1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <cstdlib> 147 #include <functional> 148 #include <iterator> 149 #include <limits> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 /// @{ 161 /// Metadata attribute names 162 static const char *const LLVMLoopVectorizeFollowupAll = 163 "llvm.loop.vectorize.followup_all"; 164 static const char *const LLVMLoopVectorizeFollowupVectorized = 165 "llvm.loop.vectorize.followup_vectorized"; 166 static const char *const LLVMLoopVectorizeFollowupEpilogue = 167 "llvm.loop.vectorize.followup_epilogue"; 168 /// @} 169 170 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 172 173 /// Loops with a known constant trip count below this number are vectorized only 174 /// if no scalar iteration overheads are incurred. 175 static cl::opt<unsigned> TinyTripCountVectorThreshold( 176 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 177 cl::desc("Loops with a constant trip count that is smaller than this " 178 "value are vectorized only if no scalar iteration overheads " 179 "are incurred.")); 180 181 // Indicates that an epilogue is undesired, predication is preferred. 182 // This means that the vectorizer will try to fold the loop-tail (epilogue) 183 // into the loop and predicate the loop body accordingly. 184 static cl::opt<bool> PreferPredicateOverEpilog( 185 "prefer-predicate-over-epilog", cl::init(false), cl::Hidden, 186 cl::desc("Indicate that an epilogue is undesired, predication should be " 187 "used instead.")); 188 189 static cl::opt<bool> MaximizeBandwidth( 190 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 191 cl::desc("Maximize bandwidth when selecting vectorization factor which " 192 "will be determined by the smallest type in loop.")); 193 194 static cl::opt<bool> EnableInterleavedMemAccesses( 195 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 196 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 197 198 /// An interleave-group may need masking if it resides in a block that needs 199 /// predication, or in order to mask away gaps. 200 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 201 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 202 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 203 204 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 205 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 206 cl::desc("We don't interleave loops with a estimated constant trip count " 207 "below this number")); 208 209 static cl::opt<unsigned> ForceTargetNumScalarRegs( 210 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 211 cl::desc("A flag that overrides the target's number of scalar registers.")); 212 213 static cl::opt<unsigned> ForceTargetNumVectorRegs( 214 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 215 cl::desc("A flag that overrides the target's number of vector registers.")); 216 217 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 218 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 219 cl::desc("A flag that overrides the target's max interleave factor for " 220 "scalar loops.")); 221 222 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 223 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 224 cl::desc("A flag that overrides the target's max interleave factor for " 225 "vectorized loops.")); 226 227 static cl::opt<unsigned> ForceTargetInstructionCost( 228 "force-target-instruction-cost", cl::init(0), cl::Hidden, 229 cl::desc("A flag that overrides the target's expected cost for " 230 "an instruction to a single constant value. Mostly " 231 "useful for getting consistent testing.")); 232 233 static cl::opt<unsigned> SmallLoopCost( 234 "small-loop-cost", cl::init(20), cl::Hidden, 235 cl::desc( 236 "The cost of a loop that is considered 'small' by the interleaver.")); 237 238 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 239 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 240 cl::desc("Enable the use of the block frequency analysis to access PGO " 241 "heuristics minimizing code growth in cold regions and being more " 242 "aggressive in hot regions.")); 243 244 // Runtime interleave loops for load/store throughput. 245 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 246 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 247 cl::desc( 248 "Enable runtime interleaving until load/store ports are saturated")); 249 250 /// The number of stores in a loop that are allowed to need predication. 251 static cl::opt<unsigned> NumberOfStoresToPredicate( 252 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 253 cl::desc("Max number of stores to be predicated behind an if.")); 254 255 static cl::opt<bool> EnableIndVarRegisterHeur( 256 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 257 cl::desc("Count the induction variable only once when interleaving")); 258 259 static cl::opt<bool> EnableCondStoresVectorization( 260 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 261 cl::desc("Enable if predication of stores during vectorization.")); 262 263 static cl::opt<unsigned> MaxNestedScalarReductionIC( 264 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 265 cl::desc("The maximum interleave count to use when interleaving a scalar " 266 "reduction in a nested loop.")); 267 268 cl::opt<bool> EnableVPlanNativePath( 269 "enable-vplan-native-path", cl::init(false), cl::Hidden, 270 cl::desc("Enable VPlan-native vectorization path with " 271 "support for outer loop vectorization.")); 272 273 // FIXME: Remove this switch once we have divergence analysis. Currently we 274 // assume divergent non-backedge branches when this switch is true. 275 cl::opt<bool> EnableVPlanPredication( 276 "enable-vplan-predication", cl::init(false), cl::Hidden, 277 cl::desc("Enable VPlan-native vectorization path predicator with " 278 "support for outer loop vectorization.")); 279 280 // This flag enables the stress testing of the VPlan H-CFG construction in the 281 // VPlan-native vectorization path. It must be used in conjuction with 282 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 283 // verification of the H-CFGs built. 284 static cl::opt<bool> VPlanBuildStressTest( 285 "vplan-build-stress-test", cl::init(false), cl::Hidden, 286 cl::desc( 287 "Build VPlan for every supported loop nest in the function and bail " 288 "out right after the build (stress test the VPlan H-CFG construction " 289 "in the VPlan-native vectorization path).")); 290 291 cl::opt<bool> llvm::EnableLoopInterleaving( 292 "interleave-loops", cl::init(true), cl::Hidden, 293 cl::desc("Enable loop interleaving in Loop vectorization passes")); 294 cl::opt<bool> llvm::EnableLoopVectorization( 295 "vectorize-loops", cl::init(true), cl::Hidden, 296 cl::desc("Run the Loop vectorization passes")); 297 298 /// A helper function that returns the type of loaded or stored value. 299 static Type *getMemInstValueType(Value *I) { 300 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 301 "Expected Load or Store instruction"); 302 if (auto *LI = dyn_cast<LoadInst>(I)) 303 return LI->getType(); 304 return cast<StoreInst>(I)->getValueOperand()->getType(); 305 } 306 307 /// A helper function that returns true if the given type is irregular. The 308 /// type is irregular if its allocated size doesn't equal the store size of an 309 /// element of the corresponding vector type at the given vectorization factor. 310 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 311 // Determine if an array of VF elements of type Ty is "bitcast compatible" 312 // with a <VF x Ty> vector. 313 if (VF > 1) { 314 auto *VectorTy = FixedVectorType::get(Ty, VF); 315 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 316 } 317 318 // If the vectorization factor is one, we just check if an array of type Ty 319 // requires padding between elements. 320 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 321 } 322 323 /// A helper function that returns the reciprocal of the block probability of 324 /// predicated blocks. If we return X, we are assuming the predicated block 325 /// will execute once for every X iterations of the loop header. 326 /// 327 /// TODO: We should use actual block probability here, if available. Currently, 328 /// we always assume predicated blocks have a 50% chance of executing. 329 static unsigned getReciprocalPredBlockProb() { return 2; } 330 331 /// A helper function that adds a 'fast' flag to floating-point operations. 332 static Value *addFastMathFlag(Value *V) { 333 if (isa<FPMathOperator>(V)) 334 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 335 return V; 336 } 337 338 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 339 if (isa<FPMathOperator>(V)) 340 cast<Instruction>(V)->setFastMathFlags(FMF); 341 return V; 342 } 343 344 /// A helper function that returns an integer or floating-point constant with 345 /// value C. 346 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 347 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 348 : ConstantFP::get(Ty, C); 349 } 350 351 /// Returns "best known" trip count for the specified loop \p L as defined by 352 /// the following procedure: 353 /// 1) Returns exact trip count if it is known. 354 /// 2) Returns expected trip count according to profile data if any. 355 /// 3) Returns upper bound estimate if it is known. 356 /// 4) Returns None if all of the above failed. 357 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 358 // Check if exact trip count is known. 359 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 360 return ExpectedTC; 361 362 // Check if there is an expected trip count available from profile data. 363 if (LoopVectorizeWithBlockFrequency) 364 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 365 return EstimatedTC; 366 367 // Check if upper bound estimate is known. 368 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 369 return ExpectedTC; 370 371 return None; 372 } 373 374 namespace llvm { 375 376 /// InnerLoopVectorizer vectorizes loops which contain only one basic 377 /// block to a specified vectorization factor (VF). 378 /// This class performs the widening of scalars into vectors, or multiple 379 /// scalars. This class also implements the following features: 380 /// * It inserts an epilogue loop for handling loops that don't have iteration 381 /// counts that are known to be a multiple of the vectorization factor. 382 /// * It handles the code generation for reduction variables. 383 /// * Scalarization (implementation using scalars) of un-vectorizable 384 /// instructions. 385 /// InnerLoopVectorizer does not perform any vectorization-legality 386 /// checks, and relies on the caller to check for the different legality 387 /// aspects. The InnerLoopVectorizer relies on the 388 /// LoopVectorizationLegality class to provide information about the induction 389 /// and reduction variables that were found to a given vectorization factor. 390 class InnerLoopVectorizer { 391 public: 392 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 393 LoopInfo *LI, DominatorTree *DT, 394 const TargetLibraryInfo *TLI, 395 const TargetTransformInfo *TTI, AssumptionCache *AC, 396 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 397 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 398 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 399 ProfileSummaryInfo *PSI) 400 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 401 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 402 Builder(PSE.getSE()->getContext()), 403 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM), 404 BFI(BFI), PSI(PSI) { 405 // Query this against the original loop and save it here because the profile 406 // of the original loop header may change as the transformation happens. 407 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 408 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 409 } 410 411 virtual ~InnerLoopVectorizer() = default; 412 413 /// Create a new empty loop. Unlink the old loop and connect the new one. 414 /// Return the pre-header block of the new loop. 415 BasicBlock *createVectorizedLoopSkeleton(); 416 417 /// Widen a single instruction within the innermost loop. 418 void widenInstruction(Instruction &I, VPUser &Operands, 419 VPTransformState &State); 420 421 /// Widen a single call instruction within the innermost loop. 422 void widenCallInstruction(CallInst &I, VPUser &ArgOperands, 423 VPTransformState &State); 424 425 /// Widen a single select instruction within the innermost loop. 426 void widenSelectInstruction(SelectInst &I, VPUser &Operands, 427 bool InvariantCond, VPTransformState &State); 428 429 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 430 void fixVectorizedLoop(); 431 432 // Return true if any runtime check is added. 433 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 434 435 /// A type for vectorized values in the new loop. Each value from the 436 /// original loop, when vectorized, is represented by UF vector values in the 437 /// new unrolled loop, where UF is the unroll factor. 438 using VectorParts = SmallVector<Value *, 2>; 439 440 /// Vectorize a single GetElementPtrInst based on information gathered and 441 /// decisions taken during planning. 442 void widenGEP(GetElementPtrInst *GEP, VPUser &Indices, unsigned UF, 443 unsigned VF, bool IsPtrLoopInvariant, 444 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 445 446 /// Vectorize a single PHINode in a block. This method handles the induction 447 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 448 /// arbitrary length vectors. 449 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 450 451 /// A helper function to scalarize a single Instruction in the innermost loop. 452 /// Generates a sequence of scalar instances for each lane between \p MinLane 453 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 454 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 455 /// Instr's operands. 456 void scalarizeInstruction(Instruction *Instr, VPUser &Operands, 457 const VPIteration &Instance, bool IfPredicateInstr, 458 VPTransformState &State); 459 460 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 461 /// is provided, the integer induction variable will first be truncated to 462 /// the corresponding type. 463 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 464 465 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 466 /// vector or scalar value on-demand if one is not yet available. When 467 /// vectorizing a loop, we visit the definition of an instruction before its 468 /// uses. When visiting the definition, we either vectorize or scalarize the 469 /// instruction, creating an entry for it in the corresponding map. (In some 470 /// cases, such as induction variables, we will create both vector and scalar 471 /// entries.) Then, as we encounter uses of the definition, we derive values 472 /// for each scalar or vector use unless such a value is already available. 473 /// For example, if we scalarize a definition and one of its uses is vector, 474 /// we build the required vector on-demand with an insertelement sequence 475 /// when visiting the use. Otherwise, if the use is scalar, we can use the 476 /// existing scalar definition. 477 /// 478 /// Return a value in the new loop corresponding to \p V from the original 479 /// loop at unroll index \p Part. If the value has already been vectorized, 480 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 481 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 482 /// a new vector value on-demand by inserting the scalar values into a vector 483 /// with an insertelement sequence. If the value has been neither vectorized 484 /// nor scalarized, it must be loop invariant, so we simply broadcast the 485 /// value into a vector. 486 Value *getOrCreateVectorValue(Value *V, unsigned Part); 487 488 /// Return a value in the new loop corresponding to \p V from the original 489 /// loop at unroll and vector indices \p Instance. If the value has been 490 /// vectorized but not scalarized, the necessary extractelement instruction 491 /// will be generated. 492 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 493 494 /// Construct the vector value of a scalarized value \p V one lane at a time. 495 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 496 497 /// Try to vectorize interleaved access group \p Group with the base address 498 /// given in \p Addr, optionally masking the vector operations if \p 499 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 500 /// values in the vectorized loop. 501 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 502 VPTransformState &State, VPValue *Addr, 503 VPValue *BlockInMask = nullptr); 504 505 /// Vectorize Load and Store instructions with the base address given in \p 506 /// Addr, optionally masking the vector operations if \p BlockInMask is 507 /// non-null. Use \p State to translate given VPValues to IR values in the 508 /// vectorized loop. 509 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 510 VPValue *Addr, VPValue *StoredValue, 511 VPValue *BlockInMask); 512 513 /// Set the debug location in the builder using the debug location in 514 /// the instruction. 515 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 516 517 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 518 void fixNonInductionPHIs(void); 519 520 protected: 521 friend class LoopVectorizationPlanner; 522 523 /// A small list of PHINodes. 524 using PhiVector = SmallVector<PHINode *, 4>; 525 526 /// A type for scalarized values in the new loop. Each value from the 527 /// original loop, when scalarized, is represented by UF x VF scalar values 528 /// in the new unrolled loop, where UF is the unroll factor and VF is the 529 /// vectorization factor. 530 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 531 532 /// Set up the values of the IVs correctly when exiting the vector loop. 533 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 534 Value *CountRoundDown, Value *EndValue, 535 BasicBlock *MiddleBlock); 536 537 /// Create a new induction variable inside L. 538 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 539 Value *Step, Instruction *DL); 540 541 /// Handle all cross-iteration phis in the header. 542 void fixCrossIterationPHIs(); 543 544 /// Fix a first-order recurrence. This is the second phase of vectorizing 545 /// this phi node. 546 void fixFirstOrderRecurrence(PHINode *Phi); 547 548 /// Fix a reduction cross-iteration phi. This is the second phase of 549 /// vectorizing this phi node. 550 void fixReduction(PHINode *Phi); 551 552 /// Clear NSW/NUW flags from reduction instructions if necessary. 553 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc); 554 555 /// The Loop exit block may have single value PHI nodes with some 556 /// incoming value. While vectorizing we only handled real values 557 /// that were defined inside the loop and we should have one value for 558 /// each predecessor of its parent basic block. See PR14725. 559 void fixLCSSAPHIs(); 560 561 /// Iteratively sink the scalarized operands of a predicated instruction into 562 /// the block that was created for it. 563 void sinkScalarOperands(Instruction *PredInst); 564 565 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 566 /// represented as. 567 void truncateToMinimalBitwidths(); 568 569 /// Create a broadcast instruction. This method generates a broadcast 570 /// instruction (shuffle) for loop invariant values and for the induction 571 /// value. If this is the induction variable then we extend it to N, N+1, ... 572 /// this is needed because each iteration in the loop corresponds to a SIMD 573 /// element. 574 virtual Value *getBroadcastInstrs(Value *V); 575 576 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 577 /// to each vector element of Val. The sequence starts at StartIndex. 578 /// \p Opcode is relevant for FP induction variable. 579 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 580 Instruction::BinaryOps Opcode = 581 Instruction::BinaryOpsEnd); 582 583 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 584 /// variable on which to base the steps, \p Step is the size of the step, and 585 /// \p EntryVal is the value from the original loop that maps to the steps. 586 /// Note that \p EntryVal doesn't have to be an induction variable - it 587 /// can also be a truncate instruction. 588 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 589 const InductionDescriptor &ID); 590 591 /// Create a vector induction phi node based on an existing scalar one. \p 592 /// EntryVal is the value from the original loop that maps to the vector phi 593 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 594 /// truncate instruction, instead of widening the original IV, we widen a 595 /// version of the IV truncated to \p EntryVal's type. 596 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 597 Value *Step, Instruction *EntryVal); 598 599 /// Returns true if an instruction \p I should be scalarized instead of 600 /// vectorized for the chosen vectorization factor. 601 bool shouldScalarizeInstruction(Instruction *I) const; 602 603 /// Returns true if we should generate a scalar version of \p IV. 604 bool needsScalarInduction(Instruction *IV) const; 605 606 /// If there is a cast involved in the induction variable \p ID, which should 607 /// be ignored in the vectorized loop body, this function records the 608 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 609 /// cast. We had already proved that the casted Phi is equal to the uncasted 610 /// Phi in the vectorized loop (under a runtime guard), and therefore 611 /// there is no need to vectorize the cast - the same value can be used in the 612 /// vector loop for both the Phi and the cast. 613 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 614 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 615 /// 616 /// \p EntryVal is the value from the original loop that maps to the vector 617 /// phi node and is used to distinguish what is the IV currently being 618 /// processed - original one (if \p EntryVal is a phi corresponding to the 619 /// original IV) or the "newly-created" one based on the proof mentioned above 620 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 621 /// latter case \p EntryVal is a TruncInst and we must not record anything for 622 /// that IV, but it's error-prone to expect callers of this routine to care 623 /// about that, hence this explicit parameter. 624 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 625 const Instruction *EntryVal, 626 Value *VectorLoopValue, 627 unsigned Part, 628 unsigned Lane = UINT_MAX); 629 630 /// Generate a shuffle sequence that will reverse the vector Vec. 631 virtual Value *reverseVector(Value *Vec); 632 633 /// Returns (and creates if needed) the original loop trip count. 634 Value *getOrCreateTripCount(Loop *NewLoop); 635 636 /// Returns (and creates if needed) the trip count of the widened loop. 637 Value *getOrCreateVectorTripCount(Loop *NewLoop); 638 639 /// Returns a bitcasted value to the requested vector type. 640 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 641 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 642 const DataLayout &DL); 643 644 /// Emit a bypass check to see if the vector trip count is zero, including if 645 /// it overflows. 646 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 647 648 /// Emit a bypass check to see if all of the SCEV assumptions we've 649 /// had to make are correct. 650 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 651 652 /// Emit bypass checks to check any memory assumptions we may have made. 653 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 654 655 /// Compute the transformed value of Index at offset StartValue using step 656 /// StepValue. 657 /// For integer induction, returns StartValue + Index * StepValue. 658 /// For pointer induction, returns StartValue[Index * StepValue]. 659 /// FIXME: The newly created binary instructions should contain nsw/nuw 660 /// flags, which can be found from the original scalar operations. 661 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 662 const DataLayout &DL, 663 const InductionDescriptor &ID) const; 664 665 /// Add additional metadata to \p To that was not present on \p Orig. 666 /// 667 /// Currently this is used to add the noalias annotations based on the 668 /// inserted memchecks. Use this for instructions that are *cloned* into the 669 /// vector loop. 670 void addNewMetadata(Instruction *To, const Instruction *Orig); 671 672 /// Add metadata from one instruction to another. 673 /// 674 /// This includes both the original MDs from \p From and additional ones (\see 675 /// addNewMetadata). Use this for *newly created* instructions in the vector 676 /// loop. 677 void addMetadata(Instruction *To, Instruction *From); 678 679 /// Similar to the previous function but it adds the metadata to a 680 /// vector of instructions. 681 void addMetadata(ArrayRef<Value *> To, Instruction *From); 682 683 /// The original loop. 684 Loop *OrigLoop; 685 686 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 687 /// dynamic knowledge to simplify SCEV expressions and converts them to a 688 /// more usable form. 689 PredicatedScalarEvolution &PSE; 690 691 /// Loop Info. 692 LoopInfo *LI; 693 694 /// Dominator Tree. 695 DominatorTree *DT; 696 697 /// Alias Analysis. 698 AAResults *AA; 699 700 /// Target Library Info. 701 const TargetLibraryInfo *TLI; 702 703 /// Target Transform Info. 704 const TargetTransformInfo *TTI; 705 706 /// Assumption Cache. 707 AssumptionCache *AC; 708 709 /// Interface to emit optimization remarks. 710 OptimizationRemarkEmitter *ORE; 711 712 /// LoopVersioning. It's only set up (non-null) if memchecks were 713 /// used. 714 /// 715 /// This is currently only used to add no-alias metadata based on the 716 /// memchecks. The actually versioning is performed manually. 717 std::unique_ptr<LoopVersioning> LVer; 718 719 /// The vectorization SIMD factor to use. Each vector will have this many 720 /// vector elements. 721 unsigned VF; 722 723 /// The vectorization unroll factor to use. Each scalar is vectorized to this 724 /// many different vector instructions. 725 unsigned UF; 726 727 /// The builder that we use 728 IRBuilder<> Builder; 729 730 // --- Vectorization state --- 731 732 /// The vector-loop preheader. 733 BasicBlock *LoopVectorPreHeader; 734 735 /// The scalar-loop preheader. 736 BasicBlock *LoopScalarPreHeader; 737 738 /// Middle Block between the vector and the scalar. 739 BasicBlock *LoopMiddleBlock; 740 741 /// The ExitBlock of the scalar loop. 742 BasicBlock *LoopExitBlock; 743 744 /// The vector loop body. 745 BasicBlock *LoopVectorBody; 746 747 /// The scalar loop body. 748 BasicBlock *LoopScalarBody; 749 750 /// A list of all bypass blocks. The first block is the entry of the loop. 751 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 752 753 /// The new Induction variable which was added to the new block. 754 PHINode *Induction = nullptr; 755 756 /// The induction variable of the old basic block. 757 PHINode *OldInduction = nullptr; 758 759 /// Maps values from the original loop to their corresponding values in the 760 /// vectorized loop. A key value can map to either vector values, scalar 761 /// values or both kinds of values, depending on whether the key was 762 /// vectorized and scalarized. 763 VectorizerValueMap VectorLoopValueMap; 764 765 /// Store instructions that were predicated. 766 SmallVector<Instruction *, 4> PredicatedInstructions; 767 768 /// Trip count of the original loop. 769 Value *TripCount = nullptr; 770 771 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 772 Value *VectorTripCount = nullptr; 773 774 /// The legality analysis. 775 LoopVectorizationLegality *Legal; 776 777 /// The profitablity analysis. 778 LoopVectorizationCostModel *Cost; 779 780 // Record whether runtime checks are added. 781 bool AddedSafetyChecks = false; 782 783 // Holds the end values for each induction variable. We save the end values 784 // so we can later fix-up the external users of the induction variables. 785 DenseMap<PHINode *, Value *> IVEndValues; 786 787 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 788 // fixed up at the end of vector code generation. 789 SmallVector<PHINode *, 8> OrigPHIsToFix; 790 791 /// BFI and PSI are used to check for profile guided size optimizations. 792 BlockFrequencyInfo *BFI; 793 ProfileSummaryInfo *PSI; 794 795 // Whether this loop should be optimized for size based on profile guided size 796 // optimizatios. 797 bool OptForSizeBasedOnProfile; 798 }; 799 800 class InnerLoopUnroller : public InnerLoopVectorizer { 801 public: 802 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 803 LoopInfo *LI, DominatorTree *DT, 804 const TargetLibraryInfo *TLI, 805 const TargetTransformInfo *TTI, AssumptionCache *AC, 806 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 807 LoopVectorizationLegality *LVL, 808 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 809 ProfileSummaryInfo *PSI) 810 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 811 UnrollFactor, LVL, CM, BFI, PSI) {} 812 813 private: 814 Value *getBroadcastInstrs(Value *V) override; 815 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 816 Instruction::BinaryOps Opcode = 817 Instruction::BinaryOpsEnd) override; 818 Value *reverseVector(Value *Vec) override; 819 }; 820 821 } // end namespace llvm 822 823 /// Look for a meaningful debug location on the instruction or it's 824 /// operands. 825 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 826 if (!I) 827 return I; 828 829 DebugLoc Empty; 830 if (I->getDebugLoc() != Empty) 831 return I; 832 833 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 834 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 835 if (OpInst->getDebugLoc() != Empty) 836 return OpInst; 837 } 838 839 return I; 840 } 841 842 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 843 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 844 const DILocation *DIL = Inst->getDebugLoc(); 845 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 846 !isa<DbgInfoIntrinsic>(Inst)) { 847 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF); 848 if (NewDIL) 849 B.SetCurrentDebugLocation(NewDIL.getValue()); 850 else 851 LLVM_DEBUG(dbgs() 852 << "Failed to create new discriminator: " 853 << DIL->getFilename() << " Line: " << DIL->getLine()); 854 } 855 else 856 B.SetCurrentDebugLocation(DIL); 857 } else 858 B.SetCurrentDebugLocation(DebugLoc()); 859 } 860 861 /// Write a record \p DebugMsg about vectorization failure to the debug 862 /// output stream. If \p I is passed, it is an instruction that prevents 863 /// vectorization. 864 #ifndef NDEBUG 865 static void debugVectorizationFailure(const StringRef DebugMsg, 866 Instruction *I) { 867 dbgs() << "LV: Not vectorizing: " << DebugMsg; 868 if (I != nullptr) 869 dbgs() << " " << *I; 870 else 871 dbgs() << '.'; 872 dbgs() << '\n'; 873 } 874 #endif 875 876 /// Create an analysis remark that explains why vectorization failed 877 /// 878 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 879 /// RemarkName is the identifier for the remark. If \p I is passed it is an 880 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 881 /// the location of the remark. \return the remark object that can be 882 /// streamed to. 883 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 884 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 885 Value *CodeRegion = TheLoop->getHeader(); 886 DebugLoc DL = TheLoop->getStartLoc(); 887 888 if (I) { 889 CodeRegion = I->getParent(); 890 // If there is no debug location attached to the instruction, revert back to 891 // using the loop's. 892 if (I->getDebugLoc()) 893 DL = I->getDebugLoc(); 894 } 895 896 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 897 R << "loop not vectorized: "; 898 return R; 899 } 900 901 namespace llvm { 902 903 void reportVectorizationFailure(const StringRef DebugMsg, 904 const StringRef OREMsg, const StringRef ORETag, 905 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 906 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 907 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 908 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 909 ORETag, TheLoop, I) << OREMsg); 910 } 911 912 } // end namespace llvm 913 914 #ifndef NDEBUG 915 /// \return string containing a file name and a line # for the given loop. 916 static std::string getDebugLocString(const Loop *L) { 917 std::string Result; 918 if (L) { 919 raw_string_ostream OS(Result); 920 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 921 LoopDbgLoc.print(OS); 922 else 923 // Just print the module name. 924 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 925 OS.flush(); 926 } 927 return Result; 928 } 929 #endif 930 931 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 932 const Instruction *Orig) { 933 // If the loop was versioned with memchecks, add the corresponding no-alias 934 // metadata. 935 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 936 LVer->annotateInstWithNoAlias(To, Orig); 937 } 938 939 void InnerLoopVectorizer::addMetadata(Instruction *To, 940 Instruction *From) { 941 propagateMetadata(To, From); 942 addNewMetadata(To, From); 943 } 944 945 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 946 Instruction *From) { 947 for (Value *V : To) { 948 if (Instruction *I = dyn_cast<Instruction>(V)) 949 addMetadata(I, From); 950 } 951 } 952 953 namespace llvm { 954 955 // Loop vectorization cost-model hints how the scalar epilogue loop should be 956 // lowered. 957 enum ScalarEpilogueLowering { 958 959 // The default: allowing scalar epilogues. 960 CM_ScalarEpilogueAllowed, 961 962 // Vectorization with OptForSize: don't allow epilogues. 963 CM_ScalarEpilogueNotAllowedOptSize, 964 965 // A special case of vectorisation with OptForSize: loops with a very small 966 // trip count are considered for vectorization under OptForSize, thereby 967 // making sure the cost of their loop body is dominant, free of runtime 968 // guards and scalar iteration overheads. 969 CM_ScalarEpilogueNotAllowedLowTripLoop, 970 971 // Loop hint predicate indicating an epilogue is undesired. 972 CM_ScalarEpilogueNotNeededUsePredicate 973 }; 974 975 /// LoopVectorizationCostModel - estimates the expected speedups due to 976 /// vectorization. 977 /// In many cases vectorization is not profitable. This can happen because of 978 /// a number of reasons. In this class we mainly attempt to predict the 979 /// expected speedup/slowdowns due to the supported instruction set. We use the 980 /// TargetTransformInfo to query the different backends for the cost of 981 /// different operations. 982 class LoopVectorizationCostModel { 983 public: 984 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 985 PredicatedScalarEvolution &PSE, LoopInfo *LI, 986 LoopVectorizationLegality *Legal, 987 const TargetTransformInfo &TTI, 988 const TargetLibraryInfo *TLI, DemandedBits *DB, 989 AssumptionCache *AC, 990 OptimizationRemarkEmitter *ORE, const Function *F, 991 const LoopVectorizeHints *Hints, 992 InterleavedAccessInfo &IAI) 993 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 994 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 995 Hints(Hints), InterleaveInfo(IAI) {} 996 997 /// \return An upper bound for the vectorization factor, or None if 998 /// vectorization and interleaving should be avoided up front. 999 Optional<unsigned> computeMaxVF(unsigned UserVF, unsigned UserIC); 1000 1001 /// \return True if runtime checks are required for vectorization, and false 1002 /// otherwise. 1003 bool runtimeChecksRequired(); 1004 1005 /// \return The most profitable vectorization factor and the cost of that VF. 1006 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1007 /// then this vectorization factor will be selected if vectorization is 1008 /// possible. 1009 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1010 1011 /// Setup cost-based decisions for user vectorization factor. 1012 void selectUserVectorizationFactor(unsigned UserVF) { 1013 collectUniformsAndScalars(UserVF); 1014 collectInstsToScalarize(UserVF); 1015 } 1016 1017 /// \return The size (in bits) of the smallest and widest types in the code 1018 /// that needs to be vectorized. We ignore values that remain scalar such as 1019 /// 64 bit loop indices. 1020 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1021 1022 /// \return The desired interleave count. 1023 /// If interleave count has been specified by metadata it will be returned. 1024 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1025 /// are the selected vectorization factor and the cost of the selected VF. 1026 unsigned selectInterleaveCount(unsigned VF, unsigned LoopCost); 1027 1028 /// Memory access instruction may be vectorized in more than one way. 1029 /// Form of instruction after vectorization depends on cost. 1030 /// This function takes cost-based decisions for Load/Store instructions 1031 /// and collects them in a map. This decisions map is used for building 1032 /// the lists of loop-uniform and loop-scalar instructions. 1033 /// The calculated cost is saved with widening decision in order to 1034 /// avoid redundant calculations. 1035 void setCostBasedWideningDecision(unsigned VF); 1036 1037 /// A struct that represents some properties of the register usage 1038 /// of a loop. 1039 struct RegisterUsage { 1040 /// Holds the number of loop invariant values that are used in the loop. 1041 /// The key is ClassID of target-provided register class. 1042 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1043 /// Holds the maximum number of concurrent live intervals in the loop. 1044 /// The key is ClassID of target-provided register class. 1045 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1046 }; 1047 1048 /// \return Returns information about the register usages of the loop for the 1049 /// given vectorization factors. 1050 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1051 1052 /// Collect values we want to ignore in the cost model. 1053 void collectValuesToIgnore(); 1054 1055 /// \returns The smallest bitwidth each instruction can be represented with. 1056 /// The vector equivalents of these instructions should be truncated to this 1057 /// type. 1058 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1059 return MinBWs; 1060 } 1061 1062 /// \returns True if it is more profitable to scalarize instruction \p I for 1063 /// vectorization factor \p VF. 1064 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1065 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1066 1067 // Cost model is not run in the VPlan-native path - return conservative 1068 // result until this changes. 1069 if (EnableVPlanNativePath) 1070 return false; 1071 1072 auto Scalars = InstsToScalarize.find(VF); 1073 assert(Scalars != InstsToScalarize.end() && 1074 "VF not yet analyzed for scalarization profitability"); 1075 return Scalars->second.find(I) != Scalars->second.end(); 1076 } 1077 1078 /// Returns true if \p I is known to be uniform after vectorization. 1079 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1080 if (VF == 1) 1081 return true; 1082 1083 // Cost model is not run in the VPlan-native path - return conservative 1084 // result until this changes. 1085 if (EnableVPlanNativePath) 1086 return false; 1087 1088 auto UniformsPerVF = Uniforms.find(VF); 1089 assert(UniformsPerVF != Uniforms.end() && 1090 "VF not yet analyzed for uniformity"); 1091 return UniformsPerVF->second.count(I); 1092 } 1093 1094 /// Returns true if \p I is known to be scalar after vectorization. 1095 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1096 if (VF == 1) 1097 return true; 1098 1099 // Cost model is not run in the VPlan-native path - return conservative 1100 // result until this changes. 1101 if (EnableVPlanNativePath) 1102 return false; 1103 1104 auto ScalarsPerVF = Scalars.find(VF); 1105 assert(ScalarsPerVF != Scalars.end() && 1106 "Scalar values are not calculated for VF"); 1107 return ScalarsPerVF->second.count(I); 1108 } 1109 1110 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1111 /// for vectorization factor \p VF. 1112 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1113 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 1114 !isProfitableToScalarize(I, VF) && 1115 !isScalarAfterVectorization(I, VF); 1116 } 1117 1118 /// Decision that was taken during cost calculation for memory instruction. 1119 enum InstWidening { 1120 CM_Unknown, 1121 CM_Widen, // For consecutive accesses with stride +1. 