1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // Other ideas/concepts are from: 38 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 39 // 40 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 41 // Vectorizing Compilers. 42 // 43 //===----------------------------------------------------------------------===// 44 45 #include "llvm/Transforms/Vectorize.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/EquivalenceClasses.h" 48 #include "llvm/ADT/Hashing.h" 49 #include "llvm/ADT/MapVector.h" 50 #include "llvm/ADT/SetVector.h" 51 #include "llvm/ADT/SmallPtrSet.h" 52 #include "llvm/ADT/SmallSet.h" 53 #include "llvm/ADT/SmallVector.h" 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/ADT/StringExtras.h" 56 #include "llvm/Analysis/AliasAnalysis.h" 57 #include "llvm/Analysis/BlockFrequencyInfo.h" 58 #include "llvm/Analysis/LoopInfo.h" 59 #include "llvm/Analysis/LoopIterator.h" 60 #include "llvm/Analysis/LoopPass.h" 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/Analysis/ScalarEvolutionExpander.h" 63 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 64 #include "llvm/Analysis/TargetTransformInfo.h" 65 #include "llvm/Analysis/ValueTracking.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DataLayout.h" 68 #include "llvm/IR/DebugInfo.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/DiagnosticInfo.h" 71 #include "llvm/IR/Dominators.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/IRBuilder.h" 74 #include "llvm/IR/Instructions.h" 75 #include "llvm/IR/IntrinsicInst.h" 76 #include "llvm/IR/LLVMContext.h" 77 #include "llvm/IR/Module.h" 78 #include "llvm/IR/PatternMatch.h" 79 #include "llvm/IR/Type.h" 80 #include "llvm/IR/Value.h" 81 #include "llvm/IR/ValueHandle.h" 82 #include "llvm/IR/Verifier.h" 83 #include "llvm/Pass.h" 84 #include "llvm/Support/BranchProbability.h" 85 #include "llvm/Support/CommandLine.h" 86 #include "llvm/Support/Debug.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Scalar.h" 89 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 90 #include "llvm/Transforms/Utils/Local.h" 91 #include "llvm/Transforms/Utils/VectorUtils.h" 92 #include <algorithm> 93 #include <map> 94 #include <tuple> 95 96 using namespace llvm; 97 using namespace llvm::PatternMatch; 98 99 #define LV_NAME "loop-vectorize" 100 #define DEBUG_TYPE LV_NAME 101 102 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 103 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 104 105 static cl::opt<unsigned> 106 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden, 107 cl::desc("Sets the SIMD width. Zero is autoselect.")); 108 109 static cl::opt<unsigned> 110 VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden, 111 cl::desc("Sets the vectorization unroll count. " 112 "Zero is autoselect.")); 113 114 static cl::opt<bool> 115 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 116 cl::desc("Enable if-conversion during vectorization.")); 117 118 /// We don't vectorize loops with a known constant trip count below this number. 119 static cl::opt<unsigned> 120 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 121 cl::Hidden, 122 cl::desc("Don't vectorize loops with a constant " 123 "trip count that is smaller than this " 124 "value.")); 125 126 /// This enables versioning on the strides of symbolically striding memory 127 /// accesses in code like the following. 128 /// for (i = 0; i < N; ++i) 129 /// A[i * Stride1] += B[i * Stride2] ... 130 /// 131 /// Will be roughly translated to 132 /// if (Stride1 == 1 && Stride2 == 1) { 133 /// for (i = 0; i < N; i+=4) 134 /// A[i:i+3] += ... 135 /// } else 136 /// ... 137 static cl::opt<bool> EnableMemAccessVersioning( 138 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 139 cl::desc("Enable symblic stride memory access versioning")); 140 141 /// We don't unroll loops with a known constant trip count below this number. 142 static const unsigned TinyTripCountUnrollThreshold = 128; 143 144 /// When performing memory disambiguation checks at runtime do not make more 145 /// than this number of comparisons. 146 static const unsigned RuntimeMemoryCheckThreshold = 8; 147 148 /// Maximum simd width. 149 static const unsigned MaxVectorWidth = 64; 150 151 static cl::opt<unsigned> ForceTargetNumScalarRegs( 152 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 153 cl::desc("A flag that overrides the target's number of scalar registers.")); 154 155 static cl::opt<unsigned> ForceTargetNumVectorRegs( 156 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 157 cl::desc("A flag that overrides the target's number of vector registers.")); 158 159 /// Maximum vectorization unroll count. 160 static const unsigned MaxUnrollFactor = 16; 161 162 static cl::opt<unsigned> ForceTargetMaxScalarUnrollFactor( 163 "force-target-max-scalar-unroll", cl::init(0), cl::Hidden, 164 cl::desc("A flag that overrides the target's max unroll factor for scalar " 165 "loops.")); 166 167 static cl::opt<unsigned> ForceTargetMaxVectorUnrollFactor( 168 "force-target-max-vector-unroll", cl::init(0), cl::Hidden, 169 cl::desc("A flag that overrides the target's max unroll factor for " 170 "vectorized loops.")); 171 172 static cl::opt<unsigned> ForceTargetInstructionCost( 173 "force-target-instruction-cost", cl::init(0), cl::Hidden, 174 cl::desc("A flag that overrides the target's expected cost for " 175 "an instruction to a single constant value. Mostly " 176 "useful for getting consistent testing.")); 177 178 static cl::opt<unsigned> SmallLoopCost( 179 "small-loop-cost", cl::init(20), cl::Hidden, 180 cl::desc("The cost of a loop that is considered 'small' by the unroller.")); 181 182 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 183 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 184 cl::desc("Enable the use of the block frequency analysis to access PGO " 185 "heuristics minimizing code growth in cold regions and being more " 186 "aggressive in hot regions.")); 187 188 // Runtime unroll loops for load/store throughput. 189 static cl::opt<bool> EnableLoadStoreRuntimeUnroll( 190 "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden, 191 cl::desc("Enable runtime unrolling until load/store ports are saturated")); 192 193 /// The number of stores in a loop that are allowed to need predication. 194 static cl::opt<unsigned> NumberOfStoresToPredicate( 195 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 196 cl::desc("Max number of stores to be predicated behind an if.")); 197 198 static cl::opt<bool> EnableIndVarRegisterHeur( 199 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 200 cl::desc("Count the induction variable only once when unrolling")); 201 202 static cl::opt<bool> EnableCondStoresVectorization( 203 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 204 cl::desc("Enable if predication of stores during vectorization.")); 205 206 namespace { 207 208 // Forward declarations. 209 class LoopVectorizationLegality; 210 class LoopVectorizationCostModel; 211 212 /// Optimization analysis message produced during vectorization. Messages inform 213 /// the user why vectorization did not occur. 214 class Report { 215 std::string Message; 216 raw_string_ostream Out; 217 Instruction *Instr; 218 219 public: 220 Report(Instruction *I = nullptr) : Out(Message), Instr(I) { 221 Out << "loop not vectorized: "; 222 } 223 224 template <typename A> Report &operator<<(const A &Value) { 225 Out << Value; 226 return *this; 227 } 228 229 Instruction *getInstr() { return Instr; } 230 231 std::string &str() { return Out.str(); } 232 operator Twine() { return Out.str(); } 233 }; 234 235 /// InnerLoopVectorizer vectorizes loops which contain only one basic 236 /// block to a specified vectorization factor (VF). 237 /// This class performs the widening of scalars into vectors, or multiple 238 /// scalars. This class also implements the following features: 239 /// * It inserts an epilogue loop for handling loops that don't have iteration 240 /// counts that are known to be a multiple of the vectorization factor. 241 /// * It handles the code generation for reduction variables. 242 /// * Scalarization (implementation using scalars) of un-vectorizable 243 /// instructions. 244 /// InnerLoopVectorizer does not perform any vectorization-legality 245 /// checks, and relies on the caller to check for the different legality 246 /// aspects. The InnerLoopVectorizer relies on the 247 /// LoopVectorizationLegality class to provide information about the induction 248 /// and reduction variables that were found to a given vectorization factor. 249 class InnerLoopVectorizer { 250 public: 251 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 252 DominatorTree *DT, const DataLayout *DL, 253 const TargetLibraryInfo *TLI, unsigned VecWidth, 254 unsigned UnrollFactor) 255 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI), 256 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), 257 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), 258 Legal(nullptr) {} 259 260 // Perform the actual loop widening (vectorization). 261 void vectorize(LoopVectorizationLegality *L) { 262 Legal = L; 263 // Create a new empty loop. Unlink the old loop and connect the new one. 264 createEmptyLoop(); 265 // Widen each instruction in the old loop to a new one in the new loop. 266 // Use the Legality module to find the induction and reduction variables. 267 vectorizeLoop(); 268 // Register the new loop and update the analysis passes. 269 updateAnalysis(); 270 } 271 272 virtual ~InnerLoopVectorizer() {} 273 274 protected: 275 /// A small list of PHINodes. 276 typedef SmallVector<PHINode*, 4> PhiVector; 277 /// When we unroll loops we have multiple vector values for each scalar. 278 /// This data structure holds the unrolled and vectorized values that 279 /// originated from one scalar instruction. 280 typedef SmallVector<Value*, 2> VectorParts; 281 282 // When we if-convert we need create edge masks. We have to cache values so 283 // that we don't end up with exponential recursion/IR. 284 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 285 VectorParts> EdgeMaskCache; 286 287 /// \brief Add code that checks at runtime if the accessed arrays overlap. 288 /// 289 /// Returns a pair of instructions where the first element is the first 290 /// instruction generated in possibly a sequence of instructions and the 291 /// second value is the final comparator value or NULL if no check is needed. 292 std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc); 293 294 /// \brief Add checks for strides that where assumed to be 1. 295 /// 296 /// Returns the last check instruction and the first check instruction in the 297 /// pair as (first, last). 298 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc); 299 300 /// Create an empty loop, based on the loop ranges of the old loop. 301 void createEmptyLoop(); 302 /// Copy and widen the instructions from the old loop. 303 virtual void vectorizeLoop(); 304 305 /// \brief The Loop exit block may have single value PHI nodes where the 306 /// incoming value is 'Undef'. While vectorizing we only handled real values 307 /// that were defined inside the loop. Here we fix the 'undef case'. 308 /// See PR14725. 309 void fixLCSSAPHIs(); 310 311 /// A helper function that computes the predicate of the block BB, assuming 312 /// that the header block of the loop is set to True. It returns the *entry* 313 /// mask for the block BB. 314 VectorParts createBlockInMask(BasicBlock *BB); 315 /// A helper function that computes the predicate of the edge between SRC 316 /// and DST. 317 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 318 319 /// A helper function to vectorize a single BB within the innermost loop. 320 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 321 322 /// Vectorize a single PHINode in a block. This method handles the induction 323 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 324 /// arbitrary length vectors. 325 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 326 unsigned UF, unsigned VF, PhiVector *PV); 327 328 /// Insert the new loop to the loop hierarchy and pass manager 329 /// and update the analysis passes. 330 void updateAnalysis(); 331 332 /// This instruction is un-vectorizable. Implement it as a sequence 333 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 334 /// scalarized instruction behind an if block predicated on the control 335 /// dependence of the instruction. 336 virtual void scalarizeInstruction(Instruction *Instr, 337 bool IfPredicateStore=false); 338 339 /// Vectorize Load and Store instructions, 340 virtual void vectorizeMemoryInstruction(Instruction *Instr); 341 342 /// Create a broadcast instruction. This method generates a broadcast 343 /// instruction (shuffle) for loop invariant values and for the induction 344 /// value. If this is the induction variable then we extend it to N, N+1, ... 345 /// this is needed because each iteration in the loop corresponds to a SIMD 346 /// element. 347 virtual Value *getBroadcastInstrs(Value *V); 348 349 /// This function adds 0, 1, 2 ... to each vector element, starting at zero. 350 /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...). 351 /// The sequence starts at StartIndex. 352 virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate); 353 354 /// When we go over instructions in the basic block we rely on previous 355 /// values within the current basic block or on loop invariant values. 356 /// When we widen (vectorize) values we place them in the map. If the values 357 /// are not within the map, they have to be loop invariant, so we simply 358 /// broadcast them into a vector. 359 VectorParts &getVectorValue(Value *V); 360 361 /// Generate a shuffle sequence that will reverse the vector Vec. 362 virtual Value *reverseVector(Value *Vec); 363 364 /// This is a helper class that holds the vectorizer state. It maps scalar 365 /// instructions to vector instructions. When the code is 'unrolled' then 366 /// then a single scalar value is mapped to multiple vector parts. The parts 367 /// are stored in the VectorPart type. 368 struct ValueMap { 369 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 370 /// are mapped. 371 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 372 373 /// \return True if 'Key' is saved in the Value Map. 374 bool has(Value *Key) const { return MapStorage.count(Key); } 375 376 /// Initializes a new entry in the map. Sets all of the vector parts to the 377 /// save value in 'Val'. 378 /// \return A reference to a vector with splat values. 379 VectorParts &splat(Value *Key, Value *Val) { 380 VectorParts &Entry = MapStorage[Key]; 381 Entry.assign(UF, Val); 382 return Entry; 383 } 384 385 ///\return A reference to the value that is stored at 'Key'. 386 VectorParts &get(Value *Key) { 387 VectorParts &Entry = MapStorage[Key]; 388 if (Entry.empty()) 389 Entry.resize(UF); 390 assert(Entry.size() == UF); 391 return Entry; 392 } 393 394 private: 395 /// The unroll factor. Each entry in the map stores this number of vector 396 /// elements. 397 unsigned UF; 398 399 /// Map storage. We use std::map and not DenseMap because insertions to a 400 /// dense map invalidates its iterators. 401 std::map<Value *, VectorParts> MapStorage; 402 }; 403 404 /// The original loop. 405 Loop *OrigLoop; 406 /// Scev analysis to use. 407 ScalarEvolution *SE; 408 /// Loop Info. 409 LoopInfo *LI; 410 /// Dominator Tree. 411 DominatorTree *DT; 412 /// Data Layout. 413 const DataLayout *DL; 414 /// Target Library Info. 415 const TargetLibraryInfo *TLI; 416 417 /// The vectorization SIMD factor to use. Each vector will have this many 418 /// vector elements. 419 unsigned VF; 420 421 protected: 422 /// The vectorization unroll factor to use. Each scalar is vectorized to this 423 /// many different vector instructions. 424 unsigned UF; 425 426 /// The builder that we use 427 IRBuilder<> Builder; 428 429 // --- Vectorization state --- 430 431 /// The vector-loop preheader. 432 BasicBlock *LoopVectorPreHeader; 433 /// The scalar-loop preheader. 434 BasicBlock *LoopScalarPreHeader; 435 /// Middle Block between the vector and the scalar. 436 BasicBlock *LoopMiddleBlock; 437 ///The ExitBlock of the scalar loop. 438 BasicBlock *LoopExitBlock; 439 ///The vector loop body. 440 SmallVector<BasicBlock *, 4> LoopVectorBody; 441 ///The scalar loop body. 442 BasicBlock *LoopScalarBody; 443 /// A list of all bypass blocks. The first block is the entry of the loop. 444 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 445 446 /// The new Induction variable which was added to the new block. 447 PHINode *Induction; 448 /// The induction variable of the old basic block. 449 PHINode *OldInduction; 450 /// Holds the extended (to the widest induction type) start index. 451 Value *ExtendedIdx; 452 /// Maps scalars to widened vectors. 453 ValueMap WidenMap; 454 EdgeMaskCache MaskCache; 455 456 LoopVectorizationLegality *Legal; 457 }; 458 459 class InnerLoopUnroller : public InnerLoopVectorizer { 460 public: 461 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 462 DominatorTree *DT, const DataLayout *DL, 463 const TargetLibraryInfo *TLI, unsigned UnrollFactor) : 464 InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { } 465 466 private: 467 void scalarizeInstruction(Instruction *Instr, 468 bool IfPredicateStore = false) override; 469 void vectorizeMemoryInstruction(Instruction *Instr) override; 470 Value *getBroadcastInstrs(Value *V) override; 471 Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate) override; 472 Value *reverseVector(Value *Vec) override; 473 }; 474 475 /// \brief Look for a meaningful debug location on the instruction or it's 476 /// operands. 477 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 478 if (!I) 479 return I; 480 481 DebugLoc Empty; 482 if (I->getDebugLoc() != Empty) 483 return I; 484 485 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 486 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 487 if (OpInst->getDebugLoc() != Empty) 488 return OpInst; 489 } 490 491 return I; 492 } 493 494 /// \brief Set the debug location in the builder using the debug location in the 495 /// instruction. 496 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 497 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 498 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 499 else 500 B.SetCurrentDebugLocation(DebugLoc()); 501 } 502 503 #ifndef NDEBUG 504 /// \return string containing a file name and a line # for the given loop. 505 static std::string getDebugLocString(const Loop *L) { 506 std::string Result; 507 if (L) { 508 raw_string_ostream OS(Result); 509 const DebugLoc LoopDbgLoc = L->getStartLoc(); 510 if (!LoopDbgLoc.isUnknown()) 511 LoopDbgLoc.print(L->getHeader()->getContext(), OS); 512 else 513 // Just print the module name. 514 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 515 OS.flush(); 516 } 517 return Result; 518 } 519 #endif 520 521 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 522 /// to what vectorization factor. 523 /// This class does not look at the profitability of vectorization, only the 524 /// legality. This class has two main kinds of checks: 525 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 526 /// will change the order of memory accesses in a way that will change the 527 /// correctness of the program. 528 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 529 /// checks for a number of different conditions, such as the availability of a 530 /// single induction variable, that all types are supported and vectorize-able, 531 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 532 /// This class is also used by InnerLoopVectorizer for identifying 533 /// induction variable and the different reduction variables. 534 class LoopVectorizationLegality { 535 public: 536 unsigned NumLoads; 537 unsigned NumStores; 538 unsigned NumPredStores; 539 540 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL, 541 DominatorTree *DT, TargetLibraryInfo *TLI, 542 Function *F) 543 : NumLoads(0), NumStores(0), NumPredStores(0), TheLoop(L), SE(SE), DL(DL), 544 DT(DT), TLI(TLI), TheFunction(F), Induction(nullptr), 545 WidestIndTy(nullptr), HasFunNoNaNAttr(false), MaxSafeDepDistBytes(-1U) { 546 } 547 548 /// This enum represents the kinds of reductions that we support. 549 enum ReductionKind { 550 RK_NoReduction, ///< Not a reduction. 551 RK_IntegerAdd, ///< Sum of integers. 552 RK_IntegerMult, ///< Product of integers. 553 RK_IntegerOr, ///< Bitwise or logical OR of numbers. 554 RK_IntegerAnd, ///< Bitwise or logical AND of numbers. 555 RK_IntegerXor, ///< Bitwise or logical XOR of numbers. 556 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()). 557 RK_FloatAdd, ///< Sum of floats. 558 RK_FloatMult, ///< Product of floats. 559 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()). 560 }; 561 562 /// This enum represents the kinds of inductions that we support. 563 enum InductionKind { 564 IK_NoInduction, ///< Not an induction variable. 565 IK_IntInduction, ///< Integer induction variable. Step = 1. 566 IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1. 567 IK_PtrInduction, ///< Pointer induction var. Step = sizeof(elem). 568 IK_ReversePtrInduction ///< Reverse ptr indvar. Step = - sizeof(elem). 569 }; 570 571 // This enum represents the kind of minmax reduction. 572 enum MinMaxReductionKind { 573 MRK_Invalid, 574 MRK_UIntMin, 575 MRK_UIntMax, 576 MRK_SIntMin, 577 MRK_SIntMax, 578 MRK_FloatMin, 579 MRK_FloatMax 580 }; 581 582 /// This struct holds information about reduction variables. 583 struct ReductionDescriptor { 584 ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr), 585 Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {} 586 587 ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K, 588 MinMaxReductionKind MK) 589 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {} 590 591 // The starting value of the reduction. 592 // It does not have to be zero! 593 TrackingVH<Value> StartValue; 594 // The instruction who's value is used outside the loop. 595 Instruction *LoopExitInstr; 596 // The kind of the reduction. 597 ReductionKind Kind; 598 // If this a min/max reduction the kind of reduction. 599 MinMaxReductionKind MinMaxKind; 600 }; 601 602 /// This POD struct holds information about a potential reduction operation. 603 struct ReductionInstDesc { 604 ReductionInstDesc(bool IsRedux, Instruction *I) : 605 IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {} 606 607 ReductionInstDesc(Instruction *I, MinMaxReductionKind K) : 608 IsReduction(true), PatternLastInst(I), MinMaxKind(K) {} 609 610 // Is this instruction a reduction candidate. 611 bool IsReduction; 612 // The last instruction in a min/max pattern (select of the select(icmp()) 613 // pattern), or the current reduction instruction otherwise. 614 Instruction *PatternLastInst; 615 // If this is a min/max pattern the comparison predicate. 616 MinMaxReductionKind MinMaxKind; 617 }; 618 619 /// This struct holds information about the memory runtime legality 620 /// check that a group of pointers do not overlap. 621 struct RuntimePointerCheck { 622 RuntimePointerCheck() : Need(false) {} 623 624 /// Reset the state of the pointer runtime information. 625 void reset() { 626 Need = false; 627 Pointers.clear(); 628 Starts.clear(); 629 Ends.clear(); 630 IsWritePtr.clear(); 631 DependencySetId.clear(); 632 } 633 634 /// Insert a pointer and calculate the start and end SCEVs. 635 void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, 636 unsigned DepSetId, ValueToValueMap &Strides); 637 638 /// This flag indicates if we need to add the runtime check. 639 bool Need; 640 /// Holds the pointers that we need to check. 641 SmallVector<TrackingVH<Value>, 2> Pointers; 642 /// Holds the pointer value at the beginning of the loop. 643 SmallVector<const SCEV*, 2> Starts; 644 /// Holds the pointer value at the end of the loop. 645 SmallVector<const SCEV*, 2> Ends; 646 /// Holds the information if this pointer is used for writing to memory. 647 SmallVector<bool, 2> IsWritePtr; 648 /// Holds the id of the set of pointers that could be dependent because of a 649 /// shared underlying object. 650 SmallVector<unsigned, 2> DependencySetId; 651 }; 652 653 /// A struct for saving information about induction variables. 654 struct InductionInfo { 655 InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {} 656 InductionInfo() : StartValue(nullptr), IK(IK_NoInduction) {} 657 /// Start value. 658 TrackingVH<Value> StartValue; 659 /// Induction kind. 660 InductionKind IK; 661 }; 662 663 /// ReductionList contains the reduction descriptors for all 664 /// of the reductions that were found in the loop. 665 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList; 666 667 /// InductionList saves induction variables and maps them to the 668 /// induction descriptor. 669 typedef MapVector<PHINode*, InductionInfo> InductionList; 670 671 /// Returns true if it is legal to vectorize this loop. 672 /// This does not mean that it is profitable to vectorize this 673 /// loop, only that it is legal to do so. 674 bool canVectorize(); 675 676 /// Returns the Induction variable. 677 PHINode *getInduction() { return Induction; } 678 679 /// Returns the reduction variables found in the loop. 680 ReductionList *getReductionVars() { return &Reductions; } 681 682 /// Returns the induction variables found in the loop. 683 InductionList *getInductionVars() { return &Inductions; } 684 685 /// Returns the widest induction type. 686 Type *getWidestInductionType() { return WidestIndTy; } 687 688 /// Returns True if V is an induction variable in this loop. 689 bool isInductionVariable(const Value *V); 690 691 /// Return true if the block BB needs to be predicated in order for the loop 692 /// to be vectorized. 693 bool blockNeedsPredication(BasicBlock *BB); 694 695 /// Check if this pointer is consecutive when vectorizing. This happens 696 /// when the last index of the GEP is the induction variable, or that the 697 /// pointer itself is an induction variable. 698 /// This check allows us to vectorize A[idx] into a wide load/store. 699 /// Returns: 700 /// 0 - Stride is unknown or non-consecutive. 701 /// 1 - Address is consecutive. 702 /// -1 - Address is consecutive, and decreasing. 703 int isConsecutivePtr(Value *Ptr); 704 705 /// Returns true if the value V is uniform within the loop. 706 bool isUniform(Value *V); 707 708 /// Returns true if this instruction will remain scalar after vectorization. 709 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 710 711 /// Returns the information that we collected about runtime memory check. 712 RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; } 713 714 /// This function returns the identity element (or neutral element) for 715 /// the operation K. 716 static Constant *getReductionIdentity(ReductionKind K, Type *Tp); 717 718 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 719 720 bool hasStride(Value *V) { return StrideSet.count(V); } 721 bool mustCheckStrides() { return !StrideSet.empty(); } 722 SmallPtrSet<Value *, 8>::iterator strides_begin() { 723 return StrideSet.begin(); 724 } 725 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 726 727 private: 728 /// Check if a single basic block loop is vectorizable. 729 /// At this point we know that this is a loop with a constant trip count 730 /// and we only need to check individual instructions. 731 bool canVectorizeInstrs(); 732 733 /// When we vectorize loops we may change the order in which 734 /// we read and write from memory. This method checks if it is 735 /// legal to vectorize the code, considering only memory constrains. 736 /// Returns true if the loop is vectorizable 737 bool canVectorizeMemory(); 738 739 /// Return true if we can vectorize this loop using the IF-conversion 740 /// transformation. 741 bool canVectorizeWithIfConvert(); 742 743 /// Collect the variables that need to stay uniform after vectorization. 744 void collectLoopUniforms(); 745 746 /// Return true if all of the instructions in the block can be speculatively 747 /// executed. \p SafePtrs is a list of addresses that are known to be legal 748 /// and we know that we can read from them without segfault. 