1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/SetVector.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/Statistic.h" 58 #include "llvm/ADT/StringExtras.h" 59 #include "llvm/Analysis/AliasAnalysis.h" 60 #include "llvm/Analysis/BasicAliasAnalysis.h" 61 #include "llvm/Analysis/AliasSetTracker.h" 62 #include "llvm/Analysis/AssumptionCache.h" 63 #include "llvm/Analysis/BlockFrequencyInfo.h" 64 #include "llvm/Analysis/CodeMetrics.h" 65 #include "llvm/Analysis/DemandedBits.h" 66 #include "llvm/Analysis/GlobalsModRef.h" 67 #include "llvm/Analysis/LoopAccessAnalysis.h" 68 #include "llvm/Analysis/LoopInfo.h" 69 #include "llvm/Analysis/LoopIterator.h" 70 #include "llvm/Analysis/LoopPass.h" 71 #include "llvm/Analysis/ScalarEvolution.h" 72 #include "llvm/Analysis/ScalarEvolutionExpander.h" 73 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 74 #include "llvm/Analysis/TargetTransformInfo.h" 75 #include "llvm/Analysis/ValueTracking.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DebugInfo.h" 79 #include "llvm/IR/DerivedTypes.h" 80 #include "llvm/IR/DiagnosticInfo.h" 81 #include "llvm/IR/Dominators.h" 82 #include "llvm/IR/Function.h" 83 #include "llvm/IR/IRBuilder.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/LLVMContext.h" 87 #include "llvm/IR/Module.h" 88 #include "llvm/IR/PatternMatch.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/IR/ValueHandle.h" 92 #include "llvm/IR/Verifier.h" 93 #include "llvm/Pass.h" 94 #include "llvm/Support/BranchProbability.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/raw_ostream.h" 98 #include "llvm/Transforms/Scalar.h" 99 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 100 #include "llvm/Transforms/Utils/Local.h" 101 #include "llvm/Analysis/VectorUtils.h" 102 #include "llvm/Transforms/Utils/LoopUtils.h" 103 #include <algorithm> 104 #include <functional> 105 #include <map> 106 #include <tuple> 107 108 using namespace llvm; 109 using namespace llvm::PatternMatch; 110 111 #define LV_NAME "loop-vectorize" 112 #define DEBUG_TYPE LV_NAME 113 114 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 115 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 116 117 static cl::opt<bool> 118 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 119 cl::desc("Enable if-conversion during vectorization.")); 120 121 /// We don't vectorize loops with a known constant trip count below this number. 122 static cl::opt<unsigned> 123 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 124 cl::Hidden, 125 cl::desc("Don't vectorize loops with a constant " 126 "trip count that is smaller than this " 127 "value.")); 128 129 /// This enables versioning on the strides of symbolically striding memory 130 /// accesses in code like the following. 131 /// for (i = 0; i < N; ++i) 132 /// A[i * Stride1] += B[i * Stride2] ... 133 /// 134 /// Will be roughly translated to 135 /// if (Stride1 == 1 && Stride2 == 1) { 136 /// for (i = 0; i < N; i+=4) 137 /// A[i:i+3] += ... 138 /// } else 139 /// ... 140 static cl::opt<bool> EnableMemAccessVersioning( 141 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 142 cl::desc("Enable symblic stride memory access versioning")); 143 144 static cl::opt<bool> EnableInterleavedMemAccesses( 145 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 146 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 147 148 /// Maximum factor for an interleaved memory access. 149 static cl::opt<unsigned> MaxInterleaveGroupFactor( 150 "max-interleave-group-factor", cl::Hidden, 151 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 152 cl::init(8)); 153 154 /// We don't interleave loops with a known constant trip count below this 155 /// number. 156 static const unsigned TinyTripCountInterleaveThreshold = 128; 157 158 static cl::opt<unsigned> ForceTargetNumScalarRegs( 159 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 160 cl::desc("A flag that overrides the target's number of scalar registers.")); 161 162 static cl::opt<unsigned> ForceTargetNumVectorRegs( 163 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 164 cl::desc("A flag that overrides the target's number of vector registers.")); 165 166 /// Maximum vectorization interleave count. 167 static const unsigned MaxInterleaveFactor = 16; 168 169 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 170 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 171 cl::desc("A flag that overrides the target's max interleave factor for " 172 "scalar loops.")); 173 174 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 175 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 176 cl::desc("A flag that overrides the target's max interleave factor for " 177 "vectorized loops.")); 178 179 static cl::opt<unsigned> ForceTargetInstructionCost( 180 "force-target-instruction-cost", cl::init(0), cl::Hidden, 181 cl::desc("A flag that overrides the target's expected cost for " 182 "an instruction to a single constant value. Mostly " 183 "useful for getting consistent testing.")); 184 185 static cl::opt<unsigned> SmallLoopCost( 186 "small-loop-cost", cl::init(20), cl::Hidden, 187 cl::desc( 188 "The cost of a loop that is considered 'small' by the interleaver.")); 189 190 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 191 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 192 cl::desc("Enable the use of the block frequency analysis to access PGO " 193 "heuristics minimizing code growth in cold regions and being more " 194 "aggressive in hot regions.")); 195 196 // Runtime interleave loops for load/store throughput. 197 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 198 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 199 cl::desc( 200 "Enable runtime interleaving until load/store ports are saturated")); 201 202 /// The number of stores in a loop that are allowed to need predication. 203 static cl::opt<unsigned> NumberOfStoresToPredicate( 204 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 205 cl::desc("Max number of stores to be predicated behind an if.")); 206 207 static cl::opt<bool> EnableIndVarRegisterHeur( 208 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 209 cl::desc("Count the induction variable only once when interleaving")); 210 211 static cl::opt<bool> EnableCondStoresVectorization( 212 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 213 cl::desc("Enable if predication of stores during vectorization.")); 214 215 static cl::opt<unsigned> MaxNestedScalarReductionIC( 216 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 217 cl::desc("The maximum interleave count to use when interleaving a scalar " 218 "reduction in a nested loop.")); 219 220 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 221 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 222 cl::desc("The maximum allowed number of runtime memory checks with a " 223 "vectorize(enable) pragma.")); 224 225 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 226 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 227 cl::desc("The maximum number of SCEV checks allowed.")); 228 229 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 230 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 231 cl::desc("The maximum number of SCEV checks allowed with a " 232 "vectorize(enable) pragma")); 233 234 namespace { 235 236 // Forward declarations. 237 class LoopVectorizeHints; 238 class LoopVectorizationLegality; 239 class LoopVectorizationCostModel; 240 class LoopVectorizationRequirements; 241 242 /// \brief This modifies LoopAccessReport to initialize message with 243 /// loop-vectorizer-specific part. 244 class VectorizationReport : public LoopAccessReport { 245 public: 246 VectorizationReport(Instruction *I = nullptr) 247 : LoopAccessReport("loop not vectorized: ", I) {} 248 249 /// \brief This allows promotion of the loop-access analysis report into the 250 /// loop-vectorizer report. It modifies the message to add the 251 /// loop-vectorizer-specific part of the message. 252 explicit VectorizationReport(const LoopAccessReport &R) 253 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 254 R.getInstr()) {} 255 }; 256 257 /// A helper function for converting Scalar types to vector types. 258 /// If the incoming type is void, we return void. If the VF is 1, we return 259 /// the scalar type. 260 static Type* ToVectorTy(Type *Scalar, unsigned VF) { 261 if (Scalar->isVoidTy() || VF == 1) 262 return Scalar; 263 return VectorType::get(Scalar, VF); 264 } 265 266 /// InnerLoopVectorizer vectorizes loops which contain only one basic 267 /// block to a specified vectorization factor (VF). 268 /// This class performs the widening of scalars into vectors, or multiple 269 /// scalars. This class also implements the following features: 270 /// * It inserts an epilogue loop for handling loops that don't have iteration 271 /// counts that are known to be a multiple of the vectorization factor. 272 /// * It handles the code generation for reduction variables. 273 /// * Scalarization (implementation using scalars) of un-vectorizable 274 /// instructions. 275 /// InnerLoopVectorizer does not perform any vectorization-legality 276 /// checks, and relies on the caller to check for the different legality 277 /// aspects. The InnerLoopVectorizer relies on the 278 /// LoopVectorizationLegality class to provide information about the induction 279 /// and reduction variables that were found to a given vectorization factor. 280 class InnerLoopVectorizer { 281 public: 282 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 283 DominatorTree *DT, const TargetLibraryInfo *TLI, 284 const TargetTransformInfo *TTI, unsigned VecWidth, 285 unsigned UnrollFactor, SCEVUnionPredicate &Preds) 286 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 287 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), 288 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), 289 TripCount(nullptr), VectorTripCount(nullptr), Legal(nullptr), 290 AddedSafetyChecks(false), Preds(Preds) {} 291 292 // Perform the actual loop widening (vectorization). 293 // MinimumBitWidths maps scalar integer values to the smallest bitwidth they 294 // can be validly truncated to. The cost model has assumed this truncation 295 // will happen when vectorizing. 296 void vectorize(LoopVectorizationLegality *L, 297 DenseMap<Instruction*,uint64_t> MinimumBitWidths) { 298 MinBWs = MinimumBitWidths; 299 Legal = L; 300 // Create a new empty loop. Unlink the old loop and connect the new one. 301 createEmptyLoop(); 302 // Widen each instruction in the old loop to a new one in the new loop. 303 // Use the Legality module to find the induction and reduction variables. 304 vectorizeLoop(); 305 } 306 307 // Return true if any runtime check is added. 308 bool IsSafetyChecksAdded() { 309 return AddedSafetyChecks; 310 } 311 312 virtual ~InnerLoopVectorizer() {} 313 314 protected: 315 /// A small list of PHINodes. 316 typedef SmallVector<PHINode*, 4> PhiVector; 317 /// When we unroll loops we have multiple vector values for each scalar. 318 /// This data structure holds the unrolled and vectorized values that 319 /// originated from one scalar instruction. 320 typedef SmallVector<Value*, 2> VectorParts; 321 322 // When we if-convert we need to create edge masks. We have to cache values 323 // so that we don't end up with exponential recursion/IR. 324 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 325 VectorParts> EdgeMaskCache; 326 327 /// Create an empty loop, based on the loop ranges of the old loop. 328 void createEmptyLoop(); 329 /// Create a new induction variable inside L. 330 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 331 Value *Step, Instruction *DL); 332 /// Copy and widen the instructions from the old loop. 333 virtual void vectorizeLoop(); 334 335 /// \brief The Loop exit block may have single value PHI nodes where the 336 /// incoming value is 'Undef'. While vectorizing we only handled real values 337 /// that were defined inside the loop. Here we fix the 'undef case'. 338 /// See PR14725. 339 void fixLCSSAPHIs(); 340 341 /// Shrinks vector element sizes based on information in "MinBWs". 342 void truncateToMinimalBitwidths(); 343 344 /// A helper function that computes the predicate of the block BB, assuming 345 /// that the header block of the loop is set to True. It returns the *entry* 346 /// mask for the block BB. 347 VectorParts createBlockInMask(BasicBlock *BB); 348 /// A helper function that computes the predicate of the edge between SRC 349 /// and DST. 350 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 351 352 /// A helper function to vectorize a single BB within the innermost loop. 353 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 354 355 /// Vectorize a single PHINode in a block. This method handles the induction 356 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 357 /// arbitrary length vectors. 358 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 359 unsigned UF, unsigned VF, PhiVector *PV); 360 361 /// Insert the new loop to the loop hierarchy and pass manager 362 /// and update the analysis passes. 363 void updateAnalysis(); 364 365 /// This instruction is un-vectorizable. Implement it as a sequence 366 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 367 /// scalarized instruction behind an if block predicated on the control 368 /// dependence of the instruction. 369 virtual void scalarizeInstruction(Instruction *Instr, 370 bool IfPredicateStore=false); 371 372 /// Vectorize Load and Store instructions, 373 virtual void vectorizeMemoryInstruction(Instruction *Instr); 374 375 /// Create a broadcast instruction. This method generates a broadcast 376 /// instruction (shuffle) for loop invariant values and for the induction 377 /// value. If this is the induction variable then we extend it to N, N+1, ... 378 /// this is needed because each iteration in the loop corresponds to a SIMD 379 /// element. 380 virtual Value *getBroadcastInstrs(Value *V); 381 382 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 383 /// to each vector element of Val. The sequence starts at StartIndex. 384 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step); 385 386 /// When we go over instructions in the basic block we rely on previous 387 /// values within the current basic block or on loop invariant values. 388 /// When we widen (vectorize) values we place them in the map. If the values 389 /// are not within the map, they have to be loop invariant, so we simply 390 /// broadcast them into a vector. 391 VectorParts &getVectorValue(Value *V); 392 393 /// Try to vectorize the interleaved access group that \p Instr belongs to. 394 void vectorizeInterleaveGroup(Instruction *Instr); 395 396 /// Generate a shuffle sequence that will reverse the vector Vec. 397 virtual Value *reverseVector(Value *Vec); 398 399 /// Returns (and creates if needed) the original loop trip count. 400 Value *getOrCreateTripCount(Loop *NewLoop); 401 402 /// Returns (and creates if needed) the trip count of the widened loop. 403 Value *getOrCreateVectorTripCount(Loop *NewLoop); 404 405 /// Emit a bypass check to see if the trip count would overflow, or we 406 /// wouldn't have enough iterations to execute one vector loop. 407 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 408 /// Emit a bypass check to see if the vector trip count is nonzero. 409 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 410 /// Emit a bypass check to see if all of the SCEV assumptions we've 411 /// had to make are correct. 412 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 413 /// Emit bypass checks to check any memory assumptions we may have made. 414 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 415 416 /// This is a helper class that holds the vectorizer state. It maps scalar 417 /// instructions to vector instructions. When the code is 'unrolled' then 418 /// then a single scalar value is mapped to multiple vector parts. The parts 419 /// are stored in the VectorPart type. 420 struct ValueMap { 421 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 422 /// are mapped. 423 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 424 425 /// \return True if 'Key' is saved in the Value Map. 426 bool has(Value *Key) const { return MapStorage.count(Key); } 427 428 /// Initializes a new entry in the map. Sets all of the vector parts to the 429 /// save value in 'Val'. 430 /// \return A reference to a vector with splat values. 431 VectorParts &splat(Value *Key, Value *Val) { 432 VectorParts &Entry = MapStorage[Key]; 433 Entry.assign(UF, Val); 434 return Entry; 435 } 436 437 ///\return A reference to the value that is stored at 'Key'. 438 VectorParts &get(Value *Key) { 439 VectorParts &Entry = MapStorage[Key]; 440 if (Entry.empty()) 441 Entry.resize(UF); 442 assert(Entry.size() == UF); 443 return Entry; 444 } 445 446 private: 447 /// The unroll factor. Each entry in the map stores this number of vector 448 /// elements. 449 unsigned UF; 450 451 /// Map storage. We use std::map and not DenseMap because insertions to a 452 /// dense map invalidates its iterators. 453 std::map<Value *, VectorParts> MapStorage; 454 }; 455 456 /// The original loop. 457 Loop *OrigLoop; 458 /// Scev analysis to use. 459 ScalarEvolution *SE; 460 /// Loop Info. 461 LoopInfo *LI; 462 /// Dominator Tree. 463 DominatorTree *DT; 464 /// Alias Analysis. 465 AliasAnalysis *AA; 466 /// Target Library Info. 467 const TargetLibraryInfo *TLI; 468 /// Target Transform Info. 469 const TargetTransformInfo *TTI; 470 471 /// The vectorization SIMD factor to use. Each vector will have this many 472 /// vector elements. 473 unsigned VF; 474 475 protected: 476 /// The vectorization unroll factor to use. Each scalar is vectorized to this 477 /// many different vector instructions. 478 unsigned UF; 479 480 /// The builder that we use 481 IRBuilder<> Builder; 482 483 // --- Vectorization state --- 484 485 /// The vector-loop preheader. 486 BasicBlock *LoopVectorPreHeader; 487 /// The scalar-loop preheader. 488 BasicBlock *LoopScalarPreHeader; 489 /// Middle Block between the vector and the scalar. 490 BasicBlock *LoopMiddleBlock; 491 ///The ExitBlock of the scalar loop. 492 BasicBlock *LoopExitBlock; 493 ///The vector loop body. 494 SmallVector<BasicBlock *, 4> LoopVectorBody; 495 ///The scalar loop body. 496 BasicBlock *LoopScalarBody; 497 /// A list of all bypass blocks. The first block is the entry of the loop. 498 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 499 500 /// The new Induction variable which was added to the new block. 501 PHINode *Induction; 502 /// The induction variable of the old basic block. 503 PHINode *OldInduction; 504 /// Maps scalars to widened vectors. 505 ValueMap WidenMap; 506 /// Store instructions that should be predicated, as a pair 507 /// <StoreInst, Predicate> 508 SmallVector<std::pair<StoreInst*,Value*>, 4> PredicatedStores; 509 EdgeMaskCache MaskCache; 510 /// Trip count of the original loop. 511 Value *TripCount; 512 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 513 Value *VectorTripCount; 514 515 /// Map of scalar integer values to the smallest bitwidth they can be legally 516 /// represented as. The vector equivalents of these values should be truncated 517 /// to this type. 518 DenseMap<Instruction*,uint64_t> MinBWs; 519 LoopVectorizationLegality *Legal; 520 521 // Record whether runtime check is added. 522 bool AddedSafetyChecks; 523 524 /// The SCEV predicate containing all the SCEV-related assumptions. 525 /// The predicate is used to simplify existing expressions in the 526 /// context of existing SCEV assumptions. Since legality checking is 527 /// not done here, we don't need to use this predicate to record 528 /// further assumptions. 529 SCEVUnionPredicate &Preds; 530 }; 531 532 class InnerLoopUnroller : public InnerLoopVectorizer { 533 public: 534 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 535 DominatorTree *DT, const TargetLibraryInfo *TLI, 536 const TargetTransformInfo *TTI, unsigned UnrollFactor, 537 SCEVUnionPredicate &Preds) 538 : InnerLoopVectorizer(OrigLoop, SE, LI, DT, TLI, TTI, 1, UnrollFactor, 539 Preds) {} 540 541 private: 542 void scalarizeInstruction(Instruction *Instr, 543 bool IfPredicateStore = false) override; 544 void vectorizeMemoryInstruction(Instruction *Instr) override; 545 Value *getBroadcastInstrs(Value *V) override; 546 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override; 547 Value *reverseVector(Value *Vec) override; 548 }; 549 550 /// \brief Look for a meaningful debug location on the instruction or it's 551 /// operands. 552 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 553 if (!I) 554 return I; 555 556 DebugLoc Empty; 557 if (I->getDebugLoc() != Empty) 558 return I; 559 560 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 561 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 562 if (OpInst->getDebugLoc() != Empty) 563 return OpInst; 564 } 565 566 return I; 567 } 568 569 /// \brief Set the debug location in the builder using the debug location in the 570 /// instruction. 571 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 572 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 573 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 574 else 575 B.SetCurrentDebugLocation(DebugLoc()); 576 } 577 578 #ifndef NDEBUG 579 /// \return string containing a file name and a line # for the given loop. 580 static std::string getDebugLocString(const Loop *L) { 581 std::string Result; 582 if (L) { 583 raw_string_ostream OS(Result); 584 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 585 LoopDbgLoc.print(OS); 586 else 587 // Just print the module name. 588 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 589 OS.flush(); 590 } 591 return Result; 592 } 593 #endif 594 595 /// \brief Propagate known metadata from one instruction to another. 596 static void propagateMetadata(Instruction *To, const Instruction *From) { 597 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 598 From->getAllMetadataOtherThanDebugLoc(Metadata); 599 600 for (auto M : Metadata) { 601 unsigned Kind = M.first; 602 603 // These are safe to transfer (this is safe for TBAA, even when we 604 // if-convert, because should that metadata have had a control dependency 605 // on the condition, and thus actually aliased with some other 606 // non-speculated memory access when the condition was false, this would be 607 // caught by the runtime overlap checks). 608 if (Kind != LLVMContext::MD_tbaa && 609 Kind != LLVMContext::MD_alias_scope && 610 Kind != LLVMContext::MD_noalias && 611 Kind != LLVMContext::MD_fpmath && 612 Kind != LLVMContext::MD_nontemporal) 613 continue; 614 615 To->setMetadata(Kind, M.second); 616 } 617 } 618 619 /// \brief Propagate known metadata from one instruction to a vector of others. 620 static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *From) { 621 for (Value *V : To) 622 if (Instruction *I = dyn_cast<Instruction>(V)) 623 propagateMetadata(I, From); 624 } 625 626 /// \brief The group of interleaved loads/stores sharing the same stride and 627 /// close to each other. 628 /// 629 /// Each member in this group has an index starting from 0, and the largest 630 /// index should be less than interleaved factor, which is equal to the absolute 631 /// value of the access's stride. 632 /// 633 /// E.g. An interleaved load group of factor 4: 634 /// for (unsigned i = 0; i < 1024; i+=4) { 635 /// a = A[i]; // Member of index 0 636 /// b = A[i+1]; // Member of index 1 637 /// d = A[i+3]; // Member of index 3 638 /// ... 639 /// } 640 /// 641 /// An interleaved store group of factor 4: 642 /// for (unsigned i = 0; i < 1024; i+=4) { 643 /// ... 644 /// A[i] = a; // Member of index 0 645 /// A[i+1] = b; // Member of index 1 646 /// A[i+2] = c; // Member of index 2 647 /// A[i+3] = d; // Member of index 3 648 /// } 649 /// 650 /// Note: the interleaved load group could have gaps (missing members), but 651 /// the interleaved store group doesn't allow gaps. 652 class InterleaveGroup { 653 public: 654 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 655 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 656 assert(Align && "The alignment should be non-zero"); 657 658 Factor = std::abs(Stride); 659 assert(Factor > 1 && "Invalid interleave factor"); 660 661 Reverse = Stride < 0; 662 Members[0] = Instr; 663 } 664 665 bool isReverse() const { return Reverse; } 666 unsigned getFactor() const { return Factor; } 667 unsigned getAlignment() const { return Align; } 668 unsigned getNumMembers() const { return Members.size(); } 669 670 /// \brief Try to insert a new member \p Instr with index \p Index and 671 /// alignment \p NewAlign. The index is related to the leader and it could be 672 /// negative if it is the new leader. 673 /// 674 /// \returns false if the instruction doesn't belong to the group. 675 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 676 assert(NewAlign && "The new member's alignment should be non-zero"); 677 678 int Key = Index + SmallestKey; 679 680 // Skip if there is already a member with the same index. 681 if (Members.count(Key)) 682 return false; 683 684 if (Key > LargestKey) { 685 // The largest index is always less than the interleave factor. 686 if (Index >= static_cast<int>(Factor)) 687 return false; 688 689 LargestKey = Key; 690 } else if (Key < SmallestKey) { 691 // The largest index is always less than the interleave factor. 692 if (LargestKey - Key >= static_cast<int>(Factor)) 693 return false; 694 695 SmallestKey = Key; 696 } 697 698 // It's always safe to select the minimum alignment. 699 Align = std::min(Align, NewAlign); 700 Members[Key] = Instr; 701 return true; 702 } 703 704 /// \brief Get the member with the given index \p Index 705 /// 706 /// \returns nullptr if contains no such member. 707 Instruction *getMember(unsigned Index) const { 708 int Key = SmallestKey + Index; 709 if (!Members.count(Key)) 710 return nullptr; 711 712 return Members.find(Key)->second; 713 } 714 715 /// \brief Get the index for the given member. Unlike the key in the member 716 /// map, the index starts from 0. 717 unsigned getIndex(Instruction *Instr) const { 718 for (auto I : Members) 719 if (I.second == Instr) 720 return I.first - SmallestKey; 721 722 llvm_unreachable("InterleaveGroup contains no such member"); 723 } 724 725 Instruction *getInsertPos() const { return InsertPos; } 726 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 727 728 private: 729 unsigned Factor; // Interleave Factor. 