1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <cstdlib> 147 #include <functional> 148 #include <iterator> 149 #include <limits> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 #ifndef NDEBUG 161 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 162 #endif 163 164 /// @{ 165 /// Metadata attribute names 166 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 167 const char LLVMLoopVectorizeFollowupVectorized[] = 168 "llvm.loop.vectorize.followup_vectorized"; 169 const char LLVMLoopVectorizeFollowupEpilogue[] = 170 "llvm.loop.vectorize.followup_epilogue"; 171 /// @} 172 173 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 174 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 175 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 176 177 static cl::opt<bool> EnableEpilogueVectorization( 178 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 179 cl::desc("Enable vectorization of epilogue loops.")); 180 181 static cl::opt<unsigned> EpilogueVectorizationForceVF( 182 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 183 cl::desc("When epilogue vectorization is enabled, and a value greater than " 184 "1 is specified, forces the given VF for all applicable epilogue " 185 "loops.")); 186 187 static cl::opt<unsigned> EpilogueVectorizationMinVF( 188 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 189 cl::desc("Only loops with vectorization factor equal to or larger than " 190 "the specified value are considered for epilogue vectorization.")); 191 192 /// Loops with a known constant trip count below this number are vectorized only 193 /// if no scalar iteration overheads are incurred. 194 static cl::opt<unsigned> TinyTripCountVectorThreshold( 195 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 196 cl::desc("Loops with a constant trip count that is smaller than this " 197 "value are vectorized only if no scalar iteration overheads " 198 "are incurred.")); 199 200 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 201 // that predication is preferred, and this lists all options. I.e., the 202 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 203 // and predicate the instructions accordingly. If tail-folding fails, there are 204 // different fallback strategies depending on these values: 205 namespace PreferPredicateTy { 206 enum Option { 207 ScalarEpilogue = 0, 208 PredicateElseScalarEpilogue, 209 PredicateOrDontVectorize 210 }; 211 } // namespace PreferPredicateTy 212 213 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 214 "prefer-predicate-over-epilogue", 215 cl::init(PreferPredicateTy::ScalarEpilogue), 216 cl::Hidden, 217 cl::desc("Tail-folding and predication preferences over creating a scalar " 218 "epilogue loop."), 219 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 220 "scalar-epilogue", 221 "Don't tail-predicate loops, create scalar epilogue"), 222 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 223 "predicate-else-scalar-epilogue", 224 "prefer tail-folding, create scalar epilogue if tail " 225 "folding fails."), 226 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 227 "predicate-dont-vectorize", 228 "prefers tail-folding, don't attempt vectorization if " 229 "tail-folding fails."))); 230 231 static cl::opt<bool> MaximizeBandwidth( 232 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 233 cl::desc("Maximize bandwidth when selecting vectorization factor which " 234 "will be determined by the smallest type in loop.")); 235 236 static cl::opt<bool> EnableInterleavedMemAccesses( 237 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 238 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 239 240 /// An interleave-group may need masking if it resides in a block that needs 241 /// predication, or in order to mask away gaps. 242 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 243 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 244 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 245 246 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 247 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 248 cl::desc("We don't interleave loops with a estimated constant trip count " 249 "below this number")); 250 251 static cl::opt<unsigned> ForceTargetNumScalarRegs( 252 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 253 cl::desc("A flag that overrides the target's number of scalar registers.")); 254 255 static cl::opt<unsigned> ForceTargetNumVectorRegs( 256 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 257 cl::desc("A flag that overrides the target's number of vector registers.")); 258 259 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 260 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 261 cl::desc("A flag that overrides the target's max interleave factor for " 262 "scalar loops.")); 263 264 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 265 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 266 cl::desc("A flag that overrides the target's max interleave factor for " 267 "vectorized loops.")); 268 269 static cl::opt<unsigned> ForceTargetInstructionCost( 270 "force-target-instruction-cost", cl::init(0), cl::Hidden, 271 cl::desc("A flag that overrides the target's expected cost for " 272 "an instruction to a single constant value. Mostly " 273 "useful for getting consistent testing.")); 274 275 static cl::opt<unsigned> SmallLoopCost( 276 "small-loop-cost", cl::init(20), cl::Hidden, 277 cl::desc( 278 "The cost of a loop that is considered 'small' by the interleaver.")); 279 280 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 281 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 282 cl::desc("Enable the use of the block frequency analysis to access PGO " 283 "heuristics minimizing code growth in cold regions and being more " 284 "aggressive in hot regions.")); 285 286 // Runtime interleave loops for load/store throughput. 287 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 288 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 289 cl::desc( 290 "Enable runtime interleaving until load/store ports are saturated")); 291 292 /// Interleave small loops with scalar reductions. 293 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 294 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 295 cl::desc("Enable interleaving for loops with small iteration counts that " 296 "contain scalar reductions to expose ILP.")); 297 298 /// The number of stores in a loop that are allowed to need predication. 299 static cl::opt<unsigned> NumberOfStoresToPredicate( 300 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 301 cl::desc("Max number of stores to be predicated behind an if.")); 302 303 static cl::opt<bool> EnableIndVarRegisterHeur( 304 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 305 cl::desc("Count the induction variable only once when interleaving")); 306 307 static cl::opt<bool> EnableCondStoresVectorization( 308 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 309 cl::desc("Enable if predication of stores during vectorization.")); 310 311 static cl::opt<unsigned> MaxNestedScalarReductionIC( 312 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 313 cl::desc("The maximum interleave count to use when interleaving a scalar " 314 "reduction in a nested loop.")); 315 316 static cl::opt<bool> 317 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 318 cl::Hidden, 319 cl::desc("Prefer in-loop vector reductions, " 320 "overriding the targets preference.")); 321 322 static cl::opt<bool> PreferPredicatedReductionSelect( 323 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 324 cl::desc( 325 "Prefer predicating a reduction operation over an after loop select.")); 326 327 cl::opt<bool> EnableVPlanNativePath( 328 "enable-vplan-native-path", cl::init(false), cl::Hidden, 329 cl::desc("Enable VPlan-native vectorization path with " 330 "support for outer loop vectorization.")); 331 332 // FIXME: Remove this switch once we have divergence analysis. Currently we 333 // assume divergent non-backedge branches when this switch is true. 334 cl::opt<bool> EnableVPlanPredication( 335 "enable-vplan-predication", cl::init(false), cl::Hidden, 336 cl::desc("Enable VPlan-native vectorization path predicator with " 337 "support for outer loop vectorization.")); 338 339 // This flag enables the stress testing of the VPlan H-CFG construction in the 340 // VPlan-native vectorization path. It must be used in conjuction with 341 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 342 // verification of the H-CFGs built. 343 static cl::opt<bool> VPlanBuildStressTest( 344 "vplan-build-stress-test", cl::init(false), cl::Hidden, 345 cl::desc( 346 "Build VPlan for every supported loop nest in the function and bail " 347 "out right after the build (stress test the VPlan H-CFG construction " 348 "in the VPlan-native vectorization path).")); 349 350 cl::opt<bool> llvm::EnableLoopInterleaving( 351 "interleave-loops", cl::init(true), cl::Hidden, 352 cl::desc("Enable loop interleaving in Loop vectorization passes")); 353 cl::opt<bool> llvm::EnableLoopVectorization( 354 "vectorize-loops", cl::init(true), cl::Hidden, 355 cl::desc("Run the Loop vectorization passes")); 356 357 /// A helper function that returns the type of loaded or stored value. 358 static Type *getMemInstValueType(Value *I) { 359 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 360 "Expected Load or Store instruction"); 361 if (auto *LI = dyn_cast<LoadInst>(I)) 362 return LI->getType(); 363 return cast<StoreInst>(I)->getValueOperand()->getType(); 364 } 365 366 /// A helper function that returns true if the given type is irregular. The 367 /// type is irregular if its allocated size doesn't equal the store size of an 368 /// element of the corresponding vector type at the given vectorization factor. 369 static bool hasIrregularType(Type *Ty, const DataLayout &DL, ElementCount VF) { 370 // Determine if an array of VF elements of type Ty is "bitcast compatible" 371 // with a <VF x Ty> vector. 372 if (VF.isVector()) { 373 auto *VectorTy = VectorType::get(Ty, VF); 374 return TypeSize::get(VF.getKnownMinValue() * 375 DL.getTypeAllocSize(Ty).getFixedValue(), 376 VF.isScalable()) != DL.getTypeStoreSize(VectorTy); 377 } 378 379 // If the vectorization factor is one, we just check if an array of type Ty 380 // requires padding between elements. 381 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 382 } 383 384 /// A helper function that returns the reciprocal of the block probability of 385 /// predicated blocks. If we return X, we are assuming the predicated block 386 /// will execute once for every X iterations of the loop header. 387 /// 388 /// TODO: We should use actual block probability here, if available. Currently, 389 /// we always assume predicated blocks have a 50% chance of executing. 390 static unsigned getReciprocalPredBlockProb() { return 2; } 391 392 /// A helper function that adds a 'fast' flag to floating-point operations. 393 static Value *addFastMathFlag(Value *V) { 394 if (isa<FPMathOperator>(V)) 395 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 396 return V; 397 } 398 399 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 400 if (isa<FPMathOperator>(V)) 401 cast<Instruction>(V)->setFastMathFlags(FMF); 402 return V; 403 } 404 405 /// A helper function that returns an integer or floating-point constant with 406 /// value C. 407 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 408 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 409 : ConstantFP::get(Ty, C); 410 } 411 412 /// Returns "best known" trip count for the specified loop \p L as defined by 413 /// the following procedure: 414 /// 1) Returns exact trip count if it is known. 415 /// 2) Returns expected trip count according to profile data if any. 416 /// 3) Returns upper bound estimate if it is known. 417 /// 4) Returns None if all of the above failed. 418 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 419 // Check if exact trip count is known. 420 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 421 return ExpectedTC; 422 423 // Check if there is an expected trip count available from profile data. 424 if (LoopVectorizeWithBlockFrequency) 425 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 426 return EstimatedTC; 427 428 // Check if upper bound estimate is known. 429 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 430 return ExpectedTC; 431 432 return None; 433 } 434 435 namespace llvm { 436 437 /// InnerLoopVectorizer vectorizes loops which contain only one basic 438 /// block to a specified vectorization factor (VF). 439 /// This class performs the widening of scalars into vectors, or multiple 440 /// scalars. This class also implements the following features: 441 /// * It inserts an epilogue loop for handling loops that don't have iteration 442 /// counts that are known to be a multiple of the vectorization factor. 443 /// * It handles the code generation for reduction variables. 444 /// * Scalarization (implementation using scalars) of un-vectorizable 445 /// instructions. 446 /// InnerLoopVectorizer does not perform any vectorization-legality 447 /// checks, and relies on the caller to check for the different legality 448 /// aspects. The InnerLoopVectorizer relies on the 449 /// LoopVectorizationLegality class to provide information about the induction 450 /// and reduction variables that were found to a given vectorization factor. 451 class InnerLoopVectorizer { 452 public: 453 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 454 LoopInfo *LI, DominatorTree *DT, 455 const TargetLibraryInfo *TLI, 456 const TargetTransformInfo *TTI, AssumptionCache *AC, 457 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 458 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 459 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 460 ProfileSummaryInfo *PSI) 461 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 462 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 463 Builder(PSE.getSE()->getContext()), 464 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM), 465 BFI(BFI), PSI(PSI) { 466 // Query this against the original loop and save it here because the profile 467 // of the original loop header may change as the transformation happens. 468 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 469 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 470 } 471 472 virtual ~InnerLoopVectorizer() = default; 473 474 /// Create a new empty loop that will contain vectorized instructions later 475 /// on, while the old loop will be used as the scalar remainder. Control flow 476 /// is generated around the vectorized (and scalar epilogue) loops consisting 477 /// of various checks and bypasses. Return the pre-header block of the new 478 /// loop. 479 /// In the case of epilogue vectorization, this function is overriden to 480 /// handle the more complex control flow around the loops. 481 virtual BasicBlock *createVectorizedLoopSkeleton(); 482 483 /// Widen a single instruction within the innermost loop. 484 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 485 VPTransformState &State); 486 487 /// Widen a single call instruction within the innermost loop. 488 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 489 VPTransformState &State); 490 491 /// Widen a single select instruction within the innermost loop. 492 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 493 bool InvariantCond, VPTransformState &State); 494 495 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 496 void fixVectorizedLoop(); 497 498 // Return true if any runtime check is added. 499 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 500 501 /// A type for vectorized values in the new loop. Each value from the 502 /// original loop, when vectorized, is represented by UF vector values in the 503 /// new unrolled loop, where UF is the unroll factor. 504 using VectorParts = SmallVector<Value *, 2>; 505 506 /// Vectorize a single GetElementPtrInst based on information gathered and 507 /// decisions taken during planning. 508 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 509 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 510 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 511 512 /// Vectorize a single PHINode in a block. This method handles the induction 513 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 514 /// arbitrary length vectors. 515 void widenPHIInstruction(Instruction *PN, unsigned UF, ElementCount VF); 516 517 /// A helper function to scalarize a single Instruction in the innermost loop. 518 /// Generates a sequence of scalar instances for each lane between \p MinLane 519 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 520 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 521 /// Instr's operands. 522 void scalarizeInstruction(Instruction *Instr, VPUser &Operands, 523 const VPIteration &Instance, bool IfPredicateInstr, 524 VPTransformState &State); 525 526 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 527 /// is provided, the integer induction variable will first be truncated to 528 /// the corresponding type. 529 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 530 531 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 532 /// vector or scalar value on-demand if one is not yet available. When 533 /// vectorizing a loop, we visit the definition of an instruction before its 534 /// uses. When visiting the definition, we either vectorize or scalarize the 535 /// instruction, creating an entry for it in the corresponding map. (In some 536 /// cases, such as induction variables, we will create both vector and scalar 537 /// entries.) Then, as we encounter uses of the definition, we derive values 538 /// for each scalar or vector use unless such a value is already available. 539 /// For example, if we scalarize a definition and one of its uses is vector, 540 /// we build the required vector on-demand with an insertelement sequence 541 /// when visiting the use. Otherwise, if the use is scalar, we can use the 542 /// existing scalar definition. 543 /// 544 /// Return a value in the new loop corresponding to \p V from the original 545 /// loop at unroll index \p Part. If the value has already been vectorized, 546 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 547 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 548 /// a new vector value on-demand by inserting the scalar values into a vector 549 /// with an insertelement sequence. If the value has been neither vectorized 550 /// nor scalarized, it must be loop invariant, so we simply broadcast the 551 /// value into a vector. 552 Value *getOrCreateVectorValue(Value *V, unsigned Part); 553 554 void setVectorValue(Value *Scalar, unsigned Part, Value *Vector) { 555 VectorLoopValueMap.setVectorValue(Scalar, Part, Vector); 556 } 557 558 /// Return a value in the new loop corresponding to \p V from the original 559 /// loop at unroll and vector indices \p Instance. If the value has been 560 /// vectorized but not scalarized, the necessary extractelement instruction 561 /// will be generated. 562 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 563 564 /// Construct the vector value of a scalarized value \p V one lane at a time. 565 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 566 567 /// Try to vectorize interleaved access group \p Group with the base address 568 /// given in \p Addr, optionally masking the vector operations if \p 569 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 570 /// values in the vectorized loop. 571 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 572 VPTransformState &State, VPValue *Addr, 573 ArrayRef<VPValue *> StoredValues, 574 VPValue *BlockInMask = nullptr); 575 576 /// Vectorize Load and Store instructions with the base address given in \p 577 /// Addr, optionally masking the vector operations if \p BlockInMask is 578 /// non-null. Use \p State to translate given VPValues to IR values in the 579 /// vectorized loop. 580 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 581 VPValue *Def, VPValue *Addr, 582 VPValue *StoredValue, VPValue *BlockInMask); 583 584 /// Set the debug location in the builder using the debug location in 585 /// the instruction. 586 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 587 588 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 589 void fixNonInductionPHIs(void); 590 591 protected: 592 friend class LoopVectorizationPlanner; 593 594 /// A small list of PHINodes. 595 using PhiVector = SmallVector<PHINode *, 4>; 596 597 /// A type for scalarized values in the new loop. Each value from the 598 /// original loop, when scalarized, is represented by UF x VF scalar values 599 /// in the new unrolled loop, where UF is the unroll factor and VF is the 600 /// vectorization factor. 601 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 602 603 /// Set up the values of the IVs correctly when exiting the vector loop. 604 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 605 Value *CountRoundDown, Value *EndValue, 606 BasicBlock *MiddleBlock); 607 608 /// Create a new induction variable inside L. 609 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 610 Value *Step, Instruction *DL); 611 612 /// Handle all cross-iteration phis in the header. 613 void fixCrossIterationPHIs(); 614 615 /// Fix a first-order recurrence. This is the second phase of vectorizing 616 /// this phi node. 617 void fixFirstOrderRecurrence(PHINode *Phi); 618 619 /// Fix a reduction cross-iteration phi. This is the second phase of 620 /// vectorizing this phi node. 621 void fixReduction(PHINode *Phi); 622 623 /// Clear NSW/NUW flags from reduction instructions if necessary. 624 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc); 625 626 /// The Loop exit block may have single value PHI nodes with some 627 /// incoming value. While vectorizing we only handled real values 628 /// that were defined inside the loop and we should have one value for 629 /// each predecessor of its parent basic block. See PR14725. 630 void fixLCSSAPHIs(); 631 632 /// Iteratively sink the scalarized operands of a predicated instruction into 633 /// the block that was created for it. 634 void sinkScalarOperands(Instruction *PredInst); 635 636 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 637 /// represented as. 638 void truncateToMinimalBitwidths(); 639 640 /// Create a broadcast instruction. This method generates a broadcast 641 /// instruction (shuffle) for loop invariant values and for the induction 642 /// value. If this is the induction variable then we extend it to N, N+1, ... 643 /// this is needed because each iteration in the loop corresponds to a SIMD 644 /// element. 645 virtual Value *getBroadcastInstrs(Value *V); 646 647 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 648 /// to each vector element of Val. The sequence starts at StartIndex. 649 /// \p Opcode is relevant for FP induction variable. 650 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 651 Instruction::BinaryOps Opcode = 652 Instruction::BinaryOpsEnd); 653 654 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 655 /// variable on which to base the steps, \p Step is the size of the step, and 656 /// \p EntryVal is the value from the original loop that maps to the steps. 657 /// Note that \p EntryVal doesn't have to be an induction variable - it 658 /// can also be a truncate instruction. 659 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 660 const InductionDescriptor &ID); 661 662 /// Create a vector induction phi node based on an existing scalar one. \p 663 /// EntryVal is the value from the original loop that maps to the vector phi 664 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 665 /// truncate instruction, instead of widening the original IV, we widen a 666 /// version of the IV truncated to \p EntryVal's type. 667 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 668 Value *Step, Instruction *EntryVal); 669 670 /// Returns true if an instruction \p I should be scalarized instead of 671 /// vectorized for the chosen vectorization factor. 672 bool shouldScalarizeInstruction(Instruction *I) const; 673 674 /// Returns true if we should generate a scalar version of \p IV. 675 bool needsScalarInduction(Instruction *IV) const; 676 677 /// If there is a cast involved in the induction variable \p ID, which should 678 /// be ignored in the vectorized loop body, this function records the 679 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 680 /// cast. We had already proved that the casted Phi is equal to the uncasted 681 /// Phi in the vectorized loop (under a runtime guard), and therefore 682 /// there is no need to vectorize the cast - the same value can be used in the 683 /// vector loop for both the Phi and the cast. 684 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 685 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 686 /// 687 /// \p EntryVal is the value from the original loop that maps to the vector 688 /// phi node and is used to distinguish what is the IV currently being 689 /// processed - original one (if \p EntryVal is a phi corresponding to the 690 /// original IV) or the "newly-created" one based on the proof mentioned above 691 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 692 /// latter case \p EntryVal is a TruncInst and we must not record anything for 693 /// that IV, but it's error-prone to expect callers of this routine to care 694 /// about that, hence this explicit parameter. 695 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 696 const Instruction *EntryVal, 697 Value *VectorLoopValue, 698 unsigned Part, 699 unsigned Lane = UINT_MAX); 700 701 /// Generate a shuffle sequence that will reverse the vector Vec. 702 virtual Value *reverseVector(Value *Vec); 703 704 /// Returns (and creates if needed) the original loop trip count. 705 Value *getOrCreateTripCount(Loop *NewLoop); 706 707 /// Returns (and creates if needed) the trip count of the widened loop. 708 Value *getOrCreateVectorTripCount(Loop *NewLoop); 709 710 /// Returns a bitcasted value to the requested vector type. 711 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 712 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 713 const DataLayout &DL); 714 715 /// Emit a bypass check to see if the vector trip count is zero, including if 716 /// it overflows. 717 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 718 719 /// Emit a bypass check to see if all of the SCEV assumptions we've 720 /// had to make are correct. 721 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 722 723 /// Emit bypass checks to check any memory assumptions we may have made. 724 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 725 726 /// Compute the transformed value of Index at offset StartValue using step 727 /// StepValue. 728 /// For integer induction, returns StartValue + Index * StepValue. 729 /// For pointer induction, returns StartValue[Index * StepValue]. 730 /// FIXME: The newly created binary instructions should contain nsw/nuw 731 /// flags, which can be found from the original scalar operations. 732 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 733 const DataLayout &DL, 734 const InductionDescriptor &ID) const; 735 736 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 737 /// vector loop preheader, middle block and scalar preheader. Also 738 /// allocate a loop object for the new vector loop and return it. 739 Loop *createVectorLoopSkeleton(StringRef Prefix); 740 741 /// Create new phi nodes for the induction variables to resume iteration count 742 /// in the scalar epilogue, from where the vectorized loop left off (given by 743 /// \p VectorTripCount). 744 /// In cases where the loop skeleton is more complicated (eg. epilogue 745 /// vectorization) and the resume values can come from an additional bypass 746 /// block, the \p AdditionalBypass pair provides information about the bypass 747 /// block and the end value on the edge from bypass to this loop. 748 void createInductionResumeValues( 749 Loop *L, Value *VectorTripCount, 750 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 751 752 /// Complete the loop skeleton by adding debug MDs, creating appropriate 753 /// conditional branches in the middle block, preparing the builder and 754 /// running the verifier. Take in the vector loop \p L as argument, and return 755 /// the preheader of the completed vector loop. 756 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 757 758 /// Add additional metadata to \p To that was not present on \p Orig. 759 /// 760 /// Currently this is used to add the noalias annotations based on the 761 /// inserted memchecks. Use this for instructions that are *cloned* into the 762 /// vector loop. 763 void addNewMetadata(Instruction *To, const Instruction *Orig); 764 765 /// Add metadata from one instruction to another. 766 /// 767 /// This includes both the original MDs from \p From and additional ones (\see 768 /// addNewMetadata). Use this for *newly created* instructions in the vector 769 /// loop. 770 void addMetadata(Instruction *To, Instruction *From); 771 772 /// Similar to the previous function but it adds the metadata to a 773 /// vector of instructions. 774 void addMetadata(ArrayRef<Value *> To, Instruction *From); 775 776 /// Allow subclasses to override and print debug traces before/after vplan 777 /// execution, when trace information is requested. 778 virtual void printDebugTracesAtStart(){}; 779 virtual void printDebugTracesAtEnd(){}; 780 781 /// The original loop. 782 Loop *OrigLoop; 783 784 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 785 /// dynamic knowledge to simplify SCEV expressions and converts them to a 786 /// more usable form. 787 PredicatedScalarEvolution &PSE; 788 789 /// Loop Info. 790 LoopInfo *LI; 791 792 /// Dominator Tree. 793 DominatorTree *DT; 794 795 /// Alias Analysis. 796 AAResults *AA; 797 798 /// Target Library Info. 799 const TargetLibraryInfo *TLI; 800 801 /// Target Transform Info. 802 const TargetTransformInfo *TTI; 803 804 /// Assumption Cache. 805 AssumptionCache *AC; 806 807 /// Interface to emit optimization remarks. 808 OptimizationRemarkEmitter *ORE; 809 810 /// LoopVersioning. It's only set up (non-null) if memchecks were 811 /// used. 812 /// 813 /// This is currently only used to add no-alias metadata based on the 814 /// memchecks. The actually versioning is performed manually. 815 std::unique_ptr<LoopVersioning> LVer; 816 817 /// The vectorization SIMD factor to use. Each vector will have this many 818 /// vector elements. 819 ElementCount VF; 820 821 /// The vectorization unroll factor to use. Each scalar is vectorized to this 822 /// many different vector instructions. 823 unsigned UF; 824 825 /// The builder that we use 826 IRBuilder<> Builder; 827 828 // --- Vectorization state --- 829 830 /// The vector-loop preheader. 831 BasicBlock *LoopVectorPreHeader; 832 833 /// The scalar-loop preheader. 834 BasicBlock *LoopScalarPreHeader; 835 836 /// Middle Block between the vector and the scalar. 837 BasicBlock *LoopMiddleBlock; 838 839 /// The ExitBlock of the scalar loop. 840 BasicBlock *LoopExitBlock; 841 842 /// The vector loop body. 843 BasicBlock *LoopVectorBody; 844 845 /// The scalar loop body. 846 BasicBlock *LoopScalarBody; 847 848 /// A list of all bypass blocks. The first block is the entry of the loop. 849 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 850 851 /// The new Induction variable which was added to the new block. 852 PHINode *Induction = nullptr; 853 854 /// The induction variable of the old basic block. 855 PHINode *OldInduction = nullptr; 856 857 /// Maps values from the original loop to their corresponding values in the 858 /// vectorized loop. A key value can map to either vector values, scalar 859 /// values or both kinds of values, depending on whether the key was 860 /// vectorized and scalarized. 861 VectorizerValueMap VectorLoopValueMap; 862 863 /// Store instructions that were predicated. 864 SmallVector<Instruction *, 4> PredicatedInstructions; 865 866 /// Trip count of the original loop. 867 Value *TripCount = nullptr; 868 869 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 870 Value *VectorTripCount = nullptr; 871 872 /// The legality analysis. 873 LoopVectorizationLegality *Legal; 874 875 /// The profitablity analysis. 876 LoopVectorizationCostModel *Cost; 877 878 // Record whether runtime checks are added. 879 bool AddedSafetyChecks = false; 880 881 // Holds the end values for each induction variable. We save the end values 882 // so we can later fix-up the external users of the induction variables. 883 DenseMap<PHINode *, Value *> IVEndValues; 884 885 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 886 // fixed up at the end of vector code generation. 887 SmallVector<PHINode *, 8> OrigPHIsToFix; 888 889 /// BFI and PSI are used to check for profile guided size optimizations. 890 BlockFrequencyInfo *BFI; 891 ProfileSummaryInfo *PSI; 892 893 // Whether this loop should be optimized for size based on profile guided size 894 // optimizatios. 895 bool OptForSizeBasedOnProfile; 896 }; 897 898 class InnerLoopUnroller : public InnerLoopVectorizer { 899 public: 900 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 901 LoopInfo *LI, DominatorTree *DT, 902 const TargetLibraryInfo *TLI, 903 const TargetTransformInfo *TTI, AssumptionCache *AC, 904 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 905 LoopVectorizationLegality *LVL, 906 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 907 ProfileSummaryInfo *PSI) 908 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 909 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 910 BFI, PSI) {} 911 912 private: 913 Value *getBroadcastInstrs(Value *V) override; 914 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 915 Instruction::BinaryOps Opcode = 916 Instruction::BinaryOpsEnd) override; 917 Value *reverseVector(Value *Vec) override; 918 }; 919 920 /// Encapsulate information regarding vectorization of a loop and its epilogue. 921 /// This information is meant to be updated and used across two stages of 922 /// epilogue vectorization. 923 struct EpilogueLoopVectorizationInfo { 924 ElementCount MainLoopVF = ElementCount::getFixed(0); 925 unsigned MainLoopUF = 0; 926 ElementCount EpilogueVF = ElementCount::getFixed(0); 927 unsigned EpilogueUF = 0; 928 BasicBlock *MainLoopIterationCountCheck = nullptr; 929 BasicBlock *EpilogueIterationCountCheck = nullptr; 930 BasicBlock *SCEVSafetyCheck = nullptr; 931 BasicBlock *MemSafetyCheck = nullptr; 932 Value *TripCount = nullptr; 933 Value *VectorTripCount = nullptr; 934 935 EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF, 936 unsigned EUF) 937 : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF), 938 EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) { 939 assert(EUF == 1 && 940 "A high UF for the epilogue loop is likely not beneficial."); 941 } 942 }; 943 944 /// An extension of the inner loop vectorizer that creates a skeleton for a 945 /// vectorized loop that has its epilogue (residual) also vectorized. 946 /// The idea is to run the vplan on a given loop twice, firstly to setup the 947 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 948 /// from the first step and vectorize the epilogue. This is achieved by 949 /// deriving two concrete strategy classes from this base class and invoking 950 /// them in succession from the loop vectorizer planner. 951 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 952 public: 953 InnerLoopAndEpilogueVectorizer( 954 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 955 DominatorTree *DT, const TargetLibraryInfo *TLI, 956 const TargetTransformInfo *TTI, AssumptionCache *AC, 957 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 958 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 959 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI) 960 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 961 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI), 962 EPI(EPI) {} 963 964 // Override this function to handle the more complex control flow around the 965 // three loops. 966 BasicBlock *createVectorizedLoopSkeleton() final override { 967 return createEpilogueVectorizedLoopSkeleton(); 968 } 969 970 /// The interface for creating a vectorized skeleton using one of two 971 /// different strategies, each corresponding to one execution of the vplan 972 /// as described above. 973 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 974 975 /// Holds and updates state information required to vectorize the main loop 976 /// and its epilogue in two separate passes. This setup helps us avoid 977 /// regenerating and recomputing runtime safety checks. It also helps us to 978 /// shorten the iteration-count-check path length for the cases where the 979 /// iteration count of the loop is so small that the main vector loop is 980 /// completely skipped. 981 EpilogueLoopVectorizationInfo &EPI; 982 }; 983 984 /// A specialized derived class of inner loop vectorizer that performs 985 /// vectorization of *main* loops in the process of vectorizing loops and their 986 /// epilogues. 987 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 988 public: 989 EpilogueVectorizerMainLoop( 990 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 991 DominatorTree *DT, const TargetLibraryInfo *TLI, 992 const TargetTransformInfo *TTI, AssumptionCache *AC, 993 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 994 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 995 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI) 996 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 997 EPI, LVL, CM, BFI, PSI) {} 998 /// Implements the interface for creating a vectorized skeleton using the 999 /// *main loop* strategy (ie the first pass of vplan execution). 1000 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1001 1002 protected: 1003 /// Emits an iteration count bypass check once for the main loop (when \p 1004 /// ForEpilogue is false) and once for the epilogue loop (when \p 1005 /// ForEpilogue is true). 1006 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 1007 bool ForEpilogue); 1008 void printDebugTracesAtStart() override; 1009 void printDebugTracesAtEnd() override; 1010 }; 1011 1012 // A specialized derived class of inner loop vectorizer that performs 1013 // vectorization of *epilogue* loops in the process of vectorizing loops and 1014 // their epilogues. 1015 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 1016 public: 1017 EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 1018 LoopInfo *LI, DominatorTree *DT, 1019 const TargetLibraryInfo *TLI, 1020 const TargetTransformInfo *TTI, AssumptionCache *AC, 1021 OptimizationRemarkEmitter *ORE, 1022 EpilogueLoopVectorizationInfo &EPI, 1023 LoopVectorizationLegality *LVL, 1024 llvm::LoopVectorizationCostModel *CM, 1025 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI) 1026 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1027 EPI, LVL, CM, BFI, PSI) {} 1028 /// Implements the interface for creating a vectorized skeleton using the 1029 /// *epilogue loop* strategy (ie the second pass of vplan execution). 1030 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1031 1032 protected: 1033 /// Emits an iteration count bypass check after the main vector loop has 1034 /// finished to see if there are any iterations left to execute by either 1035 /// the vector epilogue or the scalar epilogue. 1036 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1037 BasicBlock *Bypass, 1038 BasicBlock *Insert); 1039 void printDebugTracesAtStart() override; 1040 void printDebugTracesAtEnd() override; 1041 }; 1042 } // end namespace llvm 1043 1044 /// Look for a meaningful debug location on the instruction or it's 1045 /// operands. 1046 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1047 if (!I) 1048 return I; 1049 1050 DebugLoc Empty; 1051 if (I->getDebugLoc() != Empty) 1052 return I; 1053 1054 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 1055 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 1056 if (OpInst->getDebugLoc() != Empty) 1057 return OpInst; 1058 } 1059 1060 return I; 1061 } 1062 1063 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 1064 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 1065 const DILocation *DIL = Inst->getDebugLoc(); 1066 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1067 !isa<DbgInfoIntrinsic>(Inst)) { 1068 assert(!VF.isScalable() && "scalable vectors not yet supported."); 1069 auto NewDIL = 1070 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1071 if (NewDIL) 1072 B.SetCurrentDebugLocation(NewDIL.getValue()); 1073 else 1074 LLVM_DEBUG(dbgs() 1075 << "Failed to create new discriminator: " 1076 << DIL->getFilename() << " Line: " << DIL->getLine()); 1077 } 1078 else 1079 B.SetCurrentDebugLocation(DIL); 1080 } else 1081 B.SetCurrentDebugLocation(DebugLoc()); 1082 } 1083 1084 /// Write a record \p DebugMsg about vectorization failure to the debug 1085 /// output stream. If \p I is passed, it is an instruction that prevents 1086 /// vectorization. 1087 #ifndef NDEBUG 1088 static void debugVectorizationFailure(const StringRef DebugMsg, 1089 Instruction *I) { 1090 dbgs() << "LV: Not vectorizing: " << DebugMsg; 1091 if (I != nullptr) 1092 dbgs() << " " << *I; 1093 else 1094 dbgs() << '.'; 1095 dbgs() << '\n'; 1096 } 1097 #endif 1098 1099 /// Create an analysis remark that explains why vectorization failed 1100 /// 1101 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1102 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1103 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1104 /// the location of the remark. \return the remark object that can be 1105 /// streamed to. 1106 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1107 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1108 Value *CodeRegion = TheLoop->getHeader(); 1109 DebugLoc DL = TheLoop->getStartLoc(); 1110 1111 if (I) { 1112 CodeRegion = I->getParent(); 1113 // If there is no debug location attached to the instruction, revert back to 1114 // using the loop's. 1115 if (I->getDebugLoc()) 1116 DL = I->getDebugLoc(); 1117 } 1118 1119 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 1120 R << "loop not vectorized: "; 1121 return R; 1122 } 1123 1124 /// Return a value for Step multiplied by VF. 1125 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) { 1126 assert(isa<ConstantInt>(Step) && "Expected an integer step"); 1127 Constant *StepVal = ConstantInt::get( 1128 Step->getType(), 1129 cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue()); 1130 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1131 } 1132 1133 namespace llvm { 1134 1135 void reportVectorizationFailure(const StringRef DebugMsg, 1136 const StringRef OREMsg, const StringRef ORETag, 1137 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 1138 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 1139 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1140 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 1141 ORETag, TheLoop, I) << OREMsg); 1142 } 1143 1144 } // end namespace llvm 1145 1146 #ifndef NDEBUG 1147 /// \return string containing a file name and a line # for the given loop. 1148 static std::string getDebugLocString(const Loop *L) { 1149 std::string Result; 1150 if (L) { 1151 raw_string_ostream OS(Result); 1152 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1153 LoopDbgLoc.print(OS); 1154 else 1155 // Just print the module name. 1156 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1157 OS.flush(); 1158 } 1159 return Result; 1160 } 1161 #endif 1162 1163 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1164 const Instruction *Orig) { 1165 // If the loop was versioned with memchecks, add the corresponding no-alias 1166 // metadata. 1167 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1168 LVer->annotateInstWithNoAlias(To, Orig); 1169 } 1170 1171 void InnerLoopVectorizer::addMetadata(Instruction *To, 1172 Instruction *From) { 1173 propagateMetadata(To, From); 1174 addNewMetadata(To, From); 1175 } 1176 1177 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1178 Instruction *From) { 1179 for (Value *V : To) { 1180 if (Instruction *I = dyn_cast<Instruction>(V)) 1181 addMetadata(I, From); 1182 } 1183 } 1184 1185 namespace llvm { 1186 1187 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1188 // lowered. 1189 enum ScalarEpilogueLowering { 1190 1191 // The default: allowing scalar epilogues. 1192 CM_ScalarEpilogueAllowed, 1193 1194 // Vectorization with OptForSize: don't allow epilogues. 1195 CM_ScalarEpilogueNotAllowedOptSize, 1196 1197 // A special case of vectorisation with OptForSize: loops with a very small 1198 // trip count are considered for vectorization under OptForSize, thereby 1199 // making sure the cost of their loop body is dominant, free of runtime 1200 // guards and scalar iteration overheads. 1201 CM_ScalarEpilogueNotAllowedLowTripLoop, 1202 1203 // Loop hint predicate indicating an epilogue is undesired. 1204 CM_ScalarEpilogueNotNeededUsePredicate 1205 }; 1206 1207 /// LoopVectorizationCostModel - estimates the expected speedups due to 1208 /// vectorization. 1209 /// In many cases vectorization is not profitable. This can happen because of 1210 /// a number of reasons. In this class we mainly attempt to predict the 1211 /// expected speedup/slowdowns due to the supported instruction set. We use the 1212 /// TargetTransformInfo to query the different backends for the cost of 1213 /// different operations. 1214 class LoopVectorizationCostModel { 1215 public: 1216 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1217 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1218 LoopVectorizationLegality *Legal, 1219 const TargetTransformInfo &TTI, 1220 const TargetLibraryInfo *TLI, DemandedBits *DB, 1221 AssumptionCache *AC, 1222 OptimizationRemarkEmitter *ORE, const Function *F, 1223 const LoopVectorizeHints *Hints, 1224 InterleavedAccessInfo &IAI) 1225 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1226 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1227 Hints(Hints), InterleaveInfo(IAI) {} 1228 1229 /// \return An upper bound for the vectorization factor, or None if 1230 /// vectorization and interleaving should be avoided up front. 1231 Optional<ElementCount> computeMaxVF(ElementCount UserVF, unsigned UserIC); 1232 1233 /// \return True if runtime checks are required for vectorization, and false 1234 /// otherwise. 1235 bool runtimeChecksRequired(); 1236 1237 /// \return The most profitable vectorization factor and the cost of that VF. 1238 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1239 /// then this vectorization factor will be selected if vectorization is 1240 /// possible. 1241 VectorizationFactor selectVectorizationFactor(ElementCount MaxVF); 1242 VectorizationFactor 1243 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1244 const LoopVectorizationPlanner &LVP); 1245 1246 /// Setup cost-based decisions for user vectorization factor. 1247 void selectUserVectorizationFactor(ElementCount UserVF) { 1248 collectUniformsAndScalars(UserVF); 1249 collectInstsToScalarize(UserVF); 1250 } 1251 1252 /// \return The size (in bits) of the smallest and widest types in the code 1253 /// that needs to be vectorized. We ignore values that remain scalar such as 1254 /// 64 bit loop indices. 1255 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1256 1257 /// \return The desired interleave count. 1258 /// If interleave count has been specified by metadata it will be returned. 1259 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1260 /// are the selected vectorization factor and the cost of the selected VF. 1261 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1262 1263 /// Memory access instruction may be vectorized in more than one way. 1264 /// Form of instruction after vectorization depends on cost. 1265 /// This function takes cost-based decisions for Load/Store instructions 1266 /// and collects them in a map. This decisions map is used for building 1267 /// the lists of loop-uniform and loop-scalar instructions. 1268 /// The calculated cost is saved with widening decision in order to 1269 /// avoid redundant calculations. 1270 void setCostBasedWideningDecision(ElementCount VF); 1271 1272 /// A struct that represents some properties of the register usage 1273 /// of a loop. 1274 struct RegisterUsage { 1275 /// Holds the number of loop invariant values that are used in the loop. 1276 /// The key is ClassID of target-provided register class. 1277 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1278 /// Holds the maximum number of concurrent live intervals in the loop. 1279 /// The key is ClassID of target-provided register class. 1280 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1281 }; 1282 1283 /// \return Returns information about the register usages of the loop for the 1284 /// given vectorization factors. 1285 SmallVector<RegisterUsage, 8> 1286 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1287 1288 /// Collect values we want to ignore in the cost model. 1289 void collectValuesToIgnore(); 1290 1291 /// Split reductions into those that happen in the loop, and those that happen 1292 /// outside. In loop reductions are collected into InLoopReductionChains. 1293 void collectInLoopReductions(); 1294 1295 /// \returns The smallest bitwidth each instruction can be represented with. 1296 /// The vector equivalents of these instructions should be truncated to this 1297 /// type. 1298 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1299 return MinBWs; 1300 } 1301 1302 /// \returns True if it is more profitable to scalarize instruction \p I for 1303 /// vectorization factor \p VF. 1304 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1305 assert(VF.isVector() && 1306 "Profitable to scalarize relevant only for VF > 1."); 1307 1308 // Cost model is not run in the VPlan-native path - return conservative 1309 // result until this changes. 1310 if (EnableVPlanNativePath) 1311 return false; 1312 1313 auto Scalars = InstsToScalarize.find(VF); 1314 assert(Scalars != InstsToScalarize.end() && 1315 "VF not yet analyzed for scalarization profitability"); 1316 return Scalars->second.find(I) != Scalars->second.end(); 1317 } 1318 1319 /// Returns true if \p I is known to be uniform after vectorization. 1320 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1321 if (VF.isScalar()) 1322 return true; 1323 1324 // Cost model is not run in the VPlan-native path - return conservative 1325 // result until this changes. 1326 if (EnableVPlanNativePath) 1327 return false; 1328 1329 auto UniformsPerVF = Uniforms.find(VF); 1330 assert(UniformsPerVF != Uniforms.end() && 1331 "VF not yet analyzed for uniformity"); 1332 return UniformsPerVF->second.count(I); 1333 } 1334 1335 /// Returns true if \p I is known to be scalar after vectorization. 1336 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1337 if (VF.isScalar()) 1338 return true; 1339 1340 // Cost model is not run in the VPlan-native path - return conservative 1341 // result until this changes. 1342 if (EnableVPlanNativePath) 1343 return false; 1344 1345 auto ScalarsPerVF = Scalars.find(VF); 1346 assert(ScalarsPerVF != Scalars.end() && 1347 "Scalar values are not calculated for VF"); 1348 return ScalarsPerVF->second.count(I); 1349 } 1350 1351 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1352 /// for vectorization factor \p VF. 1353 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1354 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1355 !isProfitableToScalarize(I, VF) && 1356 !isScalarAfterVectorization(I, VF); 1357 } 1358 1359 /// Decision that was taken during cost calculation for memory instruction. 1360 enum InstWidening { 1361 CM_Unknown, 1362 CM_Widen, // For consecutive accesses with stride +1. 1363 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1364 CM_Interleave, 1365 CM_GatherScatter, 1366 CM_Scalarize 1367 }; 1368 1369 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1370 /// instruction \p I and vector width \p VF. 1371 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1372 unsigned Cost) { 1373 assert(VF.isVector() && "Expected VF >=2"); 1374 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1375 } 1376 1377 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1378 /// interleaving group \p Grp and vector width \p VF. 1379 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1380 ElementCount VF, InstWidening W, unsigned Cost) { 1381 assert(VF.isVector() && "Expected VF >=2"); 1382 /// Broadcast this decicion to all instructions inside the group. 1383 /// But the cost will be assigned to one instruction only. 1384 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1385 if (auto *I = Grp->getMember(i)) { 1386 if (Grp->getInsertPos() == I) 1387 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1388 else 1389 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1390 } 1391 } 1392 } 1393 1394 /// Return the cost model decision for the given instruction \p I and vector 1395 /// width \p VF. Return CM_Unknown if this instruction did not pass 1396 /// through the cost modeling. 1397 InstWidening getWideningDecision(Instruction *I, ElementCount VF) { 1398 assert(VF.isVector() && "Expected VF to be a vector VF"); 1399 // Cost model is not run in the VPlan-native path - return conservative 1400 // result until this changes. 1401 if (EnableVPlanNativePath) 1402 return CM_GatherScatter; 1403 1404 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1405 auto Itr = WideningDecisions.find(InstOnVF); 1406 if (Itr == WideningDecisions.end()) 1407 return CM_Unknown; 1408 return Itr->second.first; 1409 } 1410 1411 /// Return the vectorization cost for the given instruction \p I and vector 1412 /// width \p VF. 1413 unsigned getWideningCost(Instruction *I, ElementCount VF) { 1414 assert(VF.isVector() && "Expected VF >=2"); 1415 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1416 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1417 "The cost is not calculated"); 1418 return WideningDecisions[InstOnVF].second; 1419 } 1420 1421 /// Return True if instruction \p I is an optimizable truncate whose operand 1422 /// is an induction variable. Such a truncate will be removed by adding a new 1423 /// induction variable with the destination type. 1424 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1425 // If the instruction is not a truncate, return false. 1426 auto *Trunc = dyn_cast<TruncInst>(I); 1427 if (!Trunc) 1428 return false; 1429 1430 // Get the source and destination types of the truncate. 1431 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1432 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1433 1434 // If the truncate is free for the given types, return false. Replacing a 1435 // free truncate with an induction variable would add an induction variable 1436 // update instruction to each iteration of the loop. We exclude from this 1437 // check the primary induction variable since it will need an update 1438 // instruction regardless. 1439 Value *Op = Trunc->getOperand(0); 1440 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1441 return false; 1442 1443 // If the truncated value is not an induction variable, return false. 1444 return Legal->isInductionPhi(Op); 1445 } 1446 1447 /// Collects the instructions to scalarize for each predicated instruction in 1448 /// the loop. 1449 void collectInstsToScalarize(ElementCount VF); 1450 1451 /// Collect Uniform and Scalar values for the given \p VF. 1452 /// The sets depend on CM decision for Load/Store instructions 1453 /// that may be vectorized as interleave, gather-scatter or scalarized. 1454 void collectUniformsAndScalars(ElementCount VF) { 1455 // Do the analysis once. 1456 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1457 return; 1458 setCostBasedWideningDecision(VF); 1459 collectLoopUniforms(VF); 1460 collectLoopScalars(VF); 1461 } 1462 1463 /// Returns true if the target machine supports masked store operation 1464 /// for the given \p DataType and kind of access to \p Ptr. 1465 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) { 1466 return Legal->isConsecutivePtr(Ptr) && 1467 TTI.isLegalMaskedStore(DataType, Alignment); 1468 } 1469 1470 /// Returns true if the target machine supports masked load operation 1471 /// for the given \p DataType and kind of access to \p Ptr. 1472 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) { 1473 return Legal->isConsecutivePtr(Ptr) && 1474 TTI.isLegalMaskedLoad(DataType, Alignment); 1475 } 1476 1477 /// Returns true if the target machine supports masked scatter operation 1478 /// for the given \p DataType. 1479 bool isLegalMaskedScatter(Type *DataType, Align Alignment) { 1480 return TTI.isLegalMaskedScatter(DataType, Alignment); 1481 } 1482 1483 /// Returns true if the target machine supports masked gather operation 1484 /// for the given \p DataType. 1485 bool isLegalMaskedGather(Type *DataType, Align Alignment) { 1486 return TTI.isLegalMaskedGather(DataType, Alignment); 1487 } 1488 1489 /// Returns true if the target machine can represent \p V as a masked gather 1490 /// or scatter operation. 1491 bool isLegalGatherOrScatter(Value *V) { 1492 bool LI = isa<LoadInst>(V); 1493 bool SI = isa<StoreInst>(V); 1494 if (!LI && !SI) 1495 return false; 1496 auto *Ty = getMemInstValueType(V); 1497 Align Align = getLoadStoreAlignment(V); 1498 return (LI && isLegalMaskedGather(Ty, Align)) || 1499 (SI && isLegalMaskedScatter(Ty, Align)); 1500 } 1501 1502 /// Returns true if \p I is an instruction that will be scalarized with 1503 /// predication. Such instructions include conditional stores and 1504 /// instructions that may divide by zero. 1505 /// If a non-zero VF has been calculated, we check if I will be scalarized 1506 /// predication for that VF. 1507 bool isScalarWithPredication(Instruction *I, 1508 ElementCount VF = ElementCount::getFixed(1)); 1509 1510 // Returns true if \p I is an instruction that will be predicated either 1511 // through scalar predication or masked load/store or masked gather/scatter. 1512 // Superset of instructions that return true for isScalarWithPredication. 1513 bool isPredicatedInst(Instruction *I) { 1514 if (!blockNeedsPredication(I->getParent())) 1515 return false; 1516 // Loads and stores that need some form of masked operation are predicated 1517 // instructions. 1518 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1519 return Legal->isMaskRequired(I); 1520 return isScalarWithPredication(I); 1521 } 1522 1523 /// Returns true if \p I is a memory instruction with consecutive memory 1524 /// access that can be widened. 1525 bool 1526 memoryInstructionCanBeWidened(Instruction *I, 1527 ElementCount VF = ElementCount::getFixed(1)); 1528 1529 /// Returns true if \p I is a memory instruction in an interleaved-group 1530 /// of memory accesses that can be vectorized with wide vector loads/stores 1531 /// and shuffles. 1532 bool 1533 interleavedAccessCanBeWidened(Instruction *I, 1534 ElementCount VF = ElementCount::getFixed(1)); 1535 1536 /// Check if \p Instr belongs to any interleaved access group. 1537 bool isAccessInterleaved(Instruction *Instr) { 1538 return InterleaveInfo.isInterleaved(Instr); 1539 } 1540 1541 /// Get the interleaved access group that \p Instr belongs to. 1542 const InterleaveGroup<Instruction> * 1543 getInterleavedAccessGroup(Instruction *Instr) { 1544 return InterleaveInfo.getInterleaveGroup(Instr); 1545 } 1546 1547 /// Returns true if an interleaved group requires a scalar iteration 1548 /// to handle accesses with gaps, and there is nothing preventing us from 1549 /// creating a scalar epilogue. 1550 bool requiresScalarEpilogue() const { 1551 return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue(); 1552 } 1553 1554 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1555 /// loop hint annotation. 1556 bool isScalarEpilogueAllowed() const { 1557 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1558 } 1559 1560 /// Returns true if all loop blocks should be masked to fold tail loop. 1561 bool foldTailByMasking() const { return FoldTailByMasking; } 1562 1563 bool blockNeedsPredication(BasicBlock *BB) { 1564 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1565 } 1566 1567 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1568 /// nodes to the chain of instructions representing the reductions. Uses a 1569 /// MapVector to ensure deterministic iteration order. 1570 using ReductionChainMap = 1571 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1572 1573 /// Return the chain of instructions representing an inloop reduction. 1574 const ReductionChainMap &getInLoopReductionChains() const { 1575 return InLoopReductionChains; 1576 } 1577 1578 /// Returns true if the Phi is part of an inloop reduction. 1579 bool isInLoopReduction(PHINode *Phi) const { 1580 return InLoopReductionChains.count(Phi); 1581 } 1582 1583 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1584 /// with factor VF. Return the cost of the instruction, including 1585 /// scalarization overhead if it's needed. 1586 unsigned getVectorIntrinsicCost(CallInst *CI, ElementCount VF); 1587 1588 /// Estimate cost of a call instruction CI if it were vectorized with factor 1589 /// VF. Return the cost of the instruction, including scalarization overhead 1590 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1591 /// scalarized - 1592 /// i.e. either vector version isn't available, or is too expensive. 1593 unsigned getVectorCallCost(CallInst *CI, ElementCount VF, 1594 bool &NeedToScalarize); 1595 1596 /// Invalidates decisions already taken by the cost model. 1597 void invalidateCostModelingDecisions() { 1598 WideningDecisions.clear(); 1599 Uniforms.clear(); 1600 Scalars.clear(); 1601 } 1602 1603 private: 1604 unsigned NumPredStores = 0; 1605 1606 /// \return An upper bound for the vectorization factor, a power-of-2 larger 1607 /// than zero. One is returned if vectorization should best be avoided due 1608 /// to cost. 1609 ElementCount computeFeasibleMaxVF(unsigned ConstTripCount, 1610 ElementCount UserVF); 1611 1612 /// The vectorization cost is a combination of the cost itself and a boolean 1613 /// indicating whether any of the contributing operations will actually 1614 /// operate on 1615 /// vector values after type legalization in the backend. If this latter value 1616 /// is 1617 /// false, then all operations will be scalarized (i.e. no vectorization has 1618 /// actually taken place). 1619 using VectorizationCostTy = std::pair<unsigned, bool>; 1620 1621 /// Returns the expected execution cost. The unit of the cost does 1622 /// not matter because we use the 'cost' units to compare different 1623 /// vector widths. The cost that is returned is *not* normalized by 1624 /// the factor width. 1625 VectorizationCostTy expectedCost(ElementCount VF); 1626 1627 /// Returns the execution time cost of an instruction for a given vector 1628 /// width. Vector width of one means scalar. 1629 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1630 1631 /// The cost-computation logic from getInstructionCost which provides 1632 /// the vector type as an output parameter. 1633 unsigned getInstructionCost(Instruction *I, ElementCount VF, Type *&VectorTy); 1634 1635 /// Calculate vectorization cost of memory instruction \p I. 1636 unsigned getMemoryInstructionCost(Instruction *I, ElementCount VF); 1637 1638 /// The cost computation for scalarized memory instruction. 1639 unsigned getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1640 1641 /// The cost computation for interleaving group of memory instructions. 1642 unsigned getInterleaveGroupCost(Instruction *I, ElementCount VF); 1643 1644 /// The cost computation for Gather/Scatter instruction. 1645 unsigned getGatherScatterCost(Instruction *I, ElementCount VF); 1646 1647 /// The cost computation for widening instruction \p I with consecutive 1648 /// memory access. 1649 unsigned getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1650 1651 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1652 /// Load: scalar load + broadcast. 1653 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1654 /// element) 1655 unsigned getUniformMemOpCost(Instruction *I, ElementCount VF); 1656 1657 /// Estimate the overhead of scalarizing an instruction. This is a 1658 /// convenience wrapper for the type-based getScalarizationOverhead API. 1659 unsigned getScalarizationOverhead(Instruction *I, ElementCount VF); 1660 1661 /// Returns whether the instruction is a load or store and will be a emitted 1662 /// as a vector operation. 1663 bool isConsecutiveLoadOrStore(Instruction *I); 1664 1665 /// Returns true if an artificially high cost for emulated masked memrefs 1666 /// should be used. 1667 bool useEmulatedMaskMemRefHack(Instruction *I); 1668 1669 /// Map of scalar integer values to the smallest bitwidth they can be legally 1670 /// represented as. The vector equivalents of these values should be truncated 1671 /// to this type. 1672 MapVector<Instruction *, uint64_t> MinBWs; 1673 1674 /// A type representing the costs for instructions if they were to be 1675 /// scalarized rather than vectorized. The entries are Instruction-Cost 1676 /// pairs. 1677 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1678 1679 /// A set containing all BasicBlocks that are known to present after 1680 /// vectorization as a predicated block. 1681 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1682 1683 /// Records whether it is allowed to have the original scalar loop execute at 1684 /// least once. This may be needed as a fallback loop in case runtime 1685 /// aliasing/dependence checks fail, or to handle the tail/remainder 1686 /// iterations when the trip count is unknown or doesn't divide by the VF, 1687 /// or as a peel-loop to handle gaps in interleave-groups. 1688 /// Under optsize and when the trip count is very small we don't allow any 1689 /// iterations to execute in the scalar loop. 1690 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1691 1692 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1693 bool FoldTailByMasking = false; 1694 1695 /// A map holding scalar costs for different vectorization factors. The 1696 /// presence of a cost for an instruction in the mapping indicates that the 1697 /// instruction will be scalarized when vectorizing with the associated 1698 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1699 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1700 1701 /// Holds the instructions known to be uniform after vectorization. 1702 /// The data is collected per VF. 1703 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1704 1705 /// Holds the instructions known to be scalar after vectorization. 1706 /// The data is collected per VF. 1707 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1708 1709 /// Holds the instructions (address computations) that are forced to be 1710 /// scalarized. 1711 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1712 1713 /// PHINodes of the reductions that should be expanded in-loop along with 1714 /// their associated chains of reduction operations, in program order from top 1715 /// (PHI) to bottom 1716 ReductionChainMap InLoopReductionChains; 1717 1718 /// Returns the expected difference in cost from scalarizing the expression 1719 /// feeding a predicated instruction \p PredInst. The instructions to 1720 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1721 /// non-negative return value implies the expression will be scalarized. 1722 /// Currently, only single-use chains are considered for scalarization. 1723 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1724 ElementCount VF); 1725 1726 /// Collect the instructions that are uniform after vectorization. An 1727 /// instruction is uniform if we represent it with a single scalar value in 1728 /// the vectorized loop corresponding to each vector iteration. Examples of 1729 /// uniform instructions include pointer operands of consecutive or 1730 /// interleaved memory accesses. Note that although uniformity implies an 1731 /// instruction will be scalar, the reverse is not true. In general, a 1732 /// scalarized instruction will be represented by VF scalar values in the 1733 /// vectorized loop, each corresponding to an iteration of the original 1734 /// scalar loop. 1735 void collectLoopUniforms(ElementCount VF); 1736 1737 /// Collect the instructions that are scalar after vectorization. An 1738 /// instruction is scalar if it is known to be uniform or will be scalarized 1739 /// during vectorization. Non-uniform scalarized instructions will be 1740 /// represented by VF values in the vectorized loop, each corresponding to an 1741 /// iteration of the original scalar loop. 1742 void collectLoopScalars(ElementCount VF); 1743 1744 /// Keeps cost model vectorization decision and cost for instructions. 1745 /// Right now it is used for memory instructions only. 1746 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1747 std::pair<InstWidening, unsigned>>; 1748 1749 DecisionList WideningDecisions; 1750 1751 /// Returns true if \p V is expected to be vectorized and it needs to be 1752 /// extracted. 1753 bool needsExtract(Value *V, ElementCount VF) const { 1754 Instruction *I = dyn_cast<Instruction>(V); 1755 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1756 TheLoop->isLoopInvariant(I)) 1757 return false; 1758 1759 // Assume we can vectorize V (and hence we need extraction) if the 1760 // scalars are not computed yet. This can happen, because it is called 1761 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1762 // the scalars are collected. That should be a safe assumption in most 1763 // cases, because we check if the operands have vectorizable types 1764 // beforehand in LoopVectorizationLegality. 1765 return Scalars.find(VF) == Scalars.end() || 1766 !isScalarAfterVectorization(I, VF); 1767 }; 1768 1769 /// Returns a range containing only operands needing to be extracted. 1770 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1771 ElementCount VF) { 1772 return SmallVector<Value *, 4>(make_filter_range( 1773 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1774 } 1775 1776 /// Determines if we have the infrastructure to vectorize loop \p L and its 1777 /// epilogue, assuming the main loop is vectorized by \p VF. 1778 bool isCandidateForEpilogueVectorization(const Loop &L, 1779 const ElementCount VF) const; 1780 1781 /// Returns true if epilogue vectorization is considered profitable, and 1782 /// false otherwise. 1783 /// \p VF is the vectorization factor chosen for the original loop. 1784 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1785 1786 public: 1787 /// The loop that we evaluate. 1788 Loop *TheLoop; 1789 1790 /// Predicated scalar evolution analysis. 1791 PredicatedScalarEvolution &PSE; 1792 1793 /// Loop Info analysis. 1794 LoopInfo *LI; 1795 1796 /// Vectorization legality. 1797 LoopVectorizationLegality *Legal; 1798 1799 /// Vector target information. 1800 const TargetTransformInfo &TTI; 1801 1802 /// Target Library Info. 1803 const TargetLibraryInfo *TLI; 1804 1805 /// Demanded bits analysis. 1806 DemandedBits *DB; 1807 1808 /// Assumption cache. 1809 AssumptionCache *AC; 1810 1811 /// Interface to emit optimization remarks. 1812 OptimizationRemarkEmitter *ORE; 1813 1814 const Function *TheFunction; 1815 1816 /// Loop Vectorize Hint. 1817 const LoopVectorizeHints *Hints; 1818 1819 /// The interleave access information contains groups of interleaved accesses 1820 /// with the same stride and close to each other. 1821 InterleavedAccessInfo &InterleaveInfo; 1822 1823 /// Values to ignore in the cost model. 1824 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1825 1826 /// Values to ignore in the cost model when VF > 1. 1827 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1828 1829 /// Profitable vector factors. 1830 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1831 }; 1832 1833 } // end namespace llvm 1834 1835 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1836 // vectorization. The loop needs to be annotated with #pragma omp simd 1837 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1838 // vector length information is not provided, vectorization is not considered 1839 // explicit. Interleave hints are not allowed either. These limitations will be 1840 // relaxed in the future. 1841 // Please, note that we are currently forced to abuse the pragma 'clang 1842 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1843 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1844 // provides *explicit vectorization hints* (LV can bypass legal checks and 1845 // assume that vectorization is legal). However, both hints are implemented 1846 // using the same metadata (llvm.loop.vectorize, processed by 1847 // LoopVectorizeHints). This will be fixed in the future when the native IR 1848 // representation for pragma 'omp simd' is introduced. 1849 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1850 OptimizationRemarkEmitter *ORE) { 1851 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 1852 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1853 1854 // Only outer loops with an explicit vectorization hint are supported. 1855 // Unannotated outer loops are ignored. 1856 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1857 return false; 1858 1859 Function *Fn = OuterLp->getHeader()->getParent(); 1860 if (!Hints.allowVectorization(Fn, OuterLp, 1861 true /*VectorizeOnlyWhenForced*/)) { 1862 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1863 return false; 1864 } 1865 1866 if (Hints.getInterleave() > 1) { 1867 // TODO: Interleave support is future work. 1868 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1869 "outer loops.\n"); 1870 Hints.emitRemarkWithHints(); 1871 return false; 1872 } 1873 1874 return true; 1875 } 1876 1877 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1878 OptimizationRemarkEmitter *ORE, 1879 SmallVectorImpl<Loop *> &V) { 1880 // Collect inner loops and outer loops without irreducible control flow. For 1881 // now, only collect outer loops that have explicit vectorization hints. If we 1882 // are stress testing the VPlan H-CFG construction, we collect the outermost 1883 // loop of every loop nest. 1884 if (L.isInnermost() || VPlanBuildStressTest || 1885 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1886 LoopBlocksRPO RPOT(&L); 1887 RPOT.perform(LI); 1888 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1889 V.push_back(&L); 1890 // TODO: Collect inner loops inside marked outer loops in case 1891 // vectorization fails for the outer loop. Do not invoke 1892 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1893 // already known to be reducible. We can use an inherited attribute for 1894 // that. 1895 return; 1896 } 1897 } 1898 for (Loop *InnerL : L) 1899 collectSupportedLoops(*InnerL, LI, ORE, V); 1900 } 1901 1902 namespace { 1903 1904 /// The LoopVectorize Pass. 1905 struct LoopVectorize : public FunctionPass { 1906 /// Pass identification, replacement for typeid 1907 static char ID; 1908 1909 LoopVectorizePass Impl; 1910 1911 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1912 bool VectorizeOnlyWhenForced = false) 1913 : FunctionPass(ID), 1914 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 1915 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1916 } 1917 1918 bool runOnFunction(Function &F) override { 1919 if (skipFunction(F)) 1920 return false; 1921 1922 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1923 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1924 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1925 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1926 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1927 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1928 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1929 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1930 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1931 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1932 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1933 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1934 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1935 1936 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1937 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1938 1939 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1940 GetLAA, *ORE, PSI).MadeAnyChange; 1941 } 1942 1943 void getAnalysisUsage(AnalysisUsage &AU) const override { 1944 AU.addRequired<AssumptionCacheTracker>(); 1945 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1946 AU.addRequired<DominatorTreeWrapperPass>(); 1947 AU.addRequired<LoopInfoWrapperPass>(); 1948 AU.addRequired<ScalarEvolutionWrapperPass>(); 1949 AU.addRequired<TargetTransformInfoWrapperPass>(); 1950 AU.addRequired<AAResultsWrapperPass>(); 1951 AU.addRequired<LoopAccessLegacyAnalysis>(); 1952 AU.addRequired<DemandedBitsWrapperPass>(); 1953 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1954 AU.addRequired<InjectTLIMappingsLegacy>(); 1955 1956 // We currently do not preserve loopinfo/dominator analyses with outer loop 1957 // vectorization. Until this is addressed, mark these analyses as preserved 1958 // only for non-VPlan-native path. 1959 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1960 if (!EnableVPlanNativePath) { 1961 AU.addPreserved<LoopInfoWrapperPass>(); 1962 AU.addPreserved<DominatorTreeWrapperPass>(); 1963 } 1964 1965 AU.addPreserved<BasicAAWrapperPass>(); 1966 AU.addPreserved<GlobalsAAWrapperPass>(); 1967 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1968 } 1969 }; 1970 1971 } // end anonymous namespace 1972 1973 //===----------------------------------------------------------------------===// 1974 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1975 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1976 //===----------------------------------------------------------------------===// 1977 1978 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1979 // We need to place the broadcast of invariant variables outside the loop, 1980 // but only if it's proven safe to do so. Else, broadcast will be inside 1981 // vector loop body. 1982 Instruction *Instr = dyn_cast<Instruction>(V); 1983 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1984 (!Instr || 1985 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1986 // Place the code for broadcasting invariant variables in the new preheader. 1987 IRBuilder<>::InsertPointGuard Guard(Builder); 1988 if (SafeToHoist) 1989 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1990 1991 // Broadcast the scalar into all locations in the vector. 1992 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1993 1994 return Shuf; 1995 } 1996 1997 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1998 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1999 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2000 "Expected either an induction phi-node or a truncate of it!"); 2001 Value *Start = II.getStartValue(); 2002 2003 // Construct the initial value of the vector IV in the vector loop preheader 2004 auto CurrIP = Builder.saveIP(); 2005 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2006 if (isa<TruncInst>(EntryVal)) { 2007 assert(Start->getType()->isIntegerTy() && 2008 "Truncation requires an integer type"); 2009 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2010 Step = Builder.CreateTrunc(Step, TruncType); 2011 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2012 } 2013 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2014 Value *SteppedStart = 2015 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2016 2017 // We create vector phi nodes for both integer and floating-point induction 2018 // variables. Here, we determine the kind of arithmetic we will perform. 2019 Instruction::BinaryOps AddOp; 2020 Instruction::BinaryOps MulOp; 2021 if (Step->getType()->isIntegerTy()) { 2022 AddOp = Instruction::Add; 2023 MulOp = Instruction::Mul; 2024 } else { 2025 AddOp = II.getInductionOpcode(); 2026 MulOp = Instruction::FMul; 2027 } 2028 2029 // Multiply the vectorization factor by the step using integer or 2030 // floating-point arithmetic as appropriate. 2031 Value *ConstVF = 2032 getSignedIntOrFpConstant(Step->getType(), VF.getKnownMinValue()); 2033 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2034 2035 // Create a vector splat to use in the induction update. 2036 // 2037 // FIXME: If the step is non-constant, we create the vector splat with 2038 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2039 // handle a constant vector splat. 2040 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2041 Value *SplatVF = isa<Constant>(Mul) 2042 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2043 : Builder.CreateVectorSplat(VF, Mul); 2044 Builder.restoreIP(CurrIP); 2045 2046 // We may need to add the step a number of times, depending on the unroll 2047 // factor. The last of those goes into the PHI. 2048 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2049 &*LoopVectorBody->getFirstInsertionPt()); 2050 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2051 Instruction *LastInduction = VecInd; 2052 for (unsigned Part = 0; Part < UF; ++Part) { 2053 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 2054 2055 if (isa<TruncInst>(EntryVal)) 2056 addMetadata(LastInduction, EntryVal); 2057 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 2058 2059 LastInduction = cast<Instruction>(addFastMathFlag( 2060 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2061 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2062 } 2063 2064 // Move the last step to the end of the latch block. This ensures consistent 2065 // placement of all induction updates. 2066 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2067 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2068 auto *ICmp = cast<Instruction>(Br->getCondition()); 2069 LastInduction->moveBefore(ICmp); 2070 LastInduction->setName("vec.ind.next"); 2071 2072 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2073 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2074 } 2075 2076 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2077 return Cost->isScalarAfterVectorization(I, VF) || 2078 Cost->isProfitableToScalarize(I, VF); 2079 } 2080 2081 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2082 if (shouldScalarizeInstruction(IV)) 2083 return true; 2084 auto isScalarInst = [&](User *U) -> bool { 2085 auto *I = cast<Instruction>(U); 2086 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2087 }; 2088 return llvm::any_of(IV->users(), isScalarInst); 2089 } 2090 2091 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2092 const InductionDescriptor &ID, const Instruction *EntryVal, 2093 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 2094 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2095 "Expected either an induction phi-node or a truncate of it!"); 2096 2097 // This induction variable is not the phi from the original loop but the 2098 // newly-created IV based on the proof that casted Phi is equal to the 2099 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2100 // re-uses the same InductionDescriptor that original IV uses but we don't 2101 // have to do any recording in this case - that is done when original IV is 2102 // processed. 2103 if (isa<TruncInst>(EntryVal)) 2104 return; 2105 2106 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2107 if (Casts.empty()) 2108 return; 2109 // Only the first Cast instruction in the Casts vector is of interest. 2110 // The rest of the Casts (if exist) have no uses outside the 2111 // induction update chain itself. 2112 Instruction *CastInst = *Casts.begin(); 2113 if (Lane < UINT_MAX) 2114 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 2115 else 2116 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 2117 } 2118 2119 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 2120 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2121 "Primary induction variable must have an integer type"); 2122 2123 auto II = Legal->getInductionVars().find(IV); 2124 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2125 2126 auto ID = II->second; 2127 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2128 2129 // The value from the original loop to which we are mapping the new induction 2130 // variable. 2131 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2132 2133 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2134 2135 // Generate code for the induction step. Note that induction steps are 2136 // required to be loop-invariant 2137 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2138 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2139 "Induction step should be loop invariant"); 2140 if (PSE.getSE()->isSCEVable(IV->getType())) { 2141 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2142 return Exp.expandCodeFor(Step, Step->getType(), 2143 LoopVectorPreHeader->getTerminator()); 2144 } 2145 return cast<SCEVUnknown>(Step)->getValue(); 2146 }; 2147 2148 // The scalar value to broadcast. This is derived from the canonical 2149 // induction variable. If a truncation type is given, truncate the canonical 2150 // induction variable and step. Otherwise, derive these values from the 2151 // induction descriptor. 2152 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2153 Value *ScalarIV = Induction; 2154 if (IV != OldInduction) { 2155 ScalarIV = IV->getType()->isIntegerTy() 2156 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2157 : Builder.CreateCast(Instruction::SIToFP, Induction, 2158 IV->getType()); 2159 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2160 ScalarIV->setName("offset.idx"); 2161 } 2162 if (Trunc) { 2163 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2164 assert(Step->getType()->isIntegerTy() && 2165 "Truncation requires an integer step"); 2166 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2167 Step = Builder.CreateTrunc(Step, TruncType); 2168 } 2169 return ScalarIV; 2170 }; 2171 2172 // Create the vector values from the scalar IV, in the absence of creating a 2173 // vector IV. 2174 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2175 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2176 for (unsigned Part = 0; Part < UF; ++Part) { 2177 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2178 Value *EntryPart = 2179 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2180 ID.getInductionOpcode()); 2181 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 2182 if (Trunc) 2183 addMetadata(EntryPart, Trunc); 2184 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 2185 } 2186 }; 2187 2188 // Now do the actual transformations, and start with creating the step value. 2189 Value *Step = CreateStepValue(ID.getStep()); 2190 if (VF.isZero() || VF.isScalar()) { 2191 Value *ScalarIV = CreateScalarIV(Step); 2192 CreateSplatIV(ScalarIV, Step); 2193 return; 2194 } 2195 2196 // Determine if we want a scalar version of the induction variable. This is 2197 // true if the induction variable itself is not widened, or if it has at 2198 // least one user in the loop that is not widened. 2199 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2200 if (!NeedsScalarIV) { 2201 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2202 return; 2203 } 2204 2205 // Try to create a new independent vector induction variable. If we can't 2206 // create the phi node, we will splat the scalar induction variable in each 2207 // loop iteration. 2208 if (!shouldScalarizeInstruction(EntryVal)) { 2209 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2210 Value *ScalarIV = CreateScalarIV(Step); 2211 // Create scalar steps that can be used by instructions we will later 2212 // scalarize. Note that the addition of the scalar steps will not increase 2213 // the number of instructions in the loop in the common case prior to 2214 // InstCombine. We will be trading one vector extract for each scalar step. 2215 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2216 return; 2217 } 2218 2219 // All IV users are scalar instructions, so only emit a scalar IV, not a 2220 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2221 // predicate used by the masked loads/stores. 2222 Value *ScalarIV = CreateScalarIV(Step); 2223 if (!Cost->isScalarEpilogueAllowed()) 2224 CreateSplatIV(ScalarIV, Step); 2225 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2226 } 2227 2228 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2229 Instruction::BinaryOps BinOp) { 2230 // Create and check the types. 2231 auto *ValVTy = cast<FixedVectorType>(Val->getType()); 2232 int VLen = ValVTy->getNumElements(); 2233 2234 Type *STy = Val->getType()->getScalarType(); 2235 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2236 "Induction Step must be an integer or FP"); 2237 assert(Step->getType() == STy && "Step has wrong type"); 2238 2239 SmallVector<Constant *, 8> Indices; 2240 2241 if (STy->isIntegerTy()) { 2242 // Create a vector of consecutive numbers from zero to VF. 2243 for (int i = 0; i < VLen; ++i) 2244 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2245 2246 // Add the consecutive indices to the vector value. 2247 Constant *Cv = ConstantVector::get(Indices); 2248 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2249 Step = Builder.CreateVectorSplat(VLen, Step); 2250 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2251 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2252 // which can be found from the original scalar operations. 2253 Step = Builder.CreateMul(Cv, Step); 2254 return Builder.CreateAdd(Val, Step, "induction"); 2255 } 2256 2257 // Floating point induction. 2258 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2259 "Binary Opcode should be specified for FP induction"); 2260 // Create a vector of consecutive numbers from zero to VF. 2261 for (int i = 0; i < VLen; ++i) 2262 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2263 2264 // Add the consecutive indices to the vector value. 2265 Constant *Cv = ConstantVector::get(Indices); 2266 2267 Step = Builder.CreateVectorSplat(VLen, Step); 2268 2269 // Floating point operations had to be 'fast' to enable the induction. 2270 FastMathFlags Flags; 2271 Flags.setFast(); 2272 2273 Value *MulOp = Builder.CreateFMul(Cv, Step); 2274 if (isa<Instruction>(MulOp)) 2275 // Have to check, MulOp may be a constant 2276 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2277 2278 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2279 if (isa<Instruction>(BOp)) 2280 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2281 return BOp; 2282 } 2283 2284 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2285 Instruction *EntryVal, 2286 const InductionDescriptor &ID) { 2287 // We shouldn't have to build scalar steps if we aren't vectorizing. 2288 assert(VF.isVector() && "VF should be greater than one"); 2289 // Get the value type and ensure it and the step have the same integer type. 2290 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2291 assert(ScalarIVTy == Step->getType() && 2292 "Val and Step should have the same type"); 2293 2294 // We build scalar steps for both integer and floating-point induction 2295 // variables. Here, we determine the kind of arithmetic we will perform. 2296 Instruction::BinaryOps AddOp; 2297 Instruction::BinaryOps MulOp; 2298 if (ScalarIVTy->isIntegerTy()) { 2299 AddOp = Instruction::Add; 2300 MulOp = Instruction::Mul; 2301 } else { 2302 AddOp = ID.getInductionOpcode(); 2303 MulOp = Instruction::FMul; 2304 } 2305 2306 // Determine the number of scalars we need to generate for each unroll 2307 // iteration. If EntryVal is uniform, we only need to generate the first 2308 // lane. Otherwise, we generate all VF values. 2309 unsigned Lanes = 2310 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) 2311 ? 1 2312 : VF.getKnownMinValue(); 2313 assert((!VF.isScalable() || Lanes == 1) && 2314 "Should never scalarize a scalable vector"); 2315 // Compute the scalar steps and save the results in VectorLoopValueMap. 2316 for (unsigned Part = 0; Part < UF; ++Part) { 2317 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2318 auto *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2319 ScalarIVTy->getScalarSizeInBits()); 2320 Value *StartIdx = 2321 createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF); 2322 if (ScalarIVTy->isFloatingPointTy()) 2323 StartIdx = Builder.CreateSIToFP(StartIdx, ScalarIVTy); 2324 StartIdx = addFastMathFlag(Builder.CreateBinOp( 2325 AddOp, StartIdx, getSignedIntOrFpConstant(ScalarIVTy, Lane))); 2326 // The step returned by `createStepForVF` is a runtime-evaluated value 2327 // when VF is scalable. Otherwise, it should be folded into a Constant. 2328 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2329 "Expected StartIdx to be folded to a constant when VF is not " 2330 "scalable"); 2331 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2332 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2333 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2334 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 2335 } 2336 } 2337 } 2338 2339 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2340 assert(V != Induction && "The new induction variable should not be used."); 2341 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2342 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2343 2344 // If we have a stride that is replaced by one, do it here. Defer this for 2345 // the VPlan-native path until we start running Legal checks in that path. 2346 if (!EnableVPlanNativePath && Legal->hasStride(V)) 2347 V = ConstantInt::get(V->getType(), 1); 2348 2349 // If we have a vector mapped to this value, return it. 2350 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2351 return VectorLoopValueMap.getVectorValue(V, Part); 2352 2353 // If the value has not been vectorized, check if it has been scalarized 2354 // instead. If it has been scalarized, and we actually need the value in 2355 // vector form, we will construct the vector values on demand. 2356 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2357 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2358 2359 // If we've scalarized a value, that value should be an instruction. 2360 auto *I = cast<Instruction>(V); 2361 2362 // If we aren't vectorizing, we can just copy the scalar map values over to 2363 // the vector map. 2364 if (VF.isScalar()) { 2365 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2366 return ScalarValue; 2367 } 2368 2369 // Get the last scalar instruction we generated for V and Part. If the value 2370 // is known to be uniform after vectorization, this corresponds to lane zero 2371 // of the Part unroll iteration. Otherwise, the last instruction is the one 2372 // we created for the last vector lane of the Part unroll iteration. 2373 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) 2374 ? 0 2375 : VF.getKnownMinValue() - 1; 2376 assert((!VF.isScalable() || LastLane == 0) && 2377 "Scalable vectorization can't lead to any scalarized values."); 2378 auto *LastInst = cast<Instruction>( 2379 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2380 2381 // Set the insert point after the last scalarized instruction. This ensures 2382 // the insertelement sequence will directly follow the scalar definitions. 2383 auto OldIP = Builder.saveIP(); 2384 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2385 Builder.SetInsertPoint(&*NewIP); 2386 2387 // However, if we are vectorizing, we need to construct the vector values. 2388 // If the value is known to be uniform after vectorization, we can just 2389 // broadcast the scalar value corresponding to lane zero for each unroll 2390 // iteration. Otherwise, we construct the vector values using insertelement 2391 // instructions. Since the resulting vectors are stored in 2392 // VectorLoopValueMap, we will only generate the insertelements once. 2393 Value *VectorValue = nullptr; 2394 if (Cost->isUniformAfterVectorization(I, VF)) { 2395 VectorValue = getBroadcastInstrs(ScalarValue); 2396 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2397 } else { 2398 // Initialize packing with insertelements to start from undef. 2399 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2400 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2401 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2402 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 2403 packScalarIntoVectorValue(V, {Part, Lane}); 2404 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2405 } 2406 Builder.restoreIP(OldIP); 2407 return VectorValue; 2408 } 2409 2410 // If this scalar is unknown, assume that it is a constant or that it is 2411 // loop invariant. Broadcast V and save the value for future uses. 2412 Value *B = getBroadcastInstrs(V); 2413 VectorLoopValueMap.setVectorValue(V, Part, B); 2414 return B; 2415 } 2416 2417 Value * 2418 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2419 const VPIteration &Instance) { 2420 // If the value is not an instruction contained in the loop, it should 2421 // already be scalar. 2422 if (OrigLoop->isLoopInvariant(V)) 2423 return V; 2424 2425 assert(Instance.Lane > 0 2426 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2427 : true && "Uniform values only have lane zero"); 2428 2429 // If the value from the original loop has not been vectorized, it is 2430 // represented by UF x VF scalar values in the new loop. Return the requested 2431 // scalar value. 2432 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2433 return VectorLoopValueMap.getScalarValue(V, Instance); 2434 2435 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2436 // for the given unroll part. If this entry is not a vector type (i.e., the 2437 // vectorization factor is one), there is no need to generate an 2438 // extractelement instruction. 2439 auto *U = getOrCreateVectorValue(V, Instance.Part); 2440 if (!U->getType()->isVectorTy()) { 2441 assert(VF.isScalar() && "Value not scalarized has non-vector type"); 2442 return U; 2443 } 2444 2445 // Otherwise, the value from the original loop has been vectorized and is 2446 // represented by UF vector values. Extract and return the requested scalar 2447 // value from the appropriate vector lane. 2448 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2449 } 2450 2451 void InnerLoopVectorizer::packScalarIntoVectorValue( 2452 Value *V, const VPIteration &Instance) { 2453 assert(V != Induction && "The new induction variable should not be used."); 2454 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2455 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2456 2457 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2458 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2459 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2460 Builder.getInt32(Instance.Lane)); 2461 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2462 } 2463 2464 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2465 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2466 assert(!VF.isScalable() && "Cannot reverse scalable vectors"); 2467 SmallVector<int, 8> ShuffleMask; 2468 for (unsigned i = 0; i < VF.getKnownMinValue(); ++i) 2469 ShuffleMask.push_back(VF.getKnownMinValue() - i - 1); 2470 2471 return Builder.CreateShuffleVector(Vec, ShuffleMask, "reverse"); 2472 } 2473 2474 // Return whether we allow using masked interleave-groups (for dealing with 2475 // strided loads/stores that reside in predicated blocks, or for dealing 2476 // with gaps). 2477 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2478 // If an override option has been passed in for interleaved accesses, use it. 2479 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2480 return EnableMaskedInterleavedMemAccesses; 2481 2482 return TTI.enableMaskedInterleavedAccessVectorization(); 2483 } 2484 2485 // Try to vectorize the interleave group that \p Instr belongs to. 2486 // 2487 // E.g. Translate following interleaved load group (factor = 3): 2488 // for (i = 0; i < N; i+=3) { 2489 // R = Pic[i]; // Member of index 0 2490 // G = Pic[i+1]; // Member of index 1 2491 // B = Pic[i+2]; // Member of index 2 2492 // ... // do something to R, G, B 2493 // } 2494 // To: 2495 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2496 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2497 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2498 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2499 // 2500 // Or translate following interleaved store group (factor = 3): 2501 // for (i = 0; i < N; i+=3) { 2502 // ... do something to R, G, B 2503 // Pic[i] = R; // Member of index 0 2504 // Pic[i+1] = G; // Member of index 1 2505 // Pic[i+2] = B; // Member of index 2 2506 // } 2507 // To: 2508 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2509 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2510 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2511 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2512 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2513 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2514 const InterleaveGroup<Instruction> *Group, VPTransformState &State, 2515 VPValue *Addr, ArrayRef<VPValue *> StoredValues, VPValue *BlockInMask) { 2516 Instruction *Instr = Group->getInsertPos(); 2517 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2518 2519 // Prepare for the vector type of the interleaved load/store. 2520 Type *ScalarTy = getMemInstValueType(Instr); 2521 unsigned InterleaveFactor = Group->getFactor(); 2522 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2523 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2524 2525 // Prepare for the new pointers. 2526 SmallVector<Value *, 2> AddrParts; 2527 unsigned Index = Group->getIndex(Instr); 2528 2529 // TODO: extend the masked interleaved-group support to reversed access. 2530 assert((!BlockInMask || !Group->isReverse()) && 2531 "Reversed masked interleave-group not supported."); 2532 2533 // If the group is reverse, adjust the index to refer to the last vector lane 2534 // instead of the first. We adjust the index from the first vector lane, 2535 // rather than directly getting the pointer for lane VF - 1, because the 2536 // pointer operand of the interleaved access is supposed to be uniform. For 2537 // uniform instructions, we're only required to generate a value for the 2538 // first vector lane in each unroll iteration. 2539 assert(!VF.isScalable() && 2540 "scalable vector reverse operation is not implemented"); 2541 if (Group->isReverse()) 2542 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2543 2544 for (unsigned Part = 0; Part < UF; Part++) { 2545 Value *AddrPart = State.get(Addr, {Part, 0}); 2546 setDebugLocFromInst(Builder, AddrPart); 2547 2548 // Notice current instruction could be any index. Need to adjust the address 2549 // to the member of index 0. 2550 // 2551 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2552 // b = A[i]; // Member of index 0 2553 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2554 // 2555 // E.g. A[i+1] = a; // Member of index 1 2556 // A[i] = b; // Member of index 0 2557 // A[i+2] = c; // Member of index 2 (Current instruction) 2558 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2559 2560 bool InBounds = false; 2561 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2562 InBounds = gep->isInBounds(); 2563 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2564 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2565 2566 // Cast to the vector pointer type. 2567 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2568 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2569 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2570 } 2571 2572 setDebugLocFromInst(Builder, Instr); 2573 Value *UndefVec = UndefValue::get(VecTy); 2574 2575 Value *MaskForGaps = nullptr; 2576 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2577 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2578 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2579 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2580 } 2581 2582 // Vectorize the interleaved load group. 2583 if (isa<LoadInst>(Instr)) { 2584 // For each unroll part, create a wide load for the group. 2585 SmallVector<Value *, 2> NewLoads; 2586 for (unsigned Part = 0; Part < UF; Part++) { 2587 Instruction *NewLoad; 2588 if (BlockInMask || MaskForGaps) { 2589 assert(useMaskedInterleavedAccesses(*TTI) && 2590 "masked interleaved groups are not allowed."); 2591 Value *GroupMask = MaskForGaps; 2592 if (BlockInMask) { 2593 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2594 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2595 Value *ShuffledMask = Builder.CreateShuffleVector( 2596 BlockInMaskPart, 2597 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2598 "interleaved.mask"); 2599 GroupMask = MaskForGaps 2600 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2601 MaskForGaps) 2602 : ShuffledMask; 2603 } 2604 NewLoad = 2605 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2606 GroupMask, UndefVec, "wide.masked.vec"); 2607 } 2608 else 2609 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2610 Group->getAlign(), "wide.vec"); 2611 Group->addMetadata(NewLoad); 2612 NewLoads.push_back(NewLoad); 2613 } 2614 2615 // For each member in the group, shuffle out the appropriate data from the 2616 // wide loads. 2617 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2618 Instruction *Member = Group->getMember(I); 2619 2620 // Skip the gaps in the group. 2621 if (!Member) 2622 continue; 2623 2624 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2625 auto StrideMask = 2626 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2627 for (unsigned Part = 0; Part < UF; Part++) { 2628 Value *StridedVec = Builder.CreateShuffleVector( 2629 NewLoads[Part], StrideMask, "strided.vec"); 2630 2631 // If this member has different type, cast the result type. 2632 if (Member->getType() != ScalarTy) { 2633 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2634 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2635 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2636 } 2637 2638 if (Group->isReverse()) 2639 StridedVec = reverseVector(StridedVec); 2640 2641 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2642 } 2643 } 2644 return; 2645 } 2646 2647 // The sub vector type for current instruction. 2648 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2649 auto *SubVT = VectorType::get(ScalarTy, VF); 2650 2651 // Vectorize the interleaved store group. 2652 for (unsigned Part = 0; Part < UF; Part++) { 2653 // Collect the stored vector from each member. 2654 SmallVector<Value *, 4> StoredVecs; 2655 for (unsigned i = 0; i < InterleaveFactor; i++) { 2656 // Interleaved store group doesn't allow a gap, so each index has a member 2657 assert(Group->getMember(i) && "Fail to get a member from an interleaved store group"); 2658 2659 Value *StoredVec = State.get(StoredValues[i], Part); 2660 2661 if (Group->isReverse()) 2662 StoredVec = reverseVector(StoredVec); 2663 2664 // If this member has different type, cast it to a unified type. 2665 2666 if (StoredVec->getType() != SubVT) 2667 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2668 2669 StoredVecs.push_back(StoredVec); 2670 } 2671 2672 // Concatenate all vectors into a wide vector. 2673 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2674 2675 // Interleave the elements in the wide vector. 2676 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2677 Value *IVec = Builder.CreateShuffleVector( 2678 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2679 "interleaved.vec"); 2680 2681 Instruction *NewStoreInstr; 2682 if (BlockInMask) { 2683 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2684 Value *ShuffledMask = Builder.CreateShuffleVector( 2685 BlockInMaskPart, 2686 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2687 "interleaved.mask"); 2688 NewStoreInstr = Builder.CreateMaskedStore( 2689 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2690 } 2691 else 2692 NewStoreInstr = 2693 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2694 2695 Group->addMetadata(NewStoreInstr); 2696 } 2697 } 2698 2699 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2700 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2701 VPValue *StoredValue, VPValue *BlockInMask) { 2702 // Attempt to issue a wide load. 2703 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2704 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2705 2706 assert((LI || SI) && "Invalid Load/Store instruction"); 2707 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2708 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2709 2710 LoopVectorizationCostModel::InstWidening Decision = 2711 Cost->getWideningDecision(Instr, VF); 2712 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2713 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2714 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2715 "CM decision is not to widen the memory instruction"); 2716 2717 Type *ScalarDataTy = getMemInstValueType(Instr); 2718 2719 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2720 const Align Alignment = getLoadStoreAlignment(Instr); 2721 2722 // Determine if the pointer operand of the access is either consecutive or 2723 // reverse consecutive. 2724 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2725 bool ConsecutiveStride = 2726 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2727 bool CreateGatherScatter = 2728 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2729 2730 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2731 // gather/scatter. Otherwise Decision should have been to Scalarize. 2732 assert((ConsecutiveStride || CreateGatherScatter) && 2733 "The instruction should be scalarized"); 2734 (void)ConsecutiveStride; 2735 2736 VectorParts BlockInMaskParts(UF); 2737 bool isMaskRequired = BlockInMask; 2738 if (isMaskRequired) 2739 for (unsigned Part = 0; Part < UF; ++Part) 2740 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2741 2742 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2743 // Calculate the pointer for the specific unroll-part. 2744 GetElementPtrInst *PartPtr = nullptr; 2745 2746 bool InBounds = false; 2747 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2748 InBounds = gep->isInBounds(); 2749 2750 if (Reverse) { 2751 assert(!VF.isScalable() && 2752 "Reversing vectors is not yet supported for scalable vectors."); 2753 2754 // If the address is consecutive but reversed, then the 2755 // wide store needs to start at the last vector element. 2756 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2757 ScalarDataTy, Ptr, Builder.getInt32(-Part * VF.getKnownMinValue()))); 2758 PartPtr->setIsInBounds(InBounds); 2759 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2760 ScalarDataTy, PartPtr, Builder.getInt32(1 - VF.getKnownMinValue()))); 2761 PartPtr->setIsInBounds(InBounds); 2762 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2763 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2764 } else { 2765 Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF); 2766 PartPtr = cast<GetElementPtrInst>( 2767 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 2768 PartPtr->setIsInBounds(InBounds); 2769 } 2770 2771 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2772 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2773 }; 2774 2775 // Handle Stores: 2776 if (SI) { 2777 setDebugLocFromInst(Builder, SI); 2778 2779 for (unsigned Part = 0; Part < UF; ++Part) { 2780 Instruction *NewSI = nullptr; 2781 Value *StoredVal = State.get(StoredValue, Part); 2782 if (CreateGatherScatter) { 2783 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2784 Value *VectorGep = State.get(Addr, Part); 2785 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2786 MaskPart); 2787 } else { 2788 if (Reverse) { 2789 // If we store to reverse consecutive memory locations, then we need 2790 // to reverse the order of elements in the stored value. 2791 StoredVal = reverseVector(StoredVal); 2792 // We don't want to update the value in the map as it might be used in 2793 // another expression. So don't call resetVectorValue(StoredVal). 2794 } 2795 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2796 if (isMaskRequired) 2797 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2798 BlockInMaskParts[Part]); 2799 else 2800 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2801 } 2802 addMetadata(NewSI, SI); 2803 } 2804 return; 2805 } 2806 2807 // Handle loads. 2808 assert(LI && "Must have a load instruction"); 2809 setDebugLocFromInst(Builder, LI); 2810 for (unsigned Part = 0; Part < UF; ++Part) { 2811 Value *NewLI; 2812 if (CreateGatherScatter) { 2813 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2814 Value *VectorGep = State.get(Addr, Part); 2815 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2816 nullptr, "wide.masked.gather"); 2817 addMetadata(NewLI, LI); 2818 } else { 2819 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2820 if (isMaskRequired) 2821 NewLI = Builder.CreateMaskedLoad( 2822 VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy), 2823 "wide.masked.load"); 2824 else 2825 NewLI = 2826 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2827 2828 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2829 addMetadata(NewLI, LI); 2830 if (Reverse) 2831 NewLI = reverseVector(NewLI); 2832 } 2833 2834 State.set(Def, Instr, NewLI, Part); 2835 } 2836 } 2837 2838 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPUser &User, 2839 const VPIteration &Instance, 2840 bool IfPredicateInstr, 2841 VPTransformState &State) { 2842 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2843 2844 setDebugLocFromInst(Builder, Instr); 2845 2846 // Does this instruction return a value ? 2847 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2848 2849 Instruction *Cloned = Instr->clone(); 2850 if (!IsVoidRetTy) 2851 Cloned->setName(Instr->getName() + ".cloned"); 2852 2853 // Replace the operands of the cloned instructions with their scalar 2854 // equivalents in the new loop. 2855 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 2856 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 2857 auto InputInstance = Instance; 2858 if (!Operand || !OrigLoop->contains(Operand) || 2859 (Cost->isUniformAfterVectorization(Operand, State.VF))) 2860 InputInstance.Lane = 0; 2861 auto *NewOp = State.get(User.getOperand(op), InputInstance); 2862 Cloned->setOperand(op, NewOp); 2863 } 2864 addNewMetadata(Cloned, Instr); 2865 2866 // Place the cloned scalar in the new loop. 2867 Builder.Insert(Cloned); 2868 2869 // TODO: Set result for VPValue of VPReciplicateRecipe. This requires 2870 // representing scalar values in VPTransformState. Add the cloned scalar to 2871 // the scalar map entry. 2872 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2873 2874 // If we just cloned a new assumption, add it the assumption cache. 2875 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2876 if (II->getIntrinsicID() == Intrinsic::assume) 2877 AC->registerAssumption(II); 2878 2879 // End if-block. 2880 if (IfPredicateInstr) 2881 PredicatedInstructions.push_back(Cloned); 2882 } 2883 2884 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2885 Value *End, Value *Step, 2886 Instruction *DL) { 2887 BasicBlock *Header = L->getHeader(); 2888 BasicBlock *Latch = L->getLoopLatch(); 2889 // As we're just creating this loop, it's possible no latch exists 2890 // yet. If so, use the header as this will be a single block loop. 2891 if (!Latch) 2892 Latch = Header; 2893 2894 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2895 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2896 setDebugLocFromInst(Builder, OldInst); 2897 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2898 2899 Builder.SetInsertPoint(Latch->getTerminator()); 2900 setDebugLocFromInst(Builder, OldInst); 2901 2902 // Create i+1 and fill the PHINode. 2903 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2904 Induction->addIncoming(Start, L->getLoopPreheader()); 2905 Induction->addIncoming(Next, Latch); 2906 // Create the compare. 2907 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2908 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2909 2910 // Now we have two terminators. Remove the old one from the block. 2911 Latch->getTerminator()->eraseFromParent(); 2912 2913 return Induction; 2914 } 2915 2916 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2917 if (TripCount) 2918 return TripCount; 2919 2920 assert(L && "Create Trip Count for null loop."); 2921 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2922 // Find the loop boundaries. 2923 ScalarEvolution *SE = PSE.getSE(); 2924 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2925 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2926 "Invalid loop count"); 2927 2928 Type *IdxTy = Legal->getWidestInductionType(); 2929 assert(IdxTy && "No type for induction"); 2930 2931 // The exit count might have the type of i64 while the phi is i32. This can 2932 // happen if we have an induction variable that is sign extended before the 2933 // compare. The only way that we get a backedge taken count is that the 2934 // induction variable was signed and as such will not overflow. In such a case 2935 // truncation is legal. 2936 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2937 IdxTy->getPrimitiveSizeInBits()) 2938 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2939 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2940 2941 // Get the total trip count from the count by adding 1. 2942 const SCEV *ExitCount = SE->getAddExpr( 2943 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2944 2945 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2946 2947 // Expand the trip count and place the new instructions in the preheader. 2948 // Notice that the pre-header does not change, only the loop body. 2949 SCEVExpander Exp(*SE, DL, "induction"); 2950 2951 // Count holds the overall loop count (N). 2952 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2953 L->getLoopPreheader()->getTerminator()); 2954 2955 if (TripCount->getType()->isPointerTy()) 2956 TripCount = 2957 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2958 L->getLoopPreheader()->getTerminator()); 2959 2960 return TripCount; 2961 } 2962 2963 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2964 if (VectorTripCount) 2965 return VectorTripCount; 2966 2967 Value *TC = getOrCreateTripCount(L); 2968 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2969 2970 Type *Ty = TC->getType(); 2971 // This is where we can make the step a runtime constant. 2972 Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF); 2973 2974 // If the tail is to be folded by masking, round the number of iterations N 2975 // up to a multiple of Step instead of rounding down. This is done by first 2976 // adding Step-1 and then rounding down. Note that it's ok if this addition 2977 // overflows: the vector induction variable will eventually wrap to zero given 2978 // that it starts at zero and its Step is a power of two; the loop will then 2979 // exit, with the last early-exit vector comparison also producing all-true. 2980 if (Cost->foldTailByMasking()) { 2981 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2982 "VF*UF must be a power of 2 when folding tail by masking"); 2983 assert(!VF.isScalable() && 2984 "Tail folding not yet supported for scalable vectors"); 2985 TC = Builder.CreateAdd( 2986 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 2987 } 2988 2989 // Now we need to generate the expression for the part of the loop that the 2990 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2991 // iterations are not required for correctness, or N - Step, otherwise. Step 2992 // is equal to the vectorization factor (number of SIMD elements) times the 2993 // unroll factor (number of SIMD instructions). 2994 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2995 2996 // If there is a non-reversed interleaved group that may speculatively access 2997 // memory out-of-bounds, we need to ensure that there will be at least one 2998 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2999 // the trip count, we set the remainder to be equal to the step. If the step 3000 // does not evenly divide the trip count, no adjustment is necessary since 3001 // there will already be scalar iterations. Note that the minimum iterations 3002 // check ensures that N >= Step. 3003 if (VF.isVector() && Cost->requiresScalarEpilogue()) { 3004 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3005 R = Builder.CreateSelect(IsZero, Step, R); 3006 } 3007 3008 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3009 3010 return VectorTripCount; 3011 } 3012 3013 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3014 const DataLayout &DL) { 3015 // Verify that V is a vector type with same number of elements as DstVTy. 3016 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3017 unsigned VF = DstFVTy->getNumElements(); 3018 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3019 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3020 Type *SrcElemTy = SrcVecTy->getElementType(); 3021 Type *DstElemTy = DstFVTy->getElementType(); 3022 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3023 "Vector elements must have same size"); 3024 3025 // Do a direct cast if element types are castable. 3026 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3027 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3028 } 3029 // V cannot be directly casted to desired vector type. 3030 // May happen when V is a floating point vector but DstVTy is a vector of 3031 // pointers or vice-versa. Handle this using a two-step bitcast using an 3032 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3033 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3034 "Only one type should be a pointer type"); 3035 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3036 "Only one type should be a floating point type"); 3037 Type *IntTy = 3038 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3039 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3040 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3041 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3042 } 3043 3044 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3045 BasicBlock *Bypass) { 3046 Value *Count = getOrCreateTripCount(L); 3047 // Reuse existing vector loop preheader for TC checks. 3048 // Note that new preheader block is generated for vector loop. 3049 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3050 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3051 3052 // Generate code to check if the loop's trip count is less than VF * UF, or 3053 // equal to it in case a scalar epilogue is required; this implies that the 3054 // vector trip count is zero. This check also covers the case where adding one 3055 // to the backedge-taken count overflowed leading to an incorrect trip count 3056 // of zero. In this case we will also jump to the scalar loop. 3057 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3058 : ICmpInst::ICMP_ULT; 3059 3060 // If tail is to be folded, vector loop takes care of all iterations. 3061 Value *CheckMinIters = Builder.getFalse(); 3062 if (!Cost->foldTailByMasking()) { 3063 Value *Step = 3064 createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF); 3065 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3066 } 3067 // Create new preheader for vector loop. 3068 LoopVectorPreHeader = 3069 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3070 "vector.ph"); 3071 3072 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3073 DT->getNode(Bypass)->getIDom()) && 3074 "TC check is expected to dominate Bypass"); 3075 3076 // Update dominator for Bypass & LoopExit. 3077 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3078 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3079 3080 ReplaceInstWithInst( 3081 TCCheckBlock->getTerminator(), 3082 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3083 LoopBypassBlocks.push_back(TCCheckBlock); 3084 } 3085 3086 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3087 // Reuse existing vector loop preheader for SCEV checks. 3088 // Note that new preheader block is generated for vector loop. 3089 BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader; 3090 3091 // Generate the code to check that the SCEV assumptions that we made. 3092 // We want the new basic block to start at the first instruction in a 3093 // sequence of instructions that form a check. 3094 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3095 "scev.check"); 3096 Value *SCEVCheck = Exp.expandCodeForPredicate( 3097 &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator()); 3098 3099 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3100 if (C->isZero()) 3101 return; 3102 3103 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3104 (OptForSizeBasedOnProfile && 3105 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3106 "Cannot SCEV check stride or overflow when optimizing for size"); 3107 3108 SCEVCheckBlock->setName("vector.scevcheck"); 3109 // Create new preheader for vector loop. 3110 LoopVectorPreHeader = 3111 SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI, 3112 nullptr, "vector.ph"); 3113 3114 // Update dominator only if this is first RT check. 3115 if (LoopBypassBlocks.empty()) { 3116 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3117 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3118 } 3119 3120 ReplaceInstWithInst( 3121 SCEVCheckBlock->getTerminator(), 3122 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck)); 3123 LoopBypassBlocks.push_back(SCEVCheckBlock); 3124 AddedSafetyChecks = true; 3125 } 3126 3127 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3128 // VPlan-native path does not do any analysis for runtime checks currently. 3129 if (EnableVPlanNativePath) 3130 return; 3131 3132 // Reuse existing vector loop preheader for runtime memory checks. 3133 // Note that new preheader block is generated for vector loop. 3134 BasicBlock *const MemCheckBlock = L->getLoopPreheader(); 3135 3136 // Generate the code that checks in runtime if arrays overlap. We put the 3137 // checks into a separate block to make the more common case of few elements 3138 // faster. 3139 auto *LAI = Legal->getLAI(); 3140 const auto &RtPtrChecking = *LAI->getRuntimePointerChecking(); 3141 if (!RtPtrChecking.Need) 3142 return; 3143 3144 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3145 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3146 "Cannot emit memory checks when optimizing for size, unless forced " 3147 "to vectorize."); 3148 ORE->emit([&]() { 3149 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3150 L->getStartLoc(), L->getHeader()) 3151 << "Code-size may be reduced by not forcing " 3152 "vectorization, or by source-code modifications " 3153 "eliminating the need for runtime checks " 3154 "(e.g., adding 'restrict')."; 3155 }); 3156 } 3157 3158 MemCheckBlock->setName("vector.memcheck"); 3159 // Create new preheader for vector loop. 3160 LoopVectorPreHeader = 3161 SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr, 3162 "vector.ph"); 3163 3164 auto *CondBranch = cast<BranchInst>( 3165 Builder.CreateCondBr(Builder.getTrue(), Bypass, LoopVectorPreHeader)); 3166 ReplaceInstWithInst(MemCheckBlock->getTerminator(), CondBranch); 3167 LoopBypassBlocks.push_back(MemCheckBlock); 3168 AddedSafetyChecks = true; 3169 3170 // Update dominator only if this is first RT check. 3171 if (LoopBypassBlocks.empty()) { 3172 DT->changeImmediateDominator(Bypass, MemCheckBlock); 3173 DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock); 3174 } 3175 3176 Instruction *FirstCheckInst; 3177 Instruction *MemRuntimeCheck; 3178 std::tie(FirstCheckInst, MemRuntimeCheck) = 3179 addRuntimeChecks(MemCheckBlock->getTerminator(), OrigLoop, 3180 RtPtrChecking.getChecks(), RtPtrChecking.getSE()); 3181 assert(MemRuntimeCheck && "no RT checks generated although RtPtrChecking " 3182 "claimed checks are required"); 3183 CondBranch->setCondition(MemRuntimeCheck); 3184 3185 // We currently don't use LoopVersioning for the actual loop cloning but we 3186 // still use it to add the noalias metadata. 3187 LVer = std::make_unique<LoopVersioning>( 3188 *Legal->getLAI(), 3189 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3190 DT, PSE.getSE()); 3191 LVer->prepareNoAliasMetadata(); 3192 } 3193 3194 Value *InnerLoopVectorizer::emitTransformedIndex( 3195 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3196 const InductionDescriptor &ID) const { 3197 3198 SCEVExpander Exp(*SE, DL, "induction"); 3199 auto Step = ID.getStep(); 3200 auto StartValue = ID.getStartValue(); 3201 assert(Index->getType() == Step->getType() && 3202 "Index type does not match StepValue type"); 3203 3204 // Note: the IR at this point is broken. We cannot use SE to create any new 3205 // SCEV and then expand it, hoping that SCEV's simplification will give us 3206 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3207 // lead to various SCEV crashes. So all we can do is to use builder and rely 3208 // on InstCombine for future simplifications. Here we handle some trivial 3209 // cases only. 3210 auto CreateAdd = [&B](Value *X, Value *Y) { 3211 assert(X->getType() == Y->getType() && "Types don't match!"); 3212 if (auto *CX = dyn_cast<ConstantInt>(X)) 3213 if (CX->isZero()) 3214 return Y; 3215 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3216 if (CY->isZero()) 3217 return X; 3218 return B.CreateAdd(X, Y); 3219 }; 3220 3221 auto CreateMul = [&B](Value *X, Value *Y) { 3222 assert(X->getType() == Y->getType() && "Types don't match!"); 3223 if (auto *CX = dyn_cast<ConstantInt>(X)) 3224 if (CX->isOne()) 3225 return Y; 3226 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3227 if (CY->isOne()) 3228 return X; 3229 return B.CreateMul(X, Y); 3230 }; 3231 3232 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3233 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3234 // the DomTree is not kept up-to-date for additional blocks generated in the 3235 // vector loop. By using the header as insertion point, we guarantee that the 3236 // expanded instructions dominate all their uses. 3237 auto GetInsertPoint = [this, &B]() { 3238 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3239 if (InsertBB != LoopVectorBody && 3240 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3241 return LoopVectorBody->getTerminator(); 3242 return &*B.GetInsertPoint(); 3243 }; 3244 switch (ID.getKind()) { 3245 case InductionDescriptor::IK_IntInduction: { 3246 assert(Index->getType() == StartValue->getType() && 3247 "Index type does not match StartValue type"); 3248 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3249 return B.CreateSub(StartValue, Index); 3250 auto *Offset = CreateMul( 3251 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3252 return CreateAdd(StartValue, Offset); 3253 } 3254 case InductionDescriptor::IK_PtrInduction: { 3255 assert(isa<SCEVConstant>(Step) && 3256 "Expected constant step for pointer induction"); 3257 return B.CreateGEP( 3258 StartValue->getType()->getPointerElementType(), StartValue, 3259 CreateMul(Index, 3260 Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()))); 3261 } 3262 case InductionDescriptor::IK_FpInduction: { 3263 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3264 auto InductionBinOp = ID.getInductionBinOp(); 3265 assert(InductionBinOp && 3266 (InductionBinOp->getOpcode() == Instruction::FAdd || 3267 InductionBinOp->getOpcode() == Instruction::FSub) && 3268 "Original bin op should be defined for FP induction"); 3269 3270 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3271 3272 // Floating point operations had to be 'fast' to enable the induction. 3273 FastMathFlags Flags; 3274 Flags.setFast(); 3275 3276 Value *MulExp = B.CreateFMul(StepValue, Index); 3277 if (isa<Instruction>(MulExp)) 3278 // We have to check, the MulExp may be a constant. 3279 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 3280 3281 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3282 "induction"); 3283 if (isa<Instruction>(BOp)) 3284 cast<Instruction>(BOp)->setFastMathFlags(Flags); 3285 3286 return BOp; 3287 } 3288 case InductionDescriptor::IK_NoInduction: 3289 return nullptr; 3290 } 3291 llvm_unreachable("invalid enum"); 3292 } 3293 3294 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3295 LoopScalarBody = OrigLoop->getHeader(); 3296 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3297 LoopExitBlock = OrigLoop->getExitBlock(); 3298 assert(LoopExitBlock && "Must have an exit block"); 3299 assert(LoopVectorPreHeader && "Invalid loop structure"); 3300 3301 LoopMiddleBlock = 3302 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3303 LI, nullptr, Twine(Prefix) + "middle.block"); 3304 LoopScalarPreHeader = 3305 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3306 nullptr, Twine(Prefix) + "scalar.ph"); 3307 // We intentionally don't let SplitBlock to update LoopInfo since 3308 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3309 // LoopVectorBody is explicitly added to the correct place few lines later. 3310 LoopVectorBody = 3311 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3312 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3313 3314 // Update dominator for loop exit. 3315 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3316 3317 // Create and register the new vector loop. 3318 Loop *Lp = LI->AllocateLoop(); 3319 Loop *ParentLoop = OrigLoop->getParentLoop(); 3320 3321 // Insert the new loop into the loop nest and register the new basic blocks 3322 // before calling any utilities such as SCEV that require valid LoopInfo. 3323 if (ParentLoop) { 3324 ParentLoop->addChildLoop(Lp); 3325 } else { 3326 LI->addTopLevelLoop(Lp); 3327 } 3328 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3329 return Lp; 3330 } 3331 3332 void InnerLoopVectorizer::createInductionResumeValues( 3333 Loop *L, Value *VectorTripCount, 3334 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3335 assert(VectorTripCount && L && "Expected valid arguments"); 3336 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3337 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3338 "Inconsistent information about additional bypass."); 3339 // We are going to resume the execution of the scalar loop. 3340 // Go over all of the induction variables that we found and fix the 3341 // PHIs that are left in the scalar version of the loop. 3342 // The starting values of PHI nodes depend on the counter of the last 3343 // iteration in the vectorized loop. 3344 // If we come from a bypass edge then we need to start from the original 3345 // start value. 3346 for (auto &InductionEntry : Legal->getInductionVars()) { 3347 PHINode *OrigPhi = InductionEntry.first; 3348 InductionDescriptor II = InductionEntry.second; 3349 3350 // Create phi nodes to merge from the backedge-taken check block. 3351 PHINode *BCResumeVal = 3352 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3353 LoopScalarPreHeader->getTerminator()); 3354 // Copy original phi DL over to the new one. 3355 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3356 Value *&EndValue = IVEndValues[OrigPhi]; 3357 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3358 if (OrigPhi == OldInduction) { 3359 // We know what the end value is. 3360 EndValue = VectorTripCount; 3361 } else { 3362 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3363 Type *StepType = II.getStep()->getType(); 3364 Instruction::CastOps CastOp = 3365 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3366 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3367 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3368 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3369 EndValue->setName("ind.end"); 3370 3371 // Compute the end value for the additional bypass (if applicable). 3372 if (AdditionalBypass.first) { 3373 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3374 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3375 StepType, true); 3376 CRD = 3377 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3378 EndValueFromAdditionalBypass = 3379 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3380 EndValueFromAdditionalBypass->setName("ind.end"); 3381 } 3382 } 3383 // The new PHI merges the original incoming value, in case of a bypass, 3384 // or the value at the end of the vectorized loop. 3385 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3386 3387 // Fix the scalar body counter (PHI node). 3388 // The old induction's phi node in the scalar body needs the truncated 3389 // value. 3390 for (BasicBlock *BB : LoopBypassBlocks) 3391 BCResumeVal->addIncoming(II.getStartValue(), BB); 3392 3393 if (AdditionalBypass.first) 3394 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3395 EndValueFromAdditionalBypass); 3396 3397 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3398 } 3399 } 3400 3401 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3402 MDNode *OrigLoopID) { 3403 assert(L && "Expected valid loop."); 3404 3405 // The trip counts should be cached by now. 3406 Value *Count = getOrCreateTripCount(L); 3407 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3408 3409 // We need the OrigLoop (scalar loop part) latch terminator to help 3410 // produce correct debug info for the middle block BB instructions. 3411 // The legality check stage guarantees that the loop will have a single 3412 // latch. 3413 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 3414 "Scalar loop latch terminator isn't a branch"); 3415 BranchInst *ScalarLatchBr = 3416 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 3417 3418 // Add a check in the middle block to see if we have completed 3419 // all of the iterations in the first vector loop. 3420 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3421 // If tail is to be folded, we know we don't need to run the remainder. 3422 Value *CmpN = Builder.getTrue(); 3423 if (!Cost->foldTailByMasking()) { 3424 CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3425 VectorTripCount, "cmp.n", 3426 LoopMiddleBlock->getTerminator()); 3427 3428 // Here we use the same DebugLoc as the scalar loop latch branch instead 3429 // of the corresponding compare because they may have ended up with 3430 // different line numbers and we want to avoid awkward line stepping while 3431 // debugging. Eg. if the compare has got a line number inside the loop. 3432 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3433 } 3434 3435 BranchInst *BrInst = 3436 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN); 3437 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3438 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3439 3440 // Get ready to start creating new instructions into the vectorized body. 3441 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3442 "Inconsistent vector loop preheader"); 3443 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3444 3445 Optional<MDNode *> VectorizedLoopID = 3446 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3447 LLVMLoopVectorizeFollowupVectorized}); 3448 if (VectorizedLoopID.hasValue()) { 3449 L->setLoopID(VectorizedLoopID.getValue()); 3450 3451 // Do not setAlreadyVectorized if loop attributes have been defined 3452 // explicitly. 3453 return LoopVectorPreHeader; 3454 } 3455 3456 // Keep all loop hints from the original loop on the vector loop (we'll 3457 // replace the vectorizer-specific hints below). 3458 if (MDNode *LID = OrigLoop->getLoopID()) 3459 L->setLoopID(LID); 3460 3461 LoopVectorizeHints Hints(L, true, *ORE); 3462 Hints.setAlreadyVectorized(); 3463 3464 #ifdef EXPENSIVE_CHECKS 3465 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3466 LI->verify(*DT); 3467 #endif 3468 3469 return LoopVectorPreHeader; 3470 } 3471 3472 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3473 /* 3474 In this function we generate a new loop. The new loop will contain 3475 the vectorized instructions while the old loop will continue to run the 3476 scalar remainder. 3477 3478 [ ] <-- loop iteration number check. 3479 / | 3480 / v 3481 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3482 | / | 3483 | / v 3484 || [ ] <-- vector pre header. 3485 |/ | 3486 | v 3487 | [ ] \ 3488 | [ ]_| <-- vector loop. 3489 | | 3490 | v 3491 | -[ ] <--- middle-block. 3492 | / | 3493 | / v 3494 -|- >[ ] <--- new preheader. 3495 | | 3496 | v 3497 | [ ] \ 3498 | [ ]_| <-- old scalar loop to handle remainder. 3499 \ | 3500 \ v 3501 >[ ] <-- exit block. 3502 ... 3503 */ 3504 3505 // Get the metadata of the original loop before it gets modified. 3506 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3507 3508 // Create an empty vector loop, and prepare basic blocks for the runtime 3509 // checks. 3510 Loop *Lp = createVectorLoopSkeleton(""); 3511 3512 // Now, compare the new count to zero. If it is zero skip the vector loop and 3513 // jump to the scalar loop. This check also covers the case where the 3514 // backedge-taken count is uint##_max: adding one to it will overflow leading 3515 // to an incorrect trip count of zero. In this (rare) case we will also jump 3516 // to the scalar loop. 3517 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3518 3519 // Generate the code to check any assumptions that we've made for SCEV 3520 // expressions. 3521 emitSCEVChecks(Lp, LoopScalarPreHeader); 3522 3523 // Generate the code that checks in runtime if arrays overlap. We put the 3524 // checks into a separate block to make the more common case of few elements 3525 // faster. 3526 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3527 3528 // Some loops have a single integer induction variable, while other loops 3529 // don't. One example is c++ iterators that often have multiple pointer 3530 // induction variables. In the code below we also support a case where we 3531 // don't have a single induction variable. 3532 // 3533 // We try to obtain an induction variable from the original loop as hard 3534 // as possible. However if we don't find one that: 3535 // - is an integer 3536 // - counts from zero, stepping by one 3537 // - is the size of the widest induction variable type 3538 // then we create a new one. 3539 OldInduction = Legal->getPrimaryInduction(); 3540 Type *IdxTy = Legal->getWidestInductionType(); 3541 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3542 // The loop step is equal to the vectorization factor (num of SIMD elements) 3543 // times the unroll factor (num of SIMD instructions). 3544 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3545 Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF); 3546 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3547 Induction = 3548 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3549 getDebugLocFromInstOrOperands(OldInduction)); 3550 3551 // Emit phis for the new starting index of the scalar loop. 3552 createInductionResumeValues(Lp, CountRoundDown); 3553 3554 return completeLoopSkeleton(Lp, OrigLoopID); 3555 } 3556 3557 // Fix up external users of the induction variable. At this point, we are 3558 // in LCSSA form, with all external PHIs that use the IV having one input value, 3559 // coming from the remainder loop. We need those PHIs to also have a correct 3560 // value for the IV when arriving directly from the middle block. 3561 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3562 const InductionDescriptor &II, 3563 Value *CountRoundDown, Value *EndValue, 3564 BasicBlock *MiddleBlock) { 3565 // There are two kinds of external IV usages - those that use the value 3566 // computed in the last iteration (the PHI) and those that use the penultimate 3567 // value (the value that feeds into the phi from the loop latch). 3568 // We allow both, but they, obviously, have different values. 3569 3570 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3571 3572 DenseMap<Value *, Value *> MissingVals; 3573 3574 // An external user of the last iteration's value should see the value that 3575 // the remainder loop uses to initialize its own IV. 3576 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3577 for (User *U : PostInc->users()) { 3578 Instruction *UI = cast<Instruction>(U); 3579 if (!OrigLoop->contains(UI)) { 3580 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3581 MissingVals[UI] = EndValue; 3582 } 3583 } 3584 3585 // An external user of the penultimate value need to see EndValue - Step. 3586 // The simplest way to get this is to recompute it from the constituent SCEVs, 3587 // that is Start + (Step * (CRD - 1)). 3588 for (User *U : OrigPhi->users()) { 3589 auto *UI = cast<Instruction>(U); 3590 if (!OrigLoop->contains(UI)) { 3591 const DataLayout &DL = 3592 OrigLoop->getHeader()->getModule()->getDataLayout(); 3593 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3594 3595 IRBuilder<> B(MiddleBlock->getTerminator()); 3596 Value *CountMinusOne = B.CreateSub( 3597 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3598 Value *CMO = 3599 !II.getStep()->getType()->isIntegerTy() 3600 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3601 II.getStep()->getType()) 3602 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3603 CMO->setName("cast.cmo"); 3604 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3605 Escape->setName("ind.escape"); 3606 MissingVals[UI] = Escape; 3607 } 3608 } 3609 3610 for (auto &I : MissingVals) { 3611 PHINode *PHI = cast<PHINode>(I.first); 3612 // One corner case we have to handle is two IVs "chasing" each-other, 3613 // that is %IV2 = phi [...], [ %IV1, %latch ] 3614 // In this case, if IV1 has an external use, we need to avoid adding both 3615 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3616 // don't already have an incoming value for the middle block. 3617 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3618 PHI->addIncoming(I.second, MiddleBlock); 3619 } 3620 } 3621 3622 namespace { 3623 3624 struct CSEDenseMapInfo { 3625 static bool canHandle(const Instruction *I) { 3626 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3627 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3628 } 3629 3630 static inline Instruction *getEmptyKey() { 3631 return DenseMapInfo<Instruction *>::getEmptyKey(); 3632 } 3633 3634 static inline Instruction *getTombstoneKey() { 3635 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3636 } 3637 3638 static unsigned getHashValue(const Instruction *I) { 3639 assert(canHandle(I) && "Unknown instruction!"); 3640 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3641 I->value_op_end())); 3642 } 3643 3644 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3645 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3646 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3647 return LHS == RHS; 3648 return LHS->isIdenticalTo(RHS); 3649 } 3650 }; 3651 3652 } // end anonymous namespace 3653 3654 ///Perform cse of induction variable instructions. 3655 static void cse(BasicBlock *BB) { 3656 // Perform simple cse. 3657 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3658 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3659 Instruction *In = &*I++; 3660 3661 if (!CSEDenseMapInfo::canHandle(In)) 3662 continue; 3663 3664 // Check if we can replace this instruction with any of the 3665 // visited instructions. 3666 if (Instruction *V = CSEMap.lookup(In)) { 3667 In->replaceAllUsesWith(V); 3668 In->eraseFromParent(); 3669 continue; 3670 } 3671 3672 CSEMap[In] = In; 3673 } 3674 } 3675 3676 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3677 ElementCount VF, 3678 bool &NeedToScalarize) { 3679 assert(!VF.isScalable() && "scalable vectors not yet supported."); 3680 Function *F = CI->getCalledFunction(); 3681 Type *ScalarRetTy = CI->getType(); 3682 SmallVector<Type *, 4> Tys, ScalarTys; 3683 for (auto &ArgOp : CI->arg_operands()) 3684 ScalarTys.push_back(ArgOp->getType()); 3685 3686 // Estimate cost of scalarized vector call. The source operands are assumed 3687 // to be vectors, so we need to extract individual elements from there, 3688 // execute VF scalar calls, and then gather the result into the vector return 3689 // value. 3690 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, 3691 TTI::TCK_RecipThroughput); 3692 if (VF.isScalar()) 3693 return ScalarCallCost; 3694 3695 // Compute corresponding vector type for return value and arguments. 3696 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3697 for (Type *ScalarTy : ScalarTys) 3698 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3699 3700 // Compute costs of unpacking argument values for the scalar calls and 3701 // packing the return values to a vector. 3702 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3703 3704 unsigned Cost = ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3705 3706 // If we can't emit a vector call for this function, then the currently found 3707 // cost is the cost we need to return. 3708 NeedToScalarize = true; 3709 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3710 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3711 3712 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3713 return Cost; 3714 3715 // If the corresponding vector cost is cheaper, return its cost. 3716 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys, 3717 TTI::TCK_RecipThroughput); 3718 if (VectorCallCost < Cost) { 3719 NeedToScalarize = false; 3720 return VectorCallCost; 3721 } 3722 return Cost; 3723 } 3724 3725 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3726 ElementCount VF) { 3727 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3728 assert(ID && "Expected intrinsic call!"); 3729 3730 IntrinsicCostAttributes CostAttrs(ID, *CI, VF); 3731 return TTI.getIntrinsicInstrCost(CostAttrs, 3732 TargetTransformInfo::TCK_RecipThroughput); 3733 } 3734 3735 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3736 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3737 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3738 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3739 } 3740 3741 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3742 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3743 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3744 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3745 } 3746 3747 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3748 // For every instruction `I` in MinBWs, truncate the operands, create a 3749 // truncated version of `I` and reextend its result. InstCombine runs 3750 // later and will remove any ext/trunc pairs. 3751 SmallPtrSet<Value *, 4> Erased; 3752 for (const auto &KV : Cost->getMinimalBitwidths()) { 3753 // If the value wasn't vectorized, we must maintain the original scalar 3754 // type. The absence of the value from VectorLoopValueMap indicates that it 3755 // wasn't vectorized. 3756 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3757 continue; 3758 for (unsigned Part = 0; Part < UF; ++Part) { 3759 Value *I = getOrCreateVectorValue(KV.first, Part); 3760 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3761 continue; 3762 Type *OriginalTy = I->getType(); 3763 Type *ScalarTruncatedTy = 3764 IntegerType::get(OriginalTy->getContext(), KV.second); 3765 auto *TruncatedTy = FixedVectorType::get( 3766 ScalarTruncatedTy, 3767 cast<FixedVectorType>(OriginalTy)->getNumElements()); 3768 if (TruncatedTy == OriginalTy) 3769 continue; 3770 3771 IRBuilder<> B(cast<Instruction>(I)); 3772 auto ShrinkOperand = [&](Value *V) -> Value * { 3773 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3774 if (ZI->getSrcTy() == TruncatedTy) 3775 return ZI->getOperand(0); 3776 return B.CreateZExtOrTrunc(V, TruncatedTy); 3777 }; 3778 3779 // The actual instruction modification depends on the instruction type, 3780 // unfortunately. 3781 Value *NewI = nullptr; 3782 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3783 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3784 ShrinkOperand(BO->getOperand(1))); 3785 3786 // Any wrapping introduced by shrinking this operation shouldn't be 3787 // considered undefined behavior. So, we can't unconditionally copy 3788 // arithmetic wrapping flags to NewI. 3789 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3790 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3791 NewI = 3792 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3793 ShrinkOperand(CI->getOperand(1))); 3794 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3795 NewI = B.CreateSelect(SI->getCondition(), 3796 ShrinkOperand(SI->getTrueValue()), 3797 ShrinkOperand(SI->getFalseValue())); 3798 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3799 switch (CI->getOpcode()) { 3800 default: 3801 llvm_unreachable("Unhandled cast!"); 3802 case Instruction::Trunc: 3803 NewI = ShrinkOperand(CI->getOperand(0)); 3804 break; 3805 case Instruction::SExt: 3806 NewI = B.CreateSExtOrTrunc( 3807 CI->getOperand(0), 3808 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3809 break; 3810 case Instruction::ZExt: 3811 NewI = B.CreateZExtOrTrunc( 3812 CI->getOperand(0), 3813 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3814 break; 3815 } 3816 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3817 auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType()) 3818 ->getNumElements(); 3819 auto *O0 = B.CreateZExtOrTrunc( 3820 SI->getOperand(0), 3821 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 3822 auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType()) 3823 ->getNumElements(); 3824 auto *O1 = B.CreateZExtOrTrunc( 3825 SI->getOperand(1), 3826 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 3827 3828 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3829 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3830 // Don't do anything with the operands, just extend the result. 3831 continue; 3832 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3833 auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType()) 3834 ->getNumElements(); 3835 auto *O0 = B.CreateZExtOrTrunc( 3836 IE->getOperand(0), 3837 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3838 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3839 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3840 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3841 auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType()) 3842 ->getNumElements(); 3843 auto *O0 = B.CreateZExtOrTrunc( 3844 EE->getOperand(0), 3845 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3846 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3847 } else { 3848 // If we don't know what to do, be conservative and don't do anything. 3849 continue; 3850 } 3851 3852 // Lastly, extend the result. 3853 NewI->takeName(cast<Instruction>(I)); 3854 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3855 I->replaceAllUsesWith(Res); 3856 cast<Instruction>(I)->eraseFromParent(); 3857 Erased.insert(I); 3858 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3859 } 3860 } 3861 3862 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3863 for (const auto &KV : Cost->getMinimalBitwidths()) { 3864 // If the value wasn't vectorized, we must maintain the original scalar 3865 // type. The absence of the value from VectorLoopValueMap indicates that it 3866 // wasn't vectorized. 3867 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3868 continue; 3869 for (unsigned Part = 0; Part < UF; ++Part) { 3870 Value *I = getOrCreateVectorValue(KV.first, Part); 3871 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3872 if (Inst && Inst->use_empty()) { 3873 Value *NewI = Inst->getOperand(0); 3874 Inst->eraseFromParent(); 3875 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3876 } 3877 } 3878 } 3879 } 3880 3881 void InnerLoopVectorizer::fixVectorizedLoop() { 3882 // Insert truncates and extends for any truncated instructions as hints to 3883 // InstCombine. 3884 if (VF.isVector()) 3885 truncateToMinimalBitwidths(); 3886 3887 // Fix widened non-induction PHIs by setting up the PHI operands. 3888 if (OrigPHIsToFix.size()) { 3889 assert(EnableVPlanNativePath && 3890 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3891 fixNonInductionPHIs(); 3892 } 3893 3894 // At this point every instruction in the original loop is widened to a 3895 // vector form. Now we need to fix the recurrences in the loop. These PHI 3896 // nodes are currently empty because we did not want to introduce cycles. 3897 // This is the second stage of vectorizing recurrences. 3898 fixCrossIterationPHIs(); 3899 3900 // Forget the original basic block. 3901 PSE.getSE()->forgetLoop(OrigLoop); 3902 3903 // Fix-up external users of the induction variables. 3904 for (auto &Entry : Legal->getInductionVars()) 3905 fixupIVUsers(Entry.first, Entry.second, 3906 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3907 IVEndValues[Entry.first], LoopMiddleBlock); 3908 3909 fixLCSSAPHIs(); 3910 for (Instruction *PI : PredicatedInstructions) 3911 sinkScalarOperands(&*PI); 3912 3913 // Remove redundant induction instructions. 3914 cse(LoopVectorBody); 3915 3916 // Set/update profile weights for the vector and remainder loops as original 3917 // loop iterations are now distributed among them. Note that original loop 3918 // represented by LoopScalarBody becomes remainder loop after vectorization. 3919 // 3920 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3921 // end up getting slightly roughened result but that should be OK since 3922 // profile is not inherently precise anyway. Note also possible bypass of 3923 // vector code caused by legality checks is ignored, assigning all the weight 3924 // to the vector loop, optimistically. 3925 // 3926 // For scalable vectorization we can't know at compile time how many iterations 3927 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3928 // vscale of '1'. 3929 setProfileInfoAfterUnrolling( 3930 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 3931 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 3932 } 3933 3934 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3935 // In order to support recurrences we need to be able to vectorize Phi nodes. 3936 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3937 // stage #2: We now need to fix the recurrences by adding incoming edges to 3938 // the currently empty PHI nodes. At this point every instruction in the 3939 // original loop is widened to a vector form so we can use them to construct 3940 // the incoming edges. 3941 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3942 // Handle first-order recurrences and reductions that need to be fixed. 3943 if (Legal->isFirstOrderRecurrence(&Phi)) 3944 fixFirstOrderRecurrence(&Phi); 3945 else if (Legal->isReductionVariable(&Phi)) 3946 fixReduction(&Phi); 3947 } 3948 } 3949 3950 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3951 // This is the second phase of vectorizing first-order recurrences. An 3952 // overview of the transformation is described below. Suppose we have the 3953 // following loop. 3954 // 3955 // for (int i = 0; i < n; ++i) 3956 // b[i] = a[i] - a[i - 1]; 3957 // 3958 // There is a first-order recurrence on "a". For this loop, the shorthand 3959 // scalar IR looks like: 3960 // 3961 // scalar.ph: 3962 // s_init = a[-1] 3963 // br scalar.body 3964 // 3965 // scalar.body: 3966 // i = phi [0, scalar.ph], [i+1, scalar.body] 3967 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3968 // s2 = a[i] 3969 // b[i] = s2 - s1 3970 // br cond, scalar.body, ... 3971 // 3972 // In this example, s1 is a recurrence because it's value depends on the 3973 // previous iteration. In the first phase of vectorization, we created a 3974 // temporary value for s1. We now complete the vectorization and produce the 3975 // shorthand vector IR shown below (for VF = 4, UF = 1). 3976 // 3977 // vector.ph: 3978 // v_init = vector(..., ..., ..., a[-1]) 3979 // br vector.body 3980 // 3981 // vector.body 3982 // i = phi [0, vector.ph], [i+4, vector.body] 3983 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3984 // v2 = a[i, i+1, i+2, i+3]; 3985 // v3 = vector(v1(3), v2(0, 1, 2)) 3986 // b[i, i+1, i+2, i+3] = v2 - v3 3987 // br cond, vector.body, middle.block 3988 // 3989 // middle.block: 3990 // x = v2(3) 3991 // br scalar.ph 3992 // 3993 // scalar.ph: 3994 // s_init = phi [x, middle.block], [a[-1], otherwise] 3995 // br scalar.body 3996 // 3997 // After execution completes the vector loop, we extract the next value of 3998 // the recurrence (x) to use as the initial value in the scalar loop. 3999 4000 // Get the original loop preheader and single loop latch. 4001 auto *Preheader = OrigLoop->getLoopPreheader(); 4002 auto *Latch = OrigLoop->getLoopLatch(); 4003 4004 // Get the initial and previous values of the scalar recurrence. 4005 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4006 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4007 4008 // Create a vector from the initial value. 4009 auto *VectorInit = ScalarInit; 4010 if (VF.isVector()) { 4011 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4012 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 4013 VectorInit = Builder.CreateInsertElement( 4014 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4015 Builder.getInt32(VF.getKnownMinValue() - 1), "vector.recur.init"); 4016 } 4017 4018 // We constructed a temporary phi node in the first phase of vectorization. 4019 // This phi node will eventually be deleted. 4020 Builder.SetInsertPoint( 4021 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 4022 4023 // Create a phi node for the new recurrence. The current value will either be 4024 // the initial value inserted into a vector or loop-varying vector value. 4025 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4026 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4027 4028 // Get the vectorized previous value of the last part UF - 1. It appears last 4029 // among all unrolled iterations, due to the order of their construction. 4030 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 4031 4032 // Find and set the insertion point after the previous value if it is an 4033 // instruction. 4034 BasicBlock::iterator InsertPt; 4035 // Note that the previous value may have been constant-folded so it is not 4036 // guaranteed to be an instruction in the vector loop. 4037 // FIXME: Loop invariant values do not form recurrences. We should deal with 4038 // them earlier. 4039 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 4040 InsertPt = LoopVectorBody->getFirstInsertionPt(); 4041 else { 4042 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 4043 if (isa<PHINode>(PreviousLastPart)) 4044 // If the previous value is a phi node, we should insert after all the phi 4045 // nodes in the block containing the PHI to avoid breaking basic block 4046 // verification. Note that the basic block may be different to 4047 // LoopVectorBody, in case we predicate the loop. 4048 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 4049 else 4050 InsertPt = ++PreviousInst->getIterator(); 4051 } 4052 Builder.SetInsertPoint(&*InsertPt); 4053 4054 // We will construct a vector for the recurrence by combining the values for 4055 // the current and previous iterations. This is the required shuffle mask. 4056 assert(!VF.isScalable()); 4057 SmallVector<int, 8> ShuffleMask(VF.getKnownMinValue()); 4058 ShuffleMask[0] = VF.getKnownMinValue() - 1; 4059 for (unsigned I = 1; I < VF.getKnownMinValue(); ++I) 4060 ShuffleMask[I] = I + VF.getKnownMinValue() - 1; 4061 4062 // The vector from which to take the initial value for the current iteration 4063 // (actual or unrolled). Initially, this is the vector phi node. 4064 Value *Incoming = VecPhi; 4065 4066 // Shuffle the current and previous vector and update the vector parts. 4067 for (unsigned Part = 0; Part < UF; ++Part) { 4068 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 4069 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 4070 auto *Shuffle = 4071 VF.isVector() 4072 ? Builder.CreateShuffleVector(Incoming, PreviousPart, ShuffleMask) 4073 : Incoming; 4074 PhiPart->replaceAllUsesWith(Shuffle); 4075 cast<Instruction>(PhiPart)->eraseFromParent(); 4076 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 4077 Incoming = PreviousPart; 4078 } 4079 4080 // Fix the latch value of the new recurrence in the vector loop. 4081 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4082 4083 // Extract the last vector element in the middle block. This will be the 4084 // initial value for the recurrence when jumping to the scalar loop. 4085 auto *ExtractForScalar = Incoming; 4086 if (VF.isVector()) { 4087 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4088 ExtractForScalar = Builder.CreateExtractElement( 4089 ExtractForScalar, Builder.getInt32(VF.getKnownMinValue() - 1), 4090 "vector.recur.extract"); 4091 } 4092 // Extract the second last element in the middle block if the 4093 // Phi is used outside the loop. We need to extract the phi itself 4094 // and not the last element (the phi update in the current iteration). This 4095 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4096 // when the scalar loop is not run at all. 4097 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4098 if (VF.isVector()) 4099 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4100 Incoming, Builder.getInt32(VF.getKnownMinValue() - 2), 4101 "vector.recur.extract.for.phi"); 4102 // When loop is unrolled without vectorizing, initialize 4103 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4104 // `Incoming`. This is analogous to the vectorized case above: extracting the 4105 // second last element when VF > 1. 4106 else if (UF > 1) 4107 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 4108 4109 // Fix the initial value of the original recurrence in the scalar loop. 4110 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4111 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4112 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4113 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4114 Start->addIncoming(Incoming, BB); 4115 } 4116 4117 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4118 Phi->setName("scalar.recur"); 4119 4120 // Finally, fix users of the recurrence outside the loop. The users will need 4121 // either the last value of the scalar recurrence or the last value of the 4122 // vector recurrence we extracted in the middle block. Since the loop is in 4123 // LCSSA form, we just need to find all the phi nodes for the original scalar 4124 // recurrence in the exit block, and then add an edge for the middle block. 4125 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4126 if (LCSSAPhi.getIncomingValue(0) == Phi) { 4127 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4128 } 4129 } 4130 } 4131 4132 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 4133 Constant *Zero = Builder.getInt32(0); 4134 4135 // Get it's reduction variable descriptor. 4136 assert(Legal->isReductionVariable(Phi) && 4137 "Unable to find the reduction variable"); 4138 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 4139 4140 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4141 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4142 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4143 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 4144 RdxDesc.getMinMaxRecurrenceKind(); 4145 setDebugLocFromInst(Builder, ReductionStartValue); 4146 bool IsInLoopReductionPhi = Cost->isInLoopReduction(Phi); 4147 4148 // We need to generate a reduction vector from the incoming scalar. 4149 // To do so, we need to generate the 'identity' vector and override 4150 // one of the elements with the incoming scalar reduction. We need 4151 // to do it in the vector-loop preheader. 4152 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4153 4154 // This is the vector-clone of the value that leaves the loop. 4155 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 4156 4157 // Find the reduction identity variable. Zero for addition, or, xor, 4158 // one for multiplication, -1 for And. 4159 Value *Identity; 4160 Value *VectorStart; 4161 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 4162 RK == RecurrenceDescriptor::RK_FloatMinMax) { 4163 // MinMax reduction have the start value as their identify. 4164 if (VF.isScalar() || IsInLoopReductionPhi) { 4165 VectorStart = Identity = ReductionStartValue; 4166 } else { 4167 VectorStart = Identity = 4168 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 4169 } 4170 } else { 4171 // Handle other reduction kinds: 4172 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 4173 RK, MinMaxKind, VecTy->getScalarType()); 4174 if (VF.isScalar() || IsInLoopReductionPhi) { 4175 Identity = Iden; 4176 // This vector is the Identity vector where the first element is the 4177 // incoming scalar reduction. 4178 VectorStart = ReductionStartValue; 4179 } else { 4180 Identity = ConstantVector::getSplat(VF, Iden); 4181 4182 // This vector is the Identity vector where the first element is the 4183 // incoming scalar reduction. 4184 VectorStart = 4185 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 4186 } 4187 } 4188 4189 // Wrap flags are in general invalid after vectorization, clear them. 4190 clearReductionWrapFlags(RdxDesc); 4191 4192 // Fix the vector-loop phi. 4193 4194 // Reductions do not have to start at zero. They can start with 4195 // any loop invariant values. 4196 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4197 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4198 4199 for (unsigned Part = 0; Part < UF; ++Part) { 4200 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 4201 Value *Val = getOrCreateVectorValue(LoopVal, Part); 4202 // Make sure to add the reduction start value only to the 4203 // first unroll part. 4204 Value *StartVal = (Part == 0) ? VectorStart : Identity; 4205 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 4206 cast<PHINode>(VecRdxPhi) 4207 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4208 } 4209 4210 // Before each round, move the insertion point right between 4211 // the PHIs and the values we are going to write. 4212 // This allows us to write both PHINodes and the extractelement 4213 // instructions. 4214 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4215 4216 setDebugLocFromInst(Builder, LoopExitInst); 4217 4218 // If tail is folded by masking, the vector value to leave the loop should be 4219 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4220 // instead of the former. For an inloop reduction the reduction will already 4221 // be predicated, and does not need to be handled here. 4222 if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) { 4223 for (unsigned Part = 0; Part < UF; ++Part) { 4224 Value *VecLoopExitInst = 4225 VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4226 Value *Sel = nullptr; 4227 for (User *U : VecLoopExitInst->users()) { 4228 if (isa<SelectInst>(U)) { 4229 assert(!Sel && "Reduction exit feeding two selects"); 4230 Sel = U; 4231 } else 4232 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4233 } 4234 assert(Sel && "Reduction exit feeds no select"); 4235 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel); 4236 4237 // If the target can create a predicated operator for the reduction at no 4238 // extra cost in the loop (for example a predicated vadd), it can be 4239 // cheaper for the select to remain in the loop than be sunk out of it, 4240 // and so use the select value for the phi instead of the old 4241 // LoopExitValue. 4242 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 4243 if (PreferPredicatedReductionSelect || 4244 TTI->preferPredicatedReductionSelect( 4245 RdxDesc.getRecurrenceBinOp(), Phi->getType(), 4246 TargetTransformInfo::ReductionFlags())) { 4247 auto *VecRdxPhi = cast<PHINode>(getOrCreateVectorValue(Phi, Part)); 4248 VecRdxPhi->setIncomingValueForBlock( 4249 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4250 } 4251 } 4252 } 4253 4254 // If the vector reduction can be performed in a smaller type, we truncate 4255 // then extend the loop exit value to enable InstCombine to evaluate the 4256 // entire expression in the smaller type. 4257 if (VF.isVector() && Phi->getType() != RdxDesc.getRecurrenceType()) { 4258 assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!"); 4259 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4260 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4261 Builder.SetInsertPoint( 4262 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4263 VectorParts RdxParts(UF); 4264 for (unsigned Part = 0; Part < UF; ++Part) { 4265 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4266 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4267 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4268 : Builder.CreateZExt(Trunc, VecTy); 4269 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4270 UI != RdxParts[Part]->user_end();) 4271 if (*UI != Trunc) { 4272 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4273 RdxParts[Part] = Extnd; 4274 } else { 4275 ++UI; 4276 } 4277 } 4278 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4279 for (unsigned Part = 0; Part < UF; ++Part) { 4280 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4281 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 4282 } 4283 } 4284 4285 // Reduce all of the unrolled parts into a single vector. 4286 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 4287 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4288 4289 // The middle block terminator has already been assigned a DebugLoc here (the 4290 // OrigLoop's single latch terminator). We want the whole middle block to 4291 // appear to execute on this line because: (a) it is all compiler generated, 4292 // (b) these instructions are always executed after evaluating the latch 4293 // conditional branch, and (c) other passes may add new predecessors which 4294 // terminate on this line. This is the easiest way to ensure we don't 4295 // accidentally cause an extra step back into the loop while debugging. 4296 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 4297 for (unsigned Part = 1; Part < UF; ++Part) { 4298 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4299 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4300 // Floating point operations had to be 'fast' to enable the reduction. 4301 ReducedPartRdx = addFastMathFlag( 4302 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 4303 ReducedPartRdx, "bin.rdx"), 4304 RdxDesc.getFastMathFlags()); 4305 else 4306 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 4307 RdxPart); 4308 } 4309 4310 // Create the reduction after the loop. Note that inloop reductions create the 4311 // target reduction in the loop using a Reduction recipe. 4312 if (VF.isVector() && !IsInLoopReductionPhi) { 4313 bool NoNaN = Legal->hasFunNoNaNAttr(); 4314 ReducedPartRdx = 4315 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4316 // If the reduction can be performed in a smaller type, we need to extend 4317 // the reduction to the wider type before we branch to the original loop. 4318 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4319 ReducedPartRdx = 4320 RdxDesc.isSigned() 4321 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4322 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4323 } 4324 4325 // Create a phi node that merges control-flow from the backedge-taken check 4326 // block and the middle block. 4327 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4328 LoopScalarPreHeader->getTerminator()); 4329 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4330 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4331 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4332 4333 // Now, we need to fix the users of the reduction variable 4334 // inside and outside of the scalar remainder loop. 4335 // We know that the loop is in LCSSA form. We need to update the 4336 // PHI nodes in the exit blocks. 4337 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4338 // All PHINodes need to have a single entry edge, or two if 4339 // we already fixed them. 4340 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4341 4342 // We found a reduction value exit-PHI. Update it with the 4343 // incoming bypass edge. 4344 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 4345 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4346 } // end of the LCSSA phi scan. 4347 4348 // Fix the scalar loop reduction variable with the incoming reduction sum 4349 // from the vector body and from the backedge value. 4350 int IncomingEdgeBlockIdx = 4351 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4352 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4353 // Pick the other block. 4354 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4355 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4356 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4357 } 4358 4359 void InnerLoopVectorizer::clearReductionWrapFlags( 4360 RecurrenceDescriptor &RdxDesc) { 4361 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4362 if (RK != RecurrenceDescriptor::RK_IntegerAdd && 4363 RK != RecurrenceDescriptor::RK_IntegerMult) 4364 return; 4365 4366 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4367 assert(LoopExitInstr && "null loop exit instruction"); 4368 SmallVector<Instruction *, 8> Worklist; 4369 SmallPtrSet<Instruction *, 8> Visited; 4370 Worklist.push_back(LoopExitInstr); 4371 Visited.insert(LoopExitInstr); 4372 4373 while (!Worklist.empty()) { 4374 Instruction *Cur = Worklist.pop_back_val(); 4375 if (isa<OverflowingBinaryOperator>(Cur)) 4376 for (unsigned Part = 0; Part < UF; ++Part) { 4377 Value *V = getOrCreateVectorValue(Cur, Part); 4378 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4379 } 4380 4381 for (User *U : Cur->users()) { 4382 Instruction *UI = cast<Instruction>(U); 4383 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4384 Visited.insert(UI).second) 4385 Worklist.push_back(UI); 4386 } 4387 } 4388 } 4389 4390 void InnerLoopVectorizer::fixLCSSAPHIs() { 4391 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4392 if (LCSSAPhi.getNumIncomingValues() == 1) { 4393 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4394 // Non-instruction incoming values will have only one value. 4395 unsigned LastLane = 0; 4396 if (isa<Instruction>(IncomingValue)) 4397 LastLane = Cost->isUniformAfterVectorization( 4398 cast<Instruction>(IncomingValue), VF) 4399 ? 0 4400 : VF.getKnownMinValue() - 1; 4401 assert((!VF.isScalable() || LastLane == 0) && 4402 "scalable vectors dont support non-uniform scalars yet"); 4403 // Can be a loop invariant incoming value or the last scalar value to be 4404 // extracted from the vectorized loop. 4405 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4406 Value *lastIncomingValue = 4407 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 4408 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4409 } 4410 } 4411 } 4412 4413 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4414 // The basic block and loop containing the predicated instruction. 4415 auto *PredBB = PredInst->getParent(); 4416 auto *VectorLoop = LI->getLoopFor(PredBB); 4417 4418 // Initialize a worklist with the operands of the predicated instruction. 4419 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4420 4421 // Holds instructions that we need to analyze again. An instruction may be 4422 // reanalyzed if we don't yet know if we can sink it or not. 4423 SmallVector<Instruction *, 8> InstsToReanalyze; 4424 4425 // Returns true if a given use occurs in the predicated block. Phi nodes use 4426 // their operands in their corresponding predecessor blocks. 4427 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4428 auto *I = cast<Instruction>(U.getUser()); 4429 BasicBlock *BB = I->getParent(); 4430 if (auto *Phi = dyn_cast<PHINode>(I)) 4431 BB = Phi->getIncomingBlock( 4432 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4433 return BB == PredBB; 4434 }; 4435 4436 // Iteratively sink the scalarized operands of the predicated instruction 4437 // into the block we created for it. When an instruction is sunk, it's 4438 // operands are then added to the worklist. The algorithm ends after one pass 4439 // through the worklist doesn't sink a single instruction. 4440 bool Changed; 4441 do { 4442 // Add the instructions that need to be reanalyzed to the worklist, and 4443 // reset the changed indicator. 4444 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4445 InstsToReanalyze.clear(); 4446 Changed = false; 4447 4448 while (!Worklist.empty()) { 4449 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4450 4451 // We can't sink an instruction if it is a phi node, is already in the 4452 // predicated block, is not in the loop, or may have side effects. 4453 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4454 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4455 continue; 4456 4457 // It's legal to sink the instruction if all its uses occur in the 4458 // predicated block. Otherwise, there's nothing to do yet, and we may 4459 // need to reanalyze the instruction. 4460 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4461 InstsToReanalyze.push_back(I); 4462 continue; 4463 } 4464 4465 // Move the instruction to the beginning of the predicated block, and add 4466 // it's operands to the worklist. 4467 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4468 Worklist.insert(I->op_begin(), I->op_end()); 4469 4470 // The sinking may have enabled other instructions to be sunk, so we will 4471 // need to iterate. 4472 Changed = true; 4473 } 4474 } while (Changed); 4475 } 4476 4477 void InnerLoopVectorizer::fixNonInductionPHIs() { 4478 for (PHINode *OrigPhi : OrigPHIsToFix) { 4479 PHINode *NewPhi = 4480 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 4481 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 4482 4483 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 4484 predecessors(OrigPhi->getParent())); 4485 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 4486 predecessors(NewPhi->getParent())); 4487 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 4488 "Scalar and Vector BB should have the same number of predecessors"); 4489 4490 // The insertion point in Builder may be invalidated by the time we get 4491 // here. Force the Builder insertion point to something valid so that we do 4492 // not run into issues during insertion point restore in 4493 // getOrCreateVectorValue calls below. 4494 Builder.SetInsertPoint(NewPhi); 4495 4496 // The predecessor order is preserved and we can rely on mapping between 4497 // scalar and vector block predecessors. 4498 for (unsigned i = 0; i < NumIncomingValues; ++i) { 4499 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 4500 4501 // When looking up the new scalar/vector values to fix up, use incoming 4502 // values from original phi. 4503 Value *ScIncV = 4504 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 4505 4506 // Scalar incoming value may need a broadcast 4507 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 4508 NewPhi->addIncoming(NewIncV, NewPredBB); 4509 } 4510 } 4511 } 4512 4513 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4514 VPUser &Operands, unsigned UF, 4515 ElementCount VF, bool IsPtrLoopInvariant, 4516 SmallBitVector &IsIndexLoopInvariant, 4517 VPTransformState &State) { 4518 // Construct a vector GEP by widening the operands of the scalar GEP as 4519 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4520 // results in a vector of pointers when at least one operand of the GEP 4521 // is vector-typed. Thus, to keep the representation compact, we only use 4522 // vector-typed operands for loop-varying values. 4523 4524 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4525 // If we are vectorizing, but the GEP has only loop-invariant operands, 4526 // the GEP we build (by only using vector-typed operands for 4527 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4528 // produce a vector of pointers, we need to either arbitrarily pick an 4529 // operand to broadcast, or broadcast a clone of the original GEP. 4530 // Here, we broadcast a clone of the original. 4531 // 4532 // TODO: If at some point we decide to scalarize instructions having 4533 // loop-invariant operands, this special case will no longer be 4534 // required. We would add the scalarization decision to 4535 // collectLoopScalars() and teach getVectorValue() to broadcast 4536 // the lane-zero scalar value. 4537 auto *Clone = Builder.Insert(GEP->clone()); 4538 for (unsigned Part = 0; Part < UF; ++Part) { 4539 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4540 State.set(VPDef, GEP, EntryPart, Part); 4541 addMetadata(EntryPart, GEP); 4542 } 4543 } else { 4544 // If the GEP has at least one loop-varying operand, we are sure to 4545 // produce a vector of pointers. But if we are only unrolling, we want 4546 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4547 // produce with the code below will be scalar (if VF == 1) or vector 4548 // (otherwise). Note that for the unroll-only case, we still maintain 4549 // values in the vector mapping with initVector, as we do for other 4550 // instructions. 4551 for (unsigned Part = 0; Part < UF; ++Part) { 4552 // The pointer operand of the new GEP. If it's loop-invariant, we 4553 // won't broadcast it. 4554 auto *Ptr = IsPtrLoopInvariant ? State.get(Operands.getOperand(0), {0, 0}) 4555 : State.get(Operands.getOperand(0), Part); 4556 4557 // Collect all the indices for the new GEP. If any index is 4558 // loop-invariant, we won't broadcast it. 4559 SmallVector<Value *, 4> Indices; 4560 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4561 VPValue *Operand = Operands.getOperand(I); 4562 if (IsIndexLoopInvariant[I - 1]) 4563 Indices.push_back(State.get(Operand, {0, 0})); 4564 else 4565 Indices.push_back(State.get(Operand, Part)); 4566 } 4567 4568 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4569 // but it should be a vector, otherwise. 4570 auto *NewGEP = 4571 GEP->isInBounds() 4572 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4573 Indices) 4574 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4575 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4576 "NewGEP is not a pointer vector"); 4577 State.set(VPDef, GEP, NewGEP, Part); 4578 addMetadata(NewGEP, GEP); 4579 } 4580 } 4581 } 4582 4583 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4584 ElementCount VF) { 4585 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4586 PHINode *P = cast<PHINode>(PN); 4587 if (EnableVPlanNativePath) { 4588 // Currently we enter here in the VPlan-native path for non-induction 4589 // PHIs where all control flow is uniform. We simply widen these PHIs. 4590 // