1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/PatternMatch.h" 121 #include "llvm/IR/Type.h" 122 #include "llvm/IR/Use.h" 123 #include "llvm/IR/User.h" 124 #include "llvm/IR/Value.h" 125 #include "llvm/IR/ValueHandle.h" 126 #include "llvm/IR/Verifier.h" 127 #include "llvm/InitializePasses.h" 128 #include "llvm/Pass.h" 129 #include "llvm/Support/Casting.h" 130 #include "llvm/Support/CommandLine.h" 131 #include "llvm/Support/Compiler.h" 132 #include "llvm/Support/Debug.h" 133 #include "llvm/Support/ErrorHandling.h" 134 #include "llvm/Support/InstructionCost.h" 135 #include "llvm/Support/MathExtras.h" 136 #include "llvm/Support/raw_ostream.h" 137 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 138 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 139 #include "llvm/Transforms/Utils/LoopSimplify.h" 140 #include "llvm/Transforms/Utils/LoopUtils.h" 141 #include "llvm/Transforms/Utils/LoopVersioning.h" 142 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 143 #include "llvm/Transforms/Utils/SizeOpts.h" 144 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 145 #include <algorithm> 146 #include <cassert> 147 #include <cstdint> 148 #include <cstdlib> 149 #include <functional> 150 #include <iterator> 151 #include <limits> 152 #include <memory> 153 #include <string> 154 #include <tuple> 155 #include <utility> 156 157 using namespace llvm; 158 159 #define LV_NAME "loop-vectorize" 160 #define DEBUG_TYPE LV_NAME 161 162 #ifndef NDEBUG 163 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 164 #endif 165 166 /// @{ 167 /// Metadata attribute names 168 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 169 const char LLVMLoopVectorizeFollowupVectorized[] = 170 "llvm.loop.vectorize.followup_vectorized"; 171 const char LLVMLoopVectorizeFollowupEpilogue[] = 172 "llvm.loop.vectorize.followup_epilogue"; 173 /// @} 174 175 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 176 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 177 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 178 179 static cl::opt<bool> EnableEpilogueVectorization( 180 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 181 cl::desc("Enable vectorization of epilogue loops.")); 182 183 static cl::opt<unsigned> EpilogueVectorizationForceVF( 184 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 185 cl::desc("When epilogue vectorization is enabled, and a value greater than " 186 "1 is specified, forces the given VF for all applicable epilogue " 187 "loops.")); 188 189 static cl::opt<unsigned> EpilogueVectorizationMinVF( 190 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 191 cl::desc("Only loops with vectorization factor equal to or larger than " 192 "the specified value are considered for epilogue vectorization.")); 193 194 /// Loops with a known constant trip count below this number are vectorized only 195 /// if no scalar iteration overheads are incurred. 196 static cl::opt<unsigned> TinyTripCountVectorThreshold( 197 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 198 cl::desc("Loops with a constant trip count that is smaller than this " 199 "value are vectorized only if no scalar iteration overheads " 200 "are incurred.")); 201 202 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 203 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 204 cl::desc("The maximum allowed number of runtime memory checks with a " 205 "vectorize(enable) pragma.")); 206 207 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 208 // that predication is preferred, and this lists all options. I.e., the 209 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 210 // and predicate the instructions accordingly. If tail-folding fails, there are 211 // different fallback strategies depending on these values: 212 namespace PreferPredicateTy { 213 enum Option { 214 ScalarEpilogue = 0, 215 PredicateElseScalarEpilogue, 216 PredicateOrDontVectorize 217 }; 218 } // namespace PreferPredicateTy 219 220 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 221 "prefer-predicate-over-epilogue", 222 cl::init(PreferPredicateTy::ScalarEpilogue), 223 cl::Hidden, 224 cl::desc("Tail-folding and predication preferences over creating a scalar " 225 "epilogue loop."), 226 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 227 "scalar-epilogue", 228 "Don't tail-predicate loops, create scalar epilogue"), 229 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 230 "predicate-else-scalar-epilogue", 231 "prefer tail-folding, create scalar epilogue if tail " 232 "folding fails."), 233 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 234 "predicate-dont-vectorize", 235 "prefers tail-folding, don't attempt vectorization if " 236 "tail-folding fails."))); 237 238 static cl::opt<bool> MaximizeBandwidth( 239 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 240 cl::desc("Maximize bandwidth when selecting vectorization factor which " 241 "will be determined by the smallest type in loop.")); 242 243 static cl::opt<bool> EnableInterleavedMemAccesses( 244 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 245 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 246 247 /// An interleave-group may need masking if it resides in a block that needs 248 /// predication, or in order to mask away gaps. 249 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 250 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 251 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 252 253 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 254 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 255 cl::desc("We don't interleave loops with a estimated constant trip count " 256 "below this number")); 257 258 static cl::opt<unsigned> ForceTargetNumScalarRegs( 259 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 260 cl::desc("A flag that overrides the target's number of scalar registers.")); 261 262 static cl::opt<unsigned> ForceTargetNumVectorRegs( 263 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 264 cl::desc("A flag that overrides the target's number of vector registers.")); 265 266 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 267 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 268 cl::desc("A flag that overrides the target's max interleave factor for " 269 "scalar loops.")); 270 271 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 272 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 273 cl::desc("A flag that overrides the target's max interleave factor for " 274 "vectorized loops.")); 275 276 static cl::opt<unsigned> ForceTargetInstructionCost( 277 "force-target-instruction-cost", cl::init(0), cl::Hidden, 278 cl::desc("A flag that overrides the target's expected cost for " 279 "an instruction to a single constant value. Mostly " 280 "useful for getting consistent testing.")); 281 282 static cl::opt<bool> ForceTargetSupportsScalableVectors( 283 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 284 cl::desc( 285 "Pretend that scalable vectors are supported, even if the target does " 286 "not support them. This flag should only be used for testing.")); 287 288 static cl::opt<unsigned> SmallLoopCost( 289 "small-loop-cost", cl::init(20), cl::Hidden, 290 cl::desc( 291 "The cost of a loop that is considered 'small' by the interleaver.")); 292 293 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 294 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 295 cl::desc("Enable the use of the block frequency analysis to access PGO " 296 "heuristics minimizing code growth in cold regions and being more " 297 "aggressive in hot regions.")); 298 299 // Runtime interleave loops for load/store throughput. 300 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 301 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 302 cl::desc( 303 "Enable runtime interleaving until load/store ports are saturated")); 304 305 /// Interleave small loops with scalar reductions. 306 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 307 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 308 cl::desc("Enable interleaving for loops with small iteration counts that " 309 "contain scalar reductions to expose ILP.")); 310 311 /// The number of stores in a loop that are allowed to need predication. 312 static cl::opt<unsigned> NumberOfStoresToPredicate( 313 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 314 cl::desc("Max number of stores to be predicated behind an if.")); 315 316 static cl::opt<bool> EnableIndVarRegisterHeur( 317 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 318 cl::desc("Count the induction variable only once when interleaving")); 319 320 static cl::opt<bool> EnableCondStoresVectorization( 321 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 322 cl::desc("Enable if predication of stores during vectorization.")); 323 324 static cl::opt<unsigned> MaxNestedScalarReductionIC( 325 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 326 cl::desc("The maximum interleave count to use when interleaving a scalar " 327 "reduction in a nested loop.")); 328 329 static cl::opt<bool> 330 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 331 cl::Hidden, 332 cl::desc("Prefer in-loop vector reductions, " 333 "overriding the targets preference.")); 334 335 cl::opt<bool> EnableStrictReductions( 336 "enable-strict-reductions", cl::init(false), cl::Hidden, 337 cl::desc("Enable the vectorisation of loops with in-order (strict) " 338 "FP reductions")); 339 340 static cl::opt<bool> PreferPredicatedReductionSelect( 341 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 342 cl::desc( 343 "Prefer predicating a reduction operation over an after loop select.")); 344 345 cl::opt<bool> EnableVPlanNativePath( 346 "enable-vplan-native-path", cl::init(false), cl::Hidden, 347 cl::desc("Enable VPlan-native vectorization path with " 348 "support for outer loop vectorization.")); 349 350 // FIXME: Remove this switch once we have divergence analysis. Currently we 351 // assume divergent non-backedge branches when this switch is true. 352 cl::opt<bool> EnableVPlanPredication( 353 "enable-vplan-predication", cl::init(false), cl::Hidden, 354 cl::desc("Enable VPlan-native vectorization path predicator with " 355 "support for outer loop vectorization.")); 356 357 // This flag enables the stress testing of the VPlan H-CFG construction in the 358 // VPlan-native vectorization path. It must be used in conjuction with 359 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 360 // verification of the H-CFGs built. 361 static cl::opt<bool> VPlanBuildStressTest( 362 "vplan-build-stress-test", cl::init(false), cl::Hidden, 363 cl::desc( 364 "Build VPlan for every supported loop nest in the function and bail " 365 "out right after the build (stress test the VPlan H-CFG construction " 366 "in the VPlan-native vectorization path).")); 367 368 cl::opt<bool> llvm::EnableLoopInterleaving( 369 "interleave-loops", cl::init(true), cl::Hidden, 370 cl::desc("Enable loop interleaving in Loop vectorization passes")); 371 cl::opt<bool> llvm::EnableLoopVectorization( 372 "vectorize-loops", cl::init(true), cl::Hidden, 373 cl::desc("Run the Loop vectorization passes")); 374 375 cl::opt<bool> PrintVPlansInDotFormat( 376 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 377 cl::desc("Use dot format instead of plain text when dumping VPlans")); 378 379 /// A helper function that returns true if the given type is irregular. The 380 /// type is irregular if its allocated size doesn't equal the store size of an 381 /// element of the corresponding vector type. 382 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 383 // Determine if an array of N elements of type Ty is "bitcast compatible" 384 // with a <N x Ty> vector. 385 // This is only true if there is no padding between the array elements. 386 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 387 } 388 389 /// A helper function that returns the reciprocal of the block probability of 390 /// predicated blocks. If we return X, we are assuming the predicated block 391 /// will execute once for every X iterations of the loop header. 392 /// 393 /// TODO: We should use actual block probability here, if available. Currently, 394 /// we always assume predicated blocks have a 50% chance of executing. 395 static unsigned getReciprocalPredBlockProb() { return 2; } 396 397 /// A helper function that returns an integer or floating-point constant with 398 /// value C. 399 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 400 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 401 : ConstantFP::get(Ty, C); 402 } 403 404 /// Returns "best known" trip count for the specified loop \p L as defined by 405 /// the following procedure: 406 /// 1) Returns exact trip count if it is known. 407 /// 2) Returns expected trip count according to profile data if any. 408 /// 3) Returns upper bound estimate if it is known. 409 /// 4) Returns None if all of the above failed. 410 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 411 // Check if exact trip count is known. 412 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 413 return ExpectedTC; 414 415 // Check if there is an expected trip count available from profile data. 416 if (LoopVectorizeWithBlockFrequency) 417 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 418 return EstimatedTC; 419 420 // Check if upper bound estimate is known. 421 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 422 return ExpectedTC; 423 424 return None; 425 } 426 427 // Forward declare GeneratedRTChecks. 428 class GeneratedRTChecks; 429 430 namespace llvm { 431 432 /// InnerLoopVectorizer vectorizes loops which contain only one basic 433 /// block to a specified vectorization factor (VF). 434 /// This class performs the widening of scalars into vectors, or multiple 435 /// scalars. This class also implements the following features: 436 /// * It inserts an epilogue loop for handling loops that don't have iteration 437 /// counts that are known to be a multiple of the vectorization factor. 438 /// * It handles the code generation for reduction variables. 439 /// * Scalarization (implementation using scalars) of un-vectorizable 440 /// instructions. 441 /// InnerLoopVectorizer does not perform any vectorization-legality 442 /// checks, and relies on the caller to check for the different legality 443 /// aspects. The InnerLoopVectorizer relies on the 444 /// LoopVectorizationLegality class to provide information about the induction 445 /// and reduction variables that were found to a given vectorization factor. 446 class InnerLoopVectorizer { 447 public: 448 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 449 LoopInfo *LI, DominatorTree *DT, 450 const TargetLibraryInfo *TLI, 451 const TargetTransformInfo *TTI, AssumptionCache *AC, 452 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 453 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 454 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 455 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 456 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 457 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 458 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 459 PSI(PSI), RTChecks(RTChecks) { 460 // Query this against the original loop and save it here because the profile 461 // of the original loop header may change as the transformation happens. 462 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 463 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 464 } 465 466 virtual ~InnerLoopVectorizer() = default; 467 468 /// Create a new empty loop that will contain vectorized instructions later 469 /// on, while the old loop will be used as the scalar remainder. Control flow 470 /// is generated around the vectorized (and scalar epilogue) loops consisting 471 /// of various checks and bypasses. Return the pre-header block of the new 472 /// loop. 473 /// In the case of epilogue vectorization, this function is overriden to 474 /// handle the more complex control flow around the loops. 475 virtual BasicBlock *createVectorizedLoopSkeleton(); 476 477 /// Widen a single instruction within the innermost loop. 478 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 479 VPTransformState &State); 480 481 /// Widen a single call instruction within the innermost loop. 482 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 483 VPTransformState &State); 484 485 /// Widen a single select instruction within the innermost loop. 486 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 487 bool InvariantCond, VPTransformState &State); 488 489 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 490 void fixVectorizedLoop(VPTransformState &State); 491 492 // Return true if any runtime check is added. 493 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 494 495 /// A type for vectorized values in the new loop. Each value from the 496 /// original loop, when vectorized, is represented by UF vector values in the 497 /// new unrolled loop, where UF is the unroll factor. 498 using VectorParts = SmallVector<Value *, 2>; 499 500 /// Vectorize a single GetElementPtrInst based on information gathered and 501 /// decisions taken during planning. 502 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 503 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 504 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 505 506 /// Vectorize a single PHINode in a block. This method handles the induction 507 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 508 /// arbitrary length vectors. 509 void widenPHIInstruction(Instruction *PN, RecurrenceDescriptor *RdxDesc, 510 VPWidenPHIRecipe *PhiR, VPTransformState &State); 511 512 /// A helper function to scalarize a single Instruction in the innermost loop. 513 /// Generates a sequence of scalar instances for each lane between \p MinLane 514 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 515 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 516 /// Instr's operands. 517 void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands, 518 const VPIteration &Instance, bool IfPredicateInstr, 519 VPTransformState &State); 520 521 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 522 /// is provided, the integer induction variable will first be truncated to 523 /// the corresponding type. 524 void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc, 525 VPValue *Def, VPValue *CastDef, 526 VPTransformState &State); 527 528 /// Construct the vector value of a scalarized value \p V one lane at a time. 529 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 530 VPTransformState &State); 531 532 /// Try to vectorize interleaved access group \p Group with the base address 533 /// given in \p Addr, optionally masking the vector operations if \p 534 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 535 /// values in the vectorized loop. 536 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 537 ArrayRef<VPValue *> VPDefs, 538 VPTransformState &State, VPValue *Addr, 539 ArrayRef<VPValue *> StoredValues, 540 VPValue *BlockInMask = nullptr); 541 542 /// Vectorize Load and Store instructions with the base address given in \p 543 /// Addr, optionally masking the vector operations if \p BlockInMask is 544 /// non-null. Use \p State to translate given VPValues to IR values in the 545 /// vectorized loop. 546 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 547 VPValue *Def, VPValue *Addr, 548 VPValue *StoredValue, VPValue *BlockInMask); 549 550 /// Set the debug location in the builder using the debug location in 551 /// the instruction. 552 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 553 554 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 555 void fixNonInductionPHIs(VPTransformState &State); 556 557 /// Returns true if the reordering of FP operations is not allowed, but we are 558 /// able to vectorize with strict in-order reductions for the given RdxDesc. 559 bool useOrderedReductions(RecurrenceDescriptor &RdxDesc); 560 561 /// Create a broadcast instruction. This method generates a broadcast 562 /// instruction (shuffle) for loop invariant values and for the induction 563 /// value. If this is the induction variable then we extend it to N, N+1, ... 564 /// this is needed because each iteration in the loop corresponds to a SIMD 565 /// element. 566 virtual Value *getBroadcastInstrs(Value *V); 567 568 protected: 569 friend class LoopVectorizationPlanner; 570 571 /// A small list of PHINodes. 572 using PhiVector = SmallVector<PHINode *, 4>; 573 574 /// A type for scalarized values in the new loop. Each value from the 575 /// original loop, when scalarized, is represented by UF x VF scalar values 576 /// in the new unrolled loop, where UF is the unroll factor and VF is the 577 /// vectorization factor. 578 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 579 580 /// Set up the values of the IVs correctly when exiting the vector loop. 581 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 582 Value *CountRoundDown, Value *EndValue, 583 BasicBlock *MiddleBlock); 584 585 /// Create a new induction variable inside L. 586 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 587 Value *Step, Instruction *DL); 588 589 /// Handle all cross-iteration phis in the header. 590 void fixCrossIterationPHIs(VPTransformState &State); 591 592 /// Fix a first-order recurrence. This is the second phase of vectorizing 593 /// this phi node. 594 void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State); 595 596 /// Fix a reduction cross-iteration phi. This is the second phase of 597 /// vectorizing this phi node. 598 void fixReduction(VPWidenPHIRecipe *Phi, VPTransformState &State); 599 600 /// Clear NSW/NUW flags from reduction instructions if necessary. 601 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 602 VPTransformState &State); 603 604 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 605 /// means we need to add the appropriate incoming value from the middle 606 /// block as exiting edges from the scalar epilogue loop (if present) are 607 /// already in place, and we exit the vector loop exclusively to the middle 608 /// block. 609 void fixLCSSAPHIs(VPTransformState &State); 610 611 /// Iteratively sink the scalarized operands of a predicated instruction into 612 /// the block that was created for it. 613 void sinkScalarOperands(Instruction *PredInst); 614 615 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 616 /// represented as. 617 void truncateToMinimalBitwidths(VPTransformState &State); 618 619 /// This function adds 620 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 621 /// to each vector element of Val. The sequence starts at StartIndex. 622 /// \p Opcode is relevant for FP induction variable. 623 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 624 Instruction::BinaryOps Opcode = 625 Instruction::BinaryOpsEnd); 626 627 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 628 /// variable on which to base the steps, \p Step is the size of the step, and 629 /// \p EntryVal is the value from the original loop that maps to the steps. 630 /// Note that \p EntryVal doesn't have to be an induction variable - it 631 /// can also be a truncate instruction. 632 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 633 const InductionDescriptor &ID, VPValue *Def, 634 VPValue *CastDef, VPTransformState &State); 635 636 /// Create a vector induction phi node based on an existing scalar one. \p 637 /// EntryVal is the value from the original loop that maps to the vector phi 638 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 639 /// truncate instruction, instead of widening the original IV, we widen a 640 /// version of the IV truncated to \p EntryVal's type. 641 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 642 Value *Step, Value *Start, 643 Instruction *EntryVal, VPValue *Def, 644 VPValue *CastDef, 645 VPTransformState &State); 646 647 /// Returns true if an instruction \p I should be scalarized instead of 648 /// vectorized for the chosen vectorization factor. 649 bool shouldScalarizeInstruction(Instruction *I) const; 650 651 /// Returns true if we should generate a scalar version of \p IV. 652 bool needsScalarInduction(Instruction *IV) const; 653 654 /// If there is a cast involved in the induction variable \p ID, which should 655 /// be ignored in the vectorized loop body, this function records the 656 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 657 /// cast. We had already proved that the casted Phi is equal to the uncasted 658 /// Phi in the vectorized loop (under a runtime guard), and therefore 659 /// there is no need to vectorize the cast - the same value can be used in the 660 /// vector loop for both the Phi and the cast. 661 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 662 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 663 /// 664 /// \p EntryVal is the value from the original loop that maps to the vector 665 /// phi node and is used to distinguish what is the IV currently being 666 /// processed - original one (if \p EntryVal is a phi corresponding to the 667 /// original IV) or the "newly-created" one based on the proof mentioned above 668 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 669 /// latter case \p EntryVal is a TruncInst and we must not record anything for 670 /// that IV, but it's error-prone to expect callers of this routine to care 671 /// about that, hence this explicit parameter. 672 void recordVectorLoopValueForInductionCast( 673 const InductionDescriptor &ID, const Instruction *EntryVal, 674 Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State, 675 unsigned Part, unsigned Lane = UINT_MAX); 676 677 /// Generate a shuffle sequence that will reverse the vector Vec. 678 virtual Value *reverseVector(Value *Vec); 679 680 /// Returns (and creates if needed) the original loop trip count. 681 Value *getOrCreateTripCount(Loop *NewLoop); 682 683 /// Returns (and creates if needed) the trip count of the widened loop. 684 Value *getOrCreateVectorTripCount(Loop *NewLoop); 685 686 /// Returns a bitcasted value to the requested vector type. 687 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 688 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 689 const DataLayout &DL); 690 691 /// Emit a bypass check to see if the vector trip count is zero, including if 692 /// it overflows. 693 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 694 695 /// Emit a bypass check to see if all of the SCEV assumptions we've 696 /// had to make are correct. Returns the block containing the checks or 697 /// nullptr if no checks have been added. 698 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 699 700 /// Emit bypass checks to check any memory assumptions we may have made. 701 /// Returns the block containing the checks or nullptr if no checks have been 702 /// added. 703 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 704 705 /// Compute the transformed value of Index at offset StartValue using step 706 /// StepValue. 707 /// For integer induction, returns StartValue + Index * StepValue. 708 /// For pointer induction, returns StartValue[Index * StepValue]. 709 /// FIXME: The newly created binary instructions should contain nsw/nuw 710 /// flags, which can be found from the original scalar operations. 711 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 712 const DataLayout &DL, 713 const InductionDescriptor &ID) const; 714 715 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 716 /// vector loop preheader, middle block and scalar preheader. Also 717 /// allocate a loop object for the new vector loop and return it. 718 Loop *createVectorLoopSkeleton(StringRef Prefix); 719 720 /// Create new phi nodes for the induction variables to resume iteration count 721 /// in the scalar epilogue, from where the vectorized loop left off (given by 722 /// \p VectorTripCount). 723 /// In cases where the loop skeleton is more complicated (eg. epilogue 724 /// vectorization) and the resume values can come from an additional bypass 725 /// block, the \p AdditionalBypass pair provides information about the bypass 726 /// block and the end value on the edge from bypass to this loop. 727 void createInductionResumeValues( 728 Loop *L, Value *VectorTripCount, 729 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 730 731 /// Complete the loop skeleton by adding debug MDs, creating appropriate 732 /// conditional branches in the middle block, preparing the builder and 733 /// running the verifier. Take in the vector loop \p L as argument, and return 734 /// the preheader of the completed vector loop. 735 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 736 737 /// Add additional metadata to \p To that was not present on \p Orig. 738 /// 739 /// Currently this is used to add the noalias annotations based on the 740 /// inserted memchecks. Use this for instructions that are *cloned* into the 741 /// vector loop. 742 void addNewMetadata(Instruction *To, const Instruction *Orig); 743 744 /// Add metadata from one instruction to another. 745 /// 746 /// This includes both the original MDs from \p From and additional ones (\see 747 /// addNewMetadata). Use this for *newly created* instructions in the vector 748 /// loop. 749 void addMetadata(Instruction *To, Instruction *From); 750 751 /// Similar to the previous function but it adds the metadata to a 752 /// vector of instructions. 753 void addMetadata(ArrayRef<Value *> To, Instruction *From); 754 755 /// Allow subclasses to override and print debug traces before/after vplan 756 /// execution, when trace information is requested. 757 virtual void printDebugTracesAtStart(){}; 758 virtual void printDebugTracesAtEnd(){}; 759 760 /// The original loop. 761 Loop *OrigLoop; 762 763 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 764 /// dynamic knowledge to simplify SCEV expressions and converts them to a 765 /// more usable form. 766 PredicatedScalarEvolution &PSE; 767 768 /// Loop Info. 769 LoopInfo *LI; 770 771 /// Dominator Tree. 772 DominatorTree *DT; 773 774 /// Alias Analysis. 775 AAResults *AA; 776 777 /// Target Library Info. 778 const TargetLibraryInfo *TLI; 779 780 /// Target Transform Info. 781 const TargetTransformInfo *TTI; 782 783 /// Assumption Cache. 784 AssumptionCache *AC; 785 786 /// Interface to emit optimization remarks. 787 OptimizationRemarkEmitter *ORE; 788 789 /// LoopVersioning. It's only set up (non-null) if memchecks were 790 /// used. 791 /// 792 /// This is currently only used to add no-alias metadata based on the 793 /// memchecks. The actually versioning is performed manually. 794 std::unique_ptr<LoopVersioning> LVer; 795 796 /// The vectorization SIMD factor to use. Each vector will have this many 797 /// vector elements. 798 ElementCount VF; 799 800 /// The vectorization unroll factor to use. Each scalar is vectorized to this 801 /// many different vector instructions. 802 unsigned UF; 803 804 /// The builder that we use 805 IRBuilder<> Builder; 806 807 // --- Vectorization state --- 808 809 /// The vector-loop preheader. 810 BasicBlock *LoopVectorPreHeader; 811 812 /// The scalar-loop preheader. 813 BasicBlock *LoopScalarPreHeader; 814 815 /// Middle Block between the vector and the scalar. 816 BasicBlock *LoopMiddleBlock; 817 818 /// The (unique) ExitBlock of the scalar loop. Note that 819 /// there can be multiple exiting edges reaching this block. 820 BasicBlock *LoopExitBlock; 821 822 /// The vector loop body. 823 BasicBlock *LoopVectorBody; 824 825 /// The scalar loop body. 826 BasicBlock *LoopScalarBody; 827 828 /// A list of all bypass blocks. The first block is the entry of the loop. 829 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 830 831 /// The new Induction variable which was added to the new block. 832 PHINode *Induction = nullptr; 833 834 /// The induction variable of the old basic block. 835 PHINode *OldInduction = nullptr; 836 837 /// Store instructions that were predicated. 838 SmallVector<Instruction *, 4> PredicatedInstructions; 839 840 /// Trip count of the original loop. 841 Value *TripCount = nullptr; 842 843 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 844 Value *VectorTripCount = nullptr; 845 846 /// The legality analysis. 847 LoopVectorizationLegality *Legal; 848 849 /// The profitablity analysis. 850 LoopVectorizationCostModel *Cost; 851 852 // Record whether runtime checks are added. 853 bool AddedSafetyChecks = false; 854 855 // Holds the end values for each induction variable. We save the end values 856 // so we can later fix-up the external users of the induction variables. 857 DenseMap<PHINode *, Value *> IVEndValues; 858 859 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 860 // fixed up at the end of vector code generation. 861 SmallVector<PHINode *, 8> OrigPHIsToFix; 862 863 /// BFI and PSI are used to check for profile guided size optimizations. 864 BlockFrequencyInfo *BFI; 865 ProfileSummaryInfo *PSI; 866 867 // Whether this loop should be optimized for size based on profile guided size 868 // optimizatios. 869 bool OptForSizeBasedOnProfile; 870 871 /// Structure to hold information about generated runtime checks, responsible 872 /// for cleaning the checks, if vectorization turns out unprofitable. 873 GeneratedRTChecks &RTChecks; 874 }; 875 876 class InnerLoopUnroller : public InnerLoopVectorizer { 877 public: 878 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 879 LoopInfo *LI, DominatorTree *DT, 880 const TargetLibraryInfo *TLI, 881 const TargetTransformInfo *TTI, AssumptionCache *AC, 882 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 883 LoopVectorizationLegality *LVL, 884 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 885 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 886 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 887 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 888 BFI, PSI, Check) {} 889 890 private: 891 Value *getBroadcastInstrs(Value *V) override; 892 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 893 Instruction::BinaryOps Opcode = 894 Instruction::BinaryOpsEnd) override; 895 Value *reverseVector(Value *Vec) override; 896 }; 897 898 /// Encapsulate information regarding vectorization of a loop and its epilogue. 899 /// This information is meant to be updated and used across two stages of 900 /// epilogue vectorization. 901 struct EpilogueLoopVectorizationInfo { 902 ElementCount MainLoopVF = ElementCount::getFixed(0); 903 unsigned MainLoopUF = 0; 904 ElementCount EpilogueVF = ElementCount::getFixed(0); 905 unsigned EpilogueUF = 0; 906 BasicBlock *MainLoopIterationCountCheck = nullptr; 907 BasicBlock *EpilogueIterationCountCheck = nullptr; 908 BasicBlock *SCEVSafetyCheck = nullptr; 909 BasicBlock *MemSafetyCheck = nullptr; 910 Value *TripCount = nullptr; 911 Value *VectorTripCount = nullptr; 912 913 EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF, 914 unsigned EUF) 915 : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF), 916 EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) { 917 assert(EUF == 1 && 918 "A high UF for the epilogue loop is likely not beneficial."); 919 } 920 }; 921 922 /// An extension of the inner loop vectorizer that creates a skeleton for a 923 /// vectorized loop that has its epilogue (residual) also vectorized. 924 /// The idea is to run the vplan on a given loop twice, firstly to setup the 925 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 926 /// from the first step and vectorize the epilogue. This is achieved by 927 /// deriving two concrete strategy classes from this base class and invoking 928 /// them in succession from the loop vectorizer planner. 929 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 930 public: 931 InnerLoopAndEpilogueVectorizer( 932 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 933 DominatorTree *DT, const TargetLibraryInfo *TLI, 934 const TargetTransformInfo *TTI, AssumptionCache *AC, 935 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 936 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 937 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 938 GeneratedRTChecks &Checks) 939 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 940 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 941 Checks), 942 EPI(EPI) {} 943 944 // Override this function to handle the more complex control flow around the 945 // three loops. 946 BasicBlock *createVectorizedLoopSkeleton() final override { 947 return createEpilogueVectorizedLoopSkeleton(); 948 } 949 950 /// The interface for creating a vectorized skeleton using one of two 951 /// different strategies, each corresponding to one execution of the vplan 952 /// as described above. 953 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 954 955 /// Holds and updates state information required to vectorize the main loop 956 /// and its epilogue in two separate passes. This setup helps us avoid 957 /// regenerating and recomputing runtime safety checks. It also helps us to 958 /// shorten the iteration-count-check path length for the cases where the 959 /// iteration count of the loop is so small that the main vector loop is 960 /// completely skipped. 961 EpilogueLoopVectorizationInfo &EPI; 962 }; 963 964 /// A specialized derived class of inner loop vectorizer that performs 965 /// vectorization of *main* loops in the process of vectorizing loops and their 966 /// epilogues. 967 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 968 public: 969 EpilogueVectorizerMainLoop( 970 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 971 DominatorTree *DT, const TargetLibraryInfo *TLI, 972 const TargetTransformInfo *TTI, AssumptionCache *AC, 973 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 974 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 975 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 976 GeneratedRTChecks &Check) 977 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 978 EPI, LVL, CM, BFI, PSI, Check) {} 979 /// Implements the interface for creating a vectorized skeleton using the 980 /// *main loop* strategy (ie the first pass of vplan execution). 981 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 982 983 protected: 984 /// Emits an iteration count bypass check once for the main loop (when \p 985 /// ForEpilogue is false) and once for the epilogue loop (when \p 986 /// ForEpilogue is true). 987 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 988 bool ForEpilogue); 989 void printDebugTracesAtStart() override; 990 void printDebugTracesAtEnd() override; 991 }; 992 993 // A specialized derived class of inner loop vectorizer that performs 994 // vectorization of *epilogue* loops in the process of vectorizing loops and 995 // their epilogues. 996 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 997 public: 998 EpilogueVectorizerEpilogueLoop( 999 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 1000 DominatorTree *DT, const TargetLibraryInfo *TLI, 1001 const TargetTransformInfo *TTI, AssumptionCache *AC, 1002 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 1003 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 1004 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 1005 GeneratedRTChecks &Checks) 1006 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1007 EPI, LVL, CM, BFI, PSI, Checks) {} 1008 /// Implements the interface for creating a vectorized skeleton using the 1009 /// *epilogue loop* strategy (ie the second pass of vplan execution). 1010 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1011 1012 protected: 1013 /// Emits an iteration count bypass check after the main vector loop has 1014 /// finished to see if there are any iterations left to execute by either 1015 /// the vector epilogue or the scalar epilogue. 1016 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1017 BasicBlock *Bypass, 1018 BasicBlock *Insert); 1019 void printDebugTracesAtStart() override; 1020 void printDebugTracesAtEnd() override; 1021 }; 1022 } // end namespace llvm 1023 1024 /// Look for a meaningful debug location on the instruction or it's 1025 /// operands. 1026 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1027 if (!I) 1028 return I; 1029 1030 DebugLoc Empty; 1031 if (I->getDebugLoc() != Empty) 1032 return I; 1033 1034 for (Use &Op : I->operands()) { 1035 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1036 if (OpInst->getDebugLoc() != Empty) 1037 return OpInst; 1038 } 1039 1040 return I; 1041 } 1042 1043 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 1044 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 1045 const DILocation *DIL = Inst->getDebugLoc(); 1046 1047 // When a FSDiscriminator is enabled, we don't need to add the multiply 1048 // factors to the discriminators. 1049 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1050 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 1051 // FIXME: For scalable vectors, assume vscale=1. 1052 auto NewDIL = 1053 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1054 if (NewDIL) 1055 B.SetCurrentDebugLocation(NewDIL.getValue()); 1056 else 1057 LLVM_DEBUG(dbgs() 1058 << "Failed to create new discriminator: " 1059 << DIL->getFilename() << " Line: " << DIL->getLine()); 1060 } else 1061 B.SetCurrentDebugLocation(DIL); 1062 } else 1063 B.SetCurrentDebugLocation(DebugLoc()); 1064 } 1065 1066 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1067 /// is passed, the message relates to that particular instruction. 1068 #ifndef NDEBUG 1069 static void debugVectorizationMessage(const StringRef Prefix, 1070 const StringRef DebugMsg, 1071 Instruction *I) { 1072 dbgs() << "LV: " << Prefix << DebugMsg; 1073 if (I != nullptr) 1074 dbgs() << " " << *I; 1075 else 1076 dbgs() << '.'; 1077 dbgs() << '\n'; 1078 } 1079 #endif 1080 1081 /// Create an analysis remark that explains why vectorization failed 1082 /// 1083 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1084 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1085 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1086 /// the location of the remark. \return the remark object that can be 1087 /// streamed to. 1088 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1089 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1090 Value *CodeRegion = TheLoop->getHeader(); 1091 DebugLoc DL = TheLoop->getStartLoc(); 1092 1093 if (I) { 1094 CodeRegion = I->getParent(); 1095 // If there is no debug location attached to the instruction, revert back to 1096 // using the loop's. 1097 if (I->getDebugLoc()) 1098 DL = I->getDebugLoc(); 1099 } 1100 1101 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1102 } 1103 1104 /// Return a value for Step multiplied by VF. 1105 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) { 1106 assert(isa<ConstantInt>(Step) && "Expected an integer step"); 1107 Constant *StepVal = ConstantInt::get( 1108 Step->getType(), 1109 cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue()); 1110 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1111 } 1112 1113 namespace llvm { 1114 1115 /// Return the runtime value for VF. 1116 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1117 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1118 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1119 } 1120 1121 void reportVectorizationFailure(const StringRef DebugMsg, 1122 const StringRef OREMsg, const StringRef ORETag, 1123 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1124 Instruction *I) { 1125 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1126 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1127 ORE->emit( 1128 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1129 << "loop not vectorized: " << OREMsg); 1130 } 1131 1132 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1133 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1134 Instruction *I) { 1135 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1136 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1137 ORE->emit( 1138 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1139 << Msg); 1140 } 1141 1142 } // end namespace llvm 1143 1144 #ifndef NDEBUG 1145 /// \return string containing a file name and a line # for the given loop. 1146 static std::string getDebugLocString(const Loop *L) { 1147 std::string Result; 1148 if (L) { 1149 raw_string_ostream OS(Result); 1150 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1151 LoopDbgLoc.print(OS); 1152 else 1153 // Just print the module name. 1154 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1155 OS.flush(); 1156 } 1157 return Result; 1158 } 1159 #endif 1160 1161 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1162 const Instruction *Orig) { 1163 // If the loop was versioned with memchecks, add the corresponding no-alias 1164 // metadata. 1165 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1166 LVer->annotateInstWithNoAlias(To, Orig); 1167 } 1168 1169 void InnerLoopVectorizer::addMetadata(Instruction *To, 1170 Instruction *From) { 1171 propagateMetadata(To, From); 1172 addNewMetadata(To, From); 1173 } 1174 1175 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1176 Instruction *From) { 1177 for (Value *V : To) { 1178 if (Instruction *I = dyn_cast<Instruction>(V)) 1179 addMetadata(I, From); 1180 } 1181 } 1182 1183 namespace llvm { 1184 1185 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1186 // lowered. 1187 enum ScalarEpilogueLowering { 1188 1189 // The default: allowing scalar epilogues. 1190 CM_ScalarEpilogueAllowed, 1191 1192 // Vectorization with OptForSize: don't allow epilogues. 1193 CM_ScalarEpilogueNotAllowedOptSize, 1194 1195 // A special case of vectorisation with OptForSize: loops with a very small 1196 // trip count are considered for vectorization under OptForSize, thereby 1197 // making sure the cost of their loop body is dominant, free of runtime 1198 // guards and scalar iteration overheads. 1199 CM_ScalarEpilogueNotAllowedLowTripLoop, 1200 1201 // Loop hint predicate indicating an epilogue is undesired. 1202 CM_ScalarEpilogueNotNeededUsePredicate, 1203 1204 // Directive indicating we must either tail fold or not vectorize 1205 CM_ScalarEpilogueNotAllowedUsePredicate 1206 }; 1207 1208 /// ElementCountComparator creates a total ordering for ElementCount 1209 /// for the purposes of using it in a set structure. 1210 struct ElementCountComparator { 1211 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1212 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1213 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1214 } 1215 }; 1216 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1217 1218 /// LoopVectorizationCostModel - estimates the expected speedups due to 1219 /// vectorization. 1220 /// In many cases vectorization is not profitable. This can happen because of 1221 /// a number of reasons. In this class we mainly attempt to predict the 1222 /// expected speedup/slowdowns due to the supported instruction set. We use the 1223 /// TargetTransformInfo to query the different backends for the cost of 1224 /// different operations. 1225 class LoopVectorizationCostModel { 1226 public: 1227 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1228 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1229 LoopVectorizationLegality *Legal, 1230 const TargetTransformInfo &TTI, 1231 const TargetLibraryInfo *TLI, DemandedBits *DB, 1232 AssumptionCache *AC, 1233 OptimizationRemarkEmitter *ORE, const Function *F, 1234 const LoopVectorizeHints *Hints, 1235 InterleavedAccessInfo &IAI) 1236 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1237 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1238 Hints(Hints), InterleaveInfo(IAI) {} 1239 1240 /// \return An upper bound for the vectorization factors (both fixed and 1241 /// scalable). If the factors are 0, vectorization and interleaving should be 1242 /// avoided up front. 1243 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1244 1245 /// \return True if runtime checks are required for vectorization, and false 1246 /// otherwise. 1247 bool runtimeChecksRequired(); 1248 1249 /// \return The most profitable vectorization factor and the cost of that VF. 1250 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1251 /// then this vectorization factor will be selected if vectorization is 1252 /// possible. 1253 VectorizationFactor 1254 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1255 1256 VectorizationFactor 1257 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1258 const LoopVectorizationPlanner &LVP); 1259 1260 /// Setup cost-based decisions for user vectorization factor. 1261 void selectUserVectorizationFactor(ElementCount UserVF) { 1262 collectUniformsAndScalars(UserVF); 1263 collectInstsToScalarize(UserVF); 1264 } 1265 1266 /// \return The size (in bits) of the smallest and widest types in the code 1267 /// that needs to be vectorized. We ignore values that remain scalar such as 1268 /// 64 bit loop indices. 1269 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1270 1271 /// \return The desired interleave count. 1272 /// If interleave count has been specified by metadata it will be returned. 1273 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1274 /// are the selected vectorization factor and the cost of the selected VF. 1275 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1276 1277 /// Memory access instruction may be vectorized in more than one way. 1278 /// Form of instruction after vectorization depends on cost. 1279 /// This function takes cost-based decisions for Load/Store instructions 1280 /// and collects them in a map. This decisions map is used for building 1281 /// the lists of loop-uniform and loop-scalar instructions. 1282 /// The calculated cost is saved with widening decision in order to 1283 /// avoid redundant calculations. 1284 void setCostBasedWideningDecision(ElementCount VF); 1285 1286 /// A struct that represents some properties of the register usage 1287 /// of a loop. 1288 struct RegisterUsage { 1289 /// Holds the number of loop invariant values that are used in the loop. 1290 /// The key is ClassID of target-provided register class. 1291 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1292 /// Holds the maximum number of concurrent live intervals in the loop. 1293 /// The key is ClassID of target-provided register class. 1294 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1295 }; 1296 1297 /// \return Returns information about the register usages of the loop for the 1298 /// given vectorization factors. 1299 SmallVector<RegisterUsage, 8> 1300 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1301 1302 /// Collect values we want to ignore in the cost model. 1303 void collectValuesToIgnore(); 1304 1305 /// Split reductions into those that happen in the loop, and those that happen 1306 /// outside. In loop reductions are collected into InLoopReductionChains. 1307 void collectInLoopReductions(); 1308 1309 /// Returns true if we should use strict in-order reductions for the given 1310 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1311 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1312 /// of FP operations. 1313 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1314 return EnableStrictReductions && !Hints->allowReordering() && 1315 RdxDesc.isOrdered(); 1316 } 1317 1318 /// \returns The smallest bitwidth each instruction can be represented with. 1319 /// The vector equivalents of these instructions should be truncated to this 1320 /// type. 1321 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1322 return MinBWs; 1323 } 1324 1325 /// \returns True if it is more profitable to scalarize instruction \p I for 1326 /// vectorization factor \p VF. 1327 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1328 assert(VF.isVector() && 1329 "Profitable to scalarize relevant only for VF > 1."); 1330 1331 // Cost model is not run in the VPlan-native path - return conservative 1332 // result until this changes. 1333 if (EnableVPlanNativePath) 1334 return false; 1335 1336 auto Scalars = InstsToScalarize.find(VF); 1337 assert(Scalars != InstsToScalarize.end() && 1338 "VF not yet analyzed for scalarization profitability"); 1339 return Scalars->second.find(I) != Scalars->second.end(); 1340 } 1341 1342 /// Returns true if \p I is known to be uniform after vectorization. 