1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpander.h" 95 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 96 #include "llvm/Analysis/TargetLibraryInfo.h" 97 #include "llvm/Analysis/TargetTransformInfo.h" 98 #include "llvm/Analysis/VectorUtils.h" 99 #include "llvm/IR/Attributes.h" 100 #include "llvm/IR/BasicBlock.h" 101 #include "llvm/IR/CFG.h" 102 #include "llvm/IR/Constant.h" 103 #include "llvm/IR/Constants.h" 104 #include "llvm/IR/DataLayout.h" 105 #include "llvm/IR/DebugInfoMetadata.h" 106 #include "llvm/IR/DebugLoc.h" 107 #include "llvm/IR/DerivedTypes.h" 108 #include "llvm/IR/DiagnosticInfo.h" 109 #include "llvm/IR/Dominators.h" 110 #include "llvm/IR/Function.h" 111 #include "llvm/IR/IRBuilder.h" 112 #include "llvm/IR/InstrTypes.h" 113 #include "llvm/IR/Instruction.h" 114 #include "llvm/IR/Instructions.h" 115 #include "llvm/IR/IntrinsicInst.h" 116 #include "llvm/IR/Intrinsics.h" 117 #include "llvm/IR/LLVMContext.h" 118 #include "llvm/IR/Metadata.h" 119 #include "llvm/IR/Module.h" 120 #include "llvm/IR/Operator.h" 121 #include "llvm/IR/Type.h" 122 #include "llvm/IR/Use.h" 123 #include "llvm/IR/User.h" 124 #include "llvm/IR/Value.h" 125 #include "llvm/IR/ValueHandle.h" 126 #include "llvm/IR/Verifier.h" 127 #include "llvm/InitializePasses.h" 128 #include "llvm/Pass.h" 129 #include "llvm/Support/Casting.h" 130 #include "llvm/Support/CommandLine.h" 131 #include "llvm/Support/Compiler.h" 132 #include "llvm/Support/Debug.h" 133 #include "llvm/Support/ErrorHandling.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <cstdlib> 147 #include <functional> 148 #include <iterator> 149 #include <limits> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 /// @{ 161 /// Metadata attribute names 162 static const char *const LLVMLoopVectorizeFollowupAll = 163 "llvm.loop.vectorize.followup_all"; 164 static const char *const LLVMLoopVectorizeFollowupVectorized = 165 "llvm.loop.vectorize.followup_vectorized"; 166 static const char *const LLVMLoopVectorizeFollowupEpilogue = 167 "llvm.loop.vectorize.followup_epilogue"; 168 /// @} 169 170 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 172 173 /// Loops with a known constant trip count below this number are vectorized only 174 /// if no scalar iteration overheads are incurred. 175 static cl::opt<unsigned> TinyTripCountVectorThreshold( 176 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 177 cl::desc("Loops with a constant trip count that is smaller than this " 178 "value are vectorized only if no scalar iteration overheads " 179 "are incurred.")); 180 181 // Indicates that an epilogue is undesired, predication is preferred. 182 // This means that the vectorizer will try to fold the loop-tail (epilogue) 183 // into the loop and predicate the loop body accordingly. 184 static cl::opt<bool> PreferPredicateOverEpilog( 185 "prefer-predicate-over-epilog", cl::init(false), cl::Hidden, 186 cl::desc("Indicate that an epilogue is undesired, predication should be " 187 "used instead.")); 188 189 static cl::opt<bool> MaximizeBandwidth( 190 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 191 cl::desc("Maximize bandwidth when selecting vectorization factor which " 192 "will be determined by the smallest type in loop.")); 193 194 static cl::opt<bool> EnableInterleavedMemAccesses( 195 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 196 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 197 198 /// An interleave-group may need masking if it resides in a block that needs 199 /// predication, or in order to mask away gaps. 200 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 201 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 202 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 203 204 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 205 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 206 cl::desc("We don't interleave loops with a estimated constant trip count " 207 "below this number")); 208 209 static cl::opt<unsigned> ForceTargetNumScalarRegs( 210 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 211 cl::desc("A flag that overrides the target's number of scalar registers.")); 212 213 static cl::opt<unsigned> ForceTargetNumVectorRegs( 214 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 215 cl::desc("A flag that overrides the target's number of vector registers.")); 216 217 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 218 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 219 cl::desc("A flag that overrides the target's max interleave factor for " 220 "scalar loops.")); 221 222 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 223 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 224 cl::desc("A flag that overrides the target's max interleave factor for " 225 "vectorized loops.")); 226 227 static cl::opt<unsigned> ForceTargetInstructionCost( 228 "force-target-instruction-cost", cl::init(0), cl::Hidden, 229 cl::desc("A flag that overrides the target's expected cost for " 230 "an instruction to a single constant value. Mostly " 231 "useful for getting consistent testing.")); 232 233 static cl::opt<unsigned> SmallLoopCost( 234 "small-loop-cost", cl::init(20), cl::Hidden, 235 cl::desc( 236 "The cost of a loop that is considered 'small' by the interleaver.")); 237 238 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 239 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 240 cl::desc("Enable the use of the block frequency analysis to access PGO " 241 "heuristics minimizing code growth in cold regions and being more " 242 "aggressive in hot regions.")); 243 244 // Runtime interleave loops for load/store throughput. 245 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 246 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 247 cl::desc( 248 "Enable runtime interleaving until load/store ports are saturated")); 249 250 /// The number of stores in a loop that are allowed to need predication. 251 static cl::opt<unsigned> NumberOfStoresToPredicate( 252 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 253 cl::desc("Max number of stores to be predicated behind an if.")); 254 255 static cl::opt<bool> EnableIndVarRegisterHeur( 256 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 257 cl::desc("Count the induction variable only once when interleaving")); 258 259 static cl::opt<bool> EnableCondStoresVectorization( 260 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 261 cl::desc("Enable if predication of stores during vectorization.")); 262 263 static cl::opt<unsigned> MaxNestedScalarReductionIC( 264 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 265 cl::desc("The maximum interleave count to use when interleaving a scalar " 266 "reduction in a nested loop.")); 267 268 cl::opt<bool> EnableVPlanNativePath( 269 "enable-vplan-native-path", cl::init(false), cl::Hidden, 270 cl::desc("Enable VPlan-native vectorization path with " 271 "support for outer loop vectorization.")); 272 273 // FIXME: Remove this switch once we have divergence analysis. Currently we 274 // assume divergent non-backedge branches when this switch is true. 275 cl::opt<bool> EnableVPlanPredication( 276 "enable-vplan-predication", cl::init(false), cl::Hidden, 277 cl::desc("Enable VPlan-native vectorization path predicator with " 278 "support for outer loop vectorization.")); 279 280 // This flag enables the stress testing of the VPlan H-CFG construction in the 281 // VPlan-native vectorization path. It must be used in conjuction with 282 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 283 // verification of the H-CFGs built. 284 static cl::opt<bool> VPlanBuildStressTest( 285 "vplan-build-stress-test", cl::init(false), cl::Hidden, 286 cl::desc( 287 "Build VPlan for every supported loop nest in the function and bail " 288 "out right after the build (stress test the VPlan H-CFG construction " 289 "in the VPlan-native vectorization path).")); 290 291 cl::opt<bool> llvm::EnableLoopInterleaving( 292 "interleave-loops", cl::init(true), cl::Hidden, 293 cl::desc("Enable loop interleaving in Loop vectorization passes")); 294 cl::opt<bool> llvm::EnableLoopVectorization( 295 "vectorize-loops", cl::init(true), cl::Hidden, 296 cl::desc("Run the Loop vectorization passes")); 297 298 /// A helper function that returns the type of loaded or stored value. 299 static Type *getMemInstValueType(Value *I) { 300 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 301 "Expected Load or Store instruction"); 302 if (auto *LI = dyn_cast<LoadInst>(I)) 303 return LI->getType(); 304 return cast<StoreInst>(I)->getValueOperand()->getType(); 305 } 306 307 /// A helper function that returns true if the given type is irregular. The 308 /// type is irregular if its allocated size doesn't equal the store size of an 309 /// element of the corresponding vector type at the given vectorization factor. 310 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 311 // Determine if an array of VF elements of type Ty is "bitcast compatible" 312 // with a <VF x Ty> vector. 313 if (VF > 1) { 314 auto *VectorTy = VectorType::get(Ty, VF); 315 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 316 } 317 318 // If the vectorization factor is one, we just check if an array of type Ty 319 // requires padding between elements. 320 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 321 } 322 323 /// A helper function that returns the reciprocal of the block probability of 324 /// predicated blocks. If we return X, we are assuming the predicated block 325 /// will execute once for every X iterations of the loop header. 326 /// 327 /// TODO: We should use actual block probability here, if available. Currently, 328 /// we always assume predicated blocks have a 50% chance of executing. 329 static unsigned getReciprocalPredBlockProb() { return 2; } 330 331 /// A helper function that adds a 'fast' flag to floating-point operations. 332 static Value *addFastMathFlag(Value *V) { 333 if (isa<FPMathOperator>(V)) 334 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 335 return V; 336 } 337 338 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 339 if (isa<FPMathOperator>(V)) 340 cast<Instruction>(V)->setFastMathFlags(FMF); 341 return V; 342 } 343 344 /// A helper function that returns an integer or floating-point constant with 345 /// value C. 346 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 347 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 348 : ConstantFP::get(Ty, C); 349 } 350 351 /// Returns "best known" trip count for the specified loop \p L as defined by 352 /// the following procedure: 353 /// 1) Returns exact trip count if it is known. 354 /// 2) Returns expected trip count according to profile data if any. 355 /// 3) Returns upper bound estimate if it is known. 356 /// 4) Returns None if all of the above failed. 357 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 358 // Check if exact trip count is known. 359 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 360 return ExpectedTC; 361 362 // Check if there is an expected trip count available from profile data. 363 if (LoopVectorizeWithBlockFrequency) 364 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 365 return EstimatedTC; 366 367 // Check if upper bound estimate is known. 368 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 369 return ExpectedTC; 370 371 return None; 372 } 373 374 namespace llvm { 375 376 /// InnerLoopVectorizer vectorizes loops which contain only one basic 377 /// block to a specified vectorization factor (VF). 378 /// This class performs the widening of scalars into vectors, or multiple 379 /// scalars. This class also implements the following features: 380 /// * It inserts an epilogue loop for handling loops that don't have iteration 381 /// counts that are known to be a multiple of the vectorization factor. 382 /// * It handles the code generation for reduction variables. 383 /// * Scalarization (implementation using scalars) of un-vectorizable 384 /// instructions. 385 /// InnerLoopVectorizer does not perform any vectorization-legality 386 /// checks, and relies on the caller to check for the different legality 387 /// aspects. The InnerLoopVectorizer relies on the 388 /// LoopVectorizationLegality class to provide information about the induction 389 /// and reduction variables that were found to a given vectorization factor. 390 class InnerLoopVectorizer { 391 public: 392 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 393 LoopInfo *LI, DominatorTree *DT, 394 const TargetLibraryInfo *TLI, 395 const TargetTransformInfo *TTI, AssumptionCache *AC, 396 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 397 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 398 LoopVectorizationCostModel *CM) 399 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 400 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 401 Builder(PSE.getSE()->getContext()), 402 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 403 virtual ~InnerLoopVectorizer() = default; 404 405 /// Create a new empty loop. Unlink the old loop and connect the new one. 406 /// Return the pre-header block of the new loop. 407 BasicBlock *createVectorizedLoopSkeleton(); 408 409 /// Widen a single instruction within the innermost loop. 410 void widenInstruction(Instruction &I, VPUser &Operands, 411 VPTransformState &State); 412 413 /// Widen a single call instruction within the innermost loop. 414 void widenCallInstruction(CallInst &I, VPUser &ArgOperands, 415 VPTransformState &State); 416 417 /// Widen a single select instruction within the innermost loop. 418 void widenSelectInstruction(SelectInst &I, bool InvariantCond); 419 420 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 421 void fixVectorizedLoop(); 422 423 // Return true if any runtime check is added. 424 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 425 426 /// A type for vectorized values in the new loop. Each value from the 427 /// original loop, when vectorized, is represented by UF vector values in the 428 /// new unrolled loop, where UF is the unroll factor. 429 using VectorParts = SmallVector<Value *, 2>; 430 431 /// Vectorize a single GetElementPtrInst based on information gathered and 432 /// decisions taken during planning. 433 void widenGEP(GetElementPtrInst *GEP, unsigned UF, unsigned VF, 434 bool IsPtrLoopInvariant, SmallBitVector &IsIndexLoopInvariant); 435 436 /// Vectorize a single PHINode in a block. This method handles the induction 437 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 438 /// arbitrary length vectors. 439 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 440 441 /// A helper function to scalarize a single Instruction in the innermost loop. 442 /// Generates a sequence of scalar instances for each lane between \p MinLane 443 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 444 /// inclusive.. 445 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 446 bool IfPredicateInstr); 447 448 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 449 /// is provided, the integer induction variable will first be truncated to 450 /// the corresponding type. 451 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 452 453 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 454 /// vector or scalar value on-demand if one is not yet available. When 455 /// vectorizing a loop, we visit the definition of an instruction before its 456 /// uses. When visiting the definition, we either vectorize or scalarize the 457 /// instruction, creating an entry for it in the corresponding map. (In some 458 /// cases, such as induction variables, we will create both vector and scalar 459 /// entries.) Then, as we encounter uses of the definition, we derive values 460 /// for each scalar or vector use unless such a value is already available. 461 /// For example, if we scalarize a definition and one of its uses is vector, 462 /// we build the required vector on-demand with an insertelement sequence 463 /// when visiting the use. Otherwise, if the use is scalar, we can use the 464 /// existing scalar definition. 465 /// 466 /// Return a value in the new loop corresponding to \p V from the original 467 /// loop at unroll index \p Part. If the value has already been vectorized, 468 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 469 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 470 /// a new vector value on-demand by inserting the scalar values into a vector 471 /// with an insertelement sequence. If the value has been neither vectorized 472 /// nor scalarized, it must be loop invariant, so we simply broadcast the 473 /// value into a vector. 474 Value *getOrCreateVectorValue(Value *V, unsigned Part); 475 476 /// Return a value in the new loop corresponding to \p V from the original 477 /// loop at unroll and vector indices \p Instance. If the value has been 478 /// vectorized but not scalarized, the necessary extractelement instruction 479 /// will be generated. 480 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 481 482 /// Construct the vector value of a scalarized value \p V one lane at a time. 483 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 484 485 /// Try to vectorize interleaved access group \p Group with the base address 486 /// given in \p Addr, optionally masking the vector operations if \p 487 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 488 /// values in the vectorized loop. 489 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 490 VPTransformState &State, VPValue *Addr, 491 VPValue *BlockInMask = nullptr); 492 493 /// Vectorize Load and Store instructions with the base address given in \p 494 /// Addr, optionally masking the vector operations if \p BlockInMask is 495 /// non-null. Use \p State to translate given VPValues to IR values in the 496 /// vectorized loop. 497 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 498 VPValue *Addr, VPValue *StoredValue, 499 VPValue *BlockInMask); 500 501 /// Set the debug location in the builder using the debug location in 502 /// the instruction. 503 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 504 505 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 506 void fixNonInductionPHIs(void); 507 508 protected: 509 friend class LoopVectorizationPlanner; 510 511 /// A small list of PHINodes. 512 using PhiVector = SmallVector<PHINode *, 4>; 513 514 /// A type for scalarized values in the new loop. Each value from the 515 /// original loop, when scalarized, is represented by UF x VF scalar values 516 /// in the new unrolled loop, where UF is the unroll factor and VF is the 517 /// vectorization factor. 518 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 519 520 /// Set up the values of the IVs correctly when exiting the vector loop. 521 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 522 Value *CountRoundDown, Value *EndValue, 523 BasicBlock *MiddleBlock); 524 525 /// Create a new induction variable inside L. 526 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 527 Value *Step, Instruction *DL); 528 529 /// Handle all cross-iteration phis in the header. 530 void fixCrossIterationPHIs(); 531 532 /// Fix a first-order recurrence. This is the second phase of vectorizing 533 /// this phi node. 534 void fixFirstOrderRecurrence(PHINode *Phi); 535 536 /// Fix a reduction cross-iteration phi. This is the second phase of 537 /// vectorizing this phi node. 538 void fixReduction(PHINode *Phi); 539 540 /// Clear NSW/NUW flags from reduction instructions if necessary. 541 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc); 542 543 /// The Loop exit block may have single value PHI nodes with some 544 /// incoming value. While vectorizing we only handled real values 545 /// that were defined inside the loop and we should have one value for 546 /// each predecessor of its parent basic block. See PR14725. 547 void fixLCSSAPHIs(); 548 549 /// Iteratively sink the scalarized operands of a predicated instruction into 550 /// the block that was created for it. 551 void sinkScalarOperands(Instruction *PredInst); 552 553 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 554 /// represented as. 555 void truncateToMinimalBitwidths(); 556 557 /// Create a broadcast instruction. This method generates a broadcast 558 /// instruction (shuffle) for loop invariant values and for the induction 559 /// value. If this is the induction variable then we extend it to N, N+1, ... 560 /// this is needed because each iteration in the loop corresponds to a SIMD 561 /// element. 562 virtual Value *getBroadcastInstrs(Value *V); 563 564 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 565 /// to each vector element of Val. The sequence starts at StartIndex. 566 /// \p Opcode is relevant for FP induction variable. 567 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 568 Instruction::BinaryOps Opcode = 569 Instruction::BinaryOpsEnd); 570 571 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 572 /// variable on which to base the steps, \p Step is the size of the step, and 573 /// \p EntryVal is the value from the original loop that maps to the steps. 574 /// Note that \p EntryVal doesn't have to be an induction variable - it 575 /// can also be a truncate instruction. 576 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 577 const InductionDescriptor &ID); 578 579 /// Create a vector induction phi node based on an existing scalar one. \p 580 /// EntryVal is the value from the original loop that maps to the vector phi 581 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 582 /// truncate instruction, instead of widening the original IV, we widen a 583 /// version of the IV truncated to \p EntryVal's type. 584 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 585 Value *Step, Instruction *EntryVal); 586 587 /// Returns true if an instruction \p I should be scalarized instead of 588 /// vectorized for the chosen vectorization factor. 589 bool shouldScalarizeInstruction(Instruction *I) const; 590 591 /// Returns true if we should generate a scalar version of \p IV. 592 bool needsScalarInduction(Instruction *IV) const; 593 594 /// If there is a cast involved in the induction variable \p ID, which should 595 /// be ignored in the vectorized loop body, this function records the 596 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 597 /// cast. We had already proved that the casted Phi is equal to the uncasted 598 /// Phi in the vectorized loop (under a runtime guard), and therefore 599 /// there is no need to vectorize the cast - the same value can be used in the 600 /// vector loop for both the Phi and the cast. 601 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 602 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 603 /// 604 /// \p EntryVal is the value from the original loop that maps to the vector 605 /// phi node and is used to distinguish what is the IV currently being 606 /// processed - original one (if \p EntryVal is a phi corresponding to the 607 /// original IV) or the "newly-created" one based on the proof mentioned above 608 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 609 /// latter case \p EntryVal is a TruncInst and we must not record anything for 610 /// that IV, but it's error-prone to expect callers of this routine to care 611 /// about that, hence this explicit parameter. 612 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 613 const Instruction *EntryVal, 614 Value *VectorLoopValue, 615 unsigned Part, 616 unsigned Lane = UINT_MAX); 617 618 /// Generate a shuffle sequence that will reverse the vector Vec. 619 virtual Value *reverseVector(Value *Vec); 620 621 /// Returns (and creates if needed) the original loop trip count. 622 Value *getOrCreateTripCount(Loop *NewLoop); 623 624 /// Returns (and creates if needed) the trip count of the widened loop. 625 Value *getOrCreateVectorTripCount(Loop *NewLoop); 626 627 /// Returns a bitcasted value to the requested vector type. 628 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 629 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 630 const DataLayout &DL); 631 632 /// Emit a bypass check to see if the vector trip count is zero, including if 633 /// it overflows. 634 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 635 636 /// Emit a bypass check to see if all of the SCEV assumptions we've 637 /// had to make are correct. 638 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 639 640 /// Emit bypass checks to check any memory assumptions we may have made. 641 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 642 643 /// Compute the transformed value of Index at offset StartValue using step 644 /// StepValue. 645 /// For integer induction, returns StartValue + Index * StepValue. 646 /// For pointer induction, returns StartValue[Index * StepValue]. 647 /// FIXME: The newly created binary instructions should contain nsw/nuw 648 /// flags, which can be found from the original scalar operations. 649 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 650 const DataLayout &DL, 651 const InductionDescriptor &ID) const; 652 653 /// Add additional metadata to \p To that was not present on \p Orig. 654 /// 655 /// Currently this is used to add the noalias annotations based on the 656 /// inserted memchecks. Use this for instructions that are *cloned* into the 657 /// vector loop. 658 void addNewMetadata(Instruction *To, const Instruction *Orig); 659 660 /// Add metadata from one instruction to another. 661 /// 662 /// This includes both the original MDs from \p From and additional ones (\see 663 /// addNewMetadata). Use this for *newly created* instructions in the vector 664 /// loop. 665 void addMetadata(Instruction *To, Instruction *From); 666 667 /// Similar to the previous function but it adds the metadata to a 668 /// vector of instructions. 669 void addMetadata(ArrayRef<Value *> To, Instruction *From); 670 671 /// The original loop. 672 Loop *OrigLoop; 673 674 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 675 /// dynamic knowledge to simplify SCEV expressions and converts them to a 676 /// more usable form. 677 PredicatedScalarEvolution &PSE; 678 679 /// Loop Info. 680 LoopInfo *LI; 681 682 /// Dominator Tree. 683 DominatorTree *DT; 684 685 /// Alias Analysis. 686 AliasAnalysis *AA; 687 688 /// Target Library Info. 689 const TargetLibraryInfo *TLI; 690 691 /// Target Transform Info. 692 const TargetTransformInfo *TTI; 693 694 /// Assumption Cache. 695 AssumptionCache *AC; 696 697 /// Interface to emit optimization remarks. 698 OptimizationRemarkEmitter *ORE; 699 700 /// LoopVersioning. It's only set up (non-null) if memchecks were 701 /// used. 702 /// 703 /// This is currently only used to add no-alias metadata based on the 704 /// memchecks. The actually versioning is performed manually. 705 std::unique_ptr<LoopVersioning> LVer; 706 707 /// The vectorization SIMD factor to use. Each vector will have this many 708 /// vector elements. 709 unsigned VF; 710 711 /// The vectorization unroll factor to use. Each scalar is vectorized to this 712 /// many different vector instructions. 713 unsigned UF; 714 715 /// The builder that we use 716 IRBuilder<> Builder; 717 718 // --- Vectorization state --- 719 720 /// The vector-loop preheader. 721 BasicBlock *LoopVectorPreHeader; 722 723 /// The scalar-loop preheader. 724 BasicBlock *LoopScalarPreHeader; 725 726 /// Middle Block between the vector and the scalar. 727 BasicBlock *LoopMiddleBlock; 728 729 /// The ExitBlock of the scalar loop. 730 BasicBlock *LoopExitBlock; 731 732 /// The vector loop body. 733 BasicBlock *LoopVectorBody; 734 735 /// The scalar loop body. 736 BasicBlock *LoopScalarBody; 737 738 /// A list of all bypass blocks. The first block is the entry of the loop. 739 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 740 741 /// The new Induction variable which was added to the new block. 742 PHINode *Induction = nullptr; 743 744 /// The induction variable of the old basic block. 745 PHINode *OldInduction = nullptr; 746 747 /// Maps values from the original loop to their corresponding values in the 748 /// vectorized loop. A key value can map to either vector values, scalar 749 /// values or both kinds of values, depending on whether the key was 750 /// vectorized and scalarized. 751 VectorizerValueMap VectorLoopValueMap; 752 753 /// Store instructions that were predicated. 754 SmallVector<Instruction *, 4> PredicatedInstructions; 755 756 /// Trip count of the original loop. 757 Value *TripCount = nullptr; 758 759 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 760 Value *VectorTripCount = nullptr; 761 762 /// The legality analysis. 763 LoopVectorizationLegality *Legal; 764 765 /// The profitablity analysis. 766 LoopVectorizationCostModel *Cost; 767 768 // Record whether runtime checks are added. 769 bool AddedSafetyChecks = false; 770 771 // Holds the end values for each induction variable. We save the end values 772 // so we can later fix-up the external users of the induction variables. 773 DenseMap<PHINode *, Value *> IVEndValues; 774 775 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 776 // fixed up at the end of vector code generation. 777 SmallVector<PHINode *, 8> OrigPHIsToFix; 778 }; 779 780 class InnerLoopUnroller : public InnerLoopVectorizer { 781 public: 782 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 783 LoopInfo *LI, DominatorTree *DT, 784 const TargetLibraryInfo *TLI, 785 const TargetTransformInfo *TTI, AssumptionCache *AC, 786 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 787 LoopVectorizationLegality *LVL, 788 LoopVectorizationCostModel *CM) 789 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 790 UnrollFactor, LVL, CM) {} 791 792 private: 793 Value *getBroadcastInstrs(Value *V) override; 794 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 795 Instruction::BinaryOps Opcode = 796 Instruction::BinaryOpsEnd) override; 797 Value *reverseVector(Value *Vec) override; 798 }; 799 800 } // end namespace llvm 801 802 /// Look for a meaningful debug location on the instruction or it's 803 /// operands. 804 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 805 if (!I) 806 return I; 807 808 DebugLoc Empty; 809 if (I->getDebugLoc() != Empty) 810 return I; 811 812 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 813 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 814 if (OpInst->getDebugLoc() != Empty) 815 return OpInst; 816 } 817 818 return I; 819 } 820 821 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 822 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 823 const DILocation *DIL = Inst->getDebugLoc(); 824 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 825 !isa<DbgInfoIntrinsic>(Inst)) { 826 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF); 827 if (NewDIL) 828 B.SetCurrentDebugLocation(NewDIL.getValue()); 829 else 830 LLVM_DEBUG(dbgs() 831 << "Failed to create new discriminator: " 832 << DIL->getFilename() << " Line: " << DIL->getLine()); 833 } 834 else 835 B.SetCurrentDebugLocation(DIL); 836 } else 837 B.SetCurrentDebugLocation(DebugLoc()); 838 } 839 840 /// Write a record \p DebugMsg about vectorization failure to the debug 841 /// output stream. If \p I is passed, it is an instruction that prevents 842 /// vectorization. 843 #ifndef NDEBUG 844 static void debugVectorizationFailure(const StringRef DebugMsg, 845 Instruction *I) { 846 dbgs() << "LV: Not vectorizing: " << DebugMsg; 847 if (I != nullptr) 848 dbgs() << " " << *I; 849 else 850 dbgs() << '.'; 851 dbgs() << '\n'; 852 } 853 #endif 854 855 /// Create an analysis remark that explains why vectorization failed 856 /// 857 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 858 /// RemarkName is the identifier for the remark. If \p I is passed it is an 859 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 860 /// the location of the remark. \return the remark object that can be 861 /// streamed to. 862 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 863 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 864 Value *CodeRegion = TheLoop->getHeader(); 865 DebugLoc DL = TheLoop->getStartLoc(); 866 867 if (I) { 868 CodeRegion = I->getParent(); 869 // If there is no debug location attached to the instruction, revert back to 870 // using the loop's. 871 if (I->getDebugLoc()) 872 DL = I->getDebugLoc(); 873 } 874 875 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 876 R << "loop not vectorized: "; 877 return R; 878 } 879 880 namespace llvm { 881 882 void reportVectorizationFailure(const StringRef DebugMsg, 883 const StringRef OREMsg, const StringRef ORETag, 884 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 885 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 886 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 887 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 888 ORETag, TheLoop, I) << OREMsg); 889 } 890 891 } // end namespace llvm 892 893 #ifndef NDEBUG 894 /// \return string containing a file name and a line # for the given loop. 895 static std::string getDebugLocString(const Loop *L) { 896 std::string Result; 897 if (L) { 898 raw_string_ostream OS(Result); 899 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 900 LoopDbgLoc.print(OS); 901 else 902 // Just print the module name. 903 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 904 OS.flush(); 905 } 906 return Result; 907 } 908 #endif 909 910 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 911 const Instruction *Orig) { 912 // If the loop was versioned with memchecks, add the corresponding no-alias 913 // metadata. 914 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 915 LVer->annotateInstWithNoAlias(To, Orig); 916 } 917 918 void InnerLoopVectorizer::addMetadata(Instruction *To, 919 Instruction *From) { 920 propagateMetadata(To, From); 921 addNewMetadata(To, From); 922 } 923 924 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 925 Instruction *From) { 926 for (Value *V : To) { 927 if (Instruction *I = dyn_cast<Instruction>(V)) 928 addMetadata(I, From); 929 } 930 } 931 932 namespace llvm { 933 934 // Loop vectorization cost-model hints how the scalar epilogue loop should be 935 // lowered. 936 enum ScalarEpilogueLowering { 937 938 // The default: allowing scalar epilogues. 939 CM_ScalarEpilogueAllowed, 940 941 // Vectorization with OptForSize: don't allow epilogues. 942 CM_ScalarEpilogueNotAllowedOptSize, 943 944 // A special case of vectorisation with OptForSize: loops with a very small 945 // trip count are considered for vectorization under OptForSize, thereby 946 // making sure the cost of their loop body is dominant, free of runtime 947 // guards and scalar iteration overheads. 948 CM_ScalarEpilogueNotAllowedLowTripLoop, 949 950 // Loop hint predicate indicating an epilogue is undesired. 951 CM_ScalarEpilogueNotNeededUsePredicate 952 }; 953 954 /// LoopVectorizationCostModel - estimates the expected speedups due to 955 /// vectorization. 956 /// In many cases vectorization is not profitable. This can happen because of 957 /// a number of reasons. In this class we mainly attempt to predict the 958 /// expected speedup/slowdowns due to the supported instruction set. We use the 959 /// TargetTransformInfo to query the different backends for the cost of 960 /// different operations. 961 class LoopVectorizationCostModel { 962 public: 963 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 964 PredicatedScalarEvolution &PSE, LoopInfo *LI, 965 LoopVectorizationLegality *Legal, 966 const TargetTransformInfo &TTI, 967 const TargetLibraryInfo *TLI, DemandedBits *DB, 968 AssumptionCache *AC, 969 OptimizationRemarkEmitter *ORE, const Function *F, 970 const LoopVectorizeHints *Hints, 971 InterleavedAccessInfo &IAI) 972 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 973 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 974 Hints(Hints), InterleaveInfo(IAI) {} 975 976 /// \return An upper bound for the vectorization factor, or None if 977 /// vectorization and interleaving should be avoided up front. 978 Optional<unsigned> computeMaxVF(); 979 980 /// \return True if runtime checks are required for vectorization, and false 981 /// otherwise. 982 bool runtimeChecksRequired(); 983 984 /// \return The most profitable vectorization factor and the cost of that VF. 985 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 986 /// then this vectorization factor will be selected if vectorization is 987 /// possible. 988 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 989 990 /// Setup cost-based decisions for user vectorization factor. 991 void selectUserVectorizationFactor(unsigned UserVF) { 992 collectUniformsAndScalars(UserVF); 993 collectInstsToScalarize(UserVF); 994 } 995 996 /// \return The size (in bits) of the smallest and widest types in the code 997 /// that needs to be vectorized. We ignore values that remain scalar such as 998 /// 64 bit loop indices. 999 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1000 1001 /// \return The desired interleave count. 1002 /// If interleave count has been specified by metadata it will be returned. 1003 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1004 /// are the selected vectorization factor and the cost of the selected VF. 1005 unsigned selectInterleaveCount(unsigned VF, unsigned LoopCost); 1006 1007 /// Memory access instruction may be vectorized in more than one way. 1008 /// Form of instruction after vectorization depends on cost. 1009 /// This function takes cost-based decisions for Load/Store instructions 1010 /// and collects them in a map. This decisions map is used for building 1011 /// the lists of loop-uniform and loop-scalar instructions. 1012 /// The calculated cost is saved with widening decision in order to 1013 /// avoid redundant calculations. 1014 void setCostBasedWideningDecision(unsigned VF); 1015 1016 /// A struct that represents some properties of the register usage 1017 /// of a loop. 1018 struct RegisterUsage { 1019 /// Holds the number of loop invariant values that are used in the loop. 1020 /// The key is ClassID of target-provided register class. 1021 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1022 /// Holds the maximum number of concurrent live intervals in the loop. 1023 /// The key is ClassID of target-provided register class. 1024 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1025 }; 1026 1027 /// \return Returns information about the register usages of the loop for the 1028 /// given vectorization factors. 1029 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1030 1031 /// Collect values we want to ignore in the cost model. 1032 void collectValuesToIgnore(); 1033 1034 /// \returns The smallest bitwidth each instruction can be represented with. 1035 /// The vector equivalents of these instructions should be truncated to this 1036 /// type. 1037 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1038 return MinBWs; 1039 } 1040 1041 /// \returns True if it is more profitable to scalarize instruction \p I for 1042 /// vectorization factor \p VF. 1043 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1044 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1045 1046 // Cost model is not run in the VPlan-native path - return conservative 1047 // result until this changes. 1048 if (EnableVPlanNativePath) 1049 return false; 1050 1051 auto Scalars = InstsToScalarize.find(VF); 1052 assert(Scalars != InstsToScalarize.end() && 1053 "VF not yet analyzed for scalarization profitability"); 1054 return Scalars->second.find(I) != Scalars->second.end(); 1055 } 1056 1057 /// Returns true if \p I is known to be uniform after vectorization. 1058 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1059 if (VF == 1) 1060 return true; 1061 1062 // Cost model is not run in the VPlan-native path - return conservative 1063 // result until this changes. 1064 if (EnableVPlanNativePath) 1065 return false; 1066 1067 auto UniformsPerVF = Uniforms.find(VF); 1068 assert(UniformsPerVF != Uniforms.end() && 1069 "VF not yet analyzed for uniformity"); 1070 return UniformsPerVF->second.find(I) != UniformsPerVF->second.end(); 1071 } 1072 1073 /// Returns true if \p I is known to be scalar after vectorization. 1074 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1075 if (VF == 1) 1076 return true; 1077 1078 // Cost model is not run in the VPlan-native path - return conservative 1079 // result until this changes. 