1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/PatternMatch.h" 121 #include "llvm/IR/Type.h" 122 #include "llvm/IR/Use.h" 123 #include "llvm/IR/User.h" 124 #include "llvm/IR/Value.h" 125 #include "llvm/IR/ValueHandle.h" 126 #include "llvm/IR/Verifier.h" 127 #include "llvm/InitializePasses.h" 128 #include "llvm/Pass.h" 129 #include "llvm/Support/Casting.h" 130 #include "llvm/Support/CommandLine.h" 131 #include "llvm/Support/Compiler.h" 132 #include "llvm/Support/Debug.h" 133 #include "llvm/Support/ErrorHandling.h" 134 #include "llvm/Support/InstructionCost.h" 135 #include "llvm/Support/MathExtras.h" 136 #include "llvm/Support/raw_ostream.h" 137 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 138 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 139 #include "llvm/Transforms/Utils/LoopSimplify.h" 140 #include "llvm/Transforms/Utils/LoopUtils.h" 141 #include "llvm/Transforms/Utils/LoopVersioning.h" 142 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 143 #include "llvm/Transforms/Utils/SizeOpts.h" 144 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 145 #include <algorithm> 146 #include <cassert> 147 #include <cstdint> 148 #include <cstdlib> 149 #include <functional> 150 #include <iterator> 151 #include <limits> 152 #include <memory> 153 #include <string> 154 #include <tuple> 155 #include <utility> 156 157 using namespace llvm; 158 159 #define LV_NAME "loop-vectorize" 160 #define DEBUG_TYPE LV_NAME 161 162 #ifndef NDEBUG 163 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 164 #endif 165 166 /// @{ 167 /// Metadata attribute names 168 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 169 const char LLVMLoopVectorizeFollowupVectorized[] = 170 "llvm.loop.vectorize.followup_vectorized"; 171 const char LLVMLoopVectorizeFollowupEpilogue[] = 172 "llvm.loop.vectorize.followup_epilogue"; 173 /// @} 174 175 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 176 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 177 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 178 179 static cl::opt<bool> EnableEpilogueVectorization( 180 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 181 cl::desc("Enable vectorization of epilogue loops.")); 182 183 static cl::opt<unsigned> EpilogueVectorizationForceVF( 184 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 185 cl::desc("When epilogue vectorization is enabled, and a value greater than " 186 "1 is specified, forces the given VF for all applicable epilogue " 187 "loops.")); 188 189 static cl::opt<unsigned> EpilogueVectorizationMinVF( 190 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 191 cl::desc("Only loops with vectorization factor equal to or larger than " 192 "the specified value are considered for epilogue vectorization.")); 193 194 /// Loops with a known constant trip count below this number are vectorized only 195 /// if no scalar iteration overheads are incurred. 196 static cl::opt<unsigned> TinyTripCountVectorThreshold( 197 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 198 cl::desc("Loops with a constant trip count that is smaller than this " 199 "value are vectorized only if no scalar iteration overheads " 200 "are incurred.")); 201 202 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 203 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 204 cl::desc("The maximum allowed number of runtime memory checks with a " 205 "vectorize(enable) pragma.")); 206 207 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 208 // that predication is preferred, and this lists all options. I.e., the 209 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 210 // and predicate the instructions accordingly. If tail-folding fails, there are 211 // different fallback strategies depending on these values: 212 namespace PreferPredicateTy { 213 enum Option { 214 ScalarEpilogue = 0, 215 PredicateElseScalarEpilogue, 216 PredicateOrDontVectorize 217 }; 218 } // namespace PreferPredicateTy 219 220 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 221 "prefer-predicate-over-epilogue", 222 cl::init(PreferPredicateTy::ScalarEpilogue), 223 cl::Hidden, 224 cl::desc("Tail-folding and predication preferences over creating a scalar " 225 "epilogue loop."), 226 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 227 "scalar-epilogue", 228 "Don't tail-predicate loops, create scalar epilogue"), 229 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 230 "predicate-else-scalar-epilogue", 231 "prefer tail-folding, create scalar epilogue if tail " 232 "folding fails."), 233 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 234 "predicate-dont-vectorize", 235 "prefers tail-folding, don't attempt vectorization if " 236 "tail-folding fails."))); 237 238 static cl::opt<bool> MaximizeBandwidth( 239 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 240 cl::desc("Maximize bandwidth when selecting vectorization factor which " 241 "will be determined by the smallest type in loop.")); 242 243 static cl::opt<bool> EnableInterleavedMemAccesses( 244 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 245 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 246 247 /// An interleave-group may need masking if it resides in a block that needs 248 /// predication, or in order to mask away gaps. 249 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 250 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 251 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 252 253 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 254 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 255 cl::desc("We don't interleave loops with a estimated constant trip count " 256 "below this number")); 257 258 static cl::opt<unsigned> ForceTargetNumScalarRegs( 259 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 260 cl::desc("A flag that overrides the target's number of scalar registers.")); 261 262 static cl::opt<unsigned> ForceTargetNumVectorRegs( 263 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 264 cl::desc("A flag that overrides the target's number of vector registers.")); 265 266 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 267 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 268 cl::desc("A flag that overrides the target's max interleave factor for " 269 "scalar loops.")); 270 271 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 272 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 273 cl::desc("A flag that overrides the target's max interleave factor for " 274 "vectorized loops.")); 275 276 static cl::opt<unsigned> ForceTargetInstructionCost( 277 "force-target-instruction-cost", cl::init(0), cl::Hidden, 278 cl::desc("A flag that overrides the target's expected cost for " 279 "an instruction to a single constant value. Mostly " 280 "useful for getting consistent testing.")); 281 282 static cl::opt<bool> ForceTargetSupportsScalableVectors( 283 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 284 cl::desc( 285 "Pretend that scalable vectors are supported, even if the target does " 286 "not support them. This flag should only be used for testing.")); 287 288 static cl::opt<unsigned> SmallLoopCost( 289 "small-loop-cost", cl::init(20), cl::Hidden, 290 cl::desc( 291 "The cost of a loop that is considered 'small' by the interleaver.")); 292 293 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 294 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 295 cl::desc("Enable the use of the block frequency analysis to access PGO " 296 "heuristics minimizing code growth in cold regions and being more " 297 "aggressive in hot regions.")); 298 299 // Runtime interleave loops for load/store throughput. 300 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 301 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 302 cl::desc( 303 "Enable runtime interleaving until load/store ports are saturated")); 304 305 /// Interleave small loops with scalar reductions. 306 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 307 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 308 cl::desc("Enable interleaving for loops with small iteration counts that " 309 "contain scalar reductions to expose ILP.")); 310 311 /// The number of stores in a loop that are allowed to need predication. 312 static cl::opt<unsigned> NumberOfStoresToPredicate( 313 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 314 cl::desc("Max number of stores to be predicated behind an if.")); 315 316 static cl::opt<bool> EnableIndVarRegisterHeur( 317 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 318 cl::desc("Count the induction variable only once when interleaving")); 319 320 static cl::opt<bool> EnableCondStoresVectorization( 321 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 322 cl::desc("Enable if predication of stores during vectorization.")); 323 324 static cl::opt<unsigned> MaxNestedScalarReductionIC( 325 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 326 cl::desc("The maximum interleave count to use when interleaving a scalar " 327 "reduction in a nested loop.")); 328 329 static cl::opt<bool> 330 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 331 cl::Hidden, 332 cl::desc("Prefer in-loop vector reductions, " 333 "overriding the targets preference.")); 334 335 cl::opt<bool> EnableStrictReductions( 336 "enable-strict-reductions", cl::init(false), cl::Hidden, 337 cl::desc("Enable the vectorisation of loops with in-order (strict) " 338 "FP reductions")); 339 340 static cl::opt<bool> PreferPredicatedReductionSelect( 341 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 342 cl::desc( 343 "Prefer predicating a reduction operation over an after loop select.")); 344 345 cl::opt<bool> EnableVPlanNativePath( 346 "enable-vplan-native-path", cl::init(false), cl::Hidden, 347 cl::desc("Enable VPlan-native vectorization path with " 348 "support for outer loop vectorization.")); 349 350 // FIXME: Remove this switch once we have divergence analysis. Currently we 351 // assume divergent non-backedge branches when this switch is true. 352 cl::opt<bool> EnableVPlanPredication( 353 "enable-vplan-predication", cl::init(false), cl::Hidden, 354 cl::desc("Enable VPlan-native vectorization path predicator with " 355 "support for outer loop vectorization.")); 356 357 // This flag enables the stress testing of the VPlan H-CFG construction in the 358 // VPlan-native vectorization path. It must be used in conjuction with 359 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 360 // verification of the H-CFGs built. 361 static cl::opt<bool> VPlanBuildStressTest( 362 "vplan-build-stress-test", cl::init(false), cl::Hidden, 363 cl::desc( 364 "Build VPlan for every supported loop nest in the function and bail " 365 "out right after the build (stress test the VPlan H-CFG construction " 366 "in the VPlan-native vectorization path).")); 367 368 cl::opt<bool> llvm::EnableLoopInterleaving( 369 "interleave-loops", cl::init(true), cl::Hidden, 370 cl::desc("Enable loop interleaving in Loop vectorization passes")); 371 cl::opt<bool> llvm::EnableLoopVectorization( 372 "vectorize-loops", cl::init(true), cl::Hidden, 373 cl::desc("Run the Loop vectorization passes")); 374 375 cl::opt<bool> PrintVPlansInDotFormat( 376 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 377 cl::desc("Use dot format instead of plain text when dumping VPlans")); 378 379 /// A helper function that returns true if the given type is irregular. The 380 /// type is irregular if its allocated size doesn't equal the store size of an 381 /// element of the corresponding vector type. 382 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 383 // Determine if an array of N elements of type Ty is "bitcast compatible" 384 // with a <N x Ty> vector. 385 // This is only true if there is no padding between the array elements. 386 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 387 } 388 389 /// A helper function that returns the reciprocal of the block probability of 390 /// predicated blocks. If we return X, we are assuming the predicated block 391 /// will execute once for every X iterations of the loop header. 392 /// 393 /// TODO: We should use actual block probability here, if available. Currently, 394 /// we always assume predicated blocks have a 50% chance of executing. 395 static unsigned getReciprocalPredBlockProb() { return 2; } 396 397 /// A helper function that returns an integer or floating-point constant with 398 /// value C. 399 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 400 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 401 : ConstantFP::get(Ty, C); 402 } 403 404 /// Returns "best known" trip count for the specified loop \p L as defined by 405 /// the following procedure: 406 /// 1) Returns exact trip count if it is known. 407 /// 2) Returns expected trip count according to profile data if any. 408 /// 3) Returns upper bound estimate if it is known. 409 /// 4) Returns None if all of the above failed. 410 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 411 // Check if exact trip count is known. 412 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 413 return ExpectedTC; 414 415 // Check if there is an expected trip count available from profile data. 416 if (LoopVectorizeWithBlockFrequency) 417 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 418 return EstimatedTC; 419 420 // Check if upper bound estimate is known. 421 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 422 return ExpectedTC; 423 424 return None; 425 } 426 427 // Forward declare GeneratedRTChecks. 428 class GeneratedRTChecks; 429 430 namespace llvm { 431 432 /// InnerLoopVectorizer vectorizes loops which contain only one basic 433 /// block to a specified vectorization factor (VF). 434 /// This class performs the widening of scalars into vectors, or multiple 435 /// scalars. This class also implements the following features: 436 /// * It inserts an epilogue loop for handling loops that don't have iteration 437 /// counts that are known to be a multiple of the vectorization factor. 438 /// * It handles the code generation for reduction variables. 439 /// * Scalarization (implementation using scalars) of un-vectorizable 440 /// instructions. 441 /// InnerLoopVectorizer does not perform any vectorization-legality 442 /// checks, and relies on the caller to check for the different legality 443 /// aspects. The InnerLoopVectorizer relies on the 444 /// LoopVectorizationLegality class to provide information about the induction 445 /// and reduction variables that were found to a given vectorization factor. 446 class InnerLoopVectorizer { 447 public: 448 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 449 LoopInfo *LI, DominatorTree *DT, 450 const TargetLibraryInfo *TLI, 451 const TargetTransformInfo *TTI, AssumptionCache *AC, 452 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 453 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 454 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 455 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 456 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 457 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 458 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 459 PSI(PSI), RTChecks(RTChecks) { 460 // Query this against the original loop and save it here because the profile 461 // of the original loop header may change as the transformation happens. 462 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 463 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 464 } 465 466 virtual ~InnerLoopVectorizer() = default; 467 468 /// Create a new empty loop that will contain vectorized instructions later 469 /// on, while the old loop will be used as the scalar remainder. Control flow 470 /// is generated around the vectorized (and scalar epilogue) loops consisting 471 /// of various checks and bypasses. Return the pre-header block of the new 472 /// loop. 473 /// In the case of epilogue vectorization, this function is overriden to 474 /// handle the more complex control flow around the loops. 475 virtual BasicBlock *createVectorizedLoopSkeleton(); 476 477 /// Widen a single instruction within the innermost loop. 478 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 479 VPTransformState &State); 480 481 /// Widen a single call instruction within the innermost loop. 482 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 483 VPTransformState &State); 484 485 /// Widen a single select instruction within the innermost loop. 486 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 487 bool InvariantCond, VPTransformState &State); 488 489 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 490 void fixVectorizedLoop(VPTransformState &State); 491 492 // Return true if any runtime check is added. 493 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 494 495 /// A type for vectorized values in the new loop. Each value from the 496 /// original loop, when vectorized, is represented by UF vector values in the 497 /// new unrolled loop, where UF is the unroll factor. 498 using VectorParts = SmallVector<Value *, 2>; 499 500 /// Vectorize a single GetElementPtrInst based on information gathered and 501 /// decisions taken during planning. 502 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 503 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 504 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 505 506 /// Vectorize a single PHINode in a block. This method handles the induction 507 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 508 /// arbitrary length vectors. 509 void widenPHIInstruction(Instruction *PN, RecurrenceDescriptor *RdxDesc, 510 VPWidenPHIRecipe *PhiR, VPTransformState &State); 511 512 /// A helper function to scalarize a single Instruction in the innermost loop. 513 /// Generates a sequence of scalar instances for each lane between \p MinLane 514 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 515 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 516 /// Instr's operands. 517 void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands, 518 const VPIteration &Instance, bool IfPredicateInstr, 519 VPTransformState &State); 520 521 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 522 /// is provided, the integer induction variable will first be truncated to 523 /// the corresponding type. 524 void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc, 525 VPValue *Def, VPValue *CastDef, 526 VPTransformState &State); 527 528 /// Construct the vector value of a scalarized value \p V one lane at a time. 529 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 530 VPTransformState &State); 531 532 /// Try to vectorize interleaved access group \p Group with the base address 533 /// given in \p Addr, optionally masking the vector operations if \p 534 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 535 /// values in the vectorized loop. 536 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 537 ArrayRef<VPValue *> VPDefs, 538 VPTransformState &State, VPValue *Addr, 539 ArrayRef<VPValue *> StoredValues, 540 VPValue *BlockInMask = nullptr); 541 542 /// Vectorize Load and Store instructions with the base address given in \p 543 /// Addr, optionally masking the vector operations if \p BlockInMask is 544 /// non-null. Use \p State to translate given VPValues to IR values in the 545 /// vectorized loop. 546 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 547 VPValue *Def, VPValue *Addr, 548 VPValue *StoredValue, VPValue *BlockInMask); 549 550 /// Set the debug location in the builder using the debug location in 551 /// the instruction. 552 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 553 554 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 555 void fixNonInductionPHIs(VPTransformState &State); 556 557 /// Returns true if the reordering of FP operations is not allowed, but we are 558 /// able to vectorize with strict in-order reductions for the given RdxDesc. 559 bool useOrderedReductions(RecurrenceDescriptor &RdxDesc); 560 561 /// Create a broadcast instruction. This method generates a broadcast 562 /// instruction (shuffle) for loop invariant values and for the induction 563 /// value. If this is the induction variable then we extend it to N, N+1, ... 564 /// this is needed because each iteration in the loop corresponds to a SIMD 565 /// element. 566 virtual Value *getBroadcastInstrs(Value *V); 567 568 protected: 569 friend class LoopVectorizationPlanner; 570 571 /// A small list of PHINodes. 572 using PhiVector = SmallVector<PHINode *, 4>; 573 574 /// A type for scalarized values in the new loop. Each value from the 575 /// original loop, when scalarized, is represented by UF x VF scalar values 576 /// in the new unrolled loop, where UF is the unroll factor and VF is the 577 /// vectorization factor. 578 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 579 580 /// Set up the values of the IVs correctly when exiting the vector loop. 581 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 582 Value *CountRoundDown, Value *EndValue, 583 BasicBlock *MiddleBlock); 584 585 /// Create a new induction variable inside L. 586 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 587 Value *Step, Instruction *DL); 588 589 /// Handle all cross-iteration phis in the header. 590 void fixCrossIterationPHIs(VPTransformState &State); 591 592 /// Fix a first-order recurrence. This is the second phase of vectorizing 593 /// this phi node. 594 void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State); 595 596 /// Fix a reduction cross-iteration phi. This is the second phase of 597 /// vectorizing this phi node. 598 void fixReduction(VPWidenPHIRecipe *Phi, VPTransformState &State); 599 600 /// Clear NSW/NUW flags from reduction instructions if necessary. 601 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 602 VPTransformState &State); 603 604 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 605 /// means we need to add the appropriate incoming value from the middle 606 /// block as exiting edges from the scalar epilogue loop (if present) are 607 /// already in place, and we exit the vector loop exclusively to the middle 608 /// block. 609 void fixLCSSAPHIs(VPTransformState &State); 610 611 /// Iteratively sink the scalarized operands of a predicated instruction into 612 /// the block that was created for it. 613 void sinkScalarOperands(Instruction *PredInst); 614 615 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 616 /// represented as. 617 void truncateToMinimalBitwidths(VPTransformState &State); 618 619 /// This function adds 620 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 621 /// to each vector element of Val. The sequence starts at StartIndex. 622 /// \p Opcode is relevant for FP induction variable. 623 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 624 Instruction::BinaryOps Opcode = 625 Instruction::BinaryOpsEnd); 626 627 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 628 /// variable on which to base the steps, \p Step is the size of the step, and 629 /// \p EntryVal is the value from the original loop that maps to the steps. 630 /// Note that \p EntryVal doesn't have to be an induction variable - it 631 /// can also be a truncate instruction. 632 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 633 const InductionDescriptor &ID, VPValue *Def, 634 VPValue *CastDef, VPTransformState &State); 635 636 /// Create a vector induction phi node based on an existing scalar one. \p 637 /// EntryVal is the value from the original loop that maps to the vector phi 638 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 639 /// truncate instruction, instead of widening the original IV, we widen a 640 /// version of the IV truncated to \p EntryVal's type. 641 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 642 Value *Step, Value *Start, 643 Instruction *EntryVal, VPValue *Def, 644 VPValue *CastDef, 645 VPTransformState &State); 646 647 /// Returns true if an instruction \p I should be scalarized instead of 648 /// vectorized for the chosen vectorization factor. 649 bool shouldScalarizeInstruction(Instruction *I) const; 650 651 /// Returns true if we should generate a scalar version of \p IV. 652 bool needsScalarInduction(Instruction *IV) const; 653 654 /// If there is a cast involved in the induction variable \p ID, which should 655 /// be ignored in the vectorized loop body, this function records the 656 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 657 /// cast. We had already proved that the casted Phi is equal to the uncasted 658 /// Phi in the vectorized loop (under a runtime guard), and therefore 659 /// there is no need to vectorize the cast - the same value can be used in the 660 /// vector loop for both the Phi and the cast. 661 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 662 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 663 /// 664 /// \p EntryVal is the value from the original loop that maps to the vector 665 /// phi node and is used to distinguish what is the IV currently being 666 /// processed - original one (if \p EntryVal is a phi corresponding to the 667 /// original IV) or the "newly-created" one based on the proof mentioned above 668 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 669 /// latter case \p EntryVal is a TruncInst and we must not record anything for 670 /// that IV, but it's error-prone to expect callers of this routine to care 671 /// about that, hence this explicit parameter. 672 void recordVectorLoopValueForInductionCast( 673 const InductionDescriptor &ID, const Instruction *EntryVal, 674 Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State, 675 unsigned Part, unsigned Lane = UINT_MAX); 676 677 /// Generate a shuffle sequence that will reverse the vector Vec. 678 virtual Value *reverseVector(Value *Vec); 679 680 /// Returns (and creates if needed) the original loop trip count. 681 Value *getOrCreateTripCount(Loop *NewLoop); 682 683 /// Returns (and creates if needed) the trip count of the widened loop. 684 Value *getOrCreateVectorTripCount(Loop *NewLoop); 685 686 /// Returns a bitcasted value to the requested vector type. 687 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 688 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 689 const DataLayout &DL); 690 691 /// Emit a bypass check to see if the vector trip count is zero, including if 692 /// it overflows. 693 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 694 695 /// Emit a bypass check to see if all of the SCEV assumptions we've 696 /// had to make are correct. Returns the block containing the checks or 697 /// nullptr if no checks have been added. 698 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 699 700 /// Emit bypass checks to check any memory assumptions we may have made. 701 /// Returns the block containing the checks or nullptr if no checks have been 702 /// added. 703 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 704 705 /// Compute the transformed value of Index at offset StartValue using step 706 /// StepValue. 707 /// For integer induction, returns StartValue + Index * StepValue. 708 /// For pointer induction, returns StartValue[Index * StepValue]. 709 /// FIXME: The newly created binary instructions should contain nsw/nuw 710 /// flags, which can be found from the original scalar operations. 711 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 712 const DataLayout &DL, 713 const InductionDescriptor &ID) const; 714 715 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 716 /// vector loop preheader, middle block and scalar preheader. Also 717 /// allocate a loop object for the new vector loop and return it. 718 Loop *createVectorLoopSkeleton(StringRef Prefix); 719 720 /// Create new phi nodes for the induction variables to resume iteration count 721 /// in the scalar epilogue, from where the vectorized loop left off (given by 722 /// \p VectorTripCount). 723 /// In cases where the loop skeleton is more complicated (eg. epilogue 724 /// vectorization) and the resume values can come from an additional bypass 725 /// block, the \p AdditionalBypass pair provides information about the bypass 726 /// block and the end value on the edge from bypass to this loop. 727 void createInductionResumeValues( 728 Loop *L, Value *VectorTripCount, 729 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 730 731 /// Complete the loop skeleton by adding debug MDs, creating appropriate 732 /// conditional branches in the middle block, preparing the builder and 733 /// running the verifier. Take in the vector loop \p L as argument, and return 734 /// the preheader of the completed vector loop. 735 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 736 737 /// Add additional metadata to \p To that was not present on \p Orig. 738 /// 739 /// Currently this is used to add the noalias annotations based on the 740 /// inserted memchecks. Use this for instructions that are *cloned* into the 741 /// vector loop. 742 void addNewMetadata(Instruction *To, const Instruction *Orig); 743 744 /// Add metadata from one instruction to another. 745 /// 746 /// This includes both the original MDs from \p From and additional ones (\see 747 /// addNewMetadata). Use this for *newly created* instructions in the vector 748 /// loop. 749 void addMetadata(Instruction *To, Instruction *From); 750 751 /// Similar to the previous function but it adds the metadata to a 752 /// vector of instructions. 753 void addMetadata(ArrayRef<Value *> To, Instruction *From); 754 755 /// Allow subclasses to override and print debug traces before/after vplan 756 /// execution, when trace information is requested. 757 virtual void printDebugTracesAtStart(){}; 758 virtual void printDebugTracesAtEnd(){}; 759 760 /// The original loop. 761 Loop *OrigLoop; 762 763 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 764 /// dynamic knowledge to simplify SCEV expressions and converts them to a 765 /// more usable form. 766 PredicatedScalarEvolution &PSE; 767 768 /// Loop Info. 769 LoopInfo *LI; 770 771 /// Dominator Tree. 772 DominatorTree *DT; 773 774 /// Alias Analysis. 775 AAResults *AA; 776 777 /// Target Library Info. 778 const TargetLibraryInfo *TLI; 779 780 /// Target Transform Info. 781 const TargetTransformInfo *TTI; 782 783 /// Assumption Cache. 784 AssumptionCache *AC; 785 786 /// Interface to emit optimization remarks. 787 OptimizationRemarkEmitter *ORE; 788 789 /// LoopVersioning. It's only set up (non-null) if memchecks were 790 /// used. 791 /// 792 /// This is currently only used to add no-alias metadata based on the 793 /// memchecks. The actually versioning is performed manually. 794 std::unique_ptr<LoopVersioning> LVer; 795 796 /// The vectorization SIMD factor to use. Each vector will have this many 797 /// vector elements. 798 ElementCount VF; 799 800 /// The vectorization unroll factor to use. Each scalar is vectorized to this 801 /// many different vector instructions. 802 unsigned UF; 803 804 /// The builder that we use 805 IRBuilder<> Builder; 806 807 // --- Vectorization state --- 808 809 /// The vector-loop preheader. 810 BasicBlock *LoopVectorPreHeader; 811 812 /// The scalar-loop preheader. 813 BasicBlock *LoopScalarPreHeader; 814 815 /// Middle Block between the vector and the scalar. 816 BasicBlock *LoopMiddleBlock; 817 818 /// The (unique) ExitBlock of the scalar loop. Note that 819 /// there can be multiple exiting edges reaching this block. 820 BasicBlock *LoopExitBlock; 821 822 /// The vector loop body. 823 BasicBlock *LoopVectorBody; 824 825 /// The scalar loop body. 826 BasicBlock *LoopScalarBody; 827 828 /// A list of all bypass blocks. The first block is the entry of the loop. 829 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 830 831 /// The new Induction variable which was added to the new block. 832 PHINode *Induction = nullptr; 833 834 /// The induction variable of the old basic block. 835 PHINode *OldInduction = nullptr; 836 837 /// Store instructions that were predicated. 838 SmallVector<Instruction *, 4> PredicatedInstructions; 839 840 /// Trip count of the original loop. 841 Value *TripCount = nullptr; 842 843 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 844 Value *VectorTripCount = nullptr; 845 846 /// The legality analysis. 847 LoopVectorizationLegality *Legal; 848 849 /// The profitablity analysis. 850 LoopVectorizationCostModel *Cost; 851 852 // Record whether runtime checks are added. 853 bool AddedSafetyChecks = false; 854 855 // Holds the end values for each induction variable. We save the end values 856 // so we can later fix-up the external users of the induction variables. 857 DenseMap<PHINode *, Value *> IVEndValues; 858 859 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 860 // fixed up at the end of vector code generation. 861 SmallVector<PHINode *, 8> OrigPHIsToFix; 862 863 /// BFI and PSI are used to check for profile guided size optimizations. 864 BlockFrequencyInfo *BFI; 865 ProfileSummaryInfo *PSI; 866 867 // Whether this loop should be optimized for size based on profile guided size 868 // optimizatios. 869 bool OptForSizeBasedOnProfile; 870 871 /// Structure to hold information about generated runtime checks, responsible 872 /// for cleaning the checks, if vectorization turns out unprofitable. 873 GeneratedRTChecks &RTChecks; 874 }; 875 876 class InnerLoopUnroller : public InnerLoopVectorizer { 877 public: 878 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 879 LoopInfo *LI, DominatorTree *DT, 880 const TargetLibraryInfo *TLI, 881 const TargetTransformInfo *TTI, AssumptionCache *AC, 882 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 883 LoopVectorizationLegality *LVL, 884 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 885 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 886 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 887 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 888 BFI, PSI, Check) {} 889 890 private: 891 Value *getBroadcastInstrs(Value *V) override; 892 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 893 Instruction::BinaryOps Opcode = 894 Instruction::BinaryOpsEnd) override; 895 Value *reverseVector(Value *Vec) override; 896 }; 897 898 /// Encapsulate information regarding vectorization of a loop and its epilogue. 899 /// This information is meant to be updated and used across two stages of 900 /// epilogue vectorization. 901 struct EpilogueLoopVectorizationInfo { 902 ElementCount MainLoopVF = ElementCount::getFixed(0); 903 unsigned MainLoopUF = 0; 904 ElementCount EpilogueVF = ElementCount::getFixed(0); 905 unsigned EpilogueUF = 0; 906 BasicBlock *MainLoopIterationCountCheck = nullptr; 907 BasicBlock *EpilogueIterationCountCheck = nullptr; 908 BasicBlock *SCEVSafetyCheck = nullptr; 909 BasicBlock *MemSafetyCheck = nullptr; 910 Value *TripCount = nullptr; 911 Value *VectorTripCount = nullptr; 912 913 EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF, 914 unsigned EUF) 915 : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF), 916 EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) { 917 assert(EUF == 1 && 918 "A high UF for the epilogue loop is likely not beneficial."); 919 } 920 }; 921 922 /// An extension of the inner loop vectorizer that creates a skeleton for a 923 /// vectorized loop that has its epilogue (residual) also vectorized. 924 /// The idea is to run the vplan on a given loop twice, firstly to setup the 925 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 926 /// from the first step and vectorize the epilogue. This is achieved by 927 /// deriving two concrete strategy classes from this base class and invoking 928 /// them in succession from the loop vectorizer planner. 929 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 930 public: 931 InnerLoopAndEpilogueVectorizer( 932 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 933 DominatorTree *DT, const TargetLibraryInfo *TLI, 934 const TargetTransformInfo *TTI, AssumptionCache *AC, 935 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 936 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 937 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 938 GeneratedRTChecks &Checks) 939 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 940 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 941 Checks), 942 EPI(EPI) {} 943 944 // Override this function to handle the more complex control flow around the 945 // three loops. 946 BasicBlock *createVectorizedLoopSkeleton() final override { 947 return createEpilogueVectorizedLoopSkeleton(); 948 } 949 950 /// The interface for creating a vectorized skeleton using one of two 951 /// different strategies, each corresponding to one execution of the vplan 952 /// as described above. 953 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 954 955 /// Holds and updates state information required to vectorize the main loop 956 /// and its epilogue in two separate passes. This setup helps us avoid 957 /// regenerating and recomputing runtime safety checks. It also helps us to 958 /// shorten the iteration-count-check path length for the cases where the 959 /// iteration count of the loop is so small that the main vector loop is 960 /// completely skipped. 961 EpilogueLoopVectorizationInfo &EPI; 962 }; 963 964 /// A specialized derived class of inner loop vectorizer that performs 965 /// vectorization of *main* loops in the process of vectorizing loops and their 966 /// epilogues. 967 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 968 public: 969 EpilogueVectorizerMainLoop( 970 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 971 DominatorTree *DT, const TargetLibraryInfo *TLI, 972 const TargetTransformInfo *TTI, AssumptionCache *AC, 973 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 974 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 975 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 976 GeneratedRTChecks &Check) 977 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 978 EPI, LVL, CM, BFI, PSI, Check) {} 979 /// Implements the interface for creating a vectorized skeleton using the 980 /// *main loop* strategy (ie the first pass of vplan execution). 981 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 982 983 protected: 984 /// Emits an iteration count bypass check once for the main loop (when \p 985 /// ForEpilogue is false) and once for the epilogue loop (when \p 986 /// ForEpilogue is true). 987 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 988 bool ForEpilogue); 989 void printDebugTracesAtStart() override; 990 void printDebugTracesAtEnd() override; 991 }; 992 993 // A specialized derived class of inner loop vectorizer that performs 994 // vectorization of *epilogue* loops in the process of vectorizing loops and 995 // their epilogues. 996 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 997 public: 998 EpilogueVectorizerEpilogueLoop( 999 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 1000 DominatorTree *DT, const TargetLibraryInfo *TLI, 1001 const TargetTransformInfo *TTI, AssumptionCache *AC, 1002 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 1003 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 1004 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 1005 GeneratedRTChecks &Checks) 1006 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1007 EPI, LVL, CM, BFI, PSI, Checks) {} 1008 /// Implements the interface for creating a vectorized skeleton using the 1009 /// *epilogue loop* strategy (ie the second pass of vplan execution). 1010 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1011 1012 protected: 1013 /// Emits an iteration count bypass check after the main vector loop has 1014 /// finished to see if there are any iterations left to execute by either 1015 /// the vector epilogue or the scalar epilogue. 1016 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1017 BasicBlock *Bypass, 1018 BasicBlock *Insert); 1019 void printDebugTracesAtStart() override; 1020 void printDebugTracesAtEnd() override; 1021 }; 1022 } // end namespace llvm 1023 1024 /// Look for a meaningful debug location on the instruction or it's 1025 /// operands. 1026 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1027 if (!I) 1028 return I; 1029 1030 DebugLoc Empty; 1031 if (I->getDebugLoc() != Empty) 1032 return I; 1033 1034 for (Use &Op : I->operands()) { 1035 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1036 if (OpInst->getDebugLoc() != Empty) 1037 return OpInst; 1038 } 1039 1040 return I; 1041 } 1042 1043 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 1044 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 1045 const DILocation *DIL = Inst->getDebugLoc(); 1046 1047 // When a FSDiscriminator is enabled, we don't need to add the multiply 1048 // factors to the discriminators. 1049 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1050 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 1051 // FIXME: For scalable vectors, assume vscale=1. 1052 auto NewDIL = 1053 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1054 if (NewDIL) 1055 B.SetCurrentDebugLocation(NewDIL.getValue()); 1056 else 1057 LLVM_DEBUG(dbgs() 1058 << "Failed to create new discriminator: " 1059 << DIL->getFilename() << " Line: " << DIL->getLine()); 1060 } else 1061 B.SetCurrentDebugLocation(DIL); 1062 } else 1063 B.SetCurrentDebugLocation(DebugLoc()); 1064 } 1065 1066 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1067 /// is passed, the message relates to that particular instruction. 1068 #ifndef NDEBUG 1069 static void debugVectorizationMessage(const StringRef Prefix, 1070 const StringRef DebugMsg, 1071 Instruction *I) { 1072 dbgs() << "LV: " << Prefix << DebugMsg; 1073 if (I != nullptr) 1074 dbgs() << " " << *I; 1075 else 1076 dbgs() << '.'; 1077 dbgs() << '\n'; 1078 } 1079 #endif 1080 1081 /// Create an analysis remark that explains why vectorization failed 1082 /// 1083 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1084 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1085 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1086 /// the location of the remark. \return the remark object that can be 1087 /// streamed to. 1088 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1089 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1090 Value *CodeRegion = TheLoop->getHeader(); 1091 DebugLoc DL = TheLoop->getStartLoc(); 1092 1093 if (I) { 1094 CodeRegion = I->getParent(); 1095 // If there is no debug location attached to the instruction, revert back to 1096 // using the loop's. 1097 if (I->getDebugLoc()) 1098 DL = I->getDebugLoc(); 1099 } 1100 1101 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1102 } 1103 1104 /// Return a value for Step multiplied by VF. 1105 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) { 1106 assert(isa<ConstantInt>(Step) && "Expected an integer step"); 1107 Constant *StepVal = ConstantInt::get( 1108 Step->getType(), 1109 cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue()); 1110 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1111 } 1112 1113 namespace llvm { 1114 1115 /// Return the runtime value for VF. 1116 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1117 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1118 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1119 } 1120 1121 void reportVectorizationFailure(const StringRef DebugMsg, 1122 const StringRef OREMsg, const StringRef ORETag, 1123 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1124 Instruction *I) { 1125 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1126 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1127 ORE->emit( 1128 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1129 << "loop not vectorized: " << OREMsg); 1130 } 1131 1132 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1133 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1134 Instruction *I) { 1135 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1136 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1137 ORE->emit( 1138 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1139 << Msg); 1140 } 1141 1142 } // end namespace llvm 1143 1144 #ifndef NDEBUG 1145 /// \return string containing a file name and a line # for the given loop. 1146 static std::string getDebugLocString(const Loop *L) { 1147 std::string Result; 1148 if (L) { 1149 raw_string_ostream OS(Result); 1150 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1151 LoopDbgLoc.print(OS); 1152 else 1153 // Just print the module name. 1154 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1155 OS.flush(); 1156 } 1157 return Result; 1158 } 1159 #endif 1160 1161 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1162 const Instruction *Orig) { 1163 // If the loop was versioned with memchecks, add the corresponding no-alias 1164 // metadata. 1165 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1166 LVer->annotateInstWithNoAlias(To, Orig); 1167 } 1168 1169 void InnerLoopVectorizer::addMetadata(Instruction *To, 1170 Instruction *From) { 1171 propagateMetadata(To, From); 1172 addNewMetadata(To, From); 1173 } 1174 1175 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1176 Instruction *From) { 1177 for (Value *V : To) { 1178 if (Instruction *I = dyn_cast<Instruction>(V)) 1179 addMetadata(I, From); 1180 } 1181 } 1182 1183 namespace llvm { 1184 1185 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1186 // lowered. 1187 enum ScalarEpilogueLowering { 1188 1189 // The default: allowing scalar epilogues. 1190 CM_ScalarEpilogueAllowed, 1191 1192 // Vectorization with OptForSize: don't allow epilogues. 1193 CM_ScalarEpilogueNotAllowedOptSize, 1194 1195 // A special case of vectorisation with OptForSize: loops with a very small 1196 // trip count are considered for vectorization under OptForSize, thereby 1197 // making sure the cost of their loop body is dominant, free of runtime 1198 // guards and scalar iteration overheads. 1199 CM_ScalarEpilogueNotAllowedLowTripLoop, 1200 1201 // Loop hint predicate indicating an epilogue is undesired. 1202 CM_ScalarEpilogueNotNeededUsePredicate, 1203 1204 // Directive indicating we must either tail fold or not vectorize 1205 CM_ScalarEpilogueNotAllowedUsePredicate 1206 }; 1207 1208 /// ElementCountComparator creates a total ordering for ElementCount 1209 /// for the purposes of using it in a set structure. 1210 struct ElementCountComparator { 1211 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1212 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1213 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1214 } 1215 }; 1216 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1217 1218 /// LoopVectorizationCostModel - estimates the expected speedups due to 1219 /// vectorization. 1220 /// In many cases vectorization is not profitable. This can happen because of 1221 /// a number of reasons. In this class we mainly attempt to predict the 1222 /// expected speedup/slowdowns due to the supported instruction set. We use the 1223 /// TargetTransformInfo to query the different backends for the cost of 1224 /// different operations. 1225 class LoopVectorizationCostModel { 1226 public: 1227 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1228 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1229 LoopVectorizationLegality *Legal, 1230 const TargetTransformInfo &TTI, 1231 const TargetLibraryInfo *TLI, DemandedBits *DB, 1232 AssumptionCache *AC, 1233 OptimizationRemarkEmitter *ORE, const Function *F, 1234 const LoopVectorizeHints *Hints, 1235 InterleavedAccessInfo &IAI) 1236 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1237 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1238 Hints(Hints), InterleaveInfo(IAI) {} 1239 1240 /// \return An upper bound for the vectorization factors (both fixed and 1241 /// scalable). If the factors are 0, vectorization and interleaving should be 1242 /// avoided up front. 1243 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1244 1245 /// \return True if runtime checks are required for vectorization, and false 1246 /// otherwise. 1247 bool runtimeChecksRequired(); 1248 1249 /// \return The most profitable vectorization factor and the cost of that VF. 1250 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1251 /// then this vectorization factor will be selected if vectorization is 1252 /// possible. 1253 VectorizationFactor 1254 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1255 1256 VectorizationFactor 1257 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1258 const LoopVectorizationPlanner &LVP); 1259 1260 /// Setup cost-based decisions for user vectorization factor. 1261 void selectUserVectorizationFactor(ElementCount UserVF) { 1262 collectUniformsAndScalars(UserVF); 1263 collectInstsToScalarize(UserVF); 1264 } 1265 1266 /// \return The size (in bits) of the smallest and widest types in the code 1267 /// that needs to be vectorized. We ignore values that remain scalar such as 1268 /// 64 bit loop indices. 1269 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1270 1271 /// \return The desired interleave count. 1272 /// If interleave count has been specified by metadata it will be returned. 1273 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1274 /// are the selected vectorization factor and the cost of the selected VF. 1275 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1276 1277 /// Memory access instruction may be vectorized in more than one way. 1278 /// Form of instruction after vectorization depends on cost. 1279 /// This function takes cost-based decisions for Load/Store instructions 1280 /// and collects them in a map. This decisions map is used for building 1281 /// the lists of loop-uniform and loop-scalar instructions. 1282 /// The calculated cost is saved with widening decision in order to 1283 /// avoid redundant calculations. 1284 void setCostBasedWideningDecision(ElementCount VF); 1285 1286 /// A struct that represents some properties of the register usage 1287 /// of a loop. 1288 struct RegisterUsage { 1289 /// Holds the number of loop invariant values that are used in the loop. 1290 /// The key is ClassID of target-provided register class. 1291 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1292 /// Holds the maximum number of concurrent live intervals in the loop. 1293 /// The key is ClassID of target-provided register class. 1294 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1295 }; 1296 1297 /// \return Returns information about the register usages of the loop for the 1298 /// given vectorization factors. 1299 SmallVector<RegisterUsage, 8> 1300 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1301 1302 /// Collect values we want to ignore in the cost model. 1303 void collectValuesToIgnore(); 1304 1305 /// Split reductions into those that happen in the loop, and those that happen 1306 /// outside. In loop reductions are collected into InLoopReductionChains. 1307 void collectInLoopReductions(); 1308 1309 /// Returns true if we should use strict in-order reductions for the given 1310 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1311 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1312 /// of FP operations. 1313 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1314 return EnableStrictReductions && !Hints->allowReordering() && 1315 RdxDesc.isOrdered(); 1316 } 1317 1318 /// \returns The smallest bitwidth each instruction can be represented with. 1319 /// The vector equivalents of these instructions should be truncated to this 1320 /// type. 1321 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1322 return MinBWs; 1323 } 1324 1325 /// \returns True if it is more profitable to scalarize instruction \p I for 1326 /// vectorization factor \p VF. 1327 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1328 assert(VF.isVector() && 1329 "Profitable to scalarize relevant only for VF > 1."); 1330 1331 // Cost model is not run in the VPlan-native path - return conservative 1332 // result until this changes. 1333 if (EnableVPlanNativePath) 1334 return false; 1335 1336 auto Scalars = InstsToScalarize.find(VF); 1337 assert(Scalars != InstsToScalarize.end() && 1338 "VF not yet analyzed for scalarization profitability"); 1339 return Scalars->second.find(I) != Scalars->second.end(); 1340 } 1341 1342 /// Returns true if \p I is known to be uniform after vectorization. 1343 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1344 if (VF.isScalar()) 1345 return true; 1346 1347 // Cost model is not run in the VPlan-native path - return conservative 1348 // result until this changes. 1349 if (EnableVPlanNativePath) 1350 return false; 1351 1352 auto UniformsPerVF = Uniforms.find(VF); 1353 assert(UniformsPerVF != Uniforms.end() && 1354 "VF not yet analyzed for uniformity"); 1355 return UniformsPerVF->second.count(I); 1356 } 1357 1358 /// Returns true if \p I is known to be scalar after vectorization. 1359 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1360 if (VF.isScalar()) 1361 return true; 1362 1363 // Cost model is not run in the VPlan-native path - return conservative 1364 // result until this changes. 1365 if (EnableVPlanNativePath) 1366 return false; 1367 1368 auto ScalarsPerVF = Scalars.find(VF); 1369 assert(ScalarsPerVF != Scalars.end() && 1370 "Scalar values are not calculated for VF"); 1371 return ScalarsPerVF->second.count(I); 1372 } 1373 1374 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1375 /// for vectorization factor \p VF. 1376 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1377 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1378 !isProfitableToScalarize(I, VF) && 1379 !isScalarAfterVectorization(I, VF); 1380 } 1381 1382 /// Decision that was taken during cost calculation for memory instruction. 1383 enum InstWidening { 1384 CM_Unknown, 1385 CM_Widen, // For consecutive accesses with stride +1. 1386 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1387 CM_Interleave, 1388 CM_GatherScatter, 1389 CM_Scalarize 1390 }; 1391 1392 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1393 /// instruction \p I and vector width \p VF. 1394 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1395 InstructionCost Cost) { 1396 assert(VF.isVector() && "Expected VF >=2"); 1397 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1398 } 1399 1400 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1401 /// interleaving group \p Grp and vector width \p VF. 1402 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1403 ElementCount VF, InstWidening W, 1404 InstructionCost Cost) { 1405 assert(VF.isVector() && "Expected VF >=2"); 1406 /// Broadcast this decicion to all instructions inside the group. 1407 /// But the cost will be assigned to one instruction only. 1408 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1409 if (auto *I = Grp->getMember(i)) { 1410 if (Grp->getInsertPos() == I) 1411 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1412 else 1413 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1414 } 1415 } 1416 } 1417 1418 /// Return the cost model decision for the given instruction \p I and vector 1419 /// width \p VF. Return CM_Unknown if this instruction did not pass 1420 /// through the cost modeling. 1421 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1422 assert(VF.isVector() && "Expected VF to be a vector VF"); 1423 // Cost model is not run in the VPlan-native path - return conservative 1424 // result until this changes. 1425 if (EnableVPlanNativePath) 1426 return CM_GatherScatter; 1427 1428 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1429 auto Itr = WideningDecisions.find(InstOnVF); 1430 if (Itr == WideningDecisions.end()) 1431 return CM_Unknown; 1432 return Itr->second.first; 1433 } 1434 1435 /// Return the vectorization cost for the given instruction \p I and vector 1436 /// width \p VF. 1437 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1438 assert(VF.isVector() && "Expected VF >=2"); 1439 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1440 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1441 "The cost is not calculated"); 1442 return WideningDecisions[InstOnVF].second; 1443 } 1444 1445 /// Return True if instruction \p I is an optimizable truncate whose operand 1446 /// is an induction variable. Such a truncate will be removed by adding a new 1447 /// induction variable with the destination type. 1448 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1449 // If the instruction is not a truncate, return false. 1450 auto *Trunc = dyn_cast<TruncInst>(I); 1451 if (!Trunc) 1452 return false; 1453 1454 // Get the source and destination types of the truncate. 1455 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1456 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1457 1458 // If the truncate is free for the given types, return false. Replacing a 1459 // free truncate with an induction variable would add an induction variable 1460 // update instruction to each iteration of the loop. We exclude from this 1461 // check the primary induction variable since it will need an update 1462 // instruction regardless. 1463 Value *Op = Trunc->getOperand(0); 1464 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1465 return false; 1466 1467 // If the truncated value is not an induction variable, return false. 1468 return Legal->isInductionPhi(Op); 1469 } 1470 1471 /// Collects the instructions to scalarize for each predicated instruction in 1472 /// the loop. 1473 void collectInstsToScalarize(ElementCount VF); 1474 1475 /// Collect Uniform and Scalar values for the given \p VF. 1476 /// The sets depend on CM decision for Load/Store instructions 1477 /// that may be vectorized as interleave, gather-scatter or scalarized. 1478 void collectUniformsAndScalars(ElementCount VF) { 1479 // Do the analysis once. 1480 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1481 return; 1482 setCostBasedWideningDecision(VF); 1483 collectLoopUniforms(VF); 1484 collectLoopScalars(VF); 1485 } 1486 1487 /// Returns true if the target machine supports masked store operation 1488 /// for the given \p DataType and kind of access to \p Ptr. 1489 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1490 return Legal->isConsecutivePtr(Ptr) && 1491 TTI.isLegalMaskedStore(DataType, Alignment); 1492 } 1493 1494 /// Returns true if the target machine supports masked load operation 1495 /// for the given \p DataType and kind of access to \p Ptr. 1496 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1497 return Legal->isConsecutivePtr(Ptr) && 1498 TTI.isLegalMaskedLoad(DataType, Alignment); 1499 } 1500 1501 /// Returns true if the target machine can represent \p V as a masked gather 1502 /// or scatter operation. 1503 bool isLegalGatherOrScatter(Value *V) { 1504 bool LI = isa<LoadInst>(V); 1505 bool SI = isa<StoreInst>(V); 1506 if (!LI && !SI) 1507 return false; 1508 auto *Ty = getLoadStoreType(V); 1509 Align Align = getLoadStoreAlignment(V); 1510 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1511 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1512 } 1513 1514 /// Returns true if the target machine supports all of the reduction 1515 /// variables found for the given VF. 1516 bool canVectorizeReductions(ElementCount VF) { 1517 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1518 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1519 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1520 })); 1521 } 1522 1523 /// Returns true if \p I is an instruction that will be scalarized with 1524 /// predication. Such instructions include conditional stores and 1525 /// instructions that may divide by zero. 1526 /// If a non-zero VF has been calculated, we check if I will be scalarized 1527 /// predication for that VF. 1528 bool isScalarWithPredication(Instruction *I) const; 1529 1530 // Returns true if \p I is an instruction that will be predicated either 1531 // through scalar predication or masked load/store or masked gather/scatter. 1532 // Superset of instructions that return true for isScalarWithPredication. 1533 bool isPredicatedInst(Instruction *I) { 1534 if (!blockNeedsPredication(I->getParent())) 1535 return false; 1536 // Loads and stores that need some form of masked operation are predicated 1537 // instructions. 1538 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1539 return Legal->isMaskRequired(I); 1540 return isScalarWithPredication(I); 1541 } 1542 1543 /// Returns true if \p I is a memory instruction with consecutive memory 1544 /// access that can be widened. 1545 bool 1546 memoryInstructionCanBeWidened(Instruction *I, 1547 ElementCount VF = ElementCount::getFixed(1)); 1548 1549 /// Returns true if \p I is a memory instruction in an interleaved-group 1550 /// of memory accesses that can be vectorized with wide vector loads/stores 1551 /// and shuffles. 1552 bool 1553 interleavedAccessCanBeWidened(Instruction *I, 1554 ElementCount VF = ElementCount::getFixed(1)); 1555 1556 /// Check if \p Instr belongs to any interleaved access group. 1557 bool isAccessInterleaved(Instruction *Instr) { 1558 return InterleaveInfo.isInterleaved(Instr); 1559 } 1560 1561 /// Get the interleaved access group that \p Instr belongs to. 1562 const InterleaveGroup<Instruction> * 1563 getInterleavedAccessGroup(Instruction *Instr) { 1564 return InterleaveInfo.getInterleaveGroup(Instr); 1565 } 1566 1567 /// Returns true if we're required to use a scalar epilogue for at least 1568 /// the final iteration of the original loop. 1569 bool requiresScalarEpilogue(ElementCount VF) const { 1570 if (!isScalarEpilogueAllowed()) 1571 return false; 1572 // If we might exit from anywhere but the latch, must run the exiting 1573 // iteration in scalar form. 1574 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1575 return true; 1576 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1577 } 1578 1579 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1580 /// loop hint annotation. 1581 bool isScalarEpilogueAllowed() const { 1582 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1583 } 1584 1585 /// Returns true if all loop blocks should be masked to fold tail loop. 1586 bool foldTailByMasking() const { return FoldTailByMasking; } 1587 1588 bool blockNeedsPredication(BasicBlock *BB) const { 1589 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1590 } 1591 1592 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1593 /// nodes to the chain of instructions representing the reductions. Uses a 1594 /// MapVector to ensure deterministic iteration order. 1595 using ReductionChainMap = 1596 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1597 1598 /// Return the chain of instructions representing an inloop reduction. 1599 const ReductionChainMap &getInLoopReductionChains() const { 1600 return InLoopReductionChains; 1601 } 1602 1603 /// Returns true if the Phi is part of an inloop reduction. 1604 bool isInLoopReduction(PHINode *Phi) const { 1605 return InLoopReductionChains.count(Phi); 1606 } 1607 1608 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1609 /// with factor VF. Return the cost of the instruction, including 1610 /// scalarization overhead if it's needed. 1611 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1612 1613 /// Estimate cost of a call instruction CI if it were vectorized with factor 1614 /// VF. Return the cost of the instruction, including scalarization overhead 1615 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1616 /// scalarized - 1617 /// i.e. either vector version isn't available, or is too expensive. 1618 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1619 bool &NeedToScalarize) const; 1620 1621 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1622 /// that of B. 1623 bool isMoreProfitable(const VectorizationFactor &A, 1624 const VectorizationFactor &B) const; 1625 1626 /// Invalidates decisions already taken by the cost model. 1627 void invalidateCostModelingDecisions() { 1628 WideningDecisions.clear(); 1629 Uniforms.clear(); 1630 Scalars.clear(); 1631 } 1632 1633 private: 1634 unsigned NumPredStores = 0; 1635 1636 /// \return An upper bound for the vectorization factors for both 1637 /// fixed and scalable vectorization, where the minimum-known number of 1638 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1639 /// disabled or unsupported, then the scalable part will be equal to 1640 /// ElementCount::getScalable(0). 1641 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1642 ElementCount UserVF); 1643 1644 /// \return the maximized element count based on the targets vector 1645 /// registers and the loop trip-count, but limited to a maximum safe VF. 1646 /// This is a helper function of computeFeasibleMaxVF. 1647 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1648 /// issue that occurred on one of the buildbots which cannot be reproduced 1649 /// without having access to the properietary compiler (see comments on 1650 /// D98509). The issue is currently under investigation and this workaround 1651 /// will be removed as soon as possible. 1652 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1653 unsigned SmallestType, 1654 unsigned WidestType, 1655 const ElementCount &MaxSafeVF); 1656 1657 /// \return the maximum legal scalable VF, based on the safe max number 1658 /// of elements. 1659 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1660 1661 /// The vectorization cost is a combination of the cost itself and a boolean 1662 /// indicating whether any of the contributing operations will actually 1663 /// operate on vector values after type legalization in the backend. If this 1664 /// latter value is false, then all operations will be scalarized (i.e. no 1665 /// vectorization has actually taken place). 1666 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1667 1668 /// Returns the expected execution cost. The unit of the cost does 1669 /// not matter because we use the 'cost' units to compare different 1670 /// vector widths. The cost that is returned is *not* normalized by 1671 /// the factor width. 1672 VectorizationCostTy expectedCost(ElementCount VF); 1673 1674 /// Returns the execution time cost of an instruction for a given vector 1675 /// width. Vector width of one means scalar. 1676 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1677 1678 /// The cost-computation logic from getInstructionCost which provides 1679 /// the vector type as an output parameter. 1680 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1681 Type *&VectorTy); 1682 1683 /// Return the cost of instructions in an inloop reduction pattern, if I is 1684 /// part of that pattern. 1685 InstructionCost getReductionPatternCost(Instruction *I, ElementCount VF, 1686 Type *VectorTy, 1687 TTI::TargetCostKind CostKind); 1688 1689 /// Calculate vectorization cost of memory instruction \p I. 1690 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1691 1692 /// The cost computation for scalarized memory instruction. 1693 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1694 1695 /// The cost computation for interleaving group of memory instructions. 1696 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1697 1698 /// The cost computation for Gather/Scatter instruction. 1699 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1700 1701 /// The cost computation for widening instruction \p I with consecutive 1702 /// memory access. 1703 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1704 1705 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1706 /// Load: scalar load + broadcast. 1707 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1708 /// element) 1709 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1710 1711 /// Estimate the overhead of scalarizing an instruction. This is a 1712 /// convenience wrapper for the type-based getScalarizationOverhead API. 1713 InstructionCost getScalarizationOverhead(Instruction *I, 1714 ElementCount VF) const; 1715 1716 /// Returns whether the instruction is a load or store and will be a emitted 1717 /// as a vector operation. 1718 bool isConsecutiveLoadOrStore(Instruction *I); 1719 1720 /// Returns true if an artificially high cost for emulated masked memrefs 1721 /// should be used. 1722 bool useEmulatedMaskMemRefHack(Instruction *I); 1723 1724 /// Map of scalar integer values to the smallest bitwidth they can be legally 1725 /// represented as. The vector equivalents of these values should be truncated 1726 /// to this type. 1727 MapVector<Instruction *, uint64_t> MinBWs; 1728 1729 /// A type representing the costs for instructions if they were to be 1730 /// scalarized rather than vectorized. The entries are Instruction-Cost 1731 /// pairs. 1732 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1733 1734 /// A set containing all BasicBlocks that are known to present after 1735 /// vectorization as a predicated block. 1736 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1737 1738 /// Records whether it is allowed to have the original scalar loop execute at 1739 /// least once. This may be needed as a fallback loop in case runtime 1740 /// aliasing/dependence checks fail, or to handle the tail/remainder 1741 /// iterations when the trip count is unknown or doesn't divide by the VF, 1742 /// or as a peel-loop to handle gaps in interleave-groups. 1743 /// Under optsize and when the trip count is very small we don't allow any 1744 /// iterations to execute in the scalar loop. 1745 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1746 1747 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1748 bool FoldTailByMasking = false; 1749 1750 /// A map holding scalar costs for different vectorization factors. The 1751 /// presence of a cost for an instruction in the mapping indicates that the 1752 /// instruction will be scalarized when vectorizing with the associated 1753 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1754 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1755 1756 /// Holds the instructions known to be uniform after vectorization. 1757 /// The data is collected per VF. 1758 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1759 1760 /// Holds the instructions known to be scalar after vectorization. 1761 /// The data is collected per VF. 1762 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1763 1764 /// Holds the instructions (address computations) that are forced to be 1765 /// scalarized. 1766 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1767 1768 /// PHINodes of the reductions that should be expanded in-loop along with 1769 /// their associated chains of reduction operations, in program order from top 1770 /// (PHI) to bottom 1771 ReductionChainMap InLoopReductionChains; 1772 1773 /// A Map of inloop reduction operations and their immediate chain operand. 1774 /// FIXME: This can be removed once reductions can be costed correctly in 1775 /// vplan. This was added to allow quick lookup to the inloop operations, 1776 /// without having to loop through InLoopReductionChains. 1777 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1778 1779 /// Returns the expected difference in cost from scalarizing the expression 1780 /// feeding a predicated instruction \p PredInst. The instructions to 1781 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1782 /// non-negative return value implies the expression will be scalarized. 1783 /// Currently, only single-use chains are considered for scalarization. 1784 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1785 ElementCount VF); 1786 1787 /// Collect the instructions that are uniform after vectorization. An 1788 /// instruction is uniform if we represent it with a single scalar value in 1789 /// the vectorized loop corresponding to each vector iteration. Examples of 1790 /// uniform instructions include pointer operands of consecutive or 1791 /// interleaved memory accesses. Note that although uniformity implies an 1792 /// instruction will be scalar, the reverse is not true. In general, a 1793 /// scalarized instruction will be represented by VF scalar values in the 1794 /// vectorized loop, each corresponding to an iteration of the original 1795 /// scalar loop. 1796 void collectLoopUniforms(ElementCount VF); 1797 1798 /// Collect the instructions that are scalar after vectorization. An 1799 /// instruction is scalar if it is known to be uniform or will be scalarized 1800 /// during vectorization. Non-uniform scalarized instructions will be 1801 /// represented by VF values in the vectorized loop, each corresponding to an 1802 /// iteration of the original scalar loop. 1803 void collectLoopScalars(ElementCount VF); 1804 1805 /// Keeps cost model vectorization decision and cost for instructions. 1806 /// Right now it is used for memory instructions only. 1807 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1808 std::pair<InstWidening, InstructionCost>>; 1809 1810 DecisionList WideningDecisions; 1811 1812 /// Returns true if \p V is expected to be vectorized and it needs to be 1813 /// extracted. 1814 bool needsExtract(Value *V, ElementCount VF) const { 1815 Instruction *I = dyn_cast<Instruction>(V); 1816 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1817 TheLoop->isLoopInvariant(I)) 1818 return false; 1819 1820 // Assume we can vectorize V (and hence we need extraction) if the 1821 // scalars are not computed yet. This can happen, because it is called 1822 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1823 // the scalars are collected. That should be a safe assumption in most 1824 // cases, because we check if the operands have vectorizable types 1825 // beforehand in LoopVectorizationLegality. 1826 return Scalars.find(VF) == Scalars.end() || 1827 !isScalarAfterVectorization(I, VF); 1828 }; 1829 1830 /// Returns a range containing only operands needing to be extracted. 1831 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1832 ElementCount VF) const { 1833 return SmallVector<Value *, 4>(make_filter_range( 1834 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1835 } 1836 1837 /// Determines if we have the infrastructure to vectorize loop \p L and its 1838 /// epilogue, assuming the main loop is vectorized by \p VF. 1839 bool isCandidateForEpilogueVectorization(const Loop &L, 1840 const ElementCount VF) const; 1841 1842 /// Returns true if epilogue vectorization is considered profitable, and 1843 /// false otherwise. 1844 /// \p VF is the vectorization factor chosen for the original loop. 1845 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1846 1847 public: 1848 /// The loop that we evaluate. 1849 Loop *TheLoop; 1850 1851 /// Predicated scalar evolution analysis. 1852 PredicatedScalarEvolution &PSE; 1853 1854 /// Loop Info analysis. 1855 LoopInfo *LI; 1856 1857 /// Vectorization legality. 1858 LoopVectorizationLegality *Legal; 1859 1860 /// Vector target information. 1861 const TargetTransformInfo &TTI; 1862 1863 /// Target Library Info. 1864 const TargetLibraryInfo *TLI; 1865 1866 /// Demanded bits analysis. 1867 DemandedBits *DB; 1868 1869 /// Assumption cache. 1870 AssumptionCache *AC; 1871 1872 /// Interface to emit optimization remarks. 1873 OptimizationRemarkEmitter *ORE; 1874 1875 const Function *TheFunction; 1876 1877 /// Loop Vectorize Hint. 1878 const LoopVectorizeHints *Hints; 1879 1880 /// The interleave access information contains groups of interleaved accesses 1881 /// with the same stride and close to each other. 1882 InterleavedAccessInfo &InterleaveInfo; 1883 1884 /// Values to ignore in the cost model. 1885 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1886 1887 /// Values to ignore in the cost model when VF > 1. 1888 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1889 1890 /// Profitable vector factors. 1891 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1892 }; 1893 } // end namespace llvm 1894 1895 /// Helper struct to manage generating runtime checks for vectorization. 1896 /// 1897 /// The runtime checks are created up-front in temporary blocks to allow better 1898 /// estimating the cost and un-linked from the existing IR. After deciding to 1899 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1900 /// temporary blocks are completely removed. 1901 class GeneratedRTChecks { 1902 /// Basic block which contains the generated SCEV checks, if any. 1903 BasicBlock *SCEVCheckBlock = nullptr; 1904 1905 /// The value representing the result of the generated SCEV checks. If it is 1906 /// nullptr, either no SCEV checks have been generated or they have been used. 1907 Value *SCEVCheckCond = nullptr; 1908 1909 /// Basic block which contains the generated memory runtime checks, if any. 1910 BasicBlock *MemCheckBlock = nullptr; 1911 1912 /// The value representing the result of the generated memory runtime checks. 1913 /// If it is nullptr, either no memory runtime checks have been generated or 1914 /// they have been used. 1915 Instruction *MemRuntimeCheckCond = nullptr; 1916 1917 DominatorTree *DT; 1918 LoopInfo *LI; 1919 1920 SCEVExpander SCEVExp; 1921 SCEVExpander MemCheckExp; 1922 1923 public: 1924 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1925 const DataLayout &DL) 1926 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1927 MemCheckExp(SE, DL, "scev.check") {} 1928 1929 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1930 /// accurately estimate the cost of the runtime checks. The blocks are 1931 /// un-linked from the IR and is added back during vector code generation. If 1932 /// there is no vector code generation, the check blocks are removed 1933 /// completely. 1934 void Create(Loop *L, const LoopAccessInfo &LAI, 1935 const SCEVUnionPredicate &UnionPred) { 1936 1937 BasicBlock *LoopHeader = L->getHeader(); 1938 BasicBlock *Preheader = L->getLoopPreheader(); 1939 1940 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1941 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1942 // may be used by SCEVExpander. The blocks will be un-linked from their 1943 // predecessors and removed from LI & DT at the end of the function. 1944 if (!UnionPred.isAlwaysTrue()) { 1945 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1946 nullptr, "vector.scevcheck"); 1947 1948 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1949 &UnionPred, SCEVCheckBlock->getTerminator()); 1950 } 1951 1952 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1953 if (RtPtrChecking.Need) { 1954 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1955 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1956 "vector.memcheck"); 1957 1958 std::tie(std::ignore, MemRuntimeCheckCond) = 1959 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1960 RtPtrChecking.getChecks(), MemCheckExp); 1961 assert(MemRuntimeCheckCond && 1962 "no RT checks generated although RtPtrChecking " 1963 "claimed checks are required"); 1964 } 1965 1966 if (!MemCheckBlock && !SCEVCheckBlock) 1967 return; 1968 1969 // Unhook the temporary block with the checks, update various places 1970 // accordingly. 1971 if (SCEVCheckBlock) 1972 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1973 if (MemCheckBlock) 1974 MemCheckBlock->replaceAllUsesWith(Preheader); 1975 1976 if (SCEVCheckBlock) { 1977 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1978 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1979 Preheader->getTerminator()->eraseFromParent(); 1980 } 1981 if (MemCheckBlock) { 1982 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1983 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 1984 Preheader->getTerminator()->eraseFromParent(); 1985 } 1986 1987 DT->changeImmediateDominator(LoopHeader, Preheader); 1988 if (MemCheckBlock) { 1989 DT->eraseNode(MemCheckBlock); 1990 LI->removeBlock(MemCheckBlock); 1991 } 1992 if (SCEVCheckBlock) { 1993 DT->eraseNode(SCEVCheckBlock); 1994 LI->removeBlock(SCEVCheckBlock); 1995 } 1996 } 1997 1998 /// Remove the created SCEV & memory runtime check blocks & instructions, if 1999 /// unused. 2000 ~GeneratedRTChecks() { 2001 SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT); 2002 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT); 2003 if (!SCEVCheckCond) 2004 SCEVCleaner.markResultUsed(); 2005 2006 if (!MemRuntimeCheckCond) 2007 MemCheckCleaner.markResultUsed(); 2008 2009 if (MemRuntimeCheckCond) { 2010 auto &SE = *MemCheckExp.getSE(); 2011 // Memory runtime check generation creates compares that use expanded 2012 // values. Remove them before running the SCEVExpanderCleaners. 2013 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2014 if (MemCheckExp.isInsertedInstruction(&I)) 2015 continue; 2016 SE.forgetValue(&I); 2017 SE.eraseValueFromMap(&I); 2018 I.eraseFromParent(); 2019 } 2020 } 2021 MemCheckCleaner.cleanup(); 2022 SCEVCleaner.cleanup(); 2023 2024 if (SCEVCheckCond) 2025 SCEVCheckBlock->eraseFromParent(); 2026 if (MemRuntimeCheckCond) 2027 MemCheckBlock->eraseFromParent(); 2028 } 2029 2030 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2031 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2032 /// depending on the generated condition. 2033 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2034 BasicBlock *LoopVectorPreHeader, 2035 BasicBlock *LoopExitBlock) { 2036 if (!SCEVCheckCond) 2037 return nullptr; 2038 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2039 if (C->isZero()) 2040 return nullptr; 2041 2042 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2043 2044 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2045 // Create new preheader for vector loop. 2046 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2047 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2048 2049 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2050 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2051 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2052 SCEVCheckBlock); 2053 2054 DT->addNewBlock(SCEVCheckBlock, Pred); 2055 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2056 2057 ReplaceInstWithInst( 2058 SCEVCheckBlock->getTerminator(), 2059 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2060 // Mark the check as used, to prevent it from being removed during cleanup. 2061 SCEVCheckCond = nullptr; 2062 return SCEVCheckBlock; 2063 } 2064 2065 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2066 /// the branches to branch to the vector preheader or \p Bypass, depending on 2067 /// the generated condition. 2068 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2069 BasicBlock *LoopVectorPreHeader) { 2070 // Check if we generated code that checks in runtime if arrays overlap. 2071 if (!MemRuntimeCheckCond) 2072 return nullptr; 2073 2074 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2075 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2076 MemCheckBlock); 2077 2078 DT->addNewBlock(MemCheckBlock, Pred); 2079 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2080 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2081 2082 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2083 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2084 2085 ReplaceInstWithInst( 2086 MemCheckBlock->getTerminator(), 2087 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2088 MemCheckBlock->getTerminator()->setDebugLoc( 2089 Pred->getTerminator()->getDebugLoc()); 2090 2091 // Mark the check as used, to prevent it from being removed during cleanup. 2092 MemRuntimeCheckCond = nullptr; 2093 return MemCheckBlock; 2094 } 2095 }; 2096 2097 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2098 // vectorization. The loop needs to be annotated with #pragma omp simd 2099 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2100 // vector length information is not provided, vectorization is not considered 2101 // explicit. Interleave hints are not allowed either. These limitations will be 2102 // relaxed in the future. 2103 // Please, note that we are currently forced to abuse the pragma 'clang 2104 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2105 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2106 // provides *explicit vectorization hints* (LV can bypass legal checks and 2107 // assume that vectorization is legal). However, both hints are implemented 2108 // using the same metadata (llvm.loop.vectorize, processed by 2109 // LoopVectorizeHints). This will be fixed in the future when the native IR 2110 // representation for pragma 'omp simd' is introduced. 2111 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2112 OptimizationRemarkEmitter *ORE) { 2113 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2114 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2115 2116 // Only outer loops with an explicit vectorization hint are supported. 2117 // Unannotated outer loops are ignored. 2118 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2119 return false; 2120 2121 Function *Fn = OuterLp->getHeader()->getParent(); 2122 if (!Hints.allowVectorization(Fn, OuterLp, 2123 true /*VectorizeOnlyWhenForced*/)) { 2124 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2125 return false; 2126 } 2127 2128 if (Hints.getInterleave() > 1) { 2129 // TODO: Interleave support is future work. 2130 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2131 "outer loops.\n"); 2132 Hints.emitRemarkWithHints(); 2133 return false; 2134 } 2135 2136 return true; 2137 } 2138 2139 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2140 OptimizationRemarkEmitter *ORE, 2141 SmallVectorImpl<Loop *> &V) { 2142 // Collect inner loops and outer loops without irreducible control flow. For 2143 // now, only collect outer loops that have explicit vectorization hints. If we 2144 // are stress testing the VPlan H-CFG construction, we collect the outermost 2145 // loop of every loop nest. 2146 if (L.isInnermost() || VPlanBuildStressTest || 2147 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2148 LoopBlocksRPO RPOT(&L); 2149 RPOT.perform(LI); 2150 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2151 V.push_back(&L); 2152 // TODO: Collect inner loops inside marked outer loops in case 2153 // vectorization fails for the outer loop. Do not invoke 2154 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2155 // already known to be reducible. We can use an inherited attribute for 2156 // that. 2157 return; 2158 } 2159 } 2160 for (Loop *InnerL : L) 2161 collectSupportedLoops(*InnerL, LI, ORE, V); 2162 } 2163 2164 namespace { 2165 2166 /// The LoopVectorize Pass. 2167 struct LoopVectorize : public FunctionPass { 2168 /// Pass identification, replacement for typeid 2169 static char ID; 2170 2171 LoopVectorizePass Impl; 2172 2173 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2174 bool VectorizeOnlyWhenForced = false) 2175 : FunctionPass(ID), 2176 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2177 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2178 } 2179 2180 bool runOnFunction(Function &F) override { 2181 if (skipFunction(F)) 2182 return false; 2183 2184 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2185 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2186 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2187 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2188 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2189 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2190 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2191 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2192 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2193 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2194 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2195 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2196 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2197 2198 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2199 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2200 2201 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2202 GetLAA, *ORE, PSI).MadeAnyChange; 2203 } 2204 2205 void getAnalysisUsage(AnalysisUsage &AU) const override { 2206 AU.addRequired<AssumptionCacheTracker>(); 2207 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2208 AU.addRequired<DominatorTreeWrapperPass>(); 2209 AU.addRequired<LoopInfoWrapperPass>(); 2210 AU.addRequired<ScalarEvolutionWrapperPass>(); 2211 AU.addRequired<TargetTransformInfoWrapperPass>(); 2212 AU.addRequired<AAResultsWrapperPass>(); 2213 AU.addRequired<LoopAccessLegacyAnalysis>(); 2214 AU.addRequired<DemandedBitsWrapperPass>(); 2215 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2216 AU.addRequired<InjectTLIMappingsLegacy>(); 2217 2218 // We currently do not preserve loopinfo/dominator analyses with outer loop 2219 // vectorization. Until this is addressed, mark these analyses as preserved 2220 // only for non-VPlan-native path. 2221 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2222 if (!EnableVPlanNativePath) { 2223 AU.addPreserved<LoopInfoWrapperPass>(); 2224 AU.addPreserved<DominatorTreeWrapperPass>(); 2225 } 2226 2227 AU.addPreserved<BasicAAWrapperPass>(); 2228 AU.addPreserved<GlobalsAAWrapperPass>(); 2229 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2230 } 2231 }; 2232 2233 } // end anonymous namespace 2234 2235 //===----------------------------------------------------------------------===// 2236 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2237 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2238 //===----------------------------------------------------------------------===// 2239 2240 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2241 // We need to place the broadcast of invariant variables outside the loop, 2242 // but only if it's proven safe to do so. Else, broadcast will be inside 2243 // vector loop body. 2244 Instruction *Instr = dyn_cast<Instruction>(V); 2245 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2246 (!Instr || 2247 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2248 // Place the code for broadcasting invariant variables in the new preheader. 2249 IRBuilder<>::InsertPointGuard Guard(Builder); 2250 if (SafeToHoist) 2251 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2252 2253 // Broadcast the scalar into all locations in the vector. 2254 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2255 2256 return Shuf; 2257 } 2258 2259 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2260 const InductionDescriptor &II, Value *Step, Value *Start, 2261 Instruction *EntryVal, VPValue *Def, VPValue *CastDef, 2262 VPTransformState &State) { 2263 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2264 "Expected either an induction phi-node or a truncate of it!"); 2265 2266 // Construct the initial value of the vector IV in the vector loop preheader 2267 auto CurrIP = Builder.saveIP(); 2268 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2269 if (isa<TruncInst>(EntryVal)) { 2270 assert(Start->getType()->isIntegerTy() && 2271 "Truncation requires an integer type"); 2272 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2273 Step = Builder.CreateTrunc(Step, TruncType); 2274 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2275 } 2276 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2277 Value *SteppedStart = 2278 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2279 2280 // We create vector phi nodes for both integer and floating-point induction 2281 // variables. Here, we determine the kind of arithmetic we will perform. 2282 Instruction::BinaryOps AddOp; 2283 Instruction::BinaryOps MulOp; 2284 if (Step->getType()->isIntegerTy()) { 2285 AddOp = Instruction::Add; 2286 MulOp = Instruction::Mul; 2287 } else { 2288 AddOp = II.getInductionOpcode(); 2289 MulOp = Instruction::FMul; 2290 } 2291 2292 // Multiply the vectorization factor by the step using integer or 2293 // floating-point arithmetic as appropriate. 2294 Type *StepType = Step->getType(); 2295 if (Step->getType()->isFloatingPointTy()) 2296 StepType = IntegerType::get(StepType->getContext(), 2297 StepType->getScalarSizeInBits()); 2298 Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF); 2299 if (Step->getType()->isFloatingPointTy()) 2300 RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType()); 2301 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2302 2303 // Create a vector splat to use in the induction update. 2304 // 2305 // FIXME: If the step is non-constant, we create the vector splat with 2306 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2307 // handle a constant vector splat. 2308 Value *SplatVF = isa<Constant>(Mul) 2309 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2310 : Builder.CreateVectorSplat(VF, Mul); 2311 Builder.restoreIP(CurrIP); 2312 2313 // We may need to add the step a number of times, depending on the unroll 2314 // factor. The last of those goes into the PHI. 2315 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2316 &*LoopVectorBody->getFirstInsertionPt()); 2317 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2318 Instruction *LastInduction = VecInd; 2319 for (unsigned Part = 0; Part < UF; ++Part) { 2320 State.set(Def, LastInduction, Part); 2321 2322 if (isa<TruncInst>(EntryVal)) 2323 addMetadata(LastInduction, EntryVal); 2324 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef, 2325 State, Part); 2326 2327 LastInduction = cast<Instruction>( 2328 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2329 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2330 } 2331 2332 // Move the last step to the end of the latch block. This ensures consistent 2333 // placement of all induction updates. 2334 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2335 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2336 auto *ICmp = cast<Instruction>(Br->getCondition()); 2337 LastInduction->moveBefore(ICmp); 2338 LastInduction->setName("vec.ind.next"); 2339 2340 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2341 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2342 } 2343 2344 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2345 return Cost->isScalarAfterVectorization(I, VF) || 2346 Cost->isProfitableToScalarize(I, VF); 2347 } 2348 2349 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2350 if (shouldScalarizeInstruction(IV)) 2351 return true; 2352 auto isScalarInst = [&](User *U) -> bool { 2353 auto *I = cast<Instruction>(U); 2354 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2355 }; 2356 return llvm::any_of(IV->users(), isScalarInst); 2357 } 2358 2359 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2360 const InductionDescriptor &ID, const Instruction *EntryVal, 2361 Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State, 2362 unsigned Part, unsigned Lane) { 2363 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2364 "Expected either an induction phi-node or a truncate of it!"); 2365 2366 // This induction variable is not the phi from the original loop but the 2367 // newly-created IV based on the proof that casted Phi is equal to the 2368 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2369 // re-uses the same InductionDescriptor that original IV uses but we don't 2370 // have to do any recording in this case - that is done when original IV is 2371 // processed. 2372 if (isa<TruncInst>(EntryVal)) 2373 return; 2374 2375 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2376 if (Casts.empty()) 2377 return; 2378 // Only the first Cast instruction in the Casts vector is of interest. 2379 // The rest of the Casts (if exist) have no uses outside the 2380 // induction update chain itself. 2381 if (Lane < UINT_MAX) 2382 State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane)); 2383 else 2384 State.set(CastDef, VectorLoopVal, Part); 2385 } 2386 2387 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start, 2388 TruncInst *Trunc, VPValue *Def, 2389 VPValue *CastDef, 2390 VPTransformState &State) { 2391 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2392 "Primary induction variable must have an integer type"); 2393 2394 auto II = Legal->getInductionVars().find(IV); 2395 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2396 2397 auto ID = II->second; 2398 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2399 2400 // The value from the original loop to which we are mapping the new induction 2401 // variable. 2402 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2403 2404 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2405 2406 // Generate code for the induction step. Note that induction steps are 2407 // required to be loop-invariant 2408 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2409 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2410 "Induction step should be loop invariant"); 2411 if (PSE.getSE()->isSCEVable(IV->getType())) { 2412 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2413 return Exp.expandCodeFor(Step, Step->getType(), 2414 LoopVectorPreHeader->getTerminator()); 2415 } 2416 return cast<SCEVUnknown>(Step)->getValue(); 2417 }; 2418 2419 // The scalar value to broadcast. This is derived from the canonical 2420 // induction variable. If a truncation type is given, truncate the canonical 2421 // induction variable and step. Otherwise, derive these values from the 2422 // induction descriptor. 2423 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2424 Value *ScalarIV = Induction; 2425 if (IV != OldInduction) { 2426 ScalarIV = IV->getType()->isIntegerTy() 2427 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2428 : Builder.CreateCast(Instruction::SIToFP, Induction, 2429 IV->getType()); 2430 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2431 ScalarIV->setName("offset.idx"); 2432 } 2433 if (Trunc) { 2434 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2435 assert(Step->getType()->isIntegerTy() && 2436 "Truncation requires an integer step"); 2437 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2438 Step = Builder.CreateTrunc(Step, TruncType); 2439 } 2440 return ScalarIV; 2441 }; 2442 2443 // Create the vector values from the scalar IV, in the absence of creating a 2444 // vector IV. 2445 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2446 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2447 for (unsigned Part = 0; Part < UF; ++Part) { 2448 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2449 Value *EntryPart = 2450 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2451 ID.getInductionOpcode()); 2452 State.set(Def, EntryPart, Part); 2453 if (Trunc) 2454 addMetadata(EntryPart, Trunc); 2455 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef, 2456 State, Part); 2457 } 2458 }; 2459 2460 // Fast-math-flags propagate from the original induction instruction. 2461 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2462 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2463 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2464 2465 // Now do the actual transformations, and start with creating the step value. 2466 Value *Step = CreateStepValue(ID.getStep()); 2467 if (VF.isZero() || VF.isScalar()) { 2468 Value *ScalarIV = CreateScalarIV(Step); 2469 CreateSplatIV(ScalarIV, Step); 2470 return; 2471 } 2472 2473 // Determine if we want a scalar version of the induction variable. This is 2474 // true if the induction variable itself is not widened, or if it has at 2475 // least one user in the loop that is not widened. 2476 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2477 if (!NeedsScalarIV) { 2478 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2479 State); 2480 return; 2481 } 2482 2483 // Try to create a new independent vector induction variable. If we can't 2484 // create the phi node, we will splat the scalar induction variable in each 2485 // loop iteration. 2486 if (!shouldScalarizeInstruction(EntryVal)) { 2487 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2488 State); 2489 Value *ScalarIV = CreateScalarIV(Step); 2490 // Create scalar steps that can be used by instructions we will later 2491 // scalarize. Note that the addition of the scalar steps will not increase 2492 // the number of instructions in the loop in the common case prior to 2493 // InstCombine. We will be trading one vector extract for each scalar step. 2494 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2495 return; 2496 } 2497 2498 // All IV users are scalar instructions, so only emit a scalar IV, not a 2499 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2500 // predicate used by the masked loads/stores. 2501 Value *ScalarIV = CreateScalarIV(Step); 2502 if (!Cost->isScalarEpilogueAllowed()) 2503 CreateSplatIV(ScalarIV, Step); 2504 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2505 } 2506 2507 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2508 Instruction::BinaryOps BinOp) { 2509 // Create and check the types. 2510 auto *ValVTy = cast<VectorType>(Val->getType()); 2511 ElementCount VLen = ValVTy->getElementCount(); 2512 2513 Type *STy = Val->getType()->getScalarType(); 2514 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2515 "Induction Step must be an integer or FP"); 2516 assert(Step->getType() == STy && "Step has wrong type"); 2517 2518 SmallVector<Constant *, 8> Indices; 2519 2520 // Create a vector of consecutive numbers from zero to VF. 2521 VectorType *InitVecValVTy = ValVTy; 2522 Type *InitVecValSTy = STy; 2523 if (STy->isFloatingPointTy()) { 2524 InitVecValSTy = 2525 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2526 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2527 } 2528 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2529 2530 // Add on StartIdx 2531 Value *StartIdxSplat = Builder.CreateVectorSplat( 2532 VLen, ConstantInt::get(InitVecValSTy, StartIdx)); 2533 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2534 2535 if (STy->isIntegerTy()) { 2536 Step = Builder.CreateVectorSplat(VLen, Step); 2537 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2538 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2539 // which can be found from the original scalar operations. 2540 Step = Builder.CreateMul(InitVec, Step); 2541 return Builder.CreateAdd(Val, Step, "induction"); 2542 } 2543 2544 // Floating point induction. 2545 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2546 "Binary Opcode should be specified for FP induction"); 2547 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2548 Step = Builder.CreateVectorSplat(VLen, Step); 2549 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2550 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2551 } 2552 2553 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2554 Instruction *EntryVal, 2555 const InductionDescriptor &ID, 2556 VPValue *Def, VPValue *CastDef, 2557 VPTransformState &State) { 2558 // We shouldn't have to build scalar steps if we aren't vectorizing. 2559 assert(VF.isVector() && "VF should be greater than one"); 2560 // Get the value type and ensure it and the step have the same integer type. 2561 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2562 assert(ScalarIVTy == Step->getType() && 2563 "Val and Step should have the same type"); 2564 2565 // We build scalar steps for both integer and floating-point induction 2566 // variables. Here, we determine the kind of arithmetic we will perform. 2567 Instruction::BinaryOps AddOp; 2568 Instruction::BinaryOps MulOp; 2569 if (ScalarIVTy->isIntegerTy()) { 2570 AddOp = Instruction::Add; 2571 MulOp = Instruction::Mul; 2572 } else { 2573 AddOp = ID.getInductionOpcode(); 2574 MulOp = Instruction::FMul; 2575 } 2576 2577 // Determine the number of scalars we need to generate for each unroll 2578 // iteration. If EntryVal is uniform, we only need to generate the first 2579 // lane. Otherwise, we generate all VF values. 2580 bool IsUniform = 2581 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF); 2582 unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue(); 2583 // Compute the scalar steps and save the results in State. 