1343 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1344 if (VF.isScalar()) 1345 return true; 1346 1347 // Cost model is not run in the VPlan-native path - return conservative 1348 // result until this changes. 1349 if (EnableVPlanNativePath) 1350 return false; 1351 1352 auto UniformsPerVF = Uniforms.find(VF); 1353 assert(UniformsPerVF != Uniforms.end() && 1354 "VF not yet analyzed for uniformity"); 1355 return UniformsPerVF->second.count(I); 1356 } 1357 1358 /// Returns true if \p I is known to be scalar after vectorization. 1359 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1360 if (VF.isScalar()) 1361 return true; 1362 1363 // Cost model is not run in the VPlan-native path - return conservative 1364 // result until this changes. 1365 if (EnableVPlanNativePath) 1366 return false; 1367 1368 auto ScalarsPerVF = Scalars.find(VF); 1369 assert(ScalarsPerVF != Scalars.end() && 1370 "Scalar values are not calculated for VF"); 1371 return ScalarsPerVF->second.count(I); 1372 } 1373 1374 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1375 /// for vectorization factor \p VF. 1376 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1377 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1378 !isProfitableToScalarize(I, VF) && 1379 !isScalarAfterVectorization(I, VF); 1380 } 1381 1382 /// Decision that was taken during cost calculation for memory instruction. 1383 enum InstWidening { 1384 CM_Unknown, 1385 CM_Widen, // For consecutive accesses with stride +1. 1386 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1387 CM_Interleave, 1388 CM_GatherScatter, 1389 CM_Scalarize 1390 }; 1391 1392 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1393 /// instruction \p I and vector width \p VF. 1394 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1395 InstructionCost Cost) { 1396 assert(VF.isVector() && "Expected VF >=2"); 1397 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1398 } 1399 1400 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1401 /// interleaving group \p Grp and vector width \p VF. 1402 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1403 ElementCount VF, InstWidening W, 1404 InstructionCost Cost) { 1405 assert(VF.isVector() && "Expected VF >=2"); 1406 /// Broadcast this decicion to all instructions inside the group. 1407 /// But the cost will be assigned to one instruction only. 1408 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1409 if (auto *I = Grp->getMember(i)) { 1410 if (Grp->getInsertPos() == I) 1411 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1412 else 1413 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1414 } 1415 } 1416 } 1417 1418 /// Return the cost model decision for the given instruction \p I and vector 1419 /// width \p VF. Return CM_Unknown if this instruction did not pass 1420 /// through the cost modeling. 1421 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1422 assert(VF.isVector() && "Expected VF to be a vector VF"); 1423 // Cost model is not run in the VPlan-native path - return conservative 1424 // result until this changes. 1425 if (EnableVPlanNativePath) 1426 return CM_GatherScatter; 1427 1428 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1429 auto Itr = WideningDecisions.find(InstOnVF); 1430 if (Itr == WideningDecisions.end()) 1431 return CM_Unknown; 1432 return Itr->second.first; 1433 } 1434 1435 /// Return the vectorization cost for the given instruction \p I and vector 1436 /// width \p VF. 1437 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1438 assert(VF.isVector() && "Expected VF >=2"); 1439 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1440 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1441 "The cost is not calculated"); 1442 return WideningDecisions[InstOnVF].second; 1443 } 1444 1445 /// Return True if instruction \p I is an optimizable truncate whose operand 1446 /// is an induction variable. Such a truncate will be removed by adding a new 1447 /// induction variable with the destination type. 1448 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1449 // If the instruction is not a truncate, return false. 1450 auto *Trunc = dyn_cast<TruncInst>(I); 1451 if (!Trunc) 1452 return false; 1453 1454 // Get the source and destination types of the truncate. 1455 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1456 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1457 1458 // If the truncate is free for the given types, return false. Replacing a 1459 // free truncate with an induction variable would add an induction variable 1460 // update instruction to each iteration of the loop. We exclude from this 1461 // check the primary induction variable since it will need an update 1462 // instruction regardless. 1463 Value *Op = Trunc->getOperand(0); 1464 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1465 return false; 1466 1467 // If the truncated value is not an induction variable, return false. 1468 return Legal->isInductionPhi(Op); 1469 } 1470 1471 /// Collects the instructions to scalarize for each predicated instruction in 1472 /// the loop. 1473 void collectInstsToScalarize(ElementCount VF); 1474 1475 /// Collect Uniform and Scalar values for the given \p VF. 1476 /// The sets depend on CM decision for Load/Store instructions 1477 /// that may be vectorized as interleave, gather-scatter or scalarized. 1478 void collectUniformsAndScalars(ElementCount VF) { 1479 // Do the analysis once. 1480 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1481 return; 1482 setCostBasedWideningDecision(VF); 1483 collectLoopUniforms(VF); 1484 collectLoopScalars(VF); 1485 } 1486 1487 /// Returns true if the target machine supports masked store operation 1488 /// for the given \p DataType and kind of access to \p Ptr. 1489 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1490 return Legal->isConsecutivePtr(Ptr) && 1491 TTI.isLegalMaskedStore(DataType, Alignment); 1492 } 1493 1494 /// Returns true if the target machine supports masked load operation 1495 /// for the given \p DataType and kind of access to \p Ptr. 1496 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1497 return Legal->isConsecutivePtr(Ptr) && 1498 TTI.isLegalMaskedLoad(DataType, Alignment); 1499 } 1500 1501 /// Returns true if the target machine can represent \p V as a masked gather 1502 /// or scatter operation. 1503 bool isLegalGatherOrScatter(Value *V) { 1504 bool LI = isa<LoadInst>(V); 1505 bool SI = isa<StoreInst>(V); 1506 if (!LI && !SI) 1507 return false; 1508 auto *Ty = getLoadStoreType(V); 1509 Align Align = getLoadStoreAlignment(V); 1510 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1511 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1512 } 1513 1514 /// Returns true if the target machine supports all of the reduction 1515 /// variables found for the given VF. 1516 bool canVectorizeReductions(ElementCount VF) { 1517 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1518 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1519 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1520 })); 1521 } 1522 1523 /// Returns true if \p I is an instruction that will be scalarized with 1524 /// predication. Such instructions include conditional stores and 1525 /// instructions that may divide by zero. 1526 /// If a non-zero VF has been calculated, we check if I will be scalarized 1527 /// predication for that VF. 1528 bool isScalarWithPredication(Instruction *I) const; 1529 1530 // Returns true if \p I is an instruction that will be predicated either 1531 // through scalar predication or masked load/store or masked gather/scatter. 1532 // Superset of instructions that return true for isScalarWithPredication. 1533 bool isPredicatedInst(Instruction *I) { 1534 if (!blockNeedsPredication(I->getParent())) 1535 return false; 1536 // Loads and stores that need some form of masked operation are predicated 1537 // instructions. 1538 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1539 return Legal->isMaskRequired(I); 1540 return isScalarWithPredication(I); 1541 } 1542 1543 /// Returns true if \p I is a memory instruction with consecutive memory 1544 /// access that can be widened. 1545 bool 1546 memoryInstructionCanBeWidened(Instruction *I, 1547 ElementCount VF = ElementCount::getFixed(1)); 1548 1549 /// Returns true if \p I is a memory instruction in an interleaved-group 1550 /// of memory accesses that can be vectorized with wide vector loads/stores 1551 /// and shuffles. 1552 bool 1553 interleavedAccessCanBeWidened(Instruction *I, 1554 ElementCount VF = ElementCount::getFixed(1)); 1555 1556 /// Check if \p Instr belongs to any interleaved access group. 1557 bool isAccessInterleaved(Instruction *Instr) { 1558 return InterleaveInfo.isInterleaved(Instr); 1559 } 1560 1561 /// Get the interleaved access group that \p Instr belongs to. 1562 const InterleaveGroup<Instruction> * 1563 getInterleavedAccessGroup(Instruction *Instr) { 1564 return InterleaveInfo.getInterleaveGroup(Instr); 1565 } 1566 1567 /// Returns true if we're required to use a scalar epilogue for at least 1568 /// the final iteration of the original loop. 1569 bool requiresScalarEpilogue(ElementCount VF) const { 1570 if (!isScalarEpilogueAllowed()) 1571 return false; 1572 // If we might exit from anywhere but the latch, must run the exiting 1573 // iteration in scalar form. 1574 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1575 return true; 1576 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1577 } 1578 1579 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1580 /// loop hint annotation. 1581 bool isScalarEpilogueAllowed() const { 1582 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1583 } 1584 1585 /// Returns true if all loop blocks should be masked to fold tail loop. 1586 bool foldTailByMasking() const { return FoldTailByMasking; } 1587 1588 bool blockNeedsPredication(BasicBlock *BB) const { 1589 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1590 } 1591 1592 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1593 /// nodes to the chain of instructions representing the reductions. Uses a 1594 /// MapVector to ensure deterministic iteration order. 1595 using ReductionChainMap = 1596 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1597 1598 /// Return the chain of instructions representing an inloop reduction. 1599 const ReductionChainMap &getInLoopReductionChains() const { 1600 return InLoopReductionChains; 1601 } 1602 1603 /// Returns true if the Phi is part of an inloop reduction. 1604 bool isInLoopReduction(PHINode *Phi) const { 1605 return InLoopReductionChains.count(Phi); 1606 } 1607 1608 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1609 /// with factor VF. Return the cost of the instruction, including 1610 /// scalarization overhead if it's needed. 1611 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1612 1613 /// Estimate cost of a call instruction CI if it were vectorized with factor 1614 /// VF. Return the cost of the instruction, including scalarization overhead 1615 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1616 /// scalarized - 1617 /// i.e. either vector version isn't available, or is too expensive. 1618 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1619 bool &NeedToScalarize) const; 1620 1621 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1622 /// that of B. 1623 bool isMoreProfitable(const VectorizationFactor &A, 1624 const VectorizationFactor &B) const; 1625 1626 /// Invalidates decisions already taken by the cost model. 1627 void invalidateCostModelingDecisions() { 1628 WideningDecisions.clear(); 1629 Uniforms.clear(); 1630 Scalars.clear(); 1631 } 1632 1633 private: 1634 unsigned NumPredStores = 0; 1635 1636 /// \return An upper bound for the vectorization factors for both 1637 /// fixed and scalable vectorization, where the minimum-known number of 1638 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1639 /// disabled or unsupported, then the scalable part will be equal to 1640 /// ElementCount::getScalable(0). 1641 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1642 ElementCount UserVF); 1643 1644 /// \return the maximized element count based on the targets vector 1645 /// registers and the loop trip-count, but limited to a maximum safe VF. 1646 /// This is a helper function of computeFeasibleMaxVF. 1647 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1648 /// issue that occurred on one of the buildbots which cannot be reproduced 1649 /// without having access to the properietary compiler (see comments on 1650 /// D98509). The issue is currently under investigation and this workaround 1651 /// will be removed as soon as possible. 1652 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1653 unsigned SmallestType, 1654 unsigned WidestType, 1655 const ElementCount &MaxSafeVF); 1656 1657 /// \return the maximum legal scalable VF, based on the safe max number 1658 /// of elements. 1659 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1660 1661 /// The vectorization cost is a combination of the cost itself and a boolean 1662 /// indicating whether any of the contributing operations will actually 1663 /// operate on vector values after type legalization in the backend. If this 1664 /// latter value is false, then all operations will be scalarized (i.e. no 1665 /// vectorization has actually taken place). 1666 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1667 1668 /// Returns the expected execution cost. The unit of the cost does 1669 /// not matter because we use the 'cost' units to compare different 1670 /// vector widths. The cost that is returned is *not* normalized by 1671 /// the factor width. 1672 VectorizationCostTy expectedCost(ElementCount VF); 1673 1674 /// Returns the execution time cost of an instruction for a given vector 1675 /// width. Vector width of one means scalar. 1676 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1677 1678 /// The cost-computation logic from getInstructionCost which provides 1679 /// the vector type as an output parameter. 1680 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1681 Type *&VectorTy); 1682 1683 /// Return the cost of instructions in an inloop reduction pattern, if I is 1684 /// part of that pattern. 1685 InstructionCost getReductionPatternCost(Instruction *I, ElementCount VF, 1686 Type *VectorTy, 1687 TTI::TargetCostKind CostKind); 1688 1689 /// Calculate vectorization cost of memory instruction \p I. 1690 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1691 1692 /// The cost computation for scalarized memory instruction. 1693 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1694 1695 /// The cost computation for interleaving group of memory instructions. 1696 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1697 1698 /// The cost computation for Gather/Scatter instruction. 1699 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1700 1701 /// The cost computation for widening instruction \p I with consecutive 1702 /// memory access. 1703 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1704 1705 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1706 /// Load: scalar load + broadcast. 1707 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1708 /// element) 1709 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1710 1711 /// Estimate the overhead of scalarizing an instruction. This is a 1712 /// convenience wrapper for the type-based getScalarizationOverhead API. 1713 InstructionCost getScalarizationOverhead(Instruction *I, 1714 ElementCount VF) const; 1715 1716 /// Returns whether the instruction is a load or store and will be a emitted 1717 /// as a vector operation. 1718 bool isConsecutiveLoadOrStore(Instruction *I); 1719 1720 /// Returns true if an artificially high cost for emulated masked memrefs 1721 /// should be used. 1722 bool useEmulatedMaskMemRefHack(Instruction *I); 1723 1724 /// Map of scalar integer values to the smallest bitwidth they can be legally 1725 /// represented as. The vector equivalents of these values should be truncated 1726 /// to this type. 1727 MapVector<Instruction *, uint64_t> MinBWs; 1728 1729 /// A type representing the costs for instructions if they were to be 1730 /// scalarized rather than vectorized. The entries are Instruction-Cost 1731 /// pairs. 1732 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1733 1734 /// A set containing all BasicBlocks that are known to present after 1735 /// vectorization as a predicated block. 1736 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1737 1738 /// Records whether it is allowed to have the original scalar loop execute at 1739 /// least once. This may be needed as a fallback loop in case runtime 1740 /// aliasing/dependence checks fail, or to handle the tail/remainder 1741 /// iterations when the trip count is unknown or doesn't divide by the VF, 1742 /// or as a peel-loop to handle gaps in interleave-groups. 1743 /// Under optsize and when the trip count is very small we don't allow any 1744 /// iterations to execute in the scalar loop. 1745 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1746 1747 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1748 bool FoldTailByMasking = false; 1749 1750 /// A map holding scalar costs for different vectorization factors. The 1751 /// presence of a cost for an instruction in the mapping indicates that the 1752 /// instruction will be scalarized when vectorizing with the associated 1753 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1754 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1755 1756 /// Holds the instructions known to be uniform after vectorization. 1757 /// The data is collected per VF. 1758 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1759 1760 /// Holds the instructions known to be scalar after vectorization. 1761 /// The data is collected per VF. 1762 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1763 1764 /// Holds the instructions (address computations) that are forced to be 1765 /// scalarized. 1766 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1767 1768 /// PHINodes of the reductions that should be expanded in-loop along with 1769 /// their associated chains of reduction operations, in program order from top 1770 /// (PHI) to bottom 1771 ReductionChainMap InLoopReductionChains; 1772 1773 /// A Map of inloop reduction operations and their immediate chain operand. 1774 /// FIXME: This can be removed once reductions can be costed correctly in 1775 /// vplan. This was added to allow quick lookup to the inloop operations, 1776 /// without having to loop through InLoopReductionChains. 1777 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1778 1779 /// Returns the expected difference in cost from scalarizing the expression 1780 /// feeding a predicated instruction \p PredInst. The instructions to 1781 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1782 /// non-negative return value implies the expression will be scalarized. 1783 /// Currently, only single-use chains are considered for scalarization. 1784 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1785 ElementCount VF); 1786 1787 /// Collect the instructions that are uniform after vectorization. An 1788 /// instruction is uniform if we represent it with a single scalar value in 1789 /// the vectorized loop corresponding to each vector iteration. Examples of 1790 /// uniform instructions include pointer operands of consecutive or 1791 /// interleaved memory accesses. Note that although uniformity implies an 1792 /// instruction will be scalar, the reverse is not true. In general, a 1793 /// scalarized instruction will be represented by VF scalar values in the 1794 /// vectorized loop, each corresponding to an iteration of the original 1795 /// scalar loop. 1796 void collectLoopUniforms(ElementCount VF); 1797 1798 /// Collect the instructions that are scalar after vectorization. An 1799 /// instruction is scalar if it is known to be uniform or will be scalarized 1800 /// during vectorization. Non-uniform scalarized instructions will be 1801 /// represented by VF values in the vectorized loop, each corresponding to an 1802 /// iteration of the original scalar loop. 1803 void collectLoopScalars(ElementCount VF); 1804 1805 /// Keeps cost model vectorization decision and cost for instructions. 1806 /// Right now it is used for memory instructions only. 1807 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1808 std::pair<InstWidening, InstructionCost>>; 1809 1810 DecisionList WideningDecisions; 1811 1812 /// Returns true if \p V is expected to be vectorized and it needs to be 1813 /// extracted. 1814 bool needsExtract(Value *V, ElementCount VF) const { 1815 Instruction *I = dyn_cast<Instruction>(V); 1816 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1817 TheLoop->isLoopInvariant(I)) 1818 return false; 1819 1820 // Assume we can vectorize V (and hence we need extraction) if the 1821 // scalars are not computed yet. This can happen, because it is called 1822 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1823 // the scalars are collected. That should be a safe assumption in most 1824 // cases, because we check if the operands have vectorizable types 1825 // beforehand in LoopVectorizationLegality. 1826 return Scalars.find(VF) == Scalars.end() || 1827 !isScalarAfterVectorization(I, VF); 1828 }; 1829 1830 /// Returns a range containing only operands needing to be extracted. 1831 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1832 ElementCount VF) const { 1833 return SmallVector<Value *, 4>(make_filter_range( 1834 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1835 } 1836 1837 /// Determines if we have the infrastructure to vectorize loop \p L and its 1838 /// epilogue, assuming the main loop is vectorized by \p VF. 1839 bool isCandidateForEpilogueVectorization(const Loop &L, 1840 const ElementCount VF) const; 1841 1842 /// Returns true if epilogue vectorization is considered profitable, and 1843 /// false otherwise. 1844 /// \p VF is the vectorization factor chosen for the original loop. 1845 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1846 1847 public: 1848 /// The loop that we evaluate. 1849 Loop *TheLoop; 1850 1851 /// Predicated scalar evolution analysis. 1852 PredicatedScalarEvolution &PSE; 1853 1854 /// Loop Info analysis. 1855 LoopInfo *LI; 1856 1857 /// Vectorization legality. 1858 LoopVectorizationLegality *Legal; 1859 1860 /// Vector target information. 1861 const TargetTransformInfo &TTI; 1862 1863 /// Target Library Info. 1864 const TargetLibraryInfo *TLI; 1865 1866 /// Demanded bits analysis. 1867 DemandedBits *DB; 1868 1869 /// Assumption cache. 1870 AssumptionCache *AC; 1871 1872 /// Interface to emit optimization remarks. 1873 OptimizationRemarkEmitter *ORE; 1874 1875 const Function *TheFunction; 1876 1877 /// Loop Vectorize Hint. 1878 const LoopVectorizeHints *Hints; 1879 1880 /// The interleave access information contains groups of interleaved accesses 1881 /// with the same stride and close to each other. 1882 InterleavedAccessInfo &InterleaveInfo; 1883 1884 /// Values to ignore in the cost model. 1885 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1886 1887 /// Values to ignore in the cost model when VF > 1. 1888 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1889 1890 /// Profitable vector factors. 1891 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1892 }; 1893 } // end namespace llvm 1894 1895 /// Helper struct to manage generating runtime checks for vectorization. 1896 /// 1897 /// The runtime checks are created up-front in temporary blocks to allow better 1898 /// estimating the cost and un-linked from the existing IR. After deciding to 1899 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1900 /// temporary blocks are completely removed. 1901 class GeneratedRTChecks { 1902 /// Basic block which contains the generated SCEV checks, if any. 1903 BasicBlock *SCEVCheckBlock = nullptr; 1904 1905 /// The value representing the result of the generated SCEV checks. If it is 1906 /// nullptr, either no SCEV checks have been generated or they have been used. 1907 Value *SCEVCheckCond = nullptr; 1908 1909 /// Basic block which contains the generated memory runtime checks, if any. 1910 BasicBlock *MemCheckBlock = nullptr; 1911 1912 /// The value representing the result of the generated memory runtime checks. 1913 /// If it is nullptr, either no memory runtime checks have been generated or 1914 /// they have been used. 1915 Instruction *MemRuntimeCheckCond = nullptr; 1916 1917 DominatorTree *DT; 1918 LoopInfo *LI; 1919 1920 SCEVExpander SCEVExp; 1921 SCEVExpander MemCheckExp; 1922 1923 public: 1924 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1925 const DataLayout &DL) 1926 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1927 MemCheckExp(SE, DL, "scev.check") {} 1928 1929 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1930 /// accurately estimate the cost of the runtime checks. The blocks are 1931 /// un-linked from the IR and is added back during vector code generation. If 1932 /// there is no vector code generation, the check blocks are removed 1933 /// completely. 1934 void Create(Loop *L, const LoopAccessInfo &LAI, 1935 const SCEVUnionPredicate &UnionPred) { 1936 1937 BasicBlock *LoopHeader = L->getHeader(); 1938 BasicBlock *Preheader = L->getLoopPreheader(); 1939 1940 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1941 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1942 // may be used by SCEVExpander. The blocks will be un-linked from their 1943 // predecessors and removed from LI & DT at the end of the function. 1944 if (!UnionPred.isAlwaysTrue()) { 1945 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1946 nullptr, "vector.scevcheck"); 1947 1948 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1949 &UnionPred, SCEVCheckBlock->getTerminator()); 1950 } 1951 1952 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1953 if (RtPtrChecking.Need) { 1954 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1955 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1956 "vector.memcheck"); 1957 1958 std::tie(std::ignore, MemRuntimeCheckCond) = 1959 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1960 RtPtrChecking.getChecks(), MemCheckExp); 1961 assert(MemRuntimeCheckCond && 1962 "no RT checks generated although RtPtrChecking " 1963 "claimed checks are required"); 1964 } 1965 1966 if (!MemCheckBlock && !SCEVCheckBlock) 1967 return; 1968 1969 // Unhook the temporary block with the checks, update various places 1970 // accordingly. 1971 if (SCEVCheckBlock) 1972 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1973 if (MemCheckBlock) 1974 MemCheckBlock->replaceAllUsesWith(Preheader); 1975 1976 if (SCEVCheckBlock) { 1977 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1978 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1979 Preheader->getTerminator()->eraseFromParent(); 1980 } 1981 if (MemCheckBlock) { 1982 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1983 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 1984 Preheader->getTerminator()->eraseFromParent(); 1985 } 1986 1987 DT->changeImmediateDominator(LoopHeader, Preheader); 1988 if (MemCheckBlock) { 1989 DT->eraseNode(MemCheckBlock); 1990 LI->removeBlock(MemCheckBlock); 1991 } 1992 if (SCEVCheckBlock) { 1993 DT->eraseNode(SCEVCheckBlock); 1994 LI->removeBlock(SCEVCheckBlock); 1995 } 1996 } 1997 1998 /// Remove the created SCEV & memory runtime check blocks & instructions, if 1999 /// unused. 2000 ~GeneratedRTChecks() { 2001 SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT); 2002 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT); 2003 if (!SCEVCheckCond) 2004 SCEVCleaner.markResultUsed(); 2005 2006 if (!MemRuntimeCheckCond) 2007 MemCheckCleaner.markResultUsed(); 2008 2009 if (MemRuntimeCheckCond) { 2010 auto &SE = *MemCheckExp.getSE(); 2011 // Memory runtime check generation creates compares that use expanded 2012 // values. Remove them before running the SCEVExpanderCleaners. 2013 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2014 if (MemCheckExp.isInsertedInstruction(&I)) 2015 continue; 2016 SE.forgetValue(&I); 2017 SE.eraseValueFromMap(&I); 2018 I.eraseFromParent(); 2019 } 2020 } 2021 MemCheckCleaner.cleanup(); 2022 SCEVCleaner.cleanup(); 2023 2024 if (SCEVCheckCond) 2025 SCEVCheckBlock->eraseFromParent(); 2026 if (MemRuntimeCheckCond) 2027 MemCheckBlock->eraseFromParent(); 2028 } 2029 2030 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2031 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2032 /// depending on the generated condition. 2033 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2034 BasicBlock *LoopVectorPreHeader, 2035 BasicBlock *LoopExitBlock) { 2036 if (!SCEVCheckCond) 2037 return nullptr; 2038 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2039 if (C->isZero()) 2040 return nullptr; 2041 2042 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2043 2044 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2045 // Create new preheader for vector loop. 2046 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2047 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2048 2049 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2050 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2051 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2052 SCEVCheckBlock); 2053 2054 DT->addNewBlock(SCEVCheckBlock, Pred); 2055 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2056 2057 ReplaceInstWithInst( 2058 SCEVCheckBlock->getTerminator(), 2059 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2060 // Mark the check as used, to prevent it from being removed during cleanup. 2061 SCEVCheckCond = nullptr; 2062 return SCEVCheckBlock; 2063 } 2064 2065 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2066 /// the branches to branch to the vector preheader or \p Bypass, depending on 2067 /// the generated condition. 2068 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2069 BasicBlock *LoopVectorPreHeader) { 2070 // Check if we generated code that checks in runtime if arrays overlap. 2071 if (!MemRuntimeCheckCond) 2072 return nullptr; 2073 2074 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2075 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2076 MemCheckBlock); 2077 2078 DT->addNewBlock(MemCheckBlock, Pred); 2079 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2080 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2081 2082 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2083 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2084 2085 ReplaceInstWithInst( 2086 MemCheckBlock->getTerminator(), 2087 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2088 MemCheckBlock->getTerminator()->setDebugLoc( 2089 Pred->getTerminator()->getDebugLoc()); 2090 2091 // Mark the check as used, to prevent it from being removed during cleanup. 2092 MemRuntimeCheckCond = nullptr; 2093 return MemCheckBlock; 2094 } 2095 }; 2096 2097 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2098 // vectorization. The loop needs to be annotated with #pragma omp simd 2099 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2100 // vector length information is not provided, vectorization is not considered 2101 // explicit. Interleave hints are not allowed either. These limitations will be 2102 // relaxed in the future. 2103 // Please, note that we are currently forced to abuse the pragma 'clang 2104 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2105 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2106 // provides *explicit vectorization hints* (LV can bypass legal checks and 2107 // assume that vectorization is legal). However, both hints are implemented 2108 // using the same metadata (llvm.loop.vectorize, processed by 2109 // LoopVectorizeHints). This will be fixed in the future when the native IR 2110 // representation for pragma 'omp simd' is introduced. 2111 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2112 OptimizationRemarkEmitter *ORE) { 2113 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2114 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2115 2116 // Only outer loops with an explicit vectorization hint are supported. 2117 // Unannotated outer loops are ignored. 2118 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2119 return false; 2120 2121 Function *Fn = OuterLp->getHeader()->getParent(); 2122 if (!Hints.allowVectorization(Fn, OuterLp, 2123 true /*VectorizeOnlyWhenForced*/)) { 2124 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2125 return false; 2126 } 2127 2128 if (Hints.getInterleave() > 1) { 2129 // TODO: Interleave support is future work. 2130 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2131 "outer loops.\n"); 2132 Hints.emitRemarkWithHints(); 2133 return false; 2134 } 2135 2136 return true; 2137 } 2138 2139 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2140 OptimizationRemarkEmitter *ORE, 2141 SmallVectorImpl<Loop *> &V) { 2142 // Collect inner loops and outer loops without irreducible control flow. For 2143 // now, only collect outer loops that have explicit vectorization hints. If we 2144 // are stress testing the VPlan H-CFG construction, we collect the outermost 2145 // loop of every loop nest. 2146 if (L.isInnermost() || VPlanBuildStressTest || 2147 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2148 LoopBlocksRPO RPOT(&L); 2149 RPOT.perform(LI); 2150 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2151 V.push_back(&L); 2152 // TODO: Collect inner loops inside marked outer loops in case 2153 // vectorization fails for the outer loop. Do not invoke 2154 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2155 // already known to be reducible. We can use an inherited attribute for 2156 // that. 2157 return; 2158 } 2159 } 2160 for (Loop *InnerL : L) 2161 collectSupportedLoops(*InnerL, LI, ORE, V); 2162 } 2163 2164 namespace { 2165 2166 /// The LoopVectorize Pass. 2167 struct LoopVectorize : public FunctionPass { 2168 /// Pass identification, replacement for typeid 2169 static char ID; 2170 2171 LoopVectorizePass Impl; 2172 2173 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2174 bool VectorizeOnlyWhenForced = false) 2175 : FunctionPass(ID), 2176 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2177 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2178 } 2179 2180 bool runOnFunction(Function &F) override { 2181 if (skipFunction(F)) 2182 return false; 2183 2184 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2185 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2186 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2187 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2188 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2189 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2190 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2191 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2192 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2193 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2194 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2195 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2196 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2197 2198 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2199 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2200 2201 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2202 GetLAA, *ORE, PSI).MadeAnyChange; 2203 } 2204 2205 void getAnalysisUsage(AnalysisUsage &AU) const override { 2206 AU.addRequired<AssumptionCacheTracker>(); 2207 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2208 AU.addRequired<DominatorTreeWrapperPass>(); 2209 AU.addRequired<LoopInfoWrapperPass>(); 2210 AU.addRequired<ScalarEvolutionWrapperPass>(); 2211 AU.addRequired<TargetTransformInfoWrapperPass>(); 2212 AU.addRequired<AAResultsWrapperPass>(); 2213 AU.addRequired<LoopAccessLegacyAnalysis>(); 2214 AU.addRequired<DemandedBitsWrapperPass>(); 2215 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2216 AU.addRequired<InjectTLIMappingsLegacy>(); 2217 2218 // We currently do not preserve loopinfo/dominator analyses with outer loop 2219 // vectorization. Until this is addressed, mark these analyses as preserved 2220 // only for non-VPlan-native path. 2221 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2222 if (!EnableVPlanNativePath) { 2223 AU.addPreserved<LoopInfoWrapperPass>(); 2224 AU.addPreserved<DominatorTreeWrapperPass>(); 2225 } 2226 2227 AU.addPreserved<BasicAAWrapperPass>(); 2228 AU.addPreserved<GlobalsAAWrapperPass>(); 2229 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2230 } 2231 }; 2232 2233 } // end anonymous namespace 2234 2235 //===----------------------------------------------------------------------===// 2236 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2237 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2238 //===----------------------------------------------------------------------===// 2239 2240 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2241 // We need to place the broadcast of invariant variables outside the loop, 2242 // but only if it's proven safe to do so. Else, broadcast will be inside 2243 // vector loop body. 2244 Instruction *Instr = dyn_cast<Instruction>(V); 2245 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2246 (!Instr || 2247 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2248 // Place the code for broadcasting invariant variables in the new preheader. 2249 IRBuilder<>::InsertPointGuard Guard(Builder); 2250 if (SafeToHoist) 2251 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2252 2253 // Broadcast the scalar into all locations in the vector. 2254 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2255 2256 return Shuf; 2257 } 2258 2259 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2260 const InductionDescriptor &II, Value *Step, Value *Start, 2261 Instruction *EntryVal, VPValue *Def, VPValue *CastDef, 2262 VPTransformState &State) { 2263 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2264 "Expected either an induction phi-node or a truncate of it!"); 2265 2266 // Construct the initial value of the vector IV in the vector loop preheader 2267 auto CurrIP = Builder.saveIP(); 2268 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2269 if (isa<TruncInst>(EntryVal)) { 2270 assert(Start->getType()->isIntegerTy() && 2271 "Truncation requires an integer type"); 2272 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2273 Step = Builder.CreateTrunc(Step, TruncType); 2274 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2275 } 2276 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2277 Value *SteppedStart = 2278 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2279 2280 // We create vector phi nodes for both integer and floating-point induction 2281 // variables. Here, we determine the kind of arithmetic we will perform. 2282 Instruction::BinaryOps AddOp; 2283 Instruction::BinaryOps MulOp; 2284 if (Step->getType()->isIntegerTy()) { 2285 AddOp = Instruction::Add; 2286 MulOp = Instruction::Mul; 2287 } else { 2288 AddOp = II.getInductionOpcode(); 2289 MulOp = Instruction::FMul; 2290 } 2291 2292 // Multiply the vectorization factor by the step using integer or 2293 // floating-point arithmetic as appropriate. 2294 Type *StepType = Step->getType(); 2295 if (Step->getType()->isFloatingPointTy()) 2296 StepType = IntegerType::get(StepType->getContext(), 2297 StepType->getScalarSizeInBits()); 2298 Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF); 2299 if (Step->getType()->isFloatingPointTy()) 2300 RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType()); 2301 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2302 2303 // Create a vector splat to use in the induction update. 2304 // 2305 // FIXME: If the step is non-constant, we create the vector splat with 2306 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2307 // handle a constant vector splat. 2308 Value *SplatVF = isa<Constant>(Mul) 2309 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2310 : Builder.CreateVectorSplat(VF, Mul); 2311 Builder.restoreIP(CurrIP); 2312 2313 // We may need to add the step a number of times, depending on the unroll 2314 // factor. The last of those goes into the PHI. 2315 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2316 &*LoopVectorBody->getFirstInsertionPt()); 2317 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2318 Instruction *LastInduction = VecInd; 2319 for (unsigned Part = 0; Part < UF; ++Part) { 2320 State.set(Def, LastInduction, Part); 2321 2322 if (isa<TruncInst>(EntryVal)) 2323 addMetadata(LastInduction, EntryVal); 2324 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef, 2325 State, Part); 2326 2327 LastInduction = cast<Instruction>( 2328 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2329 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2330 } 2331 2332 // Move the last step to the end of the latch block. This ensures consistent 2333 // placement of all induction updates. 2334 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2335 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2336 auto *ICmp = cast<Instruction>(Br->getCondition()); 2337 LastInduction->moveBefore(ICmp); 2338 LastInduction->setName("vec.ind.next"); 2339 2340 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2341 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2342 } 2343 2344 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2345 return Cost->isScalarAfterVectorization(I, VF) || 2346 Cost->isProfitableToScalarize(I, VF); 2347 } 2348 2349 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2350 if (shouldScalarizeInstruction(IV)) 2351 return true; 2352 auto isScalarInst = [&](User *U) -> bool { 2353 auto *I = cast<Instruction>(U); 2354 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2355 }; 2356 return llvm::any_of(IV->users(), isScalarInst); 2357 } 2358 2359 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2360 const InductionDescriptor &ID, const Instruction *EntryVal, 2361 Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State, 2362 unsigned Part, unsigned Lane) { 2363 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2364 "Expected either an induction phi-node or a truncate of it!"); 2365 2366 // This induction variable is not the phi from the original loop but the 2367 // newly-created IV based on the proof that casted Phi is equal to the 2368 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2369 // re-uses the same InductionDescriptor that original IV uses but we don't 2370 // have to do any recording in this case - that is done when original IV is 2371 // processed. 2372 if (isa<TruncInst>(EntryVal)) 2373 return; 2374 2375 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2376 if (Casts.empty()) 2377 return; 2378 // Only the first Cast instruction in the Casts vector is of interest. 2379 // The rest of the Casts (if exist) have no uses outside the 2380 // induction update chain itself. 2381 if (Lane < UINT_MAX) 2382 State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane)); 2383 else 2384 State.set(CastDef, VectorLoopVal, Part); 2385 } 2386 2387 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start, 2388 TruncInst *Trunc, VPValue *Def, 2389 VPValue *CastDef, 2390 VPTransformState &State) { 2391 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2392 "Primary induction variable must have an integer type"); 2393 2394 auto II = Legal->getInductionVars().find(IV); 2395 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2396 2397 auto ID = II->second; 2398 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2399 2400 // The value from the original loop to which we are mapping the new induction 2401 // variable. 2402 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2403 2404 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2405 2406 // Generate code for the induction step. Note that induction steps are 2407 // required to be loop-invariant 2408 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2409 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2410 "Induction step should be loop invariant"); 2411 if (PSE.getSE()->isSCEVable(IV->getType())) { 2412 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2413 return Exp.expandCodeFor(Step, Step->getType(), 2414 LoopVectorPreHeader->getTerminator()); 2415 } 2416 return cast<SCEVUnknown>(Step)->getValue(); 2417 }; 2418 2419 // The scalar value to broadcast. This is derived from the canonical 2420 // induction variable. If a truncation type is given, truncate the canonical 2421 // induction variable and step. Otherwise, derive these values from the 2422 // induction descriptor. 2423 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2424 Value *ScalarIV = Induction; 2425 if (IV != OldInduction) { 2426 ScalarIV = IV->getType()->isIntegerTy() 2427 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2428 : Builder.CreateCast(Instruction::SIToFP, Induction, 2429 IV->getType()); 2430 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2431 ScalarIV->setName("offset.idx"); 2432 } 2433 if (Trunc) { 2434 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2435 assert(Step->getType()->isIntegerTy() && 2436 "Truncation requires an integer step"); 2437 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2438 Step = Builder.CreateTrunc(Step, TruncType); 2439 } 2440 return ScalarIV; 2441 }; 2442 2443 // Create the vector values from the scalar IV, in the absence of creating a 2444 // vector IV. 2445 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2446 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2447 for (unsigned Part = 0; Part < UF; ++Part) { 2448 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2449 Value *EntryPart = 2450 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2451 ID.getInductionOpcode()); 2452 State.set(Def, EntryPart, Part); 2453 if (Trunc) 2454 addMetadata(EntryPart, Trunc); 2455 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef, 2456 State, Part); 2457 } 2458 }; 2459 2460 // Fast-math-flags propagate from the original induction instruction. 2461 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2462 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2463 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2464 2465 // Now do the actual transformations, and start with creating the step value. 2466 Value *Step = CreateStepValue(ID.getStep()); 2467 if (VF.isZero() || VF.isScalar()) { 2468 Value *ScalarIV = CreateScalarIV(Step); 2469 CreateSplatIV(ScalarIV, Step); 2470 return; 2471 } 2472 2473 // Determine if we want a scalar version of the induction variable. This is 2474 // true if the induction variable itself is not widened, or if it has at 2475 // least one user in the loop that is not widened. 2476 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2477 if (!NeedsScalarIV) { 2478 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2479 State); 2480 return; 2481 } 2482 2483 // Try to create a new independent vector induction variable. If we can't 2484 // create the phi node, we will splat the scalar induction variable in each 2485 // loop iteration. 2486 if (!shouldScalarizeInstruction(EntryVal)) { 2487 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2488 State); 2489 Value *ScalarIV = CreateScalarIV(Step); 2490 // Create scalar steps that can be used by instructions we will later 2491 // scalarize. Note that the addition of the scalar steps will not increase 2492 // the number of instructions in the loop in the common case prior to 2493 // InstCombine. We will be trading one vector extract for each scalar step. 2494 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2495 return; 2496 } 2497 2498 // All IV users are scalar instructions, so only emit a scalar IV, not a 2499 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2500 // predicate used by the masked loads/stores. 2501 Value *ScalarIV = CreateScalarIV(Step); 2502 if (!Cost->isScalarEpilogueAllowed()) 2503 CreateSplatIV(ScalarIV, Step); 2504 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2505 } 2506 2507 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2508 Instruction::BinaryOps BinOp) { 2509 // Create and check the types. 2510 auto *ValVTy = cast<VectorType>(Val->getType()); 2511 ElementCount VLen = ValVTy->getElementCount(); 2512 2513 Type *STy = Val->getType()->getScalarType(); 2514 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2515 "Induction Step must be an integer or FP"); 2516 assert(Step->getType() == STy && "Step has wrong type"); 2517 2518 SmallVector<Constant *, 8> Indices; 2519 2520 // Create a vector of consecutive numbers from zero to VF. 2521 VectorType *InitVecValVTy = ValVTy; 2522 Type *InitVecValSTy = STy; 2523 if (STy->isFloatingPointTy()) { 2524 InitVecValSTy = 2525 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2526 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2527 } 2528 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2529 2530 // Add on StartIdx 2531 Value *StartIdxSplat = Builder.CreateVectorSplat( 2532 VLen, ConstantInt::get(InitVecValSTy, StartIdx)); 2533 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2534 2535 if (STy->isIntegerTy()) { 2536 Step = Builder.CreateVectorSplat(VLen, Step); 2537 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2538 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2539 // which can be found from the original scalar operations. 2540 Step = Builder.CreateMul(InitVec, Step); 2541 return Builder.CreateAdd(Val, Step, "induction"); 2542 } 2543 2544 // Floating point induction. 2545 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2546 "Binary Opcode should be specified for FP induction"); 2547 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2548 Step = Builder.CreateVectorSplat(VLen, Step); 2549 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2550 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2551 } 2552 2553 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2554 Instruction *EntryVal, 2555 const InductionDescriptor &ID, 2556 VPValue *Def, VPValue *CastDef, 2557 VPTransformState &State) { 2558 // We shouldn't have to build scalar steps if we aren't vectorizing. 2559 assert(VF.isVector() && "VF should be greater than one"); 2560 // Get the value type and ensure it and the step have the same integer type. 2561 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2562 assert(ScalarIVTy == Step->getType() && 2563 "Val and Step should have the same type"); 2564 2565 // We build scalar steps for both integer and floating-point induction 2566 // variables. Here, we determine the kind of arithmetic we will perform. 2567 Instruction::BinaryOps AddOp; 2568 Instruction::BinaryOps MulOp; 2569 if (ScalarIVTy->isIntegerTy()) { 2570 AddOp = Instruction::Add; 2571 MulOp = Instruction::Mul; 2572 } else { 2573 AddOp = ID.getInductionOpcode(); 2574 MulOp = Instruction::FMul; 2575 } 2576 2577 // Determine the number of scalars we need to generate for each unroll 2578 // iteration. If EntryVal is uniform, we only need to generate the first 2579 // lane. Otherwise, we generate all VF values. 2580 bool IsUniform = 2581 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF); 2582 unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue(); 2583 // Compute the scalar steps and save the results in State. 