1080 if (EnableVPlanNativePath) 1081 return false; 1082 1083 auto ScalarsPerVF = Scalars.find(VF); 1084 assert(ScalarsPerVF != Scalars.end() && 1085 "Scalar values are not calculated for VF"); 1086 return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end(); 1087 } 1088 1089 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1090 /// for vectorization factor \p VF. 1091 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1092 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 1093 !isProfitableToScalarize(I, VF) && 1094 !isScalarAfterVectorization(I, VF); 1095 } 1096 1097 /// Decision that was taken during cost calculation for memory instruction. 1098 enum InstWidening { 1099 CM_Unknown, 1100 CM_Widen, // For consecutive accesses with stride +1. 1101 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1102 CM_Interleave, 1103 CM_GatherScatter, 1104 CM_Scalarize 1105 }; 1106 1107 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1108 /// instruction \p I and vector width \p VF. 1109 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1110 unsigned Cost) { 1111 assert(VF >= 2 && "Expected VF >=2"); 1112 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1113 } 1114 1115 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1116 /// interleaving group \p Grp and vector width \p VF. 1117 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, 1118 InstWidening W, unsigned Cost) { 1119 assert(VF >= 2 && "Expected VF >=2"); 1120 /// Broadcast this decicion to all instructions inside the group. 1121 /// But the cost will be assigned to one instruction only. 1122 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1123 if (auto *I = Grp->getMember(i)) { 1124 if (Grp->getInsertPos() == I) 1125 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1126 else 1127 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1128 } 1129 } 1130 } 1131 1132 /// Return the cost model decision for the given instruction \p I and vector 1133 /// width \p VF. Return CM_Unknown if this instruction did not pass 1134 /// through the cost modeling. 1135 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1136 assert(VF >= 2 && "Expected VF >=2"); 1137 1138 // Cost model is not run in the VPlan-native path - return conservative 1139 // result until this changes. 1140 if (EnableVPlanNativePath) 1141 return CM_GatherScatter; 1142 1143 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1144 auto Itr = WideningDecisions.find(InstOnVF); 1145 if (Itr == WideningDecisions.end()) 1146 return CM_Unknown; 1147 return Itr->second.first; 1148 } 1149 1150 /// Return the vectorization cost for the given instruction \p I and vector 1151 /// width \p VF. 1152 unsigned getWideningCost(Instruction *I, unsigned VF) { 1153 assert(VF >= 2 && "Expected VF >=2"); 1154 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1155 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1156 "The cost is not calculated"); 1157 return WideningDecisions[InstOnVF].second; 1158 } 1159 1160 /// Return True if instruction \p I is an optimizable truncate whose operand 1161 /// is an induction variable. Such a truncate will be removed by adding a new 1162 /// induction variable with the destination type. 1163 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1164 // If the instruction is not a truncate, return false. 1165 auto *Trunc = dyn_cast<TruncInst>(I); 1166 if (!Trunc) 1167 return false; 1168 1169 // Get the source and destination types of the truncate. 1170 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1171 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1172 1173 // If the truncate is free for the given types, return false. Replacing a 1174 // free truncate with an induction variable would add an induction variable 1175 // update instruction to each iteration of the loop. We exclude from this 1176 // check the primary induction variable since it will need an update 1177 // instruction regardless. 1178 Value *Op = Trunc->getOperand(0); 1179 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1180 return false; 1181 1182 // If the truncated value is not an induction variable, return false. 1183 return Legal->isInductionPhi(Op); 1184 } 1185 1186 /// Collects the instructions to scalarize for each predicated instruction in 1187 /// the loop. 1188 void collectInstsToScalarize(unsigned VF); 1189 1190 /// Collect Uniform and Scalar values for the given \p VF. 1191 /// The sets depend on CM decision for Load/Store instructions 1192 /// that may be vectorized as interleave, gather-scatter or scalarized. 1193 void collectUniformsAndScalars(unsigned VF) { 1194 // Do the analysis once. 1195 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1196 return; 1197 setCostBasedWideningDecision(VF); 1198 collectLoopUniforms(VF); 1199 collectLoopScalars(VF); 1200 } 1201 1202 /// Returns true if the target machine supports masked store operation 1203 /// for the given \p DataType and kind of access to \p Ptr. 1204 bool isLegalMaskedStore(Type *DataType, Value *Ptr, MaybeAlign Alignment) { 1205 return Legal->isConsecutivePtr(Ptr) && 1206 TTI.isLegalMaskedStore(DataType, Alignment); 1207 } 1208 1209 /// Returns true if the target machine supports masked load operation 1210 /// for the given \p DataType and kind of access to \p Ptr. 1211 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, MaybeAlign Alignment) { 1212 return Legal->isConsecutivePtr(Ptr) && 1213 TTI.isLegalMaskedLoad(DataType, Alignment); 1214 } 1215 1216 /// Returns true if the target machine supports masked scatter operation 1217 /// for the given \p DataType. 1218 bool isLegalMaskedScatter(Type *DataType, MaybeAlign Alignment) { 1219 return TTI.isLegalMaskedScatter(DataType, Alignment); 1220 } 1221 1222 /// Returns true if the target machine supports masked gather operation 1223 /// for the given \p DataType. 1224 bool isLegalMaskedGather(Type *DataType, MaybeAlign Alignment) { 1225 return TTI.isLegalMaskedGather(DataType, Alignment); 1226 } 1227 1228 /// Returns true if the target machine can represent \p V as a masked gather 1229 /// or scatter operation. 1230 bool isLegalGatherOrScatter(Value *V) { 1231 bool LI = isa<LoadInst>(V); 1232 bool SI = isa<StoreInst>(V); 1233 if (!LI && !SI) 1234 return false; 1235 auto *Ty = getMemInstValueType(V); 1236 MaybeAlign Align = getLoadStoreAlignment(V); 1237 return (LI && isLegalMaskedGather(Ty, Align)) || 1238 (SI && isLegalMaskedScatter(Ty, Align)); 1239 } 1240 1241 /// Returns true if \p I is an instruction that will be scalarized with 1242 /// predication. Such instructions include conditional stores and 1243 /// instructions that may divide by zero. 1244 /// If a non-zero VF has been calculated, we check if I will be scalarized 1245 /// predication for that VF. 1246 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1247 1248 // Returns true if \p I is an instruction that will be predicated either 1249 // through scalar predication or masked load/store or masked gather/scatter. 1250 // Superset of instructions that return true for isScalarWithPredication. 1251 bool isPredicatedInst(Instruction *I) { 1252 if (!blockNeedsPredication(I->getParent())) 1253 return false; 1254 // Loads and stores that need some form of masked operation are predicated 1255 // instructions. 1256 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1257 return Legal->isMaskRequired(I); 1258 return isScalarWithPredication(I); 1259 } 1260 1261 /// Returns true if \p I is a memory instruction with consecutive memory 1262 /// access that can be widened. 1263 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1264 1265 /// Returns true if \p I is a memory instruction in an interleaved-group 1266 /// of memory accesses that can be vectorized with wide vector loads/stores 1267 /// and shuffles. 1268 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1269 1270 /// Check if \p Instr belongs to any interleaved access group. 1271 bool isAccessInterleaved(Instruction *Instr) { 1272 return InterleaveInfo.isInterleaved(Instr); 1273 } 1274 1275 /// Get the interleaved access group that \p Instr belongs to. 1276 const InterleaveGroup<Instruction> * 1277 getInterleavedAccessGroup(Instruction *Instr) { 1278 return InterleaveInfo.getInterleaveGroup(Instr); 1279 } 1280 1281 /// Returns true if an interleaved group requires a scalar iteration 1282 /// to handle accesses with gaps, and there is nothing preventing us from 1283 /// creating a scalar epilogue. 1284 bool requiresScalarEpilogue() const { 1285 return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue(); 1286 } 1287 1288 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1289 /// loop hint annotation. 1290 bool isScalarEpilogueAllowed() const { 1291 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1292 } 1293 1294 /// Returns true if all loop blocks should be masked to fold tail loop. 1295 bool foldTailByMasking() const { return FoldTailByMasking; } 1296 1297 bool blockNeedsPredication(BasicBlock *BB) { 1298 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1299 } 1300 1301 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1302 /// with factor VF. Return the cost of the instruction, including 1303 /// scalarization overhead if it's needed. 1304 unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF); 1305 1306 /// Estimate cost of a call instruction CI if it were vectorized with factor 1307 /// VF. Return the cost of the instruction, including scalarization overhead 1308 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1309 /// scalarized - 1310 /// i.e. either vector version isn't available, or is too expensive. 1311 unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize); 1312 1313 /// Invalidates decisions already taken by the cost model. 1314 void invalidateCostModelingDecisions() { 1315 WideningDecisions.clear(); 1316 Uniforms.clear(); 1317 Scalars.clear(); 1318 } 1319 1320 private: 1321 unsigned NumPredStores = 0; 1322 1323 /// \return An upper bound for the vectorization factor, larger than zero. 1324 /// One is returned if vectorization should best be avoided due to cost. 1325 unsigned computeFeasibleMaxVF(unsigned ConstTripCount); 1326 1327 /// The vectorization cost is a combination of the cost itself and a boolean 1328 /// indicating whether any of the contributing operations will actually 1329 /// operate on 1330 /// vector values after type legalization in the backend. If this latter value 1331 /// is 1332 /// false, then all operations will be scalarized (i.e. no vectorization has 1333 /// actually taken place). 1334 using VectorizationCostTy = std::pair<unsigned, bool>; 1335 1336 /// Returns the expected execution cost. The unit of the cost does 1337 /// not matter because we use the 'cost' units to compare different 1338 /// vector widths. The cost that is returned is *not* normalized by 1339 /// the factor width. 1340 VectorizationCostTy expectedCost(unsigned VF); 1341 1342 /// Returns the execution time cost of an instruction for a given vector 1343 /// width. Vector width of one means scalar. 1344 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1345 1346 /// The cost-computation logic from getInstructionCost which provides 1347 /// the vector type as an output parameter. 1348 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1349 1350 /// Calculate vectorization cost of memory instruction \p I. 1351 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1352 1353 /// The cost computation for scalarized memory instruction. 1354 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1355 1356 /// The cost computation for interleaving group of memory instructions. 1357 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1358 1359 /// The cost computation for Gather/Scatter instruction. 1360 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1361 1362 /// The cost computation for widening instruction \p I with consecutive 1363 /// memory access. 1364 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1365 1366 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1367 /// Load: scalar load + broadcast. 1368 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1369 /// element) 1370 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1371 1372 /// Estimate the overhead of scalarizing an instruction. This is a 1373 /// convenience wrapper for the type-based getScalarizationOverhead API. 1374 unsigned getScalarizationOverhead(Instruction *I, unsigned VF); 1375 1376 /// Returns whether the instruction is a load or store and will be a emitted 1377 /// as a vector operation. 1378 bool isConsecutiveLoadOrStore(Instruction *I); 1379 1380 /// Returns true if an artificially high cost for emulated masked memrefs 1381 /// should be used. 1382 bool useEmulatedMaskMemRefHack(Instruction *I); 1383 1384 /// Map of scalar integer values to the smallest bitwidth they can be legally 1385 /// represented as. The vector equivalents of these values should be truncated 1386 /// to this type. 1387 MapVector<Instruction *, uint64_t> MinBWs; 1388 1389 /// A type representing the costs for instructions if they were to be 1390 /// scalarized rather than vectorized. The entries are Instruction-Cost 1391 /// pairs. 1392 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1393 1394 /// A set containing all BasicBlocks that are known to present after 1395 /// vectorization as a predicated block. 1396 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1397 1398 /// Records whether it is allowed to have the original scalar loop execute at 1399 /// least once. This may be needed as a fallback loop in case runtime 1400 /// aliasing/dependence checks fail, or to handle the tail/remainder 1401 /// iterations when the trip count is unknown or doesn't divide by the VF, 1402 /// or as a peel-loop to handle gaps in interleave-groups. 1403 /// Under optsize and when the trip count is very small we don't allow any 1404 /// iterations to execute in the scalar loop. 1405 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1406 1407 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1408 bool FoldTailByMasking = false; 1409 1410 /// A map holding scalar costs for different vectorization factors. The 1411 /// presence of a cost for an instruction in the mapping indicates that the 1412 /// instruction will be scalarized when vectorizing with the associated 1413 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1414 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1415 1416 /// Holds the instructions known to be uniform after vectorization. 1417 /// The data is collected per VF. 1418 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1419 1420 /// Holds the instructions known to be scalar after vectorization. 1421 /// The data is collected per VF. 1422 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1423 1424 /// Holds the instructions (address computations) that are forced to be 1425 /// scalarized. 1426 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1427 1428 /// Returns the expected difference in cost from scalarizing the expression 1429 /// feeding a predicated instruction \p PredInst. The instructions to 1430 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1431 /// non-negative return value implies the expression will be scalarized. 1432 /// Currently, only single-use chains are considered for scalarization. 1433 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1434 unsigned VF); 1435 1436 /// Collect the instructions that are uniform after vectorization. An 1437 /// instruction is uniform if we represent it with a single scalar value in 1438 /// the vectorized loop corresponding to each vector iteration. Examples of 1439 /// uniform instructions include pointer operands of consecutive or 1440 /// interleaved memory accesses. Note that although uniformity implies an 1441 /// instruction will be scalar, the reverse is not true. In general, a 1442 /// scalarized instruction will be represented by VF scalar values in the 1443 /// vectorized loop, each corresponding to an iteration of the original 1444 /// scalar loop. 1445 void collectLoopUniforms(unsigned VF); 1446 1447 /// Collect the instructions that are scalar after vectorization. An 1448 /// instruction is scalar if it is known to be uniform or will be scalarized 1449 /// during vectorization. Non-uniform scalarized instructions will be 1450 /// represented by VF values in the vectorized loop, each corresponding to an 1451 /// iteration of the original scalar loop. 1452 void collectLoopScalars(unsigned VF); 1453 1454 /// Keeps cost model vectorization decision and cost for instructions. 1455 /// Right now it is used for memory instructions only. 1456 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1457 std::pair<InstWidening, unsigned>>; 1458 1459 DecisionList WideningDecisions; 1460 1461 /// Returns true if \p V is expected to be vectorized and it needs to be 1462 /// extracted. 1463 bool needsExtract(Value *V, unsigned VF) const { 1464 Instruction *I = dyn_cast<Instruction>(V); 1465 if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I)) 1466 return false; 1467 1468 // Assume we can vectorize V (and hence we need extraction) if the 1469 // scalars are not computed yet. This can happen, because it is called 1470 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1471 // the scalars are collected. That should be a safe assumption in most 1472 // cases, because we check if the operands have vectorizable types 1473 // beforehand in LoopVectorizationLegality. 1474 return Scalars.find(VF) == Scalars.end() || 1475 !isScalarAfterVectorization(I, VF); 1476 }; 1477 1478 /// Returns a range containing only operands needing to be extracted. 1479 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1480 unsigned VF) { 1481 return SmallVector<Value *, 4>(make_filter_range( 1482 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1483 } 1484 1485 public: 1486 /// The loop that we evaluate. 1487 Loop *TheLoop; 1488 1489 /// Predicated scalar evolution analysis. 1490 PredicatedScalarEvolution &PSE; 1491 1492 /// Loop Info analysis. 1493 LoopInfo *LI; 1494 1495 /// Vectorization legality. 1496 LoopVectorizationLegality *Legal; 1497 1498 /// Vector target information. 1499 const TargetTransformInfo &TTI; 1500 1501 /// Target Library Info. 1502 const TargetLibraryInfo *TLI; 1503 1504 /// Demanded bits analysis. 1505 DemandedBits *DB; 1506 1507 /// Assumption cache. 1508 AssumptionCache *AC; 1509 1510 /// Interface to emit optimization remarks. 1511 OptimizationRemarkEmitter *ORE; 1512 1513 const Function *TheFunction; 1514 1515 /// Loop Vectorize Hint. 1516 const LoopVectorizeHints *Hints; 1517 1518 /// The interleave access information contains groups of interleaved accesses 1519 /// with the same stride and close to each other. 1520 InterleavedAccessInfo &InterleaveInfo; 1521 1522 /// Values to ignore in the cost model. 1523 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1524 1525 /// Values to ignore in the cost model when VF > 1. 1526 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1527 }; 1528 1529 } // end namespace llvm 1530 1531 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1532 // vectorization. The loop needs to be annotated with #pragma omp simd 1533 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1534 // vector length information is not provided, vectorization is not considered 1535 // explicit. Interleave hints are not allowed either. These limitations will be 1536 // relaxed in the future. 1537 // Please, note that we are currently forced to abuse the pragma 'clang 1538 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1539 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1540 // provides *explicit vectorization hints* (LV can bypass legal checks and 1541 // assume that vectorization is legal). However, both hints are implemented 1542 // using the same metadata (llvm.loop.vectorize, processed by 1543 // LoopVectorizeHints). This will be fixed in the future when the native IR 1544 // representation for pragma 'omp simd' is introduced. 1545 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1546 OptimizationRemarkEmitter *ORE) { 1547 assert(!OuterLp->empty() && "This is not an outer loop"); 1548 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1549 1550 // Only outer loops with an explicit vectorization hint are supported. 1551 // Unannotated outer loops are ignored. 1552 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1553 return false; 1554 1555 Function *Fn = OuterLp->getHeader()->getParent(); 1556 if (!Hints.allowVectorization(Fn, OuterLp, 1557 true /*VectorizeOnlyWhenForced*/)) { 1558 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1559 return false; 1560 } 1561 1562 if (Hints.getInterleave() > 1) { 1563 // TODO: Interleave support is future work. 1564 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1565 "outer loops.\n"); 1566 Hints.emitRemarkWithHints(); 1567 return false; 1568 } 1569 1570 return true; 1571 } 1572 1573 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1574 OptimizationRemarkEmitter *ORE, 1575 SmallVectorImpl<Loop *> &V) { 1576 // Collect inner loops and outer loops without irreducible control flow. For 1577 // now, only collect outer loops that have explicit vectorization hints. If we 1578 // are stress testing the VPlan H-CFG construction, we collect the outermost 1579 // loop of every loop nest. 1580 if (L.empty() || VPlanBuildStressTest || 1581 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1582 LoopBlocksRPO RPOT(&L); 1583 RPOT.perform(LI); 1584 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1585 V.push_back(&L); 1586 // TODO: Collect inner loops inside marked outer loops in case 1587 // vectorization fails for the outer loop. Do not invoke 1588 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1589 // already known to be reducible. We can use an inherited attribute for 1590 // that. 1591 return; 1592 } 1593 } 1594 for (Loop *InnerL : L) 1595 collectSupportedLoops(*InnerL, LI, ORE, V); 1596 } 1597 1598 namespace { 1599 1600 /// The LoopVectorize Pass. 1601 struct LoopVectorize : public FunctionPass { 1602 /// Pass identification, replacement for typeid 1603 static char ID; 1604 1605 LoopVectorizePass Impl; 1606 1607 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1608 bool VectorizeOnlyWhenForced = false) 1609 : FunctionPass(ID), 1610 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 1611 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1612 } 1613 1614 bool runOnFunction(Function &F) override { 1615 if (skipFunction(F)) 1616 return false; 1617 1618 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1619 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1620 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1621 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1622 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1623 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1624 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1625 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1626 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1627 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1628 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1629 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1630 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1631 1632 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1633 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1634 1635 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1636 GetLAA, *ORE, PSI).MadeAnyChange; 1637 } 1638 1639 void getAnalysisUsage(AnalysisUsage &AU) const override { 1640 AU.addRequired<AssumptionCacheTracker>(); 1641 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1642 AU.addRequired<DominatorTreeWrapperPass>(); 1643 AU.addRequired<LoopInfoWrapperPass>(); 1644 AU.addRequired<ScalarEvolutionWrapperPass>(); 1645 AU.addRequired<TargetTransformInfoWrapperPass>(); 1646 AU.addRequired<AAResultsWrapperPass>(); 1647 AU.addRequired<LoopAccessLegacyAnalysis>(); 1648 AU.addRequired<DemandedBitsWrapperPass>(); 1649 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1650 AU.addRequired<InjectTLIMappingsLegacy>(); 1651 1652 // We currently do not preserve loopinfo/dominator analyses with outer loop 1653 // vectorization. Until this is addressed, mark these analyses as preserved 1654 // only for non-VPlan-native path. 1655 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1656 if (!EnableVPlanNativePath) { 1657 AU.addPreserved<LoopInfoWrapperPass>(); 1658 AU.addPreserved<DominatorTreeWrapperPass>(); 1659 } 1660 1661 AU.addPreserved<BasicAAWrapperPass>(); 1662 AU.addPreserved<GlobalsAAWrapperPass>(); 1663 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1664 } 1665 }; 1666 1667 } // end anonymous namespace 1668 1669 //===----------------------------------------------------------------------===// 1670 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1671 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1672 //===----------------------------------------------------------------------===// 1673 1674 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1675 // We need to place the broadcast of invariant variables outside the loop, 1676 // but only if it's proven safe to do so. Else, broadcast will be inside 1677 // vector loop body. 1678 Instruction *Instr = dyn_cast<Instruction>(V); 1679 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1680 (!Instr || 1681 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1682 // Place the code for broadcasting invariant variables in the new preheader. 1683 IRBuilder<>::InsertPointGuard Guard(Builder); 1684 if (SafeToHoist) 1685 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1686 1687 // Broadcast the scalar into all locations in the vector. 1688 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1689 1690 return Shuf; 1691 } 1692 1693 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1694 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1695 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1696 "Expected either an induction phi-node or a truncate of it!"); 1697 Value *Start = II.getStartValue(); 1698 1699 // Construct the initial value of the vector IV in the vector loop preheader 1700 auto CurrIP = Builder.saveIP(); 1701 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1702 if (isa<TruncInst>(EntryVal)) { 1703 assert(Start->getType()->isIntegerTy() && 1704 "Truncation requires an integer type"); 1705 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1706 Step = Builder.CreateTrunc(Step, TruncType); 1707 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1708 } 1709 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1710 Value *SteppedStart = 1711 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1712 1713 // We create vector phi nodes for both integer and floating-point induction 1714 // variables. Here, we determine the kind of arithmetic we will perform. 1715 Instruction::BinaryOps AddOp; 1716 Instruction::BinaryOps MulOp; 1717 if (Step->getType()->isIntegerTy()) { 1718 AddOp = Instruction::Add; 1719 MulOp = Instruction::Mul; 1720 } else { 1721 AddOp = II.getInductionOpcode(); 1722 MulOp = Instruction::FMul; 1723 } 1724 1725 // Multiply the vectorization factor by the step using integer or 1726 // floating-point arithmetic as appropriate. 1727 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1728 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1729 1730 // Create a vector splat to use in the induction update. 1731 // 1732 // FIXME: If the step is non-constant, we create the vector splat with 1733 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1734 // handle a constant vector splat. 1735 Value *SplatVF = 1736 isa<Constant>(Mul) 1737 ? ConstantVector::getSplat({VF, false}, cast<Constant>(Mul)) 1738 : Builder.CreateVectorSplat(VF, Mul); 1739 Builder.restoreIP(CurrIP); 1740 1741 // We may need to add the step a number of times, depending on the unroll 1742 // factor. The last of those goes into the PHI. 1743 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1744 &*LoopVectorBody->getFirstInsertionPt()); 1745 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1746 Instruction *LastInduction = VecInd; 1747 for (unsigned Part = 0; Part < UF; ++Part) { 1748 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1749 1750 if (isa<TruncInst>(EntryVal)) 1751 addMetadata(LastInduction, EntryVal); 1752 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1753 1754 LastInduction = cast<Instruction>(addFastMathFlag( 1755 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1756 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1757 } 1758 1759 // Move the last step to the end of the latch block. This ensures consistent 1760 // placement of all induction updates. 1761 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1762 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1763 auto *ICmp = cast<Instruction>(Br->getCondition()); 1764 LastInduction->moveBefore(ICmp); 1765 LastInduction->setName("vec.ind.next"); 1766 1767 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1768 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1769 } 1770 1771 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1772 return Cost->isScalarAfterVectorization(I, VF) || 1773 Cost->isProfitableToScalarize(I, VF); 1774 } 1775 1776 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1777 if (shouldScalarizeInstruction(IV)) 1778 return true; 1779 auto isScalarInst = [&](User *U) -> bool { 1780 auto *I = cast<Instruction>(U); 1781 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1782 }; 1783 return llvm::any_of(IV->users(), isScalarInst); 1784 } 1785 1786 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1787 const InductionDescriptor &ID, const Instruction *EntryVal, 1788 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1789 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1790 "Expected either an induction phi-node or a truncate of it!"); 1791 1792 // This induction variable is not the phi from the original loop but the 1793 // newly-created IV based on the proof that casted Phi is equal to the 1794 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1795 // re-uses the same InductionDescriptor that original IV uses but we don't 1796 // have to do any recording in this case - that is done when original IV is 1797 // processed. 1798 if (isa<TruncInst>(EntryVal)) 1799 return; 1800 1801 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1802 if (Casts.empty()) 1803 return; 1804 // Only the first Cast instruction in the Casts vector is of interest. 1805 // The rest of the Casts (if exist) have no uses outside the 1806 // induction update chain itself. 1807 Instruction *CastInst = *Casts.begin(); 1808 if (Lane < UINT_MAX) 1809 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1810 else 1811 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1812 } 1813 1814 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1815 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1816 "Primary induction variable must have an integer type"); 1817 1818 auto II = Legal->getInductionVars().find(IV); 1819 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 1820 1821 auto ID = II->second; 1822 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1823 1824 // The value from the original loop to which we are mapping the new induction 1825 // variable. 1826 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1827 1828 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1829 1830 // Generate code for the induction step. Note that induction steps are 1831 // required to be loop-invariant 1832 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 1833 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 1834 "Induction step should be loop invariant"); 1835 if (PSE.getSE()->isSCEVable(IV->getType())) { 1836 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1837 return Exp.expandCodeFor(Step, Step->getType(), 1838 LoopVectorPreHeader->getTerminator()); 1839 } 1840 return cast<SCEVUnknown>(Step)->getValue(); 1841 }; 1842 1843 // The scalar value to broadcast. This is derived from the canonical 1844 // induction variable. If a truncation type is given, truncate the canonical 1845 // induction variable and step. Otherwise, derive these values from the 1846 // induction descriptor. 1847 auto CreateScalarIV = [&](Value *&Step) -> Value * { 1848 Value *ScalarIV = Induction; 1849 if (IV != OldInduction) { 1850 ScalarIV = IV->getType()->isIntegerTy() 1851 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1852 : Builder.CreateCast(Instruction::SIToFP, Induction, 1853 IV->getType()); 1854 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1855 ScalarIV->setName("offset.idx"); 1856 } 1857 if (Trunc) { 1858 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1859 assert(Step->getType()->isIntegerTy() && 1860 "Truncation requires an integer step"); 1861 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1862 Step = Builder.CreateTrunc(Step, TruncType); 1863 } 1864 return ScalarIV; 1865 }; 1866 1867 // Create the vector values from the scalar IV, in the absence of creating a 1868 // vector IV. 1869 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 1870 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1871 for (unsigned Part = 0; Part < UF; ++Part) { 1872 Value *EntryPart = 1873 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1874 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1875 if (Trunc) 1876 addMetadata(EntryPart, Trunc); 1877 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1878 } 1879 }; 1880 1881 // Now do the actual transformations, and start with creating the step value. 1882 Value *Step = CreateStepValue(ID.getStep()); 1883 if (VF <= 1) { 1884 Value *ScalarIV = CreateScalarIV(Step); 1885 CreateSplatIV(ScalarIV, Step); 1886 return; 1887 } 1888 1889 // Determine if we want a scalar version of the induction variable. This is 1890 // true if the induction variable itself is not widened, or if it has at 1891 // least one user in the loop that is not widened. 1892 auto NeedsScalarIV = needsScalarInduction(EntryVal); 1893 if (!NeedsScalarIV) { 1894 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1895 return; 1896 } 1897 1898 // Try to create a new independent vector induction variable. If we can't 1899 // create the phi node, we will splat the scalar induction variable in each 1900 // loop iteration. 1901 if (!shouldScalarizeInstruction(EntryVal)) { 1902 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1903 Value *ScalarIV = CreateScalarIV(Step); 1904 // Create scalar steps that can be used by instructions we will later 1905 // scalarize. Note that the addition of the scalar steps will not increase 1906 // the number of instructions in the loop in the common case prior to 1907 // InstCombine. We will be trading one vector extract for each scalar step. 1908 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1909 return; 1910 } 1911 1912 // All IV users are scalar instructions, so only emit a scalar IV, not a 1913 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 1914 // predicate used by the masked loads/stores. 1915 Value *ScalarIV = CreateScalarIV(Step); 1916 if (!Cost->isScalarEpilogueAllowed()) 1917 CreateSplatIV(ScalarIV, Step); 1918 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1919 } 1920 1921 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1922 Instruction::BinaryOps BinOp) { 1923 // Create and check the types. 1924 auto *ValVTy = cast<VectorType>(Val->getType()); 1925 int VLen = ValVTy->getNumElements(); 1926 1927 Type *STy = Val->getType()->getScalarType(); 1928 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1929 "Induction Step must be an integer or FP"); 1930 assert(Step->getType() == STy && "Step has wrong type"); 1931 1932 SmallVector<Constant *, 8> Indices; 1933 1934 if (STy->isIntegerTy()) { 1935 // Create a vector of consecutive numbers from zero to VF. 1936 for (int i = 0; i < VLen; ++i) 1937 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1938 1939 // Add the consecutive indices to the vector value. 1940 Constant *Cv = ConstantVector::get(Indices); 1941 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1942 Step = Builder.CreateVectorSplat(VLen, Step); 1943 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1944 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1945 // which can be found from the original scalar operations. 1946 Step = Builder.CreateMul(Cv, Step); 1947 return Builder.CreateAdd(Val, Step, "induction"); 1948 } 1949 1950 // Floating point induction. 1951 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1952 "Binary Opcode should be specified for FP induction"); 1953 // Create a vector of consecutive numbers from zero to VF. 1954 for (int i = 0; i < VLen; ++i) 1955 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1956 1957 // Add the consecutive indices to the vector value. 1958 Constant *Cv = ConstantVector::get(Indices); 1959 1960 Step = Builder.CreateVectorSplat(VLen, Step); 1961 1962 // Floating point operations had to be 'fast' to enable the induction. 1963 FastMathFlags Flags; 1964 Flags.setFast(); 1965 1966 Value *MulOp = Builder.CreateFMul(Cv, Step); 1967 if (isa<Instruction>(MulOp)) 1968 // Have to check, MulOp may be a constant 1969 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1970 1971 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1972 if (isa<Instruction>(BOp)) 1973 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1974 return BOp; 1975 } 1976 1977 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1978 Instruction *EntryVal, 1979 const InductionDescriptor &ID) { 1980 // We shouldn't have to build scalar steps if we aren't vectorizing. 1981 assert(VF > 1 && "VF should be greater than one"); 1982 1983 // Get the value type and ensure it and the step have the same integer type. 1984 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1985 assert(ScalarIVTy == Step->getType() && 1986 "Val and Step should have the same type"); 1987 1988 // We build scalar steps for both integer and floating-point induction 1989 // variables. Here, we determine the kind of arithmetic we will perform. 1990 Instruction::BinaryOps AddOp; 1991 Instruction::BinaryOps MulOp; 1992 if (ScalarIVTy->isIntegerTy()) { 1993 AddOp = Instruction::Add; 1994 MulOp = Instruction::Mul; 1995 } else { 1996 AddOp = ID.getInductionOpcode(); 1997 MulOp = Instruction::FMul; 1998 } 1999 2000 // Determine the number of scalars we need to generate for each unroll 2001 // iteration. If EntryVal is uniform, we only need to generate the first 2002 // lane. Otherwise, we generate all VF values. 2003 unsigned Lanes = 2004 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2005 : VF; 2006 // Compute the scalar steps and save the results in VectorLoopValueMap. 2007 for (unsigned Part = 0; Part < UF; ++Part) { 2008 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2009 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2010 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2011 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2012 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2013 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 2014 } 2015 } 2016 } 2017 2018 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2019 assert(V != Induction && "The new induction variable should not be used."); 2020 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2021 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2022 2023 // If we have a stride that is replaced by one, do it here. Defer this for 2024 // the VPlan-native path until we start running Legal checks in that path. 2025 if (!EnableVPlanNativePath && Legal->hasStride(V)) 2026 V = ConstantInt::get(V->getType(), 1); 2027 2028 // If we have a vector mapped to this value, return it. 2029 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2030 return VectorLoopValueMap.getVectorValue(V, Part); 2031 2032 // If the value has not been vectorized, check if it has been scalarized 2033 // instead. If it has been scalarized, and we actually need the value in 2034 // vector form, we will construct the vector values on demand. 2035 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2036 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2037 2038 // If we've scalarized a value, that value should be an instruction. 