749 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSet<Value *, 8>& SafePtrs); 750 751 /// Returns True, if 'Phi' is the kind of reduction variable for type 752 /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. 753 bool AddReductionVar(PHINode *Phi, ReductionKind Kind); 754 /// Returns a struct describing if the instruction 'I' can be a reduction 755 /// variable of type 'Kind'. If the reduction is a min/max pattern of 756 /// select(icmp()) this function advances the instruction pointer 'I' from the 757 /// compare instruction to the select instruction and stores this pointer in 758 /// 'PatternLastInst' member of the returned struct. 759 ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind, 760 ReductionInstDesc &Desc); 761 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 762 /// pattern corresponding to a min(X, Y) or max(X, Y). 763 static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I, 764 ReductionInstDesc &Prev); 765 /// Returns the induction kind of Phi. This function may return NoInduction 766 /// if the PHI is not an induction variable. 767 InductionKind isInductionVariable(PHINode *Phi); 768 769 /// \brief Collect memory access with loop invariant strides. 770 /// 771 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 772 /// invariant. 773 void collectStridedAcccess(Value *LoadOrStoreInst); 774 775 /// Report an analysis message to assist the user in diagnosing loops that are 776 /// not vectorized. 777 void emitAnalysis(Report &Message) { 778 DebugLoc DL = TheLoop->getStartLoc(); 779 if (Instruction *I = Message.getInstr()) 780 DL = I->getDebugLoc(); 781 emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE, 782 *TheFunction, DL, Message.str()); 783 } 784 785 /// The loop that we evaluate. 786 Loop *TheLoop; 787 /// Scev analysis. 788 ScalarEvolution *SE; 789 /// DataLayout analysis. 790 const DataLayout *DL; 791 /// Dominators. 792 DominatorTree *DT; 793 /// Target Library Info. 794 TargetLibraryInfo *TLI; 795 /// Parent function 796 Function *TheFunction; 797 798 // --- vectorization state --- // 799 800 /// Holds the integer induction variable. This is the counter of the 801 /// loop. 802 PHINode *Induction; 803 /// Holds the reduction variables. 804 ReductionList Reductions; 805 /// Holds all of the induction variables that we found in the loop. 806 /// Notice that inductions don't need to start at zero and that induction 807 /// variables can be pointers. 808 InductionList Inductions; 809 /// Holds the widest induction type encountered. 810 Type *WidestIndTy; 811 812 /// Allowed outside users. This holds the reduction 813 /// vars which can be accessed from outside the loop. 814 SmallPtrSet<Value*, 4> AllowedExit; 815 /// This set holds the variables which are known to be uniform after 816 /// vectorization. 817 SmallPtrSet<Instruction*, 4> Uniforms; 818 /// We need to check that all of the pointers in this list are disjoint 819 /// at runtime. 820 RuntimePointerCheck PtrRtCheck; 821 /// Can we assume the absence of NaNs. 822 bool HasFunNoNaNAttr; 823 824 unsigned MaxSafeDepDistBytes; 825 826 ValueToValueMap Strides; 827 SmallPtrSet<Value *, 8> StrideSet; 828 }; 829 830 /// LoopVectorizationCostModel - estimates the expected speedups due to 831 /// vectorization. 832 /// In many cases vectorization is not profitable. This can happen because of 833 /// a number of reasons. In this class we mainly attempt to predict the 834 /// expected speedup/slowdowns due to the supported instruction set. We use the 835 /// TargetTransformInfo to query the different backends for the cost of 836 /// different operations. 837 class LoopVectorizationCostModel { 838 public: 839 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 840 LoopVectorizationLegality *Legal, 841 const TargetTransformInfo &TTI, 842 const DataLayout *DL, const TargetLibraryInfo *TLI) 843 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {} 844 845 /// Information about vectorization costs 846 struct VectorizationFactor { 847 unsigned Width; // Vector width with best cost 848 unsigned Cost; // Cost of the loop with that width 849 }; 850 /// \return The most profitable vectorization factor and the cost of that VF. 851 /// This method checks every power of two up to VF. If UserVF is not ZERO 852 /// then this vectorization factor will be selected if vectorization is 853 /// possible. 854 VectorizationFactor selectVectorizationFactor(bool OptForSize, 855 unsigned UserVF, 856 bool ForceVectorization); 857 858 /// \return The size (in bits) of the widest type in the code that 859 /// needs to be vectorized. We ignore values that remain scalar such as 860 /// 64 bit loop indices. 861 unsigned getWidestType(); 862 863 /// \return The most profitable unroll factor. 864 /// If UserUF is non-zero then this method finds the best unroll-factor 865 /// based on register pressure and other parameters. 866 /// VF and LoopCost are the selected vectorization factor and the cost of the 867 /// selected VF. 868 unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF, 869 unsigned LoopCost); 870 871 /// \brief A struct that represents some properties of the register usage 872 /// of a loop. 873 struct RegisterUsage { 874 /// Holds the number of loop invariant values that are used in the loop. 875 unsigned LoopInvariantRegs; 876 /// Holds the maximum number of concurrent live intervals in the loop. 877 unsigned MaxLocalUsers; 878 /// Holds the number of instructions in the loop. 879 unsigned NumInstructions; 880 }; 881 882 /// \return information about the register usage of the loop. 883 RegisterUsage calculateRegisterUsage(); 884 885 private: 886 /// Returns the expected execution cost. The unit of the cost does 887 /// not matter because we use the 'cost' units to compare different 888 /// vector widths. The cost that is returned is *not* normalized by 889 /// the factor width. 890 unsigned expectedCost(unsigned VF); 891 892 /// Returns the execution time cost of an instruction for a given vector 893 /// width. Vector width of one means scalar. 894 unsigned getInstructionCost(Instruction *I, unsigned VF); 895 896 /// A helper function for converting Scalar types to vector types. 897 /// If the incoming type is void, we return void. If the VF is 1, we return 898 /// the scalar type. 899 static Type* ToVectorTy(Type *Scalar, unsigned VF); 900 901 /// Returns whether the instruction is a load or store and will be a emitted 902 /// as a vector operation. 903 bool isConsecutiveLoadOrStore(Instruction *I); 904 905 /// The loop that we evaluate. 906 Loop *TheLoop; 907 /// Scev analysis. 908 ScalarEvolution *SE; 909 /// Loop Info analysis. 910 LoopInfo *LI; 911 /// Vectorization legality. 912 LoopVectorizationLegality *Legal; 913 /// Vector target information. 914 const TargetTransformInfo &TTI; 915 /// Target data layout information. 916 const DataLayout *DL; 917 /// Target Library Info. 918 const TargetLibraryInfo *TLI; 919 }; 920 921 /// Utility class for getting and setting loop vectorizer hints in the form 922 /// of loop metadata. 923 class LoopVectorizeHints { 924 public: 925 enum ForceKind { 926 FK_Undefined = -1, ///< Not selected. 927 FK_Disabled = 0, ///< Forcing disabled. 928 FK_Enabled = 1, ///< Forcing enabled. 929 }; 930 931 LoopVectorizeHints(const Loop *L, bool DisableUnrolling) 932 : Width(VectorizationFactor), 933 Unroll(DisableUnrolling), 934 Force(FK_Undefined), 935 LoopID(L->getLoopID()) { 936 getHints(L); 937 // force-vector-unroll overrides DisableUnrolling. 938 if (VectorizationUnroll.getNumOccurrences() > 0) 939 Unroll = VectorizationUnroll; 940 941 DEBUG(if (DisableUnrolling && Unroll == 1) dbgs() 942 << "LV: Unrolling disabled by the pass manager\n"); 943 } 944 945 /// Return the loop vectorizer metadata prefix. 946 static StringRef Prefix() { return "llvm.loop.vectorize."; } 947 948 MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) const { 949 SmallVector<Value*, 2> Vals; 950 Vals.push_back(MDString::get(Context, Name)); 951 Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V)); 952 return MDNode::get(Context, Vals); 953 } 954 955 /// Mark the loop L as already vectorized by setting the width to 1. 956 void setAlreadyVectorized(Loop *L) { 957 LLVMContext &Context = L->getHeader()->getContext(); 958 959 Width = 1; 960 961 // Create a new loop id with one more operand for the already_vectorized 962 // hint. If the loop already has a loop id then copy the existing operands. 963 SmallVector<Value*, 4> Vals(1); 964 if (LoopID) 965 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) 966 Vals.push_back(LoopID->getOperand(i)); 967 968 Vals.push_back(createHint(Context, Twine(Prefix(), "width").str(), Width)); 969 Vals.push_back(createHint(Context, Twine(Prefix(), "unroll").str(), 1)); 970 971 MDNode *NewLoopID = MDNode::get(Context, Vals); 972 // Set operand 0 to refer to the loop id itself. 973 NewLoopID->replaceOperandWith(0, NewLoopID); 974 975 L->setLoopID(NewLoopID); 976 if (LoopID) 977 LoopID->replaceAllUsesWith(NewLoopID); 978 979 LoopID = NewLoopID; 980 } 981 982 std::string emitRemark() const { 983 Report R; 984 R << "vectorization "; 985 switch (Force) { 986 case LoopVectorizeHints::FK_Disabled: 987 R << "is explicitly disabled"; 988 break; 989 case LoopVectorizeHints::FK_Enabled: 990 R << "is explicitly enabled"; 991 if (Width != 0 && Unroll != 0) 992 R << " with width " << Width << " and interleave count " << Unroll; 993 else if (Width != 0) 994 R << " with width " << Width; 995 else if (Unroll != 0) 996 R << " with interleave count " << Unroll; 997 break; 998 case LoopVectorizeHints::FK_Undefined: 999 R << "was not specified"; 1000 break; 1001 } 1002 return R.str(); 1003 } 1004 1005 unsigned getWidth() const { return Width; } 1006 unsigned getUnroll() const { return Unroll; } 1007 enum ForceKind getForce() const { return Force; } 1008 MDNode *getLoopID() const { return LoopID; } 1009 1010 private: 1011 /// Find hints specified in the loop metadata. 1012 void getHints(const Loop *L) { 1013 if (!LoopID) 1014 return; 1015 1016 // First operand should refer to the loop id itself. 1017 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1018 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1019 1020 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1021 const MDString *S = nullptr; 1022 SmallVector<Value*, 4> Args; 1023 1024 // The expected hint is either a MDString or a MDNode with the first 1025 // operand a MDString. 1026 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1027 if (!MD || MD->getNumOperands() == 0) 1028 continue; 1029 S = dyn_cast<MDString>(MD->getOperand(0)); 1030 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1031 Args.push_back(MD->getOperand(i)); 1032 } else { 1033 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1034 assert(Args.size() == 0 && "too many arguments for MDString"); 1035 } 1036 1037 if (!S) 1038 continue; 1039 1040 // Check if the hint starts with the vectorizer prefix. 1041 StringRef Hint = S->getString(); 1042 if (!Hint.startswith(Prefix())) 1043 continue; 1044 // Remove the prefix. 1045 Hint = Hint.substr(Prefix().size(), StringRef::npos); 1046 1047 if (Args.size() == 1) 1048 getHint(Hint, Args[0]); 1049 } 1050 } 1051 1052 // Check string hint with one operand. 1053 void getHint(StringRef Hint, Value *Arg) { 1054 const ConstantInt *C = dyn_cast<ConstantInt>(Arg); 1055 if (!C) return; 1056 unsigned Val = C->getZExtValue(); 1057 1058 if (Hint == "width") { 1059 if (isPowerOf2_32(Val) && Val <= MaxVectorWidth) 1060 Width = Val; 1061 else 1062 DEBUG(dbgs() << "LV: ignoring invalid width hint metadata\n"); 1063 } else if (Hint == "unroll") { 1064 if (isPowerOf2_32(Val) && Val <= MaxUnrollFactor) 1065 Unroll = Val; 1066 else 1067 DEBUG(dbgs() << "LV: ignoring invalid unroll hint metadata\n"); 1068 } else if (Hint == "enable") { 1069 if (C->getBitWidth() == 1) 1070 Force = Val == 1 ? LoopVectorizeHints::FK_Enabled 1071 : LoopVectorizeHints::FK_Disabled; 1072 else 1073 DEBUG(dbgs() << "LV: ignoring invalid enable hint metadata\n"); 1074 } else { 1075 DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint << '\n'); 1076 } 1077 } 1078 1079 /// Vectorization width. 1080 unsigned Width; 1081 /// Vectorization unroll factor. 1082 unsigned Unroll; 1083 /// Vectorization forced 1084 enum ForceKind Force; 1085 1086 MDNode *LoopID; 1087 }; 1088 1089 static void emitMissedWarning(Function *F, Loop *L, 1090 const LoopVectorizeHints &LH) { 1091 emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F, 1092 L->getStartLoc(), LH.emitRemark()); 1093 1094 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1095 if (LH.getWidth() != 1) 1096 emitLoopVectorizeWarning( 1097 F->getContext(), *F, L->getStartLoc(), 1098 "failed explicitly specified loop vectorization"); 1099 else if (LH.getUnroll() != 1) 1100 emitLoopInterleaveWarning( 1101 F->getContext(), *F, L->getStartLoc(), 1102 "failed explicitly specified loop interleaving"); 1103 } 1104 } 1105 1106 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1107 if (L.empty()) 1108 return V.push_back(&L); 1109 1110 for (Loop *InnerL : L) 1111 addInnerLoop(*InnerL, V); 1112 } 1113 1114 /// The LoopVectorize Pass. 1115 struct LoopVectorize : public FunctionPass { 1116 /// Pass identification, replacement for typeid 1117 static char ID; 1118 1119 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1120 : FunctionPass(ID), 1121 DisableUnrolling(NoUnrolling), 1122 AlwaysVectorize(AlwaysVectorize) { 1123 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1124 } 1125 1126 ScalarEvolution *SE; 1127 const DataLayout *DL; 1128 LoopInfo *LI; 1129 TargetTransformInfo *TTI; 1130 DominatorTree *DT; 1131 BlockFrequencyInfo *BFI; 1132 TargetLibraryInfo *TLI; 1133 bool DisableUnrolling; 1134 bool AlwaysVectorize; 1135 1136 BlockFrequency ColdEntryFreq; 1137 1138 bool runOnFunction(Function &F) override { 1139 SE = &getAnalysis<ScalarEvolution>(); 1140 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 1141 DL = DLP ? &DLP->getDataLayout() : nullptr; 1142 LI = &getAnalysis<LoopInfo>(); 1143 TTI = &getAnalysis<TargetTransformInfo>(); 1144 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1145 BFI = &getAnalysis<BlockFrequencyInfo>(); 1146 TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 1147 1148 // Compute some weights outside of the loop over the loops. Compute this 1149 // using a BranchProbability to re-use its scaling math. 1150 const BranchProbability ColdProb(1, 5); // 20% 1151 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1152 1153 // If the target claims to have no vector registers don't attempt 1154 // vectorization. 1155 if (!TTI->getNumberOfRegisters(true)) 1156 return false; 1157 1158 if (!DL) { 1159 DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName() 1160 << ": Missing data layout\n"); 1161 return false; 1162 } 1163 1164 // Build up a worklist of inner-loops to vectorize. This is necessary as 1165 // the act of vectorizing or partially unrolling a loop creates new loops 1166 // and can invalidate iterators across the loops. 1167 SmallVector<Loop *, 8> Worklist; 1168 1169 for (Loop *L : *LI) 1170 addInnerLoop(*L, Worklist); 1171 1172 LoopsAnalyzed += Worklist.size(); 1173 1174 // Now walk the identified inner loops. 1175 bool Changed = false; 1176 while (!Worklist.empty()) 1177 Changed |= processLoop(Worklist.pop_back_val()); 1178 1179 // Process each loop nest in the function. 1180 return Changed; 1181 } 1182 1183 bool processLoop(Loop *L) { 1184 assert(L->empty() && "Only process inner loops."); 1185 1186 #ifndef NDEBUG 1187 const std::string DebugLocStr = getDebugLocString(L); 1188 #endif /* NDEBUG */ 1189 1190 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1191 << L->getHeader()->getParent()->getName() << "\" from " 1192 << DebugLocStr << "\n"); 1193 1194 LoopVectorizeHints Hints(L, DisableUnrolling); 1195 1196 DEBUG(dbgs() << "LV: Loop hints:" 1197 << " force=" 1198 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1199 ? "disabled" 1200 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1201 ? "enabled" 1202 : "?")) << " width=" << Hints.getWidth() 1203 << " unroll=" << Hints.getUnroll() << "\n"); 1204 1205 // Function containing loop 1206 Function *F = L->getHeader()->getParent(); 1207 1208 // Looking at the diagnostic output is the only way to determine if a loop 1209 // was vectorized (other than looking at the IR or machine code), so it 1210 // is important to generate an optimization remark for each loop. Most of 1211 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1212 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1213 // less verbose reporting vectorized loops and unvectorized loops that may 1214 // benefit from vectorization, respectively. 1215 1216 if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) { 1217 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1218 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1219 L->getStartLoc(), Hints.emitRemark()); 1220 return false; 1221 } 1222 1223 if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) { 1224 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1225 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1226 L->getStartLoc(), Hints.emitRemark()); 1227 return false; 1228 } 1229 1230 if (Hints.getWidth() == 1 && Hints.getUnroll() == 1) { 1231 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1232 emitOptimizationRemarkAnalysis( 1233 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1234 "loop not vectorized: vector width and interleave count are " 1235 "explicitly set to 1"); 1236 return false; 1237 } 1238 1239 // Check the loop for a trip count threshold: 1240 // do not vectorize loops with a tiny trip count. 1241 BasicBlock *Latch = L->getLoopLatch(); 1242 const unsigned TC = SE->getSmallConstantTripCount(L, Latch); 1243 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1244 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1245 << "This loop is not worth vectorizing."); 1246 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1247 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1248 else { 1249 DEBUG(dbgs() << "\n"); 1250 emitOptimizationRemarkAnalysis( 1251 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1252 "vectorization is not beneficial and is not explicitly forced"); 1253 return false; 1254 } 1255 } 1256 1257 // Check if it is legal to vectorize the loop. 1258 LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, F); 1259 if (!LVL.canVectorize()) { 1260 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1261 emitMissedWarning(F, L, Hints); 1262 return false; 1263 } 1264 1265 // Use the cost model. 1266 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI); 1267 1268 // Check the function attributes to find out if this function should be 1269 // optimized for size. 1270 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1271 F->hasFnAttribute(Attribute::OptimizeForSize); 1272 1273 // Compute the weighted frequency of this loop being executed and see if it 1274 // is less than 20% of the function entry baseline frequency. Note that we 1275 // always have a canonical loop here because we think we *can* vectoriez. 1276 // FIXME: This is hidden behind a flag due to pervasive problems with 1277 // exactly what block frequency models. 1278 if (LoopVectorizeWithBlockFrequency) { 1279 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1280 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1281 LoopEntryFreq < ColdEntryFreq) 1282 OptForSize = true; 1283 } 1284 1285 // Check the function attributes to see if implicit floats are allowed.a 1286 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1287 // an integer loop and the vector instructions selected are purely integer 1288 // vector instructions? 1289 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1290 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1291 "attribute is used.\n"); 1292 emitOptimizationRemarkAnalysis( 1293 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1294 "loop not vectorized due to NoImplicitFloat attribute"); 1295 emitMissedWarning(F, L, Hints); 1296 return false; 1297 } 1298 1299 // Select the optimal vectorization factor. 1300 const LoopVectorizationCostModel::VectorizationFactor VF = 1301 CM.selectVectorizationFactor(OptForSize, Hints.getWidth(), 1302 Hints.getForce() == 1303 LoopVectorizeHints::FK_Enabled); 1304 1305 // Select the unroll factor. 1306 const unsigned UF = 1307 CM.selectUnrollFactor(OptForSize, Hints.getUnroll(), VF.Width, VF.Cost); 1308 1309 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1310 << DebugLocStr << '\n'); 1311 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n'); 1312 1313 if (VF.Width == 1) { 1314 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n"); 1315 1316 if (UF == 1) { 1317 emitOptimizationRemarkAnalysis( 1318 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1319 "not beneficial to vectorize and user disabled interleaving"); 1320 return false; 1321 } 1322 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n"); 1323 1324 // Report the unrolling decision. 1325 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1326 Twine("unrolled with interleaving factor " + 1327 Twine(UF) + 1328 " (vectorization not beneficial)")); 1329 1330 // We decided not to vectorize, but we may want to unroll. 1331 1332 InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF); 1333 Unroller.vectorize(&LVL); 1334 } else { 1335 // If we decided that it is *legal* to vectorize the loop then do it. 1336 InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF); 1337 LB.vectorize(&LVL); 1338 ++LoopsVectorized; 1339 1340 // Report the vectorization decision. 1341 emitOptimizationRemark( 1342 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1343 Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) + 1344 ", unrolling interleave factor: " + Twine(UF) + ")"); 1345 } 1346 1347 // Mark the loop as already vectorized to avoid vectorizing again. 1348 Hints.setAlreadyVectorized(L); 1349 1350 DEBUG(verifyFunction(*L->getHeader()->getParent())); 1351 return true; 1352 } 1353 1354 void getAnalysisUsage(AnalysisUsage &AU) const override { 1355 AU.addRequiredID(LoopSimplifyID); 1356 AU.addRequiredID(LCSSAID); 1357 AU.addRequired<BlockFrequencyInfo>(); 1358 AU.addRequired<DominatorTreeWrapperPass>(); 1359 AU.addRequired<LoopInfo>(); 1360 AU.addRequired<ScalarEvolution>(); 1361 AU.addRequired<TargetTransformInfo>(); 1362 AU.addPreserved<LoopInfo>(); 1363 AU.addPreserved<DominatorTreeWrapperPass>(); 1364 } 1365 1366 }; 1367 1368 } // end anonymous namespace 1369 1370 //===----------------------------------------------------------------------===// 1371 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1372 // LoopVectorizationCostModel. 1373 //===----------------------------------------------------------------------===// 1374 1375 static Value *stripIntegerCast(Value *V) { 1376 if (CastInst *CI = dyn_cast<CastInst>(V)) 1377 if (CI->getOperand(0)->getType()->isIntegerTy()) 1378 return CI->getOperand(0); 1379 return V; 1380 } 1381 1382 ///\brief Replaces the symbolic stride in a pointer SCEV expression by one. 1383 /// 1384 /// If \p OrigPtr is not null, use it to look up the stride value instead of 1385 /// \p Ptr. 1386 static const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE, 1387 ValueToValueMap &PtrToStride, 1388 Value *Ptr, Value *OrigPtr = nullptr) { 1389 1390 const SCEV *OrigSCEV = SE->getSCEV(Ptr); 1391 1392 // If there is an entry in the map return the SCEV of the pointer with the 1393 // symbolic stride replaced by one. 1394 ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 1395 if (SI != PtrToStride.end()) { 1396 Value *StrideVal = SI->second; 1397 1398 // Strip casts. 1399 StrideVal = stripIntegerCast(StrideVal); 1400 1401 // Replace symbolic stride by one. 1402 Value *One = ConstantInt::get(StrideVal->getType(), 1); 1403 ValueToValueMap RewriteMap; 1404 RewriteMap[StrideVal] = One; 1405 1406 const SCEV *ByOne = 1407 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); 1408 DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne 1409 << "\n"); 1410 return ByOne; 1411 } 1412 1413 // Otherwise, just return the SCEV of the original pointer. 1414 return SE->getSCEV(Ptr); 1415 } 1416 1417 void LoopVectorizationLegality::RuntimePointerCheck::insert( 1418 ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId, 1419 ValueToValueMap &Strides) { 1420 // Get the stride replaced scev. 1421 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 1422 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 1423 assert(AR && "Invalid addrec expression"); 1424 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 1425 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 1426 Pointers.push_back(Ptr); 1427 Starts.push_back(AR->getStart()); 1428 Ends.push_back(ScEnd); 1429 IsWritePtr.push_back(WritePtr); 1430 DependencySetId.push_back(DepSetId); 1431 } 1432 1433 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1434 // We need to place the broadcast of invariant variables outside the loop. 1435 Instruction *Instr = dyn_cast<Instruction>(V); 1436 bool NewInstr = 1437 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 1438 Instr->getParent()) != LoopVectorBody.end()); 1439 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1440 1441 // Place the code for broadcasting invariant variables in the new preheader. 1442 IRBuilder<>::InsertPointGuard Guard(Builder); 1443 if (Invariant) 1444 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1445 1446 // Broadcast the scalar into all locations in the vector. 1447 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1448 1449 return Shuf; 1450 } 1451 1452 Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx, 1453 bool Negate) { 1454 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1455 assert(Val->getType()->getScalarType()->isIntegerTy() && 1456 "Elem must be an integer"); 1457 // Create the types. 1458 Type *ITy = Val->getType()->getScalarType(); 1459 VectorType *Ty = cast<VectorType>(Val->getType()); 1460 int VLen = Ty->getNumElements(); 1461 SmallVector<Constant*, 8> Indices; 1462 1463 // Create a vector of consecutive numbers from zero to VF. 1464 for (int i = 0; i < VLen; ++i) { 1465 int64_t Idx = Negate ? (-i) : i; 1466 Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate)); 1467 } 1468 1469 // Add the consecutive indices to the vector value. 1470 Constant *Cv = ConstantVector::get(Indices); 1471 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1472 return Builder.CreateAdd(Val, Cv, "induction"); 1473 } 1474 1475 /// \brief Find the operand of the GEP that should be checked for consecutive 1476 /// stores. This ignores trailing indices that have no effect on the final 1477 /// pointer. 1478 static unsigned getGEPInductionOperand(const DataLayout *DL, 1479 const GetElementPtrInst *Gep) { 1480 unsigned LastOperand = Gep->getNumOperands() - 1; 1481 unsigned GEPAllocSize = DL->getTypeAllocSize( 1482 cast<PointerType>(Gep->getType()->getScalarType())->getElementType()); 1483 1484 // Walk backwards and try to peel off zeros. 1485 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 1486 // Find the type we're currently indexing into. 1487 gep_type_iterator GEPTI = gep_type_begin(Gep); 1488 std::advance(GEPTI, LastOperand - 1); 1489 1490 // If it's a type with the same allocation size as the result of the GEP we 1491 // can peel off the zero index. 1492 if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize) 1493 break; 1494 --LastOperand; 1495 } 1496 1497 return LastOperand; 1498 } 1499 1500 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1501 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 1502 // Make sure that the pointer does not point to structs. 1503 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 1504 return 0; 1505 1506 // If this value is a pointer induction variable we know it is consecutive. 