2584 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2585 ScalarIVTy->getScalarSizeInBits()); 2586 Type *VecIVTy = nullptr; 2587 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2588 if (!IsUniform && VF.isScalable()) { 2589 VecIVTy = VectorType::get(ScalarIVTy, VF); 2590 UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF)); 2591 SplatStep = Builder.CreateVectorSplat(VF, Step); 2592 SplatIV = Builder.CreateVectorSplat(VF, ScalarIV); 2593 } 2594 2595 for (unsigned Part = 0; Part < UF; ++Part) { 2596 Value *StartIdx0 = 2597 createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF); 2598 2599 if (!IsUniform && VF.isScalable()) { 2600 auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0); 2601 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2602 if (ScalarIVTy->isFloatingPointTy()) 2603 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2604 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2605 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2606 State.set(Def, Add, Part); 2607 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2608 Part); 2609 // It's useful to record the lane values too for the known minimum number 2610 // of elements so we do those below. This improves the code quality when 2611 // trying to extract the first element, for example. 2612 } 2613 2614 if (ScalarIVTy->isFloatingPointTy()) 2615 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2616 2617 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2618 Value *StartIdx = Builder.CreateBinOp( 2619 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2620 // The step returned by `createStepForVF` is a runtime-evaluated value 2621 // when VF is scalable. Otherwise, it should be folded into a Constant. 2622 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2623 "Expected StartIdx to be folded to a constant when VF is not " 2624 "scalable"); 2625 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2626 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2627 State.set(Def, Add, VPIteration(Part, Lane)); 2628 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2629 Part, Lane); 2630 } 2631 } 2632 } 2633 2634 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2635 const VPIteration &Instance, 2636 VPTransformState &State) { 2637 Value *ScalarInst = State.get(Def, Instance); 2638 Value *VectorValue = State.get(Def, Instance.Part); 2639 VectorValue = Builder.CreateInsertElement( 2640 VectorValue, ScalarInst, 2641 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2642 State.set(Def, VectorValue, Instance.Part); 2643 } 2644 2645 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2646 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2647 return Builder.CreateVectorReverse(Vec, "reverse"); 2648 } 2649 2650 // Return whether we allow using masked interleave-groups (for dealing with 2651 // strided loads/stores that reside in predicated blocks, or for dealing 2652 // with gaps). 2653 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2654 // If an override option has been passed in for interleaved accesses, use it. 2655 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2656 return EnableMaskedInterleavedMemAccesses; 2657 2658 return TTI.enableMaskedInterleavedAccessVectorization(); 2659 } 2660 2661 // Try to vectorize the interleave group that \p Instr belongs to. 2662 // 2663 // E.g. Translate following interleaved load group (factor = 3): 2664 // for (i = 0; i < N; i+=3) { 2665 // R = Pic[i]; // Member of index 0 2666 // G = Pic[i+1]; // Member of index 1 2667 // B = Pic[i+2]; // Member of index 2 2668 // ... // do something to R, G, B 2669 // } 2670 // To: 2671 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2672 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2673 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2674 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2675 // 2676 // Or translate following interleaved store group (factor = 3): 2677 // for (i = 0; i < N; i+=3) { 2678 // ... do something to R, G, B 2679 // Pic[i] = R; // Member of index 0 2680 // Pic[i+1] = G; // Member of index 1 2681 // Pic[i+2] = B; // Member of index 2 2682 // } 2683 // To: 2684 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2685 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2686 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2687 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2688 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2689 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2690 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2691 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2692 VPValue *BlockInMask) { 2693 Instruction *Instr = Group->getInsertPos(); 2694 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2695 2696 // Prepare for the vector type of the interleaved load/store. 2697 Type *ScalarTy = getLoadStoreType(Instr); 2698 unsigned InterleaveFactor = Group->getFactor(); 2699 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2700 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2701 2702 // Prepare for the new pointers. 2703 SmallVector<Value *, 2> AddrParts; 2704 unsigned Index = Group->getIndex(Instr); 2705 2706 // TODO: extend the masked interleaved-group support to reversed access. 2707 assert((!BlockInMask || !Group->isReverse()) && 2708 "Reversed masked interleave-group not supported."); 2709 2710 // If the group is reverse, adjust the index to refer to the last vector lane 2711 // instead of the first. We adjust the index from the first vector lane, 2712 // rather than directly getting the pointer for lane VF - 1, because the 2713 // pointer operand of the interleaved access is supposed to be uniform. For 2714 // uniform instructions, we're only required to generate a value for the 2715 // first vector lane in each unroll iteration. 2716 if (Group->isReverse()) 2717 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2718 2719 for (unsigned Part = 0; Part < UF; Part++) { 2720 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2721 setDebugLocFromInst(Builder, AddrPart); 2722 2723 // Notice current instruction could be any index. Need to adjust the address 2724 // to the member of index 0. 2725 // 2726 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2727 // b = A[i]; // Member of index 0 2728 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2729 // 2730 // E.g. A[i+1] = a; // Member of index 1 2731 // A[i] = b; // Member of index 0 2732 // A[i+2] = c; // Member of index 2 (Current instruction) 2733 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2734 2735 bool InBounds = false; 2736 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2737 InBounds = gep->isInBounds(); 2738 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2739 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2740 2741 // Cast to the vector pointer type. 2742 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2743 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2744 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2745 } 2746 2747 setDebugLocFromInst(Builder, Instr); 2748 Value *PoisonVec = PoisonValue::get(VecTy); 2749 2750 Value *MaskForGaps = nullptr; 2751 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2752 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2753 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2754 } 2755 2756 // Vectorize the interleaved load group. 2757 if (isa<LoadInst>(Instr)) { 2758 // For each unroll part, create a wide load for the group. 2759 SmallVector<Value *, 2> NewLoads; 2760 for (unsigned Part = 0; Part < UF; Part++) { 2761 Instruction *NewLoad; 2762 if (BlockInMask || MaskForGaps) { 2763 assert(useMaskedInterleavedAccesses(*TTI) && 2764 "masked interleaved groups are not allowed."); 2765 Value *GroupMask = MaskForGaps; 2766 if (BlockInMask) { 2767 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2768 Value *ShuffledMask = Builder.CreateShuffleVector( 2769 BlockInMaskPart, 2770 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2771 "interleaved.mask"); 2772 GroupMask = MaskForGaps 2773 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2774 MaskForGaps) 2775 : ShuffledMask; 2776 } 2777 NewLoad = 2778 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2779 GroupMask, PoisonVec, "wide.masked.vec"); 2780 } 2781 else 2782 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2783 Group->getAlign(), "wide.vec"); 2784 Group->addMetadata(NewLoad); 2785 NewLoads.push_back(NewLoad); 2786 } 2787 2788 // For each member in the group, shuffle out the appropriate data from the 2789 // wide loads. 2790 unsigned J = 0; 2791 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2792 Instruction *Member = Group->getMember(I); 2793 2794 // Skip the gaps in the group. 2795 if (!Member) 2796 continue; 2797 2798 auto StrideMask = 2799 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2800 for (unsigned Part = 0; Part < UF; Part++) { 2801 Value *StridedVec = Builder.CreateShuffleVector( 2802 NewLoads[Part], StrideMask, "strided.vec"); 2803 2804 // If this member has different type, cast the result type. 2805 if (Member->getType() != ScalarTy) { 2806 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2807 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2808 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2809 } 2810 2811 if (Group->isReverse()) 2812 StridedVec = reverseVector(StridedVec); 2813 2814 State.set(VPDefs[J], StridedVec, Part); 2815 } 2816 ++J; 2817 } 2818 return; 2819 } 2820 2821 // The sub vector type for current instruction. 2822 auto *SubVT = VectorType::get(ScalarTy, VF); 2823 2824 // Vectorize the interleaved store group. 2825 for (unsigned Part = 0; Part < UF; Part++) { 2826 // Collect the stored vector from each member. 2827 SmallVector<Value *, 4> StoredVecs; 2828 for (unsigned i = 0; i < InterleaveFactor; i++) { 2829 // Interleaved store group doesn't allow a gap, so each index has a member 2830 assert(Group->getMember(i) && "Fail to get a member from an interleaved store group"); 2831 2832 Value *StoredVec = State.get(StoredValues[i], Part); 2833 2834 if (Group->isReverse()) 2835 StoredVec = reverseVector(StoredVec); 2836 2837 // If this member has different type, cast it to a unified type. 2838 2839 if (StoredVec->getType() != SubVT) 2840 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2841 2842 StoredVecs.push_back(StoredVec); 2843 } 2844 2845 // Concatenate all vectors into a wide vector. 2846 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2847 2848 // Interleave the elements in the wide vector. 2849 Value *IVec = Builder.CreateShuffleVector( 2850 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2851 "interleaved.vec"); 2852 2853 Instruction *NewStoreInstr; 2854 if (BlockInMask) { 2855 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2856 Value *ShuffledMask = Builder.CreateShuffleVector( 2857 BlockInMaskPart, 2858 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2859 "interleaved.mask"); 2860 NewStoreInstr = Builder.CreateMaskedStore( 2861 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2862 } 2863 else 2864 NewStoreInstr = 2865 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2866 2867 Group->addMetadata(NewStoreInstr); 2868 } 2869 } 2870 2871 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2872 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2873 VPValue *StoredValue, VPValue *BlockInMask) { 2874 // Attempt to issue a wide load. 2875 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2876 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2877 2878 assert((LI || SI) && "Invalid Load/Store instruction"); 2879 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2880 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2881 2882 LoopVectorizationCostModel::InstWidening Decision = 2883 Cost->getWideningDecision(Instr, VF); 2884 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2885 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2886 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2887 "CM decision is not to widen the memory instruction"); 2888 2889 Type *ScalarDataTy = getLoadStoreType(Instr); 2890 2891 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2892 const Align Alignment = getLoadStoreAlignment(Instr); 2893 2894 // Determine if the pointer operand of the access is either consecutive or 2895 // reverse consecutive. 2896 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2897 bool ConsecutiveStride = 2898 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2899 bool CreateGatherScatter = 2900 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2901 2902 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2903 // gather/scatter. Otherwise Decision should have been to Scalarize. 2904 assert((ConsecutiveStride || CreateGatherScatter) && 2905 "The instruction should be scalarized"); 2906 (void)ConsecutiveStride; 2907 2908 VectorParts BlockInMaskParts(UF); 2909 bool isMaskRequired = BlockInMask; 2910 if (isMaskRequired) 2911 for (unsigned Part = 0; Part < UF; ++Part) 2912 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2913 2914 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2915 // Calculate the pointer for the specific unroll-part. 2916 GetElementPtrInst *PartPtr = nullptr; 2917 2918 bool InBounds = false; 2919 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2920 InBounds = gep->isInBounds(); 2921 if (Reverse) { 2922 // If the address is consecutive but reversed, then the 2923 // wide store needs to start at the last vector element. 2924 // RunTimeVF = VScale * VF.getKnownMinValue() 2925 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 2926 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF); 2927 // NumElt = -Part * RunTimeVF 2928 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 2929 // LastLane = 1 - RunTimeVF 2930 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 2931 PartPtr = 2932 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 2933 PartPtr->setIsInBounds(InBounds); 2934 PartPtr = cast<GetElementPtrInst>( 2935 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 2936 PartPtr->setIsInBounds(InBounds); 2937 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2938 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2939 } else { 2940 Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF); 2941 PartPtr = cast<GetElementPtrInst>( 2942 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 2943 PartPtr->setIsInBounds(InBounds); 2944 } 2945 2946 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2947 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2948 }; 2949 2950 // Handle Stores: 2951 if (SI) { 2952 setDebugLocFromInst(Builder, SI); 2953 2954 for (unsigned Part = 0; Part < UF; ++Part) { 2955 Instruction *NewSI = nullptr; 2956 Value *StoredVal = State.get(StoredValue, Part); 2957 if (CreateGatherScatter) { 2958 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2959 Value *VectorGep = State.get(Addr, Part); 2960 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2961 MaskPart); 2962 } else { 2963 if (Reverse) { 2964 // If we store to reverse consecutive memory locations, then we need 2965 // to reverse the order of elements in the stored value. 2966 StoredVal = reverseVector(StoredVal); 2967 // We don't want to update the value in the map as it might be used in 2968 // another expression. So don't call resetVectorValue(StoredVal). 2969 } 2970 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2971 if (isMaskRequired) 2972 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2973 BlockInMaskParts[Part]); 2974 else 2975 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2976 } 2977 addMetadata(NewSI, SI); 2978 } 2979 return; 2980 } 2981 2982 // Handle loads. 2983 assert(LI && "Must have a load instruction"); 2984 setDebugLocFromInst(Builder, LI); 2985 for (unsigned Part = 0; Part < UF; ++Part) { 2986 Value *NewLI; 2987 if (CreateGatherScatter) { 2988 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2989 Value *VectorGep = State.get(Addr, Part); 2990 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2991 nullptr, "wide.masked.gather"); 2992 addMetadata(NewLI, LI); 2993 } else { 2994 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2995 if (isMaskRequired) 2996 NewLI = Builder.CreateMaskedLoad( 2997 VecPtr, Alignment, BlockInMaskParts[Part], PoisonValue::get(DataTy), 2998 "wide.masked.load"); 2999 else 3000 NewLI = 3001 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 3002 3003 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3004 addMetadata(NewLI, LI); 3005 if (Reverse) 3006 NewLI = reverseVector(NewLI); 3007 } 3008 3009 State.set(Def, NewLI, Part); 3010 } 3011 } 3012 3013 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def, 3014 VPUser &User, 3015 const VPIteration &Instance, 3016 bool IfPredicateInstr, 3017 VPTransformState &State) { 3018 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3019 3020 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 3021 // the first lane and part. 3022 if (isa<NoAliasScopeDeclInst>(Instr)) 3023 if (!Instance.isFirstIteration()) 3024 return; 3025 3026 setDebugLocFromInst(Builder, Instr); 3027 3028 // Does this instruction return a value ? 3029 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3030 3031 Instruction *Cloned = Instr->clone(); 3032 if (!IsVoidRetTy) 3033 Cloned->setName(Instr->getName() + ".cloned"); 3034 3035 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 3036 Builder.GetInsertPoint()); 3037 // Replace the operands of the cloned instructions with their scalar 3038 // equivalents in the new loop. 3039 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 3040 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 3041 auto InputInstance = Instance; 3042 if (!Operand || !OrigLoop->contains(Operand) || 3043 (Cost->isUniformAfterVectorization(Operand, State.VF))) 3044 InputInstance.Lane = VPLane::getFirstLane(); 3045 auto *NewOp = State.get(User.getOperand(op), InputInstance); 3046 Cloned->setOperand(op, NewOp); 3047 } 3048 addNewMetadata(Cloned, Instr); 3049 3050 // Place the cloned scalar in the new loop. 3051 Builder.Insert(Cloned); 3052 3053 State.set(Def, Cloned, Instance); 3054 3055 // If we just cloned a new assumption, add it the assumption cache. 3056 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 3057 AC->registerAssumption(II); 3058 3059 // End if-block. 3060 if (IfPredicateInstr) 3061 PredicatedInstructions.push_back(Cloned); 3062 } 3063 3064 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3065 Value *End, Value *Step, 3066 Instruction *DL) { 3067 BasicBlock *Header = L->getHeader(); 3068 BasicBlock *Latch = L->getLoopLatch(); 3069 // As we're just creating this loop, it's possible no latch exists 3070 // yet. If so, use the header as this will be a single block loop. 3071 if (!Latch) 3072 Latch = Header; 3073 3074 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3075 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3076 setDebugLocFromInst(Builder, OldInst); 3077 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3078 3079 Builder.SetInsertPoint(Latch->getTerminator()); 3080 setDebugLocFromInst(Builder, OldInst); 3081 3082 // Create i+1 and fill the PHINode. 3083 // 3084 // If the tail is not folded, we know that End - Start >= Step (either 3085 // statically or through the minimum iteration checks). We also know that both 3086 // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV + 3087 // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned 3088 // overflows and we can mark the induction increment as NUW. 3089 Value *Next = 3090 Builder.CreateAdd(Induction, Step, "index.next", 3091 /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false); 3092 Induction->addIncoming(Start, L->getLoopPreheader()); 3093 Induction->addIncoming(Next, Latch); 3094 // Create the compare. 3095 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3096 Builder.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header); 3097 3098 // Now we have two terminators. Remove the old one from the block. 3099 Latch->getTerminator()->eraseFromParent(); 3100 3101 return Induction; 3102 } 3103 3104 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3105 if (TripCount) 3106 return TripCount; 3107 3108 assert(L && "Create Trip Count for null loop."); 3109 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3110 // Find the loop boundaries. 3111 ScalarEvolution *SE = PSE.getSE(); 3112 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3113 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3114 "Invalid loop count"); 3115 3116 Type *IdxTy = Legal->getWidestInductionType(); 3117 assert(IdxTy && "No type for induction"); 3118 3119 // The exit count might have the type of i64 while the phi is i32. This can 3120 // happen if we have an induction variable that is sign extended before the 3121 // compare. The only way that we get a backedge taken count is that the 3122 // induction variable was signed and as such will not overflow. In such a case 3123 // truncation is legal. 3124 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3125 IdxTy->getPrimitiveSizeInBits()) 3126 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3127 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3128 3129 // Get the total trip count from the count by adding 1. 3130 const SCEV *ExitCount = SE->getAddExpr( 3131 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3132 3133 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3134 3135 // Expand the trip count and place the new instructions in the preheader. 3136 // Notice that the pre-header does not change, only the loop body. 3137 SCEVExpander Exp(*SE, DL, "induction"); 3138 3139 // Count holds the overall loop count (N). 3140 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3141 L->getLoopPreheader()->getTerminator()); 3142 3143 if (TripCount->getType()->isPointerTy()) 3144 TripCount = 3145 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3146 L->getLoopPreheader()->getTerminator()); 3147 3148 return TripCount; 3149 } 3150 3151 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3152 if (VectorTripCount) 3153 return VectorTripCount; 3154 3155 Value *TC = getOrCreateTripCount(L); 3156 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3157 3158 Type *Ty = TC->getType(); 3159 // This is where we can make the step a runtime constant. 3160 Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF); 3161 3162 // If the tail is to be folded by masking, round the number of iterations N 3163 // up to a multiple of Step instead of rounding down. This is done by first 3164 // adding Step-1 and then rounding down. Note that it's ok if this addition 3165 // overflows: the vector induction variable will eventually wrap to zero given 3166 // that it starts at zero and its Step is a power of two; the loop will then 3167 // exit, with the last early-exit vector comparison also producing all-true. 3168 if (Cost->foldTailByMasking()) { 3169 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3170 "VF*UF must be a power of 2 when folding tail by masking"); 3171 assert(!VF.isScalable() && 3172 "Tail folding not yet supported for scalable vectors"); 3173 TC = Builder.CreateAdd( 3174 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 3175 } 3176 3177 // Now we need to generate the expression for the part of the loop that the 3178 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3179 // iterations are not required for correctness, or N - Step, otherwise. Step 3180 // is equal to the vectorization factor (number of SIMD elements) times the 3181 // unroll factor (number of SIMD instructions). 3182 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3183 3184 // There are cases where we *must* run at least one iteration in the remainder 3185 // loop. See the cost model for when this can happen. If the step evenly 3186 // divides the trip count, we set the remainder to be equal to the step. If 3187 // the step does not evenly divide the trip count, no adjustment is necessary 3188 // since there will already be scalar iterations. Note that the minimum 3189 // iterations check ensures that N >= Step. 3190 if (Cost->requiresScalarEpilogue(VF)) { 3191 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3192 R = Builder.CreateSelect(IsZero, Step, R); 3193 } 3194 3195 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3196 3197 return VectorTripCount; 3198 } 3199 3200 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3201 const DataLayout &DL) { 3202 // Verify that V is a vector type with same number of elements as DstVTy. 3203 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3204 unsigned VF = DstFVTy->getNumElements(); 3205 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3206 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3207 Type *SrcElemTy = SrcVecTy->getElementType(); 3208 Type *DstElemTy = DstFVTy->getElementType(); 3209 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3210 "Vector elements must have same size"); 3211 3212 // Do a direct cast if element types are castable. 3213 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3214 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3215 } 3216 // V cannot be directly casted to desired vector type. 3217 // May happen when V is a floating point vector but DstVTy is a vector of 3218 // pointers or vice-versa. Handle this using a two-step bitcast using an 3219 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3220 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3221 "Only one type should be a pointer type"); 3222 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3223 "Only one type should be a floating point type"); 3224 Type *IntTy = 3225 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3226 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3227 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3228 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3229 } 3230 3231 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3232 BasicBlock *Bypass) { 3233 Value *Count = getOrCreateTripCount(L); 3234 // Reuse existing vector loop preheader for TC checks. 3235 // Note that new preheader block is generated for vector loop. 3236 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3237 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3238 3239 // Generate code to check if the loop's trip count is less than VF * UF, or 3240 // equal to it in case a scalar epilogue is required; this implies that the 3241 // vector trip count is zero. This check also covers the case where adding one 3242 // to the backedge-taken count overflowed leading to an incorrect trip count 3243 // of zero. In this case we will also jump to the scalar loop. 3244 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 3245 : ICmpInst::ICMP_ULT; 3246 3247 // If tail is to be folded, vector loop takes care of all iterations. 3248 Value *CheckMinIters = Builder.getFalse(); 3249 if (!Cost->foldTailByMasking()) { 3250 Value *Step = 3251 createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF); 3252 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3253 } 3254 // Create new preheader for vector loop. 3255 LoopVectorPreHeader = 3256 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3257 "vector.ph"); 3258 3259 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3260 DT->getNode(Bypass)->getIDom()) && 3261 "TC check is expected to dominate Bypass"); 3262 3263 // Update dominator for Bypass & LoopExit. 3264 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3265 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3266 3267 ReplaceInstWithInst( 3268 TCCheckBlock->getTerminator(), 3269 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3270 LoopBypassBlocks.push_back(TCCheckBlock); 3271 } 3272 3273 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3274 3275 BasicBlock *const SCEVCheckBlock = 3276 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3277 if (!SCEVCheckBlock) 3278 return nullptr; 3279 3280 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3281 (OptForSizeBasedOnProfile && 3282 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3283 "Cannot SCEV check stride or overflow when optimizing for size"); 3284 3285 3286 // Update dominator only if this is first RT check. 3287 if (LoopBypassBlocks.empty()) { 3288 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3289 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3290 } 3291 3292 LoopBypassBlocks.push_back(SCEVCheckBlock); 3293 AddedSafetyChecks = true; 3294 return SCEVCheckBlock; 3295 } 3296 3297 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3298 BasicBlock *Bypass) { 3299 // VPlan-native path does not do any analysis for runtime checks currently. 3300 if (EnableVPlanNativePath) 3301 return nullptr; 3302 3303 BasicBlock *const MemCheckBlock = 3304 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3305 3306 // Check if we generated code that checks in runtime if arrays overlap. We put 3307 // the checks into a separate block to make the more common case of few 3308 // elements faster. 3309 if (!MemCheckBlock) 3310 return nullptr; 3311 3312 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3313 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3314 "Cannot emit memory checks when optimizing for size, unless forced " 3315 "to vectorize."); 3316 ORE->emit([&]() { 3317 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3318 L->getStartLoc(), L->getHeader()) 3319 << "Code-size may be reduced by not forcing " 3320 "vectorization, or by source-code modifications " 3321 "eliminating the need for runtime checks " 3322 "(e.g., adding 'restrict')."; 3323 }); 3324 } 3325 3326 LoopBypassBlocks.push_back(MemCheckBlock); 3327 3328 AddedSafetyChecks = true; 3329 3330 // We currently don't use LoopVersioning for the actual loop cloning but we 3331 // still use it to add the noalias metadata. 3332 LVer = std::make_unique<LoopVersioning>( 3333 *Legal->getLAI(), 3334 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3335 DT, PSE.getSE()); 3336 LVer->prepareNoAliasMetadata(); 3337 return MemCheckBlock; 3338 } 3339 3340 Value *InnerLoopVectorizer::emitTransformedIndex( 3341 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3342 const InductionDescriptor &ID) const { 3343 3344 SCEVExpander Exp(*SE, DL, "induction"); 3345 auto Step = ID.getStep(); 3346 auto StartValue = ID.getStartValue(); 3347 assert(Index->getType()->getScalarType() == Step->getType() && 3348 "Index scalar type does not match StepValue type"); 3349 3350 // Note: the IR at this point is broken. We cannot use SE to create any new 3351 // SCEV and then expand it, hoping that SCEV's simplification will give us 3352 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3353 // lead to various SCEV crashes. So all we can do is to use builder and rely 3354 // on InstCombine for future simplifications. Here we handle some trivial 3355 // cases only. 3356 auto CreateAdd = [&B](Value *X, Value *Y) { 3357 assert(X->getType() == Y->getType() && "Types don't match!"); 3358 if (auto *CX = dyn_cast<ConstantInt>(X)) 3359 if (CX->isZero()) 3360 return Y; 3361 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3362 if (CY->isZero()) 3363 return X; 3364 return B.CreateAdd(X, Y); 3365 }; 3366 3367 // We allow X to be a vector type, in which case Y will potentially be 3368 // splatted into a vector with the same element count. 3369 auto CreateMul = [&B](Value *X, Value *Y) { 3370 assert(X->getType()->getScalarType() == Y->getType() && 3371 "Types don't match!"); 3372 if (auto *CX = dyn_cast<ConstantInt>(X)) 3373 if (CX->isOne()) 3374 return Y; 3375 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3376 if (CY->isOne()) 3377 return X; 3378 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 3379 if (XVTy && !isa<VectorType>(Y->getType())) 3380 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 3381 return B.CreateMul(X, Y); 3382 }; 3383 3384 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3385 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3386 // the DomTree is not kept up-to-date for additional blocks generated in the 3387 // vector loop. By using the header as insertion point, we guarantee that the 3388 // expanded instructions dominate all their uses. 3389 auto GetInsertPoint = [this, &B]() { 3390 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3391 if (InsertBB != LoopVectorBody && 3392 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3393 return LoopVectorBody->getTerminator(); 3394 return &*B.GetInsertPoint(); 3395 }; 3396 3397 switch (ID.getKind()) { 3398 case InductionDescriptor::IK_IntInduction: { 3399 assert(!isa<VectorType>(Index->getType()) && 3400 "Vector indices not supported for integer inductions yet"); 3401 assert(Index->getType() == StartValue->getType() && 3402 "Index type does not match StartValue type"); 3403 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3404 return B.CreateSub(StartValue, Index); 3405 auto *Offset = CreateMul( 3406 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3407 return CreateAdd(StartValue, Offset); 3408 } 3409 case InductionDescriptor::IK_PtrInduction: { 3410 assert(isa<SCEVConstant>(Step) && 3411 "Expected constant step for pointer induction"); 3412 return B.CreateGEP( 3413 StartValue->getType()->getPointerElementType(), StartValue, 3414 CreateMul(Index, 3415 Exp.expandCodeFor(Step, Index->getType()->getScalarType(), 3416 GetInsertPoint()))); 3417 } 3418 case InductionDescriptor::IK_FpInduction: { 3419 assert(!isa<VectorType>(Index->getType()) && 3420 "Vector indices not supported for FP inductions yet"); 3421 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3422 auto InductionBinOp = ID.getInductionBinOp(); 3423 assert(InductionBinOp && 3424 (InductionBinOp->getOpcode() == Instruction::FAdd || 3425 InductionBinOp->getOpcode() == Instruction::FSub) && 3426 "Original bin op should be defined for FP induction"); 3427 3428 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3429 Value *MulExp = B.CreateFMul(StepValue, Index); 3430 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3431 "induction"); 3432 } 3433 case InductionDescriptor::IK_NoInduction: 3434 return nullptr; 3435 } 3436 llvm_unreachable("invalid enum"); 3437 } 3438 3439 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3440 LoopScalarBody = OrigLoop->getHeader(); 3441 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3442 LoopExitBlock = OrigLoop->getUniqueExitBlock(); 3443 assert(LoopExitBlock && "Must have an exit block"); 3444 assert(LoopVectorPreHeader && "Invalid loop structure"); 3445 3446 LoopMiddleBlock = 3447 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3448 LI, nullptr, Twine(Prefix) + "middle.block"); 3449 LoopScalarPreHeader = 3450 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3451 nullptr, Twine(Prefix) + "scalar.ph"); 3452 3453 // Set up branch from middle block to the exit and scalar preheader blocks. 3454 // completeLoopSkeleton will update the condition to use an iteration check, 3455 // if required to decide whether to execute the remainder. 3456 BranchInst *BrInst = 3457 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, Builder.getTrue()); 3458 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3459 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3460 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3461 3462 // We intentionally don't let SplitBlock to update LoopInfo since 3463 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3464 // LoopVectorBody is explicitly added to the correct place few lines later. 3465 LoopVectorBody = 3466 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3467 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3468 3469 // Update dominator for loop exit. 3470 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3471 3472 // Create and register the new vector loop. 3473 Loop *Lp = LI->AllocateLoop(); 3474 Loop *ParentLoop = OrigLoop->getParentLoop(); 3475 3476 // Insert the new loop into the loop nest and register the new basic blocks 3477 // before calling any utilities such as SCEV that require valid LoopInfo. 3478 if (ParentLoop) { 3479 ParentLoop->addChildLoop(Lp); 3480 } else { 3481 LI->addTopLevelLoop(Lp); 3482 } 3483 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3484 return Lp; 3485 } 3486 3487 void InnerLoopVectorizer::createInductionResumeValues( 3488 Loop *L, Value *VectorTripCount, 3489 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3490 assert(VectorTripCount && L && "Expected valid arguments"); 3491 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3492 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3493 "Inconsistent information about additional bypass."); 3494 // We are going to resume the execution of the scalar loop. 3495 // Go over all of the induction variables that we found and fix the 3496 // PHIs that are left in the scalar version of the loop. 3497 // The starting values of PHI nodes depend on the counter of the last 3498 // iteration in the vectorized loop. 3499 // If we come from a bypass edge then we need to start from the original 3500 // start value. 3501 for (auto &InductionEntry : Legal->getInductionVars()) { 3502 PHINode *OrigPhi = InductionEntry.first; 3503 InductionDescriptor II = InductionEntry.second; 3504 3505 // Create phi nodes to merge from the backedge-taken check block. 3506 PHINode *BCResumeVal = 3507 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3508 LoopScalarPreHeader->getTerminator()); 3509 // Copy original phi DL over to the new one. 3510 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3511 Value *&EndValue = IVEndValues[OrigPhi]; 3512 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3513 if (OrigPhi == OldInduction) { 3514 // We know what the end value is. 3515 EndValue = VectorTripCount; 3516 } else { 3517 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3518 3519 // Fast-math-flags propagate from the original induction instruction. 3520 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3521 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3522 3523 Type *StepType = II.getStep()->getType(); 3524 Instruction::CastOps CastOp = 3525 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3526 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3527 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3528 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3529 EndValue->setName("ind.end"); 3530 3531 // Compute the end value for the additional bypass (if applicable). 3532 if (AdditionalBypass.first) { 3533 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3534 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3535 StepType, true); 3536 CRD = 3537 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3538 EndValueFromAdditionalBypass = 3539 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3540 EndValueFromAdditionalBypass->setName("ind.end"); 3541 } 3542 } 3543 // The new PHI merges the original incoming value, in case of a bypass, 3544 // or the value at the end of the vectorized loop. 3545 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3546 3547 // Fix the scalar body counter (PHI node). 3548 // The old induction's phi node in the scalar body needs the truncated 3549 // value. 3550 for (BasicBlock *BB : LoopBypassBlocks) 3551 BCResumeVal->addIncoming(II.getStartValue(), BB); 3552 3553 if (AdditionalBypass.first) 3554 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3555 EndValueFromAdditionalBypass); 3556 3557 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3558 } 3559 } 3560 3561 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3562 MDNode *OrigLoopID) { 3563 assert(L && "Expected valid loop."); 3564 3565 // The trip counts should be cached by now. 3566 Value *Count = getOrCreateTripCount(L); 3567 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3568 3569 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3570 3571 // Add a check in the middle block to see if we have completed 3572 // all of the iterations in the first vector loop. 3573 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3574 // If tail is to be folded, we know we don't need to run the remainder. 3575 if (!Cost->foldTailByMasking()) { 3576 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3577 Count, VectorTripCount, "cmp.n", 3578 LoopMiddleBlock->getTerminator()); 3579 3580 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3581 // of the corresponding compare because they may have ended up with 3582 // different line numbers and we want to avoid awkward line stepping while 3583 // debugging. Eg. if the compare has got a line number inside the loop. 3584 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3585 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3586 } 3587 3588 // Get ready to start creating new instructions into the vectorized body. 3589 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3590 "Inconsistent vector loop preheader"); 3591 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3592 3593 Optional<MDNode *> VectorizedLoopID = 3594 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3595 LLVMLoopVectorizeFollowupVectorized}); 3596 if (VectorizedLoopID.hasValue()) { 3597 L->setLoopID(VectorizedLoopID.getValue()); 3598 3599 // Do not setAlreadyVectorized if loop attributes have been defined 3600 // explicitly. 3601 return LoopVectorPreHeader; 3602 } 3603 3604 // Keep all loop hints from the original loop on the vector loop (we'll 3605 // replace the vectorizer-specific hints below). 3606 if (MDNode *LID = OrigLoop->getLoopID()) 3607 L->setLoopID(LID); 3608 3609 LoopVectorizeHints Hints(L, true, *ORE); 3610 Hints.setAlreadyVectorized(); 3611 3612 #ifdef EXPENSIVE_CHECKS 3613 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3614 LI->verify(*DT); 3615 #endif 3616 3617 return LoopVectorPreHeader; 3618 } 3619 3620 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3621 /* 3622 In this function we generate a new loop. The new loop will contain 3623 the vectorized instructions while the old loop will continue to run the 3624 scalar remainder. 3625 3626 [ ] <-- loop iteration number check. 3627 / | 3628 / v 3629 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3630 | / | 3631 | / v 3632 || [ ] <-- vector pre header. 3633 |/ | 3634 | v 3635 | [ ] \ 3636 | [ ]_| <-- vector loop. 3637 | | 3638 | v 3639 | -[ ] <--- middle-block. 3640 | / | 3641 | / v 3642 -|- >[ ] <--- new preheader. 3643 | | 3644 | v 3645 | [ ] \ 3646 | [ ]_| <-- old scalar loop to handle remainder. 3647 \ | 3648 \ v 3649 >[ ] <-- exit block. 3650 ... 3651 */ 3652 3653 // Get the metadata of the original loop before it gets modified. 3654 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3655 3656 // Workaround! Compute the trip count of the original loop and cache it 3657 // before we start modifying the CFG. This code has a systemic problem 3658 // wherein it tries to run analysis over partially constructed IR; this is 3659 // wrong, and not simply for SCEV. The trip count of the original loop 3660 // simply happens to be prone to hitting this in practice. In theory, we 3661 // can hit the same issue for any SCEV, or ValueTracking query done during 3662 // mutation. See PR49900. 3663 getOrCreateTripCount(OrigLoop); 3664 3665 // Create an empty vector loop, and prepare basic blocks for the runtime 3666 // checks. 3667 Loop *Lp = createVectorLoopSkeleton(""); 3668 3669 // Now, compare the new count to zero. If it is zero skip the vector loop and 3670 // jump to the scalar loop. This check also covers the case where the 3671 // backedge-taken count is uint##_max: adding one to it will overflow leading 3672 // to an incorrect trip count of zero. In this (rare) case we will also jump 3673 // to the scalar loop. 3674 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3675 3676 // Generate the code to check any assumptions that we've made for SCEV 3677 // expressions. 3678 emitSCEVChecks(Lp, LoopScalarPreHeader); 3679 3680 // Generate the code that checks in runtime if arrays overlap. We put the 3681 // checks into a separate block to make the more common case of few elements 3682 // faster. 3683 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3684 3685 // Some loops have a single integer induction variable, while other loops 3686 // don't. One example is c++ iterators that often have multiple pointer 3687 // induction variables. In the code below we also support a case where we 3688 // don't have a single induction variable. 3689 // 3690 // We try to obtain an induction variable from the original loop as hard 3691 // as possible. However if we don't find one that: 3692 // - is an integer 3693 // - counts from zero, stepping by one 3694 // - is the size of the widest induction variable type 3695 // then we create a new one. 3696 OldInduction = Legal->getPrimaryInduction(); 3697 Type *IdxTy = Legal->getWidestInductionType(); 3698 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3699 // The loop step is equal to the vectorization factor (num of SIMD elements) 3700 // times the unroll factor (num of SIMD instructions). 3701 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3702 Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF); 3703 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3704 Induction = 3705 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3706 getDebugLocFromInstOrOperands(OldInduction)); 3707 3708 // Emit phis for the new starting index of the scalar loop. 3709 createInductionResumeValues(Lp, CountRoundDown); 3710 3711 return completeLoopSkeleton(Lp, OrigLoopID); 3712 } 3713 3714 // Fix up external users of the induction variable. At this point, we are 3715 // in LCSSA form, with all external PHIs that use the IV having one input value, 3716 // coming from the remainder loop. We need those PHIs to also have a correct 3717 // value for the IV when arriving directly from the middle block. 3718 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3719 const InductionDescriptor &II, 3720 Value *CountRoundDown, Value *EndValue, 3721 BasicBlock *MiddleBlock) { 3722 // There are two kinds of external IV usages - those that use the value 3723 // computed in the last iteration (the PHI) and those that use the penultimate 3724 // value (the value that feeds into the phi from the loop latch). 3725 // We allow both, but they, obviously, have different values. 3726 3727 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3728 3729 DenseMap<Value *, Value *> MissingVals; 3730 3731 // An external user of the last iteration's value should see the value that 3732 // the remainder loop uses to initialize its own IV. 3733 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3734 for (User *U : PostInc->users()) { 3735 Instruction *UI = cast<Instruction>(U); 3736 if (!OrigLoop->contains(UI)) { 3737 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3738 MissingVals[UI] = EndValue; 3739 } 3740 } 3741 3742 // An external user of the penultimate value need to see EndValue - Step. 3743 // The simplest way to get this is to recompute it from the constituent SCEVs, 3744 // that is Start + (Step * (CRD - 1)). 3745 for (User *U : OrigPhi->users()) { 3746 auto *UI = cast<Instruction>(U); 3747 if (!OrigLoop->contains(UI)) { 3748 const DataLayout &DL = 3749 OrigLoop->getHeader()->getModule()->getDataLayout(); 3750 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3751 3752 IRBuilder<> B(MiddleBlock->getTerminator()); 3753 3754 // Fast-math-flags propagate from the original induction instruction. 3755 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3756 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3757 3758 Value *CountMinusOne = B.CreateSub( 3759 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3760 Value *CMO = 3761 !II.getStep()->getType()->isIntegerTy() 3762 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3763 II.getStep()->getType()) 3764 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3765 CMO->setName("cast.cmo"); 3766 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3767 Escape->setName("ind.escape"); 3768 MissingVals[UI] = Escape; 3769 } 3770 } 3771 3772 for (auto &I : MissingVals) { 3773 PHINode *PHI = cast<PHINode>(I.first); 3774 // One corner case we have to handle is two IVs "chasing" each-other, 3775 // that is %IV2 = phi [...], [ %IV1, %latch ] 3776 // In this case, if IV1 has an external use, we need to avoid adding both 3777 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3778 // don't already have an incoming value for the middle block. 3779 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3780 PHI->addIncoming(I.second, MiddleBlock); 3781 } 3782 } 3783 3784 namespace { 3785 3786 struct CSEDenseMapInfo { 3787 static bool canHandle(const Instruction *I) { 3788 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3789 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3790 } 3791 3792 static inline Instruction *getEmptyKey() { 3793 return DenseMapInfo<Instruction *>::getEmptyKey(); 3794 } 3795 3796 static inline Instruction *getTombstoneKey() { 3797 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3798 } 3799 3800 static unsigned getHashValue(const Instruction *I) { 3801 assert(canHandle(I) && "Unknown instruction!"); 3802 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3803 I->value_op_end())); 3804 } 3805 3806 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3807 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3808 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3809 return LHS == RHS; 3810 return LHS->isIdenticalTo(RHS); 3811 } 3812 }; 3813 3814 } // end anonymous namespace 3815 3816 ///Perform cse of induction variable instructions. 3817 static void cse(BasicBlock *BB) { 3818 // Perform simple cse. 3819 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3820 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3821 Instruction *In = &*I++; 3822 3823 if (!CSEDenseMapInfo::canHandle(In)) 3824 continue; 3825 3826 // Check if we can replace this instruction with any of the 3827 // visited instructions. 3828 if (Instruction *V = CSEMap.lookup(In)) { 3829 In->replaceAllUsesWith(V); 3830 In->eraseFromParent(); 3831 continue; 3832 } 3833 3834 CSEMap[In] = In; 3835 } 3836 } 3837 3838 InstructionCost 3839 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3840 bool &NeedToScalarize) const { 3841 Function *F = CI->getCalledFunction(); 3842 Type *ScalarRetTy = CI->getType(); 3843 SmallVector<Type *, 4> Tys, ScalarTys; 3844 for (auto &ArgOp : CI->arg_operands()) 3845 ScalarTys.push_back(ArgOp->getType()); 3846 3847 // Estimate cost of scalarized vector call. The source operands are assumed 3848 // to be vectors, so we need to extract individual elements from there, 3849 // execute VF scalar calls, and then gather the result into the vector return 3850 // value. 3851 InstructionCost ScalarCallCost = 3852 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3853 if (VF.isScalar()) 3854 return ScalarCallCost; 3855 3856 // Compute corresponding vector type for return value and arguments. 3857 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3858 for (Type *ScalarTy : ScalarTys) 3859 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3860 3861 // Compute costs of unpacking argument values for the scalar calls and 3862 // packing the return values to a vector. 3863 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3864 3865 InstructionCost Cost = 3866 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3867 3868 // If we can't emit a vector call for this function, then the currently found 3869 // cost is the cost we need to return. 