730 bool Reverse; 731 unsigned Align; 732 DenseMap<int, Instruction *> Members; 733 int SmallestKey; 734 int LargestKey; 735 736 // To avoid breaking dependences, vectorized instructions of an interleave 737 // group should be inserted at either the first load or the last store in 738 // program order. 739 // 740 // E.g. %even = load i32 // Insert Position 741 // %add = add i32 %even // Use of %even 742 // %odd = load i32 743 // 744 // store i32 %even 745 // %odd = add i32 // Def of %odd 746 // store i32 %odd // Insert Position 747 Instruction *InsertPos; 748 }; 749 750 /// \brief Drive the analysis of interleaved memory accesses in the loop. 751 /// 752 /// Use this class to analyze interleaved accesses only when we can vectorize 753 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 754 /// on interleaved accesses is unsafe. 755 /// 756 /// The analysis collects interleave groups and records the relationships 757 /// between the member and the group in a map. 758 class InterleavedAccessInfo { 759 public: 760 InterleavedAccessInfo(ScalarEvolution *SE, Loop *L, DominatorTree *DT, 761 SCEVUnionPredicate &Preds) 762 : SE(SE), TheLoop(L), DT(DT), Preds(Preds) {} 763 764 ~InterleavedAccessInfo() { 765 SmallSet<InterleaveGroup *, 4> DelSet; 766 // Avoid releasing a pointer twice. 767 for (auto &I : InterleaveGroupMap) 768 DelSet.insert(I.second); 769 for (auto *Ptr : DelSet) 770 delete Ptr; 771 } 772 773 /// \brief Analyze the interleaved accesses and collect them in interleave 774 /// groups. Substitute symbolic strides using \p Strides. 775 void analyzeInterleaving(const ValueToValueMap &Strides); 776 777 /// \brief Check if \p Instr belongs to any interleave group. 778 bool isInterleaved(Instruction *Instr) const { 779 return InterleaveGroupMap.count(Instr); 780 } 781 782 /// \brief Get the interleave group that \p Instr belongs to. 783 /// 784 /// \returns nullptr if doesn't have such group. 785 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 786 if (InterleaveGroupMap.count(Instr)) 787 return InterleaveGroupMap.find(Instr)->second; 788 return nullptr; 789 } 790 791 private: 792 ScalarEvolution *SE; 793 Loop *TheLoop; 794 DominatorTree *DT; 795 796 /// The SCEV predicate containing all the SCEV-related assumptions. 797 /// The predicate is used to simplify SCEV expressions in the 798 /// context of existing SCEV assumptions. The interleaved access 799 /// analysis can also add new predicates (for example by versioning 800 /// strides of pointers). 801 SCEVUnionPredicate &Preds; 802 803 /// Holds the relationships between the members and the interleave group. 804 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 805 806 /// \brief The descriptor for a strided memory access. 807 struct StrideDescriptor { 808 StrideDescriptor(int Stride, const SCEV *Scev, unsigned Size, 809 unsigned Align) 810 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 811 812 StrideDescriptor() : Stride(0), Scev(nullptr), Size(0), Align(0) {} 813 814 int Stride; // The access's stride. It is negative for a reverse access. 815 const SCEV *Scev; // The scalar expression of this access 816 unsigned Size; // The size of the memory object. 817 unsigned Align; // The alignment of this access. 818 }; 819 820 /// \brief Create a new interleave group with the given instruction \p Instr, 821 /// stride \p Stride and alignment \p Align. 822 /// 823 /// \returns the newly created interleave group. 824 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 825 unsigned Align) { 826 assert(!InterleaveGroupMap.count(Instr) && 827 "Already in an interleaved access group"); 828 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 829 return InterleaveGroupMap[Instr]; 830 } 831 832 /// \brief Release the group and remove all the relationships. 833 void releaseGroup(InterleaveGroup *Group) { 834 for (unsigned i = 0; i < Group->getFactor(); i++) 835 if (Instruction *Member = Group->getMember(i)) 836 InterleaveGroupMap.erase(Member); 837 838 delete Group; 839 } 840 841 /// \brief Collect all the accesses with a constant stride in program order. 842 void collectConstStridedAccesses( 843 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 844 const ValueToValueMap &Strides); 845 }; 846 847 /// Utility class for getting and setting loop vectorizer hints in the form 848 /// of loop metadata. 849 /// This class keeps a number of loop annotations locally (as member variables) 850 /// and can, upon request, write them back as metadata on the loop. It will 851 /// initially scan the loop for existing metadata, and will update the local 852 /// values based on information in the loop. 853 /// We cannot write all values to metadata, as the mere presence of some info, 854 /// for example 'force', means a decision has been made. So, we need to be 855 /// careful NOT to add them if the user hasn't specifically asked so. 856 class LoopVectorizeHints { 857 enum HintKind { 858 HK_WIDTH, 859 HK_UNROLL, 860 HK_FORCE 861 }; 862 863 /// Hint - associates name and validation with the hint value. 864 struct Hint { 865 const char * Name; 866 unsigned Value; // This may have to change for non-numeric values. 867 HintKind Kind; 868 869 Hint(const char * Name, unsigned Value, HintKind Kind) 870 : Name(Name), Value(Value), Kind(Kind) { } 871 872 bool validate(unsigned Val) { 873 switch (Kind) { 874 case HK_WIDTH: 875 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 876 case HK_UNROLL: 877 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 878 case HK_FORCE: 879 return (Val <= 1); 880 } 881 return false; 882 } 883 }; 884 885 /// Vectorization width. 886 Hint Width; 887 /// Vectorization interleave factor. 888 Hint Interleave; 889 /// Vectorization forced 890 Hint Force; 891 892 /// Return the loop metadata prefix. 893 static StringRef Prefix() { return "llvm.loop."; } 894 895 public: 896 enum ForceKind { 897 FK_Undefined = -1, ///< Not selected. 898 FK_Disabled = 0, ///< Forcing disabled. 899 FK_Enabled = 1, ///< Forcing enabled. 900 }; 901 902 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 903 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 904 HK_WIDTH), 905 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 906 Force("vectorize.enable", FK_Undefined, HK_FORCE), 907 TheLoop(L) { 908 // Populate values with existing loop metadata. 909 getHintsFromMetadata(); 910 911 // force-vector-interleave overrides DisableInterleaving. 912 if (VectorizerParams::isInterleaveForced()) 913 Interleave.Value = VectorizerParams::VectorizationInterleave; 914 915 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 916 << "LV: Interleaving disabled by the pass manager\n"); 917 } 918 919 /// Mark the loop L as already vectorized by setting the width to 1. 920 void setAlreadyVectorized() { 921 Width.Value = Interleave.Value = 1; 922 Hint Hints[] = {Width, Interleave}; 923 writeHintsToMetadata(Hints); 924 } 925 926 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 927 if (getForce() == LoopVectorizeHints::FK_Disabled) { 928 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 929 emitOptimizationRemarkAnalysis(F->getContext(), 930 vectorizeAnalysisPassName(), *F, 931 L->getStartLoc(), emitRemark()); 932 return false; 933 } 934 935 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 936 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 937 emitOptimizationRemarkAnalysis(F->getContext(), 938 vectorizeAnalysisPassName(), *F, 939 L->getStartLoc(), emitRemark()); 940 return false; 941 } 942 943 if (getWidth() == 1 && getInterleave() == 1) { 944 // FIXME: Add a separate metadata to indicate when the loop has already 945 // been vectorized instead of setting width and count to 1. 946 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 947 // FIXME: Add interleave.disable metadata. This will allow 948 // vectorize.disable to be used without disabling the pass and errors 949 // to differentiate between disabled vectorization and a width of 1. 950 emitOptimizationRemarkAnalysis( 951 F->getContext(), vectorizeAnalysisPassName(), *F, L->getStartLoc(), 952 "loop not vectorized: vectorization and interleaving are explicitly " 953 "disabled, or vectorize width and interleave count are both set to " 954 "1"); 955 return false; 956 } 957 958 return true; 959 } 960 961 /// Dumps all the hint information. 962 std::string emitRemark() const { 963 VectorizationReport R; 964 if (Force.Value == LoopVectorizeHints::FK_Disabled) 965 R << "vectorization is explicitly disabled"; 966 else { 967 R << "use -Rpass-analysis=loop-vectorize for more info"; 968 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 969 R << " (Force=true"; 970 if (Width.Value != 0) 971 R << ", Vector Width=" << Width.Value; 972 if (Interleave.Value != 0) 973 R << ", Interleave Count=" << Interleave.Value; 974 R << ")"; 975 } 976 } 977 978 return R.str(); 979 } 980 981 unsigned getWidth() const { return Width.Value; } 982 unsigned getInterleave() const { return Interleave.Value; } 983 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 984 const char *vectorizeAnalysisPassName() const { 985 // If hints are provided that don't disable vectorization use the 986 // AlwaysPrint pass name to force the frontend to print the diagnostic. 987 if (getWidth() == 1) 988 return LV_NAME; 989 if (getForce() == LoopVectorizeHints::FK_Disabled) 990 return LV_NAME; 991 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 992 return LV_NAME; 993 return DiagnosticInfo::AlwaysPrint; 994 } 995 996 bool allowReordering() const { 997 // When enabling loop hints are provided we allow the vectorizer to change 998 // the order of operations that is given by the scalar loop. This is not 999 // enabled by default because can be unsafe or inefficient. For example, 1000 // reordering floating-point operations will change the way round-off 1001 // error accumulates in the loop. 1002 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1003 } 1004 1005 private: 1006 /// Find hints specified in the loop metadata and update local values. 1007 void getHintsFromMetadata() { 1008 MDNode *LoopID = TheLoop->getLoopID(); 1009 if (!LoopID) 1010 return; 1011 1012 // First operand should refer to the loop id itself. 1013 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1014 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1015 1016 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1017 const MDString *S = nullptr; 1018 SmallVector<Metadata *, 4> Args; 1019 1020 // The expected hint is either a MDString or a MDNode with the first 1021 // operand a MDString. 1022 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1023 if (!MD || MD->getNumOperands() == 0) 1024 continue; 1025 S = dyn_cast<MDString>(MD->getOperand(0)); 1026 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1027 Args.push_back(MD->getOperand(i)); 1028 } else { 1029 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1030 assert(Args.size() == 0 && "too many arguments for MDString"); 1031 } 1032 1033 if (!S) 1034 continue; 1035 1036 // Check if the hint starts with the loop metadata prefix. 1037 StringRef Name = S->getString(); 1038 if (Args.size() == 1) 1039 setHint(Name, Args[0]); 1040 } 1041 } 1042 1043 /// Checks string hint with one operand and set value if valid. 1044 void setHint(StringRef Name, Metadata *Arg) { 1045 if (!Name.startswith(Prefix())) 1046 return; 1047 Name = Name.substr(Prefix().size(), StringRef::npos); 1048 1049 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1050 if (!C) return; 1051 unsigned Val = C->getZExtValue(); 1052 1053 Hint *Hints[] = {&Width, &Interleave, &Force}; 1054 for (auto H : Hints) { 1055 if (Name == H->Name) { 1056 if (H->validate(Val)) 1057 H->Value = Val; 1058 else 1059 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1060 break; 1061 } 1062 } 1063 } 1064 1065 /// Create a new hint from name / value pair. 1066 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1067 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1068 Metadata *MDs[] = {MDString::get(Context, Name), 1069 ConstantAsMetadata::get( 1070 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1071 return MDNode::get(Context, MDs); 1072 } 1073 1074 /// Matches metadata with hint name. 1075 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1076 MDString* Name = dyn_cast<MDString>(Node->getOperand(0)); 1077 if (!Name) 1078 return false; 1079 1080 for (auto H : HintTypes) 1081 if (Name->getString().endswith(H.Name)) 1082 return true; 1083 return false; 1084 } 1085 1086 /// Sets current hints into loop metadata, keeping other values intact. 1087 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1088 if (HintTypes.size() == 0) 1089 return; 1090 1091 // Reserve the first element to LoopID (see below). 1092 SmallVector<Metadata *, 4> MDs(1); 1093 // If the loop already has metadata, then ignore the existing operands. 1094 MDNode *LoopID = TheLoop->getLoopID(); 1095 if (LoopID) { 1096 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1097 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1098 // If node in update list, ignore old value. 1099 if (!matchesHintMetadataName(Node, HintTypes)) 1100 MDs.push_back(Node); 1101 } 1102 } 1103 1104 // Now, add the missing hints. 1105 for (auto H : HintTypes) 1106 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1107 1108 // Replace current metadata node with new one. 1109 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1110 MDNode *NewLoopID = MDNode::get(Context, MDs); 1111 // Set operand 0 to refer to the loop id itself. 1112 NewLoopID->replaceOperandWith(0, NewLoopID); 1113 1114 TheLoop->setLoopID(NewLoopID); 1115 } 1116 1117 /// The loop these hints belong to. 1118 const Loop *TheLoop; 1119 }; 1120 1121 static void emitAnalysisDiag(const Function *TheFunction, const Loop *TheLoop, 1122 const LoopVectorizeHints &Hints, 1123 const LoopAccessReport &Message) { 1124 const char *Name = Hints.vectorizeAnalysisPassName(); 1125 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, Name); 1126 } 1127 1128 static void emitMissedWarning(Function *F, Loop *L, 1129 const LoopVectorizeHints &LH) { 1130 emitOptimizationRemarkMissed(F->getContext(), LV_NAME, *F, L->getStartLoc(), 1131 LH.emitRemark()); 1132 1133 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1134 if (LH.getWidth() != 1) 1135 emitLoopVectorizeWarning( 1136 F->getContext(), *F, L->getStartLoc(), 1137 "failed explicitly specified loop vectorization"); 1138 else if (LH.getInterleave() != 1) 1139 emitLoopInterleaveWarning( 1140 F->getContext(), *F, L->getStartLoc(), 1141 "failed explicitly specified loop interleaving"); 1142 } 1143 } 1144 1145 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1146 /// to what vectorization factor. 1147 /// This class does not look at the profitability of vectorization, only the 1148 /// legality. This class has two main kinds of checks: 1149 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1150 /// will change the order of memory accesses in a way that will change the 1151 /// correctness of the program. 1152 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1153 /// checks for a number of different conditions, such as the availability of a 1154 /// single induction variable, that all types are supported and vectorize-able, 1155 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1156 /// This class is also used by InnerLoopVectorizer for identifying 1157 /// induction variable and the different reduction variables. 1158 class LoopVectorizationLegality { 1159 public: 1160 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DominatorTree *DT, 1161 TargetLibraryInfo *TLI, AliasAnalysis *AA, 1162 Function *F, const TargetTransformInfo *TTI, 1163 LoopAccessAnalysis *LAA, 1164 LoopVectorizationRequirements *R, 1165 const LoopVectorizeHints *H, 1166 SCEVUnionPredicate &Preds) 1167 : NumPredStores(0), TheLoop(L), SE(SE), TLI(TLI), TheFunction(F), 1168 TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), 1169 InterleaveInfo(SE, L, DT, Preds), Induction(nullptr), 1170 WidestIndTy(nullptr), HasFunNoNaNAttr(false), Requirements(R), Hints(H), 1171 Preds(Preds) {} 1172 1173 /// ReductionList contains the reduction descriptors for all 1174 /// of the reductions that were found in the loop. 1175 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1176 1177 /// InductionList saves induction variables and maps them to the 1178 /// induction descriptor. 1179 typedef MapVector<PHINode*, InductionDescriptor> InductionList; 1180 1181 /// Returns true if it is legal to vectorize this loop. 1182 /// This does not mean that it is profitable to vectorize this 1183 /// loop, only that it is legal to do so. 1184 bool canVectorize(); 1185 1186 /// Returns the Induction variable. 1187 PHINode *getInduction() { return Induction; } 1188 1189 /// Returns the reduction variables found in the loop. 1190 ReductionList *getReductionVars() { return &Reductions; } 1191 1192 /// Returns the induction variables found in the loop. 1193 InductionList *getInductionVars() { return &Inductions; } 1194 1195 /// Returns the widest induction type. 1196 Type *getWidestInductionType() { return WidestIndTy; } 1197 1198 /// Returns True if V is an induction variable in this loop. 1199 bool isInductionVariable(const Value *V); 1200 1201 /// Return true if the block BB needs to be predicated in order for the loop 1202 /// to be vectorized. 1203 bool blockNeedsPredication(BasicBlock *BB); 1204 1205 /// Check if this pointer is consecutive when vectorizing. This happens 1206 /// when the last index of the GEP is the induction variable, or that the 1207 /// pointer itself is an induction variable. 1208 /// This check allows us to vectorize A[idx] into a wide load/store. 1209 /// Returns: 1210 /// 0 - Stride is unknown or non-consecutive. 1211 /// 1 - Address is consecutive. 1212 /// -1 - Address is consecutive, and decreasing. 1213 int isConsecutivePtr(Value *Ptr); 1214 1215 /// Returns true if the value V is uniform within the loop. 1216 bool isUniform(Value *V); 1217 1218 /// Returns true if this instruction will remain scalar after vectorization. 1219 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 1220 1221 /// Returns the information that we collected about runtime memory check. 1222 const RuntimePointerChecking *getRuntimePointerChecking() const { 1223 return LAI->getRuntimePointerChecking(); 1224 } 1225 1226 const LoopAccessInfo *getLAI() const { 1227 return LAI; 1228 } 1229 1230 /// \brief Check if \p Instr belongs to any interleaved access group. 1231 bool isAccessInterleaved(Instruction *Instr) { 1232 return InterleaveInfo.isInterleaved(Instr); 1233 } 1234 1235 /// \brief Get the interleaved access group that \p Instr belongs to. 1236 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1237 return InterleaveInfo.getInterleaveGroup(Instr); 1238 } 1239 1240 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1241 1242 bool hasStride(Value *V) { return StrideSet.count(V); } 1243 bool mustCheckStrides() { return !StrideSet.empty(); } 1244 SmallPtrSet<Value *, 8>::iterator strides_begin() { 1245 return StrideSet.begin(); 1246 } 1247 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 1248 1249 /// Returns true if the target machine supports masked store operation 1250 /// for the given \p DataType and kind of access to \p Ptr. 1251 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1252 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1253 } 1254 /// Returns true if the target machine supports masked load operation 1255 /// for the given \p DataType and kind of access to \p Ptr. 1256 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1257 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1258 } 1259 /// Returns true if vector representation of the instruction \p I 1260 /// requires mask. 1261 bool isMaskRequired(const Instruction* I) { 1262 return (MaskedOp.count(I) != 0); 1263 } 1264 unsigned getNumStores() const { 1265 return LAI->getNumStores(); 1266 } 1267 unsigned getNumLoads() const { 1268 return LAI->getNumLoads(); 1269 } 1270 unsigned getNumPredStores() const { 1271 return NumPredStores; 1272 } 1273 private: 1274 /// Check if a single basic block loop is vectorizable. 1275 /// At this point we know that this is a loop with a constant trip count 1276 /// and we only need to check individual instructions. 1277 bool canVectorizeInstrs(); 1278 1279 /// When we vectorize loops we may change the order in which 1280 /// we read and write from memory. This method checks if it is 1281 /// legal to vectorize the code, considering only memory constrains. 1282 /// Returns true if the loop is vectorizable 1283 bool canVectorizeMemory(); 1284 1285 /// Return true if we can vectorize this loop using the IF-conversion 1286 /// transformation. 1287 bool canVectorizeWithIfConvert(); 1288 1289 /// Collect the variables that need to stay uniform after vectorization. 1290 void collectLoopUniforms(); 1291 1292 /// Return true if all of the instructions in the block can be speculatively 1293 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1294 /// and we know that we can read from them without segfault. 1295 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1296 1297 /// \brief Collect memory access with loop invariant strides. 1298 /// 1299 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 1300 /// invariant. 1301 void collectStridedAccess(Value *LoadOrStoreInst); 1302 1303 /// Report an analysis message to assist the user in diagnosing loops that are 1304 /// not vectorized. These are handled as LoopAccessReport rather than 1305 /// VectorizationReport because the << operator of VectorizationReport returns 1306 /// LoopAccessReport. 1307 void emitAnalysis(const LoopAccessReport &Message) const { 1308 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1309 } 1310 1311 unsigned NumPredStores; 1312 1313 /// The loop that we evaluate. 1314 Loop *TheLoop; 1315 /// Scev analysis. 1316 ScalarEvolution *SE; 1317 /// Target Library Info. 1318 TargetLibraryInfo *TLI; 1319 /// Parent function 1320 Function *TheFunction; 1321 /// Target Transform Info 1322 const TargetTransformInfo *TTI; 1323 /// Dominator Tree. 1324 DominatorTree *DT; 1325 // LoopAccess analysis. 1326 LoopAccessAnalysis *LAA; 1327 // And the loop-accesses info corresponding to this loop. This pointer is 1328 // null until canVectorizeMemory sets it up. 1329 const LoopAccessInfo *LAI; 1330 1331 /// The interleave access information contains groups of interleaved accesses 1332 /// with the same stride and close to each other. 1333 InterleavedAccessInfo InterleaveInfo; 1334 1335 // --- vectorization state --- // 1336 1337 /// Holds the integer induction variable. This is the counter of the 1338 /// loop. 1339 PHINode *Induction; 1340 /// Holds the reduction variables. 1341 ReductionList Reductions; 1342 /// Holds all of the induction variables that we found in the loop. 1343 /// Notice that inductions don't need to start at zero and that induction 1344 /// variables can be pointers. 1345 InductionList Inductions; 1346 /// Holds the widest induction type encountered. 1347 Type *WidestIndTy; 1348 1349 /// Allowed outside users. This holds the reduction 1350 /// vars which can be accessed from outside the loop. 1351 SmallPtrSet<Value*, 4> AllowedExit; 1352 /// This set holds the variables which are known to be uniform after 1353 /// vectorization. 1354 SmallPtrSet<Instruction*, 4> Uniforms; 1355 1356 /// Can we assume the absence of NaNs. 1357 bool HasFunNoNaNAttr; 1358 1359 /// Vectorization requirements that will go through late-evaluation. 1360 LoopVectorizationRequirements *Requirements; 1361 1362 /// Used to emit an analysis of any legality issues. 1363 const LoopVectorizeHints *Hints; 1364 1365 ValueToValueMap Strides; 1366 SmallPtrSet<Value *, 8> StrideSet; 1367 1368 /// While vectorizing these instructions we have to generate a 1369 /// call to the appropriate masked intrinsic 1370 SmallPtrSet<const Instruction *, 8> MaskedOp; 1371 1372 /// The SCEV predicate containing all the SCEV-related assumptions. 1373 /// The predicate is used to simplify SCEV expressions in the 1374 /// context of existing SCEV assumptions. The analysis will also 1375 /// add a minimal set of new predicates if this is required to 1376 /// enable vectorization/unrolling. 1377 SCEVUnionPredicate &Preds; 1378 }; 1379 1380 /// LoopVectorizationCostModel - estimates the expected speedups due to 1381 /// vectorization. 1382 /// In many cases vectorization is not profitable. This can happen because of 1383 /// a number of reasons. In this class we mainly attempt to predict the 1384 /// expected speedup/slowdowns due to the supported instruction set. We use the 1385 /// TargetTransformInfo to query the different backends for the cost of 1386 /// different operations. 1387 class LoopVectorizationCostModel { 1388 public: 1389 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 1390 LoopVectorizationLegality *Legal, 1391 const TargetTransformInfo &TTI, 1392 const TargetLibraryInfo *TLI, DemandedBits *DB, 1393 AssumptionCache *AC, const Function *F, 1394 const LoopVectorizeHints *Hints, 1395 SmallPtrSetImpl<const Value *> &ValuesToIgnore, 1396 SCEVUnionPredicate &Preds) 1397 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1398 TheFunction(F), Hints(Hints), ValuesToIgnore(ValuesToIgnore) {} 1399 1400 /// Information about vectorization costs 1401 struct VectorizationFactor { 1402 unsigned Width; // Vector width with best cost 1403 unsigned Cost; // Cost of the loop with that width 1404 }; 1405 /// \return The most profitable vectorization factor and the cost of that VF. 1406 /// This method checks every power of two up to VF. If UserVF is not ZERO 1407 /// then this vectorization factor will be selected if vectorization is 1408 /// possible. 1409 VectorizationFactor selectVectorizationFactor(bool OptForSize); 1410 1411 /// \return The size (in bits) of the widest type in the code that 1412 /// needs to be vectorized. We ignore values that remain scalar such as 1413 /// 64 bit loop indices. 1414 unsigned getWidestType(); 1415 1416 /// \return The desired interleave count. 1417 /// If interleave count has been specified by metadata it will be returned. 1418 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1419 /// are the selected vectorization factor and the cost of the selected VF. 1420 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1421 unsigned LoopCost); 1422 1423 /// \return The most profitable unroll factor. 