2584 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2585 ScalarIVTy->getScalarSizeInBits()); 2586 Type *VecIVTy = nullptr; 2587 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2588 if (!IsUniform && VF.isScalable()) { 2589 VecIVTy = VectorType::get(ScalarIVTy, VF); 2590 UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF)); 2591 SplatStep = Builder.CreateVectorSplat(VF, Step); 2592 SplatIV = Builder.CreateVectorSplat(VF, ScalarIV); 2593 } 2594 2595 for (unsigned Part = 0; Part < UF; ++Part) { 2596 Value *StartIdx0 = 2597 createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF); 2598 2599 if (!IsUniform && VF.isScalable()) { 2600 auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0); 2601 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2602 if (ScalarIVTy->isFloatingPointTy()) 2603 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2604 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2605 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2606 State.set(Def, Add, Part); 2607 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2608 Part); 2609 // It's useful to record the lane values too for the known minimum number 2610 // of elements so we do those below. This improves the code quality when 2611 // trying to extract the first element, for example. 2612 } 2613 2614 if (ScalarIVTy->isFloatingPointTy()) 2615 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2616 2617 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2618 Value *StartIdx = Builder.CreateBinOp( 2619 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2620 // The step returned by `createStepForVF` is a runtime-evaluated value 2621 // when VF is scalable. Otherwise, it should be folded into a Constant. 2622 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2623 "Expected StartIdx to be folded to a constant when VF is not " 2624 "scalable"); 2625 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2626 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2627 State.set(Def, Add, VPIteration(Part, Lane)); 2628 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2629 Part, Lane); 2630 } 2631 } 2632 } 2633 2634 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2635 const VPIteration &Instance, 2636 VPTransformState &State) { 2637 Value *ScalarInst = State.get(Def, Instance); 2638 Value *VectorValue = State.get(Def, Instance.Part); 2639 VectorValue = Builder.CreateInsertElement( 2640 VectorValue, ScalarInst, 2641 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2642 State.set(Def, VectorValue, Instance.Part); 2643 } 2644 2645 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2646 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2647 return Builder.CreateVectorReverse(Vec, "reverse"); 2648 } 2649 2650 // Return whether we allow using masked interleave-groups (for dealing with 2651 // strided loads/stores that reside in predicated blocks, or for dealing 2652 // with gaps). 2653 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2654 // If an override option has been passed in for interleaved accesses, use it. 2655 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2656 return EnableMaskedInterleavedMemAccesses; 2657 2658 return TTI.enableMaskedInterleavedAccessVectorization(); 2659 } 2660 2661 // Try to vectorize the interleave group that \p Instr belongs to. 2662 // 2663 // E.g. Translate following interleaved load group (factor = 3): 2664 // for (i = 0; i < N; i+=3) { 2665 // R = Pic[i]; // Member of index 0 2666 // G = Pic[i+1]; // Member of index 1 2667 // B = Pic[i+2]; // Member of index 2 2668 // ... // do something to R, G, B 2669 // } 2670 // To: 2671 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2672 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2673 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2674 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2675 // 2676 // Or translate following interleaved store group (factor = 3): 2677 // for (i = 0; i < N; i+=3) { 2678 // ... do something to R, G, B 2679 // Pic[i] = R; // Member of index 0 2680 // Pic[i+1] = G; // Member of index 1 2681 // Pic[i+2] = B; // Member of index 2 2682 // } 2683 // To: 2684 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2685 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2686 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2687 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2688 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2689 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2690 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2691 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2692 VPValue *BlockInMask) { 2693 Instruction *Instr = Group->getInsertPos(); 2694 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2695 2696 // Prepare for the vector type of the interleaved load/store. 2697 Type *ScalarTy = getLoadStoreType(Instr); 2698 unsigned InterleaveFactor = Group->getFactor(); 2699 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2700 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2701 2702 // Prepare for the new pointers. 2703 SmallVector<Value *, 2> AddrParts; 2704 unsigned Index = Group->getIndex(Instr); 2705 2706 // TODO: extend the masked interleaved-group support to reversed access. 2707 assert((!BlockInMask || !Group->isReverse()) && 2708 "Reversed masked interleave-group not supported."); 2709 2710 // If the group is reverse, adjust the index to refer to the last vector lane 2711 // instead of the first. We adjust the index from the first vector lane, 2712 // rather than directly getting the pointer for lane VF - 1, because the 2713 // pointer operand of the interleaved access is supposed to be uniform. For 2714 // uniform instructions, we're only required to generate a value for the 2715 // first vector lane in each unroll iteration. 2716 if (Group->isReverse()) 2717 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2718 2719 for (unsigned Part = 0; Part < UF; Part++) { 2720 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2721 setDebugLocFromInst(Builder, AddrPart); 2722 2723 // Notice current instruction could be any index. Need to adjust the address 2724 // to the member of index 0. 2725 // 2726 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2727 // b = A[i]; // Member of index 0 2728 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2729 // 2730 // E.g. A[i+1] = a; // Member of index 1 2731 // A[i] = b; // Member of index 0 2732 // A[i+2] = c; // Member of index 2 (Current instruction) 2733 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2734 2735 bool InBounds = false; 2736 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2737 InBounds = gep->isInBounds(); 2738 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2739 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2740 2741 // Cast to the vector pointer type. 2742 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2743 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2744 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2745 } 2746 2747 setDebugLocFromInst(Builder, Instr); 2748 Value *PoisonVec = PoisonValue::get(VecTy); 2749 2750 Value *MaskForGaps = nullptr; 2751 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2752 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2753 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2754 } 2755 2756 // Vectorize the interleaved load group. 2757 if (isa<LoadInst>(Instr)) { 2758 // For each unroll part, create a wide load for the group. 2759 SmallVector<Value *, 2> NewLoads; 2760 for (unsigned Part = 0; Part < UF; Part++) { 2761 Instruction *NewLoad; 2762 if (BlockInMask || MaskForGaps) { 2763 assert(useMaskedInterleavedAccesses(*TTI) && 2764 "masked interleaved groups are not allowed."); 2765 Value *GroupMask = MaskForGaps; 2766 if (BlockInMask) { 2767 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2768 Value *ShuffledMask = Builder.CreateShuffleVector( 2769 BlockInMaskPart, 2770 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2771 "interleaved.mask"); 2772 GroupMask = MaskForGaps 2773 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2774 MaskForGaps) 2775 : ShuffledMask; 2776 } 2777 NewLoad = 2778 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2779 GroupMask, PoisonVec, "wide.masked.vec"); 2780 } 2781 else 2782 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2783 Group->getAlign(), "wide.vec"); 2784 Group->addMetadata(NewLoad); 2785 NewLoads.push_back(NewLoad); 2786 } 2787 2788 // For each member in the group, shuffle out the appropriate data from the 2789 // wide loads. 2790 unsigned J = 0; 2791 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2792 Instruction *Member = Group->getMember(I); 2793 2794 // Skip the gaps in the group. 2795 if (!Member) 2796 continue; 2797 2798 auto StrideMask = 2799 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2800 for (unsigned Part = 0; Part < UF; Part++) { 2801 Value *StridedVec = Builder.CreateShuffleVector( 2802 NewLoads[Part], StrideMask, "strided.vec"); 2803 2804 // If this member has different type, cast the result type. 2805 if (Member->getType() != ScalarTy) { 2806 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2807 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2808 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2809 } 2810 2811 if (Group->isReverse()) 2812 StridedVec = reverseVector(StridedVec); 2813 2814 State.set(VPDefs[J], StridedVec, Part); 2815 } 2816 ++J; 2817 } 2818 return; 2819 } 2820 2821 // The sub vector type for current instruction. 2822 auto *SubVT = VectorType::get(ScalarTy, VF); 2823 2824 // Vectorize the interleaved store group. 2825 for (unsigned Part = 0; Part < UF; Part++) { 2826 // Collect the stored vector from each member. 2827 SmallVector<Value *, 4> StoredVecs; 2828 for (unsigned i = 0; i < InterleaveFactor; i++) { 2829 // Interleaved store group doesn't allow a gap, so each index has a member 2830 assert(Group->getMember(i) && "Fail to get a member from an interleaved store group"); 2831 2832 Value *StoredVec = State.get(StoredValues[i], Part); 2833 2834 if (Group->isReverse()) 2835 StoredVec = reverseVector(StoredVec); 2836 2837 // If this member has different type, cast it to a unified type. 2838 2839 if (StoredVec->getType() != SubVT) 2840 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2841 2842 StoredVecs.push_back(StoredVec); 2843 } 2844 2845 // Concatenate all vectors into a wide vector. 2846 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2847 2848 // Interleave the elements in the wide vector. 2849 Value *IVec = Builder.CreateShuffleVector( 2850 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2851 "interleaved.vec"); 2852 2853 Instruction *NewStoreInstr; 2854 if (BlockInMask) { 2855 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2856 Value *ShuffledMask = Builder.CreateShuffleVector( 2857 BlockInMaskPart, 2858 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2859 "interleaved.mask"); 2860 NewStoreInstr = Builder.CreateMaskedStore( 2861 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2862 } 2863 else 2864 NewStoreInstr = 2865 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2866 2867 Group->addMetadata(NewStoreInstr); 2868 } 2869 } 2870 2871 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2872 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2873 VPValue *StoredValue, VPValue *BlockInMask) { 2874 // Attempt to issue a wide load. 2875 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2876 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2877 2878 assert((LI || SI) && "Invalid Load/Store instruction"); 2879 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2880 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2881 2882 LoopVectorizationCostModel::InstWidening Decision = 2883 Cost->getWideningDecision(Instr, VF); 2884 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2885 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2886 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2887 "CM decision is not to widen the memory instruction"); 2888 2889 Type *ScalarDataTy = getLoadStoreType(Instr); 2890 2891 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2892 const Align Alignment = getLoadStoreAlignment(Instr); 2893 2894 // Determine if the pointer operand of the access is either consecutive or 2895 // reverse consecutive. 2896 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2897 bool ConsecutiveStride = 2898 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2899 bool CreateGatherScatter = 2900 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2901 2902 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2903 // gather/scatter. Otherwise Decision should have been to Scalarize. 2904 assert((ConsecutiveStride || CreateGatherScatter) && 2905 "The instruction should be scalarized"); 2906 (void)ConsecutiveStride; 2907 2908 VectorParts BlockInMaskParts(UF); 2909 bool isMaskRequired = BlockInMask; 2910 if (isMaskRequired) 2911 for (unsigned Part = 0; Part < UF; ++Part) 2912 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2913 2914 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2915 // Calculate the pointer for the specific unroll-part. 2916 GetElementPtrInst *PartPtr = nullptr; 2917 2918 bool InBounds = false; 2919 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2920 InBounds = gep->isInBounds(); 2921 if (Reverse) { 2922 // If the address is consecutive but reversed, then the 2923 // wide store needs to start at the last vector element. 2924 // RunTimeVF = VScale * VF.getKnownMinValue() 2925 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 2926 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF); 2927 // NumElt = -Part * RunTimeVF 2928 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 2929 // LastLane = 1 - RunTimeVF 2930 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 2931 PartPtr = 2932 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 2933 PartPtr->setIsInBounds(InBounds); 2934 PartPtr = cast<GetElementPtrInst>( 2935 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 2936 PartPtr->setIsInBounds(InBounds); 2937 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2938 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2939 } else { 2940 Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF); 2941 PartPtr = cast<GetElementPtrInst>( 2942 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 2943 PartPtr->setIsInBounds(InBounds); 2944 } 2945 2946 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2947 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2948 }; 2949 2950 // Handle Stores: 2951 if (SI) { 2952 setDebugLocFromInst(Builder, SI); 2953 2954 for (unsigned Part = 0; Part < UF; ++Part) { 2955 Instruction *NewSI = nullptr; 2956 Value *StoredVal = State.get(StoredValue, Part); 2957 if (CreateGatherScatter) { 2958 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2959 Value *VectorGep = State.get(Addr, Part); 2960 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2961 MaskPart); 2962 } else { 2963 if (Reverse) { 2964 // If we store to reverse consecutive memory locations, then we need 2965 // to reverse the order of elements in the stored value. 2966 StoredVal = reverseVector(StoredVal); 2967 // We don't want to update the value in the map as it might be used in 2968 // another expression. So don't call resetVectorValue(StoredVal). 2969 } 2970 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2971 if (isMaskRequired) 2972 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2973 BlockInMaskParts[Part]); 2974 else 2975 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2976 } 2977 addMetadata(NewSI, SI); 2978 } 2979 return; 2980 } 2981 2982 // Handle loads. 2983 assert(LI && "Must have a load instruction"); 2984 setDebugLocFromInst(Builder, LI); 2985 for (unsigned Part = 0; Part < UF; ++Part) { 2986 Value *NewLI; 2987 if (CreateGatherScatter) { 2988 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2989 Value *VectorGep = State.get(Addr, Part); 2990 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2991 nullptr, "wide.masked.gather"); 2992 addMetadata(NewLI, LI); 2993 } else { 2994 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2995 if (isMaskRequired) 2996 NewLI = Builder.CreateMaskedLoad( 2997 VecPtr, Alignment, BlockInMaskParts[Part], PoisonValue::get(DataTy), 2998 "wide.masked.load"); 2999 else 3000 NewLI = 3001 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 3002 3003 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3004 addMetadata(NewLI, LI); 3005 if (Reverse) 3006 NewLI = reverseVector(NewLI); 3007 } 3008 3009 State.set(Def, NewLI, Part); 3010 } 3011 } 3012 3013 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def, 3014 VPUser &User, 3015 const VPIteration &Instance, 3016 bool IfPredicateInstr, 3017 VPTransformState &State) { 3018 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3019 3020 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 3021 // the first lane and part. 3022 if (isa<NoAliasScopeDeclInst>(Instr)) 3023 if (!Instance.isFirstIteration()) 3024 return; 3025 3026 setDebugLocFromInst(Builder, Instr); 3027 3028 // Does this instruction return a value ? 3029 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3030 3031 Instruction *Cloned = Instr->clone(); 3032 if (!IsVoidRetTy) 3033 Cloned->setName(Instr->getName() + ".cloned"); 3034 3035 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 3036 Builder.GetInsertPoint()); 3037 // Replace the operands of the cloned instructions with their scalar 3038 // equivalents in the new loop. 3039 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 3040 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 3041 auto InputInstance = Instance; 3042 if (!Operand || !OrigLoop->contains(Operand) || 3043 (Cost->isUniformAfterVectorization(Operand, State.VF))) 3044 InputInstance.Lane = VPLane::getFirstLane(); 3045 auto *NewOp = State.get(User.getOperand(op), InputInstance); 3046 Cloned->setOperand(op, NewOp); 3047 } 3048 addNewMetadata(Cloned, Instr); 3049 3050 // Place the cloned scalar in the new loop. 3051 Builder.Insert(Cloned); 3052 3053 State.set(Def, Cloned, Instance); 3054 3055 // If we just cloned a new assumption, add it the assumption cache. 3056 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 3057 AC->registerAssumption(II); 3058 3059 // End if-block. 3060 if (IfPredicateInstr) 3061 PredicatedInstructions.push_back(Cloned); 3062 } 3063 3064 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3065 Value *End, Value *Step, 3066 Instruction *DL) { 3067 BasicBlock *Header = L->getHeader(); 3068 BasicBlock *Latch = L->getLoopLatch(); 3069 // As we're just creating this loop, it's possible no latch exists 3070 // yet. If so, use the header as this will be a single block loop. 3071 if (!Latch) 3072 Latch = Header; 3073 3074 IRBuilder<> B(&*Header->getFirstInsertionPt()); 3075 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3076 setDebugLocFromInst(B, OldInst); 3077 auto *Induction = B.CreatePHI(Start->getType(), 2, "index"); 3078 3079 B.SetInsertPoint(Latch->getTerminator()); 3080 setDebugLocFromInst(B, OldInst); 3081 3082 // Create i+1 and fill the PHINode. 3083 // 3084 // If the tail is not folded, we know that End - Start >= Step (either 3085 // statically or through the minimum iteration checks). We also know that both 3086 // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV + 3087 // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned 3088 // overflows and we can mark the induction increment as NUW. 3089 Value *Next = B.CreateAdd(Induction, Step, "index.next", 3090 /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false); 3091 Induction->addIncoming(Start, L->getLoopPreheader()); 3092 Induction->addIncoming(Next, Latch); 3093 // Create the compare. 3094 Value *ICmp = B.CreateICmpEQ(Next, End); 3095 B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header); 3096 3097 // Now we have two terminators. Remove the old one from the block. 3098 Latch->getTerminator()->eraseFromParent(); 3099 3100 return Induction; 3101 } 3102 3103 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3104 if (TripCount) 3105 return TripCount; 3106 3107 assert(L && "Create Trip Count for null loop."); 3108 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3109 // Find the loop boundaries. 3110 ScalarEvolution *SE = PSE.getSE(); 3111 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3112 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3113 "Invalid loop count"); 3114 3115 Type *IdxTy = Legal->getWidestInductionType(); 3116 assert(IdxTy && "No type for induction"); 3117 3118 // The exit count might have the type of i64 while the phi is i32. This can 3119 // happen if we have an induction variable that is sign extended before the 3120 // compare. The only way that we get a backedge taken count is that the 3121 // induction variable was signed and as such will not overflow. In such a case 3122 // truncation is legal. 3123 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3124 IdxTy->getPrimitiveSizeInBits()) 3125 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3126 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3127 3128 // Get the total trip count from the count by adding 1. 3129 const SCEV *ExitCount = SE->getAddExpr( 3130 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3131 3132 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3133 3134 // Expand the trip count and place the new instructions in the preheader. 3135 // Notice that the pre-header does not change, only the loop body. 3136 SCEVExpander Exp(*SE, DL, "induction"); 3137 3138 // Count holds the overall loop count (N). 3139 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3140 L->getLoopPreheader()->getTerminator()); 3141 3142 if (TripCount->getType()->isPointerTy()) 3143 TripCount = 3144 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3145 L->getLoopPreheader()->getTerminator()); 3146 3147 return TripCount; 3148 } 3149 3150 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3151 if (VectorTripCount) 3152 return VectorTripCount; 3153 3154 Value *TC = getOrCreateTripCount(L); 3155 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3156 3157 Type *Ty = TC->getType(); 3158 // This is where we can make the step a runtime constant. 3159 Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF); 3160 3161 // If the tail is to be folded by masking, round the number of iterations N 3162 // up to a multiple of Step instead of rounding down. This is done by first 3163 // adding Step-1 and then rounding down. Note that it's ok if this addition 3164 // overflows: the vector induction variable will eventually wrap to zero given 3165 // that it starts at zero and its Step is a power of two; the loop will then 3166 // exit, with the last early-exit vector comparison also producing all-true. 3167 if (Cost->foldTailByMasking()) { 3168 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3169 "VF*UF must be a power of 2 when folding tail by masking"); 3170 assert(!VF.isScalable() && 3171 "Tail folding not yet supported for scalable vectors"); 3172 TC = Builder.CreateAdd( 3173 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 3174 } 3175 3176 // Now we need to generate the expression for the part of the loop that the 3177 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3178 // iterations are not required for correctness, or N - Step, otherwise. Step 3179 // is equal to the vectorization factor (number of SIMD elements) times the 3180 // unroll factor (number of SIMD instructions). 3181 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3182 3183 // There are cases where we *must* run at least one iteration in the remainder 3184 // loop. See the cost model for when this can happen. If the step evenly 3185 // divides the trip count, we set the remainder to be equal to the step. If 3186 // the step does not evenly divide the trip count, no adjustment is necessary 3187 // since there will already be scalar iterations. Note that the minimum 3188 // iterations check ensures that N >= Step. 3189 if (Cost->requiresScalarEpilogue(VF)) { 3190 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3191 R = Builder.CreateSelect(IsZero, Step, R); 3192 } 3193 3194 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3195 3196 return VectorTripCount; 3197 } 3198 3199 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3200 const DataLayout &DL) { 3201 // Verify that V is a vector type with same number of elements as DstVTy. 3202 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3203 unsigned VF = DstFVTy->getNumElements(); 3204 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3205 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3206 Type *SrcElemTy = SrcVecTy->getElementType(); 3207 Type *DstElemTy = DstFVTy->getElementType(); 3208 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3209 "Vector elements must have same size"); 3210 3211 // Do a direct cast if element types are castable. 3212 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3213 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3214 } 3215 // V cannot be directly casted to desired vector type. 3216 // May happen when V is a floating point vector but DstVTy is a vector of 3217 // pointers or vice-versa. Handle this using a two-step bitcast using an 3218 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3219 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3220 "Only one type should be a pointer type"); 3221 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3222 "Only one type should be a floating point type"); 3223 Type *IntTy = 3224 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3225 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3226 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3227 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3228 } 3229 3230 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3231 BasicBlock *Bypass) { 3232 Value *Count = getOrCreateTripCount(L); 3233 // Reuse existing vector loop preheader for TC checks. 3234 // Note that new preheader block is generated for vector loop. 3235 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3236 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3237 3238 // Generate code to check if the loop's trip count is less than VF * UF, or 3239 // equal to it in case a scalar epilogue is required; this implies that the 3240 // vector trip count is zero. This check also covers the case where adding one 3241 // to the backedge-taken count overflowed leading to an incorrect trip count 3242 // of zero. In this case we will also jump to the scalar loop. 3243 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 3244 : ICmpInst::ICMP_ULT; 3245 3246 // If tail is to be folded, vector loop takes care of all iterations. 3247 Value *CheckMinIters = Builder.getFalse(); 3248 if (!Cost->foldTailByMasking()) { 3249 Value *Step = 3250 createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF); 3251 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3252 } 3253 // Create new preheader for vector loop. 3254 LoopVectorPreHeader = 3255 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3256 "vector.ph"); 3257 3258 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3259 DT->getNode(Bypass)->getIDom()) && 3260 "TC check is expected to dominate Bypass"); 3261 3262 // Update dominator for Bypass & LoopExit. 3263 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3264 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3265 3266 ReplaceInstWithInst( 3267 TCCheckBlock->getTerminator(), 3268 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3269 LoopBypassBlocks.push_back(TCCheckBlock); 3270 } 3271 3272 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3273 3274 BasicBlock *const SCEVCheckBlock = 3275 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3276 if (!SCEVCheckBlock) 3277 return nullptr; 3278 3279 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3280 (OptForSizeBasedOnProfile && 3281 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3282 "Cannot SCEV check stride or overflow when optimizing for size"); 3283 3284 3285 // Update dominator only if this is first RT check. 3286 if (LoopBypassBlocks.empty()) { 3287 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3288 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3289 } 3290 3291 LoopBypassBlocks.push_back(SCEVCheckBlock); 3292 AddedSafetyChecks = true; 3293 return SCEVCheckBlock; 3294 } 3295 3296 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3297 BasicBlock *Bypass) { 3298 // VPlan-native path does not do any analysis for runtime checks currently. 3299 if (EnableVPlanNativePath) 3300 return nullptr; 3301 3302 BasicBlock *const MemCheckBlock = 3303 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3304 3305 // Check if we generated code that checks in runtime if arrays overlap. We put 3306 // the checks into a separate block to make the more common case of few 3307 // elements faster. 3308 if (!MemCheckBlock) 3309 return nullptr; 3310 3311 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3312 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3313 "Cannot emit memory checks when optimizing for size, unless forced " 3314 "to vectorize."); 3315 ORE->emit([&]() { 3316 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3317 L->getStartLoc(), L->getHeader()) 3318 << "Code-size may be reduced by not forcing " 3319 "vectorization, or by source-code modifications " 3320 "eliminating the need for runtime checks " 3321 "(e.g., adding 'restrict')."; 3322 }); 3323 } 3324 3325 LoopBypassBlocks.push_back(MemCheckBlock); 3326 3327 AddedSafetyChecks = true; 3328 3329 // We currently don't use LoopVersioning for the actual loop cloning but we 3330 // still use it to add the noalias metadata. 3331 LVer = std::make_unique<LoopVersioning>( 3332 *Legal->getLAI(), 3333 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3334 DT, PSE.getSE()); 3335 LVer->prepareNoAliasMetadata(); 3336 return MemCheckBlock; 3337 } 3338 3339 Value *InnerLoopVectorizer::emitTransformedIndex( 3340 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3341 const InductionDescriptor &ID) const { 3342 3343 SCEVExpander Exp(*SE, DL, "induction"); 3344 auto Step = ID.getStep(); 3345 auto StartValue = ID.getStartValue(); 3346 assert(Index->getType()->getScalarType() == Step->getType() && 3347 "Index scalar type does not match StepValue type"); 3348 3349 // Note: the IR at this point is broken. We cannot use SE to create any new 3350 // SCEV and then expand it, hoping that SCEV's simplification will give us 3351 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3352 // lead to various SCEV crashes. So all we can do is to use builder and rely 3353 // on InstCombine for future simplifications. Here we handle some trivial 3354 // cases only. 3355 auto CreateAdd = [&B](Value *X, Value *Y) { 3356 assert(X->getType() == Y->getType() && "Types don't match!"); 3357 if (auto *CX = dyn_cast<ConstantInt>(X)) 3358 if (CX->isZero()) 3359 return Y; 3360 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3361 if (CY->isZero()) 3362 return X; 3363 return B.CreateAdd(X, Y); 3364 }; 3365 3366 // We allow X to be a vector type, in which case Y will potentially be 3367 // splatted into a vector with the same element count. 3368 auto CreateMul = [&B](Value *X, Value *Y) { 3369 assert(X->getType()->getScalarType() == Y->getType() && 3370 "Types don't match!"); 3371 if (auto *CX = dyn_cast<ConstantInt>(X)) 3372 if (CX->isOne()) 3373 return Y; 3374 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3375 if (CY->isOne()) 3376 return X; 3377 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 3378 if (XVTy && !isa<VectorType>(Y->getType())) 3379 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 3380 return B.CreateMul(X, Y); 3381 }; 3382 3383 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3384 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3385 // the DomTree is not kept up-to-date for additional blocks generated in the 3386 // vector loop. By using the header as insertion point, we guarantee that the 3387 // expanded instructions dominate all their uses. 3388 auto GetInsertPoint = [this, &B]() { 3389 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3390 if (InsertBB != LoopVectorBody && 3391 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3392 return LoopVectorBody->getTerminator(); 3393 return &*B.GetInsertPoint(); 3394 }; 3395 3396 switch (ID.getKind()) { 3397 case InductionDescriptor::IK_IntInduction: { 3398 assert(!isa<VectorType>(Index->getType()) && 3399 "Vector indices not supported for integer inductions yet"); 3400 assert(Index->getType() == StartValue->getType() && 3401 "Index type does not match StartValue type"); 3402 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3403 return B.CreateSub(StartValue, Index); 3404 auto *Offset = CreateMul( 3405 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3406 return CreateAdd(StartValue, Offset); 3407 } 3408 case InductionDescriptor::IK_PtrInduction: { 3409 assert(isa<SCEVConstant>(Step) && 3410 "Expected constant step for pointer induction"); 3411 return B.CreateGEP( 3412 StartValue->getType()->getPointerElementType(), StartValue, 3413 CreateMul(Index, 3414 Exp.expandCodeFor(Step, Index->getType()->getScalarType(), 3415 GetInsertPoint()))); 3416 } 3417 case InductionDescriptor::IK_FpInduction: { 3418 assert(!isa<VectorType>(Index->getType()) && 3419 "Vector indices not supported for FP inductions yet"); 3420 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3421 auto InductionBinOp = ID.getInductionBinOp(); 3422 assert(InductionBinOp && 3423 (InductionBinOp->getOpcode() == Instruction::FAdd || 3424 InductionBinOp->getOpcode() == Instruction::FSub) && 3425 "Original bin op should be defined for FP induction"); 3426 3427 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3428 Value *MulExp = B.CreateFMul(StepValue, Index); 3429 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3430 "induction"); 3431 } 3432 case InductionDescriptor::IK_NoInduction: 3433 return nullptr; 3434 } 3435 llvm_unreachable("invalid enum"); 3436 } 3437 3438 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3439 LoopScalarBody = OrigLoop->getHeader(); 3440 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3441 LoopExitBlock = OrigLoop->getUniqueExitBlock(); 3442 assert(LoopExitBlock && "Must have an exit block"); 3443 assert(LoopVectorPreHeader && "Invalid loop structure"); 3444 3445 LoopMiddleBlock = 3446 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3447 LI, nullptr, Twine(Prefix) + "middle.block"); 3448 LoopScalarPreHeader = 3449 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3450 nullptr, Twine(Prefix) + "scalar.ph"); 3451 3452 // Set up branch from middle block to the exit and scalar preheader blocks. 3453 // completeLoopSkeleton will update the condition to use an iteration check, 3454 // if required to decide whether to execute the remainder. 3455 BranchInst *BrInst = 3456 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, Builder.getTrue()); 3457 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3458 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3459 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3460 3461 // We intentionally don't let SplitBlock to update LoopInfo since 3462 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3463 // LoopVectorBody is explicitly added to the correct place few lines later. 3464 LoopVectorBody = 3465 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3466 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3467 3468 // Update dominator for loop exit. 3469 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3470 3471 // Create and register the new vector loop. 3472 Loop *Lp = LI->AllocateLoop(); 3473 Loop *ParentLoop = OrigLoop->getParentLoop(); 3474 3475 // Insert the new loop into the loop nest and register the new basic blocks 3476 // before calling any utilities such as SCEV that require valid LoopInfo. 3477 if (ParentLoop) { 3478 ParentLoop->addChildLoop(Lp); 3479 } else { 3480 LI->addTopLevelLoop(Lp); 3481 } 3482 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3483 return Lp; 3484 } 3485 3486 void InnerLoopVectorizer::createInductionResumeValues( 3487 Loop *L, Value *VectorTripCount, 3488 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3489 assert(VectorTripCount && L && "Expected valid arguments"); 3490 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3491 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3492 "Inconsistent information about additional bypass."); 3493 // We are going to resume the execution of the scalar loop. 3494 // Go over all of the induction variables that we found and fix the 3495 // PHIs that are left in the scalar version of the loop. 3496 // The starting values of PHI nodes depend on the counter of the last 3497 // iteration in the vectorized loop. 3498 // If we come from a bypass edge then we need to start from the original 3499 // start value. 3500 for (auto &InductionEntry : Legal->getInductionVars()) { 3501 PHINode *OrigPhi = InductionEntry.first; 3502 InductionDescriptor II = InductionEntry.second; 3503 3504 // Create phi nodes to merge from the backedge-taken check block. 3505 PHINode *BCResumeVal = 3506 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3507 LoopScalarPreHeader->getTerminator()); 3508 // Copy original phi DL over to the new one. 3509 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3510 Value *&EndValue = IVEndValues[OrigPhi]; 3511 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3512 if (OrigPhi == OldInduction) { 3513 // We know what the end value is. 3514 EndValue = VectorTripCount; 3515 } else { 3516 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3517 3518 // Fast-math-flags propagate from the original induction instruction. 3519 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3520 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3521 3522 Type *StepType = II.getStep()->getType(); 3523 Instruction::CastOps CastOp = 3524 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3525 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3526 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3527 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3528 EndValue->setName("ind.end"); 3529 3530 // Compute the end value for the additional bypass (if applicable). 3531 if (AdditionalBypass.first) { 3532 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3533 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3534 StepType, true); 3535 CRD = 3536 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3537 EndValueFromAdditionalBypass = 3538 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3539 EndValueFromAdditionalBypass->setName("ind.end"); 3540 } 3541 } 3542 // The new PHI merges the original incoming value, in case of a bypass, 3543 // or the value at the end of the vectorized loop. 3544 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3545 3546 // Fix the scalar body counter (PHI node). 3547 // The old induction's phi node in the scalar body needs the truncated 3548 // value. 3549 for (BasicBlock *BB : LoopBypassBlocks) 3550 BCResumeVal->addIncoming(II.getStartValue(), BB); 3551 3552 if (AdditionalBypass.first) 3553 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3554 EndValueFromAdditionalBypass); 3555 3556 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3557 } 3558 } 3559 3560 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3561 MDNode *OrigLoopID) { 3562 assert(L && "Expected valid loop."); 3563 3564 // The trip counts should be cached by now. 3565 Value *Count = getOrCreateTripCount(L); 3566 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3567 3568 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3569 3570 // Add a check in the middle block to see if we have completed 3571 // all of the iterations in the first vector loop. 3572 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3573 // If tail is to be folded, we know we don't need to run the remainder. 3574 if (!Cost->foldTailByMasking()) { 3575 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3576 Count, VectorTripCount, "cmp.n", 3577 LoopMiddleBlock->getTerminator()); 3578 3579 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3580 // of the corresponding compare because they may have ended up with 3581 // different line numbers and we want to avoid awkward line stepping while 3582 // debugging. Eg. if the compare has got a line number inside the loop. 3583 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3584 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3585 } 3586 3587 // Get ready to start creating new instructions into the vectorized body. 3588 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3589 "Inconsistent vector loop preheader"); 3590 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3591 3592 Optional<MDNode *> VectorizedLoopID = 3593 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3594 LLVMLoopVectorizeFollowupVectorized}); 3595 if (VectorizedLoopID.hasValue()) { 3596 L->setLoopID(VectorizedLoopID.getValue()); 3597 3598 // Do not setAlreadyVectorized if loop attributes have been defined 3599 // explicitly. 3600 return LoopVectorPreHeader; 3601 } 3602 3603 // Keep all loop hints from the original loop on the vector loop (we'll 3604 // replace the vectorizer-specific hints below). 3605 if (MDNode *LID = OrigLoop->getLoopID()) 3606 L->setLoopID(LID); 3607 3608 LoopVectorizeHints Hints(L, true, *ORE); 3609 Hints.setAlreadyVectorized(); 3610 3611 #ifdef EXPENSIVE_CHECKS 3612 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3613 LI->verify(*DT); 3614 #endif 3615 3616 return LoopVectorPreHeader; 3617 } 3618 3619 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3620 /* 3621 In this function we generate a new loop. The new loop will contain 3622 the vectorized instructions while the old loop will continue to run the 3623 scalar remainder. 3624 3625 [ ] <-- loop iteration number check. 3626 / | 3627 / v 3628 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3629 | / | 3630 | / v 3631 || [ ] <-- vector pre header. 3632 |/ | 3633 | v 3634 | [ ] \ 3635 | [ ]_| <-- vector loop. 3636 | | 3637 | v 3638 | -[ ] <--- middle-block. 3639 | / | 3640 | / v 3641 -|- >[ ] <--- new preheader. 3642 | | 3643 | v 3644 | [ ] \ 3645 | [ ]_| <-- old scalar loop to handle remainder. 3646 \ | 3647 \ v 3648 >[ ] <-- exit block. 3649 ... 3650 */ 3651 3652 // Get the metadata of the original loop before it gets modified. 3653 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3654 3655 // Workaround! Compute the trip count of the original loop and cache it 3656 // before we start modifying the CFG. This code has a systemic problem 3657 // wherein it tries to run analysis over partially constructed IR; this is 3658 // wrong, and not simply for SCEV. The trip count of the original loop 3659 // simply happens to be prone to hitting this in practice. In theory, we 3660 // can hit the same issue for any SCEV, or ValueTracking query done during 3661 // mutation. See PR49900. 3662 getOrCreateTripCount(OrigLoop); 3663 3664 // Create an empty vector loop, and prepare basic blocks for the runtime 3665 // checks. 3666 Loop *Lp = createVectorLoopSkeleton(""); 3667 3668 // Now, compare the new count to zero. If it is zero skip the vector loop and 3669 // jump to the scalar loop. This check also covers the case where the 3670 // backedge-taken count is uint##_max: adding one to it will overflow leading 3671 // to an incorrect trip count of zero. In this (rare) case we will also jump 3672 // to the scalar loop. 3673 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3674 3675 // Generate the code to check any assumptions that we've made for SCEV 3676 // expressions. 3677 emitSCEVChecks(Lp, LoopScalarPreHeader); 3678 3679 // Generate the code that checks in runtime if arrays overlap. We put the 3680 // checks into a separate block to make the more common case of few elements 3681 // faster. 3682 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3683 3684 // Some loops have a single integer induction variable, while other loops 3685 // don't. One example is c++ iterators that often have multiple pointer 3686 // induction variables. In the code below we also support a case where we 3687 // don't have a single induction variable. 3688 // 3689 // We try to obtain an induction variable from the original loop as hard 3690 // as possible. However if we don't find one that: 3691 // - is an integer 3692 // - counts from zero, stepping by one 3693 // - is the size of the widest induction variable type 3694 // then we create a new one. 3695 OldInduction = Legal->getPrimaryInduction(); 3696 Type *IdxTy = Legal->getWidestInductionType(); 3697 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3698 // The loop step is equal to the vectorization factor (num of SIMD elements) 3699 // times the unroll factor (num of SIMD instructions). 3700 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3701 Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF); 3702 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3703 Induction = 3704 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3705 getDebugLocFromInstOrOperands(OldInduction)); 3706 3707 // Emit phis for the new starting index of the scalar loop. 3708 createInductionResumeValues(Lp, CountRoundDown); 3709 3710 return completeLoopSkeleton(Lp, OrigLoopID); 3711 } 3712 3713 // Fix up external users of the induction variable. At this point, we are 3714 // in LCSSA form, with all external PHIs that use the IV having one input value, 3715 // coming from the remainder loop. We need those PHIs to also have a correct 3716 // value for the IV when arriving directly from the middle block. 3717 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3718 const InductionDescriptor &II, 3719 Value *CountRoundDown, Value *EndValue, 3720 BasicBlock *MiddleBlock) { 3721 // There are two kinds of external IV usages - those that use the value 3722 // computed in the last iteration (the PHI) and those that use the penultimate 3723 // value (the value that feeds into the phi from the loop latch). 3724 // We allow both, but they, obviously, have different values. 3725 3726 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3727 3728 DenseMap<Value *, Value *> MissingVals; 3729 3730 // An external user of the last iteration's value should see the value that 3731 // the remainder loop uses to initialize its own IV. 3732 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3733 for (User *U : PostInc->users()) { 3734 Instruction *UI = cast<Instruction>(U); 3735 if (!OrigLoop->contains(UI)) { 3736 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3737 MissingVals[UI] = EndValue; 3738 } 3739 } 3740 3741 // An external user of the penultimate value need to see EndValue - Step. 3742 // The simplest way to get this is to recompute it from the constituent SCEVs, 3743 // that is Start + (Step * (CRD - 1)). 3744 for (User *U : OrigPhi->users()) { 3745 auto *UI = cast<Instruction>(U); 3746 if (!OrigLoop->contains(UI)) { 3747 const DataLayout &DL = 3748 OrigLoop->getHeader()->getModule()->getDataLayout(); 3749 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3750 3751 IRBuilder<> B(MiddleBlock->getTerminator()); 3752 3753 // Fast-math-flags propagate from the original induction instruction. 3754 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3755 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3756 3757 Value *CountMinusOne = B.CreateSub( 3758 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3759 Value *CMO = 3760 !II.getStep()->getType()->isIntegerTy() 3761 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3762 II.getStep()->getType()) 3763 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3764 CMO->setName("cast.cmo"); 3765 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3766 Escape->setName("ind.escape"); 3767 MissingVals[UI] = Escape; 3768 } 3769 } 3770 3771 for (auto &I : MissingVals) { 3772 PHINode *PHI = cast<PHINode>(I.first); 3773 // One corner case we have to handle is two IVs "chasing" each-other, 3774 // that is %IV2 = phi [...], [ %IV1, %latch ] 3775 // In this case, if IV1 has an external use, we need to avoid adding both 3776 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3777 // don't already have an incoming value for the middle block. 3778 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3779 PHI->addIncoming(I.second, MiddleBlock); 3780 } 3781 } 3782 3783 namespace { 3784 3785 struct CSEDenseMapInfo { 3786 static bool canHandle(const Instruction *I) { 3787 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3788 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3789 } 3790 3791 static inline Instruction *getEmptyKey() { 3792 return DenseMapInfo<Instruction *>::getEmptyKey(); 3793 } 3794 3795 static inline Instruction *getTombstoneKey() { 3796 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3797 } 3798 3799 static unsigned getHashValue(const Instruction *I) { 3800 assert(canHandle(I) && "Unknown instruction!"); 3801 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3802 I->value_op_end())); 3803 } 3804 3805 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3806 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3807 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3808 return LHS == RHS; 3809 return LHS->isIdenticalTo(RHS); 3810 } 3811 }; 3812 3813 } // end anonymous namespace 3814 3815 ///Perform cse of induction variable instructions. 3816 static void cse(BasicBlock *BB) { 3817 // Perform simple cse. 3818 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3819 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3820 Instruction *In = &*I++; 3821 3822 if (!CSEDenseMapInfo::canHandle(In)) 3823 continue; 3824 3825 // Check if we can replace this instruction with any of the 3826 // visited instructions. 3827 if (Instruction *V = CSEMap.lookup(In)) { 3828 In->replaceAllUsesWith(V); 3829 In->eraseFromParent(); 3830 continue; 3831 } 3832 3833 CSEMap[In] = In; 3834 } 3835 } 3836 3837 InstructionCost 3838 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3839 bool &NeedToScalarize) const { 3840 Function *F = CI->getCalledFunction(); 3841 Type *ScalarRetTy = CI->getType(); 3842 SmallVector<Type *, 4> Tys, ScalarTys; 3843 for (auto &ArgOp : CI->arg_operands()) 3844 ScalarTys.push_back(ArgOp->getType()); 3845 3846 // Estimate cost of scalarized vector call. The source operands are assumed 3847 // to be vectors, so we need to extract individual elements from there, 3848 // execute VF scalar calls, and then gather the result into the vector return 3849 // value. 3850 InstructionCost ScalarCallCost = 3851 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3852 if (VF.isScalar()) 3853 return ScalarCallCost; 3854 3855 // Compute corresponding vector type for return value and arguments. 3856 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3857 for (Type *ScalarTy : ScalarTys) 3858 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3859 3860 // Compute costs of unpacking argument values for the scalar calls and 3861 // packing the return values to a vector. 3862 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3863 3864 InstructionCost Cost = 3865 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3866 3867 // If we can't emit a vector call for this function, then the currently found 3868 // cost is the cost we need to return. 