate insertion point.");
7935   Value *TC = EPI.TripCount;
7936   IRBuilder<> Builder(Insert->getTerminator());
7937   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
7938 
7939   // Generate code to check if the loop's trip count is less than VF * UF of the
7940   // vector epilogue loop.
7941   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
7942       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
7943 
7944   Value *CheckMinIters =
7945       Builder.CreateICmp(P, Count,
7946                          createStepForVF(Builder, Count->getType(),
7947                                          EPI.EpilogueVF, EPI.EpilogueUF),
7948                          "min.epilog.iters.check");
7949 
7950   ReplaceInstWithInst(
7951       Insert->getTerminator(),
7952       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
7953 
7954   LoopBypassBlocks.push_back(Insert);
7955   return Insert;
7956 }
7957 
7958 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
7959   LLVM_DEBUG({
7960     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
7961            << "Epilogue Loop VF:" << EPI.EpilogueVF
7962            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7963   });
7964 }
7965 
7966 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
7967   DEBUG_WITH_TYPE(VerboseDebug, {
7968     dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
7969   });
7970 }
7971 
7972 bool LoopVectorizationPlanner::getDecisionAndClampRange(
7973     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
7974   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
7975   bool PredicateAtRangeStart = Predicate(Range.Start);
7976 
7977   for (ElementCount TmpVF = Range.Start * 2;
7978        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
7979     if (Predicate(TmpVF) != PredicateAtRangeStart) {
7980       Range.End = TmpVF;
7981       break;
7982     }
7983 
7984   return PredicateAtRangeStart;
7985 }
7986 
7987 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
7988 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
7989 /// of VF's starting at a given VF and extending it as much as possible. Each
7990 /// vectorization decision can potentially shorten this sub-range during
7991 /// buildVPlan().
7992 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
7993                                            ElementCount MaxVF) {
7994   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
7995   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
7996     VFRange SubRange = {VF, MaxVFPlusOne};
7997     VPlans.push_back(buildVPlan(SubRange));
7998     VF = SubRange.End;
7999   }
8000 }
8001 
8002 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8003                                          VPlanPtr &Plan) {
8004   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8005 
8006   // Look for cached value.
8007   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8008   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8009   if (ECEntryIt != EdgeMaskCache.end())
8010     return ECEntryIt->second;
8011 
8012   VPValue *SrcMask = createBlockInMask(Src, Plan);
8013 
8014   // The terminator has to be a branch inst!
8015   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8016   assert(BI && "Unexpected terminator found");
8017 
8018   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8019     return EdgeMaskCache[Edge] = SrcMask;
8020 
8021   // If source is an exiting block, we know the exit edge is dynamically dead
8022   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8023   // adding uses of an otherwise potentially dead instruction.
8024   if (OrigLoop->isLoopExiting(Src))
8025     return EdgeMaskCache[Edge] = SrcMask;
8026 
8027   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8028   assert(EdgeMask && "No Edge Mask found for condition");
8029 
8030   if (BI->getSuccessor(0) != Dst)
8031     EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc());
8032 
8033   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8034     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8035     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8036     // The select version does not introduce new UB if SrcMask is false and
8037     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8038     VPValue *False = Plan->getOrAddVPValue(
8039         ConstantInt::getFalse(BI->getCondition()->getType()));
8040     EdgeMask =
8041         Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc());
8042   }
8043 
8044   return EdgeMaskCache[Edge] = EdgeMask;
8045 }
8046 
8047 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8048   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8049 
8050   // Look for cached value.
8051   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8052   if (BCEntryIt != BlockMaskCache.end())
8053     return BCEntryIt->second;
8054 
8055   // All-one mask is modelled as no-mask following the convention for masked
8056   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8057   VPValue *BlockMask = nullptr;
8058 
8059   if (OrigLoop->getHeader() == BB) {
8060     if (!CM.blockNeedsPredicationForAnyReason(BB))
8061       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8062 
8063     // Introduce the early-exit compare IV <= BTC to form header block mask.
8064     // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by
8065     // constructing the desired canonical IV in the header block as its first
8066     // non-phi instructions.
8067     assert(CM.foldTailByMasking() && "must fold the tail");
8068     VPBasicBlock *HeaderVPBB =
8069         Plan->getVectorLoopRegion()->getEntryBasicBlock();
8070     auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi();
8071     auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV());
8072     HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi());
8073 
8074     VPBuilder::InsertPointGuard Guard(Builder);
8075     Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint);
8076     if (CM.TTI.emitGetActiveLaneMask()) {
8077       VPValue *TC = Plan->getOrCreateTripCount();
8078       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC});
8079     } else {
8080       VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8081       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8082     }
8083     return BlockMaskCache[BB] = BlockMask;
8084   }
8085 
8086   // This is the block mask. We OR all incoming edges.
8087   for (auto *Predecessor : predecessors(BB)) {
8088     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8089     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8090       return BlockMaskCache[BB] = EdgeMask;
8091 
8092     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8093       BlockMask = EdgeMask;
8094       continue;
8095     }
8096 
8097     BlockMask = Builder.createOr(BlockMask, EdgeMask, {});
8098   }
8099 
8100   return BlockMaskCache[BB] = BlockMask;
8101 }
8102 
8103 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8104                                                 ArrayRef<VPValue *> Operands,
8105                                                 VFRange &Range,
8106                                                 VPlanPtr &Plan) {
8107   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8108          "Must be called with either a load or store");
8109 
8110   auto willWiden = [&](ElementCount VF) -> bool {
8111     LoopVectorizationCostModel::InstWidening Decision =
8112         CM.getWideningDecision(I, VF);
8113     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8114            "CM decision should be taken at this point.");
8115     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8116       return true;
8117     if (CM.isScalarAfterVectorization(I, VF) ||
8118         CM.isProfitableToScalarize(I, VF))
8119       return false;
8120     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8121   };
8122 
8123   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8124     return nullptr;
8125 
8126   VPValue *Mask = nullptr;
8127   if (Legal->isMaskRequired(I))
8128     Mask = createBlockInMask(I->getParent(), Plan);
8129 
8130   // Determine if the pointer operand of the access is either consecutive or
8131   // reverse consecutive.
8132   LoopVectorizationCostModel::InstWidening Decision =
8133       CM.getWideningDecision(I, Range.Start);
8134   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8135   bool Consecutive =
8136       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8137 
8138   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8139     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8140                                               Consecutive, Reverse);
8141 
8142   StoreInst *Store = cast<StoreInst>(I);
8143   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8144                                             Mask, Consecutive, Reverse);
8145 }
8146 
8147 /// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also
8148 /// insert a recipe to expand the step for the induction recipe.
8149 static VPWidenIntOrFpInductionRecipe *createWidenInductionRecipes(
8150     PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start,
8151     const InductionDescriptor &IndDesc, LoopVectorizationCostModel &CM,
8152     VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop, VFRange &Range) {
8153   // Returns true if an instruction \p I should be scalarized instead of
8154   // vectorized for the chosen vectorization factor.
8155   auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) {
8156     return CM.isScalarAfterVectorization(I, VF) ||
8157            CM.isProfitableToScalarize(I, VF);
8158   };
8159 
8160   bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange(
8161       [&](ElementCount VF) {
8162         return ShouldScalarizeInstruction(PhiOrTrunc, VF);
8163       },
8164       Range);
8165   assert(IndDesc.getStartValue() ==
8166          Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()));
8167   assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) &&
8168          "step must be loop invariant");
8169 
8170   VPValue *Step =
8171       vputils::getOrCreateVPValueForSCEVExpr(Plan, IndDesc.getStep(), SE);
8172   if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
8173     return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, TruncI,
8174                                              !NeedsScalarIVOnly);
8175   }
8176   assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here");
8177   return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc,
8178                                            !NeedsScalarIVOnly);
8179 }
8180 
8181 VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI(
8182     PHINode *Phi, ArrayRef<VPValue *> Operands, VPlan &Plan, VFRange &Range) {
8183 
8184   // Check if this is an integer or fp induction. If so, build the recipe that
8185   // produces its scalar and vector values.
8186   if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
8187     return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, CM, Plan,
8188                                        *PSE.getSE(), *OrigLoop, Range);
8189 
8190   // Check if this is pointer induction. If so, build the recipe for it.
8191   if (auto *II = Legal->getPointerInductionDescriptor(Phi))
8192     return new VPWidenPointerInductionRecipe(Phi, Operands[0], *II,
8193                                              *PSE.getSE());
8194   return nullptr;
8195 }
8196 
8197 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8198     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, VPlan &Plan) {
8199   // Optimize the special case where the source is a constant integer
8200   // induction variable. Notice that we can only optimize the 'trunc' case
8201   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8202   // (c) other casts depend on pointer size.
8203 
8204   // Determine whether \p K is a truncation based on an induction variable that
8205   // can be optimized.
8206   auto isOptimizableIVTruncate =
8207       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8208     return [=](ElementCount VF) -> bool {
8209       return CM.isOptimizableIVTruncate(K, VF);
8210     };
8211   };
8212 
8213   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8214           isOptimizableIVTruncate(I), Range)) {
8215 
8216     auto *Phi = cast<PHINode>(I->getOperand(0));
8217     const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
8218     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8219     return createWidenInductionRecipes(Phi, I, Start, II, CM, Plan,
8220                                        *PSE.getSE(), *OrigLoop, Range);
8221   }
8222   return nullptr;
8223 }
8224 
8225 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8226                                                 ArrayRef<VPValue *> Operands,
8227                                                 VPlanPtr &Plan) {
8228   // If all incoming values are equal, the incoming VPValue can be used directly
8229   // instead of creating a new VPBlendRecipe.
8230   VPValue *FirstIncoming = Operands[0];
8231   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8232         return FirstIncoming == Inc;
8233       })) {
8234     return Operands[0];
8235   }
8236 
8237   unsigned NumIncoming = Phi->getNumIncomingValues();
8238   // For in-loop reductions, we do not need to create an additional select.
8239   VPValue *InLoopVal = nullptr;
8240   for (unsigned In = 0; In < NumIncoming; In++) {
8241     PHINode *PhiOp =
8242         dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue());
8243     if (PhiOp && CM.isInLoopReduction(PhiOp)) {
8244       assert(!InLoopVal && "Found more than one in-loop reduction!");
8245       InLoopVal = Operands[In];
8246     }
8247   }
8248 
8249   assert((!InLoopVal || NumIncoming == 2) &&
8250          "Found an in-loop reduction for PHI with unexpected number of "
8251          "incoming values");
8252   if (InLoopVal)
8253     return Operands[Operands[0] == InLoopVal ? 1 : 0];
8254 
8255   // We know that all PHIs in non-header blocks are converted into selects, so
8256   // we don't have to worry about the insertion order and we can just use the
8257   // builder. At this point we generate the predication tree. There may be
8258   // duplications since this is a simple recursive scan, but future
8259   // optimizations will clean it up.
8260   SmallVector<VPValue *, 2> OperandsWithMask;
8261 
8262   for (unsigned In = 0; In < NumIncoming; In++) {
8263     VPValue *EdgeMask =
8264       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8265     assert((EdgeMask || NumIncoming == 1) &&
8266            "Multiple predecessors with one having a full mask");
8267     OperandsWithMask.push_back(Operands[In]);
8268     if (EdgeMask)
8269       OperandsWithMask.push_back(EdgeMask);
8270   }
8271   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8272 }
8273 
8274 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8275                                                    ArrayRef<VPValue *> Operands,
8276                                                    VFRange &Range) const {
8277 
8278   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8279       [this, CI](ElementCount VF) {
8280         return CM.isScalarWithPredication(CI, VF);
8281       },
8282       Range);
8283 
8284   if (IsPredicated)
8285     return nullptr;
8286 
8287   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8288   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8289              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8290              ID == Intrinsic::pseudoprobe ||
8291              ID == Intrinsic::experimental_noalias_scope_decl))
8292     return nullptr;
8293 
8294   auto willWiden = [&](ElementCount VF) -> bool {
8295     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8296     // The following case may be scalarized depending on the VF.
8297     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8298     // version of the instruction.
8299     // Is it beneficial to perform intrinsic call compared to lib call?
8300     bool NeedToScalarize = false;
8301     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8302     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8303     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8304     return UseVectorIntrinsic || !NeedToScalarize;
8305   };
8306 
8307   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8308     return nullptr;
8309 
8310   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8311   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8312 }
8313 
8314 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8315   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8316          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8317   // Instruction should be widened, unless it is scalar after vectorization,
8318   // scalarization is profitable or it is predicated.