3870 NeedToScalarize = true; 3871 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3872 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3873 3874 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3875 return Cost; 3876 3877 // If the corresponding vector cost is cheaper, return its cost. 3878 InstructionCost VectorCallCost = 3879 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3880 if (VectorCallCost < Cost) { 3881 NeedToScalarize = false; 3882 Cost = VectorCallCost; 3883 } 3884 return Cost; 3885 } 3886 3887 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3888 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3889 return Elt; 3890 return VectorType::get(Elt, VF); 3891 } 3892 3893 InstructionCost 3894 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3895 ElementCount VF) const { 3896 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3897 assert(ID && "Expected intrinsic call!"); 3898 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3899 FastMathFlags FMF; 3900 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3901 FMF = FPMO->getFastMathFlags(); 3902 3903 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end()); 3904 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3905 SmallVector<Type *> ParamTys; 3906 std::transform(FTy->param_begin(), FTy->param_end(), 3907 std::back_inserter(ParamTys), 3908 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3909 3910 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3911 dyn_cast<IntrinsicInst>(CI)); 3912 return TTI.getIntrinsicInstrCost(CostAttrs, 3913 TargetTransformInfo::TCK_RecipThroughput); 3914 } 3915 3916 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3917 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3918 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3919 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3920 } 3921 3922 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3923 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3924 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3925 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3926 } 3927 3928 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3929 // For every instruction `I` in MinBWs, truncate the operands, create a 3930 // truncated version of `I` and reextend its result. InstCombine runs 3931 // later and will remove any ext/trunc pairs. 3932 SmallPtrSet<Value *, 4> Erased; 3933 for (const auto &KV : Cost->getMinimalBitwidths()) { 3934 // If the value wasn't vectorized, we must maintain the original scalar 3935 // type. The absence of the value from State indicates that it 3936 // wasn't vectorized. 3937 VPValue *Def = State.Plan->getVPValue(KV.first); 3938 if (!State.hasAnyVectorValue(Def)) 3939 continue; 3940 for (unsigned Part = 0; Part < UF; ++Part) { 3941 Value *I = State.get(Def, Part); 3942 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3943 continue; 3944 Type *OriginalTy = I->getType(); 3945 Type *ScalarTruncatedTy = 3946 IntegerType::get(OriginalTy->getContext(), KV.second); 3947 auto *TruncatedTy = FixedVectorType::get( 3948 ScalarTruncatedTy, 3949 cast<FixedVectorType>(OriginalTy)->getNumElements()); 3950 if (TruncatedTy == OriginalTy) 3951 continue; 3952 3953 IRBuilder<> B(cast<Instruction>(I)); 3954 auto ShrinkOperand = [&](Value *V) -> Value * { 3955 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3956 if (ZI->getSrcTy() == TruncatedTy) 3957 return ZI->getOperand(0); 3958 return B.CreateZExtOrTrunc(V, TruncatedTy); 3959 }; 3960 3961 // The actual instruction modification depends on the instruction type, 3962 // unfortunately. 3963 Value *NewI = nullptr; 3964 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3965 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3966 ShrinkOperand(BO->getOperand(1))); 3967 3968 // Any wrapping introduced by shrinking this operation shouldn't be 3969 // considered undefined behavior. So, we can't unconditionally copy 3970 // arithmetic wrapping flags to NewI. 3971 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3972 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3973 NewI = 3974 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3975 ShrinkOperand(CI->getOperand(1))); 3976 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3977 NewI = B.CreateSelect(SI->getCondition(), 3978 ShrinkOperand(SI->getTrueValue()), 3979 ShrinkOperand(SI->getFalseValue())); 3980 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3981 switch (CI->getOpcode()) { 3982 default: 3983 llvm_unreachable("Unhandled cast!"); 3984 case Instruction::Trunc: 3985 NewI = ShrinkOperand(CI->getOperand(0)); 3986 break; 3987 case Instruction::SExt: 3988 NewI = B.CreateSExtOrTrunc( 3989 CI->getOperand(0), 3990 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3991 break; 3992 case Instruction::ZExt: 3993 NewI = B.CreateZExtOrTrunc( 3994 CI->getOperand(0), 3995 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3996 break; 3997 } 3998 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3999 auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType()) 4000 ->getNumElements(); 4001 auto *O0 = B.CreateZExtOrTrunc( 4002 SI->getOperand(0), 4003 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 4004 auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType()) 4005 ->getNumElements(); 4006 auto *O1 = B.CreateZExtOrTrunc( 4007 SI->getOperand(1), 4008 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 4009 4010 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 4011 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 4012 // Don't do anything with the operands, just extend the result. 4013 continue; 4014 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 4015 auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType()) 4016 ->getNumElements(); 4017 auto *O0 = B.CreateZExtOrTrunc( 4018 IE->getOperand(0), 4019 FixedVectorType::get(ScalarTruncatedTy, Elements)); 4020 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 4021 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 4022 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 4023 auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType()) 4024 ->getNumElements(); 4025 auto *O0 = B.CreateZExtOrTrunc( 4026 EE->getOperand(0), 4027 FixedVectorType::get(ScalarTruncatedTy, Elements)); 4028 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 4029 } else { 4030 // If we don't know what to do, be conservative and don't do anything. 4031 continue; 4032 } 4033 4034 // Lastly, extend the result. 4035 NewI->takeName(cast<Instruction>(I)); 4036 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 4037 I->replaceAllUsesWith(Res); 4038 cast<Instruction>(I)->eraseFromParent(); 4039 Erased.insert(I); 4040 State.reset(Def, Res, Part); 4041 } 4042 } 4043 4044 // We'll have created a bunch of ZExts that are now parentless. Clean up. 4045 for (const auto &KV : Cost->getMinimalBitwidths()) { 4046 // If the value wasn't vectorized, we must maintain the original scalar 4047 // type. The absence of the value from State indicates that it 4048 // wasn't vectorized. 4049 VPValue *Def = State.Plan->getVPValue(KV.first); 4050 if (!State.hasAnyVectorValue(Def)) 4051 continue; 4052 for (unsigned Part = 0; Part < UF; ++Part) { 4053 Value *I = State.get(Def, Part); 4054 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 4055 if (Inst && Inst->use_empty()) { 4056 Value *NewI = Inst->getOperand(0); 4057 Inst->eraseFromParent(); 4058 State.reset(Def, NewI, Part); 4059 } 4060 } 4061 } 4062 } 4063 4064 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 4065 // Insert truncates and extends for any truncated instructions as hints to 4066 // InstCombine. 4067 if (VF.isVector()) 4068 truncateToMinimalBitwidths(State); 4069 4070 // Fix widened non-induction PHIs by setting up the PHI operands. 4071 if (OrigPHIsToFix.size()) { 4072 assert(EnableVPlanNativePath && 4073 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 4074 fixNonInductionPHIs(State); 4075 } 4076 4077 // At this point every instruction in the original loop is widened to a 4078 // vector form. Now we need to fix the recurrences in the loop. These PHI 4079 // nodes are currently empty because we did not want to introduce cycles. 4080 // This is the second stage of vectorizing recurrences. 4081 fixCrossIterationPHIs(State); 4082 4083 // Forget the original basic block. 4084 PSE.getSE()->forgetLoop(OrigLoop); 4085 4086 // Fix-up external users of the induction variables. 4087 for (auto &Entry : Legal->getInductionVars()) 4088 fixupIVUsers(Entry.first, Entry.second, 4089 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4090 IVEndValues[Entry.first], LoopMiddleBlock); 4091 4092 fixLCSSAPHIs(State); 4093 for (Instruction *PI : PredicatedInstructions) 4094 sinkScalarOperands(&*PI); 4095 4096 // Remove redundant induction instructions. 4097 cse(LoopVectorBody); 4098 4099 // Set/update profile weights for the vector and remainder loops as original 4100 // loop iterations are now distributed among them. Note that original loop 4101 // represented by LoopScalarBody becomes remainder loop after vectorization. 4102 // 4103 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4104 // end up getting slightly roughened result but that should be OK since 4105 // profile is not inherently precise anyway. Note also possible bypass of 4106 // vector code caused by legality checks is ignored, assigning all the weight 4107 // to the vector loop, optimistically. 4108 // 4109 // For scalable vectorization we can't know at compile time how many iterations 4110 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4111 // vscale of '1'. 4112 setProfileInfoAfterUnrolling( 4113 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4114 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4115 } 4116 4117 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 4118 // In order to support recurrences we need to be able to vectorize Phi nodes. 4119 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4120 // stage #2: We now need to fix the recurrences by adding incoming edges to 4121 // the currently empty PHI nodes. At this point every instruction in the 4122 // original loop is widened to a vector form so we can use them to construct 4123 // the incoming edges. 4124 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 4125 for (VPRecipeBase &R : Header->phis()) { 4126 auto *PhiR = dyn_cast<VPWidenPHIRecipe>(&R); 4127 if (!PhiR) 4128 continue; 4129 auto *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4130 if (PhiR->getRecurrenceDescriptor()) { 4131 fixReduction(PhiR, State); 4132 } else if (Legal->isFirstOrderRecurrence(OrigPhi)) 4133 fixFirstOrderRecurrence(PhiR, State); 4134 } 4135 } 4136 4137 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, 4138 VPTransformState &State) { 4139 // This is the second phase of vectorizing first-order recurrences. An 4140 // overview of the transformation is described below. Suppose we have the 4141 // following loop. 4142 // 4143 // for (int i = 0; i < n; ++i) 4144 // b[i] = a[i] - a[i - 1]; 4145 // 4146 // There is a first-order recurrence on "a". For this loop, the shorthand 4147 // scalar IR looks like: 4148 // 4149 // scalar.ph: 4150 // s_init = a[-1] 4151 // br scalar.body 4152 // 4153 // scalar.body: 4154 // i = phi [0, scalar.ph], [i+1, scalar.body] 4155 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4156 // s2 = a[i] 4157 // b[i] = s2 - s1 4158 // br cond, scalar.body, ... 4159 // 4160 // In this example, s1 is a recurrence because it's value depends on the 4161 // previous iteration. In the first phase of vectorization, we created a 4162 // temporary value for s1. We now complete the vectorization and produce the 4163 // shorthand vector IR shown below (for VF = 4, UF = 1). 4164 // 4165 // vector.ph: 4166 // v_init = vector(..., ..., ..., a[-1]) 4167 // br vector.body 4168 // 4169 // vector.body 4170 // i = phi [0, vector.ph], [i+4, vector.body] 4171 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4172 // v2 = a[i, i+1, i+2, i+3]; 4173 // v3 = vector(v1(3), v2(0, 1, 2)) 4174 // b[i, i+1, i+2, i+3] = v2 - v3 4175 // br cond, vector.body, middle.block 4176 // 4177 // middle.block: 4178 // x = v2(3) 4179 // br scalar.ph 4180 // 4181 // scalar.ph: 4182 // s_init = phi [x, middle.block], [a[-1], otherwise] 4183 // br scalar.body 4184 // 4185 // After execution completes the vector loop, we extract the next value of 4186 // the recurrence (x) to use as the initial value in the scalar loop. 4187 4188 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 4189 4190 auto *IdxTy = Builder.getInt32Ty(); 4191 auto *One = ConstantInt::get(IdxTy, 1); 4192 4193 // Create a vector from the initial value. 4194 auto *VectorInit = ScalarInit; 4195 if (VF.isVector()) { 4196 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4197 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4198 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4199 VectorInit = Builder.CreateInsertElement( 4200 PoisonValue::get(VectorType::get(VectorInit->getType(), VF)), 4201 VectorInit, LastIdx, "vector.recur.init"); 4202 } 4203 4204 VPValue *PreviousDef = PhiR->getBackedgeValue(); 4205 // We constructed a temporary phi node in the first phase of vectorization. 4206 // This phi node will eventually be deleted. 4207 Builder.SetInsertPoint(cast<Instruction>(State.get(PhiR, 0))); 4208 4209 // Create a phi node for the new recurrence. The current value will either be 4210 // the initial value inserted into a vector or loop-varying vector value. 4211 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4212 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4213 4214 // Get the vectorized previous value of the last part UF - 1. It appears last 4215 // among all unrolled iterations, due to the order of their construction. 4216 Value *PreviousLastPart = State.get(PreviousDef, UF - 1); 4217 4218 // Find and set the insertion point after the previous value if it is an 4219 // instruction. 4220 BasicBlock::iterator InsertPt; 4221 // Note that the previous value may have been constant-folded so it is not 4222 // guaranteed to be an instruction in the vector loop. 4223 // FIXME: Loop invariant values do not form recurrences. We should deal with 4224 // them earlier. 4225 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 4226 InsertPt = LoopVectorBody->getFirstInsertionPt(); 4227 else { 4228 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 4229 if (isa<PHINode>(PreviousLastPart)) 4230 // If the previous value is a phi node, we should insert after all the phi 4231 // nodes in the block containing the PHI to avoid breaking basic block 4232 // verification. Note that the basic block may be different to 4233 // LoopVectorBody, in case we predicate the loop. 4234 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 4235 else 4236 InsertPt = ++PreviousInst->getIterator(); 4237 } 4238 Builder.SetInsertPoint(&*InsertPt); 4239 4240 // The vector from which to take the initial value for the current iteration 4241 // (actual or unrolled). Initially, this is the vector phi node. 4242 Value *Incoming = VecPhi; 4243 4244 // Shuffle the current and previous vector and update the vector parts. 4245 for (unsigned Part = 0; Part < UF; ++Part) { 4246 Value *PreviousPart = State.get(PreviousDef, Part); 4247 Value *PhiPart = State.get(PhiR, Part); 4248 auto *Shuffle = VF.isVector() 4249 ? Builder.CreateVectorSplice(Incoming, PreviousPart, -1) 4250 : Incoming; 4251 PhiPart->replaceAllUsesWith(Shuffle); 4252 cast<Instruction>(PhiPart)->eraseFromParent(); 4253 State.reset(PhiR, Shuffle, Part); 4254 Incoming = PreviousPart; 4255 } 4256 4257 // Fix the latch value of the new recurrence in the vector loop. 4258 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4259 4260 // Extract the last vector element in the middle block. This will be the 4261 // initial value for the recurrence when jumping to the scalar loop. 4262 auto *ExtractForScalar = Incoming; 4263 if (VF.isVector()) { 4264 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4265 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4266 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4267 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4268 "vector.recur.extract"); 4269 } 4270 // Extract the second last element in the middle block if the 4271 // Phi is used outside the loop. We need to extract the phi itself 4272 // and not the last element (the phi update in the current iteration). This 4273 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4274 // when the scalar loop is not run at all. 4275 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4276 if (VF.isVector()) { 4277 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4278 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4279 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4280 Incoming, Idx, "vector.recur.extract.for.phi"); 4281 } else if (UF > 1) 4282 // When loop is unrolled without vectorizing, initialize 4283 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4284 // of `Incoming`. This is analogous to the vectorized case above: extracting 4285 // the second last element when VF > 1. 4286 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4287 4288 // Fix the initial value of the original recurrence in the scalar loop. 4289 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4290 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 4291 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4292 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4293 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4294 Start->addIncoming(Incoming, BB); 4295 } 4296 4297 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4298 Phi->setName("scalar.recur"); 4299 4300 // Finally, fix users of the recurrence outside the loop. The users will need 4301 // either the last value of the scalar recurrence or the last value of the 4302 // vector recurrence we extracted in the middle block. Since the loop is in 4303 // LCSSA form, we just need to find all the phi nodes for the original scalar 4304 // recurrence in the exit block, and then add an edge for the middle block. 4305 // Note that LCSSA does not imply single entry when the original scalar loop 4306 // had multiple exiting edges (as we always run the last iteration in the 4307 // scalar epilogue); in that case, the exiting path through middle will be 4308 // dynamically dead and the value picked for the phi doesn't matter. 4309 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4310 if (any_of(LCSSAPhi.incoming_values(), 4311 [Phi](Value *V) { return V == Phi; })) 4312 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4313 } 4314 4315 void InnerLoopVectorizer::fixReduction(VPWidenPHIRecipe *PhiR, 4316 VPTransformState &State) { 4317 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4318 // Get it's reduction variable descriptor. 4319 assert(Legal->isReductionVariable(OrigPhi) && 4320 "Unable to find the reduction variable"); 4321 const RecurrenceDescriptor &RdxDesc = *PhiR->getRecurrenceDescriptor(); 4322 4323 RecurKind RK = RdxDesc.getRecurrenceKind(); 4324 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4325 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4326 setDebugLocFromInst(Builder, ReductionStartValue); 4327 bool IsInLoopReductionPhi = Cost->isInLoopReduction(OrigPhi); 4328 4329 VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst); 4330 // This is the vector-clone of the value that leaves the loop. 4331 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4332 4333 // Wrap flags are in general invalid after vectorization, clear them. 4334 clearReductionWrapFlags(RdxDesc, State); 4335 4336 // Fix the vector-loop phi. 4337 4338 // Reductions do not have to start at zero. They can start with 4339 // any loop invariant values. 4340 BasicBlock *VectorLoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4341 4342 bool IsOrdered = IsInLoopReductionPhi && Cost->useOrderedReductions(RdxDesc); 4343 4344 for (unsigned Part = 0; Part < UF; ++Part) { 4345 if (IsOrdered && Part > 0) 4346 break; 4347 Value *VecRdxPhi = State.get(PhiR->getVPSingleValue(), Part); 4348 Value *Val = State.get(PhiR->getBackedgeValue(), Part); 4349 if (IsOrdered) 4350 Val = State.get(PhiR->getBackedgeValue(), UF - 1); 4351 4352 cast<PHINode>(VecRdxPhi)->addIncoming(Val, VectorLoopLatch); 4353 } 4354 4355 // Before each round, move the insertion point right between 4356 // the PHIs and the values we are going to write. 4357 // This allows us to write both PHINodes and the extractelement 4358 // instructions. 4359 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4360 4361 setDebugLocFromInst(Builder, LoopExitInst); 4362 4363 Type *PhiTy = OrigPhi->getType(); 4364 // If tail is folded by masking, the vector value to leave the loop should be 4365 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4366 // instead of the former. For an inloop reduction the reduction will already 4367 // be predicated, and does not need to be handled here. 4368 if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) { 4369 for (unsigned Part = 0; Part < UF; ++Part) { 4370 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4371 Value *Sel = nullptr; 4372 for (User *U : VecLoopExitInst->users()) { 4373 if (isa<SelectInst>(U)) { 4374 assert(!Sel && "Reduction exit feeding two selects"); 4375 Sel = U; 4376 } else 4377 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4378 } 4379 assert(Sel && "Reduction exit feeds no select"); 4380 State.reset(LoopExitInstDef, Sel, Part); 4381 4382 // If the target can create a predicated operator for the reduction at no 4383 // extra cost in the loop (for example a predicated vadd), it can be 4384 // cheaper for the select to remain in the loop than be sunk out of it, 4385 // and so use the select value for the phi instead of the old 4386 // LoopExitValue. 4387 if (PreferPredicatedReductionSelect || 4388 TTI->preferPredicatedReductionSelect( 4389 RdxDesc.getOpcode(), PhiTy, 4390 TargetTransformInfo::ReductionFlags())) { 4391 auto *VecRdxPhi = 4392 cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part)); 4393 VecRdxPhi->setIncomingValueForBlock( 4394 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4395 } 4396 } 4397 } 4398 4399 // If the vector reduction can be performed in a smaller type, we truncate 4400 // then extend the loop exit value to enable InstCombine to evaluate the 4401 // entire expression in the smaller type. 4402 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4403 assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!"); 4404 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4405 Builder.SetInsertPoint( 4406 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4407 VectorParts RdxParts(UF); 4408 for (unsigned Part = 0; Part < UF; ++Part) { 4409 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4410 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4411 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4412 : Builder.CreateZExt(Trunc, VecTy); 4413 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4414 UI != RdxParts[Part]->user_end();) 4415 if (*UI != Trunc) { 4416 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4417 RdxParts[Part] = Extnd; 4418 } else { 4419 ++UI; 4420 } 4421 } 4422 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4423 for (unsigned Part = 0; Part < UF; ++Part) { 4424 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4425 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4426 } 4427 } 4428 4429 // Reduce all of the unrolled parts into a single vector. 4430 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4431 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4432 4433 // The middle block terminator has already been assigned a DebugLoc here (the 4434 // OrigLoop's single latch terminator). We want the whole middle block to 4435 // appear to execute on this line because: (a) it is all compiler generated, 4436 // (b) these instructions are always executed after evaluating the latch 4437 // conditional branch, and (c) other passes may add new predecessors which 4438 // terminate on this line. This is the easiest way to ensure we don't 4439 // accidentally cause an extra step back into the loop while debugging. 4440 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 4441 if (IsOrdered) 4442 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4443 else { 4444 // Floating-point operations should have some FMF to enable the reduction. 4445 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4446 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4447 for (unsigned Part = 1; Part < UF; ++Part) { 4448 Value *RdxPart = State.get(LoopExitInstDef, Part); 4449 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4450 ReducedPartRdx = Builder.CreateBinOp( 4451 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4452 } else { 4453 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4454 } 4455 } 4456 } 4457 4458 // Create the reduction after the loop. Note that inloop reductions create the 4459 // target reduction in the loop using a Reduction recipe. 4460 if (VF.isVector() && !IsInLoopReductionPhi) { 4461 ReducedPartRdx = 4462 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx); 4463 // If the reduction can be performed in a smaller type, we need to extend 4464 // the reduction to the wider type before we branch to the original loop. 4465 if (PhiTy != RdxDesc.getRecurrenceType()) 4466 ReducedPartRdx = RdxDesc.isSigned() 4467 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4468 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4469 } 4470 4471 // Create a phi node that merges control-flow from the backedge-taken check 4472 // block and the middle block. 4473 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4474 LoopScalarPreHeader->getTerminator()); 4475 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4476 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4477 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4478 4479 // Now, we need to fix the users of the reduction variable 4480 // inside and outside of the scalar remainder loop. 4481 4482 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4483 // in the exit blocks. See comment on analogous loop in 4484 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4485 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4486 if (any_of(LCSSAPhi.incoming_values(), 4487 [LoopExitInst](Value *V) { return V == LoopExitInst; })) 4488 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4489 4490 // Fix the scalar loop reduction variable with the incoming reduction sum 4491 // from the vector body and from the backedge value. 4492 int IncomingEdgeBlockIdx = 4493 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4494 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4495 // Pick the other block. 4496 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4497 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4498 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4499 } 4500 4501 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4502 VPTransformState &State) { 4503 RecurKind RK = RdxDesc.getRecurrenceKind(); 4504 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4505 return; 4506 4507 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4508 assert(LoopExitInstr && "null loop exit instruction"); 4509 SmallVector<Instruction *, 8> Worklist; 4510 SmallPtrSet<Instruction *, 8> Visited; 4511 Worklist.push_back(LoopExitInstr); 4512 Visited.insert(LoopExitInstr); 4513 4514 while (!Worklist.empty()) { 4515 Instruction *Cur = Worklist.pop_back_val(); 4516 if (isa<OverflowingBinaryOperator>(Cur)) 4517 for (unsigned Part = 0; Part < UF; ++Part) { 4518 Value *V = State.get(State.Plan->getVPValue(Cur), Part); 4519 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4520 } 4521 4522 for (User *U : Cur->users()) { 4523 Instruction *UI = cast<Instruction>(U); 4524 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4525 Visited.insert(UI).second) 4526 Worklist.push_back(UI); 4527 } 4528 } 4529 } 4530 4531 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4532 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4533 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4534 // Some phis were already hand updated by the reduction and recurrence 4535 // code above, leave them alone. 4536 continue; 4537 4538 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4539 // Non-instruction incoming values will have only one value. 4540 4541 VPLane Lane = VPLane::getFirstLane(); 4542 if (isa<Instruction>(IncomingValue) && 4543 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4544 VF)) 4545 Lane = VPLane::getLastLaneForVF(VF); 4546 4547 // Can be a loop invariant incoming value or the last scalar value to be 4548 // extracted from the vectorized loop. 4549 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4550 Value *lastIncomingValue = 4551 OrigLoop->isLoopInvariant(IncomingValue) 4552 ? IncomingValue 4553 : State.get(State.Plan->getVPValue(IncomingValue), 4554 VPIteration(UF - 1, Lane)); 4555 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4556 } 4557 } 4558 4559 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4560 // The basic block and loop containing the predicated instruction. 4561 auto *PredBB = PredInst->getParent(); 4562 auto *VectorLoop = LI->getLoopFor(PredBB); 4563 4564 // Initialize a worklist with the operands of the predicated instruction. 4565 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4566 4567 // Holds instructions that we need to analyze again. An instruction may be 4568 // reanalyzed if we don't yet know if we can sink it or not. 4569 SmallVector<Instruction *, 8> InstsToReanalyze; 4570 4571 // Returns true if a given use occurs in the predicated block. Phi nodes use 4572 // their operands in their corresponding predecessor blocks. 4573 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4574 auto *I = cast<Instruction>(U.getUser()); 4575 BasicBlock *BB = I->getParent(); 4576 if (auto *Phi = dyn_cast<PHINode>(I)) 4577 BB = Phi->getIncomingBlock( 4578 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4579 return BB == PredBB; 4580 }; 4581 4582 // Iteratively sink the scalarized operands of the predicated instruction 4583 // into the block we created for it. When an instruction is sunk, it's 4584 // operands are then added to the worklist. The algorithm ends after one pass 4585 // through the worklist doesn't sink a single instruction. 4586 bool Changed; 4587 do { 4588 // Add the instructions that need to be reanalyzed to the worklist, and 4589 // reset the changed indicator. 4590 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4591 InstsToReanalyze.clear(); 4592 Changed = false; 4593 4594 while (!Worklist.empty()) { 4595 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4596 4597 // We can't sink an instruction if it is a phi node, is not in the loop, 4598 // or may have side effects. 4599 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4600 I->mayHaveSideEffects()) 4601 continue; 4602 4603 // If the instruction is already in PredBB, check if we can sink its 4604 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4605 // sinking the scalar instruction I, hence it appears in PredBB; but it 4606 // may have failed to sink I's operands (recursively), which we try 4607 // (again) here. 4608 if (I->getParent() == PredBB) { 4609 Worklist.insert(I->op_begin(), I->op_end()); 4610 continue; 4611 } 4612 4613 // It's legal to sink the instruction if all its uses occur in the 4614 // predicated block. Otherwise, there's nothing to do yet, and we may 4615 // need to reanalyze the instruction. 4616 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4617 InstsToReanalyze.push_back(I); 4618 continue; 4619 } 4620 4621 // Move the instruction to the beginning of the predicated block, and add 4622 // it's operands to the worklist. 4623 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4624 Worklist.insert(I->op_begin(), I->op_end()); 4625 4626 // The sinking may have enabled other instructions to be sunk, so we will 4627 // need to iterate. 4628 Changed = true; 4629 } 4630 } while (Changed); 4631 } 4632 4633 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4634 for (PHINode *OrigPhi : OrigPHIsToFix) { 4635 VPWidenPHIRecipe *VPPhi = 4636 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4637 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4638 // Make sure the builder has a valid insert point. 4639 Builder.SetInsertPoint(NewPhi); 4640 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4641 VPValue *Inc = VPPhi->getIncomingValue(i); 4642 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4643 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4644 } 4645 } 4646 } 4647 4648 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) { 4649 return Cost->useOrderedReductions(RdxDesc); 4650 } 4651 4652 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4653 VPUser &Operands, unsigned UF, 4654 ElementCount VF, bool IsPtrLoopInvariant, 4655 SmallBitVector &IsIndexLoopInvariant, 4656 VPTransformState &State) { 4657 // Construct a vector GEP by widening the operands of the scalar GEP as 4658 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4659 // results in a vector of pointers when at least one operand of the GEP 4660 // is vector-typed. Thus, to keep the representation compact, we only use 4661 // vector-typed operands for loop-varying values. 4662 4663 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4664 // If we are vectorizing, but the GEP has only loop-invariant operands, 4665 // the GEP we build (by only using vector-typed operands for 4666 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4667 // produce a vector of pointers, we need to either arbitrarily pick an 4668 // operand to broadcast, or broadcast a clone of the original GEP. 4669 // Here, we broadcast a clone of the original. 4670 // 4671 // TODO: If at some point we decide to scalarize instructions having 4672 // loop-invariant operands, this special case will no longer be 4673 // required. We would add the scalarization decision to 4674 // collectLoopScalars() and teach getVectorValue() to broadcast 4675 // the lane-zero scalar value. 4676 auto *Clone = Builder.Insert(GEP->clone()); 4677 for (unsigned Part = 0; Part < UF; ++Part) { 4678 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4679 State.set(VPDef, EntryPart, Part); 4680 addMetadata(EntryPart, GEP); 4681 } 4682 } else { 4683 // If the GEP has at least one loop-varying operand, we are sure to 4684 // produce a vector of pointers. But if we are only unrolling, we want 4685 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4686 // produce with the code below will be scalar (if VF == 1) or vector 4687 // (otherwise). Note that for the unroll-only case, we still maintain 4688 // values in the vector mapping with initVector, as we do for other 4689 // instructions. 4690 for (unsigned Part = 0; Part < UF; ++Part) { 4691 // The pointer operand of the new GEP. If it's loop-invariant, we 4692 // won't broadcast it. 4693 auto *Ptr = IsPtrLoopInvariant 4694 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 4695 : State.get(Operands.getOperand(0), Part); 4696 4697 // Collect all the indices for the new GEP. If any index is 4698 // loop-invariant, we won't broadcast it. 4699 SmallVector<Value *, 4> Indices; 4700 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4701 VPValue *Operand = Operands.getOperand(I); 4702 if (IsIndexLoopInvariant[I - 1]) 4703 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 4704 else 4705 Indices.push_back(State.get(Operand, Part)); 4706 } 4707 4708 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4709 // but it should be a vector, otherwise. 4710 auto *NewGEP = 4711 GEP->isInBounds() 4712 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4713 Indices) 4714 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4715 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4716 "NewGEP is not a pointer vector"); 4717 State.set(VPDef, NewGEP, Part); 4718 addMetadata(NewGEP, GEP); 4719 } 4720 } 4721 } 4722 4723 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4724 RecurrenceDescriptor *RdxDesc, 4725 VPWidenPHIRecipe *PhiR, 4726 VPTransformState &State) { 4727 PHINode *P = cast<PHINode>(PN); 4728 if (EnableVPlanNativePath) { 4729 // Currently we enter here in the VPlan-native path for non-induction 4730 // PHIs where all control flow is uniform. We simply widen these PHIs. 4731 // Create a vector phi with no operands - the vector phi operands will be 4732 // set at the end of vector code generation. 4733 Type *VecTy = (State.VF.isScalar()) 4734 ? PN->getType() 4735 : VectorType::get(PN->getType(), State.VF); 4736 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4737 State.set(PhiR, VecPhi, 0); 4738 OrigPHIsToFix.push_back(P); 4739 4740 return; 4741 } 4742 4743 assert(PN->getParent() == OrigLoop->getHeader() && 4744 "Non-header phis should have been handled elsewhere"); 4745 4746 // In order to support recurrences we need to be able to vectorize Phi nodes. 4747 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4748 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4749 // this value when we vectorize all of the instructions that use the PHI. 4750 if (RdxDesc || Legal->isFirstOrderRecurrence(P)) { 4751 bool ScalarPHI = 4752 (State.VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN)); 4753 Type *VecTy = 4754 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF); 4755 4756 bool IsOrdered = Cost->isInLoopReduction(cast<PHINode>(PN)) && 4757 Cost->useOrderedReductions(*RdxDesc); 4758 unsigned LastPartForNewPhi = IsOrdered ? 1 : State.UF; 4759 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 4760 Value *EntryPart = PHINode::Create( 4761 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4762 State.set(PhiR, EntryPart, Part); 4763 } 4764 if (Legal->isFirstOrderRecurrence(P)) 4765 return; 4766 VPValue *StartVPV = PhiR->getStartValue(); 4767 Value *StartV = StartVPV->getLiveInIRValue(); 4768 4769 Value *Iden = nullptr; 4770 4771 assert(Legal->isReductionVariable(P) && StartV && 4772 "RdxDesc should only be set for reduction variables; in that case " 4773 "a StartV is also required"); 4774 RecurKind RK = RdxDesc->getRecurrenceKind(); 4775 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK)) { 4776 // MinMax reduction have the start value as their identify. 4777 if (ScalarPHI) { 4778 Iden = StartV; 4779 } else { 4780 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4781 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4782 StartV = Iden = 4783 Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident"); 4784 } 4785 } else { 4786 Constant *IdenC = RecurrenceDescriptor::getRecurrenceIdentity( 4787 RK, VecTy->getScalarType(), RdxDesc->getFastMathFlags()); 4788 Iden = IdenC; 4789 4790 if (!ScalarPHI) { 4791 Iden = ConstantVector::getSplat(State.VF, IdenC); 4792 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4793 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4794 Constant *Zero = Builder.getInt32(0); 4795 StartV = Builder.CreateInsertElement(Iden, StartV, Zero); 4796 } 4797 } 4798 4799 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 4800 Value *EntryPart = State.get(PhiR, Part); 4801 // Make sure to add the reduction start value only to the 4802 // first unroll part. 4803 Value *StartVal = (Part == 0) ? StartV : Iden; 4804 cast<PHINode>(EntryPart)->addIncoming(StartVal, LoopVectorPreHeader); 4805 } 4806 4807 return; 4808 } 4809 4810 assert(!Legal->isReductionVariable(P) && 4811 "reductions should be handled above"); 4812 4813 setDebugLocFromInst(Builder, P); 4814 4815 // This PHINode must be an induction variable. 4816 // Make sure that we know about it. 4817 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4818 4819 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4820 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4821 4822 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4823 // which can be found from the original scalar operations. 4824 switch (II.getKind()) { 4825 case InductionDescriptor::IK_NoInduction: 4826 llvm_unreachable("Unknown induction"); 4827 case InductionDescriptor::IK_IntInduction: 4828 case InductionDescriptor::IK_FpInduction: 4829 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4830 case InductionDescriptor::IK_PtrInduction: { 4831 // Handle the pointer induction variable case. 4832 assert(P->getType()->isPointerTy() && "Unexpected type."); 4833 4834 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4835 // This is the normalized GEP that starts counting at zero. 4836 Value *PtrInd = 4837 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4838 // Determine the number of scalars we need to generate for each unroll 4839 // iteration. If the instruction is uniform, we only need to generate the 4840 // first lane. Otherwise, we generate all VF values. 4841 bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF); 4842 unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue(); 4843 4844 bool NeedsVectorIndex = !IsUniform && VF.isScalable(); 4845 Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr; 4846 if (NeedsVectorIndex) { 4847 Type *VecIVTy = VectorType::get(PtrInd->getType(), VF); 4848 UnitStepVec = Builder.CreateStepVector(VecIVTy); 4849 PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd); 4850 } 4851 4852 for (unsigned Part = 0; Part < UF; ++Part) { 4853 Value *PartStart = createStepForVF( 4854 Builder, ConstantInt::get(PtrInd->getType(), Part), VF); 4855 4856 if (NeedsVectorIndex) { 4857 Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart); 4858 Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec); 4859 Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices); 4860 Value *SclrGep = 4861 emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II); 4862 SclrGep->setName("next.gep"); 4863 State.set(PhiR, SclrGep, Part); 4864 // We've cached the whole vector, which means we can support the 4865 // extraction of any lane. 4866 continue; 4867 } 4868 4869 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4870 Value *Idx = Builder.CreateAdd( 4871 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4872 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4873 Value *SclrGep = 4874 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4875 SclrGep->setName("next.gep"); 4876 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4877 } 4878 } 4879 return; 4880 } 4881 assert(isa<SCEVConstant>(II.getStep()) && 4882 "Induction step not a SCEV constant!"); 4883 Type *PhiType = II.getStep()->getType(); 4884 4885 // Build a pointer phi 4886 Value *ScalarStartValue = II.getStartValue(); 4887 Type *ScStValueType = ScalarStartValue->getType(); 4888 PHINode *NewPointerPhi = 4889 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4890 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4891 4892 // A pointer induction, performed by using a gep 4893 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4894 Instruction *InductionLoc = LoopLatch->getTerminator(); 4895 const SCEV *ScalarStep = II.getStep(); 4896 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4897 Value *ScalarStepValue = 4898 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4899 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4900 Value *NumUnrolledElems = 4901 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4902 Value *InductionGEP = GetElementPtrInst::Create( 4903 ScStValueType->getPointerElementType(), NewPointerPhi, 4904 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4905 InductionLoc); 4906 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4907 4908 // Create UF many actual address geps that use the pointer 4909 // phi as base and a vectorized version of the step value 4910 // (<step*0, ..., step*N>) as offset. 4911 for (unsigned Part = 0; Part < State.UF; ++Part) { 4912 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4913 Value *StartOffsetScalar = 4914 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4915 Value *StartOffset = 4916 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4917 // Create a vector of consecutive numbers from zero to VF. 4918 StartOffset = 4919 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4920 4921 Value *GEP = Builder.CreateGEP( 4922 ScStValueType->getPointerElementType(), NewPointerPhi, 4923 Builder.CreateMul( 4924 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4925 "vector.gep")); 4926 State.set(PhiR, GEP, Part); 4927 } 4928 } 4929 } 4930 } 4931 4932 /// A helper function for checking whether an integer division-related 4933 /// instruction may divide by zero (in which case it must be predicated if 4934 /// executed conditionally in the scalar code). 4935 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4936 /// Non-zero divisors that are non compile-time constants will not be 4937 /// converted into multiplication, so we will still end up scalarizing 4938 /// the division, but can do so w/o predication. 4939 static bool mayDivideByZero(Instruction &I) { 4940 assert((I.getOpcode() == Instruction::UDiv || 4941 I.getOpcode() == Instruction::SDiv || 4942 I.getOpcode() == Instruction::URem || 4943 I.getOpcode() == Instruction::SRem) && 4944 "Unexpected instruction"); 4945 Value *Divisor = I.getOperand(1); 4946 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4947 return !CInt || CInt->isZero(); 4948 } 4949 4950 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4951 VPUser &User, 4952 VPTransformState &State) { 4953 switch (I.getOpcode()) { 4954 case Instruction::Call: 4955 case Instruction::Br: 4956 case Instruction::PHI: 4957 case Instruction::GetElementPtr: 4958 case Instruction::Select: 4959 llvm_unreachable("This instruction is handled by a different recipe."); 4960 case Instruction::UDiv: 4961 case Instruction::SDiv: 4962 case Instruction::SRem: 4963 case Instruction::URem: 4964 case Instruction::Add: 4965 case Instruction::FAdd: 4966 case Instruction::Sub: 4967 case Instruction::FSub: 4968 case Instruction::FNeg: 4969 case Instruction::Mul: 4970 case Instruction::FMul: 4971 case Instruction::FDiv: 4972 case Instruction::FRem: 4973 case Instruction::Shl: 4974 case Instruction::LShr: 4975 case Instruction::AShr: 4976 case Instruction::And: 4977 case Instruction::Or: 4978 case Instruction::Xor: { 4979 // Just widen unops and binops. 4980 setDebugLocFromInst(Builder, &I); 4981 4982 for (unsigned Part = 0; Part < UF; ++Part) { 4983 SmallVector<Value *, 2> Ops; 4984 for (VPValue *VPOp : User.operands()) 4985 Ops.push_back(State.get(VPOp, Part)); 4986 4987 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4988 4989 if (auto *VecOp = dyn_cast<Instruction>(V)) 4990 VecOp->copyIRFlags(&I); 4991 4992 // Use this vector value for all users of the original instruction. 4993 State.set(Def, V, Part); 4994 addMetadata(V, &I); 4995 } 4996 4997 break; 4998 } 4999 case Instruction::ICmp: 5000 case Instruction::FCmp: { 5001 // Widen compares. Generate vector compares. 5002 bool FCmp = (I.getOpcode() == Instruction::FCmp); 5003 auto *Cmp = cast<CmpInst>(&I); 5004 setDebugLocFromInst(Builder, Cmp); 5005 for (unsigned Part = 0; Part < UF; ++Part) { 5006 Value *A = State.get(User.getOperand(0), Part); 5007 Value *B = State.get(User.getOperand(1), Part); 5008 Value *C = nullptr; 5009 if (FCmp) { 5010 // Propagate fast math flags. 5011 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 5012 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 5013 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 5014 } else { 5015 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 5016 } 5017 State.set(Def, C, Part); 5018 addMetadata(C, &I); 5019 } 5020 5021 break; 5022 } 5023 5024 case Instruction::ZExt: 5025 case Instruction::SExt: 5026 case Instruction::FPToUI: 5027 case Instruction::FPToSI: 5028 case Instruction::FPExt: 5029 case Instruction::PtrToInt: 5030 case Instruction::IntToPtr: 5031 case Instruction::SIToFP: 5032 case Instruction::UIToFP: 5033 case Instruction::Trunc: 5034 case Instruction::FPTrunc: 5035 case Instruction::BitCast: { 5036 auto *CI = cast<CastInst>(&I); 5037 setDebugLocFromInst(Builder, CI); 5038 5039 /// Vectorize casts. 5040 Type *DestTy = 5041 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 5042 5043 for (unsigned Part = 0; Part < UF; ++Part) { 5044 Value *A = State.get(User.getOperand(0), Part); 5045 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 5046 State.set(Def, Cast, Part); 5047 addMetadata(Cast, &I); 5048 } 5049 break; 5050 } 5051 default: 5052 // This instruction is not vectorized by simple widening. 5053 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 5054 llvm_unreachable("Unhandled instruction!"); 5055 } // end of switch. 5056 } 5057 5058 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 5059 VPUser &ArgOperands, 5060 VPTransformState &State) { 5061 assert(!isa<DbgInfoIntrinsic>(I) && 5062 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 5063 setDebugLocFromInst(Builder, &I); 5064 5065 Module *M = I.getParent()->getParent()->getParent(); 5066 auto *CI = cast<CallInst>(&I); 5067 5068 SmallVector<Type *, 4> Tys; 5069 for (Value *ArgOperand : CI->arg_operands()) 5070 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 5071 5072 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5073 5074 // The flag shows whether we use Intrinsic or a usual Call for vectorized 5075 // version of the instruction. 5076 // Is it beneficial to perform intrinsic call compared to lib call? 5077 bool NeedToScalarize = false; 5078 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 5079 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 5080 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 5081 assert((UseVectorIntrinsic || !NeedToScalarize) && 5082 "Instruction should be scalarized elsewhere."); 5083 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 5084 "Either the intrinsic cost or vector call cost must be valid"); 5085 5086 for (unsigned Part = 0; Part < UF; ++Part) { 5087 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 5088 SmallVector<Value *, 4> Args; 5089 for (auto &I : enumerate(ArgOperands.operands())) { 5090 // Some intrinsics have a scalar argument - don't replace it with a 5091 // vector. 5092 Value *Arg; 5093 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 5094 Arg = State.get(I.value(), Part); 5095 else { 5096 Arg = State.get(I.value(), VPIteration(0, 0)); 5097 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 5098 TysForDecl.push_back(Arg->getType()); 5099 } 5100 Args.push_back(Arg); 5101 } 5102 5103 Function *VectorF; 5104 if (UseVectorIntrinsic) { 5105 // Use vector version of the intrinsic. 5106 if (VF.isVector()) 5107 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 5108 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 5109 assert(VectorF && "Can't retrieve vector intrinsic."); 5110 } else { 5111 // Use vector version of the function call. 5112 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 5113 #ifndef NDEBUG 5114 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 5115 "Can't create vector function."); 5116 #endif 5117 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 5118 } 5119 SmallVector<OperandBundleDef, 1> OpBundles; 5120 CI->getOperandBundlesAsDefs(OpBundles); 5121 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 5122 5123 if (isa<FPMathOperator>(V)) 5124 V->copyFastMathFlags(CI); 5125 5126 State.set(Def, V, Part); 5127 addMetadata(V, &I); 5128 } 5129 } 5130 5131 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 5132 VPUser &Operands, 5133 bool InvariantCond, 5134 VPTransformState &State) { 5135 setDebugLocFromInst(Builder, &I); 5136 5137 // The condition can be loop invariant but still defined inside the 5138 // loop. This means that we can't just use the original 'cond' value. 5139 // We have to take the 'vectorized' value and pick the first lane. 5140 // Instcombine will make this a no-op. 5141 auto *InvarCond = InvariantCond 5142 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 5143 : nullptr; 5144 5145 for (unsigned Part = 0; Part < UF; ++Part) { 5146 Value *Cond = 5147 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 5148 Value *Op0 = State.get(Operands.getOperand(1), Part); 5149 Value *Op1 = State.get(Operands.getOperand(2), Part); 5150 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 5151 State.set(VPDef, Sel, Part); 5152 addMetadata(Sel, &I); 5153 } 5154 } 5155 5156 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 5157 // We should not collect Scalars more than once per VF. Right now, this 5158 // function is called from collectUniformsAndScalars(), which already does 5159 // this check. Collecting Scalars for VF=1 does not make any sense. 5160 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 5161 "This function should not be visited twice for the same VF"); 5162 5163 SmallSetVector<Instruction *, 8> Worklist; 5164 5165 // These sets are used to seed the analysis with pointers used by memory 5166 // accesses that will remain scalar. 