3869 NeedToScalarize = true; 3870 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3871 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3872 3873 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3874 return Cost; 3875 3876 // If the corresponding vector cost is cheaper, return its cost. 3877 InstructionCost VectorCallCost = 3878 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3879 if (VectorCallCost < Cost) { 3880 NeedToScalarize = false; 3881 Cost = VectorCallCost; 3882 } 3883 return Cost; 3884 } 3885 3886 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3887 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3888 return Elt; 3889 return VectorType::get(Elt, VF); 3890 } 3891 3892 InstructionCost 3893 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3894 ElementCount VF) const { 3895 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3896 assert(ID && "Expected intrinsic call!"); 3897 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3898 FastMathFlags FMF; 3899 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3900 FMF = FPMO->getFastMathFlags(); 3901 3902 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end()); 3903 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3904 SmallVector<Type *> ParamTys; 3905 std::transform(FTy->param_begin(), FTy->param_end(), 3906 std::back_inserter(ParamTys), 3907 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3908 3909 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3910 dyn_cast<IntrinsicInst>(CI)); 3911 return TTI.getIntrinsicInstrCost(CostAttrs, 3912 TargetTransformInfo::TCK_RecipThroughput); 3913 } 3914 3915 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3916 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3917 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3918 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3919 } 3920 3921 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3922 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3923 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3924 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3925 } 3926 3927 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3928 // For every instruction `I` in MinBWs, truncate the operands, create a 3929 // truncated version of `I` and reextend its result. InstCombine runs 3930 // later and will remove any ext/trunc pairs. 3931 SmallPtrSet<Value *, 4> Erased; 3932 for (const auto &KV : Cost->getMinimalBitwidths()) { 3933 // If the value wasn't vectorized, we must maintain the original scalar 3934 // type. The absence of the value from State indicates that it 3935 // wasn't vectorized. 3936 VPValue *Def = State.Plan->getVPValue(KV.first); 3937 if (!State.hasAnyVectorValue(Def)) 3938 continue; 3939 for (unsigned Part = 0; Part < UF; ++Part) { 3940 Value *I = State.get(Def, Part); 3941 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3942 continue; 3943 Type *OriginalTy = I->getType(); 3944 Type *ScalarTruncatedTy = 3945 IntegerType::get(OriginalTy->getContext(), KV.second); 3946 auto *TruncatedTy = FixedVectorType::get( 3947 ScalarTruncatedTy, 3948 cast<FixedVectorType>(OriginalTy)->getNumElements()); 3949 if (TruncatedTy == OriginalTy) 3950 continue; 3951 3952 IRBuilder<> B(cast<Instruction>(I)); 3953 auto ShrinkOperand = [&](Value *V) -> Value * { 3954 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3955 if (ZI->getSrcTy() == TruncatedTy) 3956 return ZI->getOperand(0); 3957 return B.CreateZExtOrTrunc(V, TruncatedTy); 3958 }; 3959 3960 // The actual instruction modification depends on the instruction type, 3961 // unfortunately. 3962 Value *NewI = nullptr; 3963 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3964 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3965 ShrinkOperand(BO->getOperand(1))); 3966 3967 // Any wrapping introduced by shrinking this operation shouldn't be 3968 // considered undefined behavior. So, we can't unconditionally copy 3969 // arithmetic wrapping flags to NewI. 3970 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3971 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3972 NewI = 3973 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3974 ShrinkOperand(CI->getOperand(1))); 3975 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3976 NewI = B.CreateSelect(SI->getCondition(), 3977 ShrinkOperand(SI->getTrueValue()), 3978 ShrinkOperand(SI->getFalseValue())); 3979 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3980 switch (CI->getOpcode()) { 3981 default: 3982 llvm_unreachable("Unhandled cast!"); 3983 case Instruction::Trunc: 3984 NewI = ShrinkOperand(CI->getOperand(0)); 3985 break; 3986 case Instruction::SExt: 3987 NewI = B.CreateSExtOrTrunc( 3988 CI->getOperand(0), 3989 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3990 break; 3991 case Instruction::ZExt: 3992 NewI = B.CreateZExtOrTrunc( 3993 CI->getOperand(0), 3994 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3995 break; 3996 } 3997 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3998 auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType()) 3999 ->getNumElements(); 4000 auto *O0 = B.CreateZExtOrTrunc( 4001 SI->getOperand(0), 4002 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 4003 auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType()) 4004 ->getNumElements(); 4005 auto *O1 = B.CreateZExtOrTrunc( 4006 SI->getOperand(1), 4007 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 4008 4009 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 4010 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 4011 // Don't do anything with the operands, just extend the result. 4012 continue; 4013 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 4014 auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType()) 4015 ->getNumElements(); 4016 auto *O0 = B.CreateZExtOrTrunc( 4017 IE->getOperand(0), 4018 FixedVectorType::get(ScalarTruncatedTy, Elements)); 4019 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 4020 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 4021 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 4022 auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType()) 4023 ->getNumElements(); 4024 auto *O0 = B.CreateZExtOrTrunc( 4025 EE->getOperand(0), 4026 FixedVectorType::get(ScalarTruncatedTy, Elements)); 4027 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 4028 } else { 4029 // If we don't know what to do, be conservative and don't do anything. 4030 continue; 4031 } 4032 4033 // Lastly, extend the result. 4034 NewI->takeName(cast<Instruction>(I)); 4035 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 4036 I->replaceAllUsesWith(Res); 4037 cast<Instruction>(I)->eraseFromParent(); 4038 Erased.insert(I); 4039 State.reset(Def, Res, Part); 4040 } 4041 } 4042 4043 // We'll have created a bunch of ZExts that are now parentless. Clean up. 4044 for (const auto &KV : Cost->getMinimalBitwidths()) { 4045 // If the value wasn't vectorized, we must maintain the original scalar 4046 // type. The absence of the value from State indicates that it 4047 // wasn't vectorized. 4048 VPValue *Def = State.Plan->getVPValue(KV.first); 4049 if (!State.hasAnyVectorValue(Def)) 4050 continue; 4051 for (unsigned Part = 0; Part < UF; ++Part) { 4052 Value *I = State.get(Def, Part); 4053 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 4054 if (Inst && Inst->use_empty()) { 4055 Value *NewI = Inst->getOperand(0); 4056 Inst->eraseFromParent(); 4057 State.reset(Def, NewI, Part); 4058 } 4059 } 4060 } 4061 } 4062 4063 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 4064 // Insert truncates and extends for any truncated instructions as hints to 4065 // InstCombine. 4066 if (VF.isVector()) 4067 truncateToMinimalBitwidths(State); 4068 4069 // Fix widened non-induction PHIs by setting up the PHI operands. 4070 if (OrigPHIsToFix.size()) { 4071 assert(EnableVPlanNativePath && 4072 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 4073 fixNonInductionPHIs(State); 4074 } 4075 4076 // At this point every instruction in the original loop is widened to a 4077 // vector form. Now we need to fix the recurrences in the loop. These PHI 4078 // nodes are currently empty because we did not want to introduce cycles. 4079 // This is the second stage of vectorizing recurrences. 4080 fixCrossIterationPHIs(State); 4081 4082 // Forget the original basic block. 4083 PSE.getSE()->forgetLoop(OrigLoop); 4084 4085 // Fix-up external users of the induction variables. 4086 for (auto &Entry : Legal->getInductionVars()) 4087 fixupIVUsers(Entry.first, Entry.second, 4088 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4089 IVEndValues[Entry.first], LoopMiddleBlock); 4090 4091 fixLCSSAPHIs(State); 4092 for (Instruction *PI : PredicatedInstructions) 4093 sinkScalarOperands(&*PI); 4094 4095 // Remove redundant induction instructions. 4096 cse(LoopVectorBody); 4097 4098 // Set/update profile weights for the vector and remainder loops as original 4099 // loop iterations are now distributed among them. Note that original loop 4100 // represented by LoopScalarBody becomes remainder loop after vectorization. 4101 // 4102 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4103 // end up getting slightly roughened result but that should be OK since 4104 // profile is not inherently precise anyway. Note also possible bypass of 4105 // vector code caused by legality checks is ignored, assigning all the weight 4106 // to the vector loop, optimistically. 4107 // 4108 // For scalable vectorization we can't know at compile time how many iterations 4109 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4110 // vscale of '1'. 4111 setProfileInfoAfterUnrolling( 4112 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4113 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4114 } 4115 4116 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 4117 // In order to support recurrences we need to be able to vectorize Phi nodes. 4118 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4119 // stage #2: We now need to fix the recurrences by adding incoming edges to 4120 // the currently empty PHI nodes. At this point every instruction in the 4121 // original loop is widened to a vector form so we can use them to construct 4122 // the incoming edges. 4123 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 4124 for (VPRecipeBase &R : Header->phis()) { 4125 auto *PhiR = dyn_cast<VPWidenPHIRecipe>(&R); 4126 if (!PhiR) 4127 continue; 4128 auto *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4129 if (PhiR->getRecurrenceDescriptor()) { 4130 fixReduction(PhiR, State); 4131 } else if (Legal->isFirstOrderRecurrence(OrigPhi)) 4132 fixFirstOrderRecurrence(PhiR, State); 4133 } 4134 } 4135 4136 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, 4137 VPTransformState &State) { 4138 // This is the second phase of vectorizing first-order recurrences. An 4139 // overview of the transformation is described below. Suppose we have the 4140 // following loop. 4141 // 4142 // for (int i = 0; i < n; ++i) 4143 // b[i] = a[i] - a[i - 1]; 4144 // 4145 // There is a first-order recurrence on "a". For this loop, the shorthand 4146 // scalar IR looks like: 4147 // 4148 // scalar.ph: 4149 // s_init = a[-1] 4150 // br scalar.body 4151 // 4152 // scalar.body: 4153 // i = phi [0, scalar.ph], [i+1, scalar.body] 4154 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4155 // s2 = a[i] 4156 // b[i] = s2 - s1 4157 // br cond, scalar.body, ... 4158 // 4159 // In this example, s1 is a recurrence because it's value depends on the 4160 // previous iteration. In the first phase of vectorization, we created a 4161 // temporary value for s1. We now complete the vectorization and produce the 4162 // shorthand vector IR shown below (for VF = 4, UF = 1). 4163 // 4164 // vector.ph: 4165 // v_init = vector(..., ..., ..., a[-1]) 4166 // br vector.body 4167 // 4168 // vector.body 4169 // i = phi [0, vector.ph], [i+4, vector.body] 4170 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4171 // v2 = a[i, i+1, i+2, i+3]; 4172 // v3 = vector(v1(3), v2(0, 1, 2)) 4173 // b[i, i+1, i+2, i+3] = v2 - v3 4174 // br cond, vector.body, middle.block 4175 // 4176 // middle.block: 4177 // x = v2(3) 4178 // br scalar.ph 4179 // 4180 // scalar.ph: 4181 // s_init = phi [x, middle.block], [a[-1], otherwise] 4182 // br scalar.body 4183 // 4184 // After execution completes the vector loop, we extract the next value of 4185 // the recurrence (x) to use as the initial value in the scalar loop. 4186 4187 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 4188 4189 auto *IdxTy = Builder.getInt32Ty(); 4190 auto *One = ConstantInt::get(IdxTy, 1); 4191 4192 // Create a vector from the initial value. 4193 auto *VectorInit = ScalarInit; 4194 if (VF.isVector()) { 4195 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4196 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4197 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4198 VectorInit = Builder.CreateInsertElement( 4199 PoisonValue::get(VectorType::get(VectorInit->getType(), VF)), 4200 VectorInit, LastIdx, "vector.recur.init"); 4201 } 4202 4203 VPValue *PreviousDef = PhiR->getBackedgeValue(); 4204 // We constructed a temporary phi node in the first phase of vectorization. 4205 // This phi node will eventually be deleted. 4206 Builder.SetInsertPoint(cast<Instruction>(State.get(PhiR, 0))); 4207 4208 // Create a phi node for the new recurrence. The current value will either be 4209 // the initial value inserted into a vector or loop-varying vector value. 4210 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4211 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4212 4213 // Get the vectorized previous value of the last part UF - 1. It appears last 4214 // among all unrolled iterations, due to the order of their construction. 4215 Value *PreviousLastPart = State.get(PreviousDef, UF - 1); 4216 4217 // Find and set the insertion point after the previous value if it is an 4218 // instruction. 4219 BasicBlock::iterator InsertPt; 4220 // Note that the previous value may have been constant-folded so it is not 4221 // guaranteed to be an instruction in the vector loop. 4222 // FIXME: Loop invariant values do not form recurrences. We should deal with 4223 // them earlier. 4224 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 4225 InsertPt = LoopVectorBody->getFirstInsertionPt(); 4226 else { 4227 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 4228 if (isa<PHINode>(PreviousLastPart)) 4229 // If the previous value is a phi node, we should insert after all the phi 4230 // nodes in the block containing the PHI to avoid breaking basic block 4231 // verification. Note that the basic block may be different to 4232 // LoopVectorBody, in case we predicate the loop. 4233 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 4234 else 4235 InsertPt = ++PreviousInst->getIterator(); 4236 } 4237 Builder.SetInsertPoint(&*InsertPt); 4238 4239 // The vector from which to take the initial value for the current iteration 4240 // (actual or unrolled). Initially, this is the vector phi node. 4241 Value *Incoming = VecPhi; 4242 4243 // Shuffle the current and previous vector and update the vector parts. 4244 for (unsigned Part = 0; Part < UF; ++Part) { 4245 Value *PreviousPart = State.get(PreviousDef, Part); 4246 Value *PhiPart = State.get(PhiR, Part); 4247 auto *Shuffle = VF.isVector() 4248 ? Builder.CreateVectorSplice(Incoming, PreviousPart, -1) 4249 : Incoming; 4250 PhiPart->replaceAllUsesWith(Shuffle); 4251 cast<Instruction>(PhiPart)->eraseFromParent(); 4252 State.reset(PhiR, Shuffle, Part); 4253 Incoming = PreviousPart; 4254 } 4255 4256 // Fix the latch value of the new recurrence in the vector loop. 4257 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4258 4259 // Extract the last vector element in the middle block. This will be the 4260 // initial value for the recurrence when jumping to the scalar loop. 4261 auto *ExtractForScalar = Incoming; 4262 if (VF.isVector()) { 4263 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4264 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4265 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4266 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4267 "vector.recur.extract"); 4268 } 4269 // Extract the second last element in the middle block if the 4270 // Phi is used outside the loop. We need to extract the phi itself 4271 // and not the last element (the phi update in the current iteration). This 4272 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4273 // when the scalar loop is not run at all. 4274 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4275 if (VF.isVector()) { 4276 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4277 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4278 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4279 Incoming, Idx, "vector.recur.extract.for.phi"); 4280 } else if (UF > 1) 4281 // When loop is unrolled without vectorizing, initialize 4282 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4283 // of `Incoming`. This is analogous to the vectorized case above: extracting 4284 // the second last element when VF > 1. 4285 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4286 4287 // Fix the initial value of the original recurrence in the scalar loop. 4288 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4289 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 4290 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4291 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4292 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4293 Start->addIncoming(Incoming, BB); 4294 } 4295 4296 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4297 Phi->setName("scalar.recur"); 4298 4299 // Finally, fix users of the recurrence outside the loop. The users will need 4300 // either the last value of the scalar recurrence or the last value of the 4301 // vector recurrence we extracted in the middle block. Since the loop is in 4302 // LCSSA form, we just need to find all the phi nodes for the original scalar 4303 // recurrence in the exit block, and then add an edge for the middle block. 4304 // Note that LCSSA does not imply single entry when the original scalar loop 4305 // had multiple exiting edges (as we always run the last iteration in the 4306 // scalar epilogue); in that case, the exiting path through middle will be 4307 // dynamically dead and the value picked for the phi doesn't matter. 4308 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4309 if (any_of(LCSSAPhi.incoming_values(), 4310 [Phi](Value *V) { return V == Phi; })) 4311 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4312 } 4313 4314 void InnerLoopVectorizer::fixReduction(VPWidenPHIRecipe *PhiR, 4315 VPTransformState &State) { 4316 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4317 // Get it's reduction variable descriptor. 4318 assert(Legal->isReductionVariable(OrigPhi) && 4319 "Unable to find the reduction variable"); 4320 const RecurrenceDescriptor &RdxDesc = *PhiR->getRecurrenceDescriptor(); 4321 4322 RecurKind RK = RdxDesc.getRecurrenceKind(); 4323 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4324 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4325 setDebugLocFromInst(Builder, ReductionStartValue); 4326 bool IsInLoopReductionPhi = Cost->isInLoopReduction(OrigPhi); 4327 4328 VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst); 4329 // This is the vector-clone of the value that leaves the loop. 4330 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4331 4332 // Wrap flags are in general invalid after vectorization, clear them. 4333 clearReductionWrapFlags(RdxDesc, State); 4334 4335 // Fix the vector-loop phi. 4336 4337 // Reductions do not have to start at zero. They can start with 4338 // any loop invariant values. 4339 BasicBlock *VectorLoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4340 4341 bool IsOrdered = IsInLoopReductionPhi && Cost->useOrderedReductions(RdxDesc); 4342 4343 for (unsigned Part = 0; Part < UF; ++Part) { 4344 if (IsOrdered && Part > 0) 4345 break; 4346 Value *VecRdxPhi = State.get(PhiR->getVPSingleValue(), Part); 4347 Value *Val = State.get(PhiR->getBackedgeValue(), Part); 4348 if (IsOrdered) 4349 Val = State.get(PhiR->getBackedgeValue(), UF - 1); 4350 4351 cast<PHINode>(VecRdxPhi)->addIncoming(Val, VectorLoopLatch); 4352 } 4353 4354 // Before each round, move the insertion point right between 4355 // the PHIs and the values we are going to write. 4356 // This allows us to write both PHINodes and the extractelement 4357 // instructions. 4358 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4359 4360 setDebugLocFromInst(Builder, LoopExitInst); 4361 4362 Type *PhiTy = OrigPhi->getType(); 4363 // If tail is folded by masking, the vector value to leave the loop should be 4364 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4365 // instead of the former. For an inloop reduction the reduction will already 4366 // be predicated, and does not need to be handled here. 4367 if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) { 4368 for (unsigned Part = 0; Part < UF; ++Part) { 4369 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4370 Value *Sel = nullptr; 4371 for (User *U : VecLoopExitInst->users()) { 4372 if (isa<SelectInst>(U)) { 4373 assert(!Sel && "Reduction exit feeding two selects"); 4374 Sel = U; 4375 } else 4376 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4377 } 4378 assert(Sel && "Reduction exit feeds no select"); 4379 State.reset(LoopExitInstDef, Sel, Part); 4380 4381 // If the target can create a predicated operator for the reduction at no 4382 // extra cost in the loop (for example a predicated vadd), it can be 4383 // cheaper for the select to remain in the loop than be sunk out of it, 4384 // and so use the select value for the phi instead of the old 4385 // LoopExitValue. 4386 if (PreferPredicatedReductionSelect || 4387 TTI->preferPredicatedReductionSelect( 4388 RdxDesc.getOpcode(), PhiTy, 4389 TargetTransformInfo::ReductionFlags())) { 4390 auto *VecRdxPhi = 4391 cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part)); 4392 VecRdxPhi->setIncomingValueForBlock( 4393 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4394 } 4395 } 4396 } 4397 4398 // If the vector reduction can be performed in a smaller type, we truncate 4399 // then extend the loop exit value to enable InstCombine to evaluate the 4400 // entire expression in the smaller type. 4401 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4402 assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!"); 4403 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4404 Builder.SetInsertPoint( 4405 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4406 VectorParts RdxParts(UF); 4407 for (unsigned Part = 0; Part < UF; ++Part) { 4408 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4409 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4410 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4411 : Builder.CreateZExt(Trunc, VecTy); 4412 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4413 UI != RdxParts[Part]->user_end();) 4414 if (*UI != Trunc) { 4415 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4416 RdxParts[Part] = Extnd; 4417 } else { 4418 ++UI; 4419 } 4420 } 4421 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4422 for (unsigned Part = 0; Part < UF; ++Part) { 4423 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4424 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4425 } 4426 } 4427 4428 // Reduce all of the unrolled parts into a single vector. 4429 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4430 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4431 4432 // The middle block terminator has already been assigned a DebugLoc here (the 4433 // OrigLoop's single latch terminator). We want the whole middle block to 4434 // appear to execute on this line because: (a) it is all compiler generated, 4435 // (b) these instructions are always executed after evaluating the latch 4436 // conditional branch, and (c) other passes may add new predecessors which 4437 // terminate on this line. This is the easiest way to ensure we don't 4438 // accidentally cause an extra step back into the loop while debugging. 4439 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 4440 if (IsOrdered) 4441 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4442 else { 4443 // Floating-point operations should have some FMF to enable the reduction. 4444 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4445 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4446 for (unsigned Part = 1; Part < UF; ++Part) { 4447 Value *RdxPart = State.get(LoopExitInstDef, Part); 4448 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4449 ReducedPartRdx = Builder.CreateBinOp( 4450 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4451 } else { 4452 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4453 } 4454 } 4455 } 4456 4457 // Create the reduction after the loop. Note that inloop reductions create the 4458 // target reduction in the loop using a Reduction recipe. 4459 if (VF.isVector() && !IsInLoopReductionPhi) { 4460 ReducedPartRdx = 4461 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx); 4462 // If the reduction can be performed in a smaller type, we need to extend 4463 // the reduction to the wider type before we branch to the original loop. 4464 if (PhiTy != RdxDesc.getRecurrenceType()) 4465 ReducedPartRdx = RdxDesc.isSigned() 4466 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4467 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4468 } 4469 4470 // Create a phi node that merges control-flow from the backedge-taken check 4471 // block and the middle block. 4472 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4473 LoopScalarPreHeader->getTerminator()); 4474 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4475 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4476 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4477 4478 // Now, we need to fix the users of the reduction variable 4479 // inside and outside of the scalar remainder loop. 4480 4481 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4482 // in the exit blocks. See comment on analogous loop in 4483 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4484 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4485 if (any_of(LCSSAPhi.incoming_values(), 4486 [LoopExitInst](Value *V) { return V == LoopExitInst; })) 4487 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4488 4489 // Fix the scalar loop reduction variable with the incoming reduction sum 4490 // from the vector body and from the backedge value. 4491 int IncomingEdgeBlockIdx = 4492 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4493 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4494 // Pick the other block. 4495 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4496 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4497 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4498 } 4499 4500 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4501 VPTransformState &State) { 4502 RecurKind RK = RdxDesc.getRecurrenceKind(); 4503 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4504 return; 4505 4506 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4507 assert(LoopExitInstr && "null loop exit instruction"); 4508 SmallVector<Instruction *, 8> Worklist; 4509 SmallPtrSet<Instruction *, 8> Visited; 4510 Worklist.push_back(LoopExitInstr); 4511 Visited.insert(LoopExitInstr); 4512 4513 while (!Worklist.empty()) { 4514 Instruction *Cur = Worklist.pop_back_val(); 4515 if (isa<OverflowingBinaryOperator>(Cur)) 4516 for (unsigned Part = 0; Part < UF; ++Part) { 4517 Value *V = State.get(State.Plan->getVPValue(Cur), Part); 4518 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4519 } 4520 4521 for (User *U : Cur->users()) { 4522 Instruction *UI = cast<Instruction>(U); 4523 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4524 Visited.insert(UI).second) 4525 Worklist.push_back(UI); 4526 } 4527 } 4528 } 4529 4530 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4531 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4532 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4533 // Some phis were already hand updated by the reduction and recurrence 4534 // code above, leave them alone. 4535 continue; 4536 4537 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4538 // Non-instruction incoming values will have only one value. 4539 4540 VPLane Lane = VPLane::getFirstLane(); 4541 if (isa<Instruction>(IncomingValue) && 4542 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4543 VF)) 4544 Lane = VPLane::getLastLaneForVF(VF); 4545 4546 // Can be a loop invariant incoming value or the last scalar value to be 4547 // extracted from the vectorized loop. 4548 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4549 Value *lastIncomingValue = 4550 OrigLoop->isLoopInvariant(IncomingValue) 4551 ? IncomingValue 4552 : State.get(State.Plan->getVPValue(IncomingValue), 4553 VPIteration(UF - 1, Lane)); 4554 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4555 } 4556 } 4557 4558 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4559 // The basic block and loop containing the predicated instruction. 4560 auto *PredBB = PredInst->getParent(); 4561 auto *VectorLoop = LI->getLoopFor(PredBB); 4562 4563 // Initialize a worklist with the operands of the predicated instruction. 4564 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4565 4566 // Holds instructions that we need to analyze again. An instruction may be 4567 // reanalyzed if we don't yet know if we can sink it or not. 4568 SmallVector<Instruction *, 8> InstsToReanalyze; 4569 4570 // Returns true if a given use occurs in the predicated block. Phi nodes use 4571 // their operands in their corresponding predecessor blocks. 4572 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4573 auto *I = cast<Instruction>(U.getUser()); 4574 BasicBlock *BB = I->getParent(); 4575 if (auto *Phi = dyn_cast<PHINode>(I)) 4576 BB = Phi->getIncomingBlock( 4577 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4578 return BB == PredBB; 4579 }; 4580 4581 // Iteratively sink the scalarized operands of the predicated instruction 4582 // into the block we created for it. When an instruction is sunk, it's 4583 // operands are then added to the worklist. The algorithm ends after one pass 4584 // through the worklist doesn't sink a single instruction. 4585 bool Changed; 4586 do { 4587 // Add the instructions that need to be reanalyzed to the worklist, and 4588 // reset the changed indicator. 4589 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4590 InstsToReanalyze.clear(); 4591 Changed = false; 4592 4593 while (!Worklist.empty()) { 4594 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4595 4596 // We can't sink an instruction if it is a phi node, is not in the loop, 4597 // or may have side effects. 4598 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4599 I->mayHaveSideEffects()) 4600 continue; 4601 4602 // If the instruction is already in PredBB, check if we can sink its 4603 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4604 // sinking the scalar instruction I, hence it appears in PredBB; but it 4605 // may have failed to sink I's operands (recursively), which we try 4606 // (again) here. 4607 if (I->getParent() == PredBB) { 4608 Worklist.insert(I->op_begin(), I->op_end()); 4609 continue; 4610 } 4611 4612 // It's legal to sink the instruction if all its uses occur in the 4613 // predicated block. Otherwise, there's nothing to do yet, and we may 4614 // need to reanalyze the instruction. 4615 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4616 InstsToReanalyze.push_back(I); 4617 continue; 4618 } 4619 4620 // Move the instruction to the beginning of the predicated block, and add 4621 // it's operands to the worklist. 4622 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4623 Worklist.insert(I->op_begin(), I->op_end()); 4624 4625 // The sinking may have enabled other instructions to be sunk, so we will 4626 // need to iterate. 4627 Changed = true; 4628 } 4629 } while (Changed); 4630 } 4631 4632 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4633 for (PHINode *OrigPhi : OrigPHIsToFix) { 4634 VPWidenPHIRecipe *VPPhi = 4635 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4636 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4637 // Make sure the builder has a valid insert point. 4638 Builder.SetInsertPoint(NewPhi); 4639 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4640 VPValue *Inc = VPPhi->getIncomingValue(i); 4641 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4642 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4643 } 4644 } 4645 } 4646 4647 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) { 4648 return Cost->useOrderedReductions(RdxDesc); 4649 } 4650 4651 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4652 VPUser &Operands, unsigned UF, 4653 ElementCount VF, bool IsPtrLoopInvariant, 4654 SmallBitVector &IsIndexLoopInvariant, 4655 VPTransformState &State) { 4656 // Construct a vector GEP by widening the operands of the scalar GEP as 4657 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4658 // results in a vector of pointers when at least one operand of the GEP 4659 // is vector-typed. Thus, to keep the representation compact, we only use 4660 // vector-typed operands for loop-varying values. 4661 4662 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4663 // If we are vectorizing, but the GEP has only loop-invariant operands, 4664 // the GEP we build (by only using vector-typed operands for 4665 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4666 // produce a vector of pointers, we need to either arbitrarily pick an 4667 // operand to broadcast, or broadcast a clone of the original GEP. 4668 // Here, we broadcast a clone of the original. 4669 // 4670 // TODO: If at some point we decide to scalarize instructions having 4671 // loop-invariant operands, this special case will no longer be 4672 // required. We would add the scalarization decision to 4673 // collectLoopScalars() and teach getVectorValue() to broadcast 4674 // the lane-zero scalar value. 4675 auto *Clone = Builder.Insert(GEP->clone()); 4676 for (unsigned Part = 0; Part < UF; ++Part) { 4677 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4678 State.set(VPDef, EntryPart, Part); 4679 addMetadata(EntryPart, GEP); 4680 } 4681 } else { 4682 // If the GEP has at least one loop-varying operand, we are sure to 4683 // produce a vector of pointers. But if we are only unrolling, we want 4684 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4685 // produce with the code below will be scalar (if VF == 1) or vector 4686 // (otherwise). Note that for the unroll-only case, we still maintain 4687 // values in the vector mapping with initVector, as we do for other 4688 // instructions. 4689 for (unsigned Part = 0; Part < UF; ++Part) { 4690 // The pointer operand of the new GEP. If it's loop-invariant, we 4691 // won't broadcast it. 4692 auto *Ptr = IsPtrLoopInvariant 4693 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 4694 : State.get(Operands.getOperand(0), Part); 4695 4696 // Collect all the indices for the new GEP. If any index is 4697 // loop-invariant, we won't broadcast it. 4698 SmallVector<Value *, 4> Indices; 4699 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4700 VPValue *Operand = Operands.getOperand(I); 4701 if (IsIndexLoopInvariant[I - 1]) 4702 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 4703 else 4704 Indices.push_back(State.get(Operand, Part)); 4705 } 4706 4707 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4708 // but it should be a vector, otherwise. 4709 auto *NewGEP = 4710 GEP->isInBounds() 4711 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4712 Indices) 4713 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4714 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4715 "NewGEP is not a pointer vector"); 4716 State.set(VPDef, NewGEP, Part); 4717 addMetadata(NewGEP, GEP); 4718 } 4719 } 4720 } 4721 4722 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4723 RecurrenceDescriptor *RdxDesc, 4724 VPWidenPHIRecipe *PhiR, 4725 VPTransformState &State) { 4726 PHINode *P = cast<PHINode>(PN); 4727 if (EnableVPlanNativePath) { 4728 // Currently we enter here in the VPlan-native path for non-induction 4729 // PHIs where all control flow is uniform. We simply widen these PHIs. 4730 // Create a vector phi with no operands - the vector phi operands will be 4731 // set at the end of vector code generation. 4732 Type *VecTy = (State.VF.isScalar()) 4733 ? PN->getType() 4734 : VectorType::get(PN->getType(), State.VF); 4735 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4736 State.set(PhiR, VecPhi, 0); 4737 OrigPHIsToFix.push_back(P); 4738 4739 return; 4740 } 4741 4742 assert(PN->getParent() == OrigLoop->getHeader() && 4743 "Non-header phis should have been handled elsewhere"); 4744 4745 // In order to support recurrences we need to be able to vectorize Phi nodes. 4746 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4747 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4748 // this value when we vectorize all of the instructions that use the PHI. 4749 if (RdxDesc || Legal->isFirstOrderRecurrence(P)) { 4750 bool ScalarPHI = 4751 (State.VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN)); 4752 Type *VecTy = 4753 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF); 4754 4755 bool IsOrdered = Cost->isInLoopReduction(cast<PHINode>(PN)) && 4756 Cost->useOrderedReductions(*RdxDesc); 4757 unsigned LastPartForNewPhi = IsOrdered ? 1 : State.UF; 4758 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 4759 Value *EntryPart = PHINode::Create( 4760 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4761 State.set(PhiR, EntryPart, Part); 4762 } 4763 if (Legal->isFirstOrderRecurrence(P)) 4764 return; 4765 VPValue *StartVPV = PhiR->getStartValue(); 4766 Value *StartV = StartVPV->getLiveInIRValue(); 4767 4768 Value *Iden = nullptr; 4769 4770 assert(Legal->isReductionVariable(P) && StartV && 4771 "RdxDesc should only be set for reduction variables; in that case " 4772 "a StartV is also required"); 4773 RecurKind RK = RdxDesc->getRecurrenceKind(); 4774 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK)) { 4775 // MinMax reduction have the start value as their identify. 4776 if (ScalarPHI) { 4777 Iden = StartV; 4778 } else { 4779 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4780 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4781 StartV = Iden = 4782 Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident"); 4783 } 4784 } else { 4785 Constant *IdenC = RecurrenceDescriptor::getRecurrenceIdentity( 4786 RK, VecTy->getScalarType(), RdxDesc->getFastMathFlags()); 4787 Iden = IdenC; 4788 4789 if (!ScalarPHI) { 4790 Iden = ConstantVector::getSplat(State.VF, IdenC); 4791 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4792 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4793 Constant *Zero = Builder.getInt32(0); 4794 StartV = Builder.CreateInsertElement(Iden, StartV, Zero); 4795 } 4796 } 4797 4798 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 4799 Value *EntryPart = State.get(PhiR, Part); 4800 // Make sure to add the reduction start value only to the 4801 // first unroll part. 4802 Value *StartVal = (Part == 0) ? StartV : Iden; 4803 cast<PHINode>(EntryPart)->addIncoming(StartVal, LoopVectorPreHeader); 4804 } 4805 4806 return; 4807 } 4808 4809 assert(!Legal->isReductionVariable(P) && 4810 "reductions should be handled above"); 4811 4812 setDebugLocFromInst(Builder, P); 4813 4814 // This PHINode must be an induction variable. 4815 // Make sure that we know about it. 4816 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4817 4818 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4819 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4820 4821 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4822 // which can be found from the original scalar operations. 4823 switch (II.getKind()) { 4824 case InductionDescriptor::IK_NoInduction: 4825 llvm_unreachable("Unknown induction"); 4826 case InductionDescriptor::IK_IntInduction: 4827 case InductionDescriptor::IK_FpInduction: 4828 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4829 case InductionDescriptor::IK_PtrInduction: { 4830 // Handle the pointer induction variable case. 4831 assert(P->getType()->isPointerTy() && "Unexpected type."); 4832 4833 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4834 // This is the normalized GEP that starts counting at zero. 4835 Value *PtrInd = 4836 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4837 // Determine the number of scalars we need to generate for each unroll 4838 // iteration. If the instruction is uniform, we only need to generate the 4839 // first lane. Otherwise, we generate all VF values. 4840 bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF); 4841 unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue(); 4842 4843 bool NeedsVectorIndex = !IsUniform && VF.isScalable(); 4844 Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr; 4845 if (NeedsVectorIndex) { 4846 Type *VecIVTy = VectorType::get(PtrInd->getType(), VF); 4847 UnitStepVec = Builder.CreateStepVector(VecIVTy); 4848 PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd); 4849 } 4850 4851 for (unsigned Part = 0; Part < UF; ++Part) { 4852 Value *PartStart = createStepForVF( 4853 Builder, ConstantInt::get(PtrInd->getType(), Part), VF); 4854 4855 if (NeedsVectorIndex) { 4856 Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart); 4857 Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec); 4858 Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices); 4859 Value *SclrGep = 4860 emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II); 4861 SclrGep->setName("next.gep"); 4862 State.set(PhiR, SclrGep, Part); 4863 // We've cached the whole vector, which means we can support the 4864 // extraction of any lane. 4865 continue; 4866 } 4867 4868 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4869 Value *Idx = Builder.CreateAdd( 4870 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4871 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4872 Value *SclrGep = 4873 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4874 SclrGep->setName("next.gep"); 4875 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4876 } 4877 } 4878 return; 4879 } 4880 assert(isa<SCEVConstant>(II.getStep()) && 4881 "Induction step not a SCEV constant!"); 4882 Type *PhiType = II.getStep()->getType(); 4883 4884 // Build a pointer phi 4885 Value *ScalarStartValue = II.getStartValue(); 4886 Type *ScStValueType = ScalarStartValue->getType(); 4887 PHINode *NewPointerPhi = 4888 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4889 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4890 4891 // A pointer induction, performed by using a gep 4892 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4893 Instruction *InductionLoc = LoopLatch->getTerminator(); 4894 const SCEV *ScalarStep = II.getStep(); 4895 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4896 Value *ScalarStepValue = 4897 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4898 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4899 Value *NumUnrolledElems = 4900 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4901 Value *InductionGEP = GetElementPtrInst::Create( 4902 ScStValueType->getPointerElementType(), NewPointerPhi, 4903 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4904 InductionLoc); 4905 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4906 4907 // Create UF many actual address geps that use the pointer 4908 // phi as base and a vectorized version of the step value 4909 // (<step*0, ..., step*N>) as offset. 4910 for (unsigned Part = 0; Part < State.UF; ++Part) { 4911 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4912 Value *StartOffsetScalar = 4913 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4914 Value *StartOffset = 4915 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4916 // Create a vector of consecutive numbers from zero to VF. 4917 StartOffset = 4918 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4919 4920 Value *GEP = Builder.CreateGEP( 4921 ScStValueType->getPointerElementType(), NewPointerPhi, 4922 Builder.CreateMul( 4923 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4924 "vector.gep")); 4925 State.set(PhiR, GEP, Part); 4926 } 4927 } 4928 } 4929 } 4930 4931 /// A helper function for checking whether an integer division-related 4932 /// instruction may divide by zero (in which case it must be predicated if 4933 /// executed conditionally in the scalar code). 4934 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4935 /// Non-zero divisors that are non compile-time constants will not be 4936 /// converted into multiplication, so we will still end up scalarizing 4937 /// the division, but can do so w/o predication. 4938 static bool mayDivideByZero(Instruction &I) { 4939 assert((I.getOpcode() == Instruction::UDiv || 4940 I.getOpcode() == Instruction::SDiv || 4941 I.getOpcode() == Instruction::URem || 4942 I.getOpcode() == Instruction::SRem) && 4943 "Unexpected instruction"); 4944 Value *Divisor = I.getOperand(1); 4945 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4946 return !CInt || CInt->isZero(); 4947 } 4948 4949 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4950 VPUser &User, 4951 VPTransformState &State) { 4952 switch (I.getOpcode()) { 4953 case Instruction::Call: 4954 case Instruction::Br: 4955 case Instruction::PHI: 4956 case Instruction::GetElementPtr: 4957 case Instruction::Select: 4958 llvm_unreachable("This instruction is handled by a different recipe."); 4959 case Instruction::UDiv: 4960 case Instruction::SDiv: 4961 case Instruction::SRem: 4962 case Instruction::URem: 4963 case Instruction::Add: 4964 case Instruction::FAdd: 4965 case Instruction::Sub: 4966 case Instruction::FSub: 4967 case Instruction::FNeg: 4968 case Instruction::Mul: 4969 case Instruction::FMul: 4970 case Instruction::FDiv: 4971 case Instruction::FRem: 4972 case Instruction::Shl: 4973 case Instruction::LShr: 4974 case Instruction::AShr: 4975 case Instruction::And: 4976 case Instruction::Or: 4977 case Instruction::Xor: { 4978 // Just widen unops and binops. 4979 setDebugLocFromInst(Builder, &I); 4980 4981 for (unsigned Part = 0; Part < UF; ++Part) { 4982 SmallVector<Value *, 2> Ops; 4983 for (VPValue *VPOp : User.operands()) 4984 Ops.push_back(State.get(VPOp, Part)); 4985 4986 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4987 4988 if (auto *VecOp = dyn_cast<Instruction>(V)) 4989 VecOp->copyIRFlags(&I); 4990 4991 // Use this vector value for all users of the original instruction. 4992 State.set(Def, V, Part); 4993 addMetadata(V, &I); 4994 } 4995 4996 break; 4997 } 4998 case Instruction::ICmp: 4999 case Instruction::FCmp: { 5000 // Widen compares. Generate vector compares. 5001 bool FCmp = (I.getOpcode() == Instruction::FCmp); 5002 auto *Cmp = cast<CmpInst>(&I); 5003 setDebugLocFromInst(Builder, Cmp); 5004 for (unsigned Part = 0; Part < UF; ++Part) { 5005 Value *A = State.get(User.getOperand(0), Part); 5006 Value *B = State.get(User.getOperand(1), Part); 5007 Value *C = nullptr; 5008 if (FCmp) { 5009 // Propagate fast math flags. 5010 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 5011 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 5012 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 5013 } else { 5014 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 5015 } 5016 State.set(Def, C, Part); 5017 addMetadata(C, &I); 5018 } 5019 5020 break; 5021 } 5022 5023 case Instruction::ZExt: 5024 case Instruction::SExt: 5025 case Instruction::FPToUI: 5026 case Instruction::FPToSI: 5027 case Instruction::FPExt: 5028 case Instruction::PtrToInt: 5029 case Instruction::IntToPtr: 5030 case Instruction::SIToFP: 5031 case Instruction::UIToFP: 5032 case Instruction::Trunc: 5033 case Instruction::FPTrunc: 5034 case Instruction::BitCast: { 5035 auto *CI = cast<CastInst>(&I); 5036 setDebugLocFromInst(Builder, CI); 5037 5038 /// Vectorize casts. 5039 Type *DestTy = 5040 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 5041 5042 for (unsigned Part = 0; Part < UF; ++Part) { 5043 Value *A = State.get(User.getOperand(0), Part); 5044 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 5045 State.set(Def, Cast, Part); 5046 addMetadata(Cast, &I); 5047 } 5048 break; 5049 } 5050 default: 5051 // This instruction is not vectorized by simple widening. 5052 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 5053 llvm_unreachable("Unhandled instruction!"); 5054 } // end of switch. 5055 } 5056 5057 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 5058 VPUser &ArgOperands, 5059 VPTransformState &State) { 5060 assert(!isa<DbgInfoIntrinsic>(I) && 5061 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 5062 setDebugLocFromInst(Builder, &I); 5063 5064 Module *M = I.getParent()->getParent()->getParent(); 5065 auto *CI = cast<CallInst>(&I); 5066 5067 SmallVector<Type *, 4> Tys; 5068 for (Value *ArgOperand : CI->arg_operands()) 5069 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 5070 5071 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5072 5073 // The flag shows whether we use Intrinsic or a usual Call for vectorized 5074 // version of the instruction. 5075 // Is it beneficial to perform intrinsic call compared to lib call? 5076 bool NeedToScalarize = false; 5077 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 5078 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 5079 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 5080 assert((UseVectorIntrinsic || !NeedToScalarize) && 5081 "Instruction should be scalarized elsewhere."); 5082 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 5083 "Either the intrinsic cost or vector call cost must be valid"); 5084 5085 for (unsigned Part = 0; Part < UF; ++Part) { 5086 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 5087 SmallVector<Value *, 4> Args; 5088 for (auto &I : enumerate(ArgOperands.operands())) { 5089 // Some intrinsics have a scalar argument - don't replace it with a 5090 // vector. 5091 Value *Arg; 5092 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 5093 Arg = State.get(I.value(), Part); 5094 else { 5095 Arg = State.get(I.value(), VPIteration(0, 0)); 5096 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 5097 TysForDecl.push_back(Arg->getType()); 5098 } 5099 Args.push_back(Arg); 5100 } 5101 5102 Function *VectorF; 5103 if (UseVectorIntrinsic) { 5104 // Use vector version of the intrinsic. 5105 if (VF.isVector()) 5106 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 5107 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 5108 assert(VectorF && "Can't retrieve vector intrinsic."); 5109 } else { 5110 // Use vector version of the function call. 5111 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 5112 #ifndef NDEBUG 5113 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 5114 "Can't create vector function."); 5115 #endif 5116 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 5117 } 5118 SmallVector<OperandBundleDef, 1> OpBundles; 5119 CI->getOperandBundlesAsDefs(OpBundles); 5120 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 5121 5122 if (isa<FPMathOperator>(V)) 5123 V->copyFastMathFlags(CI); 5124 5125 State.set(Def, V, Part); 5126 addMetadata(V, &I); 5127 } 5128 } 5129 5130 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 5131 VPUser &Operands, 5132 bool InvariantCond, 5133 VPTransformState &State) { 5134 setDebugLocFromInst(Builder, &I); 5135 5136 // The condition can be loop invariant but still defined inside the 5137 // loop. This means that we can't just use the original 'cond' value. 5138 // We have to take the 'vectorized' value and pick the first lane. 5139 // Instcombine will make this a no-op. 5140 auto *InvarCond = InvariantCond 5141 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 5142 : nullptr; 5143 5144 for (unsigned Part = 0; Part < UF; ++Part) { 5145 Value *Cond = 5146 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 5147 Value *Op0 = State.get(Operands.getOperand(1), Part); 5148 Value *Op1 = State.get(Operands.getOperand(2), Part); 5149 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 5150 State.set(VPDef, Sel, Part); 5151 addMetadata(Sel, &I); 5152 } 5153 } 5154 5155 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 5156 // We should not collect Scalars more than once per VF. Right now, this 5157 // function is called from collectUniformsAndScalars(), which already does 5158 // this check. Collecting Scalars for VF=1 does not make any sense. 5159 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 5160 "This function should not be visited twice for the same VF"); 5161 5162 SmallSetVector<Instruction *, 8> Worklist; 5163 5164 // These sets are used to seed the analysis with pointers used by memory 5165 // accesses that will remain scalar. 