2039 auto *I = cast<Instruction>(V); 2040 2041 // If we aren't vectorizing, we can just copy the scalar map values over to 2042 // the vector map. 2043 if (VF == 1) { 2044 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2045 return ScalarValue; 2046 } 2047 2048 // Get the last scalar instruction we generated for V and Part. If the value 2049 // is known to be uniform after vectorization, this corresponds to lane zero 2050 // of the Part unroll iteration. Otherwise, the last instruction is the one 2051 // we created for the last vector lane of the Part unroll iteration. 2052 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2053 auto *LastInst = cast<Instruction>( 2054 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2055 2056 // Set the insert point after the last scalarized instruction. This ensures 2057 // the insertelement sequence will directly follow the scalar definitions. 2058 auto OldIP = Builder.saveIP(); 2059 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2060 Builder.SetInsertPoint(&*NewIP); 2061 2062 // However, if we are vectorizing, we need to construct the vector values. 2063 // If the value is known to be uniform after vectorization, we can just 2064 // broadcast the scalar value corresponding to lane zero for each unroll 2065 // iteration. Otherwise, we construct the vector values using insertelement 2066 // instructions. Since the resulting vectors are stored in 2067 // VectorLoopValueMap, we will only generate the insertelements once. 2068 Value *VectorValue = nullptr; 2069 if (Cost->isUniformAfterVectorization(I, VF)) { 2070 VectorValue = getBroadcastInstrs(ScalarValue); 2071 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2072 } else { 2073 // Initialize packing with insertelements to start from undef. 2074 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2075 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2076 for (unsigned Lane = 0; Lane < VF; ++Lane) 2077 packScalarIntoVectorValue(V, {Part, Lane}); 2078 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2079 } 2080 Builder.restoreIP(OldIP); 2081 return VectorValue; 2082 } 2083 2084 // If this scalar is unknown, assume that it is a constant or that it is 2085 // loop invariant. Broadcast V and save the value for future uses. 2086 Value *B = getBroadcastInstrs(V); 2087 VectorLoopValueMap.setVectorValue(V, Part, B); 2088 return B; 2089 } 2090 2091 Value * 2092 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2093 const VPIteration &Instance) { 2094 // If the value is not an instruction contained in the loop, it should 2095 // already be scalar. 2096 if (OrigLoop->isLoopInvariant(V)) 2097 return V; 2098 2099 assert(Instance.Lane > 0 2100 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2101 : true && "Uniform values only have lane zero"); 2102 2103 // If the value from the original loop has not been vectorized, it is 2104 // represented by UF x VF scalar values in the new loop. Return the requested 2105 // scalar value. 2106 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2107 return VectorLoopValueMap.getScalarValue(V, Instance); 2108 2109 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2110 // for the given unroll part. If this entry is not a vector type (i.e., the 2111 // vectorization factor is one), there is no need to generate an 2112 // extractelement instruction. 2113 auto *U = getOrCreateVectorValue(V, Instance.Part); 2114 if (!U->getType()->isVectorTy()) { 2115 assert(VF == 1 && "Value not scalarized has non-vector type"); 2116 return U; 2117 } 2118 2119 // Otherwise, the value from the original loop has been vectorized and is 2120 // represented by UF vector values. Extract and return the requested scalar 2121 // value from the appropriate vector lane. 2122 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2123 } 2124 2125 void InnerLoopVectorizer::packScalarIntoVectorValue( 2126 Value *V, const VPIteration &Instance) { 2127 assert(V != Induction && "The new induction variable should not be used."); 2128 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2129 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2130 2131 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2132 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2133 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2134 Builder.getInt32(Instance.Lane)); 2135 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2136 } 2137 2138 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2139 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2140 SmallVector<int, 8> ShuffleMask; 2141 for (unsigned i = 0; i < VF; ++i) 2142 ShuffleMask.push_back(VF - i - 1); 2143 2144 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2145 ShuffleMask, "reverse"); 2146 } 2147 2148 // Return whether we allow using masked interleave-groups (for dealing with 2149 // strided loads/stores that reside in predicated blocks, or for dealing 2150 // with gaps). 2151 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2152 // If an override option has been passed in for interleaved accesses, use it. 2153 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2154 return EnableMaskedInterleavedMemAccesses; 2155 2156 return TTI.enableMaskedInterleavedAccessVectorization(); 2157 } 2158 2159 // Try to vectorize the interleave group that \p Instr belongs to. 2160 // 2161 // E.g. Translate following interleaved load group (factor = 3): 2162 // for (i = 0; i < N; i+=3) { 2163 // R = Pic[i]; // Member of index 0 2164 // G = Pic[i+1]; // Member of index 1 2165 // B = Pic[i+2]; // Member of index 2 2166 // ... // do something to R, G, B 2167 // } 2168 // To: 2169 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2170 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2171 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2172 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2173 // 2174 // Or translate following interleaved store group (factor = 3): 2175 // for (i = 0; i < N; i+=3) { 2176 // ... do something to R, G, B 2177 // Pic[i] = R; // Member of index 0 2178 // Pic[i+1] = G; // Member of index 1 2179 // Pic[i+2] = B; // Member of index 2 2180 // } 2181 // To: 2182 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2183 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2184 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2185 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2186 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2187 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2188 const InterleaveGroup<Instruction> *Group, VPTransformState &State, 2189 VPValue *Addr, VPValue *BlockInMask) { 2190 Instruction *Instr = Group->getInsertPos(); 2191 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2192 2193 // Prepare for the vector type of the interleaved load/store. 2194 Type *ScalarTy = getMemInstValueType(Instr); 2195 unsigned InterleaveFactor = Group->getFactor(); 2196 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2197 2198 // Prepare for the new pointers. 2199 SmallVector<Value *, 2> AddrParts; 2200 unsigned Index = Group->getIndex(Instr); 2201 2202 // TODO: extend the masked interleaved-group support to reversed access. 2203 assert((!BlockInMask || !Group->isReverse()) && 2204 "Reversed masked interleave-group not supported."); 2205 2206 // If the group is reverse, adjust the index to refer to the last vector lane 2207 // instead of the first. We adjust the index from the first vector lane, 2208 // rather than directly getting the pointer for lane VF - 1, because the 2209 // pointer operand of the interleaved access is supposed to be uniform. For 2210 // uniform instructions, we're only required to generate a value for the 2211 // first vector lane in each unroll iteration. 2212 if (Group->isReverse()) 2213 Index += (VF - 1) * Group->getFactor(); 2214 2215 for (unsigned Part = 0; Part < UF; Part++) { 2216 Value *AddrPart = State.get(Addr, {Part, 0}); 2217 setDebugLocFromInst(Builder, AddrPart); 2218 2219 // Notice current instruction could be any index. Need to adjust the address 2220 // to the member of index 0. 2221 // 2222 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2223 // b = A[i]; // Member of index 0 2224 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2225 // 2226 // E.g. A[i+1] = a; // Member of index 1 2227 // A[i] = b; // Member of index 0 2228 // A[i+2] = c; // Member of index 2 (Current instruction) 2229 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2230 2231 bool InBounds = false; 2232 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2233 InBounds = gep->isInBounds(); 2234 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2235 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2236 2237 // Cast to the vector pointer type. 2238 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2239 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2240 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2241 } 2242 2243 setDebugLocFromInst(Builder, Instr); 2244 Value *UndefVec = UndefValue::get(VecTy); 2245 2246 Value *MaskForGaps = nullptr; 2247 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2248 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2249 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2250 } 2251 2252 // Vectorize the interleaved load group. 2253 if (isa<LoadInst>(Instr)) { 2254 // For each unroll part, create a wide load for the group. 2255 SmallVector<Value *, 2> NewLoads; 2256 for (unsigned Part = 0; Part < UF; Part++) { 2257 Instruction *NewLoad; 2258 if (BlockInMask || MaskForGaps) { 2259 assert(useMaskedInterleavedAccesses(*TTI) && 2260 "masked interleaved groups are not allowed."); 2261 Value *GroupMask = MaskForGaps; 2262 if (BlockInMask) { 2263 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2264 auto *Undefs = UndefValue::get(BlockInMaskPart->getType()); 2265 Value *ShuffledMask = Builder.CreateShuffleVector( 2266 BlockInMaskPart, Undefs, 2267 createReplicatedMask(InterleaveFactor, VF), "interleaved.mask"); 2268 GroupMask = MaskForGaps 2269 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2270 MaskForGaps) 2271 : ShuffledMask; 2272 } 2273 NewLoad = 2274 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2275 GroupMask, UndefVec, "wide.masked.vec"); 2276 } 2277 else 2278 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2279 Group->getAlign(), "wide.vec"); 2280 Group->addMetadata(NewLoad); 2281 NewLoads.push_back(NewLoad); 2282 } 2283 2284 // For each member in the group, shuffle out the appropriate data from the 2285 // wide loads. 2286 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2287 Instruction *Member = Group->getMember(I); 2288 2289 // Skip the gaps in the group. 2290 if (!Member) 2291 continue; 2292 2293 auto StrideMask = createStrideMask(I, InterleaveFactor, VF); 2294 for (unsigned Part = 0; Part < UF; Part++) { 2295 Value *StridedVec = Builder.CreateShuffleVector( 2296 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2297 2298 // If this member has different type, cast the result type. 2299 if (Member->getType() != ScalarTy) { 2300 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2301 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2302 } 2303 2304 if (Group->isReverse()) 2305 StridedVec = reverseVector(StridedVec); 2306 2307 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2308 } 2309 } 2310 return; 2311 } 2312 2313 // The sub vector type for current instruction. 2314 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2315 2316 // Vectorize the interleaved store group. 2317 for (unsigned Part = 0; Part < UF; Part++) { 2318 // Collect the stored vector from each member. 2319 SmallVector<Value *, 4> StoredVecs; 2320 for (unsigned i = 0; i < InterleaveFactor; i++) { 2321 // Interleaved store group doesn't allow a gap, so each index has a member 2322 Instruction *Member = Group->getMember(i); 2323 assert(Member && "Fail to get a member from an interleaved store group"); 2324 2325 Value *StoredVec = getOrCreateVectorValue( 2326 cast<StoreInst>(Member)->getValueOperand(), Part); 2327 if (Group->isReverse()) 2328 StoredVec = reverseVector(StoredVec); 2329 2330 // If this member has different type, cast it to a unified type. 2331 2332 if (StoredVec->getType() != SubVT) 2333 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2334 2335 StoredVecs.push_back(StoredVec); 2336 } 2337 2338 // Concatenate all vectors into a wide vector. 2339 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2340 2341 // Interleave the elements in the wide vector. 2342 Value *IVec = Builder.CreateShuffleVector( 2343 WideVec, UndefVec, createInterleaveMask(VF, InterleaveFactor), 2344 "interleaved.vec"); 2345 2346 Instruction *NewStoreInstr; 2347 if (BlockInMask) { 2348 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2349 auto *Undefs = UndefValue::get(BlockInMaskPart->getType()); 2350 Value *ShuffledMask = Builder.CreateShuffleVector( 2351 BlockInMaskPart, Undefs, createReplicatedMask(InterleaveFactor, VF), 2352 "interleaved.mask"); 2353 NewStoreInstr = Builder.CreateMaskedStore( 2354 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2355 } 2356 else 2357 NewStoreInstr = 2358 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2359 2360 Group->addMetadata(NewStoreInstr); 2361 } 2362 } 2363 2364 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2365 VPTransformState &State, 2366 VPValue *Addr, 2367 VPValue *StoredValue, 2368 VPValue *BlockInMask) { 2369 // Attempt to issue a wide load. 2370 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2371 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2372 2373 assert((LI || SI) && "Invalid Load/Store instruction"); 2374 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2375 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2376 2377 LoopVectorizationCostModel::InstWidening Decision = 2378 Cost->getWideningDecision(Instr, VF); 2379 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2380 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2381 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2382 "CM decision is not to widen the memory instruction"); 2383 2384 Type *ScalarDataTy = getMemInstValueType(Instr); 2385 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2386 // An alignment of 0 means target abi alignment. We need to use the scalar's 2387 // target abi alignment in such a case. 2388 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2389 const Align Alignment = 2390 DL.getValueOrABITypeAlignment(getLoadStoreAlignment(Instr), ScalarDataTy); 2391 2392 // Determine if the pointer operand of the access is either consecutive or 2393 // reverse consecutive. 2394 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2395 bool ConsecutiveStride = 2396 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2397 bool CreateGatherScatter = 2398 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2399 2400 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2401 // gather/scatter. Otherwise Decision should have been to Scalarize. 2402 assert((ConsecutiveStride || CreateGatherScatter) && 2403 "The instruction should be scalarized"); 2404 (void)ConsecutiveStride; 2405 2406 VectorParts BlockInMaskParts(UF); 2407 bool isMaskRequired = BlockInMask; 2408 if (isMaskRequired) 2409 for (unsigned Part = 0; Part < UF; ++Part) 2410 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2411 2412 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2413 // Calculate the pointer for the specific unroll-part. 2414 GetElementPtrInst *PartPtr = nullptr; 2415 2416 bool InBounds = false; 2417 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2418 InBounds = gep->isInBounds(); 2419 2420 if (Reverse) { 2421 // If the address is consecutive but reversed, then the 2422 // wide store needs to start at the last vector element. 2423 PartPtr = cast<GetElementPtrInst>( 2424 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF))); 2425 PartPtr->setIsInBounds(InBounds); 2426 PartPtr = cast<GetElementPtrInst>( 2427 Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF))); 2428 PartPtr->setIsInBounds(InBounds); 2429 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2430 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2431 } else { 2432 PartPtr = cast<GetElementPtrInst>( 2433 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF))); 2434 PartPtr->setIsInBounds(InBounds); 2435 } 2436 2437 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2438 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2439 }; 2440 2441 // Handle Stores: 2442 if (SI) { 2443 setDebugLocFromInst(Builder, SI); 2444 2445 for (unsigned Part = 0; Part < UF; ++Part) { 2446 Instruction *NewSI = nullptr; 2447 Value *StoredVal = State.get(StoredValue, Part); 2448 if (CreateGatherScatter) { 2449 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2450 Value *VectorGep = State.get(Addr, Part); 2451 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2452 MaskPart); 2453 } else { 2454 if (Reverse) { 2455 // If we store to reverse consecutive memory locations, then we need 2456 // to reverse the order of elements in the stored value. 2457 StoredVal = reverseVector(StoredVal); 2458 // We don't want to update the value in the map as it might be used in 2459 // another expression. So don't call resetVectorValue(StoredVal). 2460 } 2461 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2462 if (isMaskRequired) 2463 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2464 BlockInMaskParts[Part]); 2465 else 2466 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2467 } 2468 addMetadata(NewSI, SI); 2469 } 2470 return; 2471 } 2472 2473 // Handle loads. 2474 assert(LI && "Must have a load instruction"); 2475 setDebugLocFromInst(Builder, LI); 2476 for (unsigned Part = 0; Part < UF; ++Part) { 2477 Value *NewLI; 2478 if (CreateGatherScatter) { 2479 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2480 Value *VectorGep = State.get(Addr, Part); 2481 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2482 nullptr, "wide.masked.gather"); 2483 addMetadata(NewLI, LI); 2484 } else { 2485 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2486 if (isMaskRequired) 2487 NewLI = Builder.CreateMaskedLoad( 2488 VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy), 2489 "wide.masked.load"); 2490 else 2491 NewLI = 2492 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2493 2494 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2495 addMetadata(NewLI, LI); 2496 if (Reverse) 2497 NewLI = reverseVector(NewLI); 2498 } 2499 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2500 } 2501 } 2502 2503 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2504 const VPIteration &Instance, 2505 bool IfPredicateInstr) { 2506 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2507 2508 setDebugLocFromInst(Builder, Instr); 2509 2510 // Does this instruction return a value ? 2511 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2512 2513 Instruction *Cloned = Instr->clone(); 2514 if (!IsVoidRetTy) 2515 Cloned->setName(Instr->getName() + ".cloned"); 2516 2517 // Replace the operands of the cloned instructions with their scalar 2518 // equivalents in the new loop. 2519 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2520 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 2521 Cloned->setOperand(op, NewOp); 2522 } 2523 addNewMetadata(Cloned, Instr); 2524 2525 // Place the cloned scalar in the new loop. 2526 Builder.Insert(Cloned); 2527 2528 // Add the cloned scalar to the scalar map entry. 2529 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2530 2531 // If we just cloned a new assumption, add it the assumption cache. 2532 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2533 if (II->getIntrinsicID() == Intrinsic::assume) 2534 AC->registerAssumption(II); 2535 2536 // End if-block. 2537 if (IfPredicateInstr) 2538 PredicatedInstructions.push_back(Cloned); 2539 } 2540 2541 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2542 Value *End, Value *Step, 2543 Instruction *DL) { 2544 BasicBlock *Header = L->getHeader(); 2545 BasicBlock *Latch = L->getLoopLatch(); 2546 // As we're just creating this loop, it's possible no latch exists 2547 // yet. If so, use the header as this will be a single block loop. 2548 if (!Latch) 2549 Latch = Header; 2550 2551 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2552 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2553 setDebugLocFromInst(Builder, OldInst); 2554 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2555 2556 Builder.SetInsertPoint(Latch->getTerminator()); 2557 setDebugLocFromInst(Builder, OldInst); 2558 2559 // Create i+1 and fill the PHINode. 2560 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2561 Induction->addIncoming(Start, L->getLoopPreheader()); 2562 Induction->addIncoming(Next, Latch); 2563 // Create the compare. 2564 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2565 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2566 2567 // Now we have two terminators. Remove the old one from the block. 2568 Latch->getTerminator()->eraseFromParent(); 2569 2570 return Induction; 2571 } 2572 2573 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2574 if (TripCount) 2575 return TripCount; 2576 2577 assert(L && "Create Trip Count for null loop."); 2578 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2579 // Find the loop boundaries. 2580 ScalarEvolution *SE = PSE.getSE(); 2581 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2582 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2583 "Invalid loop count"); 2584 2585 Type *IdxTy = Legal->getWidestInductionType(); 2586 assert(IdxTy && "No type for induction"); 2587 2588 // The exit count might have the type of i64 while the phi is i32. This can 2589 // happen if we have an induction variable that is sign extended before the 2590 // compare. The only way that we get a backedge taken count is that the 2591 // induction variable was signed and as such will not overflow. In such a case 2592 // truncation is legal. 2593 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2594 IdxTy->getPrimitiveSizeInBits()) 2595 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2596 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2597 2598 // Get the total trip count from the count by adding 1. 2599 const SCEV *ExitCount = SE->getAddExpr( 2600 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2601 2602 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2603 2604 // Expand the trip count and place the new instructions in the preheader. 2605 // Notice that the pre-header does not change, only the loop body. 2606 SCEVExpander Exp(*SE, DL, "induction"); 2607 2608 // Count holds the overall loop count (N). 2609 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2610 L->getLoopPreheader()->getTerminator()); 2611 2612 if (TripCount->getType()->isPointerTy()) 2613 TripCount = 2614 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2615 L->getLoopPreheader()->getTerminator()); 2616 2617 return TripCount; 2618 } 2619 2620 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2621 if (VectorTripCount) 2622 return VectorTripCount; 2623 2624 Value *TC = getOrCreateTripCount(L); 2625 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2626 2627 Type *Ty = TC->getType(); 2628 Constant *Step = ConstantInt::get(Ty, VF * UF); 2629 2630 // If the tail is to be folded by masking, round the number of iterations N 2631 // up to a multiple of Step instead of rounding down. This is done by first 2632 // adding Step-1 and then rounding down. Note that it's ok if this addition 2633 // overflows: the vector induction variable will eventually wrap to zero given 2634 // that it starts at zero and its Step is a power of two; the loop will then 2635 // exit, with the last early-exit vector comparison also producing all-true. 2636 if (Cost->foldTailByMasking()) { 2637 assert(isPowerOf2_32(VF * UF) && 2638 "VF*UF must be a power of 2 when folding tail by masking"); 2639 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2640 } 2641 2642 // Now we need to generate the expression for the part of the loop that the 2643 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2644 // iterations are not required for correctness, or N - Step, otherwise. Step 2645 // is equal to the vectorization factor (number of SIMD elements) times the 2646 // unroll factor (number of SIMD instructions). 2647 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2648 2649 // If there is a non-reversed interleaved group that may speculatively access 2650 // memory out-of-bounds, we need to ensure that there will be at least one 2651 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2652 // the trip count, we set the remainder to be equal to the step. If the step 2653 // does not evenly divide the trip count, no adjustment is necessary since 2654 // there will already be scalar iterations. Note that the minimum iterations 2655 // check ensures that N >= Step. 2656 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2657 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2658 R = Builder.CreateSelect(IsZero, Step, R); 2659 } 2660 2661 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2662 2663 return VectorTripCount; 2664 } 2665 2666 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2667 const DataLayout &DL) { 2668 // Verify that V is a vector type with same number of elements as DstVTy. 2669 unsigned VF = DstVTy->getNumElements(); 2670 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2671 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2672 Type *SrcElemTy = SrcVecTy->getElementType(); 2673 Type *DstElemTy = DstVTy->getElementType(); 2674 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2675 "Vector elements must have same size"); 2676 2677 // Do a direct cast if element types are castable. 2678 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2679 return Builder.CreateBitOrPointerCast(V, DstVTy); 2680 } 2681 // V cannot be directly casted to desired vector type. 2682 // May happen when V is a floating point vector but DstVTy is a vector of 2683 // pointers or vice-versa. Handle this using a two-step bitcast using an 2684 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2685 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2686 "Only one type should be a pointer type"); 2687 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2688 "Only one type should be a floating point type"); 2689 Type *IntTy = 2690 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2691 VectorType *VecIntTy = VectorType::get(IntTy, VF); 2692 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2693 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2694 } 2695 2696 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2697 BasicBlock *Bypass) { 2698 Value *Count = getOrCreateTripCount(L); 2699 // Reuse existing vector loop preheader for TC checks. 2700 // Note that new preheader block is generated for vector loop. 2701 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2702 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2703 2704 // Generate code to check if the loop's trip count is less than VF * UF, or 2705 // equal to it in case a scalar epilogue is required; this implies that the 2706 // vector trip count is zero. This check also covers the case where adding one 2707 // to the backedge-taken count overflowed leading to an incorrect trip count 2708 // of zero. In this case we will also jump to the scalar loop. 2709 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2710 : ICmpInst::ICMP_ULT; 2711 2712 // If tail is to be folded, vector loop takes care of all iterations. 2713 Value *CheckMinIters = Builder.getFalse(); 2714 if (!Cost->foldTailByMasking()) 2715 CheckMinIters = Builder.CreateICmp( 2716 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2717 "min.iters.check"); 2718 2719 // Create new preheader for vector loop. 2720 LoopVectorPreHeader = 2721 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2722 "vector.ph"); 2723 2724 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2725 DT->getNode(Bypass)->getIDom()) && 2726 "TC check is expected to dominate Bypass"); 2727 2728 // Update dominator for Bypass & LoopExit. 2729 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2730 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2731 2732 ReplaceInstWithInst( 2733 TCCheckBlock->getTerminator(), 2734 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 2735 LoopBypassBlocks.push_back(TCCheckBlock); 2736 } 2737 2738 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2739 // Reuse existing vector loop preheader for SCEV checks. 2740 // Note that new preheader block is generated for vector loop. 2741 BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader; 2742 2743 // Generate the code to check that the SCEV assumptions that we made. 2744 // We want the new basic block to start at the first instruction in a 2745 // sequence of instructions that form a check. 2746 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2747 "scev.check"); 2748 Value *SCEVCheck = Exp.expandCodeForPredicate( 2749 &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator()); 2750 2751 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2752 if (C->isZero()) 2753 return; 2754 2755 assert(!SCEVCheckBlock->getParent()->hasOptSize() && 2756 "Cannot SCEV check stride or overflow when optimizing for size"); 2757 2758 SCEVCheckBlock->setName("vector.scevcheck"); 2759 // Create new preheader for vector loop. 2760 LoopVectorPreHeader = 2761 SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI, 2762 nullptr, "vector.ph"); 2763 2764 // Update dominator only if this is first RT check. 2765 if (LoopBypassBlocks.empty()) { 2766 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 2767 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 2768 } 2769 2770 ReplaceInstWithInst( 2771 SCEVCheckBlock->getTerminator(), 2772 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck)); 2773 LoopBypassBlocks.push_back(SCEVCheckBlock); 2774 AddedSafetyChecks = true; 2775 } 2776 2777 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2778 // VPlan-native path does not do any analysis for runtime checks currently. 2779 if (EnableVPlanNativePath) 2780 return; 2781 2782 // Reuse existing vector loop preheader for runtime memory checks. 2783 // Note that new preheader block is generated for vector loop. 2784 BasicBlock *const MemCheckBlock = L->getLoopPreheader(); 2785 2786 // Generate the code that checks in runtime if arrays overlap. We put the 2787 // checks into a separate block to make the more common case of few elements 2788 // faster. 2789 auto *LAI = Legal->getLAI(); 2790 const auto &RtPtrChecking = *LAI->getRuntimePointerChecking(); 2791 if (!RtPtrChecking.Need) 2792 return; 2793 Instruction *FirstCheckInst; 2794 Instruction *MemRuntimeCheck; 2795 std::tie(FirstCheckInst, MemRuntimeCheck) = 2796 addRuntimeChecks(MemCheckBlock->getTerminator(), OrigLoop, 2797 RtPtrChecking.getChecks(), RtPtrChecking.getSE()); 2798 if (!MemRuntimeCheck) 2799 return; 2800 2801 if (MemCheckBlock->getParent()->hasOptSize()) { 2802 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 2803 "Cannot emit memory checks when optimizing for size, unless forced " 2804 "to vectorize."); 2805 ORE->emit([&]() { 2806 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 2807 L->getStartLoc(), L->getHeader()) 2808 << "Code-size may be reduced by not forcing " 2809 "vectorization, or by source-code modifications " 2810 "eliminating the need for runtime checks " 2811 "(e.g., adding 'restrict')."; 2812 }); 2813 } 2814 2815 MemCheckBlock->setName("vector.memcheck"); 2816 // Create new preheader for vector loop. 2817 LoopVectorPreHeader = 2818 SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr, 2819 "vector.ph"); 2820 2821 // Update dominator only if this is first RT check. 2822 if (LoopBypassBlocks.empty()) { 2823 DT->changeImmediateDominator(Bypass, MemCheckBlock); 2824 DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock); 2825 } 2826 2827 ReplaceInstWithInst( 2828 MemCheckBlock->getTerminator(), 2829 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheck)); 2830 LoopBypassBlocks.push_back(MemCheckBlock); 2831 AddedSafetyChecks = true; 2832 2833 // We currently don't use LoopVersioning for the actual loop cloning but we 2834 // still use it to add the noalias metadata. 2835 LVer = std::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2836 PSE.getSE()); 2837 LVer->prepareNoAliasMetadata(); 2838 } 2839 2840 Value *InnerLoopVectorizer::emitTransformedIndex( 2841 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2842 const InductionDescriptor &ID) const { 2843 2844 SCEVExpander Exp(*SE, DL, "induction"); 2845 auto Step = ID.getStep(); 2846 auto StartValue = ID.getStartValue(); 2847 assert(Index->getType() == Step->getType() && 2848 "Index type does not match StepValue type"); 2849 2850 // Note: the IR at this point is broken. We cannot use SE to create any new 2851 // SCEV and then expand it, hoping that SCEV's simplification will give us 2852 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2853 // lead to various SCEV crashes. So all we can do is to use builder and rely 2854 // on InstCombine for future simplifications. Here we handle some trivial 2855 // cases only. 2856 auto CreateAdd = [&B](Value *X, Value *Y) { 2857 assert(X->getType() == Y->getType() && "Types don't match!"); 2858 if (auto *CX = dyn_cast<ConstantInt>(X)) 2859 if (CX->isZero()) 2860 return Y; 2861 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2862 if (CY->isZero()) 2863 return X; 2864 return B.CreateAdd(X, Y); 2865 }; 2866 2867 auto CreateMul = [&B](Value *X, Value *Y) { 2868 assert(X->getType() == Y->getType() && "Types don't match!"); 2869 if (auto *CX = dyn_cast<ConstantInt>(X)) 2870 if (CX->isOne()) 2871 return Y; 2872 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2873 if (CY->isOne()) 2874 return X; 2875 return B.CreateMul(X, Y); 2876 }; 2877 2878 switch (ID.getKind()) { 2879 case InductionDescriptor::IK_IntInduction: { 2880 assert(Index->getType() == StartValue->getType() && 2881 "Index type does not match StartValue type"); 2882 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2883 return B.CreateSub(StartValue, Index); 2884 auto *Offset = CreateMul( 2885 Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint())); 2886 return CreateAdd(StartValue, Offset); 2887 } 2888 case InductionDescriptor::IK_PtrInduction: { 2889 assert(isa<SCEVConstant>(Step) && 2890 "Expected constant step for pointer induction"); 2891 return B.CreateGEP( 2892 StartValue->getType()->getPointerElementType(), StartValue, 2893 CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(), 2894 &*B.GetInsertPoint()))); 2895 } 2896 case InductionDescriptor::IK_FpInduction: { 2897 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2898 auto InductionBinOp = ID.getInductionBinOp(); 2899 assert(InductionBinOp && 2900 (InductionBinOp->getOpcode() == Instruction::FAdd || 2901 InductionBinOp->getOpcode() == Instruction::FSub) && 2902 "Original bin op should be defined for FP induction"); 2903 2904 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2905 2906 // Floating point operations had to be 'fast' to enable the induction. 2907 FastMathFlags Flags; 2908 Flags.setFast(); 2909 2910 Value *MulExp = B.CreateFMul(StepValue, Index); 2911 if (isa<Instruction>(MulExp)) 2912 // We have to check, the MulExp may be a constant. 2913 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2914 2915 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2916 "induction"); 2917 if (isa<Instruction>(BOp)) 2918 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2919 2920 return BOp; 2921 } 2922 case InductionDescriptor::IK_NoInduction: 2923 return nullptr; 2924 } 2925 llvm_unreachable("invalid enum"); 2926 } 2927 2928 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2929 /* 2930 In this function we generate a new loop. The new loop will contain 2931 the vectorized instructions while the old loop will continue to run the 2932 scalar remainder. 2933 2934 [ ] <-- loop iteration number check. 2935 / | 2936 / v 2937 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2938 | / | 2939 | / v 2940 || [ ] <-- vector pre header. 2941 |/ | 2942 | v 2943 | [ ] \ 2944 | [ ]_| <-- vector loop. 2945 | | 2946 | v 2947 | -[ ] <--- middle-block. 2948 | / | 2949 | / v 2950 -|- >[ ] <--- new preheader. 2951 | | 2952 | v 2953 | [ ] \ 2954 | [ ]_| <-- old scalar loop to handle remainder. 2955 \ | 2956 \ v 2957 >[ ] <-- exit block. 2958 ... 2959 */ 2960 2961 MDNode *OrigLoopID = OrigLoop->getLoopID(); 2962 2963 // Some loops have a single integer induction variable, while other loops 2964 // don't. One example is c++ iterators that often have multiple pointer 2965 // induction variables. In the code below we also support a case where we 2966 // don't have a single induction variable. 2967 // 2968 // We try to obtain an induction variable from the original loop as hard 2969 // as possible. However if we don't find one that: 2970 // - is an integer 2971 // - counts from zero, stepping by one 2972 // - is the size of the widest induction variable type 2973 // then we create a new one. 2974 OldInduction = Legal->getPrimaryInduction(); 2975 Type *IdxTy = Legal->getWidestInductionType(); 2976 2977 // Split the single block loop into the two loop structure described above. 2978 LoopScalarBody = OrigLoop->getHeader(); 2979 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 2980 LoopExitBlock = OrigLoop->getExitBlock(); 2981 assert(LoopExitBlock && "Must have an exit block"); 2982 assert(LoopVectorPreHeader && "Invalid loop structure"); 2983 2984 LoopMiddleBlock = 2985 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 2986 LI, nullptr, "middle.block"); 2987 LoopScalarPreHeader = 2988 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 2989 nullptr, "scalar.ph"); 2990 // We intentionally don't let SplitBlock to update LoopInfo since 2991 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 2992 // LoopVectorBody is explicitly added to the correct place few lines later. 2993 LoopVectorBody = 2994 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 2995 nullptr, nullptr, "vector.body"); 2996 2997 // Update dominator for loop exit. 2998 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 2999 3000 // Create and register the new vector loop. 3001 Loop *Lp = LI->AllocateLoop(); 3002 Loop *ParentLoop = OrigLoop->getParentLoop(); 3003 3004 // Insert the new loop into the loop nest and register the new basic blocks 3005 // before calling any utilities such as SCEV that require valid LoopInfo. 3006 if (ParentLoop) { 3007 ParentLoop->addChildLoop(Lp); 3008 } else { 3009 LI->addTopLevelLoop(Lp); 3010 } 3011 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3012 3013 // Find the loop boundaries. 3014 Value *Count = getOrCreateTripCount(Lp); 3015 3016 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3017 3018 // Now, compare the new count to zero. If it is zero skip the vector loop and 3019 // jump to the scalar loop. This check also covers the case where the 3020 // backedge-taken count is uint##_max: adding one to it will overflow leading 3021 // to an incorrect trip count of zero. In this (rare) case we will also jump 3022 // to the scalar loop. 3023 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3024 3025 // Generate the code to check any assumptions that we've made for SCEV 3026 // expressions. 3027 emitSCEVChecks(Lp, LoopScalarPreHeader); 3028 3029 // Generate the code that checks in runtime if arrays overlap. We put the 3030 // checks into a separate block to make the more common case of few elements 3031 // faster. 3032 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3033 3034 // Generate the induction variable. 3035 // The loop step is equal to the vectorization factor (num of SIMD elements) 3036 // times the unroll factor (num of SIMD instructions). 3037 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3038 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3039 Induction = 3040 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3041 getDebugLocFromInstOrOperands(OldInduction)); 3042 3043 // We are going to resume the execution of the scalar loop. 3044 // Go over all of the induction variables that we found and fix the 3045 // PHIs that are left in the scalar version of the loop. 3046 // The starting values of PHI nodes depend on the counter of the last 3047 // iteration in the vectorized loop. 3048 // If we come from a bypass edge then we need to start from the original 3049 // start value. 