1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/SCCIterator.h" 54 #include "llvm/ADT/SetVector.h" 55 #include "llvm/ADT/SmallPtrSet.h" 56 #include "llvm/ADT/SmallSet.h" 57 #include "llvm/ADT/SmallVector.h" 58 #include "llvm/ADT/Statistic.h" 59 #include "llvm/ADT/StringExtras.h" 60 #include "llvm/Analysis/CodeMetrics.h" 61 #include "llvm/Analysis/GlobalsModRef.h" 62 #include "llvm/Analysis/LoopInfo.h" 63 #include "llvm/Analysis/LoopIterator.h" 64 #include "llvm/Analysis/LoopPass.h" 65 #include "llvm/Analysis/ScalarEvolutionExpander.h" 66 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 67 #include "llvm/Analysis/ValueTracking.h" 68 #include "llvm/Analysis/VectorUtils.h" 69 #include "llvm/IR/Constants.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DebugInfo.h" 72 #include "llvm/IR/DerivedTypes.h" 73 #include "llvm/IR/DiagnosticInfo.h" 74 #include "llvm/IR/Dominators.h" 75 #include "llvm/IR/Function.h" 76 #include "llvm/IR/IRBuilder.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/PatternMatch.h" 82 #include "llvm/IR/Type.h" 83 #include "llvm/IR/Value.h" 84 #include "llvm/IR/ValueHandle.h" 85 #include "llvm/IR/Verifier.h" 86 #include "llvm/Pass.h" 87 #include "llvm/Support/BranchProbability.h" 88 #include "llvm/Support/CommandLine.h" 89 #include "llvm/Support/Debug.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Transforms/Scalar.h" 92 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 93 #include "llvm/Transforms/Utils/Local.h" 94 #include "llvm/Transforms/Utils/LoopUtils.h" 95 #include "llvm/Transforms/Utils/LoopVersioning.h" 96 #include "llvm/Transforms/Vectorize.h" 97 #include <algorithm> 98 #include <map> 99 #include <tuple> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 104 #define LV_NAME "loop-vectorize" 105 #define DEBUG_TYPE LV_NAME 106 107 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 108 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 109 110 static cl::opt<bool> 111 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 112 cl::desc("Enable if-conversion during vectorization.")); 113 114 /// We don't vectorize loops with a known constant trip count below this number. 115 static cl::opt<unsigned> TinyTripCountVectorThreshold( 116 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 117 cl::desc("Don't vectorize loops with a constant " 118 "trip count that is smaller than this " 119 "value.")); 120 121 static cl::opt<bool> MaximizeBandwidth( 122 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 123 cl::desc("Maximize bandwidth when selecting vectorization factor which " 124 "will be determined by the smallest type in loop.")); 125 126 static cl::opt<bool> EnableInterleavedMemAccesses( 127 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 128 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 129 130 /// Maximum factor for an interleaved memory access. 131 static cl::opt<unsigned> MaxInterleaveGroupFactor( 132 "max-interleave-group-factor", cl::Hidden, 133 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 134 cl::init(8)); 135 136 /// We don't interleave loops with a known constant trip count below this 137 /// number. 138 static const unsigned TinyTripCountInterleaveThreshold = 128; 139 140 static cl::opt<unsigned> ForceTargetNumScalarRegs( 141 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 142 cl::desc("A flag that overrides the target's number of scalar registers.")); 143 144 static cl::opt<unsigned> ForceTargetNumVectorRegs( 145 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 146 cl::desc("A flag that overrides the target's number of vector registers.")); 147 148 /// Maximum vectorization interleave count. 149 static const unsigned MaxInterleaveFactor = 16; 150 151 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 152 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 153 cl::desc("A flag that overrides the target's max interleave factor for " 154 "scalar loops.")); 155 156 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 157 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 158 cl::desc("A flag that overrides the target's max interleave factor for " 159 "vectorized loops.")); 160 161 static cl::opt<unsigned> ForceTargetInstructionCost( 162 "force-target-instruction-cost", cl::init(0), cl::Hidden, 163 cl::desc("A flag that overrides the target's expected cost for " 164 "an instruction to a single constant value. Mostly " 165 "useful for getting consistent testing.")); 166 167 static cl::opt<unsigned> SmallLoopCost( 168 "small-loop-cost", cl::init(20), cl::Hidden, 169 cl::desc( 170 "The cost of a loop that is considered 'small' by the interleaver.")); 171 172 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 173 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 174 cl::desc("Enable the use of the block frequency analysis to access PGO " 175 "heuristics minimizing code growth in cold regions and being more " 176 "aggressive in hot regions.")); 177 178 // Runtime interleave loops for load/store throughput. 179 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 180 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 181 cl::desc( 182 "Enable runtime interleaving until load/store ports are saturated")); 183 184 /// The number of stores in a loop that are allowed to need predication. 185 static cl::opt<unsigned> NumberOfStoresToPredicate( 186 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 187 cl::desc("Max number of stores to be predicated behind an if.")); 188 189 static cl::opt<bool> EnableIndVarRegisterHeur( 190 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 191 cl::desc("Count the induction variable only once when interleaving")); 192 193 static cl::opt<bool> EnableCondStoresVectorization( 194 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 195 cl::desc("Enable if predication of stores during vectorization.")); 196 197 static cl::opt<unsigned> MaxNestedScalarReductionIC( 198 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 199 cl::desc("The maximum interleave count to use when interleaving a scalar " 200 "reduction in a nested loop.")); 201 202 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 203 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 204 cl::desc("The maximum allowed number of runtime memory checks with a " 205 "vectorize(enable) pragma.")); 206 207 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 208 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 209 cl::desc("The maximum number of SCEV checks allowed.")); 210 211 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 212 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 213 cl::desc("The maximum number of SCEV checks allowed with a " 214 "vectorize(enable) pragma")); 215 216 namespace { 217 218 // Forward declarations. 219 class LoopVectorizeHints; 220 class LoopVectorizationLegality; 221 class LoopVectorizationCostModel; 222 class LoopVectorizationRequirements; 223 224 /// Returns true if the given loop body has a cycle, excluding the loop 225 /// itself. 226 static bool hasCyclesInLoopBody(const Loop &L) { 227 if (!L.empty()) 228 return true; 229 230 for (const auto &SCC : 231 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 232 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 233 if (SCC.size() > 1) { 234 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 235 DEBUG(L.dump()); 236 return true; 237 } 238 } 239 return false; 240 } 241 242 /// \brief This modifies LoopAccessReport to initialize message with 243 /// loop-vectorizer-specific part. 244 class VectorizationReport : public LoopAccessReport { 245 public: 246 VectorizationReport(Instruction *I = nullptr) 247 : LoopAccessReport("loop not vectorized: ", I) {} 248 249 /// \brief This allows promotion of the loop-access analysis report into the 250 /// loop-vectorizer report. It modifies the message to add the 251 /// loop-vectorizer-specific part of the message. 252 explicit VectorizationReport(const LoopAccessReport &R) 253 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 254 R.getInstr()) {} 255 }; 256 257 /// A helper function for converting Scalar types to vector types. 258 /// If the incoming type is void, we return void. If the VF is 1, we return 259 /// the scalar type. 260 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 261 if (Scalar->isVoidTy() || VF == 1) 262 return Scalar; 263 return VectorType::get(Scalar, VF); 264 } 265 266 /// A helper function that returns GEP instruction and knows to skip a 267 /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination 268 /// pointee types of the 'bitcast' have the same size. 269 /// For example: 270 /// bitcast double** %var to i64* - can be skipped 271 /// bitcast double** %var to i8* - can not 272 static GetElementPtrInst *getGEPInstruction(Value *Ptr) { 273 274 if (isa<GetElementPtrInst>(Ptr)) 275 return cast<GetElementPtrInst>(Ptr); 276 277 if (isa<BitCastInst>(Ptr) && 278 isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) { 279 Type *BitcastTy = Ptr->getType(); 280 Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy(); 281 if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy)) 282 return nullptr; 283 Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType(); 284 Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType(); 285 const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout(); 286 if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty)) 287 return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0)); 288 } 289 return nullptr; 290 } 291 292 /// A helper function that returns the pointer operand of a load or store 293 /// instruction. 294 static Value *getPointerOperand(Value *I) { 295 if (auto *LI = dyn_cast<LoadInst>(I)) 296 return LI->getPointerOperand(); 297 if (auto *SI = dyn_cast<StoreInst>(I)) 298 return SI->getPointerOperand(); 299 return nullptr; 300 } 301 302 /// A helper function that returns true if the given type is irregular. The 303 /// type is irregular if its allocated size doesn't equal the store size of an 304 /// element of the corresponding vector type at the given vectorization factor. 305 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 306 307 // Determine if an array of VF elements of type Ty is "bitcast compatible" 308 // with a <VF x Ty> vector. 309 if (VF > 1) { 310 auto *VectorTy = VectorType::get(Ty, VF); 311 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 312 } 313 314 // If the vectorization factor is one, we just check if an array of type Ty 315 // requires padding between elements. 316 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 317 } 318 319 /// InnerLoopVectorizer vectorizes loops which contain only one basic 320 /// block to a specified vectorization factor (VF). 321 /// This class performs the widening of scalars into vectors, or multiple 322 /// scalars. This class also implements the following features: 323 /// * It inserts an epilogue loop for handling loops that don't have iteration 324 /// counts that are known to be a multiple of the vectorization factor. 325 /// * It handles the code generation for reduction variables. 326 /// * Scalarization (implementation using scalars) of un-vectorizable 327 /// instructions. 328 /// InnerLoopVectorizer does not perform any vectorization-legality 329 /// checks, and relies on the caller to check for the different legality 330 /// aspects. The InnerLoopVectorizer relies on the 331 /// LoopVectorizationLegality class to provide information about the induction 332 /// and reduction variables that were found to a given vectorization factor. 333 class InnerLoopVectorizer { 334 public: 335 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 336 LoopInfo *LI, DominatorTree *DT, 337 const TargetLibraryInfo *TLI, 338 const TargetTransformInfo *TTI, AssumptionCache *AC, 339 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 340 unsigned UnrollFactor) 341 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 342 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 343 Builder(PSE.getSE()->getContext()), Induction(nullptr), 344 OldInduction(nullptr), VectorLoopValueMap(UnrollFactor, VecWidth), 345 TripCount(nullptr), VectorTripCount(nullptr), Legal(nullptr), 346 AddedSafetyChecks(false) {} 347 348 // Perform the actual loop widening (vectorization). 349 // MinimumBitWidths maps scalar integer values to the smallest bitwidth they 350 // can be validly truncated to. The cost model has assumed this truncation 351 // will happen when vectorizing. VecValuesToIgnore contains scalar values 352 // that the cost model has chosen to ignore because they will not be 353 // vectorized. 354 void vectorize(LoopVectorizationLegality *L, 355 const MapVector<Instruction *, uint64_t> &MinimumBitWidths) { 356 MinBWs = &MinimumBitWidths; 357 Legal = L; 358 // Create a new empty loop. Unlink the old loop and connect the new one. 359 createEmptyLoop(); 360 // Widen each instruction in the old loop to a new one in the new loop. 361 // Use the Legality module to find the induction and reduction variables. 362 vectorizeLoop(); 363 } 364 365 // Return true if any runtime check is added. 366 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 367 368 virtual ~InnerLoopVectorizer() {} 369 370 protected: 371 /// A small list of PHINodes. 372 typedef SmallVector<PHINode *, 4> PhiVector; 373 374 /// A type for vectorized values in the new loop. Each value from the 375 /// original loop, when vectorized, is represented by UF vector values in the 376 /// new unrolled loop, where UF is the unroll factor. 377 typedef SmallVector<Value *, 2> VectorParts; 378 379 /// A type for scalarized values in the new loop. Each value from the 380 /// original loop, when scalarized, is represented by UF x VF scalar values 381 /// in the new unrolled loop, where UF is the unroll factor and VF is the 382 /// vectorization factor. 383 typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts; 384 385 // When we if-convert we need to create edge masks. We have to cache values 386 // so that we don't end up with exponential recursion/IR. 387 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 388 EdgeMaskCache; 389 390 /// Create an empty loop, based on the loop ranges of the old loop. 391 void createEmptyLoop(); 392 393 /// Set up the values of the IVs correctly when exiting the vector loop. 394 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 395 Value *CountRoundDown, Value *EndValue, 396 BasicBlock *MiddleBlock); 397 398 /// Create a new induction variable inside L. 399 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 400 Value *Step, Instruction *DL); 401 /// Copy and widen the instructions from the old loop. 402 virtual void vectorizeLoop(); 403 404 /// Fix a first-order recurrence. This is the second phase of vectorizing 405 /// this phi node. 406 void fixFirstOrderRecurrence(PHINode *Phi); 407 408 /// \brief The Loop exit block may have single value PHI nodes where the 409 /// incoming value is 'Undef'. While vectorizing we only handled real values 410 /// that were defined inside the loop. Here we fix the 'undef case'. 411 /// See PR14725. 412 void fixLCSSAPHIs(); 413 414 /// Predicate conditional instructions that require predication on their 415 /// respective conditions. 416 void predicateInstructions(); 417 418 /// Shrinks vector element sizes based on information in "MinBWs". 419 void truncateToMinimalBitwidths(); 420 421 /// A helper function that computes the predicate of the block BB, assuming 422 /// that the header block of the loop is set to True. It returns the *entry* 423 /// mask for the block BB. 424 VectorParts createBlockInMask(BasicBlock *BB); 425 /// A helper function that computes the predicate of the edge between SRC 426 /// and DST. 427 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 428 429 /// A helper function to vectorize a single BB within the innermost loop. 430 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 431 432 /// Vectorize a single PHINode in a block. This method handles the induction 433 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 434 /// arbitrary length vectors. 435 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF, 436 PhiVector *PV); 437 438 /// Insert the new loop to the loop hierarchy and pass manager 439 /// and update the analysis passes. 440 void updateAnalysis(); 441 442 /// This instruction is un-vectorizable. Implement it as a sequence 443 /// of scalars. If \p IfPredicateInstr is true we need to 'hide' each 444 /// scalarized instruction behind an if block predicated on the control 445 /// dependence of the instruction. 446 virtual void scalarizeInstruction(Instruction *Instr, 447 bool IfPredicateInstr = false); 448 449 /// Vectorize Load and Store instructions, 450 virtual void vectorizeMemoryInstruction(Instruction *Instr); 451 452 /// Create a broadcast instruction. This method generates a broadcast 453 /// instruction (shuffle) for loop invariant values and for the induction 454 /// value. If this is the induction variable then we extend it to N, N+1, ... 455 /// this is needed because each iteration in the loop corresponds to a SIMD 456 /// element. 457 virtual Value *getBroadcastInstrs(Value *V); 458 459 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 460 /// to each vector element of Val. The sequence starts at StartIndex. 461 /// \p Opcode is relevant for FP induction variable. 462 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 463 Instruction::BinaryOps Opcode = 464 Instruction::BinaryOpsEnd); 465 466 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 467 /// variable on which to base the steps, \p Step is the size of the step, and 468 /// \p EntryVal is the value from the original loop that maps to the steps. 469 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 470 /// can be a truncate instruction). 471 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal); 472 473 /// Create a vector induction phi node based on an existing scalar one. This 474 /// currently only works for integer induction variables with a constant 475 /// step. \p EntryVal is the value from the original loop that maps to the 476 /// vector phi node. If \p EntryVal is a truncate instruction, instead of 477 /// widening the original IV, we widen a version of the IV truncated to \p 478 /// EntryVal's type. 479 void createVectorIntInductionPHI(const InductionDescriptor &II, 480 Instruction *EntryVal); 481 482 /// Widen an integer induction variable \p IV. If \p Trunc is provided, the 483 /// induction variable will first be truncated to the corresponding type. 484 void widenIntInduction(PHINode *IV, TruncInst *Trunc = nullptr); 485 486 /// Returns true if we should generate a scalar version of \p IV. 487 bool needsScalarInduction(Instruction *IV) const; 488 489 /// Return a constant reference to the VectorParts corresponding to \p V from 490 /// the original loop. If the value has already been vectorized, the 491 /// corresponding vector entry in VectorLoopValueMap is returned. If, 492 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 493 /// new vector values on-demand by inserting the scalar values into vectors 494 /// with an insertelement sequence. If the value has been neither vectorized 495 /// nor scalarized, it must be loop invariant, so we simply broadcast the 496 /// value into vectors. 497 const VectorParts &getVectorValue(Value *V); 498 499 /// Return a value in the new loop corresponding to \p V from the original 500 /// loop at unroll index \p Part and vector index \p Lane. If the value has 501 /// been vectorized but not scalarized, the necessary extractelement 502 /// instruction will be generated. 503 Value *getScalarValue(Value *V, unsigned Part, unsigned Lane); 504 505 /// Try to vectorize the interleaved access group that \p Instr belongs to. 506 void vectorizeInterleaveGroup(Instruction *Instr); 507 508 /// Generate a shuffle sequence that will reverse the vector Vec. 509 virtual Value *reverseVector(Value *Vec); 510 511 /// Returns (and creates if needed) the original loop trip count. 512 Value *getOrCreateTripCount(Loop *NewLoop); 513 514 /// Returns (and creates if needed) the trip count of the widened loop. 515 Value *getOrCreateVectorTripCount(Loop *NewLoop); 516 517 /// Emit a bypass check to see if the trip count would overflow, or we 518 /// wouldn't have enough iterations to execute one vector loop. 519 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 520 /// Emit a bypass check to see if the vector trip count is nonzero. 521 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 522 /// Emit a bypass check to see if all of the SCEV assumptions we've 523 /// had to make are correct. 524 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 525 /// Emit bypass checks to check any memory assumptions we may have made. 526 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 527 528 /// Add additional metadata to \p To that was not present on \p Orig. 529 /// 530 /// Currently this is used to add the noalias annotations based on the 531 /// inserted memchecks. Use this for instructions that are *cloned* into the 532 /// vector loop. 533 void addNewMetadata(Instruction *To, const Instruction *Orig); 534 535 /// Add metadata from one instruction to another. 536 /// 537 /// This includes both the original MDs from \p From and additional ones (\see 538 /// addNewMetadata). Use this for *newly created* instructions in the vector 539 /// loop. 540 void addMetadata(Instruction *To, Instruction *From); 541 542 /// \brief Similar to the previous function but it adds the metadata to a 543 /// vector of instructions. 544 void addMetadata(ArrayRef<Value *> To, Instruction *From); 545 546 /// This is a helper class for maintaining vectorization state. It's used for 547 /// mapping values from the original loop to their corresponding values in 548 /// the new loop. Two mappings are maintained: one for vectorized values and 549 /// one for scalarized values. Vectorized values are represented with UF 550 /// vector values in the new loop, and scalarized values are represented with 551 /// UF x VF scalar values in the new loop. UF and VF are the unroll and 552 /// vectorization factors, respectively. 553 /// 554 /// Entries can be added to either map with initVector and initScalar, which 555 /// initialize and return a constant reference to the new entry. If a 556 /// non-constant reference to a vector entry is required, getVector can be 557 /// used to retrieve a mutable entry. We currently directly modify the mapped 558 /// values during "fix-up" operations that occur once the first phase of 559 /// widening is complete. These operations include type truncation and the 560 /// second phase of recurrence widening. 561 /// 562 /// Otherwise, entries from either map should be accessed using the 563 /// getVectorValue or getScalarValue functions from InnerLoopVectorizer. 564 /// getVectorValue and getScalarValue coordinate to generate a vector or 565 /// scalar value on-demand if one is not yet available. When vectorizing a 566 /// loop, we visit the definition of an instruction before its uses. When 567 /// visiting the definition, we either vectorize or scalarize the 568 /// instruction, creating an entry for it in the corresponding map. (In some 569 /// cases, such as induction variables, we will create both vector and scalar 570 /// entries.) Then, as we encounter uses of the definition, we derive values 571 /// for each scalar or vector use unless such a value is already available. 572 /// For example, if we scalarize a definition and one of its uses is vector, 573 /// we build the required vector on-demand with an insertelement sequence 574 /// when visiting the use. Otherwise, if the use is scalar, we can use the 575 /// existing scalar definition. 576 struct ValueMap { 577 578 /// Construct an empty map with the given unroll and vectorization factors. 579 ValueMap(unsigned UnrollFactor, unsigned VecWidth) 580 : UF(UnrollFactor), VF(VecWidth) { 581 // The unroll and vectorization factors are only used in asserts builds 582 // to verify map entries are sized appropriately. 583 (void)UF; 584 (void)VF; 585 } 586 587 /// \return True if the map has a vector entry for \p Key. 588 bool hasVector(Value *Key) const { return VectorMapStorage.count(Key); } 589 590 /// \return True if the map has a scalar entry for \p Key. 591 bool hasScalar(Value *Key) const { return ScalarMapStorage.count(Key); } 592 593 /// \brief Map \p Key to the given VectorParts \p Entry, and return a 594 /// constant reference to the new vector map entry. The given key should 595 /// not already be in the map, and the given VectorParts should be 596 /// correctly sized for the current unroll factor. 597 const VectorParts &initVector(Value *Key, const VectorParts &Entry) { 598 assert(!hasVector(Key) && "Vector entry already initialized"); 599 assert(Entry.size() == UF && "VectorParts has wrong dimensions"); 600 VectorMapStorage[Key] = Entry; 601 return VectorMapStorage[Key]; 602 } 603 604 /// \brief Map \p Key to the given ScalarParts \p Entry, and return a 605 /// constant reference to the new scalar map entry. The given key should 606 /// not already be in the map, and the given ScalarParts should be 607 /// correctly sized for the current unroll and vectorization factors. 608 const ScalarParts &initScalar(Value *Key, const ScalarParts &Entry) { 609 assert(!hasScalar(Key) && "Scalar entry already initialized"); 610 assert(Entry.size() == UF && 611 all_of(make_range(Entry.begin(), Entry.end()), 612 [&](const SmallVectorImpl<Value *> &Values) -> bool { 613 return Values.size() == VF; 614 }) && 615 "ScalarParts has wrong dimensions"); 616 ScalarMapStorage[Key] = Entry; 617 return ScalarMapStorage[Key]; 618 } 619 620 /// \return A reference to the vector map entry corresponding to \p Key. 621 /// The key should already be in the map. This function should only be used 622 /// when it's necessary to update values that have already been vectorized. 623 /// This is the case for "fix-up" operations including type truncation and 624 /// the second phase of recurrence vectorization. If a non-const reference 625 /// isn't required, getVectorValue should be used instead. 626 VectorParts &getVector(Value *Key) { 627 assert(hasVector(Key) && "Vector entry not initialized"); 628 return VectorMapStorage.find(Key)->second; 629 } 630 631 /// Retrieve an entry from the vector or scalar maps. The preferred way to 632 /// access an existing mapped entry is with getVectorValue or 633 /// getScalarValue from InnerLoopVectorizer. Until those functions can be 634 /// moved inside ValueMap, we have to declare them as friends. 635 friend const VectorParts &InnerLoopVectorizer::getVectorValue(Value *V); 636 friend Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 637 unsigned Lane); 638 639 private: 640 /// The unroll factor. Each entry in the vector map contains UF vector 641 /// values. 642 unsigned UF; 643 644 /// The vectorization factor. Each entry in the scalar map contains UF x VF 645 /// scalar values. 646 unsigned VF; 647 648 /// The vector and scalar map storage. We use std::map and not DenseMap 649 /// because insertions to DenseMap invalidate its iterators. 650 std::map<Value *, VectorParts> VectorMapStorage; 651 std::map<Value *, ScalarParts> ScalarMapStorage; 652 }; 653 654 /// The original loop. 655 Loop *OrigLoop; 656 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 657 /// dynamic knowledge to simplify SCEV expressions and converts them to a 658 /// more usable form. 659 PredicatedScalarEvolution &PSE; 660 /// Loop Info. 661 LoopInfo *LI; 662 /// Dominator Tree. 663 DominatorTree *DT; 664 /// Alias Analysis. 665 AliasAnalysis *AA; 666 /// Target Library Info. 667 const TargetLibraryInfo *TLI; 668 /// Target Transform Info. 669 const TargetTransformInfo *TTI; 670 /// Assumption Cache. 671 AssumptionCache *AC; 672 /// Interface to emit optimization remarks. 673 OptimizationRemarkEmitter *ORE; 674 675 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 676 /// used. 677 /// 678 /// This is currently only used to add no-alias metadata based on the 679 /// memchecks. The actually versioning is performed manually. 680 std::unique_ptr<LoopVersioning> LVer; 681 682 /// The vectorization SIMD factor to use. Each vector will have this many 683 /// vector elements. 684 unsigned VF; 685 686 protected: 687 /// The vectorization unroll factor to use. Each scalar is vectorized to this 688 /// many different vector instructions. 689 unsigned UF; 690 691 /// The builder that we use 692 IRBuilder<> Builder; 693 694 // --- Vectorization state --- 695 696 /// The vector-loop preheader. 697 BasicBlock *LoopVectorPreHeader; 698 /// The scalar-loop preheader. 699 BasicBlock *LoopScalarPreHeader; 700 /// Middle Block between the vector and the scalar. 701 BasicBlock *LoopMiddleBlock; 702 /// The ExitBlock of the scalar loop. 703 BasicBlock *LoopExitBlock; 704 /// The vector loop body. 705 BasicBlock *LoopVectorBody; 706 /// The scalar loop body. 707 BasicBlock *LoopScalarBody; 708 /// A list of all bypass blocks. The first block is the entry of the loop. 709 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 710 711 /// The new Induction variable which was added to the new block. 712 PHINode *Induction; 713 /// The induction variable of the old basic block. 714 PHINode *OldInduction; 715 716 /// Maps values from the original loop to their corresponding values in the 717 /// vectorized loop. A key value can map to either vector values, scalar 718 /// values or both kinds of values, depending on whether the key was 719 /// vectorized and scalarized. 720 ValueMap VectorLoopValueMap; 721 722 /// Store instructions that should be predicated, as a pair 723 /// <StoreInst, Predicate> 724 SmallVector<std::pair<Instruction *, Value *>, 4> PredicatedInstructions; 725 EdgeMaskCache MaskCache; 726 /// Trip count of the original loop. 727 Value *TripCount; 728 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 729 Value *VectorTripCount; 730 731 /// Map of scalar integer values to the smallest bitwidth they can be legally 732 /// represented as. The vector equivalents of these values should be truncated 733 /// to this type. 734 const MapVector<Instruction *, uint64_t> *MinBWs; 735 736 LoopVectorizationLegality *Legal; 737 738 // Record whether runtime checks are added. 739 bool AddedSafetyChecks; 740 }; 741 742 class InnerLoopUnroller : public InnerLoopVectorizer { 743 public: 744 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 745 LoopInfo *LI, DominatorTree *DT, 746 const TargetLibraryInfo *TLI, 747 const TargetTransformInfo *TTI, AssumptionCache *AC, 748 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor) 749 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 750 UnrollFactor) {} 751 752 private: 753 void scalarizeInstruction(Instruction *Instr, 754 bool IfPredicateInstr = false) override; 755 void vectorizeMemoryInstruction(Instruction *Instr) override; 756 Value *getBroadcastInstrs(Value *V) override; 757 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 758 Instruction::BinaryOps Opcode = 759 Instruction::BinaryOpsEnd) override; 760 Value *reverseVector(Value *Vec) override; 761 }; 762 763 /// \brief Look for a meaningful debug location on the instruction or it's 764 /// operands. 765 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 766 if (!I) 767 return I; 768 769 DebugLoc Empty; 770 if (I->getDebugLoc() != Empty) 771 return I; 772 773 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 774 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 775 if (OpInst->getDebugLoc() != Empty) 776 return OpInst; 777 } 778 779 return I; 780 } 781 782 /// \brief Set the debug location in the builder using the debug location in the 783 /// instruction. 784 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 785 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 786 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 787 else 788 B.SetCurrentDebugLocation(DebugLoc()); 789 } 790 791 #ifndef NDEBUG 792 /// \return string containing a file name and a line # for the given loop. 793 static std::string getDebugLocString(const Loop *L) { 794 std::string Result; 795 if (L) { 796 raw_string_ostream OS(Result); 797 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 798 LoopDbgLoc.print(OS); 799 else 800 // Just print the module name. 801 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 802 OS.flush(); 803 } 804 return Result; 805 } 806 #endif 807 808 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 809 const Instruction *Orig) { 810 // If the loop was versioned with memchecks, add the corresponding no-alias 811 // metadata. 812 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 813 LVer->annotateInstWithNoAlias(To, Orig); 814 } 815 816 void InnerLoopVectorizer::addMetadata(Instruction *To, 817 Instruction *From) { 818 propagateMetadata(To, From); 819 addNewMetadata(To, From); 820 } 821 822 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 823 Instruction *From) { 824 for (Value *V : To) { 825 if (Instruction *I = dyn_cast<Instruction>(V)) 826 addMetadata(I, From); 827 } 828 } 829 830 /// \brief The group of interleaved loads/stores sharing the same stride and 831 /// close to each other. 832 /// 833 /// Each member in this group has an index starting from 0, and the largest 834 /// index should be less than interleaved factor, which is equal to the absolute 835 /// value of the access's stride. 836 /// 837 /// E.g. An interleaved load group of factor 4: 838 /// for (unsigned i = 0; i < 1024; i+=4) { 839 /// a = A[i]; // Member of index 0 840 /// b = A[i+1]; // Member of index 1 841 /// d = A[i+3]; // Member of index 3 842 /// ... 843 /// } 844 /// 845 /// An interleaved store group of factor 4: 846 /// for (unsigned i = 0; i < 1024; i+=4) { 847 /// ... 848 /// A[i] = a; // Member of index 0 849 /// A[i+1] = b; // Member of index 1 850 /// A[i+2] = c; // Member of index 2 851 /// A[i+3] = d; // Member of index 3 852 /// } 853 /// 854 /// Note: the interleaved load group could have gaps (missing members), but 855 /// the interleaved store group doesn't allow gaps. 856 class InterleaveGroup { 857 public: 858 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 859 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 860 assert(Align && "The alignment should be non-zero"); 861 862 Factor = std::abs(Stride); 863 assert(Factor > 1 && "Invalid interleave factor"); 864 865 Reverse = Stride < 0; 866 Members[0] = Instr; 867 } 868 869 bool isReverse() const { return Reverse; } 870 unsigned getFactor() const { return Factor; } 871 unsigned getAlignment() const { return Align; } 872 unsigned getNumMembers() const { return Members.size(); } 873 874 /// \brief Try to insert a new member \p Instr with index \p Index and 875 /// alignment \p NewAlign. The index is related to the leader and it could be 876 /// negative if it is the new leader. 877 /// 878 /// \returns false if the instruction doesn't belong to the group. 879 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 880 assert(NewAlign && "The new member's alignment should be non-zero"); 881 882 int Key = Index + SmallestKey; 883 884 // Skip if there is already a member with the same index. 