1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "VPlan.h" 51 #include "llvm/ADT/APInt.h" 52 #include "llvm/ADT/ArrayRef.h" 53 #include "llvm/ADT/DenseMap.h" 54 #include "llvm/ADT/DenseMapInfo.h" 55 #include "llvm/ADT/Hashing.h" 56 #include "llvm/ADT/MapVector.h" 57 #include "llvm/ADT/None.h" 58 #include "llvm/ADT/Optional.h" 59 #include "llvm/ADT/SCCIterator.h" 60 #include "llvm/ADT/STLExtras.h" 61 #include "llvm/ADT/SetVector.h" 62 #include "llvm/ADT/SmallPtrSet.h" 63 #include "llvm/ADT/SmallSet.h" 64 #include "llvm/ADT/SmallVector.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/ADT/StringRef.h" 67 #include "llvm/ADT/Twine.h" 68 #include "llvm/ADT/iterator_range.h" 69 #include "llvm/Analysis/AssumptionCache.h" 70 #include "llvm/Analysis/BasicAliasAnalysis.h" 71 #include "llvm/Analysis/BlockFrequencyInfo.h" 72 #include "llvm/Analysis/CodeMetrics.h" 73 #include "llvm/Analysis/DemandedBits.h" 74 #include "llvm/Analysis/GlobalsModRef.h" 75 #include "llvm/Analysis/LoopAccessAnalysis.h" 76 #include "llvm/Analysis/LoopAnalysisManager.h" 77 #include "llvm/Analysis/LoopInfo.h" 78 #include "llvm/Analysis/LoopIterator.h" 79 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 80 #include "llvm/Analysis/ScalarEvolution.h" 81 #include "llvm/Analysis/ScalarEvolutionExpander.h" 82 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 83 #include "llvm/Analysis/TargetLibraryInfo.h" 84 #include "llvm/Analysis/TargetTransformInfo.h" 85 #include "llvm/Analysis/VectorUtils.h" 86 #include "llvm/IR/Attributes.h" 87 #include "llvm/IR/BasicBlock.h" 88 #include "llvm/IR/CFG.h" 89 #include "llvm/IR/Constant.h" 90 #include "llvm/IR/Constants.h" 91 #include "llvm/IR/DataLayout.h" 92 #include "llvm/IR/DebugInfoMetadata.h" 93 #include "llvm/IR/DebugLoc.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/DiagnosticInfo.h" 96 #include "llvm/IR/Dominators.h" 97 #include "llvm/IR/Function.h" 98 #include "llvm/IR/IRBuilder.h" 99 #include "llvm/IR/InstrTypes.h" 100 #include "llvm/IR/Instruction.h" 101 #include "llvm/IR/Instructions.h" 102 #include "llvm/IR/IntrinsicInst.h" 103 #include "llvm/IR/Intrinsics.h" 104 #include "llvm/IR/LLVMContext.h" 105 #include "llvm/IR/Metadata.h" 106 #include "llvm/IR/Module.h" 107 #include "llvm/IR/Operator.h" 108 #include "llvm/IR/Type.h" 109 #include "llvm/IR/Use.h" 110 #include "llvm/IR/User.h" 111 #include "llvm/IR/Value.h" 112 #include "llvm/IR/ValueHandle.h" 113 #include "llvm/IR/Verifier.h" 114 #include "llvm/Pass.h" 115 #include "llvm/Support/Casting.h" 116 #include "llvm/Support/CommandLine.h" 117 #include "llvm/Support/Compiler.h" 118 #include "llvm/Support/Debug.h" 119 #include "llvm/Support/ErrorHandling.h" 120 #include "llvm/Support/MathExtras.h" 121 #include "llvm/Support/raw_ostream.h" 122 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 123 #include "llvm/Transforms/Utils/LoopSimplify.h" 124 #include "llvm/Transforms/Utils/LoopUtils.h" 125 #include "llvm/Transforms/Utils/LoopVersioning.h" 126 #include <algorithm> 127 #include <cassert> 128 #include <cstdint> 129 #include <cstdlib> 130 #include <functional> 131 #include <iterator> 132 #include <limits> 133 #include <memory> 134 #include <string> 135 #include <tuple> 136 #include <utility> 137 #include <vector> 138 139 using namespace llvm; 140 141 #define LV_NAME "loop-vectorize" 142 #define DEBUG_TYPE LV_NAME 143 144 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 145 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 146 147 static cl::opt<bool> 148 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 149 cl::desc("Enable if-conversion during vectorization.")); 150 151 /// Loops with a known constant trip count below this number are vectorized only 152 /// if no scalar iteration overheads are incurred. 153 static cl::opt<unsigned> TinyTripCountVectorThreshold( 154 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 155 cl::desc("Loops with a constant trip count that is smaller than this " 156 "value are vectorized only if no scalar iteration overheads " 157 "are incurred.")); 158 159 static cl::opt<bool> MaximizeBandwidth( 160 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 161 cl::desc("Maximize bandwidth when selecting vectorization factor which " 162 "will be determined by the smallest type in loop.")); 163 164 static cl::opt<bool> EnableInterleavedMemAccesses( 165 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 166 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 167 168 /// Maximum factor for an interleaved memory access. 169 static cl::opt<unsigned> MaxInterleaveGroupFactor( 170 "max-interleave-group-factor", cl::Hidden, 171 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 172 cl::init(8)); 173 174 /// We don't interleave loops with a known constant trip count below this 175 /// number. 176 static const unsigned TinyTripCountInterleaveThreshold = 128; 177 178 static cl::opt<unsigned> ForceTargetNumScalarRegs( 179 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 180 cl::desc("A flag that overrides the target's number of scalar registers.")); 181 182 static cl::opt<unsigned> ForceTargetNumVectorRegs( 183 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 184 cl::desc("A flag that overrides the target's number of vector registers.")); 185 186 /// Maximum vectorization interleave count. 187 static const unsigned MaxInterleaveFactor = 16; 188 189 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 190 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 191 cl::desc("A flag that overrides the target's max interleave factor for " 192 "scalar loops.")); 193 194 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 195 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 196 cl::desc("A flag that overrides the target's max interleave factor for " 197 "vectorized loops.")); 198 199 static cl::opt<unsigned> ForceTargetInstructionCost( 200 "force-target-instruction-cost", cl::init(0), cl::Hidden, 201 cl::desc("A flag that overrides the target's expected cost for " 202 "an instruction to a single constant value. Mostly " 203 "useful for getting consistent testing.")); 204 205 static cl::opt<unsigned> SmallLoopCost( 206 "small-loop-cost", cl::init(20), cl::Hidden, 207 cl::desc( 208 "The cost of a loop that is considered 'small' by the interleaver.")); 209 210 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 211 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 212 cl::desc("Enable the use of the block frequency analysis to access PGO " 213 "heuristics minimizing code growth in cold regions and being more " 214 "aggressive in hot regions.")); 215 216 // Runtime interleave loops for load/store throughput. 217 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 218 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 219 cl::desc( 220 "Enable runtime interleaving until load/store ports are saturated")); 221 222 /// The number of stores in a loop that are allowed to need predication. 223 static cl::opt<unsigned> NumberOfStoresToPredicate( 224 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 225 cl::desc("Max number of stores to be predicated behind an if.")); 226 227 static cl::opt<bool> EnableIndVarRegisterHeur( 228 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 229 cl::desc("Count the induction variable only once when interleaving")); 230 231 static cl::opt<bool> EnableCondStoresVectorization( 232 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 233 cl::desc("Enable if predication of stores during vectorization.")); 234 235 static cl::opt<unsigned> MaxNestedScalarReductionIC( 236 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 237 cl::desc("The maximum interleave count to use when interleaving a scalar " 238 "reduction in a nested loop.")); 239 240 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 241 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 242 cl::desc("The maximum allowed number of runtime memory checks with a " 243 "vectorize(enable) pragma.")); 244 245 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 246 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 247 cl::desc("The maximum number of SCEV checks allowed.")); 248 249 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 250 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 251 cl::desc("The maximum number of SCEV checks allowed with a " 252 "vectorize(enable) pragma")); 253 254 /// Create an analysis remark that explains why vectorization failed 255 /// 256 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 257 /// RemarkName is the identifier for the remark. If \p I is passed it is an 258 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 259 /// the location of the remark. \return the remark object that can be 260 /// streamed to. 261 static OptimizationRemarkAnalysis 262 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 263 Instruction *I = nullptr) { 264 Value *CodeRegion = TheLoop->getHeader(); 265 DebugLoc DL = TheLoop->getStartLoc(); 266 267 if (I) { 268 CodeRegion = I->getParent(); 269 // If there is no debug location attached to the instruction, revert back to 270 // using the loop's. 271 if (I->getDebugLoc()) 272 DL = I->getDebugLoc(); 273 } 274 275 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 276 R << "loop not vectorized: "; 277 return R; 278 } 279 280 namespace { 281 282 class LoopVectorizationLegality; 283 class LoopVectorizationCostModel; 284 class LoopVectorizationRequirements; 285 class VPInterleaveRecipe; 286 class VPReplicateRecipe; 287 class VPWidenIntOrFpInductionRecipe; 288 289 } // end anonymous namespace 290 291 /// Returns true if the given loop body has a cycle, excluding the loop 292 /// itself. 293 static bool hasCyclesInLoopBody(const Loop &L) { 294 if (!L.empty()) 295 return true; 296 297 for (const auto &SCC : 298 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 299 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 300 if (SCC.size() > 1) { 301 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 302 DEBUG(L.dump()); 303 return true; 304 } 305 } 306 return false; 307 } 308 309 /// A helper function for converting Scalar types to vector types. 310 /// If the incoming type is void, we return void. If the VF is 1, we return 311 /// the scalar type. 312 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 313 if (Scalar->isVoidTy() || VF == 1) 314 return Scalar; 315 return VectorType::get(Scalar, VF); 316 } 317 318 // FIXME: The following helper functions have multiple implementations 319 // in the project. They can be effectively organized in a common Load/Store 320 // utilities unit. 321 322 /// A helper function that returns the pointer operand of a load or store 323 /// instruction. 324 static Value *getPointerOperand(Value *I) { 325 if (auto *LI = dyn_cast<LoadInst>(I)) 326 return LI->getPointerOperand(); 327 if (auto *SI = dyn_cast<StoreInst>(I)) 328 return SI->getPointerOperand(); 329 return nullptr; 330 } 331 332 /// A helper function that returns the type of loaded or stored value. 333 static Type *getMemInstValueType(Value *I) { 334 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 335 "Expected Load or Store instruction"); 336 if (auto *LI = dyn_cast<LoadInst>(I)) 337 return LI->getType(); 338 return cast<StoreInst>(I)->getValueOperand()->getType(); 339 } 340 341 /// A helper function that returns the alignment of load or store instruction. 342 static unsigned getMemInstAlignment(Value *I) { 343 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 344 "Expected Load or Store instruction"); 345 if (auto *LI = dyn_cast<LoadInst>(I)) 346 return LI->getAlignment(); 347 return cast<StoreInst>(I)->getAlignment(); 348 } 349 350 /// A helper function that returns the address space of the pointer operand of 351 /// load or store instruction. 352 static unsigned getMemInstAddressSpace(Value *I) { 353 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 354 "Expected Load or Store instruction"); 355 if (auto *LI = dyn_cast<LoadInst>(I)) 356 return LI->getPointerAddressSpace(); 357 return cast<StoreInst>(I)->getPointerAddressSpace(); 358 } 359 360 /// A helper function that returns true if the given type is irregular. The 361 /// type is irregular if its allocated size doesn't equal the store size of an 362 /// element of the corresponding vector type at the given vectorization factor. 363 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 364 // Determine if an array of VF elements of type Ty is "bitcast compatible" 365 // with a <VF x Ty> vector. 366 if (VF > 1) { 367 auto *VectorTy = VectorType::get(Ty, VF); 368 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 369 } 370 371 // If the vectorization factor is one, we just check if an array of type Ty 372 // requires padding between elements. 373 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 374 } 375 376 /// A helper function that returns the reciprocal of the block probability of 377 /// predicated blocks. If we return X, we are assuming the predicated block 378 /// will execute once for for every X iterations of the loop header. 379 /// 380 /// TODO: We should use actual block probability here, if available. Currently, 381 /// we always assume predicated blocks have a 50% chance of executing. 382 static unsigned getReciprocalPredBlockProb() { return 2; } 383 384 /// A helper function that adds a 'fast' flag to floating-point operations. 385 static Value *addFastMathFlag(Value *V) { 386 if (isa<FPMathOperator>(V)) { 387 FastMathFlags Flags; 388 Flags.setUnsafeAlgebra(); 389 cast<Instruction>(V)->setFastMathFlags(Flags); 390 } 391 return V; 392 } 393 394 /// A helper function that returns an integer or floating-point constant with 395 /// value C. 396 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 397 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 398 : ConstantFP::get(Ty, C); 399 } 400 401 namespace llvm { 402 403 /// InnerLoopVectorizer vectorizes loops which contain only one basic 404 /// block to a specified vectorization factor (VF). 405 /// This class performs the widening of scalars into vectors, or multiple 406 /// scalars. This class also implements the following features: 407 /// * It inserts an epilogue loop for handling loops that don't have iteration 408 /// counts that are known to be a multiple of the vectorization factor. 409 /// * It handles the code generation for reduction variables. 410 /// * Scalarization (implementation using scalars) of un-vectorizable 411 /// instructions. 412 /// InnerLoopVectorizer does not perform any vectorization-legality 413 /// checks, and relies on the caller to check for the different legality 414 /// aspects. The InnerLoopVectorizer relies on the 415 /// LoopVectorizationLegality class to provide information about the induction 416 /// and reduction variables that were found to a given vectorization factor. 417 class InnerLoopVectorizer { 418 public: 419 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 420 LoopInfo *LI, DominatorTree *DT, 421 const TargetLibraryInfo *TLI, 422 const TargetTransformInfo *TTI, AssumptionCache *AC, 423 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 424 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 425 LoopVectorizationCostModel *CM) 426 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 427 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 428 Builder(PSE.getSE()->getContext()), 429 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 430 virtual ~InnerLoopVectorizer() = default; 431 432 /// Create a new empty loop. Unlink the old loop and connect the new one. 433 /// Return the pre-header block of the new loop. 434 BasicBlock *createVectorizedLoopSkeleton(); 435 436 /// Widen a single instruction within the innermost loop. 437 void widenInstruction(Instruction &I); 438 439 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 440 void fixVectorizedLoop(); 441 442 // Return true if any runtime check is added. 443 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 444 445 /// A type for vectorized values in the new loop. Each value from the 446 /// original loop, when vectorized, is represented by UF vector values in the 447 /// new unrolled loop, where UF is the unroll factor. 448 using VectorParts = SmallVector<Value *, 2>; 449 450 /// A helper function that computes the predicate of the block BB, assuming 451 /// that the header block of the loop is set to True. It returns the *entry* 452 /// mask for the block BB. 453 VectorParts createBlockInMask(BasicBlock *BB); 454 455 /// Vectorize a single PHINode in a block. This method handles the induction 456 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 457 /// arbitrary length vectors. 458 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 459 460 /// A helper function to scalarize a single Instruction in the innermost loop. 461 /// Generates a sequence of scalar instances for each lane between \p MinLane 462 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 463 /// inclusive.. 464 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 465 bool IfPredicateInstr); 466 467 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 468 /// is provided, the integer induction variable will first be truncated to 469 /// the corresponding type. 470 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 471 472 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 473 /// vector or scalar value on-demand if one is not yet available. When 474 /// vectorizing a loop, we visit the definition of an instruction before its 475 /// uses. When visiting the definition, we either vectorize or scalarize the 476 /// instruction, creating an entry for it in the corresponding map. (In some 477 /// cases, such as induction variables, we will create both vector and scalar 478 /// entries.) Then, as we encounter uses of the definition, we derive values 479 /// for each scalar or vector use unless such a value is already available. 480 /// For example, if we scalarize a definition and one of its uses is vector, 481 /// we build the required vector on-demand with an insertelement sequence 482 /// when visiting the use. Otherwise, if the use is scalar, we can use the 483 /// existing scalar definition. 484 /// 485 /// Return a value in the new loop corresponding to \p V from the original 486 /// loop at unroll index \p Part. If the value has already been vectorized, 487 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 488 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 489 /// a new vector value on-demand by inserting the scalar values into a vector 490 /// with an insertelement sequence. If the value has been neither vectorized 491 /// nor scalarized, it must be loop invariant, so we simply broadcast the 492 /// value into a vector. 493 Value *getOrCreateVectorValue(Value *V, unsigned Part); 494 495 /// Return a value in the new loop corresponding to \p V from the original 496 /// loop at unroll and vector indices \p Instance. If the value has been 497 /// vectorized but not scalarized, the necessary extractelement instruction 498 /// will be generated. 499 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 500 501 /// Construct the vector value of a scalarized value \p V one lane at a time. 502 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 503 504 /// Try to vectorize the interleaved access group that \p Instr belongs to. 505 void vectorizeInterleaveGroup(Instruction *Instr); 506 507 protected: 508 friend class LoopVectorizationPlanner; 509 510 /// A small list of PHINodes. 511 using PhiVector = SmallVector<PHINode *, 4>; 512 513 /// A type for scalarized values in the new loop. Each value from the 514 /// original loop, when scalarized, is represented by UF x VF scalar values 515 /// in the new unrolled loop, where UF is the unroll factor and VF is the 516 /// vectorization factor. 517 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 518 519 // When we if-convert we need to create edge masks. We have to cache values 520 // so that we don't end up with exponential recursion/IR. 521 using EdgeMaskCacheTy = 522 DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts>; 523 using BlockMaskCacheTy = DenseMap<BasicBlock *, VectorParts>; 524 525 /// Set up the values of the IVs correctly when exiting the vector loop. 526 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 527 Value *CountRoundDown, Value *EndValue, 528 BasicBlock *MiddleBlock); 529 530 /// Create a new induction variable inside L. 531 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 532 Value *Step, Instruction *DL); 533 534 /// Handle all cross-iteration phis in the header. 535 void fixCrossIterationPHIs(); 536 537 /// Fix a first-order recurrence. This is the second phase of vectorizing 538 /// this phi node. 539 void fixFirstOrderRecurrence(PHINode *Phi); 540 541 /// Fix a reduction cross-iteration phi. This is the second phase of 542 /// vectorizing this phi node. 543 void fixReduction(PHINode *Phi); 544 545 /// \brief The Loop exit block may have single value PHI nodes with some 546 /// incoming value. While vectorizing we only handled real values 547 /// that were defined inside the loop and we should have one value for 548 /// each predecessor of its parent basic block. See PR14725. 549 void fixLCSSAPHIs(); 550 551 /// Iteratively sink the scalarized operands of a predicated instruction into 552 /// the block that was created for it. 553 void sinkScalarOperands(Instruction *PredInst); 554 555 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 556 /// represented as. 557 void truncateToMinimalBitwidths(); 558 559 /// A helper function that computes the predicate of the edge between SRC 560 /// and DST. 561 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 562 563 /// Insert the new loop to the loop hierarchy and pass manager 564 /// and update the analysis passes. 565 void updateAnalysis(); 566 567 /// Vectorize Load and Store instructions, 568 virtual void vectorizeMemoryInstruction(Instruction *Instr); 569 570 /// Create a broadcast instruction. This method generates a broadcast 571 /// instruction (shuffle) for loop invariant values and for the induction 572 /// value. If this is the induction variable then we extend it to N, N+1, ... 573 /// this is needed because each iteration in the loop corresponds to a SIMD 574 /// element. 575 virtual Value *getBroadcastInstrs(Value *V); 576 577 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 578 /// to each vector element of Val. The sequence starts at StartIndex. 579 /// \p Opcode is relevant for FP induction variable. 580 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 581 Instruction::BinaryOps Opcode = 582 Instruction::BinaryOpsEnd); 583 584 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 585 /// variable on which to base the steps, \p Step is the size of the step, and 586 /// \p EntryVal is the value from the original loop that maps to the steps. 587 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 588 /// can be a truncate instruction). 589 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal, 590 const InductionDescriptor &ID); 591 592 /// Create a vector induction phi node based on an existing scalar one. \p 593 /// EntryVal is the value from the original loop that maps to the vector phi 594 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 595 /// truncate instruction, instead of widening the original IV, we widen a 596 /// version of the IV truncated to \p EntryVal's type. 597 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 598 Value *Step, Instruction *EntryVal); 599 600 /// Returns true if an instruction \p I should be scalarized instead of 601 /// vectorized for the chosen vectorization factor. 602 bool shouldScalarizeInstruction(Instruction *I) const; 603 604 /// Returns true if we should generate a scalar version of \p IV. 605 bool needsScalarInduction(Instruction *IV) const; 606 607 /// Generate a shuffle sequence that will reverse the vector Vec. 608 virtual Value *reverseVector(Value *Vec); 609 610 /// Returns (and creates if needed) the original loop trip count. 611 Value *getOrCreateTripCount(Loop *NewLoop); 612 613 /// Returns (and creates if needed) the trip count of the widened loop. 614 Value *getOrCreateVectorTripCount(Loop *NewLoop); 615 616 /// Returns a bitcasted value to the requested vector type. 617 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 618 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 619 const DataLayout &DL); 620 621 /// Emit a bypass check to see if the vector trip count is zero, including if 622 /// it overflows. 623 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 624 625 /// Emit a bypass check to see if all of the SCEV assumptions we've 626 /// had to make are correct. 627 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 628 629 /// Emit bypass checks to check any memory assumptions we may have made. 630 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 631 632 /// Add additional metadata to \p To that was not present on \p Orig. 633 /// 634 /// Currently this is used to add the noalias annotations based on the 635 /// inserted memchecks. Use this for instructions that are *cloned* into the 636 /// vector loop. 637 void addNewMetadata(Instruction *To, const Instruction *Orig); 638 639 /// Add metadata from one instruction to another. 640 /// 641 /// This includes both the original MDs from \p From and additional ones (\see 642 /// addNewMetadata). Use this for *newly created* instructions in the vector 643 /// loop. 644 void addMetadata(Instruction *To, Instruction *From); 645 646 /// \brief Similar to the previous function but it adds the metadata to a 647 /// vector of instructions. 648 void addMetadata(ArrayRef<Value *> To, Instruction *From); 649 650 /// \brief Set the debug location in the builder using the debug location in 651 /// the instruction. 652 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 653 654 /// The original loop. 655 Loop *OrigLoop; 656 657 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 658 /// dynamic knowledge to simplify SCEV expressions and converts them to a 659 /// more usable form. 660 PredicatedScalarEvolution &PSE; 661 662 /// Loop Info. 663 LoopInfo *LI; 664 665 /// Dominator Tree. 666 DominatorTree *DT; 667 668 /// Alias Analysis. 669 AliasAnalysis *AA; 670 671 /// Target Library Info. 672 const TargetLibraryInfo *TLI; 673 674 /// Target Transform Info. 675 const TargetTransformInfo *TTI; 676 677 /// Assumption Cache. 678 AssumptionCache *AC; 679 680 /// Interface to emit optimization remarks. 681 OptimizationRemarkEmitter *ORE; 682 683 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 684 /// used. 685 /// 686 /// This is currently only used to add no-alias metadata based on the 687 /// memchecks. The actually versioning is performed manually. 688 std::unique_ptr<LoopVersioning> LVer; 689 690 /// The vectorization SIMD factor to use. Each vector will have this many 691 /// vector elements. 692 unsigned VF; 693 694 /// The vectorization unroll factor to use. Each scalar is vectorized to this 695 /// many different vector instructions. 696 unsigned UF; 697 698 /// The builder that we use 699 IRBuilder<> Builder; 700 701 // --- Vectorization state --- 702 703 /// The vector-loop preheader. 704 BasicBlock *LoopVectorPreHeader; 705 706 /// The scalar-loop preheader. 707 BasicBlock *LoopScalarPreHeader; 708 709 /// Middle Block between the vector and the scalar. 710 BasicBlock *LoopMiddleBlock; 711 712 /// The ExitBlock of the scalar loop. 713 BasicBlock *LoopExitBlock; 714 715 /// The vector loop body. 716 BasicBlock *LoopVectorBody; 717 718 /// The scalar loop body. 719 BasicBlock *LoopScalarBody; 720 721 /// A list of all bypass blocks. The first block is the entry of the loop. 722 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 723 724 /// The new Induction variable which was added to the new block. 725 PHINode *Induction = nullptr; 726 727 /// The induction variable of the old basic block. 728 PHINode *OldInduction = nullptr; 729 730 /// Maps values from the original loop to their corresponding values in the 731 /// vectorized loop. A key value can map to either vector values, scalar 732 /// values or both kinds of values, depending on whether the key was 733 /// vectorized and scalarized. 734 VectorizerValueMap VectorLoopValueMap; 735 736 /// Store instructions that were predicated. 737 SmallVector<Instruction *, 4> PredicatedInstructions; 738 739 EdgeMaskCacheTy EdgeMaskCache; 740 BlockMaskCacheTy BlockMaskCache; 741 742 /// Trip count of the original loop. 743 Value *TripCount = nullptr; 744 745 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 746 Value *VectorTripCount = nullptr; 747 748 /// The legality analysis. 749 LoopVectorizationLegality *Legal; 750 751 /// The profitablity analysis. 752 LoopVectorizationCostModel *Cost; 753 754 // Record whether runtime checks are added. 755 bool AddedSafetyChecks = false; 756 757 // Holds the end values for each induction variable. We save the end values 758 // so we can later fix-up the external users of the induction variables. 759 DenseMap<PHINode *, Value *> IVEndValues; 760 }; 761 762 class InnerLoopUnroller : public InnerLoopVectorizer { 763 public: 764 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 765 LoopInfo *LI, DominatorTree *DT, 766 const TargetLibraryInfo *TLI, 767 const TargetTransformInfo *TTI, AssumptionCache *AC, 768 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 769 LoopVectorizationLegality *LVL, 770 LoopVectorizationCostModel *CM) 771 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 772 UnrollFactor, LVL, CM) {} 773 774 private: 775 Value *getBroadcastInstrs(Value *V) override; 776 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 777 Instruction::BinaryOps Opcode = 778 Instruction::BinaryOpsEnd) override; 779 Value *reverseVector(Value *Vec) override; 780 }; 781 782 } // end namespace llvm 783 784 /// \brief Look for a meaningful debug location on the instruction or it's 785 /// operands. 786 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 787 if (!I) 788 return I; 789 790 DebugLoc Empty; 791 if (I->getDebugLoc() != Empty) 792 return I; 793 794 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 795 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 796 if (OpInst->getDebugLoc() != Empty) 797 return OpInst; 798 } 799 800 return I; 801 } 802 803 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 804 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 805 const DILocation *DIL = Inst->getDebugLoc(); 806 if (DIL && Inst->getFunction()->isDebugInfoForProfiling()) 807 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 808 else 809 B.SetCurrentDebugLocation(DIL); 810 } else 811 B.SetCurrentDebugLocation(DebugLoc()); 812 } 813 814 #ifndef NDEBUG 815 /// \return string containing a file name and a line # for the given loop. 816 static std::string getDebugLocString(const Loop *L) { 817 std::string Result; 818 if (L) { 819 raw_string_ostream OS(Result); 820 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 821 LoopDbgLoc.print(OS); 822 else 823 // Just print the module name. 824 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 825 OS.flush(); 826 } 827 return Result; 828 } 829 #endif 830 831 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 832 const Instruction *Orig) { 833 // If the loop was versioned with memchecks, add the corresponding no-alias 834 // metadata. 835 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 836 LVer->annotateInstWithNoAlias(To, Orig); 837 } 838 839 void InnerLoopVectorizer::addMetadata(Instruction *To, 840 Instruction *From) { 841 propagateMetadata(To, From); 842 addNewMetadata(To, From); 843 } 844 845 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 846 Instruction *From) { 847 for (Value *V : To) { 848 if (Instruction *I = dyn_cast<Instruction>(V)) 849 addMetadata(I, From); 850 } 851 } 852 853 namespace { 854 855 /// \brief The group of interleaved loads/stores sharing the same stride and 856 /// close to each other. 857 /// 858 /// Each member in this group has an index starting from 0, and the largest 859 /// index should be less than interleaved factor, which is equal to the absolute 860 /// value of the access's stride. 861 /// 862 /// E.g. An interleaved load group of factor 4: 863 /// for (unsigned i = 0; i < 1024; i+=4) { 864 /// a = A[i]; // Member of index 0 865 /// b = A[i+1]; // Member of index 1 866 /// d = A[i+3]; // Member of index 3 867 /// ... 868 /// } 869 /// 870 /// An interleaved store group of factor 4: 871 /// for (unsigned i = 0; i < 1024; i+=4) { 872 /// ... 873 /// A[i] = a; // Member of index 0 874 /// A[i+1] = b; // Member of index 1 875 /// A[i+2] = c; // Member of index 2 876 /// A[i+3] = d; // Member of index 3 877 /// } 878 /// 879 /// Note: the interleaved load group could have gaps (missing members), but 880 /// the interleaved store group doesn't allow gaps. 881 class InterleaveGroup { 882 public: 883 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 884 : Align(Align), InsertPos(Instr) { 885 assert(Align && "The alignment should be non-zero"); 886 887 Factor = std::abs(Stride); 888 assert(Factor > 1 && "Invalid interleave factor"); 889 890 Reverse = Stride < 0; 891 Members[0] = Instr; 892 } 893 894 bool isReverse() const { return Reverse; } 895 unsigned getFactor() const { return Factor; } 896 unsigned getAlignment() const { return Align; } 897 unsigned getNumMembers() const { return Members.size(); } 898 899 /// \brief Try to insert a new member \p Instr with index \p Index and 900 /// alignment \p NewAlign. The index is related to the leader and it could be 901 /// negative if it is the new leader. 902 /// 903 /// \returns false if the instruction doesn't belong to the group. 904 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 905 assert(NewAlign && "The new member's alignment should be non-zero"); 906 907 int Key = Index + SmallestKey; 908 909 // Skip if there is already a member with the same index. 910 if (Members.count(Key)) 911 return false; 912 913 if (Key > LargestKey) { 914 // The largest index is always less than the interleave factor. 915 if (Index >= static_cast<int>(Factor)) 916 return false; 917 918 LargestKey = Key; 919 } else if (Key < SmallestKey) { 920 // The largest index is always less than the interleave factor. 921 if (LargestKey - Key >= static_cast<int>(Factor)) 922 return false; 923 924 SmallestKey = Key; 925 } 926 927 // It's always safe to select the minimum alignment. 928 Align = std::min(Align, NewAlign); 929 Members[Key] = Instr; 930 return true; 931 } 932 933 /// \brief Get the member with the given index \p Index 934 /// 935 /// \returns nullptr if contains no such member. 936 Instruction *getMember(unsigned Index) const { 937 int Key = SmallestKey + Index; 938 if (!Members.count(Key)) 939 return nullptr; 940 941 return Members.find(Key)->second; 942 } 943 944 /// \brief Get the index for the given member. Unlike the key in the member 945 /// map, the index starts from 0. 946 unsigned getIndex(Instruction *Instr) const { 947 for (auto I : Members) 948 if (I.second == Instr) 949 return I.first - SmallestKey; 950 951 llvm_unreachable("InterleaveGroup contains no such member"); 952 } 953 954 Instruction *getInsertPos() const { return InsertPos; } 955 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 956 957 private: 958 unsigned Factor; // Interleave Factor. 959 bool Reverse; 960 unsigned Align; 961 DenseMap<int, Instruction *> Members; 962 int SmallestKey = 0; 963 int LargestKey = 0; 964 965 // To avoid breaking dependences, vectorized instructions of an interleave 966 // group should be inserted at either the first load or the last store in 967 // program order. 968 // 969 // E.g. %even = load i32 // Insert Position 970 // %add = add i32 %even // Use of %even 971 // %odd = load i32 972 // 973 // store i32 %even 974 // %odd = add i32 // Def of %odd 975 // store i32 %odd // Insert Position 976 Instruction *InsertPos; 977 }; 978 979 /// \brief Drive the analysis of interleaved memory accesses in the loop. 980 /// 981 /// Use this class to analyze interleaved accesses only when we can vectorize 982 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 983 /// on interleaved accesses is unsafe. 984 /// 985 /// The analysis collects interleave groups and records the relationships 986 /// between the member and the group in a map. 987 class InterleavedAccessInfo { 988 public: 989 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 990 DominatorTree *DT, LoopInfo *LI) 991 : PSE(PSE), TheLoop(L), DT(DT), LI(LI) {} 992 993 ~InterleavedAccessInfo() { 994 SmallSet<InterleaveGroup *, 4> DelSet; 995 // Avoid releasing a pointer twice. 996 for (auto &I : InterleaveGroupMap) 997 DelSet.insert(I.second); 998 for (auto *Ptr : DelSet) 999 delete Ptr; 1000 } 1001 1002 /// \brief Analyze the interleaved accesses and collect them in interleave 1003 /// groups. Substitute symbolic strides using \p Strides. 1004 void analyzeInterleaving(const ValueToValueMap &Strides); 1005 1006 /// \brief Check if \p Instr belongs to any interleave group. 1007 bool isInterleaved(Instruction *Instr) const { 1008 return InterleaveGroupMap.count(Instr); 1009 } 1010 1011 /// \brief Get the interleave group that \p Instr belongs to. 1012 /// 1013 /// \returns nullptr if doesn't have such group. 1014 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 1015 if (InterleaveGroupMap.count(Instr)) 1016 return InterleaveGroupMap.find(Instr)->second; 1017 return nullptr; 1018 } 1019 1020 /// \brief Returns true if an interleaved group that may access memory 1021 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1022 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1023 1024 /// \brief Initialize the LoopAccessInfo used for dependence checking. 1025 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 1026 1027 private: 1028 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1029 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1030 /// The interleaved access analysis can also add new predicates (for example 1031 /// by versioning strides of pointers). 1032 PredicatedScalarEvolution &PSE; 1033 1034 Loop *TheLoop; 1035 DominatorTree *DT; 1036 LoopInfo *LI; 1037 const LoopAccessInfo *LAI = nullptr; 1038 1039 /// True if the loop may contain non-reversed interleaved groups with 1040 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1041 /// out-of-bounds by executing at least one scalar epilogue iteration. 1042 bool RequiresScalarEpilogue = false; 1043 1044 /// Holds the relationships between the members and the interleave group. 1045 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1046 1047 /// Holds dependences among the memory accesses in the loop. It maps a source 1048 /// access to a set of dependent sink accesses. 1049 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1050 1051 /// \brief The descriptor for a strided memory access. 1052 struct StrideDescriptor { 1053 StrideDescriptor() = default; 1054 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1055 unsigned Align) 1056 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1057 1058 // The access's stride. It is negative for a reverse access. 1059 int64_t Stride = 0; 1060 1061 // The scalar expression of this access. 1062 const SCEV *Scev = nullptr; 1063 1064 // The size of the memory object. 1065 uint64_t Size = 0; 1066 1067 // The alignment of this access. 1068 unsigned Align = 0; 1069 }; 1070 1071 /// \brief A type for holding instructions and their stride descriptors. 1072 using StrideEntry = std::pair<Instruction *, StrideDescriptor>; 1073 1074 /// \brief Create a new interleave group with the given instruction \p Instr, 1075 /// stride \p Stride and alignment \p Align. 1076 /// 1077 /// \returns the newly created interleave group. 1078 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1079 unsigned Align) { 1080 assert(!InterleaveGroupMap.count(Instr) && 1081 "Already in an interleaved access group"); 1082 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1083 return InterleaveGroupMap[Instr]; 1084 } 1085 1086 /// \brief Release the group and remove all the relationships. 1087 void releaseGroup(InterleaveGroup *Group) { 1088 for (unsigned i = 0; i < Group->getFactor(); i++) 1089 if (Instruction *Member = Group->getMember(i)) 1090 InterleaveGroupMap.erase(Member); 1091 1092 delete Group; 1093 } 1094 1095 /// \brief Collect all the accesses with a constant stride in program order. 1096 void collectConstStrideAccesses( 1097 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1098 const ValueToValueMap &Strides); 1099 1100 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1101 static bool isStrided(int Stride) { 1102 unsigned Factor = std::abs(Stride); 1103 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1104 } 1105 1106 /// \brief Returns true if \p BB is a predicated block. 1107 bool isPredicated(BasicBlock *BB) const { 1108 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1109 } 1110 1111 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1112 bool areDependencesValid() const { 1113 return LAI && LAI->getDepChecker().getDependences(); 1114 } 1115 1116 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1117 /// necessary, when constructing interleaved groups. 1118 /// 1119 /// \p A must precede \p B in program order. We return false if reordering is 1120 /// not necessary or is prevented because \p A and \p B may be dependent. 1121 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1122 StrideEntry *B) const { 1123 // Code motion for interleaved accesses can potentially hoist strided loads 1124 // and sink strided stores. The code below checks the legality of the 1125 // following two conditions: 1126 // 1127 // 1. Potentially moving a strided load (B) before any store (A) that 1128 // precedes B, or 1129 // 1130 // 2. Potentially moving a strided store (A) after any load or store (B) 1131 // that A precedes. 1132 // 1133 // It's legal to reorder A and B if we know there isn't a dependence from A 1134 // to B. Note that this determination is conservative since some 1135 // dependences could potentially be reordered safely. 1136 1137 // A is potentially the source of a dependence. 1138 auto *Src = A->first; 1139 auto SrcDes = A->second; 1140 1141 // B is potentially the sink of a dependence. 1142 auto *Sink = B->first; 1143 auto SinkDes = B->second; 1144 1145 // Code motion for interleaved accesses can't violate WAR dependences. 1146 // Thus, reordering is legal if the source isn't a write. 1147 if (!Src->mayWriteToMemory()) 1148 return true; 1149 1150 // At least one of the accesses must be strided. 1151 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1152 return true; 1153 1154 // If dependence information is not available from LoopAccessInfo, 1155 // conservatively assume the instructions can't be reordered. 1156 if (!areDependencesValid()) 1157 return false; 1158 1159 // If we know there is a dependence from source to sink, assume the 1160 // instructions can't be reordered. Otherwise, reordering is legal. 1161 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1162 } 1163 1164 /// \brief Collect the dependences from LoopAccessInfo. 