3050 3051 // This variable saves the new starting index for the scalar loop. It is used 3052 // to test if there are any tail iterations left once the vector loop has 3053 // completed. 3054 for (auto &InductionEntry : Legal->getInductionVars()) { 3055 PHINode *OrigPhi = InductionEntry.first; 3056 InductionDescriptor II = InductionEntry.second; 3057 3058 // Create phi nodes to merge from the backedge-taken check block. 3059 PHINode *BCResumeVal = 3060 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3061 LoopScalarPreHeader->getTerminator()); 3062 // Copy original phi DL over to the new one. 3063 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3064 Value *&EndValue = IVEndValues[OrigPhi]; 3065 if (OrigPhi == OldInduction) { 3066 // We know what the end value is. 3067 EndValue = CountRoundDown; 3068 } else { 3069 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3070 Type *StepType = II.getStep()->getType(); 3071 Instruction::CastOps CastOp = 3072 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3073 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3074 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3075 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3076 EndValue->setName("ind.end"); 3077 } 3078 3079 // The new PHI merges the original incoming value, in case of a bypass, 3080 // or the value at the end of the vectorized loop. 3081 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3082 3083 // Fix the scalar body counter (PHI node). 3084 // The old induction's phi node in the scalar body needs the truncated 3085 // value. 3086 for (BasicBlock *BB : LoopBypassBlocks) 3087 BCResumeVal->addIncoming(II.getStartValue(), BB); 3088 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3089 } 3090 3091 // We need the OrigLoop (scalar loop part) latch terminator to help 3092 // produce correct debug info for the middle block BB instructions. 3093 // The legality check stage guarantees that the loop will have a single 3094 // latch. 3095 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 3096 "Scalar loop latch terminator isn't a branch"); 3097 BranchInst *ScalarLatchBr = 3098 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 3099 3100 // Add a check in the middle block to see if we have completed 3101 // all of the iterations in the first vector loop. 3102 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3103 // If tail is to be folded, we know we don't need to run the remainder. 3104 Value *CmpN = Builder.getTrue(); 3105 if (!Cost->foldTailByMasking()) { 3106 CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3107 CountRoundDown, "cmp.n", 3108 LoopMiddleBlock->getTerminator()); 3109 3110 // Here we use the same DebugLoc as the scalar loop latch branch instead 3111 // of the corresponding compare because they may have ended up with 3112 // different line numbers and we want to avoid awkward line stepping while 3113 // debugging. Eg. if the compare has got a line number inside the loop. 3114 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3115 } 3116 3117 BranchInst *BrInst = 3118 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN); 3119 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3120 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3121 3122 // Get ready to start creating new instructions into the vectorized body. 3123 assert(LoopVectorPreHeader == Lp->getLoopPreheader() && 3124 "Inconsistent vector loop preheader"); 3125 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3126 3127 Optional<MDNode *> VectorizedLoopID = 3128 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3129 LLVMLoopVectorizeFollowupVectorized}); 3130 if (VectorizedLoopID.hasValue()) { 3131 Lp->setLoopID(VectorizedLoopID.getValue()); 3132 3133 // Do not setAlreadyVectorized if loop attributes have been defined 3134 // explicitly. 3135 return LoopVectorPreHeader; 3136 } 3137 3138 // Keep all loop hints from the original loop on the vector loop (we'll 3139 // replace the vectorizer-specific hints below). 3140 if (MDNode *LID = OrigLoop->getLoopID()) 3141 Lp->setLoopID(LID); 3142 3143 LoopVectorizeHints Hints(Lp, true, *ORE); 3144 Hints.setAlreadyVectorized(); 3145 3146 #ifdef EXPENSIVE_CHECKS 3147 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3148 LI->verify(*DT); 3149 #endif 3150 3151 return LoopVectorPreHeader; 3152 } 3153 3154 // Fix up external users of the induction variable. At this point, we are 3155 // in LCSSA form, with all external PHIs that use the IV having one input value, 3156 // coming from the remainder loop. We need those PHIs to also have a correct 3157 // value for the IV when arriving directly from the middle block. 3158 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3159 const InductionDescriptor &II, 3160 Value *CountRoundDown, Value *EndValue, 3161 BasicBlock *MiddleBlock) { 3162 // There are two kinds of external IV usages - those that use the value 3163 // computed in the last iteration (the PHI) and those that use the penultimate 3164 // value (the value that feeds into the phi from the loop latch). 3165 // We allow both, but they, obviously, have different values. 3166 3167 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3168 3169 DenseMap<Value *, Value *> MissingVals; 3170 3171 // An external user of the last iteration's value should see the value that 3172 // the remainder loop uses to initialize its own IV. 3173 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3174 for (User *U : PostInc->users()) { 3175 Instruction *UI = cast<Instruction>(U); 3176 if (!OrigLoop->contains(UI)) { 3177 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3178 MissingVals[UI] = EndValue; 3179 } 3180 } 3181 3182 // An external user of the penultimate value need to see EndValue - Step. 3183 // The simplest way to get this is to recompute it from the constituent SCEVs, 3184 // that is Start + (Step * (CRD - 1)). 3185 for (User *U : OrigPhi->users()) { 3186 auto *UI = cast<Instruction>(U); 3187 if (!OrigLoop->contains(UI)) { 3188 const DataLayout &DL = 3189 OrigLoop->getHeader()->getModule()->getDataLayout(); 3190 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3191 3192 IRBuilder<> B(MiddleBlock->getTerminator()); 3193 Value *CountMinusOne = B.CreateSub( 3194 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3195 Value *CMO = 3196 !II.getStep()->getType()->isIntegerTy() 3197 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3198 II.getStep()->getType()) 3199 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3200 CMO->setName("cast.cmo"); 3201 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3202 Escape->setName("ind.escape"); 3203 MissingVals[UI] = Escape; 3204 } 3205 } 3206 3207 for (auto &I : MissingVals) { 3208 PHINode *PHI = cast<PHINode>(I.first); 3209 // One corner case we have to handle is two IVs "chasing" each-other, 3210 // that is %IV2 = phi [...], [ %IV1, %latch ] 3211 // In this case, if IV1 has an external use, we need to avoid adding both 3212 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3213 // don't already have an incoming value for the middle block. 3214 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3215 PHI->addIncoming(I.second, MiddleBlock); 3216 } 3217 } 3218 3219 namespace { 3220 3221 struct CSEDenseMapInfo { 3222 static bool canHandle(const Instruction *I) { 3223 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3224 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3225 } 3226 3227 static inline Instruction *getEmptyKey() { 3228 return DenseMapInfo<Instruction *>::getEmptyKey(); 3229 } 3230 3231 static inline Instruction *getTombstoneKey() { 3232 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3233 } 3234 3235 static unsigned getHashValue(const Instruction *I) { 3236 assert(canHandle(I) && "Unknown instruction!"); 3237 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3238 I->value_op_end())); 3239 } 3240 3241 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3242 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3243 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3244 return LHS == RHS; 3245 return LHS->isIdenticalTo(RHS); 3246 } 3247 }; 3248 3249 } // end anonymous namespace 3250 3251 ///Perform cse of induction variable instructions. 3252 static void cse(BasicBlock *BB) { 3253 // Perform simple cse. 3254 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3255 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3256 Instruction *In = &*I++; 3257 3258 if (!CSEDenseMapInfo::canHandle(In)) 3259 continue; 3260 3261 // Check if we can replace this instruction with any of the 3262 // visited instructions. 3263 if (Instruction *V = CSEMap.lookup(In)) { 3264 In->replaceAllUsesWith(V); 3265 In->eraseFromParent(); 3266 continue; 3267 } 3268 3269 CSEMap[In] = In; 3270 } 3271 } 3272 3273 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3274 unsigned VF, 3275 bool &NeedToScalarize) { 3276 Function *F = CI->getCalledFunction(); 3277 Type *ScalarRetTy = CI->getType(); 3278 SmallVector<Type *, 4> Tys, ScalarTys; 3279 for (auto &ArgOp : CI->arg_operands()) 3280 ScalarTys.push_back(ArgOp->getType()); 3281 3282 // Estimate cost of scalarized vector call. The source operands are assumed 3283 // to be vectors, so we need to extract individual elements from there, 3284 // execute VF scalar calls, and then gather the result into the vector return 3285 // value. 3286 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, 3287 TTI::TCK_RecipThroughput); 3288 if (VF == 1) 3289 return ScalarCallCost; 3290 3291 // Compute corresponding vector type for return value and arguments. 3292 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3293 for (Type *ScalarTy : ScalarTys) 3294 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3295 3296 // Compute costs of unpacking argument values for the scalar calls and 3297 // packing the return values to a vector. 3298 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3299 3300 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3301 3302 // If we can't emit a vector call for this function, then the currently found 3303 // cost is the cost we need to return. 3304 NeedToScalarize = true; 3305 VFShape Shape = VFShape::get(*CI, {VF, false}, false /*HasGlobalPred*/); 3306 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3307 3308 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3309 return Cost; 3310 3311 // If the corresponding vector cost is cheaper, return its cost. 3312 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys, 3313 TTI::TCK_RecipThroughput); 3314 if (VectorCallCost < Cost) { 3315 NeedToScalarize = false; 3316 return VectorCallCost; 3317 } 3318 return Cost; 3319 } 3320 3321 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3322 unsigned VF) { 3323 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3324 assert(ID && "Expected intrinsic call!"); 3325 3326 FastMathFlags FMF; 3327 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3328 FMF = FPMO->getFastMathFlags(); 3329 3330 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3331 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF, 3332 TargetTransformInfo::TCK_RecipThroughput, 3333 CI); 3334 } 3335 3336 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3337 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3338 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3339 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3340 } 3341 3342 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3343 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3344 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3345 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3346 } 3347 3348 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3349 // For every instruction `I` in MinBWs, truncate the operands, create a 3350 // truncated version of `I` and reextend its result. InstCombine runs 3351 // later and will remove any ext/trunc pairs. 3352 SmallPtrSet<Value *, 4> Erased; 3353 for (const auto &KV : Cost->getMinimalBitwidths()) { 3354 // If the value wasn't vectorized, we must maintain the original scalar 3355 // type. The absence of the value from VectorLoopValueMap indicates that it 3356 // wasn't vectorized. 3357 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3358 continue; 3359 for (unsigned Part = 0; Part < UF; ++Part) { 3360 Value *I = getOrCreateVectorValue(KV.first, Part); 3361 if (Erased.find(I) != Erased.end() || I->use_empty() || 3362 !isa<Instruction>(I)) 3363 continue; 3364 Type *OriginalTy = I->getType(); 3365 Type *ScalarTruncatedTy = 3366 IntegerType::get(OriginalTy->getContext(), KV.second); 3367 Type *TruncatedTy = VectorType::get( 3368 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getNumElements()); 3369 if (TruncatedTy == OriginalTy) 3370 continue; 3371 3372 IRBuilder<> B(cast<Instruction>(I)); 3373 auto ShrinkOperand = [&](Value *V) -> Value * { 3374 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3375 if (ZI->getSrcTy() == TruncatedTy) 3376 return ZI->getOperand(0); 3377 return B.CreateZExtOrTrunc(V, TruncatedTy); 3378 }; 3379 3380 // The actual instruction modification depends on the instruction type, 3381 // unfortunately. 3382 Value *NewI = nullptr; 3383 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3384 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3385 ShrinkOperand(BO->getOperand(1))); 3386 3387 // Any wrapping introduced by shrinking this operation shouldn't be 3388 // considered undefined behavior. So, we can't unconditionally copy 3389 // arithmetic wrapping flags to NewI. 3390 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3391 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3392 NewI = 3393 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3394 ShrinkOperand(CI->getOperand(1))); 3395 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3396 NewI = B.CreateSelect(SI->getCondition(), 3397 ShrinkOperand(SI->getTrueValue()), 3398 ShrinkOperand(SI->getFalseValue())); 3399 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3400 switch (CI->getOpcode()) { 3401 default: 3402 llvm_unreachable("Unhandled cast!"); 3403 case Instruction::Trunc: 3404 NewI = ShrinkOperand(CI->getOperand(0)); 3405 break; 3406 case Instruction::SExt: 3407 NewI = B.CreateSExtOrTrunc( 3408 CI->getOperand(0), 3409 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3410 break; 3411 case Instruction::ZExt: 3412 NewI = B.CreateZExtOrTrunc( 3413 CI->getOperand(0), 3414 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3415 break; 3416 } 3417 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3418 auto Elements0 = 3419 cast<VectorType>(SI->getOperand(0)->getType())->getNumElements(); 3420 auto *O0 = B.CreateZExtOrTrunc( 3421 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3422 auto Elements1 = 3423 cast<VectorType>(SI->getOperand(1)->getType())->getNumElements(); 3424 auto *O1 = B.CreateZExtOrTrunc( 3425 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3426 3427 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3428 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3429 // Don't do anything with the operands, just extend the result. 3430 continue; 3431 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3432 auto Elements = 3433 cast<VectorType>(IE->getOperand(0)->getType())->getNumElements(); 3434 auto *O0 = B.CreateZExtOrTrunc( 3435 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3436 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3437 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3438 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3439 auto Elements = 3440 cast<VectorType>(EE->getOperand(0)->getType())->getNumElements(); 3441 auto *O0 = B.CreateZExtOrTrunc( 3442 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3443 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3444 } else { 3445 // If we don't know what to do, be conservative and don't do anything. 3446 continue; 3447 } 3448 3449 // Lastly, extend the result. 3450 NewI->takeName(cast<Instruction>(I)); 3451 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3452 I->replaceAllUsesWith(Res); 3453 cast<Instruction>(I)->eraseFromParent(); 3454 Erased.insert(I); 3455 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3456 } 3457 } 3458 3459 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3460 for (const auto &KV : Cost->getMinimalBitwidths()) { 3461 // If the value wasn't vectorized, we must maintain the original scalar 3462 // type. The absence of the value from VectorLoopValueMap indicates that it 3463 // wasn't vectorized. 3464 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3465 continue; 3466 for (unsigned Part = 0; Part < UF; ++Part) { 3467 Value *I = getOrCreateVectorValue(KV.first, Part); 3468 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3469 if (Inst && Inst->use_empty()) { 3470 Value *NewI = Inst->getOperand(0); 3471 Inst->eraseFromParent(); 3472 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3473 } 3474 } 3475 } 3476 } 3477 3478 void InnerLoopVectorizer::fixVectorizedLoop() { 3479 // Insert truncates and extends for any truncated instructions as hints to 3480 // InstCombine. 3481 if (VF > 1) 3482 truncateToMinimalBitwidths(); 3483 3484 // Fix widened non-induction PHIs by setting up the PHI operands. 3485 if (OrigPHIsToFix.size()) { 3486 assert(EnableVPlanNativePath && 3487 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3488 fixNonInductionPHIs(); 3489 } 3490 3491 // At this point every instruction in the original loop is widened to a 3492 // vector form. Now we need to fix the recurrences in the loop. These PHI 3493 // nodes are currently empty because we did not want to introduce cycles. 3494 // This is the second stage of vectorizing recurrences. 3495 fixCrossIterationPHIs(); 3496 3497 // Forget the original basic block. 3498 PSE.getSE()->forgetLoop(OrigLoop); 3499 3500 // Fix-up external users of the induction variables. 3501 for (auto &Entry : Legal->getInductionVars()) 3502 fixupIVUsers(Entry.first, Entry.second, 3503 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3504 IVEndValues[Entry.first], LoopMiddleBlock); 3505 3506 fixLCSSAPHIs(); 3507 for (Instruction *PI : PredicatedInstructions) 3508 sinkScalarOperands(&*PI); 3509 3510 // Remove redundant induction instructions. 3511 cse(LoopVectorBody); 3512 3513 // Set/update profile weights for the vector and remainder loops as original 3514 // loop iterations are now distributed among them. Note that original loop 3515 // represented by LoopScalarBody becomes remainder loop after vectorization. 3516 // 3517 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3518 // end up getting slightly roughened result but that should be OK since 3519 // profile is not inherently precise anyway. Note also possible bypass of 3520 // vector code caused by legality checks is ignored, assigning all the weight 3521 // to the vector loop, optimistically. 3522 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), 3523 LI->getLoopFor(LoopVectorBody), 3524 LI->getLoopFor(LoopScalarBody), VF * UF); 3525 } 3526 3527 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3528 // In order to support recurrences we need to be able to vectorize Phi nodes. 3529 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3530 // stage #2: We now need to fix the recurrences by adding incoming edges to 3531 // the currently empty PHI nodes. At this point every instruction in the 3532 // original loop is widened to a vector form so we can use them to construct 3533 // the incoming edges. 3534 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3535 // Handle first-order recurrences and reductions that need to be fixed. 3536 if (Legal->isFirstOrderRecurrence(&Phi)) 3537 fixFirstOrderRecurrence(&Phi); 3538 else if (Legal->isReductionVariable(&Phi)) 3539 fixReduction(&Phi); 3540 } 3541 } 3542 3543 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3544 // This is the second phase of vectorizing first-order recurrences. An 3545 // overview of the transformation is described below. Suppose we have the 3546 // following loop. 3547 // 3548 // for (int i = 0; i < n; ++i) 3549 // b[i] = a[i] - a[i - 1]; 3550 // 3551 // There is a first-order recurrence on "a". For this loop, the shorthand 3552 // scalar IR looks like: 3553 // 3554 // scalar.ph: 3555 // s_init = a[-1] 3556 // br scalar.body 3557 // 3558 // scalar.body: 3559 // i = phi [0, scalar.ph], [i+1, scalar.body] 3560 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3561 // s2 = a[i] 3562 // b[i] = s2 - s1 3563 // br cond, scalar.body, ... 3564 // 3565 // In this example, s1 is a recurrence because it's value depends on the 3566 // previous iteration. In the first phase of vectorization, we created a 3567 // temporary value for s1. We now complete the vectorization and produce the 3568 // shorthand vector IR shown below (for VF = 4, UF = 1). 3569 // 3570 // vector.ph: 3571 // v_init = vector(..., ..., ..., a[-1]) 3572 // br vector.body 3573 // 3574 // vector.body 3575 // i = phi [0, vector.ph], [i+4, vector.body] 3576 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3577 // v2 = a[i, i+1, i+2, i+3]; 3578 // v3 = vector(v1(3), v2(0, 1, 2)) 3579 // b[i, i+1, i+2, i+3] = v2 - v3 3580 // br cond, vector.body, middle.block 3581 // 3582 // middle.block: 3583 // x = v2(3) 3584 // br scalar.ph 3585 // 3586 // scalar.ph: 3587 // s_init = phi [x, middle.block], [a[-1], otherwise] 3588 // br scalar.body 3589 // 3590 // After execution completes the vector loop, we extract the next value of 3591 // the recurrence (x) to use as the initial value in the scalar loop. 3592 3593 // Get the original loop preheader and single loop latch. 3594 auto *Preheader = OrigLoop->getLoopPreheader(); 3595 auto *Latch = OrigLoop->getLoopLatch(); 3596 3597 // Get the initial and previous values of the scalar recurrence. 3598 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3599 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3600 3601 // Create a vector from the initial value. 3602 auto *VectorInit = ScalarInit; 3603 if (VF > 1) { 3604 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3605 VectorInit = Builder.CreateInsertElement( 3606 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3607 Builder.getInt32(VF - 1), "vector.recur.init"); 3608 } 3609 3610 // We constructed a temporary phi node in the first phase of vectorization. 3611 // This phi node will eventually be deleted. 3612 Builder.SetInsertPoint( 3613 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3614 3615 // Create a phi node for the new recurrence. The current value will either be 3616 // the initial value inserted into a vector or loop-varying vector value. 3617 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3618 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3619 3620 // Get the vectorized previous value of the last part UF - 1. It appears last 3621 // among all unrolled iterations, due to the order of their construction. 3622 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3623 3624 // Find and set the insertion point after the previous value if it is an 3625 // instruction. 3626 BasicBlock::iterator InsertPt; 3627 // Note that the previous value may have been constant-folded so it is not 3628 // guaranteed to be an instruction in the vector loop. 3629 // FIXME: Loop invariant values do not form recurrences. We should deal with 3630 // them earlier. 3631 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 3632 InsertPt = LoopVectorBody->getFirstInsertionPt(); 3633 else { 3634 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 3635 if (isa<PHINode>(PreviousLastPart)) 3636 // If the previous value is a phi node, we should insert after all the phi 3637 // nodes in the block containing the PHI to avoid breaking basic block 3638 // verification. Note that the basic block may be different to 3639 // LoopVectorBody, in case we predicate the loop. 3640 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 3641 else 3642 InsertPt = ++PreviousInst->getIterator(); 3643 } 3644 Builder.SetInsertPoint(&*InsertPt); 3645 3646 // We will construct a vector for the recurrence by combining the values for 3647 // the current and previous iterations. This is the required shuffle mask. 3648 SmallVector<int, 8> ShuffleMask(VF); 3649 ShuffleMask[0] = VF - 1; 3650 for (unsigned I = 1; I < VF; ++I) 3651 ShuffleMask[I] = I + VF - 1; 3652 3653 // The vector from which to take the initial value for the current iteration 3654 // (actual or unrolled). Initially, this is the vector phi node. 3655 Value *Incoming = VecPhi; 3656 3657 // Shuffle the current and previous vector and update the vector parts. 3658 for (unsigned Part = 0; Part < UF; ++Part) { 3659 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3660 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3661 auto *Shuffle = VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3662 ShuffleMask) 3663 : Incoming; 3664 PhiPart->replaceAllUsesWith(Shuffle); 3665 cast<Instruction>(PhiPart)->eraseFromParent(); 3666 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3667 Incoming = PreviousPart; 3668 } 3669 3670 // Fix the latch value of the new recurrence in the vector loop. 3671 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3672 3673 // Extract the last vector element in the middle block. This will be the 3674 // initial value for the recurrence when jumping to the scalar loop. 3675 auto *ExtractForScalar = Incoming; 3676 if (VF > 1) { 3677 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3678 ExtractForScalar = Builder.CreateExtractElement( 3679 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3680 } 3681 // Extract the second last element in the middle block if the 3682 // Phi is used outside the loop. We need to extract the phi itself 3683 // and not the last element (the phi update in the current iteration). This 3684 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3685 // when the scalar loop is not run at all. 3686 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3687 if (VF > 1) 3688 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3689 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3690 // When loop is unrolled without vectorizing, initialize 3691 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3692 // `Incoming`. This is analogous to the vectorized case above: extracting the 3693 // second last element when VF > 1. 3694 else if (UF > 1) 3695 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3696 3697 // Fix the initial value of the original recurrence in the scalar loop. 3698 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3699 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3700 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3701 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3702 Start->addIncoming(Incoming, BB); 3703 } 3704 3705 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3706 Phi->setName("scalar.recur"); 3707 3708 // Finally, fix users of the recurrence outside the loop. The users will need 3709 // either the last value of the scalar recurrence or the last value of the 3710 // vector recurrence we extracted in the middle block. Since the loop is in 3711 // LCSSA form, we just need to find all the phi nodes for the original scalar 3712 // recurrence in the exit block, and then add an edge for the middle block. 3713 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3714 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3715 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3716 } 3717 } 3718 } 3719 3720 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3721 Constant *Zero = Builder.getInt32(0); 3722 3723 // Get it's reduction variable descriptor. 3724 assert(Legal->isReductionVariable(Phi) && 3725 "Unable to find the reduction variable"); 3726 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 3727 3728 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3729 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3730 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3731 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3732 RdxDesc.getMinMaxRecurrenceKind(); 3733 setDebugLocFromInst(Builder, ReductionStartValue); 3734 3735 // We need to generate a reduction vector from the incoming scalar. 3736 // To do so, we need to generate the 'identity' vector and override 3737 // one of the elements with the incoming scalar reduction. We need 3738 // to do it in the vector-loop preheader. 3739 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3740 3741 // This is the vector-clone of the value that leaves the loop. 3742 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3743 3744 // Find the reduction identity variable. Zero for addition, or, xor, 3745 // one for multiplication, -1 for And. 3746 Value *Identity; 3747 Value *VectorStart; 3748 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3749 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3750 // MinMax reduction have the start value as their identify. 3751 if (VF == 1) { 3752 VectorStart = Identity = ReductionStartValue; 3753 } else { 3754 VectorStart = Identity = 3755 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3756 } 3757 } else { 3758 // Handle other reduction kinds: 3759 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3760 RK, VecTy->getScalarType()); 3761 if (VF == 1) { 3762 Identity = Iden; 3763 // This vector is the Identity vector where the first element is the 3764 // incoming scalar reduction. 3765 VectorStart = ReductionStartValue; 3766 } else { 3767 Identity = ConstantVector::getSplat({VF, false}, Iden); 3768 3769 // This vector is the Identity vector where the first element is the 3770 // incoming scalar reduction. 3771 VectorStart = 3772 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3773 } 3774 } 3775 3776 // Wrap flags are in general invalid after vectorization, clear them. 3777 clearReductionWrapFlags(RdxDesc); 3778 3779 // Fix the vector-loop phi. 3780 3781 // Reductions do not have to start at zero. They can start with 3782 // any loop invariant values. 3783 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3784 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3785 3786 for (unsigned Part = 0; Part < UF; ++Part) { 3787 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3788 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3789 // Make sure to add the reduction start value only to the 3790 // first unroll part. 3791 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3792 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3793 cast<PHINode>(VecRdxPhi) 3794 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3795 } 3796 3797 // Before each round, move the insertion point right between 3798 // the PHIs and the values we are going to write. 3799 // This allows us to write both PHINodes and the extractelement 3800 // instructions. 3801 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3802 3803 setDebugLocFromInst(Builder, LoopExitInst); 3804 3805 // If tail is folded by masking, the vector value to leave the loop should be 3806 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3807 // instead of the former. 3808 if (Cost->foldTailByMasking()) { 3809 for (unsigned Part = 0; Part < UF; ++Part) { 3810 Value *VecLoopExitInst = 3811 VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3812 Value *Sel = nullptr; 3813 for (User *U : VecLoopExitInst->users()) { 3814 if (isa<SelectInst>(U)) { 3815 assert(!Sel && "Reduction exit feeding two selects"); 3816 Sel = U; 3817 } else 3818 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3819 } 3820 assert(Sel && "Reduction exit feeds no select"); 3821 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel); 3822 } 3823 } 3824 3825 // If the vector reduction can be performed in a smaller type, we truncate 3826 // then extend the loop exit value to enable InstCombine to evaluate the 3827 // entire expression in the smaller type. 3828 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3829 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3830 Builder.SetInsertPoint( 3831 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3832 VectorParts RdxParts(UF); 3833 for (unsigned Part = 0; Part < UF; ++Part) { 3834 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3835 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3836 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3837 : Builder.CreateZExt(Trunc, VecTy); 3838 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3839 UI != RdxParts[Part]->user_end();) 3840 if (*UI != Trunc) { 3841 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3842 RdxParts[Part] = Extnd; 3843 } else { 3844 ++UI; 3845 } 3846 } 3847 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3848 for (unsigned Part = 0; Part < UF; ++Part) { 3849 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3850 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3851 } 3852 } 3853 3854 // Reduce all of the unrolled parts into a single vector. 3855 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3856 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3857 3858 // The middle block terminator has already been assigned a DebugLoc here (the 3859 // OrigLoop's single latch terminator). We want the whole middle block to 3860 // appear to execute on this line because: (a) it is all compiler generated, 3861 // (b) these instructions are always executed after evaluating the latch 3862 // conditional branch, and (c) other passes may add new predecessors which 3863 // terminate on this line. This is the easiest way to ensure we don't 3864 // accidentally cause an extra step back into the loop while debugging. 3865 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 3866 for (unsigned Part = 1; Part < UF; ++Part) { 3867 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3868 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3869 // Floating point operations had to be 'fast' to enable the reduction. 3870 ReducedPartRdx = addFastMathFlag( 3871 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3872 ReducedPartRdx, "bin.rdx"), 3873 RdxDesc.getFastMathFlags()); 3874 else 3875 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3876 RdxPart); 3877 } 3878 3879 if (VF > 1) { 3880 bool NoNaN = Legal->hasFunNoNaNAttr(); 3881 ReducedPartRdx = 3882 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3883 // If the reduction can be performed in a smaller type, we need to extend 3884 // the reduction to the wider type before we branch to the original loop. 3885 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3886 ReducedPartRdx = 3887 RdxDesc.isSigned() 3888 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3889 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3890 } 3891 3892 // Create a phi node that merges control-flow from the backedge-taken check 3893 // block and the middle block. 3894 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3895 LoopScalarPreHeader->getTerminator()); 3896 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3897 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3898 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3899 3900 // Now, we need to fix the users of the reduction variable 3901 // inside and outside of the scalar remainder loop. 3902 // We know that the loop is in LCSSA form. We need to update the 3903 // PHI nodes in the exit blocks. 3904 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3905 // All PHINodes need to have a single entry edge, or two if 3906 // we already fixed them. 3907 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3908 3909 // We found a reduction value exit-PHI. Update it with the 3910 // incoming bypass edge. 3911 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3912 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3913 } // end of the LCSSA phi scan. 3914 3915 // Fix the scalar loop reduction variable with the incoming reduction sum 3916 // from the vector body and from the backedge value. 3917 int IncomingEdgeBlockIdx = 3918 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3919 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3920 // Pick the other block. 3921 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3922 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3923 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3924 } 3925 3926 void InnerLoopVectorizer::clearReductionWrapFlags( 3927 RecurrenceDescriptor &RdxDesc) { 3928 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3929 if (RK != RecurrenceDescriptor::RK_IntegerAdd && 3930 RK != RecurrenceDescriptor::RK_IntegerMult) 3931 return; 3932 3933 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 3934 assert(LoopExitInstr && "null loop exit instruction"); 3935 SmallVector<Instruction *, 8> Worklist; 3936 SmallPtrSet<Instruction *, 8> Visited; 3937 Worklist.push_back(LoopExitInstr); 3938 Visited.insert(LoopExitInstr); 3939 3940 while (!Worklist.empty()) { 3941 Instruction *Cur = Worklist.pop_back_val(); 3942 if (isa<OverflowingBinaryOperator>(Cur)) 3943 for (unsigned Part = 0; Part < UF; ++Part) { 3944 Value *V = getOrCreateVectorValue(Cur, Part); 3945 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 3946 } 3947 3948 for (User *U : Cur->users()) { 3949 Instruction *UI = cast<Instruction>(U); 3950 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 3951 Visited.insert(UI).second) 3952 Worklist.push_back(UI); 3953 } 3954 } 3955 } 3956 3957 void InnerLoopVectorizer::fixLCSSAPHIs() { 3958 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3959 if (LCSSAPhi.getNumIncomingValues() == 1) { 3960 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3961 // Non-instruction incoming values will have only one value. 3962 unsigned LastLane = 0; 3963 if (isa<Instruction>(IncomingValue)) 3964 LastLane = Cost->isUniformAfterVectorization( 3965 cast<Instruction>(IncomingValue), VF) 3966 ? 0 3967 : VF - 1; 3968 // Can be a loop invariant incoming value or the last scalar value to be 3969 // extracted from the vectorized loop. 3970 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3971 Value *lastIncomingValue = 3972 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3973 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3974 } 3975 } 3976 } 3977 3978 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3979 // The basic block and loop containing the predicated instruction. 3980 auto *PredBB = PredInst->getParent(); 3981 auto *VectorLoop = LI->getLoopFor(PredBB); 3982 3983 // Initialize a worklist with the operands of the predicated instruction. 3984 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3985 3986 // Holds instructions that we need to analyze again. An instruction may be 3987 // reanalyzed if we don't yet know if we can sink it or not. 3988 SmallVector<Instruction *, 8> InstsToReanalyze; 3989 3990 // Returns true if a given use occurs in the predicated block. Phi nodes use 3991 // their operands in their corresponding predecessor blocks. 3992 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3993 auto *I = cast<Instruction>(U.getUser()); 3994 BasicBlock *BB = I->getParent(); 3995 if (auto *Phi = dyn_cast<PHINode>(I)) 3996 BB = Phi->getIncomingBlock( 3997 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3998 return BB == PredBB; 3999 }; 4000 4001 // Iteratively sink the scalarized operands of the predicated instruction 4002 // into the block we created for it. When an instruction is sunk, it's 4003 // operands are then added to the worklist. The algorithm ends after one pass 4004 // through the worklist doesn't sink a single instruction. 4005 bool Changed; 4006 do { 4007 // Add the instructions that need to be reanalyzed to the worklist, and 4008 // reset the changed indicator. 4009 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4010 InstsToReanalyze.clear(); 4011 Changed = false; 4012 4013 while (!Worklist.empty()) { 4014 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4015 4016 // We can't sink an instruction if it is a phi node, is already in the 4017 // predicated block, is not in the loop, or may have side effects. 