885 if (Members.count(Key)) 886 return false; 887 888 if (Key > LargestKey) { 889 // The largest index is always less than the interleave factor. 890 if (Index >= static_cast<int>(Factor)) 891 return false; 892 893 LargestKey = Key; 894 } else if (Key < SmallestKey) { 895 // The largest index is always less than the interleave factor. 896 if (LargestKey - Key >= static_cast<int>(Factor)) 897 return false; 898 899 SmallestKey = Key; 900 } 901 902 // It's always safe to select the minimum alignment. 903 Align = std::min(Align, NewAlign); 904 Members[Key] = Instr; 905 return true; 906 } 907 908 /// \brief Get the member with the given index \p Index 909 /// 910 /// \returns nullptr if contains no such member. 911 Instruction *getMember(unsigned Index) const { 912 int Key = SmallestKey + Index; 913 if (!Members.count(Key)) 914 return nullptr; 915 916 return Members.find(Key)->second; 917 } 918 919 /// \brief Get the index for the given member. Unlike the key in the member 920 /// map, the index starts from 0. 921 unsigned getIndex(Instruction *Instr) const { 922 for (auto I : Members) 923 if (I.second == Instr) 924 return I.first - SmallestKey; 925 926 llvm_unreachable("InterleaveGroup contains no such member"); 927 } 928 929 Instruction *getInsertPos() const { return InsertPos; } 930 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 931 932 private: 933 unsigned Factor; // Interleave Factor. 934 bool Reverse; 935 unsigned Align; 936 DenseMap<int, Instruction *> Members; 937 int SmallestKey; 938 int LargestKey; 939 940 // To avoid breaking dependences, vectorized instructions of an interleave 941 // group should be inserted at either the first load or the last store in 942 // program order. 943 // 944 // E.g. %even = load i32 // Insert Position 945 // %add = add i32 %even // Use of %even 946 // %odd = load i32 947 // 948 // store i32 %even 949 // %odd = add i32 // Def of %odd 950 // store i32 %odd // Insert Position 951 Instruction *InsertPos; 952 }; 953 954 /// \brief Drive the analysis of interleaved memory accesses in the loop. 955 /// 956 /// Use this class to analyze interleaved accesses only when we can vectorize 957 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 958 /// on interleaved accesses is unsafe. 959 /// 960 /// The analysis collects interleave groups and records the relationships 961 /// between the member and the group in a map. 962 class InterleavedAccessInfo { 963 public: 964 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 965 DominatorTree *DT, LoopInfo *LI) 966 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr), 967 RequiresScalarEpilogue(false) {} 968 969 ~InterleavedAccessInfo() { 970 SmallSet<InterleaveGroup *, 4> DelSet; 971 // Avoid releasing a pointer twice. 972 for (auto &I : InterleaveGroupMap) 973 DelSet.insert(I.second); 974 for (auto *Ptr : DelSet) 975 delete Ptr; 976 } 977 978 /// \brief Analyze the interleaved accesses and collect them in interleave 979 /// groups. Substitute symbolic strides using \p Strides. 980 void analyzeInterleaving(const ValueToValueMap &Strides); 981 982 /// \brief Check if \p Instr belongs to any interleave group. 983 bool isInterleaved(Instruction *Instr) const { 984 return InterleaveGroupMap.count(Instr); 985 } 986 987 /// \brief Return the maximum interleave factor of all interleaved groups. 988 unsigned getMaxInterleaveFactor() const { 989 unsigned MaxFactor = 1; 990 for (auto &Entry : InterleaveGroupMap) 991 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 992 return MaxFactor; 993 } 994 995 /// \brief Get the interleave group that \p Instr belongs to. 996 /// 997 /// \returns nullptr if doesn't have such group. 998 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 999 if (InterleaveGroupMap.count(Instr)) 1000 return InterleaveGroupMap.find(Instr)->second; 1001 return nullptr; 1002 } 1003 1004 /// \brief Returns true if an interleaved group that may access memory 1005 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1006 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1007 1008 /// \brief Initialize the LoopAccessInfo used for dependence checking. 1009 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 1010 1011 private: 1012 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1013 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1014 /// The interleaved access analysis can also add new predicates (for example 1015 /// by versioning strides of pointers). 1016 PredicatedScalarEvolution &PSE; 1017 Loop *TheLoop; 1018 DominatorTree *DT; 1019 LoopInfo *LI; 1020 const LoopAccessInfo *LAI; 1021 1022 /// True if the loop may contain non-reversed interleaved groups with 1023 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1024 /// out-of-bounds by executing at least one scalar epilogue iteration. 1025 bool RequiresScalarEpilogue; 1026 1027 /// Holds the relationships between the members and the interleave group. 1028 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1029 1030 /// Holds dependences among the memory accesses in the loop. It maps a source 1031 /// access to a set of dependent sink accesses. 1032 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1033 1034 /// \brief The descriptor for a strided memory access. 1035 struct StrideDescriptor { 1036 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1037 unsigned Align) 1038 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1039 1040 StrideDescriptor() = default; 1041 1042 // The access's stride. It is negative for a reverse access. 1043 int64_t Stride = 0; 1044 const SCEV *Scev = nullptr; // The scalar expression of this access 1045 uint64_t Size = 0; // The size of the memory object. 1046 unsigned Align = 0; // The alignment of this access. 1047 }; 1048 1049 /// \brief A type for holding instructions and their stride descriptors. 1050 typedef std::pair<Instruction *, StrideDescriptor> StrideEntry; 1051 1052 /// \brief Create a new interleave group with the given instruction \p Instr, 1053 /// stride \p Stride and alignment \p Align. 1054 /// 1055 /// \returns the newly created interleave group. 1056 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1057 unsigned Align) { 1058 assert(!InterleaveGroupMap.count(Instr) && 1059 "Already in an interleaved access group"); 1060 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1061 return InterleaveGroupMap[Instr]; 1062 } 1063 1064 /// \brief Release the group and remove all the relationships. 1065 void releaseGroup(InterleaveGroup *Group) { 1066 for (unsigned i = 0; i < Group->getFactor(); i++) 1067 if (Instruction *Member = Group->getMember(i)) 1068 InterleaveGroupMap.erase(Member); 1069 1070 delete Group; 1071 } 1072 1073 /// \brief Collect all the accesses with a constant stride in program order. 1074 void collectConstStrideAccesses( 1075 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1076 const ValueToValueMap &Strides); 1077 1078 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1079 static bool isStrided(int Stride) { 1080 unsigned Factor = std::abs(Stride); 1081 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1082 } 1083 1084 /// \brief Returns true if \p BB is a predicated block. 1085 bool isPredicated(BasicBlock *BB) const { 1086 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1087 } 1088 1089 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1090 bool areDependencesValid() const { 1091 return LAI && LAI->getDepChecker().getDependences(); 1092 } 1093 1094 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1095 /// necessary, when constructing interleaved groups. 1096 /// 1097 /// \p A must precede \p B in program order. We return false if reordering is 1098 /// not necessary or is prevented because \p A and \p B may be dependent. 1099 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1100 StrideEntry *B) const { 1101 1102 // Code motion for interleaved accesses can potentially hoist strided loads 1103 // and sink strided stores. The code below checks the legality of the 1104 // following two conditions: 1105 // 1106 // 1. Potentially moving a strided load (B) before any store (A) that 1107 // precedes B, or 1108 // 1109 // 2. Potentially moving a strided store (A) after any load or store (B) 1110 // that A precedes. 1111 // 1112 // It's legal to reorder A and B if we know there isn't a dependence from A 1113 // to B. Note that this determination is conservative since some 1114 // dependences could potentially be reordered safely. 1115 1116 // A is potentially the source of a dependence. 1117 auto *Src = A->first; 1118 auto SrcDes = A->second; 1119 1120 // B is potentially the sink of a dependence. 1121 auto *Sink = B->first; 1122 auto SinkDes = B->second; 1123 1124 // Code motion for interleaved accesses can't violate WAR dependences. 1125 // Thus, reordering is legal if the source isn't a write. 1126 if (!Src->mayWriteToMemory()) 1127 return true; 1128 1129 // At least one of the accesses must be strided. 1130 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1131 return true; 1132 1133 // If dependence information is not available from LoopAccessInfo, 1134 // conservatively assume the instructions can't be reordered. 1135 if (!areDependencesValid()) 1136 return false; 1137 1138 // If we know there is a dependence from source to sink, assume the 1139 // instructions can't be reordered. Otherwise, reordering is legal. 1140 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1141 } 1142 1143 /// \brief Collect the dependences from LoopAccessInfo. 1144 /// 1145 /// We process the dependences once during the interleaved access analysis to 1146 /// enable constant-time dependence queries. 1147 void collectDependences() { 1148 if (!areDependencesValid()) 1149 return; 1150 auto *Deps = LAI->getDepChecker().getDependences(); 1151 for (auto Dep : *Deps) 1152 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1153 } 1154 }; 1155 1156 /// Utility class for getting and setting loop vectorizer hints in the form 1157 /// of loop metadata. 1158 /// This class keeps a number of loop annotations locally (as member variables) 1159 /// and can, upon request, write them back as metadata on the loop. It will 1160 /// initially scan the loop for existing metadata, and will update the local 1161 /// values based on information in the loop. 1162 /// We cannot write all values to metadata, as the mere presence of some info, 1163 /// for example 'force', means a decision has been made. So, we need to be 1164 /// careful NOT to add them if the user hasn't specifically asked so. 1165 class LoopVectorizeHints { 1166 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE }; 1167 1168 /// Hint - associates name and validation with the hint value. 1169 struct Hint { 1170 const char *Name; 1171 unsigned Value; // This may have to change for non-numeric values. 1172 HintKind Kind; 1173 1174 Hint(const char *Name, unsigned Value, HintKind Kind) 1175 : Name(Name), Value(Value), Kind(Kind) {} 1176 1177 bool validate(unsigned Val) { 1178 switch (Kind) { 1179 case HK_WIDTH: 1180 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1181 case HK_UNROLL: 1182 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1183 case HK_FORCE: 1184 return (Val <= 1); 1185 } 1186 return false; 1187 } 1188 }; 1189 1190 /// Vectorization width. 1191 Hint Width; 1192 /// Vectorization interleave factor. 1193 Hint Interleave; 1194 /// Vectorization forced 1195 Hint Force; 1196 1197 /// Return the loop metadata prefix. 1198 static StringRef Prefix() { return "llvm.loop."; } 1199 1200 /// True if there is any unsafe math in the loop. 1201 bool PotentiallyUnsafe; 1202 1203 public: 1204 enum ForceKind { 1205 FK_Undefined = -1, ///< Not selected. 1206 FK_Disabled = 0, ///< Forcing disabled. 1207 FK_Enabled = 1, ///< Forcing enabled. 1208 }; 1209 1210 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1211 OptimizationRemarkEmitter &ORE) 1212 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1213 HK_WIDTH), 1214 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1215 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1216 PotentiallyUnsafe(false), TheLoop(L), ORE(ORE) { 1217 // Populate values with existing loop metadata. 1218 getHintsFromMetadata(); 1219 1220 // force-vector-interleave overrides DisableInterleaving. 1221 if (VectorizerParams::isInterleaveForced()) 1222 Interleave.Value = VectorizerParams::VectorizationInterleave; 1223 1224 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1225 << "LV: Interleaving disabled by the pass manager\n"); 1226 } 1227 1228 /// Mark the loop L as already vectorized by setting the width to 1. 1229 void setAlreadyVectorized() { 1230 Width.Value = Interleave.Value = 1; 1231 Hint Hints[] = {Width, Interleave}; 1232 writeHintsToMetadata(Hints); 1233 } 1234 1235 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1236 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1237 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1238 ORE.emitOptimizationRemarkAnalysis(vectorizeAnalysisPassName(), L, 1239 emitRemark()); 1240 return false; 1241 } 1242 1243 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1244 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1245 ORE.emitOptimizationRemarkAnalysis(vectorizeAnalysisPassName(), L, 1246 emitRemark()); 1247 return false; 1248 } 1249 1250 if (getWidth() == 1 && getInterleave() == 1) { 1251 // FIXME: Add a separate metadata to indicate when the loop has already 1252 // been vectorized instead of setting width and count to 1. 1253 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1254 // FIXME: Add interleave.disable metadata. This will allow 1255 // vectorize.disable to be used without disabling the pass and errors 1256 // to differentiate between disabled vectorization and a width of 1. 1257 ORE.emitOptimizationRemarkAnalysis( 1258 vectorizeAnalysisPassName(), L, 1259 "loop not vectorized: vectorization and interleaving are explicitly " 1260 "disabled, or vectorize width and interleave count are both set to " 1261 "1"); 1262 return false; 1263 } 1264 1265 return true; 1266 } 1267 1268 /// Dumps all the hint information. 1269 std::string emitRemark() const { 1270 VectorizationReport R; 1271 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1272 R << "vectorization is explicitly disabled"; 1273 else { 1274 R << "use -Rpass-analysis=loop-vectorize for more info"; 1275 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1276 R << " (Force=true"; 1277 if (Width.Value != 0) 1278 R << ", Vector Width=" << Width.Value; 1279 if (Interleave.Value != 0) 1280 R << ", Interleave Count=" << Interleave.Value; 1281 R << ")"; 1282 } 1283 } 1284 1285 return R.str(); 1286 } 1287 1288 unsigned getWidth() const { return Width.Value; } 1289 unsigned getInterleave() const { return Interleave.Value; } 1290 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1291 1292 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1293 /// pass name to force the frontend to print the diagnostic. 1294 const char *vectorizeAnalysisPassName() const { 1295 if (getWidth() == 1) 1296 return LV_NAME; 1297 if (getForce() == LoopVectorizeHints::FK_Disabled) 1298 return LV_NAME; 1299 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1300 return LV_NAME; 1301 return DiagnosticInfoOptimizationRemarkAnalysis::AlwaysPrint; 1302 } 1303 1304 bool allowReordering() const { 1305 // When enabling loop hints are provided we allow the vectorizer to change 1306 // the order of operations that is given by the scalar loop. This is not 1307 // enabled by default because can be unsafe or inefficient. For example, 1308 // reordering floating-point operations will change the way round-off 1309 // error accumulates in the loop. 1310 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1311 } 1312 1313 bool isPotentiallyUnsafe() const { 1314 // Avoid FP vectorization if the target is unsure about proper support. 1315 // This may be related to the SIMD unit in the target not handling 1316 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1317 // Otherwise, a sequence of vectorized loops, even without reduction, 1318 // could lead to different end results on the destination vectors. 1319 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1320 } 1321 1322 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1323 1324 private: 1325 /// Find hints specified in the loop metadata and update local values. 1326 void getHintsFromMetadata() { 1327 MDNode *LoopID = TheLoop->getLoopID(); 1328 if (!LoopID) 1329 return; 1330 1331 // First operand should refer to the loop id itself. 1332 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1333 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1334 1335 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1336 const MDString *S = nullptr; 1337 SmallVector<Metadata *, 4> Args; 1338 1339 // The expected hint is either a MDString or a MDNode with the first 1340 // operand a MDString. 1341 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1342 if (!MD || MD->getNumOperands() == 0) 1343 continue; 1344 S = dyn_cast<MDString>(MD->getOperand(0)); 1345 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1346 Args.push_back(MD->getOperand(i)); 1347 } else { 1348 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1349 assert(Args.size() == 0 && "too many arguments for MDString"); 1350 } 1351 1352 if (!S) 1353 continue; 1354 1355 // Check if the hint starts with the loop metadata prefix. 1356 StringRef Name = S->getString(); 1357 if (Args.size() == 1) 1358 setHint(Name, Args[0]); 1359 } 1360 } 1361 1362 /// Checks string hint with one operand and set value if valid. 1363 void setHint(StringRef Name, Metadata *Arg) { 1364 if (!Name.startswith(Prefix())) 1365 return; 1366 Name = Name.substr(Prefix().size(), StringRef::npos); 1367 1368 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1369 if (!C) 1370 return; 1371 unsigned Val = C->getZExtValue(); 1372 1373 Hint *Hints[] = {&Width, &Interleave, &Force}; 1374 for (auto H : Hints) { 1375 if (Name == H->Name) { 1376 if (H->validate(Val)) 1377 H->Value = Val; 1378 else 1379 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1380 break; 1381 } 1382 } 1383 } 1384 1385 /// Create a new hint from name / value pair. 1386 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1387 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1388 Metadata *MDs[] = {MDString::get(Context, Name), 1389 ConstantAsMetadata::get( 1390 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1391 return MDNode::get(Context, MDs); 1392 } 1393 1394 /// Matches metadata with hint name. 1395 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1396 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1397 if (!Name) 1398 return false; 1399 1400 for (auto H : HintTypes) 1401 if (Name->getString().endswith(H.Name)) 1402 return true; 1403 return false; 1404 } 1405 1406 /// Sets current hints into loop metadata, keeping other values intact. 1407 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1408 if (HintTypes.size() == 0) 1409 return; 1410 1411 // Reserve the first element to LoopID (see below). 1412 SmallVector<Metadata *, 4> MDs(1); 1413 // If the loop already has metadata, then ignore the existing operands. 1414 MDNode *LoopID = TheLoop->getLoopID(); 1415 if (LoopID) { 1416 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1417 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1418 // If node in update list, ignore old value. 1419 if (!matchesHintMetadataName(Node, HintTypes)) 1420 MDs.push_back(Node); 1421 } 1422 } 1423 1424 // Now, add the missing hints. 1425 for (auto H : HintTypes) 1426 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1427 1428 // Replace current metadata node with new one. 1429 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1430 MDNode *NewLoopID = MDNode::get(Context, MDs); 1431 // Set operand 0 to refer to the loop id itself. 1432 NewLoopID->replaceOperandWith(0, NewLoopID); 1433 1434 TheLoop->setLoopID(NewLoopID); 1435 } 1436 1437 /// The loop these hints belong to. 1438 const Loop *TheLoop; 1439 1440 /// Interface to emit optimization remarks. 1441 OptimizationRemarkEmitter &ORE; 1442 }; 1443 1444 static void emitAnalysisDiag(const Loop *TheLoop, 1445 const LoopVectorizeHints &Hints, 1446 OptimizationRemarkEmitter &ORE, 1447 const LoopAccessReport &Message) { 1448 const char *Name = Hints.vectorizeAnalysisPassName(); 1449 LoopAccessReport::emitAnalysis(Message, TheLoop, Name, ORE); 1450 } 1451 1452 static void emitMissedWarning(Function *F, Loop *L, 1453 const LoopVectorizeHints &LH, 1454 OptimizationRemarkEmitter *ORE) { 1455 ORE->emitOptimizationRemarkMissed(LV_NAME, L, LH.emitRemark()); 1456 1457 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1458 if (LH.getWidth() != 1) 1459 emitLoopVectorizeWarning( 1460 F->getContext(), *F, L->getStartLoc(), 1461 "failed explicitly specified loop vectorization"); 1462 else if (LH.getInterleave() != 1) 1463 emitLoopInterleaveWarning( 1464 F->getContext(), *F, L->getStartLoc(), 1465 "failed explicitly specified loop interleaving"); 1466 } 1467 } 1468 1469 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1470 /// to what vectorization factor. 1471 /// This class does not look at the profitability of vectorization, only the 1472 /// legality. This class has two main kinds of checks: 1473 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1474 /// will change the order of memory accesses in a way that will change the 1475 /// correctness of the program. 1476 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1477 /// checks for a number of different conditions, such as the availability of a 1478 /// single induction variable, that all types are supported and vectorize-able, 1479 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1480 /// This class is also used by InnerLoopVectorizer for identifying 1481 /// induction variable and the different reduction variables. 1482 class LoopVectorizationLegality { 1483 public: 1484 LoopVectorizationLegality( 1485 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1486 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1487 const TargetTransformInfo *TTI, 1488 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1489 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1490 LoopVectorizeHints *H) 1491 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), 1492 GetLAA(GetLAA), LAI(nullptr), ORE(ORE), InterleaveInfo(PSE, L, DT, LI), 1493 Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1494 Requirements(R), Hints(H) {} 1495 1496 /// ReductionList contains the reduction descriptors for all 1497 /// of the reductions that were found in the loop. 1498 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1499 1500 /// InductionList saves induction variables and maps them to the 1501 /// induction descriptor. 1502 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1503 1504 /// RecurrenceSet contains the phi nodes that are recurrences other than 1505 /// inductions and reductions. 1506 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1507 1508 /// Returns true if it is legal to vectorize this loop. 1509 /// This does not mean that it is profitable to vectorize this 1510 /// loop, only that it is legal to do so. 1511 bool canVectorize(); 1512 1513 /// Returns the Induction variable. 1514 PHINode *getInduction() { return Induction; } 1515 1516 /// Returns the reduction variables found in the loop. 1517 ReductionList *getReductionVars() { return &Reductions; } 1518 1519 /// Returns the induction variables found in the loop. 1520 InductionList *getInductionVars() { return &Inductions; } 1521 1522 /// Return the first-order recurrences found in the loop. 1523 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1524 1525 /// Returns the widest induction type. 1526 Type *getWidestInductionType() { return WidestIndTy; } 1527 1528 /// Returns True if V is an induction variable in this loop. 1529 bool isInductionVariable(const Value *V); 1530 1531 /// Returns True if PN is a reduction variable in this loop. 1532 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1533 1534 /// Returns True if Phi is a first-order recurrence in this loop. 1535 bool isFirstOrderRecurrence(const PHINode *Phi); 1536 1537 /// Return true if the block BB needs to be predicated in order for the loop 1538 /// to be vectorized. 1539 bool blockNeedsPredication(BasicBlock *BB); 1540 1541 /// Check if this pointer is consecutive when vectorizing. This happens 1542 /// when the last index of the GEP is the induction variable, or that the 1543 /// pointer itself is an induction variable. 1544 /// This check allows us to vectorize A[idx] into a wide load/store. 1545 /// Returns: 1546 /// 0 - Stride is unknown or non-consecutive. 1547 /// 1 - Address is consecutive. 1548 /// -1 - Address is consecutive, and decreasing. 1549 int isConsecutivePtr(Value *Ptr); 1550 1551 /// Returns true if the value V is uniform within the loop. 1552 bool isUniform(Value *V); 1553 1554 /// Returns true if \p I is known to be uniform after vectorization. 1555 bool isUniformAfterVectorization(Instruction *I) { return Uniforms.count(I); } 1556 1557 /// Returns true if \p I is known to be scalar after vectorization. 1558 bool isScalarAfterVectorization(Instruction *I) { return Scalars.count(I); } 1559 1560 /// Returns the information that we collected about runtime memory check. 1561 const RuntimePointerChecking *getRuntimePointerChecking() const { 1562 return LAI->getRuntimePointerChecking(); 1563 } 1564 1565 const LoopAccessInfo *getLAI() const { return LAI; } 1566 1567 /// \brief Check if \p Instr belongs to any interleaved access group. 1568 bool isAccessInterleaved(Instruction *Instr) { 1569 return InterleaveInfo.isInterleaved(Instr); 1570 } 1571 1572 /// \brief Return the maximum interleave factor of all interleaved groups. 1573 unsigned getMaxInterleaveFactor() const { 1574 return InterleaveInfo.getMaxInterleaveFactor(); 1575 } 1576 1577 /// \brief Get the interleaved access group that \p Instr belongs to. 1578 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1579 return InterleaveInfo.getInterleaveGroup(Instr); 1580 } 1581 1582 /// \brief Returns true if an interleaved group requires a scalar iteration 1583 /// to handle accesses with gaps. 1584 bool requiresScalarEpilogue() const { 1585 return InterleaveInfo.requiresScalarEpilogue(); 1586 } 1587 1588 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1589 1590 bool hasStride(Value *V) { return LAI->hasStride(V); } 1591 1592 /// Returns true if the target machine supports masked store operation 1593 /// for the given \p DataType and kind of access to \p Ptr. 1594 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1595 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1596 } 1597 /// Returns true if the target machine supports masked load operation 1598 /// for the given \p DataType and kind of access to \p Ptr. 1599 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1600 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1601 } 1602 /// Returns true if the target machine supports masked scatter operation 1603 /// for the given \p DataType. 1604 bool isLegalMaskedScatter(Type *DataType) { 1605 return TTI->isLegalMaskedScatter(DataType); 1606 } 1607 /// Returns true if the target machine supports masked gather operation 1608 /// for the given \p DataType. 1609 bool isLegalMaskedGather(Type *DataType) { 1610 return TTI->isLegalMaskedGather(DataType); 1611 } 1612 /// Returns true if the target machine can represent \p V as a masked gather 1613 /// or scatter operation. 1614 bool isLegalGatherOrScatter(Value *V) { 1615 auto *LI = dyn_cast<LoadInst>(V); 1616 auto *SI = dyn_cast<StoreInst>(V); 1617 if (!LI && !SI) 1618 return false; 1619 auto *Ptr = getPointerOperand(V); 1620 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1621 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1622 } 1623 1624 /// Returns true if vector representation of the instruction \p I 1625 /// requires mask. 1626 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1627 unsigned getNumStores() const { return LAI->getNumStores(); } 1628 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1629 unsigned getNumPredStores() const { return NumPredStores; } 1630 1631 /// Returns true if \p I is a store instruction in a predicated block that 1632 /// will be scalarized during vectorization. 1633 bool isPredicatedStore(Instruction *I); 1634 1635 /// Returns true if \p I is a memory instruction that has a consecutive or 1636 /// consecutive-like pointer operand. Consecutive-like pointers are pointers 1637 /// that are treated like consecutive pointers during vectorization. The 1638 /// pointer operands of interleaved accesses are an example. 1639 bool hasConsecutiveLikePtrOperand(Instruction *I); 1640 1641 /// Returns true if \p I is a memory instruction that must be scalarized 1642 /// during vectorization. 1643 bool memoryInstructionMustBeScalarized(Instruction *I, unsigned VF = 1); 1644 1645 private: 1646 /// Check if a single basic block loop is vectorizable. 1647 /// At this point we know that this is a loop with a constant trip count 1648 /// and we only need to check individual instructions. 1649 bool canVectorizeInstrs(); 1650 1651 /// When we vectorize loops we may change the order in which 1652 /// we read and write from memory. This method checks if it is 1653 /// legal to vectorize the code, considering only memory constrains. 1654 /// Returns true if the loop is vectorizable 1655 bool canVectorizeMemory(); 1656 1657 /// Return true if we can vectorize this loop using the IF-conversion 1658 /// transformation. 1659 bool canVectorizeWithIfConvert(); 1660 1661 /// Collect the instructions that are uniform after vectorization. An 1662 /// instruction is uniform if we represent it with a single scalar value in 1663 /// the vectorized loop corresponding to each vector iteration. Examples of 1664 /// uniform instructions include pointer operands of consecutive or 1665 /// interleaved memory accesses. Note that although uniformity implies an 1666 /// instruction will be scalar, the reverse is not true. In general, a 1667 /// scalarized instruction will be represented by VF scalar values in the 1668 /// vectorized loop, each corresponding to an iteration of the original 1669 /// scalar loop. 1670 void collectLoopUniforms(); 1671 1672 /// Collect the instructions that are scalar after vectorization. An 1673 /// instruction is scalar if it is known to be uniform or will be scalarized 1674 /// during vectorization. Non-uniform scalarized instructions will be 1675 /// represented by VF values in the vectorized loop, each corresponding to an 1676 /// iteration of the original scalar loop. 1677 void collectLoopScalars(); 1678 1679 /// Return true if all of the instructions in the block can be speculatively 1680 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1681 /// and we know that we can read from them without segfault. 1682 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1683 1684 /// Updates the vectorization state by adding \p Phi to the inductions list. 1685 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1686 /// better choice for the main induction than the existing one. 1687 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1688 SmallPtrSetImpl<Value *> &AllowedExit); 1689 1690 /// Report an analysis message to assist the user in diagnosing loops that are 1691 /// not vectorized. These are handled as LoopAccessReport rather than 1692 /// VectorizationReport because the << operator of VectorizationReport returns 1693 /// LoopAccessReport. 1694 void emitAnalysis(const LoopAccessReport &Message) const { 1695 emitAnalysisDiag(TheLoop, *Hints, *ORE, Message); 1696 } 1697 1698 /// \brief If an access has a symbolic strides, this maps the pointer value to 1699 /// the stride symbol. 1700 const ValueToValueMap *getSymbolicStrides() { 1701 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1702 // it's collected. This happens from canVectorizeWithIfConvert, when the 1703 // pointer is checked to reference consecutive elements suitable for a 1704 // masked access. 1705 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1706 } 1707 1708 unsigned NumPredStores; 1709 1710 /// The loop that we evaluate. 1711 Loop *TheLoop; 1712 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1713 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1714 /// of existing SCEV assumptions. The analysis will also add a minimal set 1715 /// of new predicates if this is required to enable vectorization and 1716 /// unrolling. 1717 PredicatedScalarEvolution &PSE; 1718 /// Target Library Info. 1719 TargetLibraryInfo *TLI; 1720 /// Target Transform Info 1721 const TargetTransformInfo *TTI; 1722 /// Dominator Tree. 1723 DominatorTree *DT; 1724 // LoopAccess analysis. 1725 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1726 // And the loop-accesses info corresponding to this loop. This pointer is 1727 // null until canVectorizeMemory sets it up. 1728 const LoopAccessInfo *LAI; 1729 /// Interface to emit optimization remarks. 1730 OptimizationRemarkEmitter *ORE; 1731 1732 /// The interleave access information contains groups of interleaved accesses 1733 /// with the same stride and close to each other. 1734 InterleavedAccessInfo InterleaveInfo; 1735 1736 // --- vectorization state --- // 1737 1738 /// Holds the integer induction variable. This is the counter of the 1739 /// loop. 1740 PHINode *Induction; 1741 /// Holds the reduction variables. 1742 ReductionList Reductions; 1743 /// Holds all of the induction variables that we found in the loop. 1744 /// Notice that inductions don't need to start at zero and that induction 1745 /// variables can be pointers. 1746 InductionList Inductions; 1747 /// Holds the phi nodes that are first-order recurrences. 1748 RecurrenceSet FirstOrderRecurrences; 1749 /// Holds the widest induction type encountered. 1750 Type *WidestIndTy; 1751 1752 /// Allowed outside users. This holds the induction and reduction 1753 /// vars which can be accessed from outside the loop. 1754 SmallPtrSet<Value *, 4> AllowedExit; 1755 1756 /// Holds the instructions known to be uniform after vectorization. 1757 SmallPtrSet<Instruction *, 4> Uniforms; 1758 1759 /// Holds the instructions known to be scalar after vectorization. 1760 SmallPtrSet<Instruction *, 4> Scalars; 1761 1762 /// Can we assume the absence of NaNs. 1763 bool HasFunNoNaNAttr; 1764 1765 /// Vectorization requirements that will go through late-evaluation. 1766 LoopVectorizationRequirements *Requirements; 1767 1768 /// Used to emit an analysis of any legality issues. 1769 LoopVectorizeHints *Hints; 1770 1771 /// While vectorizing these instructions we have to generate a 1772 /// call to the appropriate masked intrinsic 1773 SmallPtrSet<const Instruction *, 8> MaskedOp; 1774 }; 1775 1776 /// LoopVectorizationCostModel - estimates the expected speedups due to 1777 /// vectorization. 