5167 SmallSetVector<Instruction *, 8> ScalarPtrs; 5168 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5169 auto *Latch = TheLoop->getLoopLatch(); 5170 5171 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5172 // The pointer operands of loads and stores will be scalar as long as the 5173 // memory access is not a gather or scatter operation. The value operand of a 5174 // store will remain scalar if the store is scalarized. 5175 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5176 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5177 assert(WideningDecision != CM_Unknown && 5178 "Widening decision should be ready at this moment"); 5179 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5180 if (Ptr == Store->getValueOperand()) 5181 return WideningDecision == CM_Scalarize; 5182 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 5183 "Ptr is neither a value or pointer operand"); 5184 return WideningDecision != CM_GatherScatter; 5185 }; 5186 5187 // A helper that returns true if the given value is a bitcast or 5188 // getelementptr instruction contained in the loop. 5189 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5190 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5191 isa<GetElementPtrInst>(V)) && 5192 !TheLoop->isLoopInvariant(V); 5193 }; 5194 5195 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 5196 if (!isa<PHINode>(Ptr) || 5197 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 5198 return false; 5199 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 5200 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 5201 return false; 5202 return isScalarUse(MemAccess, Ptr); 5203 }; 5204 5205 // A helper that evaluates a memory access's use of a pointer. If the 5206 // pointer is actually the pointer induction of a loop, it is being 5207 // inserted into Worklist. If the use will be a scalar use, and the 5208 // pointer is only used by memory accesses, we place the pointer in 5209 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 5210 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5211 if (isScalarPtrInduction(MemAccess, Ptr)) { 5212 Worklist.insert(cast<Instruction>(Ptr)); 5213 Instruction *Update = cast<Instruction>( 5214 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 5215 Worklist.insert(Update); 5216 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 5217 << "\n"); 5218 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 5219 << "\n"); 5220 return; 5221 } 5222 // We only care about bitcast and getelementptr instructions contained in 5223 // the loop. 5224 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5225 return; 5226 5227 // If the pointer has already been identified as scalar (e.g., if it was 5228 // also identified as uniform), there's nothing to do. 5229 auto *I = cast<Instruction>(Ptr); 5230 if (Worklist.count(I)) 5231 return; 5232 5233 // If the use of the pointer will be a scalar use, and all users of the 5234 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5235 // place the pointer in PossibleNonScalarPtrs. 5236 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5237 return isa<LoadInst>(U) || isa<StoreInst>(U); 5238 })) 5239 ScalarPtrs.insert(I); 5240 else 5241 PossibleNonScalarPtrs.insert(I); 5242 }; 5243 5244 // We seed the scalars analysis with three classes of instructions: (1) 5245 // instructions marked uniform-after-vectorization and (2) bitcast, 5246 // getelementptr and (pointer) phi instructions used by memory accesses 5247 // requiring a scalar use. 5248 // 5249 // (1) Add to the worklist all instructions that have been identified as 5250 // uniform-after-vectorization. 5251 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5252 5253 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5254 // memory accesses requiring a scalar use. The pointer operands of loads and 5255 // stores will be scalar as long as the memory accesses is not a gather or 5256 // scatter operation. The value operand of a store will remain scalar if the 5257 // store is scalarized. 5258 for (auto *BB : TheLoop->blocks()) 5259 for (auto &I : *BB) { 5260 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5261 evaluatePtrUse(Load, Load->getPointerOperand()); 5262 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5263 evaluatePtrUse(Store, Store->getPointerOperand()); 5264 evaluatePtrUse(Store, Store->getValueOperand()); 5265 } 5266 } 5267 for (auto *I : ScalarPtrs) 5268 if (!PossibleNonScalarPtrs.count(I)) { 5269 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5270 Worklist.insert(I); 5271 } 5272 5273 // Insert the forced scalars. 5274 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5275 // induction variable when the PHI user is scalarized. 5276 auto ForcedScalar = ForcedScalars.find(VF); 5277 if (ForcedScalar != ForcedScalars.end()) 5278 for (auto *I : ForcedScalar->second) 5279 Worklist.insert(I); 5280 5281 // Expand the worklist by looking through any bitcasts and getelementptr 5282 // instructions we've already identified as scalar. This is similar to the 5283 // expansion step in collectLoopUniforms(); however, here we're only 5284 // expanding to include additional bitcasts and getelementptr instructions. 5285 unsigned Idx = 0; 5286 while (Idx != Worklist.size()) { 5287 Instruction *Dst = Worklist[Idx++]; 5288 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5289 continue; 5290 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5291 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5292 auto *J = cast<Instruction>(U); 5293 return !TheLoop->contains(J) || Worklist.count(J) || 5294 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5295 isScalarUse(J, Src)); 5296 })) { 5297 Worklist.insert(Src); 5298 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5299 } 5300 } 5301 5302 // An induction variable will remain scalar if all users of the induction 5303 // variable and induction variable update remain scalar. 5304 for (auto &Induction : Legal->getInductionVars()) { 5305 auto *Ind = Induction.first; 5306 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5307 5308 // If tail-folding is applied, the primary induction variable will be used 5309 // to feed a vector compare. 5310 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 5311 continue; 5312 5313 // Determine if all users of the induction variable are scalar after 5314 // vectorization. 5315 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5316 auto *I = cast<Instruction>(U); 5317 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5318 }); 5319 if (!ScalarInd) 5320 continue; 5321 5322 // Determine if all users of the induction variable update instruction are 5323 // scalar after vectorization. 5324 auto ScalarIndUpdate = 5325 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5326 auto *I = cast<Instruction>(U); 5327 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5328 }); 5329 if (!ScalarIndUpdate) 5330 continue; 5331 5332 // The induction variable and its update instruction will remain scalar. 5333 Worklist.insert(Ind); 5334 Worklist.insert(IndUpdate); 5335 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5336 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 5337 << "\n"); 5338 } 5339 5340 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5341 } 5342 5343 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const { 5344 if (!blockNeedsPredication(I->getParent())) 5345 return false; 5346 switch(I->getOpcode()) { 5347 default: 5348 break; 5349 case Instruction::Load: 5350 case Instruction::Store: { 5351 if (!Legal->isMaskRequired(I)) 5352 return false; 5353 auto *Ptr = getLoadStorePointerOperand(I); 5354 auto *Ty = getLoadStoreType(I); 5355 const Align Alignment = getLoadStoreAlignment(I); 5356 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 5357 TTI.isLegalMaskedGather(Ty, Alignment)) 5358 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 5359 TTI.isLegalMaskedScatter(Ty, Alignment)); 5360 } 5361 case Instruction::UDiv: 5362 case Instruction::SDiv: 5363 case Instruction::SRem: 5364 case Instruction::URem: 5365 return mayDivideByZero(*I); 5366 } 5367 return false; 5368 } 5369 5370 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5371 Instruction *I, ElementCount VF) { 5372 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5373 assert(getWideningDecision(I, VF) == CM_Unknown && 5374 "Decision should not be set yet."); 5375 auto *Group = getInterleavedAccessGroup(I); 5376 assert(Group && "Must have a group."); 5377 5378 // If the instruction's allocated size doesn't equal it's type size, it 5379 // requires padding and will be scalarized. 5380 auto &DL = I->getModule()->getDataLayout(); 5381 auto *ScalarTy = getLoadStoreType(I); 5382 if (hasIrregularType(ScalarTy, DL)) 5383 return false; 5384 5385 // Check if masking is required. 5386 // A Group may need masking for one of two reasons: it resides in a block that 5387 // needs predication, or it was decided to use masking to deal with gaps. 5388 bool PredicatedAccessRequiresMasking = 5389 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 5390 bool AccessWithGapsRequiresMasking = 5391 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5392 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 5393 return true; 5394 5395 // If masked interleaving is required, we expect that the user/target had 5396 // enabled it, because otherwise it either wouldn't have been created or 5397 // it should have been invalidated by the CostModel. 5398 assert(useMaskedInterleavedAccesses(TTI) && 5399 "Masked interleave-groups for predicated accesses are not enabled."); 5400 5401 auto *Ty = getLoadStoreType(I); 5402 const Align Alignment = getLoadStoreAlignment(I); 5403 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5404 : TTI.isLegalMaskedStore(Ty, Alignment); 5405 } 5406 5407 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5408 Instruction *I, ElementCount VF) { 5409 // Get and ensure we have a valid memory instruction. 5410 LoadInst *LI = dyn_cast<LoadInst>(I); 5411 StoreInst *SI = dyn_cast<StoreInst>(I); 5412 assert((LI || SI) && "Invalid memory instruction"); 5413 5414 auto *Ptr = getLoadStorePointerOperand(I); 5415 5416 // In order to be widened, the pointer should be consecutive, first of all. 5417 if (!Legal->isConsecutivePtr(Ptr)) 5418 return false; 5419 5420 // If the instruction is a store located in a predicated block, it will be 5421 // scalarized. 5422 if (isScalarWithPredication(I)) 5423 return false; 5424 5425 // If the instruction's allocated size doesn't equal it's type size, it 5426 // requires padding and will be scalarized. 5427 auto &DL = I->getModule()->getDataLayout(); 5428 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5429 if (hasIrregularType(ScalarTy, DL)) 5430 return false; 5431 5432 return true; 5433 } 5434 5435 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5436 // We should not collect Uniforms more than once per VF. Right now, 5437 // this function is called from collectUniformsAndScalars(), which 5438 // already does this check. Collecting Uniforms for VF=1 does not make any 5439 // sense. 5440 5441 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5442 "This function should not be visited twice for the same VF"); 5443 5444 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5445 // not analyze again. Uniforms.count(VF) will return 1. 5446 Uniforms[VF].clear(); 5447 5448 // We now know that the loop is vectorizable! 5449 // Collect instructions inside the loop that will remain uniform after 5450 // vectorization. 5451 5452 // Global values, params and instructions outside of current loop are out of 5453 // scope. 5454 auto isOutOfScope = [&](Value *V) -> bool { 5455 Instruction *I = dyn_cast<Instruction>(V); 5456 return (!I || !TheLoop->contains(I)); 5457 }; 5458 5459 SetVector<Instruction *> Worklist; 5460 BasicBlock *Latch = TheLoop->getLoopLatch(); 5461 5462 // Instructions that are scalar with predication must not be considered 5463 // uniform after vectorization, because that would create an erroneous 5464 // replicating region where only a single instance out of VF should be formed. 5465 // TODO: optimize such seldom cases if found important, see PR40816. 5466 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5467 if (isOutOfScope(I)) { 5468 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5469 << *I << "\n"); 5470 return; 5471 } 5472 if (isScalarWithPredication(I)) { 5473 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5474 << *I << "\n"); 5475 return; 5476 } 5477 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5478 Worklist.insert(I); 5479 }; 5480 5481 // Start with the conditional branch. If the branch condition is an 5482 // instruction contained in the loop that is only used by the branch, it is 5483 // uniform. 5484 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5485 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5486 addToWorklistIfAllowed(Cmp); 5487 5488 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5489 InstWidening WideningDecision = getWideningDecision(I, VF); 5490 assert(WideningDecision != CM_Unknown && 5491 "Widening decision should be ready at this moment"); 5492 5493 // A uniform memory op is itself uniform. We exclude uniform stores 5494 // here as they demand the last lane, not the first one. 5495 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5496 assert(WideningDecision == CM_Scalarize); 5497 return true; 5498 } 5499 5500 return (WideningDecision == CM_Widen || 5501 WideningDecision == CM_Widen_Reverse || 5502 WideningDecision == CM_Interleave); 5503 }; 5504 5505 5506 // Returns true if Ptr is the pointer operand of a memory access instruction 5507 // I, and I is known to not require scalarization. 5508 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5509 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5510 }; 5511 5512 // Holds a list of values which are known to have at least one uniform use. 5513 // Note that there may be other uses which aren't uniform. A "uniform use" 5514 // here is something which only demands lane 0 of the unrolled iterations; 5515 // it does not imply that all lanes produce the same value (e.g. this is not 5516 // the usual meaning of uniform) 5517 SetVector<Value *> HasUniformUse; 5518 5519 // Scan the loop for instructions which are either a) known to have only 5520 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5521 for (auto *BB : TheLoop->blocks()) 5522 for (auto &I : *BB) { 5523 // If there's no pointer operand, there's nothing to do. 5524 auto *Ptr = getLoadStorePointerOperand(&I); 5525 if (!Ptr) 5526 continue; 5527 5528 // A uniform memory op is itself uniform. We exclude uniform stores 5529 // here as they demand the last lane, not the first one. 5530 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5531 addToWorklistIfAllowed(&I); 5532 5533 if (isUniformDecision(&I, VF)) { 5534 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5535 HasUniformUse.insert(Ptr); 5536 } 5537 } 5538 5539 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5540 // demanding) users. Since loops are assumed to be in LCSSA form, this 5541 // disallows uses outside the loop as well. 5542 for (auto *V : HasUniformUse) { 5543 if (isOutOfScope(V)) 5544 continue; 5545 auto *I = cast<Instruction>(V); 5546 auto UsersAreMemAccesses = 5547 llvm::all_of(I->users(), [&](User *U) -> bool { 5548 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5549 }); 5550 if (UsersAreMemAccesses) 5551 addToWorklistIfAllowed(I); 5552 } 5553 5554 // Expand Worklist in topological order: whenever a new instruction 5555 // is added , its users should be already inside Worklist. It ensures 5556 // a uniform instruction will only be used by uniform instructions. 5557 unsigned idx = 0; 5558 while (idx != Worklist.size()) { 5559 Instruction *I = Worklist[idx++]; 5560 5561 for (auto OV : I->operand_values()) { 5562 // isOutOfScope operands cannot be uniform instructions. 5563 if (isOutOfScope(OV)) 5564 continue; 5565 // First order recurrence Phi's should typically be considered 5566 // non-uniform. 5567 auto *OP = dyn_cast<PHINode>(OV); 5568 if (OP && Legal->isFirstOrderRecurrence(OP)) 5569 continue; 5570 // If all the users of the operand are uniform, then add the 5571 // operand into the uniform worklist. 5572 auto *OI = cast<Instruction>(OV); 5573 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5574 auto *J = cast<Instruction>(U); 5575 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5576 })) 5577 addToWorklistIfAllowed(OI); 5578 } 5579 } 5580 5581 // For an instruction to be added into Worklist above, all its users inside 5582 // the loop should also be in Worklist. However, this condition cannot be 5583 // true for phi nodes that form a cyclic dependence. We must process phi 5584 // nodes separately. An induction variable will remain uniform if all users 5585 // of the induction variable and induction variable update remain uniform. 5586 // The code below handles both pointer and non-pointer induction variables. 5587 for (auto &Induction : Legal->getInductionVars()) { 5588 auto *Ind = Induction.first; 5589 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5590 5591 // Determine if all users of the induction variable are uniform after 5592 // vectorization. 5593 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5594 auto *I = cast<Instruction>(U); 5595 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5596 isVectorizedMemAccessUse(I, Ind); 5597 }); 5598 if (!UniformInd) 5599 continue; 5600 5601 // Determine if all users of the induction variable update instruction are 5602 // uniform after vectorization. 5603 auto UniformIndUpdate = 5604 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5605 auto *I = cast<Instruction>(U); 5606 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5607 isVectorizedMemAccessUse(I, IndUpdate); 5608 }); 5609 if (!UniformIndUpdate) 5610 continue; 5611 5612 // The induction variable and its update instruction will remain uniform. 5613 addToWorklistIfAllowed(Ind); 5614 addToWorklistIfAllowed(IndUpdate); 5615 } 5616 5617 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5618 } 5619 5620 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5621 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5622 5623 if (Legal->getRuntimePointerChecking()->Need) { 5624 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5625 "runtime pointer checks needed. Enable vectorization of this " 5626 "loop with '#pragma clang loop vectorize(enable)' when " 5627 "compiling with -Os/-Oz", 5628 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5629 return true; 5630 } 5631 5632 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5633 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5634 "runtime SCEV checks needed. Enable vectorization of this " 5635 "loop with '#pragma clang loop vectorize(enable)' when " 5636 "compiling with -Os/-Oz", 5637 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5638 return true; 5639 } 5640 5641 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5642 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5643 reportVectorizationFailure("Runtime stride check for small trip count", 5644 "runtime stride == 1 checks needed. Enable vectorization of " 5645 "this loop without such check by compiling with -Os/-Oz", 5646 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5647 return true; 5648 } 5649 5650 return false; 5651 } 5652 5653 ElementCount 5654 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5655 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5656 reportVectorizationInfo( 5657 "Disabling scalable vectorization, because target does not " 5658 "support scalable vectors.", 5659 "ScalableVectorsUnsupported", ORE, TheLoop); 5660 return ElementCount::getScalable(0); 5661 } 5662 5663 if (Hints->isScalableVectorizationDisabled()) { 5664 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5665 "ScalableVectorizationDisabled", ORE, TheLoop); 5666 return ElementCount::getScalable(0); 5667 } 5668 5669 auto MaxScalableVF = ElementCount::getScalable( 5670 std::numeric_limits<ElementCount::ScalarTy>::max()); 5671 5672 // Disable scalable vectorization if the loop contains unsupported reductions. 5673 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5674 // FIXME: While for scalable vectors this is currently sufficient, this should 5675 // be replaced by a more detailed mechanism that filters out specific VFs, 5676 // instead of invalidating vectorization for a whole set of VFs based on the 5677 // MaxVF. 5678 if (!canVectorizeReductions(MaxScalableVF)) { 5679 reportVectorizationInfo( 5680 "Scalable vectorization not supported for the reduction " 5681 "operations found in this loop.", 5682 "ScalableVFUnfeasible", ORE, TheLoop); 5683 return ElementCount::getScalable(0); 5684 } 5685 5686 if (Legal->isSafeForAnyVectorWidth()) 5687 return MaxScalableVF; 5688 5689 // Limit MaxScalableVF by the maximum safe dependence distance. 5690 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5691 MaxScalableVF = ElementCount::getScalable( 5692 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5693 if (!MaxScalableVF) 5694 reportVectorizationInfo( 5695 "Max legal vector width too small, scalable vectorization " 5696 "unfeasible.", 5697 "ScalableVFUnfeasible", ORE, TheLoop); 5698 5699 return MaxScalableVF; 5700 } 5701 5702 FixedScalableVFPair 5703 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5704 ElementCount UserVF) { 5705 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5706 unsigned SmallestType, WidestType; 5707 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5708 5709 // Get the maximum safe dependence distance in bits computed by LAA. 5710 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5711 // the memory accesses that is most restrictive (involved in the smallest 5712 // dependence distance). 5713 unsigned MaxSafeElements = 5714 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5715 5716 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5717 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5718 5719 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5720 << ".\n"); 5721 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5722 << ".\n"); 5723 5724 // First analyze the UserVF, fall back if the UserVF should be ignored. 5725 if (UserVF) { 5726 auto MaxSafeUserVF = 5727 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5728 5729 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) 5730 return UserVF; 5731 5732 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5733 5734 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5735 // is better to ignore the hint and let the compiler choose a suitable VF. 5736 if (!UserVF.isScalable()) { 5737 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5738 << " is unsafe, clamping to max safe VF=" 5739 << MaxSafeFixedVF << ".\n"); 5740 ORE->emit([&]() { 5741 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5742 TheLoop->getStartLoc(), 5743 TheLoop->getHeader()) 5744 << "User-specified vectorization factor " 5745 << ore::NV("UserVectorizationFactor", UserVF) 5746 << " is unsafe, clamping to maximum safe vectorization factor " 5747 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5748 }); 5749 return MaxSafeFixedVF; 5750 } 5751 5752 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5753 << " is unsafe. Ignoring scalable UserVF.\n"); 5754 ORE->emit([&]() { 5755 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5756 TheLoop->getStartLoc(), 5757 TheLoop->getHeader()) 5758 << "User-specified vectorization factor " 5759 << ore::NV("UserVectorizationFactor", UserVF) 5760 << " is unsafe. Ignoring the hint to let the compiler pick a " 5761 "suitable VF."; 5762 }); 5763 } 5764 5765 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5766 << " / " << WidestType << " bits.\n"); 5767 5768 FixedScalableVFPair Result(ElementCount::getFixed(1), 5769 ElementCount::getScalable(0)); 5770 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5771 WidestType, MaxSafeFixedVF)) 5772 Result.FixedVF = MaxVF; 5773 5774 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5775 WidestType, MaxSafeScalableVF)) 5776 if (MaxVF.isScalable()) { 5777 Result.ScalableVF = MaxVF; 5778 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5779 << "\n"); 5780 } 5781 5782 return Result; 5783 } 5784 5785 FixedScalableVFPair 5786 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5787 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5788 // TODO: It may by useful to do since it's still likely to be dynamically 5789 // uniform if the target can skip. 5790 reportVectorizationFailure( 5791 "Not inserting runtime ptr check for divergent target", 5792 "runtime pointer checks needed. Not enabled for divergent target", 5793 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5794 return FixedScalableVFPair::getNone(); 5795 } 5796 5797 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5798 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5799 if (TC == 1) { 5800 reportVectorizationFailure("Single iteration (non) loop", 5801 "loop trip count is one, irrelevant for vectorization", 5802 "SingleIterationLoop", ORE, TheLoop); 5803 return FixedScalableVFPair::getNone(); 5804 } 5805 5806 switch (ScalarEpilogueStatus) { 5807 case CM_ScalarEpilogueAllowed: 5808 return computeFeasibleMaxVF(TC, UserVF); 5809 case CM_ScalarEpilogueNotAllowedUsePredicate: 5810 LLVM_FALLTHROUGH; 5811 case CM_ScalarEpilogueNotNeededUsePredicate: 5812 LLVM_DEBUG( 5813 dbgs() << "LV: vector predicate hint/switch found.\n" 5814 << "LV: Not allowing scalar epilogue, creating predicated " 5815 << "vector loop.\n"); 5816 break; 5817 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5818 // fallthrough as a special case of OptForSize 5819 case CM_ScalarEpilogueNotAllowedOptSize: 5820 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5821 LLVM_DEBUG( 5822 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5823 else 5824 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5825 << "count.\n"); 5826 5827 // Bail if runtime checks are required, which are not good when optimising 5828 // for size. 5829 if (runtimeChecksRequired()) 5830 return FixedScalableVFPair::getNone(); 5831 5832 break; 5833 } 5834 5835 // The only loops we can vectorize without a scalar epilogue, are loops with 5836 // a bottom-test and a single exiting block. We'd have to handle the fact 5837 // that not every instruction executes on the last iteration. This will 5838 // require a lane mask which varies through the vector loop body. (TODO) 5839 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5840 // If there was a tail-folding hint/switch, but we can't fold the tail by 5841 // masking, fallback to a vectorization with a scalar epilogue. 5842 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5843 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5844 "scalar epilogue instead.\n"); 5845 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5846 return computeFeasibleMaxVF(TC, UserVF); 5847 } 5848 return FixedScalableVFPair::getNone(); 5849 } 5850 5851 // Now try the tail folding 5852 5853 // Invalidate interleave groups that require an epilogue if we can't mask 5854 // the interleave-group. 5855 if (!useMaskedInterleavedAccesses(TTI)) { 5856 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5857 "No decisions should have been taken at this point"); 5858 // Note: There is no need to invalidate any cost modeling decisions here, as 5859 // non where taken so far. 5860 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5861 } 5862 5863 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF); 5864 // Avoid tail folding if the trip count is known to be a multiple of any VF 5865 // we chose. 5866 // FIXME: The condition below pessimises the case for fixed-width vectors, 5867 // when scalable VFs are also candidates for vectorization. 5868 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5869 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5870 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5871 "MaxFixedVF must be a power of 2"); 5872 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5873 : MaxFixedVF.getFixedValue(); 5874 ScalarEvolution *SE = PSE.getSE(); 5875 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5876 const SCEV *ExitCount = SE->getAddExpr( 5877 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5878 const SCEV *Rem = SE->getURemExpr( 5879 SE->applyLoopGuards(ExitCount, TheLoop), 5880 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5881 if (Rem->isZero()) { 5882 // Accept MaxFixedVF if we do not have a tail. 5883 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5884 return MaxFactors; 5885 } 5886 } 5887 5888 // If we don't know the precise trip count, or if the trip count that we 5889 // found modulo the vectorization factor is not zero, try to fold the tail 5890 // by masking. 5891 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5892 if (Legal->prepareToFoldTailByMasking()) { 5893 FoldTailByMasking = true; 5894 return MaxFactors; 5895 } 5896 5897 // If there was a tail-folding hint/switch, but we can't fold the tail by 5898 // masking, fallback to a vectorization with a scalar epilogue. 5899 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5900 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5901 "scalar epilogue instead.\n"); 5902 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5903 return MaxFactors; 5904 } 5905 5906 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5907 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5908 return FixedScalableVFPair::getNone(); 5909 } 5910 5911 if (TC == 0) { 5912 reportVectorizationFailure( 5913 "Unable to calculate the loop count due to complex control flow", 5914 "unable to calculate the loop count due to complex control flow", 5915 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5916 return FixedScalableVFPair::getNone(); 5917 } 5918 5919 reportVectorizationFailure( 5920 "Cannot optimize for size and vectorize at the same time.", 5921 "cannot optimize for size and vectorize at the same time. " 5922 "Enable vectorization of this loop with '#pragma clang loop " 5923 "vectorize(enable)' when compiling with -Os/-Oz", 5924 "NoTailLoopWithOptForSize", ORE, TheLoop); 5925 return FixedScalableVFPair::getNone(); 5926 } 5927 5928 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5929 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5930 const ElementCount &MaxSafeVF) { 5931 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5932 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5933 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5934 : TargetTransformInfo::RGK_FixedWidthVector); 5935 5936 // Convenience function to return the minimum of two ElementCounts. 5937 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5938 assert((LHS.isScalable() == RHS.isScalable()) && 5939 "Scalable flags must match"); 5940 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5941 }; 5942 5943 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5944 // Note that both WidestRegister and WidestType may not be a powers of 2. 5945 auto MaxVectorElementCount = ElementCount::get( 5946 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5947 ComputeScalableMaxVF); 5948 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5949 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5950 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5951 5952 if (!MaxVectorElementCount) { 5953 LLVM_DEBUG(dbgs() << "LV: The target has no " 5954 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5955 << " vector registers.\n"); 5956 return ElementCount::getFixed(1); 5957 } 5958 5959 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5960 if (ConstTripCount && 5961 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5962 isPowerOf2_32(ConstTripCount)) { 5963 // We need to clamp the VF to be the ConstTripCount. There is no point in 5964 // choosing a higher viable VF as done in the loop below. If 5965 // MaxVectorElementCount is scalable, we only fall back on a fixed VF when 5966 // the TC is less than or equal to the known number of lanes. 5967 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5968 << ConstTripCount << "\n"); 5969 return TripCountEC; 5970 } 5971 5972 ElementCount MaxVF = MaxVectorElementCount; 5973 if (TTI.shouldMaximizeVectorBandwidth() || 5974 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5975 auto MaxVectorElementCountMaxBW = ElementCount::get( 5976 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5977 ComputeScalableMaxVF); 5978 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5979 5980 // Collect all viable vectorization factors larger than the default MaxVF 5981 // (i.e. MaxVectorElementCount). 5982 SmallVector<ElementCount, 8> VFs; 5983 for (ElementCount VS = MaxVectorElementCount * 2; 5984 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5985 VFs.push_back(VS); 5986 5987 // For each VF calculate its register usage. 5988 auto RUs = calculateRegisterUsage(VFs); 5989 5990 // Select the largest VF which doesn't require more registers than existing 5991 // ones. 5992 for (int i = RUs.size() - 1; i >= 0; --i) { 5993 bool Selected = true; 5994 for (auto &pair : RUs[i].MaxLocalUsers) { 5995 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5996 if (pair.second > TargetNumRegisters) 5997 Selected = false; 5998 } 5999 if (Selected) { 6000 MaxVF = VFs[i]; 6001 break; 6002 } 6003 } 6004 if (ElementCount MinVF = 6005 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 6006 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 6007 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 6008 << ") with target's minimum: " << MinVF << '\n'); 6009 MaxVF = MinVF; 6010 } 6011 } 6012 } 6013 return MaxVF; 6014 } 6015 6016 bool LoopVectorizationCostModel::isMoreProfitable( 6017 const VectorizationFactor &A, const VectorizationFactor &B) const { 6018 InstructionCost::CostType CostA = *A.Cost.getValue(); 6019 InstructionCost::CostType CostB = *B.Cost.getValue(); 6020 6021 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 6022 6023 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 6024 MaxTripCount) { 6025 // If we are folding the tail and the trip count is a known (possibly small) 6026 // constant, the trip count will be rounded up to an integer number of 6027 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 6028 // which we compare directly. When not folding the tail, the total cost will 6029 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 6030 // approximated with the per-lane cost below instead of using the tripcount 6031 // as here. 6032 int64_t RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 6033 int64_t RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 6034 return RTCostA < RTCostB; 6035 } 6036 6037 // When set to preferred, for now assume vscale may be larger than 1, so 6038 // that scalable vectorization is slightly favorable over fixed-width 6039 // vectorization. 6040 if (Hints->isScalableVectorizationPreferred()) 6041 if (A.Width.isScalable() && !B.Width.isScalable()) 6042 return (CostA * B.Width.getKnownMinValue()) <= 6043 (CostB * A.Width.getKnownMinValue()); 6044 6045 // To avoid the need for FP division: 6046 // (CostA / A.Width) < (CostB / B.Width) 6047 // <=> (CostA * B.Width) < (CostB * A.Width) 6048 return (CostA * B.Width.getKnownMinValue()) < 6049 (CostB * A.Width.getKnownMinValue()); 6050 } 6051 6052 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 6053 const ElementCountSet &VFCandidates) { 6054 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 6055 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 6056 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 6057 assert(VFCandidates.count(ElementCount::getFixed(1)) && 6058 "Expected Scalar VF to be a candidate"); 6059 6060 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 6061 VectorizationFactor ChosenFactor = ScalarCost; 6062 6063 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6064 if (ForceVectorization && VFCandidates.size() > 1) { 6065 // Ignore scalar width, because the user explicitly wants vectorization. 6066 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 6067 // evaluation. 6068 ChosenFactor.Cost = std::numeric_limits<InstructionCost::CostType>::max(); 6069 } 6070 6071 for (const auto &i : VFCandidates) { 6072 // The cost for scalar VF=1 is already calculated, so ignore it. 6073 if (i.isScalar()) 6074 continue; 6075 6076 // Notice that the vector loop needs to be executed less times, so 6077 // we need to divide the cost of the vector loops by the width of 6078 // the vector elements. 6079 VectorizationCostTy C = expectedCost(i); 6080 6081 assert(C.first.isValid() && "Unexpected invalid cost for vector loop"); 6082 VectorizationFactor Candidate(i, C.first); 6083 LLVM_DEBUG( 6084 dbgs() << "LV: Vector loop of width " << i << " costs: " 6085 << (*Candidate.Cost.getValue() / 6086 Candidate.Width.getKnownMinValue()) 6087 << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "") 6088 << ".\n"); 6089 6090 if (!C.second && !ForceVectorization) { 6091 LLVM_DEBUG( 6092 dbgs() << "LV: Not considering vector loop of width " << i 6093 << " because it will not generate any vector instructions.\n"); 6094 continue; 6095 } 6096 6097 // If profitable add it to ProfitableVF list. 6098 if (isMoreProfitable(Candidate, ScalarCost)) 6099 ProfitableVFs.push_back(Candidate); 6100 6101 if (isMoreProfitable(Candidate, ChosenFactor)) 6102 ChosenFactor = Candidate; 6103 } 6104 6105 if (!EnableCondStoresVectorization && NumPredStores) { 6106 reportVectorizationFailure("There are conditional stores.", 6107 "store that is conditionally executed prevents vectorization", 6108 "ConditionalStore", ORE, TheLoop); 6109 ChosenFactor = ScalarCost; 6110 } 6111 6112 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 6113 *ChosenFactor.Cost.getValue() >= *ScalarCost.Cost.getValue()) 6114 dbgs() 6115 << "LV: Vectorization seems to be not beneficial, " 6116 << "but was forced by a user.\n"); 6117 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 6118 return ChosenFactor; 6119 } 6120 6121 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 6122 const Loop &L, ElementCount VF) const { 6123 // Cross iteration phis such as reductions need special handling and are 6124 // currently unsupported. 6125 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 6126 return Legal->isFirstOrderRecurrence(&Phi) || 6127 Legal->isReductionVariable(&Phi); 6128 })) 6129 return false; 6130 6131 // Phis with uses outside of the loop require special handling and are 6132 // currently unsupported. 6133 for (auto &Entry : Legal->getInductionVars()) { 6134 // Look for uses of the value of the induction at the last iteration. 6135 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 6136 for (User *U : PostInc->users()) 6137 if (!L.contains(cast<Instruction>(U))) 6138 return false; 6139 // Look for uses of penultimate value of the induction. 6140 for (User *U : Entry.first->users()) 6141 if (!L.contains(cast<Instruction>(U))) 6142 return false; 6143 } 6144 6145 // Induction variables that are widened require special handling that is 6146 // currently not supported. 6147 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 6148 return !(this->isScalarAfterVectorization(Entry.first, VF) || 6149 this->isProfitableToScalarize(Entry.first, VF)); 6150 })) 6151 return false; 6152 6153 return true; 6154 } 6155 6156 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 6157 const ElementCount VF) const { 6158 // FIXME: We need a much better cost-model to take different parameters such 6159 // as register pressure, code size increase and cost of extra branches into 6160 // account. For now we apply a very crude heuristic and only consider loops 6161 // with vectorization factors larger than a certain value. 6162 // We also consider epilogue vectorization unprofitable for targets that don't 6163 // consider interleaving beneficial (eg. MVE). 6164 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 6165 return false; 6166 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 6167 return true; 6168 return false; 6169 } 6170 6171 VectorizationFactor 6172 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 6173 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 6174 VectorizationFactor Result = VectorizationFactor::Disabled(); 6175 if (!EnableEpilogueVectorization) { 6176 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 6177 return Result; 6178 } 6179 6180 if (!isScalarEpilogueAllowed()) { 6181 LLVM_DEBUG( 6182 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 6183 "allowed.\n";); 6184 return Result; 6185 } 6186 6187 // FIXME: This can be fixed for scalable vectors later, because at this stage 6188 // the LoopVectorizer will only consider vectorizing a loop with scalable 6189 // vectors when the loop has a hint to enable vectorization for a given VF. 6190 if (MainLoopVF.isScalable()) { 6191 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not " 6192 "yet supported.\n"); 6193 return Result; 6194 } 6195 6196 // Not really a cost consideration, but check for unsupported cases here to 6197 // simplify the logic. 6198 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 6199 LLVM_DEBUG( 6200 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 6201 "not a supported candidate.\n";); 6202 return Result; 6203 } 6204 6205 if (EpilogueVectorizationForceVF > 1) { 6206 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 6207 if (LVP.hasPlanWithVFs( 6208 {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)})) 6209 return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0}; 6210 else { 6211 LLVM_DEBUG( 6212 dbgs() 6213 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 6214 return Result; 6215 } 6216 } 6217 6218 if (TheLoop->getHeader()->getParent()->hasOptSize() || 6219 TheLoop->getHeader()->getParent()->hasMinSize()) { 6220 LLVM_DEBUG( 6221 dbgs() 6222 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 6223 return Result; 6224 } 6225 6226 if (!isEpilogueVectorizationProfitable(MainLoopVF)) 6227 return Result; 6228 6229 for (auto &NextVF : ProfitableVFs) 6230 if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) && 6231 (Result.Width.getFixedValue() == 1 || 6232 isMoreProfitable(NextVF, Result)) && 6233 LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width})) 6234 Result = NextVF; 6235 6236 if (Result != VectorizationFactor::Disabled()) 6237 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 6238 << Result.Width.getFixedValue() << "\n";); 6239 return Result; 6240 } 6241 6242 std::pair<unsigned, unsigned> 6243 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6244 unsigned MinWidth = -1U; 6245 unsigned MaxWidth = 8; 6246 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6247 6248 // For each block. 6249 for (BasicBlock *BB : TheLoop->blocks()) { 6250 // For each instruction in the loop. 6251 for (Instruction &I : BB->instructionsWithoutDebug()) { 6252 Type *T = I.getType(); 6253 6254 // Skip ignored values. 6255 if (ValuesToIgnore.count(&I)) 6256 continue; 6257 6258 // Only examine Loads, Stores and PHINodes. 6259 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6260 continue; 6261 6262 // Examine PHI nodes that are reduction variables. Update the type to 6263 // account for the recurrence type. 6264 if (auto *PN = dyn_cast<PHINode>(&I)) { 6265 if (!Legal->isReductionVariable(PN)) 6266 continue; 6267 const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN]; 6268 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 6269 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 6270 RdxDesc.getRecurrenceType(), 6271 TargetTransformInfo::ReductionFlags())) 6272 continue; 6273 T = RdxDesc.getRecurrenceType(); 6274 } 6275 6276 // Examine the stored values. 6277 if (auto *ST = dyn_cast<StoreInst>(&I)) 6278 T = ST->getValueOperand()->getType(); 6279 6280 // Ignore loaded pointer types and stored pointer types that are not 6281 // vectorizable. 6282 // 6283 // FIXME: The check here attempts to predict whether a load or store will 6284 // be vectorized. We only know this for certain after a VF has 6285 // been selected. Here, we assume that if an access can be 6286 // vectorized, it will be. We should also look at extending this 6287 // optimization to non-pointer types. 6288 // 6289 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6290 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6291 continue; 6292 6293 MinWidth = std::min(MinWidth, 6294 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6295 MaxWidth = std::max(MaxWidth, 6296 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6297 } 6298 } 6299 6300 return {MinWidth, MaxWidth}; 6301 } 6302 6303 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6304 unsigned LoopCost) { 6305 // -- The interleave heuristics -- 6306 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6307 // There are many micro-architectural considerations that we can't predict 6308 // at this level. For example, frontend pressure (on decode or fetch) due to 6309 // code size, or the number and capabilities of the execution ports. 6310 // 6311 // We use the following heuristics to select the interleave count: 6312 // 1. If the code has reductions, then we interleave to break the cross 6313 // iteration dependency. 6314 // 2. If the loop is really small, then we interleave to reduce the loop 6315 // overhead. 6316 // 3. We don't interleave if we think that we will spill registers to memory 6317 // due to the increased register pressure. 6318 6319 if (!isScalarEpilogueAllowed()) 6320 return 1; 6321 6322 // We used the distance for the interleave count. 6323 if (Legal->getMaxSafeDepDistBytes() != -1U) 6324 return 1; 6325 6326 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6327 const bool HasReductions = !Legal->getReductionVars().empty(); 6328 // Do not interleave loops with a relatively small known or estimated trip 6329 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6330 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6331 // because with the above conditions interleaving can expose ILP and break 6332 // cross iteration dependences for reductions. 6333 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6334 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6335 return 1; 6336 6337 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6338 // We divide by these constants so assume that we have at least one 6339 // instruction that uses at least one register. 6340 for (auto& pair : R.MaxLocalUsers) { 6341 pair.second = std::max(pair.second, 1U); 6342 } 6343 6344 // We calculate the interleave count using the following formula. 6345 // Subtract the number of loop invariants from the number of available 6346 // registers. These registers are used by all of the interleaved instances. 6347 // Next, divide the remaining registers by the number of registers that is 6348 // required by the loop, in order to estimate how many parallel instances 6349 // fit without causing spills. All of this is rounded down if necessary to be 6350 // a power of two. We want power of two interleave count to simplify any 6351 // addressing operations or alignment considerations. 6352 // We also want power of two interleave counts to ensure that the induction 6353 // variable of the vector loop wraps to zero, when tail is folded by masking; 6354 // this currently happens when OptForSize, in which case IC is set to 1 above. 6355 unsigned IC = UINT_MAX; 6356 6357 for (auto& pair : R.MaxLocalUsers) { 6358 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6359 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6360 << " registers of " 6361 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6362 if (VF.isScalar()) { 6363 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6364 TargetNumRegisters = ForceTargetNumScalarRegs; 6365 } else { 6366 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6367 TargetNumRegisters = ForceTargetNumVectorRegs; 6368 } 6369 unsigned MaxLocalUsers = pair.second; 6370 unsigned LoopInvariantRegs = 0; 6371 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6372 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6373 6374 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6375 // Don't count the induction variable as interleaved. 6376 if (EnableIndVarRegisterHeur) { 6377 TmpIC = 6378 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6379 std::max(1U, (MaxLocalUsers - 1))); 6380 } 6381 6382 IC = std::min(IC, TmpIC); 6383 } 6384 6385 // Clamp the interleave ranges to reasonable counts. 6386 unsigned MaxInterleaveCount = 6387 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6388 6389 // Check if the user has overridden the max. 6390 if (VF.isScalar()) { 6391 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6392 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6393 } else { 6394 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6395 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6396 } 6397 6398 // If trip count is known or estimated compile time constant, limit the 6399 // interleave count to be less than the trip count divided by VF, provided it 6400 // is at least 1. 6401 // 6402 // For scalable vectors we can't know if interleaving is beneficial. It may 6403 // not be beneficial for small loops if none of the lanes in the second vector 6404 // iterations is enabled. However, for larger loops, there is likely to be a 6405 // similar benefit as for fixed-width vectors. For now, we choose to leave 6406 // the InterleaveCount as if vscale is '1', although if some information about 6407 // the vector is known (e.g. min vector size), we can make a better decision. 6408 if (BestKnownTC) { 6409 MaxInterleaveCount = 6410 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6411 // Make sure MaxInterleaveCount is greater than 0. 6412 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6413 } 6414 6415 assert(MaxInterleaveCount > 0 && 6416 "Maximum interleave count must be greater than 0"); 6417 6418 // Clamp the calculated IC to be between the 1 and the max interleave count 6419 // that the target and trip count allows. 6420 if (IC > MaxInterleaveCount) 6421 IC = MaxInterleaveCount; 6422 else 6423 // Make sure IC is greater than 0. 6424 IC = std::max(1u, IC); 6425 6426 assert(IC > 0 && "Interleave count must be greater than 0."); 6427 6428 // If we did not calculate the cost for VF (because the user selected the VF) 6429 // then we calculate the cost of VF here. 6430 if (LoopCost == 0) { 6431 assert(expectedCost(VF).first.isValid() && "Expected a valid cost"); 6432 LoopCost = *expectedCost(VF).first.getValue(); 6433 } 6434 6435 assert(LoopCost && "Non-zero loop cost expected"); 6436 6437 // Interleave if we vectorized this loop and there is a reduction that could 6438 // benefit from interleaving. 6439 if (VF.isVector() && HasReductions) { 6440 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6441 return IC; 6442 } 6443 6444 // Note that if we've already vectorized the loop we will have done the 6445 // runtime check and so interleaving won't require further checks. 6446 bool InterleavingRequiresRuntimePointerCheck = 6447 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6448 6449 // We want to interleave small loops in order to reduce the loop overhead and 6450 // potentially expose ILP opportunities. 6451 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6452 << "LV: IC is " << IC << '\n' 6453 << "LV: VF is " << VF << '\n'); 6454 const bool AggressivelyInterleaveReductions = 6455 TTI.enableAggressiveInterleaving(HasReductions); 6456 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6457 // We assume that the cost overhead is 1 and we use the cost model 6458 // to estimate the cost of the loop and interleave until the cost of the 6459 // loop overhead is about 5% of the cost of the loop. 6460 unsigned SmallIC = 6461 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6462 6463 // Interleave until store/load ports (estimated by max interleave count) are 6464 // saturated. 