4018 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4019 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4020 continue; 4021 4022 // It's legal to sink the instruction if all its uses occur in the 4023 // predicated block. Otherwise, there's nothing to do yet, and we may 4024 // need to reanalyze the instruction. 4025 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4026 InstsToReanalyze.push_back(I); 4027 continue; 4028 } 4029 4030 // Move the instruction to the beginning of the predicated block, and add 4031 // it's operands to the worklist. 4032 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4033 Worklist.insert(I->op_begin(), I->op_end()); 4034 4035 // The sinking may have enabled other instructions to be sunk, so we will 4036 // need to iterate. 4037 Changed = true; 4038 } 4039 } while (Changed); 4040 } 4041 4042 void InnerLoopVectorizer::fixNonInductionPHIs() { 4043 for (PHINode *OrigPhi : OrigPHIsToFix) { 4044 PHINode *NewPhi = 4045 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 4046 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 4047 4048 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 4049 predecessors(OrigPhi->getParent())); 4050 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 4051 predecessors(NewPhi->getParent())); 4052 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 4053 "Scalar and Vector BB should have the same number of predecessors"); 4054 4055 // The insertion point in Builder may be invalidated by the time we get 4056 // here. Force the Builder insertion point to something valid so that we do 4057 // not run into issues during insertion point restore in 4058 // getOrCreateVectorValue calls below. 4059 Builder.SetInsertPoint(NewPhi); 4060 4061 // The predecessor order is preserved and we can rely on mapping between 4062 // scalar and vector block predecessors. 4063 for (unsigned i = 0; i < NumIncomingValues; ++i) { 4064 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 4065 4066 // When looking up the new scalar/vector values to fix up, use incoming 4067 // values from original phi. 4068 Value *ScIncV = 4069 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 4070 4071 // Scalar incoming value may need a broadcast 4072 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 4073 NewPhi->addIncoming(NewIncV, NewPredBB); 4074 } 4075 } 4076 } 4077 4078 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, unsigned UF, 4079 unsigned VF, bool IsPtrLoopInvariant, 4080 SmallBitVector &IsIndexLoopInvariant) { 4081 // Construct a vector GEP by widening the operands of the scalar GEP as 4082 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4083 // results in a vector of pointers when at least one operand of the GEP 4084 // is vector-typed. Thus, to keep the representation compact, we only use 4085 // vector-typed operands for loop-varying values. 4086 4087 if (VF > 1 && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4088 // If we are vectorizing, but the GEP has only loop-invariant operands, 4089 // the GEP we build (by only using vector-typed operands for 4090 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4091 // produce a vector of pointers, we need to either arbitrarily pick an 4092 // operand to broadcast, or broadcast a clone of the original GEP. 4093 // Here, we broadcast a clone of the original. 4094 // 4095 // TODO: If at some point we decide to scalarize instructions having 4096 // loop-invariant operands, this special case will no longer be 4097 // required. We would add the scalarization decision to 4098 // collectLoopScalars() and teach getVectorValue() to broadcast 4099 // the lane-zero scalar value. 4100 auto *Clone = Builder.Insert(GEP->clone()); 4101 for (unsigned Part = 0; Part < UF; ++Part) { 4102 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4103 VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart); 4104 addMetadata(EntryPart, GEP); 4105 } 4106 } else { 4107 // If the GEP has at least one loop-varying operand, we are sure to 4108 // produce a vector of pointers. But if we are only unrolling, we want 4109 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4110 // produce with the code below will be scalar (if VF == 1) or vector 4111 // (otherwise). Note that for the unroll-only case, we still maintain 4112 // values in the vector mapping with initVector, as we do for other 4113 // instructions. 4114 for (unsigned Part = 0; Part < UF; ++Part) { 4115 // The pointer operand of the new GEP. If it's loop-invariant, we 4116 // won't broadcast it. 4117 auto *Ptr = IsPtrLoopInvariant 4118 ? GEP->getPointerOperand() 4119 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 4120 4121 // Collect all the indices for the new GEP. If any index is 4122 // loop-invariant, we won't broadcast it. 4123 SmallVector<Value *, 4> Indices; 4124 for (auto Index : enumerate(GEP->indices())) { 4125 Value *User = Index.value().get(); 4126 if (IsIndexLoopInvariant[Index.index()]) 4127 Indices.push_back(User); 4128 else 4129 Indices.push_back(getOrCreateVectorValue(User, Part)); 4130 } 4131 4132 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4133 // but it should be a vector, otherwise. 4134 auto *NewGEP = 4135 GEP->isInBounds() 4136 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4137 Indices) 4138 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4139 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4140 "NewGEP is not a pointer vector"); 4141 VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP); 4142 addMetadata(NewGEP, GEP); 4143 } 4144 } 4145 } 4146 4147 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4148 unsigned VF) { 4149 PHINode *P = cast<PHINode>(PN); 4150 if (EnableVPlanNativePath) { 4151 // Currently we enter here in the VPlan-native path for non-induction 4152 // PHIs where all control flow is uniform. We simply widen these PHIs. 4153 // Create a vector phi with no operands - the vector phi operands will be 4154 // set at the end of vector code generation. 4155 Type *VecTy = 4156 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4157 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4158 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 4159 OrigPHIsToFix.push_back(P); 4160 4161 return; 4162 } 4163 4164 assert(PN->getParent() == OrigLoop->getHeader() && 4165 "Non-header phis should have been handled elsewhere"); 4166 4167 // In order to support recurrences we need to be able to vectorize Phi nodes. 4168 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4169 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4170 // this value when we vectorize all of the instructions that use the PHI. 4171 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4172 for (unsigned Part = 0; Part < UF; ++Part) { 4173 // This is phase one of vectorizing PHIs. 4174 Type *VecTy = 4175 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4176 Value *EntryPart = PHINode::Create( 4177 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4178 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4179 } 4180 return; 4181 } 4182 4183 setDebugLocFromInst(Builder, P); 4184 4185 // This PHINode must be an induction variable. 4186 // Make sure that we know about it. 4187 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4188 4189 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4190 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4191 4192 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4193 // which can be found from the original scalar operations. 4194 switch (II.getKind()) { 4195 case InductionDescriptor::IK_NoInduction: 4196 llvm_unreachable("Unknown induction"); 4197 case InductionDescriptor::IK_IntInduction: 4198 case InductionDescriptor::IK_FpInduction: 4199 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4200 case InductionDescriptor::IK_PtrInduction: { 4201 // Handle the pointer induction variable case. 4202 assert(P->getType()->isPointerTy() && "Unexpected type."); 4203 // This is the normalized GEP that starts counting at zero. 4204 Value *PtrInd = Induction; 4205 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4206 // Determine the number of scalars we need to generate for each unroll 4207 // iteration. If the instruction is uniform, we only need to generate the 4208 // first lane. Otherwise, we generate all VF values. 4209 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4210 // These are the scalar results. Notice that we don't generate vector GEPs 4211 // because scalar GEPs result in better code. 4212 for (unsigned Part = 0; Part < UF; ++Part) { 4213 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4214 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4215 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4216 Value *SclrGep = 4217 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4218 SclrGep->setName("next.gep"); 4219 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4220 } 4221 } 4222 return; 4223 } 4224 } 4225 } 4226 4227 /// A helper function for checking whether an integer division-related 4228 /// instruction may divide by zero (in which case it must be predicated if 4229 /// executed conditionally in the scalar code). 4230 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4231 /// Non-zero divisors that are non compile-time constants will not be 4232 /// converted into multiplication, so we will still end up scalarizing 4233 /// the division, but can do so w/o predication. 4234 static bool mayDivideByZero(Instruction &I) { 4235 assert((I.getOpcode() == Instruction::UDiv || 4236 I.getOpcode() == Instruction::SDiv || 4237 I.getOpcode() == Instruction::URem || 4238 I.getOpcode() == Instruction::SRem) && 4239 "Unexpected instruction"); 4240 Value *Divisor = I.getOperand(1); 4241 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4242 return !CInt || CInt->isZero(); 4243 } 4244 4245 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPUser &User, 4246 VPTransformState &State) { 4247 switch (I.getOpcode()) { 4248 case Instruction::Call: 4249 case Instruction::Br: 4250 case Instruction::PHI: 4251 case Instruction::GetElementPtr: 4252 case Instruction::Select: 4253 llvm_unreachable("This instruction is handled by a different recipe."); 4254 case Instruction::UDiv: 4255 case Instruction::SDiv: 4256 case Instruction::SRem: 4257 case Instruction::URem: 4258 case Instruction::Add: 4259 case Instruction::FAdd: 4260 case Instruction::Sub: 4261 case Instruction::FSub: 4262 case Instruction::FNeg: 4263 case Instruction::Mul: 4264 case Instruction::FMul: 4265 case Instruction::FDiv: 4266 case Instruction::FRem: 4267 case Instruction::Shl: 4268 case Instruction::LShr: 4269 case Instruction::AShr: 4270 case Instruction::And: 4271 case Instruction::Or: 4272 case Instruction::Xor: { 4273 // Just widen unops and binops. 4274 setDebugLocFromInst(Builder, &I); 4275 4276 for (unsigned Part = 0; Part < UF; ++Part) { 4277 SmallVector<Value *, 2> Ops; 4278 for (VPValue *VPOp : User.operands()) 4279 Ops.push_back(State.get(VPOp, Part)); 4280 4281 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4282 4283 if (auto *VecOp = dyn_cast<Instruction>(V)) 4284 VecOp->copyIRFlags(&I); 4285 4286 // Use this vector value for all users of the original instruction. 4287 VectorLoopValueMap.setVectorValue(&I, Part, V); 4288 addMetadata(V, &I); 4289 } 4290 4291 break; 4292 } 4293 case Instruction::ICmp: 4294 case Instruction::FCmp: { 4295 // Widen compares. Generate vector compares. 4296 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4297 auto *Cmp = cast<CmpInst>(&I); 4298 setDebugLocFromInst(Builder, Cmp); 4299 for (unsigned Part = 0; Part < UF; ++Part) { 4300 Value *A = State.get(User.getOperand(0), Part); 4301 Value *B = State.get(User.getOperand(1), Part); 4302 Value *C = nullptr; 4303 if (FCmp) { 4304 // Propagate fast math flags. 4305 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4306 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4307 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4308 } else { 4309 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4310 } 4311 VectorLoopValueMap.setVectorValue(&I, Part, C); 4312 addMetadata(C, &I); 4313 } 4314 4315 break; 4316 } 4317 4318 case Instruction::ZExt: 4319 case Instruction::SExt: 4320 case Instruction::FPToUI: 4321 case Instruction::FPToSI: 4322 case Instruction::FPExt: 4323 case Instruction::PtrToInt: 4324 case Instruction::IntToPtr: 4325 case Instruction::SIToFP: 4326 case Instruction::UIToFP: 4327 case Instruction::Trunc: 4328 case Instruction::FPTrunc: 4329 case Instruction::BitCast: { 4330 auto *CI = cast<CastInst>(&I); 4331 setDebugLocFromInst(Builder, CI); 4332 4333 /// Vectorize casts. 4334 Type *DestTy = 4335 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4336 4337 for (unsigned Part = 0; Part < UF; ++Part) { 4338 Value *A = State.get(User.getOperand(0), Part); 4339 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4340 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4341 addMetadata(Cast, &I); 4342 } 4343 break; 4344 } 4345 default: 4346 // This instruction is not vectorized by simple widening. 4347 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4348 llvm_unreachable("Unhandled instruction!"); 4349 } // end of switch. 4350 } 4351 4352 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPUser &ArgOperands, 4353 VPTransformState &State) { 4354 assert(!isa<DbgInfoIntrinsic>(I) && 4355 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4356 setDebugLocFromInst(Builder, &I); 4357 4358 Module *M = I.getParent()->getParent()->getParent(); 4359 auto *CI = cast<CallInst>(&I); 4360 4361 SmallVector<Type *, 4> Tys; 4362 for (Value *ArgOperand : CI->arg_operands()) 4363 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4364 4365 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4366 4367 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4368 // version of the instruction. 4369 // Is it beneficial to perform intrinsic call compared to lib call? 4370 bool NeedToScalarize = false; 4371 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4372 bool UseVectorIntrinsic = 4373 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4374 assert((UseVectorIntrinsic || !NeedToScalarize) && 4375 "Instruction should be scalarized elsewhere."); 4376 4377 for (unsigned Part = 0; Part < UF; ++Part) { 4378 SmallVector<Value *, 4> Args; 4379 for (auto &I : enumerate(ArgOperands.operands())) { 4380 // Some intrinsics have a scalar argument - don't replace it with a 4381 // vector. 4382 Value *Arg; 4383 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4384 Arg = State.get(I.value(), Part); 4385 else 4386 Arg = State.get(I.value(), {0, 0}); 4387 Args.push_back(Arg); 4388 } 4389 4390 Function *VectorF; 4391 if (UseVectorIntrinsic) { 4392 // Use vector version of the intrinsic. 4393 Type *TysForDecl[] = {CI->getType()}; 4394 if (VF > 1) 4395 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4396 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4397 assert(VectorF && "Can't retrieve vector intrinsic."); 4398 } else { 4399 // Use vector version of the function call. 4400 const VFShape Shape = 4401 VFShape::get(*CI, {VF, false} /*EC*/, false /*HasGlobalPred*/); 4402 #ifndef NDEBUG 4403 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4404 "Can't create vector function."); 4405 #endif 4406 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4407 } 4408 SmallVector<OperandBundleDef, 1> OpBundles; 4409 CI->getOperandBundlesAsDefs(OpBundles); 4410 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4411 4412 if (isa<FPMathOperator>(V)) 4413 V->copyFastMathFlags(CI); 4414 4415 VectorLoopValueMap.setVectorValue(&I, Part, V); 4416 addMetadata(V, &I); 4417 } 4418 } 4419 4420 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, 4421 bool InvariantCond) { 4422 setDebugLocFromInst(Builder, &I); 4423 4424 // The condition can be loop invariant but still defined inside the 4425 // loop. This means that we can't just use the original 'cond' value. 4426 // We have to take the 'vectorized' value and pick the first lane. 4427 // Instcombine will make this a no-op. 4428 4429 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4430 4431 for (unsigned Part = 0; Part < UF; ++Part) { 4432 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4433 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4434 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4435 Value *Sel = 4436 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4437 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4438 addMetadata(Sel, &I); 4439 } 4440 } 4441 4442 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4443 // We should not collect Scalars more than once per VF. Right now, this 4444 // function is called from collectUniformsAndScalars(), which already does 4445 // this check. Collecting Scalars for VF=1 does not make any sense. 4446 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4447 "This function should not be visited twice for the same VF"); 4448 4449 SmallSetVector<Instruction *, 8> Worklist; 4450 4451 // These sets are used to seed the analysis with pointers used by memory 4452 // accesses that will remain scalar. 4453 SmallSetVector<Instruction *, 8> ScalarPtrs; 4454 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4455 4456 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4457 // The pointer operands of loads and stores will be scalar as long as the 4458 // memory access is not a gather or scatter operation. The value operand of a 4459 // store will remain scalar if the store is scalarized. 4460 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4461 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4462 assert(WideningDecision != CM_Unknown && 4463 "Widening decision should be ready at this moment"); 4464 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4465 if (Ptr == Store->getValueOperand()) 4466 return WideningDecision == CM_Scalarize; 4467 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4468 "Ptr is neither a value or pointer operand"); 4469 return WideningDecision != CM_GatherScatter; 4470 }; 4471 4472 // A helper that returns true if the given value is a bitcast or 4473 // getelementptr instruction contained in the loop. 4474 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4475 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4476 isa<GetElementPtrInst>(V)) && 4477 !TheLoop->isLoopInvariant(V); 4478 }; 4479 4480 // A helper that evaluates a memory access's use of a pointer. If the use 4481 // will be a scalar use, and the pointer is only used by memory accesses, we 4482 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4483 // PossibleNonScalarPtrs. 4484 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4485 // We only care about bitcast and getelementptr instructions contained in 4486 // the loop. 4487 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4488 return; 4489 4490 // If the pointer has already been identified as scalar (e.g., if it was 4491 // also identified as uniform), there's nothing to do. 4492 auto *I = cast<Instruction>(Ptr); 4493 if (Worklist.count(I)) 4494 return; 4495 4496 // If the use of the pointer will be a scalar use, and all users of the 4497 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4498 // place the pointer in PossibleNonScalarPtrs. 4499 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4500 return isa<LoadInst>(U) || isa<StoreInst>(U); 4501 })) 4502 ScalarPtrs.insert(I); 4503 else 4504 PossibleNonScalarPtrs.insert(I); 4505 }; 4506 4507 // We seed the scalars analysis with three classes of instructions: (1) 4508 // instructions marked uniform-after-vectorization, (2) bitcast and 4509 // getelementptr instructions used by memory accesses requiring a scalar use, 4510 // and (3) pointer induction variables and their update instructions (we 4511 // currently only scalarize these). 4512 // 4513 // (1) Add to the worklist all instructions that have been identified as 4514 // uniform-after-vectorization. 4515 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4516 4517 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4518 // memory accesses requiring a scalar use. The pointer operands of loads and 4519 // stores will be scalar as long as the memory accesses is not a gather or 4520 // scatter operation. The value operand of a store will remain scalar if the 4521 // store is scalarized. 4522 for (auto *BB : TheLoop->blocks()) 4523 for (auto &I : *BB) { 4524 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4525 evaluatePtrUse(Load, Load->getPointerOperand()); 4526 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4527 evaluatePtrUse(Store, Store->getPointerOperand()); 4528 evaluatePtrUse(Store, Store->getValueOperand()); 4529 } 4530 } 4531 for (auto *I : ScalarPtrs) 4532 if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) { 4533 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4534 Worklist.insert(I); 4535 } 4536 4537 // (3) Add to the worklist all pointer induction variables and their update 4538 // instructions. 4539 // 4540 // TODO: Once we are able to vectorize pointer induction variables we should 4541 // no longer insert them into the worklist here. 4542 auto *Latch = TheLoop->getLoopLatch(); 4543 for (auto &Induction : Legal->getInductionVars()) { 4544 auto *Ind = Induction.first; 4545 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4546 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4547 continue; 4548 Worklist.insert(Ind); 4549 Worklist.insert(IndUpdate); 4550 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4551 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4552 << "\n"); 4553 } 4554 4555 // Insert the forced scalars. 4556 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4557 // induction variable when the PHI user is scalarized. 4558 auto ForcedScalar = ForcedScalars.find(VF); 4559 if (ForcedScalar != ForcedScalars.end()) 4560 for (auto *I : ForcedScalar->second) 4561 Worklist.insert(I); 4562 4563 // Expand the worklist by looking through any bitcasts and getelementptr 4564 // instructions we've already identified as scalar. This is similar to the 4565 // expansion step in collectLoopUniforms(); however, here we're only 4566 // expanding to include additional bitcasts and getelementptr instructions. 4567 unsigned Idx = 0; 4568 while (Idx != Worklist.size()) { 4569 Instruction *Dst = Worklist[Idx++]; 4570 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4571 continue; 4572 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4573 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4574 auto *J = cast<Instruction>(U); 4575 return !TheLoop->contains(J) || Worklist.count(J) || 4576 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4577 isScalarUse(J, Src)); 4578 })) { 4579 Worklist.insert(Src); 4580 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4581 } 4582 } 4583 4584 // An induction variable will remain scalar if all users of the induction 4585 // variable and induction variable update remain scalar. 4586 for (auto &Induction : Legal->getInductionVars()) { 4587 auto *Ind = Induction.first; 4588 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4589 4590 // We already considered pointer induction variables, so there's no reason 4591 // to look at their users again. 4592 // 4593 // TODO: Once we are able to vectorize pointer induction variables we 4594 // should no longer skip over them here. 4595 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4596 continue; 4597 4598 // If tail-folding is applied, the primary induction variable will be used 4599 // to feed a vector compare. 4600 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4601 continue; 4602 4603 // Determine if all users of the induction variable are scalar after 4604 // vectorization. 4605 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4606 auto *I = cast<Instruction>(U); 4607 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4608 }); 4609 if (!ScalarInd) 4610 continue; 4611 4612 // Determine if all users of the induction variable update instruction are 4613 // scalar after vectorization. 4614 auto ScalarIndUpdate = 4615 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4616 auto *I = cast<Instruction>(U); 4617 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4618 }); 4619 if (!ScalarIndUpdate) 4620 continue; 4621 4622 // The induction variable and its update instruction will remain scalar. 4623 Worklist.insert(Ind); 4624 Worklist.insert(IndUpdate); 4625 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4626 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4627 << "\n"); 4628 } 4629 4630 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4631 } 4632 4633 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4634 if (!blockNeedsPredication(I->getParent())) 4635 return false; 4636 switch(I->getOpcode()) { 4637 default: 4638 break; 4639 case Instruction::Load: 4640 case Instruction::Store: { 4641 if (!Legal->isMaskRequired(I)) 4642 return false; 4643 auto *Ptr = getLoadStorePointerOperand(I); 4644 auto *Ty = getMemInstValueType(I); 4645 // We have already decided how to vectorize this instruction, get that 4646 // result. 4647 if (VF > 1) { 4648 InstWidening WideningDecision = getWideningDecision(I, VF); 4649 assert(WideningDecision != CM_Unknown && 4650 "Widening decision should be ready at this moment"); 4651 return WideningDecision == CM_Scalarize; 4652 } 4653 const MaybeAlign Alignment = getLoadStoreAlignment(I); 4654 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4655 isLegalMaskedGather(Ty, Alignment)) 4656 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4657 isLegalMaskedScatter(Ty, Alignment)); 4658 } 4659 case Instruction::UDiv: 4660 case Instruction::SDiv: 4661 case Instruction::SRem: 4662 case Instruction::URem: 4663 return mayDivideByZero(*I); 4664 } 4665 return false; 4666 } 4667 4668 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4669 unsigned VF) { 4670 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4671 assert(getWideningDecision(I, VF) == CM_Unknown && 4672 "Decision should not be set yet."); 4673 auto *Group = getInterleavedAccessGroup(I); 4674 assert(Group && "Must have a group."); 4675 4676 // If the instruction's allocated size doesn't equal it's type size, it 4677 // requires padding and will be scalarized. 4678 auto &DL = I->getModule()->getDataLayout(); 4679 auto *ScalarTy = getMemInstValueType(I); 4680 if (hasIrregularType(ScalarTy, DL, VF)) 4681 return false; 4682 4683 // Check if masking is required. 4684 // A Group may need masking for one of two reasons: it resides in a block that 4685 // needs predication, or it was decided to use masking to deal with gaps. 4686 bool PredicatedAccessRequiresMasking = 4687 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4688 bool AccessWithGapsRequiresMasking = 4689 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 4690 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4691 return true; 4692 4693 // If masked interleaving is required, we expect that the user/target had 4694 // enabled it, because otherwise it either wouldn't have been created or 4695 // it should have been invalidated by the CostModel. 4696 assert(useMaskedInterleavedAccesses(TTI) && 4697 "Masked interleave-groups for predicated accesses are not enabled."); 4698 4699 auto *Ty = getMemInstValueType(I); 4700 const MaybeAlign Alignment = getLoadStoreAlignment(I); 4701 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4702 : TTI.isLegalMaskedStore(Ty, Alignment); 4703 } 4704 4705 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4706 unsigned VF) { 4707 // Get and ensure we have a valid memory instruction. 4708 LoadInst *LI = dyn_cast<LoadInst>(I); 4709 StoreInst *SI = dyn_cast<StoreInst>(I); 4710 assert((LI || SI) && "Invalid memory instruction"); 4711 4712 auto *Ptr = getLoadStorePointerOperand(I); 4713 4714 // In order to be widened, the pointer should be consecutive, first of all. 4715 if (!Legal->isConsecutivePtr(Ptr)) 4716 return false; 4717 4718 // If the instruction is a store located in a predicated block, it will be 4719 // scalarized. 4720 if (isScalarWithPredication(I)) 4721 return false; 4722 4723 // If the instruction's allocated size doesn't equal it's type size, it 4724 // requires padding and will be scalarized. 4725 auto &DL = I->getModule()->getDataLayout(); 4726 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4727 if (hasIrregularType(ScalarTy, DL, VF)) 4728 return false; 4729 4730 return true; 4731 } 4732 4733 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4734 // We should not collect Uniforms more than once per VF. Right now, 4735 // this function is called from collectUniformsAndScalars(), which 4736 // already does this check. Collecting Uniforms for VF=1 does not make any 4737 // sense. 4738 4739 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4740 "This function should not be visited twice for the same VF"); 4741 4742 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4743 // not analyze again. Uniforms.count(VF) will return 1. 4744 Uniforms[VF].clear(); 4745 4746 // We now know that the loop is vectorizable! 4747 // Collect instructions inside the loop that will remain uniform after 4748 // vectorization. 4749 4750 // Global values, params and instructions outside of current loop are out of 4751 // scope. 4752 auto isOutOfScope = [&](Value *V) -> bool { 4753 Instruction *I = dyn_cast<Instruction>(V); 4754 return (!I || !TheLoop->contains(I)); 4755 }; 4756 4757 SetVector<Instruction *> Worklist; 4758 BasicBlock *Latch = TheLoop->getLoopLatch(); 4759 4760 // Instructions that are scalar with predication must not be considered 4761 // uniform after vectorization, because that would create an erroneous 4762 // replicating region where only a single instance out of VF should be formed. 4763 // TODO: optimize such seldom cases if found important, see PR40816. 4764 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4765 if (isScalarWithPredication(I, VF)) { 4766 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4767 << *I << "\n"); 4768 return; 4769 } 4770 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4771 Worklist.insert(I); 4772 }; 4773 4774 // Start with the conditional branch. If the branch condition is an 4775 // instruction contained in the loop that is only used by the branch, it is 4776 // uniform. 4777 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4778 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4779 addToWorklistIfAllowed(Cmp); 4780 4781 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4782 // are pointers that are treated like consecutive pointers during 4783 // vectorization. The pointer operands of interleaved accesses are an 4784 // example. 4785 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4786 4787 // Holds pointer operands of instructions that are possibly non-uniform. 4788 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4789 4790 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4791 InstWidening WideningDecision = getWideningDecision(I, VF); 4792 assert(WideningDecision != CM_Unknown && 4793 "Widening decision should be ready at this moment"); 4794 4795 return (WideningDecision == CM_Widen || 4796 WideningDecision == CM_Widen_Reverse || 4797 WideningDecision == CM_Interleave); 4798 }; 4799 // Iterate over the instructions in the loop, and collect all 4800 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4801 // that a consecutive-like pointer operand will be scalarized, we collect it 4802 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4803 // getelementptr instruction can be used by both vectorized and scalarized 4804 // memory instructions. For example, if a loop loads and stores from the same 4805 // location, but the store is conditional, the store will be scalarized, and 4806 // the getelementptr won't remain uniform. 4807 for (auto *BB : TheLoop->blocks()) 4808 for (auto &I : *BB) { 4809 // If there's no pointer operand, there's nothing to do. 4810 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4811 if (!Ptr) 4812 continue; 4813 4814 // True if all users of Ptr are memory accesses that have Ptr as their 4815 // pointer operand. 4816 auto UsersAreMemAccesses = 4817 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4818 return getLoadStorePointerOperand(U) == Ptr; 4819 }); 4820 4821 // Ensure the memory instruction will not be scalarized or used by 4822 // gather/scatter, making its pointer operand non-uniform. If the pointer 4823 // operand is used by any instruction other than a memory access, we 4824 // conservatively assume the pointer operand may be non-uniform. 4825 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4826 PossibleNonUniformPtrs.insert(Ptr); 4827 4828 // If the memory instruction will be vectorized and its pointer operand 4829 // is consecutive-like, or interleaving - the pointer operand should 4830 // remain uniform. 4831 else 4832 ConsecutiveLikePtrs.insert(Ptr); 4833 } 4834 4835 // Add to the Worklist all consecutive and consecutive-like pointers that 4836 // aren't also identified as possibly non-uniform. 4837 for (auto *V : ConsecutiveLikePtrs) 4838 if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) 4839 addToWorklistIfAllowed(V); 4840 4841 // Expand Worklist in topological order: whenever a new instruction 4842 // is added , its users should be already inside Worklist. It ensures 4843 // a uniform instruction will only be used by uniform instructions. 4844 unsigned idx = 0; 4845 while (idx != Worklist.size()) { 4846 Instruction *I = Worklist[idx++]; 4847 4848 for (auto OV : I->operand_values()) { 4849 // isOutOfScope operands cannot be uniform instructions. 4850 if (isOutOfScope(OV)) 4851 continue; 4852 // First order recurrence Phi's should typically be considered 4853 // non-uniform. 4854 auto *OP = dyn_cast<PHINode>(OV); 4855 if (OP && Legal->isFirstOrderRecurrence(OP)) 4856 continue; 4857 // If all the users of the operand are uniform, then add the 4858 // operand into the uniform worklist. 4859 auto *OI = cast<Instruction>(OV); 4860 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4861 auto *J = cast<Instruction>(U); 4862 return Worklist.count(J) || 4863 (OI == getLoadStorePointerOperand(J) && 4864 isUniformDecision(J, VF)); 4865 })) 4866 addToWorklistIfAllowed(OI); 4867 } 4868 } 4869 4870 // Returns true if Ptr is the pointer operand of a memory access instruction 4871 // I, and I is known to not require scalarization. 4872 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4873 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4874 }; 4875 4876 // For an instruction to be added into Worklist above, all its users inside 4877 // the loop should also be in Worklist. However, this condition cannot be 4878 // true for phi nodes that form a cyclic dependence. We must process phi 4879 // nodes separately. An induction variable will remain uniform if all users 4880 // of the induction variable and induction variable update remain uniform. 4881 // The code below handles both pointer and non-pointer induction variables. 4882 for (auto &Induction : Legal->getInductionVars()) { 4883 auto *Ind = Induction.first; 4884 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4885 4886 // Determine if all users of the induction variable are uniform after 4887 // vectorization. 4888 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4889 auto *I = cast<Instruction>(U); 4890 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4891 isVectorizedMemAccessUse(I, Ind); 4892 }); 4893 if (!UniformInd) 4894 continue; 4895 4896 // Determine if all users of the induction variable update instruction are 4897 // uniform after vectorization. 4898 auto UniformIndUpdate = 4899 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4900 auto *I = cast<Instruction>(U); 4901 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4902 isVectorizedMemAccessUse(I, IndUpdate); 4903 }); 4904 if (!UniformIndUpdate) 4905 continue; 4906 4907 // The induction variable and its update instruction will remain uniform. 4908 addToWorklistIfAllowed(Ind); 4909 addToWorklistIfAllowed(IndUpdate); 4910 } 4911 4912 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4913 } 4914 4915 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4916 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4917 4918 if (Legal->getRuntimePointerChecking()->Need) { 4919 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4920 "runtime pointer checks needed. Enable vectorization of this " 4921 "loop with '#pragma clang loop vectorize(enable)' when " 4922 "compiling with -Os/-Oz", 4923 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4924 return true; 4925 } 4926 4927 if (!PSE.getUnionPredicate().getPredicates().empty()) { 4928 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4929 "runtime SCEV checks needed. Enable vectorization of this " 4930 "loop with '#pragma clang loop vectorize(enable)' when " 4931 "compiling with -Os/-Oz", 4932 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4933 return true; 4934 } 4935 4936 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4937 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4938 reportVectorizationFailure("Runtime stride check is required with -Os/-Oz", 4939 "runtime stride == 1 checks needed. Enable vectorization of " 4940 "this loop with '#pragma clang loop vectorize(enable)' when " 4941 "compiling with -Os/-Oz", 4942 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4943 return true; 4944 } 4945 4946 return false; 4947 } 4948 4949 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF() { 4950 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4951 // TODO: It may by useful to do since it's still likely to be dynamically 4952 // uniform if the target can skip. 4953 reportVectorizationFailure( 4954 "Not inserting runtime ptr check for divergent target", 4955 "runtime pointer checks needed. Not enabled for divergent target", 4956 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 4957 return None; 4958 } 4959 4960 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4961 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4962 if (TC == 1) { 4963 reportVectorizationFailure("Single iteration (non) loop", 4964 "loop trip count is one, irrelevant for vectorization", 4965 "SingleIterationLoop", ORE, TheLoop); 4966 return None; 4967 } 4968 4969 switch (ScalarEpilogueStatus) { 4970 case CM_ScalarEpilogueAllowed: 4971 return computeFeasibleMaxVF(TC); 4972 case CM_ScalarEpilogueNotNeededUsePredicate: 4973 LLVM_DEBUG( 4974 dbgs() << "LV: vector predicate hint/switch found.\n" 4975 << "LV: Not allowing scalar epilogue, creating predicated " 4976 << "vector loop.\n"); 4977 break; 4978 case CM_ScalarEpilogueNotAllowedLowTripLoop: 4979 // fallthrough as a special case of OptForSize 4980 case CM_ScalarEpilogueNotAllowedOptSize: 4981 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 4982 LLVM_DEBUG( 4983 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 4984 else 4985 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 4986 << "count.\n"); 4987 4988 // Bail if runtime checks are required, which are not good when optimising 4989 // for size. 4990 if (runtimeChecksRequired()) 4991 return None; 4992 break; 4993 } 4994 4995 // Now try the tail folding 4996 4997 // Invalidate interleave groups that require an epilogue if we can't mask 4998 // the interleave-group. 4999 if (!useMaskedInterleavedAccesses(TTI)) { 5000 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5001 "No decisions should have been taken at this point"); 5002 // Note: There is no need to invalidate any cost modeling decisions here, as 5003 // non where taken so far. 5004 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5005 } 5006 5007 unsigned MaxVF = computeFeasibleMaxVF(TC); 5008 if (TC > 0 && TC % MaxVF == 0) { 5009 // Accept MaxVF if we do not have a tail. 5010 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5011 return MaxVF; 5012 } 5013 5014 // If we don't know the precise trip count, or if the trip count that we 5015 // found modulo the vectorization factor is not zero, try to fold the tail 5016 // by masking. 