8319   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8320     return CM.isScalarAfterVectorization(I, VF) ||
8321            CM.isProfitableToScalarize(I, VF) ||
8322            CM.isScalarWithPredication(I, VF);
8323   };
8324   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8325                                                              Range);
8326 }
8327 
8328 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8329                                            ArrayRef<VPValue *> Operands) const {
8330   auto IsVectorizableOpcode = [](unsigned Opcode) {
8331     switch (Opcode) {
8332     case Instruction::Add:
8333     case Instruction::And:
8334     case Instruction::AShr:
8335     case Instruction::BitCast:
8336     case Instruction::FAdd:
8337     case Instruction::FCmp:
8338     case Instruction::FDiv:
8339     case Instruction::FMul:
8340     case Instruction::FNeg:
8341     case Instruction::FPExt:
8342     case Instruction::FPToSI:
8343     case Instruction::FPToUI:
8344     case Instruction::FPTrunc:
8345     case Instruction::FRem:
8346     case Instruction::FSub:
8347     case Instruction::ICmp:
8348     case Instruction::IntToPtr:
8349     case Instruction::LShr:
8350     case Instruction::Mul:
8351     case Instruction::Or:
8352     case Instruction::PtrToInt:
8353     case Instruction::SDiv:
8354     case Instruction::Select:
8355     case Instruction::SExt:
8356     case Instruction::Shl:
8357     case Instruction::SIToFP:
8358     case Instruction::SRem:
8359     case Instruction::Sub:
8360     case Instruction::Trunc:
8361     case Instruction::UDiv:
8362     case Instruction::UIToFP:
8363     case Instruction::URem:
8364     case Instruction::Xor:
8365     case Instruction::ZExt:
8366     case Instruction::Freeze:
8367       return true;
8368     }
8369     return false;
8370   };
8371 
8372   if (!IsVectorizableOpcode(I->getOpcode()))
8373     return nullptr;
8374 
8375   // Success: widen this instruction.
8376   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8377 }
8378 
8379 void VPRecipeBuilder::fixHeaderPhis() {
8380   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8381   for (VPHeaderPHIRecipe *R : PhisToFix) {
8382     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8383     VPRecipeBase *IncR =
8384         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8385     R->addOperand(IncR->getVPSingleValue());
8386   }
8387 }
8388 
8389 VPBasicBlock *VPRecipeBuilder::handleReplication(
8390     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8391     VPlanPtr &Plan) {
8392   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8393       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8394       Range);
8395 
8396   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8397       [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); },
8398       Range);
8399 
8400   // Even if the instruction is not marked as uniform, there are certain
8401   // intrinsic calls that can be effectively treated as such, so we check for
8402   // them here. Conservatively, we only do this for scalable vectors, since
8403   // for fixed-width VFs we can always fall back on full scalarization.
8404   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
8405     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
8406     case Intrinsic::assume:
8407     case Intrinsic::lifetime_start:
8408     case Intrinsic::lifetime_end:
8409       // For scalable vectors if one of the operands is variant then we still
8410       // want to mark as uniform, which will generate one instruction for just
8411       // the first lane of the vector. We can't scalarize the call in the same
8412       // way as for fixed-width vectors because we don't know how many lanes
8413       // there are.
8414       //
8415       // The reasons for doing it this way for scalable vectors are:
8416       //   1. For the assume intrinsic generating the instruction for the first
8417       //      lane is still be better than not generating any at all. For
8418       //      example, the input may be a splat across all lanes.
8419       //   2. For the lifetime start/end intrinsics the pointer operand only
8420       //      does anything useful when the input comes from a stack object,
8421       //      which suggests it should always be uniform. For non-stack objects
8422       //      the effect is to poison the object, which still allows us to
8423       //      remove the call.
8424       IsUniform = true;
8425       break;
8426     default:
8427       break;
8428     }
8429   }
8430 
8431   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8432                                        IsUniform, IsPredicated);
8433   setRecipe(I, Recipe);
8434   Plan->addVPValue(I, Recipe);
8435 
8436   // Find if I uses a predicated instruction. If so, it will use its scalar
8437   // value. Avoid hoisting the insert-element which packs the scalar value into
8438   // a vector value, as that happens iff all users use the vector value.
8439   for (VPValue *Op : Recipe->operands()) {
8440     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8441     if (!PredR)
8442       continue;
8443     auto *RepR =
8444         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8445     assert(RepR->isPredicated() &&
8446            "expected Replicate recipe to be predicated");
8447     RepR->setAlsoPack(false);
8448   }
8449 
8450   // Finalize the recipe for Instr, first if it is not predicated.
8451   if (!IsPredicated) {
8452     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8453     VPBB->appendRecipe(Recipe);
8454     return VPBB;
8455   }
8456   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8457 
8458   VPBlockBase *SingleSucc = VPBB->getSingleSuccessor();
8459   assert(SingleSucc && "VPBB must have a single successor when handling "
8460                        "predicated replication.");
8461   VPBlockUtils::disconnectBlocks(VPBB, SingleSucc);
8462   // Record predicated instructions for above packing optimizations.
8463   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8464   VPBlockUtils::insertBlockAfter(Region, VPBB);
8465   auto *RegSucc = new VPBasicBlock();
8466   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8467   VPBlockUtils::connectBlocks(RegSucc, SingleSucc);
8468   return RegSucc;
8469 }
8470 
8471 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8472                                                       VPRecipeBase *PredRecipe,
8473                                                       VPlanPtr &Plan) {
8474   // Instructions marked for predication are replicated and placed under an
8475   // if-then construct to prevent side-effects.
8476 
8477   // Generate recipes to compute the block mask for this region.
8478   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8479 
8480   // Build the triangular if-then region.
8481   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8482   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8483   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8484   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8485   auto *PHIRecipe = Instr->getType()->isVoidTy()
8486                         ? nullptr
8487                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8488   if (PHIRecipe) {
8489     Plan->removeVPValueFor(Instr);
8490     Plan->addVPValue(Instr, PHIRecipe);
8491   }
8492   auto *Exiting = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8493   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8494   VPRegionBlock *Region = new VPRegionBlock(Entry, Exiting, RegionName, true);
8495 
8496   // Note: first set Entry as region entry and then connect successors starting
8497   // from it in order, to propagate the "parent" of each VPBasicBlock.
8498   VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry);
8499   VPBlockUtils::connectBlocks(Pred, Exiting);
8500 
8501   return Region;
8502 }
8503 
8504 VPRecipeOrVPValueTy
8505 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8506                                         ArrayRef<VPValue *> Operands,
8507                                         VFRange &Range, VPlanPtr &Plan) {
8508   // First, check for specific widening recipes that deal with inductions, Phi
8509   // nodes, calls and memory operations.
8510   VPRecipeBase *Recipe;
8511   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8512     if (Phi->getParent() != OrigLoop->getHeader())
8513       return tryToBlend(Phi, Operands, Plan);
8514     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, *Plan, Range)))
8515       return toVPRecipeResult(Recipe);
8516 
8517     VPHeaderPHIRecipe *PhiRecipe = nullptr;
8518     assert((Legal->isReductionVariable(Phi) ||
8519             Legal->isFirstOrderRecurrence(Phi)) &&
8520            "can only widen reductions and first-order recurrences here");
8521     VPValue *StartV = Operands[0];
8522     if (Legal->isReductionVariable(Phi)) {
8523       const RecurrenceDescriptor &RdxDesc =
8524           Legal->getReductionVars().find(Phi)->second;
8525       assert(RdxDesc.getRecurrenceStartValue() ==
8526              Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8527       PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
8528                                            CM.isInLoopReduction(Phi),
8529                                            CM.useOrderedReductions(RdxDesc));
8530     } else {
8531       PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8532     }
8533 
8534     // Record the incoming value from the backedge, so we can add the incoming
8535     // value from the backedge after all recipes have been created.
8536     recordRecipeOf(cast<Instruction>(
8537         Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
8538     PhisToFix.push_back(PhiRecipe);
8539     return toVPRecipeResult(PhiRecipe);
8540   }
8541 
8542   if (isa<TruncInst>(Instr) &&
8543       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8544                                                Range, *Plan)))
8545     return toVPRecipeResult(Recipe);
8546 
8547   // All widen recipes below deal only with VF > 1.
8548   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8549           [&](ElementCount VF) { return VF.isScalar(); }, Range))
8550     return nullptr;
8551 
8552   if (auto *CI = dyn_cast<CallInst>(Instr))
8553     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8554 
8555   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8556     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8557 
8558   if (!shouldWiden(Instr, Range))
8559     return nullptr;
8560 
8561   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8562     return toVPRecipeResult(new VPWidenGEPRecipe(
8563         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8564 
8565   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8566     bool InvariantCond =
8567         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8568     return toVPRecipeResult(new VPWidenSelectRecipe(
8569         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
8570   }
8571 
8572   return toVPRecipeResult(tryToWiden(Instr, Operands));
8573 }
8574 
8575 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8576                                                         ElementCount MaxVF) {
8577   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8578 
8579   // Collect instructions from the original loop that will become trivially dead
8580   // in the vectorized loop. We don't need to vectorize these instructions. For
8581   // example, original induction update instructions can become dead because we
8582   // separately emit induction "steps" when generating code for the new loop.
8583   // Similarly, we create a new latch condition when setting up the structure
8584   // of the new loop, so the old one can become dead.
8585   SmallPtrSet<Instruction *, 4> DeadInstructions;
8586   collectTriviallyDeadInstructions(DeadInstructions);
8587 
8588   // Add assume instructions we need to drop to DeadInstructions, to prevent
8589   // them from being added to the VPlan.
8590   // TODO: We only need to drop assumes in blocks that get flattend. If the
8591   // control flow is preserved, we should keep them.
8592   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8593   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8594 
8595   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8596   // Dead instructions do not need sinking. Remove them from SinkAfter.
8597   for (Instruction *I : DeadInstructions)
8598     SinkAfter.erase(I);
8599 
8600   // Cannot sink instructions after dead instructions (there won't be any
8601   // recipes for them). Instead, find the first non-dead previous instruction.
8602   for (auto &P : Legal->getSinkAfter()) {
8603     Instruction *SinkTarget = P.second;
8604     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
8605     (void)FirstInst;
8606     while (DeadInstructions.contains(SinkTarget)) {
8607       assert(
8608           SinkTarget != FirstInst &&
8609           "Must find a live instruction (at least the one feeding the "
8610           "first-order recurrence PHI) before reaching beginning of the block");
8611       SinkTarget = SinkTarget->getPrevNode();
8612       assert(SinkTarget != P.first &&
8613              "sink source equals target, no sinking required");
8614     }
8615     P.second = SinkTarget;
8616   }
8617 
8618   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8619   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8620     VFRange SubRange = {VF, MaxVFPlusOne};
8621     VPlans.push_back(
8622         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8623     VF = SubRange.End;
8624   }
8625 }
8626 
8627 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a
8628 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a
8629 // BranchOnCount VPInstruction to the latch.
8630 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL,
8631                                   bool HasNUW) {
8632   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8633   auto *StartV = Plan.getOrAddVPValue(StartIdx);
8634 
8635   auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
8636   VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
8637   VPBasicBlock *Header = TopRegion->getEntryBasicBlock();
8638   Header->insert(CanonicalIVPHI, Header->begin());
8639 
8640   auto *CanonicalIVIncrement =
8641       new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW
8642                                : VPInstruction::CanonicalIVIncrement,
8643                         {CanonicalIVPHI}, DL);
8644   CanonicalIVPHI->addOperand(CanonicalIVIncrement);
8645 
8646   VPBasicBlock *EB = TopRegion->getExitingBasicBlock();
8647   EB->appendRecipe(CanonicalIVIncrement);
8648 
8649   auto *BranchOnCount =
8650       new VPInstruction(VPInstruction::BranchOnCount,
8651                         {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL);
8652   EB->appendRecipe(BranchOnCount);
8653 }
8654 
8655 // Add exit values to \p Plan. VPLiveOuts are added for each LCSSA phi in the
8656 // original exit block.
8657 static void addUsersInExitBlock(VPBasicBlock *HeaderVPBB,
8658                                 VPBasicBlock *MiddleVPBB, Loop *OrigLoop,
8659                                 VPlan &Plan) {
8660   BasicBlock *ExitBB = OrigLoop->getUniqueExitBlock();
8661   BasicBlock *ExitingBB = OrigLoop->getExitingBlock();
8662   // Only handle single-exit loops with unique exit blocks for now.
8663   if (!ExitBB || !ExitBB->getSinglePredecessor() || !ExitingBB)
8664     return;
8665 
8666   // Introduce VPUsers modeling the exit values.