1165 /// 1166 /// We process the dependences once during the interleaved access analysis to 1167 /// enable constant-time dependence queries. 1168 void collectDependences() { 1169 if (!areDependencesValid()) 1170 return; 1171 auto *Deps = LAI->getDepChecker().getDependences(); 1172 for (auto Dep : *Deps) 1173 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1174 } 1175 }; 1176 1177 /// Utility class for getting and setting loop vectorizer hints in the form 1178 /// of loop metadata. 1179 /// This class keeps a number of loop annotations locally (as member variables) 1180 /// and can, upon request, write them back as metadata on the loop. It will 1181 /// initially scan the loop for existing metadata, and will update the local 1182 /// values based on information in the loop. 1183 /// We cannot write all values to metadata, as the mere presence of some info, 1184 /// for example 'force', means a decision has been made. So, we need to be 1185 /// careful NOT to add them if the user hasn't specifically asked so. 1186 class LoopVectorizeHints { 1187 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE, HK_ISVECTORIZED }; 1188 1189 /// Hint - associates name and validation with the hint value. 1190 struct Hint { 1191 const char *Name; 1192 unsigned Value; // This may have to change for non-numeric values. 1193 HintKind Kind; 1194 1195 Hint(const char *Name, unsigned Value, HintKind Kind) 1196 : Name(Name), Value(Value), Kind(Kind) {} 1197 1198 bool validate(unsigned Val) { 1199 switch (Kind) { 1200 case HK_WIDTH: 1201 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1202 case HK_UNROLL: 1203 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1204 case HK_FORCE: 1205 return (Val <= 1); 1206 case HK_ISVECTORIZED: 1207 return (Val==0 || Val==1); 1208 } 1209 return false; 1210 } 1211 }; 1212 1213 /// Vectorization width. 1214 Hint Width; 1215 1216 /// Vectorization interleave factor. 1217 Hint Interleave; 1218 1219 /// Vectorization forced 1220 Hint Force; 1221 1222 /// Already Vectorized 1223 Hint IsVectorized; 1224 1225 /// Return the loop metadata prefix. 1226 static StringRef Prefix() { return "llvm.loop."; } 1227 1228 /// True if there is any unsafe math in the loop. 1229 bool PotentiallyUnsafe = false; 1230 1231 public: 1232 enum ForceKind { 1233 FK_Undefined = -1, ///< Not selected. 1234 FK_Disabled = 0, ///< Forcing disabled. 1235 FK_Enabled = 1, ///< Forcing enabled. 1236 }; 1237 1238 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1239 OptimizationRemarkEmitter &ORE) 1240 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1241 HK_WIDTH), 1242 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1243 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1244 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) { 1245 // Populate values with existing loop metadata. 1246 getHintsFromMetadata(); 1247 1248 // force-vector-interleave overrides DisableInterleaving. 1249 if (VectorizerParams::isInterleaveForced()) 1250 Interleave.Value = VectorizerParams::VectorizationInterleave; 1251 1252 if (IsVectorized.Value != 1) 1253 // If the vectorization width and interleaving count are both 1 then 1254 // consider the loop to have been already vectorized because there's 1255 // nothing more that we can do. 1256 IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1; 1257 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1258 << "LV: Interleaving disabled by the pass manager\n"); 1259 } 1260 1261 /// Mark the loop L as already vectorized by setting the width to 1. 1262 void setAlreadyVectorized() { 1263 IsVectorized.Value = 1; 1264 Hint Hints[] = {IsVectorized}; 1265 writeHintsToMetadata(Hints); 1266 } 1267 1268 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1269 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1270 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1271 emitRemarkWithHints(); 1272 return false; 1273 } 1274 1275 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1276 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1277 emitRemarkWithHints(); 1278 return false; 1279 } 1280 1281 if (getIsVectorized() == 1) { 1282 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1283 // FIXME: Add interleave.disable metadata. This will allow 1284 // vectorize.disable to be used without disabling the pass and errors 1285 // to differentiate between disabled vectorization and a width of 1. 1286 ORE.emit([&]() { 1287 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1288 "AllDisabled", L->getStartLoc(), 1289 L->getHeader()) 1290 << "loop not vectorized: vectorization and interleaving are " 1291 "explicitly disabled, or the loop has already been " 1292 "vectorized"; 1293 }); 1294 return false; 1295 } 1296 1297 return true; 1298 } 1299 1300 /// Dumps all the hint information. 1301 void emitRemarkWithHints() const { 1302 using namespace ore; 1303 1304 ORE.emit([&]() { 1305 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1306 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1307 TheLoop->getStartLoc(), 1308 TheLoop->getHeader()) 1309 << "loop not vectorized: vectorization is explicitly disabled"; 1310 else { 1311 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1312 TheLoop->getStartLoc(), 1313 TheLoop->getHeader()); 1314 R << "loop not vectorized"; 1315 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1316 R << " (Force=" << NV("Force", true); 1317 if (Width.Value != 0) 1318 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1319 if (Interleave.Value != 0) 1320 R << ", Interleave Count=" 1321 << NV("InterleaveCount", Interleave.Value); 1322 R << ")"; 1323 } 1324 return R; 1325 } 1326 }); 1327 } 1328 1329 unsigned getWidth() const { return Width.Value; } 1330 unsigned getInterleave() const { return Interleave.Value; } 1331 unsigned getIsVectorized() const { return IsVectorized.Value; } 1332 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1333 1334 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1335 /// pass name to force the frontend to print the diagnostic. 1336 const char *vectorizeAnalysisPassName() const { 1337 if (getWidth() == 1) 1338 return LV_NAME; 1339 if (getForce() == LoopVectorizeHints::FK_Disabled) 1340 return LV_NAME; 1341 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1342 return LV_NAME; 1343 return OptimizationRemarkAnalysis::AlwaysPrint; 1344 } 1345 1346 bool allowReordering() const { 1347 // When enabling loop hints are provided we allow the vectorizer to change 1348 // the order of operations that is given by the scalar loop. This is not 1349 // enabled by default because can be unsafe or inefficient. For example, 1350 // reordering floating-point operations will change the way round-off 1351 // error accumulates in the loop. 1352 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1353 } 1354 1355 bool isPotentiallyUnsafe() const { 1356 // Avoid FP vectorization if the target is unsure about proper support. 1357 // This may be related to the SIMD unit in the target not handling 1358 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1359 // Otherwise, a sequence of vectorized loops, even without reduction, 1360 // could lead to different end results on the destination vectors. 1361 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1362 } 1363 1364 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1365 1366 private: 1367 /// Find hints specified in the loop metadata and update local values. 1368 void getHintsFromMetadata() { 1369 MDNode *LoopID = TheLoop->getLoopID(); 1370 if (!LoopID) 1371 return; 1372 1373 // First operand should refer to the loop id itself. 1374 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1375 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1376 1377 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1378 const MDString *S = nullptr; 1379 SmallVector<Metadata *, 4> Args; 1380 1381 // The expected hint is either a MDString or a MDNode with the first 1382 // operand a MDString. 1383 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1384 if (!MD || MD->getNumOperands() == 0) 1385 continue; 1386 S = dyn_cast<MDString>(MD->getOperand(0)); 1387 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1388 Args.push_back(MD->getOperand(i)); 1389 } else { 1390 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1391 assert(Args.size() == 0 && "too many arguments for MDString"); 1392 } 1393 1394 if (!S) 1395 continue; 1396 1397 // Check if the hint starts with the loop metadata prefix. 1398 StringRef Name = S->getString(); 1399 if (Args.size() == 1) 1400 setHint(Name, Args[0]); 1401 } 1402 } 1403 1404 /// Checks string hint with one operand and set value if valid. 1405 void setHint(StringRef Name, Metadata *Arg) { 1406 if (!Name.startswith(Prefix())) 1407 return; 1408 Name = Name.substr(Prefix().size(), StringRef::npos); 1409 1410 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1411 if (!C) 1412 return; 1413 unsigned Val = C->getZExtValue(); 1414 1415 Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized}; 1416 for (auto H : Hints) { 1417 if (Name == H->Name) { 1418 if (H->validate(Val)) 1419 H->Value = Val; 1420 else 1421 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1422 break; 1423 } 1424 } 1425 } 1426 1427 /// Create a new hint from name / value pair. 1428 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1429 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1430 Metadata *MDs[] = {MDString::get(Context, Name), 1431 ConstantAsMetadata::get( 1432 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1433 return MDNode::get(Context, MDs); 1434 } 1435 1436 /// Matches metadata with hint name. 1437 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1438 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1439 if (!Name) 1440 return false; 1441 1442 for (auto H : HintTypes) 1443 if (Name->getString().endswith(H.Name)) 1444 return true; 1445 return false; 1446 } 1447 1448 /// Sets current hints into loop metadata, keeping other values intact. 1449 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1450 if (HintTypes.empty()) 1451 return; 1452 1453 // Reserve the first element to LoopID (see below). 1454 SmallVector<Metadata *, 4> MDs(1); 1455 // If the loop already has metadata, then ignore the existing operands. 1456 MDNode *LoopID = TheLoop->getLoopID(); 1457 if (LoopID) { 1458 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1459 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1460 // If node in update list, ignore old value. 1461 if (!matchesHintMetadataName(Node, HintTypes)) 1462 MDs.push_back(Node); 1463 } 1464 } 1465 1466 // Now, add the missing hints. 1467 for (auto H : HintTypes) 1468 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1469 1470 // Replace current metadata node with new one. 1471 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1472 MDNode *NewLoopID = MDNode::get(Context, MDs); 1473 // Set operand 0 to refer to the loop id itself. 1474 NewLoopID->replaceOperandWith(0, NewLoopID); 1475 1476 TheLoop->setLoopID(NewLoopID); 1477 } 1478 1479 /// The loop these hints belong to. 1480 const Loop *TheLoop; 1481 1482 /// Interface to emit optimization remarks. 1483 OptimizationRemarkEmitter &ORE; 1484 }; 1485 1486 } // end anonymous namespace 1487 1488 static void emitMissedWarning(Function *F, Loop *L, 1489 const LoopVectorizeHints &LH, 1490 OptimizationRemarkEmitter *ORE) { 1491 LH.emitRemarkWithHints(); 1492 1493 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1494 if (LH.getWidth() != 1) 1495 ORE->emit(DiagnosticInfoOptimizationFailure( 1496 DEBUG_TYPE, "FailedRequestedVectorization", 1497 L->getStartLoc(), L->getHeader()) 1498 << "loop not vectorized: " 1499 << "failed explicitly specified loop vectorization"); 1500 else if (LH.getInterleave() != 1) 1501 ORE->emit(DiagnosticInfoOptimizationFailure( 1502 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1503 L->getHeader()) 1504 << "loop not interleaved: " 1505 << "failed explicitly specified loop interleaving"); 1506 } 1507 } 1508 1509 namespace { 1510 1511 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1512 /// to what vectorization factor. 1513 /// This class does not look at the profitability of vectorization, only the 1514 /// legality. This class has two main kinds of checks: 1515 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1516 /// will change the order of memory accesses in a way that will change the 1517 /// correctness of the program. 1518 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1519 /// checks for a number of different conditions, such as the availability of a 1520 /// single induction variable, that all types are supported and vectorize-able, 1521 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1522 /// This class is also used by InnerLoopVectorizer for identifying 1523 /// induction variable and the different reduction variables. 1524 class LoopVectorizationLegality { 1525 public: 1526 LoopVectorizationLegality( 1527 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1528 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1529 const TargetTransformInfo *TTI, 1530 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1531 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1532 LoopVectorizeHints *H) 1533 : TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), GetLAA(GetLAA), 1534 ORE(ORE), InterleaveInfo(PSE, L, DT, LI), Requirements(R), Hints(H) {} 1535 1536 /// ReductionList contains the reduction descriptors for all 1537 /// of the reductions that were found in the loop. 1538 using ReductionList = DenseMap<PHINode *, RecurrenceDescriptor>; 1539 1540 /// InductionList saves induction variables and maps them to the 1541 /// induction descriptor. 1542 using InductionList = MapVector<PHINode *, InductionDescriptor>; 1543 1544 /// RecurrenceSet contains the phi nodes that are recurrences other than 1545 /// inductions and reductions. 1546 using RecurrenceSet = SmallPtrSet<const PHINode *, 8>; 1547 1548 /// Returns true if it is legal to vectorize this loop. 1549 /// This does not mean that it is profitable to vectorize this 1550 /// loop, only that it is legal to do so. 1551 bool canVectorize(); 1552 1553 /// Returns the primary induction variable. 1554 PHINode *getPrimaryInduction() { return PrimaryInduction; } 1555 1556 /// Returns the reduction variables found in the loop. 1557 ReductionList *getReductionVars() { return &Reductions; } 1558 1559 /// Returns the induction variables found in the loop. 1560 InductionList *getInductionVars() { return &Inductions; } 1561 1562 /// Return the first-order recurrences found in the loop. 1563 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1564 1565 /// Return the set of instructions to sink to handle first-order recurrences. 1566 DenseMap<Instruction *, Instruction *> &getSinkAfter() { return SinkAfter; } 1567 1568 /// Returns the widest induction type. 1569 Type *getWidestInductionType() { return WidestIndTy; } 1570 1571 /// Returns True if V is an induction variable in this loop. 1572 bool isInductionVariable(const Value *V); 1573 1574 /// Returns True if PN is a reduction variable in this loop. 1575 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1576 1577 /// Returns True if Phi is a first-order recurrence in this loop. 1578 bool isFirstOrderRecurrence(const PHINode *Phi); 1579 1580 /// Return true if the block BB needs to be predicated in order for the loop 1581 /// to be vectorized. 1582 bool blockNeedsPredication(BasicBlock *BB); 1583 1584 /// Check if this pointer is consecutive when vectorizing. This happens 1585 /// when the last index of the GEP is the induction variable, or that the 1586 /// pointer itself is an induction variable. 1587 /// This check allows us to vectorize A[idx] into a wide load/store. 1588 /// Returns: 1589 /// 0 - Stride is unknown or non-consecutive. 1590 /// 1 - Address is consecutive. 1591 /// -1 - Address is consecutive, and decreasing. 1592 int isConsecutivePtr(Value *Ptr); 1593 1594 /// Returns true if the value V is uniform within the loop. 1595 bool isUniform(Value *V); 1596 1597 /// Returns the information that we collected about runtime memory check. 1598 const RuntimePointerChecking *getRuntimePointerChecking() const { 1599 return LAI->getRuntimePointerChecking(); 1600 } 1601 1602 const LoopAccessInfo *getLAI() const { return LAI; } 1603 1604 /// \brief Check if \p Instr belongs to any interleaved access group. 1605 bool isAccessInterleaved(Instruction *Instr) { 1606 return InterleaveInfo.isInterleaved(Instr); 1607 } 1608 1609 /// \brief Get the interleaved access group that \p Instr belongs to. 1610 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1611 return InterleaveInfo.getInterleaveGroup(Instr); 1612 } 1613 1614 /// \brief Returns true if an interleaved group requires a scalar iteration 1615 /// to handle accesses with gaps. 1616 bool requiresScalarEpilogue() const { 1617 return InterleaveInfo.requiresScalarEpilogue(); 1618 } 1619 1620 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1621 1622 uint64_t getMaxSafeRegisterWidth() const { 1623 return LAI->getDepChecker().getMaxSafeRegisterWidth(); 1624 } 1625 1626 bool hasStride(Value *V) { return LAI->hasStride(V); } 1627 1628 /// Returns true if the target machine supports masked store operation 1629 /// for the given \p DataType and kind of access to \p Ptr. 1630 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1631 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1632 } 1633 1634 /// Returns true if the target machine supports masked load operation 1635 /// for the given \p DataType and kind of access to \p Ptr. 1636 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1637 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1638 } 1639 1640 /// Returns true if the target machine supports masked scatter operation 1641 /// for the given \p DataType. 1642 bool isLegalMaskedScatter(Type *DataType) { 1643 return TTI->isLegalMaskedScatter(DataType); 1644 } 1645 1646 /// Returns true if the target machine supports masked gather operation 1647 /// for the given \p DataType. 1648 bool isLegalMaskedGather(Type *DataType) { 1649 return TTI->isLegalMaskedGather(DataType); 1650 } 1651 1652 /// Returns true if the target machine can represent \p V as a masked gather 1653 /// or scatter operation. 1654 bool isLegalGatherOrScatter(Value *V) { 1655 auto *LI = dyn_cast<LoadInst>(V); 1656 auto *SI = dyn_cast<StoreInst>(V); 1657 if (!LI && !SI) 1658 return false; 1659 auto *Ptr = getPointerOperand(V); 1660 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1661 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1662 } 1663 1664 /// Returns true if vector representation of the instruction \p I 1665 /// requires mask. 1666 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1667 1668 unsigned getNumStores() const { return LAI->getNumStores(); } 1669 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1670 unsigned getNumPredStores() const { return NumPredStores; } 1671 1672 /// Returns true if \p I is an instruction that will be scalarized with 1673 /// predication. Such instructions include conditional stores and 1674 /// instructions that may divide by zero. 1675 bool isScalarWithPredication(Instruction *I); 1676 1677 /// Returns true if \p I is a memory instruction with consecutive memory 1678 /// access that can be widened. 1679 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1680 1681 // Returns true if the NoNaN attribute is set on the function. 1682 bool hasFunNoNaNAttr() const { return HasFunNoNaNAttr; } 1683 1684 private: 1685 /// Check if a single basic block loop is vectorizable. 1686 /// At this point we know that this is a loop with a constant trip count 1687 /// and we only need to check individual instructions. 1688 bool canVectorizeInstrs(); 1689 1690 /// When we vectorize loops we may change the order in which 1691 /// we read and write from memory. This method checks if it is 1692 /// legal to vectorize the code, considering only memory constrains. 1693 /// Returns true if the loop is vectorizable 1694 bool canVectorizeMemory(); 1695 1696 /// Return true if we can vectorize this loop using the IF-conversion 1697 /// transformation. 1698 bool canVectorizeWithIfConvert(); 1699 1700 /// Return true if all of the instructions in the block can be speculatively 1701 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1702 /// and we know that we can read from them without segfault. 1703 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1704 1705 /// Updates the vectorization state by adding \p Phi to the inductions list. 1706 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1707 /// better choice for the main induction than the existing one. 1708 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1709 SmallPtrSetImpl<Value *> &AllowedExit); 1710 1711 /// Create an analysis remark that explains why vectorization failed 1712 /// 1713 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1714 /// an instruction that prevents vectorization. Otherwise the loop is used 1715 /// for the location of the remark. \return the remark object that can be 1716 /// streamed to. 1717 OptimizationRemarkAnalysis 1718 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1719 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1720 RemarkName, TheLoop, I); 1721 } 1722 1723 /// \brief If an access has a symbolic strides, this maps the pointer value to 1724 /// the stride symbol. 1725 const ValueToValueMap *getSymbolicStrides() { 1726 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1727 // it's collected. This happens from canVectorizeWithIfConvert, when the 1728 // pointer is checked to reference consecutive elements suitable for a 1729 // masked access. 1730 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1731 } 1732 1733 unsigned NumPredStores = 0; 1734 1735 /// The loop that we evaluate. 1736 Loop *TheLoop; 1737 1738 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1739 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1740 /// of existing SCEV assumptions. The analysis will also add a minimal set 1741 /// of new predicates if this is required to enable vectorization and 1742 /// unrolling. 1743 PredicatedScalarEvolution &PSE; 1744 1745 /// Target Library Info. 1746 TargetLibraryInfo *TLI; 1747 1748 /// Target Transform Info 1749 const TargetTransformInfo *TTI; 1750 1751 /// Dominator Tree. 1752 DominatorTree *DT; 1753 1754 // LoopAccess analysis. 1755 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1756 1757 // And the loop-accesses info corresponding to this loop. This pointer is 1758 // null until canVectorizeMemory sets it up. 1759 const LoopAccessInfo *LAI = nullptr; 1760 1761 /// Interface to emit optimization remarks. 1762 OptimizationRemarkEmitter *ORE; 1763 1764 /// The interleave access information contains groups of interleaved accesses 1765 /// with the same stride and close to each other. 1766 InterleavedAccessInfo InterleaveInfo; 1767 1768 // --- vectorization state --- // 1769 1770 /// Holds the primary induction variable. This is the counter of the 1771 /// loop. 1772 PHINode *PrimaryInduction = nullptr; 1773 1774 /// Holds the reduction variables. 1775 ReductionList Reductions; 1776 1777 /// Holds all of the induction variables that we found in the loop. 1778 /// Notice that inductions don't need to start at zero and that induction 1779 /// variables can be pointers. 1780 InductionList Inductions; 1781 1782 /// Holds the phi nodes that are first-order recurrences. 1783 RecurrenceSet FirstOrderRecurrences; 1784 1785 /// Holds instructions that need to sink past other instructions to handle 1786 /// first-order recurrences. 1787 DenseMap<Instruction *, Instruction *> SinkAfter; 1788 1789 /// Holds the widest induction type encountered. 1790 Type *WidestIndTy = nullptr; 1791 1792 /// Allowed outside users. This holds the induction and reduction 1793 /// vars which can be accessed from outside the loop. 1794 SmallPtrSet<Value *, 4> AllowedExit; 1795 1796 /// Can we assume the absence of NaNs. 1797 bool HasFunNoNaNAttr = false; 1798 1799 /// Vectorization requirements that will go through late-evaluation. 1800 LoopVectorizationRequirements *Requirements; 1801 1802 /// Used to emit an analysis of any legality issues. 1803 LoopVectorizeHints *Hints; 1804 1805 /// While vectorizing these instructions we have to generate a 1806 /// call to the appropriate masked intrinsic 1807 SmallPtrSet<const Instruction *, 8> MaskedOp; 1808 }; 1809 1810 /// LoopVectorizationCostModel - estimates the expected speedups due to 1811 /// vectorization. 1812 /// In many cases vectorization is not profitable. This can happen because of 1813 /// a number of reasons. In this class we mainly attempt to predict the 1814 /// expected speedup/slowdowns due to the supported instruction set. We use the 1815 /// TargetTransformInfo to query the different backends for the cost of 1816 /// different operations. 1817 class LoopVectorizationCostModel { 1818 public: 1819 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1820 LoopInfo *LI, LoopVectorizationLegality *Legal, 1821 const TargetTransformInfo &TTI, 1822 const TargetLibraryInfo *TLI, DemandedBits *DB, 1823 AssumptionCache *AC, 1824 OptimizationRemarkEmitter *ORE, const Function *F, 1825 const LoopVectorizeHints *Hints) 1826 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1827 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1828 1829 /// \return An upper bound for the vectorization factor, or None if 1830 /// vectorization should be avoided up front. 1831 Optional<unsigned> computeMaxVF(bool OptForSize); 1832 1833 /// Information about vectorization costs 1834 struct VectorizationFactor { 1835 // Vector width with best cost 1836 unsigned Width; 1837 1838 // Cost of the loop with that width 1839 unsigned Cost; 1840 }; 1841 1842 /// \return The most profitable vectorization factor and the cost of that VF. 1843 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1844 /// then this vectorization factor will be selected if vectorization is 1845 /// possible. 1846 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1847 1848 /// Setup cost-based decisions for user vectorization factor. 1849 void selectUserVectorizationFactor(unsigned UserVF) { 1850 collectUniformsAndScalars(UserVF); 1851 collectInstsToScalarize(UserVF); 1852 } 1853 1854 /// \return The size (in bits) of the smallest and widest types in the code 1855 /// that needs to be vectorized. We ignore values that remain scalar such as 1856 /// 64 bit loop indices. 1857 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1858 1859 /// \return The desired interleave count. 1860 /// If interleave count has been specified by metadata it will be returned. 1861 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1862 /// are the selected vectorization factor and the cost of the selected VF. 1863 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1864 unsigned LoopCost); 1865 1866 /// Memory access instruction may be vectorized in more than one way. 1867 /// Form of instruction after vectorization depends on cost. 1868 /// This function takes cost-based decisions for Load/Store instructions 1869 /// and collects them in a map. This decisions map is used for building 1870 /// the lists of loop-uniform and loop-scalar instructions. 1871 /// The calculated cost is saved with widening decision in order to 1872 /// avoid redundant calculations. 1873 void setCostBasedWideningDecision(unsigned VF); 1874 1875 /// \brief A struct that represents some properties of the register usage 1876 /// of a loop. 1877 struct RegisterUsage { 1878 /// Holds the number of loop invariant values that are used in the loop. 1879 unsigned LoopInvariantRegs; 1880 1881 /// Holds the maximum number of concurrent live intervals in the loop. 1882 unsigned MaxLocalUsers; 1883 1884 /// Holds the number of instructions in the loop. 1885 unsigned NumInstructions; 1886 }; 1887 1888 /// \return Returns information about the register usages of the loop for the 1889 /// given vectorization factors. 1890 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1891 1892 /// Collect values we want to ignore in the cost model. 1893 void collectValuesToIgnore(); 1894 1895 /// \returns The smallest bitwidth each instruction can be represented with. 1896 /// The vector equivalents of these instructions should be truncated to this 1897 /// type. 1898 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1899 return MinBWs; 1900 } 1901 1902 /// \returns True if it is more profitable to scalarize instruction \p I for 1903 /// vectorization factor \p VF. 1904 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1905 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1906 auto Scalars = InstsToScalarize.find(VF); 1907 assert(Scalars != InstsToScalarize.end() && 1908 "VF not yet analyzed for scalarization profitability"); 1909 return Scalars->second.count(I); 1910 } 1911 1912 /// Returns true if \p I is known to be uniform after vectorization. 1913 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1914 if (VF == 1) 1915 return true; 1916 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1917 auto UniformsPerVF = Uniforms.find(VF); 1918 return UniformsPerVF->second.count(I); 1919 } 1920 1921 /// Returns true if \p I is known to be scalar after vectorization. 1922 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1923 if (VF == 1) 1924 return true; 1925 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1926 auto ScalarsPerVF = Scalars.find(VF); 1927 return ScalarsPerVF->second.count(I); 1928 } 1929 1930 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1931 /// for vectorization factor \p VF. 1932 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1933 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1934 !isScalarAfterVectorization(I, VF); 1935 } 1936 1937 /// Decision that was taken during cost calculation for memory instruction. 1938 enum InstWidening { 1939 CM_Unknown, 1940 CM_Widen, 1941 CM_Interleave, 1942 CM_GatherScatter, 1943 CM_Scalarize 1944 }; 1945 1946 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1947 /// instruction \p I and vector width \p VF. 1948 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1949 unsigned Cost) { 1950 assert(VF >= 2 && "Expected VF >=2"); 1951 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1952 } 1953 1954 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1955 /// interleaving group \p Grp and vector width \p VF. 1956 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1957 InstWidening W, unsigned Cost) { 1958 assert(VF >= 2 && "Expected VF >=2"); 1959 /// Broadcast this decicion to all instructions inside the group. 1960 /// But the cost will be assigned to one instruction only. 1961 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1962 if (auto *I = Grp->getMember(i)) { 1963 if (Grp->getInsertPos() == I) 1964 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1965 else 1966 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1967 } 1968 } 1969 } 1970 1971 /// Return the cost model decision for the given instruction \p I and vector 1972 /// width \p VF. Return CM_Unknown if this instruction did not pass 1973 /// through the cost modeling. 1974 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1975 assert(VF >= 2 && "Expected VF >=2"); 1976 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1977 auto Itr = WideningDecisions.find(InstOnVF); 1978 if (Itr == WideningDecisions.end()) 1979 return CM_Unknown; 1980 return Itr->second.first; 1981 } 1982 1983 /// Return the vectorization cost for the given instruction \p I and vector 1984 /// width \p VF. 1985 unsigned getWideningCost(Instruction *I, unsigned VF) { 1986 assert(VF >= 2 && "Expected VF >=2"); 1987 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1988 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 1989 return WideningDecisions[InstOnVF].second; 1990 } 1991 1992 /// Return True if instruction \p I is an optimizable truncate whose operand 1993 /// is an induction variable. Such a truncate will be removed by adding a new 1994 /// induction variable with the destination type. 1995 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1996 // If the instruction is not a truncate, return false. 1997 auto *Trunc = dyn_cast<TruncInst>(I); 1998 if (!Trunc) 1999 return false; 2000 2001 // Get the source and destination types of the truncate. 2002 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 2003 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 2004 2005 // If the truncate is free for the given types, return false. Replacing a 2006 // free truncate with an induction variable would add an induction variable 2007 // update instruction to each iteration of the loop. We exclude from this 2008 // check the primary induction variable since it will need an update 2009 // instruction regardless. 2010 Value *Op = Trunc->getOperand(0); 2011 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 2012 return false; 2013 2014 // If the truncated value is not an induction variable, return false. 2015 return Legal->isInductionVariable(Op); 2016 } 2017 2018 /// Collects the instructions to scalarize for each predicated instruction in 2019 /// the loop. 2020 void collectInstsToScalarize(unsigned VF); 2021 2022 /// Collect Uniform and Scalar values for the given \p VF. 2023 /// The sets depend on CM decision for Load/Store instructions 2024 /// that may be vectorized as interleave, gather-scatter or scalarized. 2025 void collectUniformsAndScalars(unsigned VF) { 2026 // Do the analysis once. 2027 if (VF == 1 || Uniforms.count(VF)) 2028 return; 2029 setCostBasedWideningDecision(VF); 2030 collectLoopUniforms(VF); 2031 collectLoopScalars(VF); 2032 } 2033 2034 private: 2035 /// \return An upper bound for the vectorization factor, larger than zero. 2036 /// One is returned if vectorization should best be avoided due to cost. 2037 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 2038 2039 /// The vectorization cost is a combination of the cost itself and a boolean 2040 /// indicating whether any of the contributing operations will actually 2041 /// operate on 2042 /// vector values after type legalization in the backend. If this latter value 2043 /// is 2044 /// false, then all operations will be scalarized (i.e. no vectorization has 2045 /// actually taken place). 2046 using VectorizationCostTy = std::pair<unsigned, bool>; 2047 2048 /// Returns the expected execution cost. The unit of the cost does 2049 /// not matter because we use the 'cost' units to compare different 2050 /// vector widths. The cost that is returned is *not* normalized by 2051 /// the factor width. 2052 VectorizationCostTy expectedCost(unsigned VF); 2053 2054 /// Returns the execution time cost of an instruction for a given vector 2055 /// width. Vector width of one means scalar. 2056 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 2057 2058 /// The cost-computation logic from getInstructionCost which provides 2059 /// the vector type as an output parameter. 2060 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 2061 2062 /// Calculate vectorization cost of memory instruction \p I. 2063 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 2064 2065 /// The cost computation for scalarized memory instruction. 2066 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 2067 2068 /// The cost computation for interleaving group of memory instructions. 2069 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 2070 2071 /// The cost computation for Gather/Scatter instruction. 2072 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 2073 2074 /// The cost computation for widening instruction \p I with consecutive 2075 /// memory access. 2076 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 2077 2078 /// The cost calculation for Load instruction \p I with uniform pointer - 2079 /// scalar load + broadcast. 2080 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 2081 2082 /// Returns whether the instruction is a load or store and will be a emitted 2083 /// as a vector operation. 2084 bool isConsecutiveLoadOrStore(Instruction *I); 2085 2086 /// Create an analysis remark that explains why vectorization failed 2087 /// 2088 /// \p RemarkName is the identifier for the remark. \return the remark object 2089 /// that can be streamed to. 2090 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 2091 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 2092 RemarkName, TheLoop); 2093 } 2094 2095 /// Map of scalar integer values to the smallest bitwidth they can be legally 2096 /// represented as. The vector equivalents of these values should be truncated 2097 /// to this type. 2098 MapVector<Instruction *, uint64_t> MinBWs; 2099 2100 /// A type representing the costs for instructions if they were to be 2101 /// scalarized rather than vectorized. The entries are Instruction-Cost 2102 /// pairs. 2103 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 2104 2105 /// A set containing all BasicBlocks that are known to present after 2106 /// vectorization as a predicated block. 2107 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 2108 2109 /// A map holding scalar costs for different vectorization factors. The 2110 /// presence of a cost for an instruction in the mapping indicates that the 2111 /// instruction will be scalarized when vectorizing with the associated 2112 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 2113 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 2114 2115 /// Holds the instructions known to be uniform after vectorization. 2116 /// The data is collected per VF. 2117 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 2118 2119 /// Holds the instructions known to be scalar after vectorization. 2120 /// The data is collected per VF. 2121 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 2122 2123 /// Holds the instructions (address computations) that are forced to be 2124 /// scalarized. 2125 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 2126 2127 /// Returns the expected difference in cost from scalarizing the expression 2128 /// feeding a predicated instruction \p PredInst. The instructions to 2129 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 2130 /// non-negative return value implies the expression will be scalarized. 2131 /// Currently, only single-use chains are considered for scalarization. 2132 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 2133 unsigned VF); 2134 2135 /// Collect the instructions that are uniform after vectorization. An 2136 /// instruction is uniform if we represent it with a single scalar value in 2137 /// the vectorized loop corresponding to each vector iteration. Examples of 2138 /// uniform instructions include pointer operands of consecutive or 2139 /// interleaved memory accesses. Note that although uniformity implies an 2140 /// instruction will be scalar, the reverse is not true. In general, a 2141 /// scalarized instruction will be represented by VF scalar values in the 2142 /// vectorized loop, each corresponding to an iteration of the original 2143 /// scalar loop. 2144 void collectLoopUniforms(unsigned VF); 2145 2146 /// Collect the instructions that are scalar after vectorization. An 2147 /// instruction is scalar if it is known to be uniform or will be scalarized 2148 /// during vectorization. Non-uniform scalarized instructions will be 2149 /// represented by VF values in the vectorized loop, each corresponding to an 2150 /// iteration of the original scalar loop. 2151 void collectLoopScalars(unsigned VF); 2152 2153 /// Keeps cost model vectorization decision and cost for instructions. 2154 /// Right now it is used for memory instructions only. 2155 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 2156 std::pair<InstWidening, unsigned>>; 2157 2158 DecisionList WideningDecisions; 2159 2160 public: 2161 /// The loop that we evaluate. 2162 Loop *TheLoop; 2163 2164 /// Predicated scalar evolution analysis. 2165 PredicatedScalarEvolution &PSE; 2166 2167 /// Loop Info analysis. 2168 LoopInfo *LI; 2169 2170 /// Vectorization legality. 2171 LoopVectorizationLegality *Legal; 2172 2173 /// Vector target information. 2174 const TargetTransformInfo &TTI; 2175 2176 /// Target Library Info. 2177 const TargetLibraryInfo *TLI; 2178 2179 /// Demanded bits analysis. 2180 DemandedBits *DB; 2181 2182 /// Assumption cache. 2183 AssumptionCache *AC; 2184 2185 /// Interface to emit optimization remarks. 2186 OptimizationRemarkEmitter *ORE; 2187 2188 const Function *TheFunction; 2189 2190 /// Loop Vectorize Hint. 2191 const LoopVectorizeHints *Hints; 2192 2193 /// Values to ignore in the cost model. 2194 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2195 2196 /// Values to ignore in the cost model when VF > 1. 2197 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2198 }; 2199 2200 } // end anonymous namespace 2201 2202 namespace llvm { 2203 2204 /// InnerLoopVectorizer vectorizes loops which contain only one basic 2205 /// LoopVectorizationPlanner - drives the vectorization process after having 2206 /// passed Legality checks. 2207 /// The planner builds and optimizes the Vectorization Plans which record the 2208 /// decisions how to vectorize the given loop. In particular, represent the 2209 /// control-flow of the vectorized version, the replication of instructions that 2210 /// are to be scalarized, and interleave access groups. 2211 class LoopVectorizationPlanner { 2212 /// The loop that we evaluate. 2213 Loop *OrigLoop; 2214 2215 /// Loop Info analysis. 2216 LoopInfo *LI; 2217 2218 /// Target Library Info. 2219 const TargetLibraryInfo *TLI; 2220 2221 /// Target Transform Info. 2222 const TargetTransformInfo *TTI; 2223 2224 /// The legality analysis. 2225 LoopVectorizationLegality *Legal; 2226 2227 /// The profitablity analysis. 2228 LoopVectorizationCostModel &CM; 2229 2230 SmallVector<VPlan *, 4> VPlans; 2231 2232 unsigned BestVF = 0; 2233 unsigned BestUF = 0; 2234 2235 public: 2236 LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI, 2237 const TargetTransformInfo *TTI, 2238 LoopVectorizationLegality *Legal, 2239 LoopVectorizationCostModel &CM) 2240 : OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM) {} 2241 2242 ~LoopVectorizationPlanner() { 2243 while (!VPlans.empty()) { 2244 VPlan *Plan = VPlans.back(); 2245 VPlans.pop_back(); 2246 delete Plan; 2247 } 2248 } 2249 2250 /// Plan how to best vectorize, return the best VF and its cost. 2251 LoopVectorizationCostModel::VectorizationFactor plan(bool OptForSize, 2252 unsigned UserVF); 2253 2254 /// Finalize the best decision and dispose of all other VPlans. 2255 void setBestPlan(unsigned VF, unsigned UF); 2256 2257 /// Generate the IR code for the body of the vectorized loop according to the 2258 /// best selected VPlan. 2259 void executePlan(InnerLoopVectorizer &LB, DominatorTree *DT); 2260 2261 void printPlans(raw_ostream &O) { 2262 for (VPlan *Plan : VPlans) 2263 O << *Plan; 2264 } 2265 2266 protected: 2267 /// Collect the instructions from the original loop that would be trivially 2268 /// dead in the vectorized loop if generated. 2269 void collectTriviallyDeadInstructions( 2270 SmallPtrSetImpl<Instruction *> &DeadInstructions); 2271 2272 /// A range of powers-of-2 vectorization factors with fixed start and 2273 /// adjustable end. The range includes start and excludes end, e.g.,: 2274 /// [1, 9) = {1, 2, 4, 8} 2275 struct VFRange { 2276 // A power of 2. 