1778 /// In many cases vectorization is not profitable. This can happen because of 1779 /// a number of reasons. In this class we mainly attempt to predict the 1780 /// expected speedup/slowdowns due to the supported instruction set. We use the 1781 /// TargetTransformInfo to query the different backends for the cost of 1782 /// different operations. 1783 class LoopVectorizationCostModel { 1784 public: 1785 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1786 LoopInfo *LI, LoopVectorizationLegality *Legal, 1787 const TargetTransformInfo &TTI, 1788 const TargetLibraryInfo *TLI, DemandedBits *DB, 1789 AssumptionCache *AC, 1790 OptimizationRemarkEmitter *ORE, const Function *F, 1791 const LoopVectorizeHints *Hints) 1792 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1793 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1794 1795 /// Information about vectorization costs 1796 struct VectorizationFactor { 1797 unsigned Width; // Vector width with best cost 1798 unsigned Cost; // Cost of the loop with that width 1799 }; 1800 /// \return The most profitable vectorization factor and the cost of that VF. 1801 /// This method checks every power of two up to VF. If UserVF is not ZERO 1802 /// then this vectorization factor will be selected if vectorization is 1803 /// possible. 1804 VectorizationFactor selectVectorizationFactor(bool OptForSize); 1805 1806 /// \return The size (in bits) of the smallest and widest types in the code 1807 /// that needs to be vectorized. We ignore values that remain scalar such as 1808 /// 64 bit loop indices. 1809 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1810 1811 /// \return The desired interleave count. 1812 /// If interleave count has been specified by metadata it will be returned. 1813 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1814 /// are the selected vectorization factor and the cost of the selected VF. 1815 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1816 unsigned LoopCost); 1817 1818 /// \return The most profitable unroll factor. 1819 /// This method finds the best unroll-factor based on register pressure and 1820 /// other parameters. VF and LoopCost are the selected vectorization factor 1821 /// and the cost of the selected VF. 1822 unsigned computeInterleaveCount(bool OptForSize, unsigned VF, 1823 unsigned LoopCost); 1824 1825 /// \brief A struct that represents some properties of the register usage 1826 /// of a loop. 1827 struct RegisterUsage { 1828 /// Holds the number of loop invariant values that are used in the loop. 1829 unsigned LoopInvariantRegs; 1830 /// Holds the maximum number of concurrent live intervals in the loop. 1831 unsigned MaxLocalUsers; 1832 /// Holds the number of instructions in the loop. 1833 unsigned NumInstructions; 1834 }; 1835 1836 /// \return Returns information about the register usages of the loop for the 1837 /// given vectorization factors. 1838 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1839 1840 /// Collect values we want to ignore in the cost model. 1841 void collectValuesToIgnore(); 1842 1843 private: 1844 /// The vectorization cost is a combination of the cost itself and a boolean 1845 /// indicating whether any of the contributing operations will actually 1846 /// operate on 1847 /// vector values after type legalization in the backend. If this latter value 1848 /// is 1849 /// false, then all operations will be scalarized (i.e. no vectorization has 1850 /// actually taken place). 1851 typedef std::pair<unsigned, bool> VectorizationCostTy; 1852 1853 /// Returns the expected execution cost. The unit of the cost does 1854 /// not matter because we use the 'cost' units to compare different 1855 /// vector widths. The cost that is returned is *not* normalized by 1856 /// the factor width. 1857 VectorizationCostTy expectedCost(unsigned VF); 1858 1859 /// Returns the execution time cost of an instruction for a given vector 1860 /// width. Vector width of one means scalar. 1861 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1862 1863 /// The cost-computation logic from getInstructionCost which provides 1864 /// the vector type as an output parameter. 1865 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1866 1867 /// Returns whether the instruction is a load or store and will be a emitted 1868 /// as a vector operation. 1869 bool isConsecutiveLoadOrStore(Instruction *I); 1870 1871 /// Report an analysis message to assist the user in diagnosing loops that are 1872 /// not vectorized. These are handled as LoopAccessReport rather than 1873 /// VectorizationReport because the << operator of VectorizationReport returns 1874 /// LoopAccessReport. 1875 void emitAnalysis(const LoopAccessReport &Message) const { 1876 emitAnalysisDiag(TheLoop, *Hints, *ORE, Message); 1877 } 1878 1879 public: 1880 /// Map of scalar integer values to the smallest bitwidth they can be legally 1881 /// represented as. The vector equivalents of these values should be truncated 1882 /// to this type. 1883 MapVector<Instruction *, uint64_t> MinBWs; 1884 1885 /// The loop that we evaluate. 1886 Loop *TheLoop; 1887 /// Predicated scalar evolution analysis. 1888 PredicatedScalarEvolution &PSE; 1889 /// Loop Info analysis. 1890 LoopInfo *LI; 1891 /// Vectorization legality. 1892 LoopVectorizationLegality *Legal; 1893 /// Vector target information. 1894 const TargetTransformInfo &TTI; 1895 /// Target Library Info. 1896 const TargetLibraryInfo *TLI; 1897 /// Demanded bits analysis. 1898 DemandedBits *DB; 1899 /// Assumption cache. 1900 AssumptionCache *AC; 1901 /// Interface to emit optimization remarks. 1902 OptimizationRemarkEmitter *ORE; 1903 1904 const Function *TheFunction; 1905 /// Loop Vectorize Hint. 1906 const LoopVectorizeHints *Hints; 1907 /// Values to ignore in the cost model. 1908 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1909 /// Values to ignore in the cost model when VF > 1. 1910 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1911 }; 1912 1913 /// \brief This holds vectorization requirements that must be verified late in 1914 /// the process. The requirements are set by legalize and costmodel. Once 1915 /// vectorization has been determined to be possible and profitable the 1916 /// requirements can be verified by looking for metadata or compiler options. 1917 /// For example, some loops require FP commutativity which is only allowed if 1918 /// vectorization is explicitly specified or if the fast-math compiler option 1919 /// has been provided. 1920 /// Late evaluation of these requirements allows helpful diagnostics to be 1921 /// composed that tells the user what need to be done to vectorize the loop. For 1922 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 1923 /// evaluation should be used only when diagnostics can generated that can be 1924 /// followed by a non-expert user. 1925 class LoopVectorizationRequirements { 1926 public: 1927 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) 1928 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr), ORE(ORE) {} 1929 1930 void addUnsafeAlgebraInst(Instruction *I) { 1931 // First unsafe algebra instruction. 1932 if (!UnsafeAlgebraInst) 1933 UnsafeAlgebraInst = I; 1934 } 1935 1936 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 1937 1938 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 1939 const char *Name = Hints.vectorizeAnalysisPassName(); 1940 bool Failed = false; 1941 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 1942 ORE.emitOptimizationRemarkAnalysisFPCommute( 1943 Name, UnsafeAlgebraInst->getDebugLoc(), 1944 UnsafeAlgebraInst->getParent(), 1945 VectorizationReport() << "cannot prove it is safe to reorder " 1946 "floating-point operations"); 1947 Failed = true; 1948 } 1949 1950 // Test if runtime memcheck thresholds are exceeded. 1951 bool PragmaThresholdReached = 1952 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 1953 bool ThresholdReached = 1954 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 1955 if ((ThresholdReached && !Hints.allowReordering()) || 1956 PragmaThresholdReached) { 1957 ORE.emitOptimizationRemarkAnalysisAliasing( 1958 Name, L, 1959 VectorizationReport() 1960 << "cannot prove it is safe to reorder memory operations"); 1961 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 1962 Failed = true; 1963 } 1964 1965 return Failed; 1966 } 1967 1968 private: 1969 unsigned NumRuntimePointerChecks; 1970 Instruction *UnsafeAlgebraInst; 1971 1972 /// Interface to emit optimization remarks. 1973 OptimizationRemarkEmitter &ORE; 1974 }; 1975 1976 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1977 if (L.empty()) { 1978 if (!hasCyclesInLoopBody(L)) 1979 V.push_back(&L); 1980 return; 1981 } 1982 for (Loop *InnerL : L) 1983 addAcyclicInnerLoop(*InnerL, V); 1984 } 1985 1986 /// The LoopVectorize Pass. 1987 struct LoopVectorize : public FunctionPass { 1988 /// Pass identification, replacement for typeid 1989 static char ID; 1990 1991 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1992 : FunctionPass(ID) { 1993 Impl.DisableUnrolling = NoUnrolling; 1994 Impl.AlwaysVectorize = AlwaysVectorize; 1995 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1996 } 1997 1998 LoopVectorizePass Impl; 1999 2000 bool runOnFunction(Function &F) override { 2001 if (skipFunction(F)) 2002 return false; 2003 2004 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2005 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2006 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2007 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2008 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2009 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2010 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2011 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2012 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2013 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2014 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2015 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2016 2017 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2018 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2019 2020 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2021 GetLAA, *ORE); 2022 } 2023 2024 void getAnalysisUsage(AnalysisUsage &AU) const override { 2025 AU.addRequired<AssumptionCacheTracker>(); 2026 AU.addRequiredID(LoopSimplifyID); 2027 AU.addRequiredID(LCSSAID); 2028 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2029 AU.addRequired<DominatorTreeWrapperPass>(); 2030 AU.addRequired<LoopInfoWrapperPass>(); 2031 AU.addRequired<ScalarEvolutionWrapperPass>(); 2032 AU.addRequired<TargetTransformInfoWrapperPass>(); 2033 AU.addRequired<AAResultsWrapperPass>(); 2034 AU.addRequired<LoopAccessLegacyAnalysis>(); 2035 AU.addRequired<DemandedBitsWrapperPass>(); 2036 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2037 AU.addPreserved<LoopInfoWrapperPass>(); 2038 AU.addPreserved<DominatorTreeWrapperPass>(); 2039 AU.addPreserved<BasicAAWrapperPass>(); 2040 AU.addPreserved<GlobalsAAWrapperPass>(); 2041 } 2042 }; 2043 2044 } // end anonymous namespace 2045 2046 //===----------------------------------------------------------------------===// 2047 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2048 // LoopVectorizationCostModel. 2049 //===----------------------------------------------------------------------===// 2050 2051 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2052 // We need to place the broadcast of invariant variables outside the loop. 2053 Instruction *Instr = dyn_cast<Instruction>(V); 2054 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2055 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2056 2057 // Place the code for broadcasting invariant variables in the new preheader. 2058 IRBuilder<>::InsertPointGuard Guard(Builder); 2059 if (Invariant) 2060 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2061 2062 // Broadcast the scalar into all locations in the vector. 2063 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2064 2065 return Shuf; 2066 } 2067 2068 void InnerLoopVectorizer::createVectorIntInductionPHI( 2069 const InductionDescriptor &II, Instruction *EntryVal) { 2070 Value *Start = II.getStartValue(); 2071 ConstantInt *Step = II.getConstIntStepValue(); 2072 assert(Step && "Can not widen an IV with a non-constant step"); 2073 2074 // Construct the initial value of the vector IV in the vector loop preheader 2075 auto CurrIP = Builder.saveIP(); 2076 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2077 if (isa<TruncInst>(EntryVal)) { 2078 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2079 Step = ConstantInt::getSigned(TruncType, Step->getSExtValue()); 2080 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2081 } 2082 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2083 Value *SteppedStart = getStepVector(SplatStart, 0, Step); 2084 Builder.restoreIP(CurrIP); 2085 2086 Value *SplatVF = 2087 ConstantVector::getSplat(VF, ConstantInt::getSigned(Start->getType(), 2088 VF * Step->getSExtValue())); 2089 // We may need to add the step a number of times, depending on the unroll 2090 // factor. The last of those goes into the PHI. 2091 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2092 &*LoopVectorBody->getFirstInsertionPt()); 2093 Instruction *LastInduction = VecInd; 2094 VectorParts Entry(UF); 2095 for (unsigned Part = 0; Part < UF; ++Part) { 2096 Entry[Part] = LastInduction; 2097 LastInduction = cast<Instruction>( 2098 Builder.CreateAdd(LastInduction, SplatVF, "step.add")); 2099 } 2100 VectorLoopValueMap.initVector(EntryVal, Entry); 2101 if (isa<TruncInst>(EntryVal)) 2102 addMetadata(Entry, EntryVal); 2103 2104 // Move the last step to the end of the latch block. This ensures consistent 2105 // placement of all induction updates. 2106 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2107 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2108 auto *ICmp = cast<Instruction>(Br->getCondition()); 2109 LastInduction->moveBefore(ICmp); 2110 LastInduction->setName("vec.ind.next"); 2111 2112 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2113 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2114 } 2115 2116 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2117 if (Legal->isScalarAfterVectorization(IV)) 2118 return true; 2119 auto isScalarInst = [&](User *U) -> bool { 2120 auto *I = cast<Instruction>(U); 2121 return (OrigLoop->contains(I) && Legal->isScalarAfterVectorization(I)); 2122 }; 2123 return any_of(IV->users(), isScalarInst); 2124 } 2125 2126 void InnerLoopVectorizer::widenIntInduction(PHINode *IV, TruncInst *Trunc) { 2127 2128 auto II = Legal->getInductionVars()->find(IV); 2129 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2130 2131 auto ID = II->second; 2132 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2133 2134 // The scalar value to broadcast. This will be derived from the canonical 2135 // induction variable. 2136 Value *ScalarIV = nullptr; 2137 2138 // The step of the induction. 2139 Value *Step = nullptr; 2140 2141 // The value from the original loop to which we are mapping the new induction 2142 // variable. 2143 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2144 2145 // True if we have vectorized the induction variable. 2146 auto VectorizedIV = false; 2147 2148 // Determine if we want a scalar version of the induction variable. This is 2149 // true if the induction variable itself is not widened, or if it has at 2150 // least one user in the loop that is not widened. 2151 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2152 2153 // If the induction variable has a constant integer step value, go ahead and 2154 // get it now. 2155 if (ID.getConstIntStepValue()) 2156 Step = ID.getConstIntStepValue(); 2157 2158 // Try to create a new independent vector induction variable. If we can't 2159 // create the phi node, we will splat the scalar induction variable in each 2160 // loop iteration. 2161 if (VF > 1 && IV->getType() == Induction->getType() && Step && 2162 !Legal->isScalarAfterVectorization(EntryVal)) { 2163 createVectorIntInductionPHI(ID, EntryVal); 2164 VectorizedIV = true; 2165 } 2166 2167 // If we haven't yet vectorized the induction variable, or if we will create 2168 // a scalar one, we need to define the scalar induction variable and step 2169 // values. If we were given a truncation type, truncate the canonical 2170 // induction variable and constant step. Otherwise, derive these values from 2171 // the induction descriptor. 2172 if (!VectorizedIV || NeedsScalarIV) { 2173 if (Trunc) { 2174 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2175 assert(Step && "Truncation requires constant integer step"); 2176 auto StepInt = cast<ConstantInt>(Step)->getSExtValue(); 2177 ScalarIV = Builder.CreateCast(Instruction::Trunc, Induction, TruncType); 2178 Step = ConstantInt::getSigned(TruncType, StepInt); 2179 } else { 2180 ScalarIV = Induction; 2181 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2182 if (IV != OldInduction) { 2183 ScalarIV = Builder.CreateSExtOrTrunc(ScalarIV, IV->getType()); 2184 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2185 ScalarIV->setName("offset.idx"); 2186 } 2187 if (!Step) { 2188 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2189 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2190 &*Builder.GetInsertPoint()); 2191 } 2192 } 2193 } 2194 2195 // If we haven't yet vectorized the induction variable, splat the scalar 2196 // induction variable, and build the necessary step vectors. 2197 if (!VectorizedIV) { 2198 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2199 VectorParts Entry(UF); 2200 for (unsigned Part = 0; Part < UF; ++Part) 2201 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); 2202 VectorLoopValueMap.initVector(EntryVal, Entry); 2203 if (Trunc) 2204 addMetadata(Entry, Trunc); 2205 } 2206 2207 // If an induction variable is only used for counting loop iterations or 2208 // calculating addresses, it doesn't need to be widened. Create scalar steps 2209 // that can be used by instructions we will later scalarize. Note that the 2210 // addition of the scalar steps will not increase the number of instructions 2211 // in the loop in the common case prior to InstCombine. We will be trading 2212 // one vector extract for each scalar step. 2213 if (NeedsScalarIV) 2214 buildScalarSteps(ScalarIV, Step, EntryVal); 2215 } 2216 2217 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2218 Instruction::BinaryOps BinOp) { 2219 // Create and check the types. 2220 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2221 int VLen = Val->getType()->getVectorNumElements(); 2222 2223 Type *STy = Val->getType()->getScalarType(); 2224 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2225 "Induction Step must be an integer or FP"); 2226 assert(Step->getType() == STy && "Step has wrong type"); 2227 2228 SmallVector<Constant *, 8> Indices; 2229 2230 if (STy->isIntegerTy()) { 2231 // Create a vector of consecutive numbers from zero to VF. 2232 for (int i = 0; i < VLen; ++i) 2233 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2234 2235 // Add the consecutive indices to the vector value. 2236 Constant *Cv = ConstantVector::get(Indices); 2237 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2238 Step = Builder.CreateVectorSplat(VLen, Step); 2239 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2240 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2241 // which can be found from the original scalar operations. 2242 Step = Builder.CreateMul(Cv, Step); 2243 return Builder.CreateAdd(Val, Step, "induction"); 2244 } 2245 2246 // Floating point induction. 2247 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2248 "Binary Opcode should be specified for FP induction"); 2249 // Create a vector of consecutive numbers from zero to VF. 2250 for (int i = 0; i < VLen; ++i) 2251 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2252 2253 // Add the consecutive indices to the vector value. 2254 Constant *Cv = ConstantVector::get(Indices); 2255 2256 Step = Builder.CreateVectorSplat(VLen, Step); 2257 2258 // Floating point operations had to be 'fast' to enable the induction. 2259 FastMathFlags Flags; 2260 Flags.setUnsafeAlgebra(); 2261 2262 Value *MulOp = Builder.CreateFMul(Cv, Step); 2263 if (isa<Instruction>(MulOp)) 2264 // Have to check, MulOp may be a constant 2265 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2266 2267 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2268 if (isa<Instruction>(BOp)) 2269 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2270 return BOp; 2271 } 2272 2273 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2274 Value *EntryVal) { 2275 2276 // We shouldn't have to build scalar steps if we aren't vectorizing. 2277 assert(VF > 1 && "VF should be greater than one"); 2278 2279 // Get the value type and ensure it and the step have the same integer type. 2280 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2281 assert(ScalarIVTy->isIntegerTy() && ScalarIVTy == Step->getType() && 2282 "Val and Step should have the same integer type"); 2283 2284 auto scalarUserIsUniform = [&](User *U) -> bool { 2285 auto *I = cast<Instruction>(U); 2286 return !OrigLoop->contains(I) || !Legal->isScalarAfterVectorization(I) || 2287 Legal->isUniformAfterVectorization(I); 2288 }; 2289 2290 // Determine the number of scalars we need to generate for each unroll 2291 // iteration. If EntryVal is uniform or all it's scalar users are uniform, we 2292 // only need to generate the first lane. Otherwise, we generate all VF 2293 // values. We are essentially determining if the induction variable has no 2294 // "multi-scalar" (non-uniform scalar) users. 2295 unsigned Lanes = 2296 Legal->isUniformAfterVectorization(cast<Instruction>(EntryVal)) || 2297 all_of(EntryVal->users(), scalarUserIsUniform) 2298 ? 1 2299 : VF; 2300 2301 // Compute the scalar steps and save the results in VectorLoopValueMap. 2302 ScalarParts Entry(UF); 2303 for (unsigned Part = 0; Part < UF; ++Part) { 2304 Entry[Part].resize(VF); 2305 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2306 auto *StartIdx = ConstantInt::get(ScalarIVTy, VF * Part + Lane); 2307 auto *Mul = Builder.CreateMul(StartIdx, Step); 2308 auto *Add = Builder.CreateAdd(ScalarIV, Mul); 2309 Entry[Part][Lane] = Add; 2310 } 2311 } 2312 VectorLoopValueMap.initScalar(EntryVal, Entry); 2313 } 2314 2315 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2316 2317 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2318 ValueToValueMap(); 2319 2320 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2321 if (Stride == 1 || Stride == -1) 2322 return Stride; 2323 return 0; 2324 } 2325 2326 bool LoopVectorizationLegality::isUniform(Value *V) { 2327 return LAI->isUniform(V); 2328 } 2329 2330 const InnerLoopVectorizer::VectorParts & 2331 InnerLoopVectorizer::getVectorValue(Value *V) { 2332 assert(V != Induction && "The new induction variable should not be used."); 2333 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2334 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2335 2336 // If we have a stride that is replaced by one, do it here. 2337 if (Legal->hasStride(V)) 2338 V = ConstantInt::get(V->getType(), 1); 2339 2340 // If we have this scalar in the map, return it. 2341 if (VectorLoopValueMap.hasVector(V)) 2342 return VectorLoopValueMap.VectorMapStorage[V]; 2343 2344 // If the value has not been vectorized, check if it has been scalarized 2345 // instead. If it has been scalarized, and we actually need the value in 2346 // vector form, we will construct the vector values on demand. 2347 if (VectorLoopValueMap.hasScalar(V)) { 2348 2349 // Initialize a new vector map entry. 2350 VectorParts Entry(UF); 2351 2352 // If we've scalarized a value, that value should be an instruction. 2353 auto *I = cast<Instruction>(V); 2354 2355 // If we aren't vectorizing, we can just copy the scalar map values over to 2356 // the vector map. 2357 if (VF == 1) { 2358 for (unsigned Part = 0; Part < UF; ++Part) 2359 Entry[Part] = getScalarValue(V, Part, 0); 2360 return VectorLoopValueMap.initVector(V, Entry); 2361 } 2362 2363 // Get the last scalar instruction we generated for V. If the value is 2364 // known to be uniform after vectorization, this corresponds to lane zero 2365 // of the last unroll iteration. Otherwise, the last instruction is the one 2366 // we created for the last vector lane of the last unroll iteration. 2367 unsigned LastLane = Legal->isUniformAfterVectorization(I) ? 0 : VF - 1; 2368 auto *LastInst = cast<Instruction>(getScalarValue(V, UF - 1, LastLane)); 2369 2370 // Set the insert point after the last scalarized instruction. This ensures 2371 // the insertelement sequence will directly follow the scalar definitions. 2372 auto OldIP = Builder.saveIP(); 2373 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2374 Builder.SetInsertPoint(&*NewIP); 2375 2376 // However, if we are vectorizing, we need to construct the vector values. 2377 // If the value is known to be uniform after vectorization, we can just 2378 // broadcast the scalar value corresponding to lane zero for each unroll 2379 // iteration. Otherwise, we construct the vector values using insertelement 2380 // instructions. Since the resulting vectors are stored in 2381 // VectorLoopValueMap, we will only generate the insertelements once. 2382 for (unsigned Part = 0; Part < UF; ++Part) { 2383 Value *VectorValue = nullptr; 2384 if (Legal->isUniformAfterVectorization(I)) { 2385 VectorValue = getBroadcastInstrs(getScalarValue(V, Part, 0)); 2386 } else { 2387 VectorValue = UndefValue::get(VectorType::get(V->getType(), VF)); 2388 for (unsigned Lane = 0; Lane < VF; ++Lane) 2389 VectorValue = Builder.CreateInsertElement( 2390 VectorValue, getScalarValue(V, Part, Lane), 2391 Builder.getInt32(Lane)); 2392 } 2393 Entry[Part] = VectorValue; 2394 } 2395 Builder.restoreIP(OldIP); 2396 return VectorLoopValueMap.initVector(V, Entry); 2397 } 2398 2399 // If this scalar is unknown, assume that it is a constant or that it is 2400 // loop invariant. Broadcast V and save the value for future uses. 2401 Value *B = getBroadcastInstrs(V); 2402 return VectorLoopValueMap.initVector(V, VectorParts(UF, B)); 2403 } 2404 2405 Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 2406 unsigned Lane) { 2407 2408 // If the value is not an instruction contained in the loop, it should 2409 // already be scalar. 2410 if (OrigLoop->isLoopInvariant(V)) 2411 return V; 2412 2413 assert(Lane > 0 ? !Legal->isUniformAfterVectorization(cast<Instruction>(V)) 2414 : true && "Uniform values only have lane zero"); 2415 2416 // If the value from the original loop has not been vectorized, it is 2417 // represented by UF x VF scalar values in the new loop. Return the requested 2418 // scalar value. 2419 if (VectorLoopValueMap.hasScalar(V)) 2420 return VectorLoopValueMap.ScalarMapStorage[V][Part][Lane]; 2421 2422 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2423 // for the given unroll part. If this entry is not a vector type (i.e., the 2424 // vectorization factor is one), there is no need to generate an 2425 // extractelement instruction. 2426 auto *U = getVectorValue(V)[Part]; 2427 if (!U->getType()->isVectorTy()) { 2428 assert(VF == 1 && "Value not scalarized has non-vector type"); 2429 return U; 2430 } 2431 2432 // Otherwise, the value from the original loop has been vectorized and is 2433 // represented by UF vector values. Extract and return the requested scalar 2434 // value from the appropriate vector lane. 2435 return Builder.CreateExtractElement(U, Builder.getInt32(Lane)); 2436 } 2437 2438 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2439 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2440 SmallVector<Constant *, 8> ShuffleMask; 2441 for (unsigned i = 0; i < VF; ++i) 2442 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2443 2444 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2445 ConstantVector::get(ShuffleMask), 2446 "reverse"); 2447 } 2448 2449 // Get a mask to interleave \p NumVec vectors into a wide vector. 2450 // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> 2451 // E.g. For 2 interleaved vectors, if VF is 4, the mask is: 2452 // <0, 4, 1, 5, 2, 6, 3, 7> 2453 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, 2454 unsigned NumVec) { 2455 SmallVector<Constant *, 16> Mask; 2456 for (unsigned i = 0; i < VF; i++) 2457 for (unsigned j = 0; j < NumVec; j++) 2458 Mask.push_back(Builder.getInt32(j * VF + i)); 2459 2460 return ConstantVector::get(Mask); 2461 } 2462 2463 // Get the strided mask starting from index \p Start. 2464 // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)> 2465 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, 2466 unsigned Stride, unsigned VF) { 2467 SmallVector<Constant *, 16> Mask; 2468 for (unsigned i = 0; i < VF; i++) 2469 Mask.push_back(Builder.getInt32(Start + i * Stride)); 2470 2471 return ConstantVector::get(Mask); 2472 } 2473 2474 // Get a mask of two parts: The first part consists of sequential integers 2475 // starting from 0, The second part consists of UNDEFs. 2476 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> 2477 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, 2478 unsigned NumUndef) { 2479 SmallVector<Constant *, 16> Mask; 2480 for (unsigned i = 0; i < NumInt; i++) 2481 Mask.push_back(Builder.getInt32(i)); 2482 2483 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 2484 for (unsigned i = 0; i < NumUndef; i++) 2485 Mask.push_back(Undef); 2486 2487 return ConstantVector::get(Mask); 2488 } 2489 2490 // Concatenate two vectors with the same element type. The 2nd vector should 2491 // not have more elements than the 1st vector. If the 2nd vector has less 2492 // elements, extend it with UNDEFs. 2493 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 2494 Value *V2) { 2495 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 2496 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 2497 assert(VecTy1 && VecTy2 && 2498 VecTy1->getScalarType() == VecTy2->getScalarType() && 2499 "Expect two vectors with the same element type"); 2500 2501 unsigned NumElts1 = VecTy1->getNumElements(); 2502 unsigned NumElts2 = VecTy2->getNumElements(); 2503 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 2504 2505 if (NumElts1 > NumElts2) { 2506 // Extend with UNDEFs. 2507 Constant *ExtMask = 2508 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); 2509 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 2510 } 2511 2512 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); 2513 return Builder.CreateShuffleVector(V1, V2, Mask); 2514 } 2515 2516 // Concatenate vectors in the given list. All vectors have the same type. 2517 static Value *ConcatenateVectors(IRBuilder<> &Builder, 2518 ArrayRef<Value *> InputList) { 2519 unsigned NumVec = InputList.size(); 2520 assert(NumVec > 1 && "Should be at least two vectors"); 2521 2522 SmallVector<Value *, 8> ResList; 2523 ResList.append(InputList.begin(), InputList.end()); 2524 do { 2525 SmallVector<Value *, 8> TmpList; 2526 for (unsigned i = 0; i < NumVec - 1; i += 2) { 2527 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 2528 assert((V0->getType() == V1->getType() || i == NumVec - 2) && 2529 "Only the last vector may have a different type"); 2530 2531 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); 2532 } 2533 2534 // Push the last vector if the total number of vectors is odd. 2535 if (NumVec % 2 != 0) 2536 TmpList.push_back(ResList[NumVec - 1]); 2537 2538 ResList = TmpList; 2539 NumVec = ResList.size(); 2540 } while (NumVec > 1); 2541 2542 return ResList[0]; 2543 } 2544 2545 // Try to vectorize the interleave group that \p Instr belongs to. 2546 // 2547 // E.g. Translate following interleaved load group (factor = 3): 2548 // for (i = 0; i < N; i+=3) { 2549 // R = Pic[i]; // Member of index 0 2550 // G = Pic[i+1]; // Member of index 1 2551 // B = Pic[i+2]; // Member of index 2 2552 // ... // do something to R, G, B 2553 // } 2554 // To: 2555 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2556 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2557 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2558 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2559 // 2560 // Or translate following interleaved store group (factor = 3): 2561 // for (i = 0; i < N; i+=3) { 2562 // ... do something to R, G, B 2563 // Pic[i] = R; // Member of index 0 2564 // Pic[i+1] = G; // Member of index 1 2565 // Pic[i+2] = B; // Member of index 2 2566 // } 2567 // To: 2568 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2569 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2570 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2571 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2572 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2573 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2574 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2575 assert(Group && "Fail to get an interleaved access group."); 2576 2577 // Skip if current instruction is not the insert position. 2578 if (Instr != Group->getInsertPos()) 2579 return; 2580 2581 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2582 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2583 Value *Ptr = getPointerOperand(Instr); 2584 2585 // Prepare for the vector type of the interleaved load/store. 2586 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2587 unsigned InterleaveFactor = Group->getFactor(); 2588 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2589 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); 2590 2591 // Prepare for the new pointers. 2592 setDebugLocFromInst(Builder, Ptr); 2593 SmallVector<Value *, 2> NewPtrs; 2594 unsigned Index = Group->getIndex(Instr); 2595 2596 // If the group is reverse, adjust the index to refer to the last vector lane 2597 // instead of the first. We adjust the index from the first vector lane, 2598 // rather than directly getting the pointer for lane VF - 1, because the 2599 // pointer operand of the interleaved access is supposed to be uniform. For 2600 // uniform instructions, we're only required to generate a value for the 2601 // first vector lane in each unroll iteration. 2602 if (Group->isReverse()) 2603 Index += (VF - 1) * Group->getFactor(); 2604 2605 for (unsigned Part = 0; Part < UF; Part++) { 2606 Value *NewPtr = getScalarValue(Ptr, Part, 0); 2607 2608 // Notice current instruction could be any index. Need to adjust the address 2609 // to the member of index 0. 2610 // 2611 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2612 // b = A[i]; // Member of index 0 2613 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2614 // 2615 // E.g. A[i+1] = a; // Member of index 1 2616 // A[i] = b; // Member of index 0 2617 // A[i+2] = c; // Member of index 2 (Current instruction) 2618 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2619 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2620 2621 // Cast to the vector pointer type. 2622 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2623 } 2624 2625 setDebugLocFromInst(Builder, Instr); 2626 Value *UndefVec = UndefValue::get(VecTy); 2627 2628 // Vectorize the interleaved load group. 2629 if (LI) { 2630 2631 // For each unroll part, create a wide load for the group. 