1424 /// This method finds the best unroll-factor based on register pressure and 1425 /// other parameters. VF and LoopCost are the selected vectorization factor 1426 /// and the cost of the selected VF. 1427 unsigned computeInterleaveCount(bool OptForSize, unsigned VF, 1428 unsigned LoopCost); 1429 1430 /// \brief A struct that represents some properties of the register usage 1431 /// of a loop. 1432 struct RegisterUsage { 1433 /// Holds the number of loop invariant values that are used in the loop. 1434 unsigned LoopInvariantRegs; 1435 /// Holds the maximum number of concurrent live intervals in the loop. 1436 unsigned MaxLocalUsers; 1437 /// Holds the number of instructions in the loop. 1438 unsigned NumInstructions; 1439 }; 1440 1441 /// \return information about the register usage of the loop. 1442 RegisterUsage calculateRegisterUsage(); 1443 1444 private: 1445 /// Returns the expected execution cost. The unit of the cost does 1446 /// not matter because we use the 'cost' units to compare different 1447 /// vector widths. The cost that is returned is *not* normalized by 1448 /// the factor width. 1449 unsigned expectedCost(unsigned VF); 1450 1451 /// Returns the execution time cost of an instruction for a given vector 1452 /// width. Vector width of one means scalar. 1453 unsigned getInstructionCost(Instruction *I, unsigned VF); 1454 1455 /// Returns whether the instruction is a load or store and will be a emitted 1456 /// as a vector operation. 1457 bool isConsecutiveLoadOrStore(Instruction *I); 1458 1459 /// Report an analysis message to assist the user in diagnosing loops that are 1460 /// not vectorized. These are handled as LoopAccessReport rather than 1461 /// VectorizationReport because the << operator of VectorizationReport returns 1462 /// LoopAccessReport. 1463 void emitAnalysis(const LoopAccessReport &Message) const { 1464 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1465 } 1466 1467 public: 1468 /// Map of scalar integer values to the smallest bitwidth they can be legally 1469 /// represented as. The vector equivalents of these values should be truncated 1470 /// to this type. 1471 DenseMap<Instruction*,uint64_t> MinBWs; 1472 1473 /// The loop that we evaluate. 1474 Loop *TheLoop; 1475 /// Scev analysis. 1476 ScalarEvolution *SE; 1477 /// Loop Info analysis. 1478 LoopInfo *LI; 1479 /// Vectorization legality. 1480 LoopVectorizationLegality *Legal; 1481 /// Vector target information. 1482 const TargetTransformInfo &TTI; 1483 /// Target Library Info. 1484 const TargetLibraryInfo *TLI; 1485 /// Demanded bits analysis 1486 DemandedBits *DB; 1487 const Function *TheFunction; 1488 // Loop Vectorize Hint. 1489 const LoopVectorizeHints *Hints; 1490 // Values to ignore in the cost model. 1491 const SmallPtrSetImpl<const Value *> &ValuesToIgnore; 1492 }; 1493 1494 /// \brief This holds vectorization requirements that must be verified late in 1495 /// the process. The requirements are set by legalize and costmodel. Once 1496 /// vectorization has been determined to be possible and profitable the 1497 /// requirements can be verified by looking for metadata or compiler options. 1498 /// For example, some loops require FP commutativity which is only allowed if 1499 /// vectorization is explicitly specified or if the fast-math compiler option 1500 /// has been provided. 1501 /// Late evaluation of these requirements allows helpful diagnostics to be 1502 /// composed that tells the user what need to be done to vectorize the loop. For 1503 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 1504 /// evaluation should be used only when diagnostics can generated that can be 1505 /// followed by a non-expert user. 1506 class LoopVectorizationRequirements { 1507 public: 1508 LoopVectorizationRequirements() 1509 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr) {} 1510 1511 void addUnsafeAlgebraInst(Instruction *I) { 1512 // First unsafe algebra instruction. 1513 if (!UnsafeAlgebraInst) 1514 UnsafeAlgebraInst = I; 1515 } 1516 1517 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 1518 1519 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 1520 const char *Name = Hints.vectorizeAnalysisPassName(); 1521 bool Failed = false; 1522 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 1523 emitOptimizationRemarkAnalysisFPCommute( 1524 F->getContext(), Name, *F, UnsafeAlgebraInst->getDebugLoc(), 1525 VectorizationReport() << "cannot prove it is safe to reorder " 1526 "floating-point operations"); 1527 Failed = true; 1528 } 1529 1530 // Test if runtime memcheck thresholds are exceeded. 1531 bool PragmaThresholdReached = 1532 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 1533 bool ThresholdReached = 1534 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 1535 if ((ThresholdReached && !Hints.allowReordering()) || 1536 PragmaThresholdReached) { 1537 emitOptimizationRemarkAnalysisAliasing( 1538 F->getContext(), Name, *F, L->getStartLoc(), 1539 VectorizationReport() 1540 << "cannot prove it is safe to reorder memory operations"); 1541 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 1542 Failed = true; 1543 } 1544 1545 return Failed; 1546 } 1547 1548 private: 1549 unsigned NumRuntimePointerChecks; 1550 Instruction *UnsafeAlgebraInst; 1551 }; 1552 1553 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1554 if (L.empty()) 1555 return V.push_back(&L); 1556 1557 for (Loop *InnerL : L) 1558 addInnerLoop(*InnerL, V); 1559 } 1560 1561 /// The LoopVectorize Pass. 1562 struct LoopVectorize : public FunctionPass { 1563 /// Pass identification, replacement for typeid 1564 static char ID; 1565 1566 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1567 : FunctionPass(ID), 1568 DisableUnrolling(NoUnrolling), 1569 AlwaysVectorize(AlwaysVectorize) { 1570 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1571 } 1572 1573 ScalarEvolution *SE; 1574 LoopInfo *LI; 1575 TargetTransformInfo *TTI; 1576 DominatorTree *DT; 1577 BlockFrequencyInfo *BFI; 1578 TargetLibraryInfo *TLI; 1579 DemandedBits *DB; 1580 AliasAnalysis *AA; 1581 AssumptionCache *AC; 1582 LoopAccessAnalysis *LAA; 1583 bool DisableUnrolling; 1584 bool AlwaysVectorize; 1585 1586 BlockFrequency ColdEntryFreq; 1587 1588 bool runOnFunction(Function &F) override { 1589 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1590 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1591 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1592 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1593 BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1594 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1595 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1596 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1597 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1598 LAA = &getAnalysis<LoopAccessAnalysis>(); 1599 DB = &getAnalysis<DemandedBits>(); 1600 1601 // Compute some weights outside of the loop over the loops. Compute this 1602 // using a BranchProbability to re-use its scaling math. 1603 const BranchProbability ColdProb(1, 5); // 20% 1604 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1605 1606 // Don't attempt if 1607 // 1. the target claims to have no vector registers, and 1608 // 2. interleaving won't help ILP. 1609 // 1610 // The second condition is necessary because, even if the target has no 1611 // vector registers, loop vectorization may still enable scalar 1612 // interleaving. 1613 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 1614 return false; 1615 1616 // Build up a worklist of inner-loops to vectorize. This is necessary as 1617 // the act of vectorizing or partially unrolling a loop creates new loops 1618 // and can invalidate iterators across the loops. 1619 SmallVector<Loop *, 8> Worklist; 1620 1621 for (Loop *L : *LI) 1622 addInnerLoop(*L, Worklist); 1623 1624 LoopsAnalyzed += Worklist.size(); 1625 1626 // Now walk the identified inner loops. 1627 bool Changed = false; 1628 while (!Worklist.empty()) 1629 Changed |= processLoop(Worklist.pop_back_val()); 1630 1631 // Process each loop nest in the function. 1632 return Changed; 1633 } 1634 1635 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 1636 SmallVector<Metadata *, 4> MDs; 1637 // Reserve first location for self reference to the LoopID metadata node. 1638 MDs.push_back(nullptr); 1639 bool IsUnrollMetadata = false; 1640 MDNode *LoopID = L->getLoopID(); 1641 if (LoopID) { 1642 // First find existing loop unrolling disable metadata. 1643 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1644 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1645 if (MD) { 1646 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1647 IsUnrollMetadata = 1648 S && S->getString().startswith("llvm.loop.unroll.disable"); 1649 } 1650 MDs.push_back(LoopID->getOperand(i)); 1651 } 1652 } 1653 1654 if (!IsUnrollMetadata) { 1655 // Add runtime unroll disable metadata. 1656 LLVMContext &Context = L->getHeader()->getContext(); 1657 SmallVector<Metadata *, 1> DisableOperands; 1658 DisableOperands.push_back( 1659 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 1660 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 1661 MDs.push_back(DisableNode); 1662 MDNode *NewLoopID = MDNode::get(Context, MDs); 1663 // Set operand 0 to refer to the loop id itself. 1664 NewLoopID->replaceOperandWith(0, NewLoopID); 1665 L->setLoopID(NewLoopID); 1666 } 1667 } 1668 1669 bool processLoop(Loop *L) { 1670 assert(L->empty() && "Only process inner loops."); 1671 1672 #ifndef NDEBUG 1673 const std::string DebugLocStr = getDebugLocString(L); 1674 #endif /* NDEBUG */ 1675 1676 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1677 << L->getHeader()->getParent()->getName() << "\" from " 1678 << DebugLocStr << "\n"); 1679 1680 LoopVectorizeHints Hints(L, DisableUnrolling); 1681 1682 DEBUG(dbgs() << "LV: Loop hints:" 1683 << " force=" 1684 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1685 ? "disabled" 1686 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1687 ? "enabled" 1688 : "?")) << " width=" << Hints.getWidth() 1689 << " unroll=" << Hints.getInterleave() << "\n"); 1690 1691 // Function containing loop 1692 Function *F = L->getHeader()->getParent(); 1693 1694 // Looking at the diagnostic output is the only way to determine if a loop 1695 // was vectorized (other than looking at the IR or machine code), so it 1696 // is important to generate an optimization remark for each loop. Most of 1697 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1698 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1699 // less verbose reporting vectorized loops and unvectorized loops that may 1700 // benefit from vectorization, respectively. 1701 1702 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 1703 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 1704 return false; 1705 } 1706 1707 // Check the loop for a trip count threshold: 1708 // do not vectorize loops with a tiny trip count. 1709 const unsigned TC = SE->getSmallConstantTripCount(L); 1710 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1711 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1712 << "This loop is not worth vectorizing."); 1713 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1714 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1715 else { 1716 DEBUG(dbgs() << "\n"); 1717 emitAnalysisDiag(F, L, Hints, VectorizationReport() 1718 << "vectorization is not beneficial " 1719 "and is not explicitly forced"); 1720 return false; 1721 } 1722 } 1723 1724 SCEVUnionPredicate Preds; 1725 1726 // Check if it is legal to vectorize the loop. 1727 LoopVectorizationRequirements Requirements; 1728 LoopVectorizationLegality LVL(L, SE, DT, TLI, AA, F, TTI, LAA, 1729 &Requirements, &Hints, Preds); 1730 if (!LVL.canVectorize()) { 1731 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1732 emitMissedWarning(F, L, Hints); 1733 return false; 1734 } 1735 1736 // Collect values we want to ignore in the cost model. This includes 1737 // type-promoting instructions we identified during reduction detection. 1738 SmallPtrSet<const Value *, 32> ValuesToIgnore; 1739 CodeMetrics::collectEphemeralValues(L, AC, ValuesToIgnore); 1740 for (auto &Reduction : *LVL.getReductionVars()) { 1741 RecurrenceDescriptor &RedDes = Reduction.second; 1742 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 1743 ValuesToIgnore.insert(Casts.begin(), Casts.end()); 1744 } 1745 1746 // Use the cost model. 1747 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, TLI, DB, AC, F, &Hints, 1748 ValuesToIgnore, Preds); 1749 1750 // Check the function attributes to find out if this function should be 1751 // optimized for size. 1752 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1753 F->optForSize(); 1754 1755 // Compute the weighted frequency of this loop being executed and see if it 1756 // is less than 20% of the function entry baseline frequency. Note that we 1757 // always have a canonical loop here because we think we *can* vectorize. 1758 // FIXME: This is hidden behind a flag due to pervasive problems with 1759 // exactly what block frequency models. 1760 if (LoopVectorizeWithBlockFrequency) { 1761 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1762 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1763 LoopEntryFreq < ColdEntryFreq) 1764 OptForSize = true; 1765 } 1766 1767 // Check the function attributes to see if implicit floats are allowed. 1768 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1769 // an integer loop and the vector instructions selected are purely integer 1770 // vector instructions? 1771 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1772 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1773 "attribute is used.\n"); 1774 emitAnalysisDiag( 1775 F, L, Hints, 1776 VectorizationReport() 1777 << "loop not vectorized due to NoImplicitFloat attribute"); 1778 emitMissedWarning(F, L, Hints); 1779 return false; 1780 } 1781 1782 // Select the optimal vectorization factor. 1783 const LoopVectorizationCostModel::VectorizationFactor VF = 1784 CM.selectVectorizationFactor(OptForSize); 1785 1786 // Select the interleave count. 1787 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 1788 1789 // Get user interleave count. 1790 unsigned UserIC = Hints.getInterleave(); 1791 1792 // Identify the diagnostic messages that should be produced. 1793 std::string VecDiagMsg, IntDiagMsg; 1794 bool VectorizeLoop = true, InterleaveLoop = true; 1795 1796 if (Requirements.doesNotMeet(F, L, Hints)) { 1797 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 1798 "requirements.\n"); 1799 emitMissedWarning(F, L, Hints); 1800 return false; 1801 } 1802 1803 if (VF.Width == 1) { 1804 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 1805 VecDiagMsg = 1806 "the cost-model indicates that vectorization is not beneficial"; 1807 VectorizeLoop = false; 1808 } 1809 1810 if (IC == 1 && UserIC <= 1) { 1811 // Tell the user interleaving is not beneficial. 1812 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 1813 IntDiagMsg = 1814 "the cost-model indicates that interleaving is not beneficial"; 1815 InterleaveLoop = false; 1816 if (UserIC == 1) 1817 IntDiagMsg += 1818 " and is explicitly disabled or interleave count is set to 1"; 1819 } else if (IC > 1 && UserIC == 1) { 1820 // Tell the user interleaving is beneficial, but it explicitly disabled. 1821 DEBUG(dbgs() 1822 << "LV: Interleaving is beneficial but is explicitly disabled."); 1823 IntDiagMsg = "the cost-model indicates that interleaving is beneficial " 1824 "but is explicitly disabled or interleave count is set to 1"; 1825 InterleaveLoop = false; 1826 } 1827 1828 // Override IC if user provided an interleave count. 1829 IC = UserIC > 0 ? UserIC : IC; 1830 1831 // Emit diagnostic messages, if any. 1832 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 1833 if (!VectorizeLoop && !InterleaveLoop) { 1834 // Do not vectorize or interleaving the loop. 1835 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 1836 L->getStartLoc(), VecDiagMsg); 1837 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 1838 L->getStartLoc(), IntDiagMsg); 1839 return false; 1840 } else if (!VectorizeLoop && InterleaveLoop) { 1841 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 1842 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 1843 L->getStartLoc(), VecDiagMsg); 1844 } else if (VectorizeLoop && !InterleaveLoop) { 1845 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1846 << DebugLocStr << '\n'); 1847 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 1848 L->getStartLoc(), IntDiagMsg); 1849 } else if (VectorizeLoop && InterleaveLoop) { 1850 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1851 << DebugLocStr << '\n'); 1852 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 1853 } 1854 1855 if (!VectorizeLoop) { 1856 assert(IC > 1 && "interleave count should not be 1 or 0"); 1857 // If we decided that it is not legal to vectorize the loop then 1858 // interleave it. 1859 InnerLoopUnroller Unroller(L, SE, LI, DT, TLI, TTI, IC, Preds); 1860 Unroller.vectorize(&LVL, CM.MinBWs); 1861 1862 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 1863 Twine("interleaved loop (interleaved count: ") + 1864 Twine(IC) + ")"); 1865 } else { 1866 // If we decided that it is *legal* to vectorize the loop then do it. 1867 InnerLoopVectorizer LB(L, SE, LI, DT, TLI, TTI, VF.Width, IC, Preds); 1868 LB.vectorize(&LVL, CM.MinBWs); 1869 ++LoopsVectorized; 1870 1871 // Add metadata to disable runtime unrolling scalar loop when there's no 1872 // runtime check about strides and memory. Because at this situation, 1873 // scalar loop is rarely used not worthy to be unrolled. 1874 if (!LB.IsSafetyChecksAdded()) 1875 AddRuntimeUnrollDisableMetaData(L); 1876 1877 // Report the vectorization decision. 1878 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 1879 Twine("vectorized loop (vectorization width: ") + 1880 Twine(VF.Width) + ", interleaved count: " + 1881 Twine(IC) + ")"); 1882 } 1883 1884 // Mark the loop as already vectorized to avoid vectorizing again. 1885 Hints.setAlreadyVectorized(); 1886 1887 DEBUG(verifyFunction(*L->getHeader()->getParent())); 1888 return true; 1889 } 1890 1891 void getAnalysisUsage(AnalysisUsage &AU) const override { 1892 AU.addRequired<AssumptionCacheTracker>(); 1893 AU.addRequiredID(LoopSimplifyID); 1894 AU.addRequiredID(LCSSAID); 1895 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1896 AU.addRequired<DominatorTreeWrapperPass>(); 1897 AU.addRequired<LoopInfoWrapperPass>(); 1898 AU.addRequired<ScalarEvolutionWrapperPass>(); 1899 AU.addRequired<TargetTransformInfoWrapperPass>(); 1900 AU.addRequired<AAResultsWrapperPass>(); 1901 AU.addRequired<LoopAccessAnalysis>(); 1902 AU.addRequired<DemandedBits>(); 1903 AU.addPreserved<LoopInfoWrapperPass>(); 1904 AU.addPreserved<DominatorTreeWrapperPass>(); 1905 AU.addPreserved<BasicAAWrapperPass>(); 1906 AU.addPreserved<AAResultsWrapperPass>(); 1907 AU.addPreserved<GlobalsAAWrapperPass>(); 1908 } 1909 1910 }; 1911 1912 } // end anonymous namespace 1913 1914 //===----------------------------------------------------------------------===// 1915 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1916 // LoopVectorizationCostModel. 1917 //===----------------------------------------------------------------------===// 1918 1919 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1920 // We need to place the broadcast of invariant variables outside the loop. 1921 Instruction *Instr = dyn_cast<Instruction>(V); 1922 bool NewInstr = 1923 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 1924 Instr->getParent()) != LoopVectorBody.end()); 1925 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1926 1927 // Place the code for broadcasting invariant variables in the new preheader. 1928 IRBuilder<>::InsertPointGuard Guard(Builder); 1929 if (Invariant) 1930 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1931 1932 // Broadcast the scalar into all locations in the vector. 1933 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1934 1935 return Shuf; 1936 } 1937 1938 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 1939 Value *Step) { 1940 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1941 assert(Val->getType()->getScalarType()->isIntegerTy() && 1942 "Elem must be an integer"); 1943 assert(Step->getType() == Val->getType()->getScalarType() && 1944 "Step has wrong type"); 1945 // Create the types. 1946 Type *ITy = Val->getType()->getScalarType(); 1947 VectorType *Ty = cast<VectorType>(Val->getType()); 1948 int VLen = Ty->getNumElements(); 1949 SmallVector<Constant*, 8> Indices; 1950 1951 // Create a vector of consecutive numbers from zero to VF. 1952 for (int i = 0; i < VLen; ++i) 1953 Indices.push_back(ConstantInt::get(ITy, StartIdx + i)); 1954 1955 // Add the consecutive indices to the vector value. 1956 Constant *Cv = ConstantVector::get(Indices); 1957 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1958 Step = Builder.CreateVectorSplat(VLen, Step); 1959 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1960 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1961 // which can be found from the original scalar operations. 1962 Step = Builder.CreateMul(Cv, Step); 1963 return Builder.CreateAdd(Val, Step, "induction"); 1964 } 1965 1966 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1967 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 1968 // Make sure that the pointer does not point to structs. 1969 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 1970 return 0; 1971 1972 // If this value is a pointer induction variable we know it is consecutive. 1973 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1974 if (Phi && Inductions.count(Phi)) { 1975 InductionDescriptor II = Inductions[Phi]; 1976 return II.getConsecutiveDirection(); 1977 } 1978 1979 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); 1980 if (!Gep) 1981 return 0; 1982 1983 unsigned NumOperands = Gep->getNumOperands(); 1984 Value *GpPtr = Gep->getPointerOperand(); 1985 // If this GEP value is a consecutive pointer induction variable and all of 1986 // the indices are constant then we know it is consecutive. We can 1987 Phi = dyn_cast<PHINode>(GpPtr); 1988 if (Phi && Inductions.count(Phi)) { 1989 1990 // Make sure that the pointer does not point to structs. 1991 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 1992 if (GepPtrType->getElementType()->isAggregateType()) 1993 return 0; 1994 1995 // Make sure that all of the index operands are loop invariant. 1996 for (unsigned i = 1; i < NumOperands; ++i) 1997 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1998 return 0; 1999 2000 InductionDescriptor II = Inductions[Phi]; 2001 return II.getConsecutiveDirection(); 2002 } 2003 2004 unsigned InductionOperand = getGEPInductionOperand(Gep); 2005 2006 // Check that all of the gep indices are uniform except for our induction 2007 // operand. 2008 for (unsigned i = 0; i != NumOperands; ++i) 2009 if (i != InductionOperand && 2010 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 2011 return 0; 2012 2013 // We can emit wide load/stores only if the last non-zero index is the 2014 // induction variable. 2015 const SCEV *Last = nullptr; 2016 if (!Strides.count(Gep)) 2017 Last = SE->getSCEV(Gep->getOperand(InductionOperand)); 2018 else { 2019 // Because of the multiplication by a stride we can have a s/zext cast. 2020 // We are going to replace this stride by 1 so the cast is safe to ignore. 2021 // 2022 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 2023 // %0 = trunc i64 %indvars.iv to i32 2024 // %mul = mul i32 %0, %Stride1 2025 // %idxprom = zext i32 %mul to i64 << Safe cast. 2026 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 2027 // 2028 Last = replaceSymbolicStrideSCEV(SE, Strides, Preds, 2029 Gep->getOperand(InductionOperand), Gep); 2030 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 2031 Last = 2032 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 2033 ? C->getOperand() 2034 : Last; 2035 } 2036 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 2037 const SCEV *Step = AR->getStepRecurrence(*SE); 2038 2039 // The memory is consecutive because the last index is consecutive 2040 // and all other indices are loop invariant. 2041 if (Step->isOne()) 2042 return 1; 2043 if (Step->isAllOnesValue()) 2044 return -1; 2045 } 2046 2047 return 0; 2048 } 2049 2050 bool LoopVectorizationLegality::isUniform(Value *V) { 2051 return LAI->isUniform(V); 2052 } 2053 2054 InnerLoopVectorizer::VectorParts& 2055 InnerLoopVectorizer::getVectorValue(Value *V) { 2056 assert(V != Induction && "The new induction variable should not be used."); 2057 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2058 2059 // If we have a stride that is replaced by one, do it here. 2060 if (Legal->hasStride(V)) 2061 V = ConstantInt::get(V->getType(), 1); 2062 2063 // If we have this scalar in the map, return it. 2064 if (WidenMap.has(V)) 2065 return WidenMap.get(V); 2066 2067 // If this scalar is unknown, assume that it is a constant or that it is 2068 // loop invariant. Broadcast V and save the value for future uses. 2069 Value *B = getBroadcastInstrs(V); 2070 2071 return WidenMap.splat(V, B); 2072 } 2073 2074 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2075 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2076 SmallVector<Constant*, 8> ShuffleMask; 2077 for (unsigned i = 0; i < VF; ++i) 2078 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2079 2080 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2081 ConstantVector::get(ShuffleMask), 2082 "reverse"); 2083 } 2084 2085 // Get a mask to interleave \p NumVec vectors into a wide vector. 2086 // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> 2087 // E.g. For 2 interleaved vectors, if VF is 4, the mask is: 2088 // <0, 4, 1, 5, 2, 6, 3, 7> 2089 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, 2090 unsigned NumVec) { 2091 SmallVector<Constant *, 16> Mask; 2092 for (unsigned i = 0; i < VF; i++) 2093 for (unsigned j = 0; j < NumVec; j++) 2094 Mask.push_back(Builder.getInt32(j * VF + i)); 2095 2096 return ConstantVector::get(Mask); 2097 } 2098 2099 // Get the strided mask starting from index \p Start. 2100 // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)> 2101 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, 2102 unsigned Stride, unsigned VF) { 2103 SmallVector<Constant *, 16> Mask; 2104 for (unsigned i = 0; i < VF; i++) 2105 Mask.push_back(Builder.getInt32(Start + i * Stride)); 2106 2107 return ConstantVector::get(Mask); 2108 } 2109 2110 // Get a mask of two parts: The first part consists of sequential integers 2111 // starting from 0, The second part consists of UNDEFs. 