2277 const unsigned Start; 2278 2279 // Need not be a power of 2. If End <= Start range is empty. 2280 unsigned End; 2281 }; 2282 2283 /// Test a \p Predicate on a \p Range of VF's. Return the value of applying 2284 /// \p Predicate on Range.Start, possibly decreasing Range.End such that the 2285 /// returned value holds for the entire \p Range. 2286 bool getDecisionAndClampRange(const std::function<bool(unsigned)> &Predicate, 2287 VFRange &Range); 2288 2289 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 2290 /// according to the information gathered by Legal when it checked if it is 2291 /// legal to vectorize the loop. 2292 void buildVPlans(unsigned MinVF, unsigned MaxVF); 2293 2294 private: 2295 /// Check if \I belongs to an Interleave Group within the given VF \p Range, 2296 /// \return true in the first returned value if so and false otherwise. 2297 /// Build a new VPInterleaveGroup Recipe if \I is the primary member of an IG 2298 /// for \p Range.Start, and provide it as the second returned value. 2299 /// Note that if \I is an adjunct member of an IG for \p Range.Start, the 2300 /// \return value is <true, nullptr>, as it is handled by another recipe. 2301 /// \p Range.End may be decreased to ensure same decision from \p Range.Start 2302 /// to \p Range.End. 2303 VPInterleaveRecipe *tryToInterleaveMemory(Instruction *I, VFRange &Range); 2304 2305 /// Check if an induction recipe should be constructed for \I within the given 2306 /// VF \p Range. If so build and return it. If not, return null. \p Range.End 2307 /// may be decreased to ensure same decision from \p Range.Start to 2308 /// \p Range.End. 2309 VPWidenIntOrFpInductionRecipe *tryToOptimizeInduction(Instruction *I, 2310 VFRange &Range); 2311 2312 /// Check if \p I can be widened within the given VF \p Range. If \p I can be 2313 /// widened for \p Range.Start, check if the last recipe of \p VPBB can be 2314 /// extended to include \p I or else build a new VPWidenRecipe for it and 2315 /// append it to \p VPBB. Return true if \p I can be widened for Range.Start, 2316 /// false otherwise. Range.End may be decreased to ensure same decision from 2317 /// \p Range.Start to \p Range.End. 2318 bool tryToWiden(Instruction *I, VPBasicBlock *VPBB, VFRange &Range); 2319 2320 /// Build a VPReplicationRecipe for \p I and enclose it within a Region if it 2321 /// is predicated. \return \p VPBB augmented with this new recipe if \p I is 2322 /// not predicated, otherwise \return a new VPBasicBlock that succeeds the new 2323 /// Region. Update the packing decision of predicated instructions if they 2324 /// feed \p I. Range.End may be decreased to ensure same recipe behavior from 2325 /// \p Range.Start to \p Range.End. 2326 VPBasicBlock *handleReplication( 2327 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 2328 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe); 2329 2330 /// Create a replicating region for instruction \p I that requires 2331 /// predication. \p PredRecipe is a VPReplicateRecipe holding \p I. 2332 VPRegionBlock *createReplicateRegion(Instruction *I, 2333 VPRecipeBase *PredRecipe); 2334 2335 /// Build a VPlan according to the information gathered by Legal. \return a 2336 /// VPlan for vectorization factors \p Range.Start and up to \p Range.End 2337 /// exclusive, possibly decreasing \p Range.End. 2338 VPlan *buildVPlan(VFRange &Range); 2339 }; 2340 2341 } // end namespace llvm 2342 2343 namespace { 2344 2345 /// \brief This holds vectorization requirements that must be verified late in 2346 /// the process. The requirements are set by legalize and costmodel. Once 2347 /// vectorization has been determined to be possible and profitable the 2348 /// requirements can be verified by looking for metadata or compiler options. 2349 /// For example, some loops require FP commutativity which is only allowed if 2350 /// vectorization is explicitly specified or if the fast-math compiler option 2351 /// has been provided. 2352 /// Late evaluation of these requirements allows helpful diagnostics to be 2353 /// composed that tells the user what need to be done to vectorize the loop. For 2354 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2355 /// evaluation should be used only when diagnostics can generated that can be 2356 /// followed by a non-expert user. 2357 class LoopVectorizationRequirements { 2358 public: 2359 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) : ORE(ORE) {} 2360 2361 void addUnsafeAlgebraInst(Instruction *I) { 2362 // First unsafe algebra instruction. 2363 if (!UnsafeAlgebraInst) 2364 UnsafeAlgebraInst = I; 2365 } 2366 2367 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2368 2369 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2370 const char *PassName = Hints.vectorizeAnalysisPassName(); 2371 bool Failed = false; 2372 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2373 ORE.emit([&]() { 2374 return OptimizationRemarkAnalysisFPCommute( 2375 PassName, "CantReorderFPOps", 2376 UnsafeAlgebraInst->getDebugLoc(), 2377 UnsafeAlgebraInst->getParent()) 2378 << "loop not vectorized: cannot prove it is safe to reorder " 2379 "floating-point operations"; 2380 }); 2381 Failed = true; 2382 } 2383 2384 // Test if runtime memcheck thresholds are exceeded. 2385 bool PragmaThresholdReached = 2386 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2387 bool ThresholdReached = 2388 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2389 if ((ThresholdReached && !Hints.allowReordering()) || 2390 PragmaThresholdReached) { 2391 ORE.emit([&]() { 2392 return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2393 L->getStartLoc(), 2394 L->getHeader()) 2395 << "loop not vectorized: cannot prove it is safe to reorder " 2396 "memory operations"; 2397 }); 2398 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2399 Failed = true; 2400 } 2401 2402 return Failed; 2403 } 2404 2405 private: 2406 unsigned NumRuntimePointerChecks = 0; 2407 Instruction *UnsafeAlgebraInst = nullptr; 2408 2409 /// Interface to emit optimization remarks. 2410 OptimizationRemarkEmitter &ORE; 2411 }; 2412 2413 } // end anonymous namespace 2414 2415 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 2416 if (L.empty()) { 2417 if (!hasCyclesInLoopBody(L)) 2418 V.push_back(&L); 2419 return; 2420 } 2421 for (Loop *InnerL : L) 2422 addAcyclicInnerLoop(*InnerL, V); 2423 } 2424 2425 namespace { 2426 2427 /// The LoopVectorize Pass. 2428 struct LoopVectorize : public FunctionPass { 2429 /// Pass identification, replacement for typeid 2430 static char ID; 2431 2432 LoopVectorizePass Impl; 2433 2434 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2435 : FunctionPass(ID) { 2436 Impl.DisableUnrolling = NoUnrolling; 2437 Impl.AlwaysVectorize = AlwaysVectorize; 2438 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2439 } 2440 2441 bool runOnFunction(Function &F) override { 2442 if (skipFunction(F)) 2443 return false; 2444 2445 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2446 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2447 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2448 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2449 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2450 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2451 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2452 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2453 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2454 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2455 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2456 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2457 2458 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2459 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2460 2461 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2462 GetLAA, *ORE); 2463 } 2464 2465 void getAnalysisUsage(AnalysisUsage &AU) const override { 2466 AU.addRequired<AssumptionCacheTracker>(); 2467 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2468 AU.addRequired<DominatorTreeWrapperPass>(); 2469 AU.addRequired<LoopInfoWrapperPass>(); 2470 AU.addRequired<ScalarEvolutionWrapperPass>(); 2471 AU.addRequired<TargetTransformInfoWrapperPass>(); 2472 AU.addRequired<AAResultsWrapperPass>(); 2473 AU.addRequired<LoopAccessLegacyAnalysis>(); 2474 AU.addRequired<DemandedBitsWrapperPass>(); 2475 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2476 AU.addPreserved<LoopInfoWrapperPass>(); 2477 AU.addPreserved<DominatorTreeWrapperPass>(); 2478 AU.addPreserved<BasicAAWrapperPass>(); 2479 AU.addPreserved<GlobalsAAWrapperPass>(); 2480 } 2481 }; 2482 2483 } // end anonymous namespace 2484 2485 //===----------------------------------------------------------------------===// 2486 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2487 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2488 //===----------------------------------------------------------------------===// 2489 2490 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2491 // We need to place the broadcast of invariant variables outside the loop. 2492 Instruction *Instr = dyn_cast<Instruction>(V); 2493 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2494 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2495 2496 // Place the code for broadcasting invariant variables in the new preheader. 2497 IRBuilder<>::InsertPointGuard Guard(Builder); 2498 if (Invariant) 2499 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2500 2501 // Broadcast the scalar into all locations in the vector. 2502 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2503 2504 return Shuf; 2505 } 2506 2507 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2508 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 2509 Value *Start = II.getStartValue(); 2510 2511 // Construct the initial value of the vector IV in the vector loop preheader 2512 auto CurrIP = Builder.saveIP(); 2513 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2514 if (isa<TruncInst>(EntryVal)) { 2515 assert(Start->getType()->isIntegerTy() && 2516 "Truncation requires an integer type"); 2517 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2518 Step = Builder.CreateTrunc(Step, TruncType); 2519 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2520 } 2521 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2522 Value *SteppedStart = 2523 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2524 2525 // We create vector phi nodes for both integer and floating-point induction 2526 // variables. Here, we determine the kind of arithmetic we will perform. 2527 Instruction::BinaryOps AddOp; 2528 Instruction::BinaryOps MulOp; 2529 if (Step->getType()->isIntegerTy()) { 2530 AddOp = Instruction::Add; 2531 MulOp = Instruction::Mul; 2532 } else { 2533 AddOp = II.getInductionOpcode(); 2534 MulOp = Instruction::FMul; 2535 } 2536 2537 // Multiply the vectorization factor by the step using integer or 2538 // floating-point arithmetic as appropriate. 2539 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 2540 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2541 2542 // Create a vector splat to use in the induction update. 2543 // 2544 // FIXME: If the step is non-constant, we create the vector splat with 2545 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2546 // handle a constant vector splat. 2547 Value *SplatVF = isa<Constant>(Mul) 2548 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2549 : Builder.CreateVectorSplat(VF, Mul); 2550 Builder.restoreIP(CurrIP); 2551 2552 // We may need to add the step a number of times, depending on the unroll 2553 // factor. The last of those goes into the PHI. 2554 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2555 &*LoopVectorBody->getFirstInsertionPt()); 2556 Instruction *LastInduction = VecInd; 2557 for (unsigned Part = 0; Part < UF; ++Part) { 2558 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 2559 if (isa<TruncInst>(EntryVal)) 2560 addMetadata(LastInduction, EntryVal); 2561 LastInduction = cast<Instruction>(addFastMathFlag( 2562 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2563 } 2564 2565 // Move the last step to the end of the latch block. This ensures consistent 2566 // placement of all induction updates. 2567 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2568 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2569 auto *ICmp = cast<Instruction>(Br->getCondition()); 2570 LastInduction->moveBefore(ICmp); 2571 LastInduction->setName("vec.ind.next"); 2572 2573 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2574 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2575 } 2576 2577 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2578 return Cost->isScalarAfterVectorization(I, VF) || 2579 Cost->isProfitableToScalarize(I, VF); 2580 } 2581 2582 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2583 if (shouldScalarizeInstruction(IV)) 2584 return true; 2585 auto isScalarInst = [&](User *U) -> bool { 2586 auto *I = cast<Instruction>(U); 2587 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2588 }; 2589 return llvm::any_of(IV->users(), isScalarInst); 2590 } 2591 2592 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 2593 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2594 "Primary induction variable must have an integer type"); 2595 2596 auto II = Legal->getInductionVars()->find(IV); 2597 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2598 2599 auto ID = II->second; 2600 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2601 2602 // The scalar value to broadcast. This will be derived from the canonical 2603 // induction variable. 2604 Value *ScalarIV = nullptr; 2605 2606 // The value from the original loop to which we are mapping the new induction 2607 // variable. 2608 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2609 2610 // True if we have vectorized the induction variable. 2611 auto VectorizedIV = false; 2612 2613 // Determine if we want a scalar version of the induction variable. This is 2614 // true if the induction variable itself is not widened, or if it has at 2615 // least one user in the loop that is not widened. 2616 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2617 2618 // Generate code for the induction step. Note that induction steps are 2619 // required to be loop-invariant 2620 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 2621 "Induction step should be loop invariant"); 2622 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2623 Value *Step = nullptr; 2624 if (PSE.getSE()->isSCEVable(IV->getType())) { 2625 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2626 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2627 LoopVectorPreHeader->getTerminator()); 2628 } else { 2629 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 2630 } 2631 2632 // Try to create a new independent vector induction variable. If we can't 2633 // create the phi node, we will splat the scalar induction variable in each 2634 // loop iteration. 2635 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 2636 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2637 VectorizedIV = true; 2638 } 2639 2640 // If we haven't yet vectorized the induction variable, or if we will create 2641 // a scalar one, we need to define the scalar induction variable and step 2642 // values. If we were given a truncation type, truncate the canonical 2643 // induction variable and step. Otherwise, derive these values from the 2644 // induction descriptor. 2645 if (!VectorizedIV || NeedsScalarIV) { 2646 ScalarIV = Induction; 2647 if (IV != OldInduction) { 2648 ScalarIV = IV->getType()->isIntegerTy() 2649 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2650 : Builder.CreateCast(Instruction::SIToFP, Induction, 2651 IV->getType()); 2652 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2653 ScalarIV->setName("offset.idx"); 2654 } 2655 if (Trunc) { 2656 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2657 assert(Step->getType()->isIntegerTy() && 2658 "Truncation requires an integer step"); 2659 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2660 Step = Builder.CreateTrunc(Step, TruncType); 2661 } 2662 } 2663 2664 // If we haven't yet vectorized the induction variable, splat the scalar 2665 // induction variable, and build the necessary step vectors. 2666 if (!VectorizedIV) { 2667 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2668 for (unsigned Part = 0; Part < UF; ++Part) { 2669 Value *EntryPart = 2670 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 2671 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 2672 if (Trunc) 2673 addMetadata(EntryPart, Trunc); 2674 } 2675 } 2676 2677 // If an induction variable is only used for counting loop iterations or 2678 // calculating addresses, it doesn't need to be widened. Create scalar steps 2679 // that can be used by instructions we will later scalarize. Note that the 2680 // addition of the scalar steps will not increase the number of instructions 2681 // in the loop in the common case prior to InstCombine. We will be trading 2682 // one vector extract for each scalar step. 2683 if (NeedsScalarIV) 2684 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2685 } 2686 2687 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2688 Instruction::BinaryOps BinOp) { 2689 // Create and check the types. 2690 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2691 int VLen = Val->getType()->getVectorNumElements(); 2692 2693 Type *STy = Val->getType()->getScalarType(); 2694 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2695 "Induction Step must be an integer or FP"); 2696 assert(Step->getType() == STy && "Step has wrong type"); 2697 2698 SmallVector<Constant *, 8> Indices; 2699 2700 if (STy->isIntegerTy()) { 2701 // Create a vector of consecutive numbers from zero to VF. 2702 for (int i = 0; i < VLen; ++i) 2703 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2704 2705 // Add the consecutive indices to the vector value. 2706 Constant *Cv = ConstantVector::get(Indices); 2707 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2708 Step = Builder.CreateVectorSplat(VLen, Step); 2709 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2710 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2711 // which can be found from the original scalar operations. 2712 Step = Builder.CreateMul(Cv, Step); 2713 return Builder.CreateAdd(Val, Step, "induction"); 2714 } 2715 2716 // Floating point induction. 2717 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2718 "Binary Opcode should be specified for FP induction"); 2719 // Create a vector of consecutive numbers from zero to VF. 2720 for (int i = 0; i < VLen; ++i) 2721 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2722 2723 // Add the consecutive indices to the vector value. 2724 Constant *Cv = ConstantVector::get(Indices); 2725 2726 Step = Builder.CreateVectorSplat(VLen, Step); 2727 2728 // Floating point operations had to be 'fast' to enable the induction. 2729 FastMathFlags Flags; 2730 Flags.setUnsafeAlgebra(); 2731 2732 Value *MulOp = Builder.CreateFMul(Cv, Step); 2733 if (isa<Instruction>(MulOp)) 2734 // Have to check, MulOp may be a constant 2735 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2736 2737 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2738 if (isa<Instruction>(BOp)) 2739 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2740 return BOp; 2741 } 2742 2743 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2744 Value *EntryVal, 2745 const InductionDescriptor &ID) { 2746 // We shouldn't have to build scalar steps if we aren't vectorizing. 2747 assert(VF > 1 && "VF should be greater than one"); 2748 2749 // Get the value type and ensure it and the step have the same integer type. 2750 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2751 assert(ScalarIVTy == Step->getType() && 2752 "Val and Step should have the same type"); 2753 2754 // We build scalar steps for both integer and floating-point induction 2755 // variables. Here, we determine the kind of arithmetic we will perform. 2756 Instruction::BinaryOps AddOp; 2757 Instruction::BinaryOps MulOp; 2758 if (ScalarIVTy->isIntegerTy()) { 2759 AddOp = Instruction::Add; 2760 MulOp = Instruction::Mul; 2761 } else { 2762 AddOp = ID.getInductionOpcode(); 2763 MulOp = Instruction::FMul; 2764 } 2765 2766 // Determine the number of scalars we need to generate for each unroll 2767 // iteration. If EntryVal is uniform, we only need to generate the first 2768 // lane. Otherwise, we generate all VF values. 2769 unsigned Lanes = 2770 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2771 : VF; 2772 // Compute the scalar steps and save the results in VectorLoopValueMap. 2773 for (unsigned Part = 0; Part < UF; ++Part) { 2774 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2775 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2776 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2777 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2778 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2779 } 2780 } 2781 } 2782 2783 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2784 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2785 ValueToValueMap(); 2786 2787 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2788 if (Stride == 1 || Stride == -1) 2789 return Stride; 2790 return 0; 2791 } 2792 2793 bool LoopVectorizationLegality::isUniform(Value *V) { 2794 return LAI->isUniform(V); 2795 } 2796 2797 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2798 assert(V != Induction && "The new induction variable should not be used."); 2799 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2800 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2801 2802 // If we have a stride that is replaced by one, do it here. 2803 if (Legal->hasStride(V)) 2804 V = ConstantInt::get(V->getType(), 1); 2805 2806 // If we have a vector mapped to this value, return it. 2807 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2808 return VectorLoopValueMap.getVectorValue(V, Part); 2809 2810 // If the value has not been vectorized, check if it has been scalarized 2811 // instead. If it has been scalarized, and we actually need the value in 2812 // vector form, we will construct the vector values on demand. 2813 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2814 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2815 2816 // If we've scalarized a value, that value should be an instruction. 2817 auto *I = cast<Instruction>(V); 2818 2819 // If we aren't vectorizing, we can just copy the scalar map values over to 2820 // the vector map. 2821 if (VF == 1) { 2822 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2823 return ScalarValue; 2824 } 2825 2826 // Get the last scalar instruction we generated for V and Part. If the value 2827 // is known to be uniform after vectorization, this corresponds to lane zero 2828 // of the Part unroll iteration. Otherwise, the last instruction is the one 2829 // we created for the last vector lane of the Part unroll iteration. 2830 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2831 auto *LastInst = cast<Instruction>( 2832 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2833 2834 // Set the insert point after the last scalarized instruction. This ensures 2835 // the insertelement sequence will directly follow the scalar definitions. 2836 auto OldIP = Builder.saveIP(); 2837 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2838 Builder.SetInsertPoint(&*NewIP); 2839 2840 // However, if we are vectorizing, we need to construct the vector values. 2841 // If the value is known to be uniform after vectorization, we can just 2842 // broadcast the scalar value corresponding to lane zero for each unroll 2843 // iteration. Otherwise, we construct the vector values using insertelement 2844 // instructions. Since the resulting vectors are stored in 2845 // VectorLoopValueMap, we will only generate the insertelements once. 2846 Value *VectorValue = nullptr; 2847 if (Cost->isUniformAfterVectorization(I, VF)) { 2848 VectorValue = getBroadcastInstrs(ScalarValue); 2849 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2850 } else { 2851 // Initialize packing with insertelements to start from undef. 2852 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2853 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2854 for (unsigned Lane = 0; Lane < VF; ++Lane) 2855 packScalarIntoVectorValue(V, {Part, Lane}); 2856 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2857 } 2858 Builder.restoreIP(OldIP); 2859 return VectorValue; 2860 } 2861 2862 // If this scalar is unknown, assume that it is a constant or that it is 2863 // loop invariant. Broadcast V and save the value for future uses. 2864 Value *B = getBroadcastInstrs(V); 2865 VectorLoopValueMap.setVectorValue(V, Part, B); 2866 return B; 2867 } 2868 2869 Value * 2870 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2871 const VPIteration &Instance) { 2872 // If the value is not an instruction contained in the loop, it should 2873 // already be scalar. 2874 if (OrigLoop->isLoopInvariant(V)) 2875 return V; 2876 2877 assert(Instance.Lane > 0 2878 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2879 : true && "Uniform values only have lane zero"); 2880 2881 // If the value from the original loop has not been vectorized, it is 2882 // represented by UF x VF scalar values in the new loop. Return the requested 2883 // scalar value. 2884 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2885 return VectorLoopValueMap.getScalarValue(V, Instance); 2886 2887 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2888 // for the given unroll part. If this entry is not a vector type (i.e., the 2889 // vectorization factor is one), there is no need to generate an 2890 // extractelement instruction. 2891 auto *U = getOrCreateVectorValue(V, Instance.Part); 2892 if (!U->getType()->isVectorTy()) { 2893 assert(VF == 1 && "Value not scalarized has non-vector type"); 2894 return U; 2895 } 2896 2897 // Otherwise, the value from the original loop has been vectorized and is 2898 // represented by UF vector values. Extract and return the requested scalar 2899 // value from the appropriate vector lane. 2900 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2901 } 2902 2903 void InnerLoopVectorizer::packScalarIntoVectorValue( 2904 Value *V, const VPIteration &Instance) { 2905 assert(V != Induction && "The new induction variable should not be used."); 2906 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2907 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2908 2909 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2910 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2911 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2912 Builder.getInt32(Instance.Lane)); 2913 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2914 } 2915 2916 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2917 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2918 SmallVector<Constant *, 8> ShuffleMask; 2919 for (unsigned i = 0; i < VF; ++i) 2920 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2921 2922 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2923 ConstantVector::get(ShuffleMask), 2924 "reverse"); 2925 } 2926 2927 // Try to vectorize the interleave group that \p Instr belongs to. 2928 // 2929 // E.g. Translate following interleaved load group (factor = 3): 2930 // for (i = 0; i < N; i+=3) { 2931 // R = Pic[i]; // Member of index 0 2932 // G = Pic[i+1]; // Member of index 1 2933 // B = Pic[i+2]; // Member of index 2 2934 // ... // do something to R, G, B 2935 // } 2936 // To: 2937 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2938 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2939 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2940 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2941 // 2942 // Or translate following interleaved store group (factor = 3): 2943 // for (i = 0; i < N; i+=3) { 2944 // ... do something to R, G, B 2945 // Pic[i] = R; // Member of index 0 2946 // Pic[i+1] = G; // Member of index 1 2947 // Pic[i+2] = B; // Member of index 2 2948 // } 2949 // To: 2950 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2951 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2952 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2953 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2954 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2955 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2956 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2957 assert(Group && "Fail to get an interleaved access group."); 2958 2959 // Skip if current instruction is not the insert position. 2960 if (Instr != Group->getInsertPos()) 2961 return; 2962 2963 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2964 Value *Ptr = getPointerOperand(Instr); 2965 2966 // Prepare for the vector type of the interleaved load/store. 2967 Type *ScalarTy = getMemInstValueType(Instr); 2968 unsigned InterleaveFactor = Group->getFactor(); 2969 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2970 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 2971 2972 // Prepare for the new pointers. 2973 setDebugLocFromInst(Builder, Ptr); 2974 SmallVector<Value *, 2> NewPtrs; 2975 unsigned Index = Group->getIndex(Instr); 2976 2977 // If the group is reverse, adjust the index to refer to the last vector lane 2978 // instead of the first. We adjust the index from the first vector lane, 2979 // rather than directly getting the pointer for lane VF - 1, because the 2980 // pointer operand of the interleaved access is supposed to be uniform. For 2981 // uniform instructions, we're only required to generate a value for the 2982 // first vector lane in each unroll iteration. 2983 if (Group->isReverse()) 2984 Index += (VF - 1) * Group->getFactor(); 2985 2986 for (unsigned Part = 0; Part < UF; Part++) { 2987 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2988 2989 // Notice current instruction could be any index. Need to adjust the address 2990 // to the member of index 0. 2991 // 2992 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2993 // b = A[i]; // Member of index 0 2994 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2995 // 2996 // E.g. A[i+1] = a; // Member of index 1 2997 // A[i] = b; // Member of index 0 2998 // A[i+2] = c; // Member of index 2 (Current instruction) 2999 // Current pointer is pointed to A[i+2], adjust it to A[i]. 3000 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 3001 3002 // Cast to the vector pointer type. 3003 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 3004 } 3005 3006 setDebugLocFromInst(Builder, Instr); 3007 Value *UndefVec = UndefValue::get(VecTy); 3008 3009 // Vectorize the interleaved load group. 3010 if (isa<LoadInst>(Instr)) { 3011 // For each unroll part, create a wide load for the group. 3012 SmallVector<Value *, 2> NewLoads; 3013 for (unsigned Part = 0; Part < UF; Part++) { 3014 auto *NewLoad = Builder.CreateAlignedLoad( 3015 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 3016 addMetadata(NewLoad, Instr); 3017 NewLoads.push_back(NewLoad); 3018 } 3019 3020 // For each member in the group, shuffle out the appropriate data from the 3021 // wide loads. 3022 for (unsigned I = 0; I < InterleaveFactor; ++I) { 3023 Instruction *Member = Group->getMember(I); 3024 3025 // Skip the gaps in the group. 3026 if (!Member) 3027 continue; 3028 3029 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 3030 for (unsigned Part = 0; Part < UF; Part++) { 3031 Value *StridedVec = Builder.CreateShuffleVector( 3032 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 3033 3034 // If this member has different type, cast the result type. 3035 if (Member->getType() != ScalarTy) { 3036 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 3037 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 3038 } 3039 3040 if (Group->isReverse()) 3041 StridedVec = reverseVector(StridedVec); 3042 3043 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 3044 } 3045 } 3046 return; 3047 } 3048 3049 // The sub vector type for current instruction. 3050 VectorType *SubVT = VectorType::get(ScalarTy, VF); 3051 3052 // Vectorize the interleaved store group. 3053 for (unsigned Part = 0; Part < UF; Part++) { 3054 // Collect the stored vector from each member. 3055 SmallVector<Value *, 4> StoredVecs; 3056 for (unsigned i = 0; i < InterleaveFactor; i++) { 3057 // Interleaved store group doesn't allow a gap, so each index has a member 3058 Instruction *Member = Group->getMember(i); 3059 assert(Member && "Fail to get a member from an interleaved store group"); 3060 3061 Value *StoredVec = getOrCreateVectorValue( 3062 cast<StoreInst>(Member)->getValueOperand(), Part); 3063 if (Group->isReverse()) 3064 StoredVec = reverseVector(StoredVec); 3065 3066 // If this member has different type, cast it to a unified type. 3067 3068 if (StoredVec->getType() != SubVT) 3069 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 3070 3071 StoredVecs.push_back(StoredVec); 3072 } 3073 3074 // Concatenate all vectors into a wide vector. 3075 Value *WideVec = concatenateVectors(Builder, StoredVecs); 3076 3077 // Interleave the elements in the wide vector. 3078 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 3079 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 3080 "interleaved.vec"); 3081 3082 Instruction *NewStoreInstr = 3083 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 3084 addMetadata(NewStoreInstr, Instr); 3085 } 3086 } 3087 3088 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 3089 // Attempt to issue a wide load. 3090 LoadInst *LI = dyn_cast<LoadInst>(Instr); 3091 StoreInst *SI = dyn_cast<StoreInst>(Instr); 3092 3093 assert((LI || SI) && "Invalid Load/Store instruction"); 3094 3095 LoopVectorizationCostModel::InstWidening Decision = 3096 Cost->getWideningDecision(Instr, VF); 3097 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 3098 "CM decision should be taken at this point"); 3099 if (Decision == LoopVectorizationCostModel::CM_Interleave) 3100 return vectorizeInterleaveGroup(Instr); 3101 3102 Type *ScalarDataTy = getMemInstValueType(Instr); 3103 Type *DataTy = VectorType::get(ScalarDataTy, VF); 3104 Value *Ptr = getPointerOperand(Instr); 3105 unsigned Alignment = getMemInstAlignment(Instr); 3106 // An alignment of 0 means target abi alignment. We need to use the scalar's 3107 // target abi alignment in such a case. 3108 const DataLayout &DL = Instr->getModule()->getDataLayout(); 3109 if (!Alignment) 3110 Alignment = DL.getABITypeAlignment(ScalarDataTy); 3111 unsigned AddressSpace = getMemInstAddressSpace(Instr); 3112 3113 // Determine if the pointer operand of the access is either consecutive or 3114 // reverse consecutive. 3115 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 3116 bool Reverse = ConsecutiveStride < 0; 3117 bool CreateGatherScatter = 3118 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 3119 3120 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 3121 // gather/scatter. Otherwise Decision should have been to Scalarize. 3122 assert((ConsecutiveStride || CreateGatherScatter) && 3123 "The instruction should be scalarized"); 3124 3125 // Handle consecutive loads/stores. 3126 if (ConsecutiveStride) 3127 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 3128 3129 VectorParts Mask = createBlockInMask(Instr->getParent()); 3130 // Handle Stores: 3131 if (SI) { 3132 assert(!Legal->isUniform(SI->getPointerOperand()) && 3133 "We do not allow storing to uniform addresses"); 3134 setDebugLocFromInst(Builder, SI); 3135 3136 for (unsigned Part = 0; Part < UF; ++Part) { 3137 Instruction *NewSI = nullptr; 3138 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 3139 if (CreateGatherScatter) { 3140 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 3141 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3142 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 3143 MaskPart); 3144 } else { 3145 // Calculate the pointer for the specific unroll-part. 3146 Value *PartPtr = 3147 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3148 3149 if (Reverse) { 3150 // If we store to reverse consecutive memory locations, then we need 3151 // to reverse the order of elements in the stored value. 3152 StoredVal = reverseVector(StoredVal); 3153 // We don't want to update the value in the map as it might be used in 3154 // another expression. So don't call resetVectorValue(StoredVal). 3155 3156 // If the address is consecutive but reversed, then the 3157 // wide store needs to start at the last vector element. 3158 PartPtr = 3159 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3160 PartPtr = 3161 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3162 if (Mask[Part]) // The reverse of a null all-one mask is a null mask. 3163 Mask[Part] = reverseVector(Mask[Part]); 3164 } 3165 3166 Value *VecPtr = 3167 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3168 3169 if (Legal->isMaskRequired(SI) && Mask[Part]) 3170 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 3171 Mask[Part]); 3172 else 3173 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 3174 } 3175 addMetadata(NewSI, SI); 3176 } 3177 return; 3178 } 3179 3180 // Handle loads. 3181 assert(LI && "Must have a load instruction"); 3182 setDebugLocFromInst(Builder, LI); 3183 for (unsigned Part = 0; Part < UF; ++Part) { 3184 Value *NewLI; 3185 if (CreateGatherScatter) { 3186 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 3187 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3188 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 3189 nullptr, "wide.masked.gather"); 3190 addMetadata(NewLI, LI); 3191 } else { 3192 // Calculate the pointer for the specific unroll-part. 3193 Value *PartPtr = 3194 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3195 3196 if (Reverse) { 3197 // If the address is consecutive but reversed, then the 3198 // wide load needs to start at the last vector element. 3199 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3200 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3201 if (Mask[Part]) // The reverse of a null all-one mask is a null mask. 3202 Mask[Part] = reverseVector(Mask[Part]); 3203 } 3204 3205 Value *VecPtr = 3206 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3207 if (Legal->isMaskRequired(LI) && Mask[Part]) 3208 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 3209 UndefValue::get(DataTy), 3210 "wide.masked.load"); 3211 else 3212 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 3213 3214 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3215 addMetadata(NewLI, LI); 3216 if (Reverse) 3217 NewLI = reverseVector(NewLI); 3218 } 3219 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 3220 } 3221 } 3222 3223 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3224 const VPIteration &Instance, 3225 bool IfPredicateInstr) { 3226 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3227 3228 setDebugLocFromInst(Builder, Instr); 3229 3230 // Does this instruction return a value ? 3231 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3232 3233 Instruction *Cloned = Instr->clone(); 3234 if (!IsVoidRetTy) 3235 Cloned->setName(Instr->getName() + ".cloned"); 3236 3237 // Replace the operands of the cloned instructions with their scalar 3238 // equivalents in the new loop. 3239 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3240 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 3241 Cloned->setOperand(op, NewOp); 3242 } 3243 addNewMetadata(Cloned, Instr); 3244 3245 // Place the cloned scalar in the new loop. 3246 Builder.Insert(Cloned); 3247 3248 // Add the cloned scalar to the scalar map entry. 3249 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 3250 3251 // If we just cloned a new assumption, add it the assumption cache. 3252 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3253 if (II->getIntrinsicID() == Intrinsic::assume) 3254 AC->registerAssumption(II); 3255 3256 // End if-block. 3257 if (IfPredicateInstr) 3258 PredicatedInstructions.push_back(Cloned); 3259 } 3260 3261 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3262 Value *End, Value *Step, 3263 Instruction *DL) { 3264 BasicBlock *Header = L->getHeader(); 3265 BasicBlock *Latch = L->getLoopLatch(); 3266 // As we're just creating this loop, it's possible no latch exists 3267 // yet. If so, use the header as this will be a single block loop. 3268 if (!Latch) 3269 Latch = Header; 3270 3271 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3272 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3273 setDebugLocFromInst(Builder, OldInst); 3274 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3275 3276 Builder.SetInsertPoint(Latch->getTerminator()); 3277 setDebugLocFromInst(Builder, OldInst); 3278 3279 // Create i+1 and fill the PHINode. 3280 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3281 Induction->addIncoming(Start, L->getLoopPreheader()); 3282 Induction->addIncoming(Next, Latch); 3283 // Create the compare. 3284 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3285 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3286 3287 // Now we have two terminators. Remove the old one from the block. 3288 Latch->getTerminator()->eraseFromParent(); 3289 3290 return Induction; 3291 } 3292 3293 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3294 if (TripCount) 3295 return TripCount; 3296 3297 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3298 // Find the loop boundaries. 3299 ScalarEvolution *SE = PSE.getSE(); 3300 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3301 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3302 "Invalid loop count"); 3303 3304 Type *IdxTy = Legal->getWidestInductionType(); 3305 3306 // The exit count might have the type of i64 while the phi is i32. This can 3307 // happen if we have an induction variable that is sign extended before the 3308 // compare. The only way that we get a backedge taken count is that the 3309 // induction variable was signed and as such will not overflow. In such a case 3310 // truncation is legal. 3311 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3312 IdxTy->getPrimitiveSizeInBits()) 3313 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3314 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3315 3316 // Get the total trip count from the count by adding 1. 3317 const SCEV *ExitCount = SE->getAddExpr( 3318 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3319 3320 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3321 3322 // Expand the trip count and place the new instructions in the preheader. 3323 // Notice that the pre-header does not change, only the loop body. 3324 SCEVExpander Exp(*SE, DL, "induction"); 3325 3326 // Count holds the overall loop count (N). 