2632 SmallVector<Value *, 2> NewLoads; 2633 for (unsigned Part = 0; Part < UF; Part++) { 2634 auto *NewLoad = Builder.CreateAlignedLoad( 2635 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2636 addMetadata(NewLoad, Instr); 2637 NewLoads.push_back(NewLoad); 2638 } 2639 2640 // For each member in the group, shuffle out the appropriate data from the 2641 // wide loads. 2642 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2643 Instruction *Member = Group->getMember(I); 2644 2645 // Skip the gaps in the group. 2646 if (!Member) 2647 continue; 2648 2649 VectorParts Entry(UF); 2650 Constant *StrideMask = getStridedMask(Builder, I, InterleaveFactor, VF); 2651 for (unsigned Part = 0; Part < UF; Part++) { 2652 Value *StridedVec = Builder.CreateShuffleVector( 2653 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2654 2655 // If this member has different type, cast the result type. 2656 if (Member->getType() != ScalarTy) { 2657 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2658 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2659 } 2660 2661 Entry[Part] = 2662 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2663 } 2664 VectorLoopValueMap.initVector(Member, Entry); 2665 } 2666 return; 2667 } 2668 2669 // The sub vector type for current instruction. 2670 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2671 2672 // Vectorize the interleaved store group. 2673 for (unsigned Part = 0; Part < UF; Part++) { 2674 // Collect the stored vector from each member. 2675 SmallVector<Value *, 4> StoredVecs; 2676 for (unsigned i = 0; i < InterleaveFactor; i++) { 2677 // Interleaved store group doesn't allow a gap, so each index has a member 2678 Instruction *Member = Group->getMember(i); 2679 assert(Member && "Fail to get a member from an interleaved store group"); 2680 2681 Value *StoredVec = 2682 getVectorValue(cast<StoreInst>(Member)->getValueOperand())[Part]; 2683 if (Group->isReverse()) 2684 StoredVec = reverseVector(StoredVec); 2685 2686 // If this member has different type, cast it to an unified type. 2687 if (StoredVec->getType() != SubVT) 2688 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2689 2690 StoredVecs.push_back(StoredVec); 2691 } 2692 2693 // Concatenate all vectors into a wide vector. 2694 Value *WideVec = ConcatenateVectors(Builder, StoredVecs); 2695 2696 // Interleave the elements in the wide vector. 2697 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); 2698 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2699 "interleaved.vec"); 2700 2701 Instruction *NewStoreInstr = 2702 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2703 addMetadata(NewStoreInstr, Instr); 2704 } 2705 } 2706 2707 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2708 // Attempt to issue a wide load. 2709 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2710 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2711 2712 assert((LI || SI) && "Invalid Load/Store instruction"); 2713 2714 // Try to vectorize the interleave group if this access is interleaved. 2715 if (Legal->isAccessInterleaved(Instr)) 2716 return vectorizeInterleaveGroup(Instr); 2717 2718 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2719 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2720 Value *Ptr = getPointerOperand(Instr); 2721 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 2722 // An alignment of 0 means target abi alignment. We need to use the scalar's 2723 // target abi alignment in such a case. 2724 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2725 if (!Alignment) 2726 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2727 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2728 2729 // Scalarize the memory instruction if necessary. 2730 if (Legal->memoryInstructionMustBeScalarized(Instr, VF)) 2731 return scalarizeInstruction(Instr, Legal->isPredicatedStore(Instr)); 2732 2733 // Determine if the pointer operand of the access is either consecutive or 2734 // reverse consecutive. 2735 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2736 bool Reverse = ConsecutiveStride < 0; 2737 2738 // Determine if either a gather or scatter operation is legal. 2739 bool CreateGatherScatter = 2740 !ConsecutiveStride && Legal->isLegalGatherOrScatter(Instr); 2741 2742 VectorParts VectorGep; 2743 2744 // Handle consecutive loads/stores. 2745 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2746 if (ConsecutiveStride) { 2747 if (Gep) { 2748 unsigned NumOperands = Gep->getNumOperands(); 2749 #ifndef NDEBUG 2750 // The original GEP that identified as a consecutive memory access 2751 // should have only one loop-variant operand. 2752 unsigned NumOfLoopVariantOps = 0; 2753 for (unsigned i = 0; i < NumOperands; ++i) 2754 if (!PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), 2755 OrigLoop)) 2756 NumOfLoopVariantOps++; 2757 assert(NumOfLoopVariantOps == 1 && 2758 "Consecutive GEP should have only one loop-variant operand"); 2759 #endif 2760 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2761 Gep2->setName("gep.indvar"); 2762 2763 // A new GEP is created for a 0-lane value of the first unroll iteration. 2764 // The GEPs for the rest of the unroll iterations are computed below as an 2765 // offset from this GEP. 2766 for (unsigned i = 0; i < NumOperands; ++i) 2767 // We can apply getScalarValue() for all GEP indices. It returns an 2768 // original value for loop-invariant operand and 0-lane for consecutive 2769 // operand. 2770 Gep2->setOperand(i, getScalarValue(Gep->getOperand(i), 2771 0, /* First unroll iteration */ 2772 0 /* 0-lane of the vector */ )); 2773 setDebugLocFromInst(Builder, Gep); 2774 Ptr = Builder.Insert(Gep2); 2775 2776 } else { // No GEP 2777 setDebugLocFromInst(Builder, Ptr); 2778 Ptr = getScalarValue(Ptr, 0, 0); 2779 } 2780 } else { 2781 // At this point we should vector version of GEP for Gather or Scatter 2782 assert(CreateGatherScatter && "The instruction should be scalarized"); 2783 if (Gep) { 2784 // Vectorizing GEP, across UF parts. We want to get a vector value for base 2785 // and each index that's defined inside the loop, even if it is 2786 // loop-invariant but wasn't hoisted out. Otherwise we want to keep them 2787 // scalar. 2788 SmallVector<VectorParts, 4> OpsV; 2789 for (Value *Op : Gep->operands()) { 2790 Instruction *SrcInst = dyn_cast<Instruction>(Op); 2791 if (SrcInst && OrigLoop->contains(SrcInst)) 2792 OpsV.push_back(getVectorValue(Op)); 2793 else 2794 OpsV.push_back(VectorParts(UF, Op)); 2795 } 2796 for (unsigned Part = 0; Part < UF; ++Part) { 2797 SmallVector<Value *, 4> Ops; 2798 Value *GEPBasePtr = OpsV[0][Part]; 2799 for (unsigned i = 1; i < Gep->getNumOperands(); i++) 2800 Ops.push_back(OpsV[i][Part]); 2801 Value *NewGep = Builder.CreateGEP(GEPBasePtr, Ops, "VectorGep"); 2802 cast<GetElementPtrInst>(NewGep)->setIsInBounds(Gep->isInBounds()); 2803 assert(NewGep->getType()->isVectorTy() && "Expected vector GEP"); 2804 2805 NewGep = 2806 Builder.CreateBitCast(NewGep, VectorType::get(Ptr->getType(), VF)); 2807 VectorGep.push_back(NewGep); 2808 } 2809 } else 2810 VectorGep = getVectorValue(Ptr); 2811 } 2812 2813 VectorParts Mask = createBlockInMask(Instr->getParent()); 2814 // Handle Stores: 2815 if (SI) { 2816 assert(!Legal->isUniform(SI->getPointerOperand()) && 2817 "We do not allow storing to uniform addresses"); 2818 setDebugLocFromInst(Builder, SI); 2819 // We don't want to update the value in the map as it might be used in 2820 // another expression. So don't use a reference type for "StoredVal". 2821 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2822 2823 for (unsigned Part = 0; Part < UF; ++Part) { 2824 Instruction *NewSI = nullptr; 2825 if (CreateGatherScatter) { 2826 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 2827 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], 2828 Alignment, MaskPart); 2829 } else { 2830 // Calculate the pointer for the specific unroll-part. 2831 Value *PartPtr = 2832 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2833 2834 if (Reverse) { 2835 // If we store to reverse consecutive memory locations, then we need 2836 // to reverse the order of elements in the stored value. 2837 StoredVal[Part] = reverseVector(StoredVal[Part]); 2838 // If the address is consecutive but reversed, then the 2839 // wide store needs to start at the last vector element. 2840 PartPtr = 2841 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2842 PartPtr = 2843 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2844 Mask[Part] = reverseVector(Mask[Part]); 2845 } 2846 2847 Value *VecPtr = 2848 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2849 2850 if (Legal->isMaskRequired(SI)) 2851 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 2852 Mask[Part]); 2853 else 2854 NewSI = 2855 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 2856 } 2857 addMetadata(NewSI, SI); 2858 } 2859 return; 2860 } 2861 2862 // Handle loads. 2863 assert(LI && "Must have a load instruction"); 2864 setDebugLocFromInst(Builder, LI); 2865 VectorParts Entry(UF); 2866 for (unsigned Part = 0; Part < UF; ++Part) { 2867 Instruction *NewLI; 2868 if (CreateGatherScatter) { 2869 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 2870 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart, 2871 0, "wide.masked.gather"); 2872 Entry[Part] = NewLI; 2873 } else { 2874 // Calculate the pointer for the specific unroll-part. 2875 Value *PartPtr = 2876 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2877 2878 if (Reverse) { 2879 // If the address is consecutive but reversed, then the 2880 // wide load needs to start at the last vector element. 2881 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2882 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2883 Mask[Part] = reverseVector(Mask[Part]); 2884 } 2885 2886 Value *VecPtr = 2887 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2888 if (Legal->isMaskRequired(LI)) 2889 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2890 UndefValue::get(DataTy), 2891 "wide.masked.load"); 2892 else 2893 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2894 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 2895 } 2896 addMetadata(NewLI, LI); 2897 } 2898 VectorLoopValueMap.initVector(Instr, Entry); 2899 } 2900 2901 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2902 bool IfPredicateInstr) { 2903 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2904 DEBUG(dbgs() << "LV: Scalarizing" 2905 << (IfPredicateInstr ? " and predicating:" : ":") << *Instr 2906 << '\n'); 2907 // Holds vector parameters or scalars, in case of uniform vals. 2908 SmallVector<VectorParts, 4> Params; 2909 2910 setDebugLocFromInst(Builder, Instr); 2911 2912 // Does this instruction return a value ? 2913 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2914 2915 // Initialize a new scalar map entry. 2916 ScalarParts Entry(UF); 2917 2918 VectorParts Cond; 2919 if (IfPredicateInstr) 2920 Cond = createBlockInMask(Instr->getParent()); 2921 2922 // Determine the number of scalars we need to generate for each unroll 2923 // iteration. If the instruction is uniform, we only need to generate the 2924 // first lane. Otherwise, we generate all VF values. 2925 unsigned Lanes = Legal->isUniformAfterVectorization(Instr) ? 1 : VF; 2926 2927 // For each vector unroll 'part': 2928 for (unsigned Part = 0; Part < UF; ++Part) { 2929 Entry[Part].resize(VF); 2930 // For each scalar that we create: 2931 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2932 2933 // Start if-block. 2934 Value *Cmp = nullptr; 2935 if (IfPredicateInstr) { 2936 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Lane)); 2937 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 2938 ConstantInt::get(Cmp->getType(), 1)); 2939 } 2940 2941 Instruction *Cloned = Instr->clone(); 2942 if (!IsVoidRetTy) 2943 Cloned->setName(Instr->getName() + ".cloned"); 2944 2945 // Replace the operands of the cloned instructions with their scalar 2946 // equivalents in the new loop. 2947 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2948 auto *NewOp = getScalarValue(Instr->getOperand(op), Part, Lane); 2949 Cloned->setOperand(op, NewOp); 2950 } 2951 addNewMetadata(Cloned, Instr); 2952 2953 // Place the cloned scalar in the new loop. 2954 Builder.Insert(Cloned); 2955 2956 // Add the cloned scalar to the scalar map entry. 2957 Entry[Part][Lane] = Cloned; 2958 2959 // If we just cloned a new assumption, add it the assumption cache. 2960 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2961 if (II->getIntrinsicID() == Intrinsic::assume) 2962 AC->registerAssumption(II); 2963 2964 // End if-block. 2965 if (IfPredicateInstr) 2966 PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp)); 2967 } 2968 } 2969 VectorLoopValueMap.initScalar(Instr, Entry); 2970 } 2971 2972 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2973 Value *End, Value *Step, 2974 Instruction *DL) { 2975 BasicBlock *Header = L->getHeader(); 2976 BasicBlock *Latch = L->getLoopLatch(); 2977 // As we're just creating this loop, it's possible no latch exists 2978 // yet. If so, use the header as this will be a single block loop. 2979 if (!Latch) 2980 Latch = Header; 2981 2982 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2983 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2984 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2985 2986 Builder.SetInsertPoint(Latch->getTerminator()); 2987 2988 // Create i+1 and fill the PHINode. 2989 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2990 Induction->addIncoming(Start, L->getLoopPreheader()); 2991 Induction->addIncoming(Next, Latch); 2992 // Create the compare. 2993 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2994 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2995 2996 // Now we have two terminators. Remove the old one from the block. 2997 Latch->getTerminator()->eraseFromParent(); 2998 2999 return Induction; 3000 } 3001 3002 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3003 if (TripCount) 3004 return TripCount; 3005 3006 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3007 // Find the loop boundaries. 3008 ScalarEvolution *SE = PSE.getSE(); 3009 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3010 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3011 "Invalid loop count"); 3012 3013 Type *IdxTy = Legal->getWidestInductionType(); 3014 3015 // The exit count might have the type of i64 while the phi is i32. This can 3016 // happen if we have an induction variable that is sign extended before the 3017 // compare. The only way that we get a backedge taken count is that the 3018 // induction variable was signed and as such will not overflow. In such a case 3019 // truncation is legal. 3020 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3021 IdxTy->getPrimitiveSizeInBits()) 3022 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3023 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3024 3025 // Get the total trip count from the count by adding 1. 3026 const SCEV *ExitCount = SE->getAddExpr( 3027 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3028 3029 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3030 3031 // Expand the trip count and place the new instructions in the preheader. 3032 // Notice that the pre-header does not change, only the loop body. 3033 SCEVExpander Exp(*SE, DL, "induction"); 3034 3035 // Count holds the overall loop count (N). 3036 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3037 L->getLoopPreheader()->getTerminator()); 3038 3039 if (TripCount->getType()->isPointerTy()) 3040 TripCount = 3041 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3042 L->getLoopPreheader()->getTerminator()); 3043 3044 return TripCount; 3045 } 3046 3047 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3048 if (VectorTripCount) 3049 return VectorTripCount; 3050 3051 Value *TC = getOrCreateTripCount(L); 3052 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3053 3054 // Now we need to generate the expression for the part of the loop that the 3055 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3056 // iterations are not required for correctness, or N - Step, otherwise. Step 3057 // is equal to the vectorization factor (number of SIMD elements) times the 3058 // unroll factor (number of SIMD instructions). 3059 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3060 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3061 3062 // If there is a non-reversed interleaved group that may speculatively access 3063 // memory out-of-bounds, we need to ensure that there will be at least one 3064 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3065 // the trip count, we set the remainder to be equal to the step. If the step 3066 // does not evenly divide the trip count, no adjustment is necessary since 3067 // there will already be scalar iterations. Note that the minimum iterations 3068 // check ensures that N >= Step. 3069 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3070 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3071 R = Builder.CreateSelect(IsZero, Step, R); 3072 } 3073 3074 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3075 3076 return VectorTripCount; 3077 } 3078 3079 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3080 BasicBlock *Bypass) { 3081 Value *Count = getOrCreateTripCount(L); 3082 BasicBlock *BB = L->getLoopPreheader(); 3083 IRBuilder<> Builder(BB->getTerminator()); 3084 3085 // Generate code to check that the loop's trip count that we computed by 3086 // adding one to the backedge-taken count will not overflow. 3087 Value *CheckMinIters = Builder.CreateICmpULT( 3088 Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3089 3090 BasicBlock *NewBB = 3091 BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked"); 3092 // Update dominator tree immediately if the generated block is a 3093 // LoopBypassBlock because SCEV expansions to generate loop bypass 3094 // checks may query it before the current function is finished. 3095 DT->addNewBlock(NewBB, BB); 3096 if (L->getParentLoop()) 3097 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3098 ReplaceInstWithInst(BB->getTerminator(), 3099 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3100 LoopBypassBlocks.push_back(BB); 3101 } 3102 3103 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 3104 BasicBlock *Bypass) { 3105 Value *TC = getOrCreateVectorTripCount(L); 3106 BasicBlock *BB = L->getLoopPreheader(); 3107 IRBuilder<> Builder(BB->getTerminator()); 3108 3109 // Now, compare the new count to zero. If it is zero skip the vector loop and 3110 // jump to the scalar loop. 3111 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 3112 "cmp.zero"); 3113 3114 // Generate code to check that the loop's trip count that we computed by 3115 // adding one to the backedge-taken count will not overflow. 3116 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3117 // Update dominator tree immediately if the generated block is a 3118 // LoopBypassBlock because SCEV expansions to generate loop bypass 3119 // checks may query it before the current function is finished. 3120 DT->addNewBlock(NewBB, BB); 3121 if (L->getParentLoop()) 3122 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3123 ReplaceInstWithInst(BB->getTerminator(), 3124 BranchInst::Create(Bypass, NewBB, Cmp)); 3125 LoopBypassBlocks.push_back(BB); 3126 } 3127 3128 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3129 BasicBlock *BB = L->getLoopPreheader(); 3130 3131 // Generate the code to check that the SCEV assumptions that we made. 3132 // We want the new basic block to start at the first instruction in a 3133 // sequence of instructions that form a check. 3134 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3135 "scev.check"); 3136 Value *SCEVCheck = 3137 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3138 3139 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3140 if (C->isZero()) 3141 return; 3142 3143 // Create a new block containing the stride check. 3144 BB->setName("vector.scevcheck"); 3145 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3146 // Update dominator tree immediately if the generated block is a 3147 // LoopBypassBlock because SCEV expansions to generate loop bypass 3148 // checks may query it before the current function is finished. 3149 DT->addNewBlock(NewBB, BB); 3150 if (L->getParentLoop()) 3151 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3152 ReplaceInstWithInst(BB->getTerminator(), 3153 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3154 LoopBypassBlocks.push_back(BB); 3155 AddedSafetyChecks = true; 3156 } 3157 3158 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3159 BasicBlock *BB = L->getLoopPreheader(); 3160 3161 // Generate the code that checks in runtime if arrays overlap. We put the 3162 // checks into a separate block to make the more common case of few elements 3163 // faster. 3164 Instruction *FirstCheckInst; 3165 Instruction *MemRuntimeCheck; 3166 std::tie(FirstCheckInst, MemRuntimeCheck) = 3167 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3168 if (!MemRuntimeCheck) 3169 return; 3170 3171 // Create a new block containing the memory check. 3172 BB->setName("vector.memcheck"); 3173 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3174 // Update dominator tree immediately if the generated block is a 3175 // LoopBypassBlock because SCEV expansions to generate loop bypass 3176 // checks may query it before the current function is finished. 3177 DT->addNewBlock(NewBB, BB); 3178 if (L->getParentLoop()) 3179 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3180 ReplaceInstWithInst(BB->getTerminator(), 3181 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3182 LoopBypassBlocks.push_back(BB); 3183 AddedSafetyChecks = true; 3184 3185 // We currently don't use LoopVersioning for the actual loop cloning but we 3186 // still use it to add the noalias metadata. 3187 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3188 PSE.getSE()); 3189 LVer->prepareNoAliasMetadata(); 3190 } 3191 3192 void InnerLoopVectorizer::createEmptyLoop() { 3193 /* 3194 In this function we generate a new loop. The new loop will contain 3195 the vectorized instructions while the old loop will continue to run the 3196 scalar remainder. 3197 3198 [ ] <-- loop iteration number check. 3199 / | 3200 / v 3201 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3202 | / | 3203 | / v 3204 || [ ] <-- vector pre header. 3205 |/ | 3206 | v 3207 | [ ] \ 3208 | [ ]_| <-- vector loop. 3209 | | 3210 | v 3211 | -[ ] <--- middle-block. 3212 | / | 3213 | / v 3214 -|- >[ ] <--- new preheader. 3215 | | 3216 | v 3217 | [ ] \ 3218 | [ ]_| <-- old scalar loop to handle remainder. 3219 \ | 3220 \ v 3221 >[ ] <-- exit block. 3222 ... 3223 */ 3224 3225 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3226 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3227 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3228 assert(VectorPH && "Invalid loop structure"); 3229 assert(ExitBlock && "Must have an exit block"); 3230 3231 // Some loops have a single integer induction variable, while other loops 3232 // don't. One example is c++ iterators that often have multiple pointer 3233 // induction variables. In the code below we also support a case where we 3234 // don't have a single induction variable. 3235 // 3236 // We try to obtain an induction variable from the original loop as hard 3237 // as possible. However if we don't find one that: 3238 // - is an integer 3239 // - counts from zero, stepping by one 3240 // - is the size of the widest induction variable type 3241 // then we create a new one. 3242 OldInduction = Legal->getInduction(); 3243 Type *IdxTy = Legal->getWidestInductionType(); 3244 3245 // Split the single block loop into the two loop structure described above. 3246 BasicBlock *VecBody = 3247 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3248 BasicBlock *MiddleBlock = 3249 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3250 BasicBlock *ScalarPH = 3251 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3252 3253 // Create and register the new vector loop. 3254 Loop *Lp = new Loop(); 3255 Loop *ParentLoop = OrigLoop->getParentLoop(); 3256 3257 // Insert the new loop into the loop nest and register the new basic blocks 3258 // before calling any utilities such as SCEV that require valid LoopInfo. 3259 if (ParentLoop) { 3260 ParentLoop->addChildLoop(Lp); 3261 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3262 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3263 } else { 3264 LI->addTopLevelLoop(Lp); 3265 } 3266 Lp->addBasicBlockToLoop(VecBody, *LI); 3267 3268 // Find the loop boundaries. 3269 Value *Count = getOrCreateTripCount(Lp); 3270 3271 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3272 3273 // We need to test whether the backedge-taken count is uint##_max. Adding one 3274 // to it will cause overflow and an incorrect loop trip count in the vector 3275 // body. In case of overflow we want to directly jump to the scalar remainder 3276 // loop. 3277 emitMinimumIterationCountCheck(Lp, ScalarPH); 3278 // Now, compare the new count to zero. If it is zero skip the vector loop and 3279 // jump to the scalar loop. 3280 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3281 // Generate the code to check any assumptions that we've made for SCEV 3282 // expressions. 3283 emitSCEVChecks(Lp, ScalarPH); 3284 3285 // Generate the code that checks in runtime if arrays overlap. We put the 3286 // checks into a separate block to make the more common case of few elements 3287 // faster. 3288 emitMemRuntimeChecks(Lp, ScalarPH); 3289 3290 // Generate the induction variable. 3291 // The loop step is equal to the vectorization factor (num of SIMD elements) 3292 // times the unroll factor (num of SIMD instructions). 3293 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3294 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3295 Induction = 3296 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3297 getDebugLocFromInstOrOperands(OldInduction)); 3298 3299 // We are going to resume the execution of the scalar loop. 3300 // Go over all of the induction variables that we found and fix the 3301 // PHIs that are left in the scalar version of the loop. 3302 // The starting values of PHI nodes depend on the counter of the last 3303 // iteration in the vectorized loop. 3304 // If we come from a bypass edge then we need to start from the original 3305 // start value. 3306 3307 // This variable saves the new starting index for the scalar loop. It is used 3308 // to test if there are any tail iterations left once the vector loop has 3309 // completed. 3310 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3311 for (auto &InductionEntry : *List) { 3312 PHINode *OrigPhi = InductionEntry.first; 3313 InductionDescriptor II = InductionEntry.second; 3314 3315 // Create phi nodes to merge from the backedge-taken check block. 3316 PHINode *BCResumeVal = PHINode::Create( 3317 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3318 Value *EndValue; 3319 if (OrigPhi == OldInduction) { 3320 // We know what the end value is. 3321 EndValue = CountRoundDown; 3322 } else { 3323 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3324 Type *StepType = II.getStep()->getType(); 3325 Instruction::CastOps CastOp = 3326 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3327 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3328 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3329 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3330 EndValue->setName("ind.end"); 3331 } 3332 3333 // The new PHI merges the original incoming value, in case of a bypass, 3334 // or the value at the end of the vectorized loop. 3335 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3336 3337 // Fix up external users of the induction variable. 3338 fixupIVUsers(OrigPhi, II, CountRoundDown, EndValue, MiddleBlock); 3339 3340 // Fix the scalar body counter (PHI node). 3341 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3342 3343 // The old induction's phi node in the scalar body needs the truncated 3344 // value. 3345 for (BasicBlock *BB : LoopBypassBlocks) 3346 BCResumeVal->addIncoming(II.getStartValue(), BB); 3347 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3348 } 3349 3350 // Add a check in the middle block to see if we have completed 3351 // all of the iterations in the first vector loop. 3352 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3353 Value *CmpN = 3354 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3355 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3356 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3357 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3358 3359 // Get ready to start creating new instructions into the vectorized body. 3360 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3361 3362 // Save the state. 3363 LoopVectorPreHeader = Lp->getLoopPreheader(); 3364 LoopScalarPreHeader = ScalarPH; 3365 LoopMiddleBlock = MiddleBlock; 3366 LoopExitBlock = ExitBlock; 3367 LoopVectorBody = VecBody; 3368 LoopScalarBody = OldBasicBlock; 3369 3370 // Keep all loop hints from the original loop on the vector loop (we'll 3371 // replace the vectorizer-specific hints below). 3372 if (MDNode *LID = OrigLoop->getLoopID()) 3373 Lp->setLoopID(LID); 3374 3375 LoopVectorizeHints Hints(Lp, true, *ORE); 3376 Hints.setAlreadyVectorized(); 3377 } 3378 3379 // Fix up external users of the induction variable. At this point, we are 3380 // in LCSSA form, with all external PHIs that use the IV having one input value, 3381 // coming from the remainder loop. We need those PHIs to also have a correct 3382 // value for the IV when arriving directly from the middle block. 3383 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3384 const InductionDescriptor &II, 3385 Value *CountRoundDown, Value *EndValue, 3386 BasicBlock *MiddleBlock) { 3387 // There are two kinds of external IV usages - those that use the value 3388 // computed in the last iteration (the PHI) and those that use the penultimate 3389 // value (the value that feeds into the phi from the loop latch). 3390 // We allow both, but they, obviously, have different values. 3391 3392 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3393 3394 DenseMap<Value *, Value *> MissingVals; 3395 3396 // An external user of the last iteration's value should see the value that 3397 // the remainder loop uses to initialize its own IV. 3398 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3399 for (User *U : PostInc->users()) { 3400 Instruction *UI = cast<Instruction>(U); 3401 if (!OrigLoop->contains(UI)) { 3402 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3403 MissingVals[UI] = EndValue; 3404 } 3405 } 3406 3407 // An external user of the penultimate value need to see EndValue - Step. 3408 // The simplest way to get this is to recompute it from the constituent SCEVs, 3409 // that is Start + (Step * (CRD - 1)). 3410 for (User *U : OrigPhi->users()) { 3411 auto *UI = cast<Instruction>(U); 3412 if (!OrigLoop->contains(UI)) { 3413 const DataLayout &DL = 3414 OrigLoop->getHeader()->getModule()->getDataLayout(); 3415 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3416 3417 IRBuilder<> B(MiddleBlock->getTerminator()); 3418 Value *CountMinusOne = B.CreateSub( 3419 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3420 Value *CMO = B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType(), 3421 "cast.cmo"); 3422 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3423 Escape->setName("ind.escape"); 3424 MissingVals[UI] = Escape; 3425 } 3426 } 3427 3428 for (auto &I : MissingVals) { 3429 PHINode *PHI = cast<PHINode>(I.first); 3430 // One corner case we have to handle is two IVs "chasing" each-other, 3431 // that is %IV2 = phi [...], [ %IV1, %latch ] 3432 // In this case, if IV1 has an external use, we need to avoid adding both 3433 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3434 // don't already have an incoming value for the middle block. 3435 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3436 PHI->addIncoming(I.second, MiddleBlock); 3437 } 3438 } 3439 3440 namespace { 3441 struct CSEDenseMapInfo { 3442 static bool canHandle(Instruction *I) { 3443 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3444 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3445 } 3446 static inline Instruction *getEmptyKey() { 3447 return DenseMapInfo<Instruction *>::getEmptyKey(); 3448 } 3449 static inline Instruction *getTombstoneKey() { 3450 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3451 } 3452 static unsigned getHashValue(Instruction *I) { 3453 assert(canHandle(I) && "Unknown instruction!"); 3454 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3455 I->value_op_end())); 3456 } 3457 static bool isEqual(Instruction *LHS, Instruction *RHS) { 3458 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3459 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3460 return LHS == RHS; 3461 return LHS->isIdenticalTo(RHS); 3462 } 3463 }; 3464 } 3465 3466 ///\brief Perform cse of induction variable instructions. 3467 static void cse(BasicBlock *BB) { 3468 // Perform simple cse. 3469 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3470 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3471 Instruction *In = &*I++; 3472 3473 if (!CSEDenseMapInfo::canHandle(In)) 3474 continue; 3475 3476 // Check if we can replace this instruction with any of the 3477 // visited instructions. 3478 if (Instruction *V = CSEMap.lookup(In)) { 3479 In->replaceAllUsesWith(V); 3480 In->eraseFromParent(); 3481 continue; 3482 } 3483 3484 CSEMap[In] = In; 3485 } 3486 } 3487 3488 /// \brief Adds a 'fast' flag to floating point operations. 3489 static Value *addFastMathFlag(Value *V) { 3490 if (isa<FPMathOperator>(V)) { 3491 FastMathFlags Flags; 3492 Flags.setUnsafeAlgebra(); 3493 cast<Instruction>(V)->setFastMathFlags(Flags); 3494 } 3495 return V; 3496 } 3497 3498 /// \brief Estimate the overhead of scalarizing a value based on its type. 3499 /// Insert and Extract are set if the result needs to be inserted and/or 3500 /// extracted from vectors. 3501 /// If the instruction is also to be predicated, add the cost of a PHI 3502 /// node to the insertion cost. 3503 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, 3504 bool Predicated, 3505 const TargetTransformInfo &TTI) { 3506 if (Ty->isVoidTy()) 3507 return 0; 3508 3509 assert(Ty->isVectorTy() && "Can only scalarize vectors"); 3510 unsigned Cost = 0; 3511 3512 for (unsigned I = 0, E = Ty->getVectorNumElements(); I < E; ++I) { 3513 if (Extract) 3514 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, I); 3515 if (Insert) { 3516 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, I); 3517 if (Predicated) 3518 Cost += TTI.getCFInstrCost(Instruction::PHI); 3519 } 3520 } 3521 3522 // We assume that if-converted blocks have a 50% chance of being executed. 3523 // Predicated scalarized instructions are avoided due to the CF that bypasses 3524 // turned off lanes. The extracts and inserts will be sinked/hoisted to the 3525 // predicated basic-block and are subjected to the same assumption. 