2112 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> 2113 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, 2114 unsigned NumUndef) { 2115 SmallVector<Constant *, 16> Mask; 2116 for (unsigned i = 0; i < NumInt; i++) 2117 Mask.push_back(Builder.getInt32(i)); 2118 2119 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 2120 for (unsigned i = 0; i < NumUndef; i++) 2121 Mask.push_back(Undef); 2122 2123 return ConstantVector::get(Mask); 2124 } 2125 2126 // Concatenate two vectors with the same element type. The 2nd vector should 2127 // not have more elements than the 1st vector. If the 2nd vector has less 2128 // elements, extend it with UNDEFs. 2129 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 2130 Value *V2) { 2131 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 2132 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 2133 assert(VecTy1 && VecTy2 && 2134 VecTy1->getScalarType() == VecTy2->getScalarType() && 2135 "Expect two vectors with the same element type"); 2136 2137 unsigned NumElts1 = VecTy1->getNumElements(); 2138 unsigned NumElts2 = VecTy2->getNumElements(); 2139 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 2140 2141 if (NumElts1 > NumElts2) { 2142 // Extend with UNDEFs. 2143 Constant *ExtMask = 2144 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); 2145 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 2146 } 2147 2148 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); 2149 return Builder.CreateShuffleVector(V1, V2, Mask); 2150 } 2151 2152 // Concatenate vectors in the given list. All vectors have the same type. 2153 static Value *ConcatenateVectors(IRBuilder<> &Builder, 2154 ArrayRef<Value *> InputList) { 2155 unsigned NumVec = InputList.size(); 2156 assert(NumVec > 1 && "Should be at least two vectors"); 2157 2158 SmallVector<Value *, 8> ResList; 2159 ResList.append(InputList.begin(), InputList.end()); 2160 do { 2161 SmallVector<Value *, 8> TmpList; 2162 for (unsigned i = 0; i < NumVec - 1; i += 2) { 2163 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 2164 assert((V0->getType() == V1->getType() || i == NumVec - 2) && 2165 "Only the last vector may have a different type"); 2166 2167 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); 2168 } 2169 2170 // Push the last vector if the total number of vectors is odd. 2171 if (NumVec % 2 != 0) 2172 TmpList.push_back(ResList[NumVec - 1]); 2173 2174 ResList = TmpList; 2175 NumVec = ResList.size(); 2176 } while (NumVec > 1); 2177 2178 return ResList[0]; 2179 } 2180 2181 // Try to vectorize the interleave group that \p Instr belongs to. 2182 // 2183 // E.g. Translate following interleaved load group (factor = 3): 2184 // for (i = 0; i < N; i+=3) { 2185 // R = Pic[i]; // Member of index 0 2186 // G = Pic[i+1]; // Member of index 1 2187 // B = Pic[i+2]; // Member of index 2 2188 // ... // do something to R, G, B 2189 // } 2190 // To: 2191 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2192 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2193 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2194 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2195 // 2196 // Or translate following interleaved store group (factor = 3): 2197 // for (i = 0; i < N; i+=3) { 2198 // ... do something to R, G, B 2199 // Pic[i] = R; // Member of index 0 2200 // Pic[i+1] = G; // Member of index 1 2201 // Pic[i+2] = B; // Member of index 2 2202 // } 2203 // To: 2204 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2205 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2206 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2207 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2208 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2209 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2210 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2211 assert(Group && "Fail to get an interleaved access group."); 2212 2213 // Skip if current instruction is not the insert position. 2214 if (Instr != Group->getInsertPos()) 2215 return; 2216 2217 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2218 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2219 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2220 2221 // Prepare for the vector type of the interleaved load/store. 2222 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2223 unsigned InterleaveFactor = Group->getFactor(); 2224 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2225 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); 2226 2227 // Prepare for the new pointers. 2228 setDebugLocFromInst(Builder, Ptr); 2229 VectorParts &PtrParts = getVectorValue(Ptr); 2230 SmallVector<Value *, 2> NewPtrs; 2231 unsigned Index = Group->getIndex(Instr); 2232 for (unsigned Part = 0; Part < UF; Part++) { 2233 // Extract the pointer for current instruction from the pointer vector. A 2234 // reverse access uses the pointer in the last lane. 2235 Value *NewPtr = Builder.CreateExtractElement( 2236 PtrParts[Part], 2237 Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0)); 2238 2239 // Notice current instruction could be any index. Need to adjust the address 2240 // to the member of index 0. 2241 // 2242 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2243 // b = A[i]; // Member of index 0 2244 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2245 // 2246 // E.g. A[i+1] = a; // Member of index 1 2247 // A[i] = b; // Member of index 0 2248 // A[i+2] = c; // Member of index 2 (Current instruction) 2249 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2250 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2251 2252 // Cast to the vector pointer type. 2253 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2254 } 2255 2256 setDebugLocFromInst(Builder, Instr); 2257 Value *UndefVec = UndefValue::get(VecTy); 2258 2259 // Vectorize the interleaved load group. 2260 if (LI) { 2261 for (unsigned Part = 0; Part < UF; Part++) { 2262 Instruction *NewLoadInstr = Builder.CreateAlignedLoad( 2263 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2264 2265 for (unsigned i = 0; i < InterleaveFactor; i++) { 2266 Instruction *Member = Group->getMember(i); 2267 2268 // Skip the gaps in the group. 2269 if (!Member) 2270 continue; 2271 2272 Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF); 2273 Value *StridedVec = Builder.CreateShuffleVector( 2274 NewLoadInstr, UndefVec, StrideMask, "strided.vec"); 2275 2276 // If this member has different type, cast the result type. 2277 if (Member->getType() != ScalarTy) { 2278 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2279 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2280 } 2281 2282 VectorParts &Entry = WidenMap.get(Member); 2283 Entry[Part] = 2284 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2285 } 2286 2287 propagateMetadata(NewLoadInstr, Instr); 2288 } 2289 return; 2290 } 2291 2292 // The sub vector type for current instruction. 2293 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2294 2295 // Vectorize the interleaved store group. 2296 for (unsigned Part = 0; Part < UF; Part++) { 2297 // Collect the stored vector from each member. 2298 SmallVector<Value *, 4> StoredVecs; 2299 for (unsigned i = 0; i < InterleaveFactor; i++) { 2300 // Interleaved store group doesn't allow a gap, so each index has a member 2301 Instruction *Member = Group->getMember(i); 2302 assert(Member && "Fail to get a member from an interleaved store group"); 2303 2304 Value *StoredVec = 2305 getVectorValue(dyn_cast<StoreInst>(Member)->getValueOperand())[Part]; 2306 if (Group->isReverse()) 2307 StoredVec = reverseVector(StoredVec); 2308 2309 // If this member has different type, cast it to an unified type. 2310 if (StoredVec->getType() != SubVT) 2311 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2312 2313 StoredVecs.push_back(StoredVec); 2314 } 2315 2316 // Concatenate all vectors into a wide vector. 2317 Value *WideVec = ConcatenateVectors(Builder, StoredVecs); 2318 2319 // Interleave the elements in the wide vector. 2320 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); 2321 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2322 "interleaved.vec"); 2323 2324 Instruction *NewStoreInstr = 2325 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2326 propagateMetadata(NewStoreInstr, Instr); 2327 } 2328 } 2329 2330 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2331 // Attempt to issue a wide load. 2332 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2333 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2334 2335 assert((LI || SI) && "Invalid Load/Store instruction"); 2336 2337 // Try to vectorize the interleave group if this access is interleaved. 2338 if (Legal->isAccessInterleaved(Instr)) 2339 return vectorizeInterleaveGroup(Instr); 2340 2341 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2342 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2343 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2344 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 2345 // An alignment of 0 means target abi alignment. We need to use the scalar's 2346 // target abi alignment in such a case. 2347 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2348 if (!Alignment) 2349 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2350 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2351 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy); 2352 unsigned VectorElementSize = DL.getTypeStoreSize(DataTy) / VF; 2353 2354 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 2355 !Legal->isMaskRequired(SI)) 2356 return scalarizeInstruction(Instr, true); 2357 2358 if (ScalarAllocatedSize != VectorElementSize) 2359 return scalarizeInstruction(Instr); 2360 2361 // If the pointer is loop invariant or if it is non-consecutive, 2362 // scalarize the load. 2363 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2364 bool Reverse = ConsecutiveStride < 0; 2365 bool UniformLoad = LI && Legal->isUniform(Ptr); 2366 if (!ConsecutiveStride || UniformLoad) 2367 return scalarizeInstruction(Instr); 2368 2369 Constant *Zero = Builder.getInt32(0); 2370 VectorParts &Entry = WidenMap.get(Instr); 2371 2372 // Handle consecutive loads/stores. 2373 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 2374 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 2375 setDebugLocFromInst(Builder, Gep); 2376 Value *PtrOperand = Gep->getPointerOperand(); 2377 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 2378 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 2379 2380 // Create the new GEP with the new induction variable. 2381 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2382 Gep2->setOperand(0, FirstBasePtr); 2383 Gep2->setName("gep.indvar.base"); 2384 Ptr = Builder.Insert(Gep2); 2385 } else if (Gep) { 2386 setDebugLocFromInst(Builder, Gep); 2387 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 2388 OrigLoop) && "Base ptr must be invariant"); 2389 2390 // The last index does not have to be the induction. It can be 2391 // consecutive and be a function of the index. For example A[I+1]; 2392 unsigned NumOperands = Gep->getNumOperands(); 2393 unsigned InductionOperand = getGEPInductionOperand(Gep); 2394 // Create the new GEP with the new induction variable. 2395 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2396 2397 for (unsigned i = 0; i < NumOperands; ++i) { 2398 Value *GepOperand = Gep->getOperand(i); 2399 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 2400 2401 // Update last index or loop invariant instruction anchored in loop. 2402 if (i == InductionOperand || 2403 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 2404 assert((i == InductionOperand || 2405 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && 2406 "Must be last index or loop invariant"); 2407 2408 VectorParts &GEPParts = getVectorValue(GepOperand); 2409 Value *Index = GEPParts[0]; 2410 Index = Builder.CreateExtractElement(Index, Zero); 2411 Gep2->setOperand(i, Index); 2412 Gep2->setName("gep.indvar.idx"); 2413 } 2414 } 2415 Ptr = Builder.Insert(Gep2); 2416 } else { 2417 // Use the induction element ptr. 2418 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 2419 setDebugLocFromInst(Builder, Ptr); 2420 VectorParts &PtrVal = getVectorValue(Ptr); 2421 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 2422 } 2423 2424 VectorParts Mask = createBlockInMask(Instr->getParent()); 2425 // Handle Stores: 2426 if (SI) { 2427 assert(!Legal->isUniform(SI->getPointerOperand()) && 2428 "We do not allow storing to uniform addresses"); 2429 setDebugLocFromInst(Builder, SI); 2430 // We don't want to update the value in the map as it might be used in 2431 // another expression. So don't use a reference type for "StoredVal". 2432 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2433 2434 for (unsigned Part = 0; Part < UF; ++Part) { 2435 // Calculate the pointer for the specific unroll-part. 2436 Value *PartPtr = 2437 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2438 2439 if (Reverse) { 2440 // If we store to reverse consecutive memory locations, then we need 2441 // to reverse the order of elements in the stored value. 2442 StoredVal[Part] = reverseVector(StoredVal[Part]); 2443 // If the address is consecutive but reversed, then the 2444 // wide store needs to start at the last vector element. 2445 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2446 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2447 Mask[Part] = reverseVector(Mask[Part]); 2448 } 2449 2450 Value *VecPtr = Builder.CreateBitCast(PartPtr, 2451 DataTy->getPointerTo(AddressSpace)); 2452 2453 Instruction *NewSI; 2454 if (Legal->isMaskRequired(SI)) 2455 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 2456 Mask[Part]); 2457 else 2458 NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 2459 propagateMetadata(NewSI, SI); 2460 } 2461 return; 2462 } 2463 2464 // Handle loads. 2465 assert(LI && "Must have a load instruction"); 2466 setDebugLocFromInst(Builder, LI); 2467 for (unsigned Part = 0; Part < UF; ++Part) { 2468 // Calculate the pointer for the specific unroll-part. 2469 Value *PartPtr = 2470 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2471 2472 if (Reverse) { 2473 // If the address is consecutive but reversed, then the 2474 // wide load needs to start at the last vector element. 2475 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2476 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2477 Mask[Part] = reverseVector(Mask[Part]); 2478 } 2479 2480 Instruction* NewLI; 2481 Value *VecPtr = Builder.CreateBitCast(PartPtr, 2482 DataTy->getPointerTo(AddressSpace)); 2483 if (Legal->isMaskRequired(LI)) 2484 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2485 UndefValue::get(DataTy), 2486 "wide.masked.load"); 2487 else 2488 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2489 propagateMetadata(NewLI, LI); 2490 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 2491 } 2492 } 2493 2494 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { 2495 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2496 // Holds vector parameters or scalars, in case of uniform vals. 2497 SmallVector<VectorParts, 4> Params; 2498 2499 setDebugLocFromInst(Builder, Instr); 2500 2501 // Find all of the vectorized parameters. 2502 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2503 Value *SrcOp = Instr->getOperand(op); 2504 2505 // If we are accessing the old induction variable, use the new one. 2506 if (SrcOp == OldInduction) { 2507 Params.push_back(getVectorValue(SrcOp)); 2508 continue; 2509 } 2510 2511 // Try using previously calculated values. 2512 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 2513 2514 // If the src is an instruction that appeared earlier in the basic block, 2515 // then it should already be vectorized. 2516 if (SrcInst && OrigLoop->contains(SrcInst)) { 2517 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 2518 // The parameter is a vector value from earlier. 2519 Params.push_back(WidenMap.get(SrcInst)); 2520 } else { 2521 // The parameter is a scalar from outside the loop. Maybe even a constant. 2522 VectorParts Scalars; 2523 Scalars.append(UF, SrcOp); 2524 Params.push_back(Scalars); 2525 } 2526 } 2527 2528 assert(Params.size() == Instr->getNumOperands() && 2529 "Invalid number of operands"); 2530 2531 // Does this instruction return a value ? 2532 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2533 2534 Value *UndefVec = IsVoidRetTy ? nullptr : 2535 UndefValue::get(VectorType::get(Instr->getType(), VF)); 2536 // Create a new entry in the WidenMap and initialize it to Undef or Null. 2537 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 2538 2539 VectorParts Cond; 2540 if (IfPredicateStore) { 2541 assert(Instr->getParent()->getSinglePredecessor() && 2542 "Only support single predecessor blocks"); 2543 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 2544 Instr->getParent()); 2545 } 2546 2547 // For each vector unroll 'part': 2548 for (unsigned Part = 0; Part < UF; ++Part) { 2549 // For each scalar that we create: 2550 for (unsigned Width = 0; Width < VF; ++Width) { 2551 2552 // Start if-block. 2553 Value *Cmp = nullptr; 2554 if (IfPredicateStore) { 2555 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 2556 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1)); 2557 } 2558 2559 Instruction *Cloned = Instr->clone(); 2560 if (!IsVoidRetTy) 2561 Cloned->setName(Instr->getName() + ".cloned"); 2562 // Replace the operands of the cloned instructions with extracted scalars. 2563 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2564 Value *Op = Params[op][Part]; 2565 // Param is a vector. Need to extract the right lane. 2566 if (Op->getType()->isVectorTy()) 2567 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 2568 Cloned->setOperand(op, Op); 2569 } 2570 2571 // Place the cloned scalar in the new loop. 2572 Builder.Insert(Cloned); 2573 2574 // If the original scalar returns a value we need to place it in a vector 2575 // so that future users will be able to use it. 2576 if (!IsVoidRetTy) 2577 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 2578 Builder.getInt32(Width)); 2579 // End if-block. 2580 if (IfPredicateStore) 2581 PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned), 2582 Cmp)); 2583 } 2584 } 2585 } 2586 2587 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2588 Value *End, Value *Step, 2589 Instruction *DL) { 2590 BasicBlock *Header = L->getHeader(); 2591 BasicBlock *Latch = L->getLoopLatch(); 2592 // As we're just creating this loop, it's possible no latch exists 2593 // yet. If so, use the header as this will be a single block loop. 2594 if (!Latch) 2595 Latch = Header; 2596 2597 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2598 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2599 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2600 2601 Builder.SetInsertPoint(Latch->getTerminator()); 2602 2603 // Create i+1 and fill the PHINode. 2604 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2605 Induction->addIncoming(Start, L->getLoopPreheader()); 2606 Induction->addIncoming(Next, Latch); 2607 // Create the compare. 2608 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2609 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2610 2611 // Now we have two terminators. Remove the old one from the block. 2612 Latch->getTerminator()->eraseFromParent(); 2613 2614 return Induction; 2615 } 2616 2617 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2618 if (TripCount) 2619 return TripCount; 2620 2621 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2622 // Find the loop boundaries. 2623 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(OrigLoop); 2624 assert(BackedgeTakenCount != SE->getCouldNotCompute() && "Invalid loop count"); 2625 2626 Type *IdxTy = Legal->getWidestInductionType(); 2627 2628 // The exit count might have the type of i64 while the phi is i32. This can 2629 // happen if we have an induction variable that is sign extended before the 2630 // compare. The only way that we get a backedge taken count is that the 2631 // induction variable was signed and as such will not overflow. In such a case 2632 // truncation is legal. 2633 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2634 IdxTy->getPrimitiveSizeInBits()) 2635 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2636 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2637 2638 // Get the total trip count from the count by adding 1. 2639 const SCEV *ExitCount = SE->getAddExpr( 2640 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2641 2642 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2643 2644 // Expand the trip count and place the new instructions in the preheader. 2645 // Notice that the pre-header does not change, only the loop body. 2646 SCEVExpander Exp(*SE, DL, "induction"); 2647 2648 // Count holds the overall loop count (N). 2649 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2650 L->getLoopPreheader()->getTerminator()); 2651 2652 if (TripCount->getType()->isPointerTy()) 2653 TripCount = 2654 CastInst::CreatePointerCast(TripCount, IdxTy, 2655 "exitcount.ptrcnt.to.int", 2656 L->getLoopPreheader()->getTerminator()); 2657 2658 return TripCount; 2659 } 2660 2661 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2662 if (VectorTripCount) 2663 return VectorTripCount; 2664 2665 Value *TC = getOrCreateTripCount(L); 2666 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2667 2668 // Now we need to generate the expression for N - (N % VF), which is 2669 // the part that the vectorized body will execute. 2670 // The loop step is equal to the vectorization factor (num of SIMD elements) 2671 // times the unroll factor (num of SIMD instructions). 2672 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 2673 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2674 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2675 2676 return VectorTripCount; 2677 } 2678 2679 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2680 BasicBlock *Bypass) { 2681 Value *Count = getOrCreateTripCount(L); 2682 BasicBlock *BB = L->getLoopPreheader(); 2683 IRBuilder<> Builder(BB->getTerminator()); 2684 2685 // Generate code to check that the loop's trip count that we computed by 2686 // adding one to the backedge-taken count will not overflow. 2687 Value *CheckMinIters = 2688 Builder.CreateICmpULT(Count, 2689 ConstantInt::get(Count->getType(), VF * UF), 2690 "min.iters.check"); 2691 2692 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), 2693 "min.iters.checked"); 2694 if (L->getParentLoop()) 2695 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2696 ReplaceInstWithInst(BB->getTerminator(), 2697 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2698 LoopBypassBlocks.push_back(BB); 2699 } 2700 2701 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 2702 BasicBlock *Bypass) { 2703 Value *TC = getOrCreateVectorTripCount(L); 2704 BasicBlock *BB = L->getLoopPreheader(); 2705 IRBuilder<> Builder(BB->getTerminator()); 2706 2707 // Now, compare the new count to zero. If it is zero skip the vector loop and 2708 // jump to the scalar loop. 2709 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 2710 "cmp.zero"); 2711 2712 // Generate code to check that the loop's trip count that we computed by 2713 // adding one to the backedge-taken count will not overflow. 2714 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), 2715 "vector.ph"); 2716 if (L->getParentLoop()) 2717 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2718 ReplaceInstWithInst(BB->getTerminator(), 2719 BranchInst::Create(Bypass, NewBB, Cmp)); 2720 LoopBypassBlocks.push_back(BB); 2721 } 2722 2723 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2724 BasicBlock *BB = L->getLoopPreheader(); 2725 2726 // Generate the code to check that the SCEV assumptions that we made. 2727 // We want the new basic block to start at the first instruction in a 2728 // sequence of instructions that form a check. 2729 SCEVExpander Exp(*SE, Bypass->getModule()->getDataLayout(), "scev.check"); 2730 Value *SCEVCheck = Exp.expandCodeForPredicate(&Preds, BB->getTerminator()); 2731 2732 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2733 if (C->isZero()) 2734 return; 2735 2736 // Create a new block containing the stride check. 2737 BB->setName("vector.scevcheck"); 2738 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2739 if (L->getParentLoop()) 2740 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2741 ReplaceInstWithInst(BB->getTerminator(), 2742 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2743 LoopBypassBlocks.push_back(BB); 2744 AddedSafetyChecks = true; 2745 } 2746 2747 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 2748 BasicBlock *Bypass) { 2749 BasicBlock *BB = L->getLoopPreheader(); 2750 2751 // Generate the code that checks in runtime if arrays overlap. We put the 2752 // checks into a separate block to make the more common case of few elements 2753 // faster. 2754 Instruction *FirstCheckInst; 2755 Instruction *MemRuntimeCheck; 2756 std::tie(FirstCheckInst, MemRuntimeCheck) = 2757 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2758 if (!MemRuntimeCheck) 2759 return; 2760 2761 // Create a new block containing the memory check. 2762 BB->setName("vector.memcheck"); 2763 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2764 if (L->getParentLoop()) 2765 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2766 ReplaceInstWithInst(BB->getTerminator(), 2767 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2768 LoopBypassBlocks.push_back(BB); 2769 AddedSafetyChecks = true; 2770 } 2771 2772 2773 void InnerLoopVectorizer::createEmptyLoop() { 2774 /* 2775 In this function we generate a new loop. The new loop will contain 2776 the vectorized instructions while the old loop will continue to run the 2777 scalar remainder. 2778 2779 [ ] <-- loop iteration number check. 2780 / | 2781 / v 2782 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2783 | / | 2784 | / v 2785 || [ ] <-- vector pre header. 2786 |/ | 2787 | v 2788 | [ ] \ 2789 | [ ]_| <-- vector loop. 2790 | | 2791 | v 2792 | -[ ] <--- middle-block. 2793 | / | 2794 | / v 2795 -|- >[ ] <--- new preheader. 2796 | | 2797 | v 2798 | [ ] \ 2799 | [ ]_| <-- old scalar loop to handle remainder. 2800 \ | 2801 \ v 2802 >[ ] <-- exit block. 2803 ... 