5166 SmallSetVector<Instruction *, 8> ScalarPtrs; 5167 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5168 auto *Latch = TheLoop->getLoopLatch(); 5169 5170 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5171 // The pointer operands of loads and stores will be scalar as long as the 5172 // memory access is not a gather or scatter operation. The value operand of a 5173 // store will remain scalar if the store is scalarized. 5174 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5175 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5176 assert(WideningDecision != CM_Unknown && 5177 "Widening decision should be ready at this moment"); 5178 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5179 if (Ptr == Store->getValueOperand()) 5180 return WideningDecision == CM_Scalarize; 5181 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 5182 "Ptr is neither a value or pointer operand"); 5183 return WideningDecision != CM_GatherScatter; 5184 }; 5185 5186 // A helper that returns true if the given value is a bitcast or 5187 // getelementptr instruction contained in the loop. 5188 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5189 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5190 isa<GetElementPtrInst>(V)) && 5191 !TheLoop->isLoopInvariant(V); 5192 }; 5193 5194 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 5195 if (!isa<PHINode>(Ptr) || 5196 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 5197 return false; 5198 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 5199 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 5200 return false; 5201 return isScalarUse(MemAccess, Ptr); 5202 }; 5203 5204 // A helper that evaluates a memory access's use of a pointer. If the 5205 // pointer is actually the pointer induction of a loop, it is being 5206 // inserted into Worklist. If the use will be a scalar use, and the 5207 // pointer is only used by memory accesses, we place the pointer in 5208 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 5209 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5210 if (isScalarPtrInduction(MemAccess, Ptr)) { 5211 Worklist.insert(cast<Instruction>(Ptr)); 5212 Instruction *Update = cast<Instruction>( 5213 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 5214 Worklist.insert(Update); 5215 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 5216 << "\n"); 5217 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 5218 << "\n"); 5219 return; 5220 } 5221 // We only care about bitcast and getelementptr instructions contained in 5222 // the loop. 5223 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5224 return; 5225 5226 // If the pointer has already been identified as scalar (e.g., if it was 5227 // also identified as uniform), there's nothing to do. 5228 auto *I = cast<Instruction>(Ptr); 5229 if (Worklist.count(I)) 5230 return; 5231 5232 // If the use of the pointer will be a scalar use, and all users of the 5233 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5234 // place the pointer in PossibleNonScalarPtrs. 5235 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5236 return isa<LoadInst>(U) || isa<StoreInst>(U); 5237 })) 5238 ScalarPtrs.insert(I); 5239 else 5240 PossibleNonScalarPtrs.insert(I); 5241 }; 5242 5243 // We seed the scalars analysis with three classes of instructions: (1) 5244 // instructions marked uniform-after-vectorization and (2) bitcast, 5245 // getelementptr and (pointer) phi instructions used by memory accesses 5246 // requiring a scalar use. 5247 // 5248 // (1) Add to the worklist all instructions that have been identified as 5249 // uniform-after-vectorization. 5250 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5251 5252 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5253 // memory accesses requiring a scalar use. The pointer operands of loads and 5254 // stores will be scalar as long as the memory accesses is not a gather or 5255 // scatter operation. The value operand of a store will remain scalar if the 5256 // store is scalarized. 5257 for (auto *BB : TheLoop->blocks()) 5258 for (auto &I : *BB) { 5259 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5260 evaluatePtrUse(Load, Load->getPointerOperand()); 5261 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5262 evaluatePtrUse(Store, Store->getPointerOperand()); 5263 evaluatePtrUse(Store, Store->getValueOperand()); 5264 } 5265 } 5266 for (auto *I : ScalarPtrs) 5267 if (!PossibleNonScalarPtrs.count(I)) { 5268 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5269 Worklist.insert(I); 5270 } 5271 5272 // Insert the forced scalars. 5273 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5274 // induction variable when the PHI user is scalarized. 5275 auto ForcedScalar = ForcedScalars.find(VF); 5276 if (ForcedScalar != ForcedScalars.end()) 5277 for (auto *I : ForcedScalar->second) 5278 Worklist.insert(I); 5279 5280 // Expand the worklist by looking through any bitcasts and getelementptr 5281 // instructions we've already identified as scalar. This is similar to the 5282 // expansion step in collectLoopUniforms(); however, here we're only 5283 // expanding to include additional bitcasts and getelementptr instructions. 5284 unsigned Idx = 0; 5285 while (Idx != Worklist.size()) { 5286 Instruction *Dst = Worklist[Idx++]; 5287 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5288 continue; 5289 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5290 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5291 auto *J = cast<Instruction>(U); 5292 return !TheLoop->contains(J) || Worklist.count(J) || 5293 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5294 isScalarUse(J, Src)); 5295 })) { 5296 Worklist.insert(Src); 5297 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5298 } 5299 } 5300 5301 // An induction variable will remain scalar if all users of the induction 5302 // variable and induction variable update remain scalar. 5303 for (auto &Induction : Legal->getInductionVars()) { 5304 auto *Ind = Induction.first; 5305 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5306 5307 // If tail-folding is applied, the primary induction variable will be used 5308 // to feed a vector compare. 5309 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 5310 continue; 5311 5312 // Determine if all users of the induction variable are scalar after 5313 // vectorization. 5314 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5315 auto *I = cast<Instruction>(U); 5316 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5317 }); 5318 if (!ScalarInd) 5319 continue; 5320 5321 // Determine if all users of the induction variable update instruction are 5322 // scalar after vectorization. 5323 auto ScalarIndUpdate = 5324 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5325 auto *I = cast<Instruction>(U); 5326 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5327 }); 5328 if (!ScalarIndUpdate) 5329 continue; 5330 5331 // The induction variable and its update instruction will remain scalar. 5332 Worklist.insert(Ind); 5333 Worklist.insert(IndUpdate); 5334 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5335 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 5336 << "\n"); 5337 } 5338 5339 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5340 } 5341 5342 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const { 5343 if (!blockNeedsPredication(I->getParent())) 5344 return false; 5345 switch(I->getOpcode()) { 5346 default: 5347 break; 5348 case Instruction::Load: 5349 case Instruction::Store: { 5350 if (!Legal->isMaskRequired(I)) 5351 return false; 5352 auto *Ptr = getLoadStorePointerOperand(I); 5353 auto *Ty = getLoadStoreType(I); 5354 const Align Alignment = getLoadStoreAlignment(I); 5355 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 5356 TTI.isLegalMaskedGather(Ty, Alignment)) 5357 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 5358 TTI.isLegalMaskedScatter(Ty, Alignment)); 5359 } 5360 case Instruction::UDiv: 5361 case Instruction::SDiv: 5362 case Instruction::SRem: 5363 case Instruction::URem: 5364 return mayDivideByZero(*I); 5365 } 5366 return false; 5367 } 5368 5369 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5370 Instruction *I, ElementCount VF) { 5371 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5372 assert(getWideningDecision(I, VF) == CM_Unknown && 5373 "Decision should not be set yet."); 5374 auto *Group = getInterleavedAccessGroup(I); 5375 assert(Group && "Must have a group."); 5376 5377 // If the instruction's allocated size doesn't equal it's type size, it 5378 // requires padding and will be scalarized. 5379 auto &DL = I->getModule()->getDataLayout(); 5380 auto *ScalarTy = getLoadStoreType(I); 5381 if (hasIrregularType(ScalarTy, DL)) 5382 return false; 5383 5384 // Check if masking is required. 5385 // A Group may need masking for one of two reasons: it resides in a block that 5386 // needs predication, or it was decided to use masking to deal with gaps. 5387 bool PredicatedAccessRequiresMasking = 5388 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 5389 bool AccessWithGapsRequiresMasking = 5390 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5391 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 5392 return true; 5393 5394 // If masked interleaving is required, we expect that the user/target had 5395 // enabled it, because otherwise it either wouldn't have been created or 5396 // it should have been invalidated by the CostModel. 5397 assert(useMaskedInterleavedAccesses(TTI) && 5398 "Masked interleave-groups for predicated accesses are not enabled."); 5399 5400 auto *Ty = getLoadStoreType(I); 5401 const Align Alignment = getLoadStoreAlignment(I); 5402 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5403 : TTI.isLegalMaskedStore(Ty, Alignment); 5404 } 5405 5406 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5407 Instruction *I, ElementCount VF) { 5408 // Get and ensure we have a valid memory instruction. 5409 LoadInst *LI = dyn_cast<LoadInst>(I); 5410 StoreInst *SI = dyn_cast<StoreInst>(I); 5411 assert((LI || SI) && "Invalid memory instruction"); 5412 5413 auto *Ptr = getLoadStorePointerOperand(I); 5414 5415 // In order to be widened, the pointer should be consecutive, first of all. 5416 if (!Legal->isConsecutivePtr(Ptr)) 5417 return false; 5418 5419 // If the instruction is a store located in a predicated block, it will be 5420 // scalarized. 5421 if (isScalarWithPredication(I)) 5422 return false; 5423 5424 // If the instruction's allocated size doesn't equal it's type size, it 5425 // requires padding and will be scalarized. 5426 auto &DL = I->getModule()->getDataLayout(); 5427 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5428 if (hasIrregularType(ScalarTy, DL)) 5429 return false; 5430 5431 return true; 5432 } 5433 5434 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5435 // We should not collect Uniforms more than once per VF. Right now, 5436 // this function is called from collectUniformsAndScalars(), which 5437 // already does this check. Collecting Uniforms for VF=1 does not make any 5438 // sense. 5439 5440 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5441 "This function should not be visited twice for the same VF"); 5442 5443 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5444 // not analyze again. Uniforms.count(VF) will return 1. 5445 Uniforms[VF].clear(); 5446 5447 // We now know that the loop is vectorizable! 5448 // Collect instructions inside the loop that will remain uniform after 5449 // vectorization. 5450 5451 // Global values, params and instructions outside of current loop are out of 5452 // scope. 5453 auto isOutOfScope = [&](Value *V) -> bool { 5454 Instruction *I = dyn_cast<Instruction>(V); 5455 return (!I || !TheLoop->contains(I)); 5456 }; 5457 5458 SetVector<Instruction *> Worklist; 5459 BasicBlock *Latch = TheLoop->getLoopLatch(); 5460 5461 // Instructions that are scalar with predication must not be considered 5462 // uniform after vectorization, because that would create an erroneous 5463 // replicating region where only a single instance out of VF should be formed. 5464 // TODO: optimize such seldom cases if found important, see PR40816. 5465 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5466 if (isOutOfScope(I)) { 5467 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5468 << *I << "\n"); 5469 return; 5470 } 5471 if (isScalarWithPredication(I)) { 5472 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5473 << *I << "\n"); 5474 return; 5475 } 5476 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5477 Worklist.insert(I); 5478 }; 5479 5480 // Start with the conditional branch. If the branch condition is an 5481 // instruction contained in the loop that is only used by the branch, it is 5482 // uniform. 5483 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5484 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5485 addToWorklistIfAllowed(Cmp); 5486 5487 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5488 InstWidening WideningDecision = getWideningDecision(I, VF); 5489 assert(WideningDecision != CM_Unknown && 5490 "Widening decision should be ready at this moment"); 5491 5492 // A uniform memory op is itself uniform. We exclude uniform stores 5493 // here as they demand the last lane, not the first one. 5494 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5495 assert(WideningDecision == CM_Scalarize); 5496 return true; 5497 } 5498 5499 return (WideningDecision == CM_Widen || 5500 WideningDecision == CM_Widen_Reverse || 5501 WideningDecision == CM_Interleave); 5502 }; 5503 5504 5505 // Returns true if Ptr is the pointer operand of a memory access instruction 5506 // I, and I is known to not require scalarization. 5507 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5508 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5509 }; 5510 5511 // Holds a list of values which are known to have at least one uniform use. 5512 // Note that there may be other uses which aren't uniform. A "uniform use" 5513 // here is something which only demands lane 0 of the unrolled iterations; 5514 // it does not imply that all lanes produce the same value (e.g. this is not 5515 // the usual meaning of uniform) 5516 SetVector<Value *> HasUniformUse; 5517 5518 // Scan the loop for instructions which are either a) known to have only 5519 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5520 for (auto *BB : TheLoop->blocks()) 5521 for (auto &I : *BB) { 5522 // If there's no pointer operand, there's nothing to do. 5523 auto *Ptr = getLoadStorePointerOperand(&I); 5524 if (!Ptr) 5525 continue; 5526 5527 // A uniform memory op is itself uniform. We exclude uniform stores 5528 // here as they demand the last lane, not the first one. 5529 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5530 addToWorklistIfAllowed(&I); 5531 5532 if (isUniformDecision(&I, VF)) { 5533 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5534 HasUniformUse.insert(Ptr); 5535 } 5536 } 5537 5538 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5539 // demanding) users. Since loops are assumed to be in LCSSA form, this 5540 // disallows uses outside the loop as well. 5541 for (auto *V : HasUniformUse) { 5542 if (isOutOfScope(V)) 5543 continue; 5544 auto *I = cast<Instruction>(V); 5545 auto UsersAreMemAccesses = 5546 llvm::all_of(I->users(), [&](User *U) -> bool { 5547 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5548 }); 5549 if (UsersAreMemAccesses) 5550 addToWorklistIfAllowed(I); 5551 } 5552 5553 // Expand Worklist in topological order: whenever a new instruction 5554 // is added , its users should be already inside Worklist. It ensures 5555 // a uniform instruction will only be used by uniform instructions. 5556 unsigned idx = 0; 5557 while (idx != Worklist.size()) { 5558 Instruction *I = Worklist[idx++]; 5559 5560 for (auto OV : I->operand_values()) { 5561 // isOutOfScope operands cannot be uniform instructions. 5562 if (isOutOfScope(OV)) 5563 continue; 5564 // First order recurrence Phi's should typically be considered 5565 // non-uniform. 5566 auto *OP = dyn_cast<PHINode>(OV); 5567 if (OP && Legal->isFirstOrderRecurrence(OP)) 5568 continue; 5569 // If all the users of the operand are uniform, then add the 5570 // operand into the uniform worklist. 5571 auto *OI = cast<Instruction>(OV); 5572 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5573 auto *J = cast<Instruction>(U); 5574 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5575 })) 5576 addToWorklistIfAllowed(OI); 5577 } 5578 } 5579 5580 // For an instruction to be added into Worklist above, all its users inside 5581 // the loop should also be in Worklist. However, this condition cannot be 5582 // true for phi nodes that form a cyclic dependence. We must process phi 5583 // nodes separately. An induction variable will remain uniform if all users 5584 // of the induction variable and induction variable update remain uniform. 5585 // The code below handles both pointer and non-pointer induction variables. 5586 for (auto &Induction : Legal->getInductionVars()) { 5587 auto *Ind = Induction.first; 5588 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5589 5590 // Determine if all users of the induction variable are uniform after 5591 // vectorization. 5592 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5593 auto *I = cast<Instruction>(U); 5594 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5595 isVectorizedMemAccessUse(I, Ind); 5596 }); 5597 if (!UniformInd) 5598 continue; 5599 5600 // Determine if all users of the induction variable update instruction are 5601 // uniform after vectorization. 5602 auto UniformIndUpdate = 5603 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5604 auto *I = cast<Instruction>(U); 5605 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5606 isVectorizedMemAccessUse(I, IndUpdate); 5607 }); 5608 if (!UniformIndUpdate) 5609 continue; 5610 5611 // The induction variable and its update instruction will remain uniform. 5612 addToWorklistIfAllowed(Ind); 5613 addToWorklistIfAllowed(IndUpdate); 5614 } 5615 5616 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5617 } 5618 5619 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5620 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5621 5622 if (Legal->getRuntimePointerChecking()->Need) { 5623 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5624 "runtime pointer checks needed. Enable vectorization of this " 5625 "loop with '#pragma clang loop vectorize(enable)' when " 5626 "compiling with -Os/-Oz", 5627 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5628 return true; 5629 } 5630 5631 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5632 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5633 "runtime SCEV checks needed. Enable vectorization of this " 5634 "loop with '#pragma clang loop vectorize(enable)' when " 5635 "compiling with -Os/-Oz", 5636 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5637 return true; 5638 } 5639 5640 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5641 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5642 reportVectorizationFailure("Runtime stride check for small trip count", 5643 "runtime stride == 1 checks needed. Enable vectorization of " 5644 "this loop without such check by compiling with -Os/-Oz", 5645 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5646 return true; 5647 } 5648 5649 return false; 5650 } 5651 5652 ElementCount 5653 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5654 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5655 reportVectorizationInfo( 5656 "Disabling scalable vectorization, because target does not " 5657 "support scalable vectors.", 5658 "ScalableVectorsUnsupported", ORE, TheLoop); 5659 return ElementCount::getScalable(0); 5660 } 5661 5662 if (Hints->isScalableVectorizationDisabled()) { 5663 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5664 "ScalableVectorizationDisabled", ORE, TheLoop); 5665 return ElementCount::getScalable(0); 5666 } 5667 5668 auto MaxScalableVF = ElementCount::getScalable( 5669 std::numeric_limits<ElementCount::ScalarTy>::max()); 5670 5671 // Disable scalable vectorization if the loop contains unsupported reductions. 5672 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5673 // FIXME: While for scalable vectors this is currently sufficient, this should 5674 // be replaced by a more detailed mechanism that filters out specific VFs, 5675 // instead of invalidating vectorization for a whole set of VFs based on the 5676 // MaxVF. 5677 if (!canVectorizeReductions(MaxScalableVF)) { 5678 reportVectorizationInfo( 5679 "Scalable vectorization not supported for the reduction " 5680 "operations found in this loop.", 5681 "ScalableVFUnfeasible", ORE, TheLoop); 5682 return ElementCount::getScalable(0); 5683 } 5684 5685 if (Legal->isSafeForAnyVectorWidth()) 5686 return MaxScalableVF; 5687 5688 // Limit MaxScalableVF by the maximum safe dependence distance. 5689 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5690 MaxScalableVF = ElementCount::getScalable( 5691 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5692 if (!MaxScalableVF) 5693 reportVectorizationInfo( 5694 "Max legal vector width too small, scalable vectorization " 5695 "unfeasible.", 5696 "ScalableVFUnfeasible", ORE, TheLoop); 5697 5698 return MaxScalableVF; 5699 } 5700 5701 FixedScalableVFPair 5702 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5703 ElementCount UserVF) { 5704 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5705 unsigned SmallestType, WidestType; 5706 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5707 5708 // Get the maximum safe dependence distance in bits computed by LAA. 5709 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5710 // the memory accesses that is most restrictive (involved in the smallest 5711 // dependence distance). 5712 unsigned MaxSafeElements = 5713 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5714 5715 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5716 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5717 5718 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5719 << ".\n"); 5720 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5721 << ".\n"); 5722 5723 // First analyze the UserVF, fall back if the UserVF should be ignored. 5724 if (UserVF) { 5725 auto MaxSafeUserVF = 5726 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5727 5728 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) 5729 return UserVF; 5730 5731 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5732 5733 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5734 // is better to ignore the hint and let the compiler choose a suitable VF. 5735 if (!UserVF.isScalable()) { 5736 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5737 << " is unsafe, clamping to max safe VF=" 5738 << MaxSafeFixedVF << ".\n"); 5739 ORE->emit([&]() { 5740 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5741 TheLoop->getStartLoc(), 5742 TheLoop->getHeader()) 5743 << "User-specified vectorization factor " 5744 << ore::NV("UserVectorizationFactor", UserVF) 5745 << " is unsafe, clamping to maximum safe vectorization factor " 5746 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5747 }); 5748 return MaxSafeFixedVF; 5749 } 5750 5751 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5752 << " is unsafe. Ignoring scalable UserVF.\n"); 5753 ORE->emit([&]() { 5754 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5755 TheLoop->getStartLoc(), 5756 TheLoop->getHeader()) 5757 << "User-specified vectorization factor " 5758 << ore::NV("UserVectorizationFactor", UserVF) 5759 << " is unsafe. Ignoring the hint to let the compiler pick a " 5760 "suitable VF."; 5761 }); 5762 } 5763 5764 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5765 << " / " << WidestType << " bits.\n"); 5766 5767 FixedScalableVFPair Result(ElementCount::getFixed(1), 5768 ElementCount::getScalable(0)); 5769 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5770 WidestType, MaxSafeFixedVF)) 5771 Result.FixedVF = MaxVF; 5772 5773 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5774 WidestType, MaxSafeScalableVF)) 5775 if (MaxVF.isScalable()) { 5776 Result.ScalableVF = MaxVF; 5777 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5778 << "\n"); 5779 } 5780 5781 return Result; 5782 } 5783 5784 FixedScalableVFPair 5785 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5786 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5787 // TODO: It may by useful to do since it's still likely to be dynamically 5788 // uniform if the target can skip. 5789 reportVectorizationFailure( 5790 "Not inserting runtime ptr check for divergent target", 5791 "runtime pointer checks needed. Not enabled for divergent target", 5792 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5793 return FixedScalableVFPair::getNone(); 5794 } 5795 5796 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5797 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5798 if (TC == 1) { 5799 reportVectorizationFailure("Single iteration (non) loop", 5800 "loop trip count is one, irrelevant for vectorization", 5801 "SingleIterationLoop", ORE, TheLoop); 5802 return FixedScalableVFPair::getNone(); 5803 } 5804 5805 switch (ScalarEpilogueStatus) { 5806 case CM_ScalarEpilogueAllowed: 5807 return computeFeasibleMaxVF(TC, UserVF); 5808 case CM_ScalarEpilogueNotAllowedUsePredicate: 5809 LLVM_FALLTHROUGH; 5810 case CM_ScalarEpilogueNotNeededUsePredicate: 5811 LLVM_DEBUG( 5812 dbgs() << "LV: vector predicate hint/switch found.\n" 5813 << "LV: Not allowing scalar epilogue, creating predicated " 5814 << "vector loop.\n"); 5815 break; 5816 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5817 // fallthrough as a special case of OptForSize 5818 case CM_ScalarEpilogueNotAllowedOptSize: 5819 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5820 LLVM_DEBUG( 5821 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5822 else 5823 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5824 << "count.\n"); 5825 5826 // Bail if runtime checks are required, which are not good when optimising 5827 // for size. 5828 if (runtimeChecksRequired()) 5829 return FixedScalableVFPair::getNone(); 5830 5831 break; 5832 } 5833 5834 // The only loops we can vectorize without a scalar epilogue, are loops with 5835 // a bottom-test and a single exiting block. We'd have to handle the fact 5836 // that not every instruction executes on the last iteration. This will 5837 // require a lane mask which varies through the vector loop body. (TODO) 5838 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5839 // If there was a tail-folding hint/switch, but we can't fold the tail by 5840 // masking, fallback to a vectorization with a scalar epilogue. 5841 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5842 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5843 "scalar epilogue instead.\n"); 5844 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5845 return computeFeasibleMaxVF(TC, UserVF); 5846 } 5847 return FixedScalableVFPair::getNone(); 5848 } 5849 5850 // Now try the tail folding 5851 5852 // Invalidate interleave groups that require an epilogue if we can't mask 5853 // the interleave-group. 5854 if (!useMaskedInterleavedAccesses(TTI)) { 5855 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5856 "No decisions should have been taken at this point"); 5857 // Note: There is no need to invalidate any cost modeling decisions here, as 5858 // non where taken so far. 5859 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5860 } 5861 5862 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF); 5863 // Avoid tail folding if the trip count is known to be a multiple of any VF 5864 // we chose. 5865 // FIXME: The condition below pessimises the case for fixed-width vectors, 5866 // when scalable VFs are also candidates for vectorization. 5867 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5868 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5869 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5870 "MaxFixedVF must be a power of 2"); 5871 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5872 : MaxFixedVF.getFixedValue(); 5873 ScalarEvolution *SE = PSE.getSE(); 5874 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5875 const SCEV *ExitCount = SE->getAddExpr( 5876 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5877 const SCEV *Rem = SE->getURemExpr( 5878 SE->applyLoopGuards(ExitCount, TheLoop), 5879 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5880 if (Rem->isZero()) { 5881 // Accept MaxFixedVF if we do not have a tail. 5882 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5883 return MaxFactors; 5884 } 5885 } 5886 5887 // If we don't know the precise trip count, or if the trip count that we 5888 // found modulo the vectorization factor is not zero, try to fold the tail 5889 // by masking. 5890 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5891 if (Legal->prepareToFoldTailByMasking()) { 5892 FoldTailByMasking = true; 5893 return MaxFactors; 5894 } 5895 5896 // If there was a tail-folding hint/switch, but we can't fold the tail by 5897 // masking, fallback to a vectorization with a scalar epilogue. 5898 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5899 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5900 "scalar epilogue instead.\n"); 5901 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5902 return MaxFactors; 5903 } 5904 5905 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5906 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5907 return FixedScalableVFPair::getNone(); 5908 } 5909 5910 if (TC == 0) { 5911 reportVectorizationFailure( 5912 "Unable to calculate the loop count due to complex control flow", 5913 "unable to calculate the loop count due to complex control flow", 5914 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5915 return FixedScalableVFPair::getNone(); 5916 } 5917 5918 reportVectorizationFailure( 5919 "Cannot optimize for size and vectorize at the same time.", 5920 "cannot optimize for size and vectorize at the same time. " 5921 "Enable vectorization of this loop with '#pragma clang loop " 5922 "vectorize(enable)' when compiling with -Os/-Oz", 5923 "NoTailLoopWithOptForSize", ORE, TheLoop); 5924 return FixedScalableVFPair::getNone(); 5925 } 5926 5927 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5928 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5929 const ElementCount &MaxSafeVF) { 5930 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5931 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5932 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5933 : TargetTransformInfo::RGK_FixedWidthVector); 5934 5935 // Convenience function to return the minimum of two ElementCounts. 5936 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5937 assert((LHS.isScalable() == RHS.isScalable()) && 5938 "Scalable flags must match"); 5939 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5940 }; 5941 5942 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5943 // Note that both WidestRegister and WidestType may not be a powers of 2. 5944 auto MaxVectorElementCount = ElementCount::get( 5945 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5946 ComputeScalableMaxVF); 5947 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5948 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5949 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5950 5951 if (!MaxVectorElementCount) { 5952 LLVM_DEBUG(dbgs() << "LV: The target has no " 5953 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5954 << " vector registers.\n"); 5955 return ElementCount::getFixed(1); 5956 } 5957 5958 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5959 if (ConstTripCount && 5960 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5961 isPowerOf2_32(ConstTripCount)) { 5962 // We need to clamp the VF to be the ConstTripCount. There is no point in 5963 // choosing a higher viable VF as done in the loop below. If 5964 // MaxVectorElementCount is scalable, we only fall back on a fixed VF when 5965 // the TC is less than or equal to the known number of lanes. 5966 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5967 << ConstTripCount << "\n"); 5968 return TripCountEC; 5969 } 5970 5971 ElementCount MaxVF = MaxVectorElementCount; 5972 if (TTI.shouldMaximizeVectorBandwidth() || 5973 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5974 auto MaxVectorElementCountMaxBW = ElementCount::get( 5975 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5976 ComputeScalableMaxVF); 5977 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5978 5979 // Collect all viable vectorization factors larger than the default MaxVF 5980 // (i.e. MaxVectorElementCount). 5981 SmallVector<ElementCount, 8> VFs; 5982 for (ElementCount VS = MaxVectorElementCount * 2; 5983 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5984 VFs.push_back(VS); 5985 5986 // For each VF calculate its register usage. 5987 auto RUs = calculateRegisterUsage(VFs); 5988 5989 // Select the largest VF which doesn't require more registers than existing 5990 // ones. 5991 for (int i = RUs.size() - 1; i >= 0; --i) { 5992 bool Selected = true; 5993 for (auto &pair : RUs[i].MaxLocalUsers) { 5994 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5995 if (pair.second > TargetNumRegisters) 5996 Selected = false; 5997 } 5998 if (Selected) { 5999 MaxVF = VFs[i]; 6000 break; 6001 } 6002 } 6003 if (ElementCount MinVF = 6004 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 6005 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 6006 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 6007 << ") with target's minimum: " << MinVF << '\n'); 6008 MaxVF = MinVF; 6009 } 6010 } 6011 } 6012 return MaxVF; 6013 } 6014 6015 bool LoopVectorizationCostModel::isMoreProfitable( 6016 const VectorizationFactor &A, const VectorizationFactor &B) const { 6017 InstructionCost::CostType CostA = *A.Cost.getValue(); 6018 InstructionCost::CostType CostB = *B.Cost.getValue(); 6019 6020 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 6021 6022 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 6023 MaxTripCount) { 6024 // If we are folding the tail and the trip count is a known (possibly small) 6025 // constant, the trip count will be rounded up to an integer number of 6026 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 6027 // which we compare directly. When not folding the tail, the total cost will 6028 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 6029 // approximated with the per-lane cost below instead of using the tripcount 6030 // as here. 6031 int64_t RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 6032 int64_t RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 6033 return RTCostA < RTCostB; 6034 } 6035 6036 // When set to preferred, for now assume vscale may be larger than 1, so 6037 // that scalable vectorization is slightly favorable over fixed-width 6038 // vectorization. 6039 if (Hints->isScalableVectorizationPreferred()) 6040 if (A.Width.isScalable() && !B.Width.isScalable()) 6041 return (CostA * B.Width.getKnownMinValue()) <= 6042 (CostB * A.Width.getKnownMinValue()); 6043 6044 // To avoid the need for FP division: 6045 // (CostA / A.Width) < (CostB / B.Width) 6046 // <=> (CostA * B.Width) < (CostB * A.Width) 6047 return (CostA * B.Width.getKnownMinValue()) < 6048 (CostB * A.Width.getKnownMinValue()); 6049 } 6050 6051 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 6052 const ElementCountSet &VFCandidates) { 6053 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 6054 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 6055 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 6056 assert(VFCandidates.count(ElementCount::getFixed(1)) && 6057 "Expected Scalar VF to be a candidate"); 6058 6059 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 6060 VectorizationFactor ChosenFactor = ScalarCost; 6061 6062 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6063 if (ForceVectorization && VFCandidates.size() > 1) { 6064 // Ignore scalar width, because the user explicitly wants vectorization. 6065 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 6066 // evaluation. 6067 ChosenFactor.Cost = std::numeric_limits<InstructionCost::CostType>::max(); 6068 } 6069 6070 for (const auto &i : VFCandidates) { 6071 // The cost for scalar VF=1 is already calculated, so ignore it. 6072 if (i.isScalar()) 6073 continue; 6074 6075 // Notice that the vector loop needs to be executed less times, so 6076 // we need to divide the cost of the vector loops by the width of 6077 // the vector elements. 6078 VectorizationCostTy C = expectedCost(i); 6079 6080 assert(C.first.isValid() && "Unexpected invalid cost for vector loop"); 6081 VectorizationFactor Candidate(i, C.first); 6082 LLVM_DEBUG( 6083 dbgs() << "LV: Vector loop of width " << i << " costs: " 6084 << (*Candidate.Cost.getValue() / 6085 Candidate.Width.getKnownMinValue()) 6086 << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "") 6087 << ".\n"); 6088 6089 if (!C.second && !ForceVectorization) { 6090 LLVM_DEBUG( 6091 dbgs() << "LV: Not considering vector loop of width " << i 6092 << " because it will not generate any vector instructions.\n"); 6093 continue; 6094 } 6095 6096 // If profitable add it to ProfitableVF list. 6097 if (isMoreProfitable(Candidate, ScalarCost)) 6098 ProfitableVFs.push_back(Candidate); 6099 6100 if (isMoreProfitable(Candidate, ChosenFactor)) 6101 ChosenFactor = Candidate; 6102 } 6103 6104 if (!EnableCondStoresVectorization && NumPredStores) { 6105 reportVectorizationFailure("There are conditional stores.", 6106 "store that is conditionally executed prevents vectorization", 6107 "ConditionalStore", ORE, TheLoop); 6108 ChosenFactor = ScalarCost; 6109 } 6110 6111 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 6112 *ChosenFactor.Cost.getValue() >= *ScalarCost.Cost.getValue()) 6113 dbgs() 6114 << "LV: Vectorization seems to be not beneficial, " 6115 << "but was forced by a user.\n"); 6116 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 6117 return ChosenFactor; 6118 } 6119 6120 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 6121 const Loop &L, ElementCount VF) const { 6122 // Cross iteration phis such as reductions need special handling and are 6123 // currently unsupported. 6124 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 6125 return Legal->isFirstOrderRecurrence(&Phi) || 6126 Legal->isReductionVariable(&Phi); 6127 })) 6128 return false; 6129 6130 // Phis with uses outside of the loop require special handling and are 6131 // currently unsupported. 6132 for (auto &Entry : Legal->getInductionVars()) { 6133 // Look for uses of the value of the induction at the last iteration. 6134 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 6135 for (User *U : PostInc->users()) 6136 if (!L.contains(cast<Instruction>(U))) 6137 return false; 6138 // Look for uses of penultimate value of the induction. 6139 for (User *U : Entry.first->users()) 6140 if (!L.contains(cast<Instruction>(U))) 6141 return false; 6142 } 6143 6144 // Induction variables that are widened require special handling that is 6145 // currently not supported. 6146 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 6147 return !(this->isScalarAfterVectorization(Entry.first, VF) || 6148 this->isProfitableToScalarize(Entry.first, VF)); 6149 })) 6150 return false; 6151 6152 return true; 6153 } 6154 6155 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 6156 const ElementCount VF) const { 6157 // FIXME: We need a much better cost-model to take different parameters such 6158 // as register pressure, code size increase and cost of extra branches into 6159 // account. For now we apply a very crude heuristic and only consider loops 6160 // with vectorization factors larger than a certain value. 6161 // We also consider epilogue vectorization unprofitable for targets that don't 6162 // consider interleaving beneficial (eg. MVE). 6163 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 6164 return false; 6165 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 6166 return true; 6167 return false; 6168 } 6169 6170 VectorizationFactor 6171 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 6172 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 6173 VectorizationFactor Result = VectorizationFactor::Disabled(); 6174 if (!EnableEpilogueVectorization) { 6175 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 6176 return Result; 6177 } 6178 6179 if (!isScalarEpilogueAllowed()) { 6180 LLVM_DEBUG( 6181 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 6182 "allowed.\n";); 6183 return Result; 6184 } 6185 6186 // FIXME: This can be fixed for scalable vectors later, because at this stage 6187 // the LoopVectorizer will only consider vectorizing a loop with scalable 6188 // vectors when the loop has a hint to enable vectorization for a given VF. 6189 if (MainLoopVF.isScalable()) { 6190 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not " 6191 "yet supported.\n"); 6192 return Result; 6193 } 6194 6195 // Not really a cost consideration, but check for unsupported cases here to 6196 // simplify the logic. 6197 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 6198 LLVM_DEBUG( 6199 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 6200 "not a supported candidate.\n";); 6201 return Result; 6202 } 6203 6204 if (EpilogueVectorizationForceVF > 1) { 6205 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 6206 if (LVP.hasPlanWithVFs( 6207 {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)})) 6208 return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0}; 6209 else { 6210 LLVM_DEBUG( 6211 dbgs() 6212 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 6213 return Result; 6214 } 6215 } 6216 6217 if (TheLoop->getHeader()->getParent()->hasOptSize() || 6218 TheLoop->getHeader()->getParent()->hasMinSize()) { 6219 LLVM_DEBUG( 6220 dbgs() 6221 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 6222 return Result; 6223 } 6224 6225 if (!isEpilogueVectorizationProfitable(MainLoopVF)) 6226 return Result; 6227 6228 for (auto &NextVF : ProfitableVFs) 6229 if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) && 6230 (Result.Width.getFixedValue() == 1 || 6231 isMoreProfitable(NextVF, Result)) && 6232 LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width})) 6233 Result = NextVF; 6234 6235 if (Result != VectorizationFactor::Disabled()) 6236 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 6237 << Result.Width.getFixedValue() << "\n";); 6238 return Result; 6239 } 6240 6241 std::pair<unsigned, unsigned> 6242 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6243 unsigned MinWidth = -1U; 6244 unsigned MaxWidth = 8; 6245 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6246 6247 // For each block. 6248 for (BasicBlock *BB : TheLoop->blocks()) { 6249 // For each instruction in the loop. 6250 for (Instruction &I : BB->instructionsWithoutDebug()) { 6251 Type *T = I.getType(); 6252 6253 // Skip ignored values. 6254 if (ValuesToIgnore.count(&I)) 6255 continue; 6256 6257 // Only examine Loads, Stores and PHINodes. 6258 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6259 continue; 6260 6261 // Examine PHI nodes that are reduction variables. Update the type to 6262 // account for the recurrence type. 6263 if (auto *PN = dyn_cast<PHINode>(&I)) { 6264 if (!Legal->isReductionVariable(PN)) 6265 continue; 6266 const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN]; 6267 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 6268 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 6269 RdxDesc.getRecurrenceType(), 6270 TargetTransformInfo::ReductionFlags())) 6271 continue; 6272 T = RdxDesc.getRecurrenceType(); 6273 } 6274 6275 // Examine the stored values. 6276 if (auto *ST = dyn_cast<StoreInst>(&I)) 6277 T = ST->getValueOperand()->getType(); 6278 6279 // Ignore loaded pointer types and stored pointer types that are not 6280 // vectorizable. 6281 // 6282 // FIXME: The check here attempts to predict whether a load or store will 6283 // be vectorized. We only know this for certain after a VF has 6284 // been selected. Here, we assume that if an access can be 6285 // vectorized, it will be. We should also look at extending this 6286 // optimization to non-pointer types. 6287 // 6288 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6289 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6290 continue; 6291 6292 MinWidth = std::min(MinWidth, 6293 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6294 MaxWidth = std::max(MaxWidth, 6295 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6296 } 6297 } 6298 6299 return {MinWidth, MaxWidth}; 6300 } 6301 6302 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6303 unsigned LoopCost) { 6304 // -- The interleave heuristics -- 6305 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6306 // There are many micro-architectural considerations that we can't predict 6307 // at this level. For example, frontend pressure (on decode or fetch) due to 6308 // code size, or the number and capabilities of the execution ports. 6309 // 6310 // We use the following heuristics to select the interleave count: 6311 // 1. If the code has reductions, then we interleave to break the cross 6312 // iteration dependency. 6313 // 2. If the loop is really small, then we interleave to reduce the loop 6314 // overhead. 6315 // 3. We don't interleave if we think that we will spill registers to memory 6316 // due to the increased register pressure. 6317 6318 if (!isScalarEpilogueAllowed()) 6319 return 1; 6320 6321 // We used the distance for the interleave count. 6322 if (Legal->getMaxSafeDepDistBytes() != -1U) 6323 return 1; 6324 6325 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6326 const bool HasReductions = !Legal->getReductionVars().empty(); 6327 // Do not interleave loops with a relatively small known or estimated trip 6328 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6329 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6330 // because with the above conditions interleaving can expose ILP and break 6331 // cross iteration dependences for reductions. 6332 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6333 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6334 return 1; 6335 6336 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6337 // We divide by these constants so assume that we have at least one 6338 // instruction that uses at least one register. 6339 for (auto& pair : R.MaxLocalUsers) { 6340 pair.second = std::max(pair.second, 1U); 6341 } 6342 6343 // We calculate the interleave count using the following formula. 6344 // Subtract the number of loop invariants from the number of available 6345 // registers. These registers are used by all of the interleaved instances. 6346 // Next, divide the remaining registers by the number of registers that is 6347 // required by the loop, in order to estimate how many parallel instances 6348 // fit without causing spills. All of this is rounded down if necessary to be 6349 // a power of two. We want power of two interleave count to simplify any 6350 // addressing operations or alignment considerations. 6351 // We also want power of two interleave counts to ensure that the induction 6352 // variable of the vector loop wraps to zero, when tail is folded by masking; 6353 // this currently happens when OptForSize, in which case IC is set to 1 above. 6354 unsigned IC = UINT_MAX; 6355 6356 for (auto& pair : R.MaxLocalUsers) { 6357 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6358 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6359 << " registers of " 6360 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6361 if (VF.isScalar()) { 6362 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6363 TargetNumRegisters = ForceTargetNumScalarRegs; 6364 } else { 6365 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6366 TargetNumRegisters = ForceTargetNumVectorRegs; 6367 } 6368 unsigned MaxLocalUsers = pair.second; 6369 unsigned LoopInvariantRegs = 0; 6370 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6371 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6372 6373 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6374 // Don't count the induction variable as interleaved. 6375 if (EnableIndVarRegisterHeur) { 6376 TmpIC = 6377 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6378 std::max(1U, (MaxLocalUsers - 1))); 6379 } 6380 6381 IC = std::min(IC, TmpIC); 6382 } 6383 6384 // Clamp the interleave ranges to reasonable counts. 6385 unsigned MaxInterleaveCount = 6386 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6387 6388 // Check if the user has overridden the max. 6389 if (VF.isScalar()) { 6390 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6391 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6392 } else { 6393 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6394 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6395 } 6396 6397 // If trip count is known or estimated compile time constant, limit the 6398 // interleave count to be less than the trip count divided by VF, provided it 6399 // is at least 1. 6400 // 6401 // For scalable vectors we can't know if interleaving is beneficial. It may 6402 // not be beneficial for small loops if none of the lanes in the second vector 6403 // iterations is enabled. However, for larger loops, there is likely to be a 6404 // similar benefit as for fixed-width vectors. For now, we choose to leave 6405 // the InterleaveCount as if vscale is '1', although if some information about 6406 // the vector is known (e.g. min vector size), we can make a better decision. 6407 if (BestKnownTC) { 6408 MaxInterleaveCount = 6409 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6410 // Make sure MaxInterleaveCount is greater than 0. 6411 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6412 } 6413 6414 assert(MaxInterleaveCount > 0 && 6415 "Maximum interleave count must be greater than 0"); 6416 6417 // Clamp the calculated IC to be between the 1 and the max interleave count 6418 // that the target and trip count allows. 6419 if (IC > MaxInterleaveCount) 6420 IC = MaxInterleaveCount; 6421 else 6422 // Make sure IC is greater than 0. 6423 IC = std::max(1u, IC); 6424 6425 assert(IC > 0 && "Interleave count must be greater than 0."); 6426 6427 // If we did not calculate the cost for VF (because the user selected the VF) 6428 // then we calculate the cost of VF here. 6429 if (LoopCost == 0) { 6430 assert(expectedCost(VF).first.isValid() && "Expected a valid cost"); 6431 LoopCost = *expectedCost(VF).first.getValue(); 6432 } 6433 6434 assert(LoopCost && "Non-zero loop cost expected"); 6435 6436 // Interleave if we vectorized this loop and there is a reduction that could 6437 // benefit from interleaving. 6438 if (VF.isVector() && HasReductions) { 6439 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6440 return IC; 6441 } 6442 6443 // Note that if we've already vectorized the loop we will have done the 6444 // runtime check and so interleaving won't require further checks. 6445 bool InterleavingRequiresRuntimePointerCheck = 6446 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6447 6448 // We want to interleave small loops in order to reduce the loop overhead and 6449 // potentially expose ILP opportunities. 6450 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6451 << "LV: IC is " << IC << '\n' 6452 << "LV: VF is " << VF << '\n'); 6453 const bool AggressivelyInterleaveReductions = 6454 TTI.enableAggressiveInterleaving(HasReductions); 6455 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6456 // We assume that the cost overhead is 1 and we use the cost model 6457 // to estimate the cost of the loop and interleave until the cost of the 6458 // loop overhead is about 5% of the cost of the loop. 6459 unsigned SmallIC = 6460 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6461 6462 // Interleave until store/load ports (estimated by max interleave count) are 6463 // saturated. 