3526 if (Predicated) 3527 Cost /= 2; 3528 3529 return Cost; 3530 } 3531 3532 /// \brief Estimate the overhead of scalarizing an Instruction based on the 3533 /// types of its operands and return value. 3534 static unsigned getScalarizationOverhead(SmallVectorImpl<Type *> &OpTys, 3535 Type *RetTy, bool Predicated, 3536 const TargetTransformInfo &TTI) { 3537 unsigned ScalarizationCost = 3538 getScalarizationOverhead(RetTy, true, false, Predicated, TTI); 3539 3540 for (Type *Ty : OpTys) 3541 ScalarizationCost += 3542 getScalarizationOverhead(Ty, false, true, Predicated, TTI); 3543 3544 return ScalarizationCost; 3545 } 3546 3547 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3548 /// convenience wrapper for the type-based getScalarizationOverhead API. 3549 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3550 bool Predicated, 3551 const TargetTransformInfo &TTI) { 3552 if (VF == 1) 3553 return 0; 3554 3555 Type *RetTy = ToVectorTy(I->getType(), VF); 3556 3557 SmallVector<Type *, 4> OpTys; 3558 unsigned OperandsNum = I->getNumOperands(); 3559 for (unsigned OpInd = 0; OpInd < OperandsNum; ++OpInd) 3560 OpTys.push_back(ToVectorTy(I->getOperand(OpInd)->getType(), VF)); 3561 3562 return getScalarizationOverhead(OpTys, RetTy, Predicated, TTI); 3563 } 3564 3565 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3566 // Return the cost of the instruction, including scalarization overhead if it's 3567 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3568 // i.e. either vector version isn't available, or is too expensive. 3569 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3570 const TargetTransformInfo &TTI, 3571 const TargetLibraryInfo *TLI, 3572 bool &NeedToScalarize) { 3573 Function *F = CI->getCalledFunction(); 3574 StringRef FnName = CI->getCalledFunction()->getName(); 3575 Type *ScalarRetTy = CI->getType(); 3576 SmallVector<Type *, 4> Tys, ScalarTys; 3577 for (auto &ArgOp : CI->arg_operands()) 3578 ScalarTys.push_back(ArgOp->getType()); 3579 3580 // Estimate cost of scalarized vector call. The source operands are assumed 3581 // to be vectors, so we need to extract individual elements from there, 3582 // execute VF scalar calls, and then gather the result into the vector return 3583 // value. 3584 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3585 if (VF == 1) 3586 return ScalarCallCost; 3587 3588 // Compute corresponding vector type for return value and arguments. 3589 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3590 for (Type *ScalarTy : ScalarTys) 3591 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3592 3593 // Compute costs of unpacking argument values for the scalar calls and 3594 // packing the return values to a vector. 3595 unsigned ScalarizationCost = getScalarizationOverhead(Tys, RetTy, false, TTI); 3596 3597 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3598 3599 // If we can't emit a vector call for this function, then the currently found 3600 // cost is the cost we need to return. 3601 NeedToScalarize = true; 3602 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3603 return Cost; 3604 3605 // If the corresponding vector cost is cheaper, return its cost. 3606 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3607 if (VectorCallCost < Cost) { 3608 NeedToScalarize = false; 3609 return VectorCallCost; 3610 } 3611 return Cost; 3612 } 3613 3614 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3615 // factor VF. Return the cost of the instruction, including scalarization 3616 // overhead if it's needed. 3617 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3618 const TargetTransformInfo &TTI, 3619 const TargetLibraryInfo *TLI) { 3620 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3621 assert(ID && "Expected intrinsic call!"); 3622 3623 Type *RetTy = ToVectorTy(CI->getType(), VF); 3624 SmallVector<Type *, 4> Tys; 3625 for (Value *ArgOperand : CI->arg_operands()) 3626 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 3627 3628 FastMathFlags FMF; 3629 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3630 FMF = FPMO->getFastMathFlags(); 3631 3632 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys, FMF); 3633 } 3634 3635 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3636 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3637 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3638 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3639 } 3640 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3641 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3642 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3643 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3644 } 3645 3646 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3647 // For every instruction `I` in MinBWs, truncate the operands, create a 3648 // truncated version of `I` and reextend its result. InstCombine runs 3649 // later and will remove any ext/trunc pairs. 3650 // 3651 SmallPtrSet<Value *, 4> Erased; 3652 for (const auto &KV : *MinBWs) { 3653 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3654 for (Value *&I : Parts) { 3655 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3656 continue; 3657 Type *OriginalTy = I->getType(); 3658 Type *ScalarTruncatedTy = 3659 IntegerType::get(OriginalTy->getContext(), KV.second); 3660 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3661 OriginalTy->getVectorNumElements()); 3662 if (TruncatedTy == OriginalTy) 3663 continue; 3664 3665 IRBuilder<> B(cast<Instruction>(I)); 3666 auto ShrinkOperand = [&](Value *V) -> Value * { 3667 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3668 if (ZI->getSrcTy() == TruncatedTy) 3669 return ZI->getOperand(0); 3670 return B.CreateZExtOrTrunc(V, TruncatedTy); 3671 }; 3672 3673 // The actual instruction modification depends on the instruction type, 3674 // unfortunately. 3675 Value *NewI = nullptr; 3676 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3677 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3678 ShrinkOperand(BO->getOperand(1))); 3679 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3680 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3681 NewI = 3682 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3683 ShrinkOperand(CI->getOperand(1))); 3684 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3685 NewI = B.CreateSelect(SI->getCondition(), 3686 ShrinkOperand(SI->getTrueValue()), 3687 ShrinkOperand(SI->getFalseValue())); 3688 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3689 switch (CI->getOpcode()) { 3690 default: 3691 llvm_unreachable("Unhandled cast!"); 3692 case Instruction::Trunc: 3693 NewI = ShrinkOperand(CI->getOperand(0)); 3694 break; 3695 case Instruction::SExt: 3696 NewI = B.CreateSExtOrTrunc( 3697 CI->getOperand(0), 3698 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3699 break; 3700 case Instruction::ZExt: 3701 NewI = B.CreateZExtOrTrunc( 3702 CI->getOperand(0), 3703 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3704 break; 3705 } 3706 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3707 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3708 auto *O0 = B.CreateZExtOrTrunc( 3709 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3710 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3711 auto *O1 = B.CreateZExtOrTrunc( 3712 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3713 3714 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3715 } else if (isa<LoadInst>(I)) { 3716 // Don't do anything with the operands, just extend the result. 3717 continue; 3718 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3719 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3720 auto *O0 = B.CreateZExtOrTrunc( 3721 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3722 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3723 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3724 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3725 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3726 auto *O0 = B.CreateZExtOrTrunc( 3727 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3728 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3729 } else { 3730 llvm_unreachable("Unhandled instruction type!"); 3731 } 3732 3733 // Lastly, extend the result. 3734 NewI->takeName(cast<Instruction>(I)); 3735 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3736 I->replaceAllUsesWith(Res); 3737 cast<Instruction>(I)->eraseFromParent(); 3738 Erased.insert(I); 3739 I = Res; 3740 } 3741 } 3742 3743 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3744 for (const auto &KV : *MinBWs) { 3745 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3746 for (Value *&I : Parts) { 3747 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3748 if (Inst && Inst->use_empty()) { 3749 Value *NewI = Inst->getOperand(0); 3750 Inst->eraseFromParent(); 3751 I = NewI; 3752 } 3753 } 3754 } 3755 } 3756 3757 void InnerLoopVectorizer::vectorizeLoop() { 3758 //===------------------------------------------------===// 3759 // 3760 // Notice: any optimization or new instruction that go 3761 // into the code below should be also be implemented in 3762 // the cost-model. 3763 // 3764 //===------------------------------------------------===// 3765 Constant *Zero = Builder.getInt32(0); 3766 3767 // In order to support recurrences we need to be able to vectorize Phi nodes. 3768 // Phi nodes have cycles, so we need to vectorize them in two stages. First, 3769 // we create a new vector PHI node with no incoming edges. We use this value 3770 // when we vectorize all of the instructions that use the PHI. Next, after 3771 // all of the instructions in the block are complete we add the new incoming 3772 // edges to the PHI. At this point all of the instructions in the basic block 3773 // are vectorized, so we can use them to construct the PHI. 3774 PhiVector PHIsToFix; 3775 3776 // Scan the loop in a topological order to ensure that defs are vectorized 3777 // before users. 3778 LoopBlocksDFS DFS(OrigLoop); 3779 DFS.perform(LI); 3780 3781 // Vectorize all of the blocks in the original loop. 3782 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 3783 vectorizeBlockInLoop(BB, &PHIsToFix); 3784 3785 // Insert truncates and extends for any truncated instructions as hints to 3786 // InstCombine. 3787 if (VF > 1) 3788 truncateToMinimalBitwidths(); 3789 3790 // At this point every instruction in the original loop is widened to a 3791 // vector form. Now we need to fix the recurrences in PHIsToFix. These PHI 3792 // nodes are currently empty because we did not want to introduce cycles. 3793 // This is the second stage of vectorizing recurrences. 3794 for (PHINode *Phi : PHIsToFix) { 3795 assert(Phi && "Unable to recover vectorized PHI"); 3796 3797 // Handle first-order recurrences that need to be fixed. 3798 if (Legal->isFirstOrderRecurrence(Phi)) { 3799 fixFirstOrderRecurrence(Phi); 3800 continue; 3801 } 3802 3803 // If the phi node is not a first-order recurrence, it must be a reduction. 3804 // Get it's reduction variable descriptor. 3805 assert(Legal->isReductionVariable(Phi) && 3806 "Unable to find the reduction variable"); 3807 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3808 3809 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3810 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3811 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3812 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3813 RdxDesc.getMinMaxRecurrenceKind(); 3814 setDebugLocFromInst(Builder, ReductionStartValue); 3815 3816 // We need to generate a reduction vector from the incoming scalar. 3817 // To do so, we need to generate the 'identity' vector and override 3818 // one of the elements with the incoming scalar reduction. We need 3819 // to do it in the vector-loop preheader. 3820 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 3821 3822 // This is the vector-clone of the value that leaves the loop. 3823 const VectorParts &VectorExit = getVectorValue(LoopExitInst); 3824 Type *VecTy = VectorExit[0]->getType(); 3825 3826 // Find the reduction identity variable. Zero for addition, or, xor, 3827 // one for multiplication, -1 for And. 3828 Value *Identity; 3829 Value *VectorStart; 3830 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3831 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3832 // MinMax reduction have the start value as their identify. 3833 if (VF == 1) { 3834 VectorStart = Identity = ReductionStartValue; 3835 } else { 3836 VectorStart = Identity = 3837 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3838 } 3839 } else { 3840 // Handle other reduction kinds: 3841 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3842 RK, VecTy->getScalarType()); 3843 if (VF == 1) { 3844 Identity = Iden; 3845 // This vector is the Identity vector where the first element is the 3846 // incoming scalar reduction. 3847 VectorStart = ReductionStartValue; 3848 } else { 3849 Identity = ConstantVector::getSplat(VF, Iden); 3850 3851 // This vector is the Identity vector where the first element is the 3852 // incoming scalar reduction. 3853 VectorStart = 3854 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3855 } 3856 } 3857 3858 // Fix the vector-loop phi. 3859 3860 // Reductions do not have to start at zero. They can start with 3861 // any loop invariant values. 3862 const VectorParts &VecRdxPhi = getVectorValue(Phi); 3863 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3864 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3865 const VectorParts &Val = getVectorValue(LoopVal); 3866 for (unsigned part = 0; part < UF; ++part) { 3867 // Make sure to add the reduction stat value only to the 3868 // first unroll part. 3869 Value *StartVal = (part == 0) ? VectorStart : Identity; 3870 cast<PHINode>(VecRdxPhi[part]) 3871 ->addIncoming(StartVal, LoopVectorPreHeader); 3872 cast<PHINode>(VecRdxPhi[part]) 3873 ->addIncoming(Val[part], LoopVectorBody); 3874 } 3875 3876 // Before each round, move the insertion point right between 3877 // the PHIs and the values we are going to write. 3878 // This allows us to write both PHINodes and the extractelement 3879 // instructions. 3880 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3881 3882 VectorParts &RdxParts = VectorLoopValueMap.getVector(LoopExitInst); 3883 setDebugLocFromInst(Builder, LoopExitInst); 3884 3885 // If the vector reduction can be performed in a smaller type, we truncate 3886 // then extend the loop exit value to enable InstCombine to evaluate the 3887 // entire expression in the smaller type. 3888 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3889 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3890 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 3891 for (unsigned part = 0; part < UF; ++part) { 3892 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3893 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3894 : Builder.CreateZExt(Trunc, VecTy); 3895 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 3896 UI != RdxParts[part]->user_end();) 3897 if (*UI != Trunc) { 3898 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 3899 RdxParts[part] = Extnd; 3900 } else { 3901 ++UI; 3902 } 3903 } 3904 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3905 for (unsigned part = 0; part < UF; ++part) 3906 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3907 } 3908 3909 // Reduce all of the unrolled parts into a single vector. 3910 Value *ReducedPartRdx = RdxParts[0]; 3911 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3912 setDebugLocFromInst(Builder, ReducedPartRdx); 3913 for (unsigned part = 1; part < UF; ++part) { 3914 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3915 // Floating point operations had to be 'fast' to enable the reduction. 3916 ReducedPartRdx = addFastMathFlag( 3917 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 3918 ReducedPartRdx, "bin.rdx")); 3919 else 3920 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3921 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 3922 } 3923 3924 if (VF > 1) { 3925 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 3926 // and vector ops, reducing the set of values being computed by half each 3927 // round. 3928 assert(isPowerOf2_32(VF) && 3929 "Reduction emission only supported for pow2 vectors!"); 3930 Value *TmpVec = ReducedPartRdx; 3931 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 3932 for (unsigned i = VF; i != 1; i >>= 1) { 3933 // Move the upper half of the vector to the lower half. 3934 for (unsigned j = 0; j != i / 2; ++j) 3935 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 3936 3937 // Fill the rest of the mask with undef. 3938 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 3939 UndefValue::get(Builder.getInt32Ty())); 3940 3941 Value *Shuf = Builder.CreateShuffleVector( 3942 TmpVec, UndefValue::get(TmpVec->getType()), 3943 ConstantVector::get(ShuffleMask), "rdx.shuf"); 3944 3945 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3946 // Floating point operations had to be 'fast' to enable the reduction. 3947 TmpVec = addFastMathFlag(Builder.CreateBinOp( 3948 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 3949 else 3950 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 3951 TmpVec, Shuf); 3952 } 3953 3954 // The result is in the first element of the vector. 3955 ReducedPartRdx = 3956 Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 3957 3958 // If the reduction can be performed in a smaller type, we need to extend 3959 // the reduction to the wider type before we branch to the original loop. 3960 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3961 ReducedPartRdx = 3962 RdxDesc.isSigned() 3963 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3964 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3965 } 3966 3967 // Create a phi node that merges control-flow from the backedge-taken check 3968 // block and the middle block. 3969 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3970 LoopScalarPreHeader->getTerminator()); 3971 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3972 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3973 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3974 3975 // Now, we need to fix the users of the reduction variable 3976 // inside and outside of the scalar remainder loop. 3977 // We know that the loop is in LCSSA form. We need to update the 3978 // PHI nodes in the exit blocks. 3979 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3980 LEE = LoopExitBlock->end(); 3981 LEI != LEE; ++LEI) { 3982 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3983 if (!LCSSAPhi) 3984 break; 3985 3986 // All PHINodes need to have a single entry edge, or two if 3987 // we already fixed them. 3988 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3989 3990 // We found our reduction value exit-PHI. Update it with the 3991 // incoming bypass edge. 3992 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { 3993 // Add an edge coming from the bypass. 3994 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3995 break; 3996 } 3997 } // end of the LCSSA phi scan. 3998 3999 // Fix the scalar loop reduction variable with the incoming reduction sum 4000 // from the vector body and from the backedge value. 4001 int IncomingEdgeBlockIdx = 4002 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4003 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4004 // Pick the other block. 4005 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4006 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4007 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4008 } // end of for each Phi in PHIsToFix. 4009 4010 fixLCSSAPHIs(); 4011 4012 // Make sure DomTree is updated. 4013 updateAnalysis(); 4014 4015 predicateInstructions(); 4016 4017 // Remove redundant induction instructions. 4018 cse(LoopVectorBody); 4019 } 4020 4021 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 4022 4023 // This is the second phase of vectorizing first-order recurrences. An 4024 // overview of the transformation is described below. Suppose we have the 4025 // following loop. 4026 // 4027 // for (int i = 0; i < n; ++i) 4028 // b[i] = a[i] - a[i - 1]; 4029 // 4030 // There is a first-order recurrence on "a". For this loop, the shorthand 4031 // scalar IR looks like: 4032 // 4033 // scalar.ph: 4034 // s_init = a[-1] 4035 // br scalar.body 4036 // 4037 // scalar.body: 4038 // i = phi [0, scalar.ph], [i+1, scalar.body] 4039 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4040 // s2 = a[i] 4041 // b[i] = s2 - s1 4042 // br cond, scalar.body, ... 4043 // 4044 // In this example, s1 is a recurrence because it's value depends on the 4045 // previous iteration. In the first phase of vectorization, we created a 4046 // temporary value for s1. We now complete the vectorization and produce the 4047 // shorthand vector IR shown below (for VF = 4, UF = 1). 4048 // 4049 // vector.ph: 4050 // v_init = vector(..., ..., ..., a[-1]) 4051 // br vector.body 4052 // 4053 // vector.body 4054 // i = phi [0, vector.ph], [i+4, vector.body] 4055 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4056 // v2 = a[i, i+1, i+2, i+3]; 4057 // v3 = vector(v1(3), v2(0, 1, 2)) 4058 // b[i, i+1, i+2, i+3] = v2 - v3 4059 // br cond, vector.body, middle.block 4060 // 4061 // middle.block: 4062 // x = v2(3) 4063 // br scalar.ph 4064 // 4065 // scalar.ph: 4066 // s_init = phi [x, middle.block], [a[-1], otherwise] 4067 // br scalar.body 4068 // 4069 // After execution completes the vector loop, we extract the next value of 4070 // the recurrence (x) to use as the initial value in the scalar loop. 4071 4072 // Get the original loop preheader and single loop latch. 4073 auto *Preheader = OrigLoop->getLoopPreheader(); 4074 auto *Latch = OrigLoop->getLoopLatch(); 4075 4076 // Get the initial and previous values of the scalar recurrence. 4077 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4078 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4079 4080 // Create a vector from the initial value. 4081 auto *VectorInit = ScalarInit; 4082 if (VF > 1) { 4083 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4084 VectorInit = Builder.CreateInsertElement( 4085 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4086 Builder.getInt32(VF - 1), "vector.recur.init"); 4087 } 4088 4089 // We constructed a temporary phi node in the first phase of vectorization. 4090 // This phi node will eventually be deleted. 4091 VectorParts &PhiParts = VectorLoopValueMap.getVector(Phi); 4092 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0])); 4093 4094 // Create a phi node for the new recurrence. The current value will either be 4095 // the initial value inserted into a vector or loop-varying vector value. 4096 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4097 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4098 4099 // Get the vectorized previous value. We ensured the previous values was an 4100 // instruction when detecting the recurrence. 4101 auto &PreviousParts = getVectorValue(Previous); 4102 4103 // Set the insertion point to be after this instruction. We ensured the 4104 // previous value dominated all uses of the phi when detecting the 4105 // recurrence. 4106 Builder.SetInsertPoint( 4107 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1]))); 4108 4109 // We will construct a vector for the recurrence by combining the values for 4110 // the current and previous iterations. This is the required shuffle mask. 4111 SmallVector<Constant *, 8> ShuffleMask(VF); 4112 ShuffleMask[0] = Builder.getInt32(VF - 1); 4113 for (unsigned I = 1; I < VF; ++I) 4114 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4115 4116 // The vector from which to take the initial value for the current iteration 4117 // (actual or unrolled). Initially, this is the vector phi node. 4118 Value *Incoming = VecPhi; 4119 4120 // Shuffle the current and previous vector and update the vector parts. 4121 for (unsigned Part = 0; Part < UF; ++Part) { 4122 auto *Shuffle = 4123 VF > 1 4124 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], 4125 ConstantVector::get(ShuffleMask)) 4126 : Incoming; 4127 PhiParts[Part]->replaceAllUsesWith(Shuffle); 4128 cast<Instruction>(PhiParts[Part])->eraseFromParent(); 4129 PhiParts[Part] = Shuffle; 4130 Incoming = PreviousParts[Part]; 4131 } 4132 4133 // Fix the latch value of the new recurrence in the vector loop. 4134 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4135 4136 // Extract the last vector element in the middle block. This will be the 4137 // initial value for the recurrence when jumping to the scalar loop. 4138 auto *Extract = Incoming; 4139 if (VF > 1) { 4140 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4141 Extract = Builder.CreateExtractElement(Extract, Builder.getInt32(VF - 1), 4142 "vector.recur.extract"); 4143 } 4144 4145 // Fix the initial value of the original recurrence in the scalar loop. 4146 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4147 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4148 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4149 auto *Incoming = BB == LoopMiddleBlock ? Extract : ScalarInit; 4150 Start->addIncoming(Incoming, BB); 4151 } 4152 4153 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4154 Phi->setName("scalar.recur"); 4155 4156 // Finally, fix users of the recurrence outside the loop. The users will need 4157 // either the last value of the scalar recurrence or the last value of the 4158 // vector recurrence we extracted in the middle block. Since the loop is in 4159 // LCSSA form, we just need to find the phi node for the original scalar 4160 // recurrence in the exit block, and then add an edge for the middle block. 4161 for (auto &I : *LoopExitBlock) { 4162 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4163 if (!LCSSAPhi) 4164 break; 4165 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4166 LCSSAPhi->addIncoming(Extract, LoopMiddleBlock); 4167 break; 4168 } 4169 } 4170 } 4171 4172 void InnerLoopVectorizer::fixLCSSAPHIs() { 4173 for (Instruction &LEI : *LoopExitBlock) { 4174 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI); 4175 if (!LCSSAPhi) 4176 break; 4177 if (LCSSAPhi->getNumIncomingValues() == 1) 4178 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 4179 LoopMiddleBlock); 4180 } 4181 } 4182 4183 void InnerLoopVectorizer::predicateInstructions() { 4184 4185 // For each instruction I marked for predication on value C, split I into its 4186 // own basic block to form an if-then construct over C. 4187 // Since I may be fed by extractelement and/or be feeding an insertelement 4188 // generated during scalarization we try to move such instructions into the 4189 // predicated basic block as well. For the insertelement this also means that 4190 // the PHI will be created for the resulting vector rather than for the 4191 // scalar instruction. 4192 // So for some predicated instruction, e.g. the conditional sdiv in: 4193 // 4194 // for.body: 4195 // ... 4196 // %add = add nsw i32 %mul, %0 4197 // %cmp5 = icmp sgt i32 %2, 7 4198 // br i1 %cmp5, label %if.then, label %if.end 4199 // 4200 // if.then: 4201 // %div = sdiv i32 %0, %1 4202 // br label %if.end 4203 // 4204 // if.end: 4205 // %x.0 = phi i32 [ %div, %if.then ], [ %add, %for.body ] 4206 // 4207 // the sdiv at this point is scalarized and if-converted using a select. 4208 // The inactive elements in the vector are not used, but the predicated 4209 // instruction is still executed for all vector elements, essentially: 4210 // 4211 // vector.body: 4212 // ... 4213 // %17 = add nsw <2 x i32> %16, %wide.load 4214 // %29 = extractelement <2 x i32> %wide.load, i32 0 4215 // %30 = extractelement <2 x i32> %wide.load51, i32 0 4216 // %31 = sdiv i32 %29, %30 4217 // %32 = insertelement <2 x i32> undef, i32 %31, i32 0 4218 // %35 = extractelement <2 x i32> %wide.load, i32 1 4219 // %36 = extractelement <2 x i32> %wide.load51, i32 1 4220 // %37 = sdiv i32 %35, %36 4221 // %38 = insertelement <2 x i32> %32, i32 %37, i32 1 4222 // %predphi = select <2 x i1> %26, <2 x i32> %38, <2 x i32> %17 4223 // 4224 // Predication will now re-introduce the original control flow to avoid false 4225 // side-effects by the sdiv instructions on the inactive elements, yielding 4226 // (after cleanup): 4227 // 4228 // vector.body: 4229 // ... 4230 // %5 = add nsw <2 x i32> %4, %wide.load 4231 // %8 = icmp sgt <2 x i32> %wide.load52, <i32 7, i32 7> 4232 // %9 = extractelement <2 x i1> %8, i32 0 4233 // br i1 %9, label %pred.sdiv.if, label %pred.sdiv.continue 4234 // 4235 // pred.sdiv.if: 4236 // %10 = extractelement <2 x i32> %wide.load, i32 0 4237 // %11 = extractelement <2 x i32> %wide.load51, i32 0 4238 // %12 = sdiv i32 %10, %11 4239 // %13 = insertelement <2 x i32> undef, i32 %12, i32 0 4240 // br label %pred.sdiv.continue 4241 // 4242 // pred.sdiv.continue: 4243 // %14 = phi <2 x i32> [ undef, %vector.body ], [ %13, %pred.sdiv.if ] 4244 // %15 = extractelement <2 x i1> %8, i32 1 4245 // br i1 %15, label %pred.sdiv.if54, label %pred.sdiv.continue55 4246 // 4247 // pred.sdiv.if54: 4248 // %16 = extractelement <2 x i32> %wide.load, i32 1 4249 // %17 = extractelement <2 x i32> %wide.load51, i32 1 4250 // %18 = sdiv i32 %16, %17 4251 // %19 = insertelement <2 x i32> %14, i32 %18, i32 1 4252 // br label %pred.sdiv.continue55 4253 // 4254 // pred.sdiv.continue55: 4255 // %20 = phi <2 x i32> [ %14, %pred.sdiv.continue ], [ %19, %pred.sdiv.if54 ] 4256 // %predphi = select <2 x i1> %8, <2 x i32> %20, <2 x i32> %5 4257 4258 for (auto KV : PredicatedInstructions) { 4259 BasicBlock::iterator I(KV.first); 4260 BasicBlock *Head = I->getParent(); 4261 auto *BB = SplitBlock(Head, &*std::next(I), DT, LI); 4262 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 4263 /*BranchWeights=*/nullptr, DT, LI); 4264 I->moveBefore(T); 4265 // Try to move any extractelement we may have created for the predicated 4266 // instruction into the Then block. 4267 for (Use &Op : I->operands()) { 4268 auto *OpInst = dyn_cast<ExtractElementInst>(&*Op); 4269 if (OpInst && OpInst->hasOneUse()) // TODO: more accurately - hasOneUser() 4270 OpInst->moveBefore(&*I); 4271 } 4272 4273 I->getParent()->setName(Twine("pred.") + I->getOpcodeName() + ".if"); 4274 BB->setName(Twine("pred.") + I->getOpcodeName() + ".continue"); 4275 4276 // If the instruction is non-void create a Phi node at reconvergence point. 4277 if (!I->getType()->isVoidTy()) { 4278 Value *IncomingTrue = nullptr; 4279 Value *IncomingFalse = nullptr; 4280 4281 if (I->hasOneUse() && isa<InsertElementInst>(*I->user_begin())) { 4282 // If the predicated instruction is feeding an insert-element, move it 4283 // into the Then block; Phi node will be created for the vector. 4284 InsertElementInst *IEI = cast<InsertElementInst>(*I->user_begin()); 4285 IEI->moveBefore(T); 4286 IncomingTrue = IEI; // the new vector with the inserted element. 4287 IncomingFalse = IEI->getOperand(0); // the unmodified vector 4288 } else { 4289 // Phi node will be created for the scalar predicated instruction. 4290 IncomingTrue = &*I; 4291 IncomingFalse = UndefValue::get(I->getType()); 4292 } 4293 4294 BasicBlock *PostDom = I->getParent()->getSingleSuccessor(); 4295 assert(PostDom && "Then block has multiple successors"); 4296 PHINode *Phi = 4297 PHINode::Create(IncomingTrue->getType(), 2, "", &PostDom->front()); 4298 IncomingTrue->replaceAllUsesWith(Phi); 4299 Phi->addIncoming(IncomingFalse, Head); 4300 Phi->addIncoming(IncomingTrue, I->getParent()); 4301 } 4302 } 4303 4304 DEBUG(DT->verifyDomTree()); 4305 } 4306 4307 InnerLoopVectorizer::VectorParts 4308 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 4309 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 4310 4311 // Look for cached value. 4312 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 4313 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 4314 if (ECEntryIt != MaskCache.end()) 4315 return ECEntryIt->second; 4316 4317 VectorParts SrcMask = createBlockInMask(Src); 4318 4319 // The terminator has to be a branch inst! 4320 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 4321 assert(BI && "Unexpected terminator found"); 4322 4323 if (BI->isConditional()) { 4324 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 4325 4326 if (BI->getSuccessor(0) != Dst) 4327 for (unsigned part = 0; part < UF; ++part) 4328 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 4329 4330 for (unsigned part = 0; part < UF; ++part) 4331 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 4332 4333 MaskCache[Edge] = EdgeMask; 4334 return EdgeMask; 4335 } 4336 4337 MaskCache[Edge] = SrcMask; 4338 return SrcMask; 4339 } 4340 4341 InnerLoopVectorizer::VectorParts 4342 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4343 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4344 4345 // Loop incoming mask is all-one. 4346 if (OrigLoop->getHeader() == BB) { 4347 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 4348 return getVectorValue(C); 4349 } 4350 4351 // This is the block mask. We OR all incoming edges, and with zero. 4352 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 4353 VectorParts BlockMask = getVectorValue(Zero); 4354 4355 // For each pred: 4356 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 4357 VectorParts EM = createEdgeMask(*it, BB); 4358 for (unsigned part = 0; part < UF; ++part) 4359 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 4360 } 4361 4362 return BlockMask; 4363 } 4364 4365 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4366 unsigned VF, PhiVector *PV) { 4367 PHINode *P = cast<PHINode>(PN); 4368 // Handle recurrences. 4369 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4370 VectorParts Entry(UF); 4371 for (unsigned part = 0; part < UF; ++part) { 4372 // This is phase one of vectorizing PHIs. 4373 Type *VecTy = 4374 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4375 Entry[part] = PHINode::Create( 4376 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4377 } 4378 VectorLoopValueMap.initVector(P, Entry); 4379 PV->push_back(P); 4380 return; 4381 } 4382 4383 setDebugLocFromInst(Builder, P); 4384 // Check for PHI nodes that are lowered to vector selects. 4385 if (P->getParent() != OrigLoop->getHeader()) { 4386 // We know that all PHIs in non-header blocks are converted into 4387 // selects, so we don't have to worry about the insertion order and we 4388 // can just use the builder. 4389 // At this point we generate the predication tree. There may be 4390 // duplications since this is a simple recursive scan, but future 4391 // optimizations will clean it up. 4392 4393 unsigned NumIncoming = P->getNumIncomingValues(); 4394 4395 // Generate a sequence of selects of the form: 4396 // SELECT(Mask3, In3, 4397 // SELECT(Mask2, In2, 4398 // ( ...))) 4399 VectorParts Entry(UF); 4400 for (unsigned In = 0; In < NumIncoming; In++) { 4401 VectorParts Cond = 4402 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4403 const VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 4404 4405 for (unsigned part = 0; part < UF; ++part) { 4406 // We might have single edge PHIs (blocks) - use an identity 4407 // 'select' for the first PHI operand. 