2804 */ 2805 2806 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2807 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2808 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2809 assert(VectorPH && "Invalid loop structure"); 2810 assert(ExitBlock && "Must have an exit block"); 2811 2812 // Some loops have a single integer induction variable, while other loops 2813 // don't. One example is c++ iterators that often have multiple pointer 2814 // induction variables. In the code below we also support a case where we 2815 // don't have a single induction variable. 2816 // 2817 // We try to obtain an induction variable from the original loop as hard 2818 // as possible. However if we don't find one that: 2819 // - is an integer 2820 // - counts from zero, stepping by one 2821 // - is the size of the widest induction variable type 2822 // then we create a new one. 2823 OldInduction = Legal->getInduction(); 2824 Type *IdxTy = Legal->getWidestInductionType(); 2825 2826 // Split the single block loop into the two loop structure described above. 2827 BasicBlock *VecBody = 2828 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2829 BasicBlock *MiddleBlock = 2830 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2831 BasicBlock *ScalarPH = 2832 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2833 2834 // Create and register the new vector loop. 2835 Loop* Lp = new Loop(); 2836 Loop *ParentLoop = OrigLoop->getParentLoop(); 2837 2838 // Insert the new loop into the loop nest and register the new basic blocks 2839 // before calling any utilities such as SCEV that require valid LoopInfo. 2840 if (ParentLoop) { 2841 ParentLoop->addChildLoop(Lp); 2842 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2843 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2844 } else { 2845 LI->addTopLevelLoop(Lp); 2846 } 2847 Lp->addBasicBlockToLoop(VecBody, *LI); 2848 2849 // Find the loop boundaries. 2850 Value *Count = getOrCreateTripCount(Lp); 2851 2852 Value *StartIdx = ConstantInt::get(IdxTy, 0); 2853 2854 // We need to test whether the backedge-taken count is uint##_max. Adding one 2855 // to it will cause overflow and an incorrect loop trip count in the vector 2856 // body. In case of overflow we want to directly jump to the scalar remainder 2857 // loop. 2858 emitMinimumIterationCountCheck(Lp, ScalarPH); 2859 // Now, compare the new count to zero. If it is zero skip the vector loop and 2860 // jump to the scalar loop. 2861 emitVectorLoopEnteredCheck(Lp, ScalarPH); 2862 // Generate the code to check any assumptions that we've made for SCEV 2863 // expressions. 2864 emitSCEVChecks(Lp, ScalarPH); 2865 2866 // Generate the code that checks in runtime if arrays overlap. We put the 2867 // checks into a separate block to make the more common case of few elements 2868 // faster. 2869 emitMemRuntimeChecks(Lp, ScalarPH); 2870 2871 // Generate the induction variable. 2872 // The loop step is equal to the vectorization factor (num of SIMD elements) 2873 // times the unroll factor (num of SIMD instructions). 2874 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 2875 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2876 Induction = 2877 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 2878 getDebugLocFromInstOrOperands(OldInduction)); 2879 2880 // We are going to resume the execution of the scalar loop. 2881 // Go over all of the induction variables that we found and fix the 2882 // PHIs that are left in the scalar version of the loop. 2883 // The starting values of PHI nodes depend on the counter of the last 2884 // iteration in the vectorized loop. 2885 // If we come from a bypass edge then we need to start from the original 2886 // start value. 2887 2888 // This variable saves the new starting index for the scalar loop. It is used 2889 // to test if there are any tail iterations left once the vector loop has 2890 // completed. 2891 LoopVectorizationLegality::InductionList::iterator I, E; 2892 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2893 for (I = List->begin(), E = List->end(); I != E; ++I) { 2894 PHINode *OrigPhi = I->first; 2895 InductionDescriptor II = I->second; 2896 2897 // Create phi nodes to merge from the backedge-taken check block. 2898 PHINode *BCResumeVal = PHINode::Create(OrigPhi->getType(), 3, 2899 "bc.resume.val", 2900 ScalarPH->getTerminator()); 2901 Value *EndValue; 2902 if (OrigPhi == OldInduction) { 2903 // We know what the end value is. 2904 EndValue = CountRoundDown; 2905 } else { 2906 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 2907 Value *CRD = B.CreateSExtOrTrunc(CountRoundDown, 2908 II.getStepValue()->getType(), 2909 "cast.crd"); 2910 EndValue = II.transform(B, CRD); 2911 EndValue->setName("ind.end"); 2912 } 2913 2914 // The new PHI merges the original incoming value, in case of a bypass, 2915 // or the value at the end of the vectorized loop. 2916 BCResumeVal->addIncoming(EndValue, MiddleBlock); 2917 2918 // Fix the scalar body counter (PHI node). 2919 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2920 2921 // The old induction's phi node in the scalar body needs the truncated 2922 // value. 2923 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 2924 BCResumeVal->addIncoming(II.getStartValue(), LoopBypassBlocks[I]); 2925 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2926 } 2927 2928 // Add a check in the middle block to see if we have completed 2929 // all of the iterations in the first vector loop. 2930 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2931 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 2932 CountRoundDown, "cmp.n", 2933 MiddleBlock->getTerminator()); 2934 ReplaceInstWithInst(MiddleBlock->getTerminator(), 2935 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 2936 2937 // Get ready to start creating new instructions into the vectorized body. 2938 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 2939 2940 // Save the state. 2941 LoopVectorPreHeader = Lp->getLoopPreheader(); 2942 LoopScalarPreHeader = ScalarPH; 2943 LoopMiddleBlock = MiddleBlock; 2944 LoopExitBlock = ExitBlock; 2945 LoopVectorBody.push_back(VecBody); 2946 LoopScalarBody = OldBasicBlock; 2947 2948 LoopVectorizeHints Hints(Lp, true); 2949 Hints.setAlreadyVectorized(); 2950 } 2951 2952 namespace { 2953 struct CSEDenseMapInfo { 2954 static bool canHandle(Instruction *I) { 2955 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2956 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2957 } 2958 static inline Instruction *getEmptyKey() { 2959 return DenseMapInfo<Instruction *>::getEmptyKey(); 2960 } 2961 static inline Instruction *getTombstoneKey() { 2962 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2963 } 2964 static unsigned getHashValue(Instruction *I) { 2965 assert(canHandle(I) && "Unknown instruction!"); 2966 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2967 I->value_op_end())); 2968 } 2969 static bool isEqual(Instruction *LHS, Instruction *RHS) { 2970 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2971 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2972 return LHS == RHS; 2973 return LHS->isIdenticalTo(RHS); 2974 } 2975 }; 2976 } 2977 2978 /// \brief Check whether this block is a predicated block. 2979 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 2980 /// = ...; " blocks. We start with one vectorized basic block. For every 2981 /// conditional block we split this vectorized block. Therefore, every second 2982 /// block will be a predicated one. 2983 static bool isPredicatedBlock(unsigned BlockNum) { 2984 return BlockNum % 2; 2985 } 2986 2987 ///\brief Perform cse of induction variable instructions. 2988 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 2989 // Perform simple cse. 2990 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2991 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 2992 BasicBlock *BB = BBs[i]; 2993 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2994 Instruction *In = &*I++; 2995 2996 if (!CSEDenseMapInfo::canHandle(In)) 2997 continue; 2998 2999 // Check if we can replace this instruction with any of the 3000 // visited instructions. 3001 if (Instruction *V = CSEMap.lookup(In)) { 3002 In->replaceAllUsesWith(V); 3003 In->eraseFromParent(); 3004 continue; 3005 } 3006 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 3007 // ...;" blocks for predicated stores. Every second block is a predicated 3008 // block. 3009 if (isPredicatedBlock(i)) 3010 continue; 3011 3012 CSEMap[In] = In; 3013 } 3014 } 3015 } 3016 3017 /// \brief Adds a 'fast' flag to floating point operations. 3018 static Value *addFastMathFlag(Value *V) { 3019 if (isa<FPMathOperator>(V)){ 3020 FastMathFlags Flags; 3021 Flags.setUnsafeAlgebra(); 3022 cast<Instruction>(V)->setFastMathFlags(Flags); 3023 } 3024 return V; 3025 } 3026 3027 /// Estimate the overhead of scalarizing a value. Insert and Extract are set if 3028 /// the result needs to be inserted and/or extracted from vectors. 3029 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, 3030 const TargetTransformInfo &TTI) { 3031 if (Ty->isVoidTy()) 3032 return 0; 3033 3034 assert(Ty->isVectorTy() && "Can only scalarize vectors"); 3035 unsigned Cost = 0; 3036 3037 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { 3038 if (Insert) 3039 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, i); 3040 if (Extract) 3041 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, i); 3042 } 3043 3044 return Cost; 3045 } 3046 3047 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3048 // Return the cost of the instruction, including scalarization overhead if it's 3049 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3050 // i.e. either vector version isn't available, or is too expensive. 3051 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3052 const TargetTransformInfo &TTI, 3053 const TargetLibraryInfo *TLI, 3054 bool &NeedToScalarize) { 3055 Function *F = CI->getCalledFunction(); 3056 StringRef FnName = CI->getCalledFunction()->getName(); 3057 Type *ScalarRetTy = CI->getType(); 3058 SmallVector<Type *, 4> Tys, ScalarTys; 3059 for (auto &ArgOp : CI->arg_operands()) 3060 ScalarTys.push_back(ArgOp->getType()); 3061 3062 // Estimate cost of scalarized vector call. The source operands are assumed 3063 // to be vectors, so we need to extract individual elements from there, 3064 // execute VF scalar calls, and then gather the result into the vector return 3065 // value. 3066 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3067 if (VF == 1) 3068 return ScalarCallCost; 3069 3070 // Compute corresponding vector type for return value and arguments. 3071 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3072 for (unsigned i = 0, ie = ScalarTys.size(); i != ie; ++i) 3073 Tys.push_back(ToVectorTy(ScalarTys[i], VF)); 3074 3075 // Compute costs of unpacking argument values for the scalar calls and 3076 // packing the return values to a vector. 3077 unsigned ScalarizationCost = 3078 getScalarizationOverhead(RetTy, true, false, TTI); 3079 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) 3080 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true, TTI); 3081 3082 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3083 3084 // If we can't emit a vector call for this function, then the currently found 3085 // cost is the cost we need to return. 3086 NeedToScalarize = true; 3087 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3088 return Cost; 3089 3090 // If the corresponding vector cost is cheaper, return its cost. 3091 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3092 if (VectorCallCost < Cost) { 3093 NeedToScalarize = false; 3094 return VectorCallCost; 3095 } 3096 return Cost; 3097 } 3098 3099 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3100 // factor VF. Return the cost of the instruction, including scalarization 3101 // overhead if it's needed. 3102 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3103 const TargetTransformInfo &TTI, 3104 const TargetLibraryInfo *TLI) { 3105 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3106 assert(ID && "Expected intrinsic call!"); 3107 3108 Type *RetTy = ToVectorTy(CI->getType(), VF); 3109 SmallVector<Type *, 4> Tys; 3110 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 3111 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 3112 3113 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 3114 } 3115 3116 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3117 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType()); 3118 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType()); 3119 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3120 } 3121 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3122 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType()); 3123 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType()); 3124 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3125 } 3126 3127 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3128 // For every instruction `I` in MinBWs, truncate the operands, create a 3129 // truncated version of `I` and reextend its result. InstCombine runs 3130 // later and will remove any ext/trunc pairs. 3131 // 3132 for (auto &KV : MinBWs) { 3133 VectorParts &Parts = WidenMap.get(KV.first); 3134 for (Value *&I : Parts) { 3135 if (I->use_empty()) 3136 continue; 3137 Type *OriginalTy = I->getType(); 3138 Type *ScalarTruncatedTy = IntegerType::get(OriginalTy->getContext(), 3139 KV.second); 3140 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3141 OriginalTy->getVectorNumElements()); 3142 if (TruncatedTy == OriginalTy) 3143 continue; 3144 3145 IRBuilder<> B(cast<Instruction>(I)); 3146 auto ShrinkOperand = [&](Value *V) -> Value* { 3147 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3148 if (ZI->getSrcTy() == TruncatedTy) 3149 return ZI->getOperand(0); 3150 return B.CreateZExtOrTrunc(V, TruncatedTy); 3151 }; 3152 3153 // The actual instruction modification depends on the instruction type, 3154 // unfortunately. 3155 Value *NewI = nullptr; 3156 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 3157 NewI = B.CreateBinOp(BO->getOpcode(), 3158 ShrinkOperand(BO->getOperand(0)), 3159 ShrinkOperand(BO->getOperand(1))); 3160 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3161 } else if (ICmpInst *CI = dyn_cast<ICmpInst>(I)) { 3162 NewI = B.CreateICmp(CI->getPredicate(), 3163 ShrinkOperand(CI->getOperand(0)), 3164 ShrinkOperand(CI->getOperand(1))); 3165 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 3166 NewI = B.CreateSelect(SI->getCondition(), 3167 ShrinkOperand(SI->getTrueValue()), 3168 ShrinkOperand(SI->getFalseValue())); 3169 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 3170 switch (CI->getOpcode()) { 3171 default: llvm_unreachable("Unhandled cast!"); 3172 case Instruction::Trunc: 3173 NewI = ShrinkOperand(CI->getOperand(0)); 3174 break; 3175 case Instruction::SExt: 3176 NewI = B.CreateSExtOrTrunc(CI->getOperand(0), 3177 smallestIntegerVectorType(OriginalTy, 3178 TruncatedTy)); 3179 break; 3180 case Instruction::ZExt: 3181 NewI = B.CreateZExtOrTrunc(CI->getOperand(0), 3182 smallestIntegerVectorType(OriginalTy, 3183 TruncatedTy)); 3184 break; 3185 } 3186 } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) { 3187 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3188 auto *O0 = 3189 B.CreateZExtOrTrunc(SI->getOperand(0), 3190 VectorType::get(ScalarTruncatedTy, Elements0)); 3191 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3192 auto *O1 = 3193 B.CreateZExtOrTrunc(SI->getOperand(1), 3194 VectorType::get(ScalarTruncatedTy, Elements1)); 3195 3196 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3197 } else if (isa<LoadInst>(I)) { 3198 // Don't do anything with the operands, just extend the result. 3199 continue; 3200 } else { 3201 llvm_unreachable("Unhandled instruction type!"); 3202 } 3203 3204 // Lastly, extend the result. 3205 NewI->takeName(cast<Instruction>(I)); 3206 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3207 I->replaceAllUsesWith(Res); 3208 cast<Instruction>(I)->eraseFromParent(); 3209 I = Res; 3210 } 3211 } 3212 3213 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3214 for (auto &KV : MinBWs) { 3215 VectorParts &Parts = WidenMap.get(KV.first); 3216 for (Value *&I : Parts) { 3217 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3218 if (Inst && Inst->use_empty()) { 3219 Value *NewI = Inst->getOperand(0); 3220 Inst->eraseFromParent(); 3221 I = NewI; 3222 } 3223 } 3224 } 3225 } 3226 3227 void InnerLoopVectorizer::vectorizeLoop() { 3228 //===------------------------------------------------===// 3229 // 3230 // Notice: any optimization or new instruction that go 3231 // into the code below should be also be implemented in 3232 // the cost-model. 3233 // 3234 //===------------------------------------------------===// 3235 Constant *Zero = Builder.getInt32(0); 3236 3237 // In order to support reduction variables we need to be able to vectorize 3238 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 3239 // stages. First, we create a new vector PHI node with no incoming edges. 3240 // We use this value when we vectorize all of the instructions that use the 3241 // PHI. Next, after all of the instructions in the block are complete we 3242 // add the new incoming edges to the PHI. At this point all of the 3243 // instructions in the basic block are vectorized, so we can use them to 3244 // construct the PHI. 3245 PhiVector RdxPHIsToFix; 3246 3247 // Scan the loop in a topological order to ensure that defs are vectorized 3248 // before users. 3249 LoopBlocksDFS DFS(OrigLoop); 3250 DFS.perform(LI); 3251 3252 // Vectorize all of the blocks in the original loop. 3253 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 3254 be = DFS.endRPO(); bb != be; ++bb) 3255 vectorizeBlockInLoop(*bb, &RdxPHIsToFix); 3256 3257 // Insert truncates and extends for any truncated instructions as hints to 3258 // InstCombine. 3259 if (VF > 1) 3260 truncateToMinimalBitwidths(); 3261 3262 // At this point every instruction in the original loop is widened to 3263 // a vector form. We are almost done. Now, we need to fix the PHI nodes 3264 // that we vectorized. The PHI nodes are currently empty because we did 3265 // not want to introduce cycles. Notice that the remaining PHI nodes 3266 // that we need to fix are reduction variables. 3267 3268 // Create the 'reduced' values for each of the induction vars. 3269 // The reduced values are the vector values that we scalarize and combine 3270 // after the loop is finished. 3271 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 3272 it != e; ++it) { 3273 PHINode *RdxPhi = *it; 3274 assert(RdxPhi && "Unable to recover vectorized PHI"); 3275 3276 // Find the reduction variable descriptor. 3277 assert(Legal->getReductionVars()->count(RdxPhi) && 3278 "Unable to find the reduction variable"); 3279 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[RdxPhi]; 3280 3281 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3282 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3283 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3284 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3285 RdxDesc.getMinMaxRecurrenceKind(); 3286 setDebugLocFromInst(Builder, ReductionStartValue); 3287 3288 // We need to generate a reduction vector from the incoming scalar. 3289 // To do so, we need to generate the 'identity' vector and override 3290 // one of the elements with the incoming scalar reduction. We need 3291 // to do it in the vector-loop preheader. 3292 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 3293 3294 // This is the vector-clone of the value that leaves the loop. 3295 VectorParts &VectorExit = getVectorValue(LoopExitInst); 3296 Type *VecTy = VectorExit[0]->getType(); 3297 3298 // Find the reduction identity variable. Zero for addition, or, xor, 3299 // one for multiplication, -1 for And. 3300 Value *Identity; 3301 Value *VectorStart; 3302 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3303 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3304 // MinMax reduction have the start value as their identify. 3305 if (VF == 1) { 3306 VectorStart = Identity = ReductionStartValue; 3307 } else { 3308 VectorStart = Identity = 3309 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3310 } 3311 } else { 3312 // Handle other reduction kinds: 3313 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3314 RK, VecTy->getScalarType()); 3315 if (VF == 1) { 3316 Identity = Iden; 3317 // This vector is the Identity vector where the first element is the 3318 // incoming scalar reduction. 3319 VectorStart = ReductionStartValue; 3320 } else { 3321 Identity = ConstantVector::getSplat(VF, Iden); 3322 3323 // This vector is the Identity vector where the first element is the 3324 // incoming scalar reduction. 3325 VectorStart = 3326 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3327 } 3328 } 3329 3330 // Fix the vector-loop phi. 3331 3332 // Reductions do not have to start at zero. They can start with 3333 // any loop invariant values. 3334 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 3335 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3336 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 3337 VectorParts &Val = getVectorValue(LoopVal); 3338 for (unsigned part = 0; part < UF; ++part) { 3339 // Make sure to add the reduction stat value only to the 3340 // first unroll part. 3341 Value *StartVal = (part == 0) ? VectorStart : Identity; 3342 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, 3343 LoopVectorPreHeader); 3344 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 3345 LoopVectorBody.back()); 3346 } 3347 3348 // Before each round, move the insertion point right between 3349 // the PHIs and the values we are going to write. 3350 // This allows us to write both PHINodes and the extractelement 3351 // instructions. 3352 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3353 3354 VectorParts RdxParts = getVectorValue(LoopExitInst); 3355 setDebugLocFromInst(Builder, LoopExitInst); 3356 3357 // If the vector reduction can be performed in a smaller type, we truncate 3358 // then extend the loop exit value to enable InstCombine to evaluate the 3359 // entire expression in the smaller type. 3360 if (VF > 1 && RdxPhi->getType() != RdxDesc.getRecurrenceType()) { 3361 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3362 Builder.SetInsertPoint(LoopVectorBody.back()->getTerminator()); 3363 for (unsigned part = 0; part < UF; ++part) { 3364 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3365 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3366 : Builder.CreateZExt(Trunc, VecTy); 3367 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 3368 UI != RdxParts[part]->user_end();) 3369 if (*UI != Trunc) { 3370 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 3371 RdxParts[part] = Extnd; 3372 } else { 3373 ++UI; 3374 } 3375 } 3376 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3377 for (unsigned part = 0; part < UF; ++part) 3378 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3379 } 3380 3381 // Reduce all of the unrolled parts into a single vector. 3382 Value *ReducedPartRdx = RdxParts[0]; 3383 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3384 setDebugLocFromInst(Builder, ReducedPartRdx); 3385 for (unsigned part = 1; part < UF; ++part) { 3386 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3387 // Floating point operations had to be 'fast' to enable the reduction. 3388 ReducedPartRdx = addFastMathFlag( 3389 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 3390 ReducedPartRdx, "bin.rdx")); 3391 else 3392 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3393 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 3394 } 3395 3396 if (VF > 1) { 3397 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 3398 // and vector ops, reducing the set of values being computed by half each 3399 // round. 3400 assert(isPowerOf2_32(VF) && 3401 "Reduction emission only supported for pow2 vectors!"); 3402 Value *TmpVec = ReducedPartRdx; 3403 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 3404 for (unsigned i = VF; i != 1; i >>= 1) { 3405 // Move the upper half of the vector to the lower half. 3406 for (unsigned j = 0; j != i/2; ++j) 3407 ShuffleMask[j] = Builder.getInt32(i/2 + j); 3408 3409 // Fill the rest of the mask with undef. 3410 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 3411 UndefValue::get(Builder.getInt32Ty())); 3412 3413 Value *Shuf = 3414 Builder.CreateShuffleVector(TmpVec, 3415 UndefValue::get(TmpVec->getType()), 3416 ConstantVector::get(ShuffleMask), 3417 "rdx.shuf"); 3418 3419 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3420 // Floating point operations had to be 'fast' to enable the reduction. 3421 TmpVec = addFastMathFlag(Builder.CreateBinOp( 3422 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 3423 else 3424 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 3425 TmpVec, Shuf); 3426 } 3427 3428 // The result is in the first element of the vector. 3429 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 3430 Builder.getInt32(0)); 3431 3432 // If the reduction can be performed in a smaller type, we need to extend 3433 // the reduction to the wider type before we branch to the original loop. 3434 if (RdxPhi->getType() != RdxDesc.getRecurrenceType()) 3435 ReducedPartRdx = 3436 RdxDesc.isSigned() 3437 ? Builder.CreateSExt(ReducedPartRdx, RdxPhi->getType()) 3438 : Builder.CreateZExt(ReducedPartRdx, RdxPhi->getType()); 3439 } 3440 3441 // Create a phi node that merges control-flow from the backedge-taken check 3442 // block and the middle block. 3443 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx", 3444 LoopScalarPreHeader->getTerminator()); 3445 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3446 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3447 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3448 3449 // Now, we need to fix the users of the reduction variable 3450 // inside and outside of the scalar remainder loop. 3451 // We know that the loop is in LCSSA form. We need to update the 3452 // PHI nodes in the exit blocks. 3453 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3454 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 3455 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3456 if (!LCSSAPhi) break; 3457 3458 // All PHINodes need to have a single entry edge, or two if 3459 // we already fixed them. 3460 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3461 3462 // We found our reduction value exit-PHI. Update it with the 3463 // incoming bypass edge. 3464 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { 3465 // Add an edge coming from the bypass. 