3327 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3328 L->getLoopPreheader()->getTerminator()); 3329 3330 if (TripCount->getType()->isPointerTy()) 3331 TripCount = 3332 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3333 L->getLoopPreheader()->getTerminator()); 3334 3335 return TripCount; 3336 } 3337 3338 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3339 if (VectorTripCount) 3340 return VectorTripCount; 3341 3342 Value *TC = getOrCreateTripCount(L); 3343 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3344 3345 // Now we need to generate the expression for the part of the loop that the 3346 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3347 // iterations are not required for correctness, or N - Step, otherwise. Step 3348 // is equal to the vectorization factor (number of SIMD elements) times the 3349 // unroll factor (number of SIMD instructions). 3350 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3351 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3352 3353 // If there is a non-reversed interleaved group that may speculatively access 3354 // memory out-of-bounds, we need to ensure that there will be at least one 3355 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3356 // the trip count, we set the remainder to be equal to the step. If the step 3357 // does not evenly divide the trip count, no adjustment is necessary since 3358 // there will already be scalar iterations. Note that the minimum iterations 3359 // check ensures that N >= Step. 3360 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3361 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3362 R = Builder.CreateSelect(IsZero, Step, R); 3363 } 3364 3365 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3366 3367 return VectorTripCount; 3368 } 3369 3370 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3371 const DataLayout &DL) { 3372 // Verify that V is a vector type with same number of elements as DstVTy. 3373 unsigned VF = DstVTy->getNumElements(); 3374 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 3375 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3376 Type *SrcElemTy = SrcVecTy->getElementType(); 3377 Type *DstElemTy = DstVTy->getElementType(); 3378 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3379 "Vector elements must have same size"); 3380 3381 // Do a direct cast if element types are castable. 3382 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3383 return Builder.CreateBitOrPointerCast(V, DstVTy); 3384 } 3385 // V cannot be directly casted to desired vector type. 3386 // May happen when V is a floating point vector but DstVTy is a vector of 3387 // pointers or vice-versa. Handle this using a two-step bitcast using an 3388 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3389 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3390 "Only one type should be a pointer type"); 3391 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3392 "Only one type should be a floating point type"); 3393 Type *IntTy = 3394 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3395 VectorType *VecIntTy = VectorType::get(IntTy, VF); 3396 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3397 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 3398 } 3399 3400 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3401 BasicBlock *Bypass) { 3402 Value *Count = getOrCreateTripCount(L); 3403 BasicBlock *BB = L->getLoopPreheader(); 3404 IRBuilder<> Builder(BB->getTerminator()); 3405 3406 // Generate code to check if the loop's trip count is less than VF * UF, or 3407 // equal to it in case a scalar epilogue is required; this implies that the 3408 // vector trip count is zero. This check also covers the case where adding one 3409 // to the backedge-taken count overflowed leading to an incorrect trip count 3410 // of zero. In this case we will also jump to the scalar loop. 3411 auto P = Legal->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3412 : ICmpInst::ICMP_ULT; 3413 Value *CheckMinIters = Builder.CreateICmp( 3414 P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3415 3416 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3417 // Update dominator tree immediately if the generated block is a 3418 // LoopBypassBlock because SCEV expansions to generate loop bypass 3419 // checks may query it before the current function is finished. 3420 DT->addNewBlock(NewBB, BB); 3421 if (L->getParentLoop()) 3422 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3423 ReplaceInstWithInst(BB->getTerminator(), 3424 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3425 LoopBypassBlocks.push_back(BB); 3426 } 3427 3428 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3429 BasicBlock *BB = L->getLoopPreheader(); 3430 3431 // Generate the code to check that the SCEV assumptions that we made. 3432 // We want the new basic block to start at the first instruction in a 3433 // sequence of instructions that form a check. 3434 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3435 "scev.check"); 3436 Value *SCEVCheck = 3437 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3438 3439 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3440 if (C->isZero()) 3441 return; 3442 3443 // Create a new block containing the stride check. 3444 BB->setName("vector.scevcheck"); 3445 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3446 // Update dominator tree immediately if the generated block is a 3447 // LoopBypassBlock because SCEV expansions to generate loop bypass 3448 // checks may query it before the current function is finished. 3449 DT->addNewBlock(NewBB, BB); 3450 if (L->getParentLoop()) 3451 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3452 ReplaceInstWithInst(BB->getTerminator(), 3453 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3454 LoopBypassBlocks.push_back(BB); 3455 AddedSafetyChecks = true; 3456 } 3457 3458 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3459 BasicBlock *BB = L->getLoopPreheader(); 3460 3461 // Generate the code that checks in runtime if arrays overlap. We put the 3462 // checks into a separate block to make the more common case of few elements 3463 // faster. 3464 Instruction *FirstCheckInst; 3465 Instruction *MemRuntimeCheck; 3466 std::tie(FirstCheckInst, MemRuntimeCheck) = 3467 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3468 if (!MemRuntimeCheck) 3469 return; 3470 3471 // Create a new block containing the memory check. 3472 BB->setName("vector.memcheck"); 3473 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3474 // Update dominator tree immediately if the generated block is a 3475 // LoopBypassBlock because SCEV expansions to generate loop bypass 3476 // checks may query it before the current function is finished. 3477 DT->addNewBlock(NewBB, BB); 3478 if (L->getParentLoop()) 3479 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3480 ReplaceInstWithInst(BB->getTerminator(), 3481 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3482 LoopBypassBlocks.push_back(BB); 3483 AddedSafetyChecks = true; 3484 3485 // We currently don't use LoopVersioning for the actual loop cloning but we 3486 // still use it to add the noalias metadata. 3487 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3488 PSE.getSE()); 3489 LVer->prepareNoAliasMetadata(); 3490 } 3491 3492 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3493 /* 3494 In this function we generate a new loop. The new loop will contain 3495 the vectorized instructions while the old loop will continue to run the 3496 scalar remainder. 3497 3498 [ ] <-- loop iteration number check. 3499 / | 3500 / v 3501 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3502 | / | 3503 | / v 3504 || [ ] <-- vector pre header. 3505 |/ | 3506 | v 3507 | [ ] \ 3508 | [ ]_| <-- vector loop. 3509 | | 3510 | v 3511 | -[ ] <--- middle-block. 3512 | / | 3513 | / v 3514 -|- >[ ] <--- new preheader. 3515 | | 3516 | v 3517 | [ ] \ 3518 | [ ]_| <-- old scalar loop to handle remainder. 3519 \ | 3520 \ v 3521 >[ ] <-- exit block. 3522 ... 3523 */ 3524 3525 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3526 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3527 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3528 assert(VectorPH && "Invalid loop structure"); 3529 assert(ExitBlock && "Must have an exit block"); 3530 3531 // Some loops have a single integer induction variable, while other loops 3532 // don't. One example is c++ iterators that often have multiple pointer 3533 // induction variables. In the code below we also support a case where we 3534 // don't have a single induction variable. 3535 // 3536 // We try to obtain an induction variable from the original loop as hard 3537 // as possible. However if we don't find one that: 3538 // - is an integer 3539 // - counts from zero, stepping by one 3540 // - is the size of the widest induction variable type 3541 // then we create a new one. 3542 OldInduction = Legal->getPrimaryInduction(); 3543 Type *IdxTy = Legal->getWidestInductionType(); 3544 3545 // Split the single block loop into the two loop structure described above. 3546 BasicBlock *VecBody = 3547 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3548 BasicBlock *MiddleBlock = 3549 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3550 BasicBlock *ScalarPH = 3551 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3552 3553 // Create and register the new vector loop. 3554 Loop *Lp = LI->AllocateLoop(); 3555 Loop *ParentLoop = OrigLoop->getParentLoop(); 3556 3557 // Insert the new loop into the loop nest and register the new basic blocks 3558 // before calling any utilities such as SCEV that require valid LoopInfo. 3559 if (ParentLoop) { 3560 ParentLoop->addChildLoop(Lp); 3561 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3562 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3563 } else { 3564 LI->addTopLevelLoop(Lp); 3565 } 3566 Lp->addBasicBlockToLoop(VecBody, *LI); 3567 3568 // Find the loop boundaries. 3569 Value *Count = getOrCreateTripCount(Lp); 3570 3571 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3572 3573 // Now, compare the new count to zero. If it is zero skip the vector loop and 3574 // jump to the scalar loop. This check also covers the case where the 3575 // backedge-taken count is uint##_max: adding one to it will overflow leading 3576 // to an incorrect trip count of zero. In this (rare) case we will also jump 3577 // to the scalar loop. 3578 emitMinimumIterationCountCheck(Lp, ScalarPH); 3579 3580 // Generate the code to check any assumptions that we've made for SCEV 3581 // expressions. 3582 emitSCEVChecks(Lp, ScalarPH); 3583 3584 // Generate the code that checks in runtime if arrays overlap. We put the 3585 // checks into a separate block to make the more common case of few elements 3586 // faster. 3587 emitMemRuntimeChecks(Lp, ScalarPH); 3588 3589 // Generate the induction variable. 3590 // The loop step is equal to the vectorization factor (num of SIMD elements) 3591 // times the unroll factor (num of SIMD instructions). 3592 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3593 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3594 Induction = 3595 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3596 getDebugLocFromInstOrOperands(OldInduction)); 3597 3598 // We are going to resume the execution of the scalar loop. 3599 // Go over all of the induction variables that we found and fix the 3600 // PHIs that are left in the scalar version of the loop. 3601 // The starting values of PHI nodes depend on the counter of the last 3602 // iteration in the vectorized loop. 3603 // If we come from a bypass edge then we need to start from the original 3604 // start value. 3605 3606 // This variable saves the new starting index for the scalar loop. It is used 3607 // to test if there are any tail iterations left once the vector loop has 3608 // completed. 3609 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3610 for (auto &InductionEntry : *List) { 3611 PHINode *OrigPhi = InductionEntry.first; 3612 InductionDescriptor II = InductionEntry.second; 3613 3614 // Create phi nodes to merge from the backedge-taken check block. 3615 PHINode *BCResumeVal = PHINode::Create( 3616 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3617 Value *&EndValue = IVEndValues[OrigPhi]; 3618 if (OrigPhi == OldInduction) { 3619 // We know what the end value is. 3620 EndValue = CountRoundDown; 3621 } else { 3622 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3623 Type *StepType = II.getStep()->getType(); 3624 Instruction::CastOps CastOp = 3625 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3626 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3627 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3628 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3629 EndValue->setName("ind.end"); 3630 } 3631 3632 // The new PHI merges the original incoming value, in case of a bypass, 3633 // or the value at the end of the vectorized loop. 3634 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3635 3636 // Fix the scalar body counter (PHI node). 3637 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3638 3639 // The old induction's phi node in the scalar body needs the truncated 3640 // value. 3641 for (BasicBlock *BB : LoopBypassBlocks) 3642 BCResumeVal->addIncoming(II.getStartValue(), BB); 3643 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3644 } 3645 3646 // Add a check in the middle block to see if we have completed 3647 // all of the iterations in the first vector loop. 3648 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3649 Value *CmpN = 3650 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3651 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3652 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3653 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3654 3655 // Get ready to start creating new instructions into the vectorized body. 3656 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3657 3658 // Save the state. 3659 LoopVectorPreHeader = Lp->getLoopPreheader(); 3660 LoopScalarPreHeader = ScalarPH; 3661 LoopMiddleBlock = MiddleBlock; 3662 LoopExitBlock = ExitBlock; 3663 LoopVectorBody = VecBody; 3664 LoopScalarBody = OldBasicBlock; 3665 3666 // Keep all loop hints from the original loop on the vector loop (we'll 3667 // replace the vectorizer-specific hints below). 3668 if (MDNode *LID = OrigLoop->getLoopID()) 3669 Lp->setLoopID(LID); 3670 3671 LoopVectorizeHints Hints(Lp, true, *ORE); 3672 Hints.setAlreadyVectorized(); 3673 3674 return LoopVectorPreHeader; 3675 } 3676 3677 // Fix up external users of the induction variable. At this point, we are 3678 // in LCSSA form, with all external PHIs that use the IV having one input value, 3679 // coming from the remainder loop. We need those PHIs to also have a correct 3680 // value for the IV when arriving directly from the middle block. 3681 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3682 const InductionDescriptor &II, 3683 Value *CountRoundDown, Value *EndValue, 3684 BasicBlock *MiddleBlock) { 3685 // There are two kinds of external IV usages - those that use the value 3686 // computed in the last iteration (the PHI) and those that use the penultimate 3687 // value (the value that feeds into the phi from the loop latch). 3688 // We allow both, but they, obviously, have different values. 3689 3690 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3691 3692 DenseMap<Value *, Value *> MissingVals; 3693 3694 // An external user of the last iteration's value should see the value that 3695 // the remainder loop uses to initialize its own IV. 3696 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3697 for (User *U : PostInc->users()) { 3698 Instruction *UI = cast<Instruction>(U); 3699 if (!OrigLoop->contains(UI)) { 3700 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3701 MissingVals[UI] = EndValue; 3702 } 3703 } 3704 3705 // An external user of the penultimate value need to see EndValue - Step. 3706 // The simplest way to get this is to recompute it from the constituent SCEVs, 3707 // that is Start + (Step * (CRD - 1)). 3708 for (User *U : OrigPhi->users()) { 3709 auto *UI = cast<Instruction>(U); 3710 if (!OrigLoop->contains(UI)) { 3711 const DataLayout &DL = 3712 OrigLoop->getHeader()->getModule()->getDataLayout(); 3713 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3714 3715 IRBuilder<> B(MiddleBlock->getTerminator()); 3716 Value *CountMinusOne = B.CreateSub( 3717 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3718 Value *CMO = 3719 !II.getStep()->getType()->isIntegerTy() 3720 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3721 II.getStep()->getType()) 3722 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3723 CMO->setName("cast.cmo"); 3724 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3725 Escape->setName("ind.escape"); 3726 MissingVals[UI] = Escape; 3727 } 3728 } 3729 3730 for (auto &I : MissingVals) { 3731 PHINode *PHI = cast<PHINode>(I.first); 3732 // One corner case we have to handle is two IVs "chasing" each-other, 3733 // that is %IV2 = phi [...], [ %IV1, %latch ] 3734 // In this case, if IV1 has an external use, we need to avoid adding both 3735 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3736 // don't already have an incoming value for the middle block. 3737 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3738 PHI->addIncoming(I.second, MiddleBlock); 3739 } 3740 } 3741 3742 namespace { 3743 3744 struct CSEDenseMapInfo { 3745 static bool canHandle(const Instruction *I) { 3746 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3747 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3748 } 3749 3750 static inline Instruction *getEmptyKey() { 3751 return DenseMapInfo<Instruction *>::getEmptyKey(); 3752 } 3753 3754 static inline Instruction *getTombstoneKey() { 3755 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3756 } 3757 3758 static unsigned getHashValue(const Instruction *I) { 3759 assert(canHandle(I) && "Unknown instruction!"); 3760 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3761 I->value_op_end())); 3762 } 3763 3764 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3765 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3766 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3767 return LHS == RHS; 3768 return LHS->isIdenticalTo(RHS); 3769 } 3770 }; 3771 3772 } // end anonymous namespace 3773 3774 ///\brief Perform cse of induction variable instructions. 3775 static void cse(BasicBlock *BB) { 3776 // Perform simple cse. 3777 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3778 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3779 Instruction *In = &*I++; 3780 3781 if (!CSEDenseMapInfo::canHandle(In)) 3782 continue; 3783 3784 // Check if we can replace this instruction with any of the 3785 // visited instructions. 3786 if (Instruction *V = CSEMap.lookup(In)) { 3787 In->replaceAllUsesWith(V); 3788 In->eraseFromParent(); 3789 continue; 3790 } 3791 3792 CSEMap[In] = In; 3793 } 3794 } 3795 3796 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3797 /// convenience wrapper for the type-based getScalarizationOverhead API. 3798 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3799 const TargetTransformInfo &TTI) { 3800 if (VF == 1) 3801 return 0; 3802 3803 unsigned Cost = 0; 3804 Type *RetTy = ToVectorTy(I->getType(), VF); 3805 if (!RetTy->isVoidTy() && 3806 (!isa<LoadInst>(I) || 3807 !TTI.supportsEfficientVectorElementLoadStore())) 3808 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3809 3810 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3811 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3812 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3813 } 3814 else if (!isa<StoreInst>(I) || 3815 !TTI.supportsEfficientVectorElementLoadStore()) { 3816 SmallVector<const Value *, 4> Operands(I->operand_values()); 3817 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3818 } 3819 3820 return Cost; 3821 } 3822 3823 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3824 // Return the cost of the instruction, including scalarization overhead if it's 3825 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3826 // i.e. either vector version isn't available, or is too expensive. 3827 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3828 const TargetTransformInfo &TTI, 3829 const TargetLibraryInfo *TLI, 3830 bool &NeedToScalarize) { 3831 Function *F = CI->getCalledFunction(); 3832 StringRef FnName = CI->getCalledFunction()->getName(); 3833 Type *ScalarRetTy = CI->getType(); 3834 SmallVector<Type *, 4> Tys, ScalarTys; 3835 for (auto &ArgOp : CI->arg_operands()) 3836 ScalarTys.push_back(ArgOp->getType()); 3837 3838 // Estimate cost of scalarized vector call. The source operands are assumed 3839 // to be vectors, so we need to extract individual elements from there, 3840 // execute VF scalar calls, and then gather the result into the vector return 3841 // value. 3842 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3843 if (VF == 1) 3844 return ScalarCallCost; 3845 3846 // Compute corresponding vector type for return value and arguments. 3847 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3848 for (Type *ScalarTy : ScalarTys) 3849 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3850 3851 // Compute costs of unpacking argument values for the scalar calls and 3852 // packing the return values to a vector. 3853 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3854 3855 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3856 3857 // If we can't emit a vector call for this function, then the currently found 3858 // cost is the cost we need to return. 3859 NeedToScalarize = true; 3860 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3861 return Cost; 3862 3863 // If the corresponding vector cost is cheaper, return its cost. 3864 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3865 if (VectorCallCost < Cost) { 3866 NeedToScalarize = false; 3867 return VectorCallCost; 3868 } 3869 return Cost; 3870 } 3871 3872 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3873 // factor VF. Return the cost of the instruction, including scalarization 3874 // overhead if it's needed. 3875 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3876 const TargetTransformInfo &TTI, 3877 const TargetLibraryInfo *TLI) { 3878 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3879 assert(ID && "Expected intrinsic call!"); 3880 3881 FastMathFlags FMF; 3882 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3883 FMF = FPMO->getFastMathFlags(); 3884 3885 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3886 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3887 } 3888 3889 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3890 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3891 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3892 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3893 } 3894 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3895 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3896 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3897 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3898 } 3899 3900 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3901 // For every instruction `I` in MinBWs, truncate the operands, create a 3902 // truncated version of `I` and reextend its result. InstCombine runs 3903 // later and will remove any ext/trunc pairs. 3904 SmallPtrSet<Value *, 4> Erased; 3905 for (const auto &KV : Cost->getMinimalBitwidths()) { 3906 // If the value wasn't vectorized, we must maintain the original scalar 3907 // type. The absence of the value from VectorLoopValueMap indicates that it 3908 // wasn't vectorized. 3909 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3910 continue; 3911 for (unsigned Part = 0; Part < UF; ++Part) { 3912 Value *I = getOrCreateVectorValue(KV.first, Part); 3913 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3914 continue; 3915 Type *OriginalTy = I->getType(); 3916 Type *ScalarTruncatedTy = 3917 IntegerType::get(OriginalTy->getContext(), KV.second); 3918 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3919 OriginalTy->getVectorNumElements()); 3920 if (TruncatedTy == OriginalTy) 3921 continue; 3922 3923 IRBuilder<> B(cast<Instruction>(I)); 3924 auto ShrinkOperand = [&](Value *V) -> Value * { 3925 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3926 if (ZI->getSrcTy() == TruncatedTy) 3927 return ZI->getOperand(0); 3928 return B.CreateZExtOrTrunc(V, TruncatedTy); 3929 }; 3930 3931 // The actual instruction modification depends on the instruction type, 3932 // unfortunately. 3933 Value *NewI = nullptr; 3934 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3935 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3936 ShrinkOperand(BO->getOperand(1))); 3937 3938 // Any wrapping introduced by shrinking this operation shouldn't be 3939 // considered undefined behavior. So, we can't unconditionally copy 3940 // arithmetic wrapping flags to NewI. 3941 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3942 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3943 NewI = 3944 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3945 ShrinkOperand(CI->getOperand(1))); 3946 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3947 NewI = B.CreateSelect(SI->getCondition(), 3948 ShrinkOperand(SI->getTrueValue()), 3949 ShrinkOperand(SI->getFalseValue())); 3950 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3951 switch (CI->getOpcode()) { 3952 default: 3953 llvm_unreachable("Unhandled cast!"); 3954 case Instruction::Trunc: 3955 NewI = ShrinkOperand(CI->getOperand(0)); 3956 break; 3957 case Instruction::SExt: 3958 NewI = B.CreateSExtOrTrunc( 3959 CI->getOperand(0), 3960 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3961 break; 3962 case Instruction::ZExt: 3963 NewI = B.CreateZExtOrTrunc( 3964 CI->getOperand(0), 3965 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3966 break; 3967 } 3968 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3969 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3970 auto *O0 = B.CreateZExtOrTrunc( 3971 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3972 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3973 auto *O1 = B.CreateZExtOrTrunc( 3974 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3975 3976 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3977 } else if (isa<LoadInst>(I)) { 3978 // Don't do anything with the operands, just extend the result. 3979 continue; 3980 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3981 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3982 auto *O0 = B.CreateZExtOrTrunc( 3983 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3984 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3985 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3986 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3987 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3988 auto *O0 = B.CreateZExtOrTrunc( 3989 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3990 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3991 } else { 3992 llvm_unreachable("Unhandled instruction type!"); 3993 } 3994 3995 // Lastly, extend the result. 3996 NewI->takeName(cast<Instruction>(I)); 3997 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3998 I->replaceAllUsesWith(Res); 3999 cast<Instruction>(I)->eraseFromParent(); 4000 Erased.insert(I); 4001 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 4002 } 4003 } 4004 4005 // We'll have created a bunch of ZExts that are now parentless. Clean up. 4006 for (const auto &KV : Cost->getMinimalBitwidths()) { 4007 // If the value wasn't vectorized, we must maintain the original scalar 4008 // type. The absence of the value from VectorLoopValueMap indicates that it 4009 // wasn't vectorized. 4010 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 4011 continue; 4012 for (unsigned Part = 0; Part < UF; ++Part) { 4013 Value *I = getOrCreateVectorValue(KV.first, Part); 4014 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 4015 if (Inst && Inst->use_empty()) { 4016 Value *NewI = Inst->getOperand(0); 4017 Inst->eraseFromParent(); 4018 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 4019 } 4020 } 4021 } 4022 } 4023 4024 void InnerLoopVectorizer::fixVectorizedLoop() { 4025 // Insert truncates and extends for any truncated instructions as hints to 4026 // InstCombine. 4027 if (VF > 1) 4028 truncateToMinimalBitwidths(); 4029 4030 // At this point every instruction in the original loop is widened to a 4031 // vector form. Now we need to fix the recurrences in the loop. These PHI 4032 // nodes are currently empty because we did not want to introduce cycles. 4033 // This is the second stage of vectorizing recurrences. 4034 fixCrossIterationPHIs(); 4035 4036 // Update the dominator tree. 4037 // 4038 // FIXME: After creating the structure of the new loop, the dominator tree is 4039 // no longer up-to-date, and it remains that way until we update it 4040 // here. An out-of-date dominator tree is problematic for SCEV, 4041 // because SCEVExpander uses it to guide code generation. The 4042 // vectorizer use SCEVExpanders in several places. Instead, we should 4043 // keep the dominator tree up-to-date as we go. 4044 updateAnalysis(); 4045 4046 // Fix-up external users of the induction variables. 4047 for (auto &Entry : *Legal->getInductionVars()) 4048 fixupIVUsers(Entry.first, Entry.second, 4049 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4050 IVEndValues[Entry.first], LoopMiddleBlock); 4051 4052 fixLCSSAPHIs(); 4053 for (Instruction *PI : PredicatedInstructions) 4054 sinkScalarOperands(&*PI); 4055 4056 // Remove redundant induction instructions. 4057 cse(LoopVectorBody); 4058 } 4059 4060 void InnerLoopVectorizer::fixCrossIterationPHIs() { 4061 // In order to support recurrences we need to be able to vectorize Phi nodes. 4062 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4063 // stage #2: We now need to fix the recurrences by adding incoming edges to 4064 // the currently empty PHI nodes. At this point every instruction in the 4065 // original loop is widened to a vector form so we can use them to construct 4066 // the incoming edges. 4067 for (Instruction &I : *OrigLoop->getHeader()) { 4068 PHINode *Phi = dyn_cast<PHINode>(&I); 4069 if (!Phi) 4070 break; 4071 // Handle first-order recurrences and reductions that need to be fixed. 4072 if (Legal->isFirstOrderRecurrence(Phi)) 4073 fixFirstOrderRecurrence(Phi); 4074 else if (Legal->isReductionVariable(Phi)) 4075 fixReduction(Phi); 4076 } 4077 } 4078 4079 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 4080 // This is the second phase of vectorizing first-order recurrences. An 4081 // overview of the transformation is described below. Suppose we have the 4082 // following loop. 4083 // 4084 // for (int i = 0; i < n; ++i) 4085 // b[i] = a[i] - a[i - 1]; 4086 // 4087 // There is a first-order recurrence on "a". For this loop, the shorthand 4088 // scalar IR looks like: 4089 // 4090 // scalar.ph: 4091 // s_init = a[-1] 4092 // br scalar.body 4093 // 4094 // scalar.body: 4095 // i = phi [0, scalar.ph], [i+1, scalar.body] 4096 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4097 // s2 = a[i] 4098 // b[i] = s2 - s1 4099 // br cond, scalar.body, ... 4100 // 4101 // In this example, s1 is a recurrence because it's value depends on the 4102 // previous iteration. In the first phase of vectorization, we created a 4103 // temporary value for s1. We now complete the vectorization and produce the 4104 // shorthand vector IR shown below (for VF = 4, UF = 1). 4105 // 4106 // vector.ph: 4107 // v_init = vector(..., ..., ..., a[-1]) 4108 // br vector.body 4109 // 4110 // vector.body 4111 // i = phi [0, vector.ph], [i+4, vector.body] 4112 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4113 // v2 = a[i, i+1, i+2, i+3]; 4114 // v3 = vector(v1(3), v2(0, 1, 2)) 4115 // b[i, i+1, i+2, i+3] = v2 - v3 4116 // br cond, vector.body, middle.block 4117 // 4118 // middle.block: 4119 // x = v2(3) 4120 // br scalar.ph 4121 // 4122 // scalar.ph: 4123 // s_init = phi [x, middle.block], [a[-1], otherwise] 4124 // br scalar.body 4125 // 4126 // After execution completes the vector loop, we extract the next value of 4127 // the recurrence (x) to use as the initial value in the scalar loop. 4128 4129 // Get the original loop preheader and single loop latch. 4130 auto *Preheader = OrigLoop->getLoopPreheader(); 4131 auto *Latch = OrigLoop->getLoopLatch(); 4132 4133 // Get the initial and previous values of the scalar recurrence. 4134 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4135 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4136 4137 // Create a vector from the initial value. 4138 auto *VectorInit = ScalarInit; 4139 if (VF > 1) { 4140 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4141 VectorInit = Builder.CreateInsertElement( 4142 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4143 Builder.getInt32(VF - 1), "vector.recur.init"); 4144 } 4145 4146 // We constructed a temporary phi node in the first phase of vectorization. 4147 // This phi node will eventually be deleted. 4148 Builder.SetInsertPoint( 4149 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 4150 4151 // Create a phi node for the new recurrence. The current value will either be 4152 // the initial value inserted into a vector or loop-varying vector value. 4153 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4154 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4155 4156 // Get the vectorized previous value of the last part UF - 1. It appears last 4157 // among all unrolled iterations, due to the order of their construction. 4158 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 4159 4160 // Set the insertion point after the previous value if it is an instruction. 4161 // Note that the previous value may have been constant-folded so it is not 4162 // guaranteed to be an instruction in the vector loop. Also, if the previous 4163 // value is a phi node, we should insert after all the phi nodes to avoid 4164 // breaking basic block verification. 4165 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 4166 isa<PHINode>(PreviousLastPart)) 4167 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 4168 else 4169 Builder.SetInsertPoint( 4170 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 4171 4172 // We will construct a vector for the recurrence by combining the values for 4173 // the current and previous iterations. This is the required shuffle mask. 4174 SmallVector<Constant *, 8> ShuffleMask(VF); 4175 ShuffleMask[0] = Builder.getInt32(VF - 1); 4176 for (unsigned I = 1; I < VF; ++I) 4177 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4178 4179 // The vector from which to take the initial value for the current iteration 4180 // (actual or unrolled). Initially, this is the vector phi node. 4181 Value *Incoming = VecPhi; 4182 4183 // Shuffle the current and previous vector and update the vector parts. 4184 for (unsigned Part = 0; Part < UF; ++Part) { 4185 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 4186 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 4187 auto *Shuffle = 4188 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 4189 ConstantVector::get(ShuffleMask)) 4190 : Incoming; 4191 PhiPart->replaceAllUsesWith(Shuffle); 4192 cast<Instruction>(PhiPart)->eraseFromParent(); 4193 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 4194 Incoming = PreviousPart; 4195 } 4196 4197 // Fix the latch value of the new recurrence in the vector loop. 4198 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4199 4200 // Extract the last vector element in the middle block. This will be the 4201 // initial value for the recurrence when jumping to the scalar loop. 4202 auto *ExtractForScalar = Incoming; 4203 if (VF > 1) { 4204 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4205 ExtractForScalar = Builder.CreateExtractElement( 4206 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 4207 } 4208 // Extract the second last element in the middle block if the 4209 // Phi is used outside the loop. We need to extract the phi itself 4210 // and not the last element (the phi update in the current iteration). This 4211 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4212 // when the scalar loop is not run at all. 4213 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4214 if (VF > 1) 4215 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4216 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 4217 // When loop is unrolled without vectorizing, initialize 4218 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4219 // `Incoming`. This is analogous to the vectorized case above: extracting the 4220 // second last element when VF > 1. 4221 else if (UF > 1) 4222 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 4223 4224 // Fix the initial value of the original recurrence in the scalar loop. 4225 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4226 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4227 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4228 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4229 Start->addIncoming(Incoming, BB); 4230 } 4231 4232 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4233 Phi->setName("scalar.recur"); 4234 4235 // Finally, fix users of the recurrence outside the loop. The users will need 4236 // either the last value of the scalar recurrence or the last value of the 4237 // vector recurrence we extracted in the middle block. Since the loop is in 4238 // LCSSA form, we just need to find the phi node for the original scalar 4239 // recurrence in the exit block, and then add an edge for the middle block. 4240 for (auto &I : *LoopExitBlock) { 4241 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4242 if (!LCSSAPhi) 4243 break; 4244 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4245 LCSSAPhi->addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4246 break; 4247 } 4248 } 4249 } 4250 4251 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 4252 Constant *Zero = Builder.getInt32(0); 4253 4254 // Get it's reduction variable descriptor. 4255 assert(Legal->isReductionVariable(Phi) && 4256 "Unable to find the reduction variable"); 4257 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 4258 4259 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4260 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4261 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4262 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 4263 RdxDesc.getMinMaxRecurrenceKind(); 4264 setDebugLocFromInst(Builder, ReductionStartValue); 4265 4266 // We need to generate a reduction vector from the incoming scalar. 4267 // To do so, we need to generate the 'identity' vector and override 4268 // one of the elements with the incoming scalar reduction. We need 4269 // to do it in the vector-loop preheader. 4270 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4271 4272 // This is the vector-clone of the value that leaves the loop. 4273 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 4274 4275 // Find the reduction identity variable. Zero for addition, or, xor, 4276 // one for multiplication, -1 for And. 4277 Value *Identity; 4278 Value *VectorStart; 4279 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 4280 RK == RecurrenceDescriptor::RK_FloatMinMax) { 4281 // MinMax reduction have the start value as their identify. 4282 if (VF == 1) { 4283 VectorStart = Identity = ReductionStartValue; 4284 } else { 4285 VectorStart = Identity = 4286 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 4287 } 4288 } else { 4289 // Handle other reduction kinds: 4290 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 4291 RK, VecTy->getScalarType()); 4292 if (VF == 1) { 4293 Identity = Iden; 4294 // This vector is the Identity vector where the first element is the 4295 // incoming scalar reduction. 4296 VectorStart = ReductionStartValue; 4297 } else { 4298 Identity = ConstantVector::getSplat(VF, Iden); 4299 4300 // This vector is the Identity vector where the first element is the 4301 // incoming scalar reduction. 4302 VectorStart = 4303 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 4304 } 4305 } 4306 4307 // Fix the vector-loop phi. 4308 4309 // Reductions do not have to start at zero. They can start with 4310 // any loop invariant values. 4311 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4312 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4313 for (unsigned Part = 0; Part < UF; ++Part) { 4314 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 4315 Value *Val = getOrCreateVectorValue(LoopVal, Part); 4316 // Make sure to add the reduction stat value only to the 4317 // first unroll part. 4318 Value *StartVal = (Part == 0) ? VectorStart : Identity; 4319 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 4320 cast<PHINode>(VecRdxPhi) 4321 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4322 } 4323 4324 // Before each round, move the insertion point right between 4325 // the PHIs and the values we are going to write. 4326 // This allows us to write both PHINodes and the extractelement 4327 // instructions. 4328 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4329 4330 setDebugLocFromInst(Builder, LoopExitInst); 4331 4332 // If the vector reduction can be performed in a smaller type, we truncate 4333 // then extend the loop exit value to enable InstCombine to evaluate the 4334 // entire expression in the smaller type. 4335 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 4336 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4337 Builder.SetInsertPoint( 4338 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4339 VectorParts RdxParts(UF); 4340 for (unsigned Part = 0; Part < UF; ++Part) { 4341 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4342 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4343 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4344 : Builder.CreateZExt(Trunc, VecTy); 4345 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4346 UI != RdxParts[Part]->user_end();) 4347 if (*UI != Trunc) { 4348 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4349 RdxParts[Part] = Extnd; 4350 } else { 4351 ++UI; 4352 } 4353 } 4354 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4355 for (unsigned Part = 0; Part < UF; ++Part) { 4356 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4357 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 4358 } 4359 } 4360 4361 // Reduce all of the unrolled parts into a single vector. 4362 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 4363 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4364 setDebugLocFromInst(Builder, ReducedPartRdx); 4365 for (unsigned Part = 1; Part < UF; ++Part) { 4366 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4367 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4368 // Floating point operations had to be 'fast' to enable the reduction. 4369 ReducedPartRdx = addFastMathFlag( 4370 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 4371 ReducedPartRdx, "bin.rdx")); 4372 else 4373 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4374 Builder, MinMaxKind, ReducedPartRdx, RdxPart); 4375 } 4376 4377 if (VF > 1) { 4378 bool NoNaN = Legal->hasFunNoNaNAttr(); 4379 ReducedPartRdx = 4380 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4381 // If the reduction can be performed in a smaller type, we need to extend 4382 // the reduction to the wider type before we branch to the original loop. 4383 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4384 ReducedPartRdx = 4385 RdxDesc.isSigned() 4386 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4387 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4388 } 4389 4390 // Create a phi node that merges control-flow from the backedge-taken check 4391 // block and the middle block. 