4408 if (In == 0) 4409 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]); 4410 else 4411 // Select between the current value and the previous incoming edge 4412 // based on the incoming mask. 4413 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part], 4414 "predphi"); 4415 } 4416 } 4417 VectorLoopValueMap.initVector(P, Entry); 4418 return; 4419 } 4420 4421 // This PHINode must be an induction variable. 4422 // Make sure that we know about it. 4423 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4424 4425 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4426 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4427 4428 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4429 // which can be found from the original scalar operations. 4430 switch (II.getKind()) { 4431 case InductionDescriptor::IK_NoInduction: 4432 llvm_unreachable("Unknown induction"); 4433 case InductionDescriptor::IK_IntInduction: 4434 return widenIntInduction(P); 4435 case InductionDescriptor::IK_PtrInduction: { 4436 // Handle the pointer induction variable case. 4437 assert(P->getType()->isPointerTy() && "Unexpected type."); 4438 // This is the normalized GEP that starts counting at zero. 4439 Value *PtrInd = Induction; 4440 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4441 // Determine the number of scalars we need to generate for each unroll 4442 // iteration. If the instruction is uniform, we only need to generate the 4443 // first lane. Otherwise, we generate all VF values. 4444 unsigned Lanes = Legal->isUniformAfterVectorization(P) ? 1 : VF; 4445 // These are the scalar results. Notice that we don't generate vector GEPs 4446 // because scalar GEPs result in better code. 4447 ScalarParts Entry(UF); 4448 for (unsigned Part = 0; Part < UF; ++Part) { 4449 Entry[Part].resize(VF); 4450 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4451 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4452 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4453 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4454 SclrGep->setName("next.gep"); 4455 Entry[Part][Lane] = SclrGep; 4456 } 4457 } 4458 VectorLoopValueMap.initScalar(P, Entry); 4459 return; 4460 } 4461 case InductionDescriptor::IK_FpInduction: { 4462 assert(P->getType() == II.getStartValue()->getType() && 4463 "Types must match"); 4464 // Handle other induction variables that are now based on the 4465 // canonical one. 4466 assert(P != OldInduction && "Primary induction can be integer only"); 4467 4468 Value *V = Builder.CreateCast(Instruction::SIToFP, Induction, P->getType()); 4469 V = II.transform(Builder, V, PSE.getSE(), DL); 4470 V->setName("fp.offset.idx"); 4471 4472 // Now we have scalar op: %fp.offset.idx = StartVal +/- Induction*StepVal 4473 4474 Value *Broadcasted = getBroadcastInstrs(V); 4475 // After broadcasting the induction variable we need to make the vector 4476 // consecutive by adding StepVal*0, StepVal*1, StepVal*2, etc. 4477 Value *StepVal = cast<SCEVUnknown>(II.getStep())->getValue(); 4478 VectorParts Entry(UF); 4479 for (unsigned part = 0; part < UF; ++part) 4480 Entry[part] = getStepVector(Broadcasted, VF * part, StepVal, 4481 II.getInductionOpcode()); 4482 VectorLoopValueMap.initVector(P, Entry); 4483 return; 4484 } 4485 } 4486 } 4487 4488 /// A helper function for checking whether an integer division-related 4489 /// instruction may divide by zero (in which case it must be predicated if 4490 /// executed conditionally in the scalar code). 4491 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4492 /// Non-zero divisors that are non compile-time constants will not be 4493 /// converted into multiplication, so we will still end up scalarizing 4494 /// the division, but can do so w/o predication. 4495 static bool mayDivideByZero(Instruction &I) { 4496 assert((I.getOpcode() == Instruction::UDiv || 4497 I.getOpcode() == Instruction::SDiv || 4498 I.getOpcode() == Instruction::URem || 4499 I.getOpcode() == Instruction::SRem) && 4500 "Unexpected instruction"); 4501 Value *Divisor = I.getOperand(1); 4502 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4503 return !CInt || CInt->isZero(); 4504 } 4505 4506 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 4507 // For each instruction in the old loop. 4508 for (Instruction &I : *BB) { 4509 switch (I.getOpcode()) { 4510 case Instruction::Br: 4511 // Nothing to do for PHIs and BR, since we already took care of the 4512 // loop control flow instructions. 4513 continue; 4514 case Instruction::PHI: { 4515 // Vectorize PHINodes. 4516 widenPHIInstruction(&I, UF, VF, PV); 4517 continue; 4518 } // End of PHI. 4519 4520 case Instruction::UDiv: 4521 case Instruction::SDiv: 4522 case Instruction::SRem: 4523 case Instruction::URem: 4524 // Scalarize with predication if this instruction may divide by zero and 4525 // block execution is conditional, otherwise fallthrough. 4526 if (mayDivideByZero(I) && Legal->blockNeedsPredication(I.getParent())) { 4527 scalarizeInstruction(&I, true); 4528 continue; 4529 } 4530 case Instruction::Add: 4531 case Instruction::FAdd: 4532 case Instruction::Sub: 4533 case Instruction::FSub: 4534 case Instruction::Mul: 4535 case Instruction::FMul: 4536 case Instruction::FDiv: 4537 case Instruction::FRem: 4538 case Instruction::Shl: 4539 case Instruction::LShr: 4540 case Instruction::AShr: 4541 case Instruction::And: 4542 case Instruction::Or: 4543 case Instruction::Xor: { 4544 // Just widen binops. 4545 auto *BinOp = cast<BinaryOperator>(&I); 4546 setDebugLocFromInst(Builder, BinOp); 4547 const VectorParts &A = getVectorValue(BinOp->getOperand(0)); 4548 const VectorParts &B = getVectorValue(BinOp->getOperand(1)); 4549 4550 // Use this vector value for all users of the original instruction. 4551 VectorParts Entry(UF); 4552 for (unsigned Part = 0; Part < UF; ++Part) { 4553 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 4554 4555 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4556 VecOp->copyIRFlags(BinOp); 4557 4558 Entry[Part] = V; 4559 } 4560 4561 VectorLoopValueMap.initVector(&I, Entry); 4562 addMetadata(Entry, BinOp); 4563 break; 4564 } 4565 case Instruction::Select: { 4566 // Widen selects. 4567 // If the selector is loop invariant we can create a select 4568 // instruction with a scalar condition. Otherwise, use vector-select. 4569 auto *SE = PSE.getSE(); 4570 bool InvariantCond = 4571 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4572 setDebugLocFromInst(Builder, &I); 4573 4574 // The condition can be loop invariant but still defined inside the 4575 // loop. This means that we can't just use the original 'cond' value. 4576 // We have to take the 'vectorized' value and pick the first lane. 4577 // Instcombine will make this a no-op. 4578 const VectorParts &Cond = getVectorValue(I.getOperand(0)); 4579 const VectorParts &Op0 = getVectorValue(I.getOperand(1)); 4580 const VectorParts &Op1 = getVectorValue(I.getOperand(2)); 4581 4582 auto *ScalarCond = getScalarValue(I.getOperand(0), 0, 0); 4583 4584 VectorParts Entry(UF); 4585 for (unsigned Part = 0; Part < UF; ++Part) { 4586 Entry[Part] = Builder.CreateSelect( 4587 InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]); 4588 } 4589 4590 VectorLoopValueMap.initVector(&I, Entry); 4591 addMetadata(Entry, &I); 4592 break; 4593 } 4594 4595 case Instruction::ICmp: 4596 case Instruction::FCmp: { 4597 // Widen compares. Generate vector compares. 4598 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4599 auto *Cmp = dyn_cast<CmpInst>(&I); 4600 setDebugLocFromInst(Builder, Cmp); 4601 const VectorParts &A = getVectorValue(Cmp->getOperand(0)); 4602 const VectorParts &B = getVectorValue(Cmp->getOperand(1)); 4603 VectorParts Entry(UF); 4604 for (unsigned Part = 0; Part < UF; ++Part) { 4605 Value *C = nullptr; 4606 if (FCmp) { 4607 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 4608 cast<FCmpInst>(C)->copyFastMathFlags(Cmp); 4609 } else { 4610 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 4611 } 4612 Entry[Part] = C; 4613 } 4614 4615 VectorLoopValueMap.initVector(&I, Entry); 4616 addMetadata(Entry, &I); 4617 break; 4618 } 4619 4620 case Instruction::Store: 4621 case Instruction::Load: 4622 vectorizeMemoryInstruction(&I); 4623 break; 4624 case Instruction::ZExt: 4625 case Instruction::SExt: 4626 case Instruction::FPToUI: 4627 case Instruction::FPToSI: 4628 case Instruction::FPExt: 4629 case Instruction::PtrToInt: 4630 case Instruction::IntToPtr: 4631 case Instruction::SIToFP: 4632 case Instruction::UIToFP: 4633 case Instruction::Trunc: 4634 case Instruction::FPTrunc: 4635 case Instruction::BitCast: { 4636 auto *CI = dyn_cast<CastInst>(&I); 4637 setDebugLocFromInst(Builder, CI); 4638 4639 // Optimize the special case where the source is a constant integer 4640 // induction variable. Notice that we can only optimize the 'trunc' case 4641 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 4642 // (c) other casts depend on pointer size. 4643 auto ID = Legal->getInductionVars()->lookup(OldInduction); 4644 if (isa<TruncInst>(CI) && CI->getOperand(0) == OldInduction && 4645 ID.getConstIntStepValue()) { 4646 widenIntInduction(OldInduction, cast<TruncInst>(CI)); 4647 break; 4648 } 4649 4650 /// Vectorize casts. 4651 Type *DestTy = 4652 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4653 4654 const VectorParts &A = getVectorValue(CI->getOperand(0)); 4655 VectorParts Entry(UF); 4656 for (unsigned Part = 0; Part < UF; ++Part) 4657 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 4658 VectorLoopValueMap.initVector(&I, Entry); 4659 addMetadata(Entry, &I); 4660 break; 4661 } 4662 4663 case Instruction::Call: { 4664 // Ignore dbg intrinsics. 4665 if (isa<DbgInfoIntrinsic>(I)) 4666 break; 4667 setDebugLocFromInst(Builder, &I); 4668 4669 Module *M = BB->getParent()->getParent(); 4670 auto *CI = cast<CallInst>(&I); 4671 4672 StringRef FnName = CI->getCalledFunction()->getName(); 4673 Function *F = CI->getCalledFunction(); 4674 Type *RetTy = ToVectorTy(CI->getType(), VF); 4675 SmallVector<Type *, 4> Tys; 4676 for (Value *ArgOperand : CI->arg_operands()) 4677 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4678 4679 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4680 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4681 ID == Intrinsic::lifetime_start)) { 4682 scalarizeInstruction(&I); 4683 break; 4684 } 4685 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4686 // version of the instruction. 4687 // Is it beneficial to perform intrinsic call compared to lib call? 4688 bool NeedToScalarize; 4689 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4690 bool UseVectorIntrinsic = 4691 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4692 if (!UseVectorIntrinsic && NeedToScalarize) { 4693 scalarizeInstruction(&I); 4694 break; 4695 } 4696 4697 VectorParts Entry(UF); 4698 for (unsigned Part = 0; Part < UF; ++Part) { 4699 SmallVector<Value *, 4> Args; 4700 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4701 Value *Arg = CI->getArgOperand(i); 4702 // Some intrinsics have a scalar argument - don't replace it with a 4703 // vector. 4704 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 4705 const VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 4706 Arg = VectorArg[Part]; 4707 } 4708 Args.push_back(Arg); 4709 } 4710 4711 Function *VectorF; 4712 if (UseVectorIntrinsic) { 4713 // Use vector version of the intrinsic. 4714 Type *TysForDecl[] = {CI->getType()}; 4715 if (VF > 1) 4716 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4717 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4718 } else { 4719 // Use vector version of the library call. 4720 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4721 assert(!VFnName.empty() && "Vector function name is empty."); 4722 VectorF = M->getFunction(VFnName); 4723 if (!VectorF) { 4724 // Generate a declaration 4725 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4726 VectorF = 4727 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4728 VectorF->copyAttributesFrom(F); 4729 } 4730 } 4731 assert(VectorF && "Can't create vector function."); 4732 4733 SmallVector<OperandBundleDef, 1> OpBundles; 4734 CI->getOperandBundlesAsDefs(OpBundles); 4735 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4736 4737 if (isa<FPMathOperator>(V)) 4738 V->copyFastMathFlags(CI); 4739 4740 Entry[Part] = V; 4741 } 4742 4743 VectorLoopValueMap.initVector(&I, Entry); 4744 addMetadata(Entry, &I); 4745 break; 4746 } 4747 4748 default: 4749 // All other instructions are unsupported. Scalarize them. 4750 scalarizeInstruction(&I); 4751 break; 4752 } // end of switch. 4753 } // end of for_each instr. 4754 } 4755 4756 void InnerLoopVectorizer::updateAnalysis() { 4757 // Forget the original basic block. 4758 PSE.getSE()->forgetLoop(OrigLoop); 4759 4760 // Update the dominator tree information. 4761 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4762 "Entry does not dominate exit."); 4763 4764 // We don't predicate stores by this point, so the vector body should be a 4765 // single loop. 4766 DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader); 4767 4768 DT->addNewBlock(LoopMiddleBlock, LoopVectorBody); 4769 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4770 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4771 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4772 4773 DEBUG(DT->verifyDomTree()); 4774 } 4775 4776 /// \brief Check whether it is safe to if-convert this phi node. 4777 /// 4778 /// Phi nodes with constant expressions that can trap are not safe to if 4779 /// convert. 4780 static bool canIfConvertPHINodes(BasicBlock *BB) { 4781 for (Instruction &I : *BB) { 4782 auto *Phi = dyn_cast<PHINode>(&I); 4783 if (!Phi) 4784 return true; 4785 for (Value *V : Phi->incoming_values()) 4786 if (auto *C = dyn_cast<Constant>(V)) 4787 if (C->canTrap()) 4788 return false; 4789 } 4790 return true; 4791 } 4792 4793 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4794 if (!EnableIfConversion) { 4795 emitAnalysis(VectorizationReport() << "if-conversion is disabled"); 4796 return false; 4797 } 4798 4799 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4800 4801 // A list of pointers that we can safely read and write to. 4802 SmallPtrSet<Value *, 8> SafePointes; 4803 4804 // Collect safe addresses. 4805 for (BasicBlock *BB : TheLoop->blocks()) { 4806 if (blockNeedsPredication(BB)) 4807 continue; 4808 4809 for (Instruction &I : *BB) 4810 if (auto *Ptr = getPointerOperand(&I)) 4811 SafePointes.insert(Ptr); 4812 } 4813 4814 // Collect the blocks that need predication. 4815 BasicBlock *Header = TheLoop->getHeader(); 4816 for (BasicBlock *BB : TheLoop->blocks()) { 4817 // We don't support switch statements inside loops. 4818 if (!isa<BranchInst>(BB->getTerminator())) { 4819 emitAnalysis(VectorizationReport(BB->getTerminator()) 4820 << "loop contains a switch statement"); 4821 return false; 4822 } 4823 4824 // We must be able to predicate all blocks that need to be predicated. 4825 if (blockNeedsPredication(BB)) { 4826 if (!blockCanBePredicated(BB, SafePointes)) { 4827 emitAnalysis(VectorizationReport(BB->getTerminator()) 4828 << "control flow cannot be substituted for a select"); 4829 return false; 4830 } 4831 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4832 emitAnalysis(VectorizationReport(BB->getTerminator()) 4833 << "control flow cannot be substituted for a select"); 4834 return false; 4835 } 4836 } 4837 4838 // We can if-convert this loop. 4839 return true; 4840 } 4841 4842 bool LoopVectorizationLegality::canVectorize() { 4843 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4844 // be canonicalized. 4845 if (!TheLoop->getLoopPreheader()) { 4846 emitAnalysis(VectorizationReport() 4847 << "loop control flow is not understood by vectorizer"); 4848 return false; 4849 } 4850 4851 // FIXME: The code is currently dead, since the loop gets sent to 4852 // LoopVectorizationLegality is already an innermost loop. 4853 // 4854 // We can only vectorize innermost loops. 4855 if (!TheLoop->empty()) { 4856 emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); 4857 return false; 4858 } 4859 4860 // We must have a single backedge. 4861 if (TheLoop->getNumBackEdges() != 1) { 4862 emitAnalysis(VectorizationReport() 4863 << "loop control flow is not understood by vectorizer"); 4864 return false; 4865 } 4866 4867 // We must have a single exiting block. 4868 if (!TheLoop->getExitingBlock()) { 4869 emitAnalysis(VectorizationReport() 4870 << "loop control flow is not understood by vectorizer"); 4871 return false; 4872 } 4873 4874 // We only handle bottom-tested loops, i.e. loop in which the condition is 4875 // checked at the end of each iteration. With that we can assume that all 4876 // instructions in the loop are executed the same number of times. 4877 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 4878 emitAnalysis(VectorizationReport() 4879 << "loop control flow is not understood by vectorizer"); 4880 return false; 4881 } 4882 4883 // We need to have a loop header. 4884 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 4885 << '\n'); 4886 4887 // Check if we can if-convert non-single-bb loops. 4888 unsigned NumBlocks = TheLoop->getNumBlocks(); 4889 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 4890 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 4891 return false; 4892 } 4893 4894 // ScalarEvolution needs to be able to find the exit count. 4895 const SCEV *ExitCount = PSE.getBackedgeTakenCount(); 4896 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 4897 emitAnalysis(VectorizationReport() 4898 << "could not determine number of loop iterations"); 4899 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 4900 return false; 4901 } 4902 4903 // Check if we can vectorize the instructions and CFG in this loop. 4904 if (!canVectorizeInstrs()) { 4905 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 4906 return false; 4907 } 4908 4909 // Go over each instruction and look at memory deps. 4910 if (!canVectorizeMemory()) { 4911 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 4912 return false; 4913 } 4914 4915 DEBUG(dbgs() << "LV: We can vectorize this loop" 4916 << (LAI->getRuntimePointerChecking()->Need 4917 ? " (with a runtime bound check)" 4918 : "") 4919 << "!\n"); 4920 4921 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 4922 4923 // If an override option has been passed in for interleaved accesses, use it. 4924 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 4925 UseInterleaved = EnableInterleavedMemAccesses; 4926 4927 // Analyze interleaved memory accesses. 4928 if (UseInterleaved) 4929 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 4930 4931 // Collect all instructions that are known to be uniform after vectorization. 4932 collectLoopUniforms(); 4933 4934 // Collect all instructions that are known to be scalar after vectorization. 4935 collectLoopScalars(); 4936 4937 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 4938 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 4939 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 4940 4941 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 4942 emitAnalysis(VectorizationReport() 4943 << "Too many SCEV assumptions need to be made and checked " 4944 << "at runtime"); 4945 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 4946 return false; 4947 } 4948 4949 // Okay! We can vectorize. At this point we don't have any other mem analysis 4950 // which may limit our maximum vectorization factor, so just return true with 4951 // no restrictions. 4952 return true; 4953 } 4954 4955 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 4956 if (Ty->isPointerTy()) 4957 return DL.getIntPtrType(Ty); 4958 4959 // It is possible that char's or short's overflow when we ask for the loop's 4960 // trip count, work around this by changing the type size. 4961 if (Ty->getScalarSizeInBits() < 32) 4962 return Type::getInt32Ty(Ty->getContext()); 4963 4964 return Ty; 4965 } 4966 4967 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 4968 Ty0 = convertPointerToIntegerType(DL, Ty0); 4969 Ty1 = convertPointerToIntegerType(DL, Ty1); 4970 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 4971 return Ty0; 4972 return Ty1; 4973 } 4974 4975 /// \brief Check that the instruction has outside loop users and is not an 4976 /// identified reduction variable. 4977 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 4978 SmallPtrSetImpl<Value *> &AllowedExit) { 4979 // Reduction and Induction instructions are allowed to have exit users. All 4980 // other instructions must not have external users. 4981 if (!AllowedExit.count(Inst)) 4982 // Check that all of the users of the loop are inside the BB. 4983 for (User *U : Inst->users()) { 4984 Instruction *UI = cast<Instruction>(U); 4985 // This user may be a reduction exit value. 4986 if (!TheLoop->contains(UI)) { 4987 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 4988 return true; 4989 } 4990 } 4991 return false; 4992 } 4993 4994 void LoopVectorizationLegality::addInductionPhi( 4995 PHINode *Phi, const InductionDescriptor &ID, 4996 SmallPtrSetImpl<Value *> &AllowedExit) { 4997 Inductions[Phi] = ID; 4998 Type *PhiTy = Phi->getType(); 4999 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5000 5001 // Get the widest type. 5002 if (!PhiTy->isFloatingPointTy()) { 5003 if (!WidestIndTy) 5004 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5005 else 5006 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5007 } 5008 5009 // Int inductions are special because we only allow one IV. 5010 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5011 ID.getConstIntStepValue() && 5012 ID.getConstIntStepValue()->isOne() && 5013 isa<Constant>(ID.getStartValue()) && 5014 cast<Constant>(ID.getStartValue())->isNullValue()) { 5015 5016 // Use the phi node with the widest type as induction. Use the last 5017 // one if there are multiple (no good reason for doing this other 5018 // than it is expedient). We've checked that it begins at zero and 5019 // steps by one, so this is a canonical induction variable. 5020 if (!Induction || PhiTy == WidestIndTy) 5021 Induction = Phi; 5022 } 5023 5024 // Both the PHI node itself, and the "post-increment" value feeding 5025 // back into the PHI node may have external users. 5026 AllowedExit.insert(Phi); 5027 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5028 5029 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5030 return; 5031 } 5032 5033 bool LoopVectorizationLegality::canVectorizeInstrs() { 5034 BasicBlock *Header = TheLoop->getHeader(); 5035 5036 // Look for the attribute signaling the absence of NaNs. 5037 Function &F = *Header->getParent(); 5038 HasFunNoNaNAttr = 5039 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5040 5041 // For each block in the loop. 5042 for (BasicBlock *BB : TheLoop->blocks()) { 5043 // Scan the instructions in the block and look for hazards. 5044 for (Instruction &I : *BB) { 5045 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5046 Type *PhiTy = Phi->getType(); 5047 // Check that this PHI type is allowed. 5048 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5049 !PhiTy->isPointerTy()) { 5050 emitAnalysis(VectorizationReport(Phi) 5051 << "loop control flow is not understood by vectorizer"); 5052 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5053 return false; 5054 } 5055 5056 // If this PHINode is not in the header block, then we know that we 5057 // can convert it to select during if-conversion. No need to check if 5058 // the PHIs in this block are induction or reduction variables. 5059 if (BB != Header) { 5060 // Check that this instruction has no outside users or is an 5061 // identified reduction value with an outside user. 5062 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5063 continue; 5064 emitAnalysis(VectorizationReport(Phi) 5065 << "value could not be identified as " 5066 "an induction or reduction variable"); 5067 return false; 5068 } 5069 5070 // We only allow if-converted PHIs with exactly two incoming values. 5071 if (Phi->getNumIncomingValues() != 2) { 5072 emitAnalysis(VectorizationReport(Phi) 5073 << "control flow not understood by vectorizer"); 5074 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5075 return false; 5076 } 5077 5078 RecurrenceDescriptor RedDes; 5079 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 5080 if (RedDes.hasUnsafeAlgebra()) 5081 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5082 AllowedExit.insert(RedDes.getLoopExitInstr()); 5083 Reductions[Phi] = RedDes; 5084 continue; 5085 } 5086 5087 InductionDescriptor ID; 5088 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5089 addInductionPhi(Phi, ID, AllowedExit); 5090 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5091 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5092 continue; 5093 } 5094 5095 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { 5096 FirstOrderRecurrences.insert(Phi); 5097 continue; 5098 } 5099 5100 // As a last resort, coerce the PHI to a AddRec expression 5101 // and re-try classifying it a an induction PHI. 5102 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5103 addInductionPhi(Phi, ID, AllowedExit); 5104 continue; 5105 } 5106 5107 emitAnalysis(VectorizationReport(Phi) 5108 << "value that could not be identified as " 5109 "reduction is used outside the loop"); 5110 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5111 return false; 5112 } // end of PHI handling 5113 5114 // We handle calls that: 5115 // * Are debug info intrinsics. 5116 // * Have a mapping to an IR intrinsic. 5117 // * Have a vector version available. 5118 auto *CI = dyn_cast<CallInst>(&I); 5119 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5120 !isa<DbgInfoIntrinsic>(CI) && 5121 !(CI->getCalledFunction() && TLI && 5122 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5123 emitAnalysis(VectorizationReport(CI) 5124 << "call instruction cannot be vectorized"); 5125 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5126 return false; 5127 } 5128 5129 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5130 // second argument is the same (i.e. loop invariant) 5131 if (CI && hasVectorInstrinsicScalarOpd( 5132 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5133 auto *SE = PSE.getSE(); 5134 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5135 emitAnalysis(VectorizationReport(CI) 5136 << "intrinsic instruction cannot be vectorized"); 5137 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5138 return false; 5139 } 5140 } 5141 5142 // Check that the instruction return type is vectorizable. 5143 // Also, we can't vectorize extractelement instructions. 5144 if ((!VectorType::isValidElementType(I.getType()) && 5145 !I.getType()->isVoidTy()) || 5146 isa<ExtractElementInst>(I)) { 5147 emitAnalysis(VectorizationReport(&I) 5148 << "instruction return type cannot be vectorized"); 5149 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5150 return false; 5151 } 5152 5153 // Check that the stored type is vectorizable. 5154 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5155 Type *T = ST->getValueOperand()->getType(); 5156 if (!VectorType::isValidElementType(T)) { 5157 emitAnalysis(VectorizationReport(ST) 5158 << "store instruction cannot be vectorized"); 5159 return false; 5160 } 5161 5162 // FP instructions can allow unsafe algebra, thus vectorizable by 5163 // non-IEEE-754 compliant SIMD units. 5164 // This applies to floating-point math operations and calls, not memory 5165 // operations, shuffles, or casts, as they don't change precision or 5166 // semantics. 5167 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5168 !I.hasUnsafeAlgebra()) { 5169 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5170 Hints->setPotentiallyUnsafe(); 5171 } 5172 5173 // Reduction instructions are allowed to have exit users. 5174 // All other instructions must not have external users. 5175 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5176 emitAnalysis(VectorizationReport(&I) 5177 << "value cannot be used outside the loop"); 5178 return false; 5179 } 5180 5181 } // next instr. 5182 } 5183 5184 if (!Induction) { 5185 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5186 if (Inductions.empty()) { 5187 emitAnalysis(VectorizationReport() 5188 << "loop induction variable could not be identified"); 5189 return false; 5190 } 5191 } 5192 5193 // Now we know the widest induction type, check if our found induction 5194 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5195 // will create another. 5196 if (Induction && WidestIndTy != Induction->getType()) 5197 Induction = nullptr; 5198 5199 return true; 5200 } 5201 5202 void LoopVectorizationLegality::collectLoopScalars() { 5203 5204 // If an instruction is uniform after vectorization, it will remain scalar. 5205 Scalars.insert(Uniforms.begin(), Uniforms.end()); 5206 5207 // Collect the getelementptr instructions that will not be vectorized. A 5208 // getelementptr instruction is only vectorized if it is used for a legal 5209 // gather or scatter operation. 5210 for (auto *BB : TheLoop->blocks()) 5211 for (auto &I : *BB) { 5212 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5213 Scalars.insert(GEP); 5214 continue; 5215 } 5216 auto *Ptr = getPointerOperand(&I); 5217 if (!Ptr) 5218 continue; 5219 auto *GEP = getGEPInstruction(Ptr); 5220 if (GEP && isLegalGatherOrScatter(&I)) 5221 Scalars.erase(GEP); 5222 } 5223 5224 // An induction variable will remain scalar if all users of the induction 5225 // variable and induction variable update remain scalar. 5226 auto *Latch = TheLoop->getLoopLatch(); 5227 for (auto &Induction : *getInductionVars()) { 5228 auto *Ind = Induction.first; 5229 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5230 5231 // Determine if all users of the induction variable are scalar after 5232 // vectorization. 5233 auto ScalarInd = all_of(Ind->users(), [&](User *U) -> bool { 5234 auto *I = cast<Instruction>(U); 5235 return I == IndUpdate || !TheLoop->contains(I) || Scalars.count(I); 5236 }); 5237 if (!ScalarInd) 5238 continue; 5239 5240 // Determine if all users of the induction variable update instruction are 5241 // scalar after vectorization. 5242 auto ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5243 auto *I = cast<Instruction>(U); 5244 return I == Ind || !TheLoop->contains(I) || Scalars.count(I); 5245 }); 5246 if (!ScalarIndUpdate) 5247 continue; 5248 5249 // The induction variable and its update instruction will remain scalar. 5250 Scalars.insert(Ind); 5251 Scalars.insert(IndUpdate); 5252 } 5253 } 5254 5255 bool LoopVectorizationLegality::hasConsecutiveLikePtrOperand(Instruction *I) { 5256 if (isAccessInterleaved(I)) 5257 return true; 5258 if (auto *Ptr = getPointerOperand(I)) 5259 return isConsecutivePtr(Ptr); 5260 return false; 5261 } 5262 5263 bool LoopVectorizationLegality::isPredicatedStore(Instruction *I) { 5264 auto *SI = dyn_cast<StoreInst>(I); 5265 return SI && blockNeedsPredication(SI->getParent()) && !isMaskRequired(SI); 5266 } 5267 5268 bool LoopVectorizationLegality::memoryInstructionMustBeScalarized( 5269 Instruction *I, unsigned VF) { 5270 5271 // If the memory instruction is in an interleaved group, it will be 5272 // vectorized and its pointer will remain uniform. 5273 if (isAccessInterleaved(I)) 5274 return false; 5275 5276 // Get and ensure we have a valid memory instruction. 5277 LoadInst *LI = dyn_cast<LoadInst>(I); 5278 StoreInst *SI = dyn_cast<StoreInst>(I); 5279 assert((LI || SI) && "Invalid memory instruction"); 5280 5281 // If the pointer operand is uniform (loop invariant), the memory instruction 5282 // will be scalarized. 5283 auto *Ptr = getPointerOperand(I); 5284 if (LI && isUniform(Ptr)) 5285 return true; 5286 5287 // If the pointer operand is non-consecutive and neither a gather nor a 5288 // scatter operation is legal, the memory instruction will be scalarized. 5289 if (!isConsecutivePtr(Ptr) && !isLegalGatherOrScatter(I)) 5290 return true; 5291 5292 // If the instruction is a store located in a predicated block, it will be 5293 // scalarized. 5294 if (isPredicatedStore(I)) 5295 return true; 5296 5297 // If the instruction's allocated size doesn't equal it's type size, it 5298 // requires padding and will be scalarized. 5299 auto &DL = I->getModule()->getDataLayout(); 5300 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5301 if (hasIrregularType(ScalarTy, DL, VF)) 5302 return true; 5303 5304 // Otherwise, the memory instruction should be vectorized if the rest of the 5305 // loop is. 5306 return false; 5307 } 5308 5309 void LoopVectorizationLegality::collectLoopUniforms() { 5310 // We now know that the loop is vectorizable! 5311 // Collect instructions inside the loop that will remain uniform after 5312 // vectorization. 5313 5314 // Global values, params and instructions outside of current loop are out of 5315 // scope. 5316 auto isOutOfScope = [&](Value *V) -> bool { 5317 Instruction *I = dyn_cast<Instruction>(V); 5318 return (!I || !TheLoop->contains(I)); 5319 }; 5320 5321 SetVector<Instruction *> Worklist; 5322 BasicBlock *Latch = TheLoop->getLoopLatch(); 5323 // Start with the conditional branch. 5324 if (!isOutOfScope(Latch->getTerminator()->getOperand(0))) { 5325 Instruction *Cmp = cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5326 Worklist.insert(Cmp); 5327 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5328 } 5329 5330 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5331 // are pointers that are treated like consecutive pointers during 5332 // vectorization. The pointer operands of interleaved accesses are an 5333 // example. 5334 SmallPtrSet<Instruction *, 8> ConsecutiveLikePtrs; 5335 5336 // Holds pointer operands of instructions that are possibly non-uniform. 5337 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5338 5339 // Iterate over the instructions in the loop, and collect all 5340 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5341 // that a consecutive-like pointer operand will be scalarized, we collect it 5342 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5343 // getelementptr instruction can be used by both vectorized and scalarized 5344 // memory instructions. For example, if a loop loads and stores from the same 5345 // location, but the store is conditional, the store will be scalarized, and 5346 // the getelementptr won't remain uniform. 5347 for (auto *BB : TheLoop->blocks()) 5348 for (auto &I : *BB) { 5349 5350 // If there's no pointer operand, there's nothing to do. 5351 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5352 if (!Ptr) 5353 continue; 5354 5355 // True if all users of Ptr are memory accesses that have Ptr as their 5356 // pointer operand. 5357 auto UsersAreMemAccesses = all_of(Ptr->users(), [&](User *U) -> bool { 5358 return getPointerOperand(U) == Ptr; 5359 }); 5360 5361 // Ensure the memory instruction will not be scalarized, making its 5362 // pointer operand non-uniform. If the pointer operand is used by some 5363 // instruction other than a memory access, we're not going to check if 5364 // that other instruction may be scalarized here. Thus, conservatively 5365 // assume the pointer operand may be non-uniform. 