1507 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1508 if (Phi && Inductions.count(Phi)) { 1509 InductionInfo II = Inductions[Phi]; 1510 if (IK_PtrInduction == II.IK) 1511 return 1; 1512 else if (IK_ReversePtrInduction == II.IK) 1513 return -1; 1514 } 1515 1516 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); 1517 if (!Gep) 1518 return 0; 1519 1520 unsigned NumOperands = Gep->getNumOperands(); 1521 Value *GpPtr = Gep->getPointerOperand(); 1522 // If this GEP value is a consecutive pointer induction variable and all of 1523 // the indices are constant then we know it is consecutive. We can 1524 Phi = dyn_cast<PHINode>(GpPtr); 1525 if (Phi && Inductions.count(Phi)) { 1526 1527 // Make sure that the pointer does not point to structs. 1528 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 1529 if (GepPtrType->getElementType()->isAggregateType()) 1530 return 0; 1531 1532 // Make sure that all of the index operands are loop invariant. 1533 for (unsigned i = 1; i < NumOperands; ++i) 1534 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1535 return 0; 1536 1537 InductionInfo II = Inductions[Phi]; 1538 if (IK_PtrInduction == II.IK) 1539 return 1; 1540 else if (IK_ReversePtrInduction == II.IK) 1541 return -1; 1542 } 1543 1544 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1545 1546 // Check that all of the gep indices are uniform except for our induction 1547 // operand. 1548 for (unsigned i = 0; i != NumOperands; ++i) 1549 if (i != InductionOperand && 1550 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1551 return 0; 1552 1553 // We can emit wide load/stores only if the last non-zero index is the 1554 // induction variable. 1555 const SCEV *Last = nullptr; 1556 if (!Strides.count(Gep)) 1557 Last = SE->getSCEV(Gep->getOperand(InductionOperand)); 1558 else { 1559 // Because of the multiplication by a stride we can have a s/zext cast. 1560 // We are going to replace this stride by 1 so the cast is safe to ignore. 1561 // 1562 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 1563 // %0 = trunc i64 %indvars.iv to i32 1564 // %mul = mul i32 %0, %Stride1 1565 // %idxprom = zext i32 %mul to i64 << Safe cast. 1566 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 1567 // 1568 Last = replaceSymbolicStrideSCEV(SE, Strides, 1569 Gep->getOperand(InductionOperand), Gep); 1570 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 1571 Last = 1572 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 1573 ? C->getOperand() 1574 : Last; 1575 } 1576 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 1577 const SCEV *Step = AR->getStepRecurrence(*SE); 1578 1579 // The memory is consecutive because the last index is consecutive 1580 // and all other indices are loop invariant. 1581 if (Step->isOne()) 1582 return 1; 1583 if (Step->isAllOnesValue()) 1584 return -1; 1585 } 1586 1587 return 0; 1588 } 1589 1590 bool LoopVectorizationLegality::isUniform(Value *V) { 1591 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1592 } 1593 1594 InnerLoopVectorizer::VectorParts& 1595 InnerLoopVectorizer::getVectorValue(Value *V) { 1596 assert(V != Induction && "The new induction variable should not be used."); 1597 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1598 1599 // If we have a stride that is replaced by one, do it here. 1600 if (Legal->hasStride(V)) 1601 V = ConstantInt::get(V->getType(), 1); 1602 1603 // If we have this scalar in the map, return it. 1604 if (WidenMap.has(V)) 1605 return WidenMap.get(V); 1606 1607 // If this scalar is unknown, assume that it is a constant or that it is 1608 // loop invariant. Broadcast V and save the value for future uses. 1609 Value *B = getBroadcastInstrs(V); 1610 return WidenMap.splat(V, B); 1611 } 1612 1613 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1614 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1615 SmallVector<Constant*, 8> ShuffleMask; 1616 for (unsigned i = 0; i < VF; ++i) 1617 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1618 1619 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1620 ConstantVector::get(ShuffleMask), 1621 "reverse"); 1622 } 1623 1624 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 1625 // Attempt to issue a wide load. 1626 LoadInst *LI = dyn_cast<LoadInst>(Instr); 1627 StoreInst *SI = dyn_cast<StoreInst>(Instr); 1628 1629 assert((LI || SI) && "Invalid Load/Store instruction"); 1630 1631 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 1632 Type *DataTy = VectorType::get(ScalarDataTy, VF); 1633 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 1634 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 1635 // An alignment of 0 means target abi alignment. We need to use the scalar's 1636 // target abi alignment in such a case. 1637 if (!Alignment) 1638 Alignment = DL->getABITypeAlignment(ScalarDataTy); 1639 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 1640 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy); 1641 unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF; 1642 1643 if (SI && Legal->blockNeedsPredication(SI->getParent())) 1644 return scalarizeInstruction(Instr, true); 1645 1646 if (ScalarAllocatedSize != VectorElementSize) 1647 return scalarizeInstruction(Instr); 1648 1649 // If the pointer is loop invariant or if it is non-consecutive, 1650 // scalarize the load. 1651 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 1652 bool Reverse = ConsecutiveStride < 0; 1653 bool UniformLoad = LI && Legal->isUniform(Ptr); 1654 if (!ConsecutiveStride || UniformLoad) 1655 return scalarizeInstruction(Instr); 1656 1657 Constant *Zero = Builder.getInt32(0); 1658 VectorParts &Entry = WidenMap.get(Instr); 1659 1660 // Handle consecutive loads/stores. 1661 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 1662 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 1663 setDebugLocFromInst(Builder, Gep); 1664 Value *PtrOperand = Gep->getPointerOperand(); 1665 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 1666 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 1667 1668 // Create the new GEP with the new induction variable. 1669 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1670 Gep2->setOperand(0, FirstBasePtr); 1671 Gep2->setName("gep.indvar.base"); 1672 Ptr = Builder.Insert(Gep2); 1673 } else if (Gep) { 1674 setDebugLocFromInst(Builder, Gep); 1675 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 1676 OrigLoop) && "Base ptr must be invariant"); 1677 1678 // The last index does not have to be the induction. It can be 1679 // consecutive and be a function of the index. For example A[I+1]; 1680 unsigned NumOperands = Gep->getNumOperands(); 1681 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1682 // Create the new GEP with the new induction variable. 1683 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1684 1685 for (unsigned i = 0; i < NumOperands; ++i) { 1686 Value *GepOperand = Gep->getOperand(i); 1687 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 1688 1689 // Update last index or loop invariant instruction anchored in loop. 1690 if (i == InductionOperand || 1691 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 1692 assert((i == InductionOperand || 1693 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && 1694 "Must be last index or loop invariant"); 1695 1696 VectorParts &GEPParts = getVectorValue(GepOperand); 1697 Value *Index = GEPParts[0]; 1698 Index = Builder.CreateExtractElement(Index, Zero); 1699 Gep2->setOperand(i, Index); 1700 Gep2->setName("gep.indvar.idx"); 1701 } 1702 } 1703 Ptr = Builder.Insert(Gep2); 1704 } else { 1705 // Use the induction element ptr. 1706 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 1707 setDebugLocFromInst(Builder, Ptr); 1708 VectorParts &PtrVal = getVectorValue(Ptr); 1709 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 1710 } 1711 1712 // Handle Stores: 1713 if (SI) { 1714 assert(!Legal->isUniform(SI->getPointerOperand()) && 1715 "We do not allow storing to uniform addresses"); 1716 setDebugLocFromInst(Builder, SI); 1717 // We don't want to update the value in the map as it might be used in 1718 // another expression. So don't use a reference type for "StoredVal". 1719 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 1720 1721 for (unsigned Part = 0; Part < UF; ++Part) { 1722 // Calculate the pointer for the specific unroll-part. 1723 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1724 1725 if (Reverse) { 1726 // If we store to reverse consecutive memory locations then we need 1727 // to reverse the order of elements in the stored value. 1728 StoredVal[Part] = reverseVector(StoredVal[Part]); 1729 // If the address is consecutive but reversed, then the 1730 // wide store needs to start at the last vector element. 1731 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1732 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1733 } 1734 1735 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1736 DataTy->getPointerTo(AddressSpace)); 1737 Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment); 1738 } 1739 return; 1740 } 1741 1742 // Handle loads. 1743 assert(LI && "Must have a load instruction"); 1744 setDebugLocFromInst(Builder, LI); 1745 for (unsigned Part = 0; Part < UF; ++Part) { 1746 // Calculate the pointer for the specific unroll-part. 1747 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1748 1749 if (Reverse) { 1750 // If the address is consecutive but reversed, then the 1751 // wide store needs to start at the last vector element. 1752 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1753 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1754 } 1755 1756 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1757 DataTy->getPointerTo(AddressSpace)); 1758 Value *LI = Builder.CreateLoad(VecPtr, "wide.load"); 1759 cast<LoadInst>(LI)->setAlignment(Alignment); 1760 Entry[Part] = Reverse ? reverseVector(LI) : LI; 1761 } 1762 } 1763 1764 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { 1765 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 1766 // Holds vector parameters or scalars, in case of uniform vals. 1767 SmallVector<VectorParts, 4> Params; 1768 1769 setDebugLocFromInst(Builder, Instr); 1770 1771 // Find all of the vectorized parameters. 1772 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1773 Value *SrcOp = Instr->getOperand(op); 1774 1775 // If we are accessing the old induction variable, use the new one. 1776 if (SrcOp == OldInduction) { 1777 Params.push_back(getVectorValue(SrcOp)); 1778 continue; 1779 } 1780 1781 // Try using previously calculated values. 1782 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 1783 1784 // If the src is an instruction that appeared earlier in the basic block 1785 // then it should already be vectorized. 1786 if (SrcInst && OrigLoop->contains(SrcInst)) { 1787 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 1788 // The parameter is a vector value from earlier. 1789 Params.push_back(WidenMap.get(SrcInst)); 1790 } else { 1791 // The parameter is a scalar from outside the loop. Maybe even a constant. 1792 VectorParts Scalars; 1793 Scalars.append(UF, SrcOp); 1794 Params.push_back(Scalars); 1795 } 1796 } 1797 1798 assert(Params.size() == Instr->getNumOperands() && 1799 "Invalid number of operands"); 1800 1801 // Does this instruction return a value ? 1802 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 1803 1804 Value *UndefVec = IsVoidRetTy ? nullptr : 1805 UndefValue::get(VectorType::get(Instr->getType(), VF)); 1806 // Create a new entry in the WidenMap and initialize it to Undef or Null. 1807 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 1808 1809 Instruction *InsertPt = Builder.GetInsertPoint(); 1810 BasicBlock *IfBlock = Builder.GetInsertBlock(); 1811 BasicBlock *CondBlock = nullptr; 1812 1813 VectorParts Cond; 1814 Loop *VectorLp = nullptr; 1815 if (IfPredicateStore) { 1816 assert(Instr->getParent()->getSinglePredecessor() && 1817 "Only support single predecessor blocks"); 1818 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 1819 Instr->getParent()); 1820 VectorLp = LI->getLoopFor(IfBlock); 1821 assert(VectorLp && "Must have a loop for this block"); 1822 } 1823 1824 // For each vector unroll 'part': 1825 for (unsigned Part = 0; Part < UF; ++Part) { 1826 // For each scalar that we create: 1827 for (unsigned Width = 0; Width < VF; ++Width) { 1828 1829 // Start if-block. 1830 Value *Cmp = nullptr; 1831 if (IfPredicateStore) { 1832 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 1833 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1)); 1834 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1835 LoopVectorBody.push_back(CondBlock); 1836 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase()); 1837 // Update Builder with newly created basic block. 1838 Builder.SetInsertPoint(InsertPt); 1839 } 1840 1841 Instruction *Cloned = Instr->clone(); 1842 if (!IsVoidRetTy) 1843 Cloned->setName(Instr->getName() + ".cloned"); 1844 // Replace the operands of the cloned instructions with extracted scalars. 1845 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1846 Value *Op = Params[op][Part]; 1847 // Param is a vector. Need to extract the right lane. 1848 if (Op->getType()->isVectorTy()) 1849 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 1850 Cloned->setOperand(op, Op); 1851 } 1852 1853 // Place the cloned scalar in the new loop. 1854 Builder.Insert(Cloned); 1855 1856 // If the original scalar returns a value we need to place it in a vector 1857 // so that future users will be able to use it. 1858 if (!IsVoidRetTy) 1859 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 1860 Builder.getInt32(Width)); 1861 // End if-block. 1862 if (IfPredicateStore) { 1863 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1864 LoopVectorBody.push_back(NewIfBlock); 1865 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase()); 1866 Builder.SetInsertPoint(InsertPt); 1867 Instruction *OldBr = IfBlock->getTerminator(); 1868 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1869 OldBr->eraseFromParent(); 1870 IfBlock = NewIfBlock; 1871 } 1872 } 1873 } 1874 } 1875 1876 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1877 Instruction *Loc) { 1878 if (FirstInst) 1879 return FirstInst; 1880 if (Instruction *I = dyn_cast<Instruction>(V)) 1881 return I->getParent() == Loc->getParent() ? I : nullptr; 1882 return nullptr; 1883 } 1884 1885 std::pair<Instruction *, Instruction *> 1886 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) { 1887 Instruction *tnullptr = nullptr; 1888 if (!Legal->mustCheckStrides()) 1889 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 1890 1891 IRBuilder<> ChkBuilder(Loc); 1892 1893 // Emit checks. 1894 Value *Check = nullptr; 1895 Instruction *FirstInst = nullptr; 1896 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(), 1897 SE = Legal->strides_end(); 1898 SI != SE; ++SI) { 1899 Value *Ptr = stripIntegerCast(*SI); 1900 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1), 1901 "stride.chk"); 1902 // Store the first instruction we create. 1903 FirstInst = getFirstInst(FirstInst, C, Loc); 1904 if (Check) 1905 Check = ChkBuilder.CreateOr(Check, C); 1906 else 1907 Check = C; 1908 } 1909 1910 // We have to do this trickery because the IRBuilder might fold the check to a 1911 // constant expression in which case there is no Instruction anchored in a 1912 // the block. 1913 LLVMContext &Ctx = Loc->getContext(); 1914 Instruction *TheCheck = 1915 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx)); 1916 ChkBuilder.Insert(TheCheck, "stride.not.one"); 1917 FirstInst = getFirstInst(FirstInst, TheCheck, Loc); 1918 1919 return std::make_pair(FirstInst, TheCheck); 1920 } 1921 1922 std::pair<Instruction *, Instruction *> 1923 InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) { 1924 LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck = 1925 Legal->getRuntimePointerCheck(); 1926 1927 Instruction *tnullptr = nullptr; 1928 if (!PtrRtCheck->Need) 1929 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 1930 1931 unsigned NumPointers = PtrRtCheck->Pointers.size(); 1932 SmallVector<TrackingVH<Value> , 2> Starts; 1933 SmallVector<TrackingVH<Value> , 2> Ends; 1934 1935 LLVMContext &Ctx = Loc->getContext(); 1936 SCEVExpander Exp(*SE, "induction"); 1937 Instruction *FirstInst = nullptr; 1938 1939 for (unsigned i = 0; i < NumPointers; ++i) { 1940 Value *Ptr = PtrRtCheck->Pointers[i]; 1941 const SCEV *Sc = SE->getSCEV(Ptr); 1942 1943 if (SE->isLoopInvariant(Sc, OrigLoop)) { 1944 DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" << 1945 *Ptr <<"\n"); 1946 Starts.push_back(Ptr); 1947 Ends.push_back(Ptr); 1948 } else { 1949 DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n'); 1950 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1951 1952 // Use this type for pointer arithmetic. 1953 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 1954 1955 Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc); 1956 Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc); 1957 Starts.push_back(Start); 1958 Ends.push_back(End); 1959 } 1960 } 1961 1962 IRBuilder<> ChkBuilder(Loc); 1963 // Our instructions might fold to a constant. 1964 Value *MemoryRuntimeCheck = nullptr; 1965 for (unsigned i = 0; i < NumPointers; ++i) { 1966 for (unsigned j = i+1; j < NumPointers; ++j) { 1967 // No need to check if two readonly pointers intersect. 1968 if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j]) 1969 continue; 1970 1971 // Only need to check pointers between two different dependency sets. 1972 if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j]) 1973 continue; 1974 1975 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace(); 1976 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace(); 1977 1978 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) && 1979 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && 1980 "Trying to bounds check pointers with different address spaces"); 1981 1982 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1983 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1984 1985 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc"); 1986 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc"); 1987 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc"); 1988 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc"); 1989 1990 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 1991 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 1992 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 1993 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 1994 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1995 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1996 if (MemoryRuntimeCheck) { 1997 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, 1998 "conflict.rdx"); 1999 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2000 } 2001 MemoryRuntimeCheck = IsConflict; 2002 } 2003 } 2004 2005 // We have to do this trickery because the IRBuilder might fold the check to a 2006 // constant expression in which case there is no Instruction anchored in a 2007 // the block. 2008 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 2009 ConstantInt::getTrue(Ctx)); 2010 ChkBuilder.Insert(Check, "memcheck.conflict"); 2011 FirstInst = getFirstInst(FirstInst, Check, Loc); 2012 return std::make_pair(FirstInst, Check); 2013 } 2014 2015 void InnerLoopVectorizer::createEmptyLoop() { 2016 /* 2017 In this function we generate a new loop. The new loop will contain 2018 the vectorized instructions while the old loop will continue to run the 2019 scalar remainder. 2020 2021 [ ] <-- Back-edge taken count overflow check. 2022 / | 2023 / v 2024 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2025 | / | 2026 | / v 2027 || [ ] <-- vector pre header. 2028 || | 2029 || v 2030 || [ ] \ 2031 || [ ]_| <-- vector loop. 2032 || | 2033 | \ v 2034 | >[ ] <--- middle-block. 2035 | / | 2036 | / v 2037 -|- >[ ] <--- new preheader. 2038 | | 2039 | v 2040 | [ ] \ 2041 | [ ]_| <-- old scalar loop to handle remainder. 2042 \ | 2043 \ v 2044 >[ ] <-- exit block. 2045 ... 2046 */ 2047 2048 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2049 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); 2050 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2051 assert(BypassBlock && "Invalid loop structure"); 2052 assert(ExitBlock && "Must have an exit block"); 2053 2054 // Some loops have a single integer induction variable, while other loops 2055 // don't. One example is c++ iterators that often have multiple pointer 2056 // induction variables. In the code below we also support a case where we 2057 // don't have a single induction variable. 2058 OldInduction = Legal->getInduction(); 2059 Type *IdxTy = Legal->getWidestInductionType(); 2060 2061 // Find the loop boundaries. 2062 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop); 2063 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); 2064 2065 // The exit count might have the type of i64 while the phi is i32. This can 2066 // happen if we have an induction variable that is sign extended before the 2067 // compare. The only way that we get a backedge taken count is that the 2068 // induction variable was signed and as such will not overflow. In such a case 2069 // truncation is legal. 2070 if (ExitCount->getType()->getPrimitiveSizeInBits() > 2071 IdxTy->getPrimitiveSizeInBits()) 2072 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy); 2073 2074 const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy); 2075 // Get the total trip count from the count by adding 1. 2076 ExitCount = SE->getAddExpr(BackedgeTakeCount, 2077 SE->getConstant(BackedgeTakeCount->getType(), 1)); 2078 2079 // Expand the trip count and place the new instructions in the preheader. 2080 // Notice that the pre-header does not change, only the loop body. 2081 SCEVExpander Exp(*SE, "induction"); 2082 2083 // We need to test whether the backedge-taken count is uint##_max. Adding one 2084 // to it will cause overflow and an incorrect loop trip count in the vector 2085 // body. In case of overflow we want to directly jump to the scalar remainder 2086 // loop. 2087 Value *BackedgeCount = 2088 Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(), 2089 BypassBlock->getTerminator()); 2090 if (BackedgeCount->getType()->isPointerTy()) 2091 BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy, 2092 "backedge.ptrcnt.to.int", 2093 BypassBlock->getTerminator()); 2094 Instruction *CheckBCOverflow = 2095 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount, 2096 Constant::getAllOnesValue(BackedgeCount->getType()), 2097 "backedge.overflow", BypassBlock->getTerminator()); 2098 2099 // The loop index does not have to start at Zero. Find the original start 2100 // value from the induction PHI node. If we don't have an induction variable 2101 // then we know that it starts at zero. 2102 Builder.SetInsertPoint(BypassBlock->getTerminator()); 2103 Value *StartIdx = ExtendedIdx = OldInduction ? 2104 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock), 2105 IdxTy): 2106 ConstantInt::get(IdxTy, 0); 2107 2108 // We need an instruction to anchor the overflow check on. StartIdx needs to 2109 // be defined before the overflow check branch. Because the scalar preheader 2110 // is going to merge the start index and so the overflow branch block needs to 2111 // contain a definition of the start index. 2112 Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd( 2113 StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor", 2114 BypassBlock->getTerminator()); 2115 2116 // Count holds the overall loop count (N). 2117 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2118 BypassBlock->getTerminator()); 2119 2120 LoopBypassBlocks.push_back(BypassBlock); 2121 2122 // Split the single block loop into the two loop structure described above. 2123 BasicBlock *VectorPH = 2124 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); 2125 BasicBlock *VecBody = 2126 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2127 BasicBlock *MiddleBlock = 2128 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2129 BasicBlock *ScalarPH = 2130 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2131 2132 // Create and register the new vector loop. 2133 Loop* Lp = new Loop(); 2134 Loop *ParentLoop = OrigLoop->getParentLoop(); 2135 2136 // Insert the new loop into the loop nest and register the new basic blocks 2137 // before calling any utilities such as SCEV that require valid LoopInfo. 2138 if (ParentLoop) { 2139 ParentLoop->addChildLoop(Lp); 2140 ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase()); 2141 ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase()); 2142 ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase()); 2143 } else { 2144 LI->addTopLevelLoop(Lp); 2145 } 2146 Lp->addBasicBlockToLoop(VecBody, LI->getBase()); 2147 2148 // Use this IR builder to create the loop instructions (Phi, Br, Cmp) 2149 // inside the loop. 2150 Builder.SetInsertPoint(VecBody->getFirstNonPHI()); 2151 2152 // Generate the induction variable. 2153 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2154 Induction = Builder.CreatePHI(IdxTy, 2, "index"); 2155 // The loop step is equal to the vectorization factor (num of SIMD elements) 2156 // times the unroll factor (num of SIMD instructions). 2157 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2158 2159 // This is the IR builder that we use to add all of the logic for bypassing 2160 // the new vector loop. 2161 IRBuilder<> BypassBuilder(BypassBlock->getTerminator()); 2162 setDebugLocFromInst(BypassBuilder, 2163 getDebugLocFromInstOrOperands(OldInduction)); 2164 2165 // We may need to extend the index in case there is a type mismatch. 2166 // We know that the count starts at zero and does not overflow. 2167 if (Count->getType() != IdxTy) { 2168 // The exit count can be of pointer type. Convert it to the correct 2169 // integer type. 2170 if (ExitCount->getType()->isPointerTy()) 2171 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); 2172 else 2173 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); 2174 } 2175 2176 // Add the start index to the loop count to get the new end index. 2177 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); 2178 2179 // Now we need to generate the expression for N - (N % VF), which is 2180 // the part that the vectorized body will execute. 2181 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); 2182 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); 2183 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, 2184 "end.idx.rnd.down"); 2185 2186 // Now, compare the new count to zero. If it is zero skip the vector loop and 2187 // jump to the scalar loop. 2188 Value *Cmp = 2189 BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero"); 2190 2191 BasicBlock *LastBypassBlock = BypassBlock; 2192 2193 // Generate code to check that the loops trip count that we computed by adding 2194 // one to the backedge-taken count will not overflow. 2195 { 2196 auto PastOverflowCheck = 2197 std::next(BasicBlock::iterator(OverflowCheckAnchor)); 2198 BasicBlock *CheckBlock = 2199 LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked"); 2200 if (ParentLoop) 2201 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2202 LoopBypassBlocks.push_back(CheckBlock); 2203 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2204 BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm); 2205 OldTerm->eraseFromParent(); 2206 LastBypassBlock = CheckBlock; 2207 } 2208 2209 // Generate the code to check that the strides we assumed to be one are really 2210 // one. We want the new basic block to start at the first instruction in a 2211 // sequence of instructions that form a check. 2212 Instruction *StrideCheck; 2213 Instruction *FirstCheckInst; 2214 std::tie(FirstCheckInst, StrideCheck) = 2215 addStrideCheck(LastBypassBlock->getTerminator()); 2216 if (StrideCheck) { 2217 // Create a new block containing the stride check. 2218 BasicBlock *CheckBlock = 2219 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck"); 2220 if (ParentLoop) 2221 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2222 LoopBypassBlocks.push_back(CheckBlock); 2223 2224 // Replace the branch into the memory check block with a conditional branch 2225 // for the "few elements case". 