1122 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1123 CM_Interleave, 1124 CM_GatherScatter, 1125 CM_Scalarize 1126 }; 1127 1128 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1129 /// instruction \p I and vector width \p VF. 1130 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1131 unsigned Cost) { 1132 assert(VF >= 2 && "Expected VF >=2"); 1133 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1134 } 1135 1136 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1137 /// interleaving group \p Grp and vector width \p VF. 1138 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, 1139 InstWidening W, unsigned Cost) { 1140 assert(VF >= 2 && "Expected VF >=2"); 1141 /// Broadcast this decicion to all instructions inside the group. 1142 /// But the cost will be assigned to one instruction only. 1143 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1144 if (auto *I = Grp->getMember(i)) { 1145 if (Grp->getInsertPos() == I) 1146 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1147 else 1148 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1149 } 1150 } 1151 } 1152 1153 /// Return the cost model decision for the given instruction \p I and vector 1154 /// width \p VF. Return CM_Unknown if this instruction did not pass 1155 /// through the cost modeling. 1156 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1157 assert(VF >= 2 && "Expected VF >=2"); 1158 1159 // Cost model is not run in the VPlan-native path - return conservative 1160 // result until this changes. 1161 if (EnableVPlanNativePath) 1162 return CM_GatherScatter; 1163 1164 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1165 auto Itr = WideningDecisions.find(InstOnVF); 1166 if (Itr == WideningDecisions.end()) 1167 return CM_Unknown; 1168 return Itr->second.first; 1169 } 1170 1171 /// Return the vectorization cost for the given instruction \p I and vector 1172 /// width \p VF. 1173 unsigned getWideningCost(Instruction *I, unsigned VF) { 1174 assert(VF >= 2 && "Expected VF >=2"); 1175 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1176 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1177 "The cost is not calculated"); 1178 return WideningDecisions[InstOnVF].second; 1179 } 1180 1181 /// Return True if instruction \p I is an optimizable truncate whose operand 1182 /// is an induction variable. Such a truncate will be removed by adding a new 1183 /// induction variable with the destination type. 1184 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1185 // If the instruction is not a truncate, return false. 1186 auto *Trunc = dyn_cast<TruncInst>(I); 1187 if (!Trunc) 1188 return false; 1189 1190 // Get the source and destination types of the truncate. 1191 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1192 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1193 1194 // If the truncate is free for the given types, return false. Replacing a 1195 // free truncate with an induction variable would add an induction variable 1196 // update instruction to each iteration of the loop. We exclude from this 1197 // check the primary induction variable since it will need an update 1198 // instruction regardless. 1199 Value *Op = Trunc->getOperand(0); 1200 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1201 return false; 1202 1203 // If the truncated value is not an induction variable, return false. 1204 return Legal->isInductionPhi(Op); 1205 } 1206 1207 /// Collects the instructions to scalarize for each predicated instruction in 1208 /// the loop. 1209 void collectInstsToScalarize(unsigned VF); 1210 1211 /// Collect Uniform and Scalar values for the given \p VF. 1212 /// The sets depend on CM decision for Load/Store instructions 1213 /// that may be vectorized as interleave, gather-scatter or scalarized. 1214 void collectUniformsAndScalars(unsigned VF) { 1215 // Do the analysis once. 1216 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1217 return; 1218 setCostBasedWideningDecision(VF); 1219 collectLoopUniforms(VF); 1220 collectLoopScalars(VF); 1221 } 1222 1223 /// Returns true if the target machine supports masked store operation 1224 /// for the given \p DataType and kind of access to \p Ptr. 1225 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) { 1226 return Legal->isConsecutivePtr(Ptr) && 1227 TTI.isLegalMaskedStore(DataType, Alignment); 1228 } 1229 1230 /// Returns true if the target machine supports masked load operation 1231 /// for the given \p DataType and kind of access to \p Ptr. 1232 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) { 1233 return Legal->isConsecutivePtr(Ptr) && 1234 TTI.isLegalMaskedLoad(DataType, Alignment); 1235 } 1236 1237 /// Returns true if the target machine supports masked scatter operation 1238 /// for the given \p DataType. 1239 bool isLegalMaskedScatter(Type *DataType, Align Alignment) { 1240 return TTI.isLegalMaskedScatter(DataType, Alignment); 1241 } 1242 1243 /// Returns true if the target machine supports masked gather operation 1244 /// for the given \p DataType. 1245 bool isLegalMaskedGather(Type *DataType, Align Alignment) { 1246 return TTI.isLegalMaskedGather(DataType, Alignment); 1247 } 1248 1249 /// Returns true if the target machine can represent \p V as a masked gather 1250 /// or scatter operation. 1251 bool isLegalGatherOrScatter(Value *V) { 1252 bool LI = isa<LoadInst>(V); 1253 bool SI = isa<StoreInst>(V); 1254 if (!LI && !SI) 1255 return false; 1256 auto *Ty = getMemInstValueType(V); 1257 Align Align = getLoadStoreAlignment(V); 1258 return (LI && isLegalMaskedGather(Ty, Align)) || 1259 (SI && isLegalMaskedScatter(Ty, Align)); 1260 } 1261 1262 /// Returns true if \p I is an instruction that will be scalarized with 1263 /// predication. Such instructions include conditional stores and 1264 /// instructions that may divide by zero. 1265 /// If a non-zero VF has been calculated, we check if I will be scalarized 1266 /// predication for that VF. 1267 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1268 1269 // Returns true if \p I is an instruction that will be predicated either 1270 // through scalar predication or masked load/store or masked gather/scatter. 1271 // Superset of instructions that return true for isScalarWithPredication. 1272 bool isPredicatedInst(Instruction *I) { 1273 if (!blockNeedsPredication(I->getParent())) 1274 return false; 1275 // Loads and stores that need some form of masked operation are predicated 1276 // instructions. 1277 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1278 return Legal->isMaskRequired(I); 1279 return isScalarWithPredication(I); 1280 } 1281 1282 /// Returns true if \p I is a memory instruction with consecutive memory 1283 /// access that can be widened. 1284 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1285 1286 /// Returns true if \p I is a memory instruction in an interleaved-group 1287 /// of memory accesses that can be vectorized with wide vector loads/stores 1288 /// and shuffles. 1289 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1290 1291 /// Check if \p Instr belongs to any interleaved access group. 1292 bool isAccessInterleaved(Instruction *Instr) { 1293 return InterleaveInfo.isInterleaved(Instr); 1294 } 1295 1296 /// Get the interleaved access group that \p Instr belongs to. 1297 const InterleaveGroup<Instruction> * 1298 getInterleavedAccessGroup(Instruction *Instr) { 1299 return InterleaveInfo.getInterleaveGroup(Instr); 1300 } 1301 1302 /// Returns true if an interleaved group requires a scalar iteration 1303 /// to handle accesses with gaps, and there is nothing preventing us from 1304 /// creating a scalar epilogue. 1305 bool requiresScalarEpilogue() const { 1306 return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue(); 1307 } 1308 1309 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1310 /// loop hint annotation. 1311 bool isScalarEpilogueAllowed() const { 1312 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1313 } 1314 1315 /// Returns true if all loop blocks should be masked to fold tail loop. 1316 bool foldTailByMasking() const { return FoldTailByMasking; } 1317 1318 bool blockNeedsPredication(BasicBlock *BB) { 1319 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1320 } 1321 1322 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1323 /// with factor VF. Return the cost of the instruction, including 1324 /// scalarization overhead if it's needed. 1325 unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF); 1326 1327 /// Estimate cost of a call instruction CI if it were vectorized with factor 1328 /// VF. Return the cost of the instruction, including scalarization overhead 1329 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1330 /// scalarized - 1331 /// i.e. either vector version isn't available, or is too expensive. 1332 unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize); 1333 1334 /// Invalidates decisions already taken by the cost model. 1335 void invalidateCostModelingDecisions() { 1336 WideningDecisions.clear(); 1337 Uniforms.clear(); 1338 Scalars.clear(); 1339 } 1340 1341 private: 1342 unsigned NumPredStores = 0; 1343 1344 /// \return An upper bound for the vectorization factor, a power-of-2 larger 1345 /// than zero. One is returned if vectorization should best be avoided due 1346 /// to cost. 1347 unsigned computeFeasibleMaxVF(unsigned ConstTripCount); 1348 1349 /// The vectorization cost is a combination of the cost itself and a boolean 1350 /// indicating whether any of the contributing operations will actually 1351 /// operate on 1352 /// vector values after type legalization in the backend. If this latter value 1353 /// is 1354 /// false, then all operations will be scalarized (i.e. no vectorization has 1355 /// actually taken place). 1356 using VectorizationCostTy = std::pair<unsigned, bool>; 1357 1358 /// Returns the expected execution cost. The unit of the cost does 1359 /// not matter because we use the 'cost' units to compare different 1360 /// vector widths. The cost that is returned is *not* normalized by 1361 /// the factor width. 1362 VectorizationCostTy expectedCost(unsigned VF); 1363 1364 /// Returns the execution time cost of an instruction for a given vector 1365 /// width. Vector width of one means scalar. 1366 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1367 1368 /// The cost-computation logic from getInstructionCost which provides 1369 /// the vector type as an output parameter. 1370 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1371 1372 /// Calculate vectorization cost of memory instruction \p I. 1373 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1374 1375 /// The cost computation for scalarized memory instruction. 1376 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1377 1378 /// The cost computation for interleaving group of memory instructions. 1379 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1380 1381 /// The cost computation for Gather/Scatter instruction. 1382 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1383 1384 /// The cost computation for widening instruction \p I with consecutive 1385 /// memory access. 1386 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1387 1388 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1389 /// Load: scalar load + broadcast. 1390 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1391 /// element) 1392 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1393 1394 /// Estimate the overhead of scalarizing an instruction. This is a 1395 /// convenience wrapper for the type-based getScalarizationOverhead API. 1396 unsigned getScalarizationOverhead(Instruction *I, unsigned VF); 1397 1398 /// Returns whether the instruction is a load or store and will be a emitted 1399 /// as a vector operation. 1400 bool isConsecutiveLoadOrStore(Instruction *I); 1401 1402 /// Returns true if an artificially high cost for emulated masked memrefs 1403 /// should be used. 1404 bool useEmulatedMaskMemRefHack(Instruction *I); 1405 1406 /// Map of scalar integer values to the smallest bitwidth they can be legally 1407 /// represented as. The vector equivalents of these values should be truncated 1408 /// to this type. 1409 MapVector<Instruction *, uint64_t> MinBWs; 1410 1411 /// A type representing the costs for instructions if they were to be 1412 /// scalarized rather than vectorized. The entries are Instruction-Cost 1413 /// pairs. 1414 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1415 1416 /// A set containing all BasicBlocks that are known to present after 1417 /// vectorization as a predicated block. 1418 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1419 1420 /// Records whether it is allowed to have the original scalar loop execute at 1421 /// least once. This may be needed as a fallback loop in case runtime 1422 /// aliasing/dependence checks fail, or to handle the tail/remainder 1423 /// iterations when the trip count is unknown or doesn't divide by the VF, 1424 /// or as a peel-loop to handle gaps in interleave-groups. 1425 /// Under optsize and when the trip count is very small we don't allow any 1426 /// iterations to execute in the scalar loop. 1427 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1428 1429 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1430 bool FoldTailByMasking = false; 1431 1432 /// A map holding scalar costs for different vectorization factors. The 1433 /// presence of a cost for an instruction in the mapping indicates that the 1434 /// instruction will be scalarized when vectorizing with the associated 1435 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1436 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1437 1438 /// Holds the instructions known to be uniform after vectorization. 1439 /// The data is collected per VF. 1440 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1441 1442 /// Holds the instructions known to be scalar after vectorization. 1443 /// The data is collected per VF. 1444 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1445 1446 /// Holds the instructions (address computations) that are forced to be 1447 /// scalarized. 1448 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1449 1450 /// Returns the expected difference in cost from scalarizing the expression 1451 /// feeding a predicated instruction \p PredInst. The instructions to 1452 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1453 /// non-negative return value implies the expression will be scalarized. 1454 /// Currently, only single-use chains are considered for scalarization. 1455 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1456 unsigned VF); 1457 1458 /// Collect the instructions that are uniform after vectorization. An 1459 /// instruction is uniform if we represent it with a single scalar value in 1460 /// the vectorized loop corresponding to each vector iteration. Examples of 1461 /// uniform instructions include pointer operands of consecutive or 1462 /// interleaved memory accesses. Note that although uniformity implies an 1463 /// instruction will be scalar, the reverse is not true. In general, a 1464 /// scalarized instruction will be represented by VF scalar values in the 1465 /// vectorized loop, each corresponding to an iteration of the original 1466 /// scalar loop. 1467 void collectLoopUniforms(unsigned VF); 1468 1469 /// Collect the instructions that are scalar after vectorization. An 1470 /// instruction is scalar if it is known to be uniform or will be scalarized 1471 /// during vectorization. Non-uniform scalarized instructions will be 1472 /// represented by VF values in the vectorized loop, each corresponding to an 1473 /// iteration of the original scalar loop. 1474 void collectLoopScalars(unsigned VF); 1475 1476 /// Keeps cost model vectorization decision and cost for instructions. 1477 /// Right now it is used for memory instructions only. 1478 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1479 std::pair<InstWidening, unsigned>>; 1480 1481 DecisionList WideningDecisions; 1482 1483 /// Returns true if \p V is expected to be vectorized and it needs to be 1484 /// extracted. 1485 bool needsExtract(Value *V, unsigned VF) const { 1486 Instruction *I = dyn_cast<Instruction>(V); 1487 if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I)) 1488 return false; 1489 1490 // Assume we can vectorize V (and hence we need extraction) if the 1491 // scalars are not computed yet. This can happen, because it is called 1492 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1493 // the scalars are collected. That should be a safe assumption in most 1494 // cases, because we check if the operands have vectorizable types 1495 // beforehand in LoopVectorizationLegality. 1496 return Scalars.find(VF) == Scalars.end() || 1497 !isScalarAfterVectorization(I, VF); 1498 }; 1499 1500 /// Returns a range containing only operands needing to be extracted. 1501 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1502 unsigned VF) { 1503 return SmallVector<Value *, 4>(make_filter_range( 1504 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1505 } 1506 1507 public: 1508 /// The loop that we evaluate. 1509 Loop *TheLoop; 1510 1511 /// Predicated scalar evolution analysis. 1512 PredicatedScalarEvolution &PSE; 1513 1514 /// Loop Info analysis. 1515 LoopInfo *LI; 1516 1517 /// Vectorization legality. 1518 LoopVectorizationLegality *Legal; 1519 1520 /// Vector target information. 1521 const TargetTransformInfo &TTI; 1522 1523 /// Target Library Info. 1524 const TargetLibraryInfo *TLI; 1525 1526 /// Demanded bits analysis. 1527 DemandedBits *DB; 1528 1529 /// Assumption cache. 1530 AssumptionCache *AC; 1531 1532 /// Interface to emit optimization remarks. 1533 OptimizationRemarkEmitter *ORE; 1534 1535 const Function *TheFunction; 1536 1537 /// Loop Vectorize Hint. 1538 const LoopVectorizeHints *Hints; 1539 1540 /// The interleave access information contains groups of interleaved accesses 1541 /// with the same stride and close to each other. 1542 InterleavedAccessInfo &InterleaveInfo; 1543 1544 /// Values to ignore in the cost model. 1545 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1546 1547 /// Values to ignore in the cost model when VF > 1. 1548 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1549 }; 1550 1551 } // end namespace llvm 1552 1553 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1554 // vectorization. The loop needs to be annotated with #pragma omp simd 1555 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1556 // vector length information is not provided, vectorization is not considered 1557 // explicit. Interleave hints are not allowed either. These limitations will be 1558 // relaxed in the future. 1559 // Please, note that we are currently forced to abuse the pragma 'clang 1560 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1561 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1562 // provides *explicit vectorization hints* (LV can bypass legal checks and 1563 // assume that vectorization is legal). However, both hints are implemented 1564 // using the same metadata (llvm.loop.vectorize, processed by 1565 // LoopVectorizeHints). This will be fixed in the future when the native IR 1566 // representation for pragma 'omp simd' is introduced. 1567 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1568 OptimizationRemarkEmitter *ORE) { 1569 assert(!OuterLp->empty() && "This is not an outer loop"); 1570 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1571 1572 // Only outer loops with an explicit vectorization hint are supported. 1573 // Unannotated outer loops are ignored. 1574 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1575 return false; 1576 1577 Function *Fn = OuterLp->getHeader()->getParent(); 1578 if (!Hints.allowVectorization(Fn, OuterLp, 1579 true /*VectorizeOnlyWhenForced*/)) { 1580 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1581 return false; 1582 } 1583 1584 if (Hints.getInterleave() > 1) { 1585 // TODO: Interleave support is future work. 1586 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1587 "outer loops.\n"); 1588 Hints.emitRemarkWithHints(); 1589 return false; 1590 } 1591 1592 return true; 1593 } 1594 1595 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1596 OptimizationRemarkEmitter *ORE, 1597 SmallVectorImpl<Loop *> &V) { 1598 // Collect inner loops and outer loops without irreducible control flow. For 1599 // now, only collect outer loops that have explicit vectorization hints. If we 1600 // are stress testing the VPlan H-CFG construction, we collect the outermost 1601 // loop of every loop nest. 1602 if (L.empty() || VPlanBuildStressTest || 1603 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1604 LoopBlocksRPO RPOT(&L); 1605 RPOT.perform(LI); 1606 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1607 V.push_back(&L); 1608 // TODO: Collect inner loops inside marked outer loops in case 1609 // vectorization fails for the outer loop. Do not invoke 1610 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1611 // already known to be reducible. We can use an inherited attribute for 1612 // that. 1613 return; 1614 } 1615 } 1616 for (Loop *InnerL : L) 1617 collectSupportedLoops(*InnerL, LI, ORE, V); 1618 } 1619 1620 namespace { 1621 1622 /// The LoopVectorize Pass. 1623 struct LoopVectorize : public FunctionPass { 1624 /// Pass identification, replacement for typeid 1625 static char ID; 1626 1627 LoopVectorizePass Impl; 1628 1629 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1630 bool VectorizeOnlyWhenForced = false) 1631 : FunctionPass(ID), 1632 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 1633 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1634 } 1635 1636 bool runOnFunction(Function &F) override { 1637 if (skipFunction(F)) 1638 return false; 1639 1640 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1641 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1642 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1643 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1644 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1645 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1646 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1647 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1648 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1649 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1650 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1651 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1652 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1653 1654 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1655 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1656 1657 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1658 GetLAA, *ORE, PSI).MadeAnyChange; 1659 } 1660 1661 void getAnalysisUsage(AnalysisUsage &AU) const override { 1662 AU.addRequired<AssumptionCacheTracker>(); 1663 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1664 AU.addRequired<DominatorTreeWrapperPass>(); 1665 AU.addRequired<LoopInfoWrapperPass>(); 1666 AU.addRequired<ScalarEvolutionWrapperPass>(); 1667 AU.addRequired<TargetTransformInfoWrapperPass>(); 1668 AU.addRequired<AAResultsWrapperPass>(); 1669 AU.addRequired<LoopAccessLegacyAnalysis>(); 1670 AU.addRequired<DemandedBitsWrapperPass>(); 1671 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1672 AU.addRequired<InjectTLIMappingsLegacy>(); 1673 1674 // We currently do not preserve loopinfo/dominator analyses with outer loop 1675 // vectorization. Until this is addressed, mark these analyses as preserved 1676 // only for non-VPlan-native path. 1677 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1678 if (!EnableVPlanNativePath) { 1679 AU.addPreserved<LoopInfoWrapperPass>(); 1680 AU.addPreserved<DominatorTreeWrapperPass>(); 1681 } 1682 1683 AU.addPreserved<BasicAAWrapperPass>(); 1684 AU.addPreserved<GlobalsAAWrapperPass>(); 1685 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1686 } 1687 }; 1688 1689 } // end anonymous namespace 1690 1691 //===----------------------------------------------------------------------===// 1692 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1693 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1694 //===----------------------------------------------------------------------===// 1695 1696 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1697 // We need to place the broadcast of invariant variables outside the loop, 1698 // but only if it's proven safe to do so. Else, broadcast will be inside 1699 // vector loop body. 1700 Instruction *Instr = dyn_cast<Instruction>(V); 1701 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1702 (!Instr || 1703 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1704 // Place the code for broadcasting invariant variables in the new preheader. 1705 IRBuilder<>::InsertPointGuard Guard(Builder); 1706 if (SafeToHoist) 1707 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1708 1709 // Broadcast the scalar into all locations in the vector. 1710 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1711 1712 return Shuf; 1713 } 1714 1715 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1716 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1717 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1718 "Expected either an induction phi-node or a truncate of it!"); 1719 Value *Start = II.getStartValue(); 1720 1721 // Construct the initial value of the vector IV in the vector loop preheader 1722 auto CurrIP = Builder.saveIP(); 1723 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1724 if (isa<TruncInst>(EntryVal)) { 1725 assert(Start->getType()->isIntegerTy() && 1726 "Truncation requires an integer type"); 1727 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1728 Step = Builder.CreateTrunc(Step, TruncType); 1729 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1730 } 1731 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1732 Value *SteppedStart = 1733 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1734 1735 // We create vector phi nodes for both integer and floating-point induction 1736 // variables. Here, we determine the kind of arithmetic we will perform. 1737 Instruction::BinaryOps AddOp; 1738 Instruction::BinaryOps MulOp; 1739 if (Step->getType()->isIntegerTy()) { 1740 AddOp = Instruction::Add; 1741 MulOp = Instruction::Mul; 1742 } else { 1743 AddOp = II.getInductionOpcode(); 1744 MulOp = Instruction::FMul; 1745 } 1746 1747 // Multiply the vectorization factor by the step using integer or 1748 // floating-point arithmetic as appropriate. 1749 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1750 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1751 1752 // Create a vector splat to use in the induction update. 1753 // 1754 // FIXME: If the step is non-constant, we create the vector splat with 1755 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1756 // handle a constant vector splat. 1757 Value *SplatVF = 1758 isa<Constant>(Mul) 1759 ? ConstantVector::getSplat({VF, false}, cast<Constant>(Mul)) 1760 : Builder.CreateVectorSplat(VF, Mul); 1761 Builder.restoreIP(CurrIP); 1762 1763 // We may need to add the step a number of times, depending on the unroll 1764 // factor. The last of those goes into the PHI. 1765 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1766 &*LoopVectorBody->getFirstInsertionPt()); 1767 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1768 Instruction *LastInduction = VecInd; 1769 for (unsigned Part = 0; Part < UF; ++Part) { 1770 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1771 1772 if (isa<TruncInst>(EntryVal)) 1773 addMetadata(LastInduction, EntryVal); 1774 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1775 1776 LastInduction = cast<Instruction>(addFastMathFlag( 1777 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1778 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1779 } 1780 1781 // Move the last step to the end of the latch block. This ensures consistent 1782 // placement of all induction updates. 1783 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1784 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1785 auto *ICmp = cast<Instruction>(Br->getCondition()); 1786 LastInduction->moveBefore(ICmp); 1787 LastInduction->setName("vec.ind.next"); 1788 1789 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1790 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1791 } 1792 1793 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1794 return Cost->isScalarAfterVectorization(I, VF) || 1795 Cost->isProfitableToScalarize(I, VF); 1796 } 1797 1798 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1799 if (shouldScalarizeInstruction(IV)) 1800 return true; 1801 auto isScalarInst = [&](User *U) -> bool { 1802 auto *I = cast<Instruction>(U); 1803 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1804 }; 1805 return llvm::any_of(IV->users(), isScalarInst); 1806 } 1807 1808 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1809 const InductionDescriptor &ID, const Instruction *EntryVal, 1810 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1811 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1812 "Expected either an induction phi-node or a truncate of it!"); 1813 1814 // This induction variable is not the phi from the original loop but the 1815 // newly-created IV based on the proof that casted Phi is equal to the 1816 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1817 // re-uses the same InductionDescriptor that original IV uses but we don't 1818 // have to do any recording in this case - that is done when original IV is 1819 // processed. 1820 if (isa<TruncInst>(EntryVal)) 1821 return; 1822 1823 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1824 if (Casts.empty()) 1825 return; 1826 // Only the first Cast instruction in the Casts vector is of interest. 1827 // The rest of the Casts (if exist) have no uses outside the 1828 // induction update chain itself. 1829 Instruction *CastInst = *Casts.begin(); 1830 if (Lane < UINT_MAX) 1831 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1832 else 1833 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1834 } 1835 1836 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1837 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1838 "Primary induction variable must have an integer type"); 1839 1840 auto II = Legal->getInductionVars().find(IV); 1841 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 1842 1843 auto ID = II->second; 1844 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1845 1846 // The value from the original loop to which we are mapping the new induction 1847 // variable. 1848 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1849 1850 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1851 1852 // Generate code for the induction step. Note that induction steps are 1853 // required to be loop-invariant 1854 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 1855 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 1856 "Induction step should be loop invariant"); 1857 if (PSE.getSE()->isSCEVable(IV->getType())) { 1858 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1859 return Exp.expandCodeFor(Step, Step->getType(), 1860 LoopVectorPreHeader->getTerminator()); 1861 } 1862 return cast<SCEVUnknown>(Step)->getValue(); 1863 }; 1864 1865 // The scalar value to broadcast. This is derived from the canonical 1866 // induction variable. If a truncation type is given, truncate the canonical 1867 // induction variable and step. Otherwise, derive these values from the 1868 // induction descriptor. 1869 auto CreateScalarIV = [&](Value *&Step) -> Value * { 1870 Value *ScalarIV = Induction; 1871 if (IV != OldInduction) { 1872 ScalarIV = IV->getType()->isIntegerTy() 1873 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1874 : Builder.CreateCast(Instruction::SIToFP, Induction, 1875 IV->getType()); 1876 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1877 ScalarIV->setName("offset.idx"); 1878 } 1879 if (Trunc) { 1880 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1881 assert(Step->getType()->isIntegerTy() && 1882 "Truncation requires an integer step"); 1883 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1884 Step = Builder.CreateTrunc(Step, TruncType); 1885 } 1886 return ScalarIV; 1887 }; 1888 1889 // Create the vector values from the scalar IV, in the absence of creating a 1890 // vector IV. 1891 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 1892 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1893 for (unsigned Part = 0; Part < UF; ++Part) { 1894 Value *EntryPart = 1895 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1896 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1897 if (Trunc) 1898 addMetadata(EntryPart, Trunc); 1899 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1900 } 1901 }; 1902 1903 // Now do the actual transformations, and start with creating the step value. 1904 Value *Step = CreateStepValue(ID.getStep()); 1905 if (VF <= 1) { 1906 Value *ScalarIV = CreateScalarIV(Step); 1907 CreateSplatIV(ScalarIV, Step); 1908 return; 1909 } 1910 1911 // Determine if we want a scalar version of the induction variable. This is 1912 // true if the induction variable itself is not widened, or if it has at 1913 // least one user in the loop that is not widened. 1914 auto NeedsScalarIV = needsScalarInduction(EntryVal); 1915 if (!NeedsScalarIV) { 1916 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1917 return; 1918 } 1919 1920 // Try to create a new independent vector induction variable. If we can't 1921 // create the phi node, we will splat the scalar induction variable in each 1922 // loop iteration. 1923 if (!shouldScalarizeInstruction(EntryVal)) { 1924 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1925 Value *ScalarIV = CreateScalarIV(Step); 1926 // Create scalar steps that can be used by instructions we will later 1927 // scalarize. Note that the addition of the scalar steps will not increase 1928 // the number of instructions in the loop in the common case prior to 1929 // InstCombine. We will be trading one vector extract for each scalar step. 1930 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1931 return; 1932 } 1933 1934 // All IV users are scalar instructions, so only emit a scalar IV, not a 1935 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 1936 // predicate used by the masked loads/stores. 1937 Value *ScalarIV = CreateScalarIV(Step); 1938 if (!Cost->isScalarEpilogueAllowed()) 1939 CreateSplatIV(ScalarIV, Step); 1940 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1941 } 1942 1943 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1944 Instruction::BinaryOps BinOp) { 1945 // Create and check the types. 1946 auto *ValVTy = cast<VectorType>(Val->getType()); 1947 int VLen = ValVTy->getNumElements(); 1948 1949 Type *STy = Val->getType()->getScalarType(); 1950 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1951 "Induction Step must be an integer or FP"); 1952 assert(Step->getType() == STy && "Step has wrong type"); 1953 1954 SmallVector<Constant *, 8> Indices; 1955 1956 if (STy->isIntegerTy()) { 1957 // Create a vector of consecutive numbers from zero to VF. 1958 for (int i = 0; i < VLen; ++i) 1959 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1960 1961 // Add the consecutive indices to the vector value. 1962 Constant *Cv = ConstantVector::get(Indices); 1963 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1964 Step = Builder.CreateVectorSplat(VLen, Step); 1965 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1966 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1967 // which can be found from the original scalar operations. 1968 Step = Builder.CreateMul(Cv, Step); 1969 return Builder.CreateAdd(Val, Step, "induction"); 1970 } 1971 1972 // Floating point induction. 1973 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1974 "Binary Opcode should be specified for FP induction"); 1975 // Create a vector of consecutive numbers from zero to VF. 1976 for (int i = 0; i < VLen; ++i) 1977 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1978 1979 // Add the consecutive indices to the vector value. 1980 Constant *Cv = ConstantVector::get(Indices); 1981 1982 Step = Builder.CreateVectorSplat(VLen, Step); 1983 1984 // Floating point operations had to be 'fast' to enable the induction. 1985 FastMathFlags Flags; 1986 Flags.setFast(); 1987 1988 Value *MulOp = Builder.CreateFMul(Cv, Step); 1989 if (isa<Instruction>(MulOp)) 1990 // Have to check, MulOp may be a constant 1991 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1992 1993 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1994 if (isa<Instruction>(BOp)) 1995 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1996 return BOp; 1997 } 1998 1999 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2000 Instruction *EntryVal, 2001 const InductionDescriptor &ID) { 2002 // We shouldn't have to build scalar steps if we aren't vectorizing. 2003 assert(VF > 1 && "VF should be greater than one"); 2004 2005 // Get the value type and ensure it and the step have the same integer type. 2006 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2007 assert(ScalarIVTy == Step->getType() && 2008 "Val and Step should have the same type"); 2009 2010 // We build scalar steps for both integer and floating-point induction 2011 // variables. Here, we determine the kind of arithmetic we will perform. 2012 Instruction::BinaryOps AddOp; 2013 Instruction::BinaryOps MulOp; 2014 if (ScalarIVTy->isIntegerTy()) { 2015 AddOp = Instruction::Add; 2016 MulOp = Instruction::Mul; 2017 } else { 2018 AddOp = ID.getInductionOpcode(); 2019 MulOp = Instruction::FMul; 2020 } 2021 2022 // Determine the number of scalars we need to generate for each unroll 2023 // iteration. If EntryVal is uniform, we only need to generate the first 2024 // lane. Otherwise, we generate all VF values. 2025 unsigned Lanes = 2026 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2027 : VF; 2028 // Compute the scalar steps and save the results in VectorLoopValueMap. 2029 for (unsigned Part = 0; Part < UF; ++Part) { 2030 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2031 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2032 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2033 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2034 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2035 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 2036 } 2037 } 2038 } 2039 2040 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2041 assert(V != Induction && "The new induction variable should not be used."); 2042 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2043 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2044 2045 // If we have a stride that is replaced by one, do it here. Defer this for 2046 // the VPlan-native path until we start running Legal checks in that path. 2047 if (!EnableVPlanNativePath && Legal->hasStride(V)) 2048 V = ConstantInt::get(V->getType(), 1); 2049 2050 // If we have a vector mapped to this value, return it. 2051 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2052 return VectorLoopValueMap.getVectorValue(V, Part); 2053 2054 // If the value has not been vectorized, check if it has been scalarized 2055 // instead. If it has been scalarized, and we actually need the value in 2056 // vector form, we will construct the vector values on demand. 2057 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2058 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2059 2060 // If we've scalarized a value, that value should be an instruction. 2061 auto *I = cast<Instruction>(V); 2062 2063 // If we aren't vectorizing, we can just copy the scalar map values over to 2064 // the vector map. 2065 if (VF == 1) { 2066 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2067 return ScalarValue; 2068 } 2069 2070 // Get the last scalar instruction we generated for V and Part. If the value 2071 // is known to be uniform after vectorization, this corresponds to lane zero 2072 // of the Part unroll iteration. Otherwise, the last instruction is the one 2073 // we created for the last vector lane of the Part unroll iteration. 2074 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2075 auto *LastInst = cast<Instruction>( 2076 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2077 2078 // Set the insert point after the last scalarized instruction. This ensures 2079 // the insertelement sequence will directly follow the scalar definitions. 2080 auto OldIP = Builder.saveIP(); 2081 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2082 Builder.SetInsertPoint(&*NewIP); 2083 2084 // However, if we are vectorizing, we need to construct the vector values. 