8667   for (PHINode &ExitPhi : ExitBB->phis()) {
8668     Value *IncomingValue =
8669         ExitPhi.getIncomingValueForBlock(ExitingBB);
8670     VPValue *V = Plan.getOrAddVPValue(IncomingValue, true);
8671     Plan.addLiveOut(&ExitPhi, V);
8672   }
8673 }
8674 
8675 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
8676     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
8677     const MapVector<Instruction *, Instruction *> &SinkAfter) {
8678 
8679   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8680 
8681   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
8682 
8683   // ---------------------------------------------------------------------------
8684   // Pre-construction: record ingredients whose recipes we'll need to further
8685   // process after constructing the initial VPlan.
8686   // ---------------------------------------------------------------------------
8687 
8688   // Mark instructions we'll need to sink later and their targets as
8689   // ingredients whose recipe we'll need to record.
8690   for (auto &Entry : SinkAfter) {
8691     RecipeBuilder.recordRecipeOf(Entry.first);
8692     RecipeBuilder.recordRecipeOf(Entry.second);
8693   }
8694   for (auto &Reduction : CM.getInLoopReductionChains()) {
8695     PHINode *Phi = Reduction.first;
8696     RecurKind Kind =
8697         Legal->getReductionVars().find(Phi)->second.getRecurrenceKind();
8698     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
8699 
8700     RecipeBuilder.recordRecipeOf(Phi);
8701     for (auto &R : ReductionOperations) {
8702       RecipeBuilder.recordRecipeOf(R);
8703       // For min/max reductions, where we have a pair of icmp/select, we also
8704       // need to record the ICmp recipe, so it can be removed later.
8705       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
8706              "Only min/max recurrences allowed for inloop reductions");
8707       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
8708         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
8709     }
8710   }
8711 
8712   // For each interleave group which is relevant for this (possibly trimmed)
8713   // Range, add it to the set of groups to be later applied to the VPlan and add
8714   // placeholders for its members' Recipes which we'll be replacing with a
8715   // single VPInterleaveRecipe.
8716   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8717     auto applyIG = [IG, this](ElementCount VF) -> bool {
8718       return (VF.isVector() && // Query is illegal for VF == 1
8719               CM.getWideningDecision(IG->getInsertPos(), VF) ==
8720                   LoopVectorizationCostModel::CM_Interleave);
8721     };
8722     if (!getDecisionAndClampRange(applyIG, Range))
8723       continue;
8724     InterleaveGroups.insert(IG);
8725     for (unsigned i = 0; i < IG->getFactor(); i++)
8726       if (Instruction *Member = IG->getMember(i))
8727         RecipeBuilder.recordRecipeOf(Member);
8728   };
8729 
8730   // ---------------------------------------------------------------------------
8731   // Build initial VPlan: Scan the body of the loop in a topological order to
8732   // visit each basic block after having visited its predecessor basic blocks.
8733   // ---------------------------------------------------------------------------
8734 
8735   // Create initial VPlan skeleton, starting with a block for the pre-header,
8736   // followed by a region for the vector loop, followed by the middle block. The
8737   // skeleton vector loop region contains a header and latch block.
8738   VPBasicBlock *Preheader = new VPBasicBlock("vector.ph");
8739   auto Plan = std::make_unique<VPlan>(Preheader);
8740 
8741   VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body");
8742   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
8743   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
8744   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop");
8745   VPBlockUtils::insertBlockAfter(TopRegion, Preheader);
8746   VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
8747   VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
8748 
8749   Instruction *DLInst =
8750       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
8751   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(),
8752                         DLInst ? DLInst->getDebugLoc() : DebugLoc(),
8753                         !CM.foldTailByMasking());
8754 
8755   // Scan the body of the loop in a topological order to visit each basic block
8756   // after having visited its predecessor basic blocks.
8757   LoopBlocksDFS DFS(OrigLoop);
8758   DFS.perform(LI);
8759 
8760   VPBasicBlock *VPBB = HeaderVPBB;
8761   SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove;
8762   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
8763     // Relevant instructions from basic block BB will be grouped into VPRecipe
8764     // ingredients and fill a new VPBasicBlock.
8765     unsigned VPBBsForBB = 0;
8766     if (VPBB != HeaderVPBB)
8767       VPBB->setName(BB->getName());
8768     Builder.setInsertPoint(VPBB);
8769 
8770     // Introduce each ingredient into VPlan.
8771     // TODO: Model and preserve debug intrinsics in VPlan.
8772     for (Instruction &I : BB->instructionsWithoutDebug()) {
8773       Instruction *Instr = &I;
8774 
8775       // First filter out irrelevant instructions, to ensure no recipes are
8776       // built for them.
8777       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
8778         continue;
8779 
8780       SmallVector<VPValue *, 4> Operands;
8781       auto *Phi = dyn_cast<PHINode>(Instr);
8782       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
8783         Operands.push_back(Plan->getOrAddVPValue(
8784             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
8785       } else {
8786         auto OpRange = Plan->mapToVPValues(Instr->operands());
8787         Operands = {OpRange.begin(), OpRange.end()};
8788       }
8789 
8790       // Invariant stores inside loop will be deleted and a single store
8791       // with the final reduction value will be added to the exit block
8792       StoreInst *SI;
8793       if ((SI = dyn_cast<StoreInst>(&I)) &&
8794           Legal->isInvariantAddressOfReduction(SI->getPointerOperand()))
8795         continue;
8796 
8797       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
8798               Instr, Operands, Range, Plan)) {
8799         // If Instr can be simplified to an existing VPValue, use it.
8800         if (RecipeOrValue.is<VPValue *>()) {
8801           auto *VPV = RecipeOrValue.get<VPValue *>();
8802           Plan->addVPValue(Instr, VPV);
8803           // If the re-used value is a recipe, register the recipe for the
8804           // instruction, in case the recipe for Instr needs to be recorded.
8805           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
8806             RecipeBuilder.setRecipe(Instr, R);
8807           continue;
8808         }
8809         // Otherwise, add the new recipe.
8810         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
8811         for (auto *Def : Recipe->definedValues()) {
8812           auto *UV = Def->getUnderlyingValue();
8813           Plan->addVPValue(UV, Def);
8814         }
8815 
8816         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
8817             HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
8818           // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section
8819           // of the header block. That can happen for truncates of induction
8820           // variables. Those recipes are moved to the phi section of the header
8821           // block after applying SinkAfter, which relies on the original
8822           // position of the trunc.
8823           assert(isa<TruncInst>(Instr));
8824           InductionsToMove.push_back(
8825               cast<VPWidenIntOrFpInductionRecipe>(Recipe));
8826         }
8827         RecipeBuilder.setRecipe(Instr, Recipe);
8828         VPBB->appendRecipe(Recipe);
8829         continue;
8830       }
8831 
8832       // Otherwise, if all widening options failed, Instruction is to be
8833       // replicated. This may create a successor for VPBB.
8834       VPBasicBlock *NextVPBB =
8835           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
8836       if (NextVPBB != VPBB) {
8837         VPBB = NextVPBB;
8838         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
8839                                     : "");
8840       }
8841     }
8842 
8843     VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB);
8844     VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor());
8845   }
8846 
8847   HeaderVPBB->setName("vector.body");
8848 
8849   // Fold the last, empty block into its predecessor.
8850   VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB);
8851   assert(VPBB && "expected to fold last (empty) block");
8852   // After here, VPBB should not be used.
8853   VPBB = nullptr;
8854 
8855   addUsersInExitBlock(HeaderVPBB, MiddleVPBB, OrigLoop, *Plan);
8856 
8857   assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) &&
8858          !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
8859          "entry block must be set to a VPRegionBlock having a non-empty entry "
8860          "VPBasicBlock");
8861   RecipeBuilder.fixHeaderPhis();
8862 
8863   // ---------------------------------------------------------------------------
8864   // Transform initial VPlan: Apply previously taken decisions, in order, to
8865   // bring the VPlan to its final state.
8866   // ---------------------------------------------------------------------------
8867 
8868   // Apply Sink-After legal constraints.
8869   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
8870     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
8871     if (Region && Region->isReplicator()) {
8872       assert(Region->getNumSuccessors() == 1 &&
8873              Region->getNumPredecessors() == 1 && "Expected SESE region!");
8874       assert(R->getParent()->size() == 1 &&
8875              "A recipe in an original replicator region must be the only "
8876              "recipe in its block");
8877       return Region;
8878     }
8879     return nullptr;
8880   };
8881   for (auto &Entry : SinkAfter) {
8882     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
8883     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
8884 
8885     auto *TargetRegion = GetReplicateRegion(Target);
8886     auto *SinkRegion = GetReplicateRegion(Sink);
8887     if (!SinkRegion) {
8888       // If the sink source is not a replicate region, sink the recipe directly.
8889       if (TargetRegion) {
8890         // The target is in a replication region, make sure to move Sink to
8891         // the block after it, not into the replication region itself.
8892         VPBasicBlock *NextBlock =
8893             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
8894         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
8895       } else
8896         Sink->moveAfter(Target);
8897       continue;
8898     }
8899 
8900     // The sink source is in a replicate region. Unhook the region from the CFG.
8901     auto *SinkPred = SinkRegion->getSinglePredecessor();
8902     auto *SinkSucc = SinkRegion->getSingleSuccessor();
8903     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
8904     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
8905     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
8906 
8907     if (TargetRegion) {
8908       // The target recipe is also in a replicate region, move the sink region
8909       // after the target region.
8910       auto *TargetSucc = TargetRegion->getSingleSuccessor();
8911       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
8912       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
8913       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
8914     } else {
8915       // The sink source is in a replicate region, we need to move the whole
8916       // replicate region, which should only contain a single recipe in the
8917       // main block.
8918       auto *SplitBlock =
8919           Target->getParent()->splitAt(std::next(Target->getIterator()));
8920 
8921       auto *SplitPred = SplitBlock->getSinglePredecessor();
8922 
8923       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
8924       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
8925       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
8926     }
8927   }
8928 
8929   VPlanTransforms::removeRedundantCanonicalIVs(*Plan);
8930   VPlanTransforms::removeRedundantInductionCasts(*Plan);
8931 
8932   // Now that sink-after is done, move induction recipes for optimized truncates
8933   // to the phi section of the header block.
8934   for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove)
8935     Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
8936 
8937   // Adjust the recipes for any inloop reductions.
8938   adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExiting()), Plan,
8939                              RecipeBuilder, Range.Start);
8940 
8941   // Introduce a recipe to combine the incoming and previous values of a
8942   // first-order recurrence.
8943   for (VPRecipeBase &R :
8944        Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8945     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
8946     if (!RecurPhi)
8947       continue;
8948 
8949     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
8950     VPBasicBlock *InsertBlock = PrevRecipe->getParent();
8951     auto *Region = GetReplicateRegion(PrevRecipe);
8952     if (Region)
8953       InsertBlock = dyn_cast<VPBasicBlock>(Region->getSingleSuccessor());
8954     if (!InsertBlock) {
8955       InsertBlock = new VPBasicBlock(Region->getName() + ".succ");
8956       VPBlockUtils::insertBlockAfter(InsertBlock, Region);
8957     }
8958     if (Region || PrevRecipe->isPhi())
8959       Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
8960     else
8961       Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator()));
8962 
8963     auto *RecurSplice = cast<VPInstruction>(
8964         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
8965                              {RecurPhi, RecurPhi->getBackedgeValue()}));
8966 
8967     RecurPhi->replaceAllUsesWith(RecurSplice);
8968     // Set the first operand of RecurSplice to RecurPhi again, after replacing
8969     // all users.
8970     RecurSplice->setOperand(0, RecurPhi);
8971   }
8972 
8973   // Interleave memory: for each Interleave Group we marked earlier as relevant
8974   // for this VPlan, replace the Recipes widening its memory instructions with a
8975   // single VPInterleaveRecipe at its insertion point.
8976   for (auto IG : InterleaveGroups) {
8977     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
8978         RecipeBuilder.getRecipe(IG->getInsertPos()));
8979     SmallVector<VPValue *, 4> StoredValues;
8980     for (unsigned i = 0; i < IG->getFactor(); ++i)
8981       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
8982         auto *StoreR =
8983             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
8984         StoredValues.push_back(StoreR->getStoredValue());
8985       }
8986 
8987     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
8988                                         Recipe->getMask());
8989     VPIG->insertBefore(Recipe);
8990     unsigned J = 0;
8991     for (unsigned i = 0; i < IG->getFactor(); ++i)
8992       if (Instruction *Member = IG->getMember(i)) {
8993         if (!Member->getType()->isVoidTy()) {
8994           VPValue *OriginalV = Plan->getVPValue(Member);
8995           Plan->removeVPValueFor(Member);
8996           Plan->addVPValue(Member, VPIG->getVPValue(J));
8997           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
8998           J++;
8999         }
9000         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9001       }
9002   }
9003 
9004   std::string PlanName;
9005   raw_string_ostream RSO(PlanName);
9006   ElementCount VF = Range.Start;
9007   Plan->addVF(VF);
9008   RSO << "Initial VPlan for VF={" << VF;
9009   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9010     Plan->addVF(VF);
9011     RSO << "," << VF;
9012   }
9013   RSO << "},UF>=1";
9014   RSO.flush();
9015   Plan->setName(PlanName);
9016 
9017   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9018   // in ways that accessing values using original IR values is incorrect.