6464 unsigned NumStores = Legal->getNumStores(); 6465 unsigned NumLoads = Legal->getNumLoads(); 6466 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6467 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6468 6469 // If we have a scalar reduction (vector reductions are already dealt with 6470 // by this point), we can increase the critical path length if the loop 6471 // we're interleaving is inside another loop. Limit, by default to 2, so the 6472 // critical path only gets increased by one reduction operation. 6473 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6474 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6475 SmallIC = std::min(SmallIC, F); 6476 StoresIC = std::min(StoresIC, F); 6477 LoadsIC = std::min(LoadsIC, F); 6478 } 6479 6480 if (EnableLoadStoreRuntimeInterleave && 6481 std::max(StoresIC, LoadsIC) > SmallIC) { 6482 LLVM_DEBUG( 6483 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6484 return std::max(StoresIC, LoadsIC); 6485 } 6486 6487 // If there are scalar reductions and TTI has enabled aggressive 6488 // interleaving for reductions, we will interleave to expose ILP. 6489 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6490 AggressivelyInterleaveReductions) { 6491 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6492 // Interleave no less than SmallIC but not as aggressive as the normal IC 6493 // to satisfy the rare situation when resources are too limited. 6494 return std::max(IC / 2, SmallIC); 6495 } else { 6496 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6497 return SmallIC; 6498 } 6499 } 6500 6501 // Interleave if this is a large loop (small loops are already dealt with by 6502 // this point) that could benefit from interleaving. 6503 if (AggressivelyInterleaveReductions) { 6504 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6505 return IC; 6506 } 6507 6508 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6509 return 1; 6510 } 6511 6512 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6513 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6514 // This function calculates the register usage by measuring the highest number 6515 // of values that are alive at a single location. Obviously, this is a very 6516 // rough estimation. We scan the loop in a topological order in order and 6517 // assign a number to each instruction. We use RPO to ensure that defs are 6518 // met before their users. We assume that each instruction that has in-loop 6519 // users starts an interval. We record every time that an in-loop value is 6520 // used, so we have a list of the first and last occurrences of each 6521 // instruction. Next, we transpose this data structure into a multi map that 6522 // holds the list of intervals that *end* at a specific location. This multi 6523 // map allows us to perform a linear search. We scan the instructions linearly 6524 // and record each time that a new interval starts, by placing it in a set. 6525 // If we find this value in the multi-map then we remove it from the set. 6526 // The max register usage is the maximum size of the set. 6527 // We also search for instructions that are defined outside the loop, but are 6528 // used inside the loop. We need this number separately from the max-interval 6529 // usage number because when we unroll, loop-invariant values do not take 6530 // more register. 6531 LoopBlocksDFS DFS(TheLoop); 6532 DFS.perform(LI); 6533 6534 RegisterUsage RU; 6535 6536 // Each 'key' in the map opens a new interval. The values 6537 // of the map are the index of the 'last seen' usage of the 6538 // instruction that is the key. 6539 using IntervalMap = DenseMap<Instruction *, unsigned>; 6540 6541 // Maps instruction to its index. 6542 SmallVector<Instruction *, 64> IdxToInstr; 6543 // Marks the end of each interval. 6544 IntervalMap EndPoint; 6545 // Saves the list of instruction indices that are used in the loop. 6546 SmallPtrSet<Instruction *, 8> Ends; 6547 // Saves the list of values that are used in the loop but are 6548 // defined outside the loop, such as arguments and constants. 6549 SmallPtrSet<Value *, 8> LoopInvariants; 6550 6551 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6552 for (Instruction &I : BB->instructionsWithoutDebug()) { 6553 IdxToInstr.push_back(&I); 6554 6555 // Save the end location of each USE. 6556 for (Value *U : I.operands()) { 6557 auto *Instr = dyn_cast<Instruction>(U); 6558 6559 // Ignore non-instruction values such as arguments, constants, etc. 6560 if (!Instr) 6561 continue; 6562 6563 // If this instruction is outside the loop then record it and continue. 6564 if (!TheLoop->contains(Instr)) { 6565 LoopInvariants.insert(Instr); 6566 continue; 6567 } 6568 6569 // Overwrite previous end points. 6570 EndPoint[Instr] = IdxToInstr.size(); 6571 Ends.insert(Instr); 6572 } 6573 } 6574 } 6575 6576 // Saves the list of intervals that end with the index in 'key'. 6577 using InstrList = SmallVector<Instruction *, 2>; 6578 DenseMap<unsigned, InstrList> TransposeEnds; 6579 6580 // Transpose the EndPoints to a list of values that end at each index. 6581 for (auto &Interval : EndPoint) 6582 TransposeEnds[Interval.second].push_back(Interval.first); 6583 6584 SmallPtrSet<Instruction *, 8> OpenIntervals; 6585 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6586 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6587 6588 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6589 6590 // A lambda that gets the register usage for the given type and VF. 6591 const auto &TTICapture = TTI; 6592 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) { 6593 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6594 return 0; 6595 return *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6596 }; 6597 6598 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6599 Instruction *I = IdxToInstr[i]; 6600 6601 // Remove all of the instructions that end at this location. 6602 InstrList &List = TransposeEnds[i]; 6603 for (Instruction *ToRemove : List) 6604 OpenIntervals.erase(ToRemove); 6605 6606 // Ignore instructions that are never used within the loop. 6607 if (!Ends.count(I)) 6608 continue; 6609 6610 // Skip ignored values. 6611 if (ValuesToIgnore.count(I)) 6612 continue; 6613 6614 // For each VF find the maximum usage of registers. 6615 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6616 // Count the number of live intervals. 6617 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6618 6619 if (VFs[j].isScalar()) { 6620 for (auto Inst : OpenIntervals) { 6621 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6622 if (RegUsage.find(ClassID) == RegUsage.end()) 6623 RegUsage[ClassID] = 1; 6624 else 6625 RegUsage[ClassID] += 1; 6626 } 6627 } else { 6628 collectUniformsAndScalars(VFs[j]); 6629 for (auto Inst : OpenIntervals) { 6630 // Skip ignored values for VF > 1. 6631 if (VecValuesToIgnore.count(Inst)) 6632 continue; 6633 if (isScalarAfterVectorization(Inst, VFs[j])) { 6634 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6635 if (RegUsage.find(ClassID) == RegUsage.end()) 6636 RegUsage[ClassID] = 1; 6637 else 6638 RegUsage[ClassID] += 1; 6639 } else { 6640 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6641 if (RegUsage.find(ClassID) == RegUsage.end()) 6642 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6643 else 6644 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6645 } 6646 } 6647 } 6648 6649 for (auto& pair : RegUsage) { 6650 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6651 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6652 else 6653 MaxUsages[j][pair.first] = pair.second; 6654 } 6655 } 6656 6657 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6658 << OpenIntervals.size() << '\n'); 6659 6660 // Add the current instruction to the list of open intervals. 6661 OpenIntervals.insert(I); 6662 } 6663 6664 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6665 SmallMapVector<unsigned, unsigned, 4> Invariant; 6666 6667 for (auto Inst : LoopInvariants) { 6668 unsigned Usage = 6669 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6670 unsigned ClassID = 6671 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6672 if (Invariant.find(ClassID) == Invariant.end()) 6673 Invariant[ClassID] = Usage; 6674 else 6675 Invariant[ClassID] += Usage; 6676 } 6677 6678 LLVM_DEBUG({ 6679 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6680 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6681 << " item\n"; 6682 for (const auto &pair : MaxUsages[i]) { 6683 dbgs() << "LV(REG): RegisterClass: " 6684 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6685 << " registers\n"; 6686 } 6687 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6688 << " item\n"; 6689 for (const auto &pair : Invariant) { 6690 dbgs() << "LV(REG): RegisterClass: " 6691 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6692 << " registers\n"; 6693 } 6694 }); 6695 6696 RU.LoopInvariantRegs = Invariant; 6697 RU.MaxLocalUsers = MaxUsages[i]; 6698 RUs[i] = RU; 6699 } 6700 6701 return RUs; 6702 } 6703 6704 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6705 // TODO: Cost model for emulated masked load/store is completely 6706 // broken. This hack guides the cost model to use an artificially 6707 // high enough value to practically disable vectorization with such 6708 // operations, except where previously deployed legality hack allowed 6709 // using very low cost values. This is to avoid regressions coming simply 6710 // from moving "masked load/store" check from legality to cost model. 6711 // Masked Load/Gather emulation was previously never allowed. 6712 // Limited number of Masked Store/Scatter emulation was allowed. 6713 assert(isPredicatedInst(I) && 6714 "Expecting a scalar emulated instruction"); 6715 return isa<LoadInst>(I) || 6716 (isa<StoreInst>(I) && 6717 NumPredStores > NumberOfStoresToPredicate); 6718 } 6719 6720 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6721 // If we aren't vectorizing the loop, or if we've already collected the 6722 // instructions to scalarize, there's nothing to do. Collection may already 6723 // have occurred if we have a user-selected VF and are now computing the 6724 // expected cost for interleaving. 6725 if (VF.isScalar() || VF.isZero() || 6726 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6727 return; 6728 6729 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6730 // not profitable to scalarize any instructions, the presence of VF in the 6731 // map will indicate that we've analyzed it already. 6732 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6733 6734 // Find all the instructions that are scalar with predication in the loop and 6735 // determine if it would be better to not if-convert the blocks they are in. 6736 // If so, we also record the instructions to scalarize. 6737 for (BasicBlock *BB : TheLoop->blocks()) { 6738 if (!blockNeedsPredication(BB)) 6739 continue; 6740 for (Instruction &I : *BB) 6741 if (isScalarWithPredication(&I)) { 6742 ScalarCostsTy ScalarCosts; 6743 // Do not apply discount logic if hacked cost is needed 6744 // for emulated masked memrefs. 6745 if (!useEmulatedMaskMemRefHack(&I) && 6746 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6747 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6748 // Remember that BB will remain after vectorization. 6749 PredicatedBBsAfterVectorization.insert(BB); 6750 } 6751 } 6752 } 6753 6754 int LoopVectorizationCostModel::computePredInstDiscount( 6755 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6756 assert(!isUniformAfterVectorization(PredInst, VF) && 6757 "Instruction marked uniform-after-vectorization will be predicated"); 6758 6759 // Initialize the discount to zero, meaning that the scalar version and the 6760 // vector version cost the same. 6761 InstructionCost Discount = 0; 6762 6763 // Holds instructions to analyze. The instructions we visit are mapped in 6764 // ScalarCosts. Those instructions are the ones that would be scalarized if 6765 // we find that the scalar version costs less. 6766 SmallVector<Instruction *, 8> Worklist; 6767 6768 // Returns true if the given instruction can be scalarized. 6769 auto canBeScalarized = [&](Instruction *I) -> bool { 6770 // We only attempt to scalarize instructions forming a single-use chain 6771 // from the original predicated block that would otherwise be vectorized. 6772 // Although not strictly necessary, we give up on instructions we know will 6773 // already be scalar to avoid traversing chains that are unlikely to be 6774 // beneficial. 6775 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6776 isScalarAfterVectorization(I, VF)) 6777 return false; 6778 6779 // If the instruction is scalar with predication, it will be analyzed 6780 // separately. We ignore it within the context of PredInst. 6781 if (isScalarWithPredication(I)) 6782 return false; 6783 6784 // If any of the instruction's operands are uniform after vectorization, 6785 // the instruction cannot be scalarized. This prevents, for example, a 6786 // masked load from being scalarized. 6787 // 6788 // We assume we will only emit a value for lane zero of an instruction 6789 // marked uniform after vectorization, rather than VF identical values. 6790 // Thus, if we scalarize an instruction that uses a uniform, we would 6791 // create uses of values corresponding to the lanes we aren't emitting code 6792 // for. This behavior can be changed by allowing getScalarValue to clone 6793 // the lane zero values for uniforms rather than asserting. 6794 for (Use &U : I->operands()) 6795 if (auto *J = dyn_cast<Instruction>(U.get())) 6796 if (isUniformAfterVectorization(J, VF)) 6797 return false; 6798 6799 // Otherwise, we can scalarize the instruction. 6800 return true; 6801 }; 6802 6803 // Compute the expected cost discount from scalarizing the entire expression 6804 // feeding the predicated instruction. We currently only consider expressions 6805 // that are single-use instruction chains. 6806 Worklist.push_back(PredInst); 6807 while (!Worklist.empty()) { 6808 Instruction *I = Worklist.pop_back_val(); 6809 6810 // If we've already analyzed the instruction, there's nothing to do. 6811 if (ScalarCosts.find(I) != ScalarCosts.end()) 6812 continue; 6813 6814 // Compute the cost of the vector instruction. Note that this cost already 6815 // includes the scalarization overhead of the predicated instruction. 6816 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6817 6818 // Compute the cost of the scalarized instruction. This cost is the cost of 6819 // the instruction as if it wasn't if-converted and instead remained in the 6820 // predicated block. We will scale this cost by block probability after 6821 // computing the scalarization overhead. 6822 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6823 InstructionCost ScalarCost = 6824 VF.getKnownMinValue() * 6825 getInstructionCost(I, ElementCount::getFixed(1)).first; 6826 6827 // Compute the scalarization overhead of needed insertelement instructions 6828 // and phi nodes. 6829 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6830 ScalarCost += TTI.getScalarizationOverhead( 6831 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6832 APInt::getAllOnesValue(VF.getKnownMinValue()), true, false); 6833 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6834 ScalarCost += 6835 VF.getKnownMinValue() * 6836 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6837 } 6838 6839 // Compute the scalarization overhead of needed extractelement 6840 // instructions. For each of the instruction's operands, if the operand can 6841 // be scalarized, add it to the worklist; otherwise, account for the 6842 // overhead. 6843 for (Use &U : I->operands()) 6844 if (auto *J = dyn_cast<Instruction>(U.get())) { 6845 assert(VectorType::isValidElementType(J->getType()) && 6846 "Instruction has non-scalar type"); 6847 if (canBeScalarized(J)) 6848 Worklist.push_back(J); 6849 else if (needsExtract(J, VF)) { 6850 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6851 ScalarCost += TTI.getScalarizationOverhead( 6852 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6853 APInt::getAllOnesValue(VF.getKnownMinValue()), false, true); 6854 } 6855 } 6856 6857 // Scale the total scalar cost by block probability. 6858 ScalarCost /= getReciprocalPredBlockProb(); 6859 6860 // Compute the discount. A non-negative discount means the vector version 6861 // of the instruction costs more, and scalarizing would be beneficial. 6862 Discount += VectorCost - ScalarCost; 6863 ScalarCosts[I] = ScalarCost; 6864 } 6865 6866 return *Discount.getValue(); 6867 } 6868 6869 LoopVectorizationCostModel::VectorizationCostTy 6870 LoopVectorizationCostModel::expectedCost(ElementCount VF) { 6871 VectorizationCostTy Cost; 6872 6873 // For each block. 6874 for (BasicBlock *BB : TheLoop->blocks()) { 6875 VectorizationCostTy BlockCost; 6876 6877 // For each instruction in the old loop. 6878 for (Instruction &I : BB->instructionsWithoutDebug()) { 6879 // Skip ignored values. 6880 if (ValuesToIgnore.count(&I) || 6881 (VF.isVector() && VecValuesToIgnore.count(&I))) 6882 continue; 6883 6884 VectorizationCostTy C = getInstructionCost(&I, VF); 6885 6886 // Check if we should override the cost. 6887 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6888 C.first = InstructionCost(ForceTargetInstructionCost); 6889 6890 BlockCost.first += C.first; 6891 BlockCost.second |= C.second; 6892 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6893 << " for VF " << VF << " For instruction: " << I 6894 << '\n'); 6895 } 6896 6897 // If we are vectorizing a predicated block, it will have been 6898 // if-converted. This means that the block's instructions (aside from 6899 // stores and instructions that may divide by zero) will now be 6900 // unconditionally executed. For the scalar case, we may not always execute 6901 // the predicated block, if it is an if-else block. Thus, scale the block's 6902 // cost by the probability of executing it. blockNeedsPredication from 6903 // Legal is used so as to not include all blocks in tail folded loops. 6904 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6905 BlockCost.first /= getReciprocalPredBlockProb(); 6906 6907 Cost.first += BlockCost.first; 6908 Cost.second |= BlockCost.second; 6909 } 6910 6911 return Cost; 6912 } 6913 6914 /// Gets Address Access SCEV after verifying that the access pattern 6915 /// is loop invariant except the induction variable dependence. 6916 /// 6917 /// This SCEV can be sent to the Target in order to estimate the address 6918 /// calculation cost. 6919 static const SCEV *getAddressAccessSCEV( 6920 Value *Ptr, 6921 LoopVectorizationLegality *Legal, 6922 PredicatedScalarEvolution &PSE, 6923 const Loop *TheLoop) { 6924 6925 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6926 if (!Gep) 6927 return nullptr; 6928 6929 // We are looking for a gep with all loop invariant indices except for one 6930 // which should be an induction variable. 6931 auto SE = PSE.getSE(); 6932 unsigned NumOperands = Gep->getNumOperands(); 6933 for (unsigned i = 1; i < NumOperands; ++i) { 6934 Value *Opd = Gep->getOperand(i); 6935 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6936 !Legal->isInductionVariable(Opd)) 6937 return nullptr; 6938 } 6939 6940 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6941 return PSE.getSCEV(Ptr); 6942 } 6943 6944 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6945 return Legal->hasStride(I->getOperand(0)) || 6946 Legal->hasStride(I->getOperand(1)); 6947 } 6948 6949 InstructionCost 6950 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6951 ElementCount VF) { 6952 assert(VF.isVector() && 6953 "Scalarization cost of instruction implies vectorization."); 6954 if (VF.isScalable()) 6955 return InstructionCost::getInvalid(); 6956 6957 Type *ValTy = getLoadStoreType(I); 6958 auto SE = PSE.getSE(); 6959 6960 unsigned AS = getLoadStoreAddressSpace(I); 6961 Value *Ptr = getLoadStorePointerOperand(I); 6962 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6963 6964 // Figure out whether the access is strided and get the stride value 6965 // if it's known in compile time 6966 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6967 6968 // Get the cost of the scalar memory instruction and address computation. 6969 InstructionCost Cost = 6970 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6971 6972 // Don't pass *I here, since it is scalar but will actually be part of a 6973 // vectorized loop where the user of it is a vectorized instruction. 6974 const Align Alignment = getLoadStoreAlignment(I); 6975 Cost += VF.getKnownMinValue() * 6976 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6977 AS, TTI::TCK_RecipThroughput); 6978 6979 // Get the overhead of the extractelement and insertelement instructions 6980 // we might create due to scalarization. 6981 Cost += getScalarizationOverhead(I, VF); 6982 6983 // If we have a predicated load/store, it will need extra i1 extracts and 6984 // conditional branches, but may not be executed for each vector lane. Scale 6985 // the cost by the probability of executing the predicated block. 6986 if (isPredicatedInst(I)) { 6987 Cost /= getReciprocalPredBlockProb(); 6988 6989 // Add the cost of an i1 extract and a branch 6990 auto *Vec_i1Ty = 6991 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6992 Cost += TTI.getScalarizationOverhead( 6993 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 6994 /*Insert=*/false, /*Extract=*/true); 6995 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6996 6997 if (useEmulatedMaskMemRefHack(I)) 6998 // Artificially setting to a high enough value to practically disable 6999 // vectorization with such operations. 7000 Cost = 3000000; 7001 } 7002 7003 return Cost; 7004 } 7005 7006 InstructionCost 7007 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7008 ElementCount VF) { 7009 Type *ValTy = getLoadStoreType(I); 7010 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7011 Value *Ptr = getLoadStorePointerOperand(I); 7012 unsigned AS = getLoadStoreAddressSpace(I); 7013 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 7014 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7015 7016 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7017 "Stride should be 1 or -1 for consecutive memory access"); 7018 const Align Alignment = getLoadStoreAlignment(I); 7019 InstructionCost Cost = 0; 7020 if (Legal->isMaskRequired(I)) 7021 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7022 CostKind); 7023 else 7024 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7025 CostKind, I); 7026 7027 bool Reverse = ConsecutiveStride < 0; 7028 if (Reverse) 7029 Cost += 7030 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7031 return Cost; 7032 } 7033 7034 InstructionCost 7035 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7036 ElementCount VF) { 7037 assert(Legal->isUniformMemOp(*I)); 7038 7039 Type *ValTy = getLoadStoreType(I); 7040 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7041 const Align Alignment = getLoadStoreAlignment(I); 7042 unsigned AS = getLoadStoreAddressSpace(I); 7043 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7044 if (isa<LoadInst>(I)) { 7045 return TTI.getAddressComputationCost(ValTy) + 7046 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 7047 CostKind) + 7048 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7049 } 7050 StoreInst *SI = cast<StoreInst>(I); 7051 7052 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 7053 return TTI.getAddressComputationCost(ValTy) + 7054 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 7055 CostKind) + 7056 (isLoopInvariantStoreValue 7057 ? 0 7058 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 7059 VF.getKnownMinValue() - 1)); 7060 } 7061 7062 InstructionCost 7063 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7064 ElementCount VF) { 7065 Type *ValTy = getLoadStoreType(I); 7066 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7067 const Align Alignment = getLoadStoreAlignment(I); 7068 const Value *Ptr = getLoadStorePointerOperand(I); 7069 7070 return TTI.getAddressComputationCost(VectorTy) + 7071 TTI.getGatherScatterOpCost( 7072 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 7073 TargetTransformInfo::TCK_RecipThroughput, I); 7074 } 7075 7076 InstructionCost 7077 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7078 ElementCount VF) { 7079 // TODO: Once we have support for interleaving with scalable vectors 7080 // we can calculate the cost properly here. 7081 if (VF.isScalable()) 7082 return InstructionCost::getInvalid(); 7083 7084 Type *ValTy = getLoadStoreType(I); 7085 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7086 unsigned AS = getLoadStoreAddressSpace(I); 7087 7088 auto Group = getInterleavedAccessGroup(I); 7089 assert(Group && "Fail to get an interleaved access group."); 7090 7091 unsigned InterleaveFactor = Group->getFactor(); 7092 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7093 7094 // Holds the indices of existing members in an interleaved load group. 7095 // An interleaved store group doesn't need this as it doesn't allow gaps. 7096 SmallVector<unsigned, 4> Indices; 7097 if (isa<LoadInst>(I)) { 7098 for (unsigned i = 0; i < InterleaveFactor; i++) 7099 if (Group->getMember(i)) 7100 Indices.push_back(i); 7101 } 7102 7103 // Calculate the cost of the whole interleaved group. 7104 bool UseMaskForGaps = 7105 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 7106 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 7107 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 7108 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 7109 7110 if (Group->isReverse()) { 7111 // TODO: Add support for reversed masked interleaved access. 7112 assert(!Legal->isMaskRequired(I) && 7113 "Reverse masked interleaved access not supported."); 7114 Cost += 7115 Group->getNumMembers() * 7116 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7117 } 7118 return Cost; 7119 } 7120 7121 InstructionCost LoopVectorizationCostModel::getReductionPatternCost( 7122 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 7123 // Early exit for no inloop reductions 7124 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 7125 return InstructionCost::getInvalid(); 7126 auto *VectorTy = cast<VectorType>(Ty); 7127 7128 // We are looking for a pattern of, and finding the minimal acceptable cost: 7129 // reduce(mul(ext(A), ext(B))) or 7130 // reduce(mul(A, B)) or 7131 // reduce(ext(A)) or 7132 // reduce(A). 7133 // The basic idea is that we walk down the tree to do that, finding the root 7134 // reduction instruction in InLoopReductionImmediateChains. From there we find 7135 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 7136 // of the components. If the reduction cost is lower then we return it for the 7137 // reduction instruction and 0 for the other instructions in the pattern. If 7138 // it is not we return an invalid cost specifying the orignal cost method 7139 // should be used. 7140 Instruction *RetI = I; 7141 if ((RetI->getOpcode() == Instruction::SExt || 7142 RetI->getOpcode() == Instruction::ZExt)) { 7143 if (!RetI->hasOneUser()) 7144 return InstructionCost::getInvalid(); 7145 RetI = RetI->user_back(); 7146 } 7147 if (RetI->getOpcode() == Instruction::Mul && 7148 RetI->user_back()->getOpcode() == Instruction::Add) { 7149 if (!RetI->hasOneUser()) 7150 return InstructionCost::getInvalid(); 7151 RetI = RetI->user_back(); 7152 } 7153 7154 // Test if the found instruction is a reduction, and if not return an invalid 7155 // cost specifying the parent to use the original cost modelling. 7156 if (!InLoopReductionImmediateChains.count(RetI)) 7157 return InstructionCost::getInvalid(); 7158 7159 // Find the reduction this chain is a part of and calculate the basic cost of 7160 // the reduction on its own. 7161 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 7162 Instruction *ReductionPhi = LastChain; 7163 while (!isa<PHINode>(ReductionPhi)) 7164 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 7165 7166 const RecurrenceDescriptor &RdxDesc = 7167 Legal->getReductionVars()[cast<PHINode>(ReductionPhi)]; 7168 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 7169 RdxDesc.getOpcode(), VectorTy, false, CostKind); 7170 7171 // Get the operand that was not the reduction chain and match it to one of the 7172 // patterns, returning the better cost if it is found. 7173 Instruction *RedOp = RetI->getOperand(1) == LastChain 7174 ? dyn_cast<Instruction>(RetI->getOperand(0)) 7175 : dyn_cast<Instruction>(RetI->getOperand(1)); 7176 7177 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 7178 7179 if (RedOp && (isa<SExtInst>(RedOp) || isa<ZExtInst>(RedOp)) && 7180 !TheLoop->isLoopInvariant(RedOp)) { 7181 bool IsUnsigned = isa<ZExtInst>(RedOp); 7182 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 7183 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7184 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7185 CostKind); 7186 7187 InstructionCost ExtCost = 7188 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 7189 TTI::CastContextHint::None, CostKind, RedOp); 7190 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 7191 return I == RetI ? *RedCost.getValue() : 0; 7192 } else if (RedOp && RedOp->getOpcode() == Instruction::Mul) { 7193 Instruction *Mul = RedOp; 7194 Instruction *Op0 = dyn_cast<Instruction>(Mul->getOperand(0)); 7195 Instruction *Op1 = dyn_cast<Instruction>(Mul->getOperand(1)); 7196 if (Op0 && Op1 && (isa<SExtInst>(Op0) || isa<ZExtInst>(Op0)) && 7197 Op0->getOpcode() == Op1->getOpcode() && 7198 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7199 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 7200 bool IsUnsigned = isa<ZExtInst>(Op0); 7201 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7202 // reduce(mul(ext, ext)) 7203 InstructionCost ExtCost = 7204 TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType, 7205 TTI::CastContextHint::None, CostKind, Op0); 7206 InstructionCost MulCost = 7207 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 7208 7209 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7210 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7211 CostKind); 7212 7213 if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost) 7214 return I == RetI ? *RedCost.getValue() : 0; 7215 } else { 7216 InstructionCost MulCost = 7217 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 7218 7219 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7220 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7221 CostKind); 7222 7223 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7224 return I == RetI ? *RedCost.getValue() : 0; 7225 } 7226 } 7227 7228 return I == RetI ? BaseCost : InstructionCost::getInvalid(); 7229 } 7230 7231 InstructionCost 7232 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7233 ElementCount VF) { 7234 // Calculate scalar cost only. Vectorization cost should be ready at this 7235 // moment. 7236 if (VF.isScalar()) { 7237 Type *ValTy = getLoadStoreType(I); 7238 const Align Alignment = getLoadStoreAlignment(I); 7239 unsigned AS = getLoadStoreAddressSpace(I); 7240 7241 return TTI.getAddressComputationCost(ValTy) + 7242 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7243 TTI::TCK_RecipThroughput, I); 7244 } 7245 return getWideningCost(I, VF); 7246 } 7247 7248 LoopVectorizationCostModel::VectorizationCostTy 7249 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7250 ElementCount VF) { 7251 // If we know that this instruction will remain uniform, check the cost of 7252 // the scalar version. 7253 if (isUniformAfterVectorization(I, VF)) 7254 VF = ElementCount::getFixed(1); 7255 7256 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7257 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7258 7259 // Forced scalars do not have any scalarization overhead. 7260 auto ForcedScalar = ForcedScalars.find(VF); 7261 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7262 auto InstSet = ForcedScalar->second; 7263 if (InstSet.count(I)) 7264 return VectorizationCostTy( 7265 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7266 VF.getKnownMinValue()), 7267 false); 7268 } 7269 7270 Type *VectorTy; 7271 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7272 7273 bool TypeNotScalarized = 7274 VF.isVector() && VectorTy->isVectorTy() && 7275 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 7276 return VectorizationCostTy(C, TypeNotScalarized); 7277 } 7278 7279 InstructionCost 7280 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7281 ElementCount VF) const { 7282 7283 if (VF.isScalable()) 7284 return InstructionCost::getInvalid(); 7285 7286 if (VF.isScalar()) 7287 return 0; 7288 7289 InstructionCost Cost = 0; 7290 Type *RetTy = ToVectorTy(I->getType(), VF); 7291 if (!RetTy->isVoidTy() && 7292 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7293 Cost += TTI.getScalarizationOverhead( 7294 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()), 7295 true, false); 7296 7297 // Some targets keep addresses scalar. 7298 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7299 return Cost; 7300 7301 // Some targets support efficient element stores. 7302 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7303 return Cost; 7304 7305 // Collect operands to consider. 7306 CallInst *CI = dyn_cast<CallInst>(I); 7307 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 7308 7309 // Skip operands that do not require extraction/scalarization and do not incur 7310 // any overhead. 7311 SmallVector<Type *> Tys; 7312 for (auto *V : filterExtractingOperands(Ops, VF)) 7313 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7314 return Cost + TTI.getOperandsScalarizationOverhead( 7315 filterExtractingOperands(Ops, VF), Tys); 7316 } 7317 7318 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7319 if (VF.isScalar()) 7320 return; 7321 NumPredStores = 0; 7322 for (BasicBlock *BB : TheLoop->blocks()) { 7323 // For each instruction in the old loop. 7324 for (Instruction &I : *BB) { 7325 Value *Ptr = getLoadStorePointerOperand(&I); 7326 if (!Ptr) 7327 continue; 7328 7329 // TODO: We should generate better code and update the cost model for 7330 // predicated uniform stores. Today they are treated as any other 7331 // predicated store (see added test cases in 7332 // invariant-store-vectorization.ll). 7333 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 7334 NumPredStores++; 7335 7336 if (Legal->isUniformMemOp(I)) { 7337 // TODO: Avoid replicating loads and stores instead of 7338 // relying on instcombine to remove them. 7339 // Load: Scalar load + broadcast 7340 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7341 InstructionCost Cost; 7342 if (isa<StoreInst>(&I) && VF.isScalable() && 7343 isLegalGatherOrScatter(&I)) { 7344 Cost = getGatherScatterCost(&I, VF); 7345 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 7346 } else { 7347 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 7348 "Cannot yet scalarize uniform stores"); 7349 Cost = getUniformMemOpCost(&I, VF); 7350 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7351 } 7352 continue; 7353 } 7354 7355 // We assume that widening is the best solution when possible. 7356 if (memoryInstructionCanBeWidened(&I, VF)) { 7357 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7358 int ConsecutiveStride = 7359 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 7360 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7361 "Expected consecutive stride."); 7362 InstWidening Decision = 7363 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7364 setWideningDecision(&I, VF, Decision, Cost); 7365 continue; 7366 } 7367 7368 // Choose between Interleaving, Gather/Scatter or Scalarization. 7369 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7370 unsigned NumAccesses = 1; 7371 if (isAccessInterleaved(&I)) { 7372 auto Group = getInterleavedAccessGroup(&I); 7373 assert(Group && "Fail to get an interleaved access group."); 7374 7375 // Make one decision for the whole group. 7376 if (getWideningDecision(&I, VF) != CM_Unknown) 7377 continue; 7378 7379 NumAccesses = Group->getNumMembers(); 7380 if (interleavedAccessCanBeWidened(&I, VF)) 7381 InterleaveCost = getInterleaveGroupCost(&I, VF); 7382 } 7383 7384 InstructionCost GatherScatterCost = 7385 isLegalGatherOrScatter(&I) 7386 ? getGatherScatterCost(&I, VF) * NumAccesses 7387 : InstructionCost::getInvalid(); 7388 7389 InstructionCost ScalarizationCost = 7390 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7391 7392 // Choose better solution for the current VF, 7393 // write down this decision and use it during vectorization. 7394 InstructionCost Cost; 7395 InstWidening Decision; 7396 if (InterleaveCost <= GatherScatterCost && 7397 InterleaveCost < ScalarizationCost) { 7398 Decision = CM_Interleave; 7399 Cost = InterleaveCost; 7400 } else if (GatherScatterCost < ScalarizationCost) { 7401 Decision = CM_GatherScatter; 7402 Cost = GatherScatterCost; 7403 } else { 7404 assert(!VF.isScalable() && 7405 "We cannot yet scalarise for scalable vectors"); 7406 Decision = CM_Scalarize; 7407 Cost = ScalarizationCost; 7408 } 7409 // If the instructions belongs to an interleave group, the whole group 7410 // receives the same decision. The whole group receives the cost, but 7411 // the cost will actually be assigned to one instruction. 7412 if (auto Group = getInterleavedAccessGroup(&I)) 7413 setWideningDecision(Group, VF, Decision, Cost); 7414 else 7415 setWideningDecision(&I, VF, Decision, Cost); 7416 } 7417 } 7418 7419 // Make sure that any load of address and any other address computation 7420 // remains scalar unless there is gather/scatter support. This avoids 7421 // inevitable extracts into address registers, and also has the benefit of 7422 // activating LSR more, since that pass can't optimize vectorized 7423 // addresses. 7424 if (TTI.prefersVectorizedAddressing()) 7425 return; 7426 7427 // Start with all scalar pointer uses. 7428 SmallPtrSet<Instruction *, 8> AddrDefs; 7429 for (BasicBlock *BB : TheLoop->blocks()) 7430 for (Instruction &I : *BB) { 7431 Instruction *PtrDef = 7432 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7433 if (PtrDef && TheLoop->contains(PtrDef) && 7434 getWideningDecision(&I, VF) != CM_GatherScatter) 7435 AddrDefs.insert(PtrDef); 7436 } 7437 7438 // Add all instructions used to generate the addresses. 7439 SmallVector<Instruction *, 4> Worklist; 7440 append_range(Worklist, AddrDefs); 7441 while (!Worklist.empty()) { 7442 Instruction *I = Worklist.pop_back_val(); 7443 for (auto &Op : I->operands()) 7444 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7445 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7446 AddrDefs.insert(InstOp).second) 7447 Worklist.push_back(InstOp); 7448 } 7449 7450 for (auto *I : AddrDefs) { 7451 if (isa<LoadInst>(I)) { 7452 // Setting the desired widening decision should ideally be handled in 7453 // by cost functions, but since this involves the task of finding out 7454 // if the loaded register is involved in an address computation, it is 7455 // instead changed here when we know this is the case. 7456 InstWidening Decision = getWideningDecision(I, VF); 7457 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7458 // Scalarize a widened load of address. 7459 setWideningDecision( 7460 I, VF, CM_Scalarize, 7461 (VF.getKnownMinValue() * 7462 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7463 else if (auto Group = getInterleavedAccessGroup(I)) { 7464 // Scalarize an interleave group of address loads. 7465 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7466 if (Instruction *Member = Group->getMember(I)) 7467 setWideningDecision( 7468 Member, VF, CM_Scalarize, 7469 (VF.getKnownMinValue() * 7470 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7471 } 7472 } 7473 } else 7474 // Make sure I gets scalarized and a cost estimate without 7475 // scalarization overhead. 7476 ForcedScalars[VF].insert(I); 7477 } 7478 } 7479 7480 InstructionCost 7481 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7482 Type *&VectorTy) { 7483 Type *RetTy = I->getType(); 7484 if (canTruncateToMinimalBitwidth(I, VF)) 7485 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7486 auto SE = PSE.getSE(); 7487 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7488 7489 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7490 ElementCount VF) -> bool { 7491 if (VF.isScalar()) 7492 return true; 7493 7494 auto Scalarized = InstsToScalarize.find(VF); 7495 assert(Scalarized != InstsToScalarize.end() && 7496 "VF not yet analyzed for scalarization profitability"); 7497 return !Scalarized->second.count(I) && 7498 llvm::all_of(I->users(), [&](User *U) { 7499 auto *UI = cast<Instruction>(U); 7500 return !Scalarized->second.count(UI); 7501 }); 7502 }; 7503 (void) hasSingleCopyAfterVectorization; 7504 7505 if (isScalarAfterVectorization(I, VF)) { 7506 // With the exception of GEPs and PHIs, after scalarization there should 7507 // only be one copy of the instruction generated in the loop. This is 7508 // because the VF is either 1, or any instructions that need scalarizing 7509 // have already been dealt with by the the time we get here. As a result, 7510 // it means we don't have to multiply the instruction cost by VF. 7511 assert(I->getOpcode() == Instruction::GetElementPtr || 7512 I->getOpcode() == Instruction::PHI || 7513 (I->getOpcode() == Instruction::BitCast && 7514 I->getType()->isPointerTy()) || 7515 hasSingleCopyAfterVectorization(I, VF)); 7516 VectorTy = RetTy; 7517 } else 7518 VectorTy = ToVectorTy(RetTy, VF); 7519 7520 // TODO: We need to estimate the cost of intrinsic calls. 7521 switch (I->getOpcode()) { 7522 case Instruction::GetElementPtr: 7523 // We mark this instruction as zero-cost because the cost of GEPs in 7524 // vectorized code depends on whether the corresponding memory instruction 7525 // is scalarized or not. Therefore, we handle GEPs with the memory 7526 // instruction cost. 7527 return 0; 7528 case Instruction::Br: { 7529 // In cases of scalarized and predicated instructions, there will be VF 7530 // predicated blocks in the vectorized loop. Each branch around these 7531 // blocks requires also an extract of its vector compare i1 element. 7532 bool ScalarPredicatedBB = false; 7533 BranchInst *BI = cast<BranchInst>(I); 7534 if (VF.isVector() && BI->isConditional() && 7535 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7536 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7537 ScalarPredicatedBB = true; 7538 7539 if (ScalarPredicatedBB) { 7540 // Return cost for branches around scalarized and predicated blocks. 7541 assert(!VF.isScalable() && "scalable vectors not yet supported."); 7542 auto *Vec_i1Ty = 7543 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7544 return (TTI.getScalarizationOverhead( 7545 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 7546 false, true) + 7547 (TTI.getCFInstrCost(Instruction::Br, CostKind) * 7548 VF.getKnownMinValue())); 7549 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7550 // The back-edge branch will remain, as will all scalar branches. 7551 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7552 else 7553 // This branch will be eliminated by if-conversion. 7554 return 0; 7555 // Note: We currently assume zero cost for an unconditional branch inside 7556 // a predicated block since it will become a fall-through, although we 7557 // may decide in the future to call TTI for all branches. 7558 } 7559 case Instruction::PHI: { 7560 auto *Phi = cast<PHINode>(I); 7561 7562 // First-order recurrences are replaced by vector shuffles inside the loop. 7563 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7564 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7565 return TTI.getShuffleCost( 7566 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7567 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7568 7569 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7570 // converted into select instructions. We require N - 1 selects per phi 7571 // node, where N is the number of incoming values. 7572 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7573 return (Phi->getNumIncomingValues() - 1) * 7574 TTI.getCmpSelInstrCost( 7575 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7576 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7577 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7578 7579 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7580 } 7581 case Instruction::UDiv: 7582 case Instruction::SDiv: 7583 case Instruction::URem: 7584 case Instruction::SRem: 7585 // If we have a predicated instruction, it may not be executed for each 7586 // vector lane. Get the scalarization cost and scale this amount by the 7587 // probability of executing the predicated block. If the instruction is not 7588 // predicated, we fall through to the next case. 7589 if (VF.isVector() && isScalarWithPredication(I)) { 7590 InstructionCost Cost = 0; 7591 7592 // These instructions have a non-void type, so account for the phi nodes 7593 // that we will create. This cost is likely to be zero. The phi node 7594 // cost, if any, should be scaled by the block probability because it 7595 // models a copy at the end of each predicated block. 7596 Cost += VF.getKnownMinValue() * 7597 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7598 7599 // The cost of the non-predicated instruction. 7600 Cost += VF.getKnownMinValue() * 7601 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7602 7603 // The cost of insertelement and extractelement instructions needed for 7604 // scalarization. 7605 Cost += getScalarizationOverhead(I, VF); 7606 7607 // Scale the cost by the probability of executing the predicated blocks. 7608 // This assumes the predicated block for each vector lane is equally 7609 // likely. 7610 return Cost / getReciprocalPredBlockProb(); 7611 } 7612 LLVM_FALLTHROUGH; 7613 case Instruction::Add: 7614 case Instruction::FAdd: 7615 case Instruction::Sub: 7616 case Instruction::FSub: 7617 case Instruction::Mul: 7618 case Instruction::FMul: 7619 case Instruction::FDiv: 7620 case Instruction::FRem: 7621 case Instruction::Shl: 7622 case Instruction::LShr: 7623 case Instruction::AShr: 7624 case Instruction::And: 7625 case Instruction::Or: 7626 case Instruction::Xor: { 7627 // Since we will replace the stride by 1 the multiplication should go away. 7628 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7629 return 0; 7630 7631 // Detect reduction patterns 7632 InstructionCost RedCost; 7633 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7634 .isValid()) 7635 return RedCost; 7636 7637 // Certain instructions can be cheaper to vectorize if they have a constant 7638 // second vector operand. One example of this are shifts on x86. 7639 Value *Op2 = I->getOperand(1); 7640 TargetTransformInfo::OperandValueProperties Op2VP; 7641 TargetTransformInfo::OperandValueKind Op2VK = 7642 TTI.getOperandInfo(Op2, Op2VP); 7643 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7644 Op2VK = TargetTransformInfo::OK_UniformValue; 7645 7646 SmallVector<const Value *, 4> Operands(I->operand_values()); 7647 return TTI.getArithmeticInstrCost( 7648 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7649 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7650 } 7651 case Instruction::FNeg: { 7652 return TTI.getArithmeticInstrCost( 7653 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7654 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7655 TargetTransformInfo::OP_None, I->getOperand(0), I); 7656 } 7657 case Instruction::Select: { 7658 SelectInst *SI = cast<SelectInst>(I); 7659 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7660 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7661 7662 const Value *Op0, *Op1; 7663 using namespace llvm::PatternMatch; 7664 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7665 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7666 // select x, y, false --> x & y 7667 // select x, true, y --> x | y 7668 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7669 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7670 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7671 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7672 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7673 Op1->getType()->getScalarSizeInBits() == 1); 7674 7675 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7676 return TTI.getArithmeticInstrCost( 7677 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7678 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7679 } 7680 7681 Type *CondTy = SI->getCondition()->getType(); 7682 if (!ScalarCond) 7683 CondTy = VectorType::get(CondTy, VF); 7684 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 7685 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7686 } 7687 case Instruction::ICmp: 7688 case Instruction::FCmp: { 7689 Type *ValTy = I->getOperand(0)->getType(); 7690 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7691 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7692 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7693 VectorTy = ToVectorTy(ValTy, VF); 7694 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7695 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7696 } 7697 case Instruction::Store: 7698 case Instruction::Load: { 7699 ElementCount Width = VF; 7700 if (Width.isVector()) { 7701 InstWidening Decision = getWideningDecision(I, Width); 7702 assert(Decision != CM_Unknown && 7703 "CM decision should be taken at this point"); 7704 if (Decision == CM_Scalarize) 7705 Width = ElementCount::getFixed(1); 7706 } 7707 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7708 return getMemoryInstructionCost(I, VF); 7709 } 7710 case Instruction::BitCast: 7711 if (I->getType()->isPointerTy()) 7712 return 0; 7713 LLVM_FALLTHROUGH; 7714 case Instruction::ZExt: 7715 case Instruction::SExt: 7716 case Instruction::FPToUI: 7717 case Instruction::FPToSI: 7718 case Instruction::FPExt: 7719 case Instruction::PtrToInt: 7720 case Instruction::IntToPtr: 7721 case Instruction::SIToFP: 7722 case Instruction::UIToFP: 7723 case Instruction::Trunc: 7724 case Instruction::FPTrunc: { 7725 // Computes the CastContextHint from a Load/Store instruction. 7726 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7727 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7728 "Expected a load or a store!"); 7729 7730 if (VF.isScalar() || !TheLoop->contains(I)) 7731 return TTI::CastContextHint::Normal; 7732 7733 switch (getWideningDecision(I, VF)) { 7734 case LoopVectorizationCostModel::CM_GatherScatter: 7735 return TTI::CastContextHint::GatherScatter; 7736 case LoopVectorizationCostModel::CM_Interleave: 7737 return TTI::CastContextHint::Interleave; 7738 case LoopVectorizationCostModel::CM_Scalarize: 7739 case LoopVectorizationCostModel::CM_Widen: 7740 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7741 : TTI::CastContextHint::Normal; 7742 case LoopVectorizationCostModel::CM_Widen_Reverse: 7743 return TTI::CastContextHint::Reversed; 7744 case LoopVectorizationCostModel::CM_Unknown: 7745 llvm_unreachable("Instr did not go through cost modelling?"); 7746 } 7747 7748 llvm_unreachable("Unhandled case!"); 7749 }; 7750 7751 unsigned Opcode = I->getOpcode(); 7752 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7753 // For Trunc, the context is the only user, which must be a StoreInst. 7754 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7755 if (I->hasOneUse()) 7756 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7757 CCH = ComputeCCH(Store); 7758 } 7759 // For Z/Sext, the context is the operand, which must be a LoadInst. 7760 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7761 Opcode == Instruction::FPExt) { 7762 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7763 CCH = ComputeCCH(Load); 7764 } 7765 7766 // We optimize the truncation of induction variables having constant 7767 // integer steps. The cost of these truncations is the same as the scalar 7768 // operation. 