5366 if (!UsersAreMemAccesses || memoryInstructionMustBeScalarized(&I)) 5367 PossibleNonUniformPtrs.insert(Ptr); 5368 5369 // If the memory instruction will be vectorized and its pointer operand 5370 // is consecutive-like, the pointer operand should remain uniform. 5371 else if (hasConsecutiveLikePtrOperand(&I)) 5372 ConsecutiveLikePtrs.insert(Ptr); 5373 } 5374 5375 // Add to the Worklist all consecutive and consecutive-like pointers that 5376 // aren't also identified as possibly non-uniform. 5377 for (auto *V : ConsecutiveLikePtrs) 5378 if (!PossibleNonUniformPtrs.count(V)) { 5379 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5380 Worklist.insert(V); 5381 } 5382 5383 // Expand Worklist in topological order: whenever a new instruction 5384 // is added , its users should be either already inside Worklist, or 5385 // out of scope. It ensures a uniform instruction will only be used 5386 // by uniform instructions or out of scope instructions. 5387 unsigned idx = 0; 5388 while (idx != Worklist.size()) { 5389 Instruction *I = Worklist[idx++]; 5390 5391 for (auto OV : I->operand_values()) { 5392 if (isOutOfScope(OV)) 5393 continue; 5394 auto *OI = cast<Instruction>(OV); 5395 if (all_of(OI->users(), [&](User *U) -> bool { 5396 return isOutOfScope(U) || Worklist.count(cast<Instruction>(U)); 5397 })) { 5398 Worklist.insert(OI); 5399 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5400 } 5401 } 5402 } 5403 5404 // Returns true if Ptr is the pointer operand of a memory access instruction 5405 // I, and I is known to not require scalarization. 5406 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5407 return getPointerOperand(I) == Ptr && !memoryInstructionMustBeScalarized(I); 5408 }; 5409 5410 // For an instruction to be added into Worklist above, all its users inside 5411 // the loop should also be in Worklist. However, this condition cannot be 5412 // true for phi nodes that form a cyclic dependence. We must process phi 5413 // nodes separately. An induction variable will remain uniform if all users 5414 // of the induction variable and induction variable update remain uniform. 5415 // The code below handles both pointer and non-pointer induction variables. 5416 for (auto &Induction : Inductions) { 5417 auto *Ind = Induction.first; 5418 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5419 5420 // Determine if all users of the induction variable are uniform after 5421 // vectorization. 5422 auto UniformInd = all_of(Ind->users(), [&](User *U) -> bool { 5423 auto *I = cast<Instruction>(U); 5424 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5425 isVectorizedMemAccessUse(I, Ind); 5426 }); 5427 if (!UniformInd) 5428 continue; 5429 5430 // Determine if all users of the induction variable update instruction are 5431 // uniform after vectorization. 5432 auto UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5433 auto *I = cast<Instruction>(U); 5434 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5435 isVectorizedMemAccessUse(I, IndUpdate); 5436 }); 5437 if (!UniformIndUpdate) 5438 continue; 5439 5440 // The induction variable and its update instruction will remain uniform. 5441 Worklist.insert(Ind); 5442 Worklist.insert(IndUpdate); 5443 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5444 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5445 } 5446 5447 Uniforms.insert(Worklist.begin(), Worklist.end()); 5448 } 5449 5450 bool LoopVectorizationLegality::canVectorizeMemory() { 5451 LAI = &(*GetLAA)(*TheLoop); 5452 InterleaveInfo.setLAI(LAI); 5453 auto &OptionalReport = LAI->getReport(); 5454 if (OptionalReport) 5455 emitAnalysis(VectorizationReport(*OptionalReport)); 5456 if (!LAI->canVectorizeMemory()) 5457 return false; 5458 5459 if (LAI->hasStoreToLoopInvariantAddress()) { 5460 emitAnalysis( 5461 VectorizationReport() 5462 << "write to a loop invariant address could not be vectorized"); 5463 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5464 return false; 5465 } 5466 5467 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5468 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5469 5470 return true; 5471 } 5472 5473 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5474 Value *In0 = const_cast<Value *>(V); 5475 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5476 if (!PN) 5477 return false; 5478 5479 return Inductions.count(PN); 5480 } 5481 5482 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5483 return FirstOrderRecurrences.count(Phi); 5484 } 5485 5486 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5487 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5488 } 5489 5490 bool LoopVectorizationLegality::blockCanBePredicated( 5491 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5492 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5493 5494 for (Instruction &I : *BB) { 5495 // Check that we don't have a constant expression that can trap as operand. 5496 for (Value *Operand : I.operands()) { 5497 if (auto *C = dyn_cast<Constant>(Operand)) 5498 if (C->canTrap()) 5499 return false; 5500 } 5501 // We might be able to hoist the load. 5502 if (I.mayReadFromMemory()) { 5503 auto *LI = dyn_cast<LoadInst>(&I); 5504 if (!LI) 5505 return false; 5506 if (!SafePtrs.count(LI->getPointerOperand())) { 5507 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5508 isLegalMaskedGather(LI->getType())) { 5509 MaskedOp.insert(LI); 5510 continue; 5511 } 5512 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5513 if (IsAnnotatedParallel) 5514 continue; 5515 return false; 5516 } 5517 } 5518 5519 if (I.mayWriteToMemory()) { 5520 auto *SI = dyn_cast<StoreInst>(&I); 5521 // We only support predication of stores in basic blocks with one 5522 // predecessor. 5523 if (!SI) 5524 return false; 5525 5526 // Build a masked store if it is legal for the target. 5527 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5528 SI->getPointerOperand()) || 5529 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5530 MaskedOp.insert(SI); 5531 continue; 5532 } 5533 5534 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5535 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5536 5537 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5538 !isSinglePredecessor) 5539 return false; 5540 } 5541 if (I.mayThrow()) 5542 return false; 5543 } 5544 5545 return true; 5546 } 5547 5548 void InterleavedAccessInfo::collectConstStrideAccesses( 5549 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5550 const ValueToValueMap &Strides) { 5551 5552 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5553 5554 // Since it's desired that the load/store instructions be maintained in 5555 // "program order" for the interleaved access analysis, we have to visit the 5556 // blocks in the loop in reverse postorder (i.e., in a topological order). 5557 // Such an ordering will ensure that any load/store that may be executed 5558 // before a second load/store will precede the second load/store in 5559 // AccessStrideInfo. 5560 LoopBlocksDFS DFS(TheLoop); 5561 DFS.perform(LI); 5562 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5563 for (auto &I : *BB) { 5564 auto *LI = dyn_cast<LoadInst>(&I); 5565 auto *SI = dyn_cast<StoreInst>(&I); 5566 if (!LI && !SI) 5567 continue; 5568 5569 Value *Ptr = getPointerOperand(&I); 5570 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides); 5571 5572 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5573 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5574 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5575 5576 // An alignment of 0 means target ABI alignment. 5577 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); 5578 if (!Align) 5579 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5580 5581 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 5582 } 5583 } 5584 5585 // Analyze interleaved accesses and collect them into interleaved load and 5586 // store groups. 5587 // 5588 // When generating code for an interleaved load group, we effectively hoist all 5589 // loads in the group to the location of the first load in program order. When 5590 // generating code for an interleaved store group, we sink all stores to the 5591 // location of the last store. This code motion can change the order of load 5592 // and store instructions and may break dependences. 5593 // 5594 // The code generation strategy mentioned above ensures that we won't violate 5595 // any write-after-read (WAR) dependences. 5596 // 5597 // E.g., for the WAR dependence: a = A[i]; // (1) 5598 // A[i] = b; // (2) 5599 // 5600 // The store group of (2) is always inserted at or below (2), and the load 5601 // group of (1) is always inserted at or above (1). Thus, the instructions will 5602 // never be reordered. All other dependences are checked to ensure the 5603 // correctness of the instruction reordering. 5604 // 5605 // The algorithm visits all memory accesses in the loop in bottom-up program 5606 // order. Program order is established by traversing the blocks in the loop in 5607 // reverse postorder when collecting the accesses. 5608 // 5609 // We visit the memory accesses in bottom-up order because it can simplify the 5610 // construction of store groups in the presence of write-after-write (WAW) 5611 // dependences. 5612 // 5613 // E.g., for the WAW dependence: A[i] = a; // (1) 5614 // A[i] = b; // (2) 5615 // A[i + 1] = c; // (3) 5616 // 5617 // We will first create a store group with (3) and (2). (1) can't be added to 5618 // this group because it and (2) are dependent. However, (1) can be grouped 5619 // with other accesses that may precede it in program order. Note that a 5620 // bottom-up order does not imply that WAW dependences should not be checked. 5621 void InterleavedAccessInfo::analyzeInterleaving( 5622 const ValueToValueMap &Strides) { 5623 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5624 5625 // Holds all accesses with a constant stride. 5626 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 5627 collectConstStrideAccesses(AccessStrideInfo, Strides); 5628 5629 if (AccessStrideInfo.empty()) 5630 return; 5631 5632 // Collect the dependences in the loop. 5633 collectDependences(); 5634 5635 // Holds all interleaved store groups temporarily. 5636 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5637 // Holds all interleaved load groups temporarily. 5638 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5639 5640 // Search in bottom-up program order for pairs of accesses (A and B) that can 5641 // form interleaved load or store groups. In the algorithm below, access A 5642 // precedes access B in program order. We initialize a group for B in the 5643 // outer loop of the algorithm, and then in the inner loop, we attempt to 5644 // insert each A into B's group if: 5645 // 5646 // 1. A and B have the same stride, 5647 // 2. A and B have the same memory object size, and 5648 // 3. A belongs in B's group according to its distance from B. 5649 // 5650 // Special care is taken to ensure group formation will not break any 5651 // dependences. 5652 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 5653 BI != E; ++BI) { 5654 Instruction *B = BI->first; 5655 StrideDescriptor DesB = BI->second; 5656 5657 // Initialize a group for B if it has an allowable stride. Even if we don't 5658 // create a group for B, we continue with the bottom-up algorithm to ensure 5659 // we don't break any of B's dependences. 5660 InterleaveGroup *Group = nullptr; 5661 if (isStrided(DesB.Stride)) { 5662 Group = getInterleaveGroup(B); 5663 if (!Group) { 5664 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 5665 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 5666 } 5667 if (B->mayWriteToMemory()) 5668 StoreGroups.insert(Group); 5669 else 5670 LoadGroups.insert(Group); 5671 } 5672 5673 for (auto AI = std::next(BI); AI != E; ++AI) { 5674 Instruction *A = AI->first; 5675 StrideDescriptor DesA = AI->second; 5676 5677 // Our code motion strategy implies that we can't have dependences 5678 // between accesses in an interleaved group and other accesses located 5679 // between the first and last member of the group. Note that this also 5680 // means that a group can't have more than one member at a given offset. 5681 // The accesses in a group can have dependences with other accesses, but 5682 // we must ensure we don't extend the boundaries of the group such that 5683 // we encompass those dependent accesses. 5684 // 5685 // For example, assume we have the sequence of accesses shown below in a 5686 // stride-2 loop: 5687 // 5688 // (1, 2) is a group | A[i] = a; // (1) 5689 // | A[i-1] = b; // (2) | 5690 // A[i-3] = c; // (3) 5691 // A[i] = d; // (4) | (2, 4) is not a group 5692 // 5693 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 5694 // but not with (4). If we did, the dependent access (3) would be within 5695 // the boundaries of the (2, 4) group. 5696 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 5697 5698 // If a dependence exists and A is already in a group, we know that A 5699 // must be a store since A precedes B and WAR dependences are allowed. 5700 // Thus, A would be sunk below B. We release A's group to prevent this 5701 // illegal code motion. A will then be free to form another group with 5702 // instructions that precede it. 5703 if (isInterleaved(A)) { 5704 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 5705 StoreGroups.remove(StoreGroup); 5706 releaseGroup(StoreGroup); 5707 } 5708 5709 // If a dependence exists and A is not already in a group (or it was 5710 // and we just released it), B might be hoisted above A (if B is a 5711 // load) or another store might be sunk below A (if B is a store). In 5712 // either case, we can't add additional instructions to B's group. B 5713 // will only form a group with instructions that it precedes. 5714 break; 5715 } 5716 5717 // At this point, we've checked for illegal code motion. If either A or B 5718 // isn't strided, there's nothing left to do. 5719 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 5720 continue; 5721 5722 // Ignore A if it's already in a group or isn't the same kind of memory 5723 // operation as B. 5724 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 5725 continue; 5726 5727 // Check rules 1 and 2. Ignore A if its stride or size is different from 5728 // that of B. 5729 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 5730 continue; 5731 5732 // Calculate the distance from A to B. 5733 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 5734 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 5735 if (!DistToB) 5736 continue; 5737 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 5738 5739 // Check rule 3. Ignore A if its distance to B is not a multiple of the 5740 // size. 5741 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 5742 continue; 5743 5744 // Ignore A if either A or B is in a predicated block. Although we 5745 // currently prevent group formation for predicated accesses, we may be 5746 // able to relax this limitation in the future once we handle more 5747 // complicated blocks. 5748 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 5749 continue; 5750 5751 // The index of A is the index of B plus A's distance to B in multiples 5752 // of the size. 5753 int IndexA = 5754 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 5755 5756 // Try to insert A into B's group. 5757 if (Group->insertMember(A, IndexA, DesA.Align)) { 5758 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 5759 << " into the interleave group with" << *B << '\n'); 5760 InterleaveGroupMap[A] = Group; 5761 5762 // Set the first load in program order as the insert position. 5763 if (A->mayReadFromMemory()) 5764 Group->setInsertPos(A); 5765 } 5766 } // Iteration over A accesses. 5767 } // Iteration over B accesses. 5768 5769 // Remove interleaved store groups with gaps. 5770 for (InterleaveGroup *Group : StoreGroups) 5771 if (Group->getNumMembers() != Group->getFactor()) 5772 releaseGroup(Group); 5773 5774 // If there is a non-reversed interleaved load group with gaps, we will need 5775 // to execute at least one scalar epilogue iteration. This will ensure that 5776 // we don't speculatively access memory out-of-bounds. Note that we only need 5777 // to look for a member at index factor - 1, since every group must have a 5778 // member at index zero. 5779 for (InterleaveGroup *Group : LoadGroups) 5780 if (!Group->getMember(Group->getFactor() - 1)) { 5781 if (Group->isReverse()) { 5782 releaseGroup(Group); 5783 } else { 5784 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 5785 RequiresScalarEpilogue = true; 5786 } 5787 } 5788 } 5789 5790 LoopVectorizationCostModel::VectorizationFactor 5791 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 5792 // Width 1 means no vectorize 5793 VectorizationFactor Factor = {1U, 0U}; 5794 if (OptForSize && Legal->getRuntimePointerChecking()->Need) { 5795 emitAnalysis( 5796 VectorizationReport() 5797 << "runtime pointer checks needed. Enable vectorization of this " 5798 "loop with '#pragma clang loop vectorize(enable)' when " 5799 "compiling with -Os/-Oz"); 5800 DEBUG(dbgs() 5801 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 5802 return Factor; 5803 } 5804 5805 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 5806 emitAnalysis( 5807 VectorizationReport() 5808 << "store that is conditionally executed prevents vectorization"); 5809 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5810 return Factor; 5811 } 5812 5813 // Find the trip count. 5814 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5815 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5816 5817 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5818 unsigned SmallestType, WidestType; 5819 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5820 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5821 unsigned MaxSafeDepDist = -1U; 5822 5823 // Get the maximum safe dependence distance in bits computed by LAA. If the 5824 // loop contains any interleaved accesses, we divide the dependence distance 5825 // by the maximum interleave factor of all interleaved groups. Note that 5826 // although the division ensures correctness, this is a fairly conservative 5827 // computation because the maximum distance computed by LAA may not involve 5828 // any of the interleaved accesses. 5829 if (Legal->getMaxSafeDepDistBytes() != -1U) 5830 MaxSafeDepDist = 5831 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 5832 5833 WidestRegister = 5834 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 5835 unsigned MaxVectorSize = WidestRegister / WidestType; 5836 5837 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 5838 << WidestType << " bits.\n"); 5839 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 5840 << " bits.\n"); 5841 5842 if (MaxVectorSize == 0) { 5843 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5844 MaxVectorSize = 1; 5845 } 5846 5847 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 5848 " into one vector!"); 5849 5850 unsigned VF = MaxVectorSize; 5851 if (MaximizeBandwidth && !OptForSize) { 5852 // Collect all viable vectorization factors. 5853 SmallVector<unsigned, 8> VFs; 5854 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5855 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 5856 VFs.push_back(VS); 5857 5858 // For each VF calculate its register usage. 5859 auto RUs = calculateRegisterUsage(VFs); 5860 5861 // Select the largest VF which doesn't require more registers than existing 5862 // ones. 5863 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 5864 for (int i = RUs.size() - 1; i >= 0; --i) { 5865 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 5866 VF = VFs[i]; 5867 break; 5868 } 5869 } 5870 } 5871 5872 // If we optimize the program for size, avoid creating the tail loop. 5873 if (OptForSize) { 5874 // If we are unable to calculate the trip count then don't try to vectorize. 5875 if (TC < 2) { 5876 emitAnalysis( 5877 VectorizationReport() 5878 << "unable to calculate the loop count due to complex control flow"); 5879 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5880 return Factor; 5881 } 5882 5883 // Find the maximum SIMD width that can fit within the trip count. 5884 VF = TC % MaxVectorSize; 5885 5886 if (VF == 0) 5887 VF = MaxVectorSize; 5888 else { 5889 // If the trip count that we found modulo the vectorization factor is not 5890 // zero then we require a tail. 5891 emitAnalysis(VectorizationReport() 5892 << "cannot optimize for size and vectorize at the " 5893 "same time. Enable vectorization of this loop " 5894 "with '#pragma clang loop vectorize(enable)' " 5895 "when compiling with -Os/-Oz"); 5896 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5897 return Factor; 5898 } 5899 } 5900 5901 int UserVF = Hints->getWidth(); 5902 if (UserVF != 0) { 5903 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5904 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5905 5906 Factor.Width = UserVF; 5907 return Factor; 5908 } 5909 5910 float Cost = expectedCost(1).first; 5911 #ifndef NDEBUG 5912 const float ScalarCost = Cost; 5913 #endif /* NDEBUG */ 5914 unsigned Width = 1; 5915 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5916 5917 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5918 // Ignore scalar width, because the user explicitly wants vectorization. 5919 if (ForceVectorization && VF > 1) { 5920 Width = 2; 5921 Cost = expectedCost(Width).first / (float)Width; 5922 } 5923 5924 for (unsigned i = 2; i <= VF; i *= 2) { 5925 // Notice that the vector loop needs to be executed less times, so 5926 // we need to divide the cost of the vector loops by the width of 5927 // the vector elements. 5928 VectorizationCostTy C = expectedCost(i); 5929 float VectorCost = C.first / (float)i; 5930 DEBUG(dbgs() << "LV: Vector loop of width " << i 5931 << " costs: " << (int)VectorCost << ".\n"); 5932 if (!C.second && !ForceVectorization) { 5933 DEBUG( 5934 dbgs() << "LV: Not considering vector loop of width " << i 5935 << " because it will not generate any vector instructions.\n"); 5936 continue; 5937 } 5938 if (VectorCost < Cost) { 5939 Cost = VectorCost; 5940 Width = i; 5941 } 5942 } 5943 5944 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5945 << "LV: Vectorization seems to be not beneficial, " 5946 << "but was forced by a user.\n"); 5947 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5948 Factor.Width = Width; 5949 Factor.Cost = Width * Cost; 5950 return Factor; 5951 } 5952 5953 std::pair<unsigned, unsigned> 5954 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5955 unsigned MinWidth = -1U; 5956 unsigned MaxWidth = 8; 5957 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5958 5959 // For each block. 5960 for (BasicBlock *BB : TheLoop->blocks()) { 5961 // For each instruction in the loop. 5962 for (Instruction &I : *BB) { 5963 Type *T = I.getType(); 5964 5965 // Skip ignored values. 5966 if (ValuesToIgnore.count(&I)) 5967 continue; 5968 5969 // Only examine Loads, Stores and PHINodes. 5970 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5971 continue; 5972 5973 // Examine PHI nodes that are reduction variables. Update the type to 5974 // account for the recurrence type. 5975 if (auto *PN = dyn_cast<PHINode>(&I)) { 5976 if (!Legal->isReductionVariable(PN)) 5977 continue; 5978 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 5979 T = RdxDesc.getRecurrenceType(); 5980 } 5981 5982 // Examine the stored values. 5983 if (auto *ST = dyn_cast<StoreInst>(&I)) 5984 T = ST->getValueOperand()->getType(); 5985 5986 // Ignore loaded pointer types and stored pointer types that are not 5987 // consecutive. However, we do want to take consecutive stores/loads of 5988 // pointer vectors into account. 5989 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I)) 5990 continue; 5991 5992 MinWidth = std::min(MinWidth, 5993 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5994 MaxWidth = std::max(MaxWidth, 5995 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5996 } 5997 } 5998 5999 return {MinWidth, MaxWidth}; 6000 } 6001 6002 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6003 unsigned VF, 6004 unsigned LoopCost) { 6005 6006 // -- The interleave heuristics -- 6007 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6008 // There are many micro-architectural considerations that we can't predict 6009 // at this level. For example, frontend pressure (on decode or fetch) due to 6010 // code size, or the number and capabilities of the execution ports. 6011 // 6012 // We use the following heuristics to select the interleave count: 6013 // 1. If the code has reductions, then we interleave to break the cross 6014 // iteration dependency. 6015 // 2. If the loop is really small, then we interleave to reduce the loop 6016 // overhead. 6017 // 3. We don't interleave if we think that we will spill registers to memory 6018 // due to the increased register pressure. 6019 6020 // When we optimize for size, we don't interleave. 6021 if (OptForSize) 6022 return 1; 6023 6024 // We used the distance for the interleave count. 6025 if (Legal->getMaxSafeDepDistBytes() != -1U) 6026 return 1; 6027 6028 // Do not interleave loops with a relatively small trip count. 6029 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6030 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6031 return 1; 6032 6033 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6034 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6035 << " registers\n"); 6036 6037 if (VF == 1) { 6038 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6039 TargetNumRegisters = ForceTargetNumScalarRegs; 6040 } else { 6041 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6042 TargetNumRegisters = ForceTargetNumVectorRegs; 6043 } 6044 6045 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6046 // We divide by these constants so assume that we have at least one 6047 // instruction that uses at least one register. 6048 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6049 R.NumInstructions = std::max(R.NumInstructions, 1U); 6050 6051 // We calculate the interleave count using the following formula. 6052 // Subtract the number of loop invariants from the number of available 6053 // registers. These registers are used by all of the interleaved instances. 6054 // Next, divide the remaining registers by the number of registers that is 6055 // required by the loop, in order to estimate how many parallel instances 6056 // fit without causing spills. All of this is rounded down if necessary to be 6057 // a power of two. We want power of two interleave count to simplify any 6058 // addressing operations or alignment considerations. 6059 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6060 R.MaxLocalUsers); 6061 6062 // Don't count the induction variable as interleaved. 6063 if (EnableIndVarRegisterHeur) 6064 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6065 std::max(1U, (R.MaxLocalUsers - 1))); 6066 6067 // Clamp the interleave ranges to reasonable counts. 6068 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6069 6070 // Check if the user has overridden the max. 6071 if (VF == 1) { 6072 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6073 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6074 } else { 6075 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6076 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6077 } 6078 6079 // If we did not calculate the cost for VF (because the user selected the VF) 6080 // then we calculate the cost of VF here. 6081 if (LoopCost == 0) 6082 LoopCost = expectedCost(VF).first; 6083 6084 // Clamp the calculated IC to be between the 1 and the max interleave count 6085 // that the target allows. 6086 if (IC > MaxInterleaveCount) 6087 IC = MaxInterleaveCount; 6088 else if (IC < 1) 6089 IC = 1; 6090 6091 // Interleave if we vectorized this loop and there is a reduction that could 6092 // benefit from interleaving. 6093 if (VF > 1 && Legal->getReductionVars()->size()) { 6094 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6095 return IC; 6096 } 6097 6098 // Note that if we've already vectorized the loop we will have done the 6099 // runtime check and so interleaving won't require further checks. 6100 bool InterleavingRequiresRuntimePointerCheck = 6101 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6102 6103 // We want to interleave small loops in order to reduce the loop overhead and 6104 // potentially expose ILP opportunities. 6105 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6106 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6107 // We assume that the cost overhead is 1 and we use the cost model 6108 // to estimate the cost of the loop and interleave until the cost of the 6109 // loop overhead is about 5% of the cost of the loop. 6110 unsigned SmallIC = 6111 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6112 6113 // Interleave until store/load ports (estimated by max interleave count) are 6114 // saturated. 6115 unsigned NumStores = Legal->getNumStores(); 6116 unsigned NumLoads = Legal->getNumLoads(); 6117 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6118 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6119 6120 // If we have a scalar reduction (vector reductions are already dealt with 6121 // by this point), we can increase the critical path length if the loop 6122 // we're interleaving is inside another loop. Limit, by default to 2, so the 6123 // critical path only gets increased by one reduction operation. 6124 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 6125 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6126 SmallIC = std::min(SmallIC, F); 6127 StoresIC = std::min(StoresIC, F); 6128 LoadsIC = std::min(LoadsIC, F); 6129 } 6130 6131 if (EnableLoadStoreRuntimeInterleave && 6132 std::max(StoresIC, LoadsIC) > SmallIC) { 6133 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6134 return std::max(StoresIC, LoadsIC); 6135 } 6136 6137 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6138 return SmallIC; 6139 } 6140 6141 // Interleave if this is a large loop (small loops are already dealt with by 6142 // this point) that could benefit from interleaving. 6143 bool HasReductions = (Legal->getReductionVars()->size() > 0); 6144 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6145 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6146 return IC; 6147 } 6148 6149 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6150 return 1; 6151 } 6152 6153 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6154 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6155 // This function calculates the register usage by measuring the highest number 6156 // of values that are alive at a single location. Obviously, this is a very 6157 // rough estimation. We scan the loop in a topological order in order and 6158 // assign a number to each instruction. We use RPO to ensure that defs are 6159 // met before their users. We assume that each instruction that has in-loop 6160 // users starts an interval. We record every time that an in-loop value is 6161 // used, so we have a list of the first and last occurrences of each 6162 // instruction. Next, we transpose this data structure into a multi map that 6163 // holds the list of intervals that *end* at a specific location. This multi 6164 // map allows us to perform a linear search. We scan the instructions linearly 6165 // and record each time that a new interval starts, by placing it in a set. 6166 // If we find this value in the multi-map then we remove it from the set. 6167 // The max register usage is the maximum size of the set. 6168 // We also search for instructions that are defined outside the loop, but are 6169 // used inside the loop. We need this number separately from the max-interval 6170 // usage number because when we unroll, loop-invariant values do not take 6171 // more register. 6172 LoopBlocksDFS DFS(TheLoop); 6173 DFS.perform(LI); 6174 6175 RegisterUsage RU; 6176 RU.NumInstructions = 0; 6177 6178 // Each 'key' in the map opens a new interval. The values 6179 // of the map are the index of the 'last seen' usage of the 6180 // instruction that is the key. 6181 typedef DenseMap<Instruction *, unsigned> IntervalMap; 6182 // Maps instruction to its index. 6183 DenseMap<unsigned, Instruction *> IdxToInstr; 6184 // Marks the end of each interval. 6185 IntervalMap EndPoint; 6186 // Saves the list of instruction indices that are used in the loop. 6187 SmallSet<Instruction *, 8> Ends; 6188 // Saves the list of values that are used in the loop but are 6189 // defined outside the loop, such as arguments and constants. 6190 SmallPtrSet<Value *, 8> LoopInvariants; 6191 6192 unsigned Index = 0; 6193 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6194 RU.NumInstructions += BB->size(); 6195 for (Instruction &I : *BB) { 6196 IdxToInstr[Index++] = &I; 6197 6198 // Save the end location of each USE. 6199 for (Value *U : I.operands()) { 6200 auto *Instr = dyn_cast<Instruction>(U); 6201 6202 // Ignore non-instruction values such as arguments, constants, etc. 6203 if (!Instr) 6204 continue; 6205 6206 // If this instruction is outside the loop then record it and continue. 6207 if (!TheLoop->contains(Instr)) { 6208 LoopInvariants.insert(Instr); 6209 continue; 6210 } 6211 6212 // Overwrite previous end points. 6213 EndPoint[Instr] = Index; 6214 Ends.insert(Instr); 6215 } 6216 } 6217 } 6218 6219 // Saves the list of intervals that end with the index in 'key'. 6220 typedef SmallVector<Instruction *, 2> InstrList; 6221 DenseMap<unsigned, InstrList> TransposeEnds; 6222 6223 // Transpose the EndPoints to a list of values that end at each index. 6224 for (auto &Interval : EndPoint) 6225 TransposeEnds[Interval.second].push_back(Interval.first); 6226 6227 SmallSet<Instruction *, 8> OpenIntervals; 6228 6229 // Get the size of the widest register. 6230 unsigned MaxSafeDepDist = -1U; 6231 if (Legal->getMaxSafeDepDistBytes() != -1U) 6232 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6233 unsigned WidestRegister = 6234 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6235 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6236 6237 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6238 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6239 6240 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6241 6242 // A lambda that gets the register usage for the given type and VF. 6243 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6244 if (Ty->isTokenTy()) 6245 return 0U; 6246 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6247 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6248 }; 6249 6250 for (unsigned int i = 0; i < Index; ++i) { 6251 Instruction *I = IdxToInstr[i]; 6252 // Ignore instructions that are never used within the loop. 6253 if (!Ends.count(I)) 6254 continue; 6255 6256 // Remove all of the instructions that end at this location. 6257 InstrList &List = TransposeEnds[i]; 6258 for (Instruction *ToRemove : List) 6259 OpenIntervals.erase(ToRemove); 6260 6261 // Skip ignored values. 6262 if (ValuesToIgnore.count(I)) 6263 continue; 6264 6265 // For each VF find the maximum usage of registers. 