9019   Plan->disableValue2VPValue();
9020 
9021   VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE());
9022   VPlanTransforms::sinkScalarOperands(*Plan);
9023   VPlanTransforms::mergeReplicateRegions(*Plan);
9024   VPlanTransforms::removeDeadRecipes(*Plan);
9025   VPlanTransforms::removeRedundantExpandSCEVRecipes(*Plan);
9026 
9027   // Fold Exit block into its predecessor if possible.
9028   // TODO: Fold block earlier once all VPlan transforms properly maintain a
9029   // VPBasicBlock as exit.
9030   VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExiting());
9031 
9032   assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
9033   return Plan;
9034 }
9035 
9036 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9037   // Outer loop handling: They may require CFG and instruction level
9038   // transformations before even evaluating whether vectorization is profitable.
9039   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9040   // the vectorization pipeline.
9041   assert(!OrigLoop->isInnermost());
9042   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9043 
9044   // Create new empty VPlan
9045   auto Plan = std::make_unique<VPlan>();
9046 
9047   // Build hierarchical CFG
9048   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9049   HCFGBuilder.buildHierarchicalCFG();
9050 
9051   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9052        VF *= 2)
9053     Plan->addVF(VF);
9054 
9055   SmallPtrSet<Instruction *, 1> DeadInstructions;
9056   VPlanTransforms::VPInstructionsToVPRecipes(
9057       OrigLoop, Plan,
9058       [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); },
9059       DeadInstructions, *PSE.getSE());
9060 
9061   // Remove the existing terminator of the exiting block of the top-most region.
9062   // A BranchOnCount will be added instead when adding the canonical IV recipes.
9063   auto *Term =
9064       Plan->getVectorLoopRegion()->getExitingBasicBlock()->getTerminator();
9065   Term->eraseFromParent();
9066 
9067   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(),
9068                         true);
9069   return Plan;
9070 }
9071 
9072 // Adjust the recipes for reductions. For in-loop reductions the chain of
9073 // instructions leading from the loop exit instr to the phi need to be converted
9074 // to reductions, with one operand being vector and the other being the scalar
9075 // reduction chain. For other reductions, a select is introduced between the phi
9076 // and live-out recipes when folding the tail.
9077 void LoopVectorizationPlanner::adjustRecipesForReductions(
9078     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9079     ElementCount MinVF) {
9080   for (auto &Reduction : CM.getInLoopReductionChains()) {
9081     PHINode *Phi = Reduction.first;
9082     const RecurrenceDescriptor &RdxDesc =
9083         Legal->getReductionVars().find(Phi)->second;
9084     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9085 
9086     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9087       continue;
9088 
9089     // ReductionOperations are orders top-down from the phi's use to the
9090     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9091     // which of the two operands will remain scalar and which will be reduced.
9092     // For minmax the chain will be the select instructions.
9093     Instruction *Chain = Phi;
9094     for (Instruction *R : ReductionOperations) {
9095       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9096       RecurKind Kind = RdxDesc.getRecurrenceKind();
9097 
9098       VPValue *ChainOp = Plan->getVPValue(Chain);
9099       unsigned FirstOpId;
9100       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9101              "Only min/max recurrences allowed for inloop reductions");
9102       // Recognize a call to the llvm.fmuladd intrinsic.
9103       bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
9104       assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) &&
9105              "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9106       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9107         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9108                "Expected to replace a VPWidenSelectSC");
9109         FirstOpId = 1;
9110       } else {
9111         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) ||
9112                 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) &&
9113                "Expected to replace a VPWidenSC");
9114         FirstOpId = 0;
9115       }
9116       unsigned VecOpId =
9117           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9118       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9119 
9120       auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent())
9121                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9122                          : nullptr;
9123 
9124       if (IsFMulAdd) {
9125         // If the instruction is a call to the llvm.fmuladd intrinsic then we
9126         // need to create an fmul recipe to use as the vector operand for the
9127         // fadd reduction.
9128         VPInstruction *FMulRecipe = new VPInstruction(
9129             Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))});
9130         FMulRecipe->setFastMathFlags(R->getFastMathFlags());
9131         WidenRecipe->getParent()->insert(FMulRecipe,
9132                                          WidenRecipe->getIterator());
9133         VecOp = FMulRecipe;
9134       }
9135       VPReductionRecipe *RedRecipe =
9136           new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9137       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9138       Plan->removeVPValueFor(R);
9139       Plan->addVPValue(R, RedRecipe);
9140       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9141       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9142       WidenRecipe->eraseFromParent();
9143 
9144       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9145         VPRecipeBase *CompareRecipe =
9146             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9147         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9148                "Expected to replace a VPWidenSC");
9149         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9150                "Expected no remaining users");
9151         CompareRecipe->eraseFromParent();
9152       }
9153       Chain = R;
9154     }
9155   }
9156 
9157   // If tail is folded by masking, introduce selects between the phi
9158   // and the live-out instruction of each reduction, at the beginning of the
9159   // dedicated latch block.
9160   if (CM.foldTailByMasking()) {
9161     Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin());
9162     for (VPRecipeBase &R :
9163          Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
9164       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9165       if (!PhiR || PhiR->isInLoop())
9166         continue;
9167       VPValue *Cond =
9168           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9169       VPValue *Red = PhiR->getBackedgeValue();
9170       assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB &&
9171              "reduction recipe must be defined before latch");
9172       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9173     }
9174   }
9175 }
9176 
9177 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9178 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9179                                VPSlotTracker &SlotTracker) const {
9180   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9181   IG->getInsertPos()->printAsOperand(O, false);
9182   O << ", ";
9183   getAddr()->printAsOperand(O, SlotTracker);
9184   VPValue *Mask = getMask();
9185   if (Mask) {
9186     O << ", ";
9187     Mask->printAsOperand(O, SlotTracker);
9188   }
9189 
9190   unsigned OpIdx = 0;
9191   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9192     if (!IG->getMember(i))
9193       continue;
9194     if (getNumStoreOperands() > 0) {
9195       O << "\n" << Indent << "  store ";
9196       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9197       O << " to index " << i;
9198     } else {
9199       O << "\n" << Indent << "  ";
9200       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9201       O << " = load from index " << i;
9202     }
9203     ++OpIdx;
9204   }
9205 }
9206 #endif
9207 
9208 void VPWidenCallRecipe::execute(VPTransformState &State) {
9209   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9210                                   *this, State);
9211 }
9212 
9213 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9214   auto &I = *cast<SelectInst>(getUnderlyingInstr());
9215   State.ILV->setDebugLocFromInst(&I);
9216 
9217   // The condition can be loop invariant  but still defined inside the
9218   // loop. This means that we can't just use the original 'cond' value.
9219   // We have to take the 'vectorized' value and pick the first lane.
9220   // Instcombine will make this a no-op.
9221   auto *InvarCond =
9222       InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr;
9223 
9224   for (unsigned Part = 0; Part < State.UF; ++Part) {
9225     Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part);
9226     Value *Op0 = State.get(getOperand(1), Part);
9227     Value *Op1 = State.get(getOperand(2), Part);
9228     Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
9229     State.set(this, Sel, Part);
9230     State.ILV->addMetadata(Sel, &I);
9231   }
9232 }
9233 
9234 void VPWidenRecipe::execute(VPTransformState &State) {
9235   auto &I = *cast<Instruction>(getUnderlyingValue());
9236   auto &Builder = State.Builder;
9237   switch (I.getOpcode()) {
9238   case Instruction::Call:
9239   case Instruction::Br:
9240   case Instruction::PHI:
9241   case Instruction::GetElementPtr:
9242   case Instruction::Select:
9243     llvm_unreachable("This instruction is handled by a different recipe.");
9244   case Instruction::UDiv:
9245   case Instruction::SDiv:
9246   case Instruction::SRem:
9247   case Instruction::URem:
9248   case Instruction::Add:
9249   case Instruction::FAdd:
9250   case Instruction::Sub:
9251   case Instruction::FSub:
9252   case Instruction::FNeg:
9253   case Instruction::Mul:
9254   case Instruction::FMul:
9255   case Instruction::FDiv:
9256   case Instruction::FRem:
9257   case Instruction::Shl:
9258   case Instruction::LShr:
9259   case Instruction::AShr:
9260   case Instruction::And:
9261   case Instruction::Or:
9262   case Instruction::Xor: {
9263     // Just widen unops and binops.
9264     State.ILV->setDebugLocFromInst(&I);
9265 
9266     for (unsigned Part = 0; Part < State.UF; ++Part) {
9267       SmallVector<Value *, 2> Ops;
9268       for (VPValue *VPOp : operands())
9269         Ops.push_back(State.get(VPOp, Part));
9270 
9271       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
9272 
9273       if (auto *VecOp = dyn_cast<Instruction>(V)) {
9274         VecOp->copyIRFlags(&I);
9275 
9276         // If the instruction is vectorized and was in a basic block that needed
9277         // predication, we can't propagate poison-generating flags (nuw/nsw,
9278         // exact, etc.). The control flow has been linearized and the
9279         // instruction is no longer guarded by the predicate, which could make
9280         // the flag properties to no longer hold.
9281         if (State.MayGeneratePoisonRecipes.contains(this))
9282           VecOp->dropPoisonGeneratingFlags();
9283       }
9284 
9285       // Use this vector value for all users of the original instruction.
9286       State.set(this, V, Part);
9287       State.ILV->addMetadata(V, &I);
9288     }
9289 
9290     break;
9291   }
9292   case Instruction::Freeze: {
9293     State.ILV->setDebugLocFromInst(&I);
9294 
9295     for (unsigned Part = 0; Part < State.UF; ++Part) {
9296       Value *Op = State.get(getOperand(0), Part);
9297 
9298       Value *Freeze = Builder.CreateFreeze(Op);
9299       State.set(this, Freeze, Part);
9300     }
9301     break;
9302   }
9303   case Instruction::ICmp:
9304   case Instruction::FCmp: {
9305     // Widen compares. Generate vector compares.
9306     bool FCmp = (I.getOpcode() == Instruction::FCmp);
9307     auto *Cmp = cast<CmpInst>(&I);
9308     State.ILV->setDebugLocFromInst(Cmp);
9309     for (unsigned Part = 0; Part < State.UF; ++Part) {
9310       Value *A = State.get(getOperand(0), Part);
9311       Value *B = State.get(getOperand(1), Part);
9312       Value *C = nullptr;
9313       if (FCmp) {
9314         // Propagate fast math flags.
9315         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9316         Builder.setFastMathFlags(Cmp->getFastMathFlags());
9317         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
9318       } else {
9319         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
9320       }
9321       State.set(this, C, Part);
9322       State.ILV->addMetadata(C, &I);
9323     }
9324 
9325     break;
9326   }
9327 
9328   case Instruction::ZExt:
9329   case Instruction::SExt:
9330   case Instruction::FPToUI:
9331   case Instruction::FPToSI:
9332   case Instruction::FPExt:
9333   case Instruction::PtrToInt:
9334   case Instruction::IntToPtr:
9335   case Instruction::SIToFP:
9336   case Instruction::UIToFP:
9337   case Instruction::Trunc:
9338   case Instruction::FPTrunc:
9339   case Instruction::BitCast: {
9340     auto *CI = cast<CastInst>(&I);
9341     State.ILV->setDebugLocFromInst(CI);
9342 
9343     /// Vectorize casts.
9344     Type *DestTy = (State.VF.isScalar())
9345                        ? CI->getType()
9346                        : VectorType::get(CI->getType(), State.VF);
9347 
9348     for (unsigned Part = 0; Part < State.UF; ++Part) {
9349       Value *A = State.get(getOperand(0), Part);
9350       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
9351       State.set(this, Cast, Part);
9352       State.ILV->addMetadata(Cast, &I);
9353     }
9354     break;
9355   }
9356   default:
9357     // This instruction is not vectorized by simple widening.
9358     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
9359     llvm_unreachable("Unhandled instruction!");
9360   } // end of switch.
9361 }
9362 
9363 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9364   auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr());
9365   // Construct a vector GEP by widening the operands of the scalar GEP as
9366   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
9367   // results in a vector of pointers when at least one operand of the GEP
9368   // is vector-typed. Thus, to keep the representation compact, we only use
9369   // vector-typed operands for loop-varying values.
9370 
9371   if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
9372     // If we are vectorizing, but the GEP has only loop-invariant operands,
9373     // the GEP we build (by only using vector-typed operands for
9374     // loop-varying values) would be a scalar pointer. Thus, to ensure we
9375     // produce a vector of pointers, we need to either arbitrarily pick an
9376     // operand to broadcast, or broadcast a clone of the original GEP.
9377     // Here, we broadcast a clone of the original.
9378     //
9379     // TODO: If at some point we decide to scalarize instructions having
9380     //       loop-invariant operands, this special case will no longer be
9381     //       required. We would add the scalarization decision to
9382     //       collectLoopScalars() and teach getVectorValue() to broadcast
9383     //       the lane-zero scalar value.
9384     auto *Clone = State.Builder.Insert(GEP->clone());
9385     for (unsigned Part = 0; Part < State.UF; ++Part) {
9386       Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone);
9387       State.set(this, EntryPart, Part);
9388       State.ILV->addMetadata(EntryPart, GEP);
9389     }
9390   } else {
9391     // If the GEP has at least one loop-varying operand, we are sure to
9392     // produce a vector of pointers. But if we are only unrolling, we want
9393     // to produce a scalar GEP for each unroll part. Thus, the GEP we
9394     // produce with the code below will be scalar (if VF == 1) or vector
9395     // (otherwise). Note that for the unroll-only case, we still maintain
9396     // values in the vector mapping with initVector, as we do for other
9397     // instructions.
9398     for (unsigned Part = 0; Part < State.UF; ++Part) {
9399       // The pointer operand of the new GEP. If it's loop-invariant, we
9400       // won't broadcast it.
9401       auto *Ptr = IsPtrLoopInvariant
9402                       ? State.get(getOperand(0), VPIteration(0, 0))
9403                       : State.get(getOperand(0), Part);
9404 
9405       // Collect all the indices for the new GEP. If any index is
9406       // loop-invariant, we won't broadcast it.
9407       SmallVector<Value *, 4> Indices;
9408       for (unsigned I = 1, E = getNumOperands(); I < E; I++) {
9409         VPValue *Operand = getOperand(I);
9410         if (IsIndexLoopInvariant[I - 1])
9411           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
9412         else
9413           Indices.push_back(State.get(Operand, Part));
9414       }
9415 
9416       // If the GEP instruction is vectorized and was in a basic block that
9417       // needed predication, we can't propagate the poison-generating 'inbounds'
9418       // flag. The control flow has been linearized and the GEP is no longer
9419       // guarded by the predicate, which could make the 'inbounds' properties to
9420       // no longer hold.
9421       bool IsInBounds =
9422           GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0;
9423 
9424       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
9425       // but it should be a vector, otherwise.
9426       auto *NewGEP = State.Builder.CreateGEP(GEP->getSourceElementType(), Ptr,
9427                                              Indices, "", IsInBounds);
9428       assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
9429              "NewGEP is not a pointer vector");
9430       State.set(this, NewGEP, Part);
9431       State.ILV->addMetadata(NewGEP, GEP);
9432     }
9433   }
9434 }
9435 
9436 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9437   assert(!State.Instance && "Int or FP induction being replicated.");
9438 
9439   Value *Start = getStartValue()->getLiveInIRValue();
9440   const InductionDescriptor &ID = getInductionDescriptor();
9441   TruncInst *Trunc = getTruncInst();
9442   IRBuilderBase &Builder = State.Builder;
9443   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
9444   assert(State.VF.isVector() && "must have vector VF");
9445 
9446   // The value from the original loop to which we are mapping the new induction
9447   // variable.
9448   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
9449 
9450   // Fast-math-flags propagate from the original induction instruction.
9451   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9452   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
9453     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
9454 
9455   // Now do the actual transformations, and start with fetching the step value.
9456   Value *Step = State.get(getStepValue(), VPIteration(0, 0));
9457 
9458   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
9459          "Expected either an induction phi-node or a truncate of it!");
9460 
9461   // Construct the initial value of the vector IV in the vector loop preheader
9462   auto CurrIP = Builder.saveIP();
9463   BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
9464   Builder.SetInsertPoint(VectorPH->getTerminator());
9465   if (isa<TruncInst>(EntryVal)) {
9466     assert(Start->getType()->isIntegerTy() &&
9467            "Truncation requires an integer type");
9468     auto *TruncType = cast<IntegerType>(EntryVal->getType());
9469     Step = Builder.CreateTrunc(Step, TruncType);
9470     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
9471   }
9472 
9473   Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
9474   Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start);
9475   Value *SteppedStart = getStepVector(
9476       SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder);
9477 
9478   // We create vector phi nodes for both integer and floating-point induction
9479   // variables. Here, we determine the kind of arithmetic we will perform.
9480   Instruction::BinaryOps AddOp;
9481   Instruction::BinaryOps MulOp;
9482   if (Step->getType()->isIntegerTy()) {
9483     AddOp = Instruction::Add;
9484     MulOp = Instruction::Mul;
9485   } else {
9486     AddOp = ID.getInductionOpcode();
9487     MulOp = Instruction::FMul;
9488   }
9489 
9490   // Multiply the vectorization factor by the step using integer or
9491   // floating-point arithmetic as appropriate.
9492   Type *StepType = Step->getType();
9493   Value *RuntimeVF;
9494   if (Step->getType()->isFloatingPointTy())
9495     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF);
9496   else
9497     RuntimeVF = getRuntimeVF(Builder, StepType, State.VF);
9498   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
9499 
9500   // Create a vector splat to use in the induction update.
9501   //
9502   // FIXME: If the step is non-constant, we create the vector splat with
9503   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
9504   //        handle a constant vector splat.
9505   Value *SplatVF = isa<Constant>(Mul)
9506                        ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul))
9507                        : Builder.CreateVectorSplat(State.VF, Mul);
9508   Builder.restoreIP(CurrIP);
9509 
9510   // We may need to add the step a number of times, depending on the unroll
9511   // factor. The last of those goes into the PHI.
9512   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
9513                                     &*State.CFG.PrevBB->getFirstInsertionPt());
9514   VecInd->setDebugLoc(EntryVal->getDebugLoc());
9515   Instruction *LastInduction = VecInd;
9516   for (unsigned Part = 0; Part < State.UF; ++Part) {
9517     State.set(this, LastInduction, Part);
9518 
9519     if (isa<TruncInst>(EntryVal))
9520       State.ILV->addMetadata(LastInduction, EntryVal);
9521 
9522     LastInduction = cast<Instruction>(
9523         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
9524     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
9525   }
9526 
9527   LastInduction->setName("vec.ind.next");
9528   VecInd->addIncoming(SteppedStart, VectorPH);
9529   // Add induction update using an incorrect block temporarily. The phi node
9530   // will be fixed after VPlan execution. Note that at this point the latch
9531   // block cannot be used, as it does not exist yet.
9532   // TODO: Model increment value in VPlan, by turning the recipe into a
9533   // multi-def and a subclass of VPHeaderPHIRecipe.
9534   VecInd->addIncoming(LastInduction, VectorPH);
9535 }
9536 
9537 void VPWidenPointerInductionRecipe::execute(VPTransformState &State) {
9538   assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction &&
9539          "Not a pointer induction according to InductionDescriptor!");
9540   assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() &&
9541          "Unexpected type.");
9542 
9543   auto *IVR = getParent()->getPlan()->getCanonicalIV();
9544   PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0));
9545 
9546   if (onlyScalarsGenerated(State.VF)) {
9547     // This is the normalized GEP that starts counting at zero.
9548     Value *PtrInd = State.Builder.CreateSExtOrTrunc(
9549         CanonicalIV, IndDesc.getStep()->getType());
9550     // Determine the number of scalars we need to generate for each unroll
9551     // iteration. If the instruction is uniform, we only need to generate the
9552     // first lane. Otherwise, we generate all VF values.
9553     bool IsUniform = vputils::onlyFirstLaneUsed(this);
9554     assert((IsUniform || !State.VF.isScalable()) &&
9555            "Cannot scalarize a scalable VF");
9556     unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
9557 
9558     for (unsigned Part = 0; Part < State.UF; ++Part) {
9559       Value *PartStart =
9560           createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part);
9561 
9562       for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
9563         Value *Idx = State.Builder.CreateAdd(
9564             PartStart, ConstantInt::get(PtrInd->getType(), Lane));
9565         Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx);
9566 
9567         Value *Step = CreateStepValue(IndDesc.getStep(), SE,
9568                                       State.CFG.PrevBB->getTerminator());
9569         Value *SclrGep = emitTransformedIndex(
9570             State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc);
9571         SclrGep->setName("next.gep");
9572         State.set(this, SclrGep, VPIteration(Part, Lane));
9573       }
9574     }
9575     return;
9576   }
9577 
9578   assert(isa<SCEVConstant>(IndDesc.getStep()) &&
9579          "Induction step not a SCEV constant!");
9580   Type *PhiType = IndDesc.getStep()->getType();
9581 
9582   // Build a pointer phi
9583   Value *ScalarStartValue = getStartValue()->getLiveInIRValue();
9584   Type *ScStValueType = ScalarStartValue->getType();
9585   PHINode *NewPointerPhi =
9586       PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV);
9587 
9588   BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
9589   NewPointerPhi->addIncoming(ScalarStartValue, VectorPH);
9590 
9591   // A pointer induction, performed by using a gep
9592   const DataLayout &DL = NewPointerPhi->getModule()->getDataLayout();
9593   Instruction *InductionLoc = &*State.Builder.GetInsertPoint();
9594 
9595   const SCEV *ScalarStep = IndDesc.getStep();
9596   SCEVExpander Exp(SE, DL, "induction");
9597   Value *ScalarStepValue = Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
9598   Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF);
9599   Value *NumUnrolledElems =
9600       State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
9601   Value *InductionGEP = GetElementPtrInst::Create(
9602       IndDesc.getElementType(), NewPointerPhi,
9603       State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
9604       InductionLoc);
9605   // Add induction update using an incorrect block temporarily. The phi node
9606   // will be fixed after VPlan execution. Note that at this point the latch
9607   // block cannot be used, as it does not exist yet.
9608   // TODO: Model increment value in VPlan, by turning the recipe into a
9609   // multi-def and a subclass of VPHeaderPHIRecipe.
9610   NewPointerPhi->addIncoming(InductionGEP, VectorPH);
9611 
9612   // Create UF many actual address geps that use the pointer
9613   // phi as base and a vectorized version of the step value
9614   // (<step*0, ..., step*N>) as offset.
9615   for (unsigned Part = 0; Part < State.UF; ++Part) {
9616     Type *VecPhiType = VectorType::get(PhiType, State.VF);
9617     Value *StartOffsetScalar =
9618         State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
9619     Value *StartOffset =
9620         State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
9621     // Create a vector of consecutive numbers from zero to VF.
9622     StartOffset = State.Builder.CreateAdd(
9623         StartOffset, State.Builder.CreateStepVector(VecPhiType));
9624 
9625     Value *GEP = State.Builder.CreateGEP(
9626         IndDesc.getElementType(), NewPointerPhi,
9627         State.Builder.CreateMul(
9628             StartOffset,
9629             State.Builder.CreateVectorSplat(State.VF, ScalarStepValue),
9630             "vector.gep"));
9631     State.set(this, GEP, Part);
9632   }
9633 }
9634 
9635 void VPScalarIVStepsRecipe::execute(VPTransformState &State) {
9636   assert(!State.Instance && "VPScalarIVStepsRecipe being replicated.");
9637 
9638   // Fast-math-flags propagate from the original induction instruction.
9639   IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
9640   if (IndDesc.getInductionBinOp() &&
9641       isa<FPMathOperator>(IndDesc.getInductionBinOp()))
9642     State.Builder.setFastMathFlags(
9643         IndDesc.getInductionBinOp()->getFastMathFlags());
9644 
9645   Value *Step = State.get(getStepValue(), VPIteration(0, 0));
9646   auto CreateScalarIV = [&](Value *&Step) -> Value * {
9647     Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0));
9648     auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0);
9649     if (!isCanonical() || CanonicalIV->getType() != Ty) {
9650       ScalarIV =
9651           Ty->isIntegerTy()
9652               ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty)
9653               : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty);
9654       ScalarIV = emitTransformedIndex(State.Builder, ScalarIV,
9655                                       getStartValue()->getLiveInIRValue(), Step,
9656                                       IndDesc);
9657       ScalarIV->setName("offset.idx");
9658     }
9659     if (TruncToTy) {
9660       assert(Step->getType()->isIntegerTy() &&
9661              "Truncation requires an integer step");
9662       ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy);
9663       Step = State.Builder.CreateTrunc(Step, TruncToTy);
9664     }
9665     return ScalarIV;
9666   };
9667 
9668   Value *ScalarIV = CreateScalarIV(Step);
9669   if (State.VF.isVector()) {
9670     buildScalarSteps(ScalarIV, Step, IndDesc, this, State);
9671     return;
9672   }
9673 
9674   for (unsigned Part = 0; Part < State.UF; ++Part) {
9675     assert(!State.VF.isScalable() && "scalable vectors not yet supported.");
9676     Value *EntryPart;
9677     if (Step->getType()->isFloatingPointTy()) {
9678       Value *StartIdx =
9679           getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part);
9680       // Floating-point operations inherit FMF via the builder's flags.