3466 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3467 break; 3468 } 3469 }// end of the LCSSA phi scan. 3470 3471 // Fix the scalar loop reduction variable with the incoming reduction sum 3472 // from the vector body and from the backedge value. 3473 int IncomingEdgeBlockIdx = 3474 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3475 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3476 // Pick the other block. 3477 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3478 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3479 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3480 }// end of for each redux variable. 3481 3482 fixLCSSAPHIs(); 3483 3484 // Make sure DomTree is updated. 3485 updateAnalysis(); 3486 3487 // Predicate any stores. 3488 for (auto KV : PredicatedStores) { 3489 BasicBlock::iterator I(KV.first); 3490 auto *BB = SplitBlock(I->getParent(), &*std::next(I), DT, LI); 3491 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 3492 /*BranchWeights=*/nullptr, DT); 3493 I->moveBefore(T); 3494 I->getParent()->setName("pred.store.if"); 3495 BB->setName("pred.store.continue"); 3496 } 3497 DEBUG(DT->verifyDomTree()); 3498 // Remove redundant induction instructions. 3499 cse(LoopVectorBody); 3500 } 3501 3502 void InnerLoopVectorizer::fixLCSSAPHIs() { 3503 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3504 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 3505 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3506 if (!LCSSAPhi) break; 3507 if (LCSSAPhi->getNumIncomingValues() == 1) 3508 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 3509 LoopMiddleBlock); 3510 } 3511 } 3512 3513 InnerLoopVectorizer::VectorParts 3514 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 3515 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 3516 "Invalid edge"); 3517 3518 // Look for cached value. 3519 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 3520 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 3521 if (ECEntryIt != MaskCache.end()) 3522 return ECEntryIt->second; 3523 3524 VectorParts SrcMask = createBlockInMask(Src); 3525 3526 // The terminator has to be a branch inst! 3527 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 3528 assert(BI && "Unexpected terminator found"); 3529 3530 if (BI->isConditional()) { 3531 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 3532 3533 if (BI->getSuccessor(0) != Dst) 3534 for (unsigned part = 0; part < UF; ++part) 3535 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 3536 3537 for (unsigned part = 0; part < UF; ++part) 3538 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 3539 3540 MaskCache[Edge] = EdgeMask; 3541 return EdgeMask; 3542 } 3543 3544 MaskCache[Edge] = SrcMask; 3545 return SrcMask; 3546 } 3547 3548 InnerLoopVectorizer::VectorParts 3549 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 3550 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 3551 3552 // Loop incoming mask is all-one. 3553 if (OrigLoop->getHeader() == BB) { 3554 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 3555 return getVectorValue(C); 3556 } 3557 3558 // This is the block mask. We OR all incoming edges, and with zero. 3559 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 3560 VectorParts BlockMask = getVectorValue(Zero); 3561 3562 // For each pred: 3563 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 3564 VectorParts EM = createEdgeMask(*it, BB); 3565 for (unsigned part = 0; part < UF; ++part) 3566 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 3567 } 3568 3569 return BlockMask; 3570 } 3571 3572 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 3573 InnerLoopVectorizer::VectorParts &Entry, 3574 unsigned UF, unsigned VF, PhiVector *PV) { 3575 PHINode* P = cast<PHINode>(PN); 3576 // Handle reduction variables: 3577 if (Legal->getReductionVars()->count(P)) { 3578 for (unsigned part = 0; part < UF; ++part) { 3579 // This is phase one of vectorizing PHIs. 3580 Type *VecTy = (VF == 1) ? PN->getType() : 3581 VectorType::get(PN->getType(), VF); 3582 Entry[part] = PHINode::Create( 3583 VecTy, 2, "vec.phi", &*LoopVectorBody.back()->getFirstInsertionPt()); 3584 } 3585 PV->push_back(P); 3586 return; 3587 } 3588 3589 setDebugLocFromInst(Builder, P); 3590 // Check for PHI nodes that are lowered to vector selects. 3591 if (P->getParent() != OrigLoop->getHeader()) { 3592 // We know that all PHIs in non-header blocks are converted into 3593 // selects, so we don't have to worry about the insertion order and we 3594 // can just use the builder. 3595 // At this point we generate the predication tree. There may be 3596 // duplications since this is a simple recursive scan, but future 3597 // optimizations will clean it up. 3598 3599 unsigned NumIncoming = P->getNumIncomingValues(); 3600 3601 // Generate a sequence of selects of the form: 3602 // SELECT(Mask3, In3, 3603 // SELECT(Mask2, In2, 3604 // ( ...))) 3605 for (unsigned In = 0; In < NumIncoming; In++) { 3606 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 3607 P->getParent()); 3608 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 3609 3610 for (unsigned part = 0; part < UF; ++part) { 3611 // We might have single edge PHIs (blocks) - use an identity 3612 // 'select' for the first PHI operand. 3613 if (In == 0) 3614 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3615 In0[part]); 3616 else 3617 // Select between the current value and the previous incoming edge 3618 // based on the incoming mask. 3619 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3620 Entry[part], "predphi"); 3621 } 3622 } 3623 return; 3624 } 3625 3626 // This PHINode must be an induction variable. 3627 // Make sure that we know about it. 3628 assert(Legal->getInductionVars()->count(P) && 3629 "Not an induction variable"); 3630 3631 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 3632 3633 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 3634 // which can be found from the original scalar operations. 3635 switch (II.getKind()) { 3636 case InductionDescriptor::IK_NoInduction: 3637 llvm_unreachable("Unknown induction"); 3638 case InductionDescriptor::IK_IntInduction: { 3639 assert(P->getType() == II.getStartValue()->getType() && "Types must match"); 3640 // Handle other induction variables that are now based on the 3641 // canonical one. 3642 Value *V = Induction; 3643 if (P != OldInduction) { 3644 V = Builder.CreateSExtOrTrunc(Induction, P->getType()); 3645 V = II.transform(Builder, V); 3646 V->setName("offset.idx"); 3647 } 3648 Value *Broadcasted = getBroadcastInstrs(V); 3649 // After broadcasting the induction variable we need to make the vector 3650 // consecutive by adding 0, 1, 2, etc. 3651 for (unsigned part = 0; part < UF; ++part) 3652 Entry[part] = getStepVector(Broadcasted, VF * part, II.getStepValue()); 3653 return; 3654 } 3655 case InductionDescriptor::IK_PtrInduction: 3656 // Handle the pointer induction variable case. 3657 assert(P->getType()->isPointerTy() && "Unexpected type."); 3658 // This is the normalized GEP that starts counting at zero. 3659 Value *PtrInd = Induction; 3660 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStepValue()->getType()); 3661 // This is the vector of results. Notice that we don't generate 3662 // vector geps because scalar geps result in better code. 3663 for (unsigned part = 0; part < UF; ++part) { 3664 if (VF == 1) { 3665 int EltIndex = part; 3666 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 3667 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 3668 Value *SclrGep = II.transform(Builder, GlobalIdx); 3669 SclrGep->setName("next.gep"); 3670 Entry[part] = SclrGep; 3671 continue; 3672 } 3673 3674 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 3675 for (unsigned int i = 0; i < VF; ++i) { 3676 int EltIndex = i + part * VF; 3677 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 3678 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 3679 Value *SclrGep = II.transform(Builder, GlobalIdx); 3680 SclrGep->setName("next.gep"); 3681 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 3682 Builder.getInt32(i), 3683 "insert.gep"); 3684 } 3685 Entry[part] = VecVal; 3686 } 3687 return; 3688 } 3689 } 3690 3691 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 3692 // For each instruction in the old loop. 3693 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 3694 VectorParts &Entry = WidenMap.get(&*it); 3695 3696 switch (it->getOpcode()) { 3697 case Instruction::Br: 3698 // Nothing to do for PHIs and BR, since we already took care of the 3699 // loop control flow instructions. 3700 continue; 3701 case Instruction::PHI: { 3702 // Vectorize PHINodes. 3703 widenPHIInstruction(&*it, Entry, UF, VF, PV); 3704 continue; 3705 }// End of PHI. 3706 3707 case Instruction::Add: 3708 case Instruction::FAdd: 3709 case Instruction::Sub: 3710 case Instruction::FSub: 3711 case Instruction::Mul: 3712 case Instruction::FMul: 3713 case Instruction::UDiv: 3714 case Instruction::SDiv: 3715 case Instruction::FDiv: 3716 case Instruction::URem: 3717 case Instruction::SRem: 3718 case Instruction::FRem: 3719 case Instruction::Shl: 3720 case Instruction::LShr: 3721 case Instruction::AShr: 3722 case Instruction::And: 3723 case Instruction::Or: 3724 case Instruction::Xor: { 3725 // Just widen binops. 3726 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 3727 setDebugLocFromInst(Builder, BinOp); 3728 VectorParts &A = getVectorValue(it->getOperand(0)); 3729 VectorParts &B = getVectorValue(it->getOperand(1)); 3730 3731 // Use this vector value for all users of the original instruction. 3732 for (unsigned Part = 0; Part < UF; ++Part) { 3733 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 3734 3735 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3736 VecOp->copyIRFlags(BinOp); 3737 3738 Entry[Part] = V; 3739 } 3740 3741 propagateMetadata(Entry, &*it); 3742 break; 3743 } 3744 case Instruction::Select: { 3745 // Widen selects. 3746 // If the selector is loop invariant we can create a select 3747 // instruction with a scalar condition. Otherwise, use vector-select. 3748 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 3749 OrigLoop); 3750 setDebugLocFromInst(Builder, &*it); 3751 3752 // The condition can be loop invariant but still defined inside the 3753 // loop. This means that we can't just use the original 'cond' value. 3754 // We have to take the 'vectorized' value and pick the first lane. 3755 // Instcombine will make this a no-op. 3756 VectorParts &Cond = getVectorValue(it->getOperand(0)); 3757 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 3758 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 3759 3760 Value *ScalarCond = (VF == 1) ? Cond[0] : 3761 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 3762 3763 for (unsigned Part = 0; Part < UF; ++Part) { 3764 Entry[Part] = Builder.CreateSelect( 3765 InvariantCond ? ScalarCond : Cond[Part], 3766 Op0[Part], 3767 Op1[Part]); 3768 } 3769 3770 propagateMetadata(Entry, &*it); 3771 break; 3772 } 3773 3774 case Instruction::ICmp: 3775 case Instruction::FCmp: { 3776 // Widen compares. Generate vector compares. 3777 bool FCmp = (it->getOpcode() == Instruction::FCmp); 3778 CmpInst *Cmp = dyn_cast<CmpInst>(it); 3779 setDebugLocFromInst(Builder, &*it); 3780 VectorParts &A = getVectorValue(it->getOperand(0)); 3781 VectorParts &B = getVectorValue(it->getOperand(1)); 3782 for (unsigned Part = 0; Part < UF; ++Part) { 3783 Value *C = nullptr; 3784 if (FCmp) { 3785 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 3786 cast<FCmpInst>(C)->copyFastMathFlags(&*it); 3787 } else { 3788 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 3789 } 3790 Entry[Part] = C; 3791 } 3792 3793 propagateMetadata(Entry, &*it); 3794 break; 3795 } 3796 3797 case Instruction::Store: 3798 case Instruction::Load: 3799 vectorizeMemoryInstruction(&*it); 3800 break; 3801 case Instruction::ZExt: 3802 case Instruction::SExt: 3803 case Instruction::FPToUI: 3804 case Instruction::FPToSI: 3805 case Instruction::FPExt: 3806 case Instruction::PtrToInt: 3807 case Instruction::IntToPtr: 3808 case Instruction::SIToFP: 3809 case Instruction::UIToFP: 3810 case Instruction::Trunc: 3811 case Instruction::FPTrunc: 3812 case Instruction::BitCast: { 3813 CastInst *CI = dyn_cast<CastInst>(it); 3814 setDebugLocFromInst(Builder, &*it); 3815 /// Optimize the special case where the source is the induction 3816 /// variable. Notice that we can only optimize the 'trunc' case 3817 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 3818 /// c. other casts depend on pointer size. 3819 if (CI->getOperand(0) == OldInduction && 3820 it->getOpcode() == Instruction::Trunc) { 3821 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 3822 CI->getType()); 3823 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 3824 InductionDescriptor II = Legal->getInductionVars()->lookup(OldInduction); 3825 Constant *Step = 3826 ConstantInt::getSigned(CI->getType(), II.getStepValue()->getSExtValue()); 3827 for (unsigned Part = 0; Part < UF; ++Part) 3828 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); 3829 propagateMetadata(Entry, &*it); 3830 break; 3831 } 3832 /// Vectorize casts. 3833 Type *DestTy = (VF == 1) ? CI->getType() : 3834 VectorType::get(CI->getType(), VF); 3835 3836 VectorParts &A = getVectorValue(it->getOperand(0)); 3837 for (unsigned Part = 0; Part < UF; ++Part) 3838 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 3839 propagateMetadata(Entry, &*it); 3840 break; 3841 } 3842 3843 case Instruction::Call: { 3844 // Ignore dbg intrinsics. 3845 if (isa<DbgInfoIntrinsic>(it)) 3846 break; 3847 setDebugLocFromInst(Builder, &*it); 3848 3849 Module *M = BB->getParent()->getParent(); 3850 CallInst *CI = cast<CallInst>(it); 3851 3852 StringRef FnName = CI->getCalledFunction()->getName(); 3853 Function *F = CI->getCalledFunction(); 3854 Type *RetTy = ToVectorTy(CI->getType(), VF); 3855 SmallVector<Type *, 4> Tys; 3856 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 3857 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 3858 3859 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3860 if (ID && 3861 (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 3862 ID == Intrinsic::lifetime_start)) { 3863 scalarizeInstruction(&*it); 3864 break; 3865 } 3866 // The flag shows whether we use Intrinsic or a usual Call for vectorized 3867 // version of the instruction. 3868 // Is it beneficial to perform intrinsic call compared to lib call? 3869 bool NeedToScalarize; 3870 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 3871 bool UseVectorIntrinsic = 3872 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 3873 if (!UseVectorIntrinsic && NeedToScalarize) { 3874 scalarizeInstruction(&*it); 3875 break; 3876 } 3877 3878 for (unsigned Part = 0; Part < UF; ++Part) { 3879 SmallVector<Value *, 4> Args; 3880 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 3881 Value *Arg = CI->getArgOperand(i); 3882 // Some intrinsics have a scalar argument - don't replace it with a 3883 // vector. 3884 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 3885 VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 3886 Arg = VectorArg[Part]; 3887 } 3888 Args.push_back(Arg); 3889 } 3890 3891 Function *VectorF; 3892 if (UseVectorIntrinsic) { 3893 // Use vector version of the intrinsic. 3894 Type *TysForDecl[] = {CI->getType()}; 3895 if (VF > 1) 3896 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 3897 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 3898 } else { 3899 // Use vector version of the library call. 3900 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 3901 assert(!VFnName.empty() && "Vector function name is empty."); 3902 VectorF = M->getFunction(VFnName); 3903 if (!VectorF) { 3904 // Generate a declaration 3905 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 3906 VectorF = 3907 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 3908 VectorF->copyAttributesFrom(F); 3909 } 3910 } 3911 assert(VectorF && "Can't create vector function."); 3912 Entry[Part] = Builder.CreateCall(VectorF, Args); 3913 } 3914 3915 propagateMetadata(Entry, &*it); 3916 break; 3917 } 3918 3919 default: 3920 // All other instructions are unsupported. Scalarize them. 3921 scalarizeInstruction(&*it); 3922 break; 3923 }// end of switch. 3924 }// end of for_each instr. 3925 } 3926 3927 void InnerLoopVectorizer::updateAnalysis() { 3928 // Forget the original basic block. 3929 SE->forgetLoop(OrigLoop); 3930 3931 // Update the dominator tree information. 3932 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 3933 "Entry does not dominate exit."); 3934 3935 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3936 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 3937 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 3938 3939 // We don't predicate stores by this point, so the vector body should be a 3940 // single loop. 3941 assert(LoopVectorBody.size() == 1 && "Expected single block loop!"); 3942 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 3943 3944 DT->addNewBlock(LoopMiddleBlock, LoopVectorBody.back()); 3945 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 3946 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 3947 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 3948 3949 DEBUG(DT->verifyDomTree()); 3950 } 3951 3952 /// \brief Check whether it is safe to if-convert this phi node. 3953 /// 3954 /// Phi nodes with constant expressions that can trap are not safe to if 3955 /// convert. 3956 static bool canIfConvertPHINodes(BasicBlock *BB) { 3957 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3958 PHINode *Phi = dyn_cast<PHINode>(I); 3959 if (!Phi) 3960 return true; 3961 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 3962 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 3963 if (C->canTrap()) 3964 return false; 3965 } 3966 return true; 3967 } 3968 3969 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 3970 if (!EnableIfConversion) { 3971 emitAnalysis(VectorizationReport() << "if-conversion is disabled"); 3972 return false; 3973 } 3974 3975 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 3976 3977 // A list of pointers that we can safely read and write to. 3978 SmallPtrSet<Value *, 8> SafePointes; 3979 3980 // Collect safe addresses. 3981 for (Loop::block_iterator BI = TheLoop->block_begin(), 3982 BE = TheLoop->block_end(); BI != BE; ++BI) { 3983 BasicBlock *BB = *BI; 3984 3985 if (blockNeedsPredication(BB)) 3986 continue; 3987 3988 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3989 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3990 SafePointes.insert(LI->getPointerOperand()); 3991 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 3992 SafePointes.insert(SI->getPointerOperand()); 3993 } 3994 } 3995 3996 // Collect the blocks that need predication. 3997 BasicBlock *Header = TheLoop->getHeader(); 3998 for (Loop::block_iterator BI = TheLoop->block_begin(), 3999 BE = TheLoop->block_end(); BI != BE; ++BI) { 4000 BasicBlock *BB = *BI; 4001 4002 // We don't support switch statements inside loops. 4003 if (!isa<BranchInst>(BB->getTerminator())) { 4004 emitAnalysis(VectorizationReport(BB->getTerminator()) 4005 << "loop contains a switch statement"); 4006 return false; 4007 } 4008 4009 // We must be able to predicate all blocks that need to be predicated. 4010 if (blockNeedsPredication(BB)) { 4011 if (!blockCanBePredicated(BB, SafePointes)) { 4012 emitAnalysis(VectorizationReport(BB->getTerminator()) 4013 << "control flow cannot be substituted for a select"); 4014 return false; 4015 } 4016 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4017 emitAnalysis(VectorizationReport(BB->getTerminator()) 4018 << "control flow cannot be substituted for a select"); 4019 return false; 4020 } 4021 } 4022 4023 // We can if-convert this loop. 4024 return true; 4025 } 4026 4027 bool LoopVectorizationLegality::canVectorize() { 4028 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4029 // be canonicalized. 4030 if (!TheLoop->getLoopPreheader()) { 4031 emitAnalysis( 4032 VectorizationReport() << 4033 "loop control flow is not understood by vectorizer"); 4034 return false; 4035 } 4036 4037 // We can only vectorize innermost loops. 4038 if (!TheLoop->empty()) { 4039 emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); 4040 return false; 4041 } 4042 4043 // We must have a single backedge. 4044 if (TheLoop->getNumBackEdges() != 1) { 4045 emitAnalysis( 4046 VectorizationReport() << 4047 "loop control flow is not understood by vectorizer"); 4048 return false; 4049 } 4050 4051 // We must have a single exiting block. 4052 if (!TheLoop->getExitingBlock()) { 4053 emitAnalysis( 4054 VectorizationReport() << 4055 "loop control flow is not understood by vectorizer"); 4056 return false; 4057 } 4058 4059 // We only handle bottom-tested loops, i.e. loop in which the condition is 4060 // checked at the end of each iteration. With that we can assume that all 4061 // instructions in the loop are executed the same number of times. 4062 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 4063 emitAnalysis( 4064 VectorizationReport() << 4065 "loop control flow is not understood by vectorizer"); 4066 return false; 4067 } 4068 4069 // We need to have a loop header. 4070 DEBUG(dbgs() << "LV: Found a loop: " << 4071 TheLoop->getHeader()->getName() << '\n'); 4072 4073 // Check if we can if-convert non-single-bb loops. 4074 unsigned NumBlocks = TheLoop->getNumBlocks(); 4075 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 4076 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 4077 return false; 4078 } 4079 4080 // ScalarEvolution needs to be able to find the exit count. 4081 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 4082 if (ExitCount == SE->getCouldNotCompute()) { 4083 emitAnalysis(VectorizationReport() << 4084 "could not determine number of loop iterations"); 4085 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 4086 return false; 4087 } 4088 4089 // Check if we can vectorize the instructions and CFG in this loop. 4090 if (!canVectorizeInstrs()) { 4091 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 4092 return false; 4093 } 4094 4095 // Go over each instruction and look at memory deps. 4096 if (!canVectorizeMemory()) { 4097 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 4098 return false; 4099 } 4100 4101 // Collect all of the variables that remain uniform after vectorization. 4102 collectLoopUniforms(); 4103 4104 DEBUG(dbgs() << "LV: We can vectorize this loop" 4105 << (LAI->getRuntimePointerChecking()->Need 4106 ? " (with a runtime bound check)" 4107 : "") 4108 << "!\n"); 4109 4110 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 4111 4112 // If an override option has been passed in for interleaved accesses, use it. 4113 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 4114 UseInterleaved = EnableInterleavedMemAccesses; 4115 4116 // Analyze interleaved memory accesses. 4117 if (UseInterleaved) 4118 InterleaveInfo.analyzeInterleaving(Strides); 4119 4120 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 4121 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 4122 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 4123 4124 if (Preds.getComplexity() > SCEVThreshold) { 4125 emitAnalysis(VectorizationReport() 4126 << "Too many SCEV assumptions need to be made and checked " 4127 << "at runtime"); 4128 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 4129 return false; 4130 } 4131 4132 // Okay! We can vectorize. At this point we don't have any other mem analysis 4133 // which may limit our maximum vectorization factor, so just return true with 4134 // no restrictions. 4135 return true; 4136 } 4137 4138 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 4139 if (Ty->isPointerTy()) 4140 return DL.getIntPtrType(Ty); 4141 4142 // It is possible that char's or short's overflow when we ask for the loop's 4143 // trip count, work around this by changing the type size. 4144 if (Ty->getScalarSizeInBits() < 32) 4145 return Type::getInt32Ty(Ty->getContext()); 4146 4147 return Ty; 4148 } 4149 4150 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 4151 Ty0 = convertPointerToIntegerType(DL, Ty0); 4152 Ty1 = convertPointerToIntegerType(DL, Ty1); 4153 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 4154 return Ty0; 4155 return Ty1; 4156 } 4157 4158 /// \brief Check that the instruction has outside loop users and is not an 4159 /// identified reduction variable. 4160 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 4161 SmallPtrSetImpl<Value *> &Reductions) { 4162 // Reduction instructions are allowed to have exit users. All other 4163 // instructions must not have external users. 4164 if (!Reductions.count(Inst)) 4165 //Check that all of the users of the loop are inside the BB. 4166 for (User *U : Inst->users()) { 4167 Instruction *UI = cast<Instruction>(U); 4168 // This user may be a reduction exit value. 4169 if (!TheLoop->contains(UI)) { 4170 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 4171 return true; 4172 } 4173 } 4174 return false; 4175 } 4176 4177 bool LoopVectorizationLegality::canVectorizeInstrs() { 4178 BasicBlock *Header = TheLoop->getHeader(); 4179 4180 // Look for the attribute signaling the absence of NaNs. 4181 Function &F = *Header->getParent(); 4182 const DataLayout &DL = F.getParent()->getDataLayout(); 4183 if (F.hasFnAttribute("no-nans-fp-math")) 4184 HasFunNoNaNAttr = 4185 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 4186 4187 // For each block in the loop. 4188 for (Loop::block_iterator bb = TheLoop->block_begin(), 4189 be = TheLoop->block_end(); bb != be; ++bb) { 4190 4191 // Scan the instructions in the block and look for hazards. 4192 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4193 ++it) { 4194 4195 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 4196 Type *PhiTy = Phi->getType(); 4197 // Check that this PHI type is allowed. 4198 if (!PhiTy->isIntegerTy() && 4199 !PhiTy->isFloatingPointTy() && 4200 !PhiTy->isPointerTy()) { 4201 emitAnalysis(VectorizationReport(&*it) 4202 << "loop control flow is not understood by vectorizer"); 4203 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 4204 return false; 4205 } 4206 4207 // If this PHINode is not in the header block, then we know that we 4208 // can convert it to select during if-conversion. No need to check if 4209 // the PHIs in this block are induction or reduction variables. 