2085 // If the value is known to be uniform after vectorization, we can just 2086 // broadcast the scalar value corresponding to lane zero for each unroll 2087 // iteration. Otherwise, we construct the vector values using insertelement 2088 // instructions. Since the resulting vectors are stored in 2089 // VectorLoopValueMap, we will only generate the insertelements once. 2090 Value *VectorValue = nullptr; 2091 if (Cost->isUniformAfterVectorization(I, VF)) { 2092 VectorValue = getBroadcastInstrs(ScalarValue); 2093 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2094 } else { 2095 // Initialize packing with insertelements to start from undef. 2096 Value *Undef = UndefValue::get(FixedVectorType::get(V->getType(), VF)); 2097 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2098 for (unsigned Lane = 0; Lane < VF; ++Lane) 2099 packScalarIntoVectorValue(V, {Part, Lane}); 2100 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2101 } 2102 Builder.restoreIP(OldIP); 2103 return VectorValue; 2104 } 2105 2106 // If this scalar is unknown, assume that it is a constant or that it is 2107 // loop invariant. Broadcast V and save the value for future uses. 2108 Value *B = getBroadcastInstrs(V); 2109 VectorLoopValueMap.setVectorValue(V, Part, B); 2110 return B; 2111 } 2112 2113 Value * 2114 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2115 const VPIteration &Instance) { 2116 // If the value is not an instruction contained in the loop, it should 2117 // already be scalar. 2118 if (OrigLoop->isLoopInvariant(V)) 2119 return V; 2120 2121 assert(Instance.Lane > 0 2122 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2123 : true && "Uniform values only have lane zero"); 2124 2125 // If the value from the original loop has not been vectorized, it is 2126 // represented by UF x VF scalar values in the new loop. Return the requested 2127 // scalar value. 2128 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2129 return VectorLoopValueMap.getScalarValue(V, Instance); 2130 2131 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2132 // for the given unroll part. If this entry is not a vector type (i.e., the 2133 // vectorization factor is one), there is no need to generate an 2134 // extractelement instruction. 2135 auto *U = getOrCreateVectorValue(V, Instance.Part); 2136 if (!U->getType()->isVectorTy()) { 2137 assert(VF == 1 && "Value not scalarized has non-vector type"); 2138 return U; 2139 } 2140 2141 // Otherwise, the value from the original loop has been vectorized and is 2142 // represented by UF vector values. Extract and return the requested scalar 2143 // value from the appropriate vector lane. 2144 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2145 } 2146 2147 void InnerLoopVectorizer::packScalarIntoVectorValue( 2148 Value *V, const VPIteration &Instance) { 2149 assert(V != Induction && "The new induction variable should not be used."); 2150 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2151 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2152 2153 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2154 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2155 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2156 Builder.getInt32(Instance.Lane)); 2157 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2158 } 2159 2160 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2161 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2162 SmallVector<int, 8> ShuffleMask; 2163 for (unsigned i = 0; i < VF; ++i) 2164 ShuffleMask.push_back(VF - i - 1); 2165 2166 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2167 ShuffleMask, "reverse"); 2168 } 2169 2170 // Return whether we allow using masked interleave-groups (for dealing with 2171 // strided loads/stores that reside in predicated blocks, or for dealing 2172 // with gaps). 2173 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2174 // If an override option has been passed in for interleaved accesses, use it. 2175 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2176 return EnableMaskedInterleavedMemAccesses; 2177 2178 return TTI.enableMaskedInterleavedAccessVectorization(); 2179 } 2180 2181 // Try to vectorize the interleave group that \p Instr belongs to. 2182 // 2183 // E.g. Translate following interleaved load group (factor = 3): 2184 // for (i = 0; i < N; i+=3) { 2185 // R = Pic[i]; // Member of index 0 2186 // G = Pic[i+1]; // Member of index 1 2187 // B = Pic[i+2]; // Member of index 2 2188 // ... // do something to R, G, B 2189 // } 2190 // To: 2191 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2192 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2193 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2194 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2195 // 2196 // Or translate following interleaved store group (factor = 3): 2197 // for (i = 0; i < N; i+=3) { 2198 // ... do something to R, G, B 2199 // Pic[i] = R; // Member of index 0 2200 // Pic[i+1] = G; // Member of index 1 2201 // Pic[i+2] = B; // Member of index 2 2202 // } 2203 // To: 2204 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2205 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2206 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2207 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2208 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2209 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2210 const InterleaveGroup<Instruction> *Group, VPTransformState &State, 2211 VPValue *Addr, VPValue *BlockInMask) { 2212 Instruction *Instr = Group->getInsertPos(); 2213 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2214 2215 // Prepare for the vector type of the interleaved load/store. 2216 Type *ScalarTy = getMemInstValueType(Instr); 2217 unsigned InterleaveFactor = Group->getFactor(); 2218 auto *VecTy = FixedVectorType::get(ScalarTy, InterleaveFactor * VF); 2219 2220 // Prepare for the new pointers. 2221 SmallVector<Value *, 2> AddrParts; 2222 unsigned Index = Group->getIndex(Instr); 2223 2224 // TODO: extend the masked interleaved-group support to reversed access. 2225 assert((!BlockInMask || !Group->isReverse()) && 2226 "Reversed masked interleave-group not supported."); 2227 2228 // If the group is reverse, adjust the index to refer to the last vector lane 2229 // instead of the first. We adjust the index from the first vector lane, 2230 // rather than directly getting the pointer for lane VF - 1, because the 2231 // pointer operand of the interleaved access is supposed to be uniform. For 2232 // uniform instructions, we're only required to generate a value for the 2233 // first vector lane in each unroll iteration. 2234 if (Group->isReverse()) 2235 Index += (VF - 1) * Group->getFactor(); 2236 2237 for (unsigned Part = 0; Part < UF; Part++) { 2238 Value *AddrPart = State.get(Addr, {Part, 0}); 2239 setDebugLocFromInst(Builder, AddrPart); 2240 2241 // Notice current instruction could be any index. Need to adjust the address 2242 // to the member of index 0. 2243 // 2244 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2245 // b = A[i]; // Member of index 0 2246 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2247 // 2248 // E.g. A[i+1] = a; // Member of index 1 2249 // A[i] = b; // Member of index 0 2250 // A[i+2] = c; // Member of index 2 (Current instruction) 2251 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2252 2253 bool InBounds = false; 2254 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2255 InBounds = gep->isInBounds(); 2256 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2257 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2258 2259 // Cast to the vector pointer type. 2260 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2261 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2262 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2263 } 2264 2265 setDebugLocFromInst(Builder, Instr); 2266 Value *UndefVec = UndefValue::get(VecTy); 2267 2268 Value *MaskForGaps = nullptr; 2269 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2270 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2271 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2272 } 2273 2274 // Vectorize the interleaved load group. 2275 if (isa<LoadInst>(Instr)) { 2276 // For each unroll part, create a wide load for the group. 2277 SmallVector<Value *, 2> NewLoads; 2278 for (unsigned Part = 0; Part < UF; Part++) { 2279 Instruction *NewLoad; 2280 if (BlockInMask || MaskForGaps) { 2281 assert(useMaskedInterleavedAccesses(*TTI) && 2282 "masked interleaved groups are not allowed."); 2283 Value *GroupMask = MaskForGaps; 2284 if (BlockInMask) { 2285 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2286 auto *Undefs = UndefValue::get(BlockInMaskPart->getType()); 2287 Value *ShuffledMask = Builder.CreateShuffleVector( 2288 BlockInMaskPart, Undefs, 2289 createReplicatedMask(InterleaveFactor, VF), "interleaved.mask"); 2290 GroupMask = MaskForGaps 2291 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2292 MaskForGaps) 2293 : ShuffledMask; 2294 } 2295 NewLoad = 2296 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2297 GroupMask, UndefVec, "wide.masked.vec"); 2298 } 2299 else 2300 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2301 Group->getAlign(), "wide.vec"); 2302 Group->addMetadata(NewLoad); 2303 NewLoads.push_back(NewLoad); 2304 } 2305 2306 // For each member in the group, shuffle out the appropriate data from the 2307 // wide loads. 2308 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2309 Instruction *Member = Group->getMember(I); 2310 2311 // Skip the gaps in the group. 2312 if (!Member) 2313 continue; 2314 2315 auto StrideMask = createStrideMask(I, InterleaveFactor, VF); 2316 for (unsigned Part = 0; Part < UF; Part++) { 2317 Value *StridedVec = Builder.CreateShuffleVector( 2318 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2319 2320 // If this member has different type, cast the result type. 2321 if (Member->getType() != ScalarTy) { 2322 VectorType *OtherVTy = FixedVectorType::get(Member->getType(), VF); 2323 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2324 } 2325 2326 if (Group->isReverse()) 2327 StridedVec = reverseVector(StridedVec); 2328 2329 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2330 } 2331 } 2332 return; 2333 } 2334 2335 // The sub vector type for current instruction. 2336 auto *SubVT = FixedVectorType::get(ScalarTy, VF); 2337 2338 // Vectorize the interleaved store group. 2339 for (unsigned Part = 0; Part < UF; Part++) { 2340 // Collect the stored vector from each member. 2341 SmallVector<Value *, 4> StoredVecs; 2342 for (unsigned i = 0; i < InterleaveFactor; i++) { 2343 // Interleaved store group doesn't allow a gap, so each index has a member 2344 Instruction *Member = Group->getMember(i); 2345 assert(Member && "Fail to get a member from an interleaved store group"); 2346 2347 Value *StoredVec = getOrCreateVectorValue( 2348 cast<StoreInst>(Member)->getValueOperand(), Part); 2349 if (Group->isReverse()) 2350 StoredVec = reverseVector(StoredVec); 2351 2352 // If this member has different type, cast it to a unified type. 2353 2354 if (StoredVec->getType() != SubVT) 2355 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2356 2357 StoredVecs.push_back(StoredVec); 2358 } 2359 2360 // Concatenate all vectors into a wide vector. 2361 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2362 2363 // Interleave the elements in the wide vector. 2364 Value *IVec = Builder.CreateShuffleVector( 2365 WideVec, UndefVec, createInterleaveMask(VF, InterleaveFactor), 2366 "interleaved.vec"); 2367 2368 Instruction *NewStoreInstr; 2369 if (BlockInMask) { 2370 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2371 auto *Undefs = UndefValue::get(BlockInMaskPart->getType()); 2372 Value *ShuffledMask = Builder.CreateShuffleVector( 2373 BlockInMaskPart, Undefs, createReplicatedMask(InterleaveFactor, VF), 2374 "interleaved.mask"); 2375 NewStoreInstr = Builder.CreateMaskedStore( 2376 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2377 } 2378 else 2379 NewStoreInstr = 2380 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2381 2382 Group->addMetadata(NewStoreInstr); 2383 } 2384 } 2385 2386 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2387 VPTransformState &State, 2388 VPValue *Addr, 2389 VPValue *StoredValue, 2390 VPValue *BlockInMask) { 2391 // Attempt to issue a wide load. 2392 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2393 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2394 2395 assert((LI || SI) && "Invalid Load/Store instruction"); 2396 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2397 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2398 2399 LoopVectorizationCostModel::InstWidening Decision = 2400 Cost->getWideningDecision(Instr, VF); 2401 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2402 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2403 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2404 "CM decision is not to widen the memory instruction"); 2405 2406 Type *ScalarDataTy = getMemInstValueType(Instr); 2407 auto *DataTy = FixedVectorType::get(ScalarDataTy, VF); 2408 const Align Alignment = getLoadStoreAlignment(Instr); 2409 2410 // Determine if the pointer operand of the access is either consecutive or 2411 // reverse consecutive. 2412 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2413 bool ConsecutiveStride = 2414 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2415 bool CreateGatherScatter = 2416 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2417 2418 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2419 // gather/scatter. Otherwise Decision should have been to Scalarize. 2420 assert((ConsecutiveStride || CreateGatherScatter) && 2421 "The instruction should be scalarized"); 2422 (void)ConsecutiveStride; 2423 2424 VectorParts BlockInMaskParts(UF); 2425 bool isMaskRequired = BlockInMask; 2426 if (isMaskRequired) 2427 for (unsigned Part = 0; Part < UF; ++Part) 2428 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2429 2430 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2431 // Calculate the pointer for the specific unroll-part. 2432 GetElementPtrInst *PartPtr = nullptr; 2433 2434 bool InBounds = false; 2435 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2436 InBounds = gep->isInBounds(); 2437 2438 if (Reverse) { 2439 // If the address is consecutive but reversed, then the 2440 // wide store needs to start at the last vector element. 2441 PartPtr = cast<GetElementPtrInst>( 2442 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF))); 2443 PartPtr->setIsInBounds(InBounds); 2444 PartPtr = cast<GetElementPtrInst>( 2445 Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF))); 2446 PartPtr->setIsInBounds(InBounds); 2447 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2448 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2449 } else { 2450 PartPtr = cast<GetElementPtrInst>( 2451 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF))); 2452 PartPtr->setIsInBounds(InBounds); 2453 } 2454 2455 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2456 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2457 }; 2458 2459 // Handle Stores: 2460 if (SI) { 2461 setDebugLocFromInst(Builder, SI); 2462 2463 for (unsigned Part = 0; Part < UF; ++Part) { 2464 Instruction *NewSI = nullptr; 2465 Value *StoredVal = State.get(StoredValue, Part); 2466 if (CreateGatherScatter) { 2467 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2468 Value *VectorGep = State.get(Addr, Part); 2469 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2470 MaskPart); 2471 } else { 2472 if (Reverse) { 2473 // If we store to reverse consecutive memory locations, then we need 2474 // to reverse the order of elements in the stored value. 2475 StoredVal = reverseVector(StoredVal); 2476 // We don't want to update the value in the map as it might be used in 2477 // another expression. So don't call resetVectorValue(StoredVal). 2478 } 2479 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2480 if (isMaskRequired) 2481 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2482 BlockInMaskParts[Part]); 2483 else 2484 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2485 } 2486 addMetadata(NewSI, SI); 2487 } 2488 return; 2489 } 2490 2491 // Handle loads. 2492 assert(LI && "Must have a load instruction"); 2493 setDebugLocFromInst(Builder, LI); 2494 for (unsigned Part = 0; Part < UF; ++Part) { 2495 Value *NewLI; 2496 if (CreateGatherScatter) { 2497 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2498 Value *VectorGep = State.get(Addr, Part); 2499 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2500 nullptr, "wide.masked.gather"); 2501 addMetadata(NewLI, LI); 2502 } else { 2503 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2504 if (isMaskRequired) 2505 NewLI = Builder.CreateMaskedLoad( 2506 VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy), 2507 "wide.masked.load"); 2508 else 2509 NewLI = 2510 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2511 2512 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2513 addMetadata(NewLI, LI); 2514 if (Reverse) 2515 NewLI = reverseVector(NewLI); 2516 } 2517 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2518 } 2519 } 2520 2521 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPUser &User, 2522 const VPIteration &Instance, 2523 bool IfPredicateInstr, 2524 VPTransformState &State) { 2525 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2526 2527 setDebugLocFromInst(Builder, Instr); 2528 2529 // Does this instruction return a value ? 2530 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2531 2532 Instruction *Cloned = Instr->clone(); 2533 if (!IsVoidRetTy) 2534 Cloned->setName(Instr->getName() + ".cloned"); 2535 2536 // Replace the operands of the cloned instructions with their scalar 2537 // equivalents in the new loop. 2538 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 2539 auto *NewOp = State.get(User.getOperand(op), Instance); 2540 Cloned->setOperand(op, NewOp); 2541 } 2542 addNewMetadata(Cloned, Instr); 2543 2544 // Place the cloned scalar in the new loop. 2545 Builder.Insert(Cloned); 2546 2547 // Add the cloned scalar to the scalar map entry. 2548 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2549 2550 // If we just cloned a new assumption, add it the assumption cache. 2551 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2552 if (II->getIntrinsicID() == Intrinsic::assume) 2553 AC->registerAssumption(II); 2554 2555 // End if-block. 2556 if (IfPredicateInstr) 2557 PredicatedInstructions.push_back(Cloned); 2558 } 2559 2560 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2561 Value *End, Value *Step, 2562 Instruction *DL) { 2563 BasicBlock *Header = L->getHeader(); 2564 BasicBlock *Latch = L->getLoopLatch(); 2565 // As we're just creating this loop, it's possible no latch exists 2566 // yet. If so, use the header as this will be a single block loop. 2567 if (!Latch) 2568 Latch = Header; 2569 2570 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2571 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2572 setDebugLocFromInst(Builder, OldInst); 2573 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2574 2575 Builder.SetInsertPoint(Latch->getTerminator()); 2576 setDebugLocFromInst(Builder, OldInst); 2577 2578 // Create i+1 and fill the PHINode. 2579 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2580 Induction->addIncoming(Start, L->getLoopPreheader()); 2581 Induction->addIncoming(Next, Latch); 2582 // Create the compare. 2583 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2584 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2585 2586 // Now we have two terminators. Remove the old one from the block. 2587 Latch->getTerminator()->eraseFromParent(); 2588 2589 return Induction; 2590 } 2591 2592 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2593 if (TripCount) 2594 return TripCount; 2595 2596 assert(L && "Create Trip Count for null loop."); 2597 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2598 // Find the loop boundaries. 2599 ScalarEvolution *SE = PSE.getSE(); 2600 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2601 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2602 "Invalid loop count"); 2603 2604 Type *IdxTy = Legal->getWidestInductionType(); 2605 assert(IdxTy && "No type for induction"); 2606 2607 // The exit count might have the type of i64 while the phi is i32. This can 2608 // happen if we have an induction variable that is sign extended before the 2609 // compare. The only way that we get a backedge taken count is that the 2610 // induction variable was signed and as such will not overflow. In such a case 2611 // truncation is legal. 2612 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2613 IdxTy->getPrimitiveSizeInBits()) 2614 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2615 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2616 2617 // Get the total trip count from the count by adding 1. 2618 const SCEV *ExitCount = SE->getAddExpr( 2619 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2620 2621 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2622 2623 // Expand the trip count and place the new instructions in the preheader. 2624 // Notice that the pre-header does not change, only the loop body. 2625 SCEVExpander Exp(*SE, DL, "induction"); 2626 2627 // Count holds the overall loop count (N). 2628 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2629 L->getLoopPreheader()->getTerminator()); 2630 2631 if (TripCount->getType()->isPointerTy()) 2632 TripCount = 2633 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2634 L->getLoopPreheader()->getTerminator()); 2635 2636 return TripCount; 2637 } 2638 2639 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2640 if (VectorTripCount) 2641 return VectorTripCount; 2642 2643 Value *TC = getOrCreateTripCount(L); 2644 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2645 2646 Type *Ty = TC->getType(); 2647 Constant *Step = ConstantInt::get(Ty, VF * UF); 2648 2649 // If the tail is to be folded by masking, round the number of iterations N 2650 // up to a multiple of Step instead of rounding down. This is done by first 2651 // adding Step-1 and then rounding down. Note that it's ok if this addition 2652 // overflows: the vector induction variable will eventually wrap to zero given 2653 // that it starts at zero and its Step is a power of two; the loop will then 2654 // exit, with the last early-exit vector comparison also producing all-true. 2655 if (Cost->foldTailByMasking()) { 2656 assert(isPowerOf2_32(VF * UF) && 2657 "VF*UF must be a power of 2 when folding tail by masking"); 2658 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2659 } 2660 2661 // Now we need to generate the expression for the part of the loop that the 2662 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2663 // iterations are not required for correctness, or N - Step, otherwise. Step 2664 // is equal to the vectorization factor (number of SIMD elements) times the 2665 // unroll factor (number of SIMD instructions). 2666 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2667 2668 // If there is a non-reversed interleaved group that may speculatively access 2669 // memory out-of-bounds, we need to ensure that there will be at least one 2670 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2671 // the trip count, we set the remainder to be equal to the step. If the step 2672 // does not evenly divide the trip count, no adjustment is necessary since 2673 // there will already be scalar iterations. Note that the minimum iterations 2674 // check ensures that N >= Step. 2675 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2676 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2677 R = Builder.CreateSelect(IsZero, Step, R); 2678 } 2679 2680 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2681 2682 return VectorTripCount; 2683 } 2684 2685 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2686 const DataLayout &DL) { 2687 // Verify that V is a vector type with same number of elements as DstVTy. 2688 unsigned VF = DstVTy->getNumElements(); 2689 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2690 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2691 Type *SrcElemTy = SrcVecTy->getElementType(); 2692 Type *DstElemTy = DstVTy->getElementType(); 2693 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2694 "Vector elements must have same size"); 2695 2696 // Do a direct cast if element types are castable. 2697 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2698 return Builder.CreateBitOrPointerCast(V, DstVTy); 2699 } 2700 // V cannot be directly casted to desired vector type. 2701 // May happen when V is a floating point vector but DstVTy is a vector of 2702 // pointers or vice-versa. Handle this using a two-step bitcast using an 2703 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2704 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2705 "Only one type should be a pointer type"); 2706 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2707 "Only one type should be a floating point type"); 2708 Type *IntTy = 2709 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2710 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2711 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2712 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2713 } 2714 2715 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2716 BasicBlock *Bypass) { 2717 Value *Count = getOrCreateTripCount(L); 2718 // Reuse existing vector loop preheader for TC checks. 2719 // Note that new preheader block is generated for vector loop. 2720 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2721 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2722 2723 // Generate code to check if the loop's trip count is less than VF * UF, or 2724 // equal to it in case a scalar epilogue is required; this implies that the 2725 // vector trip count is zero. This check also covers the case where adding one 2726 // to the backedge-taken count overflowed leading to an incorrect trip count 2727 // of zero. In this case we will also jump to the scalar loop. 2728 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2729 : ICmpInst::ICMP_ULT; 2730 2731 // If tail is to be folded, vector loop takes care of all iterations. 2732 Value *CheckMinIters = Builder.getFalse(); 2733 if (!Cost->foldTailByMasking()) 2734 CheckMinIters = Builder.CreateICmp( 2735 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2736 "min.iters.check"); 2737 2738 // Create new preheader for vector loop. 2739 LoopVectorPreHeader = 2740 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2741 "vector.ph"); 2742 2743 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2744 DT->getNode(Bypass)->getIDom()) && 2745 "TC check is expected to dominate Bypass"); 2746 2747 // Update dominator for Bypass & LoopExit. 2748 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2749 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2750 2751 ReplaceInstWithInst( 2752 TCCheckBlock->getTerminator(), 2753 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 2754 LoopBypassBlocks.push_back(TCCheckBlock); 2755 } 2756 2757 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2758 // Reuse existing vector loop preheader for SCEV checks. 2759 // Note that new preheader block is generated for vector loop. 2760 BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader; 2761 2762 // Generate the code to check that the SCEV assumptions that we made. 2763 // We want the new basic block to start at the first instruction in a 2764 // sequence of instructions that form a check. 2765 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2766 "scev.check"); 2767 Value *SCEVCheck = Exp.expandCodeForPredicate( 2768 &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator()); 2769 2770 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2771 if (C->isZero()) 2772 return; 2773 2774 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 2775 OptForSizeBasedOnProfile) && 2776 "Cannot SCEV check stride or overflow when optimizing for size"); 2777 2778 SCEVCheckBlock->setName("vector.scevcheck"); 2779 // Create new preheader for vector loop. 2780 LoopVectorPreHeader = 2781 SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI, 2782 nullptr, "vector.ph"); 2783 2784 // Update dominator only if this is first RT check. 2785 if (LoopBypassBlocks.empty()) { 2786 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 2787 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 2788 } 2789 2790 ReplaceInstWithInst( 2791 SCEVCheckBlock->getTerminator(), 2792 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck)); 2793 LoopBypassBlocks.push_back(SCEVCheckBlock); 2794 AddedSafetyChecks = true; 2795 } 2796 2797 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2798 // VPlan-native path does not do any analysis for runtime checks currently. 2799 if (EnableVPlanNativePath) 2800 return; 2801 2802 // Reuse existing vector loop preheader for runtime memory checks. 2803 // Note that new preheader block is generated for vector loop. 2804 BasicBlock *const MemCheckBlock = L->getLoopPreheader(); 2805 2806 // Generate the code that checks in runtime if arrays overlap. We put the 2807 // checks into a separate block to make the more common case of few elements 2808 // faster. 2809 auto *LAI = Legal->getLAI(); 2810 const auto &RtPtrChecking = *LAI->getRuntimePointerChecking(); 2811 if (!RtPtrChecking.Need) 2812 return; 2813 Instruction *FirstCheckInst; 2814 Instruction *MemRuntimeCheck; 2815 std::tie(FirstCheckInst, MemRuntimeCheck) = 2816 addRuntimeChecks(MemCheckBlock->getTerminator(), OrigLoop, 2817 RtPtrChecking.getChecks(), RtPtrChecking.getSE()); 2818 assert(MemRuntimeCheck && "no RT checks generated although RtPtrChecking " 2819 "claimed checks are required"); 2820 2821 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 2822 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 2823 "Cannot emit memory checks when optimizing for size, unless forced " 2824 "to vectorize."); 2825 ORE->emit([&]() { 2826 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 2827 L->getStartLoc(), L->getHeader()) 2828 << "Code-size may be reduced by not forcing " 2829 "vectorization, or by source-code modifications " 2830 "eliminating the need for runtime checks " 2831 "(e.g., adding 'restrict')."; 2832 }); 2833 } 2834 2835 MemCheckBlock->setName("vector.memcheck"); 2836 // Create new preheader for vector loop. 2837 LoopVectorPreHeader = 2838 SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr, 2839 "vector.ph"); 2840 2841 // Update dominator only if this is first RT check. 2842 if (LoopBypassBlocks.empty()) { 2843 DT->changeImmediateDominator(Bypass, MemCheckBlock); 2844 DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock); 2845 } 2846 2847 ReplaceInstWithInst( 2848 MemCheckBlock->getTerminator(), 2849 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheck)); 2850 LoopBypassBlocks.push_back(MemCheckBlock); 2851 AddedSafetyChecks = true; 2852 2853 // We currently don't use LoopVersioning for the actual loop cloning but we 2854 // still use it to add the noalias metadata. 2855 LVer = std::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2856 PSE.getSE()); 2857 LVer->prepareNoAliasMetadata(); 2858 } 2859 2860 Value *InnerLoopVectorizer::emitTransformedIndex( 2861 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2862 const InductionDescriptor &ID) const { 2863 2864 SCEVExpander Exp(*SE, DL, "induction"); 2865 auto Step = ID.getStep(); 2866 auto StartValue = ID.getStartValue(); 2867 assert(Index->getType() == Step->getType() && 2868 "Index type does not match StepValue type"); 2869 2870 // Note: the IR at this point is broken. We cannot use SE to create any new 2871 // SCEV and then expand it, hoping that SCEV's simplification will give us 2872 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2873 // lead to various SCEV crashes. So all we can do is to use builder and rely 2874 // on InstCombine for future simplifications. Here we handle some trivial 2875 // cases only. 2876 auto CreateAdd = [&B](Value *X, Value *Y) { 2877 assert(X->getType() == Y->getType() && "Types don't match!"); 2878 if (auto *CX = dyn_cast<ConstantInt>(X)) 2879 if (CX->isZero()) 2880 return Y; 2881 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2882 if (CY->isZero()) 2883 return X; 2884 return B.CreateAdd(X, Y); 2885 }; 2886 2887 auto CreateMul = [&B](Value *X, Value *Y) { 2888 assert(X->getType() == Y->getType() && "Types don't match!"); 2889 if (auto *CX = dyn_cast<ConstantInt>(X)) 2890 if (CX->isOne()) 2891 return Y; 2892 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2893 if (CY->isOne()) 2894 return X; 2895 return B.CreateMul(X, Y); 2896 }; 2897 2898 // Get a suitable insert point for SCEV expansion. For blocks in the vector 2899 // loop, choose the end of the vector loop header (=LoopVectorBody), because 2900 // the DomTree is not kept up-to-date for additional blocks generated in the 2901 // vector loop. By using the header as insertion point, we guarantee that the 2902 // expanded instructions dominate all their uses. 2903 auto GetInsertPoint = [this, &B]() { 2904 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 2905 if (InsertBB != LoopVectorBody && 2906 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 2907 return LoopVectorBody->getTerminator(); 2908 return &*B.GetInsertPoint(); 2909 }; 2910 switch (ID.getKind()) { 2911 case InductionDescriptor::IK_IntInduction: { 2912 assert(Index->getType() == StartValue->getType() && 2913 "Index type does not match StartValue type"); 2914 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2915 return B.CreateSub(StartValue, Index); 2916 auto *Offset = CreateMul( 2917 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 2918 return CreateAdd(StartValue, Offset); 2919 } 2920 case InductionDescriptor::IK_PtrInduction: { 2921 assert(isa<SCEVConstant>(Step) && 2922 "Expected constant step for pointer induction"); 2923 return B.CreateGEP( 2924 StartValue->getType()->getPointerElementType(), StartValue, 2925 CreateMul(Index, 2926 Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()))); 2927 } 2928 case InductionDescriptor::IK_FpInduction: { 2929 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2930 auto InductionBinOp = ID.getInductionBinOp(); 2931 assert(InductionBinOp && 2932 (InductionBinOp->getOpcode() == Instruction::FAdd || 2933 InductionBinOp->getOpcode() == Instruction::FSub) && 2934 "Original bin op should be defined for FP induction"); 2935 2936 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2937 2938 // Floating point operations had to be 'fast' to enable the induction. 2939 FastMathFlags Flags; 2940 Flags.setFast(); 2941 2942 Value *MulExp = B.CreateFMul(StepValue, Index); 2943 if (isa<Instruction>(MulExp)) 2944 // We have to check, the MulExp may be a constant. 2945 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2946 2947 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2948 "induction"); 2949 if (isa<Instruction>(BOp)) 2950 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2951 2952 return BOp; 2953 } 2954 case InductionDescriptor::IK_NoInduction: 2955 return nullptr; 2956 } 2957 llvm_unreachable("invalid enum"); 2958 } 2959 2960 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2961 /* 2962 In this function we generate a new loop. The new loop will contain 2963 the vectorized instructions while the old loop will continue to run the 2964 scalar remainder. 2965 2966 [ ] <-- loop iteration number check. 2967 / | 2968 / v 2969 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2970 | / | 2971 | / v 2972 || [ ] <-- vector pre header. 2973 |/ | 2974 | v 2975 | [ ] \ 2976 | [ ]_| <-- vector loop. 2977 | | 2978 | v 2979 | -[ ] <--- middle-block. 2980 | / | 2981 | / v 2982 -|- >[ ] <--- new preheader. 2983 | | 2984 | v 2985 | [ ] \ 2986 | [ ]_| <-- old scalar loop to handle remainder. 2987 \ | 2988 \ v 2989 >[ ] <-- exit block. 2990 ... 2991 */ 2992 2993 MDNode *OrigLoopID = OrigLoop->getLoopID(); 2994 2995 // Some loops have a single integer induction variable, while other loops 2996 // don't. One example is c++ iterators that often have multiple pointer 2997 // induction variables. In the code below we also support a case where we 2998 // don't have a single induction variable. 2999 // 3000 // We try to obtain an induction variable from the original loop as hard 3001 // as possible. However if we don't find one that: 3002 // - is an integer 3003 // - counts from zero, stepping by one 3004 // - is the size of the widest induction variable type 3005 // then we create a new one. 3006 OldInduction = Legal->getPrimaryInduction(); 3007 Type *IdxTy = Legal->getWidestInductionType(); 3008 3009 // Split the single block loop into the two loop structure described above. 3010 LoopScalarBody = OrigLoop->getHeader(); 3011 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3012 LoopExitBlock = OrigLoop->getExitBlock(); 3013 assert(LoopExitBlock && "Must have an exit block"); 3014 assert(LoopVectorPreHeader && "Invalid loop structure"); 3015 3016 LoopMiddleBlock = 3017 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3018 LI, nullptr, "middle.block"); 3019 LoopScalarPreHeader = 3020 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3021 nullptr, "scalar.ph"); 3022 // We intentionally don't let SplitBlock to update LoopInfo since 3023 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3024 // LoopVectorBody is explicitly added to the correct place few lines later. 3025 LoopVectorBody = 3026 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3027 nullptr, nullptr, "vector.body"); 3028 3029 // Update dominator for loop exit. 3030 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3031 3032 // Create and register the new vector loop. 3033 Loop *Lp = LI->AllocateLoop(); 3034 Loop *ParentLoop = OrigLoop->getParentLoop(); 3035 3036 // Insert the new loop into the loop nest and register the new basic blocks 3037 // before calling any utilities such as SCEV that require valid LoopInfo. 3038 if (ParentLoop) { 3039 ParentLoop->addChildLoop(Lp); 3040 } else { 3041 LI->addTopLevelLoop(Lp); 3042 } 3043 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3044 3045 // Find the loop boundaries. 3046 Value *Count = getOrCreateTripCount(Lp); 3047 3048 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3049 3050 // Now, compare the new count to zero. If it is zero skip the vector loop and 3051 // jump to the scalar loop. This check also covers the case where the 3052 // backedge-taken count is uint##_max: adding one to it will overflow leading 3053 // to an incorrect trip count of zero. In this (rare) case we will also jump 3054 // to the scalar loop. 3055 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3056 3057 // Generate the code to check any assumptions that we've made for SCEV 3058 // expressions. 3059 emitSCEVChecks(Lp, LoopScalarPreHeader); 3060 3061 // Generate the code that checks in runtime if arrays overlap. We put the 3062 // checks into a separate block to make the more common case of few elements 3063 // faster. 3064 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3065 3066 // Generate the induction variable. 3067 // The loop step is equal to the vectorization factor (num of SIMD elements) 3068 // times the unroll factor (num of SIMD instructions). 3069 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3070 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3071 Induction = 3072 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3073 getDebugLocFromInstOrOperands(OldInduction)); 3074 3075 // We are going to resume the execution of the scalar loop. 3076 // Go over all of the induction variables that we found and fix the 3077 // PHIs that are left in the scalar version of the loop. 3078 // The starting values of PHI nodes depend on the counter of the last 3079 // iteration in the vectorized loop. 3080 // If we come from a bypass edge then we need to start from the original 3081 // start value. 3082 3083 // This variable saves the new starting index for the scalar loop. It is used 3084 // to test if there are any tail iterations left once the vector loop has 3085 // completed. 3086 for (auto &InductionEntry : Legal->getInductionVars()) { 3087 PHINode *OrigPhi = InductionEntry.first; 3088 InductionDescriptor II = InductionEntry.second; 3089 3090 // Create phi nodes to merge from the backedge-taken check block. 