5017 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5018 if (Legal->prepareToFoldTailByMasking()) { 5019 FoldTailByMasking = true; 5020 return MaxVF; 5021 } 5022 5023 if (TC == 0) { 5024 reportVectorizationFailure( 5025 "Unable to calculate the loop count due to complex control flow", 5026 "unable to calculate the loop count due to complex control flow", 5027 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5028 return None; 5029 } 5030 5031 reportVectorizationFailure( 5032 "Cannot optimize for size and vectorize at the same time.", 5033 "cannot optimize for size and vectorize at the same time. " 5034 "Enable vectorization of this loop with '#pragma clang loop " 5035 "vectorize(enable)' when compiling with -Os/-Oz", 5036 "NoTailLoopWithOptForSize", ORE, TheLoop); 5037 return None; 5038 } 5039 5040 unsigned 5041 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) { 5042 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5043 unsigned SmallestType, WidestType; 5044 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5045 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5046 5047 // Get the maximum safe dependence distance in bits computed by LAA. 5048 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5049 // the memory accesses that is most restrictive (involved in the smallest 5050 // dependence distance). 5051 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 5052 5053 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 5054 5055 unsigned MaxVectorSize = WidestRegister / WidestType; 5056 5057 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5058 << " / " << WidestType << " bits.\n"); 5059 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5060 << WidestRegister << " bits.\n"); 5061 5062 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 5063 " into one vector!"); 5064 if (MaxVectorSize == 0) { 5065 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5066 MaxVectorSize = 1; 5067 return MaxVectorSize; 5068 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 5069 isPowerOf2_32(ConstTripCount)) { 5070 // We need to clamp the VF to be the ConstTripCount. There is no point in 5071 // choosing a higher viable VF as done in the loop below. 5072 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5073 << ConstTripCount << "\n"); 5074 MaxVectorSize = ConstTripCount; 5075 return MaxVectorSize; 5076 } 5077 5078 unsigned MaxVF = MaxVectorSize; 5079 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5080 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5081 // Collect all viable vectorization factors larger than the default MaxVF 5082 // (i.e. MaxVectorSize). 5083 SmallVector<unsigned, 8> VFs; 5084 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5085 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5086 VFs.push_back(VS); 5087 5088 // For each VF calculate its register usage. 5089 auto RUs = calculateRegisterUsage(VFs); 5090 5091 // Select the largest VF which doesn't require more registers than existing 5092 // ones. 5093 for (int i = RUs.size() - 1; i >= 0; --i) { 5094 bool Selected = true; 5095 for (auto& pair : RUs[i].MaxLocalUsers) { 5096 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5097 if (pair.second > TargetNumRegisters) 5098 Selected = false; 5099 } 5100 if (Selected) { 5101 MaxVF = VFs[i]; 5102 break; 5103 } 5104 } 5105 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5106 if (MaxVF < MinVF) { 5107 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5108 << ") with target's minimum: " << MinVF << '\n'); 5109 MaxVF = MinVF; 5110 } 5111 } 5112 } 5113 return MaxVF; 5114 } 5115 5116 VectorizationFactor 5117 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 5118 float Cost = expectedCost(1).first; 5119 const float ScalarCost = Cost; 5120 unsigned Width = 1; 5121 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5122 5123 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5124 if (ForceVectorization && MaxVF > 1) { 5125 // Ignore scalar width, because the user explicitly wants vectorization. 5126 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5127 // evaluation. 5128 Cost = std::numeric_limits<float>::max(); 5129 } 5130 5131 for (unsigned i = 2; i <= MaxVF; i *= 2) { 5132 // Notice that the vector loop needs to be executed less times, so 5133 // we need to divide the cost of the vector loops by the width of 5134 // the vector elements. 5135 VectorizationCostTy C = expectedCost(i); 5136 float VectorCost = C.first / (float)i; 5137 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5138 << " costs: " << (int)VectorCost << ".\n"); 5139 if (!C.second && !ForceVectorization) { 5140 LLVM_DEBUG( 5141 dbgs() << "LV: Not considering vector loop of width " << i 5142 << " because it will not generate any vector instructions.\n"); 5143 continue; 5144 } 5145 if (VectorCost < Cost) { 5146 Cost = VectorCost; 5147 Width = i; 5148 } 5149 } 5150 5151 if (!EnableCondStoresVectorization && NumPredStores) { 5152 reportVectorizationFailure("There are conditional stores.", 5153 "store that is conditionally executed prevents vectorization", 5154 "ConditionalStore", ORE, TheLoop); 5155 Width = 1; 5156 Cost = ScalarCost; 5157 } 5158 5159 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5160 << "LV: Vectorization seems to be not beneficial, " 5161 << "but was forced by a user.\n"); 5162 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5163 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 5164 return Factor; 5165 } 5166 5167 std::pair<unsigned, unsigned> 5168 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5169 unsigned MinWidth = -1U; 5170 unsigned MaxWidth = 8; 5171 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5172 5173 // For each block. 5174 for (BasicBlock *BB : TheLoop->blocks()) { 5175 // For each instruction in the loop. 5176 for (Instruction &I : BB->instructionsWithoutDebug()) { 5177 Type *T = I.getType(); 5178 5179 // Skip ignored values. 5180 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end()) 5181 continue; 5182 5183 // Only examine Loads, Stores and PHINodes. 5184 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5185 continue; 5186 5187 // Examine PHI nodes that are reduction variables. Update the type to 5188 // account for the recurrence type. 5189 if (auto *PN = dyn_cast<PHINode>(&I)) { 5190 if (!Legal->isReductionVariable(PN)) 5191 continue; 5192 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 5193 T = RdxDesc.getRecurrenceType(); 5194 } 5195 5196 // Examine the stored values. 5197 if (auto *ST = dyn_cast<StoreInst>(&I)) 5198 T = ST->getValueOperand()->getType(); 5199 5200 // Ignore loaded pointer types and stored pointer types that are not 5201 // vectorizable. 5202 // 5203 // FIXME: The check here attempts to predict whether a load or store will 5204 // be vectorized. We only know this for certain after a VF has 5205 // been selected. Here, we assume that if an access can be 5206 // vectorized, it will be. We should also look at extending this 5207 // optimization to non-pointer types. 5208 // 5209 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5210 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5211 continue; 5212 5213 MinWidth = std::min(MinWidth, 5214 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5215 MaxWidth = std::max(MaxWidth, 5216 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5217 } 5218 } 5219 5220 return {MinWidth, MaxWidth}; 5221 } 5222 5223 unsigned LoopVectorizationCostModel::selectInterleaveCount(unsigned VF, 5224 unsigned LoopCost) { 5225 // -- The interleave heuristics -- 5226 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5227 // There are many micro-architectural considerations that we can't predict 5228 // at this level. For example, frontend pressure (on decode or fetch) due to 5229 // code size, or the number and capabilities of the execution ports. 5230 // 5231 // We use the following heuristics to select the interleave count: 5232 // 1. If the code has reductions, then we interleave to break the cross 5233 // iteration dependency. 5234 // 2. If the loop is really small, then we interleave to reduce the loop 5235 // overhead. 5236 // 3. We don't interleave if we think that we will spill registers to memory 5237 // due to the increased register pressure. 5238 5239 if (!isScalarEpilogueAllowed()) 5240 return 1; 5241 5242 // We used the distance for the interleave count. 5243 if (Legal->getMaxSafeDepDistBytes() != -1U) 5244 return 1; 5245 5246 // Do not interleave loops with a relatively small known or estimated trip 5247 // count. 5248 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5249 if (BestKnownTC && *BestKnownTC < TinyTripCountInterleaveThreshold) 5250 return 1; 5251 5252 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5253 // We divide by these constants so assume that we have at least one 5254 // instruction that uses at least one register. 5255 for (auto& pair : R.MaxLocalUsers) { 5256 pair.second = std::max(pair.second, 1U); 5257 } 5258 5259 // We calculate the interleave count using the following formula. 5260 // Subtract the number of loop invariants from the number of available 5261 // registers. These registers are used by all of the interleaved instances. 5262 // Next, divide the remaining registers by the number of registers that is 5263 // required by the loop, in order to estimate how many parallel instances 5264 // fit without causing spills. All of this is rounded down if necessary to be 5265 // a power of two. We want power of two interleave count to simplify any 5266 // addressing operations or alignment considerations. 5267 // We also want power of two interleave counts to ensure that the induction 5268 // variable of the vector loop wraps to zero, when tail is folded by masking; 5269 // this currently happens when OptForSize, in which case IC is set to 1 above. 5270 unsigned IC = UINT_MAX; 5271 5272 for (auto& pair : R.MaxLocalUsers) { 5273 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5274 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5275 << " registers of " 5276 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5277 if (VF == 1) { 5278 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5279 TargetNumRegisters = ForceTargetNumScalarRegs; 5280 } else { 5281 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5282 TargetNumRegisters = ForceTargetNumVectorRegs; 5283 } 5284 unsigned MaxLocalUsers = pair.second; 5285 unsigned LoopInvariantRegs = 0; 5286 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5287 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5288 5289 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5290 // Don't count the induction variable as interleaved. 5291 if (EnableIndVarRegisterHeur) { 5292 TmpIC = 5293 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5294 std::max(1U, (MaxLocalUsers - 1))); 5295 } 5296 5297 IC = std::min(IC, TmpIC); 5298 } 5299 5300 // Clamp the interleave ranges to reasonable counts. 5301 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5302 5303 // Check if the user has overridden the max. 5304 if (VF == 1) { 5305 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5306 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5307 } else { 5308 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5309 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5310 } 5311 5312 // If trip count is known or estimated compile time constant, limit the 5313 // interleave count to be less than the trip count divided by VF. 5314 if (BestKnownTC) { 5315 MaxInterleaveCount = std::min(*BestKnownTC / VF, MaxInterleaveCount); 5316 } 5317 5318 // If we did not calculate the cost for VF (because the user selected the VF) 5319 // then we calculate the cost of VF here. 5320 if (LoopCost == 0) 5321 LoopCost = expectedCost(VF).first; 5322 5323 assert(LoopCost && "Non-zero loop cost expected"); 5324 5325 // Clamp the calculated IC to be between the 1 and the max interleave count 5326 // that the target and trip count allows. 5327 if (IC > MaxInterleaveCount) 5328 IC = MaxInterleaveCount; 5329 else if (IC < 1) 5330 IC = 1; 5331 5332 // Interleave if we vectorized this loop and there is a reduction that could 5333 // benefit from interleaving. 5334 if (VF > 1 && !Legal->getReductionVars().empty()) { 5335 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5336 return IC; 5337 } 5338 5339 // Note that if we've already vectorized the loop we will have done the 5340 // runtime check and so interleaving won't require further checks. 5341 bool InterleavingRequiresRuntimePointerCheck = 5342 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5343 5344 // We want to interleave small loops in order to reduce the loop overhead and 5345 // potentially expose ILP opportunities. 5346 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5347 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5348 // We assume that the cost overhead is 1 and we use the cost model 5349 // to estimate the cost of the loop and interleave until the cost of the 5350 // loop overhead is about 5% of the cost of the loop. 5351 unsigned SmallIC = 5352 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5353 5354 // Interleave until store/load ports (estimated by max interleave count) are 5355 // saturated. 5356 unsigned NumStores = Legal->getNumStores(); 5357 unsigned NumLoads = Legal->getNumLoads(); 5358 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5359 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5360 5361 // If we have a scalar reduction (vector reductions are already dealt with 5362 // by this point), we can increase the critical path length if the loop 5363 // we're interleaving is inside another loop. Limit, by default to 2, so the 5364 // critical path only gets increased by one reduction operation. 5365 if (!Legal->getReductionVars().empty() && TheLoop->getLoopDepth() > 1) { 5366 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5367 SmallIC = std::min(SmallIC, F); 5368 StoresIC = std::min(StoresIC, F); 5369 LoadsIC = std::min(LoadsIC, F); 5370 } 5371 5372 if (EnableLoadStoreRuntimeInterleave && 5373 std::max(StoresIC, LoadsIC) > SmallIC) { 5374 LLVM_DEBUG( 5375 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5376 return std::max(StoresIC, LoadsIC); 5377 } 5378 5379 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5380 return SmallIC; 5381 } 5382 5383 // Interleave if this is a large loop (small loops are already dealt with by 5384 // this point) that could benefit from interleaving. 5385 bool HasReductions = !Legal->getReductionVars().empty(); 5386 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5387 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5388 return IC; 5389 } 5390 5391 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5392 return 1; 5393 } 5394 5395 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5396 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5397 // This function calculates the register usage by measuring the highest number 5398 // of values that are alive at a single location. Obviously, this is a very 5399 // rough estimation. We scan the loop in a topological order in order and 5400 // assign a number to each instruction. We use RPO to ensure that defs are 5401 // met before their users. We assume that each instruction that has in-loop 5402 // users starts an interval. We record every time that an in-loop value is 5403 // used, so we have a list of the first and last occurrences of each 5404 // instruction. Next, we transpose this data structure into a multi map that 5405 // holds the list of intervals that *end* at a specific location. This multi 5406 // map allows us to perform a linear search. We scan the instructions linearly 5407 // and record each time that a new interval starts, by placing it in a set. 5408 // If we find this value in the multi-map then we remove it from the set. 5409 // The max register usage is the maximum size of the set. 5410 // We also search for instructions that are defined outside the loop, but are 5411 // used inside the loop. We need this number separately from the max-interval 5412 // usage number because when we unroll, loop-invariant values do not take 5413 // more register. 5414 LoopBlocksDFS DFS(TheLoop); 5415 DFS.perform(LI); 5416 5417 RegisterUsage RU; 5418 5419 // Each 'key' in the map opens a new interval. The values 5420 // of the map are the index of the 'last seen' usage of the 5421 // instruction that is the key. 5422 using IntervalMap = DenseMap<Instruction *, unsigned>; 5423 5424 // Maps instruction to its index. 5425 SmallVector<Instruction *, 64> IdxToInstr; 5426 // Marks the end of each interval. 5427 IntervalMap EndPoint; 5428 // Saves the list of instruction indices that are used in the loop. 5429 SmallPtrSet<Instruction *, 8> Ends; 5430 // Saves the list of values that are used in the loop but are 5431 // defined outside the loop, such as arguments and constants. 5432 SmallPtrSet<Value *, 8> LoopInvariants; 5433 5434 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5435 for (Instruction &I : BB->instructionsWithoutDebug()) { 5436 IdxToInstr.push_back(&I); 5437 5438 // Save the end location of each USE. 5439 for (Value *U : I.operands()) { 5440 auto *Instr = dyn_cast<Instruction>(U); 5441 5442 // Ignore non-instruction values such as arguments, constants, etc. 5443 if (!Instr) 5444 continue; 5445 5446 // If this instruction is outside the loop then record it and continue. 5447 if (!TheLoop->contains(Instr)) { 5448 LoopInvariants.insert(Instr); 5449 continue; 5450 } 5451 5452 // Overwrite previous end points. 5453 EndPoint[Instr] = IdxToInstr.size(); 5454 Ends.insert(Instr); 5455 } 5456 } 5457 } 5458 5459 // Saves the list of intervals that end with the index in 'key'. 5460 using InstrList = SmallVector<Instruction *, 2>; 5461 DenseMap<unsigned, InstrList> TransposeEnds; 5462 5463 // Transpose the EndPoints to a list of values that end at each index. 5464 for (auto &Interval : EndPoint) 5465 TransposeEnds[Interval.second].push_back(Interval.first); 5466 5467 SmallPtrSet<Instruction *, 8> OpenIntervals; 5468 5469 // Get the size of the widest register. 5470 unsigned MaxSafeDepDist = -1U; 5471 if (Legal->getMaxSafeDepDistBytes() != -1U) 5472 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5473 unsigned WidestRegister = 5474 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5475 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5476 5477 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5478 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5479 5480 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5481 5482 // A lambda that gets the register usage for the given type and VF. 5483 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5484 if (Ty->isTokenTy()) 5485 return 0U; 5486 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5487 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5488 }; 5489 5490 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5491 Instruction *I = IdxToInstr[i]; 5492 5493 // Remove all of the instructions that end at this location. 5494 InstrList &List = TransposeEnds[i]; 5495 for (Instruction *ToRemove : List) 5496 OpenIntervals.erase(ToRemove); 5497 5498 // Ignore instructions that are never used within the loop. 5499 if (Ends.find(I) == Ends.end()) 5500 continue; 5501 5502 // Skip ignored values. 5503 if (ValuesToIgnore.find(I) != ValuesToIgnore.end()) 5504 continue; 5505 5506 // For each VF find the maximum usage of registers. 5507 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5508 // Count the number of live intervals. 5509 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5510 5511 if (VFs[j] == 1) { 5512 for (auto Inst : OpenIntervals) { 5513 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5514 if (RegUsage.find(ClassID) == RegUsage.end()) 5515 RegUsage[ClassID] = 1; 5516 else 5517 RegUsage[ClassID] += 1; 5518 } 5519 } else { 5520 collectUniformsAndScalars(VFs[j]); 5521 for (auto Inst : OpenIntervals) { 5522 // Skip ignored values for VF > 1. 5523 if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end()) 5524 continue; 5525 if (isScalarAfterVectorization(Inst, VFs[j])) { 5526 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5527 if (RegUsage.find(ClassID) == RegUsage.end()) 5528 RegUsage[ClassID] = 1; 5529 else 5530 RegUsage[ClassID] += 1; 5531 } else { 5532 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 5533 if (RegUsage.find(ClassID) == RegUsage.end()) 5534 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 5535 else 5536 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 5537 } 5538 } 5539 } 5540 5541 for (auto& pair : RegUsage) { 5542 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 5543 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 5544 else 5545 MaxUsages[j][pair.first] = pair.second; 5546 } 5547 } 5548 5549 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5550 << OpenIntervals.size() << '\n'); 5551 5552 // Add the current instruction to the list of open intervals. 5553 OpenIntervals.insert(I); 5554 } 5555 5556 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5557 SmallMapVector<unsigned, unsigned, 4> Invariant; 5558 5559 for (auto Inst : LoopInvariants) { 5560 unsigned Usage = VFs[i] == 1 ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 5561 unsigned ClassID = TTI.getRegisterClassForType(VFs[i] > 1, Inst->getType()); 5562 if (Invariant.find(ClassID) == Invariant.end()) 5563 Invariant[ClassID] = Usage; 5564 else 5565 Invariant[ClassID] += Usage; 5566 } 5567 5568 LLVM_DEBUG({ 5569 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 5570 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 5571 << " item\n"; 5572 for (const auto &pair : MaxUsages[i]) { 5573 dbgs() << "LV(REG): RegisterClass: " 5574 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5575 << " registers\n"; 5576 } 5577 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 5578 << " item\n"; 5579 for (const auto &pair : Invariant) { 5580 dbgs() << "LV(REG): RegisterClass: " 5581 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5582 << " registers\n"; 5583 } 5584 }); 5585 5586 RU.LoopInvariantRegs = Invariant; 5587 RU.MaxLocalUsers = MaxUsages[i]; 5588 RUs[i] = RU; 5589 } 5590 5591 return RUs; 5592 } 5593 5594 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5595 // TODO: Cost model for emulated masked load/store is completely 5596 // broken. This hack guides the cost model to use an artificially 5597 // high enough value to practically disable vectorization with such 5598 // operations, except where previously deployed legality hack allowed 5599 // using very low cost values. This is to avoid regressions coming simply 5600 // from moving "masked load/store" check from legality to cost model. 5601 // Masked Load/Gather emulation was previously never allowed. 5602 // Limited number of Masked Store/Scatter emulation was allowed. 5603 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5604 return isa<LoadInst>(I) || 5605 (isa<StoreInst>(I) && 5606 NumPredStores > NumberOfStoresToPredicate); 5607 } 5608 5609 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5610 // If we aren't vectorizing the loop, or if we've already collected the 5611 // instructions to scalarize, there's nothing to do. Collection may already 5612 // have occurred if we have a user-selected VF and are now computing the 5613 // expected cost for interleaving. 5614 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5615 return; 5616 5617 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5618 // not profitable to scalarize any instructions, the presence of VF in the 5619 // map will indicate that we've analyzed it already. 5620 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5621 5622 // Find all the instructions that are scalar with predication in the loop and 5623 // determine if it would be better to not if-convert the blocks they are in. 5624 // If so, we also record the instructions to scalarize. 5625 for (BasicBlock *BB : TheLoop->blocks()) { 5626 if (!blockNeedsPredication(BB)) 5627 continue; 5628 for (Instruction &I : *BB) 5629 if (isScalarWithPredication(&I)) { 5630 ScalarCostsTy ScalarCosts; 5631 // Do not apply discount logic if hacked cost is needed 5632 // for emulated masked memrefs. 5633 if (!useEmulatedMaskMemRefHack(&I) && 5634 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5635 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5636 // Remember that BB will remain after vectorization. 5637 PredicatedBBsAfterVectorization.insert(BB); 5638 } 5639 } 5640 } 5641 5642 int LoopVectorizationCostModel::computePredInstDiscount( 5643 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5644 unsigned VF) { 5645 assert(!isUniformAfterVectorization(PredInst, VF) && 5646 "Instruction marked uniform-after-vectorization will be predicated"); 5647 5648 // Initialize the discount to zero, meaning that the scalar version and the 5649 // vector version cost the same. 5650 int Discount = 0; 5651 5652 // Holds instructions to analyze. The instructions we visit are mapped in 5653 // ScalarCosts. Those instructions are the ones that would be scalarized if 5654 // we find that the scalar version costs less. 5655 SmallVector<Instruction *, 8> Worklist; 5656 5657 // Returns true if the given instruction can be scalarized. 5658 auto canBeScalarized = [&](Instruction *I) -> bool { 5659 // We only attempt to scalarize instructions forming a single-use chain 5660 // from the original predicated block that would otherwise be vectorized. 5661 // Although not strictly necessary, we give up on instructions we know will 5662 // already be scalar to avoid traversing chains that are unlikely to be 5663 // beneficial. 5664 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5665 isScalarAfterVectorization(I, VF)) 5666 return false; 5667 5668 // If the instruction is scalar with predication, it will be analyzed 5669 // separately. We ignore it within the context of PredInst. 5670 if (isScalarWithPredication(I)) 5671 return false; 5672 5673 // If any of the instruction's operands are uniform after vectorization, 5674 // the instruction cannot be scalarized. This prevents, for example, a 5675 // masked load from being scalarized. 5676 // 5677 // We assume we will only emit a value for lane zero of an instruction 5678 // marked uniform after vectorization, rather than VF identical values. 5679 // Thus, if we scalarize an instruction that uses a uniform, we would 5680 // create uses of values corresponding to the lanes we aren't emitting code 5681 // for. This behavior can be changed by allowing getScalarValue to clone 5682 // the lane zero values for uniforms rather than asserting. 5683 for (Use &U : I->operands()) 5684 if (auto *J = dyn_cast<Instruction>(U.get())) 5685 if (isUniformAfterVectorization(J, VF)) 5686 return false; 5687 5688 // Otherwise, we can scalarize the instruction. 5689 return true; 5690 }; 5691 5692 // Compute the expected cost discount from scalarizing the entire expression 5693 // feeding the predicated instruction. We currently only consider expressions 5694 // that are single-use instruction chains. 5695 Worklist.push_back(PredInst); 5696 while (!Worklist.empty()) { 5697 Instruction *I = Worklist.pop_back_val(); 5698 5699 // If we've already analyzed the instruction, there's nothing to do. 5700 if (ScalarCosts.find(I) != ScalarCosts.end()) 5701 continue; 5702 5703 // Compute the cost of the vector instruction. Note that this cost already 5704 // includes the scalarization overhead of the predicated instruction. 5705 unsigned VectorCost = getInstructionCost(I, VF).first; 5706 5707 // Compute the cost of the scalarized instruction. This cost is the cost of 5708 // the instruction as if it wasn't if-converted and instead remained in the 5709 // predicated block. We will scale this cost by block probability after 5710 // computing the scalarization overhead. 5711 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5712 5713 // Compute the scalarization overhead of needed insertelement instructions 5714 // and phi nodes. 5715 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5716 ScalarCost += TTI.getScalarizationOverhead( 5717 cast<VectorType>(ToVectorTy(I->getType(), VF)), 5718 APInt::getAllOnesValue(VF), true, false); 5719 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 5720 } 5721 5722 // Compute the scalarization overhead of needed extractelement 5723 // instructions. For each of the instruction's operands, if the operand can 5724 // be scalarized, add it to the worklist; otherwise, account for the 5725 // overhead. 5726 for (Use &U : I->operands()) 5727 if (auto *J = dyn_cast<Instruction>(U.get())) { 5728 assert(VectorType::isValidElementType(J->getType()) && 5729 "Instruction has non-scalar type"); 5730 if (canBeScalarized(J)) 5731 Worklist.push_back(J); 5732 else if (needsExtract(J, VF)) 5733 ScalarCost += TTI.getScalarizationOverhead( 5734 cast<VectorType>(ToVectorTy(J->getType(), VF)), 5735 APInt::getAllOnesValue(VF), false, true); 5736 } 5737 5738 // Scale the total scalar cost by block probability. 5739 ScalarCost /= getReciprocalPredBlockProb(); 5740 5741 // Compute the discount. A non-negative discount means the vector version 5742 // of the instruction costs more, and scalarizing would be beneficial. 5743 Discount += VectorCost - ScalarCost; 5744 ScalarCosts[I] = ScalarCost; 5745 } 5746 5747 return Discount; 5748 } 5749 5750 LoopVectorizationCostModel::VectorizationCostTy 5751 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5752 VectorizationCostTy Cost; 5753 5754 // For each block. 5755 for (BasicBlock *BB : TheLoop->blocks()) { 5756 VectorizationCostTy BlockCost; 5757 5758 // For each instruction in the old loop. 5759 for (Instruction &I : BB->instructionsWithoutDebug()) { 5760 // Skip ignored values. 5761 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() || 5762 (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end())) 5763 continue; 5764 5765 VectorizationCostTy C = getInstructionCost(&I, VF); 5766 5767 // Check if we should override the cost. 5768 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5769 C.first = ForceTargetInstructionCost; 5770 5771 BlockCost.first += C.first; 5772 BlockCost.second |= C.second; 5773 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5774 << " for VF " << VF << " For instruction: " << I 5775 << '\n'); 5776 } 5777 5778 // If we are vectorizing a predicated block, it will have been 5779 // if-converted. This means that the block's instructions (aside from 5780 // stores and instructions that may divide by zero) will now be 5781 // unconditionally executed. For the scalar case, we may not always execute 5782 // the predicated block. Thus, scale the block's cost by the probability of 5783 // executing it. 5784 if (VF == 1 && blockNeedsPredication(BB)) 5785 BlockCost.first /= getReciprocalPredBlockProb(); 5786 5787 Cost.first += BlockCost.first; 5788 Cost.second |= BlockCost.second; 5789 } 5790 5791 return Cost; 5792 } 5793 5794 /// Gets Address Access SCEV after verifying that the access pattern 5795 /// is loop invariant except the induction variable dependence. 5796 /// 5797 /// This SCEV can be sent to the Target in order to estimate the address 5798 /// calculation cost. 5799 static const SCEV *getAddressAccessSCEV( 5800 Value *Ptr, 5801 LoopVectorizationLegality *Legal, 5802 PredicatedScalarEvolution &PSE, 5803 const Loop *TheLoop) { 5804 5805 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5806 if (!Gep) 5807 return nullptr; 5808 5809 // We are looking for a gep with all loop invariant indices except for one 5810 // which should be an induction variable. 5811 auto SE = PSE.getSE(); 5812 unsigned NumOperands = Gep->getNumOperands(); 5813 for (unsigned i = 1; i < NumOperands; ++i) { 5814 Value *Opd = Gep->getOperand(i); 5815 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5816 !Legal->isInductionVariable(Opd)) 5817 return nullptr; 5818 } 5819 5820 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5821 return PSE.getSCEV(Ptr); 5822 } 5823 5824 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5825 return Legal->hasStride(I->getOperand(0)) || 5826 Legal->hasStride(I->getOperand(1)); 5827 } 5828 5829 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5830 unsigned VF) { 5831 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5832 Type *ValTy = getMemInstValueType(I); 5833 auto SE = PSE.getSE(); 5834 5835 unsigned AS = getLoadStoreAddressSpace(I); 5836 Value *Ptr = getLoadStorePointerOperand(I); 5837 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5838 5839 // Figure out whether the access is strided and get the stride value 5840 // if it's known in compile time 5841 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5842 5843 // Get the cost of the scalar memory instruction and address computation. 5844 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5845 5846 // Don't pass *I here, since it is scalar but will actually be part of a 5847 // vectorized loop where the user of it is a vectorized instruction. 5848 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5849 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5850 Alignment, AS, 5851 TTI::TCK_RecipThroughput); 5852 5853 // Get the overhead of the extractelement and insertelement instructions 5854 // we might create due to scalarization. 5855 Cost += getScalarizationOverhead(I, VF); 5856 5857 // If we have a predicated store, it may not be executed for each vector 5858 // lane. Scale the cost by the probability of executing the predicated 5859 // block. 5860 if (isPredicatedInst(I)) { 5861 Cost /= getReciprocalPredBlockProb(); 5862 5863 if (useEmulatedMaskMemRefHack(I)) 5864 // Artificially setting to a high enough value to practically disable 5865 // vectorization with such operations. 5866 Cost = 3000000; 5867 } 5868 5869 return Cost; 5870 } 5871 5872 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5873 unsigned VF) { 5874 Type *ValTy = getMemInstValueType(I); 5875 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5876 Value *Ptr = getLoadStorePointerOperand(I); 5877 unsigned AS = getLoadStoreAddressSpace(I); 5878 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5879 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5880 5881 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5882 "Stride should be 1 or -1 for consecutive memory access"); 5883 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5884 unsigned Cost = 0; 5885 if (Legal->isMaskRequired(I)) 5886 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, 5887 Alignment ? Alignment->value() : 0, AS, 5888 CostKind); 5889 else 5890 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 5891 CostKind, I); 5892 5893 bool Reverse = ConsecutiveStride < 0; 5894 if (Reverse) 5895 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5896 return Cost; 5897 } 5898 5899 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5900 unsigned VF) { 5901 Type *ValTy = getMemInstValueType(I); 5902 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5903 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5904 unsigned AS = getLoadStoreAddressSpace(I); 5905 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5906 if (isa<LoadInst>(I)) { 5907 return TTI.getAddressComputationCost(ValTy) + 5908 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 5909 CostKind) + 5910 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5911 } 5912 StoreInst *SI = cast<StoreInst>(I); 5913 5914 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5915 return TTI.getAddressComputationCost(ValTy) + 5916 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 5917 CostKind) + 5918 (isLoopInvariantStoreValue 5919 ? 0 5920 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 5921 VF - 1)); 5922 } 5923 5924 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5925 unsigned VF) { 5926 Type *ValTy = getMemInstValueType(I); 5927 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5928 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5929 Value *Ptr = getLoadStorePointerOperand(I); 5930 5931 return TTI.getAddressComputationCost(VectorTy) + 5932 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5933 Legal->isMaskRequired(I), 5934 Alignment ? Alignment->value() : 0, 5935 TargetTransformInfo::TCK_RecipThroughput, 5936 I); 5937 } 5938 5939 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5940 unsigned VF) { 5941 Type *ValTy = getMemInstValueType(I); 5942 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5943 unsigned AS = getLoadStoreAddressSpace(I); 5944 5945 auto Group = getInterleavedAccessGroup(I); 5946 assert(Group && "Fail to get an interleaved access group."); 5947 5948 unsigned InterleaveFactor = Group->getFactor(); 5949 VectorType *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5950 5951 // Holds the indices of existing members in an interleaved load group. 5952 // An interleaved store group doesn't need this as it doesn't allow gaps. 5953 SmallVector<unsigned, 4> Indices; 5954 if (isa<LoadInst>(I)) { 5955 for (unsigned i = 0; i < InterleaveFactor; i++) 5956 if (Group->getMember(i)) 5957 Indices.push_back(i); 5958 } 5959 5960 // Calculate the cost of the whole interleaved group. 5961 bool UseMaskForGaps = 5962 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5963 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5964 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5965 Group->getAlign().value(), AS, TTI::TCK_RecipThroughput, 5966 Legal->isMaskRequired(I), UseMaskForGaps); 5967 5968 if (Group->isReverse()) { 5969 // TODO: Add support for reversed masked interleaved access. 5970 assert(!Legal->isMaskRequired(I) && 5971 "Reverse masked interleaved access not supported."); 5972 Cost += Group->getNumMembers() * 5973 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5974 } 5975 return Cost; 5976 } 5977 5978 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5979 unsigned VF) { 5980 // Calculate scalar cost only. Vectorization cost should be ready at this 5981 // moment. 5982 if (VF == 1) { 5983 Type *ValTy = getMemInstValueType(I); 5984 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5985 unsigned AS = getLoadStoreAddressSpace(I); 5986 5987 return TTI.getAddressComputationCost(ValTy) + 5988 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 5989 TTI::TCK_RecipThroughput, I); 5990 } 5991 return getWideningCost(I, VF); 5992 } 5993 5994 LoopVectorizationCostModel::VectorizationCostTy 5995 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5996 // If we know that this instruction will remain uniform, check the cost of 5997 // the scalar version. 5998 if (isUniformAfterVectorization(I, VF)) 5999 VF = 1; 6000 6001 if (VF > 1 && isProfitableToScalarize(I, VF)) 6002 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6003 6004 // Forced scalars do not have any scalarization overhead. 6005 auto ForcedScalar = ForcedScalars.find(VF); 6006 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 6007 auto InstSet = ForcedScalar->second; 6008 if (InstSet.find(I) != InstSet.end()) 6009 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 6010 } 6011 6012 Type *VectorTy; 6013 unsigned C = getInstructionCost(I, VF, VectorTy); 6014 6015 bool TypeNotScalarized = 6016 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 6017 return VectorizationCostTy(C, TypeNotScalarized); 6018 } 6019 6020 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6021 unsigned VF) { 6022 6023 if (VF == 1) 6024 return 0; 6025 6026 unsigned Cost = 0; 6027 Type *RetTy = ToVectorTy(I->getType(), VF); 6028 if (!RetTy->isVoidTy() && 6029 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6030 Cost += TTI.getScalarizationOverhead( 6031 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF), true, false); 6032 6033 // Some targets keep addresses scalar. 6034 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6035 return Cost; 6036 6037 // Some targets support efficient element stores. 6038 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6039 return Cost; 6040 6041 // Collect operands to consider. 6042 CallInst *CI = dyn_cast<CallInst>(I); 6043 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 6044 6045 // Skip operands that do not require extraction/scalarization and do not incur 6046 // any overhead. 