6465 unsigned NumStores = Legal->getNumStores(); 6466 unsigned NumLoads = Legal->getNumLoads(); 6467 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6468 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6469 6470 // If we have a scalar reduction (vector reductions are already dealt with 6471 // by this point), we can increase the critical path length if the loop 6472 // we're interleaving is inside another loop. Limit, by default to 2, so the 6473 // critical path only gets increased by one reduction operation. 6474 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6475 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6476 SmallIC = std::min(SmallIC, F); 6477 StoresIC = std::min(StoresIC, F); 6478 LoadsIC = std::min(LoadsIC, F); 6479 } 6480 6481 if (EnableLoadStoreRuntimeInterleave && 6482 std::max(StoresIC, LoadsIC) > SmallIC) { 6483 LLVM_DEBUG( 6484 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6485 return std::max(StoresIC, LoadsIC); 6486 } 6487 6488 // If there are scalar reductions and TTI has enabled aggressive 6489 // interleaving for reductions, we will interleave to expose ILP. 6490 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6491 AggressivelyInterleaveReductions) { 6492 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6493 // Interleave no less than SmallIC but not as aggressive as the normal IC 6494 // to satisfy the rare situation when resources are too limited. 6495 return std::max(IC / 2, SmallIC); 6496 } else { 6497 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6498 return SmallIC; 6499 } 6500 } 6501 6502 // Interleave if this is a large loop (small loops are already dealt with by 6503 // this point) that could benefit from interleaving. 6504 if (AggressivelyInterleaveReductions) { 6505 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6506 return IC; 6507 } 6508 6509 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6510 return 1; 6511 } 6512 6513 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6514 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6515 // This function calculates the register usage by measuring the highest number 6516 // of values that are alive at a single location. Obviously, this is a very 6517 // rough estimation. We scan the loop in a topological order in order and 6518 // assign a number to each instruction. We use RPO to ensure that defs are 6519 // met before their users. We assume that each instruction that has in-loop 6520 // users starts an interval. We record every time that an in-loop value is 6521 // used, so we have a list of the first and last occurrences of each 6522 // instruction. Next, we transpose this data structure into a multi map that 6523 // holds the list of intervals that *end* at a specific location. This multi 6524 // map allows us to perform a linear search. We scan the instructions linearly 6525 // and record each time that a new interval starts, by placing it in a set. 6526 // If we find this value in the multi-map then we remove it from the set. 6527 // The max register usage is the maximum size of the set. 6528 // We also search for instructions that are defined outside the loop, but are 6529 // used inside the loop. We need this number separately from the max-interval 6530 // usage number because when we unroll, loop-invariant values do not take 6531 // more register. 6532 LoopBlocksDFS DFS(TheLoop); 6533 DFS.perform(LI); 6534 6535 RegisterUsage RU; 6536 6537 // Each 'key' in the map opens a new interval. The values 6538 // of the map are the index of the 'last seen' usage of the 6539 // instruction that is the key. 6540 using IntervalMap = DenseMap<Instruction *, unsigned>; 6541 6542 // Maps instruction to its index. 6543 SmallVector<Instruction *, 64> IdxToInstr; 6544 // Marks the end of each interval. 6545 IntervalMap EndPoint; 6546 // Saves the list of instruction indices that are used in the loop. 6547 SmallPtrSet<Instruction *, 8> Ends; 6548 // Saves the list of values that are used in the loop but are 6549 // defined outside the loop, such as arguments and constants. 6550 SmallPtrSet<Value *, 8> LoopInvariants; 6551 6552 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6553 for (Instruction &I : BB->instructionsWithoutDebug()) { 6554 IdxToInstr.push_back(&I); 6555 6556 // Save the end location of each USE. 6557 for (Value *U : I.operands()) { 6558 auto *Instr = dyn_cast<Instruction>(U); 6559 6560 // Ignore non-instruction values such as arguments, constants, etc. 6561 if (!Instr) 6562 continue; 6563 6564 // If this instruction is outside the loop then record it and continue. 6565 if (!TheLoop->contains(Instr)) { 6566 LoopInvariants.insert(Instr); 6567 continue; 6568 } 6569 6570 // Overwrite previous end points. 6571 EndPoint[Instr] = IdxToInstr.size(); 6572 Ends.insert(Instr); 6573 } 6574 } 6575 } 6576 6577 // Saves the list of intervals that end with the index in 'key'. 6578 using InstrList = SmallVector<Instruction *, 2>; 6579 DenseMap<unsigned, InstrList> TransposeEnds; 6580 6581 // Transpose the EndPoints to a list of values that end at each index. 6582 for (auto &Interval : EndPoint) 6583 TransposeEnds[Interval.second].push_back(Interval.first); 6584 6585 SmallPtrSet<Instruction *, 8> OpenIntervals; 6586 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6587 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6588 6589 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6590 6591 // A lambda that gets the register usage for the given type and VF. 6592 const auto &TTICapture = TTI; 6593 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) { 6594 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6595 return 0; 6596 return *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6597 }; 6598 6599 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6600 Instruction *I = IdxToInstr[i]; 6601 6602 // Remove all of the instructions that end at this location. 6603 InstrList &List = TransposeEnds[i]; 6604 for (Instruction *ToRemove : List) 6605 OpenIntervals.erase(ToRemove); 6606 6607 // Ignore instructions that are never used within the loop. 6608 if (!Ends.count(I)) 6609 continue; 6610 6611 // Skip ignored values. 6612 if (ValuesToIgnore.count(I)) 6613 continue; 6614 6615 // For each VF find the maximum usage of registers. 6616 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6617 // Count the number of live intervals. 6618 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6619 6620 if (VFs[j].isScalar()) { 6621 for (auto Inst : OpenIntervals) { 6622 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6623 if (RegUsage.find(ClassID) == RegUsage.end()) 6624 RegUsage[ClassID] = 1; 6625 else 6626 RegUsage[ClassID] += 1; 6627 } 6628 } else { 6629 collectUniformsAndScalars(VFs[j]); 6630 for (auto Inst : OpenIntervals) { 6631 // Skip ignored values for VF > 1. 6632 if (VecValuesToIgnore.count(Inst)) 6633 continue; 6634 if (isScalarAfterVectorization(Inst, VFs[j])) { 6635 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6636 if (RegUsage.find(ClassID) == RegUsage.end()) 6637 RegUsage[ClassID] = 1; 6638 else 6639 RegUsage[ClassID] += 1; 6640 } else { 6641 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6642 if (RegUsage.find(ClassID) == RegUsage.end()) 6643 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6644 else 6645 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6646 } 6647 } 6648 } 6649 6650 for (auto& pair : RegUsage) { 6651 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6652 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6653 else 6654 MaxUsages[j][pair.first] = pair.second; 6655 } 6656 } 6657 6658 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6659 << OpenIntervals.size() << '\n'); 6660 6661 // Add the current instruction to the list of open intervals. 6662 OpenIntervals.insert(I); 6663 } 6664 6665 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6666 SmallMapVector<unsigned, unsigned, 4> Invariant; 6667 6668 for (auto Inst : LoopInvariants) { 6669 unsigned Usage = 6670 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6671 unsigned ClassID = 6672 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6673 if (Invariant.find(ClassID) == Invariant.end()) 6674 Invariant[ClassID] = Usage; 6675 else 6676 Invariant[ClassID] += Usage; 6677 } 6678 6679 LLVM_DEBUG({ 6680 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6681 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6682 << " item\n"; 6683 for (const auto &pair : MaxUsages[i]) { 6684 dbgs() << "LV(REG): RegisterClass: " 6685 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6686 << " registers\n"; 6687 } 6688 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6689 << " item\n"; 6690 for (const auto &pair : Invariant) { 6691 dbgs() << "LV(REG): RegisterClass: " 6692 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6693 << " registers\n"; 6694 } 6695 }); 6696 6697 RU.LoopInvariantRegs = Invariant; 6698 RU.MaxLocalUsers = MaxUsages[i]; 6699 RUs[i] = RU; 6700 } 6701 6702 return RUs; 6703 } 6704 6705 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6706 // TODO: Cost model for emulated masked load/store is completely 6707 // broken. This hack guides the cost model to use an artificially 6708 // high enough value to practically disable vectorization with such 6709 // operations, except where previously deployed legality hack allowed 6710 // using very low cost values. This is to avoid regressions coming simply 6711 // from moving "masked load/store" check from legality to cost model. 6712 // Masked Load/Gather emulation was previously never allowed. 6713 // Limited number of Masked Store/Scatter emulation was allowed. 6714 assert(isPredicatedInst(I) && 6715 "Expecting a scalar emulated instruction"); 6716 return isa<LoadInst>(I) || 6717 (isa<StoreInst>(I) && 6718 NumPredStores > NumberOfStoresToPredicate); 6719 } 6720 6721 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6722 // If we aren't vectorizing the loop, or if we've already collected the 6723 // instructions to scalarize, there's nothing to do. Collection may already 6724 // have occurred if we have a user-selected VF and are now computing the 6725 // expected cost for interleaving. 6726 if (VF.isScalar() || VF.isZero() || 6727 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6728 return; 6729 6730 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6731 // not profitable to scalarize any instructions, the presence of VF in the 6732 // map will indicate that we've analyzed it already. 6733 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6734 6735 // Find all the instructions that are scalar with predication in the loop and 6736 // determine if it would be better to not if-convert the blocks they are in. 6737 // If so, we also record the instructions to scalarize. 6738 for (BasicBlock *BB : TheLoop->blocks()) { 6739 if (!blockNeedsPredication(BB)) 6740 continue; 6741 for (Instruction &I : *BB) 6742 if (isScalarWithPredication(&I)) { 6743 ScalarCostsTy ScalarCosts; 6744 // Do not apply discount logic if hacked cost is needed 6745 // for emulated masked memrefs. 6746 if (!useEmulatedMaskMemRefHack(&I) && 6747 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6748 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6749 // Remember that BB will remain after vectorization. 6750 PredicatedBBsAfterVectorization.insert(BB); 6751 } 6752 } 6753 } 6754 6755 int LoopVectorizationCostModel::computePredInstDiscount( 6756 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6757 assert(!isUniformAfterVectorization(PredInst, VF) && 6758 "Instruction marked uniform-after-vectorization will be predicated"); 6759 6760 // Initialize the discount to zero, meaning that the scalar version and the 6761 // vector version cost the same. 6762 InstructionCost Discount = 0; 6763 6764 // Holds instructions to analyze. The instructions we visit are mapped in 6765 // ScalarCosts. Those instructions are the ones that would be scalarized if 6766 // we find that the scalar version costs less. 6767 SmallVector<Instruction *, 8> Worklist; 6768 6769 // Returns true if the given instruction can be scalarized. 6770 auto canBeScalarized = [&](Instruction *I) -> bool { 6771 // We only attempt to scalarize instructions forming a single-use chain 6772 // from the original predicated block that would otherwise be vectorized. 6773 // Although not strictly necessary, we give up on instructions we know will 6774 // already be scalar to avoid traversing chains that are unlikely to be 6775 // beneficial. 6776 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6777 isScalarAfterVectorization(I, VF)) 6778 return false; 6779 6780 // If the instruction is scalar with predication, it will be analyzed 6781 // separately. We ignore it within the context of PredInst. 6782 if (isScalarWithPredication(I)) 6783 return false; 6784 6785 // If any of the instruction's operands are uniform after vectorization, 6786 // the instruction cannot be scalarized. This prevents, for example, a 6787 // masked load from being scalarized. 6788 // 6789 // We assume we will only emit a value for lane zero of an instruction 6790 // marked uniform after vectorization, rather than VF identical values. 6791 // Thus, if we scalarize an instruction that uses a uniform, we would 6792 // create uses of values corresponding to the lanes we aren't emitting code 6793 // for. This behavior can be changed by allowing getScalarValue to clone 6794 // the lane zero values for uniforms rather than asserting. 6795 for (Use &U : I->operands()) 6796 if (auto *J = dyn_cast<Instruction>(U.get())) 6797 if (isUniformAfterVectorization(J, VF)) 6798 return false; 6799 6800 // Otherwise, we can scalarize the instruction. 6801 return true; 6802 }; 6803 6804 // Compute the expected cost discount from scalarizing the entire expression 6805 // feeding the predicated instruction. We currently only consider expressions 6806 // that are single-use instruction chains. 6807 Worklist.push_back(PredInst); 6808 while (!Worklist.empty()) { 6809 Instruction *I = Worklist.pop_back_val(); 6810 6811 // If we've already analyzed the instruction, there's nothing to do. 6812 if (ScalarCosts.find(I) != ScalarCosts.end()) 6813 continue; 6814 6815 // Compute the cost of the vector instruction. Note that this cost already 6816 // includes the scalarization overhead of the predicated instruction. 6817 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6818 6819 // Compute the cost of the scalarized instruction. This cost is the cost of 6820 // the instruction as if it wasn't if-converted and instead remained in the 6821 // predicated block. We will scale this cost by block probability after 6822 // computing the scalarization overhead. 6823 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6824 InstructionCost ScalarCost = 6825 VF.getKnownMinValue() * 6826 getInstructionCost(I, ElementCount::getFixed(1)).first; 6827 6828 // Compute the scalarization overhead of needed insertelement instructions 6829 // and phi nodes. 6830 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6831 ScalarCost += TTI.getScalarizationOverhead( 6832 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6833 APInt::getAllOnesValue(VF.getKnownMinValue()), true, false); 6834 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6835 ScalarCost += 6836 VF.getKnownMinValue() * 6837 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6838 } 6839 6840 // Compute the scalarization overhead of needed extractelement 6841 // instructions. For each of the instruction's operands, if the operand can 6842 // be scalarized, add it to the worklist; otherwise, account for the 6843 // overhead. 6844 for (Use &U : I->operands()) 6845 if (auto *J = dyn_cast<Instruction>(U.get())) { 6846 assert(VectorType::isValidElementType(J->getType()) && 6847 "Instruction has non-scalar type"); 6848 if (canBeScalarized(J)) 6849 Worklist.push_back(J); 6850 else if (needsExtract(J, VF)) { 6851 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6852 ScalarCost += TTI.getScalarizationOverhead( 6853 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6854 APInt::getAllOnesValue(VF.getKnownMinValue()), false, true); 6855 } 6856 } 6857 6858 // Scale the total scalar cost by block probability. 6859 ScalarCost /= getReciprocalPredBlockProb(); 6860 6861 // Compute the discount. A non-negative discount means the vector version 6862 // of the instruction costs more, and scalarizing would be beneficial. 6863 Discount += VectorCost - ScalarCost; 6864 ScalarCosts[I] = ScalarCost; 6865 } 6866 6867 return *Discount.getValue(); 6868 } 6869 6870 LoopVectorizationCostModel::VectorizationCostTy 6871 LoopVectorizationCostModel::expectedCost(ElementCount VF) { 6872 VectorizationCostTy Cost; 6873 6874 // For each block. 6875 for (BasicBlock *BB : TheLoop->blocks()) { 6876 VectorizationCostTy BlockCost; 6877 6878 // For each instruction in the old loop. 6879 for (Instruction &I : BB->instructionsWithoutDebug()) { 6880 // Skip ignored values. 6881 if (ValuesToIgnore.count(&I) || 6882 (VF.isVector() && VecValuesToIgnore.count(&I))) 6883 continue; 6884 6885 VectorizationCostTy C = getInstructionCost(&I, VF); 6886 6887 // Check if we should override the cost. 6888 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6889 C.first = InstructionCost(ForceTargetInstructionCost); 6890 6891 BlockCost.first += C.first; 6892 BlockCost.second |= C.second; 6893 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6894 << " for VF " << VF << " For instruction: " << I 6895 << '\n'); 6896 } 6897 6898 // If we are vectorizing a predicated block, it will have been 6899 // if-converted. This means that the block's instructions (aside from 6900 // stores and instructions that may divide by zero) will now be 6901 // unconditionally executed. For the scalar case, we may not always execute 6902 // the predicated block, if it is an if-else block. Thus, scale the block's 6903 // cost by the probability of executing it. blockNeedsPredication from 6904 // Legal is used so as to not include all blocks in tail folded loops. 6905 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6906 BlockCost.first /= getReciprocalPredBlockProb(); 6907 6908 Cost.first += BlockCost.first; 6909 Cost.second |= BlockCost.second; 6910 } 6911 6912 return Cost; 6913 } 6914 6915 /// Gets Address Access SCEV after verifying that the access pattern 6916 /// is loop invariant except the induction variable dependence. 6917 /// 6918 /// This SCEV can be sent to the Target in order to estimate the address 6919 /// calculation cost. 6920 static const SCEV *getAddressAccessSCEV( 6921 Value *Ptr, 6922 LoopVectorizationLegality *Legal, 6923 PredicatedScalarEvolution &PSE, 6924 const Loop *TheLoop) { 6925 6926 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6927 if (!Gep) 6928 return nullptr; 6929 6930 // We are looking for a gep with all loop invariant indices except for one 6931 // which should be an induction variable. 6932 auto SE = PSE.getSE(); 6933 unsigned NumOperands = Gep->getNumOperands(); 6934 for (unsigned i = 1; i < NumOperands; ++i) { 6935 Value *Opd = Gep->getOperand(i); 6936 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6937 !Legal->isInductionVariable(Opd)) 6938 return nullptr; 6939 } 6940 6941 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6942 return PSE.getSCEV(Ptr); 6943 } 6944 6945 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6946 return Legal->hasStride(I->getOperand(0)) || 6947 Legal->hasStride(I->getOperand(1)); 6948 } 6949 6950 InstructionCost 6951 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6952 ElementCount VF) { 6953 assert(VF.isVector() && 6954 "Scalarization cost of instruction implies vectorization."); 6955 if (VF.isScalable()) 6956 return InstructionCost::getInvalid(); 6957 6958 Type *ValTy = getLoadStoreType(I); 6959 auto SE = PSE.getSE(); 6960 6961 unsigned AS = getLoadStoreAddressSpace(I); 6962 Value *Ptr = getLoadStorePointerOperand(I); 6963 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6964 6965 // Figure out whether the access is strided and get the stride value 6966 // if it's known in compile time 6967 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6968 6969 // Get the cost of the scalar memory instruction and address computation. 6970 InstructionCost Cost = 6971 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6972 6973 // Don't pass *I here, since it is scalar but will actually be part of a 6974 // vectorized loop where the user of it is a vectorized instruction. 6975 const Align Alignment = getLoadStoreAlignment(I); 6976 Cost += VF.getKnownMinValue() * 6977 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6978 AS, TTI::TCK_RecipThroughput); 6979 6980 // Get the overhead of the extractelement and insertelement instructions 6981 // we might create due to scalarization. 6982 Cost += getScalarizationOverhead(I, VF); 6983 6984 // If we have a predicated load/store, it will need extra i1 extracts and 6985 // conditional branches, but may not be executed for each vector lane. Scale 6986 // the cost by the probability of executing the predicated block. 6987 if (isPredicatedInst(I)) { 6988 Cost /= getReciprocalPredBlockProb(); 6989 6990 // Add the cost of an i1 extract and a branch 6991 auto *Vec_i1Ty = 6992 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6993 Cost += TTI.getScalarizationOverhead( 6994 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 6995 /*Insert=*/false, /*Extract=*/true); 6996 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6997 6998 if (useEmulatedMaskMemRefHack(I)) 6999 // Artificially setting to a high enough value to practically disable 7000 // vectorization with such operations. 7001 Cost = 3000000; 7002 } 7003 7004 return Cost; 7005 } 7006 7007 InstructionCost 7008 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7009 ElementCount VF) { 7010 Type *ValTy = getLoadStoreType(I); 7011 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7012 Value *Ptr = getLoadStorePointerOperand(I); 7013 unsigned AS = getLoadStoreAddressSpace(I); 7014 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 7015 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7016 7017 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7018 "Stride should be 1 or -1 for consecutive memory access"); 7019 const Align Alignment = getLoadStoreAlignment(I); 7020 InstructionCost Cost = 0; 7021 if (Legal->isMaskRequired(I)) 7022 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7023 CostKind); 7024 else 7025 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7026 CostKind, I); 7027 7028 bool Reverse = ConsecutiveStride < 0; 7029 if (Reverse) 7030 Cost += 7031 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7032 return Cost; 7033 } 7034 7035 InstructionCost 7036 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7037 ElementCount VF) { 7038 assert(Legal->isUniformMemOp(*I)); 7039 7040 Type *ValTy = getLoadStoreType(I); 7041 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7042 const Align Alignment = getLoadStoreAlignment(I); 7043 unsigned AS = getLoadStoreAddressSpace(I); 7044 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7045 if (isa<LoadInst>(I)) { 7046 return TTI.getAddressComputationCost(ValTy) + 7047 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 7048 CostKind) + 7049 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7050 } 7051 StoreInst *SI = cast<StoreInst>(I); 7052 7053 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 7054 return TTI.getAddressComputationCost(ValTy) + 7055 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 7056 CostKind) + 7057 (isLoopInvariantStoreValue 7058 ? 0 7059 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 7060 VF.getKnownMinValue() - 1)); 7061 } 7062 7063 InstructionCost 7064 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7065 ElementCount VF) { 7066 Type *ValTy = getLoadStoreType(I); 7067 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7068 const Align Alignment = getLoadStoreAlignment(I); 7069 const Value *Ptr = getLoadStorePointerOperand(I); 7070 7071 return TTI.getAddressComputationCost(VectorTy) + 7072 TTI.getGatherScatterOpCost( 7073 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 7074 TargetTransformInfo::TCK_RecipThroughput, I); 7075 } 7076 7077 InstructionCost 7078 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7079 ElementCount VF) { 7080 // TODO: Once we have support for interleaving with scalable vectors 7081 // we can calculate the cost properly here. 7082 if (VF.isScalable()) 7083 return InstructionCost::getInvalid(); 7084 7085 Type *ValTy = getLoadStoreType(I); 7086 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7087 unsigned AS = getLoadStoreAddressSpace(I); 7088 7089 auto Group = getInterleavedAccessGroup(I); 7090 assert(Group && "Fail to get an interleaved access group."); 7091 7092 unsigned InterleaveFactor = Group->getFactor(); 7093 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7094 7095 // Holds the indices of existing members in an interleaved load group. 7096 // An interleaved store group doesn't need this as it doesn't allow gaps. 7097 SmallVector<unsigned, 4> Indices; 7098 if (isa<LoadInst>(I)) { 7099 for (unsigned i = 0; i < InterleaveFactor; i++) 7100 if (Group->getMember(i)) 7101 Indices.push_back(i); 7102 } 7103 7104 // Calculate the cost of the whole interleaved group. 7105 bool UseMaskForGaps = 7106 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 7107 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 7108 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 7109 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 7110 7111 if (Group->isReverse()) { 7112 // TODO: Add support for reversed masked interleaved access. 7113 assert(!Legal->isMaskRequired(I) && 7114 "Reverse masked interleaved access not supported."); 7115 Cost += 7116 Group->getNumMembers() * 7117 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7118 } 7119 return Cost; 7120 } 7121 7122 InstructionCost LoopVectorizationCostModel::getReductionPatternCost( 7123 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 7124 // Early exit for no inloop reductions 7125 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 7126 return InstructionCost::getInvalid(); 7127 auto *VectorTy = cast<VectorType>(Ty); 7128 7129 // We are looking for a pattern of, and finding the minimal acceptable cost: 7130 // reduce(mul(ext(A), ext(B))) or 7131 // reduce(mul(A, B)) or 7132 // reduce(ext(A)) or 7133 // reduce(A). 7134 // The basic idea is that we walk down the tree to do that, finding the root 7135 // reduction instruction in InLoopReductionImmediateChains. From there we find 7136 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 7137 // of the components. If the reduction cost is lower then we return it for the 7138 // reduction instruction and 0 for the other instructions in the pattern. If 7139 // it is not we return an invalid cost specifying the orignal cost method 7140 // should be used. 7141 Instruction *RetI = I; 7142 if ((RetI->getOpcode() == Instruction::SExt || 7143 RetI->getOpcode() == Instruction::ZExt)) { 7144 if (!RetI->hasOneUser()) 7145 return InstructionCost::getInvalid(); 7146 RetI = RetI->user_back(); 7147 } 7148 if (RetI->getOpcode() == Instruction::Mul && 7149 RetI->user_back()->getOpcode() == Instruction::Add) { 7150 if (!RetI->hasOneUser()) 7151 return InstructionCost::getInvalid(); 7152 RetI = RetI->user_back(); 7153 } 7154 7155 // Test if the found instruction is a reduction, and if not return an invalid 7156 // cost specifying the parent to use the original cost modelling. 7157 if (!InLoopReductionImmediateChains.count(RetI)) 7158 return InstructionCost::getInvalid(); 7159 7160 // Find the reduction this chain is a part of and calculate the basic cost of 7161 // the reduction on its own. 7162 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 7163 Instruction *ReductionPhi = LastChain; 7164 while (!isa<PHINode>(ReductionPhi)) 7165 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 7166 7167 const RecurrenceDescriptor &RdxDesc = 7168 Legal->getReductionVars()[cast<PHINode>(ReductionPhi)]; 7169 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 7170 RdxDesc.getOpcode(), VectorTy, false, CostKind); 7171 7172 // Get the operand that was not the reduction chain and match it to one of the 7173 // patterns, returning the better cost if it is found. 7174 Instruction *RedOp = RetI->getOperand(1) == LastChain 7175 ? dyn_cast<Instruction>(RetI->getOperand(0)) 7176 : dyn_cast<Instruction>(RetI->getOperand(1)); 7177 7178 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 7179 7180 if (RedOp && (isa<SExtInst>(RedOp) || isa<ZExtInst>(RedOp)) && 7181 !TheLoop->isLoopInvariant(RedOp)) { 7182 bool IsUnsigned = isa<ZExtInst>(RedOp); 7183 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 7184 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7185 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7186 CostKind); 7187 7188 InstructionCost ExtCost = 7189 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 7190 TTI::CastContextHint::None, CostKind, RedOp); 7191 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 7192 return I == RetI ? *RedCost.getValue() : 0; 7193 } else if (RedOp && RedOp->getOpcode() == Instruction::Mul) { 7194 Instruction *Mul = RedOp; 7195 Instruction *Op0 = dyn_cast<Instruction>(Mul->getOperand(0)); 7196 Instruction *Op1 = dyn_cast<Instruction>(Mul->getOperand(1)); 7197 if (Op0 && Op1 && (isa<SExtInst>(Op0) || isa<ZExtInst>(Op0)) && 7198 Op0->getOpcode() == Op1->getOpcode() && 7199 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7200 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 7201 bool IsUnsigned = isa<ZExtInst>(Op0); 7202 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7203 // reduce(mul(ext, ext)) 7204 InstructionCost ExtCost = 7205 TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType, 7206 TTI::CastContextHint::None, CostKind, Op0); 7207 InstructionCost MulCost = 7208 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 7209 7210 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7211 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7212 CostKind); 7213 7214 if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost) 7215 return I == RetI ? *RedCost.getValue() : 0; 7216 } else { 7217 InstructionCost MulCost = 7218 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 7219 7220 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7221 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7222 CostKind); 7223 7224 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7225 return I == RetI ? *RedCost.getValue() : 0; 7226 } 7227 } 7228 7229 return I == RetI ? BaseCost : InstructionCost::getInvalid(); 7230 } 7231 7232 InstructionCost 7233 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7234 ElementCount VF) { 7235 // Calculate scalar cost only. Vectorization cost should be ready at this 7236 // moment. 7237 if (VF.isScalar()) { 7238 Type *ValTy = getLoadStoreType(I); 7239 const Align Alignment = getLoadStoreAlignment(I); 7240 unsigned AS = getLoadStoreAddressSpace(I); 7241 7242 return TTI.getAddressComputationCost(ValTy) + 7243 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7244 TTI::TCK_RecipThroughput, I); 7245 } 7246 return getWideningCost(I, VF); 7247 } 7248 7249 LoopVectorizationCostModel::VectorizationCostTy 7250 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7251 ElementCount VF) { 7252 // If we know that this instruction will remain uniform, check the cost of 7253 // the scalar version. 7254 if (isUniformAfterVectorization(I, VF)) 7255 VF = ElementCount::getFixed(1); 7256 7257 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7258 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7259 7260 // Forced scalars do not have any scalarization overhead. 7261 auto ForcedScalar = ForcedScalars.find(VF); 7262 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7263 auto InstSet = ForcedScalar->second; 7264 if (InstSet.count(I)) 7265 return VectorizationCostTy( 7266 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7267 VF.getKnownMinValue()), 7268 false); 7269 } 7270 7271 Type *VectorTy; 7272 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7273 7274 bool TypeNotScalarized = 7275 VF.isVector() && VectorTy->isVectorTy() && 7276 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 7277 return VectorizationCostTy(C, TypeNotScalarized); 7278 } 7279 7280 InstructionCost 7281 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7282 ElementCount VF) const { 7283 7284 if (VF.isScalable()) 7285 return InstructionCost::getInvalid(); 7286 7287 if (VF.isScalar()) 7288 return 0; 7289 7290 InstructionCost Cost = 0; 7291 Type *RetTy = ToVectorTy(I->getType(), VF); 7292 if (!RetTy->isVoidTy() && 7293 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7294 Cost += TTI.getScalarizationOverhead( 7295 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()), 7296 true, false); 7297 7298 // Some targets keep addresses scalar. 7299 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7300 return Cost; 7301 7302 // Some targets support efficient element stores. 7303 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7304 return Cost; 7305 7306 // Collect operands to consider. 7307 CallInst *CI = dyn_cast<CallInst>(I); 7308 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 7309 7310 // Skip operands that do not require extraction/scalarization and do not incur 7311 // any overhead. 7312 SmallVector<Type *> Tys; 7313 for (auto *V : filterExtractingOperands(Ops, VF)) 7314 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7315 return Cost + TTI.getOperandsScalarizationOverhead( 7316 filterExtractingOperands(Ops, VF), Tys); 7317 } 7318 7319 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7320 if (VF.isScalar()) 7321 return; 7322 NumPredStores = 0; 7323 for (BasicBlock *BB : TheLoop->blocks()) { 7324 // For each instruction in the old loop. 7325 for (Instruction &I : *BB) { 7326 Value *Ptr = getLoadStorePointerOperand(&I); 7327 if (!Ptr) 7328 continue; 7329 7330 // TODO: We should generate better code and update the cost model for 7331 // predicated uniform stores. Today they are treated as any other 7332 // predicated store (see added test cases in 7333 // invariant-store-vectorization.ll). 7334 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 7335 NumPredStores++; 7336 7337 if (Legal->isUniformMemOp(I)) { 7338 // TODO: Avoid replicating loads and stores instead of 7339 // relying on instcombine to remove them. 7340 // Load: Scalar load + broadcast 7341 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7342 InstructionCost Cost; 7343 if (isa<StoreInst>(&I) && VF.isScalable() && 7344 isLegalGatherOrScatter(&I)) { 7345 Cost = getGatherScatterCost(&I, VF); 7346 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 7347 } else { 7348 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 7349 "Cannot yet scalarize uniform stores"); 7350 Cost = getUniformMemOpCost(&I, VF); 7351 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7352 } 7353 continue; 7354 } 7355 7356 // We assume that widening is the best solution when possible. 7357 if (memoryInstructionCanBeWidened(&I, VF)) { 7358 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7359 int ConsecutiveStride = 7360 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 7361 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7362 "Expected consecutive stride."); 7363 InstWidening Decision = 7364 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7365 setWideningDecision(&I, VF, Decision, Cost); 7366 continue; 7367 } 7368 7369 // Choose between Interleaving, Gather/Scatter or Scalarization. 7370 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7371 unsigned NumAccesses = 1; 7372 if (isAccessInterleaved(&I)) { 7373 auto Group = getInterleavedAccessGroup(&I); 7374 assert(Group && "Fail to get an interleaved access group."); 7375 7376 // Make one decision for the whole group. 7377 if (getWideningDecision(&I, VF) != CM_Unknown) 7378 continue; 7379 7380 NumAccesses = Group->getNumMembers(); 7381 if (interleavedAccessCanBeWidened(&I, VF)) 7382 InterleaveCost = getInterleaveGroupCost(&I, VF); 7383 } 7384 7385 InstructionCost GatherScatterCost = 7386 isLegalGatherOrScatter(&I) 7387 ? getGatherScatterCost(&I, VF) * NumAccesses 7388 : InstructionCost::getInvalid(); 7389 7390 InstructionCost ScalarizationCost = 7391 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7392 7393 // Choose better solution for the current VF, 7394 // write down this decision and use it during vectorization. 7395 InstructionCost Cost; 7396 InstWidening Decision; 7397 if (InterleaveCost <= GatherScatterCost && 7398 InterleaveCost < ScalarizationCost) { 7399 Decision = CM_Interleave; 7400 Cost = InterleaveCost; 7401 } else if (GatherScatterCost < ScalarizationCost) { 7402 Decision = CM_GatherScatter; 7403 Cost = GatherScatterCost; 7404 } else { 7405 assert(!VF.isScalable() && 7406 "We cannot yet scalarise for scalable vectors"); 7407 Decision = CM_Scalarize; 7408 Cost = ScalarizationCost; 7409 } 7410 // If the instructions belongs to an interleave group, the whole group 7411 // receives the same decision. The whole group receives the cost, but 7412 // the cost will actually be assigned to one instruction. 7413 if (auto Group = getInterleavedAccessGroup(&I)) 7414 setWideningDecision(Group, VF, Decision, Cost); 7415 else 7416 setWideningDecision(&I, VF, Decision, Cost); 7417 } 7418 } 7419 7420 // Make sure that any load of address and any other address computation 7421 // remains scalar unless there is gather/scatter support. This avoids 7422 // inevitable extracts into address registers, and also has the benefit of 7423 // activating LSR more, since that pass can't optimize vectorized 7424 // addresses. 7425 if (TTI.prefersVectorizedAddressing()) 7426 return; 7427 7428 // Start with all scalar pointer uses. 7429 SmallPtrSet<Instruction *, 8> AddrDefs; 7430 for (BasicBlock *BB : TheLoop->blocks()) 7431 for (Instruction &I : *BB) { 7432 Instruction *PtrDef = 7433 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7434 if (PtrDef && TheLoop->contains(PtrDef) && 7435 getWideningDecision(&I, VF) != CM_GatherScatter) 7436 AddrDefs.insert(PtrDef); 7437 } 7438 7439 // Add all instructions used to generate the addresses. 7440 SmallVector<Instruction *, 4> Worklist; 7441 append_range(Worklist, AddrDefs); 7442 while (!Worklist.empty()) { 7443 Instruction *I = Worklist.pop_back_val(); 7444 for (auto &Op : I->operands()) 7445 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7446 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7447 AddrDefs.insert(InstOp).second) 7448 Worklist.push_back(InstOp); 7449 } 7450 7451 for (auto *I : AddrDefs) { 7452 if (isa<LoadInst>(I)) { 7453 // Setting the desired widening decision should ideally be handled in 7454 // by cost functions, but since this involves the task of finding out 7455 // if the loaded register is involved in an address computation, it is 7456 // instead changed here when we know this is the case. 7457 InstWidening Decision = getWideningDecision(I, VF); 7458 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7459 // Scalarize a widened load of address. 7460 setWideningDecision( 7461 I, VF, CM_Scalarize, 7462 (VF.getKnownMinValue() * 7463 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7464 else if (auto Group = getInterleavedAccessGroup(I)) { 7465 // Scalarize an interleave group of address loads. 7466 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7467 if (Instruction *Member = Group->getMember(I)) 7468 setWideningDecision( 7469 Member, VF, CM_Scalarize, 7470 (VF.getKnownMinValue() * 7471 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7472 } 7473 } 7474 } else 7475 // Make sure I gets scalarized and a cost estimate without 7476 // scalarization overhead. 7477 ForcedScalars[VF].insert(I); 7478 } 7479 } 7480 7481 InstructionCost 7482 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7483 Type *&VectorTy) { 7484 Type *RetTy = I->getType(); 7485 if (canTruncateToMinimalBitwidth(I, VF)) 7486 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7487 auto SE = PSE.getSE(); 7488 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7489 7490 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7491 ElementCount VF) -> bool { 7492 if (VF.isScalar()) 7493 return true; 7494 7495 auto Scalarized = InstsToScalarize.find(VF); 7496 assert(Scalarized != InstsToScalarize.end() && 7497 "VF not yet analyzed for scalarization profitability"); 7498 return !Scalarized->second.count(I) && 7499 llvm::all_of(I->users(), [&](User *U) { 7500 auto *UI = cast<Instruction>(U); 7501 return !Scalarized->second.count(UI); 7502 }); 7503 }; 7504 (void) hasSingleCopyAfterVectorization; 7505 7506 if (isScalarAfterVectorization(I, VF)) { 7507 // With the exception of GEPs and PHIs, after scalarization there should 7508 // only be one copy of the instruction generated in the loop. This is 7509 // because the VF is either 1, or any instructions that need scalarizing 7510 // have already been dealt with by the the time we get here. As a result, 7511 // it means we don't have to multiply the instruction cost by VF. 7512 assert(I->getOpcode() == Instruction::GetElementPtr || 7513 I->getOpcode() == Instruction::PHI || 7514 (I->getOpcode() == Instruction::BitCast && 7515 I->getType()->isPointerTy()) || 7516 hasSingleCopyAfterVectorization(I, VF)); 7517 VectorTy = RetTy; 7518 } else 7519 VectorTy = ToVectorTy(RetTy, VF); 7520 7521 // TODO: We need to estimate the cost of intrinsic calls. 7522 switch (I->getOpcode()) { 7523 case Instruction::GetElementPtr: 7524 // We mark this instruction as zero-cost because the cost of GEPs in 7525 // vectorized code depends on whether the corresponding memory instruction 7526 // is scalarized or not. Therefore, we handle GEPs with the memory 7527 // instruction cost. 7528 return 0; 7529 case Instruction::Br: { 7530 // In cases of scalarized and predicated instructions, there will be VF 7531 // predicated blocks in the vectorized loop. Each branch around these 7532 // blocks requires also an extract of its vector compare i1 element. 7533 bool ScalarPredicatedBB = false; 7534 BranchInst *BI = cast<BranchInst>(I); 7535 if (VF.isVector() && BI->isConditional() && 7536 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7537 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7538 ScalarPredicatedBB = true; 7539 7540 if (ScalarPredicatedBB) { 7541 // Return cost for branches around scalarized and predicated blocks. 7542 assert(!VF.isScalable() && "scalable vectors not yet supported."); 7543 auto *Vec_i1Ty = 7544 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7545 return (TTI.getScalarizationOverhead( 7546 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 7547 false, true) + 7548 (TTI.getCFInstrCost(Instruction::Br, CostKind) * 7549 VF.getKnownMinValue())); 7550 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7551 // The back-edge branch will remain, as will all scalar branches. 7552 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7553 else 7554 // This branch will be eliminated by if-conversion. 7555 return 0; 7556 // Note: We currently assume zero cost for an unconditional branch inside 7557 // a predicated block since it will become a fall-through, although we 7558 // may decide in the future to call TTI for all branches. 7559 } 7560 case Instruction::PHI: { 7561 auto *Phi = cast<PHINode>(I); 7562 7563 // First-order recurrences are replaced by vector shuffles inside the loop. 7564 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7565 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7566 return TTI.getShuffleCost( 7567 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7568 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7569 7570 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7571 // converted into select instructions. We require N - 1 selects per phi 7572 // node, where N is the number of incoming values. 7573 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7574 return (Phi->getNumIncomingValues() - 1) * 7575 TTI.getCmpSelInstrCost( 7576 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7577 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7578 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7579 7580 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7581 } 7582 case Instruction::UDiv: 7583 case Instruction::SDiv: 7584 case Instruction::URem: 7585 case Instruction::SRem: 7586 // If we have a predicated instruction, it may not be executed for each 7587 // vector lane. Get the scalarization cost and scale this amount by the 7588 // probability of executing the predicated block. If the instruction is not 7589 // predicated, we fall through to the next case. 7590 if (VF.isVector() && isScalarWithPredication(I)) { 7591 InstructionCost Cost = 0; 7592 7593 // These instructions have a non-void type, so account for the phi nodes 7594 // that we will create. This cost is likely to be zero. The phi node 7595 // cost, if any, should be scaled by the block probability because it 7596 // models a copy at the end of each predicated block. 7597 Cost += VF.getKnownMinValue() * 7598 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7599 7600 // The cost of the non-predicated instruction. 7601 Cost += VF.getKnownMinValue() * 7602 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7603 7604 // The cost of insertelement and extractelement instructions needed for 7605 // scalarization. 7606 Cost += getScalarizationOverhead(I, VF); 7607 7608 // Scale the cost by the probability of executing the predicated blocks. 7609 // This assumes the predicated block for each vector lane is equally 7610 // likely. 7611 return Cost / getReciprocalPredBlockProb(); 7612 } 7613 LLVM_FALLTHROUGH; 7614 case Instruction::Add: 7615 case Instruction::FAdd: 7616 case Instruction::Sub: 7617 case Instruction::FSub: 7618 case Instruction::Mul: 7619 case Instruction::FMul: 7620 case Instruction::FDiv: 7621 case Instruction::FRem: 7622 case Instruction::Shl: 7623 case Instruction::LShr: 7624 case Instruction::AShr: 7625 case Instruction::And: 7626 case Instruction::Or: 7627 case Instruction::Xor: { 7628 // Since we will replace the stride by 1 the multiplication should go away. 7629 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7630 return 0; 7631 7632 // Detect reduction patterns 7633 InstructionCost RedCost; 7634 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7635 .isValid()) 7636 return RedCost; 7637 7638 // Certain instructions can be cheaper to vectorize if they have a constant 7639 // second vector operand. One example of this are shifts on x86. 7640 Value *Op2 = I->getOperand(1); 7641 TargetTransformInfo::OperandValueProperties Op2VP; 7642 TargetTransformInfo::OperandValueKind Op2VK = 7643 TTI.getOperandInfo(Op2, Op2VP); 7644 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7645 Op2VK = TargetTransformInfo::OK_UniformValue; 7646 7647 SmallVector<const Value *, 4> Operands(I->operand_values()); 7648 return TTI.getArithmeticInstrCost( 7649 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7650 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7651 } 7652 case Instruction::FNeg: { 7653 return TTI.getArithmeticInstrCost( 7654 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7655 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7656 TargetTransformInfo::OP_None, I->getOperand(0), I); 7657 } 7658 case Instruction::Select: { 7659 SelectInst *SI = cast<SelectInst>(I); 7660 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7661 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7662 7663 const Value *Op0, *Op1; 7664 using namespace llvm::PatternMatch; 7665 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7666 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7667 // select x, y, false --> x & y 7668 // select x, true, y --> x | y 7669 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7670 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7671 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7672 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7673 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7674 Op1->getType()->getScalarSizeInBits() == 1); 7675 7676 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7677 return TTI.getArithmeticInstrCost( 7678 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7679 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7680 } 7681 7682 Type *CondTy = SI->getCondition()->getType(); 7683 if (!ScalarCond) 7684 CondTy = VectorType::get(CondTy, VF); 7685 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 7686 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7687 } 7688 case Instruction::ICmp: 7689 case Instruction::FCmp: { 7690 Type *ValTy = I->getOperand(0)->getType(); 7691 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7692 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7693 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7694 VectorTy = ToVectorTy(ValTy, VF); 7695 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7696 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7697 } 7698 case Instruction::Store: 7699 case Instruction::Load: { 7700 ElementCount Width = VF; 7701 if (Width.isVector()) { 7702 InstWidening Decision = getWideningDecision(I, Width); 7703 assert(Decision != CM_Unknown && 7704 "CM decision should be taken at this point"); 7705 if (Decision == CM_Scalarize) 7706 Width = ElementCount::getFixed(1); 7707 } 7708 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7709 return getMemoryInstructionCost(I, VF); 7710 } 7711 case Instruction::BitCast: 7712 if (I->getType()->isPointerTy()) 7713 return 0; 7714 LLVM_FALLTHROUGH; 7715 case Instruction::ZExt: 7716 case Instruction::SExt: 7717 case Instruction::FPToUI: 7718 case Instruction::FPToSI: 7719 case Instruction::FPExt: 7720 case Instruction::PtrToInt: 7721 case Instruction::IntToPtr: 7722 case Instruction::SIToFP: 7723 case Instruction::UIToFP: 7724 case Instruction::Trunc: 7725 case Instruction::FPTrunc: { 7726 // Computes the CastContextHint from a Load/Store instruction. 7727 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7728 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7729 "Expected a load or a store!"); 7730 7731 if (VF.isScalar() || !TheLoop->contains(I)) 7732 return TTI::CastContextHint::Normal; 7733 7734 switch (getWideningDecision(I, VF)) { 7735 case LoopVectorizationCostModel::CM_GatherScatter: 7736 return TTI::CastContextHint::GatherScatter; 7737 case LoopVectorizationCostModel::CM_Interleave: 7738 return TTI::CastContextHint::Interleave; 7739 case LoopVectorizationCostModel::CM_Scalarize: 7740 case LoopVectorizationCostModel::CM_Widen: 7741 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7742 : TTI::CastContextHint::Normal; 7743 case LoopVectorizationCostModel::CM_Widen_Reverse: 7744 return TTI::CastContextHint::Reversed; 7745 case LoopVectorizationCostModel::CM_Unknown: 7746 llvm_unreachable("Instr did not go through cost modelling?"); 7747 } 7748 7749 llvm_unreachable("Unhandled case!"); 7750 }; 7751 7752 unsigned Opcode = I->getOpcode(); 7753 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7754 // For Trunc, the context is the only user, which must be a StoreInst. 7755 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7756 if (I->hasOneUse()) 7757 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7758 CCH = ComputeCCH(Store); 7759 } 7760 // For Z/Sext, the context is the operand, which must be a LoadInst. 7761 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7762 Opcode == Instruction::FPExt) { 7763 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7764 CCH = ComputeCCH(Load); 7765 } 7766 7767 // We optimize the truncation of induction variables having constant 7768 // integer steps. The cost of these truncations is the same as the scalar 7769 // operation. 