2226 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2227 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2228 OldTerm->eraseFromParent(); 2229 2230 Cmp = StrideCheck; 2231 LastBypassBlock = CheckBlock; 2232 } 2233 2234 // Generate the code that checks in runtime if arrays overlap. We put the 2235 // checks into a separate block to make the more common case of few elements 2236 // faster. 2237 Instruction *MemRuntimeCheck; 2238 std::tie(FirstCheckInst, MemRuntimeCheck) = 2239 addRuntimeCheck(LastBypassBlock->getTerminator()); 2240 if (MemRuntimeCheck) { 2241 // Create a new block containing the memory check. 2242 BasicBlock *CheckBlock = 2243 LastBypassBlock->splitBasicBlock(MemRuntimeCheck, "vector.memcheck"); 2244 if (ParentLoop) 2245 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2246 LoopBypassBlocks.push_back(CheckBlock); 2247 2248 // Replace the branch into the memory check block with a conditional branch 2249 // for the "few elements case". 2250 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2251 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2252 OldTerm->eraseFromParent(); 2253 2254 Cmp = MemRuntimeCheck; 2255 LastBypassBlock = CheckBlock; 2256 } 2257 2258 LastBypassBlock->getTerminator()->eraseFromParent(); 2259 BranchInst::Create(MiddleBlock, VectorPH, Cmp, 2260 LastBypassBlock); 2261 2262 // We are going to resume the execution of the scalar loop. 2263 // Go over all of the induction variables that we found and fix the 2264 // PHIs that are left in the scalar version of the loop. 2265 // The starting values of PHI nodes depend on the counter of the last 2266 // iteration in the vectorized loop. 2267 // If we come from a bypass edge then we need to start from the original 2268 // start value. 2269 2270 // This variable saves the new starting index for the scalar loop. 2271 PHINode *ResumeIndex = nullptr; 2272 LoopVectorizationLegality::InductionList::iterator I, E; 2273 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2274 // Set builder to point to last bypass block. 2275 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator()); 2276 for (I = List->begin(), E = List->end(); I != E; ++I) { 2277 PHINode *OrigPhi = I->first; 2278 LoopVectorizationLegality::InductionInfo II = I->second; 2279 2280 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType(); 2281 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val", 2282 MiddleBlock->getTerminator()); 2283 // We might have extended the type of the induction variable but we need a 2284 // truncated version for the scalar loop. 2285 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ? 2286 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val", 2287 MiddleBlock->getTerminator()) : nullptr; 2288 2289 // Create phi nodes to merge from the backedge-taken check block. 2290 PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val", 2291 ScalarPH->getTerminator()); 2292 BCResumeVal->addIncoming(ResumeVal, MiddleBlock); 2293 2294 PHINode *BCTruncResumeVal = nullptr; 2295 if (OrigPhi == OldInduction) { 2296 BCTruncResumeVal = 2297 PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val", 2298 ScalarPH->getTerminator()); 2299 BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock); 2300 } 2301 2302 Value *EndValue = nullptr; 2303 switch (II.IK) { 2304 case LoopVectorizationLegality::IK_NoInduction: 2305 llvm_unreachable("Unknown induction"); 2306 case LoopVectorizationLegality::IK_IntInduction: { 2307 // Handle the integer induction counter. 2308 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); 2309 2310 // We have the canonical induction variable. 2311 if (OrigPhi == OldInduction) { 2312 // Create a truncated version of the resume value for the scalar loop, 2313 // we might have promoted the type to a larger width. 2314 EndValue = 2315 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType()); 2316 // The new PHI merges the original incoming value, in case of a bypass, 2317 // or the value at the end of the vectorized loop. 2318 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2319 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2320 TruncResumeVal->addIncoming(EndValue, VecBody); 2321 2322 BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2323 2324 // We know what the end value is. 2325 EndValue = IdxEndRoundDown; 2326 // We also know which PHI node holds it. 2327 ResumeIndex = ResumeVal; 2328 break; 2329 } 2330 2331 // Not the canonical induction variable - add the vector loop count to the 2332 // start value. 2333 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2334 II.StartValue->getType(), 2335 "cast.crd"); 2336 EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end"); 2337 break; 2338 } 2339 case LoopVectorizationLegality::IK_ReverseIntInduction: { 2340 // Convert the CountRoundDown variable to the PHI size. 2341 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2342 II.StartValue->getType(), 2343 "cast.crd"); 2344 // Handle reverse integer induction counter. 2345 EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end"); 2346 break; 2347 } 2348 case LoopVectorizationLegality::IK_PtrInduction: { 2349 // For pointer induction variables, calculate the offset using 2350 // the end index. 2351 EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown, 2352 "ptr.ind.end"); 2353 break; 2354 } 2355 case LoopVectorizationLegality::IK_ReversePtrInduction: { 2356 // The value at the end of the loop for the reverse pointer is calculated 2357 // by creating a GEP with a negative index starting from the start value. 2358 Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0); 2359 Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown, 2360 "rev.ind.end"); 2361 EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx, 2362 "rev.ptr.ind.end"); 2363 break; 2364 } 2365 }// end of case 2366 2367 // The new PHI merges the original incoming value, in case of a bypass, 2368 // or the value at the end of the vectorized loop. 2369 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) { 2370 if (OrigPhi == OldInduction) 2371 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]); 2372 else 2373 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2374 } 2375 ResumeVal->addIncoming(EndValue, VecBody); 2376 2377 // Fix the scalar body counter (PHI node). 2378 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2379 2380 // The old induction's phi node in the scalar body needs the truncated 2381 // value. 2382 if (OrigPhi == OldInduction) { 2383 BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]); 2384 OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal); 2385 } else { 2386 BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2387 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2388 } 2389 } 2390 2391 // If we are generating a new induction variable then we also need to 2392 // generate the code that calculates the exit value. This value is not 2393 // simply the end of the counter because we may skip the vectorized body 2394 // in case of a runtime check. 2395 if (!OldInduction){ 2396 assert(!ResumeIndex && "Unexpected resume value found"); 2397 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", 2398 MiddleBlock->getTerminator()); 2399 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2400 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); 2401 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); 2402 } 2403 2404 // Make sure that we found the index where scalar loop needs to continue. 2405 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && 2406 "Invalid resume Index"); 2407 2408 // Add a check in the middle block to see if we have completed 2409 // all of the iterations in the first vector loop. 2410 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2411 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, 2412 ResumeIndex, "cmp.n", 2413 MiddleBlock->getTerminator()); 2414 2415 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); 2416 // Remove the old terminator. 2417 MiddleBlock->getTerminator()->eraseFromParent(); 2418 2419 // Create i+1 and fill the PHINode. 2420 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); 2421 Induction->addIncoming(StartIdx, VectorPH); 2422 Induction->addIncoming(NextIdx, VecBody); 2423 // Create the compare. 2424 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); 2425 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); 2426 2427 // Now we have two terminators. Remove the old one from the block. 2428 VecBody->getTerminator()->eraseFromParent(); 2429 2430 // Get ready to start creating new instructions into the vectorized body. 2431 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 2432 2433 // Save the state. 2434 LoopVectorPreHeader = VectorPH; 2435 LoopScalarPreHeader = ScalarPH; 2436 LoopMiddleBlock = MiddleBlock; 2437 LoopExitBlock = ExitBlock; 2438 LoopVectorBody.push_back(VecBody); 2439 LoopScalarBody = OldBasicBlock; 2440 2441 LoopVectorizeHints Hints(Lp, true); 2442 Hints.setAlreadyVectorized(Lp); 2443 } 2444 2445 /// This function returns the identity element (or neutral element) for 2446 /// the operation K. 2447 Constant* 2448 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) { 2449 switch (K) { 2450 case RK_IntegerXor: 2451 case RK_IntegerAdd: 2452 case RK_IntegerOr: 2453 // Adding, Xoring, Oring zero to a number does not change it. 2454 return ConstantInt::get(Tp, 0); 2455 case RK_IntegerMult: 2456 // Multiplying a number by 1 does not change it. 2457 return ConstantInt::get(Tp, 1); 2458 case RK_IntegerAnd: 2459 // AND-ing a number with an all-1 value does not change it. 2460 return ConstantInt::get(Tp, -1, true); 2461 case RK_FloatMult: 2462 // Multiplying a number by 1 does not change it. 2463 return ConstantFP::get(Tp, 1.0L); 2464 case RK_FloatAdd: 2465 // Adding zero to a number does not change it. 2466 return ConstantFP::get(Tp, 0.0L); 2467 default: 2468 llvm_unreachable("Unknown reduction kind"); 2469 } 2470 } 2471 2472 /// This function translates the reduction kind to an LLVM binary operator. 2473 static unsigned 2474 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) { 2475 switch (Kind) { 2476 case LoopVectorizationLegality::RK_IntegerAdd: 2477 return Instruction::Add; 2478 case LoopVectorizationLegality::RK_IntegerMult: 2479 return Instruction::Mul; 2480 case LoopVectorizationLegality::RK_IntegerOr: 2481 return Instruction::Or; 2482 case LoopVectorizationLegality::RK_IntegerAnd: 2483 return Instruction::And; 2484 case LoopVectorizationLegality::RK_IntegerXor: 2485 return Instruction::Xor; 2486 case LoopVectorizationLegality::RK_FloatMult: 2487 return Instruction::FMul; 2488 case LoopVectorizationLegality::RK_FloatAdd: 2489 return Instruction::FAdd; 2490 case LoopVectorizationLegality::RK_IntegerMinMax: 2491 return Instruction::ICmp; 2492 case LoopVectorizationLegality::RK_FloatMinMax: 2493 return Instruction::FCmp; 2494 default: 2495 llvm_unreachable("Unknown reduction operation"); 2496 } 2497 } 2498 2499 Value *createMinMaxOp(IRBuilder<> &Builder, 2500 LoopVectorizationLegality::MinMaxReductionKind RK, 2501 Value *Left, 2502 Value *Right) { 2503 CmpInst::Predicate P = CmpInst::ICMP_NE; 2504 switch (RK) { 2505 default: 2506 llvm_unreachable("Unknown min/max reduction kind"); 2507 case LoopVectorizationLegality::MRK_UIntMin: 2508 P = CmpInst::ICMP_ULT; 2509 break; 2510 case LoopVectorizationLegality::MRK_UIntMax: 2511 P = CmpInst::ICMP_UGT; 2512 break; 2513 case LoopVectorizationLegality::MRK_SIntMin: 2514 P = CmpInst::ICMP_SLT; 2515 break; 2516 case LoopVectorizationLegality::MRK_SIntMax: 2517 P = CmpInst::ICMP_SGT; 2518 break; 2519 case LoopVectorizationLegality::MRK_FloatMin: 2520 P = CmpInst::FCMP_OLT; 2521 break; 2522 case LoopVectorizationLegality::MRK_FloatMax: 2523 P = CmpInst::FCMP_OGT; 2524 break; 2525 } 2526 2527 Value *Cmp; 2528 if (RK == LoopVectorizationLegality::MRK_FloatMin || 2529 RK == LoopVectorizationLegality::MRK_FloatMax) 2530 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 2531 else 2532 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 2533 2534 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 2535 return Select; 2536 } 2537 2538 namespace { 2539 struct CSEDenseMapInfo { 2540 static bool canHandle(Instruction *I) { 2541 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2542 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2543 } 2544 static inline Instruction *getEmptyKey() { 2545 return DenseMapInfo<Instruction *>::getEmptyKey(); 2546 } 2547 static inline Instruction *getTombstoneKey() { 2548 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2549 } 2550 static unsigned getHashValue(Instruction *I) { 2551 assert(canHandle(I) && "Unknown instruction!"); 2552 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2553 I->value_op_end())); 2554 } 2555 static bool isEqual(Instruction *LHS, Instruction *RHS) { 2556 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2557 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2558 return LHS == RHS; 2559 return LHS->isIdenticalTo(RHS); 2560 } 2561 }; 2562 } 2563 2564 /// \brief Check whether this block is a predicated block. 2565 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 2566 /// = ...; " blocks. We start with one vectorized basic block. For every 2567 /// conditional block we split this vectorized block. Therefore, every second 2568 /// block will be a predicated one. 2569 static bool isPredicatedBlock(unsigned BlockNum) { 2570 return BlockNum % 2; 2571 } 2572 2573 ///\brief Perform cse of induction variable instructions. 2574 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 2575 // Perform simple cse. 2576 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2577 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 2578 BasicBlock *BB = BBs[i]; 2579 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2580 Instruction *In = I++; 2581 2582 if (!CSEDenseMapInfo::canHandle(In)) 2583 continue; 2584 2585 // Check if we can replace this instruction with any of the 2586 // visited instructions. 2587 if (Instruction *V = CSEMap.lookup(In)) { 2588 In->replaceAllUsesWith(V); 2589 In->eraseFromParent(); 2590 continue; 2591 } 2592 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 2593 // ...;" blocks for predicated stores. Every second block is a predicated 2594 // block. 2595 if (isPredicatedBlock(i)) 2596 continue; 2597 2598 CSEMap[In] = In; 2599 } 2600 } 2601 } 2602 2603 /// \brief Adds a 'fast' flag to floating point operations. 2604 static Value *addFastMathFlag(Value *V) { 2605 if (isa<FPMathOperator>(V)){ 2606 FastMathFlags Flags; 2607 Flags.setUnsafeAlgebra(); 2608 cast<Instruction>(V)->setFastMathFlags(Flags); 2609 } 2610 return V; 2611 } 2612 2613 void InnerLoopVectorizer::vectorizeLoop() { 2614 //===------------------------------------------------===// 2615 // 2616 // Notice: any optimization or new instruction that go 2617 // into the code below should be also be implemented in 2618 // the cost-model. 2619 // 2620 //===------------------------------------------------===// 2621 Constant *Zero = Builder.getInt32(0); 2622 2623 // In order to support reduction variables we need to be able to vectorize 2624 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 2625 // stages. First, we create a new vector PHI node with no incoming edges. 2626 // We use this value when we vectorize all of the instructions that use the 2627 // PHI. Next, after all of the instructions in the block are complete we 2628 // add the new incoming edges to the PHI. At this point all of the 2629 // instructions in the basic block are vectorized, so we can use them to 2630 // construct the PHI. 2631 PhiVector RdxPHIsToFix; 2632 2633 // Scan the loop in a topological order to ensure that defs are vectorized 2634 // before users. 2635 LoopBlocksDFS DFS(OrigLoop); 2636 DFS.perform(LI); 2637 2638 // Vectorize all of the blocks in the original loop. 2639 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 2640 be = DFS.endRPO(); bb != be; ++bb) 2641 vectorizeBlockInLoop(*bb, &RdxPHIsToFix); 2642 2643 // At this point every instruction in the original loop is widened to 2644 // a vector form. We are almost done. Now, we need to fix the PHI nodes 2645 // that we vectorized. The PHI nodes are currently empty because we did 2646 // not want to introduce cycles. Notice that the remaining PHI nodes 2647 // that we need to fix are reduction variables. 2648 2649 // Create the 'reduced' values for each of the induction vars. 2650 // The reduced values are the vector values that we scalarize and combine 2651 // after the loop is finished. 2652 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 2653 it != e; ++it) { 2654 PHINode *RdxPhi = *it; 2655 assert(RdxPhi && "Unable to recover vectorized PHI"); 2656 2657 // Find the reduction variable descriptor. 2658 assert(Legal->getReductionVars()->count(RdxPhi) && 2659 "Unable to find the reduction variable"); 2660 LoopVectorizationLegality::ReductionDescriptor RdxDesc = 2661 (*Legal->getReductionVars())[RdxPhi]; 2662 2663 setDebugLocFromInst(Builder, RdxDesc.StartValue); 2664 2665 // We need to generate a reduction vector from the incoming scalar. 2666 // To do so, we need to generate the 'identity' vector and override 2667 // one of the elements with the incoming scalar reduction. We need 2668 // to do it in the vector-loop preheader. 2669 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 2670 2671 // This is the vector-clone of the value that leaves the loop. 2672 VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr); 2673 Type *VecTy = VectorExit[0]->getType(); 2674 2675 // Find the reduction identity variable. Zero for addition, or, xor, 2676 // one for multiplication, -1 for And. 2677 Value *Identity; 2678 Value *VectorStart; 2679 if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax || 2680 RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) { 2681 // MinMax reduction have the start value as their identify. 2682 if (VF == 1) { 2683 VectorStart = Identity = RdxDesc.StartValue; 2684 } else { 2685 VectorStart = Identity = Builder.CreateVectorSplat(VF, 2686 RdxDesc.StartValue, 2687 "minmax.ident"); 2688 } 2689 } else { 2690 // Handle other reduction kinds: 2691 Constant *Iden = 2692 LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind, 2693 VecTy->getScalarType()); 2694 if (VF == 1) { 2695 Identity = Iden; 2696 // This vector is the Identity vector where the first element is the 2697 // incoming scalar reduction. 2698 VectorStart = RdxDesc.StartValue; 2699 } else { 2700 Identity = ConstantVector::getSplat(VF, Iden); 2701 2702 // This vector is the Identity vector where the first element is the 2703 // incoming scalar reduction. 2704 VectorStart = Builder.CreateInsertElement(Identity, 2705 RdxDesc.StartValue, Zero); 2706 } 2707 } 2708 2709 // Fix the vector-loop phi. 2710 // We created the induction variable so we know that the 2711 // preheader is the first entry. 2712 BasicBlock *VecPreheader = Induction->getIncomingBlock(0); 2713 2714 // Reductions do not have to start at zero. They can start with 2715 // any loop invariant values. 2716 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 2717 BasicBlock *Latch = OrigLoop->getLoopLatch(); 2718 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 2719 VectorParts &Val = getVectorValue(LoopVal); 2720 for (unsigned part = 0; part < UF; ++part) { 2721 // Make sure to add the reduction stat value only to the 2722 // first unroll part. 2723 Value *StartVal = (part == 0) ? VectorStart : Identity; 2724 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader); 2725 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 2726 LoopVectorBody.back()); 2727 } 2728 2729 // Before each round, move the insertion point right between 2730 // the PHIs and the values we are going to write. 2731 // This allows us to write both PHINodes and the extractelement 2732 // instructions. 2733 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); 2734 2735 VectorParts RdxParts; 2736 setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr); 2737 for (unsigned part = 0; part < UF; ++part) { 2738 // This PHINode contains the vectorized reduction variable, or 2739 // the initial value vector, if we bypass the vector loop. 2740 VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr); 2741 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); 2742 Value *StartVal = (part == 0) ? VectorStart : Identity; 2743 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2744 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); 2745 NewPhi->addIncoming(RdxExitVal[part], 2746 LoopVectorBody.back()); 2747 RdxParts.push_back(NewPhi); 2748 } 2749 2750 // Reduce all of the unrolled parts into a single vector. 2751 Value *ReducedPartRdx = RdxParts[0]; 2752 unsigned Op = getReductionBinOp(RdxDesc.Kind); 2753 setDebugLocFromInst(Builder, ReducedPartRdx); 2754 for (unsigned part = 1; part < UF; ++part) { 2755 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2756 // Floating point operations had to be 'fast' to enable the reduction. 2757 ReducedPartRdx = addFastMathFlag( 2758 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 2759 ReducedPartRdx, "bin.rdx")); 2760 else 2761 ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind, 2762 ReducedPartRdx, RdxParts[part]); 2763 } 2764 2765 if (VF > 1) { 2766 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 2767 // and vector ops, reducing the set of values being computed by half each 2768 // round. 2769 assert(isPowerOf2_32(VF) && 2770 "Reduction emission only supported for pow2 vectors!"); 2771 Value *TmpVec = ReducedPartRdx; 2772 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 2773 for (unsigned i = VF; i != 1; i >>= 1) { 2774 // Move the upper half of the vector to the lower half. 2775 for (unsigned j = 0; j != i/2; ++j) 2776 ShuffleMask[j] = Builder.getInt32(i/2 + j); 2777 2778 // Fill the rest of the mask with undef. 2779 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 2780 UndefValue::get(Builder.getInt32Ty())); 2781 2782 Value *Shuf = 2783 Builder.CreateShuffleVector(TmpVec, 2784 UndefValue::get(TmpVec->getType()), 2785 ConstantVector::get(ShuffleMask), 2786 "rdx.shuf"); 2787 2788 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2789 // Floating point operations had to be 'fast' to enable the reduction. 2790 TmpVec = addFastMathFlag(Builder.CreateBinOp( 2791 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 2792 else 2793 TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf); 2794 } 2795 2796 // The result is in the first element of the vector. 2797 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 2798 Builder.getInt32(0)); 2799 } 2800 2801 // Create a phi node that merges control-flow from the backedge-taken check 2802 // block and the middle block. 2803 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx", 2804 LoopScalarPreHeader->getTerminator()); 2805 BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]); 2806 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2807 2808 // Now, we need to fix the users of the reduction variable 2809 // inside and outside of the scalar remainder loop. 2810 // We know that the loop is in LCSSA form. We need to update the 2811 // PHI nodes in the exit blocks. 2812 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2813 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2814 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2815 if (!LCSSAPhi) break; 2816 2817 // All PHINodes need to have a single entry edge, or two if 2818 // we already fixed them. 2819 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 2820 2821 // We found our reduction value exit-PHI. Update it with the 2822 // incoming bypass edge. 2823 if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) { 2824 // Add an edge coming from the bypass. 2825 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2826 break; 2827 } 2828 }// end of the LCSSA phi scan. 2829 2830 // Fix the scalar loop reduction variable with the incoming reduction sum 2831 // from the vector body and from the backedge value. 2832 int IncomingEdgeBlockIdx = 2833 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 2834 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 2835 // Pick the other block. 2836 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 2837 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 2838 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr); 2839 }// end of for each redux variable. 2840 2841 fixLCSSAPHIs(); 2842 2843 // Remove redundant induction instructions. 2844 cse(LoopVectorBody); 2845 } 2846 2847 void InnerLoopVectorizer::fixLCSSAPHIs() { 2848 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2849 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2850 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2851 if (!LCSSAPhi) break; 2852 if (LCSSAPhi->getNumIncomingValues() == 1) 2853 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 2854 LoopMiddleBlock); 2855 } 2856 } 2857 2858 InnerLoopVectorizer::VectorParts 2859 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 2860 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 2861 "Invalid edge"); 2862 2863 // Look for cached value. 2864 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 2865 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 2866 if (ECEntryIt != MaskCache.end()) 2867 return ECEntryIt->second; 2868 2869 VectorParts SrcMask = createBlockInMask(Src); 2870 2871 // The terminator has to be a branch inst! 2872 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 2873 assert(BI && "Unexpected terminator found"); 2874 2875 if (BI->isConditional()) { 2876 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 2877 2878 if (BI->getSuccessor(0) != Dst) 2879 for (unsigned part = 0; part < UF; ++part) 2880 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 2881 2882 for (unsigned part = 0; part < UF; ++part) 2883 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 2884 2885 MaskCache[Edge] = EdgeMask; 2886 return EdgeMask; 2887 } 2888 2889 MaskCache[Edge] = SrcMask; 2890 return SrcMask; 2891 } 2892 2893 InnerLoopVectorizer::VectorParts 2894 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 2895 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 2896 2897 // Loop incoming mask is all-one. 2898 if (OrigLoop->getHeader() == BB) { 2899 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 2900 return getVectorValue(C); 2901 } 2902 2903 // This is the block mask. We OR all incoming edges, and with zero. 2904 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 2905 VectorParts BlockMask = getVectorValue(Zero); 2906 2907 // For each pred: 2908 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 2909 VectorParts EM = createEdgeMask(*it, BB); 2910 for (unsigned part = 0; part < UF; ++part) 2911 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 2912 } 2913 2914 return BlockMask; 2915 } 2916 2917 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 2918 InnerLoopVectorizer::VectorParts &Entry, 2919 unsigned UF, unsigned VF, PhiVector *PV) { 2920 PHINode* P = cast<PHINode>(PN); 2921 // Handle reduction variables: 2922 if (Legal->getReductionVars()->count(P)) { 2923 for (unsigned part = 0; part < UF; ++part) { 2924 // This is phase one of vectorizing PHIs. 2925 Type *VecTy = (VF == 1) ? PN->getType() : 2926 VectorType::get(PN->getType(), VF); 2927 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", 2928 LoopVectorBody.back()-> getFirstInsertionPt()); 2929 } 2930 PV->push_back(P); 2931 return; 2932 } 2933 2934 setDebugLocFromInst(Builder, P); 2935 // Check for PHI nodes that are lowered to vector selects. 2936 if (P->getParent() != OrigLoop->getHeader()) { 2937 // We know that all PHIs in non-header blocks are converted into 2938 // selects, so we don't have to worry about the insertion order and we 2939 // can just use the builder. 2940 // At this point we generate the predication tree. There may be 2941 // duplications since this is a simple recursive scan, but future 2942 // optimizations will clean it up. 2943 2944 unsigned NumIncoming = P->getNumIncomingValues(); 2945 2946 // Generate a sequence of selects of the form: 2947 // SELECT(Mask3, In3, 2948 // SELECT(Mask2, In2, 2949 // ( ...))) 