4392 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4393 LoopScalarPreHeader->getTerminator()); 4394 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4395 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4396 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4397 4398 // Now, we need to fix the users of the reduction variable 4399 // inside and outside of the scalar remainder loop. 4400 // We know that the loop is in LCSSA form. We need to update the 4401 // PHI nodes in the exit blocks. 4402 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 4403 LEE = LoopExitBlock->end(); 4404 LEI != LEE; ++LEI) { 4405 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 4406 if (!LCSSAPhi) 4407 break; 4408 4409 // All PHINodes need to have a single entry edge, or two if 4410 // we already fixed them. 4411 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4412 4413 // We found a reduction value exit-PHI. Update it with the 4414 // incoming bypass edge. 4415 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) 4416 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4417 } // end of the LCSSA phi scan. 4418 4419 // Fix the scalar loop reduction variable with the incoming reduction sum 4420 // from the vector body and from the backedge value. 4421 int IncomingEdgeBlockIdx = 4422 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4423 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4424 // Pick the other block. 4425 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4426 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4427 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4428 } 4429 4430 void InnerLoopVectorizer::fixLCSSAPHIs() { 4431 for (Instruction &LEI : *LoopExitBlock) { 4432 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI); 4433 if (!LCSSAPhi) 4434 break; 4435 if (LCSSAPhi->getNumIncomingValues() == 1) { 4436 assert(OrigLoop->isLoopInvariant(LCSSAPhi->getIncomingValue(0)) && 4437 "Incoming value isn't loop invariant"); 4438 LCSSAPhi->addIncoming(LCSSAPhi->getIncomingValue(0), LoopMiddleBlock); 4439 } 4440 } 4441 } 4442 4443 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4444 // The basic block and loop containing the predicated instruction. 4445 auto *PredBB = PredInst->getParent(); 4446 auto *VectorLoop = LI->getLoopFor(PredBB); 4447 4448 // Initialize a worklist with the operands of the predicated instruction. 4449 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4450 4451 // Holds instructions that we need to analyze again. An instruction may be 4452 // reanalyzed if we don't yet know if we can sink it or not. 4453 SmallVector<Instruction *, 8> InstsToReanalyze; 4454 4455 // Returns true if a given use occurs in the predicated block. Phi nodes use 4456 // their operands in their corresponding predecessor blocks. 4457 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4458 auto *I = cast<Instruction>(U.getUser()); 4459 BasicBlock *BB = I->getParent(); 4460 if (auto *Phi = dyn_cast<PHINode>(I)) 4461 BB = Phi->getIncomingBlock( 4462 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4463 return BB == PredBB; 4464 }; 4465 4466 // Iteratively sink the scalarized operands of the predicated instruction 4467 // into the block we created for it. When an instruction is sunk, it's 4468 // operands are then added to the worklist. The algorithm ends after one pass 4469 // through the worklist doesn't sink a single instruction. 4470 bool Changed; 4471 do { 4472 // Add the instructions that need to be reanalyzed to the worklist, and 4473 // reset the changed indicator. 4474 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4475 InstsToReanalyze.clear(); 4476 Changed = false; 4477 4478 while (!Worklist.empty()) { 4479 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4480 4481 // We can't sink an instruction if it is a phi node, is already in the 4482 // predicated block, is not in the loop, or may have side effects. 4483 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4484 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4485 continue; 4486 4487 // It's legal to sink the instruction if all its uses occur in the 4488 // predicated block. Otherwise, there's nothing to do yet, and we may 4489 // need to reanalyze the instruction. 4490 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4491 InstsToReanalyze.push_back(I); 4492 continue; 4493 } 4494 4495 // Move the instruction to the beginning of the predicated block, and add 4496 // it's operands to the worklist. 4497 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4498 Worklist.insert(I->op_begin(), I->op_end()); 4499 4500 // The sinking may have enabled other instructions to be sunk, so we will 4501 // need to iterate. 4502 Changed = true; 4503 } 4504 } while (Changed); 4505 } 4506 4507 InnerLoopVectorizer::VectorParts 4508 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 4509 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 4510 4511 // Look for cached value. 4512 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 4513 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 4514 if (ECEntryIt != EdgeMaskCache.end()) 4515 return ECEntryIt->second; 4516 4517 VectorParts SrcMask = createBlockInMask(Src); 4518 4519 // The terminator has to be a branch inst! 4520 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 4521 assert(BI && "Unexpected terminator found"); 4522 4523 if (!BI->isConditional()) 4524 return EdgeMaskCache[Edge] = SrcMask; 4525 4526 VectorParts EdgeMask(UF); 4527 for (unsigned Part = 0; Part < UF; ++Part) { 4528 auto *EdgeMaskPart = getOrCreateVectorValue(BI->getCondition(), Part); 4529 if (BI->getSuccessor(0) != Dst) 4530 EdgeMaskPart = Builder.CreateNot(EdgeMaskPart); 4531 4532 if (SrcMask[Part]) // Otherwise block in-mask is all-one, no need to AND. 4533 EdgeMaskPart = Builder.CreateAnd(EdgeMaskPart, SrcMask[Part]); 4534 4535 EdgeMask[Part] = EdgeMaskPart; 4536 } 4537 4538 return EdgeMaskCache[Edge] = EdgeMask; 4539 } 4540 4541 InnerLoopVectorizer::VectorParts 4542 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4543 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4544 4545 // Look for cached value. 4546 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 4547 if (BCEntryIt != BlockMaskCache.end()) 4548 return BCEntryIt->second; 4549 4550 // All-one mask is modelled as no-mask following the convention for masked 4551 // load/store/gather/scatter. Initialize BlockMask to no-mask. 4552 VectorParts BlockMask(UF); 4553 for (unsigned Part = 0; Part < UF; ++Part) 4554 BlockMask[Part] = nullptr; 4555 4556 // Loop incoming mask is all-one. 4557 if (OrigLoop->getHeader() == BB) 4558 return BlockMaskCache[BB] = BlockMask; 4559 4560 // This is the block mask. We OR all incoming edges. 4561 for (auto *Predecessor : predecessors(BB)) { 4562 VectorParts EdgeMask = createEdgeMask(Predecessor, BB); 4563 if (!EdgeMask[0]) // Mask of predecessor is all-one so mask of block is too. 4564 return BlockMaskCache[BB] = EdgeMask; 4565 4566 if (!BlockMask[0]) { // BlockMask has its initialized nullptr value. 4567 BlockMask = EdgeMask; 4568 continue; 4569 } 4570 4571 for (unsigned Part = 0; Part < UF; ++Part) 4572 BlockMask[Part] = Builder.CreateOr(BlockMask[Part], EdgeMask[Part]); 4573 } 4574 4575 return BlockMaskCache[BB] = BlockMask; 4576 } 4577 4578 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4579 unsigned VF) { 4580 PHINode *P = cast<PHINode>(PN); 4581 // In order to support recurrences we need to be able to vectorize Phi nodes. 4582 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4583 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4584 // this value when we vectorize all of the instructions that use the PHI. 4585 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4586 for (unsigned Part = 0; Part < UF; ++Part) { 4587 // This is phase one of vectorizing PHIs. 4588 Type *VecTy = 4589 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4590 Value *EntryPart = PHINode::Create( 4591 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4592 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4593 } 4594 return; 4595 } 4596 4597 setDebugLocFromInst(Builder, P); 4598 // Check for PHI nodes that are lowered to vector selects. 4599 if (P->getParent() != OrigLoop->getHeader()) { 4600 // We know that all PHIs in non-header blocks are converted into 4601 // selects, so we don't have to worry about the insertion order and we 4602 // can just use the builder. 4603 // At this point we generate the predication tree. There may be 4604 // duplications since this is a simple recursive scan, but future 4605 // optimizations will clean it up. 4606 4607 unsigned NumIncoming = P->getNumIncomingValues(); 4608 4609 // Generate a sequence of selects of the form: 4610 // SELECT(Mask3, In3, 4611 // SELECT(Mask2, In2, 4612 // ( ...))) 4613 VectorParts Entry(UF); 4614 for (unsigned In = 0; In < NumIncoming; In++) { 4615 VectorParts Cond = 4616 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4617 4618 for (unsigned Part = 0; Part < UF; ++Part) { 4619 Value *In0 = getOrCreateVectorValue(P->getIncomingValue(In), Part); 4620 assert((Cond[Part] || NumIncoming == 1) && 4621 "Multiple predecessors with one predecessor having a full mask"); 4622 if (In == 0) 4623 Entry[Part] = In0; // Initialize with the first incoming value. 4624 else 4625 // Select between the current value and the previous incoming edge 4626 // based on the incoming mask. 4627 Entry[Part] = Builder.CreateSelect(Cond[Part], In0, Entry[Part], 4628 "predphi"); 4629 } 4630 } 4631 for (unsigned Part = 0; Part < UF; ++Part) 4632 VectorLoopValueMap.setVectorValue(P, Part, Entry[Part]); 4633 return; 4634 } 4635 4636 // This PHINode must be an induction variable. 4637 // Make sure that we know about it. 4638 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4639 4640 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4641 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4642 4643 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4644 // which can be found from the original scalar operations. 4645 switch (II.getKind()) { 4646 case InductionDescriptor::IK_NoInduction: 4647 llvm_unreachable("Unknown induction"); 4648 case InductionDescriptor::IK_IntInduction: 4649 case InductionDescriptor::IK_FpInduction: 4650 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4651 case InductionDescriptor::IK_PtrInduction: { 4652 // Handle the pointer induction variable case. 4653 assert(P->getType()->isPointerTy() && "Unexpected type."); 4654 // This is the normalized GEP that starts counting at zero. 4655 Value *PtrInd = Induction; 4656 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4657 // Determine the number of scalars we need to generate for each unroll 4658 // iteration. If the instruction is uniform, we only need to generate the 4659 // first lane. Otherwise, we generate all VF values. 4660 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4661 // These are the scalar results. Notice that we don't generate vector GEPs 4662 // because scalar GEPs result in better code. 4663 for (unsigned Part = 0; Part < UF; ++Part) { 4664 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4665 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4666 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4667 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4668 SclrGep->setName("next.gep"); 4669 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4670 } 4671 } 4672 return; 4673 } 4674 } 4675 } 4676 4677 /// A helper function for checking whether an integer division-related 4678 /// instruction may divide by zero (in which case it must be predicated if 4679 /// executed conditionally in the scalar code). 4680 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4681 /// Non-zero divisors that are non compile-time constants will not be 4682 /// converted into multiplication, so we will still end up scalarizing 4683 /// the division, but can do so w/o predication. 4684 static bool mayDivideByZero(Instruction &I) { 4685 assert((I.getOpcode() == Instruction::UDiv || 4686 I.getOpcode() == Instruction::SDiv || 4687 I.getOpcode() == Instruction::URem || 4688 I.getOpcode() == Instruction::SRem) && 4689 "Unexpected instruction"); 4690 Value *Divisor = I.getOperand(1); 4691 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4692 return !CInt || CInt->isZero(); 4693 } 4694 4695 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 4696 switch (I.getOpcode()) { 4697 case Instruction::Br: 4698 case Instruction::PHI: 4699 llvm_unreachable("This instruction is handled by a different recipe."); 4700 case Instruction::GetElementPtr: { 4701 // Construct a vector GEP by widening the operands of the scalar GEP as 4702 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4703 // results in a vector of pointers when at least one operand of the GEP 4704 // is vector-typed. Thus, to keep the representation compact, we only use 4705 // vector-typed operands for loop-varying values. 4706 auto *GEP = cast<GetElementPtrInst>(&I); 4707 4708 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 4709 // If we are vectorizing, but the GEP has only loop-invariant operands, 4710 // the GEP we build (by only using vector-typed operands for 4711 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4712 // produce a vector of pointers, we need to either arbitrarily pick an 4713 // operand to broadcast, or broadcast a clone of the original GEP. 4714 // Here, we broadcast a clone of the original. 4715 // 4716 // TODO: If at some point we decide to scalarize instructions having 4717 // loop-invariant operands, this special case will no longer be 4718 // required. We would add the scalarization decision to 4719 // collectLoopScalars() and teach getVectorValue() to broadcast 4720 // the lane-zero scalar value. 4721 auto *Clone = Builder.Insert(GEP->clone()); 4722 for (unsigned Part = 0; Part < UF; ++Part) { 4723 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4724 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 4725 addMetadata(EntryPart, GEP); 4726 } 4727 } else { 4728 // If the GEP has at least one loop-varying operand, we are sure to 4729 // produce a vector of pointers. But if we are only unrolling, we want 4730 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4731 // produce with the code below will be scalar (if VF == 1) or vector 4732 // (otherwise). Note that for the unroll-only case, we still maintain 4733 // values in the vector mapping with initVector, as we do for other 4734 // instructions. 4735 for (unsigned Part = 0; Part < UF; ++Part) { 4736 // The pointer operand of the new GEP. If it's loop-invariant, we 4737 // won't broadcast it. 4738 auto *Ptr = 4739 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 4740 ? GEP->getPointerOperand() 4741 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 4742 4743 // Collect all the indices for the new GEP. If any index is 4744 // loop-invariant, we won't broadcast it. 4745 SmallVector<Value *, 4> Indices; 4746 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 4747 if (OrigLoop->isLoopInvariant(U.get())) 4748 Indices.push_back(U.get()); 4749 else 4750 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 4751 } 4752 4753 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4754 // but it should be a vector, otherwise. 4755 auto *NewGEP = GEP->isInBounds() 4756 ? Builder.CreateInBoundsGEP(Ptr, Indices) 4757 : Builder.CreateGEP(Ptr, Indices); 4758 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4759 "NewGEP is not a pointer vector"); 4760 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 4761 addMetadata(NewGEP, GEP); 4762 } 4763 } 4764 4765 break; 4766 } 4767 case Instruction::UDiv: 4768 case Instruction::SDiv: 4769 case Instruction::SRem: 4770 case Instruction::URem: 4771 case Instruction::Add: 4772 case Instruction::FAdd: 4773 case Instruction::Sub: 4774 case Instruction::FSub: 4775 case Instruction::Mul: 4776 case Instruction::FMul: 4777 case Instruction::FDiv: 4778 case Instruction::FRem: 4779 case Instruction::Shl: 4780 case Instruction::LShr: 4781 case Instruction::AShr: 4782 case Instruction::And: 4783 case Instruction::Or: 4784 case Instruction::Xor: { 4785 // Just widen binops. 4786 auto *BinOp = cast<BinaryOperator>(&I); 4787 setDebugLocFromInst(Builder, BinOp); 4788 4789 for (unsigned Part = 0; Part < UF; ++Part) { 4790 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 4791 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 4792 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 4793 4794 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4795 VecOp->copyIRFlags(BinOp); 4796 4797 // Use this vector value for all users of the original instruction. 4798 VectorLoopValueMap.setVectorValue(&I, Part, V); 4799 addMetadata(V, BinOp); 4800 } 4801 4802 break; 4803 } 4804 case Instruction::Select: { 4805 // Widen selects. 4806 // If the selector is loop invariant we can create a select 4807 // instruction with a scalar condition. Otherwise, use vector-select. 4808 auto *SE = PSE.getSE(); 4809 bool InvariantCond = 4810 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4811 setDebugLocFromInst(Builder, &I); 4812 4813 // The condition can be loop invariant but still defined inside the 4814 // loop. This means that we can't just use the original 'cond' value. 4815 // We have to take the 'vectorized' value and pick the first lane. 4816 // Instcombine will make this a no-op. 4817 4818 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4819 4820 for (unsigned Part = 0; Part < UF; ++Part) { 4821 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4822 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4823 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4824 Value *Sel = 4825 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4826 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4827 addMetadata(Sel, &I); 4828 } 4829 4830 break; 4831 } 4832 4833 case Instruction::ICmp: 4834 case Instruction::FCmp: { 4835 // Widen compares. Generate vector compares. 4836 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4837 auto *Cmp = dyn_cast<CmpInst>(&I); 4838 setDebugLocFromInst(Builder, Cmp); 4839 for (unsigned Part = 0; Part < UF; ++Part) { 4840 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4841 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4842 Value *C = nullptr; 4843 if (FCmp) { 4844 // Propagate fast math flags. 4845 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4846 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4847 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4848 } else { 4849 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4850 } 4851 VectorLoopValueMap.setVectorValue(&I, Part, C); 4852 addMetadata(C, &I); 4853 } 4854 4855 break; 4856 } 4857 4858 case Instruction::Store: 4859 case Instruction::Load: 4860 vectorizeMemoryInstruction(&I); 4861 break; 4862 case Instruction::ZExt: 4863 case Instruction::SExt: 4864 case Instruction::FPToUI: 4865 case Instruction::FPToSI: 4866 case Instruction::FPExt: 4867 case Instruction::PtrToInt: 4868 case Instruction::IntToPtr: 4869 case Instruction::SIToFP: 4870 case Instruction::UIToFP: 4871 case Instruction::Trunc: 4872 case Instruction::FPTrunc: 4873 case Instruction::BitCast: { 4874 auto *CI = dyn_cast<CastInst>(&I); 4875 setDebugLocFromInst(Builder, CI); 4876 4877 /// Vectorize casts. 4878 Type *DestTy = 4879 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4880 4881 for (unsigned Part = 0; Part < UF; ++Part) { 4882 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4883 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4884 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4885 addMetadata(Cast, &I); 4886 } 4887 break; 4888 } 4889 4890 case Instruction::Call: { 4891 // Ignore dbg intrinsics. 4892 if (isa<DbgInfoIntrinsic>(I)) 4893 break; 4894 setDebugLocFromInst(Builder, &I); 4895 4896 Module *M = I.getParent()->getParent()->getParent(); 4897 auto *CI = cast<CallInst>(&I); 4898 4899 StringRef FnName = CI->getCalledFunction()->getName(); 4900 Function *F = CI->getCalledFunction(); 4901 Type *RetTy = ToVectorTy(CI->getType(), VF); 4902 SmallVector<Type *, 4> Tys; 4903 for (Value *ArgOperand : CI->arg_operands()) 4904 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4905 4906 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4907 4908 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4909 // version of the instruction. 4910 // Is it beneficial to perform intrinsic call compared to lib call? 4911 bool NeedToScalarize; 4912 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4913 bool UseVectorIntrinsic = 4914 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4915 assert((UseVectorIntrinsic || !NeedToScalarize) && 4916 "Instruction should be scalarized elsewhere."); 4917 4918 for (unsigned Part = 0; Part < UF; ++Part) { 4919 SmallVector<Value *, 4> Args; 4920 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4921 Value *Arg = CI->getArgOperand(i); 4922 // Some intrinsics have a scalar argument - don't replace it with a 4923 // vector. 4924 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4925 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4926 Args.push_back(Arg); 4927 } 4928 4929 Function *VectorF; 4930 if (UseVectorIntrinsic) { 4931 // Use vector version of the intrinsic. 4932 Type *TysForDecl[] = {CI->getType()}; 4933 if (VF > 1) 4934 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4935 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4936 } else { 4937 // Use vector version of the library call. 4938 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4939 assert(!VFnName.empty() && "Vector function name is empty."); 4940 VectorF = M->getFunction(VFnName); 4941 if (!VectorF) { 4942 // Generate a declaration 4943 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4944 VectorF = 4945 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4946 VectorF->copyAttributesFrom(F); 4947 } 4948 } 4949 assert(VectorF && "Can't create vector function."); 4950 4951 SmallVector<OperandBundleDef, 1> OpBundles; 4952 CI->getOperandBundlesAsDefs(OpBundles); 4953 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4954 4955 if (isa<FPMathOperator>(V)) 4956 V->copyFastMathFlags(CI); 4957 4958 VectorLoopValueMap.setVectorValue(&I, Part, V); 4959 addMetadata(V, &I); 4960 } 4961 4962 break; 4963 } 4964 4965 default: 4966 // All other instructions are scalarized. 4967 DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4968 llvm_unreachable("Unhandled instruction!"); 4969 } // end of switch. 4970 } 4971 4972 void InnerLoopVectorizer::updateAnalysis() { 4973 // Forget the original basic block. 4974 PSE.getSE()->forgetLoop(OrigLoop); 4975 4976 // Update the dominator tree information. 4977 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4978 "Entry does not dominate exit."); 4979 4980 DT->addNewBlock(LoopMiddleBlock, 4981 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4982 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4983 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4984 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4985 DEBUG(DT->verifyDomTree()); 4986 } 4987 4988 /// \brief Check whether it is safe to if-convert this phi node. 4989 /// 4990 /// Phi nodes with constant expressions that can trap are not safe to if 4991 /// convert. 4992 static bool canIfConvertPHINodes(BasicBlock *BB) { 4993 for (Instruction &I : *BB) { 4994 auto *Phi = dyn_cast<PHINode>(&I); 4995 if (!Phi) 4996 return true; 4997 for (Value *V : Phi->incoming_values()) 4998 if (auto *C = dyn_cast<Constant>(V)) 4999 if (C->canTrap()) 5000 return false; 5001 } 5002 return true; 5003 } 5004 5005 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 5006 if (!EnableIfConversion) { 5007 ORE->emit(createMissedAnalysis("IfConversionDisabled") 5008 << "if-conversion is disabled"); 5009 return false; 5010 } 5011 5012 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 5013 5014 // A list of pointers that we can safely read and write to. 5015 SmallPtrSet<Value *, 8> SafePointes; 5016 5017 // Collect safe addresses. 5018 for (BasicBlock *BB : TheLoop->blocks()) { 5019 if (blockNeedsPredication(BB)) 5020 continue; 5021 5022 for (Instruction &I : *BB) 5023 if (auto *Ptr = getPointerOperand(&I)) 5024 SafePointes.insert(Ptr); 5025 } 5026 5027 // Collect the blocks that need predication. 5028 BasicBlock *Header = TheLoop->getHeader(); 5029 for (BasicBlock *BB : TheLoop->blocks()) { 5030 // We don't support switch statements inside loops. 5031 if (!isa<BranchInst>(BB->getTerminator())) { 5032 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 5033 << "loop contains a switch statement"); 5034 return false; 5035 } 5036 5037 // We must be able to predicate all blocks that need to be predicated. 5038 if (blockNeedsPredication(BB)) { 5039 if (!blockCanBePredicated(BB, SafePointes)) { 5040 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5041 << "control flow cannot be substituted for a select"); 5042 return false; 5043 } 5044 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 5045 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5046 << "control flow cannot be substituted for a select"); 5047 return false; 5048 } 5049 } 5050 5051 // We can if-convert this loop. 5052 return true; 5053 } 5054 5055 bool LoopVectorizationLegality::canVectorize() { 5056 // Store the result and return it at the end instead of exiting early, in case 5057 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 5058 bool Result = true; 5059 5060 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 5061 if (DoExtraAnalysis) 5062 // We must have a loop in canonical form. Loops with indirectbr in them cannot 5063 // be canonicalized. 5064 if (!TheLoop->getLoopPreheader()) { 5065 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5066 << "loop control flow is not understood by vectorizer"); 5067 if (DoExtraAnalysis) 5068 Result = false; 5069 else 5070 return false; 5071 } 5072 5073 // FIXME: The code is currently dead, since the loop gets sent to 5074 // LoopVectorizationLegality is already an innermost loop. 5075 // 5076 // We can only vectorize innermost loops. 5077 if (!TheLoop->empty()) { 5078 ORE->emit(createMissedAnalysis("NotInnermostLoop") 5079 << "loop is not the innermost loop"); 5080 if (DoExtraAnalysis) 5081 Result = false; 5082 else 5083 return false; 5084 } 5085 5086 // We must have a single backedge. 5087 if (TheLoop->getNumBackEdges() != 1) { 5088 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5089 << "loop control flow is not understood by vectorizer"); 5090 if (DoExtraAnalysis) 5091 Result = false; 5092 else 5093 return false; 5094 } 5095 5096 // We must have a single exiting block. 5097 if (!TheLoop->getExitingBlock()) { 5098 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5099 << "loop control flow is not understood by vectorizer"); 5100 if (DoExtraAnalysis) 5101 Result = false; 5102 else 5103 return false; 5104 } 5105 5106 // We only handle bottom-tested loops, i.e. loop in which the condition is 5107 // checked at the end of each iteration. With that we can assume that all 5108 // instructions in the loop are executed the same number of times. 5109 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5110 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5111 << "loop control flow is not understood by vectorizer"); 5112 if (DoExtraAnalysis) 5113 Result = false; 5114 else 5115 return false; 5116 } 5117 5118 // We need to have a loop header. 5119 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 5120 << '\n'); 5121 5122 // Check if we can if-convert non-single-bb loops. 5123 unsigned NumBlocks = TheLoop->getNumBlocks(); 5124 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 5125 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 5126 if (DoExtraAnalysis) 5127 Result = false; 5128 else 5129 return false; 5130 } 5131 5132 // Check if we can vectorize the instructions and CFG in this loop. 5133 if (!canVectorizeInstrs()) { 5134 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 5135 if (DoExtraAnalysis) 5136 Result = false; 5137 else 5138 return false; 5139 } 5140 5141 // Go over each instruction and look at memory deps. 5142 if (!canVectorizeMemory()) { 5143 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 5144 if (DoExtraAnalysis) 5145 Result = false; 5146 else 5147 return false; 5148 } 5149 5150 DEBUG(dbgs() << "LV: We can vectorize this loop" 5151 << (LAI->getRuntimePointerChecking()->Need 5152 ? " (with a runtime bound check)" 5153 : "") 5154 << "!\n"); 5155 5156 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 5157 5158 // If an override option has been passed in for interleaved accesses, use it. 5159 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 5160 UseInterleaved = EnableInterleavedMemAccesses; 5161 5162 // Analyze interleaved memory accesses. 5163 if (UseInterleaved) 5164 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 5165 5166 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 5167 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 5168 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 5169 5170 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 5171 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 5172 << "Too many SCEV assumptions need to be made and checked " 5173 << "at runtime"); 5174 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 5175 if (DoExtraAnalysis) 5176 Result = false; 5177 else 5178 return false; 5179 } 5180 5181 // Okay! We've done all the tests. If any have failed, return false. Otherwise 5182 // we can vectorize, and at this point we don't have any other mem analysis 5183 // which may limit our maximum vectorization factor, so just return true with 5184 // no restrictions. 5185 return Result; 5186 } 5187 5188 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 5189 if (Ty->isPointerTy()) 5190 return DL.getIntPtrType(Ty); 5191 5192 // It is possible that char's or short's overflow when we ask for the loop's 5193 // trip count, work around this by changing the type size. 5194 if (Ty->getScalarSizeInBits() < 32) 5195 return Type::getInt32Ty(Ty->getContext()); 5196 5197 return Ty; 5198 } 5199 5200 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 5201 Ty0 = convertPointerToIntegerType(DL, Ty0); 5202 Ty1 = convertPointerToIntegerType(DL, Ty1); 5203 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 5204 return Ty0; 5205 return Ty1; 5206 } 5207 5208 /// \brief Check that the instruction has outside loop users and is not an 5209 /// identified reduction variable. 5210 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 5211 SmallPtrSetImpl<Value *> &AllowedExit) { 5212 // Reduction and Induction instructions are allowed to have exit users. All 5213 // other instructions must not have external users. 5214 if (!AllowedExit.count(Inst)) 5215 // Check that all of the users of the loop are inside the BB. 5216 for (User *U : Inst->users()) { 5217 Instruction *UI = cast<Instruction>(U); 5218 // This user may be a reduction exit value. 5219 if (!TheLoop->contains(UI)) { 5220 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 5221 return true; 5222 } 5223 } 5224 return false; 5225 } 5226 5227 void LoopVectorizationLegality::addInductionPhi( 5228 PHINode *Phi, const InductionDescriptor &ID, 5229 SmallPtrSetImpl<Value *> &AllowedExit) { 5230 Inductions[Phi] = ID; 5231 Type *PhiTy = Phi->getType(); 5232 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5233 5234 // Get the widest type. 5235 if (!PhiTy->isFloatingPointTy()) { 5236 if (!WidestIndTy) 5237 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5238 else 5239 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5240 } 5241 5242 // Int inductions are special because we only allow one IV. 5243 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5244 ID.getConstIntStepValue() && 5245 ID.getConstIntStepValue()->isOne() && 5246 isa<Constant>(ID.getStartValue()) && 5247 cast<Constant>(ID.getStartValue())->isNullValue()) { 5248 5249 // Use the phi node with the widest type as induction. Use the last 5250 // one if there are multiple (no good reason for doing this other 5251 // than it is expedient). We've checked that it begins at zero and 5252 // steps by one, so this is a canonical induction variable. 5253 if (!PrimaryInduction || PhiTy == WidestIndTy) 5254 PrimaryInduction = Phi; 5255 } 5256 5257 // Both the PHI node itself, and the "post-increment" value feeding 5258 // back into the PHI node may have external users. 5259 // We can allow those uses, except if the SCEVs we have for them rely 5260 // on predicates that only hold within the loop, since allowing the exit 5261 // currently means re-using this SCEV outside the loop. 5262 if (PSE.getUnionPredicate().isAlwaysTrue()) { 5263 AllowedExit.insert(Phi); 5264 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5265 } 5266 5267 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5268 } 5269 5270 bool LoopVectorizationLegality::canVectorizeInstrs() { 5271 BasicBlock *Header = TheLoop->getHeader(); 5272 5273 // Look for the attribute signaling the absence of NaNs. 5274 Function &F = *Header->getParent(); 5275 HasFunNoNaNAttr = 5276 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5277 5278 // For each block in the loop. 5279 for (BasicBlock *BB : TheLoop->blocks()) { 5280 // Scan the instructions in the block and look for hazards. 5281 for (Instruction &I : *BB) { 5282 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5283 Type *PhiTy = Phi->getType(); 5284 // Check that this PHI type is allowed. 5285 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5286 !PhiTy->isPointerTy()) { 5287 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5288 << "loop control flow is not understood by vectorizer"); 5289 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5290 return false; 5291 } 5292 5293 // If this PHINode is not in the header block, then we know that we 5294 // can convert it to select during if-conversion. No need to check if 5295 // the PHIs in this block are induction or reduction variables. 5296 if (BB != Header) { 5297 // Check that this instruction has no outside users or is an 5298 // identified reduction value with an outside user. 5299 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5300 continue; 5301 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5302 << "value could not be identified as " 5303 "an induction or reduction variable"); 5304 return false; 5305 } 5306 5307 // We only allow if-converted PHIs with exactly two incoming values. 5308 if (Phi->getNumIncomingValues() != 2) { 5309 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5310 << "control flow not understood by vectorizer"); 5311 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5312 return false; 5313 } 5314 5315 RecurrenceDescriptor RedDes; 5316 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 5317 if (RedDes.hasUnsafeAlgebra()) 5318 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5319 AllowedExit.insert(RedDes.getLoopExitInstr()); 5320 Reductions[Phi] = RedDes; 5321 continue; 5322 } 5323 5324 InductionDescriptor ID; 5325 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5326 addInductionPhi(Phi, ID, AllowedExit); 5327 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5328 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5329 continue; 5330 } 5331 5332 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 5333 SinkAfter, DT)) { 5334 FirstOrderRecurrences.insert(Phi); 5335 continue; 5336 } 5337 5338 // As a last resort, coerce the PHI to a AddRec expression 5339 // and re-try classifying it a an induction PHI. 5340 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5341 addInductionPhi(Phi, ID, AllowedExit); 5342 continue; 5343 } 5344 5345 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5346 << "value that could not be identified as " 5347 "reduction is used outside the loop"); 5348 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5349 return false; 5350 } // end of PHI handling 5351 5352 // We handle calls that: 5353 // * Are debug info intrinsics. 5354 // * Have a mapping to an IR intrinsic. 5355 // * Have a vector version available. 5356 auto *CI = dyn_cast<CallInst>(&I); 5357 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5358 !isa<DbgInfoIntrinsic>(CI) && 5359 !(CI->getCalledFunction() && TLI && 5360 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5361 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5362 << "call instruction cannot be vectorized"); 5363 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5364 return false; 5365 } 5366 5367 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5368 // second argument is the same (i.e. loop invariant) 5369 if (CI && hasVectorInstrinsicScalarOpd( 5370 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5371 auto *SE = PSE.getSE(); 5372 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5373 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5374 << "intrinsic instruction cannot be vectorized"); 5375 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5376 return false; 5377 } 5378 } 5379 5380 // Check that the instruction return type is vectorizable. 5381 // Also, we can't vectorize extractelement instructions. 5382 if ((!VectorType::isValidElementType(I.getType()) && 5383 !I.getType()->isVoidTy()) || 5384 isa<ExtractElementInst>(I)) { 5385 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5386 << "instruction return type cannot be vectorized"); 5387 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5388 return false; 5389 } 5390 5391 // Check that the stored type is vectorizable. 5392 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5393 Type *T = ST->getValueOperand()->getType(); 5394 if (!VectorType::isValidElementType(T)) { 5395 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5396 << "store instruction cannot be vectorized"); 5397 return false; 5398 } 5399 5400 // FP instructions can allow unsafe algebra, thus vectorizable by 5401 // non-IEEE-754 compliant SIMD units. 5402 // This applies to floating-point math operations and calls, not memory 5403 // operations, shuffles, or casts, as they don't change precision or 5404 // semantics. 5405 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5406 !I.hasUnsafeAlgebra()) { 5407 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5408 Hints->setPotentiallyUnsafe(); 5409 } 5410 5411 // Reduction instructions are allowed to have exit users. 5412 // All other instructions must not have external users. 5413 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5414 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5415 << "value cannot be used outside the loop"); 5416 return false; 5417 } 5418 } // next instr. 5419 } 5420 5421 if (!PrimaryInduction) { 5422 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5423 if (Inductions.empty()) { 5424 ORE->emit(createMissedAnalysis("NoInductionVariable") 5425 << "loop induction variable could not be identified"); 5426 return false; 5427 } 5428 } 5429 5430 // Now we know the widest induction type, check if our found induction 5431 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5432 // will create another. 5433 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 5434 PrimaryInduction = nullptr; 5435 5436 return true; 5437 } 5438 5439 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 5440 // We should not collect Scalars more than once per VF. Right now, this 5441 // function is called from collectUniformsAndScalars(), which already does 5442 // this check. Collecting Scalars for VF=1 does not make any sense. 5443 assert(VF >= 2 && !Scalars.count(VF) && 5444 "This function should not be visited twice for the same VF"); 5445 5446 SmallSetVector<Instruction *, 8> Worklist; 5447 5448 // These sets are used to seed the analysis with pointers used by memory 5449 // accesses that will remain scalar. 5450 SmallSetVector<Instruction *, 8> ScalarPtrs; 5451 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5452 5453 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5454 // The pointer operands of loads and stores will be scalar as long as the 5455 // memory access is not a gather or scatter operation. The value operand of a 5456 // store will remain scalar if the store is scalarized. 5457 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5458 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5459 assert(WideningDecision != CM_Unknown && 5460 "Widening decision should be ready at this moment"); 5461 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5462 if (Ptr == Store->getValueOperand()) 5463 return WideningDecision == CM_Scalarize; 5464 assert(Ptr == getPointerOperand(MemAccess) && 5465 "Ptr is neither a value or pointer operand"); 5466 return WideningDecision != CM_GatherScatter; 5467 }; 5468 5469 // A helper that returns true if the given value is a bitcast or 5470 // getelementptr instruction contained in the loop. 5471 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5472 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5473 isa<GetElementPtrInst>(V)) && 5474 !TheLoop->isLoopInvariant(V); 5475 }; 5476 5477 // A helper that evaluates a memory access's use of a pointer. If the use 5478 // will be a scalar use, and the pointer is only used by memory accesses, we 5479 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 5480 // PossibleNonScalarPtrs. 5481 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5482 // We only care about bitcast and getelementptr instructions contained in 5483 // the loop. 5484 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5485 return; 5486 5487 // If the pointer has already been identified as scalar (e.g., if it was 5488 // also identified as uniform), there's nothing to do. 5489 auto *I = cast<Instruction>(Ptr); 5490 if (Worklist.count(I)) 5491 return; 5492 5493 // If the use of the pointer will be a scalar use, and all users of the 5494 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5495 // place the pointer in PossibleNonScalarPtrs. 5496 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5497 return isa<LoadInst>(U) || isa<StoreInst>(U); 5498 })) 5499 ScalarPtrs.insert(I); 5500 else 5501 PossibleNonScalarPtrs.insert(I); 5502 }; 5503 5504 // We seed the scalars analysis with three classes of instructions: (1) 5505 // instructions marked uniform-after-vectorization, (2) bitcast and 5506 // getelementptr instructions used by memory accesses requiring a scalar use, 5507 // and (3) pointer induction variables and their update instructions (we 5508 // currently only scalarize these). 5509 // 5510 // (1) Add to the worklist all instructions that have been identified as 5511 // uniform-after-vectorization. 