3091 PHINode *BCResumeVal = 3092 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3093 LoopScalarPreHeader->getTerminator()); 3094 // Copy original phi DL over to the new one. 3095 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3096 Value *&EndValue = IVEndValues[OrigPhi]; 3097 if (OrigPhi == OldInduction) { 3098 // We know what the end value is. 3099 EndValue = CountRoundDown; 3100 } else { 3101 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3102 Type *StepType = II.getStep()->getType(); 3103 Instruction::CastOps CastOp = 3104 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3105 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3106 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3107 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3108 EndValue->setName("ind.end"); 3109 } 3110 3111 // The new PHI merges the original incoming value, in case of a bypass, 3112 // or the value at the end of the vectorized loop. 3113 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3114 3115 // Fix the scalar body counter (PHI node). 3116 // The old induction's phi node in the scalar body needs the truncated 3117 // value. 3118 for (BasicBlock *BB : LoopBypassBlocks) 3119 BCResumeVal->addIncoming(II.getStartValue(), BB); 3120 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3121 } 3122 3123 // We need the OrigLoop (scalar loop part) latch terminator to help 3124 // produce correct debug info for the middle block BB instructions. 3125 // The legality check stage guarantees that the loop will have a single 3126 // latch. 3127 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 3128 "Scalar loop latch terminator isn't a branch"); 3129 BranchInst *ScalarLatchBr = 3130 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 3131 3132 // Add a check in the middle block to see if we have completed 3133 // all of the iterations in the first vector loop. 3134 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3135 // If tail is to be folded, we know we don't need to run the remainder. 3136 Value *CmpN = Builder.getTrue(); 3137 if (!Cost->foldTailByMasking()) { 3138 CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3139 CountRoundDown, "cmp.n", 3140 LoopMiddleBlock->getTerminator()); 3141 3142 // Here we use the same DebugLoc as the scalar loop latch branch instead 3143 // of the corresponding compare because they may have ended up with 3144 // different line numbers and we want to avoid awkward line stepping while 3145 // debugging. Eg. if the compare has got a line number inside the loop. 3146 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3147 } 3148 3149 BranchInst *BrInst = 3150 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN); 3151 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3152 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3153 3154 // Get ready to start creating new instructions into the vectorized body. 3155 assert(LoopVectorPreHeader == Lp->getLoopPreheader() && 3156 "Inconsistent vector loop preheader"); 3157 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3158 3159 Optional<MDNode *> VectorizedLoopID = 3160 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3161 LLVMLoopVectorizeFollowupVectorized}); 3162 if (VectorizedLoopID.hasValue()) { 3163 Lp->setLoopID(VectorizedLoopID.getValue()); 3164 3165 // Do not setAlreadyVectorized if loop attributes have been defined 3166 // explicitly. 3167 return LoopVectorPreHeader; 3168 } 3169 3170 // Keep all loop hints from the original loop on the vector loop (we'll 3171 // replace the vectorizer-specific hints below). 3172 if (MDNode *LID = OrigLoop->getLoopID()) 3173 Lp->setLoopID(LID); 3174 3175 LoopVectorizeHints Hints(Lp, true, *ORE); 3176 Hints.setAlreadyVectorized(); 3177 3178 #ifdef EXPENSIVE_CHECKS 3179 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3180 LI->verify(*DT); 3181 #endif 3182 3183 return LoopVectorPreHeader; 3184 } 3185 3186 // Fix up external users of the induction variable. At this point, we are 3187 // in LCSSA form, with all external PHIs that use the IV having one input value, 3188 // coming from the remainder loop. We need those PHIs to also have a correct 3189 // value for the IV when arriving directly from the middle block. 3190 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3191 const InductionDescriptor &II, 3192 Value *CountRoundDown, Value *EndValue, 3193 BasicBlock *MiddleBlock) { 3194 // There are two kinds of external IV usages - those that use the value 3195 // computed in the last iteration (the PHI) and those that use the penultimate 3196 // value (the value that feeds into the phi from the loop latch). 3197 // We allow both, but they, obviously, have different values. 3198 3199 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3200 3201 DenseMap<Value *, Value *> MissingVals; 3202 3203 // An external user of the last iteration's value should see the value that 3204 // the remainder loop uses to initialize its own IV. 3205 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3206 for (User *U : PostInc->users()) { 3207 Instruction *UI = cast<Instruction>(U); 3208 if (!OrigLoop->contains(UI)) { 3209 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3210 MissingVals[UI] = EndValue; 3211 } 3212 } 3213 3214 // An external user of the penultimate value need to see EndValue - Step. 3215 // The simplest way to get this is to recompute it from the constituent SCEVs, 3216 // that is Start + (Step * (CRD - 1)). 3217 for (User *U : OrigPhi->users()) { 3218 auto *UI = cast<Instruction>(U); 3219 if (!OrigLoop->contains(UI)) { 3220 const DataLayout &DL = 3221 OrigLoop->getHeader()->getModule()->getDataLayout(); 3222 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3223 3224 IRBuilder<> B(MiddleBlock->getTerminator()); 3225 Value *CountMinusOne = B.CreateSub( 3226 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3227 Value *CMO = 3228 !II.getStep()->getType()->isIntegerTy() 3229 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3230 II.getStep()->getType()) 3231 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3232 CMO->setName("cast.cmo"); 3233 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3234 Escape->setName("ind.escape"); 3235 MissingVals[UI] = Escape; 3236 } 3237 } 3238 3239 for (auto &I : MissingVals) { 3240 PHINode *PHI = cast<PHINode>(I.first); 3241 // One corner case we have to handle is two IVs "chasing" each-other, 3242 // that is %IV2 = phi [...], [ %IV1, %latch ] 3243 // In this case, if IV1 has an external use, we need to avoid adding both 3244 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3245 // don't already have an incoming value for the middle block. 3246 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3247 PHI->addIncoming(I.second, MiddleBlock); 3248 } 3249 } 3250 3251 namespace { 3252 3253 struct CSEDenseMapInfo { 3254 static bool canHandle(const Instruction *I) { 3255 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3256 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3257 } 3258 3259 static inline Instruction *getEmptyKey() { 3260 return DenseMapInfo<Instruction *>::getEmptyKey(); 3261 } 3262 3263 static inline Instruction *getTombstoneKey() { 3264 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3265 } 3266 3267 static unsigned getHashValue(const Instruction *I) { 3268 assert(canHandle(I) && "Unknown instruction!"); 3269 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3270 I->value_op_end())); 3271 } 3272 3273 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3274 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3275 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3276 return LHS == RHS; 3277 return LHS->isIdenticalTo(RHS); 3278 } 3279 }; 3280 3281 } // end anonymous namespace 3282 3283 ///Perform cse of induction variable instructions. 3284 static void cse(BasicBlock *BB) { 3285 // Perform simple cse. 3286 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3287 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3288 Instruction *In = &*I++; 3289 3290 if (!CSEDenseMapInfo::canHandle(In)) 3291 continue; 3292 3293 // Check if we can replace this instruction with any of the 3294 // visited instructions. 3295 if (Instruction *V = CSEMap.lookup(In)) { 3296 In->replaceAllUsesWith(V); 3297 In->eraseFromParent(); 3298 continue; 3299 } 3300 3301 CSEMap[In] = In; 3302 } 3303 } 3304 3305 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3306 unsigned VF, 3307 bool &NeedToScalarize) { 3308 Function *F = CI->getCalledFunction(); 3309 Type *ScalarRetTy = CI->getType(); 3310 SmallVector<Type *, 4> Tys, ScalarTys; 3311 for (auto &ArgOp : CI->arg_operands()) 3312 ScalarTys.push_back(ArgOp->getType()); 3313 3314 // Estimate cost of scalarized vector call. The source operands are assumed 3315 // to be vectors, so we need to extract individual elements from there, 3316 // execute VF scalar calls, and then gather the result into the vector return 3317 // value. 3318 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, 3319 TTI::TCK_RecipThroughput); 3320 if (VF == 1) 3321 return ScalarCallCost; 3322 3323 // Compute corresponding vector type for return value and arguments. 3324 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3325 for (Type *ScalarTy : ScalarTys) 3326 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3327 3328 // Compute costs of unpacking argument values for the scalar calls and 3329 // packing the return values to a vector. 3330 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3331 3332 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3333 3334 // If we can't emit a vector call for this function, then the currently found 3335 // cost is the cost we need to return. 3336 NeedToScalarize = true; 3337 VFShape Shape = VFShape::get(*CI, {VF, false}, false /*HasGlobalPred*/); 3338 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3339 3340 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3341 return Cost; 3342 3343 // If the corresponding vector cost is cheaper, return its cost. 3344 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys, 3345 TTI::TCK_RecipThroughput); 3346 if (VectorCallCost < Cost) { 3347 NeedToScalarize = false; 3348 return VectorCallCost; 3349 } 3350 return Cost; 3351 } 3352 3353 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3354 unsigned VF) { 3355 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3356 assert(ID && "Expected intrinsic call!"); 3357 3358 IntrinsicCostAttributes CostAttrs(ID, *CI, VF); 3359 return TTI.getIntrinsicInstrCost(CostAttrs, 3360 TargetTransformInfo::TCK_RecipThroughput); 3361 } 3362 3363 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3364 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3365 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3366 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3367 } 3368 3369 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3370 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3371 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3372 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3373 } 3374 3375 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3376 // For every instruction `I` in MinBWs, truncate the operands, create a 3377 // truncated version of `I` and reextend its result. InstCombine runs 3378 // later and will remove any ext/trunc pairs. 3379 SmallPtrSet<Value *, 4> Erased; 3380 for (const auto &KV : Cost->getMinimalBitwidths()) { 3381 // If the value wasn't vectorized, we must maintain the original scalar 3382 // type. The absence of the value from VectorLoopValueMap indicates that it 3383 // wasn't vectorized. 3384 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3385 continue; 3386 for (unsigned Part = 0; Part < UF; ++Part) { 3387 Value *I = getOrCreateVectorValue(KV.first, Part); 3388 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3389 continue; 3390 Type *OriginalTy = I->getType(); 3391 Type *ScalarTruncatedTy = 3392 IntegerType::get(OriginalTy->getContext(), KV.second); 3393 auto *TruncatedTy = FixedVectorType::get( 3394 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getNumElements()); 3395 if (TruncatedTy == OriginalTy) 3396 continue; 3397 3398 IRBuilder<> B(cast<Instruction>(I)); 3399 auto ShrinkOperand = [&](Value *V) -> Value * { 3400 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3401 if (ZI->getSrcTy() == TruncatedTy) 3402 return ZI->getOperand(0); 3403 return B.CreateZExtOrTrunc(V, TruncatedTy); 3404 }; 3405 3406 // The actual instruction modification depends on the instruction type, 3407 // unfortunately. 3408 Value *NewI = nullptr; 3409 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3410 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3411 ShrinkOperand(BO->getOperand(1))); 3412 3413 // Any wrapping introduced by shrinking this operation shouldn't be 3414 // considered undefined behavior. So, we can't unconditionally copy 3415 // arithmetic wrapping flags to NewI. 3416 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3417 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3418 NewI = 3419 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3420 ShrinkOperand(CI->getOperand(1))); 3421 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3422 NewI = B.CreateSelect(SI->getCondition(), 3423 ShrinkOperand(SI->getTrueValue()), 3424 ShrinkOperand(SI->getFalseValue())); 3425 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3426 switch (CI->getOpcode()) { 3427 default: 3428 llvm_unreachable("Unhandled cast!"); 3429 case Instruction::Trunc: 3430 NewI = ShrinkOperand(CI->getOperand(0)); 3431 break; 3432 case Instruction::SExt: 3433 NewI = B.CreateSExtOrTrunc( 3434 CI->getOperand(0), 3435 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3436 break; 3437 case Instruction::ZExt: 3438 NewI = B.CreateZExtOrTrunc( 3439 CI->getOperand(0), 3440 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3441 break; 3442 } 3443 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3444 auto Elements0 = 3445 cast<VectorType>(SI->getOperand(0)->getType())->getNumElements(); 3446 auto *O0 = B.CreateZExtOrTrunc( 3447 SI->getOperand(0), 3448 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 3449 auto Elements1 = 3450 cast<VectorType>(SI->getOperand(1)->getType())->getNumElements(); 3451 auto *O1 = B.CreateZExtOrTrunc( 3452 SI->getOperand(1), 3453 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 3454 3455 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3456 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3457 // Don't do anything with the operands, just extend the result. 3458 continue; 3459 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3460 auto Elements = 3461 cast<VectorType>(IE->getOperand(0)->getType())->getNumElements(); 3462 auto *O0 = B.CreateZExtOrTrunc( 3463 IE->getOperand(0), 3464 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3465 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3466 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3467 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3468 auto Elements = 3469 cast<VectorType>(EE->getOperand(0)->getType())->getNumElements(); 3470 auto *O0 = B.CreateZExtOrTrunc( 3471 EE->getOperand(0), 3472 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3473 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3474 } else { 3475 // If we don't know what to do, be conservative and don't do anything. 3476 continue; 3477 } 3478 3479 // Lastly, extend the result. 3480 NewI->takeName(cast<Instruction>(I)); 3481 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3482 I->replaceAllUsesWith(Res); 3483 cast<Instruction>(I)->eraseFromParent(); 3484 Erased.insert(I); 3485 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3486 } 3487 } 3488 3489 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3490 for (const auto &KV : Cost->getMinimalBitwidths()) { 3491 // If the value wasn't vectorized, we must maintain the original scalar 3492 // type. The absence of the value from VectorLoopValueMap indicates that it 3493 // wasn't vectorized. 3494 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3495 continue; 3496 for (unsigned Part = 0; Part < UF; ++Part) { 3497 Value *I = getOrCreateVectorValue(KV.first, Part); 3498 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3499 if (Inst && Inst->use_empty()) { 3500 Value *NewI = Inst->getOperand(0); 3501 Inst->eraseFromParent(); 3502 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3503 } 3504 } 3505 } 3506 } 3507 3508 void InnerLoopVectorizer::fixVectorizedLoop() { 3509 // Insert truncates and extends for any truncated instructions as hints to 3510 // InstCombine. 3511 if (VF > 1) 3512 truncateToMinimalBitwidths(); 3513 3514 // Fix widened non-induction PHIs by setting up the PHI operands. 3515 if (OrigPHIsToFix.size()) { 3516 assert(EnableVPlanNativePath && 3517 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3518 fixNonInductionPHIs(); 3519 } 3520 3521 // At this point every instruction in the original loop is widened to a 3522 // vector form. Now we need to fix the recurrences in the loop. These PHI 3523 // nodes are currently empty because we did not want to introduce cycles. 3524 // This is the second stage of vectorizing recurrences. 3525 fixCrossIterationPHIs(); 3526 3527 // Forget the original basic block. 3528 PSE.getSE()->forgetLoop(OrigLoop); 3529 3530 // Fix-up external users of the induction variables. 3531 for (auto &Entry : Legal->getInductionVars()) 3532 fixupIVUsers(Entry.first, Entry.second, 3533 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3534 IVEndValues[Entry.first], LoopMiddleBlock); 3535 3536 fixLCSSAPHIs(); 3537 for (Instruction *PI : PredicatedInstructions) 3538 sinkScalarOperands(&*PI); 3539 3540 // Remove redundant induction instructions. 3541 cse(LoopVectorBody); 3542 3543 // Set/update profile weights for the vector and remainder loops as original 3544 // loop iterations are now distributed among them. Note that original loop 3545 // represented by LoopScalarBody becomes remainder loop after vectorization. 3546 // 3547 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3548 // end up getting slightly roughened result but that should be OK since 3549 // profile is not inherently precise anyway. Note also possible bypass of 3550 // vector code caused by legality checks is ignored, assigning all the weight 3551 // to the vector loop, optimistically. 3552 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), 3553 LI->getLoopFor(LoopVectorBody), 3554 LI->getLoopFor(LoopScalarBody), VF * UF); 3555 } 3556 3557 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3558 // In order to support recurrences we need to be able to vectorize Phi nodes. 3559 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3560 // stage #2: We now need to fix the recurrences by adding incoming edges to 3561 // the currently empty PHI nodes. At this point every instruction in the 3562 // original loop is widened to a vector form so we can use them to construct 3563 // the incoming edges. 3564 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3565 // Handle first-order recurrences and reductions that need to be fixed. 3566 if (Legal->isFirstOrderRecurrence(&Phi)) 3567 fixFirstOrderRecurrence(&Phi); 3568 else if (Legal->isReductionVariable(&Phi)) 3569 fixReduction(&Phi); 3570 } 3571 } 3572 3573 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3574 // This is the second phase of vectorizing first-order recurrences. An 3575 // overview of the transformation is described below. Suppose we have the 3576 // following loop. 3577 // 3578 // for (int i = 0; i < n; ++i) 3579 // b[i] = a[i] - a[i - 1]; 3580 // 3581 // There is a first-order recurrence on "a". For this loop, the shorthand 3582 // scalar IR looks like: 3583 // 3584 // scalar.ph: 3585 // s_init = a[-1] 3586 // br scalar.body 3587 // 3588 // scalar.body: 3589 // i = phi [0, scalar.ph], [i+1, scalar.body] 3590 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3591 // s2 = a[i] 3592 // b[i] = s2 - s1 3593 // br cond, scalar.body, ... 3594 // 3595 // In this example, s1 is a recurrence because it's value depends on the 3596 // previous iteration. In the first phase of vectorization, we created a 3597 // temporary value for s1. We now complete the vectorization and produce the 3598 // shorthand vector IR shown below (for VF = 4, UF = 1). 3599 // 3600 // vector.ph: 3601 // v_init = vector(..., ..., ..., a[-1]) 3602 // br vector.body 3603 // 3604 // vector.body 3605 // i = phi [0, vector.ph], [i+4, vector.body] 3606 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3607 // v2 = a[i, i+1, i+2, i+3]; 3608 // v3 = vector(v1(3), v2(0, 1, 2)) 3609 // b[i, i+1, i+2, i+3] = v2 - v3 3610 // br cond, vector.body, middle.block 3611 // 3612 // middle.block: 3613 // x = v2(3) 3614 // br scalar.ph 3615 // 3616 // scalar.ph: 3617 // s_init = phi [x, middle.block], [a[-1], otherwise] 3618 // br scalar.body 3619 // 3620 // After execution completes the vector loop, we extract the next value of 3621 // the recurrence (x) to use as the initial value in the scalar loop. 3622 3623 // Get the original loop preheader and single loop latch. 3624 auto *Preheader = OrigLoop->getLoopPreheader(); 3625 auto *Latch = OrigLoop->getLoopLatch(); 3626 3627 // Get the initial and previous values of the scalar recurrence. 3628 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3629 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3630 3631 // Create a vector from the initial value. 3632 auto *VectorInit = ScalarInit; 3633 if (VF > 1) { 3634 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3635 VectorInit = Builder.CreateInsertElement( 3636 UndefValue::get(FixedVectorType::get(VectorInit->getType(), VF)), 3637 VectorInit, Builder.getInt32(VF - 1), "vector.recur.init"); 3638 } 3639 3640 // We constructed a temporary phi node in the first phase of vectorization. 3641 // This phi node will eventually be deleted. 3642 Builder.SetInsertPoint( 3643 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3644 3645 // Create a phi node for the new recurrence. The current value will either be 3646 // the initial value inserted into a vector or loop-varying vector value. 3647 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3648 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3649 3650 // Get the vectorized previous value of the last part UF - 1. It appears last 3651 // among all unrolled iterations, due to the order of their construction. 3652 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3653 3654 // Find and set the insertion point after the previous value if it is an 3655 // instruction. 3656 BasicBlock::iterator InsertPt; 3657 // Note that the previous value may have been constant-folded so it is not 3658 // guaranteed to be an instruction in the vector loop. 3659 // FIXME: Loop invariant values do not form recurrences. We should deal with 3660 // them earlier. 3661 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 3662 InsertPt = LoopVectorBody->getFirstInsertionPt(); 3663 else { 3664 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 3665 if (isa<PHINode>(PreviousLastPart)) 3666 // If the previous value is a phi node, we should insert after all the phi 3667 // nodes in the block containing the PHI to avoid breaking basic block 3668 // verification. Note that the basic block may be different to 3669 // LoopVectorBody, in case we predicate the loop. 3670 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 3671 else 3672 InsertPt = ++PreviousInst->getIterator(); 3673 } 3674 Builder.SetInsertPoint(&*InsertPt); 3675 3676 // We will construct a vector for the recurrence by combining the values for 3677 // the current and previous iterations. This is the required shuffle mask. 3678 SmallVector<int, 8> ShuffleMask(VF); 3679 ShuffleMask[0] = VF - 1; 3680 for (unsigned I = 1; I < VF; ++I) 3681 ShuffleMask[I] = I + VF - 1; 3682 3683 // The vector from which to take the initial value for the current iteration 3684 // (actual or unrolled). Initially, this is the vector phi node. 3685 Value *Incoming = VecPhi; 3686 3687 // Shuffle the current and previous vector and update the vector parts. 3688 for (unsigned Part = 0; Part < UF; ++Part) { 3689 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3690 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3691 auto *Shuffle = VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3692 ShuffleMask) 3693 : Incoming; 3694 PhiPart->replaceAllUsesWith(Shuffle); 3695 cast<Instruction>(PhiPart)->eraseFromParent(); 3696 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3697 Incoming = PreviousPart; 3698 } 3699 3700 // Fix the latch value of the new recurrence in the vector loop. 3701 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3702 3703 // Extract the last vector element in the middle block. This will be the 3704 // initial value for the recurrence when jumping to the scalar loop. 3705 auto *ExtractForScalar = Incoming; 3706 if (VF > 1) { 3707 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3708 ExtractForScalar = Builder.CreateExtractElement( 3709 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3710 } 3711 // Extract the second last element in the middle block if the 3712 // Phi is used outside the loop. We need to extract the phi itself 3713 // and not the last element (the phi update in the current iteration). This 3714 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3715 // when the scalar loop is not run at all. 3716 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3717 if (VF > 1) 3718 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3719 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3720 // When loop is unrolled without vectorizing, initialize 3721 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3722 // `Incoming`. This is analogous to the vectorized case above: extracting the 3723 // second last element when VF > 1. 3724 else if (UF > 1) 3725 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3726 3727 // Fix the initial value of the original recurrence in the scalar loop. 3728 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3729 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3730 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3731 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3732 Start->addIncoming(Incoming, BB); 3733 } 3734 3735 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3736 Phi->setName("scalar.recur"); 3737 3738 // Finally, fix users of the recurrence outside the loop. The users will need 3739 // either the last value of the scalar recurrence or the last value of the 3740 // vector recurrence we extracted in the middle block. Since the loop is in 3741 // LCSSA form, we just need to find all the phi nodes for the original scalar 3742 // recurrence in the exit block, and then add an edge for the middle block. 3743 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3744 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3745 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3746 } 3747 } 3748 } 3749 3750 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3751 Constant *Zero = Builder.getInt32(0); 3752 3753 // Get it's reduction variable descriptor. 3754 assert(Legal->isReductionVariable(Phi) && 3755 "Unable to find the reduction variable"); 3756 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 3757 3758 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3759 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3760 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3761 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3762 RdxDesc.getMinMaxRecurrenceKind(); 3763 setDebugLocFromInst(Builder, ReductionStartValue); 3764 3765 // We need to generate a reduction vector from the incoming scalar. 3766 // To do so, we need to generate the 'identity' vector and override 3767 // one of the elements with the incoming scalar reduction. We need 3768 // to do it in the vector-loop preheader. 3769 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3770 3771 // This is the vector-clone of the value that leaves the loop. 3772 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3773 3774 // Find the reduction identity variable. Zero for addition, or, xor, 3775 // one for multiplication, -1 for And. 3776 Value *Identity; 3777 Value *VectorStart; 3778 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3779 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3780 // MinMax reduction have the start value as their identify. 3781 if (VF == 1) { 3782 VectorStart = Identity = ReductionStartValue; 3783 } else { 3784 VectorStart = Identity = 3785 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3786 } 3787 } else { 3788 // Handle other reduction kinds: 3789 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3790 RK, VecTy->getScalarType()); 3791 if (VF == 1) { 3792 Identity = Iden; 3793 // This vector is the Identity vector where the first element is the 3794 // incoming scalar reduction. 3795 VectorStart = ReductionStartValue; 3796 } else { 3797 Identity = ConstantVector::getSplat({VF, false}, Iden); 3798 3799 // This vector is the Identity vector where the first element is the 3800 // incoming scalar reduction. 3801 VectorStart = 3802 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3803 } 3804 } 3805 3806 // Wrap flags are in general invalid after vectorization, clear them. 3807 clearReductionWrapFlags(RdxDesc); 3808 3809 // Fix the vector-loop phi. 3810 3811 // Reductions do not have to start at zero. They can start with 3812 // any loop invariant values. 3813 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3814 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3815 3816 for (unsigned Part = 0; Part < UF; ++Part) { 3817 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3818 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3819 // Make sure to add the reduction start value only to the 3820 // first unroll part. 3821 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3822 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3823 cast<PHINode>(VecRdxPhi) 3824 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3825 } 3826 3827 // Before each round, move the insertion point right between 3828 // the PHIs and the values we are going to write. 3829 // This allows us to write both PHINodes and the extractelement 3830 // instructions. 3831 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3832 3833 setDebugLocFromInst(Builder, LoopExitInst); 3834 3835 // If tail is folded by masking, the vector value to leave the loop should be 3836 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3837 // instead of the former. 3838 if (Cost->foldTailByMasking()) { 3839 for (unsigned Part = 0; Part < UF; ++Part) { 3840 Value *VecLoopExitInst = 3841 VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3842 Value *Sel = nullptr; 3843 for (User *U : VecLoopExitInst->users()) { 3844 if (isa<SelectInst>(U)) { 3845 assert(!Sel && "Reduction exit feeding two selects"); 3846 Sel = U; 3847 } else 3848 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3849 } 3850 assert(Sel && "Reduction exit feeds no select"); 3851 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel); 3852 } 3853 } 3854 3855 // If the vector reduction can be performed in a smaller type, we truncate 3856 // then extend the loop exit value to enable InstCombine to evaluate the 3857 // entire expression in the smaller type. 3858 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3859 Type *RdxVecTy = FixedVectorType::get(RdxDesc.getRecurrenceType(), VF); 3860 Builder.SetInsertPoint( 3861 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3862 VectorParts RdxParts(UF); 3863 for (unsigned Part = 0; Part < UF; ++Part) { 3864 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3865 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3866 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3867 : Builder.CreateZExt(Trunc, VecTy); 3868 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3869 UI != RdxParts[Part]->user_end();) 3870 if (*UI != Trunc) { 3871 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3872 RdxParts[Part] = Extnd; 3873 } else { 3874 ++UI; 3875 } 3876 } 3877 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3878 for (unsigned Part = 0; Part < UF; ++Part) { 3879 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3880 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3881 } 3882 } 3883 3884 // Reduce all of the unrolled parts into a single vector. 3885 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3886 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3887 3888 // The middle block terminator has already been assigned a DebugLoc here (the 3889 // OrigLoop's single latch terminator). We want the whole middle block to 3890 // appear to execute on this line because: (a) it is all compiler generated, 3891 // (b) these instructions are always executed after evaluating the latch 3892 // conditional branch, and (c) other passes may add new predecessors which 3893 // terminate on this line. This is the easiest way to ensure we don't 3894 // accidentally cause an extra step back into the loop while debugging. 3895 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 3896 for (unsigned Part = 1; Part < UF; ++Part) { 3897 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3898 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3899 // Floating point operations had to be 'fast' to enable the reduction. 3900 ReducedPartRdx = addFastMathFlag( 3901 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3902 ReducedPartRdx, "bin.rdx"), 3903 RdxDesc.getFastMathFlags()); 3904 else 3905 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3906 RdxPart); 3907 } 3908 3909 if (VF > 1) { 3910 bool NoNaN = Legal->hasFunNoNaNAttr(); 3911 ReducedPartRdx = 3912 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3913 // If the reduction can be performed in a smaller type, we need to extend 3914 // the reduction to the wider type before we branch to the original loop. 3915 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3916 ReducedPartRdx = 3917 RdxDesc.isSigned() 3918 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3919 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3920 } 3921 3922 // Create a phi node that merges control-flow from the backedge-taken check 3923 // block and the middle block. 3924 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3925 LoopScalarPreHeader->getTerminator()); 3926 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3927 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3928 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3929 3930 // Now, we need to fix the users of the reduction variable 3931 // inside and outside of the scalar remainder loop. 3932 // We know that the loop is in LCSSA form. We need to update the 3933 // PHI nodes in the exit blocks. 3934 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3935 // All PHINodes need to have a single entry edge, or two if 3936 // we already fixed them. 3937 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3938 3939 // We found a reduction value exit-PHI. Update it with the 3940 // incoming bypass edge. 3941 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3942 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3943 } // end of the LCSSA phi scan. 3944 3945 // Fix the scalar loop reduction variable with the incoming reduction sum 3946 // from the vector body and from the backedge value. 3947 int IncomingEdgeBlockIdx = 3948 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3949 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3950 // Pick the other block. 3951 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3952 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3953 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3954 } 3955 3956 void InnerLoopVectorizer::clearReductionWrapFlags( 3957 RecurrenceDescriptor &RdxDesc) { 3958 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3959 if (RK != RecurrenceDescriptor::RK_IntegerAdd && 3960 RK != RecurrenceDescriptor::RK_IntegerMult) 3961 return; 3962 3963 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 3964 assert(LoopExitInstr && "null loop exit instruction"); 3965 SmallVector<Instruction *, 8> Worklist; 3966 SmallPtrSet<Instruction *, 8> Visited; 3967 Worklist.push_back(LoopExitInstr); 3968 Visited.insert(LoopExitInstr); 3969 3970 while (!Worklist.empty()) { 3971 Instruction *Cur = Worklist.pop_back_val(); 3972 if (isa<OverflowingBinaryOperator>(Cur)) 3973 for (unsigned Part = 0; Part < UF; ++Part) { 3974 Value *V = getOrCreateVectorValue(Cur, Part); 3975 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 3976 } 3977 3978 for (User *U : Cur->users()) { 3979 Instruction *UI = cast<Instruction>(U); 3980 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 3981 Visited.insert(UI).second) 3982 Worklist.push_back(UI); 3983 } 3984 } 3985 } 3986 3987 void InnerLoopVectorizer::fixLCSSAPHIs() { 3988 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3989 if (LCSSAPhi.getNumIncomingValues() == 1) { 3990 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3991 // Non-instruction incoming values will have only one value. 3992 unsigned LastLane = 0; 3993 if (isa<Instruction>(IncomingValue)) 3994 LastLane = Cost->isUniformAfterVectorization( 3995 cast<Instruction>(IncomingValue), VF) 3996 ? 0 3997 : VF - 1; 3998 // Can be a loop invariant incoming value or the last scalar value to be 3999 // extracted from the vectorized loop. 4000 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4001 Value *lastIncomingValue = 4002 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 4003 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4004 } 4005 } 4006 } 4007 4008 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4009 // The basic block and loop containing the predicated instruction. 4010 auto *PredBB = PredInst->getParent(); 4011 auto *VectorLoop = LI->getLoopFor(PredBB); 4012 4013 // Initialize a worklist with the operands of the predicated instruction. 4014 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4015 4016 // Holds instructions that we need to analyze again. An instruction may be 4017 // reanalyzed if we don't yet know if we can sink it or not. 4018 SmallVector<Instruction *, 8> InstsToReanalyze; 4019 4020 // Returns true if a given use occurs in the predicated block. Phi nodes use 4021 // their operands in their corresponding predecessor blocks. 4022 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4023 auto *I = cast<Instruction>(U.getUser()); 4024 BasicBlock *BB = I->getParent(); 4025 if (auto *Phi = dyn_cast<PHINode>(I)) 4026 BB = Phi->getIncomingBlock( 4027 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4028 return BB == PredBB; 4029 }; 4030 4031 // Iteratively sink the scalarized operands of the predicated instruction 4032 // into the block we created for it. When an instruction is sunk, it's 4033 // operands are then added to the worklist. The algorithm ends after one pass 4034 // through the worklist doesn't sink a single instruction. 4035 bool Changed; 4036 do { 4037 // Add the instructions that need to be reanalyzed to the worklist, and 4038 // reset the changed indicator. 4039 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4040 InstsToReanalyze.clear(); 4041 Changed = false; 4042 4043 while (!Worklist.empty()) { 4044 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4045 4046 // We can't sink an instruction if it is a phi node, is already in the 4047 // predicated block, is not in the loop, or may have side effects. 4048 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4049 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4050 continue; 4051 4052 // It's legal to sink the instruction if all its uses occur in the 4053 // predicated block. Otherwise, there's nothing to do yet, and we may 4054 // need to reanalyze the instruction. 4055 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4056 InstsToReanalyze.push_back(I); 4057 continue; 4058 } 4059 4060 // Move the instruction to the beginning of the predicated block, and add 4061 // it's operands to the worklist. 4062 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4063 Worklist.insert(I->op_begin(), I->op_end()); 4064 4065 // The sinking may have enabled other instructions to be sunk, so we will 4066 // need to iterate. 