9681       Value *MulOp = State.Builder.CreateFMul(StartIdx, Step);
9682       EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(),
9683                                             ScalarIV, MulOp);
9684     } else {
9685       Value *StartIdx =
9686           getRuntimeVF(State.Builder, Step->getType(), State.VF * Part);
9687       EntryPart = State.Builder.CreateAdd(
9688           ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction");
9689     }
9690     State.set(this, EntryPart, Part);
9691   }
9692 }
9693 
9694 void VPBlendRecipe::execute(VPTransformState &State) {
9695   State.ILV->setDebugLocFromInst(Phi);
9696   // We know that all PHIs in non-header blocks are converted into
9697   // selects, so we don't have to worry about the insertion order and we
9698   // can just use the builder.
9699   // At this point we generate the predication tree. There may be
9700   // duplications since this is a simple recursive scan, but future
9701   // optimizations will clean it up.
9702 
9703   unsigned NumIncoming = getNumIncomingValues();
9704 
9705   // Generate a sequence of selects of the form:
9706   // SELECT(Mask3, In3,
9707   //        SELECT(Mask2, In2,
9708   //               SELECT(Mask1, In1,
9709   //                      In0)))
9710   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9711   // are essentially undef are taken from In0.
9712   InnerLoopVectorizer::VectorParts Entry(State.UF);
9713   for (unsigned In = 0; In < NumIncoming; ++In) {
9714     for (unsigned Part = 0; Part < State.UF; ++Part) {
9715       // We might have single edge PHIs (blocks) - use an identity
9716       // 'select' for the first PHI operand.
9717       Value *In0 = State.get(getIncomingValue(In), Part);
9718       if (In == 0)
9719         Entry[Part] = In0; // Initialize with the first incoming value.
9720       else {
9721         // Select between the current value and the previous incoming edge
9722         // based on the incoming mask.
9723         Value *Cond = State.get(getMask(In), Part);
9724         Entry[Part] =
9725             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9726       }
9727     }
9728   }
9729   for (unsigned Part = 0; Part < State.UF; ++Part)
9730     State.set(this, Entry[Part], Part);
9731 }
9732 
9733 void VPInterleaveRecipe::execute(VPTransformState &State) {
9734   assert(!State.Instance && "Interleave group being replicated.");
9735   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9736                                       getStoredValues(), getMask());
9737 }
9738 
9739 void VPReductionRecipe::execute(VPTransformState &State) {
9740   assert(!State.Instance && "Reduction being replicated.");
9741   Value *PrevInChain = State.get(getChainOp(), 0);
9742   RecurKind Kind = RdxDesc->getRecurrenceKind();
9743   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9744   // Propagate the fast-math flags carried by the underlying instruction.
9745   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
9746   State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
9747   for (unsigned Part = 0; Part < State.UF; ++Part) {
9748     Value *NewVecOp = State.get(getVecOp(), Part);
9749     if (VPValue *Cond = getCondOp()) {
9750       Value *NewCond = State.get(Cond, Part);
9751       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9752       Value *Iden = RdxDesc->getRecurrenceIdentity(
9753           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9754       Value *IdenVec =
9755           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9756       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9757       NewVecOp = Select;
9758     }
9759     Value *NewRed;
9760     Value *NextInChain;
9761     if (IsOrdered) {
9762       if (State.VF.isVector())
9763         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9764                                         PrevInChain);
9765       else
9766         NewRed = State.Builder.CreateBinOp(
9767             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9768             NewVecOp);
9769       PrevInChain = NewRed;
9770     } else {
9771       PrevInChain = State.get(getChainOp(), Part);
9772       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9773     }
9774     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9775       NextInChain =
9776           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9777                          NewRed, PrevInChain);
9778     } else if (IsOrdered)
9779       NextInChain = NewRed;
9780     else
9781       NextInChain = State.Builder.CreateBinOp(
9782           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
9783           PrevInChain);
9784     State.set(this, NextInChain, Part);
9785   }
9786 }
9787 
9788 void VPReplicateRecipe::execute(VPTransformState &State) {
9789   if (State.Instance) { // Generate a single instance.
9790     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9791     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance,
9792                                     IsPredicated, State);
9793     // Insert scalar instance packing it into a vector.
9794     if (AlsoPack && State.VF.isVector()) {
9795       // If we're constructing lane 0, initialize to start from poison.
9796       if (State.Instance->Lane.isFirstLane()) {
9797         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9798         Value *Poison = PoisonValue::get(
9799             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9800         State.set(this, Poison, State.Instance->Part);
9801       }
9802       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9803     }
9804     return;
9805   }
9806 
9807   // Generate scalar instances for all VF lanes of all UF parts, unless the
9808   // instruction is uniform inwhich case generate only the first lane for each
9809   // of the UF parts.
9810   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9811   assert((!State.VF.isScalable() || IsUniform) &&
9812          "Can't scalarize a scalable vector");
9813   for (unsigned Part = 0; Part < State.UF; ++Part)
9814     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9815       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this,
9816                                       VPIteration(Part, Lane), IsPredicated,
9817                                       State);
9818 }
9819 
9820 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9821   assert(State.Instance && "Branch on Mask works only on single instance.");
9822 
9823   unsigned Part = State.Instance->Part;
9824   unsigned Lane = State.Instance->Lane.getKnownLane();
9825 
9826   Value *ConditionBit = nullptr;
9827   VPValue *BlockInMask = getMask();
9828   if (BlockInMask) {
9829     ConditionBit = State.get(BlockInMask, Part);
9830     if (ConditionBit->getType()->isVectorTy())
9831       ConditionBit = State.Builder.CreateExtractElement(
9832           ConditionBit, State.Builder.getInt32(Lane));
9833   } else // Block in mask is all-one.
9834     ConditionBit = State.Builder.getTrue();
9835 
9836   // Replace the temporary unreachable terminator with a new conditional branch,
9837   // whose two destinations will be set later when they are created.
9838   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9839   assert(isa<UnreachableInst>(CurrentTerminator) &&
9840          "Expected to replace unreachable terminator with conditional branch.");
9841   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9842   CondBr->setSuccessor(0, nullptr);
9843   ReplaceInstWithInst(CurrentTerminator, CondBr);
9844 }
9845 
9846 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9847   assert(State.Instance && "Predicated instruction PHI works per instance.");
9848   Instruction *ScalarPredInst =
9849       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9850   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9851   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9852   assert(PredicatingBB && "Predicated block has no single predecessor.");
9853   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9854          "operand must be VPReplicateRecipe");
9855 
9856   // By current pack/unpack logic we need to generate only a single phi node: if
9857   // a vector value for the predicated instruction exists at this point it means
9858   // the instruction has vector users only, and a phi for the vector value is
9859   // needed. In this case the recipe of the predicated instruction is marked to
9860   // also do that packing, thereby "hoisting" the insert-element sequence.
9861   // Otherwise, a phi node for the scalar value is needed.
9862   unsigned Part = State.Instance->Part;
9863   if (State.hasVectorValue(getOperand(0), Part)) {
9864     Value *VectorValue = State.get(getOperand(0), Part);
9865     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9866     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9867     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9868     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9869     if (State.hasVectorValue(this, Part))
9870       State.reset(this, VPhi, Part);
9871     else
9872       State.set(this, VPhi, Part);
9873     // NOTE: Currently we need to update the value of the operand, so the next
9874     // predicated iteration inserts its generated value in the correct vector.
9875     State.reset(getOperand(0), VPhi, Part);
9876   } else {
9877     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9878     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9879     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9880                      PredicatingBB);
9881     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9882     if (State.hasScalarValue(this, *State.Instance))
9883       State.reset(this, Phi, *State.Instance);
9884     else
9885       State.set(this, Phi, *State.Instance);
9886     // NOTE: Currently we need to update the value of the operand, so the next
9887     // predicated iteration inserts its generated value in the correct vector.
9888     State.reset(getOperand(0), Phi, *State.Instance);
9889   }
9890 }
9891 
9892 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9893   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9894 
9895   // Attempt to issue a wide load.
9896   LoadInst *LI = dyn_cast<LoadInst>(&Ingredient);
9897   StoreInst *SI = dyn_cast<StoreInst>(&Ingredient);
9898 
9899   assert((LI || SI) && "Invalid Load/Store instruction");
9900   assert((!SI || StoredValue) && "No stored value provided for widened store");
9901   assert((!LI || !StoredValue) && "Stored value provided for widened load");
9902 
9903   Type *ScalarDataTy = getLoadStoreType(&Ingredient);
9904 
9905   auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
9906   const Align Alignment = getLoadStoreAlignment(&Ingredient);
9907   bool CreateGatherScatter = !Consecutive;
9908 
9909   auto &Builder = State.Builder;
9910   InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF);
9911   bool isMaskRequired = getMask();
9912   if (isMaskRequired)
9913     for (unsigned Part = 0; Part < State.UF; ++Part)
9914       BlockInMaskParts[Part] = State.get(getMask(), Part);
9915 
9916   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
9917     // Calculate the pointer for the specific unroll-part.
9918     GetElementPtrInst *PartPtr = nullptr;
9919 
9920     bool InBounds = false;
9921     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
9922       InBounds = gep->isInBounds();
9923     if (Reverse) {
9924       // If the address is consecutive but reversed, then the
9925       // wide store needs to start at the last vector element.
9926       // RunTimeVF =  VScale * VF.getKnownMinValue()
9927       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
9928       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF);
9929       // NumElt = -Part * RunTimeVF
9930       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
9931       // LastLane = 1 - RunTimeVF
9932       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
9933       PartPtr =
9934           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
9935       PartPtr->setIsInBounds(InBounds);
9936       PartPtr = cast<GetElementPtrInst>(
9937           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
9938       PartPtr->setIsInBounds(InBounds);
9939       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
9940         BlockInMaskParts[Part] =
9941             Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse");
9942     } else {
9943       Value *Increment =
9944           createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part);
9945       PartPtr = cast<GetElementPtrInst>(
9946           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
9947       PartPtr->setIsInBounds(InBounds);
9948     }
9949 
9950     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
9951     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
9952   };
9953 
9954   // Handle Stores:
9955   if (SI) {
9956     State.ILV->setDebugLocFromInst(SI);
9957 
9958     for (unsigned Part = 0; Part < State.UF; ++Part) {
9959       Instruction *NewSI = nullptr;
9960       Value *StoredVal = State.get(StoredValue, Part);
9961       if (CreateGatherScatter) {
9962         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
9963         Value *VectorGep = State.get(getAddr(), Part);
9964         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
9965                                             MaskPart);
9966       } else {
9967         if (Reverse) {
9968           // If we store to reverse consecutive memory locations, then we need
9969           // to reverse the order of elements in the stored value.
9970           StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
9971           // We don't want to update the value in the map as it might be used in
9972           // another expression. So don't call resetVectorValue(StoredVal).
9973         }
9974         auto *VecPtr =
9975             CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
9976         if (isMaskRequired)
9977           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
9978                                             BlockInMaskParts[Part]);
9979         else
9980           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
9981       }
9982       State.ILV->addMetadata(NewSI, SI);
9983     }
9984     return;
9985   }
9986 
9987   // Handle loads.
9988   assert(LI && "Must have a load instruction");
9989   State.ILV->setDebugLocFromInst(LI);
9990   for (unsigned Part = 0; Part < State.UF; ++Part) {
9991     Value *NewLI;
9992     if (CreateGatherScatter) {
9993       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
9994       Value *VectorGep = State.get(getAddr(), Part);
9995       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
9996                                          nullptr, "wide.masked.gather");
9997       State.ILV->addMetadata(NewLI, LI);
9998     } else {
9999       auto *VecPtr =
10000           CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10001       if (isMaskRequired)
10002         NewLI = Builder.CreateMaskedLoad(
10003             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
10004             PoisonValue::get(DataTy), "wide.masked.load");
10005       else
10006         NewLI =
10007             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
10008 
10009       // Add metadata to the load, but setVectorValue to the reverse shuffle.
10010       State.ILV->addMetadata(NewLI, LI);
10011       if (Reverse)
10012         NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
10013     }
10014 
10015     State.set(getVPSingleValue(), NewLI, Part);
10016   }
10017 }
10018 
10019 // Determine how to lower the scalar epilogue, which depends on 1) optimising
10020 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
10021 // predication, and 4) a TTI hook that analyses whether the loop is suitable
10022 // for predication.