2950 for (unsigned In = 0; In < NumIncoming; In++) { 2951 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 2952 P->getParent()); 2953 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 2954 2955 for (unsigned part = 0; part < UF; ++part) { 2956 // We might have single edge PHIs (blocks) - use an identity 2957 // 'select' for the first PHI operand. 2958 if (In == 0) 2959 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 2960 In0[part]); 2961 else 2962 // Select between the current value and the previous incoming edge 2963 // based on the incoming mask. 2964 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 2965 Entry[part], "predphi"); 2966 } 2967 } 2968 return; 2969 } 2970 2971 // This PHINode must be an induction variable. 2972 // Make sure that we know about it. 2973 assert(Legal->getInductionVars()->count(P) && 2974 "Not an induction variable"); 2975 2976 LoopVectorizationLegality::InductionInfo II = 2977 Legal->getInductionVars()->lookup(P); 2978 2979 switch (II.IK) { 2980 case LoopVectorizationLegality::IK_NoInduction: 2981 llvm_unreachable("Unknown induction"); 2982 case LoopVectorizationLegality::IK_IntInduction: { 2983 assert(P->getType() == II.StartValue->getType() && "Types must match"); 2984 Type *PhiTy = P->getType(); 2985 Value *Broadcasted; 2986 if (P == OldInduction) { 2987 // Handle the canonical induction variable. We might have had to 2988 // extend the type. 2989 Broadcasted = Builder.CreateTrunc(Induction, PhiTy); 2990 } else { 2991 // Handle other induction variables that are now based on the 2992 // canonical one. 2993 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, 2994 "normalized.idx"); 2995 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy); 2996 Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx, 2997 "offset.idx"); 2998 } 2999 Broadcasted = getBroadcastInstrs(Broadcasted); 3000 // After broadcasting the induction variable we need to make the vector 3001 // consecutive by adding 0, 1, 2, etc. 3002 for (unsigned part = 0; part < UF; ++part) 3003 Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false); 3004 return; 3005 } 3006 case LoopVectorizationLegality::IK_ReverseIntInduction: 3007 case LoopVectorizationLegality::IK_PtrInduction: 3008 case LoopVectorizationLegality::IK_ReversePtrInduction: 3009 // Handle reverse integer and pointer inductions. 3010 Value *StartIdx = ExtendedIdx; 3011 // This is the normalized GEP that starts counting at zero. 3012 Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx, 3013 "normalized.idx"); 3014 3015 // Handle the reverse integer induction variable case. 3016 if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) { 3017 IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType()); 3018 Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy, 3019 "resize.norm.idx"); 3020 Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI, 3021 "reverse.idx"); 3022 3023 // This is a new value so do not hoist it out. 3024 Value *Broadcasted = getBroadcastInstrs(ReverseInd); 3025 // After broadcasting the induction variable we need to make the 3026 // vector consecutive by adding ... -3, -2, -1, 0. 3027 for (unsigned part = 0; part < UF; ++part) 3028 Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part, 3029 true); 3030 return; 3031 } 3032 3033 // Handle the pointer induction variable case. 3034 assert(P->getType()->isPointerTy() && "Unexpected type."); 3035 3036 // Is this a reverse induction ptr or a consecutive induction ptr. 3037 bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction == 3038 II.IK); 3039 3040 // This is the vector of results. Notice that we don't generate 3041 // vector geps because scalar geps result in better code. 3042 for (unsigned part = 0; part < UF; ++part) { 3043 if (VF == 1) { 3044 int EltIndex = (part) * (Reverse ? -1 : 1); 3045 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3046 Value *GlobalIdx; 3047 if (Reverse) 3048 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 3049 else 3050 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 3051 3052 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 3053 "next.gep"); 3054 Entry[part] = SclrGep; 3055 continue; 3056 } 3057 3058 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 3059 for (unsigned int i = 0; i < VF; ++i) { 3060 int EltIndex = (i + part * VF) * (Reverse ? -1 : 1); 3061 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3062 Value *GlobalIdx; 3063 if (!Reverse) 3064 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 3065 else 3066 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 3067 3068 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 3069 "next.gep"); 3070 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 3071 Builder.getInt32(i), 3072 "insert.gep"); 3073 } 3074 Entry[part] = VecVal; 3075 } 3076 return; 3077 } 3078 } 3079 3080 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 3081 // For each instruction in the old loop. 3082 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 3083 VectorParts &Entry = WidenMap.get(it); 3084 switch (it->getOpcode()) { 3085 case Instruction::Br: 3086 // Nothing to do for PHIs and BR, since we already took care of the 3087 // loop control flow instructions. 3088 continue; 3089 case Instruction::PHI:{ 3090 // Vectorize PHINodes. 3091 widenPHIInstruction(it, Entry, UF, VF, PV); 3092 continue; 3093 }// End of PHI. 3094 3095 case Instruction::Add: 3096 case Instruction::FAdd: 3097 case Instruction::Sub: 3098 case Instruction::FSub: 3099 case Instruction::Mul: 3100 case Instruction::FMul: 3101 case Instruction::UDiv: 3102 case Instruction::SDiv: 3103 case Instruction::FDiv: 3104 case Instruction::URem: 3105 case Instruction::SRem: 3106 case Instruction::FRem: 3107 case Instruction::Shl: 3108 case Instruction::LShr: 3109 case Instruction::AShr: 3110 case Instruction::And: 3111 case Instruction::Or: 3112 case Instruction::Xor: { 3113 // Just widen binops. 3114 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 3115 setDebugLocFromInst(Builder, BinOp); 3116 VectorParts &A = getVectorValue(it->getOperand(0)); 3117 VectorParts &B = getVectorValue(it->getOperand(1)); 3118 3119 // Use this vector value for all users of the original instruction. 3120 for (unsigned Part = 0; Part < UF; ++Part) { 3121 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 3122 3123 // Update the NSW, NUW and Exact flags. Notice: V can be an Undef. 3124 BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V); 3125 if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) { 3126 VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap()); 3127 VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap()); 3128 } 3129 if (VecOp && isa<PossiblyExactOperator>(VecOp)) 3130 VecOp->setIsExact(BinOp->isExact()); 3131 3132 // Copy the fast-math flags. 3133 if (VecOp && isa<FPMathOperator>(V)) 3134 VecOp->setFastMathFlags(it->getFastMathFlags()); 3135 3136 Entry[Part] = V; 3137 } 3138 break; 3139 } 3140 case Instruction::Select: { 3141 // Widen selects. 3142 // If the selector is loop invariant we can create a select 3143 // instruction with a scalar condition. Otherwise, use vector-select. 3144 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 3145 OrigLoop); 3146 setDebugLocFromInst(Builder, it); 3147 3148 // The condition can be loop invariant but still defined inside the 3149 // loop. This means that we can't just use the original 'cond' value. 3150 // We have to take the 'vectorized' value and pick the first lane. 3151 // Instcombine will make this a no-op. 3152 VectorParts &Cond = getVectorValue(it->getOperand(0)); 3153 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 3154 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 3155 3156 Value *ScalarCond = (VF == 1) ? Cond[0] : 3157 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 3158 3159 for (unsigned Part = 0; Part < UF; ++Part) { 3160 Entry[Part] = Builder.CreateSelect( 3161 InvariantCond ? ScalarCond : Cond[Part], 3162 Op0[Part], 3163 Op1[Part]); 3164 } 3165 break; 3166 } 3167 3168 case Instruction::ICmp: 3169 case Instruction::FCmp: { 3170 // Widen compares. Generate vector compares. 3171 bool FCmp = (it->getOpcode() == Instruction::FCmp); 3172 CmpInst *Cmp = dyn_cast<CmpInst>(it); 3173 setDebugLocFromInst(Builder, it); 3174 VectorParts &A = getVectorValue(it->getOperand(0)); 3175 VectorParts &B = getVectorValue(it->getOperand(1)); 3176 for (unsigned Part = 0; Part < UF; ++Part) { 3177 Value *C = nullptr; 3178 if (FCmp) 3179 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 3180 else 3181 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 3182 Entry[Part] = C; 3183 } 3184 break; 3185 } 3186 3187 case Instruction::Store: 3188 case Instruction::Load: 3189 vectorizeMemoryInstruction(it); 3190 break; 3191 case Instruction::ZExt: 3192 case Instruction::SExt: 3193 case Instruction::FPToUI: 3194 case Instruction::FPToSI: 3195 case Instruction::FPExt: 3196 case Instruction::PtrToInt: 3197 case Instruction::IntToPtr: 3198 case Instruction::SIToFP: 3199 case Instruction::UIToFP: 3200 case Instruction::Trunc: 3201 case Instruction::FPTrunc: 3202 case Instruction::BitCast: { 3203 CastInst *CI = dyn_cast<CastInst>(it); 3204 setDebugLocFromInst(Builder, it); 3205 /// Optimize the special case where the source is the induction 3206 /// variable. Notice that we can only optimize the 'trunc' case 3207 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 3208 /// c. other casts depend on pointer size. 3209 if (CI->getOperand(0) == OldInduction && 3210 it->getOpcode() == Instruction::Trunc) { 3211 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 3212 CI->getType()); 3213 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 3214 for (unsigned Part = 0; Part < UF; ++Part) 3215 Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false); 3216 break; 3217 } 3218 /// Vectorize casts. 3219 Type *DestTy = (VF == 1) ? CI->getType() : 3220 VectorType::get(CI->getType(), VF); 3221 3222 VectorParts &A = getVectorValue(it->getOperand(0)); 3223 for (unsigned Part = 0; Part < UF; ++Part) 3224 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 3225 break; 3226 } 3227 3228 case Instruction::Call: { 3229 // Ignore dbg intrinsics. 3230 if (isa<DbgInfoIntrinsic>(it)) 3231 break; 3232 setDebugLocFromInst(Builder, it); 3233 3234 Module *M = BB->getParent()->getParent(); 3235 CallInst *CI = cast<CallInst>(it); 3236 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3237 assert(ID && "Not an intrinsic call!"); 3238 switch (ID) { 3239 case Intrinsic::lifetime_end: 3240 case Intrinsic::lifetime_start: 3241 scalarizeInstruction(it); 3242 break; 3243 default: 3244 bool HasScalarOpd = hasVectorInstrinsicScalarOpd(ID, 1); 3245 for (unsigned Part = 0; Part < UF; ++Part) { 3246 SmallVector<Value *, 4> Args; 3247 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 3248 if (HasScalarOpd && i == 1) { 3249 Args.push_back(CI->getArgOperand(i)); 3250 continue; 3251 } 3252 VectorParts &Arg = getVectorValue(CI->getArgOperand(i)); 3253 Args.push_back(Arg[Part]); 3254 } 3255 Type *Tys[] = {CI->getType()}; 3256 if (VF > 1) 3257 Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF); 3258 3259 Function *F = Intrinsic::getDeclaration(M, ID, Tys); 3260 Entry[Part] = Builder.CreateCall(F, Args); 3261 } 3262 break; 3263 } 3264 break; 3265 } 3266 3267 default: 3268 // All other instructions are unsupported. Scalarize them. 3269 scalarizeInstruction(it); 3270 break; 3271 }// end of switch. 3272 }// end of for_each instr. 3273 } 3274 3275 void InnerLoopVectorizer::updateAnalysis() { 3276 // Forget the original basic block. 3277 SE->forgetLoop(OrigLoop); 3278 3279 // Update the dominator tree information. 3280 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 3281 "Entry does not dominate exit."); 3282 3283 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3284 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 3285 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 3286 3287 // Due to if predication of stores we might create a sequence of "if(pred) 3288 // a[i] = ...; " blocks. 3289 for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) { 3290 if (i == 0) 3291 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 3292 else if (isPredicatedBlock(i)) { 3293 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]); 3294 } else { 3295 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]); 3296 } 3297 } 3298 3299 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]); 3300 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 3301 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 3302 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3303 3304 DEBUG(DT->verifyDomTree()); 3305 } 3306 3307 /// \brief Check whether it is safe to if-convert this phi node. 3308 /// 3309 /// Phi nodes with constant expressions that can trap are not safe to if 3310 /// convert. 3311 static bool canIfConvertPHINodes(BasicBlock *BB) { 3312 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3313 PHINode *Phi = dyn_cast<PHINode>(I); 3314 if (!Phi) 3315 return true; 3316 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 3317 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 3318 if (C->canTrap()) 3319 return false; 3320 } 3321 return true; 3322 } 3323 3324 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 3325 if (!EnableIfConversion) { 3326 emitAnalysis(Report() << "if-conversion is disabled"); 3327 return false; 3328 } 3329 3330 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 3331 3332 // A list of pointers that we can safely read and write to. 3333 SmallPtrSet<Value *, 8> SafePointes; 3334 3335 // Collect safe addresses. 3336 for (Loop::block_iterator BI = TheLoop->block_begin(), 3337 BE = TheLoop->block_end(); BI != BE; ++BI) { 3338 BasicBlock *BB = *BI; 3339 3340 if (blockNeedsPredication(BB)) 3341 continue; 3342 3343 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3344 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3345 SafePointes.insert(LI->getPointerOperand()); 3346 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 3347 SafePointes.insert(SI->getPointerOperand()); 3348 } 3349 } 3350 3351 // Collect the blocks that need predication. 3352 BasicBlock *Header = TheLoop->getHeader(); 3353 for (Loop::block_iterator BI = TheLoop->block_begin(), 3354 BE = TheLoop->block_end(); BI != BE; ++BI) { 3355 BasicBlock *BB = *BI; 3356 3357 // We don't support switch statements inside loops. 3358 if (!isa<BranchInst>(BB->getTerminator())) { 3359 emitAnalysis(Report(BB->getTerminator()) 3360 << "loop contains a switch statement"); 3361 return false; 3362 } 3363 3364 // We must be able to predicate all blocks that need to be predicated. 3365 if (blockNeedsPredication(BB)) { 3366 if (!blockCanBePredicated(BB, SafePointes)) { 3367 emitAnalysis(Report(BB->getTerminator()) 3368 << "control flow cannot be substituted for a select"); 3369 return false; 3370 } 3371 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 3372 emitAnalysis(Report(BB->getTerminator()) 3373 << "control flow cannot be substituted for a select"); 3374 return false; 3375 } 3376 } 3377 3378 // We can if-convert this loop. 3379 return true; 3380 } 3381 3382 bool LoopVectorizationLegality::canVectorize() { 3383 // We must have a loop in canonical form. Loops with indirectbr in them cannot 3384 // be canonicalized. 3385 if (!TheLoop->getLoopPreheader()) { 3386 emitAnalysis( 3387 Report() << "loop control flow is not understood by vectorizer"); 3388 return false; 3389 } 3390 3391 // We can only vectorize innermost loops. 3392 if (TheLoop->getSubLoopsVector().size()) { 3393 emitAnalysis(Report() << "loop is not the innermost loop"); 3394 return false; 3395 } 3396 3397 // We must have a single backedge. 3398 if (TheLoop->getNumBackEdges() != 1) { 3399 emitAnalysis( 3400 Report() << "loop control flow is not understood by vectorizer"); 3401 return false; 3402 } 3403 3404 // We must have a single exiting block. 3405 if (!TheLoop->getExitingBlock()) { 3406 emitAnalysis( 3407 Report() << "loop control flow is not understood by vectorizer"); 3408 return false; 3409 } 3410 3411 // We need to have a loop header. 3412 DEBUG(dbgs() << "LV: Found a loop: " << 3413 TheLoop->getHeader()->getName() << '\n'); 3414 3415 // Check if we can if-convert non-single-bb loops. 3416 unsigned NumBlocks = TheLoop->getNumBlocks(); 3417 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 3418 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 3419 return false; 3420 } 3421 3422 // ScalarEvolution needs to be able to find the exit count. 3423 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 3424 if (ExitCount == SE->getCouldNotCompute()) { 3425 emitAnalysis(Report() << "could not determine number of loop iterations"); 3426 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 3427 return false; 3428 } 3429 3430 // Check if we can vectorize the instructions and CFG in this loop. 3431 if (!canVectorizeInstrs()) { 3432 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 3433 return false; 3434 } 3435 3436 // Go over each instruction and look at memory deps. 3437 if (!canVectorizeMemory()) { 3438 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 3439 return false; 3440 } 3441 3442 // Collect all of the variables that remain uniform after vectorization. 3443 collectLoopUniforms(); 3444 3445 DEBUG(dbgs() << "LV: We can vectorize this loop" << 3446 (PtrRtCheck.Need ? " (with a runtime bound check)" : "") 3447 <<"!\n"); 3448 3449 // Okay! We can vectorize. At this point we don't have any other mem analysis 3450 // which may limit our maximum vectorization factor, so just return true with 3451 // no restrictions. 3452 return true; 3453 } 3454 3455 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 3456 if (Ty->isPointerTy()) 3457 return DL.getIntPtrType(Ty); 3458 3459 // It is possible that char's or short's overflow when we ask for the loop's 3460 // trip count, work around this by changing the type size. 3461 if (Ty->getScalarSizeInBits() < 32) 3462 return Type::getInt32Ty(Ty->getContext()); 3463 3464 return Ty; 3465 } 3466 3467 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 3468 Ty0 = convertPointerToIntegerType(DL, Ty0); 3469 Ty1 = convertPointerToIntegerType(DL, Ty1); 3470 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 3471 return Ty0; 3472 return Ty1; 3473 } 3474 3475 /// \brief Check that the instruction has outside loop users and is not an 3476 /// identified reduction variable. 3477 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 3478 SmallPtrSet<Value *, 4> &Reductions) { 3479 // Reduction instructions are allowed to have exit users. All other 3480 // instructions must not have external users. 3481 if (!Reductions.count(Inst)) 3482 //Check that all of the users of the loop are inside the BB. 3483 for (User *U : Inst->users()) { 3484 Instruction *UI = cast<Instruction>(U); 3485 // This user may be a reduction exit value. 3486 if (!TheLoop->contains(UI)) { 3487 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 3488 return true; 3489 } 3490 } 3491 return false; 3492 } 3493 3494 bool LoopVectorizationLegality::canVectorizeInstrs() { 3495 BasicBlock *PreHeader = TheLoop->getLoopPreheader(); 3496 BasicBlock *Header = TheLoop->getHeader(); 3497 3498 // Look for the attribute signaling the absence of NaNs. 3499 Function &F = *Header->getParent(); 3500 if (F.hasFnAttribute("no-nans-fp-math")) 3501 HasFunNoNaNAttr = F.getAttributes().getAttribute( 3502 AttributeSet::FunctionIndex, 3503 "no-nans-fp-math").getValueAsString() == "true"; 3504 3505 // For each block in the loop. 3506 for (Loop::block_iterator bb = TheLoop->block_begin(), 3507 be = TheLoop->block_end(); bb != be; ++bb) { 3508 3509 // Scan the instructions in the block and look for hazards. 3510 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 3511 ++it) { 3512 3513 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 3514 Type *PhiTy = Phi->getType(); 3515 // Check that this PHI type is allowed. 3516 if (!PhiTy->isIntegerTy() && 3517 !PhiTy->isFloatingPointTy() && 3518 !PhiTy->isPointerTy()) { 3519 emitAnalysis(Report(it) 3520 << "loop control flow is not understood by vectorizer"); 3521 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 3522 return false; 3523 } 3524 3525 // If this PHINode is not in the header block, then we know that we 3526 // can convert it to select during if-conversion. No need to check if 3527 // the PHIs in this block are induction or reduction variables. 3528 if (*bb != Header) { 3529 // Check that this instruction has no outside users or is an 3530 // identified reduction value with an outside user. 3531 if (!hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3532 continue; 3533 emitAnalysis(Report(it) << "value that could not be identified as " 3534 "reduction is used outside the loop"); 3535 return false; 3536 } 3537 3538 // We only allow if-converted PHIs with more than two incoming values. 3539 if (Phi->getNumIncomingValues() != 2) { 3540 emitAnalysis(Report(it) 3541 << "control flow not understood by vectorizer"); 3542 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 3543 return false; 3544 } 3545 3546 // This is the value coming from the preheader. 3547 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); 3548 // Check if this is an induction variable. 3549 InductionKind IK = isInductionVariable(Phi); 3550 3551 if (IK_NoInduction != IK) { 3552 // Get the widest type. 3553 if (!WidestIndTy) 3554 WidestIndTy = convertPointerToIntegerType(*DL, PhiTy); 3555 else 3556 WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy); 3557 3558 // Int inductions are special because we only allow one IV. 3559 if (IK == IK_IntInduction) { 3560 // Use the phi node with the widest type as induction. Use the last 3561 // one if there are multiple (no good reason for doing this other 3562 // than it is expedient). 3563 if (!Induction || PhiTy == WidestIndTy) 3564 Induction = Phi; 3565 } 3566 3567 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 3568 Inductions[Phi] = InductionInfo(StartValue, IK); 3569 3570 // Until we explicitly handle the case of an induction variable with 3571 // an outside loop user we have to give up vectorizing this loop. 3572 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3573 emitAnalysis(Report(it) << "use of induction value outside of the " 3574 "loop is not handled by vectorizer"); 3575 return false; 3576 } 3577 3578 continue; 3579 } 3580 3581 if (AddReductionVar(Phi, RK_IntegerAdd)) { 3582 DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n"); 3583 continue; 3584 } 3585 if (AddReductionVar(Phi, RK_IntegerMult)) { 3586 DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n"); 3587 continue; 3588 } 3589 if (AddReductionVar(Phi, RK_IntegerOr)) { 3590 DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n"); 3591 continue; 3592 } 3593 if (AddReductionVar(Phi, RK_IntegerAnd)) { 3594 DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n"); 3595 continue; 3596 } 3597 if (AddReductionVar(Phi, RK_IntegerXor)) { 3598 DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n"); 3599 continue; 3600 } 3601 if (AddReductionVar(Phi, RK_IntegerMinMax)) { 3602 DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n"); 3603 continue; 3604 } 3605 if (AddReductionVar(Phi, RK_FloatMult)) { 3606 DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n"); 3607 continue; 3608 } 3609 if (AddReductionVar(Phi, RK_FloatAdd)) { 3610 DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n"); 3611 continue; 3612 } 3613 if (AddReductionVar(Phi, RK_FloatMinMax)) { 3614 DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi << 3615 "\n"); 3616 continue; 3617 } 3618 3619 emitAnalysis(Report(it) << "unvectorizable operation"); 3620 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 3621 return false; 3622 }// end of PHI handling 3623 3624 // We still don't handle functions. However, we can ignore dbg intrinsic 3625 // calls and we do handle certain intrinsic and libm functions. 3626 CallInst *CI = dyn_cast<CallInst>(it); 3627 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) { 3628 emitAnalysis(Report(it) << "call instruction cannot be vectorized"); 3629 DEBUG(dbgs() << "LV: Found a call site.\n"); 3630 return false; 3631 } 3632 3633 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 3634 // second argument is the same (i.e. loop invariant) 3635 if (CI && 3636 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) { 3637 if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) { 3638 emitAnalysis(Report(it) 3639 << "intrinsic instruction cannot be vectorized"); 3640 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 3641 return false; 3642 } 3643 } 3644 3645 // Check that the instruction return type is vectorizable. 3646 // Also, we can't vectorize extractelement instructions. 3647 if ((!VectorType::isValidElementType(it->getType()) && 3648 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 3649 emitAnalysis(Report(it) 3650 << "instruction return type cannot be vectorized"); 3651 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 3652 return false; 3653 } 3654 3655 // Check that the stored type is vectorizable. 3656 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 3657 Type *T = ST->getValueOperand()->getType(); 3658 if (!VectorType::isValidElementType(T)) { 3659 emitAnalysis(Report(ST) << "store instruction cannot be vectorized"); 3660 return false; 3661 } 3662 if (EnableMemAccessVersioning) 3663 collectStridedAcccess(ST); 3664 } 3665 3666 if (EnableMemAccessVersioning) 3667 if (LoadInst *LI = dyn_cast<LoadInst>(it)) 3668 collectStridedAcccess(LI); 3669 3670 // Reduction instructions are allowed to have exit users. 3671 // All other instructions must not have external users. 3672 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3673 emitAnalysis(Report(it) << "value cannot be used outside the loop"); 3674 return false; 3675 } 3676 3677 } // next instr. 3678 3679 } 3680 3681 if (!Induction) { 3682 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 3683 if (Inductions.empty()) { 3684 emitAnalysis(Report() 3685 << "loop induction variable could not be identified"); 3686 return false; 3687 } 3688 } 3689 3690 return true; 3691 } 3692 3693 ///\brief Remove GEPs whose indices but the last one are loop invariant and 3694 /// return the induction operand of the gep pointer. 3695 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, 3696 const DataLayout *DL, Loop *Lp) { 3697 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3698 if (!GEP) 3699 return Ptr; 3700 3701 unsigned InductionOperand = getGEPInductionOperand(DL, GEP); 3702 3703 // Check that all of the gep indices are uniform except for our induction 3704 // operand. 3705 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 3706 if (i != InductionOperand && 3707 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 3708 return Ptr; 3709 return GEP->getOperand(InductionOperand); 3710 } 3711 3712 ///\brief Look for a cast use of the passed value. 3713 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 3714 Value *UniqueCast = nullptr; 3715 for (User *U : Ptr->users()) { 3716 CastInst *CI = dyn_cast<CastInst>(U); 3717 if (CI && CI->getType() == Ty) { 3718 if (!UniqueCast) 3719 UniqueCast = CI; 3720 else 3721 return nullptr; 3722 } 3723 } 3724 return UniqueCast; 3725 } 3726 3727 ///\brief Get the stride of a pointer access in a loop. 3728 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a 3729 /// pointer to the Value, or null otherwise. 3730 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, 3731 const DataLayout *DL, Loop *Lp) { 3732 const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 3733 if (!PtrTy || PtrTy->isAggregateType()) 3734 return nullptr; 3735 3736 // Try to remove a gep instruction to make the pointer (actually index at this 3737 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the 3738 // pointer, otherwise, we are analyzing the index. 3739 Value *OrigPtr = Ptr; 3740 3741 // The size of the pointer access. 3742 int64_t PtrAccessSize = 1; 3743 3744 Ptr = stripGetElementPtr(Ptr, SE, DL, Lp); 3745 const SCEV *V = SE->getSCEV(Ptr); 3746 3747 if (Ptr != OrigPtr) 3748 // Strip off casts. 