4067 Changed = true; 4068 } 4069 } while (Changed); 4070 } 4071 4072 void InnerLoopVectorizer::fixNonInductionPHIs() { 4073 for (PHINode *OrigPhi : OrigPHIsToFix) { 4074 PHINode *NewPhi = 4075 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 4076 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 4077 4078 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 4079 predecessors(OrigPhi->getParent())); 4080 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 4081 predecessors(NewPhi->getParent())); 4082 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 4083 "Scalar and Vector BB should have the same number of predecessors"); 4084 4085 // The insertion point in Builder may be invalidated by the time we get 4086 // here. Force the Builder insertion point to something valid so that we do 4087 // not run into issues during insertion point restore in 4088 // getOrCreateVectorValue calls below. 4089 Builder.SetInsertPoint(NewPhi); 4090 4091 // The predecessor order is preserved and we can rely on mapping between 4092 // scalar and vector block predecessors. 4093 for (unsigned i = 0; i < NumIncomingValues; ++i) { 4094 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 4095 4096 // When looking up the new scalar/vector values to fix up, use incoming 4097 // values from original phi. 4098 Value *ScIncV = 4099 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 4100 4101 // Scalar incoming value may need a broadcast 4102 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 4103 NewPhi->addIncoming(NewIncV, NewPredBB); 4104 } 4105 } 4106 } 4107 4108 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPUser &Operands, 4109 unsigned UF, unsigned VF, 4110 bool IsPtrLoopInvariant, 4111 SmallBitVector &IsIndexLoopInvariant, 4112 VPTransformState &State) { 4113 // Construct a vector GEP by widening the operands of the scalar GEP as 4114 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4115 // results in a vector of pointers when at least one operand of the GEP 4116 // is vector-typed. Thus, to keep the representation compact, we only use 4117 // vector-typed operands for loop-varying values. 4118 4119 if (VF > 1 && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4120 // If we are vectorizing, but the GEP has only loop-invariant operands, 4121 // the GEP we build (by only using vector-typed operands for 4122 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4123 // produce a vector of pointers, we need to either arbitrarily pick an 4124 // operand to broadcast, or broadcast a clone of the original GEP. 4125 // Here, we broadcast a clone of the original. 4126 // 4127 // TODO: If at some point we decide to scalarize instructions having 4128 // loop-invariant operands, this special case will no longer be 4129 // required. We would add the scalarization decision to 4130 // collectLoopScalars() and teach getVectorValue() to broadcast 4131 // the lane-zero scalar value. 4132 auto *Clone = Builder.Insert(GEP->clone()); 4133 for (unsigned Part = 0; Part < UF; ++Part) { 4134 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4135 VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart); 4136 addMetadata(EntryPart, GEP); 4137 } 4138 } else { 4139 // If the GEP has at least one loop-varying operand, we are sure to 4140 // produce a vector of pointers. But if we are only unrolling, we want 4141 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4142 // produce with the code below will be scalar (if VF == 1) or vector 4143 // (otherwise). Note that for the unroll-only case, we still maintain 4144 // values in the vector mapping with initVector, as we do for other 4145 // instructions. 4146 for (unsigned Part = 0; Part < UF; ++Part) { 4147 // The pointer operand of the new GEP. If it's loop-invariant, we 4148 // won't broadcast it. 4149 auto *Ptr = IsPtrLoopInvariant ? State.get(Operands.getOperand(0), {0, 0}) 4150 : State.get(Operands.getOperand(0), Part); 4151 4152 // Collect all the indices for the new GEP. If any index is 4153 // loop-invariant, we won't broadcast it. 4154 SmallVector<Value *, 4> Indices; 4155 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4156 VPValue *Operand = Operands.getOperand(I); 4157 if (IsIndexLoopInvariant[I - 1]) 4158 Indices.push_back(State.get(Operand, {0, 0})); 4159 else 4160 Indices.push_back(State.get(Operand, Part)); 4161 } 4162 4163 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4164 // but it should be a vector, otherwise. 4165 auto *NewGEP = 4166 GEP->isInBounds() 4167 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4168 Indices) 4169 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4170 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4171 "NewGEP is not a pointer vector"); 4172 VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP); 4173 addMetadata(NewGEP, GEP); 4174 } 4175 } 4176 } 4177 4178 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4179 unsigned VF) { 4180 PHINode *P = cast<PHINode>(PN); 4181 if (EnableVPlanNativePath) { 4182 // Currently we enter here in the VPlan-native path for non-induction 4183 // PHIs where all control flow is uniform. We simply widen these PHIs. 4184 // Create a vector phi with no operands - the vector phi operands will be 4185 // set at the end of vector code generation. 4186 Type *VecTy = 4187 (VF == 1) ? PN->getType() : FixedVectorType::get(PN->getType(), VF); 4188 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4189 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 4190 OrigPHIsToFix.push_back(P); 4191 4192 return; 4193 } 4194 4195 assert(PN->getParent() == OrigLoop->getHeader() && 4196 "Non-header phis should have been handled elsewhere"); 4197 4198 // In order to support recurrences we need to be able to vectorize Phi nodes. 4199 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4200 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4201 // this value when we vectorize all of the instructions that use the PHI. 4202 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4203 for (unsigned Part = 0; Part < UF; ++Part) { 4204 // This is phase one of vectorizing PHIs. 4205 Type *VecTy = 4206 (VF == 1) ? PN->getType() : FixedVectorType::get(PN->getType(), VF); 4207 Value *EntryPart = PHINode::Create( 4208 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4209 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4210 } 4211 return; 4212 } 4213 4214 setDebugLocFromInst(Builder, P); 4215 4216 // This PHINode must be an induction variable. 4217 // Make sure that we know about it. 4218 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4219 4220 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4221 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4222 4223 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4224 // which can be found from the original scalar operations. 4225 switch (II.getKind()) { 4226 case InductionDescriptor::IK_NoInduction: 4227 llvm_unreachable("Unknown induction"); 4228 case InductionDescriptor::IK_IntInduction: 4229 case InductionDescriptor::IK_FpInduction: 4230 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4231 case InductionDescriptor::IK_PtrInduction: { 4232 // Handle the pointer induction variable case. 4233 assert(P->getType()->isPointerTy() && "Unexpected type."); 4234 4235 if (Cost->isScalarAfterVectorization(P, VF)) { 4236 // This is the normalized GEP that starts counting at zero. 4237 Value *PtrInd = 4238 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4239 // Determine the number of scalars we need to generate for each unroll 4240 // iteration. If the instruction is uniform, we only need to generate the 4241 // first lane. Otherwise, we generate all VF values. 4242 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4243 for (unsigned Part = 0; Part < UF; ++Part) { 4244 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4245 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4246 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4247 Value *SclrGep = 4248 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4249 SclrGep->setName("next.gep"); 4250 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4251 } 4252 } 4253 return; 4254 } 4255 assert(isa<SCEVConstant>(II.getStep()) && 4256 "Induction step not a SCEV constant!"); 4257 Type *PhiType = II.getStep()->getType(); 4258 4259 // Build a pointer phi 4260 Value *ScalarStartValue = II.getStartValue(); 4261 Type *ScStValueType = ScalarStartValue->getType(); 4262 PHINode *NewPointerPhi = 4263 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4264 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4265 4266 // A pointer induction, performed by using a gep 4267 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4268 Instruction *InductionLoc = LoopLatch->getTerminator(); 4269 const SCEV *ScalarStep = II.getStep(); 4270 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4271 Value *ScalarStepValue = 4272 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4273 Value *InductionGEP = GetElementPtrInst::Create( 4274 ScStValueType->getPointerElementType(), NewPointerPhi, 4275 Builder.CreateMul(ScalarStepValue, ConstantInt::get(PhiType, VF * UF)), 4276 "ptr.ind", InductionLoc); 4277 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4278 4279 // Create UF many actual address geps that use the pointer 4280 // phi as base and a vectorized version of the step value 4281 // (<step*0, ..., step*N>) as offset. 4282 for (unsigned Part = 0; Part < UF; ++Part) { 4283 SmallVector<Constant *, 8> Indices; 4284 // Create a vector of consecutive numbers from zero to VF. 4285 for (unsigned i = 0; i < VF; ++i) 4286 Indices.push_back(ConstantInt::get(PhiType, i + Part * VF)); 4287 Constant *StartOffset = ConstantVector::get(Indices); 4288 4289 Value *GEP = Builder.CreateGEP( 4290 ScStValueType->getPointerElementType(), NewPointerPhi, 4291 Builder.CreateMul(StartOffset, 4292 Builder.CreateVectorSplat(VF, ScalarStepValue), 4293 "vector.gep")); 4294 VectorLoopValueMap.setVectorValue(P, Part, GEP); 4295 } 4296 } 4297 } 4298 } 4299 4300 /// A helper function for checking whether an integer division-related 4301 /// instruction may divide by zero (in which case it must be predicated if 4302 /// executed conditionally in the scalar code). 4303 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4304 /// Non-zero divisors that are non compile-time constants will not be 4305 /// converted into multiplication, so we will still end up scalarizing 4306 /// the division, but can do so w/o predication. 4307 static bool mayDivideByZero(Instruction &I) { 4308 assert((I.getOpcode() == Instruction::UDiv || 4309 I.getOpcode() == Instruction::SDiv || 4310 I.getOpcode() == Instruction::URem || 4311 I.getOpcode() == Instruction::SRem) && 4312 "Unexpected instruction"); 4313 Value *Divisor = I.getOperand(1); 4314 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4315 return !CInt || CInt->isZero(); 4316 } 4317 4318 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPUser &User, 4319 VPTransformState &State) { 4320 switch (I.getOpcode()) { 4321 case Instruction::Call: 4322 case Instruction::Br: 4323 case Instruction::PHI: 4324 case Instruction::GetElementPtr: 4325 case Instruction::Select: 4326 llvm_unreachable("This instruction is handled by a different recipe."); 4327 case Instruction::UDiv: 4328 case Instruction::SDiv: 4329 case Instruction::SRem: 4330 case Instruction::URem: 4331 case Instruction::Add: 4332 case Instruction::FAdd: 4333 case Instruction::Sub: 4334 case Instruction::FSub: 4335 case Instruction::FNeg: 4336 case Instruction::Mul: 4337 case Instruction::FMul: 4338 case Instruction::FDiv: 4339 case Instruction::FRem: 4340 case Instruction::Shl: 4341 case Instruction::LShr: 4342 case Instruction::AShr: 4343 case Instruction::And: 4344 case Instruction::Or: 4345 case Instruction::Xor: { 4346 // Just widen unops and binops. 4347 setDebugLocFromInst(Builder, &I); 4348 4349 for (unsigned Part = 0; Part < UF; ++Part) { 4350 SmallVector<Value *, 2> Ops; 4351 for (VPValue *VPOp : User.operands()) 4352 Ops.push_back(State.get(VPOp, Part)); 4353 4354 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4355 4356 if (auto *VecOp = dyn_cast<Instruction>(V)) 4357 VecOp->copyIRFlags(&I); 4358 4359 // Use this vector value for all users of the original instruction. 4360 VectorLoopValueMap.setVectorValue(&I, Part, V); 4361 addMetadata(V, &I); 4362 } 4363 4364 break; 4365 } 4366 case Instruction::ICmp: 4367 case Instruction::FCmp: { 4368 // Widen compares. Generate vector compares. 4369 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4370 auto *Cmp = cast<CmpInst>(&I); 4371 setDebugLocFromInst(Builder, Cmp); 4372 for (unsigned Part = 0; Part < UF; ++Part) { 4373 Value *A = State.get(User.getOperand(0), Part); 4374 Value *B = State.get(User.getOperand(1), Part); 4375 Value *C = nullptr; 4376 if (FCmp) { 4377 // Propagate fast math flags. 4378 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4379 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4380 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4381 } else { 4382 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4383 } 4384 VectorLoopValueMap.setVectorValue(&I, Part, C); 4385 addMetadata(C, &I); 4386 } 4387 4388 break; 4389 } 4390 4391 case Instruction::ZExt: 4392 case Instruction::SExt: 4393 case Instruction::FPToUI: 4394 case Instruction::FPToSI: 4395 case Instruction::FPExt: 4396 case Instruction::PtrToInt: 4397 case Instruction::IntToPtr: 4398 case Instruction::SIToFP: 4399 case Instruction::UIToFP: 4400 case Instruction::Trunc: 4401 case Instruction::FPTrunc: 4402 case Instruction::BitCast: { 4403 auto *CI = cast<CastInst>(&I); 4404 setDebugLocFromInst(Builder, CI); 4405 4406 /// Vectorize casts. 4407 Type *DestTy = 4408 (VF == 1) ? CI->getType() : FixedVectorType::get(CI->getType(), VF); 4409 4410 for (unsigned Part = 0; Part < UF; ++Part) { 4411 Value *A = State.get(User.getOperand(0), Part); 4412 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4413 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4414 addMetadata(Cast, &I); 4415 } 4416 break; 4417 } 4418 default: 4419 // This instruction is not vectorized by simple widening. 4420 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4421 llvm_unreachable("Unhandled instruction!"); 4422 } // end of switch. 4423 } 4424 4425 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPUser &ArgOperands, 4426 VPTransformState &State) { 4427 assert(!isa<DbgInfoIntrinsic>(I) && 4428 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4429 setDebugLocFromInst(Builder, &I); 4430 4431 Module *M = I.getParent()->getParent()->getParent(); 4432 auto *CI = cast<CallInst>(&I); 4433 4434 SmallVector<Type *, 4> Tys; 4435 for (Value *ArgOperand : CI->arg_operands()) 4436 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4437 4438 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4439 4440 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4441 // version of the instruction. 4442 // Is it beneficial to perform intrinsic call compared to lib call? 4443 bool NeedToScalarize = false; 4444 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4445 bool UseVectorIntrinsic = 4446 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4447 assert((UseVectorIntrinsic || !NeedToScalarize) && 4448 "Instruction should be scalarized elsewhere."); 4449 4450 for (unsigned Part = 0; Part < UF; ++Part) { 4451 SmallVector<Value *, 4> Args; 4452 for (auto &I : enumerate(ArgOperands.operands())) { 4453 // Some intrinsics have a scalar argument - don't replace it with a 4454 // vector. 4455 Value *Arg; 4456 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4457 Arg = State.get(I.value(), Part); 4458 else 4459 Arg = State.get(I.value(), {0, 0}); 4460 Args.push_back(Arg); 4461 } 4462 4463 Function *VectorF; 4464 if (UseVectorIntrinsic) { 4465 // Use vector version of the intrinsic. 4466 Type *TysForDecl[] = {CI->getType()}; 4467 if (VF > 1) 4468 TysForDecl[0] = 4469 FixedVectorType::get(CI->getType()->getScalarType(), VF); 4470 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4471 assert(VectorF && "Can't retrieve vector intrinsic."); 4472 } else { 4473 // Use vector version of the function call. 4474 const VFShape Shape = 4475 VFShape::get(*CI, {VF, false} /*EC*/, false /*HasGlobalPred*/); 4476 #ifndef NDEBUG 4477 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4478 "Can't create vector function."); 4479 #endif 4480 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4481 } 4482 SmallVector<OperandBundleDef, 1> OpBundles; 4483 CI->getOperandBundlesAsDefs(OpBundles); 4484 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4485 4486 if (isa<FPMathOperator>(V)) 4487 V->copyFastMathFlags(CI); 4488 4489 VectorLoopValueMap.setVectorValue(&I, Part, V); 4490 addMetadata(V, &I); 4491 } 4492 } 4493 4494 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, 4495 VPUser &Operands, 4496 bool InvariantCond, 4497 VPTransformState &State) { 4498 setDebugLocFromInst(Builder, &I); 4499 4500 // The condition can be loop invariant but still defined inside the 4501 // loop. This means that we can't just use the original 'cond' value. 4502 // We have to take the 'vectorized' value and pick the first lane. 4503 // Instcombine will make this a no-op. 4504 auto *InvarCond = 4505 InvariantCond ? State.get(Operands.getOperand(0), {0, 0}) : nullptr; 4506 4507 for (unsigned Part = 0; Part < UF; ++Part) { 4508 Value *Cond = 4509 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 4510 Value *Op0 = State.get(Operands.getOperand(1), Part); 4511 Value *Op1 = State.get(Operands.getOperand(2), Part); 4512 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 4513 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4514 addMetadata(Sel, &I); 4515 } 4516 } 4517 4518 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4519 // We should not collect Scalars more than once per VF. Right now, this 4520 // function is called from collectUniformsAndScalars(), which already does 4521 // this check. Collecting Scalars for VF=1 does not make any sense. 4522 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4523 "This function should not be visited twice for the same VF"); 4524 4525 SmallSetVector<Instruction *, 8> Worklist; 4526 4527 // These sets are used to seed the analysis with pointers used by memory 4528 // accesses that will remain scalar. 4529 SmallSetVector<Instruction *, 8> ScalarPtrs; 4530 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4531 auto *Latch = TheLoop->getLoopLatch(); 4532 4533 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4534 // The pointer operands of loads and stores will be scalar as long as the 4535 // memory access is not a gather or scatter operation. The value operand of a 4536 // store will remain scalar if the store is scalarized. 4537 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4538 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4539 assert(WideningDecision != CM_Unknown && 4540 "Widening decision should be ready at this moment"); 4541 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4542 if (Ptr == Store->getValueOperand()) 4543 return WideningDecision == CM_Scalarize; 4544 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4545 "Ptr is neither a value or pointer operand"); 4546 return WideningDecision != CM_GatherScatter; 4547 }; 4548 4549 // A helper that returns true if the given value is a bitcast or 4550 // getelementptr instruction contained in the loop. 4551 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4552 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4553 isa<GetElementPtrInst>(V)) && 4554 !TheLoop->isLoopInvariant(V); 4555 }; 4556 4557 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 4558 if (!isa<PHINode>(Ptr) || 4559 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 4560 return false; 4561 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 4562 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 4563 return false; 4564 return isScalarUse(MemAccess, Ptr); 4565 }; 4566 4567 // A helper that evaluates a memory access's use of a pointer. If the 4568 // pointer is actually the pointer induction of a loop, it is being 4569 // inserted into Worklist. If the use will be a scalar use, and the 4570 // pointer is only used by memory accesses, we place the pointer in 4571 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 4572 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4573 if (isScalarPtrInduction(MemAccess, Ptr)) { 4574 Worklist.insert(cast<Instruction>(Ptr)); 4575 Instruction *Update = cast<Instruction>( 4576 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 4577 Worklist.insert(Update); 4578 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 4579 << "\n"); 4580 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 4581 << "\n"); 4582 return; 4583 } 4584 // We only care about bitcast and getelementptr instructions contained in 4585 // the loop. 4586 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4587 return; 4588 4589 // If the pointer has already been identified as scalar (e.g., if it was 4590 // also identified as uniform), there's nothing to do. 4591 auto *I = cast<Instruction>(Ptr); 4592 if (Worklist.count(I)) 4593 return; 4594 4595 // If the use of the pointer will be a scalar use, and all users of the 4596 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4597 // place the pointer in PossibleNonScalarPtrs. 4598 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4599 return isa<LoadInst>(U) || isa<StoreInst>(U); 4600 })) 4601 ScalarPtrs.insert(I); 4602 else 4603 PossibleNonScalarPtrs.insert(I); 4604 }; 4605 4606 // We seed the scalars analysis with three classes of instructions: (1) 4607 // instructions marked uniform-after-vectorization and (2) bitcast, 4608 // getelementptr and (pointer) phi instructions used by memory accesses 4609 // requiring a scalar use. 4610 // 4611 // (1) Add to the worklist all instructions that have been identified as 4612 // uniform-after-vectorization. 4613 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4614 4615 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4616 // memory accesses requiring a scalar use. The pointer operands of loads and 4617 // stores will be scalar as long as the memory accesses is not a gather or 4618 // scatter operation. The value operand of a store will remain scalar if the 4619 // store is scalarized. 4620 for (auto *BB : TheLoop->blocks()) 4621 for (auto &I : *BB) { 4622 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4623 evaluatePtrUse(Load, Load->getPointerOperand()); 4624 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4625 evaluatePtrUse(Store, Store->getPointerOperand()); 4626 evaluatePtrUse(Store, Store->getValueOperand()); 4627 } 4628 } 4629 for (auto *I : ScalarPtrs) 4630 if (!PossibleNonScalarPtrs.count(I)) { 4631 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4632 Worklist.insert(I); 4633 } 4634 4635 // Insert the forced scalars. 4636 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4637 // induction variable when the PHI user is scalarized. 4638 auto ForcedScalar = ForcedScalars.find(VF); 4639 if (ForcedScalar != ForcedScalars.end()) 4640 for (auto *I : ForcedScalar->second) 4641 Worklist.insert(I); 4642 4643 // Expand the worklist by looking through any bitcasts and getelementptr 4644 // instructions we've already identified as scalar. This is similar to the 4645 // expansion step in collectLoopUniforms(); however, here we're only 4646 // expanding to include additional bitcasts and getelementptr instructions. 4647 unsigned Idx = 0; 4648 while (Idx != Worklist.size()) { 4649 Instruction *Dst = Worklist[Idx++]; 4650 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4651 continue; 4652 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4653 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4654 auto *J = cast<Instruction>(U); 4655 return !TheLoop->contains(J) || Worklist.count(J) || 4656 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4657 isScalarUse(J, Src)); 4658 })) { 4659 Worklist.insert(Src); 4660 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4661 } 4662 } 4663 4664 // An induction variable will remain scalar if all users of the induction 4665 // variable and induction variable update remain scalar. 4666 for (auto &Induction : Legal->getInductionVars()) { 4667 auto *Ind = Induction.first; 4668 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4669 4670 // If tail-folding is applied, the primary induction variable will be used 4671 // to feed a vector compare. 4672 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4673 continue; 4674 4675 // Determine if all users of the induction variable are scalar after 4676 // vectorization. 4677 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4678 auto *I = cast<Instruction>(U); 4679 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4680 }); 4681 if (!ScalarInd) 4682 continue; 4683 4684 // Determine if all users of the induction variable update instruction are 4685 // scalar after vectorization. 4686 auto ScalarIndUpdate = 4687 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4688 auto *I = cast<Instruction>(U); 4689 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4690 }); 4691 if (!ScalarIndUpdate) 4692 continue; 4693 4694 // The induction variable and its update instruction will remain scalar. 4695 Worklist.insert(Ind); 4696 Worklist.insert(IndUpdate); 4697 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4698 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4699 << "\n"); 4700 } 4701 4702 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4703 } 4704 4705 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4706 if (!blockNeedsPredication(I->getParent())) 4707 return false; 4708 switch(I->getOpcode()) { 4709 default: 4710 break; 4711 case Instruction::Load: 4712 case Instruction::Store: { 4713 if (!Legal->isMaskRequired(I)) 4714 return false; 4715 auto *Ptr = getLoadStorePointerOperand(I); 4716 auto *Ty = getMemInstValueType(I); 4717 // We have already decided how to vectorize this instruction, get that 4718 // result. 4719 if (VF > 1) { 4720 InstWidening WideningDecision = getWideningDecision(I, VF); 4721 assert(WideningDecision != CM_Unknown && 4722 "Widening decision should be ready at this moment"); 4723 return WideningDecision == CM_Scalarize; 4724 } 4725 const Align Alignment = getLoadStoreAlignment(I); 4726 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4727 isLegalMaskedGather(Ty, Alignment)) 4728 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4729 isLegalMaskedScatter(Ty, Alignment)); 4730 } 4731 case Instruction::UDiv: 4732 case Instruction::SDiv: 4733 case Instruction::SRem: 4734 case Instruction::URem: 4735 return mayDivideByZero(*I); 4736 } 4737 return false; 4738 } 4739 4740 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4741 unsigned VF) { 4742 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4743 assert(getWideningDecision(I, VF) == CM_Unknown && 4744 "Decision should not be set yet."); 4745 auto *Group = getInterleavedAccessGroup(I); 4746 assert(Group && "Must have a group."); 4747 4748 // If the instruction's allocated size doesn't equal it's type size, it 4749 // requires padding and will be scalarized. 4750 auto &DL = I->getModule()->getDataLayout(); 4751 auto *ScalarTy = getMemInstValueType(I); 4752 if (hasIrregularType(ScalarTy, DL, VF)) 4753 return false; 4754 4755 // Check if masking is required. 4756 // A Group may need masking for one of two reasons: it resides in a block that 4757 // needs predication, or it was decided to use masking to deal with gaps. 4758 bool PredicatedAccessRequiresMasking = 4759 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4760 bool AccessWithGapsRequiresMasking = 4761 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 4762 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4763 return true; 4764 4765 // If masked interleaving is required, we expect that the user/target had 4766 // enabled it, because otherwise it either wouldn't have been created or 4767 // it should have been invalidated by the CostModel. 4768 assert(useMaskedInterleavedAccesses(TTI) && 4769 "Masked interleave-groups for predicated accesses are not enabled."); 4770 4771 auto *Ty = getMemInstValueType(I); 4772 const Align Alignment = getLoadStoreAlignment(I); 4773 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4774 : TTI.isLegalMaskedStore(Ty, Alignment); 4775 } 4776 4777 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4778 unsigned VF) { 4779 // Get and ensure we have a valid memory instruction. 4780 LoadInst *LI = dyn_cast<LoadInst>(I); 4781 StoreInst *SI = dyn_cast<StoreInst>(I); 4782 assert((LI || SI) && "Invalid memory instruction"); 4783 4784 auto *Ptr = getLoadStorePointerOperand(I); 4785 4786 // In order to be widened, the pointer should be consecutive, first of all. 4787 if (!Legal->isConsecutivePtr(Ptr)) 4788 return false; 4789 4790 // If the instruction is a store located in a predicated block, it will be 4791 // scalarized. 4792 if (isScalarWithPredication(I)) 4793 return false; 4794 4795 // If the instruction's allocated size doesn't equal it's type size, it 4796 // requires padding and will be scalarized. 4797 auto &DL = I->getModule()->getDataLayout(); 4798 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4799 if (hasIrregularType(ScalarTy, DL, VF)) 4800 return false; 4801 4802 return true; 4803 } 4804 4805 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4806 // We should not collect Uniforms more than once per VF. Right now, 4807 // this function is called from collectUniformsAndScalars(), which 4808 // already does this check. Collecting Uniforms for VF=1 does not make any 4809 // sense. 4810 4811 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4812 "This function should not be visited twice for the same VF"); 4813 4814 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4815 // not analyze again. Uniforms.count(VF) will return 1. 4816 Uniforms[VF].clear(); 4817 4818 // We now know that the loop is vectorizable! 4819 // Collect instructions inside the loop that will remain uniform after 4820 // vectorization. 4821 4822 // Global values, params and instructions outside of current loop are out of 4823 // scope. 4824 auto isOutOfScope = [&](Value *V) -> bool { 4825 Instruction *I = dyn_cast<Instruction>(V); 4826 return (!I || !TheLoop->contains(I)); 4827 }; 4828 4829 SetVector<Instruction *> Worklist; 4830 BasicBlock *Latch = TheLoop->getLoopLatch(); 4831 4832 // Instructions that are scalar with predication must not be considered 4833 // uniform after vectorization, because that would create an erroneous 4834 // replicating region where only a single instance out of VF should be formed. 4835 // TODO: optimize such seldom cases if found important, see PR40816. 4836 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4837 if (isScalarWithPredication(I, VF)) { 4838 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4839 << *I << "\n"); 4840 return; 4841 } 4842 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4843 Worklist.insert(I); 4844 }; 4845 4846 // Start with the conditional branch. If the branch condition is an 4847 // instruction contained in the loop that is only used by the branch, it is 4848 // uniform. 4849 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4850 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4851 addToWorklistIfAllowed(Cmp); 4852 4853 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4854 // are pointers that are treated like consecutive pointers during 4855 // vectorization. The pointer operands of interleaved accesses are an 4856 // example. 4857 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4858 4859 // Holds pointer operands of instructions that are possibly non-uniform. 4860 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4861 4862 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4863 InstWidening WideningDecision = getWideningDecision(I, VF); 4864 assert(WideningDecision != CM_Unknown && 4865 "Widening decision should be ready at this moment"); 4866 4867 return (WideningDecision == CM_Widen || 4868 WideningDecision == CM_Widen_Reverse || 4869 WideningDecision == CM_Interleave); 4870 }; 4871 // Iterate over the instructions in the loop, and collect all 4872 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4873 // that a consecutive-like pointer operand will be scalarized, we collect it 4874 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4875 // getelementptr instruction can be used by both vectorized and scalarized 4876 // memory instructions. For example, if a loop loads and stores from the same 4877 // location, but the store is conditional, the store will be scalarized, and 4878 // the getelementptr won't remain uniform. 4879 for (auto *BB : TheLoop->blocks()) 4880 for (auto &I : *BB) { 4881 // If there's no pointer operand, there's nothing to do. 4882 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4883 if (!Ptr) 4884 continue; 4885 4886 // True if all users of Ptr are memory accesses that have Ptr as their 4887 // pointer operand. 4888 auto UsersAreMemAccesses = 4889 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4890 return getLoadStorePointerOperand(U) == Ptr; 4891 }); 4892 4893 // Ensure the memory instruction will not be scalarized or used by 4894 // gather/scatter, making its pointer operand non-uniform. If the pointer 4895 // operand is used by any instruction other than a memory access, we 4896 // conservatively assume the pointer operand may be non-uniform. 4897 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4898 PossibleNonUniformPtrs.insert(Ptr); 4899 4900 // If the memory instruction will be vectorized and its pointer operand 4901 // is consecutive-like, or interleaving - the pointer operand should 4902 // remain uniform. 4903 else 4904 ConsecutiveLikePtrs.insert(Ptr); 4905 } 4906 4907 // Add to the Worklist all consecutive and consecutive-like pointers that 4908 // aren't also identified as possibly non-uniform. 4909 for (auto *V : ConsecutiveLikePtrs) 4910 if (!PossibleNonUniformPtrs.count(V)) 4911 addToWorklistIfAllowed(V); 4912 4913 // Expand Worklist in topological order: whenever a new instruction 4914 // is added , its users should be already inside Worklist. It ensures 4915 // a uniform instruction will only be used by uniform instructions. 4916 unsigned idx = 0; 4917 while (idx != Worklist.size()) { 4918 Instruction *I = Worklist[idx++]; 4919 4920 for (auto OV : I->operand_values()) { 4921 // isOutOfScope operands cannot be uniform instructions. 4922 if (isOutOfScope(OV)) 4923 continue; 4924 // First order recurrence Phi's should typically be considered 4925 // non-uniform. 4926 auto *OP = dyn_cast<PHINode>(OV); 4927 if (OP && Legal->isFirstOrderRecurrence(OP)) 4928 continue; 4929 // If all the users of the operand are uniform, then add the 4930 // operand into the uniform worklist. 4931 auto *OI = cast<Instruction>(OV); 4932 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4933 auto *J = cast<Instruction>(U); 4934 return Worklist.count(J) || 4935 (OI == getLoadStorePointerOperand(J) && 4936 isUniformDecision(J, VF)); 4937 })) 4938 addToWorklistIfAllowed(OI); 4939 } 4940 } 4941 4942 // Returns true if Ptr is the pointer operand of a memory access instruction 4943 // I, and I is known to not require scalarization. 4944 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4945 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4946 }; 4947 4948 // For an instruction to be added into Worklist above, all its users inside 4949 // the loop should also be in Worklist. However, this condition cannot be 4950 // true for phi nodes that form a cyclic dependence. We must process phi 4951 // nodes separately. An induction variable will remain uniform if all users 4952 // of the induction variable and induction variable update remain uniform. 4953 // The code below handles both pointer and non-pointer induction variables. 4954 for (auto &Induction : Legal->getInductionVars()) { 4955 auto *Ind = Induction.first; 4956 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4957 4958 // Determine if all users of the induction variable are uniform after 4959 // vectorization. 4960 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4961 auto *I = cast<Instruction>(U); 4962 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4963 isVectorizedMemAccessUse(I, Ind); 4964 }); 4965 if (!UniformInd) 4966 continue; 4967 4968 // Determine if all users of the induction variable update instruction are 4969 // uniform after vectorization. 4970 auto UniformIndUpdate = 4971 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4972 auto *I = cast<Instruction>(U); 4973 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4974 isVectorizedMemAccessUse(I, IndUpdate); 4975 }); 4976 if (!UniformIndUpdate) 4977 continue; 4978 4979 // The induction variable and its update instruction will remain uniform. 4980 addToWorklistIfAllowed(Ind); 4981 addToWorklistIfAllowed(IndUpdate); 4982 } 4983 4984 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4985 } 4986 4987 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4988 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4989 4990 if (Legal->getRuntimePointerChecking()->Need) { 4991 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4992 "runtime pointer checks needed. Enable vectorization of this " 4993 "loop with '#pragma clang loop vectorize(enable)' when " 4994 "compiling with -Os/-Oz", 4995 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4996 return true; 4997 } 4998 4999 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5000 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5001 "runtime SCEV checks needed. Enable vectorization of this " 5002 "loop with '#pragma clang loop vectorize(enable)' when " 5003 "compiling with -Os/-Oz", 5004 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5005 return true; 5006 } 5007 5008 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5009 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5010 reportVectorizationFailure("Runtime stride check for small trip count", 5011 "runtime stride == 1 checks needed. Enable vectorization of " 5012 "this loop without such check by compiling with -Os/-Oz", 5013 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5014 return true; 5015 } 5016 5017 return false; 5018 } 5019 5020 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(unsigned UserVF, 5021 unsigned UserIC) { 5022 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5023 // TODO: It may by useful to do since it's still likely to be dynamically 5024 // uniform if the target can skip. 5025 reportVectorizationFailure( 5026 "Not inserting runtime ptr check for divergent target", 5027 "runtime pointer checks needed. Not enabled for divergent target", 5028 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5029 return None; 5030 } 5031 5032 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5033 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5034 if (TC == 1) { 5035 reportVectorizationFailure("Single iteration (non) loop", 5036 "loop trip count is one, irrelevant for vectorization", 5037 "SingleIterationLoop", ORE, TheLoop); 5038 return None; 5039 } 5040 5041 switch (ScalarEpilogueStatus) { 5042 case CM_ScalarEpilogueAllowed: 5043 return UserVF ? UserVF : computeFeasibleMaxVF(TC); 5044 case CM_ScalarEpilogueNotNeededUsePredicate: 5045 LLVM_DEBUG( 5046 dbgs() << "LV: vector predicate hint/switch found.\n" 5047 << "LV: Not allowing scalar epilogue, creating predicated " 5048 << "vector loop.\n"); 5049 break; 5050 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5051 // fallthrough as a special case of OptForSize 5052 case CM_ScalarEpilogueNotAllowedOptSize: 5053 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5054 LLVM_DEBUG( 5055 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5056 else 5057 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5058 << "count.\n"); 5059 5060 // Bail if runtime checks are required, which are not good when optimising 5061 // for size. 5062 if (runtimeChecksRequired()) 5063 return None; 5064 break; 5065 } 5066 5067 // Now try the tail folding 5068 5069 // Invalidate interleave groups that require an epilogue if we can't mask 5070 // the interleave-group. 5071 if (!useMaskedInterleavedAccesses(TTI)) { 5072 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5073 "No decisions should have been taken at this point"); 5074 // Note: There is no need to invalidate any cost modeling decisions here, as 5075 // non where taken so far. 5076 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5077 } 5078 5079 unsigned MaxVF = UserVF ? UserVF : computeFeasibleMaxVF(TC); 5080 assert((UserVF || isPowerOf2_32(MaxVF)) && "MaxVF must be a power of 2"); 5081 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF; 5082 if (TC > 0 && TC % MaxVFtimesIC == 0) { 5083 // Accept MaxVF if we do not have a tail. 5084 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5085 return MaxVF; 5086 } 5087 5088 // If we don't know the precise trip count, or if the trip count that we 5089 // found modulo the vectorization factor is not zero, try to fold the tail 5090 // by masking. 