7769 if (isOptimizableIVTruncate(I, VF)) { 7770 auto *Trunc = cast<TruncInst>(I); 7771 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7772 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7773 } 7774 7775 // Detect reduction patterns 7776 InstructionCost RedCost; 7777 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7778 .isValid()) 7779 return RedCost; 7780 7781 Type *SrcScalarTy = I->getOperand(0)->getType(); 7782 Type *SrcVecTy = 7783 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7784 if (canTruncateToMinimalBitwidth(I, VF)) { 7785 // This cast is going to be shrunk. This may remove the cast or it might 7786 // turn it into slightly different cast. For example, if MinBW == 16, 7787 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7788 // 7789 // Calculate the modified src and dest types. 7790 Type *MinVecTy = VectorTy; 7791 if (Opcode == Instruction::Trunc) { 7792 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7793 VectorTy = 7794 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7795 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7796 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7797 VectorTy = 7798 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7799 } 7800 } 7801 7802 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7803 } 7804 case Instruction::Call: { 7805 bool NeedToScalarize; 7806 CallInst *CI = cast<CallInst>(I); 7807 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7808 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7809 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7810 return std::min(CallCost, IntrinsicCost); 7811 } 7812 return CallCost; 7813 } 7814 case Instruction::ExtractValue: 7815 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7816 default: 7817 // This opcode is unknown. Assume that it is the same as 'mul'. 7818 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7819 } // end of switch. 7820 } 7821 7822 char LoopVectorize::ID = 0; 7823 7824 static const char lv_name[] = "Loop Vectorization"; 7825 7826 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7827 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7828 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7829 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7830 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7831 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7832 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7833 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7834 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7835 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7836 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7837 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7838 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7839 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7840 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7841 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7842 7843 namespace llvm { 7844 7845 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7846 7847 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7848 bool VectorizeOnlyWhenForced) { 7849 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7850 } 7851 7852 } // end namespace llvm 7853 7854 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7855 // Check if the pointer operand of a load or store instruction is 7856 // consecutive. 7857 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7858 return Legal->isConsecutivePtr(Ptr); 7859 return false; 7860 } 7861 7862 void LoopVectorizationCostModel::collectValuesToIgnore() { 7863 // Ignore ephemeral values. 7864 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7865 7866 // Ignore type-promoting instructions we identified during reduction 7867 // detection. 7868 for (auto &Reduction : Legal->getReductionVars()) { 7869 RecurrenceDescriptor &RedDes = Reduction.second; 7870 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7871 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7872 } 7873 // Ignore type-casting instructions we identified during induction 7874 // detection. 7875 for (auto &Induction : Legal->getInductionVars()) { 7876 InductionDescriptor &IndDes = Induction.second; 7877 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7878 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7879 } 7880 } 7881 7882 void LoopVectorizationCostModel::collectInLoopReductions() { 7883 for (auto &Reduction : Legal->getReductionVars()) { 7884 PHINode *Phi = Reduction.first; 7885 RecurrenceDescriptor &RdxDesc = Reduction.second; 7886 7887 // We don't collect reductions that are type promoted (yet). 7888 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7889 continue; 7890 7891 // If the target would prefer this reduction to happen "in-loop", then we 7892 // want to record it as such. 7893 unsigned Opcode = RdxDesc.getOpcode(); 7894 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7895 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7896 TargetTransformInfo::ReductionFlags())) 7897 continue; 7898 7899 // Check that we can correctly put the reductions into the loop, by 7900 // finding the chain of operations that leads from the phi to the loop 7901 // exit value. 7902 SmallVector<Instruction *, 4> ReductionOperations = 7903 RdxDesc.getReductionOpChain(Phi, TheLoop); 7904 bool InLoop = !ReductionOperations.empty(); 7905 if (InLoop) { 7906 InLoopReductionChains[Phi] = ReductionOperations; 7907 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7908 Instruction *LastChain = Phi; 7909 for (auto *I : ReductionOperations) { 7910 InLoopReductionImmediateChains[I] = LastChain; 7911 LastChain = I; 7912 } 7913 } 7914 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7915 << " reduction for phi: " << *Phi << "\n"); 7916 } 7917 } 7918 7919 // TODO: we could return a pair of values that specify the max VF and 7920 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7921 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7922 // doesn't have a cost model that can choose which plan to execute if 7923 // more than one is generated. 7924 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7925 LoopVectorizationCostModel &CM) { 7926 unsigned WidestType; 7927 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7928 return WidestVectorRegBits / WidestType; 7929 } 7930 7931 VectorizationFactor 7932 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7933 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7934 ElementCount VF = UserVF; 7935 // Outer loop handling: They may require CFG and instruction level 7936 // transformations before even evaluating whether vectorization is profitable. 7937 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7938 // the vectorization pipeline. 7939 if (!OrigLoop->isInnermost()) { 7940 // If the user doesn't provide a vectorization factor, determine a 7941 // reasonable one. 7942 if (UserVF.isZero()) { 7943 VF = ElementCount::getFixed(determineVPlanVF( 7944 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7945 .getFixedSize(), 7946 CM)); 7947 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7948 7949 // Make sure we have a VF > 1 for stress testing. 7950 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7951 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7952 << "overriding computed VF.\n"); 7953 VF = ElementCount::getFixed(4); 7954 } 7955 } 7956 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7957 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7958 "VF needs to be a power of two"); 7959 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7960 << "VF " << VF << " to build VPlans.\n"); 7961 buildVPlans(VF, VF); 7962 7963 // For VPlan build stress testing, we bail out after VPlan construction. 7964 if (VPlanBuildStressTest) 7965 return VectorizationFactor::Disabled(); 7966 7967 return {VF, 0 /*Cost*/}; 7968 } 7969 7970 LLVM_DEBUG( 7971 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7972 "VPlan-native path.\n"); 7973 return VectorizationFactor::Disabled(); 7974 } 7975 7976 Optional<VectorizationFactor> 7977 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7978 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7979 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7980 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7981 return None; 7982 7983 // Invalidate interleave groups if all blocks of loop will be predicated. 7984 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 7985 !useMaskedInterleavedAccesses(*TTI)) { 7986 LLVM_DEBUG( 7987 dbgs() 7988 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7989 "which requires masked-interleaved support.\n"); 7990 if (CM.InterleaveInfo.invalidateGroups()) 7991 // Invalidating interleave groups also requires invalidating all decisions 7992 // based on them, which includes widening decisions and uniform and scalar 7993 // values. 7994 CM.invalidateCostModelingDecisions(); 7995 } 7996 7997 ElementCount MaxUserVF = 7998 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7999 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 8000 if (!UserVF.isZero() && UserVFIsLegal) { 8001 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVFIsLegal ? "user" : "max") 8002 << " VF " << UserVF << ".\n"); 8003 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 8004 "VF needs to be a power of two"); 8005 // Collect the instructions (and their associated costs) that will be more 8006 // profitable to scalarize. 8007 CM.selectUserVectorizationFactor(UserVF); 8008 CM.collectInLoopReductions(); 8009 buildVPlansWithVPRecipes(UserVF, UserVF); 8010 LLVM_DEBUG(printPlans(dbgs())); 8011 return {{UserVF, 0}}; 8012 } 8013 8014 // Populate the set of Vectorization Factor Candidates. 8015 ElementCountSet VFCandidates; 8016 for (auto VF = ElementCount::getFixed(1); 8017 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 8018 VFCandidates.insert(VF); 8019 for (auto VF = ElementCount::getScalable(1); 8020 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 8021 VFCandidates.insert(VF); 8022 8023 for (const auto &VF : VFCandidates) { 8024 // Collect Uniform and Scalar instructions after vectorization with VF. 8025 CM.collectUniformsAndScalars(VF); 8026 8027 // Collect the instructions (and their associated costs) that will be more 8028 // profitable to scalarize. 8029 if (VF.isVector()) 8030 CM.collectInstsToScalarize(VF); 8031 } 8032 8033 CM.collectInLoopReductions(); 8034 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 8035 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 8036 8037 LLVM_DEBUG(printPlans(dbgs())); 8038 if (!MaxFactors.hasVector()) 8039 return VectorizationFactor::Disabled(); 8040 8041 // Select the optimal vectorization factor. 8042 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 8043 8044 // Check if it is profitable to vectorize with runtime checks. 8045 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 8046 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 8047 bool PragmaThresholdReached = 8048 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 8049 bool ThresholdReached = 8050 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 8051 if ((ThresholdReached && !Hints.allowReordering()) || 8052 PragmaThresholdReached) { 8053 ORE->emit([&]() { 8054 return OptimizationRemarkAnalysisAliasing( 8055 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 8056 OrigLoop->getHeader()) 8057 << "loop not vectorized: cannot prove it is safe to reorder " 8058 "memory operations"; 8059 }); 8060 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 8061 Hints.emitRemarkWithHints(); 8062 return VectorizationFactor::Disabled(); 8063 } 8064 } 8065 return SelectedVF; 8066 } 8067 8068 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 8069 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 8070 << '\n'); 8071 BestVF = VF; 8072 BestUF = UF; 8073 8074 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 8075 return !Plan->hasVF(VF); 8076 }); 8077 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 8078 } 8079 8080 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 8081 DominatorTree *DT) { 8082 // Perform the actual loop transformation. 8083 8084 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 8085 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 8086 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 8087 8088 VPTransformState State{ 8089 *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()}; 8090 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 8091 State.TripCount = ILV.getOrCreateTripCount(nullptr); 8092 State.CanonicalIV = ILV.Induction; 8093 8094 ILV.printDebugTracesAtStart(); 8095 8096 //===------------------------------------------------===// 8097 // 8098 // Notice: any optimization or new instruction that go 8099 // into the code below should also be implemented in 8100 // the cost-model. 8101 // 8102 //===------------------------------------------------===// 8103 8104 // 2. Copy and widen instructions from the old loop into the new loop. 8105 VPlans.front()->execute(&State); 8106 8107 // 3. Fix the vectorized code: take care of header phi's, live-outs, 8108 // predication, updating analyses. 8109 ILV.fixVectorizedLoop(State); 8110 8111 ILV.printDebugTracesAtEnd(); 8112 } 8113 8114 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 8115 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 8116 for (const auto &Plan : VPlans) 8117 if (PrintVPlansInDotFormat) 8118 Plan->printDOT(O); 8119 else 8120 Plan->print(O); 8121 } 8122 #endif 8123 8124 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 8125 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 8126 8127 // We create new control-flow for the vectorized loop, so the original exit 8128 // conditions will be dead after vectorization if it's only used by the 8129 // terminator 8130 SmallVector<BasicBlock*> ExitingBlocks; 8131 OrigLoop->getExitingBlocks(ExitingBlocks); 8132 for (auto *BB : ExitingBlocks) { 8133 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 8134 if (!Cmp || !Cmp->hasOneUse()) 8135 continue; 8136 8137 // TODO: we should introduce a getUniqueExitingBlocks on Loop 8138 if (!DeadInstructions.insert(Cmp).second) 8139 continue; 8140 8141 // The operands of the icmp is often a dead trunc, used by IndUpdate. 8142 // TODO: can recurse through operands in general 8143 for (Value *Op : Cmp->operands()) { 8144 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8145 DeadInstructions.insert(cast<Instruction>(Op)); 8146 } 8147 } 8148 8149 // We create new "steps" for induction variable updates to which the original 8150 // induction variables map. An original update instruction will be dead if 8151 // all its users except the induction variable are dead. 8152 auto *Latch = OrigLoop->getLoopLatch(); 8153 for (auto &Induction : Legal->getInductionVars()) { 8154 PHINode *Ind = Induction.first; 8155 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8156 8157 // If the tail is to be folded by masking, the primary induction variable, 8158 // if exists, isn't dead: it will be used for masking. Don't kill it. 8159 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8160 continue; 8161 8162 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8163 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8164 })) 8165 DeadInstructions.insert(IndUpdate); 8166 8167 // We record as "Dead" also the type-casting instructions we had identified 8168 // during induction analysis. We don't need any handling for them in the 8169 // vectorized loop because we have proven that, under a proper runtime 8170 // test guarding the vectorized loop, the value of the phi, and the casted 8171 // value of the phi, are the same. The last instruction in this casting chain 8172 // will get its scalar/vector/widened def from the scalar/vector/widened def 8173 // of the respective phi node. Any other casts in the induction def-use chain 8174 // have no other uses outside the phi update chain, and will be ignored. 8175 InductionDescriptor &IndDes = Induction.second; 8176 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 8177 DeadInstructions.insert(Casts.begin(), Casts.end()); 8178 } 8179 } 8180 8181 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 8182 8183 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8184 8185 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 8186 Instruction::BinaryOps BinOp) { 8187 // When unrolling and the VF is 1, we only need to add a simple scalar. 8188 Type *Ty = Val->getType(); 8189 assert(!Ty->isVectorTy() && "Val must be a scalar"); 8190 8191 if (Ty->isFloatingPointTy()) { 8192 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 8193 8194 // Floating-point operations inherit FMF via the builder's flags. 8195 Value *MulOp = Builder.CreateFMul(C, Step); 8196 return Builder.CreateBinOp(BinOp, Val, MulOp); 8197 } 8198 Constant *C = ConstantInt::get(Ty, StartIdx); 8199 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 8200 } 8201 8202 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 8203 SmallVector<Metadata *, 4> MDs; 8204 // Reserve first location for self reference to the LoopID metadata node. 8205 MDs.push_back(nullptr); 8206 bool IsUnrollMetadata = false; 8207 MDNode *LoopID = L->getLoopID(); 8208 if (LoopID) { 8209 // First find existing loop unrolling disable metadata. 8210 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 8211 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 8212 if (MD) { 8213 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 8214 IsUnrollMetadata = 8215 S && S->getString().startswith("llvm.loop.unroll.disable"); 8216 } 8217 MDs.push_back(LoopID->getOperand(i)); 8218 } 8219 } 8220 8221 if (!IsUnrollMetadata) { 8222 // Add runtime unroll disable metadata. 8223 LLVMContext &Context = L->getHeader()->getContext(); 8224 SmallVector<Metadata *, 1> DisableOperands; 8225 DisableOperands.push_back( 8226 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 8227 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 8228 MDs.push_back(DisableNode); 8229 MDNode *NewLoopID = MDNode::get(Context, MDs); 8230 // Set operand 0 to refer to the loop id itself. 8231 NewLoopID->replaceOperandWith(0, NewLoopID); 8232 L->setLoopID(NewLoopID); 8233 } 8234 } 8235 8236 //===--------------------------------------------------------------------===// 8237 // EpilogueVectorizerMainLoop 8238 //===--------------------------------------------------------------------===// 8239 8240 /// This function is partially responsible for generating the control flow 8241 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8242 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8243 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8244 Loop *Lp = createVectorLoopSkeleton(""); 8245 8246 // Generate the code to check the minimum iteration count of the vector 8247 // epilogue (see below). 8248 EPI.EpilogueIterationCountCheck = 8249 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8250 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8251 8252 // Generate the code to check any assumptions that we've made for SCEV 8253 // expressions. 8254 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8255 8256 // Generate the code that checks at runtime if arrays overlap. We put the 8257 // checks into a separate block to make the more common case of few elements 8258 // faster. 8259 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8260 8261 // Generate the iteration count check for the main loop, *after* the check 8262 // for the epilogue loop, so that the path-length is shorter for the case 8263 // that goes directly through the vector epilogue. The longer-path length for 8264 // the main loop is compensated for, by the gain from vectorizing the larger 8265 // trip count. Note: the branch will get updated later on when we vectorize 8266 // the epilogue. 8267 EPI.MainLoopIterationCountCheck = 8268 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8269 8270 // Generate the induction variable. 8271 OldInduction = Legal->getPrimaryInduction(); 8272 Type *IdxTy = Legal->getWidestInductionType(); 8273 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8274 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8275 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8276 EPI.VectorTripCount = CountRoundDown; 8277 Induction = 8278 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8279 getDebugLocFromInstOrOperands(OldInduction)); 8280 8281 // Skip induction resume value creation here because they will be created in 8282 // the second pass. If we created them here, they wouldn't be used anyway, 8283 // because the vplan in the second pass still contains the inductions from the 8284 // original loop. 8285 8286 return completeLoopSkeleton(Lp, OrigLoopID); 8287 } 8288 8289 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8290 LLVM_DEBUG({ 8291 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8292 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 8293 << ", Main Loop UF:" << EPI.MainLoopUF 8294 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8295 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8296 }); 8297 } 8298 8299 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8300 DEBUG_WITH_TYPE(VerboseDebug, { 8301 dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n"; 8302 }); 8303 } 8304 8305 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8306 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8307 assert(L && "Expected valid Loop."); 8308 assert(Bypass && "Expected valid bypass basic block."); 8309 unsigned VFactor = 8310 ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue(); 8311 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8312 Value *Count = getOrCreateTripCount(L); 8313 // Reuse existing vector loop preheader for TC checks. 8314 // Note that new preheader block is generated for vector loop. 8315 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8316 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8317 8318 // Generate code to check if the loop's trip count is less than VF * UF of the 8319 // main vector loop. 8320 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 8321 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8322 8323 Value *CheckMinIters = Builder.CreateICmp( 8324 P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor), 8325 "min.iters.check"); 8326 8327 if (!ForEpilogue) 8328 TCCheckBlock->setName("vector.main.loop.iter.check"); 8329 8330 // Create new preheader for vector loop. 8331 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8332 DT, LI, nullptr, "vector.ph"); 8333 8334 if (ForEpilogue) { 8335 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8336 DT->getNode(Bypass)->getIDom()) && 8337 "TC check is expected to dominate Bypass"); 8338 8339 // Update dominator for Bypass & LoopExit. 8340 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8341 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8342 8343 LoopBypassBlocks.push_back(TCCheckBlock); 8344 8345 // Save the trip count so we don't have to regenerate it in the 8346 // vec.epilog.iter.check. This is safe to do because the trip count 8347 // generated here dominates the vector epilog iter check. 8348 EPI.TripCount = Count; 8349 } 8350 8351 ReplaceInstWithInst( 8352 TCCheckBlock->getTerminator(), 8353 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8354 8355 return TCCheckBlock; 8356 } 8357 8358 //===--------------------------------------------------------------------===// 8359 // EpilogueVectorizerEpilogueLoop 8360 //===--------------------------------------------------------------------===// 8361 8362 /// This function is partially responsible for generating the control flow 8363 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8364 BasicBlock * 8365 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8366 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8367 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8368 8369 // Now, compare the remaining count and if there aren't enough iterations to 8370 // execute the vectorized epilogue skip to the scalar part. 8371 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8372 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8373 LoopVectorPreHeader = 8374 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8375 LI, nullptr, "vec.epilog.ph"); 8376 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8377 VecEpilogueIterationCountCheck); 8378 8379 // Adjust the control flow taking the state info from the main loop 8380 // vectorization into account. 8381 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8382 "expected this to be saved from the previous pass."); 8383 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8384 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8385 8386 DT->changeImmediateDominator(LoopVectorPreHeader, 8387 EPI.MainLoopIterationCountCheck); 8388 8389 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8390 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8391 8392 if (EPI.SCEVSafetyCheck) 8393 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8394 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8395 if (EPI.MemSafetyCheck) 8396 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8397 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8398 8399 DT->changeImmediateDominator( 8400 VecEpilogueIterationCountCheck, 8401 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8402 8403 DT->changeImmediateDominator(LoopScalarPreHeader, 8404 EPI.EpilogueIterationCountCheck); 8405 DT->changeImmediateDominator(LoopExitBlock, EPI.EpilogueIterationCountCheck); 8406 8407 // Keep track of bypass blocks, as they feed start values to the induction 8408 // phis in the scalar loop preheader. 8409 if (EPI.SCEVSafetyCheck) 8410 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8411 if (EPI.MemSafetyCheck) 8412 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8413 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8414 8415 // Generate a resume induction for the vector epilogue and put it in the 8416 // vector epilogue preheader 8417 Type *IdxTy = Legal->getWidestInductionType(); 8418 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8419 LoopVectorPreHeader->getFirstNonPHI()); 8420 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8421 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8422 EPI.MainLoopIterationCountCheck); 8423 8424 // Generate the induction variable. 8425 OldInduction = Legal->getPrimaryInduction(); 8426 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8427 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8428 Value *StartIdx = EPResumeVal; 8429 Induction = 8430 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8431 getDebugLocFromInstOrOperands(OldInduction)); 8432 8433 // Generate induction resume values. These variables save the new starting 8434 // indexes for the scalar loop. They are used to test if there are any tail 8435 // iterations left once the vector loop has completed. 8436 // Note that when the vectorized epilogue is skipped due to iteration count 8437 // check, then the resume value for the induction variable comes from 8438 // the trip count of the main vector loop, hence passing the AdditionalBypass 8439 // argument. 8440 createInductionResumeValues(Lp, CountRoundDown, 8441 {VecEpilogueIterationCountCheck, 8442 EPI.VectorTripCount} /* AdditionalBypass */); 8443 8444 AddRuntimeUnrollDisableMetaData(Lp); 8445 return completeLoopSkeleton(Lp, OrigLoopID); 8446 } 8447 8448 BasicBlock * 8449 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8450 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8451 8452 assert(EPI.TripCount && 8453 "Expected trip count to have been safed in the first pass."); 8454 assert( 8455 (!isa<Instruction>(EPI.TripCount) || 8456 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8457 "saved trip count does not dominate insertion point."); 8458 Value *TC = EPI.TripCount; 8459 IRBuilder<> Builder(Insert->getTerminator()); 8460 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8461 8462 // Generate code to check if the loop's trip count is less than VF * UF of the 8463 // vector epilogue loop. 8464 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8465 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8466 8467 Value *CheckMinIters = Builder.CreateICmp( 8468 P, Count, 8469 ConstantInt::get(Count->getType(), 8470 EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF), 8471 "min.epilog.iters.check"); 8472 8473 ReplaceInstWithInst( 8474 Insert->getTerminator(), 8475 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8476 8477 LoopBypassBlocks.push_back(Insert); 8478 return Insert; 8479 } 8480 8481 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8482 LLVM_DEBUG({ 8483 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8484 << "Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8485 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8486 }); 8487 } 8488 8489 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8490 DEBUG_WITH_TYPE(VerboseDebug, { 8491 dbgs() << "final fn:\n" << *Induction->getFunction() << "\n"; 8492 }); 8493 } 8494 8495 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8496 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8497 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8498 bool PredicateAtRangeStart = Predicate(Range.Start); 8499 8500 for (ElementCount TmpVF = Range.Start * 2; 8501 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8502 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8503 Range.End = TmpVF; 8504 break; 8505 } 8506 8507 return PredicateAtRangeStart; 8508 } 8509 8510 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8511 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8512 /// of VF's starting at a given VF and extending it as much as possible. Each 8513 /// vectorization decision can potentially shorten this sub-range during 8514 /// buildVPlan(). 8515 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8516 ElementCount MaxVF) { 8517 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8518 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8519 VFRange SubRange = {VF, MaxVFPlusOne}; 8520 VPlans.push_back(buildVPlan(SubRange)); 8521 VF = SubRange.End; 8522 } 8523 } 8524 8525 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8526 VPlanPtr &Plan) { 8527 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8528 8529 // Look for cached value. 8530 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8531 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8532 if (ECEntryIt != EdgeMaskCache.end()) 8533 return ECEntryIt->second; 8534 8535 VPValue *SrcMask = createBlockInMask(Src, Plan); 8536 8537 // The terminator has to be a branch inst! 8538 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8539 assert(BI && "Unexpected terminator found"); 8540 8541 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8542 return EdgeMaskCache[Edge] = SrcMask; 8543 8544 // If source is an exiting block, we know the exit edge is dynamically dead 8545 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8546 // adding uses of an otherwise potentially dead instruction. 8547 if (OrigLoop->isLoopExiting(Src)) 8548 return EdgeMaskCache[Edge] = SrcMask; 8549 8550 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8551 assert(EdgeMask && "No Edge Mask found for condition"); 8552 8553 if (BI->getSuccessor(0) != Dst) 8554 EdgeMask = Builder.createNot(EdgeMask); 8555 8556 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8557 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8558 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8559 // The select version does not introduce new UB if SrcMask is false and 8560 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8561 VPValue *False = Plan->getOrAddVPValue( 8562 ConstantInt::getFalse(BI->getCondition()->getType())); 8563 EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False); 8564 } 8565 8566 return EdgeMaskCache[Edge] = EdgeMask; 8567 } 8568 8569 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8570 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8571 8572 // Look for cached value. 8573 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8574 if (BCEntryIt != BlockMaskCache.end()) 8575 return BCEntryIt->second; 8576 8577 // All-one mask is modelled as no-mask following the convention for masked 8578 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8579 VPValue *BlockMask = nullptr; 8580 8581 if (OrigLoop->getHeader() == BB) { 8582 if (!CM.blockNeedsPredication(BB)) 8583 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8584 8585 // Create the block in mask as the first non-phi instruction in the block. 8586 VPBuilder::InsertPointGuard Guard(Builder); 8587 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 8588 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 8589 8590 // Introduce the early-exit compare IV <= BTC to form header block mask. 8591 // This is used instead of IV < TC because TC may wrap, unlike BTC. 8592 // Start by constructing the desired canonical IV. 8593 VPValue *IV = nullptr; 8594 if (Legal->getPrimaryInduction()) 8595 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8596 else { 8597 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 8598 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 8599 IV = IVRecipe->getVPSingleValue(); 8600 } 8601 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8602 bool TailFolded = !CM.isScalarEpilogueAllowed(); 8603 8604 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 8605 // While ActiveLaneMask is a binary op that consumes the loop tripcount 8606 // as a second argument, we only pass the IV here and extract the 8607 // tripcount from the transform state where codegen of the VP instructions 8608 // happen. 8609 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 8610 } else { 8611 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8612 } 8613 return BlockMaskCache[BB] = BlockMask; 8614 } 8615 8616 // This is the block mask. We OR all incoming edges. 8617 for (auto *Predecessor : predecessors(BB)) { 8618 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8619 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8620 return BlockMaskCache[BB] = EdgeMask; 8621 8622 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8623 BlockMask = EdgeMask; 8624 continue; 8625 } 8626 8627 BlockMask = Builder.createOr(BlockMask, EdgeMask); 8628 } 8629 8630 return BlockMaskCache[BB] = BlockMask; 8631 } 8632 8633 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8634 ArrayRef<VPValue *> Operands, 8635 VFRange &Range, 8636 VPlanPtr &Plan) { 8637 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8638 "Must be called with either a load or store"); 8639 8640 auto willWiden = [&](ElementCount VF) -> bool { 8641 if (VF.isScalar()) 8642 return false; 8643 LoopVectorizationCostModel::InstWidening Decision = 8644 CM.getWideningDecision(I, VF); 8645 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8646 "CM decision should be taken at this point."); 8647 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8648 return true; 8649 if (CM.isScalarAfterVectorization(I, VF) || 8650 CM.isProfitableToScalarize(I, VF)) 8651 return false; 8652 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8653 }; 8654 8655 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8656 return nullptr; 8657 8658 VPValue *Mask = nullptr; 8659 if (Legal->isMaskRequired(I)) 8660 Mask = createBlockInMask(I->getParent(), Plan); 8661 8662 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8663 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask); 8664 8665 StoreInst *Store = cast<StoreInst>(I); 8666 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8667 Mask); 8668 } 8669 8670 VPWidenIntOrFpInductionRecipe * 8671 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, 8672 ArrayRef<VPValue *> Operands) const { 8673 // Check if this is an integer or fp induction. If so, build the recipe that 8674 // produces its scalar and vector values. 8675 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8676 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8677 II.getKind() == InductionDescriptor::IK_FpInduction) { 8678 assert(II.getStartValue() == 8679 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8680 const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts(); 8681 return new VPWidenIntOrFpInductionRecipe( 8682 Phi, Operands[0], Casts.empty() ? nullptr : Casts.front()); 8683 } 8684 8685 return nullptr; 8686 } 8687 8688 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8689 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8690 VPlan &Plan) const { 8691 // Optimize the special case where the source is a constant integer 8692 // induction variable. Notice that we can only optimize the 'trunc' case 8693 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8694 // (c) other casts depend on pointer size. 8695 8696 // Determine whether \p K is a truncation based on an induction variable that 8697 // can be optimized. 8698 auto isOptimizableIVTruncate = 8699 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8700 return [=](ElementCount VF) -> bool { 8701 return CM.isOptimizableIVTruncate(K, VF); 8702 }; 8703 }; 8704 8705 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8706 isOptimizableIVTruncate(I), Range)) { 8707 8708 InductionDescriptor II = 8709 Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0))); 8710 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8711 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8712 Start, nullptr, I); 8713 } 8714 return nullptr; 8715 } 8716 8717 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8718 ArrayRef<VPValue *> Operands, 8719 VPlanPtr &Plan) { 8720 // If all incoming values are equal, the incoming VPValue can be used directly 8721 // instead of creating a new VPBlendRecipe. 8722 VPValue *FirstIncoming = Operands[0]; 8723 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8724 return FirstIncoming == Inc; 8725 })) { 8726 return Operands[0]; 8727 } 8728 8729 // We know that all PHIs in non-header blocks are converted into selects, so 8730 // we don't have to worry about the insertion order and we can just use the 8731 // builder. At this point we generate the predication tree. There may be 8732 // duplications since this is a simple recursive scan, but future 8733 // optimizations will clean it up. 8734 SmallVector<VPValue *, 2> OperandsWithMask; 8735 unsigned NumIncoming = Phi->getNumIncomingValues(); 8736 8737 for (unsigned In = 0; In < NumIncoming; In++) { 8738 VPValue *EdgeMask = 8739 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8740 assert((EdgeMask || NumIncoming == 1) && 8741 "Multiple predecessors with one having a full mask"); 8742 OperandsWithMask.push_back(Operands[In]); 8743 if (EdgeMask) 8744 OperandsWithMask.push_back(EdgeMask); 8745 } 8746 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8747 } 8748 8749 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8750 ArrayRef<VPValue *> Operands, 8751 VFRange &Range) const { 8752 8753 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8754 [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); }, 8755 Range); 8756 8757 if (IsPredicated) 8758 return nullptr; 8759 8760 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8761 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8762 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8763 ID == Intrinsic::pseudoprobe || 8764 ID == Intrinsic::experimental_noalias_scope_decl)) 8765 return nullptr; 8766 8767 auto willWiden = [&](ElementCount VF) -> bool { 8768 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8769 // The following case may be scalarized depending on the VF. 8770 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8771 // version of the instruction. 8772 // Is it beneficial to perform intrinsic call compared to lib call? 8773 bool NeedToScalarize = false; 8774 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8775 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8776 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8777 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 8778 "Either the intrinsic cost or vector call cost must be valid"); 8779 return UseVectorIntrinsic || !NeedToScalarize; 8780 }; 8781 8782 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8783 return nullptr; 8784 8785 ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands()); 8786 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8787 } 8788 8789 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8790 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8791 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8792 // Instruction should be widened, unless it is scalar after vectorization, 8793 // scalarization is profitable or it is predicated. 8794 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8795 return CM.isScalarAfterVectorization(I, VF) || 8796 CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I); 8797 }; 8798 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8799 Range); 8800 } 8801 8802 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8803 ArrayRef<VPValue *> Operands) const { 8804 auto IsVectorizableOpcode = [](unsigned Opcode) { 8805 switch (Opcode) { 8806 case Instruction::Add: 8807 case Instruction::And: 8808 case Instruction::AShr: 8809 case Instruction::BitCast: 8810 case Instruction::FAdd: 8811 case Instruction::FCmp: 8812 case Instruction::FDiv: 8813 case Instruction::FMul: 8814 case Instruction::FNeg: 8815 case Instruction::FPExt: 8816 case Instruction::FPToSI: 8817 case Instruction::FPToUI: 8818 case Instruction::FPTrunc: 8819 case Instruction::FRem: 8820 case Instruction::FSub: 8821 case Instruction::ICmp: 8822 case Instruction::IntToPtr: 8823 case Instruction::LShr: 8824 case Instruction::Mul: 8825 case Instruction::Or: 8826 case Instruction::PtrToInt: 8827 case Instruction::SDiv: 8828 case Instruction::Select: 8829 case Instruction::SExt: 8830 case Instruction::Shl: 8831 case Instruction::SIToFP: 8832 case Instruction::SRem: 8833 case Instruction::Sub: 8834 case Instruction::Trunc: 8835 case Instruction::UDiv: 8836 case Instruction::UIToFP: 8837 case Instruction::URem: 8838 case Instruction::Xor: 8839 case Instruction::ZExt: 8840 return true; 8841 } 8842 return false; 8843 }; 8844 8845 if (!IsVectorizableOpcode(I->getOpcode())) 8846 return nullptr; 8847 8848 // Success: widen this instruction. 8849 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8850 } 8851 8852 void VPRecipeBuilder::fixHeaderPhis() { 8853 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8854 for (VPWidenPHIRecipe *R : PhisToFix) { 8855 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8856 VPRecipeBase *IncR = 8857 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8858 R->addOperand(IncR->getVPSingleValue()); 8859 } 8860 } 8861 8862 VPBasicBlock *VPRecipeBuilder::handleReplication( 8863 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8864 VPlanPtr &Plan) { 8865 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8866 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8867 Range); 8868 8869 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8870 [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range); 8871 8872 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8873 IsUniform, IsPredicated); 8874 setRecipe(I, Recipe); 8875 Plan->addVPValue(I, Recipe); 8876 8877 // Find if I uses a predicated instruction. If so, it will use its scalar 8878 // value. Avoid hoisting the insert-element which packs the scalar value into 8879 // a vector value, as that happens iff all users use the vector value. 8880 for (VPValue *Op : Recipe->operands()) { 8881 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8882 if (!PredR) 8883 continue; 8884 auto *RepR = 8885 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8886 assert(RepR->isPredicated() && 8887 "expected Replicate recipe to be predicated"); 8888 RepR->setAlsoPack(false); 8889 } 8890 8891 // Finalize the recipe for Instr, first if it is not predicated. 8892 if (!IsPredicated) { 8893 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8894 VPBB->appendRecipe(Recipe); 8895 return VPBB; 8896 } 8897 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8898 assert(VPBB->getSuccessors().empty() && 8899 "VPBB has successors when handling predicated replication."); 8900 // Record predicated instructions for above packing optimizations. 8901 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8902 VPBlockUtils::insertBlockAfter(Region, VPBB); 8903 auto *RegSucc = new VPBasicBlock(); 8904 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8905 return RegSucc; 8906 } 8907 8908 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8909 VPRecipeBase *PredRecipe, 8910 VPlanPtr &Plan) { 8911 // Instructions marked for predication are replicated and placed under an 8912 // if-then construct to prevent side-effects. 8913 8914 // Generate recipes to compute the block mask for this region. 8915 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8916 8917 // Build the triangular if-then region. 8918 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8919 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8920 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8921 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8922 auto *PHIRecipe = Instr->getType()->isVoidTy() 8923 ? nullptr 8924 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8925 if (PHIRecipe) { 8926 Plan->removeVPValueFor(Instr); 8927 Plan->addVPValue(Instr, PHIRecipe); 8928 } 8929 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8930 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8931 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8932 8933 // Note: first set Entry as region entry and then connect successors starting 8934 // from it in order, to propagate the "parent" of each VPBasicBlock. 8935 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8936 VPBlockUtils::connectBlocks(Pred, Exit); 8937 8938 return Region; 8939 } 8940 8941 VPRecipeOrVPValueTy 8942 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8943 ArrayRef<VPValue *> Operands, 8944 VFRange &Range, VPlanPtr &Plan) { 8945 // First, check for specific widening recipes that deal with calls, memory 8946 // operations, inductions and Phi nodes. 8947 if (auto *CI = dyn_cast<CallInst>(Instr)) 8948 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8949 8950 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8951 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8952 8953 VPRecipeBase *Recipe; 8954 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8955 if (Phi->getParent() != OrigLoop->getHeader()) 8956 return tryToBlend(Phi, Operands, Plan); 8957 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands))) 8958 return toVPRecipeResult(Recipe); 8959 8960 VPWidenPHIRecipe *PhiRecipe = nullptr; 8961 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 8962 VPValue *StartV = Operands[0]; 8963 if (Legal->isReductionVariable(Phi)) { 8964 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 8965 assert(RdxDesc.getRecurrenceStartValue() == 8966 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8967 PhiRecipe = new VPWidenPHIRecipe(Phi, RdxDesc, *StartV); 8968 } else { 8969 PhiRecipe = new VPWidenPHIRecipe(Phi, *StartV); 8970 } 8971 8972 // Record the incoming value from the backedge, so we can add the incoming 8973 // value from the backedge after all recipes have been created. 8974 recordRecipeOf(cast<Instruction>( 8975 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8976 PhisToFix.push_back(PhiRecipe); 8977 } else { 8978 // TODO: record start and backedge value for remaining pointer induction 8979 // phis. 8980 assert(Phi->getType()->isPointerTy() && 8981 "only pointer phis should be handled here"); 8982 PhiRecipe = new VPWidenPHIRecipe(Phi); 8983 } 8984 8985 return toVPRecipeResult(PhiRecipe); 8986 } 8987 8988 if (isa<TruncInst>(Instr) && 8989 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8990 Range, *Plan))) 8991 return toVPRecipeResult(Recipe); 8992 8993 if (!shouldWiden(Instr, Range)) 8994 return nullptr; 8995 8996 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8997 return toVPRecipeResult(new VPWidenGEPRecipe( 8998 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8999 9000 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 9001 bool InvariantCond = 9002 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 9003 return toVPRecipeResult(new VPWidenSelectRecipe( 9004 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 9005 } 9006 9007 return toVPRecipeResult(tryToWiden(Instr, Operands)); 9008 } 9009 9010 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 9011 ElementCount MaxVF) { 9012 assert(OrigLoop->isInnermost() && "Inner loop expected."); 9013 9014 // Collect instructions from the original loop that will become trivially dead 9015 // in the vectorized loop. We don't need to vectorize these instructions. For 9016 // example, original induction update instructions can become dead because we 9017 // separately emit induction "steps" when generating code for the new loop. 9018 // Similarly, we create a new latch condition when setting up the structure 9019 // of the new loop, so the old one can become dead. 9020 SmallPtrSet<Instruction *, 4> DeadInstructions; 9021 collectTriviallyDeadInstructions(DeadInstructions); 9022 9023 // Add assume instructions we need to drop to DeadInstructions, to prevent 9024 // them from being added to the VPlan. 9025 // TODO: We only need to drop assumes in blocks that get flattend. If the 9026 // control flow is preserved, we should keep them. 9027 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 9028 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 9029 9030 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 9031 // Dead instructions do not need sinking. Remove them from SinkAfter. 9032 for (Instruction *I : DeadInstructions) 9033 SinkAfter.erase(I); 9034 9035 // Cannot sink instructions after dead instructions (there won't be any 9036 // recipes for them). Instead, find the first non-dead previous instruction. 9037 for (auto &P : Legal->getSinkAfter()) { 9038 Instruction *SinkTarget = P.second; 9039 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 9040 (void)FirstInst; 9041 while (DeadInstructions.contains(SinkTarget)) { 9042 assert( 9043 SinkTarget != FirstInst && 9044 "Must find a live instruction (at least the one feeding the " 9045 "first-order recurrence PHI) before reaching beginning of the block"); 9046 SinkTarget = SinkTarget->getPrevNode(); 9047 assert(SinkTarget != P.first && 9048 "sink source equals target, no sinking required"); 9049 } 9050 P.second = SinkTarget; 9051 } 9052 9053 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 9054 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 9055 VFRange SubRange = {VF, MaxVFPlusOne}; 9056 VPlans.push_back( 9057 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 9058 VF = SubRange.End; 9059 } 9060 } 9061 9062 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 9063 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 9064 const MapVector<Instruction *, Instruction *> &SinkAfter) { 9065 9066 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 9067 9068 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 9069 9070 // --------------------------------------------------------------------------- 9071 // Pre-construction: record ingredients whose recipes we'll need to further 9072 // process after constructing the initial VPlan. 9073 // --------------------------------------------------------------------------- 9074 9075 // Mark instructions we'll need to sink later and their targets as 9076 // ingredients whose recipe we'll need to record. 9077 for (auto &Entry : SinkAfter) { 9078 RecipeBuilder.recordRecipeOf(Entry.first); 9079 RecipeBuilder.recordRecipeOf(Entry.second); 9080 } 9081 for (auto &Reduction : CM.getInLoopReductionChains()) { 9082 PHINode *Phi = Reduction.first; 9083 RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind(); 9084 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9085 9086 RecipeBuilder.recordRecipeOf(Phi); 9087 for (auto &R : ReductionOperations) { 9088 RecipeBuilder.recordRecipeOf(R); 9089 // For min/max reducitons, where we have a pair of icmp/select, we also 9090 // need to record the ICmp recipe, so it can be removed later. 