4210 if (*bb != Header) { 4211 // Check that this instruction has no outside users or is an 4212 // identified reduction value with an outside user. 4213 if (!hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) 4214 continue; 4215 emitAnalysis(VectorizationReport(&*it) << 4216 "value could not be identified as " 4217 "an induction or reduction variable"); 4218 return false; 4219 } 4220 4221 // We only allow if-converted PHIs with exactly two incoming values. 4222 if (Phi->getNumIncomingValues() != 2) { 4223 emitAnalysis(VectorizationReport(&*it) 4224 << "control flow not understood by vectorizer"); 4225 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 4226 return false; 4227 } 4228 4229 InductionDescriptor ID; 4230 if (InductionDescriptor::isInductionPHI(Phi, SE, ID)) { 4231 Inductions[Phi] = ID; 4232 // Get the widest type. 4233 if (!WidestIndTy) 4234 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 4235 else 4236 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 4237 4238 // Int inductions are special because we only allow one IV. 4239 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 4240 ID.getStepValue()->isOne() && 4241 isa<Constant>(ID.getStartValue()) && 4242 cast<Constant>(ID.getStartValue())->isNullValue()) { 4243 // Use the phi node with the widest type as induction. Use the last 4244 // one if there are multiple (no good reason for doing this other 4245 // than it is expedient). We've checked that it begins at zero and 4246 // steps by one, so this is a canonical induction variable. 4247 if (!Induction || PhiTy == WidestIndTy) 4248 Induction = Phi; 4249 } 4250 4251 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 4252 4253 // Until we explicitly handle the case of an induction variable with 4254 // an outside loop user we have to give up vectorizing this loop. 4255 if (hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) { 4256 emitAnalysis(VectorizationReport(&*it) << 4257 "use of induction value outside of the " 4258 "loop is not handled by vectorizer"); 4259 return false; 4260 } 4261 4262 continue; 4263 } 4264 4265 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, 4266 Reductions[Phi])) { 4267 if (Reductions[Phi].hasUnsafeAlgebra()) 4268 Requirements->addUnsafeAlgebraInst( 4269 Reductions[Phi].getUnsafeAlgebraInst()); 4270 AllowedExit.insert(Reductions[Phi].getLoopExitInstr()); 4271 continue; 4272 } 4273 4274 emitAnalysis(VectorizationReport(&*it) << 4275 "value that could not be identified as " 4276 "reduction is used outside the loop"); 4277 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 4278 return false; 4279 }// end of PHI handling 4280 4281 // We handle calls that: 4282 // * Are debug info intrinsics. 4283 // * Have a mapping to an IR intrinsic. 4284 // * Have a vector version available. 4285 CallInst *CI = dyn_cast<CallInst>(it); 4286 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI) && 4287 !(CI->getCalledFunction() && TLI && 4288 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 4289 emitAnalysis(VectorizationReport(&*it) 4290 << "call instruction cannot be vectorized"); 4291 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 4292 return false; 4293 } 4294 4295 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 4296 // second argument is the same (i.e. loop invariant) 4297 if (CI && 4298 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) { 4299 if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) { 4300 emitAnalysis(VectorizationReport(&*it) 4301 << "intrinsic instruction cannot be vectorized"); 4302 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 4303 return false; 4304 } 4305 } 4306 4307 // Check that the instruction return type is vectorizable. 4308 // Also, we can't vectorize extractelement instructions. 4309 if ((!VectorType::isValidElementType(it->getType()) && 4310 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 4311 emitAnalysis(VectorizationReport(&*it) 4312 << "instruction return type cannot be vectorized"); 4313 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 4314 return false; 4315 } 4316 4317 // Check that the stored type is vectorizable. 4318 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 4319 Type *T = ST->getValueOperand()->getType(); 4320 if (!VectorType::isValidElementType(T)) { 4321 emitAnalysis(VectorizationReport(ST) << 4322 "store instruction cannot be vectorized"); 4323 return false; 4324 } 4325 if (EnableMemAccessVersioning) 4326 collectStridedAccess(ST); 4327 } 4328 4329 if (EnableMemAccessVersioning) 4330 if (LoadInst *LI = dyn_cast<LoadInst>(it)) 4331 collectStridedAccess(LI); 4332 4333 // Reduction instructions are allowed to have exit users. 4334 // All other instructions must not have external users. 4335 if (hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) { 4336 emitAnalysis(VectorizationReport(&*it) << 4337 "value cannot be used outside the loop"); 4338 return false; 4339 } 4340 4341 } // next instr. 4342 4343 } 4344 4345 if (!Induction) { 4346 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 4347 if (Inductions.empty()) { 4348 emitAnalysis(VectorizationReport() 4349 << "loop induction variable could not be identified"); 4350 return false; 4351 } 4352 } 4353 4354 // Now we know the widest induction type, check if our found induction 4355 // is the same size. If it's not, unset it here and InnerLoopVectorizer 4356 // will create another. 4357 if (Induction && WidestIndTy != Induction->getType()) 4358 Induction = nullptr; 4359 4360 return true; 4361 } 4362 4363 void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) { 4364 Value *Ptr = nullptr; 4365 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 4366 Ptr = LI->getPointerOperand(); 4367 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 4368 Ptr = SI->getPointerOperand(); 4369 else 4370 return; 4371 4372 Value *Stride = getStrideFromPointer(Ptr, SE, TheLoop); 4373 if (!Stride) 4374 return; 4375 4376 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 4377 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 4378 Strides[Ptr] = Stride; 4379 StrideSet.insert(Stride); 4380 } 4381 4382 void LoopVectorizationLegality::collectLoopUniforms() { 4383 // We now know that the loop is vectorizable! 4384 // Collect variables that will remain uniform after vectorization. 4385 std::vector<Value*> Worklist; 4386 BasicBlock *Latch = TheLoop->getLoopLatch(); 4387 4388 // Start with the conditional branch and walk up the block. 4389 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 4390 4391 // Also add all consecutive pointer values; these values will be uniform 4392 // after vectorization (and subsequent cleanup) and, until revectorization is 4393 // supported, all dependencies must also be uniform. 4394 for (Loop::block_iterator B = TheLoop->block_begin(), 4395 BE = TheLoop->block_end(); B != BE; ++B) 4396 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 4397 I != IE; ++I) 4398 if (I->getType()->isPointerTy() && isConsecutivePtr(&*I)) 4399 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4400 4401 while (!Worklist.empty()) { 4402 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 4403 Worklist.pop_back(); 4404 4405 // Look at instructions inside this loop. 4406 // Stop when reaching PHI nodes. 4407 // TODO: we need to follow values all over the loop, not only in this block. 4408 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 4409 continue; 4410 4411 // This is a known uniform. 4412 Uniforms.insert(I); 4413 4414 // Insert all operands. 4415 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4416 } 4417 } 4418 4419 bool LoopVectorizationLegality::canVectorizeMemory() { 4420 LAI = &LAA->getInfo(TheLoop, Strides); 4421 auto &OptionalReport = LAI->getReport(); 4422 if (OptionalReport) 4423 emitAnalysis(VectorizationReport(*OptionalReport)); 4424 if (!LAI->canVectorizeMemory()) 4425 return false; 4426 4427 if (LAI->hasStoreToLoopInvariantAddress()) { 4428 emitAnalysis( 4429 VectorizationReport() 4430 << "write to a loop invariant address could not be vectorized"); 4431 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4432 return false; 4433 } 4434 4435 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 4436 Preds.add(&LAI->Preds); 4437 4438 return true; 4439 } 4440 4441 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 4442 Value *In0 = const_cast<Value*>(V); 4443 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 4444 if (!PN) 4445 return false; 4446 4447 return Inductions.count(PN); 4448 } 4449 4450 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 4451 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4452 } 4453 4454 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 4455 SmallPtrSetImpl<Value *> &SafePtrs) { 4456 4457 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4458 // Check that we don't have a constant expression that can trap as operand. 4459 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 4460 OI != OE; ++OI) { 4461 if (Constant *C = dyn_cast<Constant>(*OI)) 4462 if (C->canTrap()) 4463 return false; 4464 } 4465 // We might be able to hoist the load. 4466 if (it->mayReadFromMemory()) { 4467 LoadInst *LI = dyn_cast<LoadInst>(it); 4468 if (!LI) 4469 return false; 4470 if (!SafePtrs.count(LI->getPointerOperand())) { 4471 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand())) { 4472 MaskedOp.insert(LI); 4473 continue; 4474 } 4475 return false; 4476 } 4477 } 4478 4479 // We don't predicate stores at the moment. 4480 if (it->mayWriteToMemory()) { 4481 StoreInst *SI = dyn_cast<StoreInst>(it); 4482 // We only support predication of stores in basic blocks with one 4483 // predecessor. 4484 if (!SI) 4485 return false; 4486 4487 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 4488 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 4489 4490 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 4491 !isSinglePredecessor) { 4492 // Build a masked store if it is legal for the target, otherwise scalarize 4493 // the block. 4494 bool isLegalMaskedOp = 4495 isLegalMaskedStore(SI->getValueOperand()->getType(), 4496 SI->getPointerOperand()); 4497 if (isLegalMaskedOp) { 4498 --NumPredStores; 4499 MaskedOp.insert(SI); 4500 continue; 4501 } 4502 return false; 4503 } 4504 } 4505 if (it->mayThrow()) 4506 return false; 4507 4508 // The instructions below can trap. 4509 switch (it->getOpcode()) { 4510 default: continue; 4511 case Instruction::UDiv: 4512 case Instruction::SDiv: 4513 case Instruction::URem: 4514 case Instruction::SRem: 4515 return false; 4516 } 4517 } 4518 4519 return true; 4520 } 4521 4522 void InterleavedAccessInfo::collectConstStridedAccesses( 4523 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 4524 const ValueToValueMap &Strides) { 4525 // Holds load/store instructions in program order. 4526 SmallVector<Instruction *, 16> AccessList; 4527 4528 for (auto *BB : TheLoop->getBlocks()) { 4529 bool IsPred = LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4530 4531 for (auto &I : *BB) { 4532 if (!isa<LoadInst>(&I) && !isa<StoreInst>(&I)) 4533 continue; 4534 // FIXME: Currently we can't handle mixed accesses and predicated accesses 4535 if (IsPred) 4536 return; 4537 4538 AccessList.push_back(&I); 4539 } 4540 } 4541 4542 if (AccessList.empty()) 4543 return; 4544 4545 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 4546 for (auto I : AccessList) { 4547 LoadInst *LI = dyn_cast<LoadInst>(I); 4548 StoreInst *SI = dyn_cast<StoreInst>(I); 4549 4550 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 4551 int Stride = isStridedPtr(SE, Ptr, TheLoop, Strides, Preds); 4552 4553 // The factor of the corresponding interleave group. 4554 unsigned Factor = std::abs(Stride); 4555 4556 // Ignore the access if the factor is too small or too large. 4557 if (Factor < 2 || Factor > MaxInterleaveGroupFactor) 4558 continue; 4559 4560 const SCEV *Scev = replaceSymbolicStrideSCEV(SE, Strides, Preds, Ptr); 4561 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 4562 unsigned Size = DL.getTypeAllocSize(PtrTy->getElementType()); 4563 4564 // An alignment of 0 means target ABI alignment. 4565 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); 4566 if (!Align) 4567 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 4568 4569 StrideAccesses[I] = StrideDescriptor(Stride, Scev, Size, Align); 4570 } 4571 } 4572 4573 // Analyze interleaved accesses and collect them into interleave groups. 4574 // 4575 // Notice that the vectorization on interleaved groups will change instruction 4576 // orders and may break dependences. But the memory dependence check guarantees 4577 // that there is no overlap between two pointers of different strides, element 4578 // sizes or underlying bases. 4579 // 4580 // For pointers sharing the same stride, element size and underlying base, no 4581 // need to worry about Read-After-Write dependences and Write-After-Read 4582 // dependences. 4583 // 4584 // E.g. The RAW dependence: A[i] = a; 4585 // b = A[i]; 4586 // This won't exist as it is a store-load forwarding conflict, which has 4587 // already been checked and forbidden in the dependence check. 4588 // 4589 // E.g. The WAR dependence: a = A[i]; // (1) 4590 // A[i] = b; // (2) 4591 // The store group of (2) is always inserted at or below (2), and the load group 4592 // of (1) is always inserted at or above (1). The dependence is safe. 4593 void InterleavedAccessInfo::analyzeInterleaving( 4594 const ValueToValueMap &Strides) { 4595 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 4596 4597 // Holds all the stride accesses. 4598 MapVector<Instruction *, StrideDescriptor> StrideAccesses; 4599 collectConstStridedAccesses(StrideAccesses, Strides); 4600 4601 if (StrideAccesses.empty()) 4602 return; 4603 4604 // Holds all interleaved store groups temporarily. 4605 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 4606 4607 // Search the load-load/write-write pair B-A in bottom-up order and try to 4608 // insert B into the interleave group of A according to 3 rules: 4609 // 1. A and B have the same stride. 4610 // 2. A and B have the same memory object size. 4611 // 3. B belongs to the group according to the distance. 4612 // 4613 // The bottom-up order can avoid breaking the Write-After-Write dependences 4614 // between two pointers of the same base. 4615 // E.g. A[i] = a; (1) 4616 // A[i] = b; (2) 4617 // A[i+1] = c (3) 4618 // We form the group (2)+(3) in front, so (1) has to form groups with accesses 4619 // above (1), which guarantees that (1) is always above (2). 4620 for (auto I = StrideAccesses.rbegin(), E = StrideAccesses.rend(); I != E; 4621 ++I) { 4622 Instruction *A = I->first; 4623 StrideDescriptor DesA = I->second; 4624 4625 InterleaveGroup *Group = getInterleaveGroup(A); 4626 if (!Group) { 4627 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *A << '\n'); 4628 Group = createInterleaveGroup(A, DesA.Stride, DesA.Align); 4629 } 4630 4631 if (A->mayWriteToMemory()) 4632 StoreGroups.insert(Group); 4633 4634 for (auto II = std::next(I); II != E; ++II) { 4635 Instruction *B = II->first; 4636 StrideDescriptor DesB = II->second; 4637 4638 // Ignore if B is already in a group or B is a different memory operation. 4639 if (isInterleaved(B) || A->mayReadFromMemory() != B->mayReadFromMemory()) 4640 continue; 4641 4642 // Check the rule 1 and 2. 4643 if (DesB.Stride != DesA.Stride || DesB.Size != DesA.Size) 4644 continue; 4645 4646 // Calculate the distance and prepare for the rule 3. 4647 const SCEVConstant *DistToA = 4648 dyn_cast<SCEVConstant>(SE->getMinusSCEV(DesB.Scev, DesA.Scev)); 4649 if (!DistToA) 4650 continue; 4651 4652 int DistanceToA = DistToA->getValue()->getValue().getSExtValue(); 4653 4654 // Skip if the distance is not multiple of size as they are not in the 4655 // same group. 4656 if (DistanceToA % static_cast<int>(DesA.Size)) 4657 continue; 4658 4659 // The index of B is the index of A plus the related index to A. 4660 int IndexB = 4661 Group->getIndex(A) + DistanceToA / static_cast<int>(DesA.Size); 4662 4663 // Try to insert B into the group. 4664 if (Group->insertMember(B, IndexB, DesB.Align)) { 4665 DEBUG(dbgs() << "LV: Inserted:" << *B << '\n' 4666 << " into the interleave group with" << *A << '\n'); 4667 InterleaveGroupMap[B] = Group; 4668 4669 // Set the first load in program order as the insert position. 4670 if (B->mayReadFromMemory()) 4671 Group->setInsertPos(B); 4672 } 4673 } // Iteration on instruction B 4674 } // Iteration on instruction A 4675 4676 // Remove interleaved store groups with gaps. 4677 for (InterleaveGroup *Group : StoreGroups) 4678 if (Group->getNumMembers() != Group->getFactor()) 4679 releaseGroup(Group); 4680 } 4681 4682 LoopVectorizationCostModel::VectorizationFactor 4683 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 4684 // Width 1 means no vectorize 4685 VectorizationFactor Factor = { 1U, 0U }; 4686 if (OptForSize && Legal->getRuntimePointerChecking()->Need) { 4687 emitAnalysis(VectorizationReport() << 4688 "runtime pointer checks needed. Enable vectorization of this " 4689 "loop with '#pragma clang loop vectorize(enable)' when " 4690 "compiling with -Os/-Oz"); 4691 DEBUG(dbgs() << 4692 "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 4693 return Factor; 4694 } 4695 4696 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 4697 emitAnalysis(VectorizationReport() << 4698 "store that is conditionally executed prevents vectorization"); 4699 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 4700 return Factor; 4701 } 4702 4703 // Find the trip count. 4704 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 4705 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4706 4707 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4708 unsigned WidestType = getWidestType(); 4709 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4710 unsigned MaxSafeDepDist = -1U; 4711 if (Legal->getMaxSafeDepDistBytes() != -1U) 4712 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 4713 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 4714 WidestRegister : MaxSafeDepDist); 4715 unsigned MaxVectorSize = WidestRegister / WidestType; 4716 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); 4717 DEBUG(dbgs() << "LV: The Widest register is: " 4718 << WidestRegister << " bits.\n"); 4719 4720 if (MaxVectorSize == 0) { 4721 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4722 MaxVectorSize = 1; 4723 } 4724 4725 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 4726 " into one vector!"); 4727 4728 unsigned VF = MaxVectorSize; 4729 4730 // If we optimize the program for size, avoid creating the tail loop. 4731 if (OptForSize) { 4732 // If we are unable to calculate the trip count then don't try to vectorize. 4733 if (TC < 2) { 4734 emitAnalysis 4735 (VectorizationReport() << 4736 "unable to calculate the loop count due to complex control flow"); 4737 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 4738 return Factor; 4739 } 4740 4741 // Find the maximum SIMD width that can fit within the trip count. 4742 VF = TC % MaxVectorSize; 4743 4744 if (VF == 0) 4745 VF = MaxVectorSize; 4746 else { 4747 // If the trip count that we found modulo the vectorization factor is not 4748 // zero then we require a tail. 4749 emitAnalysis(VectorizationReport() << 4750 "cannot optimize for size and vectorize at the " 4751 "same time. Enable vectorization of this loop " 4752 "with '#pragma clang loop vectorize(enable)' " 4753 "when compiling with -Os/-Oz"); 4754 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 4755 return Factor; 4756 } 4757 } 4758 4759 int UserVF = Hints->getWidth(); 4760 if (UserVF != 0) { 4761 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 4762 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 4763 4764 Factor.Width = UserVF; 4765 return Factor; 4766 } 4767 4768 float Cost = expectedCost(1); 4769 #ifndef NDEBUG 4770 const float ScalarCost = Cost; 4771 #endif /* NDEBUG */ 4772 unsigned Width = 1; 4773 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 4774 4775 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 4776 // Ignore scalar width, because the user explicitly wants vectorization. 4777 if (ForceVectorization && VF > 1) { 4778 Width = 2; 4779 Cost = expectedCost(Width) / (float)Width; 4780 } 4781 4782 for (unsigned i=2; i <= VF; i*=2) { 4783 // Notice that the vector loop needs to be executed less times, so 4784 // we need to divide the cost of the vector loops by the width of 4785 // the vector elements. 4786 float VectorCost = expectedCost(i) / (float)i; 4787 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 4788 (int)VectorCost << ".\n"); 4789 if (VectorCost < Cost) { 4790 Cost = VectorCost; 4791 Width = i; 4792 } 4793 } 4794 4795 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 4796 << "LV: Vectorization seems to be not beneficial, " 4797 << "but was forced by a user.\n"); 4798 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 4799 Factor.Width = Width; 4800 Factor.Cost = Width * Cost; 4801 return Factor; 4802 } 4803 4804 unsigned LoopVectorizationCostModel::getWidestType() { 4805 unsigned MaxWidth = 8; 4806 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 4807 4808 // For each block. 4809 for (Loop::block_iterator bb = TheLoop->block_begin(), 4810 be = TheLoop->block_end(); bb != be; ++bb) { 4811 BasicBlock *BB = *bb; 4812 4813 // For each instruction in the loop. 4814 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4815 Type *T = it->getType(); 4816 4817 // Skip ignored values. 4818 if (ValuesToIgnore.count(&*it)) 4819 continue; 4820 4821 // Only examine Loads, Stores and PHINodes. 4822 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 4823 continue; 4824 4825 // Examine PHI nodes that are reduction variables. Update the type to 4826 // account for the recurrence type. 4827 if (PHINode *PN = dyn_cast<PHINode>(it)) { 4828 if (!Legal->getReductionVars()->count(PN)) 4829 continue; 4830 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 4831 T = RdxDesc.getRecurrenceType(); 4832 } 4833 4834 // Examine the stored values. 4835 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 4836 T = ST->getValueOperand()->getType(); 4837 4838 // Ignore loaded pointer types and stored pointer types that are not 4839 // consecutive. However, we do want to take consecutive stores/loads of 4840 // pointer vectors into account. 4841 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&*it)) 4842 continue; 4843 4844 MaxWidth = std::max(MaxWidth, 4845 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4846 } 4847 } 4848 4849 return MaxWidth; 4850 } 4851 4852 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 4853 unsigned VF, 4854 unsigned LoopCost) { 4855 4856 // -- The interleave heuristics -- 4857 // We interleave the loop in order to expose ILP and reduce the loop overhead. 4858 // There are many micro-architectural considerations that we can't predict 4859 // at this level. For example, frontend pressure (on decode or fetch) due to 4860 // code size, or the number and capabilities of the execution ports. 4861 // 4862 // We use the following heuristics to select the interleave count: 4863 // 1. If the code has reductions, then we interleave to break the cross 4864 // iteration dependency. 4865 // 2. If the loop is really small, then we interleave to reduce the loop 4866 // overhead. 4867 // 3. We don't interleave if we think that we will spill registers to memory 4868 // due to the increased register pressure. 4869 4870 // When we optimize for size, we don't interleave. 4871 if (OptForSize) 4872 return 1; 4873 4874 // We used the distance for the interleave count. 4875 if (Legal->getMaxSafeDepDistBytes() != -1U) 4876 return 1; 4877 4878 // Do not interleave loops with a relatively small trip count. 4879 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 4880 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 4881 return 1; 4882 4883 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 4884 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 4885 " registers\n"); 4886 4887 if (VF == 1) { 4888 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 4889 TargetNumRegisters = ForceTargetNumScalarRegs; 4890 } else { 4891 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 4892 TargetNumRegisters = ForceTargetNumVectorRegs; 4893 } 4894 4895 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); 4896 // We divide by these constants so assume that we have at least one 4897 // instruction that uses at least one register. 4898 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 4899 R.NumInstructions = std::max(R.NumInstructions, 1U); 4900 4901 // We calculate the interleave count using the following formula. 4902 // Subtract the number of loop invariants from the number of available 4903 // registers. These registers are used by all of the interleaved instances. 4904 // Next, divide the remaining registers by the number of registers that is 4905 // required by the loop, in order to estimate how many parallel instances 4906 // fit without causing spills. All of this is rounded down if necessary to be 4907 // a power of two. We want power of two interleave count to simplify any 4908 // addressing operations or alignment considerations. 4909 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 4910 R.MaxLocalUsers); 4911 4912 // Don't count the induction variable as interleaved. 4913 if (EnableIndVarRegisterHeur) 4914 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 4915 std::max(1U, (R.MaxLocalUsers - 1))); 4916 4917 // Clamp the interleave ranges to reasonable counts. 4918 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 4919 4920 // Check if the user has overridden the max. 4921 if (VF == 1) { 4922 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 4923 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 4924 } else { 4925 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 4926 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 4927 } 4928 4929 // If we did not calculate the cost for VF (because the user selected the VF) 4930 // then we calculate the cost of VF here. 4931 if (LoopCost == 0) 4932 LoopCost = expectedCost(VF); 4933 4934 // Clamp the calculated IC to be between the 1 and the max interleave count 4935 // that the target allows. 4936 if (IC > MaxInterleaveCount) 4937 IC = MaxInterleaveCount; 4938 else if (IC < 1) 4939 IC = 1; 4940 4941 // Interleave if we vectorized this loop and there is a reduction that could 4942 // benefit from interleaving. 4943 if (VF > 1 && Legal->getReductionVars()->size()) { 4944 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 4945 return IC; 4946 } 4947 4948 // Note that if we've already vectorized the loop we will have done the 4949 // runtime check and so interleaving won't require further checks. 