5091 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5092 if (Legal->prepareToFoldTailByMasking()) { 5093 FoldTailByMasking = true; 5094 return MaxVF; 5095 } 5096 5097 if (TC == 0) { 5098 reportVectorizationFailure( 5099 "Unable to calculate the loop count due to complex control flow", 5100 "unable to calculate the loop count due to complex control flow", 5101 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5102 return None; 5103 } 5104 5105 reportVectorizationFailure( 5106 "Cannot optimize for size and vectorize at the same time.", 5107 "cannot optimize for size and vectorize at the same time. " 5108 "Enable vectorization of this loop with '#pragma clang loop " 5109 "vectorize(enable)' when compiling with -Os/-Oz", 5110 "NoTailLoopWithOptForSize", ORE, TheLoop); 5111 return None; 5112 } 5113 5114 unsigned 5115 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) { 5116 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5117 unsigned SmallestType, WidestType; 5118 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5119 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5120 5121 // Get the maximum safe dependence distance in bits computed by LAA. 5122 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5123 // the memory accesses that is most restrictive (involved in the smallest 5124 // dependence distance). 5125 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 5126 5127 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 5128 5129 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5130 // Note that both WidestRegister and WidestType may not be a powers of 2. 5131 unsigned MaxVectorSize = PowerOf2Floor(WidestRegister / WidestType); 5132 5133 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5134 << " / " << WidestType << " bits.\n"); 5135 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5136 << WidestRegister << " bits.\n"); 5137 5138 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 5139 " into one vector!"); 5140 if (MaxVectorSize == 0) { 5141 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5142 MaxVectorSize = 1; 5143 return MaxVectorSize; 5144 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 5145 isPowerOf2_32(ConstTripCount)) { 5146 // We need to clamp the VF to be the ConstTripCount. There is no point in 5147 // choosing a higher viable VF as done in the loop below. 5148 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5149 << ConstTripCount << "\n"); 5150 MaxVectorSize = ConstTripCount; 5151 return MaxVectorSize; 5152 } 5153 5154 unsigned MaxVF = MaxVectorSize; 5155 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5156 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5157 // Collect all viable vectorization factors larger than the default MaxVF 5158 // (i.e. MaxVectorSize). 5159 SmallVector<unsigned, 8> VFs; 5160 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5161 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5162 VFs.push_back(VS); 5163 5164 // For each VF calculate its register usage. 5165 auto RUs = calculateRegisterUsage(VFs); 5166 5167 // Select the largest VF which doesn't require more registers than existing 5168 // ones. 5169 for (int i = RUs.size() - 1; i >= 0; --i) { 5170 bool Selected = true; 5171 for (auto& pair : RUs[i].MaxLocalUsers) { 5172 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5173 if (pair.second > TargetNumRegisters) 5174 Selected = false; 5175 } 5176 if (Selected) { 5177 MaxVF = VFs[i]; 5178 break; 5179 } 5180 } 5181 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5182 if (MaxVF < MinVF) { 5183 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5184 << ") with target's minimum: " << MinVF << '\n'); 5185 MaxVF = MinVF; 5186 } 5187 } 5188 } 5189 return MaxVF; 5190 } 5191 5192 VectorizationFactor 5193 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 5194 float Cost = expectedCost(1).first; 5195 const float ScalarCost = Cost; 5196 unsigned Width = 1; 5197 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5198 5199 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5200 if (ForceVectorization && MaxVF > 1) { 5201 // Ignore scalar width, because the user explicitly wants vectorization. 5202 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5203 // evaluation. 5204 Cost = std::numeric_limits<float>::max(); 5205 } 5206 5207 for (unsigned i = 2; i <= MaxVF; i *= 2) { 5208 // Notice that the vector loop needs to be executed less times, so 5209 // we need to divide the cost of the vector loops by the width of 5210 // the vector elements. 5211 VectorizationCostTy C = expectedCost(i); 5212 float VectorCost = C.first / (float)i; 5213 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5214 << " costs: " << (int)VectorCost << ".\n"); 5215 if (!C.second && !ForceVectorization) { 5216 LLVM_DEBUG( 5217 dbgs() << "LV: Not considering vector loop of width " << i 5218 << " because it will not generate any vector instructions.\n"); 5219 continue; 5220 } 5221 if (VectorCost < Cost) { 5222 Cost = VectorCost; 5223 Width = i; 5224 } 5225 } 5226 5227 if (!EnableCondStoresVectorization && NumPredStores) { 5228 reportVectorizationFailure("There are conditional stores.", 5229 "store that is conditionally executed prevents vectorization", 5230 "ConditionalStore", ORE, TheLoop); 5231 Width = 1; 5232 Cost = ScalarCost; 5233 } 5234 5235 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5236 << "LV: Vectorization seems to be not beneficial, " 5237 << "but was forced by a user.\n"); 5238 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5239 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 5240 return Factor; 5241 } 5242 5243 std::pair<unsigned, unsigned> 5244 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5245 unsigned MinWidth = -1U; 5246 unsigned MaxWidth = 8; 5247 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5248 5249 // For each block. 5250 for (BasicBlock *BB : TheLoop->blocks()) { 5251 // For each instruction in the loop. 5252 for (Instruction &I : BB->instructionsWithoutDebug()) { 5253 Type *T = I.getType(); 5254 5255 // Skip ignored values. 5256 if (ValuesToIgnore.count(&I)) 5257 continue; 5258 5259 // Only examine Loads, Stores and PHINodes. 5260 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5261 continue; 5262 5263 // Examine PHI nodes that are reduction variables. Update the type to 5264 // account for the recurrence type. 5265 if (auto *PN = dyn_cast<PHINode>(&I)) { 5266 if (!Legal->isReductionVariable(PN)) 5267 continue; 5268 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 5269 T = RdxDesc.getRecurrenceType(); 5270 } 5271 5272 // Examine the stored values. 5273 if (auto *ST = dyn_cast<StoreInst>(&I)) 5274 T = ST->getValueOperand()->getType(); 5275 5276 // Ignore loaded pointer types and stored pointer types that are not 5277 // vectorizable. 5278 // 5279 // FIXME: The check here attempts to predict whether a load or store will 5280 // be vectorized. We only know this for certain after a VF has 5281 // been selected. Here, we assume that if an access can be 5282 // vectorized, it will be. We should also look at extending this 5283 // optimization to non-pointer types. 5284 // 5285 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5286 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5287 continue; 5288 5289 MinWidth = std::min(MinWidth, 5290 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5291 MaxWidth = std::max(MaxWidth, 5292 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5293 } 5294 } 5295 5296 return {MinWidth, MaxWidth}; 5297 } 5298 5299 unsigned LoopVectorizationCostModel::selectInterleaveCount(unsigned VF, 5300 unsigned LoopCost) { 5301 // -- The interleave heuristics -- 5302 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5303 // There are many micro-architectural considerations that we can't predict 5304 // at this level. For example, frontend pressure (on decode or fetch) due to 5305 // code size, or the number and capabilities of the execution ports. 5306 // 5307 // We use the following heuristics to select the interleave count: 5308 // 1. If the code has reductions, then we interleave to break the cross 5309 // iteration dependency. 5310 // 2. If the loop is really small, then we interleave to reduce the loop 5311 // overhead. 5312 // 3. We don't interleave if we think that we will spill registers to memory 5313 // due to the increased register pressure. 5314 5315 if (!isScalarEpilogueAllowed()) 5316 return 1; 5317 5318 // We used the distance for the interleave count. 5319 if (Legal->getMaxSafeDepDistBytes() != -1U) 5320 return 1; 5321 5322 // Do not interleave loops with a relatively small known or estimated trip 5323 // count. 5324 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5325 if (BestKnownTC && *BestKnownTC < TinyTripCountInterleaveThreshold) 5326 return 1; 5327 5328 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5329 // We divide by these constants so assume that we have at least one 5330 // instruction that uses at least one register. 5331 for (auto& pair : R.MaxLocalUsers) { 5332 pair.second = std::max(pair.second, 1U); 5333 } 5334 5335 // We calculate the interleave count using the following formula. 5336 // Subtract the number of loop invariants from the number of available 5337 // registers. These registers are used by all of the interleaved instances. 5338 // Next, divide the remaining registers by the number of registers that is 5339 // required by the loop, in order to estimate how many parallel instances 5340 // fit without causing spills. All of this is rounded down if necessary to be 5341 // a power of two. We want power of two interleave count to simplify any 5342 // addressing operations or alignment considerations. 5343 // We also want power of two interleave counts to ensure that the induction 5344 // variable of the vector loop wraps to zero, when tail is folded by masking; 5345 // this currently happens when OptForSize, in which case IC is set to 1 above. 5346 unsigned IC = UINT_MAX; 5347 5348 for (auto& pair : R.MaxLocalUsers) { 5349 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5350 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5351 << " registers of " 5352 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5353 if (VF == 1) { 5354 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5355 TargetNumRegisters = ForceTargetNumScalarRegs; 5356 } else { 5357 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5358 TargetNumRegisters = ForceTargetNumVectorRegs; 5359 } 5360 unsigned MaxLocalUsers = pair.second; 5361 unsigned LoopInvariantRegs = 0; 5362 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5363 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5364 5365 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5366 // Don't count the induction variable as interleaved. 5367 if (EnableIndVarRegisterHeur) { 5368 TmpIC = 5369 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5370 std::max(1U, (MaxLocalUsers - 1))); 5371 } 5372 5373 IC = std::min(IC, TmpIC); 5374 } 5375 5376 // Clamp the interleave ranges to reasonable counts. 5377 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5378 5379 // Check if the user has overridden the max. 5380 if (VF == 1) { 5381 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5382 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5383 } else { 5384 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5385 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5386 } 5387 5388 // If trip count is known or estimated compile time constant, limit the 5389 // interleave count to be less than the trip count divided by VF. 5390 if (BestKnownTC) { 5391 MaxInterleaveCount = std::min(*BestKnownTC / VF, MaxInterleaveCount); 5392 } 5393 5394 // If we did not calculate the cost for VF (because the user selected the VF) 5395 // then we calculate the cost of VF here. 5396 if (LoopCost == 0) 5397 LoopCost = expectedCost(VF).first; 5398 5399 assert(LoopCost && "Non-zero loop cost expected"); 5400 5401 // Clamp the calculated IC to be between the 1 and the max interleave count 5402 // that the target and trip count allows. 5403 if (IC > MaxInterleaveCount) 5404 IC = MaxInterleaveCount; 5405 else if (IC < 1) 5406 IC = 1; 5407 5408 // Interleave if we vectorized this loop and there is a reduction that could 5409 // benefit from interleaving. 5410 if (VF > 1 && !Legal->getReductionVars().empty()) { 5411 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5412 return IC; 5413 } 5414 5415 // Note that if we've already vectorized the loop we will have done the 5416 // runtime check and so interleaving won't require further checks. 5417 bool InterleavingRequiresRuntimePointerCheck = 5418 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5419 5420 // We want to interleave small loops in order to reduce the loop overhead and 5421 // potentially expose ILP opportunities. 5422 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5423 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5424 // We assume that the cost overhead is 1 and we use the cost model 5425 // to estimate the cost of the loop and interleave until the cost of the 5426 // loop overhead is about 5% of the cost of the loop. 5427 unsigned SmallIC = 5428 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5429 5430 // Interleave until store/load ports (estimated by max interleave count) are 5431 // saturated. 5432 unsigned NumStores = Legal->getNumStores(); 5433 unsigned NumLoads = Legal->getNumLoads(); 5434 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5435 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5436 5437 // If we have a scalar reduction (vector reductions are already dealt with 5438 // by this point), we can increase the critical path length if the loop 5439 // we're interleaving is inside another loop. Limit, by default to 2, so the 5440 // critical path only gets increased by one reduction operation. 5441 if (!Legal->getReductionVars().empty() && TheLoop->getLoopDepth() > 1) { 5442 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5443 SmallIC = std::min(SmallIC, F); 5444 StoresIC = std::min(StoresIC, F); 5445 LoadsIC = std::min(LoadsIC, F); 5446 } 5447 5448 if (EnableLoadStoreRuntimeInterleave && 5449 std::max(StoresIC, LoadsIC) > SmallIC) { 5450 LLVM_DEBUG( 5451 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5452 return std::max(StoresIC, LoadsIC); 5453 } 5454 5455 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5456 return SmallIC; 5457 } 5458 5459 // Interleave if this is a large loop (small loops are already dealt with by 5460 // this point) that could benefit from interleaving. 5461 bool HasReductions = !Legal->getReductionVars().empty(); 5462 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5463 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5464 return IC; 5465 } 5466 5467 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5468 return 1; 5469 } 5470 5471 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5472 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5473 // This function calculates the register usage by measuring the highest number 5474 // of values that are alive at a single location. Obviously, this is a very 5475 // rough estimation. We scan the loop in a topological order in order and 5476 // assign a number to each instruction. We use RPO to ensure that defs are 5477 // met before their users. We assume that each instruction that has in-loop 5478 // users starts an interval. We record every time that an in-loop value is 5479 // used, so we have a list of the first and last occurrences of each 5480 // instruction. Next, we transpose this data structure into a multi map that 5481 // holds the list of intervals that *end* at a specific location. This multi 5482 // map allows us to perform a linear search. We scan the instructions linearly 5483 // and record each time that a new interval starts, by placing it in a set. 5484 // If we find this value in the multi-map then we remove it from the set. 5485 // The max register usage is the maximum size of the set. 5486 // We also search for instructions that are defined outside the loop, but are 5487 // used inside the loop. We need this number separately from the max-interval 5488 // usage number because when we unroll, loop-invariant values do not take 5489 // more register. 5490 LoopBlocksDFS DFS(TheLoop); 5491 DFS.perform(LI); 5492 5493 RegisterUsage RU; 5494 5495 // Each 'key' in the map opens a new interval. The values 5496 // of the map are the index of the 'last seen' usage of the 5497 // instruction that is the key. 5498 using IntervalMap = DenseMap<Instruction *, unsigned>; 5499 5500 // Maps instruction to its index. 5501 SmallVector<Instruction *, 64> IdxToInstr; 5502 // Marks the end of each interval. 5503 IntervalMap EndPoint; 5504 // Saves the list of instruction indices that are used in the loop. 5505 SmallPtrSet<Instruction *, 8> Ends; 5506 // Saves the list of values that are used in the loop but are 5507 // defined outside the loop, such as arguments and constants. 5508 SmallPtrSet<Value *, 8> LoopInvariants; 5509 5510 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5511 for (Instruction &I : BB->instructionsWithoutDebug()) { 5512 IdxToInstr.push_back(&I); 5513 5514 // Save the end location of each USE. 5515 for (Value *U : I.operands()) { 5516 auto *Instr = dyn_cast<Instruction>(U); 5517 5518 // Ignore non-instruction values such as arguments, constants, etc. 5519 if (!Instr) 5520 continue; 5521 5522 // If this instruction is outside the loop then record it and continue. 5523 if (!TheLoop->contains(Instr)) { 5524 LoopInvariants.insert(Instr); 5525 continue; 5526 } 5527 5528 // Overwrite previous end points. 5529 EndPoint[Instr] = IdxToInstr.size(); 5530 Ends.insert(Instr); 5531 } 5532 } 5533 } 5534 5535 // Saves the list of intervals that end with the index in 'key'. 5536 using InstrList = SmallVector<Instruction *, 2>; 5537 DenseMap<unsigned, InstrList> TransposeEnds; 5538 5539 // Transpose the EndPoints to a list of values that end at each index. 5540 for (auto &Interval : EndPoint) 5541 TransposeEnds[Interval.second].push_back(Interval.first); 5542 5543 SmallPtrSet<Instruction *, 8> OpenIntervals; 5544 5545 // Get the size of the widest register. 5546 unsigned MaxSafeDepDist = -1U; 5547 if (Legal->getMaxSafeDepDistBytes() != -1U) 5548 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5549 unsigned WidestRegister = 5550 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5551 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5552 5553 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5554 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5555 5556 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5557 5558 // A lambda that gets the register usage for the given type and VF. 5559 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5560 if (Ty->isTokenTy()) 5561 return 0U; 5562 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5563 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5564 }; 5565 5566 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5567 Instruction *I = IdxToInstr[i]; 5568 5569 // Remove all of the instructions that end at this location. 5570 InstrList &List = TransposeEnds[i]; 5571 for (Instruction *ToRemove : List) 5572 OpenIntervals.erase(ToRemove); 5573 5574 // Ignore instructions that are never used within the loop. 5575 if (!Ends.count(I)) 5576 continue; 5577 5578 // Skip ignored values. 5579 if (ValuesToIgnore.count(I)) 5580 continue; 5581 5582 // For each VF find the maximum usage of registers. 5583 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5584 // Count the number of live intervals. 5585 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5586 5587 if (VFs[j] == 1) { 5588 for (auto Inst : OpenIntervals) { 5589 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5590 if (RegUsage.find(ClassID) == RegUsage.end()) 5591 RegUsage[ClassID] = 1; 5592 else 5593 RegUsage[ClassID] += 1; 5594 } 5595 } else { 5596 collectUniformsAndScalars(VFs[j]); 5597 for (auto Inst : OpenIntervals) { 5598 // Skip ignored values for VF > 1. 5599 if (VecValuesToIgnore.count(Inst)) 5600 continue; 5601 if (isScalarAfterVectorization(Inst, VFs[j])) { 5602 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5603 if (RegUsage.find(ClassID) == RegUsage.end()) 5604 RegUsage[ClassID] = 1; 5605 else 5606 RegUsage[ClassID] += 1; 5607 } else { 5608 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 5609 if (RegUsage.find(ClassID) == RegUsage.end()) 5610 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 5611 else 5612 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 5613 } 5614 } 5615 } 5616 5617 for (auto& pair : RegUsage) { 5618 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 5619 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 5620 else 5621 MaxUsages[j][pair.first] = pair.second; 5622 } 5623 } 5624 5625 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5626 << OpenIntervals.size() << '\n'); 5627 5628 // Add the current instruction to the list of open intervals. 5629 OpenIntervals.insert(I); 5630 } 5631 5632 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5633 SmallMapVector<unsigned, unsigned, 4> Invariant; 5634 5635 for (auto Inst : LoopInvariants) { 5636 unsigned Usage = VFs[i] == 1 ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 5637 unsigned ClassID = TTI.getRegisterClassForType(VFs[i] > 1, Inst->getType()); 5638 if (Invariant.find(ClassID) == Invariant.end()) 5639 Invariant[ClassID] = Usage; 5640 else 5641 Invariant[ClassID] += Usage; 5642 } 5643 5644 LLVM_DEBUG({ 5645 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 5646 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 5647 << " item\n"; 5648 for (const auto &pair : MaxUsages[i]) { 5649 dbgs() << "LV(REG): RegisterClass: " 5650 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5651 << " registers\n"; 5652 } 5653 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 5654 << " item\n"; 5655 for (const auto &pair : Invariant) { 5656 dbgs() << "LV(REG): RegisterClass: " 5657 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5658 << " registers\n"; 5659 } 5660 }); 5661 5662 RU.LoopInvariantRegs = Invariant; 5663 RU.MaxLocalUsers = MaxUsages[i]; 5664 RUs[i] = RU; 5665 } 5666 5667 return RUs; 5668 } 5669 5670 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5671 // TODO: Cost model for emulated masked load/store is completely 5672 // broken. This hack guides the cost model to use an artificially 5673 // high enough value to practically disable vectorization with such 5674 // operations, except where previously deployed legality hack allowed 5675 // using very low cost values. This is to avoid regressions coming simply 5676 // from moving "masked load/store" check from legality to cost model. 5677 // Masked Load/Gather emulation was previously never allowed. 5678 // Limited number of Masked Store/Scatter emulation was allowed. 5679 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5680 return isa<LoadInst>(I) || 5681 (isa<StoreInst>(I) && 5682 NumPredStores > NumberOfStoresToPredicate); 5683 } 5684 5685 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5686 // If we aren't vectorizing the loop, or if we've already collected the 5687 // instructions to scalarize, there's nothing to do. Collection may already 5688 // have occurred if we have a user-selected VF and are now computing the 5689 // expected cost for interleaving. 5690 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5691 return; 5692 5693 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5694 // not profitable to scalarize any instructions, the presence of VF in the 5695 // map will indicate that we've analyzed it already. 5696 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5697 5698 // Find all the instructions that are scalar with predication in the loop and 5699 // determine if it would be better to not if-convert the blocks they are in. 5700 // If so, we also record the instructions to scalarize. 5701 for (BasicBlock *BB : TheLoop->blocks()) { 5702 if (!blockNeedsPredication(BB)) 5703 continue; 5704 for (Instruction &I : *BB) 5705 if (isScalarWithPredication(&I)) { 5706 ScalarCostsTy ScalarCosts; 5707 // Do not apply discount logic if hacked cost is needed 5708 // for emulated masked memrefs. 5709 if (!useEmulatedMaskMemRefHack(&I) && 5710 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5711 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5712 // Remember that BB will remain after vectorization. 5713 PredicatedBBsAfterVectorization.insert(BB); 5714 } 5715 } 5716 } 5717 5718 int LoopVectorizationCostModel::computePredInstDiscount( 5719 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5720 unsigned VF) { 5721 assert(!isUniformAfterVectorization(PredInst, VF) && 5722 "Instruction marked uniform-after-vectorization will be predicated"); 5723 5724 // Initialize the discount to zero, meaning that the scalar version and the 5725 // vector version cost the same. 5726 int Discount = 0; 5727 5728 // Holds instructions to analyze. The instructions we visit are mapped in 5729 // ScalarCosts. Those instructions are the ones that would be scalarized if 5730 // we find that the scalar version costs less. 5731 SmallVector<Instruction *, 8> Worklist; 5732 5733 // Returns true if the given instruction can be scalarized. 5734 auto canBeScalarized = [&](Instruction *I) -> bool { 5735 // We only attempt to scalarize instructions forming a single-use chain 5736 // from the original predicated block that would otherwise be vectorized. 5737 // Although not strictly necessary, we give up on instructions we know will 5738 // already be scalar to avoid traversing chains that are unlikely to be 5739 // beneficial. 5740 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5741 isScalarAfterVectorization(I, VF)) 5742 return false; 5743 5744 // If the instruction is scalar with predication, it will be analyzed 5745 // separately. We ignore it within the context of PredInst. 5746 if (isScalarWithPredication(I)) 5747 return false; 5748 5749 // If any of the instruction's operands are uniform after vectorization, 5750 // the instruction cannot be scalarized. This prevents, for example, a 5751 // masked load from being scalarized. 5752 // 5753 // We assume we will only emit a value for lane zero of an instruction 5754 // marked uniform after vectorization, rather than VF identical values. 5755 // Thus, if we scalarize an instruction that uses a uniform, we would 5756 // create uses of values corresponding to the lanes we aren't emitting code 5757 // for. This behavior can be changed by allowing getScalarValue to clone 5758 // the lane zero values for uniforms rather than asserting. 5759 for (Use &U : I->operands()) 5760 if (auto *J = dyn_cast<Instruction>(U.get())) 5761 if (isUniformAfterVectorization(J, VF)) 5762 return false; 5763 5764 // Otherwise, we can scalarize the instruction. 5765 return true; 5766 }; 5767 5768 // Compute the expected cost discount from scalarizing the entire expression 5769 // feeding the predicated instruction. We currently only consider expressions 5770 // that are single-use instruction chains. 5771 Worklist.push_back(PredInst); 5772 while (!Worklist.empty()) { 5773 Instruction *I = Worklist.pop_back_val(); 5774 5775 // If we've already analyzed the instruction, there's nothing to do. 5776 if (ScalarCosts.find(I) != ScalarCosts.end()) 5777 continue; 5778 5779 // Compute the cost of the vector instruction. Note that this cost already 5780 // includes the scalarization overhead of the predicated instruction. 5781 unsigned VectorCost = getInstructionCost(I, VF).first; 5782 5783 // Compute the cost of the scalarized instruction. This cost is the cost of 5784 // the instruction as if it wasn't if-converted and instead remained in the 5785 // predicated block. We will scale this cost by block probability after 5786 // computing the scalarization overhead. 5787 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5788 5789 // Compute the scalarization overhead of needed insertelement instructions 5790 // and phi nodes. 5791 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5792 ScalarCost += TTI.getScalarizationOverhead( 5793 cast<VectorType>(ToVectorTy(I->getType(), VF)), 5794 APInt::getAllOnesValue(VF), true, false); 5795 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI, 5796 TTI::TCK_RecipThroughput); 5797 } 5798 5799 // Compute the scalarization overhead of needed extractelement 5800 // instructions. For each of the instruction's operands, if the operand can 5801 // be scalarized, add it to the worklist; otherwise, account for the 5802 // overhead. 5803 for (Use &U : I->operands()) 5804 if (auto *J = dyn_cast<Instruction>(U.get())) { 5805 assert(VectorType::isValidElementType(J->getType()) && 5806 "Instruction has non-scalar type"); 5807 if (canBeScalarized(J)) 5808 Worklist.push_back(J); 5809 else if (needsExtract(J, VF)) 5810 ScalarCost += TTI.getScalarizationOverhead( 5811 cast<VectorType>(ToVectorTy(J->getType(), VF)), 5812 APInt::getAllOnesValue(VF), false, true); 5813 } 5814 5815 // Scale the total scalar cost by block probability. 5816 ScalarCost /= getReciprocalPredBlockProb(); 5817 5818 // Compute the discount. A non-negative discount means the vector version 5819 // of the instruction costs more, and scalarizing would be beneficial. 5820 Discount += VectorCost - ScalarCost; 5821 ScalarCosts[I] = ScalarCost; 5822 } 5823 5824 return Discount; 5825 } 5826 5827 LoopVectorizationCostModel::VectorizationCostTy 5828 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5829 VectorizationCostTy Cost; 5830 5831 // For each block. 5832 for (BasicBlock *BB : TheLoop->blocks()) { 5833 VectorizationCostTy BlockCost; 5834 5835 // For each instruction in the old loop. 5836 for (Instruction &I : BB->instructionsWithoutDebug()) { 5837 // Skip ignored values. 5838 if (ValuesToIgnore.count(&I) || (VF > 1 && VecValuesToIgnore.count(&I))) 5839 continue; 5840 5841 VectorizationCostTy C = getInstructionCost(&I, VF); 5842 5843 // Check if we should override the cost. 5844 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5845 C.first = ForceTargetInstructionCost; 5846 5847 BlockCost.first += C.first; 5848 BlockCost.second |= C.second; 5849 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5850 << " for VF " << VF << " For instruction: " << I 5851 << '\n'); 5852 } 5853 5854 // If we are vectorizing a predicated block, it will have been 5855 // if-converted. This means that the block's instructions (aside from 5856 // stores and instructions that may divide by zero) will now be 5857 // unconditionally executed. For the scalar case, we may not always execute 5858 // the predicated block. Thus, scale the block's cost by the probability of 5859 // executing it. 5860 if (VF == 1 && blockNeedsPredication(BB)) 5861 BlockCost.first /= getReciprocalPredBlockProb(); 5862 5863 Cost.first += BlockCost.first; 5864 Cost.second |= BlockCost.second; 5865 } 5866 5867 return Cost; 5868 } 5869 5870 /// Gets Address Access SCEV after verifying that the access pattern 5871 /// is loop invariant except the induction variable dependence. 5872 /// 5873 /// This SCEV can be sent to the Target in order to estimate the address 5874 /// calculation cost. 5875 static const SCEV *getAddressAccessSCEV( 5876 Value *Ptr, 5877 LoopVectorizationLegality *Legal, 5878 PredicatedScalarEvolution &PSE, 5879 const Loop *TheLoop) { 5880 5881 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5882 if (!Gep) 5883 return nullptr; 5884 5885 // We are looking for a gep with all loop invariant indices except for one 5886 // which should be an induction variable. 5887 auto SE = PSE.getSE(); 5888 unsigned NumOperands = Gep->getNumOperands(); 5889 for (unsigned i = 1; i < NumOperands; ++i) { 5890 Value *Opd = Gep->getOperand(i); 5891 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5892 !Legal->isInductionVariable(Opd)) 5893 return nullptr; 5894 } 5895 5896 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5897 return PSE.getSCEV(Ptr); 5898 } 5899 5900 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5901 return Legal->hasStride(I->getOperand(0)) || 5902 Legal->hasStride(I->getOperand(1)); 5903 } 5904 5905 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5906 unsigned VF) { 5907 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5908 Type *ValTy = getMemInstValueType(I); 5909 auto SE = PSE.getSE(); 5910 5911 unsigned AS = getLoadStoreAddressSpace(I); 5912 Value *Ptr = getLoadStorePointerOperand(I); 5913 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5914 5915 // Figure out whether the access is strided and get the stride value 5916 // if it's known in compile time 5917 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5918 5919 // Get the cost of the scalar memory instruction and address computation. 5920 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5921 5922 // Don't pass *I here, since it is scalar but will actually be part of a 5923 // vectorized loop where the user of it is a vectorized instruction. 5924 const Align Alignment = getLoadStoreAlignment(I); 5925 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5926 Alignment, AS, 5927 TTI::TCK_RecipThroughput); 5928 5929 // Get the overhead of the extractelement and insertelement instructions 5930 // we might create due to scalarization. 5931 Cost += getScalarizationOverhead(I, VF); 5932 5933 // If we have a predicated store, it may not be executed for each vector 5934 // lane. Scale the cost by the probability of executing the predicated 5935 // block. 5936 if (isPredicatedInst(I)) { 5937 Cost /= getReciprocalPredBlockProb(); 5938 5939 if (useEmulatedMaskMemRefHack(I)) 5940 // Artificially setting to a high enough value to practically disable 5941 // vectorization with such operations. 5942 Cost = 3000000; 5943 } 5944 5945 return Cost; 5946 } 5947 5948 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5949 unsigned VF) { 5950 Type *ValTy = getMemInstValueType(I); 5951 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5952 Value *Ptr = getLoadStorePointerOperand(I); 5953 unsigned AS = getLoadStoreAddressSpace(I); 5954 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5955 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5956 5957 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5958 "Stride should be 1 or -1 for consecutive memory access"); 5959 const Align Alignment = getLoadStoreAlignment(I); 5960 unsigned Cost = 0; 5961 if (Legal->isMaskRequired(I)) 5962 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 5963 CostKind); 5964 else 5965 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 5966 CostKind, I); 5967 5968 bool Reverse = ConsecutiveStride < 0; 5969 if (Reverse) 5970 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5971 return Cost; 5972 } 5973 5974 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5975 unsigned VF) { 5976 Type *ValTy = getMemInstValueType(I); 5977 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5978 const Align Alignment = getLoadStoreAlignment(I); 5979 unsigned AS = getLoadStoreAddressSpace(I); 5980 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5981 if (isa<LoadInst>(I)) { 5982 return TTI.getAddressComputationCost(ValTy) + 5983 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 5984 CostKind) + 5985 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5986 } 5987 StoreInst *SI = cast<StoreInst>(I); 5988 5989 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5990 return TTI.getAddressComputationCost(ValTy) + 5991 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 5992 CostKind) + 5993 (isLoopInvariantStoreValue 5994 ? 0 5995 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 5996 VF - 1)); 5997 } 5998 5999 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6000 unsigned VF) { 6001 Type *ValTy = getMemInstValueType(I); 6002 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6003 const Align Alignment = getLoadStoreAlignment(I); 6004 const Value *Ptr = getLoadStorePointerOperand(I); 6005 6006 return TTI.getAddressComputationCost(VectorTy) + 6007 TTI.getGatherScatterOpCost( 6008 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6009 TargetTransformInfo::TCK_RecipThroughput, I); 6010 } 6011 6012 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6013 unsigned VF) { 6014 Type *ValTy = getMemInstValueType(I); 6015 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6016 unsigned AS = getLoadStoreAddressSpace(I); 6017 6018 auto Group = getInterleavedAccessGroup(I); 6019 assert(Group && "Fail to get an interleaved access group."); 6020 6021 unsigned InterleaveFactor = Group->getFactor(); 6022 auto *WideVecTy = FixedVectorType::get(ValTy, VF * InterleaveFactor); 6023 6024 // Holds the indices of existing members in an interleaved load group. 6025 // An interleaved store group doesn't need this as it doesn't allow gaps. 6026 SmallVector<unsigned, 4> Indices; 6027 if (isa<LoadInst>(I)) { 6028 for (unsigned i = 0; i < InterleaveFactor; i++) 6029 if (Group->getMember(i)) 6030 Indices.push_back(i); 6031 } 6032 6033 // Calculate the cost of the whole interleaved group. 6034 bool UseMaskForGaps = 6035 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 6036 unsigned Cost = TTI.getInterleavedMemoryOpCost( 6037 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6038 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6039 6040 if (Group->isReverse()) { 6041 // TODO: Add support for reversed masked interleaved access. 6042 assert(!Legal->isMaskRequired(I) && 6043 "Reverse masked interleaved access not supported."); 6044 Cost += Group->getNumMembers() * 6045 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6046 } 6047 return Cost; 6048 } 6049 6050 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6051 unsigned VF) { 6052 // Calculate scalar cost only. Vectorization cost should be ready at this 6053 // moment. 6054 if (VF == 1) { 6055 Type *ValTy = getMemInstValueType(I); 6056 const Align Alignment = getLoadStoreAlignment(I); 6057 unsigned AS = getLoadStoreAddressSpace(I); 6058 6059 return TTI.getAddressComputationCost(ValTy) + 6060 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6061 TTI::TCK_RecipThroughput, I); 6062 } 6063 return getWideningCost(I, VF); 6064 } 6065 6066 LoopVectorizationCostModel::VectorizationCostTy 6067 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 6068 // If we know that this instruction will remain uniform, check the cost of 6069 // the scalar version. 6070 if (isUniformAfterVectorization(I, VF)) 6071 VF = 1; 6072 6073 if (VF > 1 && isProfitableToScalarize(I, VF)) 6074 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6075 6076 // Forced scalars do not have any scalarization overhead. 6077 auto ForcedScalar = ForcedScalars.find(VF); 6078 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 6079 auto InstSet = ForcedScalar->second; 6080 if (InstSet.count(I)) 6081 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 6082 } 6083 6084 Type *VectorTy; 6085 unsigned C = getInstructionCost(I, VF, VectorTy); 6086 6087 bool TypeNotScalarized = 6088 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 6089 return VectorizationCostTy(C, TypeNotScalarized); 6090 } 6091 6092 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6093 unsigned VF) { 6094 6095 if (VF == 1) 6096 return 0; 6097 6098 unsigned Cost = 0; 6099 Type *RetTy = ToVectorTy(I->getType(), VF); 6100 if (!RetTy->isVoidTy() && 6101 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6102 Cost += TTI.getScalarizationOverhead( 6103 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF), true, false); 6104 6105 // Some targets keep addresses scalar. 6106 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6107 return Cost; 6108 6109 // Some targets support efficient element stores. 6110 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6111 return Cost; 6112 6113 // Collect operands to consider. 6114 CallInst *CI = dyn_cast<CallInst>(I); 6115 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 6116 6117 // Skip operands that do not require extraction/scalarization and do not incur 6118 // any overhead. 