5512 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5513 5514 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5515 // memory accesses requiring a scalar use. The pointer operands of loads and 5516 // stores will be scalar as long as the memory accesses is not a gather or 5517 // scatter operation. The value operand of a store will remain scalar if the 5518 // store is scalarized. 5519 for (auto *BB : TheLoop->blocks()) 5520 for (auto &I : *BB) { 5521 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5522 evaluatePtrUse(Load, Load->getPointerOperand()); 5523 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5524 evaluatePtrUse(Store, Store->getPointerOperand()); 5525 evaluatePtrUse(Store, Store->getValueOperand()); 5526 } 5527 } 5528 for (auto *I : ScalarPtrs) 5529 if (!PossibleNonScalarPtrs.count(I)) { 5530 DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5531 Worklist.insert(I); 5532 } 5533 5534 // (3) Add to the worklist all pointer induction variables and their update 5535 // instructions. 5536 // 5537 // TODO: Once we are able to vectorize pointer induction variables we should 5538 // no longer insert them into the worklist here. 5539 auto *Latch = TheLoop->getLoopLatch(); 5540 for (auto &Induction : *Legal->getInductionVars()) { 5541 auto *Ind = Induction.first; 5542 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5543 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 5544 continue; 5545 Worklist.insert(Ind); 5546 Worklist.insert(IndUpdate); 5547 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5548 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5549 } 5550 5551 // Insert the forced scalars. 5552 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5553 // induction variable when the PHI user is scalarized. 5554 if (ForcedScalars.count(VF)) 5555 for (auto *I : ForcedScalars.find(VF)->second) 5556 Worklist.insert(I); 5557 5558 // Expand the worklist by looking through any bitcasts and getelementptr 5559 // instructions we've already identified as scalar. This is similar to the 5560 // expansion step in collectLoopUniforms(); however, here we're only 5561 // expanding to include additional bitcasts and getelementptr instructions. 5562 unsigned Idx = 0; 5563 while (Idx != Worklist.size()) { 5564 Instruction *Dst = Worklist[Idx++]; 5565 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5566 continue; 5567 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5568 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5569 auto *J = cast<Instruction>(U); 5570 return !TheLoop->contains(J) || Worklist.count(J) || 5571 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5572 isScalarUse(J, Src)); 5573 })) { 5574 Worklist.insert(Src); 5575 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5576 } 5577 } 5578 5579 // An induction variable will remain scalar if all users of the induction 5580 // variable and induction variable update remain scalar. 5581 for (auto &Induction : *Legal->getInductionVars()) { 5582 auto *Ind = Induction.first; 5583 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5584 5585 // We already considered pointer induction variables, so there's no reason 5586 // to look at their users again. 5587 // 5588 // TODO: Once we are able to vectorize pointer induction variables we 5589 // should no longer skip over them here. 5590 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 5591 continue; 5592 5593 // Determine if all users of the induction variable are scalar after 5594 // vectorization. 5595 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5596 auto *I = cast<Instruction>(U); 5597 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5598 }); 5599 if (!ScalarInd) 5600 continue; 5601 5602 // Determine if all users of the induction variable update instruction are 5603 // scalar after vectorization. 5604 auto ScalarIndUpdate = 5605 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5606 auto *I = cast<Instruction>(U); 5607 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5608 }); 5609 if (!ScalarIndUpdate) 5610 continue; 5611 5612 // The induction variable and its update instruction will remain scalar. 5613 Worklist.insert(Ind); 5614 Worklist.insert(IndUpdate); 5615 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5616 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5617 } 5618 5619 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5620 } 5621 5622 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) { 5623 if (!blockNeedsPredication(I->getParent())) 5624 return false; 5625 switch(I->getOpcode()) { 5626 default: 5627 break; 5628 case Instruction::Store: 5629 return !isMaskRequired(I); 5630 case Instruction::UDiv: 5631 case Instruction::SDiv: 5632 case Instruction::SRem: 5633 case Instruction::URem: 5634 return mayDivideByZero(*I); 5635 } 5636 return false; 5637 } 5638 5639 bool LoopVectorizationLegality::memoryInstructionCanBeWidened(Instruction *I, 5640 unsigned VF) { 5641 // Get and ensure we have a valid memory instruction. 5642 LoadInst *LI = dyn_cast<LoadInst>(I); 5643 StoreInst *SI = dyn_cast<StoreInst>(I); 5644 assert((LI || SI) && "Invalid memory instruction"); 5645 5646 auto *Ptr = getPointerOperand(I); 5647 5648 // In order to be widened, the pointer should be consecutive, first of all. 5649 if (!isConsecutivePtr(Ptr)) 5650 return false; 5651 5652 // If the instruction is a store located in a predicated block, it will be 5653 // scalarized. 5654 if (isScalarWithPredication(I)) 5655 return false; 5656 5657 // If the instruction's allocated size doesn't equal it's type size, it 5658 // requires padding and will be scalarized. 5659 auto &DL = I->getModule()->getDataLayout(); 5660 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5661 if (hasIrregularType(ScalarTy, DL, VF)) 5662 return false; 5663 5664 return true; 5665 } 5666 5667 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 5668 // We should not collect Uniforms more than once per VF. Right now, 5669 // this function is called from collectUniformsAndScalars(), which 5670 // already does this check. Collecting Uniforms for VF=1 does not make any 5671 // sense. 5672 5673 assert(VF >= 2 && !Uniforms.count(VF) && 5674 "This function should not be visited twice for the same VF"); 5675 5676 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5677 // not analyze again. Uniforms.count(VF) will return 1. 5678 Uniforms[VF].clear(); 5679 5680 // We now know that the loop is vectorizable! 5681 // Collect instructions inside the loop that will remain uniform after 5682 // vectorization. 5683 5684 // Global values, params and instructions outside of current loop are out of 5685 // scope. 5686 auto isOutOfScope = [&](Value *V) -> bool { 5687 Instruction *I = dyn_cast<Instruction>(V); 5688 return (!I || !TheLoop->contains(I)); 5689 }; 5690 5691 SetVector<Instruction *> Worklist; 5692 BasicBlock *Latch = TheLoop->getLoopLatch(); 5693 5694 // Start with the conditional branch. If the branch condition is an 5695 // instruction contained in the loop that is only used by the branch, it is 5696 // uniform. 5697 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5698 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5699 Worklist.insert(Cmp); 5700 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5701 } 5702 5703 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5704 // are pointers that are treated like consecutive pointers during 5705 // vectorization. The pointer operands of interleaved accesses are an 5706 // example. 5707 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5708 5709 // Holds pointer operands of instructions that are possibly non-uniform. 5710 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5711 5712 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 5713 InstWidening WideningDecision = getWideningDecision(I, VF); 5714 assert(WideningDecision != CM_Unknown && 5715 "Widening decision should be ready at this moment"); 5716 5717 return (WideningDecision == CM_Widen || 5718 WideningDecision == CM_Interleave); 5719 }; 5720 // Iterate over the instructions in the loop, and collect all 5721 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5722 // that a consecutive-like pointer operand will be scalarized, we collect it 5723 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5724 // getelementptr instruction can be used by both vectorized and scalarized 5725 // memory instructions. For example, if a loop loads and stores from the same 5726 // location, but the store is conditional, the store will be scalarized, and 5727 // the getelementptr won't remain uniform. 5728 for (auto *BB : TheLoop->blocks()) 5729 for (auto &I : *BB) { 5730 // If there's no pointer operand, there's nothing to do. 5731 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5732 if (!Ptr) 5733 continue; 5734 5735 // True if all users of Ptr are memory accesses that have Ptr as their 5736 // pointer operand. 5737 auto UsersAreMemAccesses = 5738 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 5739 return getPointerOperand(U) == Ptr; 5740 }); 5741 5742 // Ensure the memory instruction will not be scalarized or used by 5743 // gather/scatter, making its pointer operand non-uniform. If the pointer 5744 // operand is used by any instruction other than a memory access, we 5745 // conservatively assume the pointer operand may be non-uniform. 5746 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5747 PossibleNonUniformPtrs.insert(Ptr); 5748 5749 // If the memory instruction will be vectorized and its pointer operand 5750 // is consecutive-like, or interleaving - the pointer operand should 5751 // remain uniform. 5752 else 5753 ConsecutiveLikePtrs.insert(Ptr); 5754 } 5755 5756 // Add to the Worklist all consecutive and consecutive-like pointers that 5757 // aren't also identified as possibly non-uniform. 5758 for (auto *V : ConsecutiveLikePtrs) 5759 if (!PossibleNonUniformPtrs.count(V)) { 5760 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5761 Worklist.insert(V); 5762 } 5763 5764 // Expand Worklist in topological order: whenever a new instruction 5765 // is added , its users should be either already inside Worklist, or 5766 // out of scope. It ensures a uniform instruction will only be used 5767 // by uniform instructions or out of scope instructions. 5768 unsigned idx = 0; 5769 while (idx != Worklist.size()) { 5770 Instruction *I = Worklist[idx++]; 5771 5772 for (auto OV : I->operand_values()) { 5773 if (isOutOfScope(OV)) 5774 continue; 5775 auto *OI = cast<Instruction>(OV); 5776 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5777 auto *J = cast<Instruction>(U); 5778 return !TheLoop->contains(J) || Worklist.count(J) || 5779 (OI == getPointerOperand(J) && isUniformDecision(J, VF)); 5780 })) { 5781 Worklist.insert(OI); 5782 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5783 } 5784 } 5785 } 5786 5787 // Returns true if Ptr is the pointer operand of a memory access instruction 5788 // I, and I is known to not require scalarization. 5789 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5790 return getPointerOperand(I) == Ptr && isUniformDecision(I, VF); 5791 }; 5792 5793 // For an instruction to be added into Worklist above, all its users inside 5794 // the loop should also be in Worklist. However, this condition cannot be 5795 // true for phi nodes that form a cyclic dependence. We must process phi 5796 // nodes separately. An induction variable will remain uniform if all users 5797 // of the induction variable and induction variable update remain uniform. 5798 // The code below handles both pointer and non-pointer induction variables. 5799 for (auto &Induction : *Legal->getInductionVars()) { 5800 auto *Ind = Induction.first; 5801 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5802 5803 // Determine if all users of the induction variable are uniform after 5804 // vectorization. 5805 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5806 auto *I = cast<Instruction>(U); 5807 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5808 isVectorizedMemAccessUse(I, Ind); 5809 }); 5810 if (!UniformInd) 5811 continue; 5812 5813 // Determine if all users of the induction variable update instruction are 5814 // uniform after vectorization. 5815 auto UniformIndUpdate = 5816 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5817 auto *I = cast<Instruction>(U); 5818 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5819 isVectorizedMemAccessUse(I, IndUpdate); 5820 }); 5821 if (!UniformIndUpdate) 5822 continue; 5823 5824 // The induction variable and its update instruction will remain uniform. 5825 Worklist.insert(Ind); 5826 Worklist.insert(IndUpdate); 5827 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5828 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5829 } 5830 5831 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5832 } 5833 5834 bool LoopVectorizationLegality::canVectorizeMemory() { 5835 LAI = &(*GetLAA)(*TheLoop); 5836 InterleaveInfo.setLAI(LAI); 5837 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5838 if (LAR) { 5839 ORE->emit([&]() { 5840 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 5841 "loop not vectorized: ", *LAR); 5842 }); 5843 } 5844 if (!LAI->canVectorizeMemory()) 5845 return false; 5846 5847 if (LAI->hasStoreToLoopInvariantAddress()) { 5848 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5849 << "write to a loop invariant address could not be vectorized"); 5850 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5851 return false; 5852 } 5853 5854 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5855 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5856 5857 return true; 5858 } 5859 5860 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5861 Value *In0 = const_cast<Value *>(V); 5862 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5863 if (!PN) 5864 return false; 5865 5866 return Inductions.count(PN); 5867 } 5868 5869 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5870 return FirstOrderRecurrences.count(Phi); 5871 } 5872 5873 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5874 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5875 } 5876 5877 bool LoopVectorizationLegality::blockCanBePredicated( 5878 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5879 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5880 5881 for (Instruction &I : *BB) { 5882 // Check that we don't have a constant expression that can trap as operand. 5883 for (Value *Operand : I.operands()) { 5884 if (auto *C = dyn_cast<Constant>(Operand)) 5885 if (C->canTrap()) 5886 return false; 5887 } 5888 // We might be able to hoist the load. 5889 if (I.mayReadFromMemory()) { 5890 auto *LI = dyn_cast<LoadInst>(&I); 5891 if (!LI) 5892 return false; 5893 if (!SafePtrs.count(LI->getPointerOperand())) { 5894 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5895 isLegalMaskedGather(LI->getType())) { 5896 MaskedOp.insert(LI); 5897 continue; 5898 } 5899 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5900 if (IsAnnotatedParallel) 5901 continue; 5902 return false; 5903 } 5904 } 5905 5906 if (I.mayWriteToMemory()) { 5907 auto *SI = dyn_cast<StoreInst>(&I); 5908 // We only support predication of stores in basic blocks with one 5909 // predecessor. 5910 if (!SI) 5911 return false; 5912 5913 // Build a masked store if it is legal for the target. 5914 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5915 SI->getPointerOperand()) || 5916 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5917 MaskedOp.insert(SI); 5918 continue; 5919 } 5920 5921 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5922 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5923 5924 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5925 !isSinglePredecessor) 5926 return false; 5927 } 5928 if (I.mayThrow()) 5929 return false; 5930 } 5931 5932 return true; 5933 } 5934 5935 void InterleavedAccessInfo::collectConstStrideAccesses( 5936 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5937 const ValueToValueMap &Strides) { 5938 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5939 5940 // Since it's desired that the load/store instructions be maintained in 5941 // "program order" for the interleaved access analysis, we have to visit the 5942 // blocks in the loop in reverse postorder (i.e., in a topological order). 5943 // Such an ordering will ensure that any load/store that may be executed 5944 // before a second load/store will precede the second load/store in 5945 // AccessStrideInfo. 5946 LoopBlocksDFS DFS(TheLoop); 5947 DFS.perform(LI); 5948 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5949 for (auto &I : *BB) { 5950 auto *LI = dyn_cast<LoadInst>(&I); 5951 auto *SI = dyn_cast<StoreInst>(&I); 5952 if (!LI && !SI) 5953 continue; 5954 5955 Value *Ptr = getPointerOperand(&I); 5956 // We don't check wrapping here because we don't know yet if Ptr will be 5957 // part of a full group or a group with gaps. Checking wrapping for all 5958 // pointers (even those that end up in groups with no gaps) will be overly 5959 // conservative. For full groups, wrapping should be ok since if we would 5960 // wrap around the address space we would do a memory access at nullptr 5961 // even without the transformation. The wrapping checks are therefore 5962 // deferred until after we've formed the interleaved groups. 5963 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 5964 /*Assume=*/true, /*ShouldCheckWrap=*/false); 5965 5966 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5967 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5968 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5969 5970 // An alignment of 0 means target ABI alignment. 5971 unsigned Align = getMemInstAlignment(&I); 5972 if (!Align) 5973 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5974 5975 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 5976 } 5977 } 5978 5979 // Analyze interleaved accesses and collect them into interleaved load and 5980 // store groups. 5981 // 5982 // When generating code for an interleaved load group, we effectively hoist all 5983 // loads in the group to the location of the first load in program order. When 5984 // generating code for an interleaved store group, we sink all stores to the 5985 // location of the last store. This code motion can change the order of load 5986 // and store instructions and may break dependences. 5987 // 5988 // The code generation strategy mentioned above ensures that we won't violate 5989 // any write-after-read (WAR) dependences. 5990 // 5991 // E.g., for the WAR dependence: a = A[i]; // (1) 5992 // A[i] = b; // (2) 5993 // 5994 // The store group of (2) is always inserted at or below (2), and the load 5995 // group of (1) is always inserted at or above (1). Thus, the instructions will 5996 // never be reordered. All other dependences are checked to ensure the 5997 // correctness of the instruction reordering. 5998 // 5999 // The algorithm visits all memory accesses in the loop in bottom-up program 6000 // order. Program order is established by traversing the blocks in the loop in 6001 // reverse postorder when collecting the accesses. 6002 // 6003 // We visit the memory accesses in bottom-up order because it can simplify the 6004 // construction of store groups in the presence of write-after-write (WAW) 6005 // dependences. 6006 // 6007 // E.g., for the WAW dependence: A[i] = a; // (1) 6008 // A[i] = b; // (2) 6009 // A[i + 1] = c; // (3) 6010 // 6011 // We will first create a store group with (3) and (2). (1) can't be added to 6012 // this group because it and (2) are dependent. However, (1) can be grouped 6013 // with other accesses that may precede it in program order. Note that a 6014 // bottom-up order does not imply that WAW dependences should not be checked. 6015 void InterleavedAccessInfo::analyzeInterleaving( 6016 const ValueToValueMap &Strides) { 6017 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 6018 6019 // Holds all accesses with a constant stride. 6020 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 6021 collectConstStrideAccesses(AccessStrideInfo, Strides); 6022 6023 if (AccessStrideInfo.empty()) 6024 return; 6025 6026 // Collect the dependences in the loop. 6027 collectDependences(); 6028 6029 // Holds all interleaved store groups temporarily. 6030 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 6031 // Holds all interleaved load groups temporarily. 6032 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 6033 6034 // Search in bottom-up program order for pairs of accesses (A and B) that can 6035 // form interleaved load or store groups. In the algorithm below, access A 6036 // precedes access B in program order. We initialize a group for B in the 6037 // outer loop of the algorithm, and then in the inner loop, we attempt to 6038 // insert each A into B's group if: 6039 // 6040 // 1. A and B have the same stride, 6041 // 2. A and B have the same memory object size, and 6042 // 3. A belongs in B's group according to its distance from B. 6043 // 6044 // Special care is taken to ensure group formation will not break any 6045 // dependences. 6046 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 6047 BI != E; ++BI) { 6048 Instruction *B = BI->first; 6049 StrideDescriptor DesB = BI->second; 6050 6051 // Initialize a group for B if it has an allowable stride. Even if we don't 6052 // create a group for B, we continue with the bottom-up algorithm to ensure 6053 // we don't break any of B's dependences. 6054 InterleaveGroup *Group = nullptr; 6055 if (isStrided(DesB.Stride)) { 6056 Group = getInterleaveGroup(B); 6057 if (!Group) { 6058 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 6059 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 6060 } 6061 if (B->mayWriteToMemory()) 6062 StoreGroups.insert(Group); 6063 else 6064 LoadGroups.insert(Group); 6065 } 6066 6067 for (auto AI = std::next(BI); AI != E; ++AI) { 6068 Instruction *A = AI->first; 6069 StrideDescriptor DesA = AI->second; 6070 6071 // Our code motion strategy implies that we can't have dependences 6072 // between accesses in an interleaved group and other accesses located 6073 // between the first and last member of the group. Note that this also 6074 // means that a group can't have more than one member at a given offset. 6075 // The accesses in a group can have dependences with other accesses, but 6076 // we must ensure we don't extend the boundaries of the group such that 6077 // we encompass those dependent accesses. 6078 // 6079 // For example, assume we have the sequence of accesses shown below in a 6080 // stride-2 loop: 6081 // 6082 // (1, 2) is a group | A[i] = a; // (1) 6083 // | A[i-1] = b; // (2) | 6084 // A[i-3] = c; // (3) 6085 // A[i] = d; // (4) | (2, 4) is not a group 6086 // 6087 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 6088 // but not with (4). If we did, the dependent access (3) would be within 6089 // the boundaries of the (2, 4) group. 6090 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 6091 // If a dependence exists and A is already in a group, we know that A 6092 // must be a store since A precedes B and WAR dependences are allowed. 6093 // Thus, A would be sunk below B. We release A's group to prevent this 6094 // illegal code motion. A will then be free to form another group with 6095 // instructions that precede it. 6096 if (isInterleaved(A)) { 6097 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 6098 StoreGroups.remove(StoreGroup); 6099 releaseGroup(StoreGroup); 6100 } 6101 6102 // If a dependence exists and A is not already in a group (or it was 6103 // and we just released it), B might be hoisted above A (if B is a 6104 // load) or another store might be sunk below A (if B is a store). In 6105 // either case, we can't add additional instructions to B's group. B 6106 // will only form a group with instructions that it precedes. 6107 break; 6108 } 6109 6110 // At this point, we've checked for illegal code motion. If either A or B 6111 // isn't strided, there's nothing left to do. 6112 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 6113 continue; 6114 6115 // Ignore A if it's already in a group or isn't the same kind of memory 6116 // operation as B. 6117 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 6118 continue; 6119 6120 // Check rules 1 and 2. Ignore A if its stride or size is different from 6121 // that of B. 6122 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 6123 continue; 6124 6125 // Ignore A if the memory object of A and B don't belong to the same 6126 // address space 6127 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 6128 continue; 6129 6130 // Calculate the distance from A to B. 6131 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 6132 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 6133 if (!DistToB) 6134 continue; 6135 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 6136 6137 // Check rule 3. Ignore A if its distance to B is not a multiple of the 6138 // size. 6139 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 6140 continue; 6141 6142 // Ignore A if either A or B is in a predicated block. Although we 6143 // currently prevent group formation for predicated accesses, we may be 6144 // able to relax this limitation in the future once we handle more 6145 // complicated blocks. 6146 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 6147 continue; 6148 6149 // The index of A is the index of B plus A's distance to B in multiples 6150 // of the size. 6151 int IndexA = 6152 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 6153 6154 // Try to insert A into B's group. 6155 if (Group->insertMember(A, IndexA, DesA.Align)) { 6156 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 6157 << " into the interleave group with" << *B << '\n'); 6158 InterleaveGroupMap[A] = Group; 6159 6160 // Set the first load in program order as the insert position. 6161 if (A->mayReadFromMemory()) 6162 Group->setInsertPos(A); 6163 } 6164 } // Iteration over A accesses. 6165 } // Iteration over B accesses. 6166 6167 // Remove interleaved store groups with gaps. 6168 for (InterleaveGroup *Group : StoreGroups) 6169 if (Group->getNumMembers() != Group->getFactor()) { 6170 DEBUG(dbgs() << "LV: Invalidate candidate interleaved store group due " 6171 "to gaps.\n"); 6172 releaseGroup(Group); 6173 } 6174 // Remove interleaved groups with gaps (currently only loads) whose memory 6175 // accesses may wrap around. We have to revisit the getPtrStride analysis, 6176 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 6177 // not check wrapping (see documentation there). 6178 // FORNOW we use Assume=false; 6179 // TODO: Change to Assume=true but making sure we don't exceed the threshold 6180 // of runtime SCEV assumptions checks (thereby potentially failing to 6181 // vectorize altogether). 6182 // Additional optional optimizations: 6183 // TODO: If we are peeling the loop and we know that the first pointer doesn't 6184 // wrap then we can deduce that all pointers in the group don't wrap. 6185 // This means that we can forcefully peel the loop in order to only have to 6186 // check the first pointer for no-wrap. When we'll change to use Assume=true 6187 // we'll only need at most one runtime check per interleaved group. 6188 for (InterleaveGroup *Group : LoadGroups) { 6189 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 6190 // load would wrap around the address space we would do a memory access at 6191 // nullptr even without the transformation. 6192 if (Group->getNumMembers() == Group->getFactor()) 6193 continue; 6194 6195 // Case 2: If first and last members of the group don't wrap this implies 6196 // that all the pointers in the group don't wrap. 6197 // So we check only group member 0 (which is always guaranteed to exist), 6198 // and group member Factor - 1; If the latter doesn't exist we rely on 6199 // peeling (if it is a non-reveresed accsess -- see Case 3). 6200 Value *FirstMemberPtr = getPointerOperand(Group->getMember(0)); 6201 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 6202 /*ShouldCheckWrap=*/true)) { 6203 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6204 "first group member potentially pointer-wrapping.\n"); 6205 releaseGroup(Group); 6206 continue; 6207 } 6208 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 6209 if (LastMember) { 6210 Value *LastMemberPtr = getPointerOperand(LastMember); 6211 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 6212 /*ShouldCheckWrap=*/true)) { 6213 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6214 "last group member potentially pointer-wrapping.\n"); 6215 releaseGroup(Group); 6216 } 6217 } else { 6218 // Case 3: A non-reversed interleaved load group with gaps: We need 6219 // to execute at least one scalar epilogue iteration. This will ensure 6220 // we don't speculatively access memory out-of-bounds. We only need 6221 // to look for a member at index factor - 1, since every group must have 6222 // a member at index zero. 6223 if (Group->isReverse()) { 6224 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6225 "a reverse access with gaps.\n"); 6226 releaseGroup(Group); 6227 continue; 6228 } 6229 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6230 RequiresScalarEpilogue = true; 6231 } 6232 } 6233 } 6234 6235 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 6236 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 6237 ORE->emit(createMissedAnalysis("ConditionalStore") 6238 << "store that is conditionally executed prevents vectorization"); 6239 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6240 return None; 6241 } 6242 6243 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 6244 // TODO: It may by useful to do since it's still likely to be dynamically 6245 // uniform if the target can skip. 6246 DEBUG(dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 6247 6248 ORE->emit( 6249 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 6250 << "runtime pointer checks needed. Not enabled for divergent target"); 6251 6252 return None; 6253 } 6254 6255 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6256 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 6257 return computeFeasibleMaxVF(OptForSize, TC); 6258 6259 if (Legal->getRuntimePointerChecking()->Need) { 6260 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6261 << "runtime pointer checks needed. Enable vectorization of this " 6262 "loop with '#pragma clang loop vectorize(enable)' when " 6263 "compiling with -Os/-Oz"); 6264 DEBUG(dbgs() 6265 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6266 return None; 6267 } 6268 6269 // If we optimize the program for size, avoid creating the tail loop. 6270 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6271 6272 // If we don't know the precise trip count, don't try to vectorize. 6273 if (TC < 2) { 6274 ORE->emit( 6275 createMissedAnalysis("UnknownLoopCountComplexCFG") 6276 << "unable to calculate the loop count due to complex control flow"); 6277 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6278 return None; 6279 } 6280 6281 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 6282 6283 if (TC % MaxVF != 0) { 6284 // If the trip count that we found modulo the vectorization factor is not 6285 // zero then we require a tail. 6286 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 6287 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 6288 // smaller MaxVF that does not require a scalar epilog. 6289 6290 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6291 << "cannot optimize for size and vectorize at the " 6292 "same time. Enable vectorization of this loop " 6293 "with '#pragma clang loop vectorize(enable)' " 6294 "when compiling with -Os/-Oz"); 6295 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6296 return None; 6297 } 6298 6299 return MaxVF; 6300 } 6301 6302 unsigned 6303 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 6304 unsigned ConstTripCount) { 6305 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6306 unsigned SmallestType, WidestType; 6307 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6308 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6309 6310 // Get the maximum safe dependence distance in bits computed by LAA. 6311 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 6312 // the memory accesses that is most restrictive (involved in the smallest 6313 // dependence distance). 6314 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 6315 6316 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 6317 6318 unsigned MaxVectorSize = WidestRegister / WidestType; 6319 6320 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6321 << WidestType << " bits.\n"); 6322 DEBUG(dbgs() << "LV: The Widest register safe to use is: " << WidestRegister 6323 << " bits.\n"); 6324 6325 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6326 " into one vector!"); 6327 if (MaxVectorSize == 0) { 6328 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6329 MaxVectorSize = 1; 6330 return MaxVectorSize; 6331 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 6332 isPowerOf2_32(ConstTripCount)) { 6333 // We need to clamp the VF to be the ConstTripCount. There is no point in 6334 // choosing a higher viable VF as done in the loop below. 6335 DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 6336 << ConstTripCount << "\n"); 6337 MaxVectorSize = ConstTripCount; 6338 return MaxVectorSize; 6339 } 6340 6341 unsigned MaxVF = MaxVectorSize; 6342 if (MaximizeBandwidth && !OptForSize) { 6343 // Collect all viable vectorization factors larger than the default MaxVF 6344 // (i.e. MaxVectorSize). 6345 SmallVector<unsigned, 8> VFs; 6346 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6347 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 6348 VFs.push_back(VS); 6349 6350 // For each VF calculate its register usage. 6351 auto RUs = calculateRegisterUsage(VFs); 6352 6353 // Select the largest VF which doesn't require more registers than existing 6354 // ones. 6355 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6356 for (int i = RUs.size() - 1; i >= 0; --i) { 6357 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6358 MaxVF = VFs[i]; 6359 break; 6360 } 6361 } 6362 } 6363 return MaxVF; 6364 } 6365 6366 LoopVectorizationCostModel::VectorizationFactor 6367 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 6368 float Cost = expectedCost(1).first; 6369 #ifndef NDEBUG 6370 const float ScalarCost = Cost; 6371 #endif /* NDEBUG */ 6372 unsigned Width = 1; 6373 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6374 6375 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6376 // Ignore scalar width, because the user explicitly wants vectorization. 6377 if (ForceVectorization && MaxVF > 1) { 6378 Width = 2; 6379 Cost = expectedCost(Width).first / (float)Width; 6380 } 6381 6382 for (unsigned i = 2; i <= MaxVF; i *= 2) { 6383 // Notice that the vector loop needs to be executed less times, so 6384 // we need to divide the cost of the vector loops by the width of 6385 // the vector elements. 6386 VectorizationCostTy C = expectedCost(i); 6387 float VectorCost = C.first / (float)i; 6388 DEBUG(dbgs() << "LV: Vector loop of width " << i 6389 << " costs: " << (int)VectorCost << ".\n"); 6390 if (!C.second && !ForceVectorization) { 6391 DEBUG( 6392 dbgs() << "LV: Not considering vector loop of width " << i 6393 << " because it will not generate any vector instructions.\n"); 6394 continue; 6395 } 6396 if (VectorCost < Cost) { 6397 Cost = VectorCost; 6398 Width = i; 6399 } 6400 } 6401 6402 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6403 << "LV: Vectorization seems to be not beneficial, " 6404 << "but was forced by a user.\n"); 6405 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6406 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 6407 return Factor; 6408 } 6409 6410 std::pair<unsigned, unsigned> 6411 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6412 unsigned MinWidth = -1U; 6413 unsigned MaxWidth = 8; 6414 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6415 6416 // For each block. 6417 for (BasicBlock *BB : TheLoop->blocks()) { 6418 // For each instruction in the loop. 6419 for (Instruction &I : *BB) { 6420 Type *T = I.getType(); 6421 6422 // Skip ignored values. 6423 if (ValuesToIgnore.count(&I)) 6424 continue; 6425 6426 // Only examine Loads, Stores and PHINodes. 6427 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6428 continue; 6429 6430 // Examine PHI nodes that are reduction variables. Update the type to 6431 // account for the recurrence type. 6432 if (auto *PN = dyn_cast<PHINode>(&I)) { 6433 if (!Legal->isReductionVariable(PN)) 6434 continue; 6435 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6436 T = RdxDesc.getRecurrenceType(); 6437 } 6438 6439 // Examine the stored values. 6440 if (auto *ST = dyn_cast<StoreInst>(&I)) 6441 T = ST->getValueOperand()->getType(); 6442 6443 // Ignore loaded pointer types and stored pointer types that are not 6444 // vectorizable. 6445 // 6446 // FIXME: The check here attempts to predict whether a load or store will 6447 // be vectorized. We only know this for certain after a VF has 6448 // been selected. Here, we assume that if an access can be 6449 // vectorized, it will be. We should also look at extending this 6450 // optimization to non-pointer types. 6451 // 6452 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6453 !Legal->isAccessInterleaved(&I) && !Legal->isLegalGatherOrScatter(&I)) 6454 continue; 6455 6456 MinWidth = std::min(MinWidth, 6457 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6458 MaxWidth = std::max(MaxWidth, 6459 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6460 } 6461 } 6462 6463 return {MinWidth, MaxWidth}; 6464 } 6465 6466 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6467 unsigned VF, 6468 unsigned LoopCost) { 6469 // -- The interleave heuristics -- 6470 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6471 // There are many micro-architectural considerations that we can't predict 6472 // at this level. For example, frontend pressure (on decode or fetch) due to 6473 // code size, or the number and capabilities of the execution ports. 6474 // 6475 // We use the following heuristics to select the interleave count: 6476 // 1. If the code has reductions, then we interleave to break the cross 6477 // iteration dependency. 6478 // 2. If the loop is really small, then we interleave to reduce the loop 6479 // overhead. 6480 // 3. We don't interleave if we think that we will spill registers to memory 6481 // due to the increased register pressure. 6482 6483 // When we optimize for size, we don't interleave. 6484 if (OptForSize) 6485 return 1; 6486 6487 // We used the distance for the interleave count. 6488 if (Legal->getMaxSafeDepDistBytes() != -1U) 6489 return 1; 6490 6491 // Do not interleave loops with a relatively small trip count. 6492 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6493 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6494 return 1; 6495 6496 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6497 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6498 << " registers\n"); 6499 6500 if (VF == 1) { 6501 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6502 TargetNumRegisters = ForceTargetNumScalarRegs; 6503 } else { 6504 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6505 TargetNumRegisters = ForceTargetNumVectorRegs; 6506 } 6507 6508 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6509 // We divide by these constants so assume that we have at least one 6510 // instruction that uses at least one register. 6511 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6512 R.NumInstructions = std::max(R.NumInstructions, 1U); 6513 6514 // We calculate the interleave count using the following formula. 6515 // Subtract the number of loop invariants from the number of available 6516 // registers. These registers are used by all of the interleaved instances. 6517 // Next, divide the remaining registers by the number of registers that is 6518 // required by the loop, in order to estimate how many parallel instances 6519 // fit without causing spills. All of this is rounded down if necessary to be 6520 // a power of two. We want power of two interleave count to simplify any 6521 // addressing operations or alignment considerations. 6522 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6523 R.MaxLocalUsers); 6524 6525 // Don't count the induction variable as interleaved. 6526 if (EnableIndVarRegisterHeur) 6527 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6528 std::max(1U, (R.MaxLocalUsers - 1))); 6529 6530 // Clamp the interleave ranges to reasonable counts. 6531 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6532 6533 // Check if the user has overridden the max. 6534 if (VF == 1) { 6535 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6536 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6537 } else { 6538 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6539 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6540 } 6541 6542 // If we did not calculate the cost for VF (because the user selected the VF) 6543 // then we calculate the cost of VF here. 6544 if (LoopCost == 0) 6545 LoopCost = expectedCost(VF).first; 6546 6547 // Clamp the calculated IC to be between the 1 and the max interleave count 6548 // that the target allows. 6549 if (IC > MaxInterleaveCount) 6550 IC = MaxInterleaveCount; 6551 else if (IC < 1) 6552 IC = 1; 6553 6554 // Interleave if we vectorized this loop and there is a reduction that could 6555 // benefit from interleaving. 6556 if (VF > 1 && !Legal->getReductionVars()->empty()) { 6557 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6558 return IC; 6559 } 6560 6561 // Note that if we've already vectorized the loop we will have done the 6562 // runtime check and so interleaving won't require further checks. 6563 bool InterleavingRequiresRuntimePointerCheck = 6564 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6565 6566 // We want to interleave small loops in order to reduce the loop overhead and 6567 // potentially expose ILP opportunities. 6568 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6569 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6570 // We assume that the cost overhead is 1 and we use the cost model 6571 // to estimate the cost of the loop and interleave until the cost of the 6572 // loop overhead is about 5% of the cost of the loop. 6573 unsigned SmallIC = 6574 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6575 6576 // Interleave until store/load ports (estimated by max interleave count) are 6577 // saturated. 6578 unsigned NumStores = Legal->getNumStores(); 6579 unsigned NumLoads = Legal->getNumLoads(); 6580 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6581 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6582 6583 // If we have a scalar reduction (vector reductions are already dealt with 6584 // by this point), we can increase the critical path length if the loop 6585 // we're interleaving is inside another loop. Limit, by default to 2, so the 6586 // critical path only gets increased by one reduction operation. 