7770 if (isOptimizableIVTruncate(I, VF)) { 7771 auto *Trunc = cast<TruncInst>(I); 7772 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7773 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7774 } 7775 7776 // Detect reduction patterns 7777 InstructionCost RedCost; 7778 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7779 .isValid()) 7780 return RedCost; 7781 7782 Type *SrcScalarTy = I->getOperand(0)->getType(); 7783 Type *SrcVecTy = 7784 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7785 if (canTruncateToMinimalBitwidth(I, VF)) { 7786 // This cast is going to be shrunk. This may remove the cast or it might 7787 // turn it into slightly different cast. For example, if MinBW == 16, 7788 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7789 // 7790 // Calculate the modified src and dest types. 7791 Type *MinVecTy = VectorTy; 7792 if (Opcode == Instruction::Trunc) { 7793 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7794 VectorTy = 7795 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7796 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7797 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7798 VectorTy = 7799 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7800 } 7801 } 7802 7803 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7804 } 7805 case Instruction::Call: { 7806 bool NeedToScalarize; 7807 CallInst *CI = cast<CallInst>(I); 7808 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7809 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7810 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7811 return std::min(CallCost, IntrinsicCost); 7812 } 7813 return CallCost; 7814 } 7815 case Instruction::ExtractValue: 7816 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7817 default: 7818 // This opcode is unknown. Assume that it is the same as 'mul'. 7819 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7820 } // end of switch. 7821 } 7822 7823 char LoopVectorize::ID = 0; 7824 7825 static const char lv_name[] = "Loop Vectorization"; 7826 7827 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7828 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7829 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7830 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7831 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7832 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7833 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7834 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7835 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7836 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7837 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7838 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7839 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7840 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7841 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7842 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7843 7844 namespace llvm { 7845 7846 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7847 7848 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7849 bool VectorizeOnlyWhenForced) { 7850 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7851 } 7852 7853 } // end namespace llvm 7854 7855 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7856 // Check if the pointer operand of a load or store instruction is 7857 // consecutive. 7858 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7859 return Legal->isConsecutivePtr(Ptr); 7860 return false; 7861 } 7862 7863 void LoopVectorizationCostModel::collectValuesToIgnore() { 7864 // Ignore ephemeral values. 7865 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7866 7867 // Ignore type-promoting instructions we identified during reduction 7868 // detection. 7869 for (auto &Reduction : Legal->getReductionVars()) { 7870 RecurrenceDescriptor &RedDes = Reduction.second; 7871 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7872 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7873 } 7874 // Ignore type-casting instructions we identified during induction 7875 // detection. 7876 for (auto &Induction : Legal->getInductionVars()) { 7877 InductionDescriptor &IndDes = Induction.second; 7878 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7879 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7880 } 7881 } 7882 7883 void LoopVectorizationCostModel::collectInLoopReductions() { 7884 for (auto &Reduction : Legal->getReductionVars()) { 7885 PHINode *Phi = Reduction.first; 7886 RecurrenceDescriptor &RdxDesc = Reduction.second; 7887 7888 // We don't collect reductions that are type promoted (yet). 7889 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7890 continue; 7891 7892 // If the target would prefer this reduction to happen "in-loop", then we 7893 // want to record it as such. 7894 unsigned Opcode = RdxDesc.getOpcode(); 7895 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7896 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7897 TargetTransformInfo::ReductionFlags())) 7898 continue; 7899 7900 // Check that we can correctly put the reductions into the loop, by 7901 // finding the chain of operations that leads from the phi to the loop 7902 // exit value. 7903 SmallVector<Instruction *, 4> ReductionOperations = 7904 RdxDesc.getReductionOpChain(Phi, TheLoop); 7905 bool InLoop = !ReductionOperations.empty(); 7906 if (InLoop) { 7907 InLoopReductionChains[Phi] = ReductionOperations; 7908 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7909 Instruction *LastChain = Phi; 7910 for (auto *I : ReductionOperations) { 7911 InLoopReductionImmediateChains[I] = LastChain; 7912 LastChain = I; 7913 } 7914 } 7915 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7916 << " reduction for phi: " << *Phi << "\n"); 7917 } 7918 } 7919 7920 // TODO: we could return a pair of values that specify the max VF and 7921 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7922 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7923 // doesn't have a cost model that can choose which plan to execute if 7924 // more than one is generated. 7925 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7926 LoopVectorizationCostModel &CM) { 7927 unsigned WidestType; 7928 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7929 return WidestVectorRegBits / WidestType; 7930 } 7931 7932 VectorizationFactor 7933 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7934 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7935 ElementCount VF = UserVF; 7936 // Outer loop handling: They may require CFG and instruction level 7937 // transformations before even evaluating whether vectorization is profitable. 7938 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7939 // the vectorization pipeline. 7940 if (!OrigLoop->isInnermost()) { 7941 // If the user doesn't provide a vectorization factor, determine a 7942 // reasonable one. 7943 if (UserVF.isZero()) { 7944 VF = ElementCount::getFixed(determineVPlanVF( 7945 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7946 .getFixedSize(), 7947 CM)); 7948 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7949 7950 // Make sure we have a VF > 1 for stress testing. 7951 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7952 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7953 << "overriding computed VF.\n"); 7954 VF = ElementCount::getFixed(4); 7955 } 7956 } 7957 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7958 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7959 "VF needs to be a power of two"); 7960 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7961 << "VF " << VF << " to build VPlans.\n"); 7962 buildVPlans(VF, VF); 7963 7964 // For VPlan build stress testing, we bail out after VPlan construction. 7965 if (VPlanBuildStressTest) 7966 return VectorizationFactor::Disabled(); 7967 7968 return {VF, 0 /*Cost*/}; 7969 } 7970 7971 LLVM_DEBUG( 7972 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7973 "VPlan-native path.\n"); 7974 return VectorizationFactor::Disabled(); 7975 } 7976 7977 Optional<VectorizationFactor> 7978 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7979 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7980 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7981 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7982 return None; 7983 7984 // Invalidate interleave groups if all blocks of loop will be predicated. 7985 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 7986 !useMaskedInterleavedAccesses(*TTI)) { 7987 LLVM_DEBUG( 7988 dbgs() 7989 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7990 "which requires masked-interleaved support.\n"); 7991 if (CM.InterleaveInfo.invalidateGroups()) 7992 // Invalidating interleave groups also requires invalidating all decisions 7993 // based on them, which includes widening decisions and uniform and scalar 7994 // values. 7995 CM.invalidateCostModelingDecisions(); 7996 } 7997 7998 ElementCount MaxUserVF = 7999 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 8000 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 8001 if (!UserVF.isZero() && UserVFIsLegal) { 8002 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVFIsLegal ? "user" : "max") 8003 << " VF " << UserVF << ".\n"); 8004 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 8005 "VF needs to be a power of two"); 8006 // Collect the instructions (and their associated costs) that will be more 8007 // profitable to scalarize. 8008 CM.selectUserVectorizationFactor(UserVF); 8009 CM.collectInLoopReductions(); 8010 buildVPlansWithVPRecipes(UserVF, UserVF); 8011 LLVM_DEBUG(printPlans(dbgs())); 8012 return {{UserVF, 0}}; 8013 } 8014 8015 // Populate the set of Vectorization Factor Candidates. 8016 ElementCountSet VFCandidates; 8017 for (auto VF = ElementCount::getFixed(1); 8018 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 8019 VFCandidates.insert(VF); 8020 for (auto VF = ElementCount::getScalable(1); 8021 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 8022 VFCandidates.insert(VF); 8023 8024 for (const auto &VF : VFCandidates) { 8025 // Collect Uniform and Scalar instructions after vectorization with VF. 8026 CM.collectUniformsAndScalars(VF); 8027 8028 // Collect the instructions (and their associated costs) that will be more 8029 // profitable to scalarize. 8030 if (VF.isVector()) 8031 CM.collectInstsToScalarize(VF); 8032 } 8033 8034 CM.collectInLoopReductions(); 8035 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 8036 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 8037 8038 LLVM_DEBUG(printPlans(dbgs())); 8039 if (!MaxFactors.hasVector()) 8040 return VectorizationFactor::Disabled(); 8041 8042 // Select the optimal vectorization factor. 8043 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 8044 8045 // Check if it is profitable to vectorize with runtime checks. 8046 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 8047 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 8048 bool PragmaThresholdReached = 8049 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 8050 bool ThresholdReached = 8051 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 8052 if ((ThresholdReached && !Hints.allowReordering()) || 8053 PragmaThresholdReached) { 8054 ORE->emit([&]() { 8055 return OptimizationRemarkAnalysisAliasing( 8056 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 8057 OrigLoop->getHeader()) 8058 << "loop not vectorized: cannot prove it is safe to reorder " 8059 "memory operations"; 8060 }); 8061 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 8062 Hints.emitRemarkWithHints(); 8063 return VectorizationFactor::Disabled(); 8064 } 8065 } 8066 return SelectedVF; 8067 } 8068 8069 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 8070 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 8071 << '\n'); 8072 BestVF = VF; 8073 BestUF = UF; 8074 8075 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 8076 return !Plan->hasVF(VF); 8077 }); 8078 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 8079 } 8080 8081 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 8082 DominatorTree *DT) { 8083 // Perform the actual loop transformation. 8084 8085 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 8086 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 8087 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 8088 8089 VPTransformState State{ 8090 *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()}; 8091 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 8092 State.TripCount = ILV.getOrCreateTripCount(nullptr); 8093 State.CanonicalIV = ILV.Induction; 8094 8095 ILV.printDebugTracesAtStart(); 8096 8097 //===------------------------------------------------===// 8098 // 8099 // Notice: any optimization or new instruction that go 8100 // into the code below should also be implemented in 8101 // the cost-model. 8102 // 8103 //===------------------------------------------------===// 8104 8105 // 2. Copy and widen instructions from the old loop into the new loop. 8106 VPlans.front()->execute(&State); 8107 8108 // 3. Fix the vectorized code: take care of header phi's, live-outs, 8109 // predication, updating analyses. 8110 ILV.fixVectorizedLoop(State); 8111 8112 ILV.printDebugTracesAtEnd(); 8113 } 8114 8115 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 8116 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 8117 for (const auto &Plan : VPlans) 8118 if (PrintVPlansInDotFormat) 8119 Plan->printDOT(O); 8120 else 8121 Plan->print(O); 8122 } 8123 #endif 8124 8125 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 8126 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 8127 8128 // We create new control-flow for the vectorized loop, so the original exit 8129 // conditions will be dead after vectorization if it's only used by the 8130 // terminator 8131 SmallVector<BasicBlock*> ExitingBlocks; 8132 OrigLoop->getExitingBlocks(ExitingBlocks); 8133 for (auto *BB : ExitingBlocks) { 8134 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 8135 if (!Cmp || !Cmp->hasOneUse()) 8136 continue; 8137 8138 // TODO: we should introduce a getUniqueExitingBlocks on Loop 8139 if (!DeadInstructions.insert(Cmp).second) 8140 continue; 8141 8142 // The operands of the icmp is often a dead trunc, used by IndUpdate. 8143 // TODO: can recurse through operands in general 8144 for (Value *Op : Cmp->operands()) { 8145 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8146 DeadInstructions.insert(cast<Instruction>(Op)); 8147 } 8148 } 8149 8150 // We create new "steps" for induction variable updates to which the original 8151 // induction variables map. An original update instruction will be dead if 8152 // all its users except the induction variable are dead. 8153 auto *Latch = OrigLoop->getLoopLatch(); 8154 for (auto &Induction : Legal->getInductionVars()) { 8155 PHINode *Ind = Induction.first; 8156 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8157 8158 // If the tail is to be folded by masking, the primary induction variable, 8159 // if exists, isn't dead: it will be used for masking. Don't kill it. 8160 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8161 continue; 8162 8163 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8164 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8165 })) 8166 DeadInstructions.insert(IndUpdate); 8167 8168 // We record as "Dead" also the type-casting instructions we had identified 8169 // during induction analysis. We don't need any handling for them in the 8170 // vectorized loop because we have proven that, under a proper runtime 8171 // test guarding the vectorized loop, the value of the phi, and the casted 8172 // value of the phi, are the same. The last instruction in this casting chain 8173 // will get its scalar/vector/widened def from the scalar/vector/widened def 8174 // of the respective phi node. Any other casts in the induction def-use chain 8175 // have no other uses outside the phi update chain, and will be ignored. 8176 InductionDescriptor &IndDes = Induction.second; 8177 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 8178 DeadInstructions.insert(Casts.begin(), Casts.end()); 8179 } 8180 } 8181 8182 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 8183 8184 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8185 8186 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 8187 Instruction::BinaryOps BinOp) { 8188 // When unrolling and the VF is 1, we only need to add a simple scalar. 8189 Type *Ty = Val->getType(); 8190 assert(!Ty->isVectorTy() && "Val must be a scalar"); 8191 8192 if (Ty->isFloatingPointTy()) { 8193 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 8194 8195 // Floating-point operations inherit FMF via the builder's flags. 8196 Value *MulOp = Builder.CreateFMul(C, Step); 8197 return Builder.CreateBinOp(BinOp, Val, MulOp); 8198 } 8199 Constant *C = ConstantInt::get(Ty, StartIdx); 8200 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 8201 } 8202 8203 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 8204 SmallVector<Metadata *, 4> MDs; 8205 // Reserve first location for self reference to the LoopID metadata node. 8206 MDs.push_back(nullptr); 8207 bool IsUnrollMetadata = false; 8208 MDNode *LoopID = L->getLoopID(); 8209 if (LoopID) { 8210 // First find existing loop unrolling disable metadata. 8211 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 8212 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 8213 if (MD) { 8214 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 8215 IsUnrollMetadata = 8216 S && S->getString().startswith("llvm.loop.unroll.disable"); 8217 } 8218 MDs.push_back(LoopID->getOperand(i)); 8219 } 8220 } 8221 8222 if (!IsUnrollMetadata) { 8223 // Add runtime unroll disable metadata. 8224 LLVMContext &Context = L->getHeader()->getContext(); 8225 SmallVector<Metadata *, 1> DisableOperands; 8226 DisableOperands.push_back( 8227 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 8228 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 8229 MDs.push_back(DisableNode); 8230 MDNode *NewLoopID = MDNode::get(Context, MDs); 8231 // Set operand 0 to refer to the loop id itself. 8232 NewLoopID->replaceOperandWith(0, NewLoopID); 8233 L->setLoopID(NewLoopID); 8234 } 8235 } 8236 8237 //===--------------------------------------------------------------------===// 8238 // EpilogueVectorizerMainLoop 8239 //===--------------------------------------------------------------------===// 8240 8241 /// This function is partially responsible for generating the control flow 8242 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8243 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8244 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8245 Loop *Lp = createVectorLoopSkeleton(""); 8246 8247 // Generate the code to check the minimum iteration count of the vector 8248 // epilogue (see below). 8249 EPI.EpilogueIterationCountCheck = 8250 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8251 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8252 8253 // Generate the code to check any assumptions that we've made for SCEV 8254 // expressions. 8255 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8256 8257 // Generate the code that checks at runtime if arrays overlap. We put the 8258 // checks into a separate block to make the more common case of few elements 8259 // faster. 8260 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8261 8262 // Generate the iteration count check for the main loop, *after* the check 8263 // for the epilogue loop, so that the path-length is shorter for the case 8264 // that goes directly through the vector epilogue. The longer-path length for 8265 // the main loop is compensated for, by the gain from vectorizing the larger 8266 // trip count. Note: the branch will get updated later on when we vectorize 8267 // the epilogue. 8268 EPI.MainLoopIterationCountCheck = 8269 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8270 8271 // Generate the induction variable. 8272 OldInduction = Legal->getPrimaryInduction(); 8273 Type *IdxTy = Legal->getWidestInductionType(); 8274 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8275 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8276 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8277 EPI.VectorTripCount = CountRoundDown; 8278 Induction = 8279 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8280 getDebugLocFromInstOrOperands(OldInduction)); 8281 8282 // Skip induction resume value creation here because they will be created in 8283 // the second pass. If we created them here, they wouldn't be used anyway, 8284 // because the vplan in the second pass still contains the inductions from the 8285 // original loop. 8286 8287 return completeLoopSkeleton(Lp, OrigLoopID); 8288 } 8289 8290 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8291 LLVM_DEBUG({ 8292 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8293 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 8294 << ", Main Loop UF:" << EPI.MainLoopUF 8295 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8296 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8297 }); 8298 } 8299 8300 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8301 DEBUG_WITH_TYPE(VerboseDebug, { 8302 dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n"; 8303 }); 8304 } 8305 8306 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8307 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8308 assert(L && "Expected valid Loop."); 8309 assert(Bypass && "Expected valid bypass basic block."); 8310 unsigned VFactor = 8311 ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue(); 8312 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8313 Value *Count = getOrCreateTripCount(L); 8314 // Reuse existing vector loop preheader for TC checks. 8315 // Note that new preheader block is generated for vector loop. 8316 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8317 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8318 8319 // Generate code to check if the loop's trip count is less than VF * UF of the 8320 // main vector loop. 8321 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 8322 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8323 8324 Value *CheckMinIters = Builder.CreateICmp( 8325 P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor), 8326 "min.iters.check"); 8327 8328 if (!ForEpilogue) 8329 TCCheckBlock->setName("vector.main.loop.iter.check"); 8330 8331 // Create new preheader for vector loop. 8332 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8333 DT, LI, nullptr, "vector.ph"); 8334 8335 if (ForEpilogue) { 8336 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8337 DT->getNode(Bypass)->getIDom()) && 8338 "TC check is expected to dominate Bypass"); 8339 8340 // Update dominator for Bypass & LoopExit. 8341 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8342 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8343 8344 LoopBypassBlocks.push_back(TCCheckBlock); 8345 8346 // Save the trip count so we don't have to regenerate it in the 8347 // vec.epilog.iter.check. This is safe to do because the trip count 8348 // generated here dominates the vector epilog iter check. 8349 EPI.TripCount = Count; 8350 } 8351 8352 ReplaceInstWithInst( 8353 TCCheckBlock->getTerminator(), 8354 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8355 8356 return TCCheckBlock; 8357 } 8358 8359 //===--------------------------------------------------------------------===// 8360 // EpilogueVectorizerEpilogueLoop 8361 //===--------------------------------------------------------------------===// 8362 8363 /// This function is partially responsible for generating the control flow 8364 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8365 BasicBlock * 8366 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8367 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8368 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8369 8370 // Now, compare the remaining count and if there aren't enough iterations to 8371 // execute the vectorized epilogue skip to the scalar part. 8372 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8373 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8374 LoopVectorPreHeader = 8375 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8376 LI, nullptr, "vec.epilog.ph"); 8377 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8378 VecEpilogueIterationCountCheck); 8379 8380 // Adjust the control flow taking the state info from the main loop 8381 // vectorization into account. 8382 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8383 "expected this to be saved from the previous pass."); 8384 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8385 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8386 8387 DT->changeImmediateDominator(LoopVectorPreHeader, 8388 EPI.MainLoopIterationCountCheck); 8389 8390 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8391 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8392 8393 if (EPI.SCEVSafetyCheck) 8394 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8395 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8396 if (EPI.MemSafetyCheck) 8397 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8398 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8399 8400 DT->changeImmediateDominator( 8401 VecEpilogueIterationCountCheck, 8402 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8403 8404 DT->changeImmediateDominator(LoopScalarPreHeader, 8405 EPI.EpilogueIterationCountCheck); 8406 DT->changeImmediateDominator(LoopExitBlock, EPI.EpilogueIterationCountCheck); 8407 8408 // Keep track of bypass blocks, as they feed start values to the induction 8409 // phis in the scalar loop preheader. 8410 if (EPI.SCEVSafetyCheck) 8411 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8412 if (EPI.MemSafetyCheck) 8413 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8414 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8415 8416 // Generate a resume induction for the vector epilogue and put it in the 8417 // vector epilogue preheader 8418 Type *IdxTy = Legal->getWidestInductionType(); 8419 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8420 LoopVectorPreHeader->getFirstNonPHI()); 8421 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8422 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8423 EPI.MainLoopIterationCountCheck); 8424 8425 // Generate the induction variable. 8426 OldInduction = Legal->getPrimaryInduction(); 8427 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8428 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8429 Value *StartIdx = EPResumeVal; 8430 Induction = 8431 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8432 getDebugLocFromInstOrOperands(OldInduction)); 8433 8434 // Generate induction resume values. These variables save the new starting 8435 // indexes for the scalar loop. They are used to test if there are any tail 8436 // iterations left once the vector loop has completed. 8437 // Note that when the vectorized epilogue is skipped due to iteration count 8438 // check, then the resume value for the induction variable comes from 8439 // the trip count of the main vector loop, hence passing the AdditionalBypass 8440 // argument. 8441 createInductionResumeValues(Lp, CountRoundDown, 8442 {VecEpilogueIterationCountCheck, 8443 EPI.VectorTripCount} /* AdditionalBypass */); 8444 8445 AddRuntimeUnrollDisableMetaData(Lp); 8446 return completeLoopSkeleton(Lp, OrigLoopID); 8447 } 8448 8449 BasicBlock * 8450 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8451 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8452 8453 assert(EPI.TripCount && 8454 "Expected trip count to have been safed in the first pass."); 8455 assert( 8456 (!isa<Instruction>(EPI.TripCount) || 8457 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8458 "saved trip count does not dominate insertion point."); 8459 Value *TC = EPI.TripCount; 8460 IRBuilder<> Builder(Insert->getTerminator()); 8461 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8462 8463 // Generate code to check if the loop's trip count is less than VF * UF of the 8464 // vector epilogue loop. 8465 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8466 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8467 8468 Value *CheckMinIters = Builder.CreateICmp( 8469 P, Count, 8470 ConstantInt::get(Count->getType(), 8471 EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF), 8472 "min.epilog.iters.check"); 8473 8474 ReplaceInstWithInst( 8475 Insert->getTerminator(), 8476 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8477 8478 LoopBypassBlocks.push_back(Insert); 8479 return Insert; 8480 } 8481 8482 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8483 LLVM_DEBUG({ 8484 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8485 << "Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8486 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8487 }); 8488 } 8489 8490 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8491 DEBUG_WITH_TYPE(VerboseDebug, { 8492 dbgs() << "final fn:\n" << *Induction->getFunction() << "\n"; 8493 }); 8494 } 8495 8496 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8497 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8498 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8499 bool PredicateAtRangeStart = Predicate(Range.Start); 8500 8501 for (ElementCount TmpVF = Range.Start * 2; 8502 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8503 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8504 Range.End = TmpVF; 8505 break; 8506 } 8507 8508 return PredicateAtRangeStart; 8509 } 8510 8511 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8512 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8513 /// of VF's starting at a given VF and extending it as much as possible. Each 8514 /// vectorization decision can potentially shorten this sub-range during 8515 /// buildVPlan(). 8516 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8517 ElementCount MaxVF) { 8518 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8519 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8520 VFRange SubRange = {VF, MaxVFPlusOne}; 8521 VPlans.push_back(buildVPlan(SubRange)); 8522 VF = SubRange.End; 8523 } 8524 } 8525 8526 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8527 VPlanPtr &Plan) { 8528 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8529 8530 // Look for cached value. 8531 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8532 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8533 if (ECEntryIt != EdgeMaskCache.end()) 8534 return ECEntryIt->second; 8535 8536 VPValue *SrcMask = createBlockInMask(Src, Plan); 8537 8538 // The terminator has to be a branch inst! 8539 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8540 assert(BI && "Unexpected terminator found"); 8541 8542 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8543 return EdgeMaskCache[Edge] = SrcMask; 8544 8545 // If source is an exiting block, we know the exit edge is dynamically dead 8546 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8547 // adding uses of an otherwise potentially dead instruction. 8548 if (OrigLoop->isLoopExiting(Src)) 8549 return EdgeMaskCache[Edge] = SrcMask; 8550 8551 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8552 assert(EdgeMask && "No Edge Mask found for condition"); 8553 8554 if (BI->getSuccessor(0) != Dst) 8555 EdgeMask = Builder.createNot(EdgeMask); 8556 8557 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8558 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8559 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8560 // The select version does not introduce new UB if SrcMask is false and 8561 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8562 VPValue *False = Plan->getOrAddVPValue( 8563 ConstantInt::getFalse(BI->getCondition()->getType())); 8564 EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False); 8565 } 8566 8567 return EdgeMaskCache[Edge] = EdgeMask; 8568 } 8569 8570 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8571 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8572 8573 // Look for cached value. 8574 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8575 if (BCEntryIt != BlockMaskCache.end()) 8576 return BCEntryIt->second; 8577 8578 // All-one mask is modelled as no-mask following the convention for masked 8579 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8580 VPValue *BlockMask = nullptr; 8581 8582 if (OrigLoop->getHeader() == BB) { 8583 if (!CM.blockNeedsPredication(BB)) 8584 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8585 8586 // Create the block in mask as the first non-phi instruction in the block. 8587 VPBuilder::InsertPointGuard Guard(Builder); 8588 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 8589 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 8590 8591 // Introduce the early-exit compare IV <= BTC to form header block mask. 8592 // This is used instead of IV < TC because TC may wrap, unlike BTC. 8593 // Start by constructing the desired canonical IV. 8594 VPValue *IV = nullptr; 8595 if (Legal->getPrimaryInduction()) 8596 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8597 else { 8598 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 8599 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 8600 IV = IVRecipe->getVPSingleValue(); 8601 } 8602 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8603 bool TailFolded = !CM.isScalarEpilogueAllowed(); 8604 8605 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 8606 // While ActiveLaneMask is a binary op that consumes the loop tripcount 8607 // as a second argument, we only pass the IV here and extract the 8608 // tripcount from the transform state where codegen of the VP instructions 8609 // happen. 8610 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 8611 } else { 8612 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8613 } 8614 return BlockMaskCache[BB] = BlockMask; 8615 } 8616 8617 // This is the block mask. We OR all incoming edges. 8618 for (auto *Predecessor : predecessors(BB)) { 8619 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8620 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8621 return BlockMaskCache[BB] = EdgeMask; 8622 8623 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8624 BlockMask = EdgeMask; 8625 continue; 8626 } 8627 8628 BlockMask = Builder.createOr(BlockMask, EdgeMask); 8629 } 8630 8631 return BlockMaskCache[BB] = BlockMask; 8632 } 8633 8634 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8635 ArrayRef<VPValue *> Operands, 8636 VFRange &Range, 8637 VPlanPtr &Plan) { 8638 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8639 "Must be called with either a load or store"); 8640 8641 auto willWiden = [&](ElementCount VF) -> bool { 8642 if (VF.isScalar()) 8643 return false; 8644 LoopVectorizationCostModel::InstWidening Decision = 8645 CM.getWideningDecision(I, VF); 8646 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8647 "CM decision should be taken at this point."); 8648 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8649 return true; 8650 if (CM.isScalarAfterVectorization(I, VF) || 8651 CM.isProfitableToScalarize(I, VF)) 8652 return false; 8653 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8654 }; 8655 8656 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8657 return nullptr; 8658 8659 VPValue *Mask = nullptr; 8660 if (Legal->isMaskRequired(I)) 8661 Mask = createBlockInMask(I->getParent(), Plan); 8662 8663 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8664 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask); 8665 8666 StoreInst *Store = cast<StoreInst>(I); 8667 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8668 Mask); 8669 } 8670 8671 VPWidenIntOrFpInductionRecipe * 8672 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, 8673 ArrayRef<VPValue *> Operands) const { 8674 // Check if this is an integer or fp induction. If so, build the recipe that 8675 // produces its scalar and vector values. 8676 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8677 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8678 II.getKind() == InductionDescriptor::IK_FpInduction) { 8679 assert(II.getStartValue() == 8680 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8681 const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts(); 8682 return new VPWidenIntOrFpInductionRecipe( 8683 Phi, Operands[0], Casts.empty() ? nullptr : Casts.front()); 8684 } 8685 8686 return nullptr; 8687 } 8688 8689 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8690 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8691 VPlan &Plan) const { 8692 // Optimize the special case where the source is a constant integer 8693 // induction variable. Notice that we can only optimize the 'trunc' case 8694 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8695 // (c) other casts depend on pointer size. 8696 8697 // Determine whether \p K is a truncation based on an induction variable that 8698 // can be optimized. 8699 auto isOptimizableIVTruncate = 8700 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8701 return [=](ElementCount VF) -> bool { 8702 return CM.isOptimizableIVTruncate(K, VF); 8703 }; 8704 }; 8705 8706 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8707 isOptimizableIVTruncate(I), Range)) { 8708 8709 InductionDescriptor II = 8710 Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0))); 8711 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8712 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8713 Start, nullptr, I); 8714 } 8715 return nullptr; 8716 } 8717 8718 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8719 ArrayRef<VPValue *> Operands, 8720 VPlanPtr &Plan) { 8721 // If all incoming values are equal, the incoming VPValue can be used directly 8722 // instead of creating a new VPBlendRecipe. 8723 VPValue *FirstIncoming = Operands[0]; 8724 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8725 return FirstIncoming == Inc; 8726 })) { 8727 return Operands[0]; 8728 } 8729 8730 // We know that all PHIs in non-header blocks are converted into selects, so 8731 // we don't have to worry about the insertion order and we can just use the 8732 // builder. At this point we generate the predication tree. There may be 8733 // duplications since this is a simple recursive scan, but future 8734 // optimizations will clean it up. 8735 SmallVector<VPValue *, 2> OperandsWithMask; 8736 unsigned NumIncoming = Phi->getNumIncomingValues(); 8737 8738 for (unsigned In = 0; In < NumIncoming; In++) { 8739 VPValue *EdgeMask = 8740 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8741 assert((EdgeMask || NumIncoming == 1) && 8742 "Multiple predecessors with one having a full mask"); 8743 OperandsWithMask.push_back(Operands[In]); 8744 if (EdgeMask) 8745 OperandsWithMask.push_back(EdgeMask); 8746 } 8747 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8748 } 8749 8750 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8751 ArrayRef<VPValue *> Operands, 8752 VFRange &Range) const { 8753 8754 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8755 [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); }, 8756 Range); 8757 8758 if (IsPredicated) 8759 return nullptr; 8760 8761 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8762 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8763 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8764 ID == Intrinsic::pseudoprobe || 8765 ID == Intrinsic::experimental_noalias_scope_decl)) 8766 return nullptr; 8767 8768 auto willWiden = [&](ElementCount VF) -> bool { 8769 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8770 // The following case may be scalarized depending on the VF. 8771 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8772 // version of the instruction. 8773 // Is it beneficial to perform intrinsic call compared to lib call? 8774 bool NeedToScalarize = false; 8775 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8776 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8777 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8778 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 8779 "Either the intrinsic cost or vector call cost must be valid"); 8780 return UseVectorIntrinsic || !NeedToScalarize; 8781 }; 8782 8783 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8784 return nullptr; 8785 8786 ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands()); 8787 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8788 } 8789 8790 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8791 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8792 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8793 // Instruction should be widened, unless it is scalar after vectorization, 8794 // scalarization is profitable or it is predicated. 8795 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8796 return CM.isScalarAfterVectorization(I, VF) || 8797 CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I); 8798 }; 8799 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8800 Range); 8801 } 8802 8803 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8804 ArrayRef<VPValue *> Operands) const { 8805 auto IsVectorizableOpcode = [](unsigned Opcode) { 8806 switch (Opcode) { 8807 case Instruction::Add: 8808 case Instruction::And: 8809 case Instruction::AShr: 8810 case Instruction::BitCast: 8811 case Instruction::FAdd: 8812 case Instruction::FCmp: 8813 case Instruction::FDiv: 8814 case Instruction::FMul: 8815 case Instruction::FNeg: 8816 case Instruction::FPExt: 8817 case Instruction::FPToSI: 8818 case Instruction::FPToUI: 8819 case Instruction::FPTrunc: 8820 case Instruction::FRem: 8821 case Instruction::FSub: 8822 case Instruction::ICmp: 8823 case Instruction::IntToPtr: 8824 case Instruction::LShr: 8825 case Instruction::Mul: 8826 case Instruction::Or: 8827 case Instruction::PtrToInt: 8828 case Instruction::SDiv: 8829 case Instruction::Select: 8830 case Instruction::SExt: 8831 case Instruction::Shl: 8832 case Instruction::SIToFP: 8833 case Instruction::SRem: 8834 case Instruction::Sub: 8835 case Instruction::Trunc: 8836 case Instruction::UDiv: 8837 case Instruction::UIToFP: 8838 case Instruction::URem: 8839 case Instruction::Xor: 8840 case Instruction::ZExt: 8841 return true; 8842 } 8843 return false; 8844 }; 8845 8846 if (!IsVectorizableOpcode(I->getOpcode())) 8847 return nullptr; 8848 8849 // Success: widen this instruction. 8850 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8851 } 8852 8853 void VPRecipeBuilder::fixHeaderPhis() { 8854 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8855 for (VPWidenPHIRecipe *R : PhisToFix) { 8856 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8857 VPRecipeBase *IncR = 8858 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8859 R->addOperand(IncR->getVPSingleValue()); 8860 } 8861 } 8862 8863 VPBasicBlock *VPRecipeBuilder::handleReplication( 8864 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8865 VPlanPtr &Plan) { 8866 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8867 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8868 Range); 8869 8870 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8871 [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range); 8872 8873 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8874 IsUniform, IsPredicated); 8875 setRecipe(I, Recipe); 8876 Plan->addVPValue(I, Recipe); 8877 8878 // Find if I uses a predicated instruction. If so, it will use its scalar 8879 // value. Avoid hoisting the insert-element which packs the scalar value into 8880 // a vector value, as that happens iff all users use the vector value. 8881 for (VPValue *Op : Recipe->operands()) { 8882 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8883 if (!PredR) 8884 continue; 8885 auto *RepR = 8886 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8887 assert(RepR->isPredicated() && 8888 "expected Replicate recipe to be predicated"); 8889 RepR->setAlsoPack(false); 8890 } 8891 8892 // Finalize the recipe for Instr, first if it is not predicated. 8893 if (!IsPredicated) { 8894 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8895 VPBB->appendRecipe(Recipe); 8896 return VPBB; 8897 } 8898 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8899 assert(VPBB->getSuccessors().empty() && 8900 "VPBB has successors when handling predicated replication."); 8901 // Record predicated instructions for above packing optimizations. 8902 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8903 VPBlockUtils::insertBlockAfter(Region, VPBB); 8904 auto *RegSucc = new VPBasicBlock(); 8905 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8906 return RegSucc; 8907 } 8908 8909 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8910 VPRecipeBase *PredRecipe, 8911 VPlanPtr &Plan) { 8912 // Instructions marked for predication are replicated and placed under an 8913 // if-then construct to prevent side-effects. 8914 8915 // Generate recipes to compute the block mask for this region. 8916 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8917 8918 // Build the triangular if-then region. 8919 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8920 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8921 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8922 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8923 auto *PHIRecipe = Instr->getType()->isVoidTy() 8924 ? nullptr 8925 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8926 if (PHIRecipe) { 8927 Plan->removeVPValueFor(Instr); 8928 Plan->addVPValue(Instr, PHIRecipe); 8929 } 8930 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8931 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8932 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8933 8934 // Note: first set Entry as region entry and then connect successors starting 8935 // from it in order, to propagate the "parent" of each VPBasicBlock. 8936 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8937 VPBlockUtils::connectBlocks(Pred, Exit); 8938 8939 return Region; 8940 } 8941 8942 VPRecipeOrVPValueTy 8943 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8944 ArrayRef<VPValue *> Operands, 8945 VFRange &Range, VPlanPtr &Plan) { 8946 // First, check for specific widening recipes that deal with calls, memory 8947 // operations, inductions and Phi nodes. 8948 if (auto *CI = dyn_cast<CallInst>(Instr)) 8949 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8950 8951 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8952 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8953 8954 VPRecipeBase *Recipe; 8955 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8956 if (Phi->getParent() != OrigLoop->getHeader()) 8957 return tryToBlend(Phi, Operands, Plan); 8958 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands))) 8959 return toVPRecipeResult(Recipe); 8960 8961 VPWidenPHIRecipe *PhiRecipe = nullptr; 8962 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 8963 VPValue *StartV = Operands[0]; 8964 if (Legal->isReductionVariable(Phi)) { 8965 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 8966 assert(RdxDesc.getRecurrenceStartValue() == 8967 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8968 PhiRecipe = new VPWidenPHIRecipe(Phi, RdxDesc, *StartV); 8969 } else { 8970 PhiRecipe = new VPWidenPHIRecipe(Phi, *StartV); 8971 } 8972 8973 // Record the incoming value from the backedge, so we can add the incoming 8974 // value from the backedge after all recipes have been created. 8975 recordRecipeOf(cast<Instruction>( 8976 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8977 PhisToFix.push_back(PhiRecipe); 8978 } else { 8979 // TODO: record start and backedge value for remaining pointer induction 8980 // phis. 8981 assert(Phi->getType()->isPointerTy() && 8982 "only pointer phis should be handled here"); 8983 PhiRecipe = new VPWidenPHIRecipe(Phi); 8984 } 8985 8986 return toVPRecipeResult(PhiRecipe); 8987 } 8988 8989 if (isa<TruncInst>(Instr) && 8990 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8991 Range, *Plan))) 8992 return toVPRecipeResult(Recipe); 8993 8994 if (!shouldWiden(Instr, Range)) 8995 return nullptr; 8996 8997 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8998 return toVPRecipeResult(new VPWidenGEPRecipe( 8999 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 9000 9001 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 9002 bool InvariantCond = 9003 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 9004 return toVPRecipeResult(new VPWidenSelectRecipe( 9005 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 9006 } 9007 9008 return toVPRecipeResult(tryToWiden(Instr, Operands)); 9009 } 9010 9011 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 9012 ElementCount MaxVF) { 9013 assert(OrigLoop->isInnermost() && "Inner loop expected."); 9014 9015 // Collect instructions from the original loop that will become trivially dead 9016 // in the vectorized loop. We don't need to vectorize these instructions. For 9017 // example, original induction update instructions can become dead because we 9018 // separately emit induction "steps" when generating code for the new loop. 9019 // Similarly, we create a new latch condition when setting up the structure 9020 // of the new loop, so the old one can become dead. 9021 SmallPtrSet<Instruction *, 4> DeadInstructions; 9022 collectTriviallyDeadInstructions(DeadInstructions); 9023 9024 // Add assume instructions we need to drop to DeadInstructions, to prevent 9025 // them from being added to the VPlan. 9026 // TODO: We only need to drop assumes in blocks that get flattend. If the 9027 // control flow is preserved, we should keep them. 9028 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 9029 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 9030 9031 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 9032 // Dead instructions do not need sinking. Remove them from SinkAfter. 9033 for (Instruction *I : DeadInstructions) 9034 SinkAfter.erase(I); 9035 9036 // Cannot sink instructions after dead instructions (there won't be any 9037 // recipes for them). Instead, find the first non-dead previous instruction. 9038 for (auto &P : Legal->getSinkAfter()) { 9039 Instruction *SinkTarget = P.second; 9040 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 9041 (void)FirstInst; 9042 while (DeadInstructions.contains(SinkTarget)) { 9043 assert( 9044 SinkTarget != FirstInst && 9045 "Must find a live instruction (at least the one feeding the " 9046 "first-order recurrence PHI) before reaching beginning of the block"); 9047 SinkTarget = SinkTarget->getPrevNode(); 9048 assert(SinkTarget != P.first && 9049 "sink source equals target, no sinking required"); 9050 } 9051 P.second = SinkTarget; 9052 } 9053 9054 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 9055 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 9056 VFRange SubRange = {VF, MaxVFPlusOne}; 9057 VPlans.push_back( 9058 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 9059 VF = SubRange.End; 9060 } 9061 } 9062 9063 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 9064 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 9065 const MapVector<Instruction *, Instruction *> &SinkAfter) { 9066 9067 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 9068 9069 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 9070 9071 // --------------------------------------------------------------------------- 9072 // Pre-construction: record ingredients whose recipes we'll need to further 9073 // process after constructing the initial VPlan. 9074 // --------------------------------------------------------------------------- 9075 9076 // Mark instructions we'll need to sink later and their targets as 9077 // ingredients whose recipe we'll need to record. 9078 for (auto &Entry : SinkAfter) { 9079 RecipeBuilder.recordRecipeOf(Entry.first); 9080 RecipeBuilder.recordRecipeOf(Entry.second); 9081 } 9082 for (auto &Reduction : CM.getInLoopReductionChains()) { 9083 PHINode *Phi = Reduction.first; 9084 RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind(); 9085 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9086 9087 RecipeBuilder.recordRecipeOf(Phi); 9088 for (auto &R : ReductionOperations) { 9089 RecipeBuilder.recordRecipeOf(R); 9090 // For min/max reducitons, where we have a pair of icmp/select, we also 9091 // need to record the ICmp recipe, so it can be removed later. 