6119 return Cost + TTI.getOperandsScalarizationOverhead( 6120 filterExtractingOperands(Ops, VF), VF); 6121 } 6122 6123 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 6124 if (VF == 1) 6125 return; 6126 NumPredStores = 0; 6127 for (BasicBlock *BB : TheLoop->blocks()) { 6128 // For each instruction in the old loop. 6129 for (Instruction &I : *BB) { 6130 Value *Ptr = getLoadStorePointerOperand(&I); 6131 if (!Ptr) 6132 continue; 6133 6134 // TODO: We should generate better code and update the cost model for 6135 // predicated uniform stores. Today they are treated as any other 6136 // predicated store (see added test cases in 6137 // invariant-store-vectorization.ll). 6138 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 6139 NumPredStores++; 6140 6141 if (Legal->isUniform(Ptr) && 6142 // Conditional loads and stores should be scalarized and predicated. 6143 // isScalarWithPredication cannot be used here since masked 6144 // gather/scatters are not considered scalar with predication. 6145 !Legal->blockNeedsPredication(I.getParent())) { 6146 // TODO: Avoid replicating loads and stores instead of 6147 // relying on instcombine to remove them. 6148 // Load: Scalar load + broadcast 6149 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6150 unsigned Cost = getUniformMemOpCost(&I, VF); 6151 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6152 continue; 6153 } 6154 6155 // We assume that widening is the best solution when possible. 6156 if (memoryInstructionCanBeWidened(&I, VF)) { 6157 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 6158 int ConsecutiveStride = 6159 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 6160 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6161 "Expected consecutive stride."); 6162 InstWidening Decision = 6163 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6164 setWideningDecision(&I, VF, Decision, Cost); 6165 continue; 6166 } 6167 6168 // Choose between Interleaving, Gather/Scatter or Scalarization. 6169 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 6170 unsigned NumAccesses = 1; 6171 if (isAccessInterleaved(&I)) { 6172 auto Group = getInterleavedAccessGroup(&I); 6173 assert(Group && "Fail to get an interleaved access group."); 6174 6175 // Make one decision for the whole group. 6176 if (getWideningDecision(&I, VF) != CM_Unknown) 6177 continue; 6178 6179 NumAccesses = Group->getNumMembers(); 6180 if (interleavedAccessCanBeWidened(&I, VF)) 6181 InterleaveCost = getInterleaveGroupCost(&I, VF); 6182 } 6183 6184 unsigned GatherScatterCost = 6185 isLegalGatherOrScatter(&I) 6186 ? getGatherScatterCost(&I, VF) * NumAccesses 6187 : std::numeric_limits<unsigned>::max(); 6188 6189 unsigned ScalarizationCost = 6190 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6191 6192 // Choose better solution for the current VF, 6193 // write down this decision and use it during vectorization. 6194 unsigned Cost; 6195 InstWidening Decision; 6196 if (InterleaveCost <= GatherScatterCost && 6197 InterleaveCost < ScalarizationCost) { 6198 Decision = CM_Interleave; 6199 Cost = InterleaveCost; 6200 } else if (GatherScatterCost < ScalarizationCost) { 6201 Decision = CM_GatherScatter; 6202 Cost = GatherScatterCost; 6203 } else { 6204 Decision = CM_Scalarize; 6205 Cost = ScalarizationCost; 6206 } 6207 // If the instructions belongs to an interleave group, the whole group 6208 // receives the same decision. The whole group receives the cost, but 6209 // the cost will actually be assigned to one instruction. 6210 if (auto Group = getInterleavedAccessGroup(&I)) 6211 setWideningDecision(Group, VF, Decision, Cost); 6212 else 6213 setWideningDecision(&I, VF, Decision, Cost); 6214 } 6215 } 6216 6217 // Make sure that any load of address and any other address computation 6218 // remains scalar unless there is gather/scatter support. This avoids 6219 // inevitable extracts into address registers, and also has the benefit of 6220 // activating LSR more, since that pass can't optimize vectorized 6221 // addresses. 6222 if (TTI.prefersVectorizedAddressing()) 6223 return; 6224 6225 // Start with all scalar pointer uses. 6226 SmallPtrSet<Instruction *, 8> AddrDefs; 6227 for (BasicBlock *BB : TheLoop->blocks()) 6228 for (Instruction &I : *BB) { 6229 Instruction *PtrDef = 6230 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6231 if (PtrDef && TheLoop->contains(PtrDef) && 6232 getWideningDecision(&I, VF) != CM_GatherScatter) 6233 AddrDefs.insert(PtrDef); 6234 } 6235 6236 // Add all instructions used to generate the addresses. 6237 SmallVector<Instruction *, 4> Worklist; 6238 for (auto *I : AddrDefs) 6239 Worklist.push_back(I); 6240 while (!Worklist.empty()) { 6241 Instruction *I = Worklist.pop_back_val(); 6242 for (auto &Op : I->operands()) 6243 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6244 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6245 AddrDefs.insert(InstOp).second) 6246 Worklist.push_back(InstOp); 6247 } 6248 6249 for (auto *I : AddrDefs) { 6250 if (isa<LoadInst>(I)) { 6251 // Setting the desired widening decision should ideally be handled in 6252 // by cost functions, but since this involves the task of finding out 6253 // if the loaded register is involved in an address computation, it is 6254 // instead changed here when we know this is the case. 6255 InstWidening Decision = getWideningDecision(I, VF); 6256 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6257 // Scalarize a widened load of address. 6258 setWideningDecision(I, VF, CM_Scalarize, 6259 (VF * getMemoryInstructionCost(I, 1))); 6260 else if (auto Group = getInterleavedAccessGroup(I)) { 6261 // Scalarize an interleave group of address loads. 6262 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6263 if (Instruction *Member = Group->getMember(I)) 6264 setWideningDecision(Member, VF, CM_Scalarize, 6265 (VF * getMemoryInstructionCost(Member, 1))); 6266 } 6267 } 6268 } else 6269 // Make sure I gets scalarized and a cost estimate without 6270 // scalarization overhead. 6271 ForcedScalars[VF].insert(I); 6272 } 6273 } 6274 6275 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6276 unsigned VF, 6277 Type *&VectorTy) { 6278 Type *RetTy = I->getType(); 6279 if (canTruncateToMinimalBitwidth(I, VF)) 6280 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6281 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 6282 auto SE = PSE.getSE(); 6283 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6284 6285 // TODO: We need to estimate the cost of intrinsic calls. 6286 switch (I->getOpcode()) { 6287 case Instruction::GetElementPtr: 6288 // We mark this instruction as zero-cost because the cost of GEPs in 6289 // vectorized code depends on whether the corresponding memory instruction 6290 // is scalarized or not. Therefore, we handle GEPs with the memory 6291 // instruction cost. 6292 return 0; 6293 case Instruction::Br: { 6294 // In cases of scalarized and predicated instructions, there will be VF 6295 // predicated blocks in the vectorized loop. Each branch around these 6296 // blocks requires also an extract of its vector compare i1 element. 6297 bool ScalarPredicatedBB = false; 6298 BranchInst *BI = cast<BranchInst>(I); 6299 if (VF > 1 && BI->isConditional() && 6300 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 6301 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 6302 ScalarPredicatedBB = true; 6303 6304 if (ScalarPredicatedBB) { 6305 // Return cost for branches around scalarized and predicated blocks. 6306 auto *Vec_i1Ty = 6307 FixedVectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6308 return (TTI.getScalarizationOverhead(Vec_i1Ty, APInt::getAllOnesValue(VF), 6309 false, true) + 6310 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF)); 6311 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 6312 // The back-edge branch will remain, as will all scalar branches. 6313 return TTI.getCFInstrCost(Instruction::Br, CostKind); 6314 else 6315 // This branch will be eliminated by if-conversion. 6316 return 0; 6317 // Note: We currently assume zero cost for an unconditional branch inside 6318 // a predicated block since it will become a fall-through, although we 6319 // may decide in the future to call TTI for all branches. 6320 } 6321 case Instruction::PHI: { 6322 auto *Phi = cast<PHINode>(I); 6323 6324 // First-order recurrences are replaced by vector shuffles inside the loop. 6325 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 6326 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6327 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6328 cast<VectorType>(VectorTy), VF - 1, 6329 FixedVectorType::get(RetTy, 1)); 6330 6331 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6332 // converted into select instructions. We require N - 1 selects per phi 6333 // node, where N is the number of incoming values. 6334 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 6335 return (Phi->getNumIncomingValues() - 1) * 6336 TTI.getCmpSelInstrCost( 6337 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6338 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 6339 CostKind); 6340 6341 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 6342 } 6343 case Instruction::UDiv: 6344 case Instruction::SDiv: 6345 case Instruction::URem: 6346 case Instruction::SRem: 6347 // If we have a predicated instruction, it may not be executed for each 6348 // vector lane. Get the scalarization cost and scale this amount by the 6349 // probability of executing the predicated block. If the instruction is not 6350 // predicated, we fall through to the next case. 6351 if (VF > 1 && isScalarWithPredication(I)) { 6352 unsigned Cost = 0; 6353 6354 // These instructions have a non-void type, so account for the phi nodes 6355 // that we will create. This cost is likely to be zero. The phi node 6356 // cost, if any, should be scaled by the block probability because it 6357 // models a copy at the end of each predicated block. 6358 Cost += VF * TTI.getCFInstrCost(Instruction::PHI, CostKind); 6359 6360 // The cost of the non-predicated instruction. 6361 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 6362 6363 // The cost of insertelement and extractelement instructions needed for 6364 // scalarization. 6365 Cost += getScalarizationOverhead(I, VF); 6366 6367 // Scale the cost by the probability of executing the predicated blocks. 6368 // This assumes the predicated block for each vector lane is equally 6369 // likely. 6370 return Cost / getReciprocalPredBlockProb(); 6371 } 6372 LLVM_FALLTHROUGH; 6373 case Instruction::Add: 6374 case Instruction::FAdd: 6375 case Instruction::Sub: 6376 case Instruction::FSub: 6377 case Instruction::Mul: 6378 case Instruction::FMul: 6379 case Instruction::FDiv: 6380 case Instruction::FRem: 6381 case Instruction::Shl: 6382 case Instruction::LShr: 6383 case Instruction::AShr: 6384 case Instruction::And: 6385 case Instruction::Or: 6386 case Instruction::Xor: { 6387 // Since we will replace the stride by 1 the multiplication should go away. 6388 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6389 return 0; 6390 // Certain instructions can be cheaper to vectorize if they have a constant 6391 // second vector operand. One example of this are shifts on x86. 6392 Value *Op2 = I->getOperand(1); 6393 TargetTransformInfo::OperandValueProperties Op2VP; 6394 TargetTransformInfo::OperandValueKind Op2VK = 6395 TTI.getOperandInfo(Op2, Op2VP); 6396 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 6397 Op2VK = TargetTransformInfo::OK_UniformValue; 6398 6399 SmallVector<const Value *, 4> Operands(I->operand_values()); 6400 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6401 return N * TTI.getArithmeticInstrCost( 6402 I->getOpcode(), VectorTy, CostKind, 6403 TargetTransformInfo::OK_AnyValue, 6404 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 6405 } 6406 case Instruction::FNeg: { 6407 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6408 return N * TTI.getArithmeticInstrCost( 6409 I->getOpcode(), VectorTy, CostKind, 6410 TargetTransformInfo::OK_AnyValue, 6411 TargetTransformInfo::OK_AnyValue, 6412 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 6413 I->getOperand(0), I); 6414 } 6415 case Instruction::Select: { 6416 SelectInst *SI = cast<SelectInst>(I); 6417 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6418 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6419 Type *CondTy = SI->getCondition()->getType(); 6420 if (!ScalarCond) 6421 CondTy = FixedVectorType::get(CondTy, VF); 6422 6423 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 6424 CostKind, I); 6425 } 6426 case Instruction::ICmp: 6427 case Instruction::FCmp: { 6428 Type *ValTy = I->getOperand(0)->getType(); 6429 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6430 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6431 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6432 VectorTy = ToVectorTy(ValTy, VF); 6433 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, CostKind, 6434 I); 6435 } 6436 case Instruction::Store: 6437 case Instruction::Load: { 6438 unsigned Width = VF; 6439 if (Width > 1) { 6440 InstWidening Decision = getWideningDecision(I, Width); 6441 assert(Decision != CM_Unknown && 6442 "CM decision should be taken at this point"); 6443 if (Decision == CM_Scalarize) 6444 Width = 1; 6445 } 6446 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6447 return getMemoryInstructionCost(I, VF); 6448 } 6449 case Instruction::ZExt: 6450 case Instruction::SExt: 6451 case Instruction::FPToUI: 6452 case Instruction::FPToSI: 6453 case Instruction::FPExt: 6454 case Instruction::PtrToInt: 6455 case Instruction::IntToPtr: 6456 case Instruction::SIToFP: 6457 case Instruction::UIToFP: 6458 case Instruction::Trunc: 6459 case Instruction::FPTrunc: 6460 case Instruction::BitCast: { 6461 // We optimize the truncation of induction variables having constant 6462 // integer steps. The cost of these truncations is the same as the scalar 6463 // operation. 6464 if (isOptimizableIVTruncate(I, VF)) { 6465 auto *Trunc = cast<TruncInst>(I); 6466 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6467 Trunc->getSrcTy(), CostKind, Trunc); 6468 } 6469 6470 Type *SrcScalarTy = I->getOperand(0)->getType(); 6471 Type *SrcVecTy = 6472 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6473 if (canTruncateToMinimalBitwidth(I, VF)) { 6474 // This cast is going to be shrunk. This may remove the cast or it might 6475 // turn it into slightly different cast. For example, if MinBW == 16, 6476 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6477 // 6478 // Calculate the modified src and dest types. 6479 Type *MinVecTy = VectorTy; 6480 if (I->getOpcode() == Instruction::Trunc) { 6481 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6482 VectorTy = 6483 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6484 } else if (I->getOpcode() == Instruction::ZExt || 6485 I->getOpcode() == Instruction::SExt) { 6486 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6487 VectorTy = 6488 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6489 } 6490 } 6491 6492 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6493 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, 6494 CostKind, I); 6495 } 6496 case Instruction::Call: { 6497 bool NeedToScalarize; 6498 CallInst *CI = cast<CallInst>(I); 6499 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6500 if (getVectorIntrinsicIDForCall(CI, TLI)) 6501 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6502 return CallCost; 6503 } 6504 default: 6505 // The cost of executing VF copies of the scalar instruction. This opcode 6506 // is unknown. Assume that it is the same as 'mul'. 6507 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, 6508 CostKind) + 6509 getScalarizationOverhead(I, VF); 6510 } // end of switch. 6511 } 6512 6513 char LoopVectorize::ID = 0; 6514 6515 static const char lv_name[] = "Loop Vectorization"; 6516 6517 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6518 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6519 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6520 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6521 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6522 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6523 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6524 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6525 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6526 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6527 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6528 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6529 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6530 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6531 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 6532 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6533 6534 namespace llvm { 6535 6536 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6537 6538 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6539 bool VectorizeOnlyWhenForced) { 6540 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6541 } 6542 6543 } // end namespace llvm 6544 6545 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6546 // Check if the pointer operand of a load or store instruction is 6547 // consecutive. 6548 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6549 return Legal->isConsecutivePtr(Ptr); 6550 return false; 6551 } 6552 6553 void LoopVectorizationCostModel::collectValuesToIgnore() { 6554 // Ignore ephemeral values. 6555 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6556 6557 // Ignore type-promoting instructions we identified during reduction 6558 // detection. 6559 for (auto &Reduction : Legal->getReductionVars()) { 6560 RecurrenceDescriptor &RedDes = Reduction.second; 6561 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6562 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6563 } 6564 // Ignore type-casting instructions we identified during induction 6565 // detection. 6566 for (auto &Induction : Legal->getInductionVars()) { 6567 InductionDescriptor &IndDes = Induction.second; 6568 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6569 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6570 } 6571 } 6572 6573 // TODO: we could return a pair of values that specify the max VF and 6574 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6575 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6576 // doesn't have a cost model that can choose which plan to execute if 6577 // more than one is generated. 6578 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6579 LoopVectorizationCostModel &CM) { 6580 unsigned WidestType; 6581 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6582 return WidestVectorRegBits / WidestType; 6583 } 6584 6585 VectorizationFactor 6586 LoopVectorizationPlanner::planInVPlanNativePath(unsigned UserVF) { 6587 unsigned VF = UserVF; 6588 // Outer loop handling: They may require CFG and instruction level 6589 // transformations before even evaluating whether vectorization is profitable. 6590 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6591 // the vectorization pipeline. 6592 if (!OrigLoop->empty()) { 6593 // If the user doesn't provide a vectorization factor, determine a 6594 // reasonable one. 6595 if (!UserVF) { 6596 VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM); 6597 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 6598 6599 // Make sure we have a VF > 1 for stress testing. 6600 if (VPlanBuildStressTest && VF < 2) { 6601 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 6602 << "overriding computed VF.\n"); 6603 VF = 4; 6604 } 6605 } 6606 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6607 assert(isPowerOf2_32(VF) && "VF needs to be a power of two"); 6608 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF 6609 << " to build VPlans.\n"); 6610 buildVPlans(VF, VF); 6611 6612 // For VPlan build stress testing, we bail out after VPlan construction. 6613 if (VPlanBuildStressTest) 6614 return VectorizationFactor::Disabled(); 6615 6616 return {VF, 0}; 6617 } 6618 6619 LLVM_DEBUG( 6620 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6621 "VPlan-native path.\n"); 6622 return VectorizationFactor::Disabled(); 6623 } 6624 6625 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(unsigned UserVF, 6626 unsigned UserIC) { 6627 assert(OrigLoop->empty() && "Inner loop expected."); 6628 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC); 6629 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6630 return None; 6631 6632 // Invalidate interleave groups if all blocks of loop will be predicated. 6633 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6634 !useMaskedInterleavedAccesses(*TTI)) { 6635 LLVM_DEBUG( 6636 dbgs() 6637 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6638 "which requires masked-interleaved support.\n"); 6639 if (CM.InterleaveInfo.invalidateGroups()) 6640 // Invalidating interleave groups also requires invalidating all decisions 6641 // based on them, which includes widening decisions and uniform and scalar 6642 // values. 6643 CM.invalidateCostModelingDecisions(); 6644 } 6645 6646 if (UserVF) { 6647 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6648 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6649 // Collect the instructions (and their associated costs) that will be more 6650 // profitable to scalarize. 6651 CM.selectUserVectorizationFactor(UserVF); 6652 buildVPlansWithVPRecipes(UserVF, UserVF); 6653 LLVM_DEBUG(printPlans(dbgs())); 6654 return {{UserVF, 0}}; 6655 } 6656 6657 unsigned MaxVF = MaybeMaxVF.getValue(); 6658 assert(MaxVF != 0 && "MaxVF is zero."); 6659 6660 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6661 // Collect Uniform and Scalar instructions after vectorization with VF. 6662 CM.collectUniformsAndScalars(VF); 6663 6664 // Collect the instructions (and their associated costs) that will be more 6665 // profitable to scalarize. 6666 if (VF > 1) 6667 CM.collectInstsToScalarize(VF); 6668 } 6669 6670 buildVPlansWithVPRecipes(1, MaxVF); 6671 LLVM_DEBUG(printPlans(dbgs())); 6672 if (MaxVF == 1) 6673 return VectorizationFactor::Disabled(); 6674 6675 // Select the optimal vectorization factor. 6676 return CM.selectVectorizationFactor(MaxVF); 6677 } 6678 6679 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6680 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6681 << '\n'); 6682 BestVF = VF; 6683 BestUF = UF; 6684 6685 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6686 return !Plan->hasVF(VF); 6687 }); 6688 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6689 } 6690 6691 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6692 DominatorTree *DT) { 6693 // Perform the actual loop transformation. 6694 6695 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6696 VPCallbackILV CallbackILV(ILV); 6697 6698 VPTransformState State{BestVF, BestUF, LI, 6699 DT, ILV.Builder, ILV.VectorLoopValueMap, 6700 &ILV, CallbackILV}; 6701 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6702 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6703 State.CanonicalIV = ILV.Induction; 6704 6705 //===------------------------------------------------===// 6706 // 6707 // Notice: any optimization or new instruction that go 6708 // into the code below should also be implemented in 6709 // the cost-model. 6710 // 6711 //===------------------------------------------------===// 6712 6713 // 2. Copy and widen instructions from the old loop into the new loop. 6714 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6715 VPlans.front()->execute(&State); 6716 6717 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6718 // predication, updating analyses. 6719 ILV.fixVectorizedLoop(); 6720 } 6721 6722 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6723 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6724 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6725 6726 // We create new control-flow for the vectorized loop, so the original 6727 // condition will be dead after vectorization if it's only used by the 6728 // branch. 6729 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6730 if (Cmp && Cmp->hasOneUse()) 6731 DeadInstructions.insert(Cmp); 6732 6733 // We create new "steps" for induction variable updates to which the original 6734 // induction variables map. An original update instruction will be dead if 6735 // all its users except the induction variable are dead. 6736 for (auto &Induction : Legal->getInductionVars()) { 6737 PHINode *Ind = Induction.first; 6738 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6739 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6740 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 6741 })) 6742 DeadInstructions.insert(IndUpdate); 6743 6744 // We record as "Dead" also the type-casting instructions we had identified 6745 // during induction analysis. We don't need any handling for them in the 6746 // vectorized loop because we have proven that, under a proper runtime 6747 // test guarding the vectorized loop, the value of the phi, and the casted 6748 // value of the phi, are the same. The last instruction in this casting chain 6749 // will get its scalar/vector/widened def from the scalar/vector/widened def 6750 // of the respective phi node. Any other casts in the induction def-use chain 6751 // have no other uses outside the phi update chain, and will be ignored. 6752 InductionDescriptor &IndDes = Induction.second; 6753 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6754 DeadInstructions.insert(Casts.begin(), Casts.end()); 6755 } 6756 } 6757 6758 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6759 6760 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6761 6762 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6763 Instruction::BinaryOps BinOp) { 6764 // When unrolling and the VF is 1, we only need to add a simple scalar. 6765 Type *Ty = Val->getType(); 6766 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6767 6768 if (Ty->isFloatingPointTy()) { 6769 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6770 6771 // Floating point operations had to be 'fast' to enable the unrolling. 6772 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6773 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6774 } 6775 Constant *C = ConstantInt::get(Ty, StartIdx); 6776 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6777 } 6778 6779 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6780 SmallVector<Metadata *, 4> MDs; 6781 // Reserve first location for self reference to the LoopID metadata node. 6782 MDs.push_back(nullptr); 6783 bool IsUnrollMetadata = false; 6784 MDNode *LoopID = L->getLoopID(); 6785 if (LoopID) { 6786 // First find existing loop unrolling disable metadata. 6787 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6788 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6789 if (MD) { 6790 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6791 IsUnrollMetadata = 6792 S && S->getString().startswith("llvm.loop.unroll.disable"); 6793 } 6794 MDs.push_back(LoopID->getOperand(i)); 6795 } 6796 } 6797 6798 if (!IsUnrollMetadata) { 6799 // Add runtime unroll disable metadata. 6800 LLVMContext &Context = L->getHeader()->getContext(); 6801 SmallVector<Metadata *, 1> DisableOperands; 6802 DisableOperands.push_back( 6803 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6804 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6805 MDs.push_back(DisableNode); 6806 MDNode *NewLoopID = MDNode::get(Context, MDs); 6807 // Set operand 0 to refer to the loop id itself. 6808 NewLoopID->replaceOperandWith(0, NewLoopID); 6809 L->setLoopID(NewLoopID); 6810 } 6811 } 6812 6813 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6814 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6815 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6816 bool PredicateAtRangeStart = Predicate(Range.Start); 6817 6818 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6819 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6820 Range.End = TmpVF; 6821 break; 6822 } 6823 6824 return PredicateAtRangeStart; 6825 } 6826 6827 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6828 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6829 /// of VF's starting at a given VF and extending it as much as possible. Each 6830 /// vectorization decision can potentially shorten this sub-range during 6831 /// buildVPlan(). 6832 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6833 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6834 VFRange SubRange = {VF, MaxVF + 1}; 6835 VPlans.push_back(buildVPlan(SubRange)); 6836 VF = SubRange.End; 6837 } 6838 } 6839 6840 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6841 VPlanPtr &Plan) { 6842 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6843 6844 // Look for cached value. 6845 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6846 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6847 if (ECEntryIt != EdgeMaskCache.end()) 6848 return ECEntryIt->second; 6849 6850 VPValue *SrcMask = createBlockInMask(Src, Plan); 6851 6852 // The terminator has to be a branch inst! 6853 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6854 assert(BI && "Unexpected terminator found"); 6855 6856 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 6857 return EdgeMaskCache[Edge] = SrcMask; 6858 6859 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6860 assert(EdgeMask && "No Edge Mask found for condition"); 6861 6862 if (BI->getSuccessor(0) != Dst) 6863 EdgeMask = Builder.createNot(EdgeMask); 6864 6865 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6866 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6867 6868 return EdgeMaskCache[Edge] = EdgeMask; 6869 } 6870 6871 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6872 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6873 6874 // Look for cached value. 6875 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6876 if (BCEntryIt != BlockMaskCache.end()) 6877 return BCEntryIt->second; 6878 6879 // All-one mask is modelled as no-mask following the convention for masked 6880 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6881 VPValue *BlockMask = nullptr; 6882 6883 if (OrigLoop->getHeader() == BB) { 6884 if (!CM.blockNeedsPredication(BB)) 6885 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6886 6887 // Introduce the early-exit compare IV <= BTC to form header block mask. 6888 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6889 // Start by constructing the desired canonical IV. 6890 VPValue *IV = nullptr; 6891 if (Legal->getPrimaryInduction()) 6892 IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6893 else { 6894 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 6895 Builder.getInsertBlock()->appendRecipe(IVRecipe); 6896 IV = IVRecipe->getVPValue(); 6897 } 6898 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6899 bool TailFolded = !CM.isScalarEpilogueAllowed(); 6900 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) 6901 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, BTC}); 6902 else 6903 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6904 return BlockMaskCache[BB] = BlockMask; 6905 } 6906 6907 // This is the block mask. We OR all incoming edges. 6908 for (auto *Predecessor : predecessors(BB)) { 6909 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6910 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6911 return BlockMaskCache[BB] = EdgeMask; 6912 6913 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6914 BlockMask = EdgeMask; 6915 continue; 6916 } 6917 6918 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6919 } 6920 6921 return BlockMaskCache[BB] = BlockMask; 6922 } 6923 6924 VPWidenMemoryInstructionRecipe * 6925 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6926 VPlanPtr &Plan) { 6927 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 6928 "Must be called with either a load or store"); 6929 6930 auto willWiden = [&](unsigned VF) -> bool { 6931 if (VF == 1) 6932 return false; 6933 LoopVectorizationCostModel::InstWidening Decision = 6934 CM.getWideningDecision(I, VF); 6935 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6936 "CM decision should be taken at this point."); 6937 if (Decision == LoopVectorizationCostModel::CM_Interleave) 6938 return true; 6939 if (CM.isScalarAfterVectorization(I, VF) || 6940 CM.isProfitableToScalarize(I, VF)) 6941 return false; 6942 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6943 }; 6944 6945 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6946 return nullptr; 6947 6948 VPValue *Mask = nullptr; 6949 if (Legal->isMaskRequired(I)) 6950 Mask = createBlockInMask(I->getParent(), Plan); 6951 6952 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I)); 6953 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 6954 return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask); 6955 6956 StoreInst *Store = cast<StoreInst>(I); 6957 VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand()); 6958 return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask); 6959 } 6960 6961 VPWidenIntOrFpInductionRecipe * 6962 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi) const { 6963 // Check if this is an integer or fp induction. If so, build the recipe that 6964 // produces its scalar and vector values. 6965 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 6966 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6967 II.getKind() == InductionDescriptor::IK_FpInduction) 6968 return new VPWidenIntOrFpInductionRecipe(Phi); 6969 6970 return nullptr; 6971 } 6972 6973 VPWidenIntOrFpInductionRecipe * 6974 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I, 6975 VFRange &Range) const { 6976 // Optimize the special case where the source is a constant integer 6977 // induction variable. Notice that we can only optimize the 'trunc' case 6978 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6979 // (c) other casts depend on pointer size. 6980 6981 // Determine whether \p K is a truncation based on an induction variable that 6982 // can be optimized. 6983 auto isOptimizableIVTruncate = 6984 [&](Instruction *K) -> std::function<bool(unsigned)> { 6985 return 6986 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6987 }; 6988 6989 if (LoopVectorizationPlanner::getDecisionAndClampRange( 6990 isOptimizableIVTruncate(I), Range)) 6991 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6992 I); 6993 return nullptr; 6994 } 6995 6996 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) { 6997 // We know that all PHIs in non-header blocks are converted into selects, so 6998 // we don't have to worry about the insertion order and we can just use the 6999 // builder. At this point we generate the predication tree. There may be 7000 // duplications since this is a simple recursive scan, but future 7001 // optimizations will clean it up. 7002 7003 SmallVector<VPValue *, 2> Operands; 7004 unsigned NumIncoming = Phi->getNumIncomingValues(); 7005 for (unsigned In = 0; In < NumIncoming; In++) { 7006 VPValue *EdgeMask = 7007 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 7008 assert((EdgeMask || NumIncoming == 1) && 7009 "Multiple predecessors with one having a full mask"); 7010 Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In))); 7011 if (EdgeMask) 7012 Operands.push_back(EdgeMask); 7013 } 7014 return new VPBlendRecipe(Phi, Operands); 7015 } 7016 7017 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range, 7018 VPlan &Plan) const { 7019 7020 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 7021 [this, CI](unsigned VF) { return CM.isScalarWithPredication(CI, VF); }, 7022 Range); 7023 7024 if (IsPredicated) 7025 return nullptr; 7026 7027 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7028 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 7029 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 7030 return nullptr; 7031 7032 auto willWiden = [&](unsigned VF) -> bool { 7033 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7034 // The following case may be scalarized depending on the VF. 7035 // The flag shows whether we use Intrinsic or a usual Call for vectorized 7036 // version of the instruction. 7037 // Is it beneficial to perform intrinsic call compared to lib call? 7038 bool NeedToScalarize = false; 7039 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 7040 bool UseVectorIntrinsic = 7041 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 7042 return UseVectorIntrinsic || !NeedToScalarize; 7043 }; 7044 7045 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 7046 return nullptr; 7047 7048 return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands())); 7049 } 7050 7051 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 7052 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 7053 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 7054 // Instruction should be widened, unless it is scalar after vectorization, 7055 // scalarization is profitable or it is predicated. 7056 auto WillScalarize = [this, I](unsigned VF) -> bool { 7057 return CM.isScalarAfterVectorization(I, VF) || 7058 CM.isProfitableToScalarize(I, VF) || 7059 CM.isScalarWithPredication(I, VF); 7060 }; 7061 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 7062 Range); 7063 } 7064 7065 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const { 7066 auto IsVectorizableOpcode = [](unsigned Opcode) { 7067 switch (Opcode) { 7068 case Instruction::Add: 7069 case Instruction::And: 7070 case Instruction::AShr: 7071 case Instruction::BitCast: 7072 case Instruction::FAdd: 7073 case Instruction::FCmp: 7074 case Instruction::FDiv: 7075 case Instruction::FMul: 7076 case Instruction::FNeg: 7077 case Instruction::FPExt: 7078 case Instruction::FPToSI: 7079 case Instruction::FPToUI: 7080 case Instruction::FPTrunc: 7081 case Instruction::FRem: 7082 case Instruction::FSub: 7083 case Instruction::ICmp: 7084 case Instruction::IntToPtr: 7085 case Instruction::LShr: 7086 case Instruction::Mul: 7087 case Instruction::Or: 7088 case Instruction::PtrToInt: 7089 case Instruction::SDiv: 7090 case Instruction::Select: 7091 case Instruction::SExt: 7092 case Instruction::Shl: 7093 case Instruction::SIToFP: 7094 case Instruction::SRem: 7095 case Instruction::Sub: 7096 case Instruction::Trunc: 7097 case Instruction::UDiv: 7098 case Instruction::UIToFP: 7099 case Instruction::URem: 7100 case Instruction::Xor: 7101 case Instruction::ZExt: 7102 return true; 7103 } 7104 return false; 7105 }; 7106 7107 if (!IsVectorizableOpcode(I->getOpcode())) 7108 return nullptr; 7109 7110 // Success: widen this instruction. 7111 return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands())); 7112 } 7113 7114 VPBasicBlock *VPRecipeBuilder::handleReplication( 7115 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 7116 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 7117 VPlanPtr &Plan) { 7118 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 7119 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 7120 Range); 7121 7122 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 7123 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 7124 7125 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 7126 IsUniform, IsPredicated); 7127 setRecipe(I, Recipe); 7128 7129 // Find if I uses a predicated instruction. If so, it will use its scalar 7130 // value. Avoid hoisting the insert-element which packs the scalar value into 7131 // a vector value, as that happens iff all users use the vector value. 7132 for (auto &Op : I->operands()) 7133 if (auto *PredInst = dyn_cast<Instruction>(Op)) 7134 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 7135 PredInst2Recipe[PredInst]->setAlsoPack(false); 7136 7137 // Finalize the recipe for Instr, first if it is not predicated. 7138 if (!IsPredicated) { 7139 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 7140 VPBB->appendRecipe(Recipe); 7141 return VPBB; 7142 } 7143 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 7144 assert(VPBB->getSuccessors().empty() && 7145 "VPBB has successors when handling predicated replication."); 7146 // Record predicated instructions for above packing optimizations. 7147 PredInst2Recipe[I] = Recipe; 7148 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 7149 VPBlockUtils::insertBlockAfter(Region, VPBB); 7150 auto *RegSucc = new VPBasicBlock(); 7151 VPBlockUtils::insertBlockAfter(RegSucc, Region); 7152 return RegSucc; 7153 } 7154 7155 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 7156 VPRecipeBase *PredRecipe, 7157 VPlanPtr &Plan) { 7158 // Instructions marked for predication are replicated and placed under an 7159 // if-then construct to prevent side-effects. 7160 7161 // Generate recipes to compute the block mask for this region. 