3749 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 3750 V = C->getOperand(); 3751 3752 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 3753 if (!S) 3754 return nullptr; 3755 3756 V = S->getStepRecurrence(*SE); 3757 if (!V) 3758 return nullptr; 3759 3760 // Strip off the size of access multiplication if we are still analyzing the 3761 // pointer. 3762 if (OrigPtr == Ptr) { 3763 DL->getTypeAllocSize(PtrTy->getElementType()); 3764 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 3765 if (M->getOperand(0)->getSCEVType() != scConstant) 3766 return nullptr; 3767 3768 const APInt &APStepVal = 3769 cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue(); 3770 3771 // Huge step value - give up. 3772 if (APStepVal.getBitWidth() > 64) 3773 return nullptr; 3774 3775 int64_t StepVal = APStepVal.getSExtValue(); 3776 if (PtrAccessSize != StepVal) 3777 return nullptr; 3778 V = M->getOperand(1); 3779 } 3780 } 3781 3782 // Strip off casts. 3783 Type *StripedOffRecurrenceCast = nullptr; 3784 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 3785 StripedOffRecurrenceCast = C->getType(); 3786 V = C->getOperand(); 3787 } 3788 3789 // Look for the loop invariant symbolic value. 3790 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 3791 if (!U) 3792 return nullptr; 3793 3794 Value *Stride = U->getValue(); 3795 if (!Lp->isLoopInvariant(Stride)) 3796 return nullptr; 3797 3798 // If we have stripped off the recurrence cast we have to make sure that we 3799 // return the value that is used in this loop so that we can replace it later. 3800 if (StripedOffRecurrenceCast) 3801 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 3802 3803 return Stride; 3804 } 3805 3806 void LoopVectorizationLegality::collectStridedAcccess(Value *MemAccess) { 3807 Value *Ptr = nullptr; 3808 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 3809 Ptr = LI->getPointerOperand(); 3810 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 3811 Ptr = SI->getPointerOperand(); 3812 else 3813 return; 3814 3815 Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop); 3816 if (!Stride) 3817 return; 3818 3819 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 3820 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 3821 Strides[Ptr] = Stride; 3822 StrideSet.insert(Stride); 3823 } 3824 3825 void LoopVectorizationLegality::collectLoopUniforms() { 3826 // We now know that the loop is vectorizable! 3827 // Collect variables that will remain uniform after vectorization. 3828 std::vector<Value*> Worklist; 3829 BasicBlock *Latch = TheLoop->getLoopLatch(); 3830 3831 // Start with the conditional branch and walk up the block. 3832 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 3833 3834 // Also add all consecutive pointer values; these values will be uniform 3835 // after vectorization (and subsequent cleanup) and, until revectorization is 3836 // supported, all dependencies must also be uniform. 3837 for (Loop::block_iterator B = TheLoop->block_begin(), 3838 BE = TheLoop->block_end(); B != BE; ++B) 3839 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 3840 I != IE; ++I) 3841 if (I->getType()->isPointerTy() && isConsecutivePtr(I)) 3842 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3843 3844 while (Worklist.size()) { 3845 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 3846 Worklist.pop_back(); 3847 3848 // Look at instructions inside this loop. 3849 // Stop when reaching PHI nodes. 3850 // TODO: we need to follow values all over the loop, not only in this block. 3851 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 3852 continue; 3853 3854 // This is a known uniform. 3855 Uniforms.insert(I); 3856 3857 // Insert all operands. 3858 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3859 } 3860 } 3861 3862 namespace { 3863 /// \brief Analyses memory accesses in a loop. 3864 /// 3865 /// Checks whether run time pointer checks are needed and builds sets for data 3866 /// dependence checking. 3867 class AccessAnalysis { 3868 public: 3869 /// \brief Read or write access location. 3870 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 3871 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 3872 3873 /// \brief Set of potential dependent memory accesses. 3874 typedef EquivalenceClasses<MemAccessInfo> DepCandidates; 3875 3876 AccessAnalysis(const DataLayout *Dl, DepCandidates &DA) : 3877 DL(Dl), DepCands(DA), AreAllWritesIdentified(true), 3878 AreAllReadsIdentified(true), IsRTCheckNeeded(false) {} 3879 3880 /// \brief Register a load and whether it is only read from. 3881 void addLoad(Value *Ptr, bool IsReadOnly) { 3882 Accesses.insert(MemAccessInfo(Ptr, false)); 3883 if (IsReadOnly) 3884 ReadOnlyPtr.insert(Ptr); 3885 } 3886 3887 /// \brief Register a store. 3888 void addStore(Value *Ptr) { 3889 Accesses.insert(MemAccessInfo(Ptr, true)); 3890 } 3891 3892 /// \brief Check whether we can check the pointers at runtime for 3893 /// non-intersection. 3894 bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 3895 unsigned &NumComparisons, ScalarEvolution *SE, 3896 Loop *TheLoop, ValueToValueMap &Strides, 3897 bool ShouldCheckStride = false); 3898 3899 /// \brief Goes over all memory accesses, checks whether a RT check is needed 3900 /// and builds sets of dependent accesses. 3901 void buildDependenceSets() { 3902 // Process read-write pointers first. 3903 processMemAccesses(false); 3904 // Next, process read pointers. 3905 processMemAccesses(true); 3906 } 3907 3908 bool isRTCheckNeeded() { return IsRTCheckNeeded; } 3909 3910 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 3911 void resetDepChecks() { CheckDeps.clear(); } 3912 3913 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 3914 3915 private: 3916 typedef SetVector<MemAccessInfo> PtrAccessSet; 3917 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 3918 3919 /// \brief Go over all memory access or only the deferred ones if 3920 /// \p UseDeferred is true and check whether runtime pointer checks are needed 3921 /// and build sets of dependency check candidates. 3922 void processMemAccesses(bool UseDeferred); 3923 3924 /// Set of all accesses. 3925 PtrAccessSet Accesses; 3926 3927 /// Set of access to check after all writes have been processed. 3928 PtrAccessSet DeferredAccesses; 3929 3930 /// Map of pointers to last access encountered. 3931 UnderlyingObjToAccessMap ObjToLastAccess; 3932 3933 /// Set of accesses that need a further dependence check. 3934 MemAccessInfoSet CheckDeps; 3935 3936 /// Set of pointers that are read only. 3937 SmallPtrSet<Value*, 16> ReadOnlyPtr; 3938 3939 /// Set of underlying objects already written to. 3940 SmallPtrSet<Value*, 16> WriteObjects; 3941 3942 const DataLayout *DL; 3943 3944 /// Sets of potentially dependent accesses - members of one set share an 3945 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 3946 /// dependence check. 3947 DepCandidates &DepCands; 3948 3949 bool AreAllWritesIdentified; 3950 bool AreAllReadsIdentified; 3951 bool IsRTCheckNeeded; 3952 }; 3953 3954 } // end anonymous namespace 3955 3956 /// \brief Check whether a pointer can participate in a runtime bounds check. 3957 static bool hasComputableBounds(ScalarEvolution *SE, ValueToValueMap &Strides, 3958 Value *Ptr) { 3959 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 3960 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 3961 if (!AR) 3962 return false; 3963 3964 return AR->isAffine(); 3965 } 3966 3967 /// \brief Check the stride of the pointer and ensure that it does not wrap in 3968 /// the address space. 3969 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 3970 const Loop *Lp, ValueToValueMap &StridesMap); 3971 3972 bool AccessAnalysis::canCheckPtrAtRT( 3973 LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 3974 unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop, 3975 ValueToValueMap &StridesMap, bool ShouldCheckStride) { 3976 // Find pointers with computable bounds. We are going to use this information 3977 // to place a runtime bound check. 3978 unsigned NumReadPtrChecks = 0; 3979 unsigned NumWritePtrChecks = 0; 3980 bool CanDoRT = true; 3981 3982 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 3983 // We assign consecutive id to access from different dependence sets. 3984 // Accesses within the same set don't need a runtime check. 3985 unsigned RunningDepId = 1; 3986 DenseMap<Value *, unsigned> DepSetId; 3987 3988 for (PtrAccessSet::iterator AI = Accesses.begin(), AE = Accesses.end(); 3989 AI != AE; ++AI) { 3990 const MemAccessInfo &Access = *AI; 3991 Value *Ptr = Access.getPointer(); 3992 bool IsWrite = Access.getInt(); 3993 3994 // Just add write checks if we have both. 3995 if (!IsWrite && Accesses.count(MemAccessInfo(Ptr, true))) 3996 continue; 3997 3998 if (IsWrite) 3999 ++NumWritePtrChecks; 4000 else 4001 ++NumReadPtrChecks; 4002 4003 if (hasComputableBounds(SE, StridesMap, Ptr) && 4004 // When we run after a failing dependency check we have to make sure we 4005 // don't have wrapping pointers. 4006 (!ShouldCheckStride || 4007 isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) { 4008 // The id of the dependence set. 4009 unsigned DepId; 4010 4011 if (IsDepCheckNeeded) { 4012 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 4013 unsigned &LeaderId = DepSetId[Leader]; 4014 if (!LeaderId) 4015 LeaderId = RunningDepId++; 4016 DepId = LeaderId; 4017 } else 4018 // Each access has its own dependence set. 4019 DepId = RunningDepId++; 4020 4021 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, StridesMap); 4022 4023 DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n'); 4024 } else { 4025 CanDoRT = false; 4026 } 4027 } 4028 4029 if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2) 4030 NumComparisons = 0; // Only one dependence set. 4031 else { 4032 NumComparisons = (NumWritePtrChecks * (NumReadPtrChecks + 4033 NumWritePtrChecks - 1)); 4034 } 4035 4036 // If the pointers that we would use for the bounds comparison have different 4037 // address spaces, assume the values aren't directly comparable, so we can't 4038 // use them for the runtime check. We also have to assume they could 4039 // overlap. In the future there should be metadata for whether address spaces 4040 // are disjoint. 4041 unsigned NumPointers = RtCheck.Pointers.size(); 4042 for (unsigned i = 0; i < NumPointers; ++i) { 4043 for (unsigned j = i + 1; j < NumPointers; ++j) { 4044 // Only need to check pointers between two different dependency sets. 4045 if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j]) 4046 continue; 4047 4048 Value *PtrI = RtCheck.Pointers[i]; 4049 Value *PtrJ = RtCheck.Pointers[j]; 4050 4051 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 4052 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 4053 if (ASi != ASj) { 4054 DEBUG(dbgs() << "LV: Runtime check would require comparison between" 4055 " different address spaces\n"); 4056 return false; 4057 } 4058 } 4059 } 4060 4061 return CanDoRT; 4062 } 4063 4064 static bool isFunctionScopeIdentifiedObject(Value *Ptr) { 4065 return isNoAliasArgument(Ptr) || isNoAliasCall(Ptr) || isa<AllocaInst>(Ptr); 4066 } 4067 4068 void AccessAnalysis::processMemAccesses(bool UseDeferred) { 4069 // We process the set twice: first we process read-write pointers, last we 4070 // process read-only pointers. This allows us to skip dependence tests for 4071 // read-only pointers. 4072 4073 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 4074 for (PtrAccessSet::iterator AI = S.begin(), AE = S.end(); AI != AE; ++AI) { 4075 const MemAccessInfo &Access = *AI; 4076 Value *Ptr = Access.getPointer(); 4077 bool IsWrite = Access.getInt(); 4078 4079 DepCands.insert(Access); 4080 4081 // Memorize read-only pointers for later processing and skip them in the 4082 // first round (they need to be checked after we have seen all write 4083 // pointers). Note: we also mark pointer that are not consecutive as 4084 // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need the 4085 // second check for "!IsWrite". 4086 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 4087 if (!UseDeferred && IsReadOnlyPtr) { 4088 DeferredAccesses.insert(Access); 4089 continue; 4090 } 4091 4092 bool NeedDepCheck = false; 4093 // Check whether there is the possibility of dependency because of 4094 // underlying objects being the same. 4095 typedef SmallVector<Value*, 16> ValueVector; 4096 ValueVector TempObjects; 4097 GetUnderlyingObjects(Ptr, TempObjects, DL); 4098 for (ValueVector::iterator UI = TempObjects.begin(), UE = TempObjects.end(); 4099 UI != UE; ++UI) { 4100 Value *UnderlyingObj = *UI; 4101 4102 // If this is a write then it needs to be an identified object. If this a 4103 // read and all writes (so far) are identified function scope objects we 4104 // don't need an identified underlying object but only an Argument (the 4105 // next write is going to invalidate this assumption if it is 4106 // unidentified). 4107 // This is a micro-optimization for the case where all writes are 4108 // identified and we have one argument pointer. 4109 // Otherwise, we do need a runtime check. 4110 if ((IsWrite && !isFunctionScopeIdentifiedObject(UnderlyingObj)) || 4111 (!IsWrite && (!AreAllWritesIdentified || 4112 !isa<Argument>(UnderlyingObj)) && 4113 !isIdentifiedObject(UnderlyingObj))) { 4114 DEBUG(dbgs() << "LV: Found an unidentified " << 4115 (IsWrite ? "write" : "read" ) << " ptr: " << *UnderlyingObj << 4116 "\n"); 4117 IsRTCheckNeeded = (IsRTCheckNeeded || 4118 !isIdentifiedObject(UnderlyingObj) || 4119 !AreAllReadsIdentified); 4120 4121 if (IsWrite) 4122 AreAllWritesIdentified = false; 4123 if (!IsWrite) 4124 AreAllReadsIdentified = false; 4125 } 4126 4127 // If this is a write - check other reads and writes for conflicts. If 4128 // this is a read only check other writes for conflicts (but only if there 4129 // is no other write to the ptr - this is an optimization to catch "a[i] = 4130 // a[i] + " without having to do a dependence check). 4131 if ((IsWrite || IsReadOnlyPtr) && WriteObjects.count(UnderlyingObj)) 4132 NeedDepCheck = true; 4133 4134 if (IsWrite) 4135 WriteObjects.insert(UnderlyingObj); 4136 4137 // Create sets of pointers connected by shared underlying objects. 4138 UnderlyingObjToAccessMap::iterator Prev = 4139 ObjToLastAccess.find(UnderlyingObj); 4140 if (Prev != ObjToLastAccess.end()) 4141 DepCands.unionSets(Access, Prev->second); 4142 4143 ObjToLastAccess[UnderlyingObj] = Access; 4144 } 4145 4146 if (NeedDepCheck) 4147 CheckDeps.insert(Access); 4148 } 4149 } 4150 4151 namespace { 4152 /// \brief Checks memory dependences among accesses to the same underlying 4153 /// object to determine whether there vectorization is legal or not (and at 4154 /// which vectorization factor). 4155 /// 4156 /// This class works under the assumption that we already checked that memory 4157 /// locations with different underlying pointers are "must-not alias". 4158 /// We use the ScalarEvolution framework to symbolically evalutate access 4159 /// functions pairs. Since we currently don't restructure the loop we can rely 4160 /// on the program order of memory accesses to determine their safety. 4161 /// At the moment we will only deem accesses as safe for: 4162 /// * A negative constant distance assuming program order. 4163 /// 4164 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x; 4165 /// a[i] = tmp; y = a[i]; 4166 /// 4167 /// The latter case is safe because later checks guarantuee that there can't 4168 /// be a cycle through a phi node (that is, we check that "x" and "y" is not 4169 /// the same variable: a header phi can only be an induction or a reduction, a 4170 /// reduction can't have a memory sink, an induction can't have a memory 4171 /// source). This is important and must not be violated (or we have to 4172 /// resort to checking for cycles through memory). 4173 /// 4174 /// * A positive constant distance assuming program order that is bigger 4175 /// than the biggest memory access. 4176 /// 4177 /// tmp = a[i] OR b[i] = x 4178 /// a[i+2] = tmp y = b[i+2]; 4179 /// 4180 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively. 4181 /// 4182 /// * Zero distances and all accesses have the same size. 4183 /// 4184 class MemoryDepChecker { 4185 public: 4186 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 4187 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 4188 4189 MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L) 4190 : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0), 4191 ShouldRetryWithRuntimeCheck(false) {} 4192 4193 /// \brief Register the location (instructions are given increasing numbers) 4194 /// of a write access. 4195 void addAccess(StoreInst *SI) { 4196 Value *Ptr = SI->getPointerOperand(); 4197 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 4198 InstMap.push_back(SI); 4199 ++AccessIdx; 4200 } 4201 4202 /// \brief Register the location (instructions are given increasing numbers) 4203 /// of a write access. 4204 void addAccess(LoadInst *LI) { 4205 Value *Ptr = LI->getPointerOperand(); 4206 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 4207 InstMap.push_back(LI); 4208 ++AccessIdx; 4209 } 4210 4211 /// \brief Check whether the dependencies between the accesses are safe. 4212 /// 4213 /// Only checks sets with elements in \p CheckDeps. 4214 bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 4215 MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides); 4216 4217 /// \brief The maximum number of bytes of a vector register we can vectorize 4218 /// the accesses safely with. 4219 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 4220 4221 /// \brief In same cases when the dependency check fails we can still 4222 /// vectorize the loop with a dynamic array access check. 4223 bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; } 4224 4225 private: 4226 ScalarEvolution *SE; 4227 const DataLayout *DL; 4228 const Loop *InnermostLoop; 4229 4230 /// \brief Maps access locations (ptr, read/write) to program order. 4231 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses; 4232 4233 /// \brief Memory access instructions in program order. 4234 SmallVector<Instruction *, 16> InstMap; 4235 4236 /// \brief The program order index to be used for the next instruction. 4237 unsigned AccessIdx; 4238 4239 // We can access this many bytes in parallel safely. 4240 unsigned MaxSafeDepDistBytes; 4241 4242 /// \brief If we see a non-constant dependence distance we can still try to 4243 /// vectorize this loop with runtime checks. 4244 bool ShouldRetryWithRuntimeCheck; 4245 4246 /// \brief Check whether there is a plausible dependence between the two 4247 /// accesses. 4248 /// 4249 /// Access \p A must happen before \p B in program order. The two indices 4250 /// identify the index into the program order map. 4251 /// 4252 /// This function checks whether there is a plausible dependence (or the 4253 /// absence of such can't be proved) between the two accesses. If there is a 4254 /// plausible dependence but the dependence distance is bigger than one 4255 /// element access it records this distance in \p MaxSafeDepDistBytes (if this 4256 /// distance is smaller than any other distance encountered so far). 4257 /// Otherwise, this function returns true signaling a possible dependence. 4258 bool isDependent(const MemAccessInfo &A, unsigned AIdx, 4259 const MemAccessInfo &B, unsigned BIdx, 4260 ValueToValueMap &Strides); 4261 4262 /// \brief Check whether the data dependence could prevent store-load 4263 /// forwarding. 4264 bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize); 4265 }; 4266 4267 } // end anonymous namespace 4268 4269 static bool isInBoundsGep(Value *Ptr) { 4270 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 4271 return GEP->isInBounds(); 4272 return false; 4273 } 4274 4275 /// \brief Check whether the access through \p Ptr has a constant stride. 4276 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 4277 const Loop *Lp, ValueToValueMap &StridesMap) { 4278 const Type *Ty = Ptr->getType(); 4279 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 4280 4281 // Make sure that the pointer does not point to aggregate types. 4282 const PointerType *PtrTy = cast<PointerType>(Ty); 4283 if (PtrTy->getElementType()->isAggregateType()) { 4284 DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr << 4285 "\n"); 4286 return 0; 4287 } 4288 4289 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); 4290 4291 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 4292 if (!AR) { 4293 DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer " 4294 << *Ptr << " SCEV: " << *PtrScev << "\n"); 4295 return 0; 4296 } 4297 4298 // The accesss function must stride over the innermost loop. 4299 if (Lp != AR->getLoop()) { 4300 DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " << 4301 *Ptr << " SCEV: " << *PtrScev << "\n"); 4302 } 4303 4304 // The address calculation must not wrap. Otherwise, a dependence could be 4305 // inverted. 4306 // An inbounds getelementptr that is a AddRec with a unit stride 4307 // cannot wrap per definition. The unit stride requirement is checked later. 4308 // An getelementptr without an inbounds attribute and unit stride would have 4309 // to access the pointer value "0" which is undefined behavior in address 4310 // space 0, therefore we can also vectorize this case. 4311 bool IsInBoundsGEP = isInBoundsGep(Ptr); 4312 bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask); 4313 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 4314 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 4315 DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space " 4316 << *Ptr << " SCEV: " << *PtrScev << "\n"); 4317 return 0; 4318 } 4319 4320 // Check the step is constant. 4321 const SCEV *Step = AR->getStepRecurrence(*SE); 4322 4323 // Calculate the pointer stride and check if it is consecutive. 4324 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4325 if (!C) { 4326 DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr << 4327 " SCEV: " << *PtrScev << "\n"); 4328 return 0; 4329 } 4330 4331 int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType()); 4332 const APInt &APStepVal = C->getValue()->getValue(); 4333 4334 // Huge step value - give up. 4335 if (APStepVal.getBitWidth() > 64) 4336 return 0; 4337 4338 int64_t StepVal = APStepVal.getSExtValue(); 4339 4340 // Strided access. 4341 int64_t Stride = StepVal / Size; 4342 int64_t Rem = StepVal % Size; 4343 if (Rem) 4344 return 0; 4345 4346 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 4347 // know we can't "wrap around the address space". In case of address space 4348 // zero we know that this won't happen without triggering undefined behavior. 4349 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 4350 Stride != 1 && Stride != -1) 4351 return 0; 4352 4353 return Stride; 4354 } 4355 4356 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 4357 unsigned TypeByteSize) { 4358 // If loads occur at a distance that is not a multiple of a feasible vector 4359 // factor store-load forwarding does not take place. 4360 // Positive dependences might cause troubles because vectorizing them might 4361 // prevent store-load forwarding making vectorized code run a lot slower. 4362 // a[i] = a[i-3] ^ a[i-8]; 4363 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 4364 // hence on your typical architecture store-load forwarding does not take 4365 // place. Vectorizing in such cases does not make sense. 4366 // Store-load forwarding distance. 4367 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 4368 // Maximum vector factor. 4369 unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize; 4370 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 4371 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 4372 4373 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 4374 vf *= 2) { 4375 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 4376 MaxVFWithoutSLForwardIssues = (vf >>=1); 4377 break; 4378 } 4379 } 4380 4381 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 4382 DEBUG(dbgs() << "LV: Distance " << Distance << 4383 " that could cause a store-load forwarding conflict\n"); 4384 return true; 4385 } 4386 4387 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 4388 MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize) 4389 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 4390 return false; 4391 } 4392 4393 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 4394 const MemAccessInfo &B, unsigned BIdx, 4395 ValueToValueMap &Strides) { 4396 assert (AIdx < BIdx && "Must pass arguments in program order"); 4397 4398 Value *APtr = A.getPointer(); 4399 Value *BPtr = B.getPointer(); 4400 bool AIsWrite = A.getInt(); 4401 bool BIsWrite = B.getInt(); 4402 4403 // Two reads are independent. 4404 if (!AIsWrite && !BIsWrite) 4405 return false; 4406 4407 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); 4408 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); 4409 4410 int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides); 4411 int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides); 4412 4413 const SCEV *Src = AScev; 4414 const SCEV *Sink = BScev; 4415 4416 // If the induction step is negative we have to invert source and sink of the 4417 // dependence. 4418 if (StrideAPtr < 0) { 4419 //Src = BScev; 4420 //Sink = AScev; 4421 std::swap(APtr, BPtr); 4422 std::swap(Src, Sink); 4423 std::swap(AIsWrite, BIsWrite); 4424 std::swap(AIdx, BIdx); 4425 std::swap(StrideAPtr, StrideBPtr); 4426 } 4427 4428 const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 4429 4430 DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink 4431 << "(Induction step: " << StrideAPtr << ")\n"); 4432 DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to " 4433 << *InstMap[BIdx] << ": " << *Dist << "\n"); 4434 4435 // Need consecutive accesses. We don't want to vectorize 4436 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 4437 // the address space. 4438 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 4439 DEBUG(dbgs() << "Non-consecutive pointer access\n"); 4440 return true; 4441 } 4442 4443 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 4444 if (!C) { 4445 DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n"); 4446 ShouldRetryWithRuntimeCheck = true; 4447 return true; 4448 } 4449 4450 Type *ATy = APtr->getType()->getPointerElementType(); 4451 Type *BTy = BPtr->getType()->getPointerElementType(); 4452 unsigned TypeByteSize = DL->getTypeAllocSize(ATy); 4453 4454 // Negative distances are not plausible dependencies. 4455 const APInt &Val = C->getValue()->getValue(); 4456 if (Val.isNegative()) { 4457 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 4458 if (IsTrueDataDependence && 4459 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 4460 ATy != BTy)) 4461 return true; 4462 4463 DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n"); 4464 return false; 4465 } 4466 4467 // Write to the same location with the same size. 4468 // Could be improved to assert type sizes are the same (i32 == float, etc). 4469 if (Val == 0) { 4470 if (ATy == BTy) 4471 return false; 4472 DEBUG(dbgs() << "LV: Zero dependence difference but different types\n"); 4473 return true; 4474 } 4475 4476 assert(Val.isStrictlyPositive() && "Expect a positive value"); 4477 4478 // Positive distance bigger than max vectorization factor. 4479 if (ATy != BTy) { 4480 DEBUG(dbgs() << 4481 "LV: ReadWrite-Write positive dependency with different types\n"); 4482 return false; 4483 } 4484 4485 unsigned Distance = (unsigned) Val.getZExtValue(); 4486 4487 // Bail out early if passed-in parameters make vectorization not feasible. 4488 unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1; 4489 unsigned ForcedUnroll = VectorizationUnroll ? VectorizationUnroll : 1; 4490 4491 // The distance must be bigger than the size needed for a vectorized version 4492 // of the operation and the size of the vectorized operation must not be 4493 // bigger than the currrent maximum size. 4494 if (Distance < 2*TypeByteSize || 4495 2*TypeByteSize > MaxSafeDepDistBytes || 4496 Distance < TypeByteSize * ForcedUnroll * ForcedFactor) { 4497 DEBUG(dbgs() << "LV: Failure because of Positive distance " 4498 << Val.getSExtValue() << '\n'); 4499 return true; 4500 } 4501 4502 MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ? 