6266 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6267 if (VFs[j] == 1) { 6268 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6269 continue; 6270 } 6271 6272 // Count the number of live intervals. 6273 unsigned RegUsage = 0; 6274 for (auto Inst : OpenIntervals) { 6275 // Skip ignored values for VF > 1. 6276 if (VecValuesToIgnore.count(Inst)) 6277 continue; 6278 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6279 } 6280 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6281 } 6282 6283 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6284 << OpenIntervals.size() << '\n'); 6285 6286 // Add the current instruction to the list of open intervals. 6287 OpenIntervals.insert(I); 6288 } 6289 6290 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6291 unsigned Invariant = 0; 6292 if (VFs[i] == 1) 6293 Invariant = LoopInvariants.size(); 6294 else { 6295 for (auto Inst : LoopInvariants) 6296 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6297 } 6298 6299 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6300 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6301 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6302 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6303 6304 RU.LoopInvariantRegs = Invariant; 6305 RU.MaxLocalUsers = MaxUsages[i]; 6306 RUs[i] = RU; 6307 } 6308 6309 return RUs; 6310 } 6311 6312 LoopVectorizationCostModel::VectorizationCostTy 6313 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6314 VectorizationCostTy Cost; 6315 6316 // For each block. 6317 for (BasicBlock *BB : TheLoop->blocks()) { 6318 VectorizationCostTy BlockCost; 6319 6320 // For each instruction in the old loop. 6321 for (Instruction &I : *BB) { 6322 // Skip dbg intrinsics. 6323 if (isa<DbgInfoIntrinsic>(I)) 6324 continue; 6325 6326 // Skip ignored values. 6327 if (ValuesToIgnore.count(&I)) 6328 continue; 6329 6330 VectorizationCostTy C = getInstructionCost(&I, VF); 6331 6332 // Check if we should override the cost. 6333 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6334 C.first = ForceTargetInstructionCost; 6335 6336 BlockCost.first += C.first; 6337 BlockCost.second |= C.second; 6338 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6339 << VF << " For instruction: " << I << '\n'); 6340 } 6341 6342 // We assume that if-converted blocks have a 50% chance of being executed. 6343 // When the code is scalar then some of the blocks are avoided due to CF. 6344 // When the code is vectorized we execute all code paths. 6345 if (VF == 1 && Legal->blockNeedsPredication(BB)) 6346 BlockCost.first /= 2; 6347 6348 Cost.first += BlockCost.first; 6349 Cost.second |= BlockCost.second; 6350 } 6351 6352 return Cost; 6353 } 6354 6355 /// \brief Check whether the address computation for a non-consecutive memory 6356 /// access looks like an unlikely candidate for being merged into the indexing 6357 /// mode. 6358 /// 6359 /// We look for a GEP which has one index that is an induction variable and all 6360 /// other indices are loop invariant. If the stride of this access is also 6361 /// within a small bound we decide that this address computation can likely be 6362 /// merged into the addressing mode. 6363 /// In all other cases, we identify the address computation as complex. 6364 static bool isLikelyComplexAddressComputation(Value *Ptr, 6365 LoopVectorizationLegality *Legal, 6366 ScalarEvolution *SE, 6367 const Loop *TheLoop) { 6368 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6369 if (!Gep) 6370 return true; 6371 6372 // We are looking for a gep with all loop invariant indices except for one 6373 // which should be an induction variable. 6374 unsigned NumOperands = Gep->getNumOperands(); 6375 for (unsigned i = 1; i < NumOperands; ++i) { 6376 Value *Opd = Gep->getOperand(i); 6377 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6378 !Legal->isInductionVariable(Opd)) 6379 return true; 6380 } 6381 6382 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 6383 // can likely be merged into the address computation. 6384 unsigned MaxMergeDistance = 64; 6385 6386 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 6387 if (!AddRec) 6388 return true; 6389 6390 // Check the step is constant. 6391 const SCEV *Step = AddRec->getStepRecurrence(*SE); 6392 // Calculate the pointer stride and check if it is consecutive. 6393 const auto *C = dyn_cast<SCEVConstant>(Step); 6394 if (!C) 6395 return true; 6396 6397 const APInt &APStepVal = C->getAPInt(); 6398 6399 // Huge step value - give up. 6400 if (APStepVal.getBitWidth() > 64) 6401 return true; 6402 6403 int64_t StepVal = APStepVal.getSExtValue(); 6404 6405 return StepVal > MaxMergeDistance; 6406 } 6407 6408 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6409 return Legal->hasStride(I->getOperand(0)) || 6410 Legal->hasStride(I->getOperand(1)); 6411 } 6412 6413 LoopVectorizationCostModel::VectorizationCostTy 6414 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 6415 // If we know that this instruction will remain uniform, check the cost of 6416 // the scalar version. 6417 if (Legal->isUniformAfterVectorization(I)) 6418 VF = 1; 6419 6420 Type *VectorTy; 6421 unsigned C = getInstructionCost(I, VF, VectorTy); 6422 6423 bool TypeNotScalarized = 6424 VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF; 6425 return VectorizationCostTy(C, TypeNotScalarized); 6426 } 6427 6428 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6429 unsigned VF, 6430 Type *&VectorTy) { 6431 Type *RetTy = I->getType(); 6432 if (VF > 1 && MinBWs.count(I)) 6433 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6434 VectorTy = ToVectorTy(RetTy, VF); 6435 auto SE = PSE.getSE(); 6436 6437 // TODO: We need to estimate the cost of intrinsic calls. 6438 switch (I->getOpcode()) { 6439 case Instruction::GetElementPtr: 6440 // We mark this instruction as zero-cost because the cost of GEPs in 6441 // vectorized code depends on whether the corresponding memory instruction 6442 // is scalarized or not. Therefore, we handle GEPs with the memory 6443 // instruction cost. 6444 return 0; 6445 case Instruction::Br: { 6446 return TTI.getCFInstrCost(I->getOpcode()); 6447 } 6448 case Instruction::PHI: { 6449 auto *Phi = cast<PHINode>(I); 6450 6451 // First-order recurrences are replaced by vector shuffles inside the loop. 6452 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6453 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6454 VectorTy, VF - 1, VectorTy); 6455 6456 // TODO: IF-converted IFs become selects. 6457 return 0; 6458 } 6459 case Instruction::UDiv: 6460 case Instruction::SDiv: 6461 case Instruction::URem: 6462 case Instruction::SRem: 6463 // We assume that if-converted blocks have a 50% chance of being executed. 6464 // Predicated scalarized instructions are avoided due to the CF that 6465 // bypasses turned off lanes. If we are not predicating, fallthrough. 6466 if (VF > 1 && mayDivideByZero(*I) && 6467 Legal->blockNeedsPredication(I->getParent())) 6468 return VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy) / 2 + 6469 getScalarizationOverhead(I, VF, true, TTI); 6470 case Instruction::Add: 6471 case Instruction::FAdd: 6472 case Instruction::Sub: 6473 case Instruction::FSub: 6474 case Instruction::Mul: 6475 case Instruction::FMul: 6476 case Instruction::FDiv: 6477 case Instruction::FRem: 6478 case Instruction::Shl: 6479 case Instruction::LShr: 6480 case Instruction::AShr: 6481 case Instruction::And: 6482 case Instruction::Or: 6483 case Instruction::Xor: { 6484 // Since we will replace the stride by 1 the multiplication should go away. 6485 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6486 return 0; 6487 // Certain instructions can be cheaper to vectorize if they have a constant 6488 // second vector operand. One example of this are shifts on x86. 6489 TargetTransformInfo::OperandValueKind Op1VK = 6490 TargetTransformInfo::OK_AnyValue; 6491 TargetTransformInfo::OperandValueKind Op2VK = 6492 TargetTransformInfo::OK_AnyValue; 6493 TargetTransformInfo::OperandValueProperties Op1VP = 6494 TargetTransformInfo::OP_None; 6495 TargetTransformInfo::OperandValueProperties Op2VP = 6496 TargetTransformInfo::OP_None; 6497 Value *Op2 = I->getOperand(1); 6498 6499 // Check for a splat or for a non uniform vector of constants. 6500 if (isa<ConstantInt>(Op2)) { 6501 ConstantInt *CInt = cast<ConstantInt>(Op2); 6502 if (CInt && CInt->getValue().isPowerOf2()) 6503 Op2VP = TargetTransformInfo::OP_PowerOf2; 6504 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6505 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 6506 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 6507 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 6508 if (SplatValue) { 6509 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 6510 if (CInt && CInt->getValue().isPowerOf2()) 6511 Op2VP = TargetTransformInfo::OP_PowerOf2; 6512 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6513 } 6514 } else if (Legal->isUniform(Op2)) { 6515 Op2VK = TargetTransformInfo::OK_UniformValue; 6516 } 6517 6518 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 6519 Op1VP, Op2VP); 6520 } 6521 case Instruction::Select: { 6522 SelectInst *SI = cast<SelectInst>(I); 6523 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6524 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6525 Type *CondTy = SI->getCondition()->getType(); 6526 if (!ScalarCond) 6527 CondTy = VectorType::get(CondTy, VF); 6528 6529 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 6530 } 6531 case Instruction::ICmp: 6532 case Instruction::FCmp: { 6533 Type *ValTy = I->getOperand(0)->getType(); 6534 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6535 auto It = MinBWs.find(Op0AsInstruction); 6536 if (VF > 1 && It != MinBWs.end()) 6537 ValTy = IntegerType::get(ValTy->getContext(), It->second); 6538 VectorTy = ToVectorTy(ValTy, VF); 6539 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 6540 } 6541 case Instruction::Store: 6542 case Instruction::Load: { 6543 StoreInst *SI = dyn_cast<StoreInst>(I); 6544 LoadInst *LI = dyn_cast<LoadInst>(I); 6545 Type *ValTy = (SI ? SI->getValueOperand()->getType() : LI->getType()); 6546 VectorTy = ToVectorTy(ValTy, VF); 6547 6548 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 6549 unsigned AS = 6550 SI ? SI->getPointerAddressSpace() : LI->getPointerAddressSpace(); 6551 Value *Ptr = getPointerOperand(I); 6552 // We add the cost of address computation here instead of with the gep 6553 // instruction because only here we know whether the operation is 6554 // scalarized. 6555 if (VF == 1) 6556 return TTI.getAddressComputationCost(VectorTy) + 6557 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6558 6559 if (LI && Legal->isUniform(Ptr)) { 6560 // Scalar load + broadcast 6561 unsigned Cost = TTI.getAddressComputationCost(ValTy->getScalarType()); 6562 Cost += TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6563 Alignment, AS); 6564 return Cost + 6565 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, ValTy); 6566 } 6567 6568 // For an interleaved access, calculate the total cost of the whole 6569 // interleave group. 6570 if (Legal->isAccessInterleaved(I)) { 6571 auto Group = Legal->getInterleavedAccessGroup(I); 6572 assert(Group && "Fail to get an interleaved access group."); 6573 6574 // Only calculate the cost once at the insert position. 6575 if (Group->getInsertPos() != I) 6576 return 0; 6577 6578 unsigned InterleaveFactor = Group->getFactor(); 6579 Type *WideVecTy = 6580 VectorType::get(VectorTy->getVectorElementType(), 6581 VectorTy->getVectorNumElements() * InterleaveFactor); 6582 6583 // Holds the indices of existing members in an interleaved load group. 6584 // An interleaved store group doesn't need this as it doesn't allow gaps. 6585 SmallVector<unsigned, 4> Indices; 6586 if (LI) { 6587 for (unsigned i = 0; i < InterleaveFactor; i++) 6588 if (Group->getMember(i)) 6589 Indices.push_back(i); 6590 } 6591 6592 // Calculate the cost of the whole interleaved group. 6593 unsigned Cost = TTI.getInterleavedMemoryOpCost( 6594 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 6595 Group->getAlignment(), AS); 6596 6597 if (Group->isReverse()) 6598 Cost += 6599 Group->getNumMembers() * 6600 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6601 6602 // FIXME: The interleaved load group with a huge gap could be even more 6603 // expensive than scalar operations. Then we could ignore such group and 6604 // use scalar operations instead. 6605 return Cost; 6606 } 6607 6608 // Check if the memory instruction will be scalarized. 6609 if (Legal->memoryInstructionMustBeScalarized(I, VF)) { 6610 bool IsComplexComputation = 6611 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 6612 unsigned Cost = 0; 6613 // The cost of extracting from the value vector and pointer vector. 6614 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6615 for (unsigned i = 0; i < VF; ++i) { 6616 // The cost of extracting the pointer operand. 6617 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 6618 // In case of STORE, the cost of ExtractElement from the vector. 6619 // In case of LOAD, the cost of InsertElement into the returned 6620 // vector. 6621 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement 6622 : Instruction::InsertElement, 6623 VectorTy, i); 6624 } 6625 6626 // The cost of the scalar loads/stores. 6627 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 6628 Cost += VF * 6629 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6630 Alignment, AS); 6631 return Cost; 6632 } 6633 6634 // Determine if the pointer operand of the access is either consecutive or 6635 // reverse consecutive. 6636 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6637 bool Reverse = ConsecutiveStride < 0; 6638 6639 // Determine if either a gather or scatter operation is legal. 6640 bool UseGatherOrScatter = 6641 !ConsecutiveStride && Legal->isLegalGatherOrScatter(I); 6642 6643 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 6644 if (UseGatherOrScatter) { 6645 assert(ConsecutiveStride == 0 && 6646 "Gather/Scatter are not used for consecutive stride"); 6647 return Cost + 6648 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 6649 Legal->isMaskRequired(I), Alignment); 6650 } 6651 // Wide load/stores. 6652 if (Legal->isMaskRequired(I)) 6653 Cost += 6654 TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6655 else 6656 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6657 6658 if (Reverse) 6659 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6660 return Cost; 6661 } 6662 case Instruction::ZExt: 6663 case Instruction::SExt: 6664 case Instruction::FPToUI: 6665 case Instruction::FPToSI: 6666 case Instruction::FPExt: 6667 case Instruction::PtrToInt: 6668 case Instruction::IntToPtr: 6669 case Instruction::SIToFP: 6670 case Instruction::UIToFP: 6671 case Instruction::Trunc: 6672 case Instruction::FPTrunc: 6673 case Instruction::BitCast: { 6674 // We optimize the truncation of induction variable. 6675 // The cost of these is the same as the scalar operation. 6676 if (I->getOpcode() == Instruction::Trunc && 6677 Legal->isInductionVariable(I->getOperand(0))) 6678 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 6679 I->getOperand(0)->getType()); 6680 6681 Type *SrcScalarTy = I->getOperand(0)->getType(); 6682 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 6683 if (VF > 1 && MinBWs.count(I)) { 6684 // This cast is going to be shrunk. This may remove the cast or it might 6685 // turn it into slightly different cast. For example, if MinBW == 16, 6686 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6687 // 6688 // Calculate the modified src and dest types. 6689 Type *MinVecTy = VectorTy; 6690 if (I->getOpcode() == Instruction::Trunc) { 6691 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6692 VectorTy = 6693 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6694 } else if (I->getOpcode() == Instruction::ZExt || 6695 I->getOpcode() == Instruction::SExt) { 6696 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6697 VectorTy = 6698 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6699 } 6700 } 6701 6702 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 6703 } 6704 case Instruction::Call: { 6705 bool NeedToScalarize; 6706 CallInst *CI = cast<CallInst>(I); 6707 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 6708 if (getVectorIntrinsicIDForCall(CI, TLI)) 6709 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 6710 return CallCost; 6711 } 6712 default: 6713 // The cost of executing VF copies of the scalar instruction. This opcode 6714 // is unknown. Assume that it is the same as 'mul'. 6715 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 6716 getScalarizationOverhead(I, VF, false, TTI); 6717 } // end of switch. 6718 } 6719 6720 char LoopVectorize::ID = 0; 6721 static const char lv_name[] = "Loop Vectorization"; 6722 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6723 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6724 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6725 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6726 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6727 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6728 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6729 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6730 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6731 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 6732 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6733 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6734 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6735 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6736 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6737 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6738 6739 namespace llvm { 6740 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6741 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6742 } 6743 } 6744 6745 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6746 6747 // Check if the pointer operand of a load or store instruction is 6748 // consecutive. 6749 if (auto *Ptr = getPointerOperand(Inst)) 6750 return Legal->isConsecutivePtr(Ptr); 6751 return false; 6752 } 6753 6754 void LoopVectorizationCostModel::collectValuesToIgnore() { 6755 // Ignore ephemeral values. 6756 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6757 6758 // Ignore type-promoting instructions we identified during reduction 6759 // detection. 6760 for (auto &Reduction : *Legal->getReductionVars()) { 6761 RecurrenceDescriptor &RedDes = Reduction.second; 6762 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6763 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6764 } 6765 6766 // Insert values known to be scalar into VecValuesToIgnore. 6767 for (auto *BB : TheLoop->getBlocks()) 6768 for (auto &I : *BB) 6769 if (Legal->isScalarAfterVectorization(&I)) 6770 VecValuesToIgnore.insert(&I); 6771 } 6772 6773 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 6774 bool IfPredicateInstr) { 6775 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 6776 // Holds vector parameters or scalars, in case of uniform vals. 6777 SmallVector<VectorParts, 4> Params; 6778 6779 setDebugLocFromInst(Builder, Instr); 6780 6781 // Does this instruction return a value ? 6782 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 6783 6784 // Initialize a new scalar map entry. 6785 ScalarParts Entry(UF); 6786 6787 VectorParts Cond; 6788 if (IfPredicateInstr) 6789 Cond = createBlockInMask(Instr->getParent()); 6790 6791 // For each vector unroll 'part': 6792 for (unsigned Part = 0; Part < UF; ++Part) { 6793 Entry[Part].resize(1); 6794 // For each scalar that we create: 6795 6796 // Start an "if (pred) a[i] = ..." block. 6797 Value *Cmp = nullptr; 6798 if (IfPredicateInstr) { 6799 if (Cond[Part]->getType()->isVectorTy()) 6800 Cond[Part] = 6801 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 6802 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 6803 ConstantInt::get(Cond[Part]->getType(), 1)); 6804 } 6805 6806 Instruction *Cloned = Instr->clone(); 6807 if (!IsVoidRetTy) 6808 Cloned->setName(Instr->getName() + ".cloned"); 6809 6810 // Replace the operands of the cloned instructions with their scalar 6811 // equivalents in the new loop. 6812 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6813 auto *NewOp = getScalarValue(Instr->getOperand(op), Part, 0); 6814 Cloned->setOperand(op, NewOp); 6815 } 6816 6817 // Place the cloned scalar in the new loop. 6818 Builder.Insert(Cloned); 6819 6820 // Add the cloned scalar to the scalar map entry. 6821 Entry[Part][0] = Cloned; 6822 6823 // If we just cloned a new assumption, add it the assumption cache. 6824 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 6825 if (II->getIntrinsicID() == Intrinsic::assume) 6826 AC->registerAssumption(II); 6827 6828 // End if-block. 6829 if (IfPredicateInstr) 6830 PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp)); 6831 } 6832 VectorLoopValueMap.initScalar(Instr, Entry); 6833 } 6834 6835 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 6836 auto *SI = dyn_cast<StoreInst>(Instr); 6837 bool IfPredicateInstr = (SI && Legal->blockNeedsPredication(SI->getParent())); 6838 6839 return scalarizeInstruction(Instr, IfPredicateInstr); 6840 } 6841 6842 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6843 6844 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6845 6846 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6847 Instruction::BinaryOps BinOp) { 6848 // When unrolling and the VF is 1, we only need to add a simple scalar. 6849 Type *Ty = Val->getType(); 6850 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6851 6852 if (Ty->isFloatingPointTy()) { 6853 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6854 6855 // Floating point operations had to be 'fast' to enable the unrolling. 6856 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6857 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6858 } 6859 Constant *C = ConstantInt::get(Ty, StartIdx); 6860 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6861 } 6862 6863 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6864 SmallVector<Metadata *, 4> MDs; 6865 // Reserve first location for self reference to the LoopID metadata node. 6866 MDs.push_back(nullptr); 6867 bool IsUnrollMetadata = false; 6868 MDNode *LoopID = L->getLoopID(); 6869 if (LoopID) { 6870 // First find existing loop unrolling disable metadata. 6871 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6872 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6873 if (MD) { 6874 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6875 IsUnrollMetadata = 6876 S && S->getString().startswith("llvm.loop.unroll.disable"); 6877 } 6878 MDs.push_back(LoopID->getOperand(i)); 6879 } 6880 } 6881 6882 if (!IsUnrollMetadata) { 6883 // Add runtime unroll disable metadata. 6884 LLVMContext &Context = L->getHeader()->getContext(); 6885 SmallVector<Metadata *, 1> DisableOperands; 6886 DisableOperands.push_back( 6887 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6888 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6889 MDs.push_back(DisableNode); 6890 MDNode *NewLoopID = MDNode::get(Context, MDs); 6891 // Set operand 0 to refer to the loop id itself. 6892 NewLoopID->replaceOperandWith(0, NewLoopID); 6893 L->setLoopID(NewLoopID); 6894 } 6895 } 6896 6897 bool LoopVectorizePass::processLoop(Loop *L) { 6898 assert(L->empty() && "Only process inner loops."); 6899 6900 #ifndef NDEBUG 6901 const std::string DebugLocStr = getDebugLocString(L); 6902 #endif /* NDEBUG */ 6903 6904 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 6905 << L->getHeader()->getParent()->getName() << "\" from " 6906 << DebugLocStr << "\n"); 6907 6908 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 6909 6910 DEBUG(dbgs() << "LV: Loop hints:" 6911 << " force=" 6912 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 6913 ? "disabled" 6914 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 6915 ? "enabled" 6916 : "?")) 6917 << " width=" << Hints.getWidth() 6918 << " unroll=" << Hints.getInterleave() << "\n"); 6919 6920 // Function containing loop 6921 Function *F = L->getHeader()->getParent(); 6922 6923 // Looking at the diagnostic output is the only way to determine if a loop 6924 // was vectorized (other than looking at the IR or machine code), so it 6925 // is important to generate an optimization remark for each loop. Most of 6926 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 6927 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 6928 // less verbose reporting vectorized loops and unvectorized loops that may 6929 // benefit from vectorization, respectively. 6930 6931 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 6932 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 6933 return false; 6934 } 6935 6936 // Check the loop for a trip count threshold: 6937 // do not vectorize loops with a tiny trip count. 6938 const unsigned TC = SE->getSmallConstantTripCount(L); 6939 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 6940 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 6941 << "This loop is not worth vectorizing."); 6942 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 6943 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 6944 else { 6945 DEBUG(dbgs() << "\n"); 6946 emitAnalysisDiag(L, Hints, *ORE, VectorizationReport() 6947 << "vectorization is not beneficial " 6948 "and is not explicitly forced"); 6949 return false; 6950 } 6951 } 6952 6953 PredicatedScalarEvolution PSE(*SE, *L); 6954 6955 // Check if it is legal to vectorize the loop. 6956 LoopVectorizationRequirements Requirements(*ORE); 6957 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 6958 &Requirements, &Hints); 6959 if (!LVL.canVectorize()) { 6960 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 6961 emitMissedWarning(F, L, Hints, ORE); 6962 return false; 6963 } 6964 6965 // Use the cost model. 6966 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 6967 &Hints); 6968 CM.collectValuesToIgnore(); 6969 6970 // Check the function attributes to find out if this function should be 6971 // optimized for size. 6972 bool OptForSize = 6973 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 6974 6975 // Compute the weighted frequency of this loop being executed and see if it 6976 // is less than 20% of the function entry baseline frequency. Note that we 6977 // always have a canonical loop here because we think we *can* vectorize. 6978 // FIXME: This is hidden behind a flag due to pervasive problems with 6979 // exactly what block frequency models. 6980 if (LoopVectorizeWithBlockFrequency) { 6981 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 6982 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 6983 LoopEntryFreq < ColdEntryFreq) 6984 OptForSize = true; 6985 } 6986 6987 // Check the function attributes to see if implicit floats are allowed. 6988 // FIXME: This check doesn't seem possibly correct -- what if the loop is 6989 // an integer loop and the vector instructions selected are purely integer 6990 // vector instructions? 6991 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 6992 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 6993 "attribute is used.\n"); 6994 emitAnalysisDiag( 6995 L, Hints, *ORE, 6996 VectorizationReport() 6997 << "loop not vectorized due to NoImplicitFloat attribute"); 6998 emitMissedWarning(F, L, Hints, ORE); 6999 return false; 7000 } 7001 7002 // Check if the target supports potentially unsafe FP vectorization. 7003 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7004 // for the target we're vectorizing for, to make sure none of the 7005 // additional fp-math flags can help. 7006 if (Hints.isPotentiallyUnsafe() && 7007 TTI->isFPVectorizationPotentiallyUnsafe()) { 7008 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7009 emitAnalysisDiag(L, Hints, *ORE, 7010 VectorizationReport() 7011 << "loop not vectorized due to unsafe FP support."); 7012 emitMissedWarning(F, L, Hints, ORE); 7013 return false; 7014 } 7015 7016 // Select the optimal vectorization factor. 7017 const LoopVectorizationCostModel::VectorizationFactor VF = 7018 CM.selectVectorizationFactor(OptForSize); 7019 7020 // Select the interleave count. 7021 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7022 7023 // Get user interleave count. 7024 unsigned UserIC = Hints.getInterleave(); 7025 7026 // Identify the diagnostic messages that should be produced. 7027 std::string VecDiagMsg, IntDiagMsg; 7028 bool VectorizeLoop = true, InterleaveLoop = true; 7029 if (Requirements.doesNotMeet(F, L, Hints)) { 7030 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7031 "requirements.\n"); 7032 emitMissedWarning(F, L, Hints, ORE); 7033 return false; 7034 } 7035 7036 if (VF.Width == 1) { 7037 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7038 VecDiagMsg = 7039 "the cost-model indicates that vectorization is not beneficial"; 7040 VectorizeLoop = false; 7041 } 7042 7043 if (IC == 1 && UserIC <= 1) { 7044 // Tell the user interleaving is not beneficial. 7045 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7046 IntDiagMsg = 7047 "the cost-model indicates that interleaving is not beneficial"; 7048 InterleaveLoop = false; 7049 if (UserIC == 1) 7050 IntDiagMsg += 7051 " and is explicitly disabled or interleave count is set to 1"; 7052 } else if (IC > 1 && UserIC == 1) { 7053 // Tell the user interleaving is beneficial, but it explicitly disabled. 7054 DEBUG(dbgs() 7055 << "LV: Interleaving is beneficial but is explicitly disabled."); 7056 IntDiagMsg = "the cost-model indicates that interleaving is beneficial " 7057 "but is explicitly disabled or interleave count is set to 1"; 7058 InterleaveLoop = false; 7059 } 7060 7061 // Override IC if user provided an interleave count. 7062 IC = UserIC > 0 ? UserIC : IC; 7063 7064 // Emit diagnostic messages, if any. 7065 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7066 if (!VectorizeLoop && !InterleaveLoop) { 7067 // Do not vectorize or interleaving the loop. 7068 ORE->emitOptimizationRemarkAnalysis(VAPassName, L, VecDiagMsg); 7069 ORE->emitOptimizationRemarkAnalysis(LV_NAME, L, IntDiagMsg); 7070 return false; 7071 } else if (!VectorizeLoop && InterleaveLoop) { 7072 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7073 ORE->emitOptimizationRemarkAnalysis(VAPassName, L, VecDiagMsg); 7074 } else if (VectorizeLoop && !InterleaveLoop) { 7075 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7076 << DebugLocStr << '\n'); 7077 ORE->emitOptimizationRemarkAnalysis(LV_NAME, L, IntDiagMsg); 7078 } else if (VectorizeLoop && InterleaveLoop) { 7079 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7080 << DebugLocStr << '\n'); 7081 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7082 } 7083 7084 if (!VectorizeLoop) { 7085 assert(IC > 1 && "interleave count should not be 1 or 0"); 7086 // If we decided that it is not legal to vectorize the loop, then 7087 // interleave it. 7088 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC); 7089 Unroller.vectorize(&LVL, CM.MinBWs); 7090 7091 ORE->emitOptimizationRemark(LV_NAME, L, 7092 Twine("interleaved loop (interleaved count: ") + 7093 Twine(IC) + ")"); 7094 } else { 7095 // If we decided that it is *legal* to vectorize the loop, then do it. 7096 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC); 7097 LB.vectorize(&LVL, CM.MinBWs); 7098 ++LoopsVectorized; 7099 7100 // Add metadata to disable runtime unrolling a scalar loop when there are 7101 // no runtime checks about strides and memory. A scalar loop that is 7102 // rarely used is not worth unrolling. 7103 if (!LB.areSafetyChecksAdded()) 7104 AddRuntimeUnrollDisableMetaData(L); 7105 7106 // Report the vectorization decision. 7107 ORE->emitOptimizationRemark( 7108 LV_NAME, L, Twine("vectorized loop (vectorization width: ") + 7109 Twine(VF.Width) + ", interleaved count: " + Twine(IC) + 7110 ")"); 7111 } 7112 7113 // Mark the loop as already vectorized to avoid vectorizing again. 7114 Hints.setAlreadyVectorized(); 7115 7116 DEBUG(verifyFunction(*L->getHeader()->getParent())); 7117 return true; 7118 } 7119 7120 bool LoopVectorizePass::runImpl( 7121 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7122 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7123 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7124 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7125 OptimizationRemarkEmitter &ORE_) { 7126 7127 SE = &SE_; 7128 LI = &LI_; 7129 TTI = &TTI_; 7130 DT = &DT_; 7131 BFI = &BFI_; 7132 TLI = TLI_; 7133 AA = &AA_; 7134 AC = &AC_; 7135 GetLAA = &GetLAA_; 7136 DB = &DB_; 7137 ORE = &ORE_; 7138 7139 // Compute some weights outside of the loop over the loops. Compute this 7140 // using a BranchProbability to re-use its scaling math. 7141 const BranchProbability ColdProb(1, 5); // 20% 7142 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 7143 7144 // Don't attempt if 7145 // 1. the target claims to have no vector registers, and 7146 // 2. interleaving won't help ILP. 7147 // 7148 // The second condition is necessary because, even if the target has no 7149 // vector registers, loop vectorization may still enable scalar 7150 // interleaving. 7151 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7152 return false; 7153 7154 // Build up a worklist of inner-loops to vectorize. This is necessary as 7155 // the act of vectorizing or partially unrolling a loop creates new loops 7156 // and can invalidate iterators across the loops. 7157 SmallVector<Loop *, 8> Worklist; 7158 7159 for (Loop *L : *LI) 7160 addAcyclicInnerLoop(*L, Worklist); 7161 7162 LoopsAnalyzed += Worklist.size(); 7163 7164 // Now walk the identified inner loops. 7165 bool Changed = false; 7166 while (!Worklist.empty()) 7167 Changed |= processLoop(Worklist.pop_back_val()); 7168 7169 // Process each loop nest in the function. 7170 return Changed; 7171 7172 } 7173 7174 7175 PreservedAnalyses LoopVectorizePass::run(Function &F, 7176 FunctionAnalysisManager &AM) { 7177 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7178 auto &LI = AM.getResult<LoopAnalysis>(F); 7179 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7180 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7181 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7182 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 7183 auto &AA = AM.getResult<AAManager>(F); 7184 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7185 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7186 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7187 7188 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7189 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7190 [&](Loop &L) -> const LoopAccessInfo & { 7191 return LAM.getResult<LoopAccessAnalysis>(L); 7192 }; 7193 bool Changed = 7194 runImpl(F, SE, LI, TTI, DT, BFI, TLI, DB, AA, AC, GetLAA, ORE); 7195 if (!Changed) 7196 return PreservedAnalyses::all(); 7197 PreservedAnalyses PA; 7198 PA.preserve<LoopAnalysis>(); 7199 PA.preserve<DominatorTreeAnalysis>(); 7200 PA.preserve<BasicAA>(); 7201 PA.preserve<GlobalsAA>(); 7202 return PA; 7203 } 7204