10023 static ScalarEpilogueLowering getScalarEpilogueLowering(
10024     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
10025     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
10026     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
10027     LoopVectorizationLegality &LVL) {
10028   // 1) OptSize takes precedence over all other options, i.e. if this is set,
10029   // don't look at hints or options, and don't request a scalar epilogue.
10030   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
10031   // LoopAccessInfo (due to code dependency and not being able to reliably get
10032   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
10033   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
10034   // versioning when the vectorization is forced, unlike hasOptSize. So revert
10035   // back to the old way and vectorize with versioning when forced. See D81345.)
10036   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
10037                                                       PGSOQueryType::IRPass) &&
10038                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
10039     return CM_ScalarEpilogueNotAllowedOptSize;
10040 
10041   // 2) If set, obey the directives
10042   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
10043     switch (PreferPredicateOverEpilogue) {
10044     case PreferPredicateTy::ScalarEpilogue:
10045       return CM_ScalarEpilogueAllowed;
10046     case PreferPredicateTy::PredicateElseScalarEpilogue:
10047       return CM_ScalarEpilogueNotNeededUsePredicate;
10048     case PreferPredicateTy::PredicateOrDontVectorize:
10049       return CM_ScalarEpilogueNotAllowedUsePredicate;
10050     };
10051   }
10052 
10053   // 3) If set, obey the hints
10054   switch (Hints.getPredicate()) {
10055   case LoopVectorizeHints::FK_Enabled:
10056     return CM_ScalarEpilogueNotNeededUsePredicate;
10057   case LoopVectorizeHints::FK_Disabled:
10058     return CM_ScalarEpilogueAllowed;
10059   };
10060 
10061   // 4) if the TTI hook indicates this is profitable, request predication.
10062   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
10063                                        LVL.getLAI()))
10064     return CM_ScalarEpilogueNotNeededUsePredicate;
10065 
10066   return CM_ScalarEpilogueAllowed;
10067 }
10068 
10069 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
10070   // If Values have been set for this Def return the one relevant for \p Part.
10071   if (hasVectorValue(Def, Part))
10072     return Data.PerPartOutput[Def][Part];
10073 
10074   if (!hasScalarValue(Def, {Part, 0})) {
10075     Value *IRV = Def->getLiveInIRValue();
10076     Value *B = ILV->getBroadcastInstrs(IRV);
10077     set(Def, B, Part);
10078     return B;
10079   }
10080 
10081   Value *ScalarValue = get(Def, {Part, 0});
10082   // If we aren't vectorizing, we can just copy the scalar map values over
10083   // to the vector map.
10084   if (VF.isScalar()) {
10085     set(Def, ScalarValue, Part);
10086     return ScalarValue;
10087   }
10088 
10089   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
10090   bool IsUniform = RepR && RepR->isUniform();
10091 
10092   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
10093   // Check if there is a scalar value for the selected lane.
10094   if (!hasScalarValue(Def, {Part, LastLane})) {
10095     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
10096     assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) ||
10097             isa<VPScalarIVStepsRecipe>(Def->getDef())) &&
10098            "unexpected recipe found to be invariant");
10099     IsUniform = true;
10100     LastLane = 0;
10101   }
10102 
10103   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
10104   // Set the insert point after the last scalarized instruction or after the
10105   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
10106   // will directly follow the scalar definitions.
10107   auto OldIP = Builder.saveIP();
10108   auto NewIP =
10109       isa<PHINode>(LastInst)
10110           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10111           : std::next(BasicBlock::iterator(LastInst));
10112   Builder.SetInsertPoint(&*NewIP);
10113 
10114   // However, if we are vectorizing, we need to construct the vector values.
10115   // If the value is known to be uniform after vectorization, we can just
10116   // broadcast the scalar value corresponding to lane zero for each unroll
10117   // iteration. Otherwise, we construct the vector values using
10118   // insertelement instructions. Since the resulting vectors are stored in
10119   // State, we will only generate the insertelements once.
10120   Value *VectorValue = nullptr;
10121   if (IsUniform) {
10122     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10123     set(Def, VectorValue, Part);
10124   } else {
10125     // Initialize packing with insertelements to start from undef.
10126     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10127     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10128     set(Def, Undef, Part);
10129     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10130       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10131     VectorValue = get(Def, Part);
10132   }
10133   Builder.restoreIP(OldIP);
10134   return VectorValue;
10135 }
10136 
10137 // Process the loop in the VPlan-native vectorization path. This path builds
10138 // VPlan upfront in the vectorization pipeline, which allows to apply
10139 // VPlan-to-VPlan transformations from the very beginning without modifying the
10140 // input LLVM IR.
10141 static bool processLoopInVPlanNativePath(
10142     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10143     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10144     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10145     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10146     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10147     LoopVectorizationRequirements &Requirements) {
10148 
10149   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10150     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10151     return false;
10152   }
10153   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10154   Function *F = L->getHeader()->getParent();
10155   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10156 
10157   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10158       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10159 
10160   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10161                                 &Hints, IAI);
10162   // Use the planner for outer loop vectorization.
10163   // TODO: CM is not used at this point inside the planner. Turn CM into an
10164   // optional argument if we don't need it in the future.
10165   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10166                                Requirements, ORE);
10167 
10168   // Get user vectorization factor.
10169   ElementCount UserVF = Hints.getWidth();
10170 
10171   CM.collectElementTypesForWidening();
10172 
10173   // Plan how to best vectorize, return the best VF and its cost.
10174   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10175 
10176   // If we are stress testing VPlan builds, do not attempt to generate vector
10177   // code. Masked vector code generation support will follow soon.
10178   // Also, do not attempt to vectorize if no vector code will be produced.
10179   if (VPlanBuildStressTest || VectorizationFactor::Disabled() == VF)
10180     return false;
10181 
10182   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10183 
10184   {
10185     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10186                              F->getParent()->getDataLayout());
10187     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10188                            &CM, BFI, PSI, Checks);
10189     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10190                       << L->getHeader()->getParent()->getName() << "\"\n");
10191     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT);
10192   }
10193 
10194   // Mark the loop as already vectorized to avoid vectorizing again.
10195   Hints.setAlreadyVectorized();
10196   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10197   return true;
10198 }
10199 
10200 // Emit a remark if there are stores to floats that required a floating point
10201 // extension. If the vectorized loop was generated with floating point there
10202 // will be a performance penalty from the conversion overhead and the change in
10203 // the vector width.
10204 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10205   SmallVector<Instruction *, 4> Worklist;
10206   for (BasicBlock *BB : L->getBlocks()) {
10207     for (Instruction &Inst : *BB) {
10208       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10209         if (S->getValueOperand()->getType()->isFloatTy())
10210           Worklist.push_back(S);
10211       }
10212     }
10213   }
10214 
10215   // Traverse the floating point stores upwards searching, for floating point
10216   // conversions.
10217   SmallPtrSet<const Instruction *, 4> Visited;
10218   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10219   while (!Worklist.empty()) {
10220     auto *I = Worklist.pop_back_val();
10221     if (!L->contains(I))
10222       continue;
10223     if (!Visited.insert(I).second)
10224       continue;
10225 
10226     // Emit a remark if the floating point store required a floating
10227     // point conversion.
10228     // TODO: More work could be done to identify the root cause such as a
10229     // constant or a function return type and point the user to it.
10230     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10231       ORE->emit([&]() {
10232         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10233                                           I->getDebugLoc(), L->getHeader())
10234                << "floating point conversion changes vector width. "
10235                << "Mixed floating point precision requires an up/down "
10236                << "cast that will negatively impact performance.";
10237       });
10238 
10239     for (Use &Op : I->operands())
10240       if (auto *OpI = dyn_cast<Instruction>(Op))
10241         Worklist.push_back(OpI);
10242   }
10243 }
10244 
10245 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10246     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10247                                !EnableLoopInterleaving),
10248       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10249                               !EnableLoopVectorization) {}
10250 
10251 bool LoopVectorizePass::processLoop(Loop *L) {
10252   assert((EnableVPlanNativePath || L->isInnermost()) &&
10253          "VPlan-native path is not enabled. Only process inner loops.");
10254 
10255 #ifndef NDEBUG
10256   const std::string DebugLocStr = getDebugLocString(L);
10257 #endif /* NDEBUG */
10258 
10259   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '"
10260                     << L->getHeader()->getParent()->getName() << "' from "
10261                     << DebugLocStr << "\n");
10262 
10263   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
10264 
10265   LLVM_DEBUG(
10266       dbgs() << "LV: Loop hints:"
10267              << " force="
10268              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10269                      ? "disabled"
10270                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10271                             ? "enabled"
10272                             : "?"))
10273              << " width=" << Hints.getWidth()
10274              << " interleave=" << Hints.getInterleave() << "\n");
10275 
10276   // Function containing loop
10277   Function *F = L->getHeader()->getParent();
10278 
10279   // Looking at the diagnostic output is the only way to determine if a loop
10280   // was vectorized (other than looking at the IR or machine code), so it
10281   // is important to generate an optimization remark for each loop. Most of
10282   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10283   // generated as OptimizationRemark and OptimizationRemarkMissed are
10284   // less verbose reporting vectorized loops and unvectorized loops that may
10285   // benefit from vectorization, respectively.
10286 
10287   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10288     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10289     return false;
10290   }
10291 
10292   PredicatedScalarEvolution PSE(*SE, *L);
10293 
10294   // Check if it is legal to vectorize the loop.
10295   LoopVectorizationRequirements Requirements;
10296   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10297                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10298   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10299     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10300     Hints.emitRemarkWithHints();
10301     return false;
10302   }
10303 
10304   // Check the function attributes and profiles to find out if this function
10305   // should be optimized for size.
10306   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10307       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10308 
10309   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10310   // here. They may require CFG and instruction level transformations before
10311   // even evaluating whether vectorization is profitable. Since we cannot modify
10312   // the incoming IR, we need to build VPlan upfront in the vectorization
10313   // pipeline.
10314   if (!L->isInnermost())
10315     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10316                                         ORE, BFI, PSI, Hints, Requirements);
10317 
10318   assert(L->isInnermost() && "Inner loop expected.");
10319 
10320   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10321   // count by optimizing for size, to minimize overheads.
10322   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10323   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10324     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10325                       << "This loop is worth vectorizing only if no scalar "
10326                       << "iteration overheads are incurred.");
10327     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10328       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10329     else {
10330       LLVM_DEBUG(dbgs() << "\n");
10331       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10332     }
10333   }
10334 
10335   // Check the function attributes to see if implicit floats are allowed.
10336   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10337   // an integer loop and the vector instructions selected are purely integer
10338   // vector instructions?
10339   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10340     reportVectorizationFailure(
10341         "Can't vectorize when the NoImplicitFloat attribute is used",
10342         "loop not vectorized due to NoImplicitFloat attribute",
10343         "NoImplicitFloat", ORE, L);
10344     Hints.emitRemarkWithHints();
10345     return false;
10346   }
10347 
10348   // Check if the target supports potentially unsafe FP vectorization.
10349   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10350   // for the target we're vectorizing for, to make sure none of the
10351   // additional fp-math flags can help.
10352   if (Hints.isPotentiallyUnsafe() &&
10353       TTI->isFPVectorizationPotentiallyUnsafe()) {
10354     reportVectorizationFailure(
10355         "Potentially unsafe FP op prevents vectorization",
10356         "loop not vectorized due to unsafe FP support.",
10357         "UnsafeFP", ORE, L);
10358     Hints.emitRemarkWithHints();
10359     return false;
10360   }
10361 
10362   bool AllowOrderedReductions;
10363   // If the flag is set, use that instead and override the TTI behaviour.
10364   if (ForceOrderedReductions.getNumOccurrences() > 0)
10365     AllowOrderedReductions = ForceOrderedReductions;
10366   else
10367     AllowOrderedReductions = TTI->enableOrderedReductions();
10368   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10369     ORE->emit([&]() {
10370       auto *ExactFPMathInst = Requirements.getExactFPInst();
10371       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10372                                                  ExactFPMathInst->getDebugLoc(),
10373                                                  ExactFPMathInst->getParent())
10374              << "loop not vectorized: cannot prove it is safe to reorder "
10375                 "floating-point operations";
10376     });
10377     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10378                          "reorder floating-point operations\n");
10379     Hints.emitRemarkWithHints();
10380     return false;
10381   }
10382 
10383   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10384   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10385 
10386   // If an override option has been passed in for interleaved accesses, use it.
10387   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10388     UseInterleaved = EnableInterleavedMemAccesses;
10389 
10390   // Analyze interleaved memory accesses.
10391   if (UseInterleaved) {
10392     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10393   }
10394 
10395   // Use the cost model.