7162 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 7163 7164 // Build the triangular if-then region. 7165 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 7166 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 7167 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 7168 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 7169 auto *PHIRecipe = 7170 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 7171 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 7172 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 7173 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 7174 7175 // Note: first set Entry as region entry and then connect successors starting 7176 // from it in order, to propagate the "parent" of each VPBasicBlock. 7177 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 7178 VPBlockUtils::connectBlocks(Pred, Exit); 7179 7180 return Region; 7181 } 7182 7183 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 7184 VFRange &Range, 7185 VPlanPtr &Plan) { 7186 // First, check for specific widening recipes that deal with calls, memory 7187 // operations, inductions and Phi nodes. 7188 if (auto *CI = dyn_cast<CallInst>(Instr)) 7189 return tryToWidenCall(CI, Range, *Plan); 7190 7191 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 7192 return tryToWidenMemory(Instr, Range, Plan); 7193 7194 VPRecipeBase *Recipe; 7195 if (auto Phi = dyn_cast<PHINode>(Instr)) { 7196 if (Phi->getParent() != OrigLoop->getHeader()) 7197 return tryToBlend(Phi, Plan); 7198 if ((Recipe = tryToOptimizeInductionPHI(Phi))) 7199 return Recipe; 7200 return new VPWidenPHIRecipe(Phi); 7201 } 7202 7203 if (isa<TruncInst>(Instr) && 7204 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Range))) 7205 return Recipe; 7206 7207 if (!shouldWiden(Instr, Range)) 7208 return nullptr; 7209 7210 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 7211 return new VPWidenGEPRecipe(GEP, Plan->mapToVPValues(GEP->operands()), 7212 OrigLoop); 7213 7214 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 7215 bool InvariantCond = 7216 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 7217 return new VPWidenSelectRecipe(*SI, Plan->mapToVPValues(SI->operands()), 7218 InvariantCond); 7219 } 7220 7221 return tryToWiden(Instr, *Plan); 7222 } 7223 7224 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 7225 unsigned MaxVF) { 7226 assert(OrigLoop->empty() && "Inner loop expected."); 7227 7228 // Collect conditions feeding internal conditional branches; they need to be 7229 // represented in VPlan for it to model masking. 7230 SmallPtrSet<Value *, 1> NeedDef; 7231 7232 auto *Latch = OrigLoop->getLoopLatch(); 7233 for (BasicBlock *BB : OrigLoop->blocks()) { 7234 if (BB == Latch) 7235 continue; 7236 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7237 if (Branch && Branch->isConditional()) 7238 NeedDef.insert(Branch->getCondition()); 7239 } 7240 7241 // If the tail is to be folded by masking, the primary induction variable, if 7242 // exists needs to be represented in VPlan for it to model early-exit masking. 7243 // Also, both the Phi and the live-out instruction of each reduction are 7244 // required in order to introduce a select between them in VPlan. 7245 if (CM.foldTailByMasking()) { 7246 if (Legal->getPrimaryInduction()) 7247 NeedDef.insert(Legal->getPrimaryInduction()); 7248 for (auto &Reduction : Legal->getReductionVars()) { 7249 NeedDef.insert(Reduction.first); 7250 NeedDef.insert(Reduction.second.getLoopExitInstr()); 7251 } 7252 } 7253 7254 // Collect instructions from the original loop that will become trivially dead 7255 // in the vectorized loop. We don't need to vectorize these instructions. For 7256 // example, original induction update instructions can become dead because we 7257 // separately emit induction "steps" when generating code for the new loop. 7258 // Similarly, we create a new latch condition when setting up the structure 7259 // of the new loop, so the old one can become dead. 7260 SmallPtrSet<Instruction *, 4> DeadInstructions; 7261 collectTriviallyDeadInstructions(DeadInstructions); 7262 7263 // Add assume instructions we need to drop to DeadInstructions, to prevent 7264 // them from being added to the VPlan. 7265 // TODO: We only need to drop assumes in blocks that get flattend. If the 7266 // control flow is preserved, we should keep them. 7267 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 7268 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 7269 7270 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7271 // Dead instructions do not need sinking. Remove them from SinkAfter. 7272 for (Instruction *I : DeadInstructions) 7273 SinkAfter.erase(I); 7274 7275 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7276 VFRange SubRange = {VF, MaxVF + 1}; 7277 VPlans.push_back(buildVPlanWithVPRecipes(SubRange, NeedDef, 7278 DeadInstructions, SinkAfter)); 7279 VF = SubRange.End; 7280 } 7281 } 7282 7283 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 7284 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 7285 SmallPtrSetImpl<Instruction *> &DeadInstructions, 7286 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 7287 7288 // Hold a mapping from predicated instructions to their recipes, in order to 7289 // fix their AlsoPack behavior if a user is determined to replicate and use a 7290 // scalar instead of vector value. 7291 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7292 7293 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 7294 7295 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 7296 7297 // --------------------------------------------------------------------------- 7298 // Pre-construction: record ingredients whose recipes we'll need to further 7299 // process after constructing the initial VPlan. 7300 // --------------------------------------------------------------------------- 7301 7302 // Mark instructions we'll need to sink later and their targets as 7303 // ingredients whose recipe we'll need to record. 7304 for (auto &Entry : SinkAfter) { 7305 RecipeBuilder.recordRecipeOf(Entry.first); 7306 RecipeBuilder.recordRecipeOf(Entry.second); 7307 } 7308 7309 // For each interleave group which is relevant for this (possibly trimmed) 7310 // Range, add it to the set of groups to be later applied to the VPlan and add 7311 // placeholders for its members' Recipes which we'll be replacing with a 7312 // single VPInterleaveRecipe. 7313 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 7314 auto applyIG = [IG, this](unsigned VF) -> bool { 7315 return (VF >= 2 && // Query is illegal for VF == 1 7316 CM.getWideningDecision(IG->getInsertPos(), VF) == 7317 LoopVectorizationCostModel::CM_Interleave); 7318 }; 7319 if (!getDecisionAndClampRange(applyIG, Range)) 7320 continue; 7321 InterleaveGroups.insert(IG); 7322 for (unsigned i = 0; i < IG->getFactor(); i++) 7323 if (Instruction *Member = IG->getMember(i)) 7324 RecipeBuilder.recordRecipeOf(Member); 7325 }; 7326 7327 // --------------------------------------------------------------------------- 7328 // Build initial VPlan: Scan the body of the loop in a topological order to 7329 // visit each basic block after having visited its predecessor basic blocks. 7330 // --------------------------------------------------------------------------- 7331 7332 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7333 auto Plan = std::make_unique<VPlan>(); 7334 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7335 Plan->setEntry(VPBB); 7336 7337 // Represent values that will have defs inside VPlan. 7338 for (Value *V : NeedDef) 7339 Plan->addVPValue(V); 7340 7341 // Scan the body of the loop in a topological order to visit each basic block 7342 // after having visited its predecessor basic blocks. 7343 LoopBlocksDFS DFS(OrigLoop); 7344 DFS.perform(LI); 7345 7346 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 7347 // Relevant instructions from basic block BB will be grouped into VPRecipe 7348 // ingredients and fill a new VPBasicBlock. 7349 unsigned VPBBsForBB = 0; 7350 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 7351 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 7352 VPBB = FirstVPBBForBB; 7353 Builder.setInsertPoint(VPBB); 7354 7355 // Introduce each ingredient into VPlan. 7356 // TODO: Model and preserve debug instrinsics in VPlan. 7357 for (Instruction &I : BB->instructionsWithoutDebug()) { 7358 Instruction *Instr = &I; 7359 7360 // First filter out irrelevant instructions, to ensure no recipes are 7361 // built for them. 7362 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 7363 continue; 7364 7365 if (auto Recipe = 7366 RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) { 7367 RecipeBuilder.setRecipe(Instr, Recipe); 7368 VPBB->appendRecipe(Recipe); 7369 continue; 7370 } 7371 7372 // Otherwise, if all widening options failed, Instruction is to be 7373 // replicated. This may create a successor for VPBB. 7374 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 7375 Instr, Range, VPBB, PredInst2Recipe, Plan); 7376 if (NextVPBB != VPBB) { 7377 VPBB = NextVPBB; 7378 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 7379 : ""); 7380 } 7381 } 7382 } 7383 7384 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 7385 // may also be empty, such as the last one VPBB, reflecting original 7386 // basic-blocks with no recipes. 7387 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 7388 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 7389 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 7390 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 7391 delete PreEntry; 7392 7393 // --------------------------------------------------------------------------- 7394 // Transform initial VPlan: Apply previously taken decisions, in order, to 7395 // bring the VPlan to its final state. 7396 // --------------------------------------------------------------------------- 7397 7398 // Apply Sink-After legal constraints. 7399 for (auto &Entry : SinkAfter) { 7400 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 7401 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 7402 Sink->moveAfter(Target); 7403 } 7404 7405 // Interleave memory: for each Interleave Group we marked earlier as relevant 7406 // for this VPlan, replace the Recipes widening its memory instructions with a 7407 // single VPInterleaveRecipe at its insertion point. 7408 for (auto IG : InterleaveGroups) { 7409 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 7410 RecipeBuilder.getRecipe(IG->getInsertPos())); 7411 (new VPInterleaveRecipe(IG, Recipe->getAddr(), Recipe->getMask())) 7412 ->insertBefore(Recipe); 7413 7414 for (unsigned i = 0; i < IG->getFactor(); ++i) 7415 if (Instruction *Member = IG->getMember(i)) { 7416 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 7417 } 7418 } 7419 7420 // Finally, if tail is folded by masking, introduce selects between the phi 7421 // and the live-out instruction of each reduction, at the end of the latch. 7422 if (CM.foldTailByMasking()) { 7423 Builder.setInsertPoint(VPBB); 7424 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 7425 for (auto &Reduction : Legal->getReductionVars()) { 7426 VPValue *Phi = Plan->getVPValue(Reduction.first); 7427 VPValue *Red = Plan->getVPValue(Reduction.second.getLoopExitInstr()); 7428 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 7429 } 7430 } 7431 7432 std::string PlanName; 7433 raw_string_ostream RSO(PlanName); 7434 unsigned VF = Range.Start; 7435 Plan->addVF(VF); 7436 RSO << "Initial VPlan for VF={" << VF; 7437 for (VF *= 2; VF < Range.End; VF *= 2) { 7438 Plan->addVF(VF); 7439 RSO << "," << VF; 7440 } 7441 RSO << "},UF>=1"; 7442 RSO.flush(); 7443 Plan->setName(PlanName); 7444 7445 return Plan; 7446 } 7447 7448 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 7449 // Outer loop handling: They may require CFG and instruction level 7450 // transformations before even evaluating whether vectorization is profitable. 7451 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7452 // the vectorization pipeline. 7453 assert(!OrigLoop->empty()); 7454 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7455 7456 // Create new empty VPlan 7457 auto Plan = std::make_unique<VPlan>(); 7458 7459 // Build hierarchical CFG 7460 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7461 HCFGBuilder.buildHierarchicalCFG(); 7462 7463 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 7464 Plan->addVF(VF); 7465 7466 if (EnableVPlanPredication) { 7467 VPlanPredicator VPP(*Plan); 7468 VPP.predicate(); 7469 7470 // Avoid running transformation to recipes until masked code generation in 7471 // VPlan-native path is in place. 7472 return Plan; 7473 } 7474 7475 SmallPtrSet<Instruction *, 1> DeadInstructions; 7476 VPlanTransforms::VPInstructionsToVPRecipes( 7477 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 7478 return Plan; 7479 } 7480 7481 Value* LoopVectorizationPlanner::VPCallbackILV:: 7482 getOrCreateVectorValues(Value *V, unsigned Part) { 7483 return ILV.getOrCreateVectorValue(V, Part); 7484 } 7485 7486 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue( 7487 Value *V, const VPIteration &Instance) { 7488 return ILV.getOrCreateScalarValue(V, Instance); 7489 } 7490 7491 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 7492 VPSlotTracker &SlotTracker) const { 7493 O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7494 IG->getInsertPos()->printAsOperand(O, false); 7495 O << ", "; 7496 getAddr()->printAsOperand(O, SlotTracker); 7497 VPValue *Mask = getMask(); 7498 if (Mask) { 7499 O << ", "; 7500 Mask->printAsOperand(O, SlotTracker); 7501 } 7502 for (unsigned i = 0; i < IG->getFactor(); ++i) 7503 if (Instruction *I = IG->getMember(i)) 7504 O << "\\l\" +\n" << Indent << "\" " << VPlanIngredient(I) << " " << i; 7505 } 7506 7507 void VPWidenCallRecipe::execute(VPTransformState &State) { 7508 State.ILV->widenCallInstruction(Ingredient, User, State); 7509 } 7510 7511 void VPWidenSelectRecipe::execute(VPTransformState &State) { 7512 State.ILV->widenSelectInstruction(Ingredient, User, InvariantCond, State); 7513 } 7514 7515 void VPWidenRecipe::execute(VPTransformState &State) { 7516 State.ILV->widenInstruction(Ingredient, User, State); 7517 } 7518 7519 void VPWidenGEPRecipe::execute(VPTransformState &State) { 7520 State.ILV->widenGEP(GEP, User, State.UF, State.VF, IsPtrLoopInvariant, 7521 IsIndexLoopInvariant, State); 7522 } 7523 7524 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7525 assert(!State.Instance && "Int or FP induction being replicated."); 7526 State.ILV->widenIntOrFpInduction(IV, Trunc); 7527 } 7528 7529 void VPWidenPHIRecipe::execute(VPTransformState &State) { 7530 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7531 } 7532 7533 void VPBlendRecipe::execute(VPTransformState &State) { 7534 State.ILV->setDebugLocFromInst(State.Builder, Phi); 7535 // We know that all PHIs in non-header blocks are converted into 7536 // selects, so we don't have to worry about the insertion order and we 7537 // can just use the builder. 7538 // At this point we generate the predication tree. There may be 7539 // duplications since this is a simple recursive scan, but future 7540 // optimizations will clean it up. 7541 7542 unsigned NumIncoming = getNumIncomingValues(); 7543 7544 // Generate a sequence of selects of the form: 7545 // SELECT(Mask3, In3, 7546 // SELECT(Mask2, In2, 7547 // SELECT(Mask1, In1, 7548 // In0))) 7549 // Note that Mask0 is never used: lanes for which no path reaches this phi and 7550 // are essentially undef are taken from In0. 7551 InnerLoopVectorizer::VectorParts Entry(State.UF); 7552 for (unsigned In = 0; In < NumIncoming; ++In) { 7553 for (unsigned Part = 0; Part < State.UF; ++Part) { 7554 // We might have single edge PHIs (blocks) - use an identity 7555 // 'select' for the first PHI operand. 7556 Value *In0 = State.get(getIncomingValue(In), Part); 7557 if (In == 0) 7558 Entry[Part] = In0; // Initialize with the first incoming value. 7559 else { 7560 // Select between the current value and the previous incoming edge 7561 // based on the incoming mask. 7562 Value *Cond = State.get(getMask(In), Part); 7563 Entry[Part] = 7564 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7565 } 7566 } 7567 } 7568 for (unsigned Part = 0; Part < State.UF; ++Part) 7569 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7570 } 7571 7572 void VPInterleaveRecipe::execute(VPTransformState &State) { 7573 assert(!State.Instance && "Interleave group being replicated."); 7574 State.ILV->vectorizeInterleaveGroup(IG, State, getAddr(), getMask()); 7575 } 7576 7577 void VPReplicateRecipe::execute(VPTransformState &State) { 7578 if (State.Instance) { // Generate a single instance. 7579 State.ILV->scalarizeInstruction(Ingredient, User, *State.Instance, 7580 IsPredicated, State); 7581 // Insert scalar instance packing it into a vector. 7582 if (AlsoPack && State.VF > 1) { 7583 // If we're constructing lane 0, initialize to start from undef. 7584 if (State.Instance->Lane == 0) { 7585 Value *Undef = UndefValue::get( 7586 FixedVectorType::get(Ingredient->getType(), State.VF)); 7587 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7588 } 7589 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7590 } 7591 return; 7592 } 7593 7594 // Generate scalar instances for all VF lanes of all UF parts, unless the 7595 // instruction is uniform inwhich case generate only the first lane for each 7596 // of the UF parts. 7597 unsigned EndLane = IsUniform ? 1 : State.VF; 7598 for (unsigned Part = 0; Part < State.UF; ++Part) 7599 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7600 State.ILV->scalarizeInstruction(Ingredient, User, {Part, Lane}, 7601 IsPredicated, State); 7602 } 7603 7604 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7605 assert(State.Instance && "Branch on Mask works only on single instance."); 7606 7607 unsigned Part = State.Instance->Part; 7608 unsigned Lane = State.Instance->Lane; 7609 7610 Value *ConditionBit = nullptr; 7611 VPValue *BlockInMask = getMask(); 7612 if (BlockInMask) { 7613 ConditionBit = State.get(BlockInMask, Part); 7614 if (ConditionBit->getType()->isVectorTy()) 7615 ConditionBit = State.Builder.CreateExtractElement( 7616 ConditionBit, State.Builder.getInt32(Lane)); 7617 } else // Block in mask is all-one. 7618 ConditionBit = State.Builder.getTrue(); 7619 7620 // Replace the temporary unreachable terminator with a new conditional branch, 7621 // whose two destinations will be set later when they are created. 7622 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7623 assert(isa<UnreachableInst>(CurrentTerminator) && 7624 "Expected to replace unreachable terminator with conditional branch."); 7625 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7626 CondBr->setSuccessor(0, nullptr); 7627 ReplaceInstWithInst(CurrentTerminator, CondBr); 7628 } 7629 7630 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7631 assert(State.Instance && "Predicated instruction PHI works per instance."); 7632 Instruction *ScalarPredInst = cast<Instruction>( 7633 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7634 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7635 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7636 assert(PredicatingBB && "Predicated block has no single predecessor."); 7637 7638 // By current pack/unpack logic we need to generate only a single phi node: if 7639 // a vector value for the predicated instruction exists at this point it means 7640 // the instruction has vector users only, and a phi for the vector value is 7641 // needed. In this case the recipe of the predicated instruction is marked to 7642 // also do that packing, thereby "hoisting" the insert-element sequence. 7643 // Otherwise, a phi node for the scalar value is needed. 7644 unsigned Part = State.Instance->Part; 7645 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7646 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7647 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7648 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7649 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7650 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7651 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7652 } else { 7653 Type *PredInstType = PredInst->getType(); 7654 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7655 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7656 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7657 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7658 } 7659 } 7660 7661 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7662 VPValue *StoredValue = isa<StoreInst>(Instr) ? getStoredValue() : nullptr; 7663 State.ILV->vectorizeMemoryInstruction(&Instr, State, getAddr(), StoredValue, 7664 getMask()); 7665 } 7666 7667 // Determine how to lower the scalar epilogue, which depends on 1) optimising 7668 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 7669 // predication, and 4) a TTI hook that analyses whether the loop is suitable 7670 // for predication. 7671 static ScalarEpilogueLowering getScalarEpilogueLowering( 7672 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 7673 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 7674 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 7675 LoopVectorizationLegality &LVL) { 7676 bool OptSize = 7677 F->hasOptSize() || llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 7678 PGSOQueryType::IRPass); 7679 // 1) OptSize takes precedence over all other options, i.e. if this is set, 7680 // don't look at hints or options, and don't request a scalar epilogue. 7681 if (OptSize) 7682 return CM_ScalarEpilogueNotAllowedOptSize; 7683 7684 bool PredicateOptDisabled = PreferPredicateOverEpilog.getNumOccurrences() && 7685 !PreferPredicateOverEpilog; 7686 7687 // 2) Next, if disabling predication is requested on the command line, honour 7688 // this and request a scalar epilogue. 7689 if (PredicateOptDisabled) 7690 return CM_ScalarEpilogueAllowed; 7691 7692 // 3) and 4) look if enabling predication is requested on the command line, 7693 // with a loop hint, or if the TTI hook indicates this is profitable, request 7694 // predication . 7695 if (PreferPredicateOverEpilog || 7696 Hints.getPredicate() == LoopVectorizeHints::FK_Enabled || 7697 (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 7698 LVL.getLAI()) && 7699 Hints.getPredicate() != LoopVectorizeHints::FK_Disabled)) 7700 return CM_ScalarEpilogueNotNeededUsePredicate; 7701 7702 return CM_ScalarEpilogueAllowed; 7703 } 7704 7705 // Process the loop in the VPlan-native vectorization path. This path builds 7706 // VPlan upfront in the vectorization pipeline, which allows to apply 7707 // VPlan-to-VPlan transformations from the very beginning without modifying the 7708 // input LLVM IR. 7709 static bool processLoopInVPlanNativePath( 7710 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7711 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7712 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7713 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 7714 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 7715 7716 if (PSE.getBackedgeTakenCount() == PSE.getSE()->getCouldNotCompute()) { 7717 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 7718 return false; 7719 } 7720 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7721 Function *F = L->getHeader()->getParent(); 7722 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7723 7724 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 7725 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 7726 7727 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7728 &Hints, IAI); 7729 // Use the planner for outer loop vectorization. 7730 // TODO: CM is not used at this point inside the planner. Turn CM into an 7731 // optional argument if we don't need it in the future. 7732 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE); 7733 7734 // Get user vectorization factor. 7735 const unsigned UserVF = Hints.getWidth(); 7736 7737 // Plan how to best vectorize, return the best VF and its cost. 7738 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 7739 7740 // If we are stress testing VPlan builds, do not attempt to generate vector 7741 // code. Masked vector code generation support will follow soon. 7742 // Also, do not attempt to vectorize if no vector code will be produced. 7743 if (VPlanBuildStressTest || EnableVPlanPredication || 7744 VectorizationFactor::Disabled() == VF) 7745 return false; 7746 7747 LVP.setBestPlan(VF.Width, 1); 7748 7749 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 7750 &CM, BFI, PSI); 7751 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7752 << L->getHeader()->getParent()->getName() << "\"\n"); 7753 LVP.executePlan(LB, DT); 7754 7755 // Mark the loop as already vectorized to avoid vectorizing again. 7756 Hints.setAlreadyVectorized(); 7757 7758 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 7759 return true; 7760 } 7761 7762 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 7763 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 7764 !EnableLoopInterleaving), 7765 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 7766 !EnableLoopVectorization) {} 7767 7768 bool LoopVectorizePass::processLoop(Loop *L) { 7769 assert((EnableVPlanNativePath || L->empty()) && 7770 "VPlan-native path is not enabled. Only process inner loops."); 7771 7772 #ifndef NDEBUG 7773 const std::string DebugLocStr = getDebugLocString(L); 7774 #endif /* NDEBUG */ 7775 7776 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7777 << L->getHeader()->getParent()->getName() << "\" from " 7778 << DebugLocStr << "\n"); 7779 7780 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 7781 7782 LLVM_DEBUG( 7783 dbgs() << "LV: Loop hints:" 7784 << " force=" 7785 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7786 ? "disabled" 7787 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7788 ? "enabled" 7789 : "?")) 7790 << " width=" << Hints.getWidth() 7791 << " unroll=" << Hints.getInterleave() << "\n"); 7792 7793 // Function containing loop 7794 Function *F = L->getHeader()->getParent(); 7795 7796 // Looking at the diagnostic output is the only way to determine if a loop 7797 // was vectorized (other than looking at the IR or machine code), so it 7798 // is important to generate an optimization remark for each loop. Most of 7799 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7800 // generated as OptimizationRemark and OptimizationRemarkMissed are 7801 // less verbose reporting vectorized loops and unvectorized loops that may 7802 // benefit from vectorization, respectively. 7803 7804 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 7805 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7806 return false; 7807 } 7808 7809 PredicatedScalarEvolution PSE(*SE, *L); 7810 7811 // Check if it is legal to vectorize the loop. 7812 LoopVectorizationRequirements Requirements(*ORE); 7813 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 7814 &Requirements, &Hints, DB, AC, BFI, PSI); 7815 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7816 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7817 Hints.emitRemarkWithHints(); 7818 return false; 7819 } 7820 7821 // Check the function attributes and profiles to find out if this function 7822 // should be optimized for size. 7823 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 7824 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 7825 7826 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7827 // here. They may require CFG and instruction level transformations before 7828 // even evaluating whether vectorization is profitable. Since we cannot modify 7829 // the incoming IR, we need to build VPlan upfront in the vectorization 7830 // pipeline. 7831 if (!L->empty()) 7832 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7833 ORE, BFI, PSI, Hints); 7834 7835 assert(L->empty() && "Inner loop expected."); 7836 7837 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7838 // count by optimizing for size, to minimize overheads. 7839 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 7840 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 7841 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7842 << "This loop is worth vectorizing only if no scalar " 7843 << "iteration overheads are incurred."); 7844 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7845 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7846 else { 7847 LLVM_DEBUG(dbgs() << "\n"); 7848 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 7849 } 7850 } 7851 7852 // Check the function attributes to see if implicit floats are allowed. 7853 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7854 // an integer loop and the vector instructions selected are purely integer 7855 // vector instructions? 7856 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7857 reportVectorizationFailure( 7858 "Can't vectorize when the NoImplicitFloat attribute is used", 7859 "loop not vectorized due to NoImplicitFloat attribute", 7860 "NoImplicitFloat", ORE, L); 7861 Hints.emitRemarkWithHints(); 7862 return false; 7863 } 7864 7865 // Check if the target supports potentially unsafe FP vectorization. 7866 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7867 // for the target we're vectorizing for, to make sure none of the 7868 // additional fp-math flags can help. 7869 if (Hints.isPotentiallyUnsafe() && 7870 TTI->isFPVectorizationPotentiallyUnsafe()) { 7871 reportVectorizationFailure( 7872 "Potentially unsafe FP op prevents vectorization", 7873 "loop not vectorized due to unsafe FP support.", 7874 "UnsafeFP", ORE, L); 7875 Hints.emitRemarkWithHints(); 7876 return false; 7877 } 7878 7879 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7880 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7881 7882 // If an override option has been passed in for interleaved accesses, use it. 7883 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7884 UseInterleaved = EnableInterleavedMemAccesses; 7885 7886 // Analyze interleaved memory accesses. 7887 if (UseInterleaved) { 7888 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7889 } 7890 7891 // Use the cost model. 7892 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 7893 F, &Hints, IAI); 7894 CM.collectValuesToIgnore(); 7895 7896 // Use the planner for vectorization. 7897 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE); 7898 7899 // Get user vectorization factor and interleave count. 7900 unsigned UserVF = Hints.getWidth(); 7901 unsigned UserIC = Hints.getInterleave(); 7902 7903 // Plan how to best vectorize, return the best VF and its cost. 7904 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 7905 7906 VectorizationFactor VF = VectorizationFactor::Disabled(); 7907 unsigned IC = 1; 7908 7909 if (MaybeVF) { 7910 VF = *MaybeVF; 7911 // Select the interleave count. 7912 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 7913 } 7914 7915 // Identify the diagnostic messages that should be produced. 7916 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7917 bool VectorizeLoop = true, InterleaveLoop = true; 7918 if (Requirements.doesNotMeet(F, L, Hints)) { 7919 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7920 "requirements.\n"); 7921 Hints.emitRemarkWithHints(); 7922 return false; 7923 } 7924 7925 if (VF.Width == 1) { 7926 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7927 VecDiagMsg = std::make_pair( 7928 "VectorizationNotBeneficial", 7929 "the cost-model indicates that vectorization is not beneficial"); 7930 VectorizeLoop = false; 7931 } 7932 7933 if (!MaybeVF && UserIC > 1) { 7934 // Tell the user interleaving was avoided up-front, despite being explicitly 7935 // requested. 7936 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 7937 "interleaving should be avoided up front\n"); 7938 IntDiagMsg = std::make_pair( 7939 "InterleavingAvoided", 7940 "Ignoring UserIC, because interleaving was avoided up front"); 7941 InterleaveLoop = false; 7942 } else if (IC == 1 && UserIC <= 1) { 7943 // Tell the user interleaving is not beneficial. 7944 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7945 IntDiagMsg = std::make_pair( 7946 "InterleavingNotBeneficial", 7947 "the cost-model indicates that interleaving is not beneficial"); 7948 InterleaveLoop = false; 7949 if (UserIC == 1) { 7950 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7951 IntDiagMsg.second += 7952 " and is explicitly disabled or interleave count is set to 1"; 7953 } 7954 } else if (IC > 1 && UserIC == 1) { 7955 // Tell the user interleaving is beneficial, but it explicitly disabled. 7956 LLVM_DEBUG( 7957 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7958 IntDiagMsg = std::make_pair( 7959 "InterleavingBeneficialButDisabled", 7960 "the cost-model indicates that interleaving is beneficial " 7961 "but is explicitly disabled or interleave count is set to 1"); 7962 InterleaveLoop = false; 7963 } 7964 7965 // Override IC if user provided an interleave count. 7966 IC = UserIC > 0 ? UserIC : IC; 7967 7968 // Emit diagnostic messages, if any. 7969 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7970 if (!VectorizeLoop && !InterleaveLoop) { 7971 // Do not vectorize or interleaving the loop. 7972 ORE->emit([&]() { 7973 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7974 L->getStartLoc(), L->getHeader()) 7975 << VecDiagMsg.second; 7976 }); 7977 ORE->emit([&]() { 7978 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7979 L->getStartLoc(), L->getHeader()) 7980 << IntDiagMsg.second; 7981 }); 7982 return false; 7983 } else if (!VectorizeLoop && InterleaveLoop) { 7984 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7985 ORE->emit([&]() { 7986 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7987 L->getStartLoc(), L->getHeader()) 7988 << VecDiagMsg.second; 7989 }); 7990 } else if (VectorizeLoop && !InterleaveLoop) { 7991 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7992 << ") in " << DebugLocStr << '\n'); 7993 ORE->emit([&]() { 7994 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7995 L->getStartLoc(), L->getHeader()) 7996 << IntDiagMsg.second; 7997 }); 7998 } else if (VectorizeLoop && InterleaveLoop) { 7999 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 8000 << ") in " << DebugLocStr << '\n'); 8001 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8002 } 8003 8004 LVP.setBestPlan(VF.Width, IC); 8005 8006 using namespace ore; 8007 bool DisableRuntimeUnroll = false; 8008 MDNode *OrigLoopID = L->getLoopID(); 8009 8010 if (!VectorizeLoop) { 8011 assert(IC > 1 && "interleave count should not be 1 or 0"); 8012 // If we decided that it is not legal to vectorize the loop, then 8013 // interleave it. 8014 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, &CM, 8015 BFI, PSI); 8016 LVP.executePlan(Unroller, DT); 8017 8018 ORE->emit([&]() { 8019 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 8020 L->getHeader()) 8021 << "interleaved loop (interleaved count: " 8022 << NV("InterleaveCount", IC) << ")"; 8023 }); 8024 } else { 8025 // If we decided that it is *legal* to vectorize the loop, then do it. 8026 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 8027 &LVL, &CM, BFI, PSI); 8028 LVP.executePlan(LB, DT); 8029 ++LoopsVectorized; 8030 8031 // Add metadata to disable runtime unrolling a scalar loop when there are 8032 // no runtime checks about strides and memory. A scalar loop that is 8033 // rarely used is not worth unrolling. 8034 if (!LB.areSafetyChecksAdded()) 8035 DisableRuntimeUnroll = true; 8036 8037 // Report the vectorization decision. 8038 ORE->emit([&]() { 8039 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 8040 L->getHeader()) 8041 << "vectorized loop (vectorization width: " 8042 << NV("VectorizationFactor", VF.Width) 8043 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 8044 }); 8045 } 8046 8047 Optional<MDNode *> RemainderLoopID = 8048 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 8049 LLVMLoopVectorizeFollowupEpilogue}); 8050 if (RemainderLoopID.hasValue()) { 8051 L->setLoopID(RemainderLoopID.getValue()); 8052 } else { 8053 if (DisableRuntimeUnroll) 8054 AddRuntimeUnrollDisableMetaData(L); 8055 8056 // Mark the loop as already vectorized to avoid vectorizing again. 8057 Hints.setAlreadyVectorized(); 8058 } 8059 8060 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 8061 return true; 8062 } 8063 8064 LoopVectorizeResult LoopVectorizePass::runImpl( 8065 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8066 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8067 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 8068 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8069 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 8070 SE = &SE_; 8071 LI = &LI_; 8072 TTI = &TTI_; 8073 DT = &DT_; 8074 BFI = &BFI_; 8075 TLI = TLI_; 8076 AA = &AA_; 8077 AC = &AC_; 8078 GetLAA = &GetLAA_; 8079 DB = &DB_; 8080 ORE = &ORE_; 8081 PSI = PSI_; 8082 8083 // Don't attempt if 8084 // 1. the target claims to have no vector registers, and 8085 // 2. interleaving won't help ILP. 8086 // 8087 // The second condition is necessary because, even if the target has no 8088 // vector registers, loop vectorization may still enable scalar 8089 // interleaving. 8090 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 8091 TTI->getMaxInterleaveFactor(1) < 2) 8092 return LoopVectorizeResult(false, false); 8093 8094 bool Changed = false, CFGChanged = false; 8095 8096 // The vectorizer requires loops to be in simplified form. 8097 // Since simplification may add new inner loops, it has to run before the 8098 // legality and profitability checks. This means running the loop vectorizer 8099 // will simplify all loops, regardless of whether anything end up being 8100 // vectorized. 8101 for (auto &L : *LI) 8102 Changed |= CFGChanged |= 8103 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 8104 8105 // Build up a worklist of inner-loops to vectorize. This is necessary as 8106 // the act of vectorizing or partially unrolling a loop creates new loops 8107 // and can invalidate iterators across the loops. 8108 SmallVector<Loop *, 8> Worklist; 8109 8110 for (Loop *L : *LI) 8111 collectSupportedLoops(*L, LI, ORE, Worklist); 8112 8113 LoopsAnalyzed += Worklist.size(); 8114 8115 // Now walk the identified inner loops. 8116 while (!Worklist.empty()) { 8117 Loop *L = Worklist.pop_back_val(); 8118 8119 // For the inner loops we actually process, form LCSSA to simplify the 8120 // transform. 8121 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8122 8123 Changed |= CFGChanged |= processLoop(L); 8124 } 8125 8126 // Process each loop nest in the function. 8127 return LoopVectorizeResult(Changed, CFGChanged); 8128 } 8129 8130 PreservedAnalyses LoopVectorizePass::run(Function &F, 8131 FunctionAnalysisManager &AM) { 8132 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8133 auto &LI = AM.getResult<LoopAnalysis>(F); 8134 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8135 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8136 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8137 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8138 auto &AA = AM.getResult<AAManager>(F); 8139 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8140 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8141 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8142 MemorySSA *MSSA = EnableMSSALoopDependency 8143 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 8144 : nullptr; 8145 8146 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8147 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8148 [&](Loop &L) -> const LoopAccessInfo & { 8149 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA}; 8150 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8151 }; 8152 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 8153 ProfileSummaryInfo *PSI = 8154 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 8155 LoopVectorizeResult Result = 8156 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 8157 if (!Result.MadeAnyChange) 8158 return PreservedAnalyses::all(); 8159 PreservedAnalyses PA; 8160 8161 // We currently do not preserve loopinfo/dominator analyses with outer loop 8162 // vectorization. Until this is addressed, mark these analyses as preserved 8163 // only for non-VPlan-native path. 8164 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 8165 if (!EnableVPlanNativePath) { 8166 PA.preserve<LoopAnalysis>(); 8167 PA.preserve<DominatorTreeAnalysis>(); 8168 } 8169 PA.preserve<BasicAA>(); 8170 PA.preserve<GlobalsAA>(); 8171 if (!Result.MadeCFGChange) 8172 PA.preserveSet<CFGAnalyses>(); 8173 return PA; 8174 } 8175