6587 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 6588 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6589 SmallIC = std::min(SmallIC, F); 6590 StoresIC = std::min(StoresIC, F); 6591 LoadsIC = std::min(LoadsIC, F); 6592 } 6593 6594 if (EnableLoadStoreRuntimeInterleave && 6595 std::max(StoresIC, LoadsIC) > SmallIC) { 6596 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6597 return std::max(StoresIC, LoadsIC); 6598 } 6599 6600 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6601 return SmallIC; 6602 } 6603 6604 // Interleave if this is a large loop (small loops are already dealt with by 6605 // this point) that could benefit from interleaving. 6606 bool HasReductions = !Legal->getReductionVars()->empty(); 6607 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6608 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6609 return IC; 6610 } 6611 6612 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6613 return 1; 6614 } 6615 6616 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6617 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6618 // This function calculates the register usage by measuring the highest number 6619 // of values that are alive at a single location. Obviously, this is a very 6620 // rough estimation. We scan the loop in a topological order in order and 6621 // assign a number to each instruction. We use RPO to ensure that defs are 6622 // met before their users. We assume that each instruction that has in-loop 6623 // users starts an interval. We record every time that an in-loop value is 6624 // used, so we have a list of the first and last occurrences of each 6625 // instruction. Next, we transpose this data structure into a multi map that 6626 // holds the list of intervals that *end* at a specific location. This multi 6627 // map allows us to perform a linear search. We scan the instructions linearly 6628 // and record each time that a new interval starts, by placing it in a set. 6629 // If we find this value in the multi-map then we remove it from the set. 6630 // The max register usage is the maximum size of the set. 6631 // We also search for instructions that are defined outside the loop, but are 6632 // used inside the loop. We need this number separately from the max-interval 6633 // usage number because when we unroll, loop-invariant values do not take 6634 // more register. 6635 LoopBlocksDFS DFS(TheLoop); 6636 DFS.perform(LI); 6637 6638 RegisterUsage RU; 6639 RU.NumInstructions = 0; 6640 6641 // Each 'key' in the map opens a new interval. The values 6642 // of the map are the index of the 'last seen' usage of the 6643 // instruction that is the key. 6644 using IntervalMap = DenseMap<Instruction *, unsigned>; 6645 6646 // Maps instruction to its index. 6647 DenseMap<unsigned, Instruction *> IdxToInstr; 6648 // Marks the end of each interval. 6649 IntervalMap EndPoint; 6650 // Saves the list of instruction indices that are used in the loop. 6651 SmallSet<Instruction *, 8> Ends; 6652 // Saves the list of values that are used in the loop but are 6653 // defined outside the loop, such as arguments and constants. 6654 SmallPtrSet<Value *, 8> LoopInvariants; 6655 6656 unsigned Index = 0; 6657 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6658 RU.NumInstructions += BB->size(); 6659 for (Instruction &I : *BB) { 6660 IdxToInstr[Index++] = &I; 6661 6662 // Save the end location of each USE. 6663 for (Value *U : I.operands()) { 6664 auto *Instr = dyn_cast<Instruction>(U); 6665 6666 // Ignore non-instruction values such as arguments, constants, etc. 6667 if (!Instr) 6668 continue; 6669 6670 // If this instruction is outside the loop then record it and continue. 6671 if (!TheLoop->contains(Instr)) { 6672 LoopInvariants.insert(Instr); 6673 continue; 6674 } 6675 6676 // Overwrite previous end points. 6677 EndPoint[Instr] = Index; 6678 Ends.insert(Instr); 6679 } 6680 } 6681 } 6682 6683 // Saves the list of intervals that end with the index in 'key'. 6684 using InstrList = SmallVector<Instruction *, 2>; 6685 DenseMap<unsigned, InstrList> TransposeEnds; 6686 6687 // Transpose the EndPoints to a list of values that end at each index. 6688 for (auto &Interval : EndPoint) 6689 TransposeEnds[Interval.second].push_back(Interval.first); 6690 6691 SmallSet<Instruction *, 8> OpenIntervals; 6692 6693 // Get the size of the widest register. 6694 unsigned MaxSafeDepDist = -1U; 6695 if (Legal->getMaxSafeDepDistBytes() != -1U) 6696 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6697 unsigned WidestRegister = 6698 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6699 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6700 6701 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6702 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6703 6704 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6705 6706 // A lambda that gets the register usage for the given type and VF. 6707 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6708 if (Ty->isTokenTy()) 6709 return 0U; 6710 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6711 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6712 }; 6713 6714 for (unsigned int i = 0; i < Index; ++i) { 6715 Instruction *I = IdxToInstr[i]; 6716 6717 // Remove all of the instructions that end at this location. 6718 InstrList &List = TransposeEnds[i]; 6719 for (Instruction *ToRemove : List) 6720 OpenIntervals.erase(ToRemove); 6721 6722 // Ignore instructions that are never used within the loop. 6723 if (!Ends.count(I)) 6724 continue; 6725 6726 // Skip ignored values. 6727 if (ValuesToIgnore.count(I)) 6728 continue; 6729 6730 // For each VF find the maximum usage of registers. 6731 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6732 if (VFs[j] == 1) { 6733 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6734 continue; 6735 } 6736 collectUniformsAndScalars(VFs[j]); 6737 // Count the number of live intervals. 6738 unsigned RegUsage = 0; 6739 for (auto Inst : OpenIntervals) { 6740 // Skip ignored values for VF > 1. 6741 if (VecValuesToIgnore.count(Inst) || 6742 isScalarAfterVectorization(Inst, VFs[j])) 6743 continue; 6744 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6745 } 6746 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6747 } 6748 6749 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6750 << OpenIntervals.size() << '\n'); 6751 6752 // Add the current instruction to the list of open intervals. 6753 OpenIntervals.insert(I); 6754 } 6755 6756 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6757 unsigned Invariant = 0; 6758 if (VFs[i] == 1) 6759 Invariant = LoopInvariants.size(); 6760 else { 6761 for (auto Inst : LoopInvariants) 6762 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6763 } 6764 6765 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6766 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6767 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6768 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6769 6770 RU.LoopInvariantRegs = Invariant; 6771 RU.MaxLocalUsers = MaxUsages[i]; 6772 RUs[i] = RU; 6773 } 6774 6775 return RUs; 6776 } 6777 6778 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6779 // If we aren't vectorizing the loop, or if we've already collected the 6780 // instructions to scalarize, there's nothing to do. Collection may already 6781 // have occurred if we have a user-selected VF and are now computing the 6782 // expected cost for interleaving. 6783 if (VF < 2 || InstsToScalarize.count(VF)) 6784 return; 6785 6786 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6787 // not profitable to scalarize any instructions, the presence of VF in the 6788 // map will indicate that we've analyzed it already. 6789 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6790 6791 // Find all the instructions that are scalar with predication in the loop and 6792 // determine if it would be better to not if-convert the blocks they are in. 6793 // If so, we also record the instructions to scalarize. 6794 for (BasicBlock *BB : TheLoop->blocks()) { 6795 if (!Legal->blockNeedsPredication(BB)) 6796 continue; 6797 for (Instruction &I : *BB) 6798 if (Legal->isScalarWithPredication(&I)) { 6799 ScalarCostsTy ScalarCosts; 6800 if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6801 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6802 6803 // Remember that BB will remain after vectorization. 6804 PredicatedBBsAfterVectorization.insert(BB); 6805 } 6806 } 6807 } 6808 6809 int LoopVectorizationCostModel::computePredInstDiscount( 6810 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6811 unsigned VF) { 6812 assert(!isUniformAfterVectorization(PredInst, VF) && 6813 "Instruction marked uniform-after-vectorization will be predicated"); 6814 6815 // Initialize the discount to zero, meaning that the scalar version and the 6816 // vector version cost the same. 6817 int Discount = 0; 6818 6819 // Holds instructions to analyze. The instructions we visit are mapped in 6820 // ScalarCosts. Those instructions are the ones that would be scalarized if 6821 // we find that the scalar version costs less. 6822 SmallVector<Instruction *, 8> Worklist; 6823 6824 // Returns true if the given instruction can be scalarized. 6825 auto canBeScalarized = [&](Instruction *I) -> bool { 6826 // We only attempt to scalarize instructions forming a single-use chain 6827 // from the original predicated block that would otherwise be vectorized. 6828 // Although not strictly necessary, we give up on instructions we know will 6829 // already be scalar to avoid traversing chains that are unlikely to be 6830 // beneficial. 6831 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6832 isScalarAfterVectorization(I, VF)) 6833 return false; 6834 6835 // If the instruction is scalar with predication, it will be analyzed 6836 // separately. We ignore it within the context of PredInst. 6837 if (Legal->isScalarWithPredication(I)) 6838 return false; 6839 6840 // If any of the instruction's operands are uniform after vectorization, 6841 // the instruction cannot be scalarized. This prevents, for example, a 6842 // masked load from being scalarized. 6843 // 6844 // We assume we will only emit a value for lane zero of an instruction 6845 // marked uniform after vectorization, rather than VF identical values. 6846 // Thus, if we scalarize an instruction that uses a uniform, we would 6847 // create uses of values corresponding to the lanes we aren't emitting code 6848 // for. This behavior can be changed by allowing getScalarValue to clone 6849 // the lane zero values for uniforms rather than asserting. 6850 for (Use &U : I->operands()) 6851 if (auto *J = dyn_cast<Instruction>(U.get())) 6852 if (isUniformAfterVectorization(J, VF)) 6853 return false; 6854 6855 // Otherwise, we can scalarize the instruction. 6856 return true; 6857 }; 6858 6859 // Returns true if an operand that cannot be scalarized must be extracted 6860 // from a vector. We will account for this scalarization overhead below. Note 6861 // that the non-void predicated instructions are placed in their own blocks, 6862 // and their return values are inserted into vectors. Thus, an extract would 6863 // still be required. 6864 auto needsExtract = [&](Instruction *I) -> bool { 6865 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 6866 }; 6867 6868 // Compute the expected cost discount from scalarizing the entire expression 6869 // feeding the predicated instruction. We currently only consider expressions 6870 // that are single-use instruction chains. 6871 Worklist.push_back(PredInst); 6872 while (!Worklist.empty()) { 6873 Instruction *I = Worklist.pop_back_val(); 6874 6875 // If we've already analyzed the instruction, there's nothing to do. 6876 if (ScalarCosts.count(I)) 6877 continue; 6878 6879 // Compute the cost of the vector instruction. Note that this cost already 6880 // includes the scalarization overhead of the predicated instruction. 6881 unsigned VectorCost = getInstructionCost(I, VF).first; 6882 6883 // Compute the cost of the scalarized instruction. This cost is the cost of 6884 // the instruction as if it wasn't if-converted and instead remained in the 6885 // predicated block. We will scale this cost by block probability after 6886 // computing the scalarization overhead. 6887 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6888 6889 // Compute the scalarization overhead of needed insertelement instructions 6890 // and phi nodes. 6891 if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6892 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 6893 true, false); 6894 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6895 } 6896 6897 // Compute the scalarization overhead of needed extractelement 6898 // instructions. For each of the instruction's operands, if the operand can 6899 // be scalarized, add it to the worklist; otherwise, account for the 6900 // overhead. 6901 for (Use &U : I->operands()) 6902 if (auto *J = dyn_cast<Instruction>(U.get())) { 6903 assert(VectorType::isValidElementType(J->getType()) && 6904 "Instruction has non-scalar type"); 6905 if (canBeScalarized(J)) 6906 Worklist.push_back(J); 6907 else if (needsExtract(J)) 6908 ScalarCost += TTI.getScalarizationOverhead( 6909 ToVectorTy(J->getType(),VF), false, true); 6910 } 6911 6912 // Scale the total scalar cost by block probability. 6913 ScalarCost /= getReciprocalPredBlockProb(); 6914 6915 // Compute the discount. A non-negative discount means the vector version 6916 // of the instruction costs more, and scalarizing would be beneficial. 6917 Discount += VectorCost - ScalarCost; 6918 ScalarCosts[I] = ScalarCost; 6919 } 6920 6921 return Discount; 6922 } 6923 6924 LoopVectorizationCostModel::VectorizationCostTy 6925 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6926 VectorizationCostTy Cost; 6927 6928 // For each block. 6929 for (BasicBlock *BB : TheLoop->blocks()) { 6930 VectorizationCostTy BlockCost; 6931 6932 // For each instruction in the old loop. 6933 for (Instruction &I : *BB) { 6934 // Skip dbg intrinsics. 6935 if (isa<DbgInfoIntrinsic>(I)) 6936 continue; 6937 6938 // Skip ignored values. 6939 if (ValuesToIgnore.count(&I)) 6940 continue; 6941 6942 VectorizationCostTy C = getInstructionCost(&I, VF); 6943 6944 // Check if we should override the cost. 6945 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6946 C.first = ForceTargetInstructionCost; 6947 6948 BlockCost.first += C.first; 6949 BlockCost.second |= C.second; 6950 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6951 << VF << " For instruction: " << I << '\n'); 6952 } 6953 6954 // If we are vectorizing a predicated block, it will have been 6955 // if-converted. This means that the block's instructions (aside from 6956 // stores and instructions that may divide by zero) will now be 6957 // unconditionally executed. For the scalar case, we may not always execute 6958 // the predicated block. Thus, scale the block's cost by the probability of 6959 // executing it. 6960 if (VF == 1 && Legal->blockNeedsPredication(BB)) 6961 BlockCost.first /= getReciprocalPredBlockProb(); 6962 6963 Cost.first += BlockCost.first; 6964 Cost.second |= BlockCost.second; 6965 } 6966 6967 return Cost; 6968 } 6969 6970 /// \brief Gets Address Access SCEV after verifying that the access pattern 6971 /// is loop invariant except the induction variable dependence. 6972 /// 6973 /// This SCEV can be sent to the Target in order to estimate the address 6974 /// calculation cost. 6975 static const SCEV *getAddressAccessSCEV( 6976 Value *Ptr, 6977 LoopVectorizationLegality *Legal, 6978 ScalarEvolution *SE, 6979 const Loop *TheLoop) { 6980 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6981 if (!Gep) 6982 return nullptr; 6983 6984 // We are looking for a gep with all loop invariant indices except for one 6985 // which should be an induction variable. 6986 unsigned NumOperands = Gep->getNumOperands(); 6987 for (unsigned i = 1; i < NumOperands; ++i) { 6988 Value *Opd = Gep->getOperand(i); 6989 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6990 !Legal->isInductionVariable(Opd)) 6991 return nullptr; 6992 } 6993 6994 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6995 return SE->getSCEV(Ptr); 6996 } 6997 6998 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6999 return Legal->hasStride(I->getOperand(0)) || 7000 Legal->hasStride(I->getOperand(1)); 7001 } 7002 7003 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 7004 unsigned VF) { 7005 Type *ValTy = getMemInstValueType(I); 7006 auto SE = PSE.getSE(); 7007 7008 unsigned Alignment = getMemInstAlignment(I); 7009 unsigned AS = getMemInstAddressSpace(I); 7010 Value *Ptr = getPointerOperand(I); 7011 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 7012 7013 // Figure out whether the access is strided and get the stride value 7014 // if it's known in compile time 7015 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, SE, TheLoop); 7016 7017 // Get the cost of the scalar memory instruction and address computation. 7018 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 7019 7020 Cost += VF * 7021 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 7022 AS, I); 7023 7024 // Get the overhead of the extractelement and insertelement instructions 7025 // we might create due to scalarization. 7026 Cost += getScalarizationOverhead(I, VF, TTI); 7027 7028 // If we have a predicated store, it may not be executed for each vector 7029 // lane. Scale the cost by the probability of executing the predicated 7030 // block. 7031 if (Legal->isScalarWithPredication(I)) 7032 Cost /= getReciprocalPredBlockProb(); 7033 7034 return Cost; 7035 } 7036 7037 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7038 unsigned VF) { 7039 Type *ValTy = getMemInstValueType(I); 7040 Type *VectorTy = ToVectorTy(ValTy, VF); 7041 unsigned Alignment = getMemInstAlignment(I); 7042 Value *Ptr = getPointerOperand(I); 7043 unsigned AS = getMemInstAddressSpace(I); 7044 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 7045 7046 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7047 "Stride should be 1 or -1 for consecutive memory access"); 7048 unsigned Cost = 0; 7049 if (Legal->isMaskRequired(I)) 7050 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 7051 else 7052 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 7053 7054 bool Reverse = ConsecutiveStride < 0; 7055 if (Reverse) 7056 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7057 return Cost; 7058 } 7059 7060 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7061 unsigned VF) { 7062 LoadInst *LI = cast<LoadInst>(I); 7063 Type *ValTy = LI->getType(); 7064 Type *VectorTy = ToVectorTy(ValTy, VF); 7065 unsigned Alignment = LI->getAlignment(); 7066 unsigned AS = LI->getPointerAddressSpace(); 7067 7068 return TTI.getAddressComputationCost(ValTy) + 7069 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 7070 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7071 } 7072 7073 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7074 unsigned VF) { 7075 Type *ValTy = getMemInstValueType(I); 7076 Type *VectorTy = ToVectorTy(ValTy, VF); 7077 unsigned Alignment = getMemInstAlignment(I); 7078 Value *Ptr = getPointerOperand(I); 7079 7080 return TTI.getAddressComputationCost(VectorTy) + 7081 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 7082 Legal->isMaskRequired(I), Alignment); 7083 } 7084 7085 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7086 unsigned VF) { 7087 Type *ValTy = getMemInstValueType(I); 7088 Type *VectorTy = ToVectorTy(ValTy, VF); 7089 unsigned AS = getMemInstAddressSpace(I); 7090 7091 auto Group = Legal->getInterleavedAccessGroup(I); 7092 assert(Group && "Fail to get an interleaved access group."); 7093 7094 unsigned InterleaveFactor = Group->getFactor(); 7095 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7096 7097 // Holds the indices of existing members in an interleaved load group. 7098 // An interleaved store group doesn't need this as it doesn't allow gaps. 7099 SmallVector<unsigned, 4> Indices; 7100 if (isa<LoadInst>(I)) { 7101 for (unsigned i = 0; i < InterleaveFactor; i++) 7102 if (Group->getMember(i)) 7103 Indices.push_back(i); 7104 } 7105 7106 // Calculate the cost of the whole interleaved group. 7107 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 7108 Group->getFactor(), Indices, 7109 Group->getAlignment(), AS); 7110 7111 if (Group->isReverse()) 7112 Cost += Group->getNumMembers() * 7113 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7114 return Cost; 7115 } 7116 7117 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7118 unsigned VF) { 7119 // Calculate scalar cost only. Vectorization cost should be ready at this 7120 // moment. 7121 if (VF == 1) { 7122 Type *ValTy = getMemInstValueType(I); 7123 unsigned Alignment = getMemInstAlignment(I); 7124 unsigned AS = getMemInstAddressSpace(I); 7125 7126 return TTI.getAddressComputationCost(ValTy) + 7127 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 7128 } 7129 return getWideningCost(I, VF); 7130 } 7131 7132 LoopVectorizationCostModel::VectorizationCostTy 7133 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 7134 // If we know that this instruction will remain uniform, check the cost of 7135 // the scalar version. 7136 if (isUniformAfterVectorization(I, VF)) 7137 VF = 1; 7138 7139 if (VF > 1 && isProfitableToScalarize(I, VF)) 7140 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7141 7142 // Forced scalars do not have any scalarization overhead. 7143 if (VF > 1 && ForcedScalars.count(VF) && 7144 ForcedScalars.find(VF)->second.count(I)) 7145 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 7146 7147 Type *VectorTy; 7148 unsigned C = getInstructionCost(I, VF, VectorTy); 7149 7150 bool TypeNotScalarized = 7151 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 7152 return VectorizationCostTy(C, TypeNotScalarized); 7153 } 7154 7155 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 7156 if (VF == 1) 7157 return; 7158 for (BasicBlock *BB : TheLoop->blocks()) { 7159 // For each instruction in the old loop. 7160 for (Instruction &I : *BB) { 7161 Value *Ptr = getPointerOperand(&I); 7162 if (!Ptr) 7163 continue; 7164 7165 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 7166 // Scalar load + broadcast 7167 unsigned Cost = getUniformMemOpCost(&I, VF); 7168 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7169 continue; 7170 } 7171 7172 // We assume that widening is the best solution when possible. 7173 if (Legal->memoryInstructionCanBeWidened(&I, VF)) { 7174 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 7175 setWideningDecision(&I, VF, CM_Widen, Cost); 7176 continue; 7177 } 7178 7179 // Choose between Interleaving, Gather/Scatter or Scalarization. 7180 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 7181 unsigned NumAccesses = 1; 7182 if (Legal->isAccessInterleaved(&I)) { 7183 auto Group = Legal->getInterleavedAccessGroup(&I); 7184 assert(Group && "Fail to get an interleaved access group."); 7185 7186 // Make one decision for the whole group. 7187 if (getWideningDecision(&I, VF) != CM_Unknown) 7188 continue; 7189 7190 NumAccesses = Group->getNumMembers(); 7191 InterleaveCost = getInterleaveGroupCost(&I, VF); 7192 } 7193 7194 unsigned GatherScatterCost = 7195 Legal->isLegalGatherOrScatter(&I) 7196 ? getGatherScatterCost(&I, VF) * NumAccesses 7197 : std::numeric_limits<unsigned>::max(); 7198 7199 unsigned ScalarizationCost = 7200 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7201 7202 // Choose better solution for the current VF, 7203 // write down this decision and use it during vectorization. 7204 unsigned Cost; 7205 InstWidening Decision; 7206 if (InterleaveCost <= GatherScatterCost && 7207 InterleaveCost < ScalarizationCost) { 7208 Decision = CM_Interleave; 7209 Cost = InterleaveCost; 7210 } else if (GatherScatterCost < ScalarizationCost) { 7211 Decision = CM_GatherScatter; 7212 Cost = GatherScatterCost; 7213 } else { 7214 Decision = CM_Scalarize; 7215 Cost = ScalarizationCost; 7216 } 7217 // If the instructions belongs to an interleave group, the whole group 7218 // receives the same decision. The whole group receives the cost, but 7219 // the cost will actually be assigned to one instruction. 7220 if (auto Group = Legal->getInterleavedAccessGroup(&I)) 7221 setWideningDecision(Group, VF, Decision, Cost); 7222 else 7223 setWideningDecision(&I, VF, Decision, Cost); 7224 } 7225 } 7226 7227 // Make sure that any load of address and any other address computation 7228 // remains scalar unless there is gather/scatter support. This avoids 7229 // inevitable extracts into address registers, and also has the benefit of 7230 // activating LSR more, since that pass can't optimize vectorized 7231 // addresses. 7232 if (TTI.prefersVectorizedAddressing()) 7233 return; 7234 7235 // Start with all scalar pointer uses. 7236 SmallPtrSet<Instruction *, 8> AddrDefs; 7237 for (BasicBlock *BB : TheLoop->blocks()) 7238 for (Instruction &I : *BB) { 7239 Instruction *PtrDef = 7240 dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 7241 if (PtrDef && TheLoop->contains(PtrDef) && 7242 getWideningDecision(&I, VF) != CM_GatherScatter) 7243 AddrDefs.insert(PtrDef); 7244 } 7245 7246 // Add all instructions used to generate the addresses. 7247 SmallVector<Instruction *, 4> Worklist; 7248 for (auto *I : AddrDefs) 7249 Worklist.push_back(I); 7250 while (!Worklist.empty()) { 7251 Instruction *I = Worklist.pop_back_val(); 7252 for (auto &Op : I->operands()) 7253 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7254 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7255 AddrDefs.insert(InstOp).second) 7256 Worklist.push_back(InstOp); 7257 } 7258 7259 for (auto *I : AddrDefs) { 7260 if (isa<LoadInst>(I)) { 7261 // Setting the desired widening decision should ideally be handled in 7262 // by cost functions, but since this involves the task of finding out 7263 // if the loaded register is involved in an address computation, it is 7264 // instead changed here when we know this is the case. 7265 if (getWideningDecision(I, VF) == CM_Widen) 7266 // Scalarize a widened load of address. 7267 setWideningDecision(I, VF, CM_Scalarize, 7268 (VF * getMemoryInstructionCost(I, 1))); 7269 else if (auto Group = Legal->getInterleavedAccessGroup(I)) { 7270 // Scalarize an interleave group of address loads. 7271 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7272 if (Instruction *Member = Group->getMember(I)) 7273 setWideningDecision(Member, VF, CM_Scalarize, 7274 (VF * getMemoryInstructionCost(Member, 1))); 7275 } 7276 } 7277 } else 7278 // Make sure I gets scalarized and a cost estimate without 7279 // scalarization overhead. 7280 ForcedScalars[VF].insert(I); 7281 } 7282 } 7283 7284 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7285 unsigned VF, 7286 Type *&VectorTy) { 7287 Type *RetTy = I->getType(); 7288 if (canTruncateToMinimalBitwidth(I, VF)) 7289 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7290 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 7291 auto SE = PSE.getSE(); 7292 7293 // TODO: We need to estimate the cost of intrinsic calls. 7294 switch (I->getOpcode()) { 7295 case Instruction::GetElementPtr: 7296 // We mark this instruction as zero-cost because the cost of GEPs in 7297 // vectorized code depends on whether the corresponding memory instruction 7298 // is scalarized or not. Therefore, we handle GEPs with the memory 7299 // instruction cost. 7300 return 0; 7301 case Instruction::Br: { 7302 // In cases of scalarized and predicated instructions, there will be VF 7303 // predicated blocks in the vectorized loop. Each branch around these 7304 // blocks requires also an extract of its vector compare i1 element. 7305 bool ScalarPredicatedBB = false; 7306 BranchInst *BI = cast<BranchInst>(I); 7307 if (VF > 1 && BI->isConditional() && 7308 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7309 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7310 ScalarPredicatedBB = true; 7311 7312 if (ScalarPredicatedBB) { 7313 // Return cost for branches around scalarized and predicated blocks. 7314 Type *Vec_i1Ty = 7315 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7316 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 7317 (TTI.getCFInstrCost(Instruction::Br) * VF)); 7318 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 7319 // The back-edge branch will remain, as will all scalar branches. 7320 return TTI.getCFInstrCost(Instruction::Br); 7321 else 7322 // This branch will be eliminated by if-conversion. 7323 return 0; 7324 // Note: We currently assume zero cost for an unconditional branch inside 7325 // a predicated block since it will become a fall-through, although we 7326 // may decide in the future to call TTI for all branches. 7327 } 7328 case Instruction::PHI: { 7329 auto *Phi = cast<PHINode>(I); 7330 7331 // First-order recurrences are replaced by vector shuffles inside the loop. 7332 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 7333 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 7334 VectorTy, VF - 1, VectorTy); 7335 7336 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7337 // converted into select instructions. We require N - 1 selects per phi 7338 // node, where N is the number of incoming values. 7339 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 7340 return (Phi->getNumIncomingValues() - 1) * 7341 TTI.getCmpSelInstrCost( 7342 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7343 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 7344 7345 return TTI.getCFInstrCost(Instruction::PHI); 7346 } 7347 case Instruction::UDiv: 7348 case Instruction::SDiv: 7349 case Instruction::URem: 7350 case Instruction::SRem: 7351 // If we have a predicated instruction, it may not be executed for each 7352 // vector lane. Get the scalarization cost and scale this amount by the 7353 // probability of executing the predicated block. If the instruction is not 7354 // predicated, we fall through to the next case. 7355 if (VF > 1 && Legal->isScalarWithPredication(I)) { 7356 unsigned Cost = 0; 7357 7358 // These instructions have a non-void type, so account for the phi nodes 7359 // that we will create. This cost is likely to be zero. The phi node 7360 // cost, if any, should be scaled by the block probability because it 7361 // models a copy at the end of each predicated block. 7362 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 7363 7364 // The cost of the non-predicated instruction. 7365 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 7366 7367 // The cost of insertelement and extractelement instructions needed for 7368 // scalarization. 7369 Cost += getScalarizationOverhead(I, VF, TTI); 7370 7371 // Scale the cost by the probability of executing the predicated blocks. 7372 // This assumes the predicated block for each vector lane is equally 7373 // likely. 7374 return Cost / getReciprocalPredBlockProb(); 7375 } 7376 LLVM_FALLTHROUGH; 7377 case Instruction::Add: 7378 case Instruction::FAdd: 7379 case Instruction::Sub: 7380 case Instruction::FSub: 7381 case Instruction::Mul: 7382 case Instruction::FMul: 7383 case Instruction::FDiv: 7384 case Instruction::FRem: 7385 case Instruction::Shl: 7386 case Instruction::LShr: 7387 case Instruction::AShr: 7388 case Instruction::And: 7389 case Instruction::Or: 7390 case Instruction::Xor: { 7391 // Since we will replace the stride by 1 the multiplication should go away. 7392 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7393 return 0; 7394 // Certain instructions can be cheaper to vectorize if they have a constant 7395 // second vector operand. One example of this are shifts on x86. 7396 TargetTransformInfo::OperandValueKind Op1VK = 7397 TargetTransformInfo::OK_AnyValue; 7398 TargetTransformInfo::OperandValueKind Op2VK = 7399 TargetTransformInfo::OK_AnyValue; 7400 TargetTransformInfo::OperandValueProperties Op1VP = 7401 TargetTransformInfo::OP_None; 7402 TargetTransformInfo::OperandValueProperties Op2VP = 7403 TargetTransformInfo::OP_None; 7404 Value *Op2 = I->getOperand(1); 7405 7406 // Check for a splat or for a non uniform vector of constants. 7407 if (isa<ConstantInt>(Op2)) { 7408 ConstantInt *CInt = cast<ConstantInt>(Op2); 7409 if (CInt && CInt->getValue().isPowerOf2()) 7410 Op2VP = TargetTransformInfo::OP_PowerOf2; 7411 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7412 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 7413 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 7414 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 7415 if (SplatValue) { 7416 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 7417 if (CInt && CInt->getValue().isPowerOf2()) 7418 Op2VP = TargetTransformInfo::OP_PowerOf2; 7419 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7420 } 7421 } else if (Legal->isUniform(Op2)) { 7422 Op2VK = TargetTransformInfo::OK_UniformValue; 7423 } 7424 SmallVector<const Value *, 4> Operands(I->operand_values()); 7425 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7426 return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 7427 Op2VK, Op1VP, Op2VP, Operands); 7428 } 7429 case Instruction::Select: { 7430 SelectInst *SI = cast<SelectInst>(I); 7431 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7432 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7433 Type *CondTy = SI->getCondition()->getType(); 7434 if (!ScalarCond) 7435 CondTy = VectorType::get(CondTy, VF); 7436 7437 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 7438 } 7439 case Instruction::ICmp: 7440 case Instruction::FCmp: { 7441 Type *ValTy = I->getOperand(0)->getType(); 7442 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7443 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7444 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7445 VectorTy = ToVectorTy(ValTy, VF); 7446 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 7447 } 7448 case Instruction::Store: 7449 case Instruction::Load: { 7450 unsigned Width = VF; 7451 if (Width > 1) { 7452 InstWidening Decision = getWideningDecision(I, Width); 7453 assert(Decision != CM_Unknown && 7454 "CM decision should be taken at this point"); 7455 if (Decision == CM_Scalarize) 7456 Width = 1; 7457 } 7458 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7459 return getMemoryInstructionCost(I, VF); 7460 } 7461 case Instruction::ZExt: 7462 case Instruction::SExt: 7463 case Instruction::FPToUI: 7464 case Instruction::FPToSI: 7465 case Instruction::FPExt: 7466 case Instruction::PtrToInt: 7467 case Instruction::IntToPtr: 7468 case Instruction::SIToFP: 7469 case Instruction::UIToFP: 7470 case Instruction::Trunc: 7471 case Instruction::FPTrunc: 7472 case Instruction::BitCast: { 7473 // We optimize the truncation of induction variables having constant 7474 // integer steps. The cost of these truncations is the same as the scalar 7475 // operation. 7476 if (isOptimizableIVTruncate(I, VF)) { 7477 auto *Trunc = cast<TruncInst>(I); 7478 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7479 Trunc->getSrcTy(), Trunc); 7480 } 7481 7482 Type *SrcScalarTy = I->getOperand(0)->getType(); 7483 Type *SrcVecTy = 7484 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7485 if (canTruncateToMinimalBitwidth(I, VF)) { 7486 // This cast is going to be shrunk. This may remove the cast or it might 7487 // turn it into slightly different cast. For example, if MinBW == 16, 7488 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7489 // 7490 // Calculate the modified src and dest types. 7491 Type *MinVecTy = VectorTy; 7492 if (I->getOpcode() == Instruction::Trunc) { 7493 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7494 VectorTy = 7495 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7496 } else if (I->getOpcode() == Instruction::ZExt || 7497 I->getOpcode() == Instruction::SExt) { 7498 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7499 VectorTy = 7500 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7501 } 7502 } 7503 7504 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7505 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 7506 } 7507 case Instruction::Call: { 7508 bool NeedToScalarize; 7509 CallInst *CI = cast<CallInst>(I); 7510 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7511 if (getVectorIntrinsicIDForCall(CI, TLI)) 7512 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7513 return CallCost; 7514 } 7515 default: 7516 // The cost of executing VF copies of the scalar instruction. This opcode 7517 // is unknown. Assume that it is the same as 'mul'. 7518 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7519 getScalarizationOverhead(I, VF, TTI); 7520 } // end of switch. 7521 } 7522 7523 char LoopVectorize::ID = 0; 7524 7525 static const char lv_name[] = "Loop Vectorization"; 7526 7527 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7528 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7529 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7530 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7531 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7532 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7533 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7534 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7535 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7536 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7537 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7538 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7539 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7540 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7541 7542 namespace llvm { 7543 7544 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7545 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7546 } 7547 7548 } // end namespace llvm 7549 7550 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7551 // Check if the pointer operand of a load or store instruction is 7552 // consecutive. 7553 if (auto *Ptr = getPointerOperand(Inst)) 7554 return Legal->isConsecutivePtr(Ptr); 7555 return false; 7556 } 7557 7558 void LoopVectorizationCostModel::collectValuesToIgnore() { 7559 // Ignore ephemeral values. 7560 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7561 7562 // Ignore type-promoting instructions we identified during reduction 7563 // detection. 7564 for (auto &Reduction : *Legal->getReductionVars()) { 7565 RecurrenceDescriptor &RedDes = Reduction.second; 7566 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7567 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7568 } 7569 } 7570 7571 LoopVectorizationCostModel::VectorizationFactor 7572 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 7573 // Width 1 means no vectorize, cost 0 means uncomputed cost. 7574 const LoopVectorizationCostModel::VectorizationFactor NoVectorization = {1U, 7575 0U}; 7576 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 7577 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 7578 return NoVectorization; 7579 7580 if (UserVF) { 7581 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7582 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 7583 // Collect the instructions (and their associated costs) that will be more 7584 // profitable to scalarize. 7585 CM.selectUserVectorizationFactor(UserVF); 7586 buildVPlans(UserVF, UserVF); 7587 DEBUG(printPlans(dbgs())); 7588 return {UserVF, 0}; 7589 } 7590 7591 unsigned MaxVF = MaybeMaxVF.getValue(); 7592 assert(MaxVF != 0 && "MaxVF is zero."); 7593 7594 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 7595 // Collect Uniform and Scalar instructions after vectorization with VF. 7596 CM.collectUniformsAndScalars(VF); 7597 7598 // Collect the instructions (and their associated costs) that will be more 7599 // profitable to scalarize. 7600 if (VF > 1) 7601 CM.collectInstsToScalarize(VF); 7602 } 7603 7604 buildVPlans(1, MaxVF); 7605 DEBUG(printPlans(dbgs())); 7606 if (MaxVF == 1) 7607 return NoVectorization; 7608 7609 // Select the optimal vectorization factor. 7610 return CM.selectVectorizationFactor(MaxVF); 7611 } 7612 7613 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 7614 DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF << '\n'); 7615 BestVF = VF; 7616 BestUF = UF; 7617 7618 for (auto *VPlanIter = VPlans.begin(); VPlanIter != VPlans.end();) { 7619 VPlan *Plan = *VPlanIter; 7620 if (Plan->hasVF(VF)) 7621 ++VPlanIter; 7622 else { 7623 VPlanIter = VPlans.erase(VPlanIter); 7624 delete Plan; 7625 } 7626 } 7627 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7628 } 7629 7630 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7631 DominatorTree *DT) { 7632 // Perform the actual loop transformation. 7633 7634 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7635 VPTransformState State{ 7636 BestVF, BestUF, LI, DT, ILV.Builder, ILV.VectorLoopValueMap, &ILV}; 7637 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7638 7639 //===------------------------------------------------===// 7640 // 7641 // Notice: any optimization or new instruction that go 7642 // into the code below should also be implemented in 7643 // the cost-model. 7644 // 7645 //===------------------------------------------------===// 7646 7647 // 2. Copy and widen instructions from the old loop into the new loop. 7648 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7649 VPlan *Plan = *VPlans.begin(); 7650 Plan->execute(&State); 7651 7652 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7653 // predication, updating analyses. 7654 ILV.fixVectorizedLoop(); 7655 } 7656 7657 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7658 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7659 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7660 7661 // We create new control-flow for the vectorized loop, so the original 7662 // condition will be dead after vectorization if it's only used by the 7663 // branch. 7664 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7665 if (Cmp && Cmp->hasOneUse()) 7666 DeadInstructions.insert(Cmp); 7667 7668 // We create new "steps" for induction variable updates to which the original 7669 // induction variables map. An original update instruction will be dead if 7670 // all its users except the induction variable are dead. 7671 for (auto &Induction : *Legal->getInductionVars()) { 7672 PHINode *Ind = Induction.first; 7673 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7674 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7675 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7676 })) 7677 DeadInstructions.insert(IndUpdate); 7678 } 7679 } 7680 7681 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7682 7683 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7684 7685 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7686 Instruction::BinaryOps BinOp) { 7687 // When unrolling and the VF is 1, we only need to add a simple scalar. 7688 Type *Ty = Val->getType(); 7689 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7690 7691 if (Ty->isFloatingPointTy()) { 7692 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7693 7694 // Floating point operations had to be 'fast' to enable the unrolling. 7695 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7696 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7697 } 7698 Constant *C = ConstantInt::get(Ty, StartIdx); 7699 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7700 } 7701 7702 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7703 SmallVector<Metadata *, 4> MDs; 7704 // Reserve first location for self reference to the LoopID metadata node. 7705 MDs.push_back(nullptr); 7706 bool IsUnrollMetadata = false; 7707 MDNode *LoopID = L->getLoopID(); 7708 if (LoopID) { 7709 // First find existing loop unrolling disable metadata. 