10396   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10397                                 F, &Hints, IAI);
10398   CM.collectValuesToIgnore();
10399   CM.collectElementTypesForWidening();
10400 
10401   // Use the planner for vectorization.
10402   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10403                                Requirements, ORE);
10404 
10405   // Get user vectorization factor and interleave count.
10406   ElementCount UserVF = Hints.getWidth();
10407   unsigned UserIC = Hints.getInterleave();
10408 
10409   // Plan how to best vectorize, return the best VF and its cost.
10410   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10411 
10412   VectorizationFactor VF = VectorizationFactor::Disabled();
10413   unsigned IC = 1;
10414 
10415   GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10416                            F->getParent()->getDataLayout());
10417   if (MaybeVF) {
10418     if (LVP.requiresTooManyRuntimeChecks()) {
10419       ORE->emit([&]() {
10420         return OptimizationRemarkAnalysisAliasing(
10421                    DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(),
10422                    L->getHeader())
10423                << "loop not vectorized: cannot prove it is safe to reorder "
10424                   "memory operations";
10425       });
10426       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
10427       Hints.emitRemarkWithHints();
10428       return false;
10429     }
10430     VF = *MaybeVF;
10431     // Select the interleave count.
10432     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10433 
10434     unsigned SelectedIC = std::max(IC, UserIC);
10435     //  Optimistically generate runtime checks if they are needed. Drop them if
10436     //  they turn out to not be profitable.
10437     if (VF.Width.isVector() || SelectedIC > 1)
10438       Checks.Create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC);
10439   }
10440 
10441   // Identify the diagnostic messages that should be produced.
10442   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10443   bool VectorizeLoop = true, InterleaveLoop = true;
10444   if (VF.Width.isScalar()) {
10445     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10446     VecDiagMsg = std::make_pair(
10447         "VectorizationNotBeneficial",
10448         "the cost-model indicates that vectorization is not beneficial");
10449     VectorizeLoop = false;
10450   }
10451 
10452   if (!MaybeVF && UserIC > 1) {
10453     // Tell the user interleaving was avoided up-front, despite being explicitly
10454     // requested.
10455     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10456                          "interleaving should be avoided up front\n");
10457     IntDiagMsg = std::make_pair(
10458         "InterleavingAvoided",
10459         "Ignoring UserIC, because interleaving was avoided up front");
10460     InterleaveLoop = false;
10461   } else if (IC == 1 && UserIC <= 1) {
10462     // Tell the user interleaving is not beneficial.
10463     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10464     IntDiagMsg = std::make_pair(
10465         "InterleavingNotBeneficial",
10466         "the cost-model indicates that interleaving is not beneficial");
10467     InterleaveLoop = false;
10468     if (UserIC == 1) {
10469       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10470       IntDiagMsg.second +=
10471           " and is explicitly disabled or interleave count is set to 1";
10472     }
10473   } else if (IC > 1 && UserIC == 1) {
10474     // Tell the user interleaving is beneficial, but it explicitly disabled.
10475     LLVM_DEBUG(
10476         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10477     IntDiagMsg = std::make_pair(
10478         "InterleavingBeneficialButDisabled",
10479         "the cost-model indicates that interleaving is beneficial "
10480         "but is explicitly disabled or interleave count is set to 1");
10481     InterleaveLoop = false;
10482   }
10483 
10484   // Override IC if user provided an interleave count.
10485   IC = UserIC > 0 ? UserIC : IC;
10486 
10487   // Emit diagnostic messages, if any.
10488   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10489   if (!VectorizeLoop && !InterleaveLoop) {
10490     // Do not vectorize or interleaving the loop.
10491     ORE->emit([&]() {
10492       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10493                                       L->getStartLoc(), L->getHeader())
10494              << VecDiagMsg.second;
10495     });
10496     ORE->emit([&]() {
10497       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10498                                       L->getStartLoc(), L->getHeader())
10499              << IntDiagMsg.second;
10500     });
10501     return false;
10502   } else if (!VectorizeLoop && InterleaveLoop) {
10503     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10504     ORE->emit([&]() {
10505       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10506                                         L->getStartLoc(), L->getHeader())
10507              << VecDiagMsg.second;
10508     });
10509   } else if (VectorizeLoop && !InterleaveLoop) {
10510     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10511                       << ") in " << DebugLocStr << '\n');
10512     ORE->emit([&]() {
10513       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10514                                         L->getStartLoc(), L->getHeader())
10515              << IntDiagMsg.second;
10516     });
10517   } else if (VectorizeLoop && InterleaveLoop) {
10518     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10519                       << ") in " << DebugLocStr << '\n');
10520     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10521   }
10522 
10523   bool DisableRuntimeUnroll = false;
10524   MDNode *OrigLoopID = L->getLoopID();
10525   {
10526     using namespace ore;
10527     if (!VectorizeLoop) {
10528       assert(IC > 1 && "interleave count should not be 1 or 0");
10529       // If we decided that it is not legal to vectorize the loop, then
10530       // interleave it.
10531       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10532                                  &CM, BFI, PSI, Checks);
10533 
10534       VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10535       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT);
10536 
10537       ORE->emit([&]() {
10538         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10539                                   L->getHeader())
10540                << "interleaved loop (interleaved count: "
10541                << NV("InterleaveCount", IC) << ")";
10542       });
10543     } else {
10544       // If we decided that it is *legal* to vectorize the loop, then do it.
10545 
10546       // Consider vectorizing the epilogue too if it's profitable.
10547       VectorizationFactor EpilogueVF =
10548           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10549       if (EpilogueVF.Width.isVector()) {
10550 
10551         // The first pass vectorizes the main loop and creates a scalar epilogue
10552         // to be vectorized by executing the plan (potentially with a different
10553         // factor) again shortly afterwards.
10554         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10555         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10556                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10557 
10558         VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
10559         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV,
10560                         DT);
10561         ++LoopsVectorized;
10562 
10563         // Second pass vectorizes the epilogue and adjusts the control flow
10564         // edges from the first pass.
10565         EPI.MainLoopVF = EPI.EpilogueVF;
10566         EPI.MainLoopUF = EPI.EpilogueUF;
10567         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10568                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10569                                                  Checks);
10570 
10571         VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
10572         VPRegionBlock *VectorLoop = BestEpiPlan.getVectorLoopRegion();
10573         VPBasicBlock *Header = VectorLoop->getEntryBasicBlock();
10574         Header->setName("vec.epilog.vector.body");
10575 
10576         // Ensure that the start values for any VPReductionPHIRecipes are
10577         // updated before vectorising the epilogue loop.
10578         for (VPRecipeBase &R : Header->phis()) {
10579           if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
10580             if (auto *Resume = MainILV.getReductionResumeValue(
10581                     ReductionPhi->getRecurrenceDescriptor())) {
10582               VPValue *StartVal = BestEpiPlan.getOrAddExternalDef(Resume);
10583               ReductionPhi->setOperand(0, StartVal);
10584             }
10585           }
10586         }
10587 
10588         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
10589                         DT);
10590         ++LoopsEpilogueVectorized;
10591 
10592         if (!MainILV.areSafetyChecksAdded())
10593           DisableRuntimeUnroll = true;
10594       } else {
10595         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10596                                &LVL, &CM, BFI, PSI, Checks);
10597 
10598         VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10599         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT);
10600         ++LoopsVectorized;
10601 
10602         // Add metadata to disable runtime unrolling a scalar loop when there
10603         // are no runtime checks about strides and memory. A scalar loop that is
10604         // rarely used is not worth unrolling.
10605         if (!LB.areSafetyChecksAdded())
10606           DisableRuntimeUnroll = true;
10607       }
10608       // Report the vectorization decision.
10609       ORE->emit([&]() {
10610         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10611                                   L->getHeader())
10612                << "vectorized loop (vectorization width: "
10613                << NV("VectorizationFactor", VF.Width)
10614                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10615       });
10616     }
10617 
10618     if (ORE->allowExtraAnalysis(LV_NAME))
10619       checkMixedPrecision(L, ORE);
10620   }
10621 
10622   Optional<MDNode *> RemainderLoopID =
10623       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10624                                       LLVMLoopVectorizeFollowupEpilogue});
10625   if (RemainderLoopID.hasValue()) {
10626     L->setLoopID(RemainderLoopID.getValue());
10627   } else {
10628     if (DisableRuntimeUnroll)
10629       AddRuntimeUnrollDisableMetaData(L);
10630 
10631     // Mark the loop as already vectorized to avoid vectorizing again.
10632     Hints.setAlreadyVectorized();
10633   }
10634 
10635   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10636   return true;
10637 }
10638 
10639 LoopVectorizeResult LoopVectorizePass::runImpl(
10640     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10641     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10642     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10643     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10644     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10645   SE = &SE_;
10646   LI = &LI_;
10647   TTI = &TTI_;
10648   DT = &DT_;
10649   BFI = &BFI_;
10650   TLI = TLI_;
10651   AA = &AA_;
10652   AC = &AC_;
10653   GetLAA = &GetLAA_;
10654   DB = &DB_;
10655   ORE = &ORE_;
10656   PSI = PSI_;
10657 
10658   // Don't attempt if
10659   // 1. the target claims to have no vector registers, and
10660   // 2. interleaving won't help ILP.
10661   //
10662   // The second condition is necessary because, even if the target has no
10663   // vector registers, loop vectorization may still enable scalar
10664   // interleaving.
10665   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10666       TTI->getMaxInterleaveFactor(1) < 2)
10667     return LoopVectorizeResult(false, false);
10668 
10669   bool Changed = false, CFGChanged = false;
10670 
10671   // The vectorizer requires loops to be in simplified form.
10672   // Since simplification may add new inner loops, it has to run before the
10673   // legality and profitability checks. This means running the loop vectorizer
10674   // will simplify all loops, regardless of whether anything end up being
10675   // vectorized.
10676   for (auto &L : *LI)
10677     Changed |= CFGChanged |=
10678         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10679 
10680   // Build up a worklist of inner-loops to vectorize. This is necessary as
10681   // the act of vectorizing or partially unrolling a loop creates new loops
10682   // and can invalidate iterators across the loops.
10683   SmallVector<Loop *, 8> Worklist;
10684 
10685   for (Loop *L : *LI)
10686     collectSupportedLoops(*L, LI, ORE, Worklist);
10687 
10688   LoopsAnalyzed += Worklist.size();
10689 
10690   // Now walk the identified inner loops.
10691   while (!Worklist.empty()) {
10692     Loop *L = Worklist.pop_back_val();
10693 
10694     // For the inner loops we actually process, form LCSSA to simplify the
10695     // transform.
10696     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10697 
10698     Changed |= CFGChanged |= processLoop(L);
10699   }
10700 
10701   // Process each loop nest in the function.
10702   return LoopVectorizeResult(Changed, CFGChanged);
10703 }
10704 
10705 PreservedAnalyses LoopVectorizePass::run(Function &F,
10706                                          FunctionAnalysisManager &AM) {
10707     auto &LI = AM.getResult<LoopAnalysis>(F);
10708     // There are no loops in the function. Return before computing other expensive
10709     // analyses.
10710     if (LI.empty())
10711       return PreservedAnalyses::all();
10712     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10713     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10714     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10715     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10716     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10717     auto &AA = AM.getResult<AAManager>(F);
10718     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10719     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10720     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10721 
10722     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10723     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10724         [&](Loop &L) -> const LoopAccessInfo & {
10725       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10726                                         TLI, TTI, nullptr, nullptr, nullptr};
10727       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10728     };
10729     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10730     ProfileSummaryInfo *PSI =
10731         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10732     LoopVectorizeResult Result =
10733         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10734     if (!Result.MadeAnyChange)
10735       return PreservedAnalyses::all();
10736     PreservedAnalyses PA;
10737 
10738     // We currently do not preserve loopinfo/dominator analyses with outer loop
10739     // vectorization. Until this is addressed, mark these analyses as preserved
10740     // only for non-VPlan-native path.
10741     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10742     if (!EnableVPlanNativePath) {
10743       PA.preserve<LoopAnalysis>();
10744       PA.preserve<DominatorTreeAnalysis>();
10745     }
10746 
10747     if (Result.MadeCFGChange) {
10748       // Making CFG changes likely means a loop got vectorized. Indicate that
10749       // extra simplification passes should be run.
10750       // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10751       // be run if runtime checks have been added.
10752       AM.getResult<ShouldRunExtraVectorPasses>(F);
10753       PA.preserve<ShouldRunExtraVectorPasses>();
10754     } else {
10755       PA.preserveSet<CFGAnalyses>();
10756     }
10757     return PA;
10758 }
10759 
10760 void LoopVectorizePass::printPipeline(
10761     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10762   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10763       OS, MapClassName2PassName);
10764 
10765   OS << "<";
10766   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10767   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10768   OS << ">";
10769 }
10770