9091 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 9092 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 9093 } 9094 } 9095 9096 // For each interleave group which is relevant for this (possibly trimmed) 9097 // Range, add it to the set of groups to be later applied to the VPlan and add 9098 // placeholders for its members' Recipes which we'll be replacing with a 9099 // single VPInterleaveRecipe. 9100 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9101 auto applyIG = [IG, this](ElementCount VF) -> bool { 9102 return (VF.isVector() && // Query is illegal for VF == 1 9103 CM.getWideningDecision(IG->getInsertPos(), VF) == 9104 LoopVectorizationCostModel::CM_Interleave); 9105 }; 9106 if (!getDecisionAndClampRange(applyIG, Range)) 9107 continue; 9108 InterleaveGroups.insert(IG); 9109 for (unsigned i = 0; i < IG->getFactor(); i++) 9110 if (Instruction *Member = IG->getMember(i)) 9111 RecipeBuilder.recordRecipeOf(Member); 9112 }; 9113 9114 // --------------------------------------------------------------------------- 9115 // Build initial VPlan: Scan the body of the loop in a topological order to 9116 // visit each basic block after having visited its predecessor basic blocks. 9117 // --------------------------------------------------------------------------- 9118 9119 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 9120 auto Plan = std::make_unique<VPlan>(); 9121 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 9122 Plan->setEntry(VPBB); 9123 9124 // Scan the body of the loop in a topological order to visit each basic block 9125 // after having visited its predecessor basic blocks. 9126 LoopBlocksDFS DFS(OrigLoop); 9127 DFS.perform(LI); 9128 9129 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9130 // Relevant instructions from basic block BB will be grouped into VPRecipe 9131 // ingredients and fill a new VPBasicBlock. 9132 unsigned VPBBsForBB = 0; 9133 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 9134 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 9135 VPBB = FirstVPBBForBB; 9136 Builder.setInsertPoint(VPBB); 9137 9138 // Introduce each ingredient into VPlan. 9139 // TODO: Model and preserve debug instrinsics in VPlan. 9140 for (Instruction &I : BB->instructionsWithoutDebug()) { 9141 Instruction *Instr = &I; 9142 9143 // First filter out irrelevant instructions, to ensure no recipes are 9144 // built for them. 9145 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9146 continue; 9147 9148 SmallVector<VPValue *, 4> Operands; 9149 auto *Phi = dyn_cast<PHINode>(Instr); 9150 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9151 Operands.push_back(Plan->getOrAddVPValue( 9152 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9153 } else { 9154 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9155 Operands = {OpRange.begin(), OpRange.end()}; 9156 } 9157 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9158 Instr, Operands, Range, Plan)) { 9159 // If Instr can be simplified to an existing VPValue, use it. 9160 if (RecipeOrValue.is<VPValue *>()) { 9161 auto *VPV = RecipeOrValue.get<VPValue *>(); 9162 Plan->addVPValue(Instr, VPV); 9163 // If the re-used value is a recipe, register the recipe for the 9164 // instruction, in case the recipe for Instr needs to be recorded. 9165 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9166 RecipeBuilder.setRecipe(Instr, R); 9167 continue; 9168 } 9169 // Otherwise, add the new recipe. 9170 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9171 for (auto *Def : Recipe->definedValues()) { 9172 auto *UV = Def->getUnderlyingValue(); 9173 Plan->addVPValue(UV, Def); 9174 } 9175 9176 RecipeBuilder.setRecipe(Instr, Recipe); 9177 VPBB->appendRecipe(Recipe); 9178 continue; 9179 } 9180 9181 // Otherwise, if all widening options failed, Instruction is to be 9182 // replicated. This may create a successor for VPBB. 9183 VPBasicBlock *NextVPBB = 9184 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9185 if (NextVPBB != VPBB) { 9186 VPBB = NextVPBB; 9187 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9188 : ""); 9189 } 9190 } 9191 } 9192 9193 RecipeBuilder.fixHeaderPhis(); 9194 9195 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 9196 // may also be empty, such as the last one VPBB, reflecting original 9197 // basic-blocks with no recipes. 9198 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 9199 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 9200 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 9201 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 9202 delete PreEntry; 9203 9204 // --------------------------------------------------------------------------- 9205 // Transform initial VPlan: Apply previously taken decisions, in order, to 9206 // bring the VPlan to its final state. 9207 // --------------------------------------------------------------------------- 9208 9209 // Apply Sink-After legal constraints. 9210 for (auto &Entry : SinkAfter) { 9211 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9212 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9213 9214 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9215 auto *Region = 9216 dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9217 if (Region && Region->isReplicator()) { 9218 assert(Region->getNumSuccessors() == 1 && 9219 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 9220 assert(R->getParent()->size() == 1 && 9221 "A recipe in an original replicator region must be the only " 9222 "recipe in its block"); 9223 return Region; 9224 } 9225 return nullptr; 9226 }; 9227 auto *TargetRegion = GetReplicateRegion(Target); 9228 auto *SinkRegion = GetReplicateRegion(Sink); 9229 if (!SinkRegion) { 9230 // If the sink source is not a replicate region, sink the recipe directly. 9231 if (TargetRegion) { 9232 // The target is in a replication region, make sure to move Sink to 9233 // the block after it, not into the replication region itself. 9234 VPBasicBlock *NextBlock = 9235 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9236 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9237 } else 9238 Sink->moveAfter(Target); 9239 continue; 9240 } 9241 9242 // The sink source is in a replicate region. Unhook the region from the CFG. 9243 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9244 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9245 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9246 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9247 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9248 9249 if (TargetRegion) { 9250 // The target recipe is also in a replicate region, move the sink region 9251 // after the target region. 9252 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9253 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9254 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9255 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9256 } else { 9257 // The sink source is in a replicate region, we need to move the whole 9258 // replicate region, which should only contain a single recipe in the main 9259 // block. 9260 auto *SplitBlock = 9261 Target->getParent()->splitAt(std::next(Target->getIterator())); 9262 9263 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9264 9265 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9266 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9267 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9268 if (VPBB == SplitPred) 9269 VPBB = SplitBlock; 9270 } 9271 } 9272 9273 // Interleave memory: for each Interleave Group we marked earlier as relevant 9274 // for this VPlan, replace the Recipes widening its memory instructions with a 9275 // single VPInterleaveRecipe at its insertion point. 9276 for (auto IG : InterleaveGroups) { 9277 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9278 RecipeBuilder.getRecipe(IG->getInsertPos())); 9279 SmallVector<VPValue *, 4> StoredValues; 9280 for (unsigned i = 0; i < IG->getFactor(); ++i) 9281 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) 9282 StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0))); 9283 9284 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9285 Recipe->getMask()); 9286 VPIG->insertBefore(Recipe); 9287 unsigned J = 0; 9288 for (unsigned i = 0; i < IG->getFactor(); ++i) 9289 if (Instruction *Member = IG->getMember(i)) { 9290 if (!Member->getType()->isVoidTy()) { 9291 VPValue *OriginalV = Plan->getVPValue(Member); 9292 Plan->removeVPValueFor(Member); 9293 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9294 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9295 J++; 9296 } 9297 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9298 } 9299 } 9300 9301 // Adjust the recipes for any inloop reductions. 9302 adjustRecipesForInLoopReductions(Plan, RecipeBuilder, Range.Start); 9303 9304 // Finally, if tail is folded by masking, introduce selects between the phi 9305 // and the live-out instruction of each reduction, at the end of the latch. 9306 if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) { 9307 Builder.setInsertPoint(VPBB); 9308 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9309 for (auto &Reduction : Legal->getReductionVars()) { 9310 if (CM.isInLoopReduction(Reduction.first)) 9311 continue; 9312 VPValue *Phi = Plan->getOrAddVPValue(Reduction.first); 9313 VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr()); 9314 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 9315 } 9316 } 9317 9318 VPlanTransforms::sinkScalarOperands(*Plan); 9319 VPlanTransforms::mergeReplicateRegions(*Plan); 9320 9321 std::string PlanName; 9322 raw_string_ostream RSO(PlanName); 9323 ElementCount VF = Range.Start; 9324 Plan->addVF(VF); 9325 RSO << "Initial VPlan for VF={" << VF; 9326 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9327 Plan->addVF(VF); 9328 RSO << "," << VF; 9329 } 9330 RSO << "},UF>=1"; 9331 RSO.flush(); 9332 Plan->setName(PlanName); 9333 9334 return Plan; 9335 } 9336 9337 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9338 // Outer loop handling: They may require CFG and instruction level 9339 // transformations before even evaluating whether vectorization is profitable. 9340 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9341 // the vectorization pipeline. 9342 assert(!OrigLoop->isInnermost()); 9343 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9344 9345 // Create new empty VPlan 9346 auto Plan = std::make_unique<VPlan>(); 9347 9348 // Build hierarchical CFG 9349 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9350 HCFGBuilder.buildHierarchicalCFG(); 9351 9352 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9353 VF *= 2) 9354 Plan->addVF(VF); 9355 9356 if (EnableVPlanPredication) { 9357 VPlanPredicator VPP(*Plan); 9358 VPP.predicate(); 9359 9360 // Avoid running transformation to recipes until masked code generation in 9361 // VPlan-native path is in place. 9362 return Plan; 9363 } 9364 9365 SmallPtrSet<Instruction *, 1> DeadInstructions; 9366 VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan, 9367 Legal->getInductionVars(), 9368 DeadInstructions, *PSE.getSE()); 9369 return Plan; 9370 } 9371 9372 // Adjust the recipes for any inloop reductions. The chain of instructions 9373 // leading from the loop exit instr to the phi need to be converted to 9374 // reductions, with one operand being vector and the other being the scalar 9375 // reduction chain. 9376 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions( 9377 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) { 9378 for (auto &Reduction : CM.getInLoopReductionChains()) { 9379 PHINode *Phi = Reduction.first; 9380 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9381 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9382 9383 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9384 continue; 9385 9386 // ReductionOperations are orders top-down from the phi's use to the 9387 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9388 // which of the two operands will remain scalar and which will be reduced. 9389 // For minmax the chain will be the select instructions. 9390 Instruction *Chain = Phi; 9391 for (Instruction *R : ReductionOperations) { 9392 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9393 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9394 9395 VPValue *ChainOp = Plan->getVPValue(Chain); 9396 unsigned FirstOpId; 9397 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9398 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9399 "Expected to replace a VPWidenSelectSC"); 9400 FirstOpId = 1; 9401 } else { 9402 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) && 9403 "Expected to replace a VPWidenSC"); 9404 FirstOpId = 0; 9405 } 9406 unsigned VecOpId = 9407 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9408 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9409 9410 auto *CondOp = CM.foldTailByMasking() 9411 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9412 : nullptr; 9413 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 9414 &RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9415 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9416 Plan->removeVPValueFor(R); 9417 Plan->addVPValue(R, RedRecipe); 9418 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9419 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9420 WidenRecipe->eraseFromParent(); 9421 9422 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9423 VPRecipeBase *CompareRecipe = 9424 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9425 assert(isa<VPWidenRecipe>(CompareRecipe) && 9426 "Expected to replace a VPWidenSC"); 9427 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9428 "Expected no remaining users"); 9429 CompareRecipe->eraseFromParent(); 9430 } 9431 Chain = R; 9432 } 9433 } 9434 } 9435 9436 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9437 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9438 VPSlotTracker &SlotTracker) const { 9439 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9440 IG->getInsertPos()->printAsOperand(O, false); 9441 O << ", "; 9442 getAddr()->printAsOperand(O, SlotTracker); 9443 VPValue *Mask = getMask(); 9444 if (Mask) { 9445 O << ", "; 9446 Mask->printAsOperand(O, SlotTracker); 9447 } 9448 for (unsigned i = 0; i < IG->getFactor(); ++i) 9449 if (Instruction *I = IG->getMember(i)) 9450 O << "\n" << Indent << " " << VPlanIngredient(I) << " " << i; 9451 } 9452 #endif 9453 9454 void VPWidenCallRecipe::execute(VPTransformState &State) { 9455 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9456 *this, State); 9457 } 9458 9459 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9460 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 9461 this, *this, InvariantCond, State); 9462 } 9463 9464 void VPWidenRecipe::execute(VPTransformState &State) { 9465 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 9466 } 9467 9468 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9469 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 9470 *this, State.UF, State.VF, IsPtrLoopInvariant, 9471 IsIndexLoopInvariant, State); 9472 } 9473 9474 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9475 assert(!State.Instance && "Int or FP induction being replicated."); 9476 State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(), 9477 getTruncInst(), getVPValue(0), 9478 getCastValue(), State); 9479 } 9480 9481 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9482 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), RdxDesc, 9483 this, State); 9484 } 9485 9486 void VPBlendRecipe::execute(VPTransformState &State) { 9487 State.ILV->setDebugLocFromInst(State.Builder, Phi); 9488 // We know that all PHIs in non-header blocks are converted into 9489 // selects, so we don't have to worry about the insertion order and we 9490 // can just use the builder. 9491 // At this point we generate the predication tree. There may be 9492 // duplications since this is a simple recursive scan, but future 9493 // optimizations will clean it up. 9494 9495 unsigned NumIncoming = getNumIncomingValues(); 9496 9497 // Generate a sequence of selects of the form: 9498 // SELECT(Mask3, In3, 9499 // SELECT(Mask2, In2, 9500 // SELECT(Mask1, In1, 9501 // In0))) 9502 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9503 // are essentially undef are taken from In0. 9504 InnerLoopVectorizer::VectorParts Entry(State.UF); 9505 for (unsigned In = 0; In < NumIncoming; ++In) { 9506 for (unsigned Part = 0; Part < State.UF; ++Part) { 9507 // We might have single edge PHIs (blocks) - use an identity 9508 // 'select' for the first PHI operand. 9509 Value *In0 = State.get(getIncomingValue(In), Part); 9510 if (In == 0) 9511 Entry[Part] = In0; // Initialize with the first incoming value. 9512 else { 9513 // Select between the current value and the previous incoming edge 9514 // based on the incoming mask. 9515 Value *Cond = State.get(getMask(In), Part); 9516 Entry[Part] = 9517 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9518 } 9519 } 9520 } 9521 for (unsigned Part = 0; Part < State.UF; ++Part) 9522 State.set(this, Entry[Part], Part); 9523 } 9524 9525 void VPInterleaveRecipe::execute(VPTransformState &State) { 9526 assert(!State.Instance && "Interleave group being replicated."); 9527 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9528 getStoredValues(), getMask()); 9529 } 9530 9531 void VPReductionRecipe::execute(VPTransformState &State) { 9532 assert(!State.Instance && "Reduction being replicated."); 9533 Value *PrevInChain = State.get(getChainOp(), 0); 9534 for (unsigned Part = 0; Part < State.UF; ++Part) { 9535 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9536 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9537 Value *NewVecOp = State.get(getVecOp(), Part); 9538 if (VPValue *Cond = getCondOp()) { 9539 Value *NewCond = State.get(Cond, Part); 9540 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9541 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 9542 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9543 Constant *IdenVec = 9544 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 9545 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9546 NewVecOp = Select; 9547 } 9548 Value *NewRed; 9549 Value *NextInChain; 9550 if (IsOrdered) { 9551 if (State.VF.isVector()) 9552 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9553 PrevInChain); 9554 else 9555 NewRed = State.Builder.CreateBinOp( 9556 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), 9557 PrevInChain, NewVecOp); 9558 PrevInChain = NewRed; 9559 } else { 9560 PrevInChain = State.get(getChainOp(), Part); 9561 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9562 } 9563 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9564 NextInChain = 9565 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9566 NewRed, PrevInChain); 9567 } else if (IsOrdered) 9568 NextInChain = NewRed; 9569 else { 9570 NextInChain = State.Builder.CreateBinOp( 9571 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed, 9572 PrevInChain); 9573 } 9574 State.set(this, NextInChain, Part); 9575 } 9576 } 9577 9578 void VPReplicateRecipe::execute(VPTransformState &State) { 9579 if (State.Instance) { // Generate a single instance. 9580 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9581 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9582 *State.Instance, IsPredicated, State); 9583 // Insert scalar instance packing it into a vector. 9584 if (AlsoPack && State.VF.isVector()) { 9585 // If we're constructing lane 0, initialize to start from poison. 9586 if (State.Instance->Lane.isFirstLane()) { 9587 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9588 Value *Poison = PoisonValue::get( 9589 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9590 State.set(this, Poison, State.Instance->Part); 9591 } 9592 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9593 } 9594 return; 9595 } 9596 9597 // Generate scalar instances for all VF lanes of all UF parts, unless the 9598 // instruction is uniform inwhich case generate only the first lane for each 9599 // of the UF parts. 9600 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9601 assert((!State.VF.isScalable() || IsUniform) && 9602 "Can't scalarize a scalable vector"); 9603 for (unsigned Part = 0; Part < State.UF; ++Part) 9604 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9605 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9606 VPIteration(Part, Lane), IsPredicated, 9607 State); 9608 } 9609 9610 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9611 assert(State.Instance && "Branch on Mask works only on single instance."); 9612 9613 unsigned Part = State.Instance->Part; 9614 unsigned Lane = State.Instance->Lane.getKnownLane(); 9615 9616 Value *ConditionBit = nullptr; 9617 VPValue *BlockInMask = getMask(); 9618 if (BlockInMask) { 9619 ConditionBit = State.get(BlockInMask, Part); 9620 if (ConditionBit->getType()->isVectorTy()) 9621 ConditionBit = State.Builder.CreateExtractElement( 9622 ConditionBit, State.Builder.getInt32(Lane)); 9623 } else // Block in mask is all-one. 9624 ConditionBit = State.Builder.getTrue(); 9625 9626 // Replace the temporary unreachable terminator with a new conditional branch, 9627 // whose two destinations will be set later when they are created. 9628 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9629 assert(isa<UnreachableInst>(CurrentTerminator) && 9630 "Expected to replace unreachable terminator with conditional branch."); 9631 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9632 CondBr->setSuccessor(0, nullptr); 9633 ReplaceInstWithInst(CurrentTerminator, CondBr); 9634 } 9635 9636 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9637 assert(State.Instance && "Predicated instruction PHI works per instance."); 9638 Instruction *ScalarPredInst = 9639 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9640 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9641 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9642 assert(PredicatingBB && "Predicated block has no single predecessor."); 9643 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9644 "operand must be VPReplicateRecipe"); 9645 9646 // By current pack/unpack logic we need to generate only a single phi node: if 9647 // a vector value for the predicated instruction exists at this point it means 9648 // the instruction has vector users only, and a phi for the vector value is 9649 // needed. In this case the recipe of the predicated instruction is marked to 9650 // also do that packing, thereby "hoisting" the insert-element sequence. 9651 // Otherwise, a phi node for the scalar value is needed. 9652 unsigned Part = State.Instance->Part; 9653 if (State.hasVectorValue(getOperand(0), Part)) { 9654 Value *VectorValue = State.get(getOperand(0), Part); 9655 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9656 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9657 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9658 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9659 if (State.hasVectorValue(this, Part)) 9660 State.reset(this, VPhi, Part); 9661 else 9662 State.set(this, VPhi, Part); 9663 // NOTE: Currently we need to update the value of the operand, so the next 9664 // predicated iteration inserts its generated value in the correct vector. 9665 State.reset(getOperand(0), VPhi, Part); 9666 } else { 9667 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9668 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9669 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9670 PredicatingBB); 9671 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9672 if (State.hasScalarValue(this, *State.Instance)) 9673 State.reset(this, Phi, *State.Instance); 9674 else 9675 State.set(this, Phi, *State.Instance); 9676 // NOTE: Currently we need to update the value of the operand, so the next 9677 // predicated iteration inserts its generated value in the correct vector. 9678 State.reset(getOperand(0), Phi, *State.Instance); 9679 } 9680 } 9681 9682 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9683 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9684 State.ILV->vectorizeMemoryInstruction( 9685 &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(), 9686 StoredValue, getMask()); 9687 } 9688 9689 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9690 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9691 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9692 // for predication. 9693 static ScalarEpilogueLowering getScalarEpilogueLowering( 9694 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9695 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9696 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9697 LoopVectorizationLegality &LVL) { 9698 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9699 // don't look at hints or options, and don't request a scalar epilogue. 9700 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9701 // LoopAccessInfo (due to code dependency and not being able to reliably get 9702 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9703 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9704 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9705 // back to the old way and vectorize with versioning when forced. See D81345.) 9706 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9707 PGSOQueryType::IRPass) && 9708 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9709 return CM_ScalarEpilogueNotAllowedOptSize; 9710 9711 // 2) If set, obey the directives 9712 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9713 switch (PreferPredicateOverEpilogue) { 9714 case PreferPredicateTy::ScalarEpilogue: 9715 return CM_ScalarEpilogueAllowed; 9716 case PreferPredicateTy::PredicateElseScalarEpilogue: 9717 return CM_ScalarEpilogueNotNeededUsePredicate; 9718 case PreferPredicateTy::PredicateOrDontVectorize: 9719 return CM_ScalarEpilogueNotAllowedUsePredicate; 9720 }; 9721 } 9722 9723 // 3) If set, obey the hints 9724 switch (Hints.getPredicate()) { 9725 case LoopVectorizeHints::FK_Enabled: 9726 return CM_ScalarEpilogueNotNeededUsePredicate; 9727 case LoopVectorizeHints::FK_Disabled: 9728 return CM_ScalarEpilogueAllowed; 9729 }; 9730 9731 // 4) if the TTI hook indicates this is profitable, request predication. 9732 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 9733 LVL.getLAI())) 9734 return CM_ScalarEpilogueNotNeededUsePredicate; 9735 9736 return CM_ScalarEpilogueAllowed; 9737 } 9738 9739 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9740 // If Values have been set for this Def return the one relevant for \p Part. 9741 if (hasVectorValue(Def, Part)) 9742 return Data.PerPartOutput[Def][Part]; 9743 9744 if (!hasScalarValue(Def, {Part, 0})) { 9745 Value *IRV = Def->getLiveInIRValue(); 9746 Value *B = ILV->getBroadcastInstrs(IRV); 9747 set(Def, B, Part); 9748 return B; 9749 } 9750 9751 Value *ScalarValue = get(Def, {Part, 0}); 9752 // If we aren't vectorizing, we can just copy the scalar map values over 9753 // to the vector map. 9754 if (VF.isScalar()) { 9755 set(Def, ScalarValue, Part); 9756 return ScalarValue; 9757 } 9758 9759 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9760 bool IsUniform = RepR && RepR->isUniform(); 9761 9762 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9763 // Check if there is a scalar value for the selected lane. 9764 if (!hasScalarValue(Def, {Part, LastLane})) { 9765 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 9766 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 9767 "unexpected recipe found to be invariant"); 9768 IsUniform = true; 9769 LastLane = 0; 9770 } 9771 9772 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 9773 // Set the insert point after the last scalarized instruction or after the 9774 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 9775 // will directly follow the scalar definitions. 9776 auto OldIP = Builder.saveIP(); 9777 auto NewIP = 9778 isa<PHINode>(LastInst) 9779 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 9780 : std::next(BasicBlock::iterator(LastInst)); 9781 Builder.SetInsertPoint(&*NewIP); 9782 9783 // However, if we are vectorizing, we need to construct the vector values. 9784 // If the value is known to be uniform after vectorization, we can just 9785 // broadcast the scalar value corresponding to lane zero for each unroll 9786 // iteration. Otherwise, we construct the vector values using 9787 // insertelement instructions. Since the resulting vectors are stored in 9788 // State, we will only generate the insertelements once. 9789 Value *VectorValue = nullptr; 9790 if (IsUniform) { 9791 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 9792 set(Def, VectorValue, Part); 9793 } else { 9794 // Initialize packing with insertelements to start from undef. 9795 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 9796 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 9797 set(Def, Undef, Part); 9798 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 9799 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 9800 VectorValue = get(Def, Part); 9801 } 9802 Builder.restoreIP(OldIP); 9803 return VectorValue; 9804 } 9805 9806 // Process the loop in the VPlan-native vectorization path. This path builds 9807 // VPlan upfront in the vectorization pipeline, which allows to apply 9808 // VPlan-to-VPlan transformations from the very beginning without modifying the 9809 // input LLVM IR. 9810 static bool processLoopInVPlanNativePath( 9811 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 9812 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 9813 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 9814 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 9815 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 9816 LoopVectorizationRequirements &Requirements) { 9817 9818 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 9819 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 9820 return false; 9821 } 9822 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 9823 Function *F = L->getHeader()->getParent(); 9824 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 9825 9826 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9827 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 9828 9829 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 9830 &Hints, IAI); 9831 // Use the planner for outer loop vectorization. 9832 // TODO: CM is not used at this point inside the planner. Turn CM into an 9833 // optional argument if we don't need it in the future. 9834 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 9835 Requirements, ORE); 9836 9837 // Get user vectorization factor. 9838 ElementCount UserVF = Hints.getWidth(); 9839 9840 // Plan how to best vectorize, return the best VF and its cost. 9841 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 9842 9843 // If we are stress testing VPlan builds, do not attempt to generate vector 9844 // code. Masked vector code generation support will follow soon. 9845 // Also, do not attempt to vectorize if no vector code will be produced. 9846 if (VPlanBuildStressTest || EnableVPlanPredication || 9847 VectorizationFactor::Disabled() == VF) 9848 return false; 9849 9850 LVP.setBestPlan(VF.Width, 1); 9851 9852 { 9853 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 9854 F->getParent()->getDataLayout()); 9855 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 9856 &CM, BFI, PSI, Checks); 9857 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 9858 << L->getHeader()->getParent()->getName() << "\"\n"); 9859 LVP.executePlan(LB, DT); 9860 } 9861 9862 // Mark the loop as already vectorized to avoid vectorizing again. 9863 Hints.setAlreadyVectorized(); 9864 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9865 return true; 9866 } 9867 9868 // Emit a remark if there are stores to floats that required a floating point 9869 // extension. If the vectorized loop was generated with floating point there 9870 // will be a performance penalty from the conversion overhead and the change in 9871 // the vector width. 9872 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 9873 SmallVector<Instruction *, 4> Worklist; 9874 for (BasicBlock *BB : L->getBlocks()) { 9875 for (Instruction &Inst : *BB) { 9876 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 9877 if (S->getValueOperand()->getType()->isFloatTy()) 9878 Worklist.push_back(S); 9879 } 9880 } 9881 } 9882 9883 // Traverse the floating point stores upwards searching, for floating point 9884 // conversions. 9885 SmallPtrSet<const Instruction *, 4> Visited; 9886 SmallPtrSet<const Instruction *, 4> EmittedRemark; 9887 while (!Worklist.empty()) { 9888 auto *I = Worklist.pop_back_val(); 9889 if (!L->contains(I)) 9890 continue; 9891 if (!Visited.insert(I).second) 9892 continue; 9893 9894 // Emit a remark if the floating point store required a floating 9895 // point conversion. 9896 // TODO: More work could be done to identify the root cause such as a 9897 // constant or a function return type and point the user to it. 9898 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 9899 ORE->emit([&]() { 9900 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 9901 I->getDebugLoc(), L->getHeader()) 9902 << "floating point conversion changes vector width. " 9903 << "Mixed floating point precision requires an up/down " 9904 << "cast that will negatively impact performance."; 9905 }); 9906 9907 for (Use &Op : I->operands()) 9908 if (auto *OpI = dyn_cast<Instruction>(Op)) 9909 Worklist.push_back(OpI); 9910 } 9911 } 9912 9913 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 9914 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 9915 !EnableLoopInterleaving), 9916 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 9917 !EnableLoopVectorization) {} 9918 9919 bool LoopVectorizePass::processLoop(Loop *L) { 9920 assert((EnableVPlanNativePath || L->isInnermost()) && 9921 "VPlan-native path is not enabled. Only process inner loops."); 9922 9923 #ifndef NDEBUG 9924 const std::string DebugLocStr = getDebugLocString(L); 9925 #endif /* NDEBUG */ 9926 9927 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 9928 << L->getHeader()->getParent()->getName() << "\" from " 9929 << DebugLocStr << "\n"); 9930 9931 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 9932 9933 LLVM_DEBUG( 9934 dbgs() << "LV: Loop hints:" 9935 << " force=" 9936 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 9937 ? "disabled" 9938 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 9939 ? "enabled" 9940 : "?")) 9941 << " width=" << Hints.getWidth() 9942 << " interleave=" << Hints.getInterleave() << "\n"); 9943 9944 // Function containing loop 9945 Function *F = L->getHeader()->getParent(); 9946 9947 // Looking at the diagnostic output is the only way to determine if a loop 9948 // was vectorized (other than looking at the IR or machine code), so it 9949 // is important to generate an optimization remark for each loop. Most of 9950 // these messages are generated as OptimizationRemarkAnalysis. Remarks 9951 // generated as OptimizationRemark and OptimizationRemarkMissed are 9952 // less verbose reporting vectorized loops and unvectorized loops that may 9953 // benefit from vectorization, respectively. 9954 9955 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 9956 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 9957 return false; 9958 } 9959 9960 PredicatedScalarEvolution PSE(*SE, *L); 9961 9962 // Check if it is legal to vectorize the loop. 9963 LoopVectorizationRequirements Requirements; 9964 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 9965 &Requirements, &Hints, DB, AC, BFI, PSI); 9966 if (!LVL.canVectorize(EnableVPlanNativePath)) { 9967 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 9968 Hints.emitRemarkWithHints(); 9969 return false; 9970 } 9971 9972 // Check the function attributes and profiles to find out if this function 9973 // should be optimized for size. 9974 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9975 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 9976 9977 // Entrance to the VPlan-native vectorization path. Outer loops are processed 9978 // here. They may require CFG and instruction level transformations before 9979 // even evaluating whether vectorization is profitable. Since we cannot modify 9980 // the incoming IR, we need to build VPlan upfront in the vectorization 9981 // pipeline. 9982 if (!L->isInnermost()) 9983 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 9984 ORE, BFI, PSI, Hints, Requirements); 9985 9986 assert(L->isInnermost() && "Inner loop expected."); 9987 9988 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 9989 // count by optimizing for size, to minimize overheads. 9990 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 9991 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 9992 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 9993 << "This loop is worth vectorizing only if no scalar " 9994 << "iteration overheads are incurred."); 9995 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 9996 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 9997 else { 9998 LLVM_DEBUG(dbgs() << "\n"); 9999 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10000 } 10001 } 10002 10003 // Check the function attributes to see if implicit floats are allowed. 10004 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10005 // an integer loop and the vector instructions selected are purely integer 10006 // vector instructions? 10007 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10008 reportVectorizationFailure( 10009 "Can't vectorize when the NoImplicitFloat attribute is used", 10010 "loop not vectorized due to NoImplicitFloat attribute", 10011 "NoImplicitFloat", ORE, L); 10012 Hints.emitRemarkWithHints(); 10013 return false; 10014 } 10015 10016 // Check if the target supports potentially unsafe FP vectorization. 10017 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10018 // for the target we're vectorizing for, to make sure none of the 10019 // additional fp-math flags can help. 10020 if (Hints.isPotentiallyUnsafe() && 10021 TTI->isFPVectorizationPotentiallyUnsafe()) { 10022 reportVectorizationFailure( 10023 "Potentially unsafe FP op prevents vectorization", 10024 "loop not vectorized due to unsafe FP support.", 10025 "UnsafeFP", ORE, L); 10026 Hints.emitRemarkWithHints(); 10027 return false; 10028 } 10029 10030 if (!LVL.canVectorizeFPMath(EnableStrictReductions)) { 10031 ORE->emit([&]() { 10032 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10033 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10034 ExactFPMathInst->getDebugLoc(), 10035 ExactFPMathInst->getParent()) 10036 << "loop not vectorized: cannot prove it is safe to reorder " 10037 "floating-point operations"; 10038 }); 10039 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10040 "reorder floating-point operations\n"); 10041 Hints.emitRemarkWithHints(); 10042 return false; 10043 } 10044 10045 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10046 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10047 10048 // If an override option has been passed in for interleaved accesses, use it. 10049 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10050 UseInterleaved = EnableInterleavedMemAccesses; 10051 10052 // Analyze interleaved memory accesses. 10053 if (UseInterleaved) { 10054 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10055 } 10056 10057 // Use the cost model. 10058 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10059 F, &Hints, IAI); 10060 CM.collectValuesToIgnore(); 10061 10062 // Use the planner for vectorization. 10063 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10064 Requirements, ORE); 10065 10066 // Get user vectorization factor and interleave count. 10067 ElementCount UserVF = Hints.getWidth(); 10068 unsigned UserIC = Hints.getInterleave(); 10069 10070 // Plan how to best vectorize, return the best VF and its cost. 10071 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10072 10073 VectorizationFactor VF = VectorizationFactor::Disabled(); 10074 unsigned IC = 1; 10075 10076 if (MaybeVF) { 10077 VF = *MaybeVF; 10078 // Select the interleave count. 10079 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10080 } 10081 10082 // Identify the diagnostic messages that should be produced. 10083 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10084 bool VectorizeLoop = true, InterleaveLoop = true; 10085 if (VF.Width.isScalar()) { 10086 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10087 VecDiagMsg = std::make_pair( 10088 "VectorizationNotBeneficial", 10089 "the cost-model indicates that vectorization is not beneficial"); 10090 VectorizeLoop = false; 10091 } 10092 10093 if (!MaybeVF && UserIC > 1) { 10094 // Tell the user interleaving was avoided up-front, despite being explicitly 10095 // requested. 10096 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10097 "interleaving should be avoided up front\n"); 10098 IntDiagMsg = std::make_pair( 10099 "InterleavingAvoided", 10100 "Ignoring UserIC, because interleaving was avoided up front"); 10101 InterleaveLoop = false; 10102 } else if (IC == 1 && UserIC <= 1) { 10103 // Tell the user interleaving is not beneficial. 10104 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10105 IntDiagMsg = std::make_pair( 10106 "InterleavingNotBeneficial", 10107 "the cost-model indicates that interleaving is not beneficial"); 10108 InterleaveLoop = false; 10109 if (UserIC == 1) { 10110 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10111 IntDiagMsg.second += 10112 " and is explicitly disabled or interleave count is set to 1"; 10113 } 10114 } else if (IC > 1 && UserIC == 1) { 10115 // Tell the user interleaving is beneficial, but it explicitly disabled. 10116 LLVM_DEBUG( 10117 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10118 IntDiagMsg = std::make_pair( 10119 "InterleavingBeneficialButDisabled", 10120 "the cost-model indicates that interleaving is beneficial " 10121 "but is explicitly disabled or interleave count is set to 1"); 10122 InterleaveLoop = false; 10123 } 10124 10125 // Override IC if user provided an interleave count. 10126 IC = UserIC > 0 ? UserIC : IC; 10127 10128 // Emit diagnostic messages, if any. 10129 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10130 if (!VectorizeLoop && !InterleaveLoop) { 10131 // Do not vectorize or interleaving the loop. 10132 ORE->emit([&]() { 10133 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10134 L->getStartLoc(), L->getHeader()) 10135 << VecDiagMsg.second; 10136 }); 10137 ORE->emit([&]() { 10138 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10139 L->getStartLoc(), L->getHeader()) 10140 << IntDiagMsg.second; 10141 }); 10142 return false; 10143 } else if (!VectorizeLoop && InterleaveLoop) { 10144 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10145 ORE->emit([&]() { 10146 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10147 L->getStartLoc(), L->getHeader()) 10148 << VecDiagMsg.second; 10149 }); 10150 } else if (VectorizeLoop && !InterleaveLoop) { 10151 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10152 << ") in " << DebugLocStr << '\n'); 10153 ORE->emit([&]() { 10154 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10155 L->getStartLoc(), L->getHeader()) 10156 << IntDiagMsg.second; 10157 }); 10158 } else if (VectorizeLoop && InterleaveLoop) { 10159 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10160 << ") in " << DebugLocStr << '\n'); 10161 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10162 } 10163 10164 bool DisableRuntimeUnroll = false; 10165 MDNode *OrigLoopID = L->getLoopID(); 10166 { 10167 // Optimistically generate runtime checks. Drop them if they turn out to not 10168 // be profitable. Limit the scope of Checks, so the cleanup happens 10169 // immediately after vector codegeneration is done. 10170 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10171 F->getParent()->getDataLayout()); 10172 if (!VF.Width.isScalar() || IC > 1) 10173 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10174 LVP.setBestPlan(VF.Width, IC); 10175 10176 using namespace ore; 10177 if (!VectorizeLoop) { 10178 assert(IC > 1 && "interleave count should not be 1 or 0"); 10179 // If we decided that it is not legal to vectorize the loop, then 10180 // interleave it. 10181 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10182 &CM, BFI, PSI, Checks); 10183 LVP.executePlan(Unroller, DT); 10184 10185 ORE->emit([&]() { 10186 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10187 L->getHeader()) 10188 << "interleaved loop (interleaved count: " 10189 << NV("InterleaveCount", IC) << ")"; 10190 }); 10191 } else { 10192 // If we decided that it is *legal* to vectorize the loop, then do it. 10193 10194 // Consider vectorizing the epilogue too if it's profitable. 10195 VectorizationFactor EpilogueVF = 10196 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10197 if (EpilogueVF.Width.isVector()) { 10198 10199 // The first pass vectorizes the main loop and creates a scalar epilogue 10200 // to be vectorized by executing the plan (potentially with a different 10201 // factor) again shortly afterwards. 10202 EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC, 10203 EpilogueVF.Width.getKnownMinValue(), 10204 1); 10205 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10206 EPI, &LVL, &CM, BFI, PSI, Checks); 10207 10208 LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF); 10209 LVP.executePlan(MainILV, DT); 10210 ++LoopsVectorized; 10211 10212 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10213 formLCSSARecursively(*L, *DT, LI, SE); 10214 10215 // Second pass vectorizes the epilogue and adjusts the control flow 10216 // edges from the first pass. 10217 LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF); 10218 EPI.MainLoopVF = EPI.EpilogueVF; 10219 EPI.MainLoopUF = EPI.EpilogueUF; 10220 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10221 ORE, EPI, &LVL, &CM, BFI, PSI, 10222 Checks); 10223 LVP.executePlan(EpilogILV, DT); 10224 ++LoopsEpilogueVectorized; 10225 10226 if (!MainILV.areSafetyChecksAdded()) 10227 DisableRuntimeUnroll = true; 10228 } else { 10229 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10230 &LVL, &CM, BFI, PSI, Checks); 10231 LVP.executePlan(LB, DT); 10232 ++LoopsVectorized; 10233 10234 // Add metadata to disable runtime unrolling a scalar loop when there 10235 // are no runtime checks about strides and memory. A scalar loop that is 10236 // rarely used is not worth unrolling. 10237 if (!LB.areSafetyChecksAdded()) 10238 DisableRuntimeUnroll = true; 10239 } 10240 // Report the vectorization decision. 10241 ORE->emit([&]() { 10242 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10243 L->getHeader()) 10244 << "vectorized loop (vectorization width: " 10245 << NV("VectorizationFactor", VF.Width) 10246 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10247 }); 10248 } 10249 10250 if (ORE->allowExtraAnalysis(LV_NAME)) 10251 checkMixedPrecision(L, ORE); 10252 } 10253 10254 Optional<MDNode *> RemainderLoopID = 10255 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10256 LLVMLoopVectorizeFollowupEpilogue}); 10257 if (RemainderLoopID.hasValue()) { 10258 L->setLoopID(RemainderLoopID.getValue()); 10259 } else { 10260 if (DisableRuntimeUnroll) 10261 AddRuntimeUnrollDisableMetaData(L); 10262 10263 // Mark the loop as already vectorized to avoid vectorizing again. 10264 Hints.setAlreadyVectorized(); 10265 } 10266 10267 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10268 return true; 10269 } 10270 10271 LoopVectorizeResult LoopVectorizePass::runImpl( 10272 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10273 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10274 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10275 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10276 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10277 SE = &SE_; 10278 LI = &LI_; 10279 TTI = &TTI_; 10280 DT = &DT_; 10281 BFI = &BFI_; 10282 TLI = TLI_; 10283 AA = &AA_; 10284 AC = &AC_; 10285 GetLAA = &GetLAA_; 10286 DB = &DB_; 10287 ORE = &ORE_; 10288 PSI = PSI_; 10289 10290 // Don't attempt if 10291 // 1. the target claims to have no vector registers, and 10292 // 2. interleaving won't help ILP. 10293 // 10294 // The second condition is necessary because, even if the target has no 10295 // vector registers, loop vectorization may still enable scalar 10296 // interleaving. 10297 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10298 TTI->getMaxInterleaveFactor(1) < 2) 10299 return LoopVectorizeResult(false, false); 10300 10301 bool Changed = false, CFGChanged = false; 10302 10303 // The vectorizer requires loops to be in simplified form. 10304 // Since simplification may add new inner loops, it has to run before the 10305 // legality and profitability checks. This means running the loop vectorizer 10306 // will simplify all loops, regardless of whether anything end up being 10307 // vectorized. 10308 for (auto &L : *LI) 10309 Changed |= CFGChanged |= 10310 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10311 10312 // Build up a worklist of inner-loops to vectorize. This is necessary as 10313 // the act of vectorizing or partially unrolling a loop creates new loops 10314 // and can invalidate iterators across the loops. 10315 SmallVector<Loop *, 8> Worklist; 10316 10317 for (Loop *L : *LI) 10318 collectSupportedLoops(*L, LI, ORE, Worklist); 10319 10320 LoopsAnalyzed += Worklist.size(); 10321 10322 // Now walk the identified inner loops. 10323 while (!Worklist.empty()) { 10324 Loop *L = Worklist.pop_back_val(); 10325 10326 // For the inner loops we actually process, form LCSSA to simplify the 10327 // transform. 10328 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10329 10330 Changed |= CFGChanged |= processLoop(L); 10331 } 10332 10333 // Process each loop nest in the function. 10334 return LoopVectorizeResult(Changed, CFGChanged); 10335 } 10336 10337 PreservedAnalyses LoopVectorizePass::run(Function &F, 10338 FunctionAnalysisManager &AM) { 10339 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10340 auto &LI = AM.getResult<LoopAnalysis>(F); 10341 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10342 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10343 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10344 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10345 auto &AA = AM.getResult<AAManager>(F); 10346 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10347 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10348 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10349 MemorySSA *MSSA = EnableMSSALoopDependency 10350 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 10351 : nullptr; 10352 10353 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10354 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10355 [&](Loop &L) -> const LoopAccessInfo & { 10356 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10357 TLI, TTI, nullptr, MSSA}; 10358 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10359 }; 10360 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10361 ProfileSummaryInfo *PSI = 10362 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10363 LoopVectorizeResult Result = 10364 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10365 if (!Result.MadeAnyChange) 10366 return PreservedAnalyses::all(); 10367 PreservedAnalyses PA; 10368 10369 // We currently do not preserve loopinfo/dominator analyses with outer loop 10370 // vectorization. Until this is addressed, mark these analyses as preserved 10371 // only for non-VPlan-native path. 10372 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10373 if (!EnableVPlanNativePath) { 10374 PA.preserve<LoopAnalysis>(); 10375 PA.preserve<DominatorTreeAnalysis>(); 10376 } 10377 if (!Result.MadeCFGChange) 10378 PA.preserveSet<CFGAnalyses>(); 10379 return PA; 10380 } 10381