9092 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 9093 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 9094 } 9095 } 9096 9097 // For each interleave group which is relevant for this (possibly trimmed) 9098 // Range, add it to the set of groups to be later applied to the VPlan and add 9099 // placeholders for its members' Recipes which we'll be replacing with a 9100 // single VPInterleaveRecipe. 9101 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9102 auto applyIG = [IG, this](ElementCount VF) -> bool { 9103 return (VF.isVector() && // Query is illegal for VF == 1 9104 CM.getWideningDecision(IG->getInsertPos(), VF) == 9105 LoopVectorizationCostModel::CM_Interleave); 9106 }; 9107 if (!getDecisionAndClampRange(applyIG, Range)) 9108 continue; 9109 InterleaveGroups.insert(IG); 9110 for (unsigned i = 0; i < IG->getFactor(); i++) 9111 if (Instruction *Member = IG->getMember(i)) 9112 RecipeBuilder.recordRecipeOf(Member); 9113 }; 9114 9115 // --------------------------------------------------------------------------- 9116 // Build initial VPlan: Scan the body of the loop in a topological order to 9117 // visit each basic block after having visited its predecessor basic blocks. 9118 // --------------------------------------------------------------------------- 9119 9120 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 9121 auto Plan = std::make_unique<VPlan>(); 9122 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 9123 Plan->setEntry(VPBB); 9124 9125 // Scan the body of the loop in a topological order to visit each basic block 9126 // after having visited its predecessor basic blocks. 9127 LoopBlocksDFS DFS(OrigLoop); 9128 DFS.perform(LI); 9129 9130 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9131 // Relevant instructions from basic block BB will be grouped into VPRecipe 9132 // ingredients and fill a new VPBasicBlock. 9133 unsigned VPBBsForBB = 0; 9134 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 9135 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 9136 VPBB = FirstVPBBForBB; 9137 Builder.setInsertPoint(VPBB); 9138 9139 // Introduce each ingredient into VPlan. 9140 // TODO: Model and preserve debug instrinsics in VPlan. 9141 for (Instruction &I : BB->instructionsWithoutDebug()) { 9142 Instruction *Instr = &I; 9143 9144 // First filter out irrelevant instructions, to ensure no recipes are 9145 // built for them. 9146 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9147 continue; 9148 9149 SmallVector<VPValue *, 4> Operands; 9150 auto *Phi = dyn_cast<PHINode>(Instr); 9151 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9152 Operands.push_back(Plan->getOrAddVPValue( 9153 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9154 } else { 9155 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9156 Operands = {OpRange.begin(), OpRange.end()}; 9157 } 9158 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9159 Instr, Operands, Range, Plan)) { 9160 // If Instr can be simplified to an existing VPValue, use it. 9161 if (RecipeOrValue.is<VPValue *>()) { 9162 auto *VPV = RecipeOrValue.get<VPValue *>(); 9163 Plan->addVPValue(Instr, VPV); 9164 // If the re-used value is a recipe, register the recipe for the 9165 // instruction, in case the recipe for Instr needs to be recorded. 9166 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9167 RecipeBuilder.setRecipe(Instr, R); 9168 continue; 9169 } 9170 // Otherwise, add the new recipe. 9171 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9172 for (auto *Def : Recipe->definedValues()) { 9173 auto *UV = Def->getUnderlyingValue(); 9174 Plan->addVPValue(UV, Def); 9175 } 9176 9177 RecipeBuilder.setRecipe(Instr, Recipe); 9178 VPBB->appendRecipe(Recipe); 9179 continue; 9180 } 9181 9182 // Otherwise, if all widening options failed, Instruction is to be 9183 // replicated. This may create a successor for VPBB. 9184 VPBasicBlock *NextVPBB = 9185 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9186 if (NextVPBB != VPBB) { 9187 VPBB = NextVPBB; 9188 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9189 : ""); 9190 } 9191 } 9192 } 9193 9194 RecipeBuilder.fixHeaderPhis(); 9195 9196 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 9197 // may also be empty, such as the last one VPBB, reflecting original 9198 // basic-blocks with no recipes. 9199 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 9200 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 9201 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 9202 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 9203 delete PreEntry; 9204 9205 // --------------------------------------------------------------------------- 9206 // Transform initial VPlan: Apply previously taken decisions, in order, to 9207 // bring the VPlan to its final state. 9208 // --------------------------------------------------------------------------- 9209 9210 // Apply Sink-After legal constraints. 9211 for (auto &Entry : SinkAfter) { 9212 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9213 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9214 9215 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9216 auto *Region = 9217 dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9218 if (Region && Region->isReplicator()) { 9219 assert(Region->getNumSuccessors() == 1 && 9220 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 9221 assert(R->getParent()->size() == 1 && 9222 "A recipe in an original replicator region must be the only " 9223 "recipe in its block"); 9224 return Region; 9225 } 9226 return nullptr; 9227 }; 9228 auto *TargetRegion = GetReplicateRegion(Target); 9229 auto *SinkRegion = GetReplicateRegion(Sink); 9230 if (!SinkRegion) { 9231 // If the sink source is not a replicate region, sink the recipe directly. 9232 if (TargetRegion) { 9233 // The target is in a replication region, make sure to move Sink to 9234 // the block after it, not into the replication region itself. 9235 VPBasicBlock *NextBlock = 9236 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9237 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9238 } else 9239 Sink->moveAfter(Target); 9240 continue; 9241 } 9242 9243 // The sink source is in a replicate region. Unhook the region from the CFG. 9244 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9245 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9246 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9247 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9248 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9249 9250 if (TargetRegion) { 9251 // The target recipe is also in a replicate region, move the sink region 9252 // after the target region. 9253 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9254 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9255 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9256 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9257 } else { 9258 // The sink source is in a replicate region, we need to move the whole 9259 // replicate region, which should only contain a single recipe in the main 9260 // block. 9261 auto *SplitBlock = 9262 Target->getParent()->splitAt(std::next(Target->getIterator())); 9263 9264 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9265 9266 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9267 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9268 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9269 if (VPBB == SplitPred) 9270 VPBB = SplitBlock; 9271 } 9272 } 9273 9274 // Interleave memory: for each Interleave Group we marked earlier as relevant 9275 // for this VPlan, replace the Recipes widening its memory instructions with a 9276 // single VPInterleaveRecipe at its insertion point. 9277 for (auto IG : InterleaveGroups) { 9278 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9279 RecipeBuilder.getRecipe(IG->getInsertPos())); 9280 SmallVector<VPValue *, 4> StoredValues; 9281 for (unsigned i = 0; i < IG->getFactor(); ++i) 9282 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) 9283 StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0))); 9284 9285 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9286 Recipe->getMask()); 9287 VPIG->insertBefore(Recipe); 9288 unsigned J = 0; 9289 for (unsigned i = 0; i < IG->getFactor(); ++i) 9290 if (Instruction *Member = IG->getMember(i)) { 9291 if (!Member->getType()->isVoidTy()) { 9292 VPValue *OriginalV = Plan->getVPValue(Member); 9293 Plan->removeVPValueFor(Member); 9294 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9295 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9296 J++; 9297 } 9298 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9299 } 9300 } 9301 9302 // Adjust the recipes for any inloop reductions. 9303 adjustRecipesForInLoopReductions(Plan, RecipeBuilder, Range.Start); 9304 9305 // Finally, if tail is folded by masking, introduce selects between the phi 9306 // and the live-out instruction of each reduction, at the end of the latch. 9307 if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) { 9308 Builder.setInsertPoint(VPBB); 9309 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9310 for (auto &Reduction : Legal->getReductionVars()) { 9311 if (CM.isInLoopReduction(Reduction.first)) 9312 continue; 9313 VPValue *Phi = Plan->getOrAddVPValue(Reduction.first); 9314 VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr()); 9315 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 9316 } 9317 } 9318 9319 VPlanTransforms::sinkScalarOperands(*Plan); 9320 VPlanTransforms::mergeReplicateRegions(*Plan); 9321 9322 std::string PlanName; 9323 raw_string_ostream RSO(PlanName); 9324 ElementCount VF = Range.Start; 9325 Plan->addVF(VF); 9326 RSO << "Initial VPlan for VF={" << VF; 9327 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9328 Plan->addVF(VF); 9329 RSO << "," << VF; 9330 } 9331 RSO << "},UF>=1"; 9332 RSO.flush(); 9333 Plan->setName(PlanName); 9334 9335 return Plan; 9336 } 9337 9338 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9339 // Outer loop handling: They may require CFG and instruction level 9340 // transformations before even evaluating whether vectorization is profitable. 9341 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9342 // the vectorization pipeline. 9343 assert(!OrigLoop->isInnermost()); 9344 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9345 9346 // Create new empty VPlan 9347 auto Plan = std::make_unique<VPlan>(); 9348 9349 // Build hierarchical CFG 9350 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9351 HCFGBuilder.buildHierarchicalCFG(); 9352 9353 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9354 VF *= 2) 9355 Plan->addVF(VF); 9356 9357 if (EnableVPlanPredication) { 9358 VPlanPredicator VPP(*Plan); 9359 VPP.predicate(); 9360 9361 // Avoid running transformation to recipes until masked code generation in 9362 // VPlan-native path is in place. 9363 return Plan; 9364 } 9365 9366 SmallPtrSet<Instruction *, 1> DeadInstructions; 9367 VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan, 9368 Legal->getInductionVars(), 9369 DeadInstructions, *PSE.getSE()); 9370 return Plan; 9371 } 9372 9373 // Adjust the recipes for any inloop reductions. The chain of instructions 9374 // leading from the loop exit instr to the phi need to be converted to 9375 // reductions, with one operand being vector and the other being the scalar 9376 // reduction chain. 9377 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions( 9378 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) { 9379 for (auto &Reduction : CM.getInLoopReductionChains()) { 9380 PHINode *Phi = Reduction.first; 9381 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9382 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9383 9384 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9385 continue; 9386 9387 // ReductionOperations are orders top-down from the phi's use to the 9388 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9389 // which of the two operands will remain scalar and which will be reduced. 9390 // For minmax the chain will be the select instructions. 9391 Instruction *Chain = Phi; 9392 for (Instruction *R : ReductionOperations) { 9393 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9394 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9395 9396 VPValue *ChainOp = Plan->getVPValue(Chain); 9397 unsigned FirstOpId; 9398 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9399 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9400 "Expected to replace a VPWidenSelectSC"); 9401 FirstOpId = 1; 9402 } else { 9403 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) && 9404 "Expected to replace a VPWidenSC"); 9405 FirstOpId = 0; 9406 } 9407 unsigned VecOpId = 9408 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9409 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9410 9411 auto *CondOp = CM.foldTailByMasking() 9412 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9413 : nullptr; 9414 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 9415 &RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9416 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9417 Plan->removeVPValueFor(R); 9418 Plan->addVPValue(R, RedRecipe); 9419 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9420 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9421 WidenRecipe->eraseFromParent(); 9422 9423 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9424 VPRecipeBase *CompareRecipe = 9425 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9426 assert(isa<VPWidenRecipe>(CompareRecipe) && 9427 "Expected to replace a VPWidenSC"); 9428 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9429 "Expected no remaining users"); 9430 CompareRecipe->eraseFromParent(); 9431 } 9432 Chain = R; 9433 } 9434 } 9435 } 9436 9437 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9438 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9439 VPSlotTracker &SlotTracker) const { 9440 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9441 IG->getInsertPos()->printAsOperand(O, false); 9442 O << ", "; 9443 getAddr()->printAsOperand(O, SlotTracker); 9444 VPValue *Mask = getMask(); 9445 if (Mask) { 9446 O << ", "; 9447 Mask->printAsOperand(O, SlotTracker); 9448 } 9449 for (unsigned i = 0; i < IG->getFactor(); ++i) 9450 if (Instruction *I = IG->getMember(i)) 9451 O << "\n" << Indent << " " << VPlanIngredient(I) << " " << i; 9452 } 9453 #endif 9454 9455 void VPWidenCallRecipe::execute(VPTransformState &State) { 9456 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9457 *this, State); 9458 } 9459 9460 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9461 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 9462 this, *this, InvariantCond, State); 9463 } 9464 9465 void VPWidenRecipe::execute(VPTransformState &State) { 9466 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 9467 } 9468 9469 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9470 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 9471 *this, State.UF, State.VF, IsPtrLoopInvariant, 9472 IsIndexLoopInvariant, State); 9473 } 9474 9475 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9476 assert(!State.Instance && "Int or FP induction being replicated."); 9477 State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(), 9478 getTruncInst(), getVPValue(0), 9479 getCastValue(), State); 9480 } 9481 9482 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9483 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), RdxDesc, 9484 this, State); 9485 } 9486 9487 void VPBlendRecipe::execute(VPTransformState &State) { 9488 State.ILV->setDebugLocFromInst(State.Builder, Phi); 9489 // We know that all PHIs in non-header blocks are converted into 9490 // selects, so we don't have to worry about the insertion order and we 9491 // can just use the builder. 9492 // At this point we generate the predication tree. There may be 9493 // duplications since this is a simple recursive scan, but future 9494 // optimizations will clean it up. 9495 9496 unsigned NumIncoming = getNumIncomingValues(); 9497 9498 // Generate a sequence of selects of the form: 9499 // SELECT(Mask3, In3, 9500 // SELECT(Mask2, In2, 9501 // SELECT(Mask1, In1, 9502 // In0))) 9503 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9504 // are essentially undef are taken from In0. 9505 InnerLoopVectorizer::VectorParts Entry(State.UF); 9506 for (unsigned In = 0; In < NumIncoming; ++In) { 9507 for (unsigned Part = 0; Part < State.UF; ++Part) { 9508 // We might have single edge PHIs (blocks) - use an identity 9509 // 'select' for the first PHI operand. 9510 Value *In0 = State.get(getIncomingValue(In), Part); 9511 if (In == 0) 9512 Entry[Part] = In0; // Initialize with the first incoming value. 9513 else { 9514 // Select between the current value and the previous incoming edge 9515 // based on the incoming mask. 9516 Value *Cond = State.get(getMask(In), Part); 9517 Entry[Part] = 9518 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9519 } 9520 } 9521 } 9522 for (unsigned Part = 0; Part < State.UF; ++Part) 9523 State.set(this, Entry[Part], Part); 9524 } 9525 9526 void VPInterleaveRecipe::execute(VPTransformState &State) { 9527 assert(!State.Instance && "Interleave group being replicated."); 9528 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9529 getStoredValues(), getMask()); 9530 } 9531 9532 void VPReductionRecipe::execute(VPTransformState &State) { 9533 assert(!State.Instance && "Reduction being replicated."); 9534 Value *PrevInChain = State.get(getChainOp(), 0); 9535 for (unsigned Part = 0; Part < State.UF; ++Part) { 9536 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9537 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9538 Value *NewVecOp = State.get(getVecOp(), Part); 9539 if (VPValue *Cond = getCondOp()) { 9540 Value *NewCond = State.get(Cond, Part); 9541 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9542 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 9543 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9544 Constant *IdenVec = 9545 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 9546 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9547 NewVecOp = Select; 9548 } 9549 Value *NewRed; 9550 Value *NextInChain; 9551 if (IsOrdered) { 9552 if (State.VF.isVector()) 9553 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9554 PrevInChain); 9555 else 9556 NewRed = State.Builder.CreateBinOp( 9557 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), 9558 PrevInChain, NewVecOp); 9559 PrevInChain = NewRed; 9560 } else { 9561 PrevInChain = State.get(getChainOp(), Part); 9562 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9563 } 9564 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9565 NextInChain = 9566 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9567 NewRed, PrevInChain); 9568 } else if (IsOrdered) 9569 NextInChain = NewRed; 9570 else { 9571 NextInChain = State.Builder.CreateBinOp( 9572 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed, 9573 PrevInChain); 9574 } 9575 State.set(this, NextInChain, Part); 9576 } 9577 } 9578 9579 void VPReplicateRecipe::execute(VPTransformState &State) { 9580 if (State.Instance) { // Generate a single instance. 9581 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9582 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9583 *State.Instance, IsPredicated, State); 9584 // Insert scalar instance packing it into a vector. 9585 if (AlsoPack && State.VF.isVector()) { 9586 // If we're constructing lane 0, initialize to start from poison. 9587 if (State.Instance->Lane.isFirstLane()) { 9588 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9589 Value *Poison = PoisonValue::get( 9590 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9591 State.set(this, Poison, State.Instance->Part); 9592 } 9593 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9594 } 9595 return; 9596 } 9597 9598 // Generate scalar instances for all VF lanes of all UF parts, unless the 9599 // instruction is uniform inwhich case generate only the first lane for each 9600 // of the UF parts. 9601 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9602 assert((!State.VF.isScalable() || IsUniform) && 9603 "Can't scalarize a scalable vector"); 9604 for (unsigned Part = 0; Part < State.UF; ++Part) 9605 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9606 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9607 VPIteration(Part, Lane), IsPredicated, 9608 State); 9609 } 9610 9611 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9612 assert(State.Instance && "Branch on Mask works only on single instance."); 9613 9614 unsigned Part = State.Instance->Part; 9615 unsigned Lane = State.Instance->Lane.getKnownLane(); 9616 9617 Value *ConditionBit = nullptr; 9618 VPValue *BlockInMask = getMask(); 9619 if (BlockInMask) { 9620 ConditionBit = State.get(BlockInMask, Part); 9621 if (ConditionBit->getType()->isVectorTy()) 9622 ConditionBit = State.Builder.CreateExtractElement( 9623 ConditionBit, State.Builder.getInt32(Lane)); 9624 } else // Block in mask is all-one. 9625 ConditionBit = State.Builder.getTrue(); 9626 9627 // Replace the temporary unreachable terminator with a new conditional branch, 9628 // whose two destinations will be set later when they are created. 9629 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9630 assert(isa<UnreachableInst>(CurrentTerminator) && 9631 "Expected to replace unreachable terminator with conditional branch."); 9632 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9633 CondBr->setSuccessor(0, nullptr); 9634 ReplaceInstWithInst(CurrentTerminator, CondBr); 9635 } 9636 9637 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9638 assert(State.Instance && "Predicated instruction PHI works per instance."); 9639 Instruction *ScalarPredInst = 9640 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9641 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9642 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9643 assert(PredicatingBB && "Predicated block has no single predecessor."); 9644 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9645 "operand must be VPReplicateRecipe"); 9646 9647 // By current pack/unpack logic we need to generate only a single phi node: if 9648 // a vector value for the predicated instruction exists at this point it means 9649 // the instruction has vector users only, and a phi for the vector value is 9650 // needed. In this case the recipe of the predicated instruction is marked to 9651 // also do that packing, thereby "hoisting" the insert-element sequence. 9652 // Otherwise, a phi node for the scalar value is needed. 9653 unsigned Part = State.Instance->Part; 9654 if (State.hasVectorValue(getOperand(0), Part)) { 9655 Value *VectorValue = State.get(getOperand(0), Part); 9656 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9657 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9658 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9659 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9660 if (State.hasVectorValue(this, Part)) 9661 State.reset(this, VPhi, Part); 9662 else 9663 State.set(this, VPhi, Part); 9664 // NOTE: Currently we need to update the value of the operand, so the next 9665 // predicated iteration inserts its generated value in the correct vector. 9666 State.reset(getOperand(0), VPhi, Part); 9667 } else { 9668 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9669 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9670 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9671 PredicatingBB); 9672 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9673 if (State.hasScalarValue(this, *State.Instance)) 9674 State.reset(this, Phi, *State.Instance); 9675 else 9676 State.set(this, Phi, *State.Instance); 9677 // NOTE: Currently we need to update the value of the operand, so the next 9678 // predicated iteration inserts its generated value in the correct vector. 9679 State.reset(getOperand(0), Phi, *State.Instance); 9680 } 9681 } 9682 9683 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9684 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9685 State.ILV->vectorizeMemoryInstruction( 9686 &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(), 9687 StoredValue, getMask()); 9688 } 9689 9690 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9691 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9692 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9693 // for predication. 9694 static ScalarEpilogueLowering getScalarEpilogueLowering( 9695 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9696 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9697 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9698 LoopVectorizationLegality &LVL) { 9699 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9700 // don't look at hints or options, and don't request a scalar epilogue. 9701 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9702 // LoopAccessInfo (due to code dependency and not being able to reliably get 9703 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9704 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9705 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9706 // back to the old way and vectorize with versioning when forced. See D81345.) 9707 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9708 PGSOQueryType::IRPass) && 9709 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9710 return CM_ScalarEpilogueNotAllowedOptSize; 9711 9712 // 2) If set, obey the directives 9713 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9714 switch (PreferPredicateOverEpilogue) { 9715 case PreferPredicateTy::ScalarEpilogue: 9716 return CM_ScalarEpilogueAllowed; 9717 case PreferPredicateTy::PredicateElseScalarEpilogue: 9718 return CM_ScalarEpilogueNotNeededUsePredicate; 9719 case PreferPredicateTy::PredicateOrDontVectorize: 9720 return CM_ScalarEpilogueNotAllowedUsePredicate; 9721 }; 9722 } 9723 9724 // 3) If set, obey the hints 9725 switch (Hints.getPredicate()) { 9726 case LoopVectorizeHints::FK_Enabled: 9727 return CM_ScalarEpilogueNotNeededUsePredicate; 9728 case LoopVectorizeHints::FK_Disabled: 9729 return CM_ScalarEpilogueAllowed; 9730 }; 9731 9732 // 4) if the TTI hook indicates this is profitable, request predication. 9733 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 9734 LVL.getLAI())) 9735 return CM_ScalarEpilogueNotNeededUsePredicate; 9736 9737 return CM_ScalarEpilogueAllowed; 9738 } 9739 9740 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9741 // If Values have been set for this Def return the one relevant for \p Part. 9742 if (hasVectorValue(Def, Part)) 9743 return Data.PerPartOutput[Def][Part]; 9744 9745 if (!hasScalarValue(Def, {Part, 0})) { 9746 Value *IRV = Def->getLiveInIRValue(); 9747 Value *B = ILV->getBroadcastInstrs(IRV); 9748 set(Def, B, Part); 9749 return B; 9750 } 9751 9752 Value *ScalarValue = get(Def, {Part, 0}); 9753 // If we aren't vectorizing, we can just copy the scalar map values over 9754 // to the vector map. 9755 if (VF.isScalar()) { 9756 set(Def, ScalarValue, Part); 9757 return ScalarValue; 9758 } 9759 9760 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9761 bool IsUniform = RepR && RepR->isUniform(); 9762 9763 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9764 // Check if there is a scalar value for the selected lane. 9765 if (!hasScalarValue(Def, {Part, LastLane})) { 9766 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 9767 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 9768 "unexpected recipe found to be invariant"); 9769 IsUniform = true; 9770 LastLane = 0; 9771 } 9772 9773 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 9774 // Set the insert point after the last scalarized instruction or after the 9775 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 9776 // will directly follow the scalar definitions. 9777 auto OldIP = Builder.saveIP(); 9778 auto NewIP = 9779 isa<PHINode>(LastInst) 9780 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 9781 : std::next(BasicBlock::iterator(LastInst)); 9782 Builder.SetInsertPoint(&*NewIP); 9783 9784 // However, if we are vectorizing, we need to construct the vector values. 9785 // If the value is known to be uniform after vectorization, we can just 9786 // broadcast the scalar value corresponding to lane zero for each unroll 9787 // iteration. Otherwise, we construct the vector values using 9788 // insertelement instructions. Since the resulting vectors are stored in 9789 // State, we will only generate the insertelements once. 9790 Value *VectorValue = nullptr; 9791 if (IsUniform) { 9792 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 9793 set(Def, VectorValue, Part); 9794 } else { 9795 // Initialize packing with insertelements to start from undef. 9796 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 9797 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 9798 set(Def, Undef, Part); 9799 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 9800 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 9801 VectorValue = get(Def, Part); 9802 } 9803 Builder.restoreIP(OldIP); 9804 return VectorValue; 9805 } 9806 9807 // Process the loop in the VPlan-native vectorization path. This path builds 9808 // VPlan upfront in the vectorization pipeline, which allows to apply 9809 // VPlan-to-VPlan transformations from the very beginning without modifying the 9810 // input LLVM IR. 9811 static bool processLoopInVPlanNativePath( 9812 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 9813 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 9814 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 9815 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 9816 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 9817 LoopVectorizationRequirements &Requirements) { 9818 9819 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 9820 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 9821 return false; 9822 } 9823 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 9824 Function *F = L->getHeader()->getParent(); 9825 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 9826 9827 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9828 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 9829 9830 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 9831 &Hints, IAI); 9832 // Use the planner for outer loop vectorization. 9833 // TODO: CM is not used at this point inside the planner. Turn CM into an 9834 // optional argument if we don't need it in the future. 9835 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 9836 Requirements, ORE); 9837 9838 // Get user vectorization factor. 9839 ElementCount UserVF = Hints.getWidth(); 9840 9841 // Plan how to best vectorize, return the best VF and its cost. 9842 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 9843 9844 // If we are stress testing VPlan builds, do not attempt to generate vector 9845 // code. Masked vector code generation support will follow soon. 9846 // Also, do not attempt to vectorize if no vector code will be produced. 9847 if (VPlanBuildStressTest || EnableVPlanPredication || 9848 VectorizationFactor::Disabled() == VF) 9849 return false; 9850 9851 LVP.setBestPlan(VF.Width, 1); 9852 9853 { 9854 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 9855 F->getParent()->getDataLayout()); 9856 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 9857 &CM, BFI, PSI, Checks); 9858 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 9859 << L->getHeader()->getParent()->getName() << "\"\n"); 9860 LVP.executePlan(LB, DT); 9861 } 9862 9863 // Mark the loop as already vectorized to avoid vectorizing again. 9864 Hints.setAlreadyVectorized(); 9865 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9866 return true; 9867 } 9868 9869 // Emit a remark if there are stores to floats that required a floating point 9870 // extension. If the vectorized loop was generated with floating point there 9871 // will be a performance penalty from the conversion overhead and the change in 9872 // the vector width. 9873 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 9874 SmallVector<Instruction *, 4> Worklist; 9875 for (BasicBlock *BB : L->getBlocks()) { 9876 for (Instruction &Inst : *BB) { 9877 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 9878 if (S->getValueOperand()->getType()->isFloatTy()) 9879 Worklist.push_back(S); 9880 } 9881 } 9882 } 9883 9884 // Traverse the floating point stores upwards searching, for floating point 9885 // conversions. 9886 SmallPtrSet<const Instruction *, 4> Visited; 9887 SmallPtrSet<const Instruction *, 4> EmittedRemark; 9888 while (!Worklist.empty()) { 9889 auto *I = Worklist.pop_back_val(); 9890 if (!L->contains(I)) 9891 continue; 9892 if (!Visited.insert(I).second) 9893 continue; 9894 9895 // Emit a remark if the floating point store required a floating 9896 // point conversion. 9897 // TODO: More work could be done to identify the root cause such as a 9898 // constant or a function return type and point the user to it. 9899 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 9900 ORE->emit([&]() { 9901 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 9902 I->getDebugLoc(), L->getHeader()) 9903 << "floating point conversion changes vector width. " 9904 << "Mixed floating point precision requires an up/down " 9905 << "cast that will negatively impact performance."; 9906 }); 9907 9908 for (Use &Op : I->operands()) 9909 if (auto *OpI = dyn_cast<Instruction>(Op)) 9910 Worklist.push_back(OpI); 9911 } 9912 } 9913 9914 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 9915 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 9916 !EnableLoopInterleaving), 9917 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 9918 !EnableLoopVectorization) {} 9919 9920 bool LoopVectorizePass::processLoop(Loop *L) { 9921 assert((EnableVPlanNativePath || L->isInnermost()) && 9922 "VPlan-native path is not enabled. Only process inner loops."); 9923 9924 #ifndef NDEBUG 9925 const std::string DebugLocStr = getDebugLocString(L); 9926 #endif /* NDEBUG */ 9927 9928 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 9929 << L->getHeader()->getParent()->getName() << "\" from " 9930 << DebugLocStr << "\n"); 9931 9932 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 9933 9934 LLVM_DEBUG( 9935 dbgs() << "LV: Loop hints:" 9936 << " force=" 9937 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 9938 ? "disabled" 9939 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 9940 ? "enabled" 9941 : "?")) 9942 << " width=" << Hints.getWidth() 9943 << " interleave=" << Hints.getInterleave() << "\n"); 9944 9945 // Function containing loop 9946 Function *F = L->getHeader()->getParent(); 9947 9948 // Looking at the diagnostic output is the only way to determine if a loop 9949 // was vectorized (other than looking at the IR or machine code), so it 9950 // is important to generate an optimization remark for each loop. Most of 9951 // these messages are generated as OptimizationRemarkAnalysis. Remarks 9952 // generated as OptimizationRemark and OptimizationRemarkMissed are 9953 // less verbose reporting vectorized loops and unvectorized loops that may 9954 // benefit from vectorization, respectively. 9955 9956 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 9957 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 9958 return false; 9959 } 9960 9961 PredicatedScalarEvolution PSE(*SE, *L); 9962 9963 // Check if it is legal to vectorize the loop. 9964 LoopVectorizationRequirements Requirements; 9965 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 9966 &Requirements, &Hints, DB, AC, BFI, PSI); 9967 if (!LVL.canVectorize(EnableVPlanNativePath)) { 9968 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 9969 Hints.emitRemarkWithHints(); 9970 return false; 9971 } 9972 9973 // Check the function attributes and profiles to find out if this function 9974 // should be optimized for size. 9975 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9976 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 9977 9978 // Entrance to the VPlan-native vectorization path. Outer loops are processed 9979 // here. They may require CFG and instruction level transformations before 9980 // even evaluating whether vectorization is profitable. Since we cannot modify 9981 // the incoming IR, we need to build VPlan upfront in the vectorization 9982 // pipeline. 9983 if (!L->isInnermost()) 9984 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 9985 ORE, BFI, PSI, Hints, Requirements); 9986 9987 assert(L->isInnermost() && "Inner loop expected."); 9988 9989 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 9990 // count by optimizing for size, to minimize overheads. 9991 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 9992 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 9993 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 9994 << "This loop is worth vectorizing only if no scalar " 9995 << "iteration overheads are incurred."); 9996 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 9997 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 9998 else { 9999 LLVM_DEBUG(dbgs() << "\n"); 10000 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10001 } 10002 } 10003 10004 // Check the function attributes to see if implicit floats are allowed. 10005 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10006 // an integer loop and the vector instructions selected are purely integer 10007 // vector instructions? 10008 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10009 reportVectorizationFailure( 10010 "Can't vectorize when the NoImplicitFloat attribute is used", 10011 "loop not vectorized due to NoImplicitFloat attribute", 10012 "NoImplicitFloat", ORE, L); 10013 Hints.emitRemarkWithHints(); 10014 return false; 10015 } 10016 10017 // Check if the target supports potentially unsafe FP vectorization. 10018 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10019 // for the target we're vectorizing for, to make sure none of the 10020 // additional fp-math flags can help. 10021 if (Hints.isPotentiallyUnsafe() && 10022 TTI->isFPVectorizationPotentiallyUnsafe()) { 10023 reportVectorizationFailure( 10024 "Potentially unsafe FP op prevents vectorization", 10025 "loop not vectorized due to unsafe FP support.", 10026 "UnsafeFP", ORE, L); 10027 Hints.emitRemarkWithHints(); 10028 return false; 10029 } 10030 10031 if (!LVL.canVectorizeFPMath(EnableStrictReductions)) { 10032 ORE->emit([&]() { 10033 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10034 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10035 ExactFPMathInst->getDebugLoc(), 10036 ExactFPMathInst->getParent()) 10037 << "loop not vectorized: cannot prove it is safe to reorder " 10038 "floating-point operations"; 10039 }); 10040 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10041 "reorder floating-point operations\n"); 10042 Hints.emitRemarkWithHints(); 10043 return false; 10044 } 10045 10046 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10047 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10048 10049 // If an override option has been passed in for interleaved accesses, use it. 10050 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10051 UseInterleaved = EnableInterleavedMemAccesses; 10052 10053 // Analyze interleaved memory accesses. 10054 if (UseInterleaved) { 10055 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10056 } 10057 10058 // Use the cost model. 10059 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10060 F, &Hints, IAI); 10061 CM.collectValuesToIgnore(); 10062 10063 // Use the planner for vectorization. 10064 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10065 Requirements, ORE); 10066 10067 // Get user vectorization factor and interleave count. 10068 ElementCount UserVF = Hints.getWidth(); 10069 unsigned UserIC = Hints.getInterleave(); 10070 10071 // Plan how to best vectorize, return the best VF and its cost. 10072 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10073 10074 VectorizationFactor VF = VectorizationFactor::Disabled(); 10075 unsigned IC = 1; 10076 10077 if (MaybeVF) { 10078 VF = *MaybeVF; 10079 // Select the interleave count. 10080 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10081 } 10082 10083 // Identify the diagnostic messages that should be produced. 10084 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10085 bool VectorizeLoop = true, InterleaveLoop = true; 10086 if (VF.Width.isScalar()) { 10087 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10088 VecDiagMsg = std::make_pair( 10089 "VectorizationNotBeneficial", 10090 "the cost-model indicates that vectorization is not beneficial"); 10091 VectorizeLoop = false; 10092 } 10093 10094 if (!MaybeVF && UserIC > 1) { 10095 // Tell the user interleaving was avoided up-front, despite being explicitly 10096 // requested. 10097 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10098 "interleaving should be avoided up front\n"); 10099 IntDiagMsg = std::make_pair( 10100 "InterleavingAvoided", 10101 "Ignoring UserIC, because interleaving was avoided up front"); 10102 InterleaveLoop = false; 10103 } else if (IC == 1 && UserIC <= 1) { 10104 // Tell the user interleaving is not beneficial. 10105 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10106 IntDiagMsg = std::make_pair( 10107 "InterleavingNotBeneficial", 10108 "the cost-model indicates that interleaving is not beneficial"); 10109 InterleaveLoop = false; 10110 if (UserIC == 1) { 10111 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10112 IntDiagMsg.second += 10113 " and is explicitly disabled or interleave count is set to 1"; 10114 } 10115 } else if (IC > 1 && UserIC == 1) { 10116 // Tell the user interleaving is beneficial, but it explicitly disabled. 10117 LLVM_DEBUG( 10118 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10119 IntDiagMsg = std::make_pair( 10120 "InterleavingBeneficialButDisabled", 10121 "the cost-model indicates that interleaving is beneficial " 10122 "but is explicitly disabled or interleave count is set to 1"); 10123 InterleaveLoop = false; 10124 } 10125 10126 // Override IC if user provided an interleave count. 10127 IC = UserIC > 0 ? UserIC : IC; 10128 10129 // Emit diagnostic messages, if any. 10130 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10131 if (!VectorizeLoop && !InterleaveLoop) { 10132 // Do not vectorize or interleaving the loop. 10133 ORE->emit([&]() { 10134 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10135 L->getStartLoc(), L->getHeader()) 10136 << VecDiagMsg.second; 10137 }); 10138 ORE->emit([&]() { 10139 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10140 L->getStartLoc(), L->getHeader()) 10141 << IntDiagMsg.second; 10142 }); 10143 return false; 10144 } else if (!VectorizeLoop && InterleaveLoop) { 10145 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10146 ORE->emit([&]() { 10147 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10148 L->getStartLoc(), L->getHeader()) 10149 << VecDiagMsg.second; 10150 }); 10151 } else if (VectorizeLoop && !InterleaveLoop) { 10152 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10153 << ") in " << DebugLocStr << '\n'); 10154 ORE->emit([&]() { 10155 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10156 L->getStartLoc(), L->getHeader()) 10157 << IntDiagMsg.second; 10158 }); 10159 } else if (VectorizeLoop && InterleaveLoop) { 10160 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10161 << ") in " << DebugLocStr << '\n'); 10162 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10163 } 10164 10165 bool DisableRuntimeUnroll = false; 10166 MDNode *OrigLoopID = L->getLoopID(); 10167 { 10168 // Optimistically generate runtime checks. Drop them if they turn out to not 10169 // be profitable. Limit the scope of Checks, so the cleanup happens 10170 // immediately after vector codegeneration is done. 10171 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10172 F->getParent()->getDataLayout()); 10173 if (!VF.Width.isScalar() || IC > 1) 10174 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10175 LVP.setBestPlan(VF.Width, IC); 10176 10177 using namespace ore; 10178 if (!VectorizeLoop) { 10179 assert(IC > 1 && "interleave count should not be 1 or 0"); 10180 // If we decided that it is not legal to vectorize the loop, then 10181 // interleave it. 10182 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10183 &CM, BFI, PSI, Checks); 10184 LVP.executePlan(Unroller, DT); 10185 10186 ORE->emit([&]() { 10187 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10188 L->getHeader()) 10189 << "interleaved loop (interleaved count: " 10190 << NV("InterleaveCount", IC) << ")"; 10191 }); 10192 } else { 10193 // If we decided that it is *legal* to vectorize the loop, then do it. 10194 10195 // Consider vectorizing the epilogue too if it's profitable. 10196 VectorizationFactor EpilogueVF = 10197 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10198 if (EpilogueVF.Width.isVector()) { 10199 10200 // The first pass vectorizes the main loop and creates a scalar epilogue 10201 // to be vectorized by executing the plan (potentially with a different 10202 // factor) again shortly afterwards. 10203 EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC, 10204 EpilogueVF.Width.getKnownMinValue(), 10205 1); 10206 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10207 EPI, &LVL, &CM, BFI, PSI, Checks); 10208 10209 LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF); 10210 LVP.executePlan(MainILV, DT); 10211 ++LoopsVectorized; 10212 10213 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10214 formLCSSARecursively(*L, *DT, LI, SE); 10215 10216 // Second pass vectorizes the epilogue and adjusts the control flow 10217 // edges from the first pass. 10218 LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF); 10219 EPI.MainLoopVF = EPI.EpilogueVF; 10220 EPI.MainLoopUF = EPI.EpilogueUF; 10221 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10222 ORE, EPI, &LVL, &CM, BFI, PSI, 10223 Checks); 10224 LVP.executePlan(EpilogILV, DT); 10225 ++LoopsEpilogueVectorized; 10226 10227 if (!MainILV.areSafetyChecksAdded()) 10228 DisableRuntimeUnroll = true; 10229 } else { 10230 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10231 &LVL, &CM, BFI, PSI, Checks); 10232 LVP.executePlan(LB, DT); 10233 ++LoopsVectorized; 10234 10235 // Add metadata to disable runtime unrolling a scalar loop when there 10236 // are no runtime checks about strides and memory. A scalar loop that is 10237 // rarely used is not worth unrolling. 10238 if (!LB.areSafetyChecksAdded()) 10239 DisableRuntimeUnroll = true; 10240 } 10241 // Report the vectorization decision. 10242 ORE->emit([&]() { 10243 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10244 L->getHeader()) 10245 << "vectorized loop (vectorization width: " 10246 << NV("VectorizationFactor", VF.Width) 10247 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10248 }); 10249 } 10250 10251 if (ORE->allowExtraAnalysis(LV_NAME)) 10252 checkMixedPrecision(L, ORE); 10253 } 10254 10255 Optional<MDNode *> RemainderLoopID = 10256 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10257 LLVMLoopVectorizeFollowupEpilogue}); 10258 if (RemainderLoopID.hasValue()) { 10259 L->setLoopID(RemainderLoopID.getValue()); 10260 } else { 10261 if (DisableRuntimeUnroll) 10262 AddRuntimeUnrollDisableMetaData(L); 10263 10264 // Mark the loop as already vectorized to avoid vectorizing again. 10265 Hints.setAlreadyVectorized(); 10266 } 10267 10268 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10269 return true; 10270 } 10271 10272 LoopVectorizeResult LoopVectorizePass::runImpl( 10273 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10274 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10275 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10276 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10277 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10278 SE = &SE_; 10279 LI = &LI_; 10280 TTI = &TTI_; 10281 DT = &DT_; 10282 BFI = &BFI_; 10283 TLI = TLI_; 10284 AA = &AA_; 10285 AC = &AC_; 10286 GetLAA = &GetLAA_; 10287 DB = &DB_; 10288 ORE = &ORE_; 10289 PSI = PSI_; 10290 10291 // Don't attempt if 10292 // 1. the target claims to have no vector registers, and 10293 // 2. interleaving won't help ILP. 10294 // 10295 // The second condition is necessary because, even if the target has no 10296 // vector registers, loop vectorization may still enable scalar 10297 // interleaving. 10298 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10299 TTI->getMaxInterleaveFactor(1) < 2) 10300 return LoopVectorizeResult(false, false); 10301 10302 bool Changed = false, CFGChanged = false; 10303 10304 // The vectorizer requires loops to be in simplified form. 10305 // Since simplification may add new inner loops, it has to run before the 10306 // legality and profitability checks. This means running the loop vectorizer 10307 // will simplify all loops, regardless of whether anything end up being 10308 // vectorized. 10309 for (auto &L : *LI) 10310 Changed |= CFGChanged |= 10311 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10312 10313 // Build up a worklist of inner-loops to vectorize. This is necessary as 10314 // the act of vectorizing or partially unrolling a loop creates new loops 10315 // and can invalidate iterators across the loops. 10316 SmallVector<Loop *, 8> Worklist; 10317 10318 for (Loop *L : *LI) 10319 collectSupportedLoops(*L, LI, ORE, Worklist); 10320 10321 LoopsAnalyzed += Worklist.size(); 10322 10323 // Now walk the identified inner loops. 10324 while (!Worklist.empty()) { 10325 Loop *L = Worklist.pop_back_val(); 10326 10327 // For the inner loops we actually process, form LCSSA to simplify the 10328 // transform. 10329 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10330 10331 Changed |= CFGChanged |= processLoop(L); 10332 } 10333 10334 // Process each loop nest in the function. 10335 return LoopVectorizeResult(Changed, CFGChanged); 10336 } 10337 10338 PreservedAnalyses LoopVectorizePass::run(Function &F, 10339 FunctionAnalysisManager &AM) { 10340 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10341 auto &LI = AM.getResult<LoopAnalysis>(F); 10342 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10343 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10344 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10345 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10346 auto &AA = AM.getResult<AAManager>(F); 10347 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10348 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10349 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10350 MemorySSA *MSSA = EnableMSSALoopDependency 10351 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 10352 : nullptr; 10353 10354 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10355 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10356 [&](Loop &L) -> const LoopAccessInfo & { 10357 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10358 TLI, TTI, nullptr, MSSA}; 10359 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10360 }; 10361 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10362 ProfileSummaryInfo *PSI = 10363 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10364 LoopVectorizeResult Result = 10365 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10366 if (!Result.MadeAnyChange) 10367 return PreservedAnalyses::all(); 10368 PreservedAnalyses PA; 10369 10370 // We currently do not preserve loopinfo/dominator analyses with outer loop 10371 // vectorization. Until this is addressed, mark these analyses as preserved 10372 // only for non-VPlan-native path. 10373 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10374 if (!EnableVPlanNativePath) { 10375 PA.preserve<LoopAnalysis>(); 10376 PA.preserve<DominatorTreeAnalysis>(); 10377 } 10378 if (!Result.MadeCFGChange) 10379 PA.preserveSet<CFGAnalyses>(); 10380 return PA; 10381 } 10382