4503 Distance : MaxSafeDepDistBytes; 4504 4505 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 4506 if (IsTrueDataDependence && 4507 couldPreventStoreLoadForward(Distance, TypeByteSize)) 4508 return true; 4509 4510 DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() << 4511 " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n'); 4512 4513 return false; 4514 } 4515 4516 bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 4517 MemAccessInfoSet &CheckDeps, 4518 ValueToValueMap &Strides) { 4519 4520 MaxSafeDepDistBytes = -1U; 4521 while (!CheckDeps.empty()) { 4522 MemAccessInfo CurAccess = *CheckDeps.begin(); 4523 4524 // Get the relevant memory access set. 4525 EquivalenceClasses<MemAccessInfo>::iterator I = 4526 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 4527 4528 // Check accesses within this set. 4529 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 4530 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 4531 4532 // Check every access pair. 4533 while (AI != AE) { 4534 CheckDeps.erase(*AI); 4535 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 4536 while (OI != AE) { 4537 // Check every accessing instruction pair in program order. 4538 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 4539 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 4540 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 4541 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 4542 if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides)) 4543 return false; 4544 if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides)) 4545 return false; 4546 } 4547 ++OI; 4548 } 4549 AI++; 4550 } 4551 } 4552 return true; 4553 } 4554 4555 bool LoopVectorizationLegality::canVectorizeMemory() { 4556 4557 typedef SmallVector<Value*, 16> ValueVector; 4558 typedef SmallPtrSet<Value*, 16> ValueSet; 4559 4560 // Holds the Load and Store *instructions*. 4561 ValueVector Loads; 4562 ValueVector Stores; 4563 4564 // Holds all the different accesses in the loop. 4565 unsigned NumReads = 0; 4566 unsigned NumReadWrites = 0; 4567 4568 PtrRtCheck.Pointers.clear(); 4569 PtrRtCheck.Need = false; 4570 4571 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 4572 MemoryDepChecker DepChecker(SE, DL, TheLoop); 4573 4574 // For each block. 4575 for (Loop::block_iterator bb = TheLoop->block_begin(), 4576 be = TheLoop->block_end(); bb != be; ++bb) { 4577 4578 // Scan the BB and collect legal loads and stores. 4579 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4580 ++it) { 4581 4582 // If this is a load, save it. If this instruction can read from memory 4583 // but is not a load, then we quit. Notice that we don't handle function 4584 // calls that read or write. 4585 if (it->mayReadFromMemory()) { 4586 // Many math library functions read the rounding mode. We will only 4587 // vectorize a loop if it contains known function calls that don't set 4588 // the flag. Therefore, it is safe to ignore this read from memory. 4589 CallInst *Call = dyn_cast<CallInst>(it); 4590 if (Call && getIntrinsicIDForCall(Call, TLI)) 4591 continue; 4592 4593 LoadInst *Ld = dyn_cast<LoadInst>(it); 4594 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 4595 emitAnalysis(Report(Ld) 4596 << "read with atomic ordering or volatile read"); 4597 DEBUG(dbgs() << "LV: Found a non-simple load.\n"); 4598 return false; 4599 } 4600 NumLoads++; 4601 Loads.push_back(Ld); 4602 DepChecker.addAccess(Ld); 4603 continue; 4604 } 4605 4606 // Save 'store' instructions. Abort if other instructions write to memory. 4607 if (it->mayWriteToMemory()) { 4608 StoreInst *St = dyn_cast<StoreInst>(it); 4609 if (!St) { 4610 emitAnalysis(Report(it) << "instruction cannot be vectorized"); 4611 return false; 4612 } 4613 if (!St->isSimple() && !IsAnnotatedParallel) { 4614 emitAnalysis(Report(St) 4615 << "write with atomic ordering or volatile write"); 4616 DEBUG(dbgs() << "LV: Found a non-simple store.\n"); 4617 return false; 4618 } 4619 NumStores++; 4620 Stores.push_back(St); 4621 DepChecker.addAccess(St); 4622 } 4623 } // Next instr. 4624 } // Next block. 4625 4626 // Now we have two lists that hold the loads and the stores. 4627 // Next, we find the pointers that they use. 4628 4629 // Check if we see any stores. If there are no stores, then we don't 4630 // care if the pointers are *restrict*. 4631 if (!Stores.size()) { 4632 DEBUG(dbgs() << "LV: Found a read-only loop!\n"); 4633 return true; 4634 } 4635 4636 AccessAnalysis::DepCandidates DependentAccesses; 4637 AccessAnalysis Accesses(DL, DependentAccesses); 4638 4639 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 4640 // multiple times on the same object. If the ptr is accessed twice, once 4641 // for read and once for write, it will only appear once (on the write 4642 // list). This is okay, since we are going to check for conflicts between 4643 // writes and between reads and writes, but not between reads and reads. 4644 ValueSet Seen; 4645 4646 ValueVector::iterator I, IE; 4647 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 4648 StoreInst *ST = cast<StoreInst>(*I); 4649 Value* Ptr = ST->getPointerOperand(); 4650 4651 if (isUniform(Ptr)) { 4652 emitAnalysis( 4653 Report(ST) 4654 << "write to a loop invariant address could not be vectorized"); 4655 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4656 return false; 4657 } 4658 4659 // If we did *not* see this pointer before, insert it to the read-write 4660 // list. At this phase it is only a 'write' list. 4661 if (Seen.insert(Ptr)) { 4662 ++NumReadWrites; 4663 Accesses.addStore(Ptr); 4664 } 4665 } 4666 4667 if (IsAnnotatedParallel) { 4668 DEBUG(dbgs() 4669 << "LV: A loop annotated parallel, ignore memory dependency " 4670 << "checks.\n"); 4671 return true; 4672 } 4673 4674 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 4675 LoadInst *LD = cast<LoadInst>(*I); 4676 Value* Ptr = LD->getPointerOperand(); 4677 // If we did *not* see this pointer before, insert it to the 4678 // read list. If we *did* see it before, then it is already in 4679 // the read-write list. This allows us to vectorize expressions 4680 // such as A[i] += x; Because the address of A[i] is a read-write 4681 // pointer. This only works if the index of A[i] is consecutive. 4682 // If the address of i is unknown (for example A[B[i]]) then we may 4683 // read a few words, modify, and write a few words, and some of the 4684 // words may be written to the same address. 4685 bool IsReadOnlyPtr = false; 4686 if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) { 4687 ++NumReads; 4688 IsReadOnlyPtr = true; 4689 } 4690 Accesses.addLoad(Ptr, IsReadOnlyPtr); 4691 } 4692 4693 // If we write (or read-write) to a single destination and there are no 4694 // other reads in this loop then is it safe to vectorize. 4695 if (NumReadWrites == 1 && NumReads == 0) { 4696 DEBUG(dbgs() << "LV: Found a write-only loop!\n"); 4697 return true; 4698 } 4699 4700 // Build dependence sets and check whether we need a runtime pointer bounds 4701 // check. 4702 Accesses.buildDependenceSets(); 4703 bool NeedRTCheck = Accesses.isRTCheckNeeded(); 4704 4705 // Find pointers with computable bounds. We are going to use this information 4706 // to place a runtime bound check. 4707 unsigned NumComparisons = 0; 4708 bool CanDoRT = false; 4709 if (NeedRTCheck) 4710 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop, 4711 Strides); 4712 4713 DEBUG(dbgs() << "LV: We need to do " << NumComparisons << 4714 " pointer comparisons.\n"); 4715 4716 // If we only have one set of dependences to check pointers among we don't 4717 // need a runtime check. 4718 if (NumComparisons == 0 && NeedRTCheck) 4719 NeedRTCheck = false; 4720 4721 // Check that we did not collect too many pointers or found an unsizeable 4722 // pointer. 4723 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 4724 PtrRtCheck.reset(); 4725 CanDoRT = false; 4726 } 4727 4728 if (CanDoRT) { 4729 DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n"); 4730 } 4731 4732 if (NeedRTCheck && !CanDoRT) { 4733 emitAnalysis(Report() << "cannot identify array bounds"); 4734 DEBUG(dbgs() << "LV: We can't vectorize because we can't find " << 4735 "the array bounds.\n"); 4736 PtrRtCheck.reset(); 4737 return false; 4738 } 4739 4740 PtrRtCheck.Need = NeedRTCheck; 4741 4742 bool CanVecMem = true; 4743 if (Accesses.isDependencyCheckNeeded()) { 4744 DEBUG(dbgs() << "LV: Checking memory dependencies\n"); 4745 CanVecMem = DepChecker.areDepsSafe( 4746 DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 4747 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 4748 4749 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 4750 DEBUG(dbgs() << "LV: Retrying with memory checks\n"); 4751 NeedRTCheck = true; 4752 4753 // Clear the dependency checks. We assume they are not needed. 4754 Accesses.resetDepChecks(); 4755 4756 PtrRtCheck.reset(); 4757 PtrRtCheck.Need = true; 4758 4759 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, 4760 TheLoop, Strides, true); 4761 // Check that we did not collect too many pointers or found an unsizeable 4762 // pointer. 4763 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 4764 if (!CanDoRT && NumComparisons > 0) 4765 emitAnalysis(Report() 4766 << "cannot check memory dependencies at runtime"); 4767 else 4768 emitAnalysis(Report() 4769 << NumComparisons << " exceeds limit of " 4770 << RuntimeMemoryCheckThreshold 4771 << " dependent memory operations checked at runtime"); 4772 DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n"); 4773 PtrRtCheck.reset(); 4774 return false; 4775 } 4776 4777 CanVecMem = true; 4778 } 4779 } 4780 4781 if (!CanVecMem) 4782 emitAnalysis(Report() << "unsafe dependent memory operations in loop"); 4783 4784 DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") << 4785 " need a runtime memory check.\n"); 4786 4787 return CanVecMem; 4788 } 4789 4790 static bool hasMultipleUsesOf(Instruction *I, 4791 SmallPtrSet<Instruction *, 8> &Insts) { 4792 unsigned NumUses = 0; 4793 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) { 4794 if (Insts.count(dyn_cast<Instruction>(*Use))) 4795 ++NumUses; 4796 if (NumUses > 1) 4797 return true; 4798 } 4799 4800 return false; 4801 } 4802 4803 static bool areAllUsesIn(Instruction *I, SmallPtrSet<Instruction *, 8> &Set) { 4804 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 4805 if (!Set.count(dyn_cast<Instruction>(*Use))) 4806 return false; 4807 return true; 4808 } 4809 4810 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi, 4811 ReductionKind Kind) { 4812 if (Phi->getNumIncomingValues() != 2) 4813 return false; 4814 4815 // Reduction variables are only found in the loop header block. 4816 if (Phi->getParent() != TheLoop->getHeader()) 4817 return false; 4818 4819 // Obtain the reduction start value from the value that comes from the loop 4820 // preheader. 4821 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 4822 4823 // ExitInstruction is the single value which is used outside the loop. 4824 // We only allow for a single reduction value to be used outside the loop. 4825 // This includes users of the reduction, variables (which form a cycle 4826 // which ends in the phi node). 4827 Instruction *ExitInstruction = nullptr; 4828 // Indicates that we found a reduction operation in our scan. 4829 bool FoundReduxOp = false; 4830 4831 // We start with the PHI node and scan for all of the users of this 4832 // instruction. All users must be instructions that can be used as reduction 4833 // variables (such as ADD). We must have a single out-of-block user. The cycle 4834 // must include the original PHI. 4835 bool FoundStartPHI = false; 4836 4837 // To recognize min/max patterns formed by a icmp select sequence, we store 4838 // the number of instruction we saw from the recognized min/max pattern, 4839 // to make sure we only see exactly the two instructions. 4840 unsigned NumCmpSelectPatternInst = 0; 4841 ReductionInstDesc ReduxDesc(false, nullptr); 4842 4843 SmallPtrSet<Instruction *, 8> VisitedInsts; 4844 SmallVector<Instruction *, 8> Worklist; 4845 Worklist.push_back(Phi); 4846 VisitedInsts.insert(Phi); 4847 4848 // A value in the reduction can be used: 4849 // - By the reduction: 4850 // - Reduction operation: 4851 // - One use of reduction value (safe). 4852 // - Multiple use of reduction value (not safe). 4853 // - PHI: 4854 // - All uses of the PHI must be the reduction (safe). 4855 // - Otherwise, not safe. 4856 // - By one instruction outside of the loop (safe). 4857 // - By further instructions outside of the loop (not safe). 4858 // - By an instruction that is not part of the reduction (not safe). 4859 // This is either: 4860 // * An instruction type other than PHI or the reduction operation. 4861 // * A PHI in the header other than the initial PHI. 4862 while (!Worklist.empty()) { 4863 Instruction *Cur = Worklist.back(); 4864 Worklist.pop_back(); 4865 4866 // No Users. 4867 // If the instruction has no users then this is a broken chain and can't be 4868 // a reduction variable. 4869 if (Cur->use_empty()) 4870 return false; 4871 4872 bool IsAPhi = isa<PHINode>(Cur); 4873 4874 // A header PHI use other than the original PHI. 4875 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 4876 return false; 4877 4878 // Reductions of instructions such as Div, and Sub is only possible if the 4879 // LHS is the reduction variable. 4880 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 4881 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 4882 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 4883 return false; 4884 4885 // Any reduction instruction must be of one of the allowed kinds. 4886 ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc); 4887 if (!ReduxDesc.IsReduction) 4888 return false; 4889 4890 // A reduction operation must only have one use of the reduction value. 4891 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 4892 hasMultipleUsesOf(Cur, VisitedInsts)) 4893 return false; 4894 4895 // All inputs to a PHI node must be a reduction value. 4896 if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 4897 return false; 4898 4899 if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) || 4900 isa<SelectInst>(Cur))) 4901 ++NumCmpSelectPatternInst; 4902 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || 4903 isa<SelectInst>(Cur))) 4904 ++NumCmpSelectPatternInst; 4905 4906 // Check whether we found a reduction operator. 4907 FoundReduxOp |= !IsAPhi; 4908 4909 // Process users of current instruction. Push non-PHI nodes after PHI nodes 4910 // onto the stack. This way we are going to have seen all inputs to PHI 4911 // nodes once we get to them. 4912 SmallVector<Instruction *, 8> NonPHIs; 4913 SmallVector<Instruction *, 8> PHIs; 4914 for (User *U : Cur->users()) { 4915 Instruction *UI = cast<Instruction>(U); 4916 4917 // Check if we found the exit user. 4918 BasicBlock *Parent = UI->getParent(); 4919 if (!TheLoop->contains(Parent)) { 4920 // Exit if you find multiple outside users or if the header phi node is 4921 // being used. In this case the user uses the value of the previous 4922 // iteration, in which case we would loose "VF-1" iterations of the 4923 // reduction operation if we vectorize. 4924 if (ExitInstruction != nullptr || Cur == Phi) 4925 return false; 4926 4927 // The instruction used by an outside user must be the last instruction 4928 // before we feed back to the reduction phi. Otherwise, we loose VF-1 4929 // operations on the value. 4930 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) 4931 return false; 4932 4933 ExitInstruction = Cur; 4934 continue; 4935 } 4936 4937 // Process instructions only once (termination). Each reduction cycle 4938 // value must only be used once, except by phi nodes and min/max 4939 // reductions which are represented as a cmp followed by a select. 4940 ReductionInstDesc IgnoredVal(false, nullptr); 4941 if (VisitedInsts.insert(UI)) { 4942 if (isa<PHINode>(UI)) 4943 PHIs.push_back(UI); 4944 else 4945 NonPHIs.push_back(UI); 4946 } else if (!isa<PHINode>(UI) && 4947 ((!isa<FCmpInst>(UI) && 4948 !isa<ICmpInst>(UI) && 4949 !isa<SelectInst>(UI)) || 4950 !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction)) 4951 return false; 4952 4953 // Remember that we completed the cycle. 4954 if (UI == Phi) 4955 FoundStartPHI = true; 4956 } 4957 Worklist.append(PHIs.begin(), PHIs.end()); 4958 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 4959 } 4960 4961 // This means we have seen one but not the other instruction of the 4962 // pattern or more than just a select and cmp. 4963 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 4964 NumCmpSelectPatternInst != 2) 4965 return false; 4966 4967 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 4968 return false; 4969 4970 // We found a reduction var if we have reached the original phi node and we 4971 // only have a single instruction with out-of-loop users. 4972 4973 // This instruction is allowed to have out-of-loop users. 4974 AllowedExit.insert(ExitInstruction); 4975 4976 // Save the description of this reduction variable. 4977 ReductionDescriptor RD(RdxStart, ExitInstruction, Kind, 4978 ReduxDesc.MinMaxKind); 4979 Reductions[Phi] = RD; 4980 // We've ended the cycle. This is a reduction variable if we have an 4981 // outside user and it has a binary op. 4982 4983 return true; 4984 } 4985 4986 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 4987 /// pattern corresponding to a min(X, Y) or max(X, Y). 4988 LoopVectorizationLegality::ReductionInstDesc 4989 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I, 4990 ReductionInstDesc &Prev) { 4991 4992 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 4993 "Expect a select instruction"); 4994 Instruction *Cmp = nullptr; 4995 SelectInst *Select = nullptr; 4996 4997 // We must handle the select(cmp()) as a single instruction. Advance to the 4998 // select. 4999 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 5000 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 5001 return ReductionInstDesc(false, I); 5002 return ReductionInstDesc(Select, Prev.MinMaxKind); 5003 } 5004 5005 // Only handle single use cases for now. 5006 if (!(Select = dyn_cast<SelectInst>(I))) 5007 return ReductionInstDesc(false, I); 5008 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 5009 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 5010 return ReductionInstDesc(false, I); 5011 if (!Cmp->hasOneUse()) 5012 return ReductionInstDesc(false, I); 5013 5014 Value *CmpLeft; 5015 Value *CmpRight; 5016 5017 // Look for a min/max pattern. 5018 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5019 return ReductionInstDesc(Select, MRK_UIntMin); 5020 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5021 return ReductionInstDesc(Select, MRK_UIntMax); 5022 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5023 return ReductionInstDesc(Select, MRK_SIntMax); 5024 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5025 return ReductionInstDesc(Select, MRK_SIntMin); 5026 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5027 return ReductionInstDesc(Select, MRK_FloatMin); 5028 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5029 return ReductionInstDesc(Select, MRK_FloatMax); 5030 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5031 return ReductionInstDesc(Select, MRK_FloatMin); 5032 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5033 return ReductionInstDesc(Select, MRK_FloatMax); 5034 5035 return ReductionInstDesc(false, I); 5036 } 5037 5038 LoopVectorizationLegality::ReductionInstDesc 5039 LoopVectorizationLegality::isReductionInstr(Instruction *I, 5040 ReductionKind Kind, 5041 ReductionInstDesc &Prev) { 5042 bool FP = I->getType()->isFloatingPointTy(); 5043 bool FastMath = (FP && I->isCommutative() && I->isAssociative()); 5044 switch (I->getOpcode()) { 5045 default: 5046 return ReductionInstDesc(false, I); 5047 case Instruction::PHI: 5048 if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd && 5049 Kind != RK_FloatMinMax)) 5050 return ReductionInstDesc(false, I); 5051 return ReductionInstDesc(I, Prev.MinMaxKind); 5052 case Instruction::Sub: 5053 case Instruction::Add: 5054 return ReductionInstDesc(Kind == RK_IntegerAdd, I); 5055 case Instruction::Mul: 5056 return ReductionInstDesc(Kind == RK_IntegerMult, I); 5057 case Instruction::And: 5058 return ReductionInstDesc(Kind == RK_IntegerAnd, I); 5059 case Instruction::Or: 5060 return ReductionInstDesc(Kind == RK_IntegerOr, I); 5061 case Instruction::Xor: 5062 return ReductionInstDesc(Kind == RK_IntegerXor, I); 5063 case Instruction::FMul: 5064 return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I); 5065 case Instruction::FAdd: 5066 return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I); 5067 case Instruction::FCmp: 5068 case Instruction::ICmp: 5069 case Instruction::Select: 5070 if (Kind != RK_IntegerMinMax && 5071 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 5072 return ReductionInstDesc(false, I); 5073 return isMinMaxSelectCmpPattern(I, Prev); 5074 } 5075 } 5076 5077 LoopVectorizationLegality::InductionKind 5078 LoopVectorizationLegality::isInductionVariable(PHINode *Phi) { 5079 Type *PhiTy = Phi->getType(); 5080 // We only handle integer and pointer inductions variables. 5081 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 5082 return IK_NoInduction; 5083 5084 // Check that the PHI is consecutive. 5085 const SCEV *PhiScev = SE->getSCEV(Phi); 5086 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 5087 if (!AR) { 5088 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 5089 return IK_NoInduction; 5090 } 5091 const SCEV *Step = AR->getStepRecurrence(*SE); 5092 5093 // Integer inductions need to have a stride of one. 5094 if (PhiTy->isIntegerTy()) { 5095 if (Step->isOne()) 5096 return IK_IntInduction; 5097 if (Step->isAllOnesValue()) 5098 return IK_ReverseIntInduction; 5099 return IK_NoInduction; 5100 } 5101 5102 // Calculate the pointer stride and check if it is consecutive. 5103 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5104 if (!C) 5105 return IK_NoInduction; 5106 5107 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 5108 uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType()); 5109 if (C->getValue()->equalsInt(Size)) 5110 return IK_PtrInduction; 5111 else if (C->getValue()->equalsInt(0 - Size)) 5112 return IK_ReversePtrInduction; 5113 5114 return IK_NoInduction; 5115 } 5116 5117 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5118 Value *In0 = const_cast<Value*>(V); 5119 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5120 if (!PN) 5121 return false; 5122 5123 return Inductions.count(PN); 5124 } 5125 5126 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5127 assert(TheLoop->contains(BB) && "Unknown block used"); 5128 5129 // Blocks that do not dominate the latch need predication. 5130 BasicBlock* Latch = TheLoop->getLoopLatch(); 5131 return !DT->dominates(BB, Latch); 5132 } 5133 5134 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 5135 SmallPtrSet<Value *, 8>& SafePtrs) { 5136 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5137 // We might be able to hoist the load. 5138 if (it->mayReadFromMemory()) { 5139 LoadInst *LI = dyn_cast<LoadInst>(it); 5140 if (!LI || !SafePtrs.count(LI->getPointerOperand())) 5141 return false; 5142 } 5143 5144 // We don't predicate stores at the moment. 5145 if (it->mayWriteToMemory()) { 5146 StoreInst *SI = dyn_cast<StoreInst>(it); 5147 // We only support predication of stores in basic blocks with one 5148 // predecessor. 5149 if (!SI || ++NumPredStores > NumberOfStoresToPredicate || 5150 !SafePtrs.count(SI->getPointerOperand()) || 5151 !SI->getParent()->getSinglePredecessor()) 5152 return false; 5153 } 5154 if (it->mayThrow()) 5155 return false; 5156 5157 // Check that we don't have a constant expression that can trap as operand. 5158 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 5159 OI != OE; ++OI) { 5160 if (Constant *C = dyn_cast<Constant>(*OI)) 5161 if (C->canTrap()) 5162 return false; 5163 } 5164 5165 // The instructions below can trap. 5166 switch (it->getOpcode()) { 5167 default: continue; 5168 case Instruction::UDiv: 5169 case Instruction::SDiv: 5170 case Instruction::URem: 5171 case Instruction::SRem: 5172 return false; 5173 } 5174 } 5175 5176 return true; 5177 } 5178 5179 LoopVectorizationCostModel::VectorizationFactor 5180 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize, 5181 unsigned UserVF, 5182 bool ForceVectorization) { 5183 // Width 1 means no vectorize 5184 VectorizationFactor Factor = { 1U, 0U }; 5185 if (OptForSize && Legal->getRuntimePointerCheck()->Need) { 5186 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); 5187 return Factor; 5188 } 5189 5190 if (!EnableCondStoresVectorization && Legal->NumPredStores) { 5191 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5192 return Factor; 5193 } 5194 5195 // Find the trip count. 5196 unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch()); 5197 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5198 5199 unsigned WidestType = getWidestType(); 5200 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5201 unsigned MaxSafeDepDist = -1U; 5202 if (Legal->getMaxSafeDepDistBytes() != -1U) 5203 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5204 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 5205 WidestRegister : MaxSafeDepDist); 5206 unsigned MaxVectorSize = WidestRegister / WidestType; 5207 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); 5208 DEBUG(dbgs() << "LV: The Widest register is: " 5209 << WidestRegister << " bits.\n"); 5210 5211 if (MaxVectorSize == 0) { 5212 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5213 MaxVectorSize = 1; 5214 } 5215 5216 assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements" 5217 " into one vector!"); 5218 5219 unsigned VF = MaxVectorSize; 5220 5221 // If we optimize the program for size, avoid creating the tail loop. 5222 if (OptForSize) { 5223 // If we are unable to calculate the trip count then don't try to vectorize. 5224 if (TC < 2) { 5225 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 5226 return Factor; 5227 } 5228 5229 // Find the maximum SIMD width that can fit within the trip count. 5230 VF = TC % MaxVectorSize; 5231 5232 if (VF == 0) 5233 VF = MaxVectorSize; 5234 5235 // If the trip count that we found modulo the vectorization factor is not 5236 // zero then we require a tail. 5237 if (VF < 2) { 5238 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 5239 return Factor; 5240 } 5241 } 5242 5243 if (UserVF != 0) { 5244 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5245 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5246 5247 Factor.Width = UserVF; 5248 return Factor; 5249 } 5250 5251 float Cost = expectedCost(1); 5252 #ifndef NDEBUG 5253 const float ScalarCost = Cost; 5254 #endif /* NDEBUG */ 5255 unsigned Width = 1; 5256 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5257 5258 // Ignore scalar width, because the user explicitly wants vectorization. 5259 if (ForceVectorization && VF > 1) { 5260 Width = 2; 5261 Cost = expectedCost(Width) / (float)Width; 5262 } 5263 5264 for (unsigned i=2; i <= VF; i*=2) { 5265 // Notice that the vector loop needs to be executed less times, so 5266 // we need to divide the cost of the vector loops by the width of 5267 // the vector elements. 5268 float VectorCost = expectedCost(i) / (float)i; 5269 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 5270 (int)VectorCost << ".\n"); 5271 if (VectorCost < Cost) { 5272 Cost = VectorCost; 5273 Width = i; 5274 } 5275 } 5276 5277 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5278 << "LV: Vectorization seems to be not beneficial, " 5279 << "but was forced by a user.\n"); 5280 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 5281 Factor.Width = Width; 5282 Factor.Cost = Width * Cost; 5283 return Factor; 5284 } 5285 5286 unsigned LoopVectorizationCostModel::getWidestType() { 5287 unsigned MaxWidth = 8; 5288 5289 // For each block. 