7710 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7711 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7712 if (MD) { 7713 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7714 IsUnrollMetadata = 7715 S && S->getString().startswith("llvm.loop.unroll.disable"); 7716 } 7717 MDs.push_back(LoopID->getOperand(i)); 7718 } 7719 } 7720 7721 if (!IsUnrollMetadata) { 7722 // Add runtime unroll disable metadata. 7723 LLVMContext &Context = L->getHeader()->getContext(); 7724 SmallVector<Metadata *, 1> DisableOperands; 7725 DisableOperands.push_back( 7726 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7727 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7728 MDs.push_back(DisableNode); 7729 MDNode *NewLoopID = MDNode::get(Context, MDs); 7730 // Set operand 0 to refer to the loop id itself. 7731 NewLoopID->replaceOperandWith(0, NewLoopID); 7732 L->setLoopID(NewLoopID); 7733 } 7734 } 7735 7736 namespace { 7737 7738 /// VPWidenRecipe is a recipe for producing a copy of vector type for each 7739 /// Instruction in its ingredients independently, in order. This recipe covers 7740 /// most of the traditional vectorization cases where each ingredient transforms 7741 /// into a vectorized version of itself. 7742 class VPWidenRecipe : public VPRecipeBase { 7743 private: 7744 /// Hold the ingredients by pointing to their original BasicBlock location. 7745 BasicBlock::iterator Begin; 7746 BasicBlock::iterator End; 7747 7748 public: 7749 VPWidenRecipe(Instruction *I) : VPRecipeBase(VPWidenSC) { 7750 End = I->getIterator(); 7751 Begin = End++; 7752 } 7753 7754 ~VPWidenRecipe() override = default; 7755 7756 /// Method to support type inquiry through isa, cast, and dyn_cast. 7757 static inline bool classof(const VPRecipeBase *V) { 7758 return V->getVPRecipeID() == VPRecipeBase::VPWidenSC; 7759 } 7760 7761 /// Produce widened copies of all Ingredients. 7762 void execute(VPTransformState &State) override { 7763 for (auto &Instr : make_range(Begin, End)) 7764 State.ILV->widenInstruction(Instr); 7765 } 7766 7767 /// Augment the recipe to include Instr, if it lies at its End. 7768 bool appendInstruction(Instruction *Instr) { 7769 if (End != Instr->getIterator()) 7770 return false; 7771 End++; 7772 return true; 7773 } 7774 7775 /// Print the recipe. 7776 void print(raw_ostream &O, const Twine &Indent) const override { 7777 O << " +\n" << Indent << "\"WIDEN\\l\""; 7778 for (auto &Instr : make_range(Begin, End)) 7779 O << " +\n" << Indent << "\" " << VPlanIngredient(&Instr) << "\\l\""; 7780 } 7781 }; 7782 7783 /// A recipe for handling phi nodes of integer and floating-point inductions, 7784 /// producing their vector and scalar values. 7785 class VPWidenIntOrFpInductionRecipe : public VPRecipeBase { 7786 private: 7787 PHINode *IV; 7788 TruncInst *Trunc; 7789 7790 public: 7791 VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc = nullptr) 7792 : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {} 7793 ~VPWidenIntOrFpInductionRecipe() override = default; 7794 7795 /// Method to support type inquiry through isa, cast, and dyn_cast. 7796 static inline bool classof(const VPRecipeBase *V) { 7797 return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC; 7798 } 7799 7800 /// Generate the vectorized and scalarized versions of the phi node as 7801 /// needed by their users. 7802 void execute(VPTransformState &State) override { 7803 assert(!State.Instance && "Int or FP induction being replicated."); 7804 State.ILV->widenIntOrFpInduction(IV, Trunc); 7805 } 7806 7807 /// Print the recipe. 7808 void print(raw_ostream &O, const Twine &Indent) const override { 7809 O << " +\n" << Indent << "\"WIDEN-INDUCTION"; 7810 if (Trunc) { 7811 O << "\\l\""; 7812 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 7813 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc) << "\\l\""; 7814 } else 7815 O << " " << VPlanIngredient(IV) << "\\l\""; 7816 } 7817 }; 7818 7819 /// A recipe for handling all phi nodes except for integer and FP inductions. 7820 class VPWidenPHIRecipe : public VPRecipeBase { 7821 private: 7822 PHINode *Phi; 7823 7824 public: 7825 VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {} 7826 ~VPWidenPHIRecipe() override = default; 7827 7828 /// Method to support type inquiry through isa, cast, and dyn_cast. 7829 static inline bool classof(const VPRecipeBase *V) { 7830 return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC; 7831 } 7832 7833 /// Generate the phi/select nodes. 7834 void execute(VPTransformState &State) override { 7835 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7836 } 7837 7838 /// Print the recipe. 7839 void print(raw_ostream &O, const Twine &Indent) const override { 7840 O << " +\n" << Indent << "\"WIDEN-PHI " << VPlanIngredient(Phi) << "\\l\""; 7841 } 7842 }; 7843 7844 /// VPInterleaveRecipe is a recipe for transforming an interleave group of load 7845 /// or stores into one wide load/store and shuffles. 7846 class VPInterleaveRecipe : public VPRecipeBase { 7847 private: 7848 const InterleaveGroup *IG; 7849 7850 public: 7851 VPInterleaveRecipe(const InterleaveGroup *IG) 7852 : VPRecipeBase(VPInterleaveSC), IG(IG) {} 7853 ~VPInterleaveRecipe() override = default; 7854 7855 /// Method to support type inquiry through isa, cast, and dyn_cast. 7856 static inline bool classof(const VPRecipeBase *V) { 7857 return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC; 7858 } 7859 7860 /// Generate the wide load or store, and shuffles. 7861 void execute(VPTransformState &State) override { 7862 assert(!State.Instance && "Interleave group being replicated."); 7863 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 7864 } 7865 7866 /// Print the recipe. 7867 void print(raw_ostream &O, const Twine &Indent) const override; 7868 7869 const InterleaveGroup *getInterleaveGroup() { return IG; } 7870 }; 7871 7872 /// VPReplicateRecipe replicates a given instruction producing multiple scalar 7873 /// copies of the original scalar type, one per lane, instead of producing a 7874 /// single copy of widened type for all lanes. If the instruction is known to be 7875 /// uniform only one copy, per lane zero, will be generated. 7876 class VPReplicateRecipe : public VPRecipeBase { 7877 private: 7878 /// The instruction being replicated. 7879 Instruction *Ingredient; 7880 7881 /// Indicator if only a single replica per lane is needed. 7882 bool IsUniform; 7883 7884 /// Indicator if the replicas are also predicated. 7885 bool IsPredicated; 7886 7887 /// Indicator if the scalar values should also be packed into a vector. 7888 bool AlsoPack; 7889 7890 public: 7891 VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated = false) 7892 : VPRecipeBase(VPReplicateSC), Ingredient(I), IsUniform(IsUniform), 7893 IsPredicated(IsPredicated) { 7894 // Retain the previous behavior of predicateInstructions(), where an 7895 // insert-element of a predicated instruction got hoisted into the 7896 // predicated basic block iff it was its only user. This is achieved by 7897 // having predicated instructions also pack their values into a vector by 7898 // default unless they have a replicated user which uses their scalar value. 7899 AlsoPack = IsPredicated && !I->use_empty(); 7900 } 7901 7902 ~VPReplicateRecipe() override = default; 7903 7904 /// Method to support type inquiry through isa, cast, and dyn_cast. 7905 static inline bool classof(const VPRecipeBase *V) { 7906 return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC; 7907 } 7908 7909 /// Generate replicas of the desired Ingredient. Replicas will be generated 7910 /// for all parts and lanes unless a specific part and lane are specified in 7911 /// the \p State. 7912 void execute(VPTransformState &State) override; 7913 7914 void setAlsoPack(bool Pack) { AlsoPack = Pack; } 7915 7916 /// Print the recipe. 7917 void print(raw_ostream &O, const Twine &Indent) const override { 7918 O << " +\n" 7919 << Indent << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") 7920 << VPlanIngredient(Ingredient); 7921 if (AlsoPack) 7922 O << " (S->V)"; 7923 O << "\\l\""; 7924 } 7925 }; 7926 7927 /// A recipe for generating conditional branches on the bits of a mask. 7928 class VPBranchOnMaskRecipe : public VPRecipeBase { 7929 private: 7930 /// The input IR basic block used to obtain the mask providing the condition 7931 /// bits for the branch. 7932 BasicBlock *MaskedBasicBlock; 7933 7934 public: 7935 VPBranchOnMaskRecipe(BasicBlock *BB) 7936 : VPRecipeBase(VPBranchOnMaskSC), MaskedBasicBlock(BB) {} 7937 7938 /// Method to support type inquiry through isa, cast, and dyn_cast. 7939 static inline bool classof(const VPRecipeBase *V) { 7940 return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC; 7941 } 7942 7943 /// Generate the extraction of the appropriate bit from the block mask and the 7944 /// conditional branch. 7945 void execute(VPTransformState &State) override; 7946 7947 /// Print the recipe. 7948 void print(raw_ostream &O, const Twine &Indent) const override { 7949 O << " +\n" 7950 << Indent << "\"BRANCH-ON-MASK-OF " << MaskedBasicBlock->getName() 7951 << "\\l\""; 7952 } 7953 }; 7954 7955 /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when 7956 /// control converges back from a Branch-on-Mask. The phi nodes are needed in 7957 /// order to merge values that are set under such a branch and feed their uses. 7958 /// The phi nodes can be scalar or vector depending on the users of the value. 7959 /// This recipe works in concert with VPBranchOnMaskRecipe. 7960 class VPPredInstPHIRecipe : public VPRecipeBase { 7961 private: 7962 Instruction *PredInst; 7963 7964 public: 7965 /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi 7966 /// nodes after merging back from a Branch-on-Mask. 7967 VPPredInstPHIRecipe(Instruction *PredInst) 7968 : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {} 7969 ~VPPredInstPHIRecipe() override = default; 7970 7971 /// Method to support type inquiry through isa, cast, and dyn_cast. 7972 static inline bool classof(const VPRecipeBase *V) { 7973 return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC; 7974 } 7975 7976 /// Generates phi nodes for live-outs as needed to retain SSA form. 7977 void execute(VPTransformState &State) override; 7978 7979 /// Print the recipe. 7980 void print(raw_ostream &O, const Twine &Indent) const override { 7981 O << " +\n" 7982 << Indent << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst) 7983 << "\\l\""; 7984 } 7985 }; 7986 7987 } // end anonymous namespace 7988 7989 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7990 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 7991 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 7992 bool PredicateAtRangeStart = Predicate(Range.Start); 7993 7994 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 7995 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7996 Range.End = TmpVF; 7997 break; 7998 } 7999 8000 return PredicateAtRangeStart; 8001 } 8002 8003 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8004 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8005 /// of VF's starting at a given VF and extending it as much as possible. Each 8006 /// vectorization decision can potentially shorten this sub-range during 8007 /// buildVPlan(). 8008 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 8009 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 8010 VFRange SubRange = {VF, MaxVF + 1}; 8011 VPlan *Plan = buildVPlan(SubRange); 8012 VPlans.push_back(Plan); 8013 VF = SubRange.End; 8014 } 8015 } 8016 8017 VPInterleaveRecipe * 8018 LoopVectorizationPlanner::tryToInterleaveMemory(Instruction *I, 8019 VFRange &Range) { 8020 const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(I); 8021 if (!IG) 8022 return nullptr; 8023 8024 // Now check if IG is relevant for VF's in the given range. 8025 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 8026 return [=](unsigned VF) -> bool { 8027 return (VF >= 2 && // Query is illegal for VF == 1 8028 CM.getWideningDecision(I, VF) == 8029 LoopVectorizationCostModel::CM_Interleave); 8030 }; 8031 }; 8032 if (!getDecisionAndClampRange(isIGMember(I), Range)) 8033 return nullptr; 8034 8035 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 8036 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 8037 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 8038 assert(I == IG->getInsertPos() && 8039 "Generating a recipe for an adjunct member of an interleave group"); 8040 8041 return new VPInterleaveRecipe(IG); 8042 } 8043 8044 VPWidenIntOrFpInductionRecipe * 8045 LoopVectorizationPlanner::tryToOptimizeInduction(Instruction *I, 8046 VFRange &Range) { 8047 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 8048 // Check if this is an integer or fp induction. If so, build the recipe that 8049 // produces its scalar and vector values. 8050 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 8051 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8052 II.getKind() == InductionDescriptor::IK_FpInduction) 8053 return new VPWidenIntOrFpInductionRecipe(Phi); 8054 8055 return nullptr; 8056 } 8057 8058 // Optimize the special case where the source is a constant integer 8059 // induction variable. Notice that we can only optimize the 'trunc' case 8060 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8061 // (c) other casts depend on pointer size. 8062 8063 // Determine whether \p K is a truncation based on an induction variable that 8064 // can be optimized. 8065 auto isOptimizableIVTruncate = 8066 [&](Instruction *K) -> std::function<bool(unsigned)> { 8067 return 8068 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 8069 }; 8070 8071 if (isa<TruncInst>(I) && 8072 getDecisionAndClampRange(isOptimizableIVTruncate(I), Range)) 8073 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8074 cast<TruncInst>(I)); 8075 return nullptr; 8076 } 8077 8078 bool LoopVectorizationPlanner::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 8079 VFRange &Range) { 8080 if (Legal->isScalarWithPredication(I)) 8081 return false; 8082 8083 auto IsVectorizableOpcode = [](unsigned Opcode) { 8084 switch (Opcode) { 8085 case Instruction::Add: 8086 case Instruction::And: 8087 case Instruction::AShr: 8088 case Instruction::BitCast: 8089 case Instruction::Br: 8090 case Instruction::Call: 8091 case Instruction::FAdd: 8092 case Instruction::FCmp: 8093 case Instruction::FDiv: 8094 case Instruction::FMul: 8095 case Instruction::FPExt: 8096 case Instruction::FPToSI: 8097 case Instruction::FPToUI: 8098 case Instruction::FPTrunc: 8099 case Instruction::FRem: 8100 case Instruction::FSub: 8101 case Instruction::GetElementPtr: 8102 case Instruction::ICmp: 8103 case Instruction::IntToPtr: 8104 case Instruction::Load: 8105 case Instruction::LShr: 8106 case Instruction::Mul: 8107 case Instruction::Or: 8108 case Instruction::PHI: 8109 case Instruction::PtrToInt: 8110 case Instruction::SDiv: 8111 case Instruction::Select: 8112 case Instruction::SExt: 8113 case Instruction::Shl: 8114 case Instruction::SIToFP: 8115 case Instruction::SRem: 8116 case Instruction::Store: 8117 case Instruction::Sub: 8118 case Instruction::Trunc: 8119 case Instruction::UDiv: 8120 case Instruction::UIToFP: 8121 case Instruction::URem: 8122 case Instruction::Xor: 8123 case Instruction::ZExt: 8124 return true; 8125 } 8126 return false; 8127 }; 8128 8129 if (!IsVectorizableOpcode(I->getOpcode())) 8130 return false; 8131 8132 if (CallInst *CI = dyn_cast<CallInst>(I)) { 8133 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8134 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8135 ID == Intrinsic::lifetime_start)) 8136 return false; 8137 } 8138 8139 auto willWiden = [&](unsigned VF) -> bool { 8140 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 8141 CM.isProfitableToScalarize(I, VF))) 8142 return false; 8143 if (CallInst *CI = dyn_cast<CallInst>(I)) { 8144 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8145 // The following case may be scalarized depending on the VF. 8146 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8147 // version of the instruction. 8148 // Is it beneficial to perform intrinsic call compared to lib call? 8149 bool NeedToScalarize; 8150 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 8151 bool UseVectorIntrinsic = 8152 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 8153 return UseVectorIntrinsic || !NeedToScalarize; 8154 } 8155 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 8156 LoopVectorizationCostModel::InstWidening Decision = 8157 CM.getWideningDecision(I, VF); 8158 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8159 "CM decision should be taken at this point."); 8160 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 8161 "Interleave memory opportunity should be caught earlier."); 8162 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8163 } 8164 return true; 8165 }; 8166 8167 if (!getDecisionAndClampRange(willWiden, Range)) 8168 return false; 8169 8170 // Success: widen this instruction. We optimize the common case where 8171 // consecutive instructions can be represented by a single recipe. 8172 if (!VPBB->empty()) { 8173 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 8174 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 8175 return true; 8176 } 8177 8178 VPBB->appendRecipe(new VPWidenRecipe(I)); 8179 return true; 8180 } 8181 8182 VPBasicBlock *LoopVectorizationPlanner::handleReplication( 8183 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8184 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe) { 8185 bool IsUniform = getDecisionAndClampRange( 8186 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 8187 Range); 8188 8189 bool IsPredicated = Legal->isScalarWithPredication(I); 8190 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 8191 8192 // Find if I uses a predicated instruction. If so, it will use its scalar 8193 // value. Avoid hoisting the insert-element which packs the scalar value into 8194 // a vector value, as that happens iff all users use the vector value. 8195 for (auto &Op : I->operands()) 8196 if (auto *PredInst = dyn_cast<Instruction>(Op)) 8197 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 8198 PredInst2Recipe[PredInst]->setAlsoPack(false); 8199 8200 // Finalize the recipe for Instr, first if it is not predicated. 8201 if (!IsPredicated) { 8202 DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8203 VPBB->appendRecipe(Recipe); 8204 return VPBB; 8205 } 8206 DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8207 assert(VPBB->getSuccessors().empty() && 8208 "VPBB has successors when handling predicated replication."); 8209 // Record predicated instructions for above packing optimizations. 8210 PredInst2Recipe[I] = Recipe; 8211 VPBlockBase *Region = VPBB->setOneSuccessor(createReplicateRegion(I, Recipe)); 8212 return cast<VPBasicBlock>(Region->setOneSuccessor(new VPBasicBlock())); 8213 } 8214 8215 VPRegionBlock * 8216 LoopVectorizationPlanner::createReplicateRegion(Instruction *Instr, 8217 VPRecipeBase *PredRecipe) { 8218 // Instructions marked for predication are replicated and placed under an 8219 // if-then construct to prevent side-effects. 8220 8221 // Build the triangular if-then region. 8222 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8223 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8224 auto *BOMRecipe = new VPBranchOnMaskRecipe(Instr->getParent()); 8225 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8226 auto *PHIRecipe = 8227 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 8228 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8229 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8230 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8231 8232 // Note: first set Entry as region entry and then connect successors starting 8233 // from it in order, to propagate the "parent" of each VPBasicBlock. 8234 Entry->setTwoSuccessors(Pred, Exit); 8235 Pred->setOneSuccessor(Exit); 8236 8237 return Region; 8238 } 8239 8240 VPlan *LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 8241 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8242 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 8243 8244 // Collect instructions from the original loop that will become trivially dead 8245 // in the vectorized loop. We don't need to vectorize these instructions. For 8246 // example, original induction update instructions can become dead because we 8247 // separately emit induction "steps" when generating code for the new loop. 8248 // Similarly, we create a new latch condition when setting up the structure 8249 // of the new loop, so the old one can become dead. 8250 SmallPtrSet<Instruction *, 4> DeadInstructions; 8251 collectTriviallyDeadInstructions(DeadInstructions); 8252 8253 // Hold a mapping from predicated instructions to their recipes, in order to 8254 // fix their AlsoPack behavior if a user is determined to replicate and use a 8255 // scalar instead of vector value. 8256 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 8257 8258 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 8259 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 8260 VPlan *Plan = new VPlan(VPBB); 8261 8262 // Scan the body of the loop in a topological order to visit each basic block 8263 // after having visited its predecessor basic blocks. 8264 LoopBlocksDFS DFS(OrigLoop); 8265 DFS.perform(LI); 8266 8267 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8268 // Relevant instructions from basic block BB will be grouped into VPRecipe 8269 // ingredients and fill a new VPBasicBlock. 8270 unsigned VPBBsForBB = 0; 8271 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 8272 VPBB->setOneSuccessor(FirstVPBBForBB); 8273 VPBB = FirstVPBBForBB; 8274 8275 std::vector<Instruction *> Ingredients; 8276 8277 // Organize the ingredients to vectorize from current basic block in the 8278 // right order. 8279 for (Instruction &I : *BB) { 8280 Instruction *Instr = &I; 8281 8282 // First filter out irrelevant instructions, to ensure no recipes are 8283 // built for them. 8284 if (isa<BranchInst>(Instr) || isa<DbgInfoIntrinsic>(Instr) || 8285 DeadInstructions.count(Instr)) 8286 continue; 8287 8288 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 8289 // member of the IG, do not construct any Recipe for it. 8290 const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(Instr); 8291 if (IG && Instr != IG->getInsertPos() && 8292 Range.Start >= 2 && // Query is illegal for VF == 1 8293 CM.getWideningDecision(Instr, Range.Start) == 8294 LoopVectorizationCostModel::CM_Interleave) { 8295 if (SinkAfterInverse.count(Instr)) 8296 Ingredients.push_back(SinkAfterInverse.find(Instr)->second); 8297 continue; 8298 } 8299 8300 // Move instructions to handle first-order recurrences, step 1: avoid 8301 // handling this instruction until after we've handled the instruction it 8302 // should follow. 8303 auto SAIt = SinkAfter.find(Instr); 8304 if (SAIt != SinkAfter.end()) { 8305 DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" << *SAIt->second 8306 << " to vectorize a 1st order recurrence.\n"); 8307 SinkAfterInverse[SAIt->second] = Instr; 8308 continue; 8309 } 8310 8311 Ingredients.push_back(Instr); 8312 8313 // Move instructions to handle first-order recurrences, step 2: push the 8314 // instruction to be sunk at its insertion point. 8315 auto SAInvIt = SinkAfterInverse.find(Instr); 8316 if (SAInvIt != SinkAfterInverse.end()) 8317 Ingredients.push_back(SAInvIt->second); 8318 } 8319 8320 // Introduce each ingredient into VPlan. 8321 for (Instruction *Instr : Ingredients) { 8322 VPRecipeBase *Recipe = nullptr; 8323 8324 // Check if Instr should belong to an interleave memory recipe, or already 8325 // does. In the latter case Instr is irrelevant. 8326 if ((Recipe = tryToInterleaveMemory(Instr, Range))) { 8327 VPBB->appendRecipe(Recipe); 8328 continue; 8329 } 8330 8331 // Check if Instr should form some PHI recipe. 8332 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 8333 VPBB->appendRecipe(Recipe); 8334 continue; 8335 } 8336 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 8337 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 8338 continue; 8339 } 8340 8341 // Check if Instr is to be widened by a general VPWidenRecipe, after 8342 // having first checked for specific widening recipes that deal with 8343 // Interleave Groups, Inductions and Phi nodes. 8344 if (tryToWiden(Instr, VPBB, Range)) 8345 continue; 8346 8347 // Otherwise, if all widening options failed, Instruction is to be 8348 // replicated. This may create a successor for VPBB. 8349 VPBasicBlock *NextVPBB = 8350 handleReplication(Instr, Range, VPBB, PredInst2Recipe); 8351 if (NextVPBB != VPBB) { 8352 VPBB = NextVPBB; 8353 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8354 : ""); 8355 } 8356 } 8357 } 8358 8359 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 8360 // may also be empty, such as the last one VPBB, reflecting original 8361 // basic-blocks with no recipes. 8362 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 8363 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 8364 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 8365 PreEntry->disconnectSuccessor(Entry); 8366 delete PreEntry; 8367 8368 std::string PlanName; 8369 raw_string_ostream RSO(PlanName); 8370 unsigned VF = Range.Start; 8371 Plan->addVF(VF); 8372 RSO << "Initial VPlan for VF={" << VF; 8373 for (VF *= 2; VF < Range.End; VF *= 2) { 8374 Plan->addVF(VF); 8375 RSO << "," << VF; 8376 } 8377 RSO << "},UF>=1"; 8378 RSO.flush(); 8379 Plan->setName(PlanName); 8380 8381 return Plan; 8382 } 8383 8384 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 8385 O << " +\n" 8386 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 8387 IG->getInsertPos()->printAsOperand(O, false); 8388 O << "\\l\""; 8389 for (unsigned i = 0; i < IG->getFactor(); ++i) 8390 if (Instruction *I = IG->getMember(i)) 8391 O << " +\n" 8392 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 8393 } 8394 8395 void VPReplicateRecipe::execute(VPTransformState &State) { 8396 if (State.Instance) { // Generate a single instance. 8397 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 8398 // Insert scalar instance packing it into a vector. 8399 if (AlsoPack && State.VF > 1) { 8400 // If we're constructing lane 0, initialize to start from undef. 8401 if (State.Instance->Lane == 0) { 8402 Value *Undef = 8403 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 8404 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 8405 } 8406 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 8407 } 8408 return; 8409 } 8410 8411 // Generate scalar instances for all VF lanes of all UF parts, unless the 8412 // instruction is uniform inwhich case generate only the first lane for each 8413 // of the UF parts. 8414 unsigned EndLane = IsUniform ? 1 : State.VF; 8415 for (unsigned Part = 0; Part < State.UF; ++Part) 8416 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 8417 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 8418 } 8419 8420 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 8421 assert(State.Instance && "Branch on Mask works only on single instance."); 8422 8423 unsigned Part = State.Instance->Part; 8424 unsigned Lane = State.Instance->Lane; 8425 8426 auto Cond = State.ILV->createBlockInMask(MaskedBasicBlock); 8427 8428 Value *ConditionBit = Cond[Part]; 8429 if (!ConditionBit) // Block in mask is all-one. 8430 ConditionBit = State.Builder.getTrue(); 8431 else if (ConditionBit->getType()->isVectorTy()) 8432 ConditionBit = State.Builder.CreateExtractElement( 8433 ConditionBit, State.Builder.getInt32(Lane)); 8434 8435 // Replace the temporary unreachable terminator with a new conditional branch, 8436 // whose two destinations will be set later when they are created. 8437 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 8438 assert(isa<UnreachableInst>(CurrentTerminator) && 8439 "Expected to replace unreachable terminator with conditional branch."); 8440 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 8441 CondBr->setSuccessor(0, nullptr); 8442 ReplaceInstWithInst(CurrentTerminator, CondBr); 8443 8444 DEBUG(dbgs() << "\nLV: vectorizing BranchOnMask recipe " 8445 << MaskedBasicBlock->getName()); 8446 } 8447 8448 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 8449 assert(State.Instance && "Predicated instruction PHI works per instance."); 8450 Instruction *ScalarPredInst = cast<Instruction>( 8451 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 8452 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 8453 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 8454 assert(PredicatingBB && "Predicated block has no single predecessor."); 8455 8456 // By current pack/unpack logic we need to generate only a single phi node: if 8457 // a vector value for the predicated instruction exists at this point it means 8458 // the instruction has vector users only, and a phi for the vector value is 8459 // needed. In this case the recipe of the predicated instruction is marked to 8460 // also do that packing, thereby "hoisting" the insert-element sequence. 8461 // Otherwise, a phi node for the scalar value is needed. 8462 unsigned Part = State.Instance->Part; 8463 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 8464 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 8465 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 8466 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 8467 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 8468 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 8469 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 8470 } else { 8471 Type *PredInstType = PredInst->getType(); 8472 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 8473 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 8474 Phi->addIncoming(ScalarPredInst, PredicatedBB); 8475 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 8476 } 8477 } 8478 8479 bool LoopVectorizePass::processLoop(Loop *L) { 8480 assert(L->empty() && "Only process inner loops."); 8481 8482 #ifndef NDEBUG 8483 const std::string DebugLocStr = getDebugLocString(L); 8484 #endif /* NDEBUG */ 8485 8486 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 8487 << L->getHeader()->getParent()->getName() << "\" from " 8488 << DebugLocStr << "\n"); 8489 8490 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 8491 8492 DEBUG(dbgs() << "LV: Loop hints:" 8493 << " force=" 8494 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 8495 ? "disabled" 8496 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 8497 ? "enabled" 8498 : "?")) 8499 << " width=" << Hints.getWidth() 8500 << " unroll=" << Hints.getInterleave() << "\n"); 8501 8502 // Function containing loop 8503 Function *F = L->getHeader()->getParent(); 8504 8505 // Looking at the diagnostic output is the only way to determine if a loop 8506 // was vectorized (other than looking at the IR or machine code), so it 8507 // is important to generate an optimization remark for each loop. Most of 8508 // these messages are generated as OptimizationRemarkAnalysis. Remarks 8509 // generated as OptimizationRemark and OptimizationRemarkMissed are 8510 // less verbose reporting vectorized loops and unvectorized loops that may 8511 // benefit from vectorization, respectively. 8512 8513 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 8514 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 8515 return false; 8516 } 8517 8518 PredicatedScalarEvolution PSE(*SE, *L); 8519 8520 // Check if it is legal to vectorize the loop. 8521 LoopVectorizationRequirements Requirements(*ORE); 8522 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 8523 &Requirements, &Hints); 8524 if (!LVL.canVectorize()) { 8525 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 8526 emitMissedWarning(F, L, Hints, ORE); 8527 return false; 8528 } 8529 8530 // Check the function attributes to find out if this function should be 8531 // optimized for size. 8532 bool OptForSize = 8533 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 8534 8535 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 8536 // count by optimizing for size, to minimize overheads. 8537 unsigned ExpectedTC = SE->getSmallConstantMaxTripCount(L); 8538 bool HasExpectedTC = (ExpectedTC > 0); 8539 8540 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 8541 auto EstimatedTC = getLoopEstimatedTripCount(L); 8542 if (EstimatedTC) { 8543 ExpectedTC = *EstimatedTC; 8544 HasExpectedTC = true; 8545 } 8546 } 8547 8548 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 8549 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 8550 << "This loop is worth vectorizing only if no scalar " 8551 << "iteration overheads are incurred."); 8552 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 8553 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 8554 else { 8555 DEBUG(dbgs() << "\n"); 8556 // Loops with a very small trip count are considered for vectorization 8557 // under OptForSize, thereby making sure the cost of their loop body is 8558 // dominant, free of runtime guards and scalar iteration overheads. 8559 OptForSize = true; 8560 } 8561 } 8562 8563 // Check the function attributes to see if implicit floats are allowed. 8564 // FIXME: This check doesn't seem possibly correct -- what if the loop is 8565 // an integer loop and the vector instructions selected are purely integer 8566 // vector instructions? 8567 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 8568 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 8569 "attribute is used.\n"); 8570 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 8571 "NoImplicitFloat", L) 8572 << "loop not vectorized due to NoImplicitFloat attribute"); 8573 emitMissedWarning(F, L, Hints, ORE); 8574 return false; 8575 } 8576 8577 // Check if the target supports potentially unsafe FP vectorization. 8578 // FIXME: Add a check for the type of safety issue (denormal, signaling) 8579 // for the target we're vectorizing for, to make sure none of the 8580 // additional fp-math flags can help. 8581 if (Hints.isPotentiallyUnsafe() && 8582 TTI->isFPVectorizationPotentiallyUnsafe()) { 8583 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 8584 ORE->emit( 8585 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 8586 << "loop not vectorized due to unsafe FP support."); 8587 emitMissedWarning(F, L, Hints, ORE); 8588 return false; 8589 } 8590 8591 // Use the cost model. 8592 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 8593 &Hints); 8594 CM.collectValuesToIgnore(); 8595 8596 // Use the planner for vectorization. 8597 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 8598 8599 // Get user vectorization factor. 8600 unsigned UserVF = Hints.getWidth(); 8601 8602 // Plan how to best vectorize, return the best VF and its cost. 8603 LoopVectorizationCostModel::VectorizationFactor VF = 8604 LVP.plan(OptForSize, UserVF); 8605 8606 // Select the interleave count. 8607 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 8608 8609 // Get user interleave count. 8610 unsigned UserIC = Hints.getInterleave(); 8611 8612 // Identify the diagnostic messages that should be produced. 8613 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 8614 bool VectorizeLoop = true, InterleaveLoop = true; 8615 if (Requirements.doesNotMeet(F, L, Hints)) { 8616 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 8617 "requirements.\n"); 8618 emitMissedWarning(F, L, Hints, ORE); 8619 return false; 8620 } 8621 8622 if (VF.Width == 1) { 8623 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 8624 VecDiagMsg = std::make_pair( 8625 "VectorizationNotBeneficial", 8626 "the cost-model indicates that vectorization is not beneficial"); 8627 VectorizeLoop = false; 8628 } 8629 8630 if (IC == 1 && UserIC <= 1) { 8631 // Tell the user interleaving is not beneficial. 8632 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 8633 IntDiagMsg = std::make_pair( 8634 "InterleavingNotBeneficial", 8635 "the cost-model indicates that interleaving is not beneficial"); 8636 InterleaveLoop = false; 8637 if (UserIC == 1) { 8638 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 8639 IntDiagMsg.second += 8640 " and is explicitly disabled or interleave count is set to 1"; 8641 } 8642 } else if (IC > 1 && UserIC == 1) { 8643 // Tell the user interleaving is beneficial, but it explicitly disabled. 8644 DEBUG(dbgs() 8645 << "LV: Interleaving is beneficial but is explicitly disabled."); 8646 IntDiagMsg = std::make_pair( 8647 "InterleavingBeneficialButDisabled", 8648 "the cost-model indicates that interleaving is beneficial " 8649 "but is explicitly disabled or interleave count is set to 1"); 8650 InterleaveLoop = false; 8651 } 8652 8653 // Override IC if user provided an interleave count. 8654 IC = UserIC > 0 ? UserIC : IC; 8655 8656 // Emit diagnostic messages, if any. 8657 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 8658 if (!VectorizeLoop && !InterleaveLoop) { 8659 // Do not vectorize or interleaving the loop. 8660 ORE->emit([&]() { 8661 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 8662 L->getStartLoc(), L->getHeader()) 8663 << VecDiagMsg.second; 8664 }); 8665 ORE->emit([&]() { 8666 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 8667 L->getStartLoc(), L->getHeader()) 8668 << IntDiagMsg.second; 8669 }); 8670 return false; 8671 } else if (!VectorizeLoop && InterleaveLoop) { 8672 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8673 ORE->emit([&]() { 8674 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 8675 L->getStartLoc(), L->getHeader()) 8676 << VecDiagMsg.second; 8677 }); 8678 } else if (VectorizeLoop && !InterleaveLoop) { 8679 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8680 << DebugLocStr << '\n'); 8681 ORE->emit([&]() { 8682 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 8683 L->getStartLoc(), L->getHeader()) 8684 << IntDiagMsg.second; 8685 }); 8686 } else if (VectorizeLoop && InterleaveLoop) { 8687 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8688 << DebugLocStr << '\n'); 8689 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8690 } 8691 8692 LVP.setBestPlan(VF.Width, IC); 8693 8694 using namespace ore; 8695 8696 if (!VectorizeLoop) { 8697 assert(IC > 1 && "interleave count should not be 1 or 0"); 8698 // If we decided that it is not legal to vectorize the loop, then 8699 // interleave it. 8700 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 8701 &CM); 8702 LVP.executePlan(Unroller, DT); 8703 8704 ORE->emit([&]() { 8705 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 8706 L->getHeader()) 8707 << "interleaved loop (interleaved count: " 8708 << NV("InterleaveCount", IC) << ")"; 8709 }); 8710 } else { 8711 // If we decided that it is *legal* to vectorize the loop, then do it. 8712 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 8713 &LVL, &CM); 8714 LVP.executePlan(LB, DT); 8715 ++LoopsVectorized; 8716 8717 // Add metadata to disable runtime unrolling a scalar loop when there are 8718 // no runtime checks about strides and memory. A scalar loop that is 8719 // rarely used is not worth unrolling. 8720 if (!LB.areSafetyChecksAdded()) 8721 AddRuntimeUnrollDisableMetaData(L); 8722 8723 // Report the vectorization decision. 8724 ORE->emit([&]() { 8725 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 8726 L->getHeader()) 8727 << "vectorized loop (vectorization width: " 8728 << NV("VectorizationFactor", VF.Width) 8729 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 8730 }); 8731 } 8732 8733 // Mark the loop as already vectorized to avoid vectorizing again. 8734 Hints.setAlreadyVectorized(); 8735 8736 DEBUG(verifyFunction(*L->getHeader()->getParent())); 8737 return true; 8738 } 8739 8740 bool LoopVectorizePass::runImpl( 8741 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8742 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8743 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 8744 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8745 OptimizationRemarkEmitter &ORE_) { 8746 SE = &SE_; 8747 LI = &LI_; 8748 TTI = &TTI_; 8749 DT = &DT_; 8750 BFI = &BFI_; 8751 TLI = TLI_; 8752 AA = &AA_; 8753 AC = &AC_; 8754 GetLAA = &GetLAA_; 8755 DB = &DB_; 8756 ORE = &ORE_; 8757 8758 // Don't attempt if 8759 // 1. the target claims to have no vector registers, and 8760 // 2. interleaving won't help ILP. 8761 // 8762 // The second condition is necessary because, even if the target has no 8763 // vector registers, loop vectorization may still enable scalar 8764 // interleaving. 8765 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 8766 return false; 8767 8768 bool Changed = false; 8769 8770 // The vectorizer requires loops to be in simplified form. 8771 // Since simplification may add new inner loops, it has to run before the 8772 // legality and profitability checks. This means running the loop vectorizer 8773 // will simplify all loops, regardless of whether anything end up being 8774 // vectorized. 8775 for (auto &L : *LI) 8776 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 8777 8778 // Build up a worklist of inner-loops to vectorize. This is necessary as 8779 // the act of vectorizing or partially unrolling a loop creates new loops 8780 // and can invalidate iterators across the loops. 8781 SmallVector<Loop *, 8> Worklist; 8782 8783 for (Loop *L : *LI) 8784 addAcyclicInnerLoop(*L, Worklist); 8785 8786 LoopsAnalyzed += Worklist.size(); 8787 8788 // Now walk the identified inner loops. 8789 while (!Worklist.empty()) { 8790 Loop *L = Worklist.pop_back_val(); 8791 8792 // For the inner loops we actually process, form LCSSA to simplify the 8793 // transform. 8794 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8795 8796 Changed |= processLoop(L); 8797 } 8798 8799 // Process each loop nest in the function. 8800 return Changed; 8801 } 8802 8803 PreservedAnalyses LoopVectorizePass::run(Function &F, 8804 FunctionAnalysisManager &AM) { 8805 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8806 auto &LI = AM.getResult<LoopAnalysis>(F); 8807 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8808 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8809 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8810 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8811 auto &AA = AM.getResult<AAManager>(F); 8812 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8813 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8814 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8815 8816 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8817 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8818 [&](Loop &L) -> const LoopAccessInfo & { 8819 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI}; 8820 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8821 }; 8822 bool Changed = 8823 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 8824 if (!Changed) 8825 return PreservedAnalyses::all(); 8826 PreservedAnalyses PA; 8827 PA.preserve<LoopAnalysis>(); 8828 PA.preserve<DominatorTreeAnalysis>(); 8829 PA.preserve<BasicAA>(); 8830 PA.preserve<GlobalsAA>(); 8831 return PA; 8832 } 8833