4950 bool InterleavingRequiresRuntimePointerCheck = 4951 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 4952 4953 // We want to interleave small loops in order to reduce the loop overhead and 4954 // potentially expose ILP opportunities. 4955 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 4956 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 4957 // We assume that the cost overhead is 1 and we use the cost model 4958 // to estimate the cost of the loop and interleave until the cost of the 4959 // loop overhead is about 5% of the cost of the loop. 4960 unsigned SmallIC = 4961 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 4962 4963 // Interleave until store/load ports (estimated by max interleave count) are 4964 // saturated. 4965 unsigned NumStores = Legal->getNumStores(); 4966 unsigned NumLoads = Legal->getNumLoads(); 4967 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 4968 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 4969 4970 // If we have a scalar reduction (vector reductions are already dealt with 4971 // by this point), we can increase the critical path length if the loop 4972 // we're interleaving is inside another loop. Limit, by default to 2, so the 4973 // critical path only gets increased by one reduction operation. 4974 if (Legal->getReductionVars()->size() && 4975 TheLoop->getLoopDepth() > 1) { 4976 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 4977 SmallIC = std::min(SmallIC, F); 4978 StoresIC = std::min(StoresIC, F); 4979 LoadsIC = std::min(LoadsIC, F); 4980 } 4981 4982 if (EnableLoadStoreRuntimeInterleave && 4983 std::max(StoresIC, LoadsIC) > SmallIC) { 4984 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 4985 return std::max(StoresIC, LoadsIC); 4986 } 4987 4988 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 4989 return SmallIC; 4990 } 4991 4992 // Interleave if this is a large loop (small loops are already dealt with by 4993 // this 4994 // point) that could benefit from interleaving. 4995 bool HasReductions = (Legal->getReductionVars()->size() > 0); 4996 if (TTI.enableAggressiveInterleaving(HasReductions)) { 4997 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 4998 return IC; 4999 } 5000 5001 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5002 return 1; 5003 } 5004 5005 LoopVectorizationCostModel::RegisterUsage 5006 LoopVectorizationCostModel::calculateRegisterUsage() { 5007 // This function calculates the register usage by measuring the highest number 5008 // of values that are alive at a single location. Obviously, this is a very 5009 // rough estimation. We scan the loop in a topological order in order and 5010 // assign a number to each instruction. We use RPO to ensure that defs are 5011 // met before their users. We assume that each instruction that has in-loop 5012 // users starts an interval. We record every time that an in-loop value is 5013 // used, so we have a list of the first and last occurrences of each 5014 // instruction. Next, we transpose this data structure into a multi map that 5015 // holds the list of intervals that *end* at a specific location. This multi 5016 // map allows us to perform a linear search. We scan the instructions linearly 5017 // and record each time that a new interval starts, by placing it in a set. 5018 // If we find this value in the multi-map then we remove it from the set. 5019 // The max register usage is the maximum size of the set. 5020 // We also search for instructions that are defined outside the loop, but are 5021 // used inside the loop. We need this number separately from the max-interval 5022 // usage number because when we unroll, loop-invariant values do not take 5023 // more register. 5024 LoopBlocksDFS DFS(TheLoop); 5025 DFS.perform(LI); 5026 5027 RegisterUsage R; 5028 R.NumInstructions = 0; 5029 5030 // Each 'key' in the map opens a new interval. The values 5031 // of the map are the index of the 'last seen' usage of the 5032 // instruction that is the key. 5033 typedef DenseMap<Instruction*, unsigned> IntervalMap; 5034 // Maps instruction to its index. 5035 DenseMap<unsigned, Instruction*> IdxToInstr; 5036 // Marks the end of each interval. 5037 IntervalMap EndPoint; 5038 // Saves the list of instruction indices that are used in the loop. 5039 SmallSet<Instruction*, 8> Ends; 5040 // Saves the list of values that are used in the loop but are 5041 // defined outside the loop, such as arguments and constants. 5042 SmallPtrSet<Value*, 8> LoopInvariants; 5043 5044 unsigned Index = 0; 5045 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 5046 be = DFS.endRPO(); bb != be; ++bb) { 5047 R.NumInstructions += (*bb)->size(); 5048 for (Instruction &I : **bb) { 5049 IdxToInstr[Index++] = &I; 5050 5051 // Save the end location of each USE. 5052 for (unsigned i = 0; i < I.getNumOperands(); ++i) { 5053 Value *U = I.getOperand(i); 5054 Instruction *Instr = dyn_cast<Instruction>(U); 5055 5056 // Ignore non-instruction values such as arguments, constants, etc. 5057 if (!Instr) continue; 5058 5059 // If this instruction is outside the loop then record it and continue. 5060 if (!TheLoop->contains(Instr)) { 5061 LoopInvariants.insert(Instr); 5062 continue; 5063 } 5064 5065 // Overwrite previous end points. 5066 EndPoint[Instr] = Index; 5067 Ends.insert(Instr); 5068 } 5069 } 5070 } 5071 5072 // Saves the list of intervals that end with the index in 'key'. 5073 typedef SmallVector<Instruction*, 2> InstrList; 5074 DenseMap<unsigned, InstrList> TransposeEnds; 5075 5076 // Transpose the EndPoints to a list of values that end at each index. 5077 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 5078 it != e; ++it) 5079 TransposeEnds[it->second].push_back(it->first); 5080 5081 SmallSet<Instruction*, 8> OpenIntervals; 5082 unsigned MaxUsage = 0; 5083 5084 5085 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5086 for (unsigned int i = 0; i < Index; ++i) { 5087 Instruction *I = IdxToInstr[i]; 5088 // Ignore instructions that are never used within the loop. 5089 if (!Ends.count(I)) continue; 5090 5091 // Skip ignored values. 5092 if (ValuesToIgnore.count(I)) 5093 continue; 5094 5095 // Remove all of the instructions that end at this location. 5096 InstrList &List = TransposeEnds[i]; 5097 for (unsigned int j=0, e = List.size(); j < e; ++j) 5098 OpenIntervals.erase(List[j]); 5099 5100 // Count the number of live interals. 5101 MaxUsage = std::max(MaxUsage, OpenIntervals.size()); 5102 5103 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << 5104 OpenIntervals.size() << '\n'); 5105 5106 // Add the current instruction to the list of open intervals. 5107 OpenIntervals.insert(I); 5108 } 5109 5110 unsigned Invariant = LoopInvariants.size(); 5111 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n'); 5112 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5113 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n'); 5114 5115 R.LoopInvariantRegs = Invariant; 5116 R.MaxLocalUsers = MaxUsage; 5117 return R; 5118 } 5119 5120 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 5121 unsigned Cost = 0; 5122 5123 // For each block. 5124 for (Loop::block_iterator bb = TheLoop->block_begin(), 5125 be = TheLoop->block_end(); bb != be; ++bb) { 5126 unsigned BlockCost = 0; 5127 BasicBlock *BB = *bb; 5128 5129 // For each instruction in the old loop. 5130 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5131 // Skip dbg intrinsics. 5132 if (isa<DbgInfoIntrinsic>(it)) 5133 continue; 5134 5135 // Skip ignored values. 5136 if (ValuesToIgnore.count(&*it)) 5137 continue; 5138 5139 unsigned C = getInstructionCost(&*it, VF); 5140 5141 // Check if we should override the cost. 5142 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5143 C = ForceTargetInstructionCost; 5144 5145 BlockCost += C; 5146 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 5147 VF << " For instruction: " << *it << '\n'); 5148 } 5149 5150 // We assume that if-converted blocks have a 50% chance of being executed. 5151 // When the code is scalar then some of the blocks are avoided due to CF. 5152 // When the code is vectorized we execute all code paths. 5153 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5154 BlockCost /= 2; 5155 5156 Cost += BlockCost; 5157 } 5158 5159 return Cost; 5160 } 5161 5162 /// \brief Check whether the address computation for a non-consecutive memory 5163 /// access looks like an unlikely candidate for being merged into the indexing 5164 /// mode. 5165 /// 5166 /// We look for a GEP which has one index that is an induction variable and all 5167 /// other indices are loop invariant. If the stride of this access is also 5168 /// within a small bound we decide that this address computation can likely be 5169 /// merged into the addressing mode. 5170 /// In all other cases, we identify the address computation as complex. 5171 static bool isLikelyComplexAddressComputation(Value *Ptr, 5172 LoopVectorizationLegality *Legal, 5173 ScalarEvolution *SE, 5174 const Loop *TheLoop) { 5175 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5176 if (!Gep) 5177 return true; 5178 5179 // We are looking for a gep with all loop invariant indices except for one 5180 // which should be an induction variable. 5181 unsigned NumOperands = Gep->getNumOperands(); 5182 for (unsigned i = 1; i < NumOperands; ++i) { 5183 Value *Opd = Gep->getOperand(i); 5184 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5185 !Legal->isInductionVariable(Opd)) 5186 return true; 5187 } 5188 5189 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5190 // can likely be merged into the address computation. 5191 unsigned MaxMergeDistance = 64; 5192 5193 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5194 if (!AddRec) 5195 return true; 5196 5197 // Check the step is constant. 5198 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5199 // Calculate the pointer stride and check if it is consecutive. 5200 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5201 if (!C) 5202 return true; 5203 5204 const APInt &APStepVal = C->getValue()->getValue(); 5205 5206 // Huge step value - give up. 5207 if (APStepVal.getBitWidth() > 64) 5208 return true; 5209 5210 int64_t StepVal = APStepVal.getSExtValue(); 5211 5212 return StepVal > MaxMergeDistance; 5213 } 5214 5215 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5216 return Legal->hasStride(I->getOperand(0)) || 5217 Legal->hasStride(I->getOperand(1)); 5218 } 5219 5220 unsigned 5221 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5222 // If we know that this instruction will remain uniform, check the cost of 5223 // the scalar version. 5224 if (Legal->isUniformAfterVectorization(I)) 5225 VF = 1; 5226 5227 Type *RetTy = I->getType(); 5228 if (VF > 1 && MinBWs.count(I)) 5229 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5230 Type *VectorTy = ToVectorTy(RetTy, VF); 5231 5232 // TODO: We need to estimate the cost of intrinsic calls. 5233 switch (I->getOpcode()) { 5234 case Instruction::GetElementPtr: 5235 // We mark this instruction as zero-cost because the cost of GEPs in 5236 // vectorized code depends on whether the corresponding memory instruction 5237 // is scalarized or not. Therefore, we handle GEPs with the memory 5238 // instruction cost. 5239 return 0; 5240 case Instruction::Br: { 5241 return TTI.getCFInstrCost(I->getOpcode()); 5242 } 5243 case Instruction::PHI: 5244 //TODO: IF-converted IFs become selects. 5245 return 0; 5246 case Instruction::Add: 5247 case Instruction::FAdd: 5248 case Instruction::Sub: 5249 case Instruction::FSub: 5250 case Instruction::Mul: 5251 case Instruction::FMul: 5252 case Instruction::UDiv: 5253 case Instruction::SDiv: 5254 case Instruction::FDiv: 5255 case Instruction::URem: 5256 case Instruction::SRem: 5257 case Instruction::FRem: 5258 case Instruction::Shl: 5259 case Instruction::LShr: 5260 case Instruction::AShr: 5261 case Instruction::And: 5262 case Instruction::Or: 5263 case Instruction::Xor: { 5264 // Since we will replace the stride by 1 the multiplication should go away. 5265 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5266 return 0; 5267 // Certain instructions can be cheaper to vectorize if they have a constant 5268 // second vector operand. One example of this are shifts on x86. 5269 TargetTransformInfo::OperandValueKind Op1VK = 5270 TargetTransformInfo::OK_AnyValue; 5271 TargetTransformInfo::OperandValueKind Op2VK = 5272 TargetTransformInfo::OK_AnyValue; 5273 TargetTransformInfo::OperandValueProperties Op1VP = 5274 TargetTransformInfo::OP_None; 5275 TargetTransformInfo::OperandValueProperties Op2VP = 5276 TargetTransformInfo::OP_None; 5277 Value *Op2 = I->getOperand(1); 5278 5279 // Check for a splat of a constant or for a non uniform vector of constants. 5280 if (isa<ConstantInt>(Op2)) { 5281 ConstantInt *CInt = cast<ConstantInt>(Op2); 5282 if (CInt && CInt->getValue().isPowerOf2()) 5283 Op2VP = TargetTransformInfo::OP_PowerOf2; 5284 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5285 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 5286 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5287 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 5288 if (SplatValue) { 5289 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 5290 if (CInt && CInt->getValue().isPowerOf2()) 5291 Op2VP = TargetTransformInfo::OP_PowerOf2; 5292 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5293 } 5294 } 5295 5296 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 5297 Op1VP, Op2VP); 5298 } 5299 case Instruction::Select: { 5300 SelectInst *SI = cast<SelectInst>(I); 5301 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5302 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5303 Type *CondTy = SI->getCondition()->getType(); 5304 if (!ScalarCond) 5305 CondTy = VectorType::get(CondTy, VF); 5306 5307 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 5308 } 5309 case Instruction::ICmp: 5310 case Instruction::FCmp: { 5311 Type *ValTy = I->getOperand(0)->getType(); 5312 if (VF > 1 && MinBWs.count(dyn_cast<Instruction>(I->getOperand(0)))) 5313 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[I]); 5314 VectorTy = ToVectorTy(ValTy, VF); 5315 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 5316 } 5317 case Instruction::Store: 5318 case Instruction::Load: { 5319 StoreInst *SI = dyn_cast<StoreInst>(I); 5320 LoadInst *LI = dyn_cast<LoadInst>(I); 5321 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 5322 LI->getType()); 5323 VectorTy = ToVectorTy(ValTy, VF); 5324 5325 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 5326 unsigned AS = SI ? SI->getPointerAddressSpace() : 5327 LI->getPointerAddressSpace(); 5328 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 5329 // We add the cost of address computation here instead of with the gep 5330 // instruction because only here we know whether the operation is 5331 // scalarized. 5332 if (VF == 1) 5333 return TTI.getAddressComputationCost(VectorTy) + 5334 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5335 5336 // For an interleaved access, calculate the total cost of the whole 5337 // interleave group. 5338 if (Legal->isAccessInterleaved(I)) { 5339 auto Group = Legal->getInterleavedAccessGroup(I); 5340 assert(Group && "Fail to get an interleaved access group."); 5341 5342 // Only calculate the cost once at the insert position. 5343 if (Group->getInsertPos() != I) 5344 return 0; 5345 5346 unsigned InterleaveFactor = Group->getFactor(); 5347 Type *WideVecTy = 5348 VectorType::get(VectorTy->getVectorElementType(), 5349 VectorTy->getVectorNumElements() * InterleaveFactor); 5350 5351 // Holds the indices of existing members in an interleaved load group. 5352 // An interleaved store group doesn't need this as it dones't allow gaps. 5353 SmallVector<unsigned, 4> Indices; 5354 if (LI) { 5355 for (unsigned i = 0; i < InterleaveFactor; i++) 5356 if (Group->getMember(i)) 5357 Indices.push_back(i); 5358 } 5359 5360 // Calculate the cost of the whole interleaved group. 5361 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5362 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5363 Group->getAlignment(), AS); 5364 5365 if (Group->isReverse()) 5366 Cost += 5367 Group->getNumMembers() * 5368 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5369 5370 // FIXME: The interleaved load group with a huge gap could be even more 5371 // expensive than scalar operations. Then we could ignore such group and 5372 // use scalar operations instead. 5373 return Cost; 5374 } 5375 5376 // Scalarized loads/stores. 5377 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5378 bool Reverse = ConsecutiveStride < 0; 5379 const DataLayout &DL = I->getModule()->getDataLayout(); 5380 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ValTy); 5381 unsigned VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF; 5382 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 5383 bool IsComplexComputation = 5384 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 5385 unsigned Cost = 0; 5386 // The cost of extracting from the value vector and pointer vector. 5387 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5388 for (unsigned i = 0; i < VF; ++i) { 5389 // The cost of extracting the pointer operand. 5390 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 5391 // In case of STORE, the cost of ExtractElement from the vector. 5392 // In case of LOAD, the cost of InsertElement into the returned 5393 // vector. 5394 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 5395 Instruction::InsertElement, 5396 VectorTy, i); 5397 } 5398 5399 // The cost of the scalar loads/stores. 5400 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 5401 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5402 Alignment, AS); 5403 return Cost; 5404 } 5405 5406 // Wide load/stores. 5407 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 5408 if (Legal->isMaskRequired(I)) 5409 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, 5410 AS); 5411 else 5412 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5413 5414 if (Reverse) 5415 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 5416 VectorTy, 0); 5417 return Cost; 5418 } 5419 case Instruction::ZExt: 5420 case Instruction::SExt: 5421 case Instruction::FPToUI: 5422 case Instruction::FPToSI: 5423 case Instruction::FPExt: 5424 case Instruction::PtrToInt: 5425 case Instruction::IntToPtr: 5426 case Instruction::SIToFP: 5427 case Instruction::UIToFP: 5428 case Instruction::Trunc: 5429 case Instruction::FPTrunc: 5430 case Instruction::BitCast: { 5431 // We optimize the truncation of induction variable. 5432 // The cost of these is the same as the scalar operation. 5433 if (I->getOpcode() == Instruction::Trunc && 5434 Legal->isInductionVariable(I->getOperand(0))) 5435 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 5436 I->getOperand(0)->getType()); 5437 5438 Type *SrcScalarTy = I->getOperand(0)->getType(); 5439 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 5440 if (VF > 1 && MinBWs.count(I)) { 5441 // This cast is going to be shrunk. This may remove the cast or it might 5442 // turn it into slightly different cast. For example, if MinBW == 16, 5443 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 5444 // 5445 // Calculate the modified src and dest types. 5446 Type *MinVecTy = VectorTy; 5447 if (I->getOpcode() == Instruction::Trunc) { 5448 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 5449 VectorTy = largestIntegerVectorType(ToVectorTy(I->getType(), VF), 5450 MinVecTy); 5451 } else if (I->getOpcode() == Instruction::ZExt || 5452 I->getOpcode() == Instruction::SExt) { 5453 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 5454 VectorTy = smallestIntegerVectorType(ToVectorTy(I->getType(), VF), 5455 MinVecTy); 5456 } 5457 } 5458 5459 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 5460 } 5461 case Instruction::Call: { 5462 bool NeedToScalarize; 5463 CallInst *CI = cast<CallInst>(I); 5464 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 5465 if (getIntrinsicIDForCall(CI, TLI)) 5466 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 5467 return CallCost; 5468 } 5469 default: { 5470 // We are scalarizing the instruction. Return the cost of the scalar 5471 // instruction, plus the cost of insert and extract into vector 5472 // elements, times the vector width. 5473 unsigned Cost = 0; 5474 5475 if (!RetTy->isVoidTy() && VF != 1) { 5476 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 5477 VectorTy); 5478 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 5479 VectorTy); 5480 5481 // The cost of inserting the results plus extracting each one of the 5482 // operands. 5483 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 5484 } 5485 5486 // The cost of executing VF copies of the scalar instruction. This opcode 5487 // is unknown. Assume that it is the same as 'mul'. 5488 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 5489 return Cost; 5490 } 5491 }// end of switch. 5492 } 5493 5494 char LoopVectorize::ID = 0; 5495 static const char lv_name[] = "Loop Vectorization"; 5496 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 5497 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5498 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 5499 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 5500 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 5501 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 5502 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 5503 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5504 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5505 INITIALIZE_PASS_DEPENDENCY(LCSSA) 5506 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5507 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5508 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis) 5509 INITIALIZE_PASS_DEPENDENCY(DemandedBits) 5510 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 5511 5512 namespace llvm { 5513 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 5514 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 5515 } 5516 } 5517 5518 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 5519 // Check for a store. 5520 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 5521 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 5522 5523 // Check for a load. 5524 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 5525 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 5526 5527 return false; 5528 } 5529 5530 5531 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 5532 bool IfPredicateStore) { 5533 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 5534 // Holds vector parameters or scalars, in case of uniform vals. 5535 SmallVector<VectorParts, 4> Params; 5536 5537 setDebugLocFromInst(Builder, Instr); 5538 5539 // Find all of the vectorized parameters. 5540 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5541 Value *SrcOp = Instr->getOperand(op); 5542 5543 // If we are accessing the old induction variable, use the new one. 5544 if (SrcOp == OldInduction) { 5545 Params.push_back(getVectorValue(SrcOp)); 5546 continue; 5547 } 5548 5549 // Try using previously calculated values. 5550 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 5551 5552 // If the src is an instruction that appeared earlier in the basic block 5553 // then it should already be vectorized. 5554 if (SrcInst && OrigLoop->contains(SrcInst)) { 5555 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 5556 // The parameter is a vector value from earlier. 5557 Params.push_back(WidenMap.get(SrcInst)); 5558 } else { 5559 // The parameter is a scalar from outside the loop. Maybe even a constant. 5560 VectorParts Scalars; 5561 Scalars.append(UF, SrcOp); 5562 Params.push_back(Scalars); 5563 } 5564 } 5565 5566 assert(Params.size() == Instr->getNumOperands() && 5567 "Invalid number of operands"); 5568 5569 // Does this instruction return a value ? 5570 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 5571 5572 Value *UndefVec = IsVoidRetTy ? nullptr : 5573 UndefValue::get(Instr->getType()); 5574 // Create a new entry in the WidenMap and initialize it to Undef or Null. 5575 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 5576 5577 VectorParts Cond; 5578 if (IfPredicateStore) { 5579 assert(Instr->getParent()->getSinglePredecessor() && 5580 "Only support single predecessor blocks"); 5581 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 5582 Instr->getParent()); 5583 } 5584 5585 // For each vector unroll 'part': 5586 for (unsigned Part = 0; Part < UF; ++Part) { 5587 // For each scalar that we create: 5588 5589 // Start an "if (pred) a[i] = ..." block. 5590 Value *Cmp = nullptr; 5591 if (IfPredicateStore) { 5592 if (Cond[Part]->getType()->isVectorTy()) 5593 Cond[Part] = 5594 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 5595 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 5596 ConstantInt::get(Cond[Part]->getType(), 1)); 5597 } 5598 5599 Instruction *Cloned = Instr->clone(); 5600 if (!IsVoidRetTy) 5601 Cloned->setName(Instr->getName() + ".cloned"); 5602 // Replace the operands of the cloned instructions with extracted scalars. 5603 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5604 Value *Op = Params[op][Part]; 5605 Cloned->setOperand(op, Op); 5606 } 5607 5608 // Place the cloned scalar in the new loop. 5609 Builder.Insert(Cloned); 5610 5611 // If the original scalar returns a value we need to place it in a vector 5612 // so that future users will be able to use it. 5613 if (!IsVoidRetTy) 5614 VecResults[Part] = Cloned; 5615 5616 // End if-block. 5617 if (IfPredicateStore) 5618 PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned), 5619 Cmp)); 5620 } 5621 } 5622 5623 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 5624 StoreInst *SI = dyn_cast<StoreInst>(Instr); 5625 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 5626 5627 return scalarizeInstruction(Instr, IfPredicateStore); 5628 } 5629 5630 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 5631 return Vec; 5632 } 5633 5634 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 5635 return V; 5636 } 5637 5638 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) { 5639 // When unrolling and the VF is 1, we only need to add a simple scalar. 5640 Type *ITy = Val->getType(); 5641 assert(!ITy->isVectorTy() && "Val must be a scalar"); 5642 Constant *C = ConstantInt::get(ITy, StartIdx); 5643 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 5644 } 5645