5290 for (Loop::block_iterator bb = TheLoop->block_begin(), 5291 be = TheLoop->block_end(); bb != be; ++bb) { 5292 BasicBlock *BB = *bb; 5293 5294 // For each instruction in the loop. 5295 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5296 Type *T = it->getType(); 5297 5298 // Only examine Loads, Stores and PHINodes. 5299 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 5300 continue; 5301 5302 // Examine PHI nodes that are reduction variables. 5303 if (PHINode *PN = dyn_cast<PHINode>(it)) 5304 if (!Legal->getReductionVars()->count(PN)) 5305 continue; 5306 5307 // Examine the stored values. 5308 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 5309 T = ST->getValueOperand()->getType(); 5310 5311 // Ignore loaded pointer types and stored pointer types that are not 5312 // consecutive. However, we do want to take consecutive stores/loads of 5313 // pointer vectors into account. 5314 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) 5315 continue; 5316 5317 MaxWidth = std::max(MaxWidth, 5318 (unsigned)DL->getTypeSizeInBits(T->getScalarType())); 5319 } 5320 } 5321 5322 return MaxWidth; 5323 } 5324 5325 unsigned 5326 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize, 5327 unsigned UserUF, 5328 unsigned VF, 5329 unsigned LoopCost) { 5330 5331 // -- The unroll heuristics -- 5332 // We unroll the loop in order to expose ILP and reduce the loop overhead. 5333 // There are many micro-architectural considerations that we can't predict 5334 // at this level. For example frontend pressure (on decode or fetch) due to 5335 // code size, or the number and capabilities of the execution ports. 5336 // 5337 // We use the following heuristics to select the unroll factor: 5338 // 1. If the code has reductions the we unroll in order to break the cross 5339 // iteration dependency. 5340 // 2. If the loop is really small then we unroll in order to reduce the loop 5341 // overhead. 5342 // 3. We don't unroll if we think that we will spill registers to memory due 5343 // to the increased register pressure. 5344 5345 // Use the user preference, unless 'auto' is selected. 5346 if (UserUF != 0) 5347 return UserUF; 5348 5349 // When we optimize for size we don't unroll. 5350 if (OptForSize) 5351 return 1; 5352 5353 // We used the distance for the unroll factor. 5354 if (Legal->getMaxSafeDepDistBytes() != -1U) 5355 return 1; 5356 5357 // Do not unroll loops with a relatively small trip count. 5358 unsigned TC = SE->getSmallConstantTripCount(TheLoop, 5359 TheLoop->getLoopLatch()); 5360 if (TC > 1 && TC < TinyTripCountUnrollThreshold) 5361 return 1; 5362 5363 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5364 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 5365 " registers\n"); 5366 5367 if (VF == 1) { 5368 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5369 TargetNumRegisters = ForceTargetNumScalarRegs; 5370 } else { 5371 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5372 TargetNumRegisters = ForceTargetNumVectorRegs; 5373 } 5374 5375 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); 5376 // We divide by these constants so assume that we have at least one 5377 // instruction that uses at least one register. 5378 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5379 R.NumInstructions = std::max(R.NumInstructions, 1U); 5380 5381 // We calculate the unroll factor using the following formula. 5382 // Subtract the number of loop invariants from the number of available 5383 // registers. These registers are used by all of the unrolled instances. 5384 // Next, divide the remaining registers by the number of registers that is 5385 // required by the loop, in order to estimate how many parallel instances 5386 // fit without causing spills. All of this is rounded down if necessary to be 5387 // a power of two. We want power of two unroll factors to simplify any 5388 // addressing operations or alignment considerations. 5389 unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5390 R.MaxLocalUsers); 5391 5392 // Don't count the induction variable as unrolled. 5393 if (EnableIndVarRegisterHeur) 5394 UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5395 std::max(1U, (R.MaxLocalUsers - 1))); 5396 5397 // Clamp the unroll factor ranges to reasonable factors. 5398 unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor(); 5399 5400 // Check if the user has overridden the unroll max. 5401 if (VF == 1) { 5402 if (ForceTargetMaxScalarUnrollFactor.getNumOccurrences() > 0) 5403 MaxUnrollSize = ForceTargetMaxScalarUnrollFactor; 5404 } else { 5405 if (ForceTargetMaxVectorUnrollFactor.getNumOccurrences() > 0) 5406 MaxUnrollSize = ForceTargetMaxVectorUnrollFactor; 5407 } 5408 5409 // If we did not calculate the cost for VF (because the user selected the VF) 5410 // then we calculate the cost of VF here. 5411 if (LoopCost == 0) 5412 LoopCost = expectedCost(VF); 5413 5414 // Clamp the calculated UF to be between the 1 and the max unroll factor 5415 // that the target allows. 5416 if (UF > MaxUnrollSize) 5417 UF = MaxUnrollSize; 5418 else if (UF < 1) 5419 UF = 1; 5420 5421 // Unroll if we vectorized this loop and there is a reduction that could 5422 // benefit from unrolling. 5423 if (VF > 1 && Legal->getReductionVars()->size()) { 5424 DEBUG(dbgs() << "LV: Unrolling because of reductions.\n"); 5425 return UF; 5426 } 5427 5428 // Note that if we've already vectorized the loop we will have done the 5429 // runtime check and so unrolling won't require further checks. 5430 bool UnrollingRequiresRuntimePointerCheck = 5431 (VF == 1 && Legal->getRuntimePointerCheck()->Need); 5432 5433 // We want to unroll small loops in order to reduce the loop overhead and 5434 // potentially expose ILP opportunities. 5435 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5436 if (!UnrollingRequiresRuntimePointerCheck && 5437 LoopCost < SmallLoopCost) { 5438 // We assume that the cost overhead is 1 and we use the cost model 5439 // to estimate the cost of the loop and unroll until the cost of the 5440 // loop overhead is about 5% of the cost of the loop. 5441 unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5442 5443 // Unroll until store/load ports (estimated by max unroll factor) are 5444 // saturated. 5445 unsigned StoresUF = UF / (Legal->NumStores ? Legal->NumStores : 1); 5446 unsigned LoadsUF = UF / (Legal->NumLoads ? Legal->NumLoads : 1); 5447 5448 if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) { 5449 DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n"); 5450 return std::max(StoresUF, LoadsUF); 5451 } 5452 5453 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n"); 5454 return SmallUF; 5455 } 5456 5457 DEBUG(dbgs() << "LV: Not Unrolling.\n"); 5458 return 1; 5459 } 5460 5461 LoopVectorizationCostModel::RegisterUsage 5462 LoopVectorizationCostModel::calculateRegisterUsage() { 5463 // This function calculates the register usage by measuring the highest number 5464 // of values that are alive at a single location. Obviously, this is a very 5465 // rough estimation. We scan the loop in a topological order in order and 5466 // assign a number to each instruction. We use RPO to ensure that defs are 5467 // met before their users. We assume that each instruction that has in-loop 5468 // users starts an interval. We record every time that an in-loop value is 5469 // used, so we have a list of the first and last occurrences of each 5470 // instruction. Next, we transpose this data structure into a multi map that 5471 // holds the list of intervals that *end* at a specific location. This multi 5472 // map allows us to perform a linear search. We scan the instructions linearly 5473 // and record each time that a new interval starts, by placing it in a set. 5474 // If we find this value in the multi-map then we remove it from the set. 5475 // The max register usage is the maximum size of the set. 5476 // We also search for instructions that are defined outside the loop, but are 5477 // used inside the loop. We need this number separately from the max-interval 5478 // usage number because when we unroll, loop-invariant values do not take 5479 // more register. 5480 LoopBlocksDFS DFS(TheLoop); 5481 DFS.perform(LI); 5482 5483 RegisterUsage R; 5484 R.NumInstructions = 0; 5485 5486 // Each 'key' in the map opens a new interval. The values 5487 // of the map are the index of the 'last seen' usage of the 5488 // instruction that is the key. 5489 typedef DenseMap<Instruction*, unsigned> IntervalMap; 5490 // Maps instruction to its index. 5491 DenseMap<unsigned, Instruction*> IdxToInstr; 5492 // Marks the end of each interval. 5493 IntervalMap EndPoint; 5494 // Saves the list of instruction indices that are used in the loop. 5495 SmallSet<Instruction*, 8> Ends; 5496 // Saves the list of values that are used in the loop but are 5497 // defined outside the loop, such as arguments and constants. 5498 SmallPtrSet<Value*, 8> LoopInvariants; 5499 5500 unsigned Index = 0; 5501 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 5502 be = DFS.endRPO(); bb != be; ++bb) { 5503 R.NumInstructions += (*bb)->size(); 5504 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 5505 ++it) { 5506 Instruction *I = it; 5507 IdxToInstr[Index++] = I; 5508 5509 // Save the end location of each USE. 5510 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 5511 Value *U = I->getOperand(i); 5512 Instruction *Instr = dyn_cast<Instruction>(U); 5513 5514 // Ignore non-instruction values such as arguments, constants, etc. 5515 if (!Instr) continue; 5516 5517 // If this instruction is outside the loop then record it and continue. 5518 if (!TheLoop->contains(Instr)) { 5519 LoopInvariants.insert(Instr); 5520 continue; 5521 } 5522 5523 // Overwrite previous end points. 5524 EndPoint[Instr] = Index; 5525 Ends.insert(Instr); 5526 } 5527 } 5528 } 5529 5530 // Saves the list of intervals that end with the index in 'key'. 5531 typedef SmallVector<Instruction*, 2> InstrList; 5532 DenseMap<unsigned, InstrList> TransposeEnds; 5533 5534 // Transpose the EndPoints to a list of values that end at each index. 5535 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 5536 it != e; ++it) 5537 TransposeEnds[it->second].push_back(it->first); 5538 5539 SmallSet<Instruction*, 8> OpenIntervals; 5540 unsigned MaxUsage = 0; 5541 5542 5543 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5544 for (unsigned int i = 0; i < Index; ++i) { 5545 Instruction *I = IdxToInstr[i]; 5546 // Ignore instructions that are never used within the loop. 5547 if (!Ends.count(I)) continue; 5548 5549 // Remove all of the instructions that end at this location. 5550 InstrList &List = TransposeEnds[i]; 5551 for (unsigned int j=0, e = List.size(); j < e; ++j) 5552 OpenIntervals.erase(List[j]); 5553 5554 // Count the number of live interals. 5555 MaxUsage = std::max(MaxUsage, OpenIntervals.size()); 5556 5557 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << 5558 OpenIntervals.size() << '\n'); 5559 5560 // Add the current instruction to the list of open intervals. 5561 OpenIntervals.insert(I); 5562 } 5563 5564 unsigned Invariant = LoopInvariants.size(); 5565 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n'); 5566 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5567 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n'); 5568 5569 R.LoopInvariantRegs = Invariant; 5570 R.MaxLocalUsers = MaxUsage; 5571 return R; 5572 } 5573 5574 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 5575 unsigned Cost = 0; 5576 5577 // For each block. 5578 for (Loop::block_iterator bb = TheLoop->block_begin(), 5579 be = TheLoop->block_end(); bb != be; ++bb) { 5580 unsigned BlockCost = 0; 5581 BasicBlock *BB = *bb; 5582 5583 // For each instruction in the old loop. 5584 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5585 // Skip dbg intrinsics. 5586 if (isa<DbgInfoIntrinsic>(it)) 5587 continue; 5588 5589 unsigned C = getInstructionCost(it, VF); 5590 5591 // Check if we should override the cost. 5592 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5593 C = ForceTargetInstructionCost; 5594 5595 BlockCost += C; 5596 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 5597 VF << " For instruction: " << *it << '\n'); 5598 } 5599 5600 // We assume that if-converted blocks have a 50% chance of being executed. 5601 // When the code is scalar then some of the blocks are avoided due to CF. 5602 // When the code is vectorized we execute all code paths. 5603 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5604 BlockCost /= 2; 5605 5606 Cost += BlockCost; 5607 } 5608 5609 return Cost; 5610 } 5611 5612 /// \brief Check whether the address computation for a non-consecutive memory 5613 /// access looks like an unlikely candidate for being merged into the indexing 5614 /// mode. 5615 /// 5616 /// We look for a GEP which has one index that is an induction variable and all 5617 /// other indices are loop invariant. If the stride of this access is also 5618 /// within a small bound we decide that this address computation can likely be 5619 /// merged into the addressing mode. 5620 /// In all other cases, we identify the address computation as complex. 5621 static bool isLikelyComplexAddressComputation(Value *Ptr, 5622 LoopVectorizationLegality *Legal, 5623 ScalarEvolution *SE, 5624 const Loop *TheLoop) { 5625 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5626 if (!Gep) 5627 return true; 5628 5629 // We are looking for a gep with all loop invariant indices except for one 5630 // which should be an induction variable. 5631 unsigned NumOperands = Gep->getNumOperands(); 5632 for (unsigned i = 1; i < NumOperands; ++i) { 5633 Value *Opd = Gep->getOperand(i); 5634 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5635 !Legal->isInductionVariable(Opd)) 5636 return true; 5637 } 5638 5639 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5640 // can likely be merged into the address computation. 5641 unsigned MaxMergeDistance = 64; 5642 5643 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5644 if (!AddRec) 5645 return true; 5646 5647 // Check the step is constant. 5648 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5649 // Calculate the pointer stride and check if it is consecutive. 5650 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5651 if (!C) 5652 return true; 5653 5654 const APInt &APStepVal = C->getValue()->getValue(); 5655 5656 // Huge step value - give up. 5657 if (APStepVal.getBitWidth() > 64) 5658 return true; 5659 5660 int64_t StepVal = APStepVal.getSExtValue(); 5661 5662 return StepVal > MaxMergeDistance; 5663 } 5664 5665 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5666 if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1))) 5667 return true; 5668 return false; 5669 } 5670 5671 unsigned 5672 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5673 // If we know that this instruction will remain uniform, check the cost of 5674 // the scalar version. 5675 if (Legal->isUniformAfterVectorization(I)) 5676 VF = 1; 5677 5678 Type *RetTy = I->getType(); 5679 Type *VectorTy = ToVectorTy(RetTy, VF); 5680 5681 // TODO: We need to estimate the cost of intrinsic calls. 5682 switch (I->getOpcode()) { 5683 case Instruction::GetElementPtr: 5684 // We mark this instruction as zero-cost because the cost of GEPs in 5685 // vectorized code depends on whether the corresponding memory instruction 5686 // is scalarized or not. Therefore, we handle GEPs with the memory 5687 // instruction cost. 5688 return 0; 5689 case Instruction::Br: { 5690 return TTI.getCFInstrCost(I->getOpcode()); 5691 } 5692 case Instruction::PHI: 5693 //TODO: IF-converted IFs become selects. 5694 return 0; 5695 case Instruction::Add: 5696 case Instruction::FAdd: 5697 case Instruction::Sub: 5698 case Instruction::FSub: 5699 case Instruction::Mul: 5700 case Instruction::FMul: 5701 case Instruction::UDiv: 5702 case Instruction::SDiv: 5703 case Instruction::FDiv: 5704 case Instruction::URem: 5705 case Instruction::SRem: 5706 case Instruction::FRem: 5707 case Instruction::Shl: 5708 case Instruction::LShr: 5709 case Instruction::AShr: 5710 case Instruction::And: 5711 case Instruction::Or: 5712 case Instruction::Xor: { 5713 // Since we will replace the stride by 1 the multiplication should go away. 5714 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5715 return 0; 5716 // Certain instructions can be cheaper to vectorize if they have a constant 5717 // second vector operand. One example of this are shifts on x86. 5718 TargetTransformInfo::OperandValueKind Op1VK = 5719 TargetTransformInfo::OK_AnyValue; 5720 TargetTransformInfo::OperandValueKind Op2VK = 5721 TargetTransformInfo::OK_AnyValue; 5722 Value *Op2 = I->getOperand(1); 5723 5724 // Check for a splat of a constant or for a non uniform vector of constants. 5725 if (isa<ConstantInt>(Op2)) 5726 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5727 else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 5728 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5729 if (cast<Constant>(Op2)->getSplatValue() != nullptr) 5730 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5731 } 5732 5733 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK); 5734 } 5735 case Instruction::Select: { 5736 SelectInst *SI = cast<SelectInst>(I); 5737 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5738 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5739 Type *CondTy = SI->getCondition()->getType(); 5740 if (!ScalarCond) 5741 CondTy = VectorType::get(CondTy, VF); 5742 5743 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 5744 } 5745 case Instruction::ICmp: 5746 case Instruction::FCmp: { 5747 Type *ValTy = I->getOperand(0)->getType(); 5748 VectorTy = ToVectorTy(ValTy, VF); 5749 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 5750 } 5751 case Instruction::Store: 5752 case Instruction::Load: { 5753 StoreInst *SI = dyn_cast<StoreInst>(I); 5754 LoadInst *LI = dyn_cast<LoadInst>(I); 5755 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 5756 LI->getType()); 5757 VectorTy = ToVectorTy(ValTy, VF); 5758 5759 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 5760 unsigned AS = SI ? SI->getPointerAddressSpace() : 5761 LI->getPointerAddressSpace(); 5762 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 5763 // We add the cost of address computation here instead of with the gep 5764 // instruction because only here we know whether the operation is 5765 // scalarized. 5766 if (VF == 1) 5767 return TTI.getAddressComputationCost(VectorTy) + 5768 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5769 5770 // Scalarized loads/stores. 5771 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5772 bool Reverse = ConsecutiveStride < 0; 5773 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy); 5774 unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF; 5775 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 5776 bool IsComplexComputation = 5777 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 5778 unsigned Cost = 0; 5779 // The cost of extracting from the value vector and pointer vector. 5780 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5781 for (unsigned i = 0; i < VF; ++i) { 5782 // The cost of extracting the pointer operand. 5783 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 5784 // In case of STORE, the cost of ExtractElement from the vector. 5785 // In case of LOAD, the cost of InsertElement into the returned 5786 // vector. 5787 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 5788 Instruction::InsertElement, 5789 VectorTy, i); 5790 } 5791 5792 // The cost of the scalar loads/stores. 5793 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 5794 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5795 Alignment, AS); 5796 return Cost; 5797 } 5798 5799 // Wide load/stores. 5800 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 5801 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5802 5803 if (Reverse) 5804 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 5805 VectorTy, 0); 5806 return Cost; 5807 } 5808 case Instruction::ZExt: 5809 case Instruction::SExt: 5810 case Instruction::FPToUI: 5811 case Instruction::FPToSI: 5812 case Instruction::FPExt: 5813 case Instruction::PtrToInt: 5814 case Instruction::IntToPtr: 5815 case Instruction::SIToFP: 5816 case Instruction::UIToFP: 5817 case Instruction::Trunc: 5818 case Instruction::FPTrunc: 5819 case Instruction::BitCast: { 5820 // We optimize the truncation of induction variable. 5821 // The cost of these is the same as the scalar operation. 5822 if (I->getOpcode() == Instruction::Trunc && 5823 Legal->isInductionVariable(I->getOperand(0))) 5824 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 5825 I->getOperand(0)->getType()); 5826 5827 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); 5828 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 5829 } 5830 case Instruction::Call: { 5831 CallInst *CI = cast<CallInst>(I); 5832 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 5833 assert(ID && "Not an intrinsic call!"); 5834 Type *RetTy = ToVectorTy(CI->getType(), VF); 5835 SmallVector<Type*, 4> Tys; 5836 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 5837 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 5838 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 5839 } 5840 default: { 5841 // We are scalarizing the instruction. Return the cost of the scalar 5842 // instruction, plus the cost of insert and extract into vector 5843 // elements, times the vector width. 5844 unsigned Cost = 0; 5845 5846 if (!RetTy->isVoidTy() && VF != 1) { 5847 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 5848 VectorTy); 5849 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 5850 VectorTy); 5851 5852 // The cost of inserting the results plus extracting each one of the 5853 // operands. 5854 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 5855 } 5856 5857 // The cost of executing VF copies of the scalar instruction. This opcode 5858 // is unknown. Assume that it is the same as 'mul'. 5859 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 5860 return Cost; 5861 } 5862 }// end of switch. 5863 } 5864 5865 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) { 5866 if (Scalar->isVoidTy() || VF == 1) 5867 return Scalar; 5868 return VectorType::get(Scalar, VF); 5869 } 5870 5871 char LoopVectorize::ID = 0; 5872 static const char lv_name[] = "Loop Vectorization"; 5873 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 5874 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 5875 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo) 5876 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5877 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 5878 INITIALIZE_PASS_DEPENDENCY(LCSSA) 5879 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 5880 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5881 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 5882 5883 namespace llvm { 5884 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 5885 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 5886 } 5887 } 5888 5889 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 5890 // Check for a store. 5891 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 5892 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 5893 5894 // Check for a load. 5895 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 5896 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 5897 5898 return false; 5899 } 5900 5901 5902 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 5903 bool IfPredicateStore) { 5904 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 5905 // Holds vector parameters or scalars, in case of uniform vals. 5906 SmallVector<VectorParts, 4> Params; 5907 5908 setDebugLocFromInst(Builder, Instr); 5909 5910 // Find all of the vectorized parameters. 5911 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5912 Value *SrcOp = Instr->getOperand(op); 5913 5914 // If we are accessing the old induction variable, use the new one. 5915 if (SrcOp == OldInduction) { 5916 Params.push_back(getVectorValue(SrcOp)); 5917 continue; 5918 } 5919 5920 // Try using previously calculated values. 5921 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 5922 5923 // If the src is an instruction that appeared earlier in the basic block 5924 // then it should already be vectorized. 5925 if (SrcInst && OrigLoop->contains(SrcInst)) { 5926 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 5927 // The parameter is a vector value from earlier. 5928 Params.push_back(WidenMap.get(SrcInst)); 5929 } else { 5930 // The parameter is a scalar from outside the loop. Maybe even a constant. 5931 VectorParts Scalars; 5932 Scalars.append(UF, SrcOp); 5933 Params.push_back(Scalars); 5934 } 5935 } 5936 5937 assert(Params.size() == Instr->getNumOperands() && 5938 "Invalid number of operands"); 5939 5940 // Does this instruction return a value ? 5941 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 5942 5943 Value *UndefVec = IsVoidRetTy ? nullptr : 5944 UndefValue::get(Instr->getType()); 5945 // Create a new entry in the WidenMap and initialize it to Undef or Null. 5946 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 5947 5948 Instruction *InsertPt = Builder.GetInsertPoint(); 5949 BasicBlock *IfBlock = Builder.GetInsertBlock(); 5950 BasicBlock *CondBlock = nullptr; 5951 5952 VectorParts Cond; 5953 Loop *VectorLp = nullptr; 5954 if (IfPredicateStore) { 5955 assert(Instr->getParent()->getSinglePredecessor() && 5956 "Only support single predecessor blocks"); 5957 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 5958 Instr->getParent()); 5959 VectorLp = LI->getLoopFor(IfBlock); 5960 assert(VectorLp && "Must have a loop for this block"); 5961 } 5962 5963 // For each vector unroll 'part': 5964 for (unsigned Part = 0; Part < UF; ++Part) { 5965 // For each scalar that we create: 5966 5967 // Start an "if (pred) a[i] = ..." block. 5968 Value *Cmp = nullptr; 5969 if (IfPredicateStore) { 5970 if (Cond[Part]->getType()->isVectorTy()) 5971 Cond[Part] = 5972 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 5973 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 5974 ConstantInt::get(Cond[Part]->getType(), 1)); 5975 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 5976 LoopVectorBody.push_back(CondBlock); 5977 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase()); 5978 // Update Builder with newly created basic block. 5979 Builder.SetInsertPoint(InsertPt); 5980 } 5981 5982 Instruction *Cloned = Instr->clone(); 5983 if (!IsVoidRetTy) 5984 Cloned->setName(Instr->getName() + ".cloned"); 5985 // Replace the operands of the cloned instructions with extracted scalars. 5986 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5987 Value *Op = Params[op][Part]; 5988 Cloned->setOperand(op, Op); 5989 } 5990 5991 // Place the cloned scalar in the new loop. 5992 Builder.Insert(Cloned); 5993 5994 // If the original scalar returns a value we need to place it in a vector 5995 // so that future users will be able to use it. 5996 if (!IsVoidRetTy) 5997 VecResults[Part] = Cloned; 5998 5999 // End if-block. 6000 if (IfPredicateStore) { 6001 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 6002 LoopVectorBody.push_back(NewIfBlock); 6003 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase()); 6004 Builder.SetInsertPoint(InsertPt); 6005 Instruction *OldBr = IfBlock->getTerminator(); 6006 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 6007 OldBr->eraseFromParent(); 6008 IfBlock = NewIfBlock; 6009 } 6010 } 6011 } 6012 6013 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 6014 StoreInst *SI = dyn_cast<StoreInst>(Instr); 6015 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 6016 6017 return scalarizeInstruction(Instr, IfPredicateStore); 6018 } 6019 6020 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 6021 return Vec; 6022 } 6023 6024 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 6025 return V; 6026 } 6027 6028 Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx, 6029 bool Negate) { 6030 // When unrolling and the VF is 1, we only need to add a simple scalar. 6031 Type *ITy = Val->getType(); 6032 assert(!ITy->isVectorTy() && "Val must be a scalar"); 6033 Constant *C = ConstantInt::get(ITy, StartIdx, Negate); 6034 return Builder.CreateAdd(Val, C, "induction"); 6035 } 6036