6047 return Cost + TTI.getOperandsScalarizationOverhead( 6048 filterExtractingOperands(Ops, VF), VF); 6049 } 6050 6051 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 6052 if (VF == 1) 6053 return; 6054 NumPredStores = 0; 6055 for (BasicBlock *BB : TheLoop->blocks()) { 6056 // For each instruction in the old loop. 6057 for (Instruction &I : *BB) { 6058 Value *Ptr = getLoadStorePointerOperand(&I); 6059 if (!Ptr) 6060 continue; 6061 6062 // TODO: We should generate better code and update the cost model for 6063 // predicated uniform stores. Today they are treated as any other 6064 // predicated store (see added test cases in 6065 // invariant-store-vectorization.ll). 6066 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 6067 NumPredStores++; 6068 6069 if (Legal->isUniform(Ptr) && 6070 // Conditional loads and stores should be scalarized and predicated. 6071 // isScalarWithPredication cannot be used here since masked 6072 // gather/scatters are not considered scalar with predication. 6073 !Legal->blockNeedsPredication(I.getParent())) { 6074 // TODO: Avoid replicating loads and stores instead of 6075 // relying on instcombine to remove them. 6076 // Load: Scalar load + broadcast 6077 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6078 unsigned Cost = getUniformMemOpCost(&I, VF); 6079 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6080 continue; 6081 } 6082 6083 // We assume that widening is the best solution when possible. 6084 if (memoryInstructionCanBeWidened(&I, VF)) { 6085 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 6086 int ConsecutiveStride = 6087 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 6088 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6089 "Expected consecutive stride."); 6090 InstWidening Decision = 6091 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6092 setWideningDecision(&I, VF, Decision, Cost); 6093 continue; 6094 } 6095 6096 // Choose between Interleaving, Gather/Scatter or Scalarization. 6097 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 6098 unsigned NumAccesses = 1; 6099 if (isAccessInterleaved(&I)) { 6100 auto Group = getInterleavedAccessGroup(&I); 6101 assert(Group && "Fail to get an interleaved access group."); 6102 6103 // Make one decision for the whole group. 6104 if (getWideningDecision(&I, VF) != CM_Unknown) 6105 continue; 6106 6107 NumAccesses = Group->getNumMembers(); 6108 if (interleavedAccessCanBeWidened(&I, VF)) 6109 InterleaveCost = getInterleaveGroupCost(&I, VF); 6110 } 6111 6112 unsigned GatherScatterCost = 6113 isLegalGatherOrScatter(&I) 6114 ? getGatherScatterCost(&I, VF) * NumAccesses 6115 : std::numeric_limits<unsigned>::max(); 6116 6117 unsigned ScalarizationCost = 6118 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6119 6120 // Choose better solution for the current VF, 6121 // write down this decision and use it during vectorization. 6122 unsigned Cost; 6123 InstWidening Decision; 6124 if (InterleaveCost <= GatherScatterCost && 6125 InterleaveCost < ScalarizationCost) { 6126 Decision = CM_Interleave; 6127 Cost = InterleaveCost; 6128 } else if (GatherScatterCost < ScalarizationCost) { 6129 Decision = CM_GatherScatter; 6130 Cost = GatherScatterCost; 6131 } else { 6132 Decision = CM_Scalarize; 6133 Cost = ScalarizationCost; 6134 } 6135 // If the instructions belongs to an interleave group, the whole group 6136 // receives the same decision. The whole group receives the cost, but 6137 // the cost will actually be assigned to one instruction. 6138 if (auto Group = getInterleavedAccessGroup(&I)) 6139 setWideningDecision(Group, VF, Decision, Cost); 6140 else 6141 setWideningDecision(&I, VF, Decision, Cost); 6142 } 6143 } 6144 6145 // Make sure that any load of address and any other address computation 6146 // remains scalar unless there is gather/scatter support. This avoids 6147 // inevitable extracts into address registers, and also has the benefit of 6148 // activating LSR more, since that pass can't optimize vectorized 6149 // addresses. 6150 if (TTI.prefersVectorizedAddressing()) 6151 return; 6152 6153 // Start with all scalar pointer uses. 6154 SmallPtrSet<Instruction *, 8> AddrDefs; 6155 for (BasicBlock *BB : TheLoop->blocks()) 6156 for (Instruction &I : *BB) { 6157 Instruction *PtrDef = 6158 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6159 if (PtrDef && TheLoop->contains(PtrDef) && 6160 getWideningDecision(&I, VF) != CM_GatherScatter) 6161 AddrDefs.insert(PtrDef); 6162 } 6163 6164 // Add all instructions used to generate the addresses. 6165 SmallVector<Instruction *, 4> Worklist; 6166 for (auto *I : AddrDefs) 6167 Worklist.push_back(I); 6168 while (!Worklist.empty()) { 6169 Instruction *I = Worklist.pop_back_val(); 6170 for (auto &Op : I->operands()) 6171 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6172 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6173 AddrDefs.insert(InstOp).second) 6174 Worklist.push_back(InstOp); 6175 } 6176 6177 for (auto *I : AddrDefs) { 6178 if (isa<LoadInst>(I)) { 6179 // Setting the desired widening decision should ideally be handled in 6180 // by cost functions, but since this involves the task of finding out 6181 // if the loaded register is involved in an address computation, it is 6182 // instead changed here when we know this is the case. 6183 InstWidening Decision = getWideningDecision(I, VF); 6184 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6185 // Scalarize a widened load of address. 6186 setWideningDecision(I, VF, CM_Scalarize, 6187 (VF * getMemoryInstructionCost(I, 1))); 6188 else if (auto Group = getInterleavedAccessGroup(I)) { 6189 // Scalarize an interleave group of address loads. 6190 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6191 if (Instruction *Member = Group->getMember(I)) 6192 setWideningDecision(Member, VF, CM_Scalarize, 6193 (VF * getMemoryInstructionCost(Member, 1))); 6194 } 6195 } 6196 } else 6197 // Make sure I gets scalarized and a cost estimate without 6198 // scalarization overhead. 6199 ForcedScalars[VF].insert(I); 6200 } 6201 } 6202 6203 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6204 unsigned VF, 6205 Type *&VectorTy) { 6206 Type *RetTy = I->getType(); 6207 if (canTruncateToMinimalBitwidth(I, VF)) 6208 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6209 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 6210 auto SE = PSE.getSE(); 6211 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6212 6213 // TODO: We need to estimate the cost of intrinsic calls. 6214 switch (I->getOpcode()) { 6215 case Instruction::GetElementPtr: 6216 // We mark this instruction as zero-cost because the cost of GEPs in 6217 // vectorized code depends on whether the corresponding memory instruction 6218 // is scalarized or not. Therefore, we handle GEPs with the memory 6219 // instruction cost. 6220 return 0; 6221 case Instruction::Br: { 6222 // In cases of scalarized and predicated instructions, there will be VF 6223 // predicated blocks in the vectorized loop. Each branch around these 6224 // blocks requires also an extract of its vector compare i1 element. 6225 bool ScalarPredicatedBB = false; 6226 BranchInst *BI = cast<BranchInst>(I); 6227 if (VF > 1 && BI->isConditional() && 6228 (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) != 6229 PredicatedBBsAfterVectorization.end() || 6230 PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) != 6231 PredicatedBBsAfterVectorization.end())) 6232 ScalarPredicatedBB = true; 6233 6234 if (ScalarPredicatedBB) { 6235 // Return cost for branches around scalarized and predicated blocks. 6236 VectorType *Vec_i1Ty = 6237 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6238 return (TTI.getScalarizationOverhead(Vec_i1Ty, APInt::getAllOnesValue(VF), 6239 false, true) + 6240 (TTI.getCFInstrCost(Instruction::Br) * VF)); 6241 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 6242 // The back-edge branch will remain, as will all scalar branches. 6243 return TTI.getCFInstrCost(Instruction::Br); 6244 else 6245 // This branch will be eliminated by if-conversion. 6246 return 0; 6247 // Note: We currently assume zero cost for an unconditional branch inside 6248 // a predicated block since it will become a fall-through, although we 6249 // may decide in the future to call TTI for all branches. 6250 } 6251 case Instruction::PHI: { 6252 auto *Phi = cast<PHINode>(I); 6253 6254 // First-order recurrences are replaced by vector shuffles inside the loop. 6255 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 6256 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6257 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6258 cast<VectorType>(VectorTy), VF - 1, 6259 VectorType::get(RetTy, 1)); 6260 6261 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6262 // converted into select instructions. We require N - 1 selects per phi 6263 // node, where N is the number of incoming values. 6264 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 6265 return (Phi->getNumIncomingValues() - 1) * 6266 TTI.getCmpSelInstrCost( 6267 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6268 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 6269 CostKind); 6270 6271 return TTI.getCFInstrCost(Instruction::PHI); 6272 } 6273 case Instruction::UDiv: 6274 case Instruction::SDiv: 6275 case Instruction::URem: 6276 case Instruction::SRem: 6277 // If we have a predicated instruction, it may not be executed for each 6278 // vector lane. Get the scalarization cost and scale this amount by the 6279 // probability of executing the predicated block. If the instruction is not 6280 // predicated, we fall through to the next case. 6281 if (VF > 1 && isScalarWithPredication(I)) { 6282 unsigned Cost = 0; 6283 6284 // These instructions have a non-void type, so account for the phi nodes 6285 // that we will create. This cost is likely to be zero. The phi node 6286 // cost, if any, should be scaled by the block probability because it 6287 // models a copy at the end of each predicated block. 6288 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 6289 6290 // The cost of the non-predicated instruction. 6291 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 6292 6293 // The cost of insertelement and extractelement instructions needed for 6294 // scalarization. 6295 Cost += getScalarizationOverhead(I, VF); 6296 6297 // Scale the cost by the probability of executing the predicated blocks. 6298 // This assumes the predicated block for each vector lane is equally 6299 // likely. 6300 return Cost / getReciprocalPredBlockProb(); 6301 } 6302 LLVM_FALLTHROUGH; 6303 case Instruction::Add: 6304 case Instruction::FAdd: 6305 case Instruction::Sub: 6306 case Instruction::FSub: 6307 case Instruction::Mul: 6308 case Instruction::FMul: 6309 case Instruction::FDiv: 6310 case Instruction::FRem: 6311 case Instruction::Shl: 6312 case Instruction::LShr: 6313 case Instruction::AShr: 6314 case Instruction::And: 6315 case Instruction::Or: 6316 case Instruction::Xor: { 6317 // Since we will replace the stride by 1 the multiplication should go away. 6318 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6319 return 0; 6320 // Certain instructions can be cheaper to vectorize if they have a constant 6321 // second vector operand. One example of this are shifts on x86. 6322 Value *Op2 = I->getOperand(1); 6323 TargetTransformInfo::OperandValueProperties Op2VP; 6324 TargetTransformInfo::OperandValueKind Op2VK = 6325 TTI.getOperandInfo(Op2, Op2VP); 6326 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 6327 Op2VK = TargetTransformInfo::OK_UniformValue; 6328 6329 SmallVector<const Value *, 4> Operands(I->operand_values()); 6330 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6331 return N * TTI.getArithmeticInstrCost( 6332 I->getOpcode(), VectorTy, CostKind, 6333 TargetTransformInfo::OK_AnyValue, 6334 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 6335 } 6336 case Instruction::FNeg: { 6337 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6338 return N * TTI.getArithmeticInstrCost( 6339 I->getOpcode(), VectorTy, CostKind, 6340 TargetTransformInfo::OK_AnyValue, 6341 TargetTransformInfo::OK_AnyValue, 6342 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 6343 I->getOperand(0), I); 6344 } 6345 case Instruction::Select: { 6346 SelectInst *SI = cast<SelectInst>(I); 6347 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6348 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6349 Type *CondTy = SI->getCondition()->getType(); 6350 if (!ScalarCond) 6351 CondTy = VectorType::get(CondTy, VF); 6352 6353 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 6354 CostKind, I); 6355 } 6356 case Instruction::ICmp: 6357 case Instruction::FCmp: { 6358 Type *ValTy = I->getOperand(0)->getType(); 6359 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6360 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6361 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6362 VectorTy = ToVectorTy(ValTy, VF); 6363 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, CostKind, 6364 I); 6365 } 6366 case Instruction::Store: 6367 case Instruction::Load: { 6368 unsigned Width = VF; 6369 if (Width > 1) { 6370 InstWidening Decision = getWideningDecision(I, Width); 6371 assert(Decision != CM_Unknown && 6372 "CM decision should be taken at this point"); 6373 if (Decision == CM_Scalarize) 6374 Width = 1; 6375 } 6376 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6377 return getMemoryInstructionCost(I, VF); 6378 } 6379 case Instruction::ZExt: 6380 case Instruction::SExt: 6381 case Instruction::FPToUI: 6382 case Instruction::FPToSI: 6383 case Instruction::FPExt: 6384 case Instruction::PtrToInt: 6385 case Instruction::IntToPtr: 6386 case Instruction::SIToFP: 6387 case Instruction::UIToFP: 6388 case Instruction::Trunc: 6389 case Instruction::FPTrunc: 6390 case Instruction::BitCast: { 6391 // We optimize the truncation of induction variables having constant 6392 // integer steps. The cost of these truncations is the same as the scalar 6393 // operation. 6394 if (isOptimizableIVTruncate(I, VF)) { 6395 auto *Trunc = cast<TruncInst>(I); 6396 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6397 Trunc->getSrcTy(), CostKind, Trunc); 6398 } 6399 6400 Type *SrcScalarTy = I->getOperand(0)->getType(); 6401 Type *SrcVecTy = 6402 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6403 if (canTruncateToMinimalBitwidth(I, VF)) { 6404 // This cast is going to be shrunk. This may remove the cast or it might 6405 // turn it into slightly different cast. For example, if MinBW == 16, 6406 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6407 // 6408 // Calculate the modified src and dest types. 6409 Type *MinVecTy = VectorTy; 6410 if (I->getOpcode() == Instruction::Trunc) { 6411 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6412 VectorTy = 6413 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6414 } else if (I->getOpcode() == Instruction::ZExt || 6415 I->getOpcode() == Instruction::SExt) { 6416 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6417 VectorTy = 6418 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6419 } 6420 } 6421 6422 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6423 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, 6424 CostKind, I); 6425 } 6426 case Instruction::Call: { 6427 bool NeedToScalarize; 6428 CallInst *CI = cast<CallInst>(I); 6429 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6430 if (getVectorIntrinsicIDForCall(CI, TLI)) 6431 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6432 return CallCost; 6433 } 6434 default: 6435 // The cost of executing VF copies of the scalar instruction. This opcode 6436 // is unknown. Assume that it is the same as 'mul'. 6437 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, 6438 CostKind) + 6439 getScalarizationOverhead(I, VF); 6440 } // end of switch. 6441 } 6442 6443 char LoopVectorize::ID = 0; 6444 6445 static const char lv_name[] = "Loop Vectorization"; 6446 6447 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6448 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6449 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6450 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6451 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6452 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6453 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6454 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6455 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6456 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6457 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6458 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6459 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6460 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6461 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 6462 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6463 6464 namespace llvm { 6465 6466 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6467 6468 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6469 bool VectorizeOnlyWhenForced) { 6470 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6471 } 6472 6473 } // end namespace llvm 6474 6475 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6476 // Check if the pointer operand of a load or store instruction is 6477 // consecutive. 6478 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6479 return Legal->isConsecutivePtr(Ptr); 6480 return false; 6481 } 6482 6483 void LoopVectorizationCostModel::collectValuesToIgnore() { 6484 // Ignore ephemeral values. 6485 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6486 6487 // Ignore type-promoting instructions we identified during reduction 6488 // detection. 6489 for (auto &Reduction : Legal->getReductionVars()) { 6490 RecurrenceDescriptor &RedDes = Reduction.second; 6491 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6492 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6493 } 6494 // Ignore type-casting instructions we identified during induction 6495 // detection. 6496 for (auto &Induction : Legal->getInductionVars()) { 6497 InductionDescriptor &IndDes = Induction.second; 6498 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6499 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6500 } 6501 } 6502 6503 // TODO: we could return a pair of values that specify the max VF and 6504 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6505 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6506 // doesn't have a cost model that can choose which plan to execute if 6507 // more than one is generated. 6508 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6509 LoopVectorizationCostModel &CM) { 6510 unsigned WidestType; 6511 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6512 return WidestVectorRegBits / WidestType; 6513 } 6514 6515 VectorizationFactor 6516 LoopVectorizationPlanner::planInVPlanNativePath(unsigned UserVF) { 6517 unsigned VF = UserVF; 6518 // Outer loop handling: They may require CFG and instruction level 6519 // transformations before even evaluating whether vectorization is profitable. 6520 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6521 // the vectorization pipeline. 6522 if (!OrigLoop->empty()) { 6523 // If the user doesn't provide a vectorization factor, determine a 6524 // reasonable one. 6525 if (!UserVF) { 6526 VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM); 6527 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 6528 6529 // Make sure we have a VF > 1 for stress testing. 6530 if (VPlanBuildStressTest && VF < 2) { 6531 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 6532 << "overriding computed VF.\n"); 6533 VF = 4; 6534 } 6535 } 6536 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6537 assert(isPowerOf2_32(VF) && "VF needs to be a power of two"); 6538 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF 6539 << " to build VPlans.\n"); 6540 buildVPlans(VF, VF); 6541 6542 // For VPlan build stress testing, we bail out after VPlan construction. 6543 if (VPlanBuildStressTest) 6544 return VectorizationFactor::Disabled(); 6545 6546 return {VF, 0}; 6547 } 6548 6549 LLVM_DEBUG( 6550 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6551 "VPlan-native path.\n"); 6552 return VectorizationFactor::Disabled(); 6553 } 6554 6555 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(unsigned UserVF) { 6556 assert(OrigLoop->empty() && "Inner loop expected."); 6557 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(); 6558 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6559 return None; 6560 6561 // Invalidate interleave groups if all blocks of loop will be predicated. 6562 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6563 !useMaskedInterleavedAccesses(*TTI)) { 6564 LLVM_DEBUG( 6565 dbgs() 6566 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6567 "which requires masked-interleaved support.\n"); 6568 if (CM.InterleaveInfo.invalidateGroups()) 6569 // Invalidating interleave groups also requires invalidating all decisions 6570 // based on them, which includes widening decisions and uniform and scalar 6571 // values. 6572 CM.invalidateCostModelingDecisions(); 6573 } 6574 6575 if (UserVF) { 6576 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6577 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6578 // Collect the instructions (and their associated costs) that will be more 6579 // profitable to scalarize. 6580 CM.selectUserVectorizationFactor(UserVF); 6581 buildVPlansWithVPRecipes(UserVF, UserVF); 6582 LLVM_DEBUG(printPlans(dbgs())); 6583 return {{UserVF, 0}}; 6584 } 6585 6586 unsigned MaxVF = MaybeMaxVF.getValue(); 6587 assert(MaxVF != 0 && "MaxVF is zero."); 6588 6589 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6590 // Collect Uniform and Scalar instructions after vectorization with VF. 6591 CM.collectUniformsAndScalars(VF); 6592 6593 // Collect the instructions (and their associated costs) that will be more 6594 // profitable to scalarize. 6595 if (VF > 1) 6596 CM.collectInstsToScalarize(VF); 6597 } 6598 6599 buildVPlansWithVPRecipes(1, MaxVF); 6600 LLVM_DEBUG(printPlans(dbgs())); 6601 if (MaxVF == 1) 6602 return VectorizationFactor::Disabled(); 6603 6604 // Select the optimal vectorization factor. 6605 return CM.selectVectorizationFactor(MaxVF); 6606 } 6607 6608 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6609 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6610 << '\n'); 6611 BestVF = VF; 6612 BestUF = UF; 6613 6614 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6615 return !Plan->hasVF(VF); 6616 }); 6617 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6618 } 6619 6620 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6621 DominatorTree *DT) { 6622 // Perform the actual loop transformation. 6623 6624 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6625 VPCallbackILV CallbackILV(ILV); 6626 6627 VPTransformState State{BestVF, BestUF, LI, 6628 DT, ILV.Builder, ILV.VectorLoopValueMap, 6629 &ILV, CallbackILV}; 6630 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6631 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6632 State.CanonicalIV = ILV.Induction; 6633 6634 //===------------------------------------------------===// 6635 // 6636 // Notice: any optimization or new instruction that go 6637 // into the code below should also be implemented in 6638 // the cost-model. 6639 // 6640 //===------------------------------------------------===// 6641 6642 // 2. Copy and widen instructions from the old loop into the new loop. 6643 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6644 VPlans.front()->execute(&State); 6645 6646 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6647 // predication, updating analyses. 6648 ILV.fixVectorizedLoop(); 6649 } 6650 6651 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6652 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6653 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6654 6655 // We create new control-flow for the vectorized loop, so the original 6656 // condition will be dead after vectorization if it's only used by the 6657 // branch. 6658 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6659 if (Cmp && Cmp->hasOneUse()) 6660 DeadInstructions.insert(Cmp); 6661 6662 // We create new "steps" for induction variable updates to which the original 6663 // induction variables map. An original update instruction will be dead if 6664 // all its users except the induction variable are dead. 6665 for (auto &Induction : Legal->getInductionVars()) { 6666 PHINode *Ind = Induction.first; 6667 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6668 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6669 return U == Ind || DeadInstructions.find(cast<Instruction>(U)) != 6670 DeadInstructions.end(); 6671 })) 6672 DeadInstructions.insert(IndUpdate); 6673 6674 // We record as "Dead" also the type-casting instructions we had identified 6675 // during induction analysis. We don't need any handling for them in the 6676 // vectorized loop because we have proven that, under a proper runtime 6677 // test guarding the vectorized loop, the value of the phi, and the casted 6678 // value of the phi, are the same. The last instruction in this casting chain 6679 // will get its scalar/vector/widened def from the scalar/vector/widened def 6680 // of the respective phi node. Any other casts in the induction def-use chain 6681 // have no other uses outside the phi update chain, and will be ignored. 6682 InductionDescriptor &IndDes = Induction.second; 6683 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6684 DeadInstructions.insert(Casts.begin(), Casts.end()); 6685 } 6686 } 6687 6688 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6689 6690 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6691 6692 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6693 Instruction::BinaryOps BinOp) { 6694 // When unrolling and the VF is 1, we only need to add a simple scalar. 6695 Type *Ty = Val->getType(); 6696 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6697 6698 if (Ty->isFloatingPointTy()) { 6699 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6700 6701 // Floating point operations had to be 'fast' to enable the unrolling. 6702 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6703 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6704 } 6705 Constant *C = ConstantInt::get(Ty, StartIdx); 6706 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6707 } 6708 6709 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6710 SmallVector<Metadata *, 4> MDs; 6711 // Reserve first location for self reference to the LoopID metadata node. 6712 MDs.push_back(nullptr); 6713 bool IsUnrollMetadata = false; 6714 MDNode *LoopID = L->getLoopID(); 6715 if (LoopID) { 6716 // First find existing loop unrolling disable metadata. 6717 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6718 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6719 if (MD) { 6720 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6721 IsUnrollMetadata = 6722 S && S->getString().startswith("llvm.loop.unroll.disable"); 6723 } 6724 MDs.push_back(LoopID->getOperand(i)); 6725 } 6726 } 6727 6728 if (!IsUnrollMetadata) { 6729 // Add runtime unroll disable metadata. 6730 LLVMContext &Context = L->getHeader()->getContext(); 6731 SmallVector<Metadata *, 1> DisableOperands; 6732 DisableOperands.push_back( 6733 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6734 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6735 MDs.push_back(DisableNode); 6736 MDNode *NewLoopID = MDNode::get(Context, MDs); 6737 // Set operand 0 to refer to the loop id itself. 6738 NewLoopID->replaceOperandWith(0, NewLoopID); 6739 L->setLoopID(NewLoopID); 6740 } 6741 } 6742 6743 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6744 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6745 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6746 bool PredicateAtRangeStart = Predicate(Range.Start); 6747 6748 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6749 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6750 Range.End = TmpVF; 6751 break; 6752 } 6753 6754 return PredicateAtRangeStart; 6755 } 6756 6757 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6758 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6759 /// of VF's starting at a given VF and extending it as much as possible. Each 6760 /// vectorization decision can potentially shorten this sub-range during 6761 /// buildVPlan(). 6762 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6763 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6764 VFRange SubRange = {VF, MaxVF + 1}; 6765 VPlans.push_back(buildVPlan(SubRange)); 6766 VF = SubRange.End; 6767 } 6768 } 6769 6770 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6771 VPlanPtr &Plan) { 6772 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6773 6774 // Look for cached value. 6775 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6776 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6777 if (ECEntryIt != EdgeMaskCache.end()) 6778 return ECEntryIt->second; 6779 6780 VPValue *SrcMask = createBlockInMask(Src, Plan); 6781 6782 // The terminator has to be a branch inst! 6783 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6784 assert(BI && "Unexpected terminator found"); 6785 6786 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 6787 return EdgeMaskCache[Edge] = SrcMask; 6788 6789 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6790 assert(EdgeMask && "No Edge Mask found for condition"); 6791 6792 if (BI->getSuccessor(0) != Dst) 6793 EdgeMask = Builder.createNot(EdgeMask); 6794 6795 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6796 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6797 6798 return EdgeMaskCache[Edge] = EdgeMask; 6799 } 6800 6801 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6802 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6803 6804 // Look for cached value. 6805 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6806 if (BCEntryIt != BlockMaskCache.end()) 6807 return BCEntryIt->second; 6808 6809 // All-one mask is modelled as no-mask following the convention for masked 6810 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6811 VPValue *BlockMask = nullptr; 6812 6813 if (OrigLoop->getHeader() == BB) { 6814 if (!CM.blockNeedsPredication(BB)) 6815 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6816 6817 // Introduce the early-exit compare IV <= BTC to form header block mask. 6818 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6819 // Start by constructing the desired canonical IV. 6820 VPValue *IV = nullptr; 6821 if (Legal->getPrimaryInduction()) 6822 IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6823 else { 6824 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 6825 Builder.getInsertBlock()->appendRecipe(IVRecipe); 6826 IV = IVRecipe->getVPValue(); 6827 } 6828 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6829 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6830 return BlockMaskCache[BB] = BlockMask; 6831 } 6832 6833 // This is the block mask. We OR all incoming edges. 6834 for (auto *Predecessor : predecessors(BB)) { 6835 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6836 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6837 return BlockMaskCache[BB] = EdgeMask; 6838 6839 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6840 BlockMask = EdgeMask; 6841 continue; 6842 } 6843 6844 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6845 } 6846 6847 return BlockMaskCache[BB] = BlockMask; 6848 } 6849 6850 VPWidenMemoryInstructionRecipe * 6851 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6852 VPlanPtr &Plan) { 6853 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 6854 "Must be called with either a load or store"); 6855 6856 auto willWiden = [&](unsigned VF) -> bool { 6857 if (VF == 1) 6858 return false; 6859 LoopVectorizationCostModel::InstWidening Decision = 6860 CM.getWideningDecision(I, VF); 6861 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6862 "CM decision should be taken at this point."); 6863 if (Decision == LoopVectorizationCostModel::CM_Interleave) 6864 return true; 6865 if (CM.isScalarAfterVectorization(I, VF) || 6866 CM.isProfitableToScalarize(I, VF)) 6867 return false; 6868 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6869 }; 6870 6871 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6872 return nullptr; 6873 6874 VPValue *Mask = nullptr; 6875 if (Legal->isMaskRequired(I)) 6876 Mask = createBlockInMask(I->getParent(), Plan); 6877 6878 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I)); 6879 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 6880 return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask); 6881 6882 StoreInst *Store = cast<StoreInst>(I); 6883 VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand()); 6884 return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask); 6885 } 6886 6887 VPWidenIntOrFpInductionRecipe * 6888 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi) const { 6889 // Check if this is an integer or fp induction. If so, build the recipe that 6890 // produces its scalar and vector values. 6891 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 6892 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6893 II.getKind() == InductionDescriptor::IK_FpInduction) 6894 return new VPWidenIntOrFpInductionRecipe(Phi); 6895 6896 return nullptr; 6897 } 6898 6899 VPWidenIntOrFpInductionRecipe * 6900 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I, 6901 VFRange &Range) const { 6902 // Optimize the special case where the source is a constant integer 6903 // induction variable. Notice that we can only optimize the 'trunc' case 6904 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6905 // (c) other casts depend on pointer size. 6906 6907 // Determine whether \p K is a truncation based on an induction variable that 6908 // can be optimized. 6909 auto isOptimizableIVTruncate = 6910 [&](Instruction *K) -> std::function<bool(unsigned)> { 6911 return 6912 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6913 }; 6914 6915 if (LoopVectorizationPlanner::getDecisionAndClampRange( 6916 isOptimizableIVTruncate(I), Range)) 6917 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6918 I); 6919 return nullptr; 6920 } 6921 6922 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) { 6923 // We know that all PHIs in non-header blocks are converted into selects, so 6924 // we don't have to worry about the insertion order and we can just use the 6925 // builder. At this point we generate the predication tree. There may be 6926 // duplications since this is a simple recursive scan, but future 6927 // optimizations will clean it up. 6928 6929 SmallVector<VPValue *, 2> Operands; 6930 unsigned NumIncoming = Phi->getNumIncomingValues(); 6931 for (unsigned In = 0; In < NumIncoming; In++) { 6932 VPValue *EdgeMask = 6933 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6934 assert((EdgeMask || NumIncoming == 1) && 6935 "Multiple predecessors with one having a full mask"); 6936 Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In))); 6937 if (EdgeMask) 6938 Operands.push_back(EdgeMask); 6939 } 6940 return new VPBlendRecipe(Phi, Operands); 6941 } 6942 6943 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range, 6944 VPlan &Plan) const { 6945 6946 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6947 [this, CI](unsigned VF) { return CM.isScalarWithPredication(CI, VF); }, 6948 Range); 6949 6950 if (IsPredicated) 6951 return nullptr; 6952 6953 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6954 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6955 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6956 return nullptr; 6957 6958 auto willWiden = [&](unsigned VF) -> bool { 6959 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6960 // The following case may be scalarized depending on the VF. 6961 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6962 // version of the instruction. 6963 // Is it beneficial to perform intrinsic call compared to lib call? 6964 bool NeedToScalarize = false; 6965 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 6966 bool UseVectorIntrinsic = 6967 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 6968 return UseVectorIntrinsic || !NeedToScalarize; 6969 }; 6970 6971 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6972 return nullptr; 6973 6974 return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands())); 6975 } 6976 6977 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 6978 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 6979 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 6980 // Instruction should be widened, unless it is scalar after vectorization, 6981 // scalarization is profitable or it is predicated. 6982 auto WillScalarize = [this, I](unsigned VF) -> bool { 6983 return CM.isScalarAfterVectorization(I, VF) || 6984 CM.isProfitableToScalarize(I, VF) || 6985 CM.isScalarWithPredication(I, VF); 6986 }; 6987 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 6988 Range); 6989 } 6990 6991 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const { 6992 auto IsVectorizableOpcode = [](unsigned Opcode) { 6993 switch (Opcode) { 6994 case Instruction::Add: 6995 case Instruction::And: 6996 case Instruction::AShr: 6997 case Instruction::BitCast: 6998 case Instruction::FAdd: 6999 case Instruction::FCmp: 7000 case Instruction::FDiv: 7001 case Instruction::FMul: 7002 case Instruction::FNeg: 7003 case Instruction::FPExt: 7004 case Instruction::FPToSI: 7005 case Instruction::FPToUI: 7006 case Instruction::FPTrunc: 7007 case Instruction::FRem: 7008 case Instruction::FSub: 7009 case Instruction::ICmp: 7010 case Instruction::IntToPtr: 7011 case Instruction::LShr: 7012 case Instruction::Mul: 7013 case Instruction::Or: 7014 case Instruction::PtrToInt: 7015 case Instruction::SDiv: 7016 case Instruction::Select: 7017 case Instruction::SExt: 7018 case Instruction::Shl: 7019 case Instruction::SIToFP: 7020 case Instruction::SRem: 7021 case Instruction::Sub: 7022 case Instruction::Trunc: 7023 case Instruction::UDiv: 7024 case Instruction::UIToFP: 7025 case Instruction::URem: 7026 case Instruction::Xor: 7027 case Instruction::ZExt: 7028 return true; 7029 } 7030 return false; 7031 }; 7032 7033 if (!IsVectorizableOpcode(I->getOpcode())) 7034 return nullptr; 7035 7036 // Success: widen this instruction. 7037 return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands())); 7038 } 7039 7040 VPBasicBlock *VPRecipeBuilder::handleReplication( 7041 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 7042 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 7043 VPlanPtr &Plan) { 7044 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 7045 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 7046 Range); 7047 7048 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 7049 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 7050 7051 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 7052 setRecipe(I, Recipe); 7053 7054 // Find if I uses a predicated instruction. If so, it will use its scalar 7055 // value. Avoid hoisting the insert-element which packs the scalar value into 7056 // a vector value, as that happens iff all users use the vector value. 7057 for (auto &Op : I->operands()) 7058 if (auto *PredInst = dyn_cast<Instruction>(Op)) 7059 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 7060 PredInst2Recipe[PredInst]->setAlsoPack(false); 7061 7062 // Finalize the recipe for Instr, first if it is not predicated. 7063 if (!IsPredicated) { 7064 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 7065 VPBB->appendRecipe(Recipe); 7066 return VPBB; 7067 } 7068 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 7069 assert(VPBB->getSuccessors().empty() && 7070 "VPBB has successors when handling predicated replication."); 7071 // Record predicated instructions for above packing optimizations. 7072 PredInst2Recipe[I] = Recipe; 7073 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 7074 VPBlockUtils::insertBlockAfter(Region, VPBB); 7075 auto *RegSucc = new VPBasicBlock(); 7076 VPBlockUtils::insertBlockAfter(RegSucc, Region); 7077 return RegSucc; 7078 } 7079 7080 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 7081 VPRecipeBase *PredRecipe, 7082 VPlanPtr &Plan) { 7083 // Instructions marked for predication are replicated and placed under an 7084 // if-then construct to prevent side-effects. 7085 7086 // Generate recipes to compute the block mask for this region. 7087 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 7088 7089 // Build the triangular if-then region. 7090 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 7091 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 7092 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 7093 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 7094 auto *PHIRecipe = 7095 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 7096 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 7097 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 7098 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 7099 7100 // Note: first set Entry as region entry and then connect successors starting 7101 // from it in order, to propagate the "parent" of each VPBasicBlock. 7102 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 7103 VPBlockUtils::connectBlocks(Pred, Exit); 7104 7105 return Region; 7106 } 7107 7108 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 7109 VFRange &Range, 7110 VPlanPtr &Plan) { 7111 // First, check for specific widening recipes that deal with calls, memory 7112 // operations, inductions and Phi nodes. 7113 if (auto *CI = dyn_cast<CallInst>(Instr)) 7114 return tryToWidenCall(CI, Range, *Plan); 7115 7116 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 7117 return tryToWidenMemory(Instr, Range, Plan); 7118 7119 VPRecipeBase *Recipe; 7120 if (auto Phi = dyn_cast<PHINode>(Instr)) { 7121 if (Phi->getParent() != OrigLoop->getHeader()) 7122 return tryToBlend(Phi, Plan); 7123 if ((Recipe = tryToOptimizeInductionPHI(Phi))) 7124 return Recipe; 7125 return new VPWidenPHIRecipe(Phi); 7126 return new VPWidenPHIRecipe(Phi); 7127 } 7128 7129 if (isa<TruncInst>(Instr) && 7130 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Range))) 7131 return Recipe; 7132 7133 if (!shouldWiden(Instr, Range)) 7134 return nullptr; 7135 7136 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 7137 return new VPWidenGEPRecipe(GEP, OrigLoop); 7138 7139 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 7140 bool InvariantCond = 7141 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 7142 return new VPWidenSelectRecipe(*SI, InvariantCond); 7143 } 7144 7145 return tryToWiden(Instr, *Plan); 7146 } 7147 7148 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 7149 unsigned MaxVF) { 7150 assert(OrigLoop->empty() && "Inner loop expected."); 7151 7152 // Collect conditions feeding internal conditional branches; they need to be 7153 // represented in VPlan for it to model masking. 7154 SmallPtrSet<Value *, 1> NeedDef; 7155 7156 auto *Latch = OrigLoop->getLoopLatch(); 7157 for (BasicBlock *BB : OrigLoop->blocks()) { 7158 if (BB == Latch) 7159 continue; 7160 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7161 if (Branch && Branch->isConditional()) 7162 NeedDef.insert(Branch->getCondition()); 7163 } 7164 7165 // If the tail is to be folded by masking, the primary induction variable, if 7166 // exists needs to be represented in VPlan for it to model early-exit masking. 7167 // Also, both the Phi and the live-out instruction of each reduction are 7168 // required in order to introduce a select between them in VPlan. 7169 if (CM.foldTailByMasking()) { 7170 if (Legal->getPrimaryInduction()) 7171 NeedDef.insert(Legal->getPrimaryInduction()); 7172 for (auto &Reduction : Legal->getReductionVars()) { 7173 NeedDef.insert(Reduction.first); 7174 NeedDef.insert(Reduction.second.getLoopExitInstr()); 7175 } 7176 } 7177 7178 // Collect instructions from the original loop that will become trivially dead 7179 // in the vectorized loop. We don't need to vectorize these instructions. For 7180 // example, original induction update instructions can become dead because we 7181 // separately emit induction "steps" when generating code for the new loop. 7182 // Similarly, we create a new latch condition when setting up the structure 7183 // of the new loop, so the old one can become dead. 7184 SmallPtrSet<Instruction *, 4> DeadInstructions; 7185 collectTriviallyDeadInstructions(DeadInstructions); 7186 7187 // Add assume instructions we need to drop to DeadInstructions, to prevent 7188 // them from being added to the VPlan. 7189 // TODO: We only need to drop assumes in blocks that get flattend. If the 7190 // control flow is preserved, we should keep them. 7191 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 7192 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 7193 7194 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7195 // Dead instructions do not need sinking. Remove them from SinkAfter. 7196 for (Instruction *I : DeadInstructions) 7197 SinkAfter.erase(I); 7198 7199 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7200 VFRange SubRange = {VF, MaxVF + 1}; 7201 VPlans.push_back(buildVPlanWithVPRecipes(SubRange, NeedDef, 7202 DeadInstructions, SinkAfter)); 7203 VF = SubRange.End; 7204 } 7205 } 7206 7207 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 7208 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 7209 SmallPtrSetImpl<Instruction *> &DeadInstructions, 7210 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 7211 7212 // Hold a mapping from predicated instructions to their recipes, in order to 7213 // fix their AlsoPack behavior if a user is determined to replicate and use a 7214 // scalar instead of vector value. 7215 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7216 7217 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 7218 7219 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 7220 7221 // --------------------------------------------------------------------------- 7222 // Pre-construction: record ingredients whose recipes we'll need to further 7223 // process after constructing the initial VPlan. 7224 // --------------------------------------------------------------------------- 7225 7226 // Mark instructions we'll need to sink later and their targets as 7227 // ingredients whose recipe we'll need to record. 7228 for (auto &Entry : SinkAfter) { 7229 RecipeBuilder.recordRecipeOf(Entry.first); 7230 RecipeBuilder.recordRecipeOf(Entry.second); 7231 } 7232 7233 // For each interleave group which is relevant for this (possibly trimmed) 7234 // Range, add it to the set of groups to be later applied to the VPlan and add 7235 // placeholders for its members' Recipes which we'll be replacing with a 7236 // single VPInterleaveRecipe. 7237 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 7238 auto applyIG = [IG, this](unsigned VF) -> bool { 7239 return (VF >= 2 && // Query is illegal for VF == 1 7240 CM.getWideningDecision(IG->getInsertPos(), VF) == 7241 LoopVectorizationCostModel::CM_Interleave); 7242 }; 7243 if (!getDecisionAndClampRange(applyIG, Range)) 7244 continue; 7245 InterleaveGroups.insert(IG); 7246 for (unsigned i = 0; i < IG->getFactor(); i++) 7247 if (Instruction *Member = IG->getMember(i)) 7248 RecipeBuilder.recordRecipeOf(Member); 7249 }; 7250 7251 // --------------------------------------------------------------------------- 7252 // Build initial VPlan: Scan the body of the loop in a topological order to 7253 // visit each basic block after having visited its predecessor basic blocks. 7254 // --------------------------------------------------------------------------- 7255 7256 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7257 auto Plan = std::make_unique<VPlan>(); 7258 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7259 Plan->setEntry(VPBB); 7260 7261 // Represent values that will have defs inside VPlan. 7262 for (Value *V : NeedDef) 7263 Plan->addVPValue(V); 7264 7265 // Scan the body of the loop in a topological order to visit each basic block 7266 // after having visited its predecessor basic blocks. 7267 LoopBlocksDFS DFS(OrigLoop); 7268 DFS.perform(LI); 7269 7270 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 7271 // Relevant instructions from basic block BB will be grouped into VPRecipe 7272 // ingredients and fill a new VPBasicBlock. 7273 unsigned VPBBsForBB = 0; 7274 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 7275 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 7276 VPBB = FirstVPBBForBB; 7277 Builder.setInsertPoint(VPBB); 7278 7279 // Introduce each ingredient into VPlan. 7280 // TODO: Model and preserve debug instrinsics in VPlan. 7281 for (Instruction &I : BB->instructionsWithoutDebug()) { 7282 Instruction *Instr = &I; 7283 7284 // First filter out irrelevant instructions, to ensure no recipes are 7285 // built for them. 7286 if (isa<BranchInst>(Instr) || 7287 DeadInstructions.find(Instr) != DeadInstructions.end()) 7288 continue; 7289 7290 if (auto Recipe = 7291 RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) { 7292 RecipeBuilder.setRecipe(Instr, Recipe); 7293 VPBB->appendRecipe(Recipe); 7294 continue; 7295 } 7296 7297 // Otherwise, if all widening options failed, Instruction is to be 7298 // replicated. This may create a successor for VPBB. 7299 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 7300 Instr, Range, VPBB, PredInst2Recipe, Plan); 7301 if (NextVPBB != VPBB) { 7302 VPBB = NextVPBB; 7303 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 7304 : ""); 7305 } 7306 } 7307 } 7308 7309 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 7310 // may also be empty, such as the last one VPBB, reflecting original 7311 // basic-blocks with no recipes. 7312 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 7313 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 7314 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 7315 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 7316 delete PreEntry; 7317 7318 // --------------------------------------------------------------------------- 7319 // Transform initial VPlan: Apply previously taken decisions, in order, to 7320 // bring the VPlan to its final state. 7321 // --------------------------------------------------------------------------- 7322 7323 // Apply Sink-After legal constraints. 7324 for (auto &Entry : SinkAfter) { 7325 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 7326 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 7327 Sink->moveAfter(Target); 7328 } 7329 7330 // Interleave memory: for each Interleave Group we marked earlier as relevant 7331 // for this VPlan, replace the Recipes widening its memory instructions with a 7332 // single VPInterleaveRecipe at its insertion point. 7333 for (auto IG : InterleaveGroups) { 7334 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 7335 RecipeBuilder.getRecipe(IG->getInsertPos())); 7336 (new VPInterleaveRecipe(IG, Recipe->getAddr(), Recipe->getMask())) 7337 ->insertBefore(Recipe); 7338 7339 for (unsigned i = 0; i < IG->getFactor(); ++i) 7340 if (Instruction *Member = IG->getMember(i)) { 7341 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 7342 } 7343 } 7344 7345 // Finally, if tail is folded by masking, introduce selects between the phi 7346 // and the live-out instruction of each reduction, at the end of the latch. 7347 if (CM.foldTailByMasking()) { 7348 Builder.setInsertPoint(VPBB); 7349 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 7350 for (auto &Reduction : Legal->getReductionVars()) { 7351 VPValue *Phi = Plan->getVPValue(Reduction.first); 7352 VPValue *Red = Plan->getVPValue(Reduction.second.getLoopExitInstr()); 7353 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 7354 } 7355 } 7356 7357 std::string PlanName; 7358 raw_string_ostream RSO(PlanName); 7359 unsigned VF = Range.Start; 7360 Plan->addVF(VF); 7361 RSO << "Initial VPlan for VF={" << VF; 7362 for (VF *= 2; VF < Range.End; VF *= 2) { 7363 Plan->addVF(VF); 7364 RSO << "," << VF; 7365 } 7366 RSO << "},UF>=1"; 7367 RSO.flush(); 7368 Plan->setName(PlanName); 7369 7370 return Plan; 7371 } 7372 7373 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 7374 // Outer loop handling: They may require CFG and instruction level 7375 // transformations before even evaluating whether vectorization is profitable. 7376 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7377 // the vectorization pipeline. 7378 assert(!OrigLoop->empty()); 7379 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7380 7381 // Create new empty VPlan 7382 auto Plan = std::make_unique<VPlan>(); 7383 7384 // Build hierarchical CFG 7385 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7386 HCFGBuilder.buildHierarchicalCFG(); 7387 7388 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 7389 Plan->addVF(VF); 7390 7391 if (EnableVPlanPredication) { 7392 VPlanPredicator VPP(*Plan); 7393 VPP.predicate(); 7394 7395 // Avoid running transformation to recipes until masked code generation in 7396 // VPlan-native path is in place. 7397 return Plan; 7398 } 7399 7400 SmallPtrSet<Instruction *, 1> DeadInstructions; 7401 VPlanTransforms::VPInstructionsToVPRecipes( 7402 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 7403 return Plan; 7404 } 7405 7406 Value* LoopVectorizationPlanner::VPCallbackILV:: 7407 getOrCreateVectorValues(Value *V, unsigned Part) { 7408 return ILV.getOrCreateVectorValue(V, Part); 7409 } 7410 7411 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue( 7412 Value *V, const VPIteration &Instance) { 7413 return ILV.getOrCreateScalarValue(V, Instance); 7414 } 7415 7416 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 7417 VPSlotTracker &SlotTracker) const { 7418 O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7419 IG->getInsertPos()->printAsOperand(O, false); 7420 O << ", "; 7421 getAddr()->printAsOperand(O, SlotTracker); 7422 VPValue *Mask = getMask(); 7423 if (Mask) { 7424 O << ", "; 7425 Mask->printAsOperand(O, SlotTracker); 7426 } 7427 for (unsigned i = 0; i < IG->getFactor(); ++i) 7428 if (Instruction *I = IG->getMember(i)) 7429 O << "\\l\" +\n" << Indent << "\" " << VPlanIngredient(I) << " " << i; 7430 } 7431 7432 void VPWidenCallRecipe::execute(VPTransformState &State) { 7433 State.ILV->widenCallInstruction(Ingredient, User, State); 7434 } 7435 7436 void VPWidenSelectRecipe::execute(VPTransformState &State) { 7437 State.ILV->widenSelectInstruction(Ingredient, InvariantCond); 7438 } 7439 7440 void VPWidenRecipe::execute(VPTransformState &State) { 7441 State.ILV->widenInstruction(Ingredient, User, State); 7442 } 7443 7444 void VPWidenGEPRecipe::execute(VPTransformState &State) { 7445 State.ILV->widenGEP(GEP, State.UF, State.VF, IsPtrLoopInvariant, 7446 IsIndexLoopInvariant); 7447 } 7448 7449 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7450 assert(!State.Instance && "Int or FP induction being replicated."); 7451 State.ILV->widenIntOrFpInduction(IV, Trunc); 7452 } 7453 7454 void VPWidenPHIRecipe::execute(VPTransformState &State) { 7455 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7456 } 7457 7458 void VPBlendRecipe::execute(VPTransformState &State) { 7459 State.ILV->setDebugLocFromInst(State.Builder, Phi); 7460 // We know that all PHIs in non-header blocks are converted into 7461 // selects, so we don't have to worry about the insertion order and we 7462 // can just use the builder. 7463 // At this point we generate the predication tree. There may be 7464 // duplications since this is a simple recursive scan, but future 7465 // optimizations will clean it up. 7466 7467 unsigned NumIncoming = getNumIncomingValues(); 7468 7469 // Generate a sequence of selects of the form: 7470 // SELECT(Mask3, In3, 7471 // SELECT(Mask2, In2, 7472 // SELECT(Mask1, In1, 7473 // In0))) 7474 // Note that Mask0 is never used: lanes for which no path reaches this phi and 7475 // are essentially undef are taken from In0. 7476 InnerLoopVectorizer::VectorParts Entry(State.UF); 7477 for (unsigned In = 0; In < NumIncoming; ++In) { 7478 for (unsigned Part = 0; Part < State.UF; ++Part) { 7479 // We might have single edge PHIs (blocks) - use an identity 7480 // 'select' for the first PHI operand. 7481 Value *In0 = State.get(getIncomingValue(In), Part); 7482 if (In == 0) 7483 Entry[Part] = In0; // Initialize with the first incoming value. 7484 else { 7485 // Select between the current value and the previous incoming edge 7486 // based on the incoming mask. 7487 Value *Cond = State.get(getMask(In), Part); 7488 Entry[Part] = 7489 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7490 } 7491 } 7492 } 7493 for (unsigned Part = 0; Part < State.UF; ++Part) 7494 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7495 } 7496 7497 void VPInterleaveRecipe::execute(VPTransformState &State) { 7498 assert(!State.Instance && "Interleave group being replicated."); 7499 State.ILV->vectorizeInterleaveGroup(IG, State, getAddr(), getMask()); 7500 } 7501 7502 void VPReplicateRecipe::execute(VPTransformState &State) { 7503 if (State.Instance) { // Generate a single instance. 7504 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 7505 // Insert scalar instance packing it into a vector. 7506 if (AlsoPack && State.VF > 1) { 7507 // If we're constructing lane 0, initialize to start from undef. 7508 if (State.Instance->Lane == 0) { 7509 Value *Undef = 7510 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 7511 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7512 } 7513 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7514 } 7515 return; 7516 } 7517 7518 // Generate scalar instances for all VF lanes of all UF parts, unless the 7519 // instruction is uniform inwhich case generate only the first lane for each 7520 // of the UF parts. 7521 unsigned EndLane = IsUniform ? 1 : State.VF; 7522 for (unsigned Part = 0; Part < State.UF; ++Part) 7523 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7524 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 7525 } 7526 7527 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7528 assert(State.Instance && "Branch on Mask works only on single instance."); 7529 7530 unsigned Part = State.Instance->Part; 7531 unsigned Lane = State.Instance->Lane; 7532 7533 Value *ConditionBit = nullptr; 7534 if (!User) // Block in mask is all-one. 7535 ConditionBit = State.Builder.getTrue(); 7536 else { 7537 VPValue *BlockInMask = User->getOperand(0); 7538 ConditionBit = State.get(BlockInMask, Part); 7539 if (ConditionBit->getType()->isVectorTy()) 7540 ConditionBit = State.Builder.CreateExtractElement( 7541 ConditionBit, State.Builder.getInt32(Lane)); 7542 } 7543 7544 // Replace the temporary unreachable terminator with a new conditional branch, 7545 // whose two destinations will be set later when they are created. 7546 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7547 assert(isa<UnreachableInst>(CurrentTerminator) && 7548 "Expected to replace unreachable terminator with conditional branch."); 7549 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7550 CondBr->setSuccessor(0, nullptr); 7551 ReplaceInstWithInst(CurrentTerminator, CondBr); 7552 } 7553 7554 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7555 assert(State.Instance && "Predicated instruction PHI works per instance."); 7556 Instruction *ScalarPredInst = cast<Instruction>( 7557 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7558 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7559 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7560 assert(PredicatingBB && "Predicated block has no single predecessor."); 7561 7562 // By current pack/unpack logic we need to generate only a single phi node: if 7563 // a vector value for the predicated instruction exists at this point it means 7564 // the instruction has vector users only, and a phi for the vector value is 7565 // needed. In this case the recipe of the predicated instruction is marked to 7566 // also do that packing, thereby "hoisting" the insert-element sequence. 7567 // Otherwise, a phi node for the scalar value is needed. 7568 unsigned Part = State.Instance->Part; 7569 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7570 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7571 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7572 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7573 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7574 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7575 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7576 } else { 7577 Type *PredInstType = PredInst->getType(); 7578 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7579 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7580 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7581 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7582 } 7583 } 7584 7585 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7586 VPValue *StoredValue = isa<StoreInst>(Instr) ? getStoredValue() : nullptr; 7587 State.ILV->vectorizeMemoryInstruction(&Instr, State, getAddr(), StoredValue, 7588 getMask()); 7589 } 7590 7591 // Determine how to lower the scalar epilogue, which depends on 1) optimising 7592 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 7593 // predication, and 4) a TTI hook that analyses whether the loop is suitable 7594 // for predication. 7595 static ScalarEpilogueLowering getScalarEpilogueLowering( 7596 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 7597 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 7598 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 7599 LoopVectorizationLegality &LVL) { 7600 bool OptSize = 7601 F->hasOptSize() || llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 7602 PGSOQueryType::IRPass); 7603 // 1) OptSize takes precedence over all other options, i.e. if this is set, 7604 // don't look at hints or options, and don't request a scalar epilogue. 7605 if (OptSize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) 7606 return CM_ScalarEpilogueNotAllowedOptSize; 7607 7608 bool PredicateOptDisabled = PreferPredicateOverEpilog.getNumOccurrences() && 7609 !PreferPredicateOverEpilog; 7610 7611 // 2) Next, if disabling predication is requested on the command line, honour 7612 // this and request a scalar epilogue. 7613 if (PredicateOptDisabled) 7614 return CM_ScalarEpilogueAllowed; 7615 7616 // 3) and 4) look if enabling predication is requested on the command line, 7617 // with a loop hint, or if the TTI hook indicates this is profitable, request 7618 // predication . 7619 if (PreferPredicateOverEpilog || 7620 Hints.getPredicate() == LoopVectorizeHints::FK_Enabled || 7621 (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 7622 LVL.getLAI()) && 7623 Hints.getPredicate() != LoopVectorizeHints::FK_Disabled)) 7624 return CM_ScalarEpilogueNotNeededUsePredicate; 7625 7626 return CM_ScalarEpilogueAllowed; 7627 } 7628 7629 // Process the loop in the VPlan-native vectorization path. This path builds 7630 // VPlan upfront in the vectorization pipeline, which allows to apply 7631 // VPlan-to-VPlan transformations from the very beginning without modifying the 7632 // input LLVM IR. 7633 static bool processLoopInVPlanNativePath( 7634 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7635 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7636 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7637 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 7638 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 7639 7640 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7641 Function *F = L->getHeader()->getParent(); 7642 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7643 7644 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 7645 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 7646 7647 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7648 &Hints, IAI); 7649 // Use the planner for outer loop vectorization. 7650 // TODO: CM is not used at this point inside the planner. Turn CM into an 7651 // optional argument if we don't need it in the future. 7652 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE); 7653 7654 // Get user vectorization factor. 7655 const unsigned UserVF = Hints.getWidth(); 7656 7657 // Plan how to best vectorize, return the best VF and its cost. 7658 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 7659 7660 // If we are stress testing VPlan builds, do not attempt to generate vector 7661 // code. Masked vector code generation support will follow soon. 7662 // Also, do not attempt to vectorize if no vector code will be produced. 7663 if (VPlanBuildStressTest || EnableVPlanPredication || 7664 VectorizationFactor::Disabled() == VF) 7665 return false; 7666 7667 LVP.setBestPlan(VF.Width, 1); 7668 7669 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 7670 &CM); 7671 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7672 << L->getHeader()->getParent()->getName() << "\"\n"); 7673 LVP.executePlan(LB, DT); 7674 7675 // Mark the loop as already vectorized to avoid vectorizing again. 7676 Hints.setAlreadyVectorized(); 7677 7678 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7679 return true; 7680 } 7681 7682 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 7683 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 7684 !EnableLoopInterleaving), 7685 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 7686 !EnableLoopVectorization) {} 7687 7688 bool LoopVectorizePass::processLoop(Loop *L) { 7689 assert((EnableVPlanNativePath || L->empty()) && 7690 "VPlan-native path is not enabled. Only process inner loops."); 7691 7692 #ifndef NDEBUG 7693 const std::string DebugLocStr = getDebugLocString(L); 7694 #endif /* NDEBUG */ 7695 7696 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7697 << L->getHeader()->getParent()->getName() << "\" from " 7698 << DebugLocStr << "\n"); 7699 7700 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 7701 7702 LLVM_DEBUG( 7703 dbgs() << "LV: Loop hints:" 7704 << " force=" 7705 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7706 ? "disabled" 7707 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7708 ? "enabled" 7709 : "?")) 7710 << " width=" << Hints.getWidth() 7711 << " unroll=" << Hints.getInterleave() << "\n"); 7712 7713 // Function containing loop 7714 Function *F = L->getHeader()->getParent(); 7715 7716 // Looking at the diagnostic output is the only way to determine if a loop 7717 // was vectorized (other than looking at the IR or machine code), so it 7718 // is important to generate an optimization remark for each loop. Most of 7719 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7720 // generated as OptimizationRemark and OptimizationRemarkMissed are 7721 // less verbose reporting vectorized loops and unvectorized loops that may 7722 // benefit from vectorization, respectively. 7723 7724 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 7725 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7726 return false; 7727 } 7728 7729 PredicatedScalarEvolution PSE(*SE, *L); 7730 7731 // Check if it is legal to vectorize the loop. 7732 LoopVectorizationRequirements Requirements(*ORE); 7733 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 7734 &Requirements, &Hints, DB, AC); 7735 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7736 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7737 Hints.emitRemarkWithHints(); 7738 return false; 7739 } 7740 7741 // Check the function attributes and profiles to find out if this function 7742 // should be optimized for size. 7743 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 7744 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 7745 7746 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7747 // here. They may require CFG and instruction level transformations before 7748 // even evaluating whether vectorization is profitable. Since we cannot modify 7749 // the incoming IR, we need to build VPlan upfront in the vectorization 7750 // pipeline. 7751 if (!L->empty()) 7752 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7753 ORE, BFI, PSI, Hints); 7754 7755 assert(L->empty() && "Inner loop expected."); 7756 7757 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7758 // count by optimizing for size, to minimize overheads. 7759 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 7760 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 7761 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7762 << "This loop is worth vectorizing only if no scalar " 7763 << "iteration overheads are incurred."); 7764 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7765 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7766 else { 7767 LLVM_DEBUG(dbgs() << "\n"); 7768 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 7769 } 7770 } 7771 7772 // Check the function attributes to see if implicit floats are allowed. 7773 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7774 // an integer loop and the vector instructions selected are purely integer 7775 // vector instructions? 7776 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7777 reportVectorizationFailure( 7778 "Can't vectorize when the NoImplicitFloat attribute is used", 7779 "loop not vectorized due to NoImplicitFloat attribute", 7780 "NoImplicitFloat", ORE, L); 7781 Hints.emitRemarkWithHints(); 7782 return false; 7783 } 7784 7785 // Check if the target supports potentially unsafe FP vectorization. 7786 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7787 // for the target we're vectorizing for, to make sure none of the 7788 // additional fp-math flags can help. 7789 if (Hints.isPotentiallyUnsafe() && 7790 TTI->isFPVectorizationPotentiallyUnsafe()) { 7791 reportVectorizationFailure( 7792 "Potentially unsafe FP op prevents vectorization", 7793 "loop not vectorized due to unsafe FP support.", 7794 "UnsafeFP", ORE, L); 7795 Hints.emitRemarkWithHints(); 7796 return false; 7797 } 7798 7799 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7800 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7801 7802 // If an override option has been passed in for interleaved accesses, use it. 7803 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7804 UseInterleaved = EnableInterleavedMemAccesses; 7805 7806 // Analyze interleaved memory accesses. 7807 if (UseInterleaved) { 7808 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7809 } 7810 7811 // Use the cost model. 7812 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 7813 F, &Hints, IAI); 7814 CM.collectValuesToIgnore(); 7815 7816 // Use the planner for vectorization. 7817 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE); 7818 7819 // Get user vectorization factor. 7820 unsigned UserVF = Hints.getWidth(); 7821 7822 // Plan how to best vectorize, return the best VF and its cost. 7823 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF); 7824 7825 VectorizationFactor VF = VectorizationFactor::Disabled(); 7826 unsigned IC = 1; 7827 unsigned UserIC = Hints.getInterleave(); 7828 7829 if (MaybeVF) { 7830 VF = *MaybeVF; 7831 // Select the interleave count. 7832 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 7833 } 7834 7835 // Identify the diagnostic messages that should be produced. 7836 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7837 bool VectorizeLoop = true, InterleaveLoop = true; 7838 if (Requirements.doesNotMeet(F, L, Hints)) { 7839 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7840 "requirements.\n"); 7841 Hints.emitRemarkWithHints(); 7842 return false; 7843 } 7844 7845 if (VF.Width == 1) { 7846 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7847 VecDiagMsg = std::make_pair( 7848 "VectorizationNotBeneficial", 7849 "the cost-model indicates that vectorization is not beneficial"); 7850 VectorizeLoop = false; 7851 } 7852 7853 if (!MaybeVF && UserIC > 1) { 7854 // Tell the user interleaving was avoided up-front, despite being explicitly 7855 // requested. 7856 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 7857 "interleaving should be avoided up front\n"); 7858 IntDiagMsg = std::make_pair( 7859 "InterleavingAvoided", 7860 "Ignoring UserIC, because interleaving was avoided up front"); 7861 InterleaveLoop = false; 7862 } else if (IC == 1 && UserIC <= 1) { 7863 // Tell the user interleaving is not beneficial. 7864 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7865 IntDiagMsg = std::make_pair( 7866 "InterleavingNotBeneficial", 7867 "the cost-model indicates that interleaving is not beneficial"); 7868 InterleaveLoop = false; 7869 if (UserIC == 1) { 7870 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7871 IntDiagMsg.second += 7872 " and is explicitly disabled or interleave count is set to 1"; 7873 } 7874 } else if (IC > 1 && UserIC == 1) { 7875 // Tell the user interleaving is beneficial, but it explicitly disabled. 7876 LLVM_DEBUG( 7877 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7878 IntDiagMsg = std::make_pair( 7879 "InterleavingBeneficialButDisabled", 7880 "the cost-model indicates that interleaving is beneficial " 7881 "but is explicitly disabled or interleave count is set to 1"); 7882 InterleaveLoop = false; 7883 } 7884 7885 // Override IC if user provided an interleave count. 7886 IC = UserIC > 0 ? UserIC : IC; 7887 7888 // Emit diagnostic messages, if any. 7889 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7890 if (!VectorizeLoop && !InterleaveLoop) { 7891 // Do not vectorize or interleaving the loop. 7892 ORE->emit([&]() { 7893 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7894 L->getStartLoc(), L->getHeader()) 7895 << VecDiagMsg.second; 7896 }); 7897 ORE->emit([&]() { 7898 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7899 L->getStartLoc(), L->getHeader()) 7900 << IntDiagMsg.second; 7901 }); 7902 return false; 7903 } else if (!VectorizeLoop && InterleaveLoop) { 7904 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7905 ORE->emit([&]() { 7906 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7907 L->getStartLoc(), L->getHeader()) 7908 << VecDiagMsg.second; 7909 }); 7910 } else if (VectorizeLoop && !InterleaveLoop) { 7911 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7912 << ") in " << DebugLocStr << '\n'); 7913 ORE->emit([&]() { 7914 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7915 L->getStartLoc(), L->getHeader()) 7916 << IntDiagMsg.second; 7917 }); 7918 } else if (VectorizeLoop && InterleaveLoop) { 7919 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7920 << ") in " << DebugLocStr << '\n'); 7921 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7922 } 7923 7924 LVP.setBestPlan(VF.Width, IC); 7925 7926 using namespace ore; 7927 bool DisableRuntimeUnroll = false; 7928 MDNode *OrigLoopID = L->getLoopID(); 7929 7930 if (!VectorizeLoop) { 7931 assert(IC > 1 && "interleave count should not be 1 or 0"); 7932 // If we decided that it is not legal to vectorize the loop, then 7933 // interleave it. 7934 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7935 &CM); 7936 LVP.executePlan(Unroller, DT); 7937 7938 ORE->emit([&]() { 7939 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7940 L->getHeader()) 7941 << "interleaved loop (interleaved count: " 7942 << NV("InterleaveCount", IC) << ")"; 7943 }); 7944 } else { 7945 // If we decided that it is *legal* to vectorize the loop, then do it. 7946 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7947 &LVL, &CM); 7948 LVP.executePlan(LB, DT); 7949 ++LoopsVectorized; 7950 7951 // Add metadata to disable runtime unrolling a scalar loop when there are 7952 // no runtime checks about strides and memory. A scalar loop that is 7953 // rarely used is not worth unrolling. 7954 if (!LB.areSafetyChecksAdded()) 7955 DisableRuntimeUnroll = true; 7956 7957 // Report the vectorization decision. 7958 ORE->emit([&]() { 7959 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7960 L->getHeader()) 7961 << "vectorized loop (vectorization width: " 7962 << NV("VectorizationFactor", VF.Width) 7963 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7964 }); 7965 } 7966 7967 Optional<MDNode *> RemainderLoopID = 7968 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7969 LLVMLoopVectorizeFollowupEpilogue}); 7970 if (RemainderLoopID.hasValue()) { 7971 L->setLoopID(RemainderLoopID.getValue()); 7972 } else { 7973 if (DisableRuntimeUnroll) 7974 AddRuntimeUnrollDisableMetaData(L); 7975 7976 // Mark the loop as already vectorized to avoid vectorizing again. 7977 Hints.setAlreadyVectorized(); 7978 } 7979 7980 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7981 return true; 7982 } 7983 7984 LoopVectorizeResult LoopVectorizePass::runImpl( 7985 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7986 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7987 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7988 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7989 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 7990 SE = &SE_; 7991 LI = &LI_; 7992 TTI = &TTI_; 7993 DT = &DT_; 7994 BFI = &BFI_; 7995 TLI = TLI_; 7996 AA = &AA_; 7997 AC = &AC_; 7998 GetLAA = &GetLAA_; 7999 DB = &DB_; 8000 ORE = &ORE_; 8001 PSI = PSI_; 8002 8003 // Don't attempt if 8004 // 1. the target claims to have no vector registers, and 8005 // 2. interleaving won't help ILP. 8006 // 8007 // The second condition is necessary because, even if the target has no 8008 // vector registers, loop vectorization may still enable scalar 8009 // interleaving. 8010 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 8011 TTI->getMaxInterleaveFactor(1) < 2) 8012 return LoopVectorizeResult(false, false); 8013 8014 bool Changed = false, CFGChanged = false; 8015 8016 // The vectorizer requires loops to be in simplified form. 8017 // Since simplification may add new inner loops, it has to run before the 8018 // legality and profitability checks. This means running the loop vectorizer 8019 // will simplify all loops, regardless of whether anything end up being 8020 // vectorized. 8021 for (auto &L : *LI) 8022 Changed |= CFGChanged |= 8023 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 8024 8025 // Build up a worklist of inner-loops to vectorize. This is necessary as 8026 // the act of vectorizing or partially unrolling a loop creates new loops 8027 // and can invalidate iterators across the loops. 8028 SmallVector<Loop *, 8> Worklist; 8029 8030 for (Loop *L : *LI) 8031 collectSupportedLoops(*L, LI, ORE, Worklist); 8032 8033 LoopsAnalyzed += Worklist.size(); 8034 8035 // Now walk the identified inner loops. 8036 while (!Worklist.empty()) { 8037 Loop *L = Worklist.pop_back_val(); 8038 8039 // For the inner loops we actually process, form LCSSA to simplify the 8040 // transform. 8041 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8042 8043 Changed |= CFGChanged |= processLoop(L); 8044 } 8045 8046 // Process each loop nest in the function. 8047 return LoopVectorizeResult(Changed, CFGChanged); 8048 } 8049 8050 PreservedAnalyses LoopVectorizePass::run(Function &F, 8051 FunctionAnalysisManager &AM) { 8052 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8053 auto &LI = AM.getResult<LoopAnalysis>(F); 8054 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8055 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8056 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8057 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8058 auto &AA = AM.getResult<AAManager>(F); 8059 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8060 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8061 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8062 MemorySSA *MSSA = EnableMSSALoopDependency 8063 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 8064 : nullptr; 8065 8066 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8067 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8068 [&](Loop &L) -> const LoopAccessInfo & { 8069 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA}; 8070 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8071 }; 8072 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 8073 ProfileSummaryInfo *PSI = 8074 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 8075 LoopVectorizeResult Result = 8076 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 8077 if (!Result.MadeAnyChange) 8078 return PreservedAnalyses::all(); 8079 PreservedAnalyses PA; 8080 8081 // We currently do not preserve loopinfo/dominator analyses with outer loop 8082 // vectorization. Until this is addressed, mark these analyses as preserved 8083 // only for non-VPlan-native path. 8084 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 8085 if (!EnableVPlanNativePath) { 8086 PA.preserve<LoopAnalysis>(); 8087 PA.preserve<DominatorTreeAnalysis>(); 8088 } 8089 PA.preserve<BasicAA>(); 8090 PA.preserve<GlobalsAA>(); 8091 if (!Result.MadeCFGChange) 8092 PA.preserveSet<CFGAnalyses>(); 8093 return PA; 8094 } 8095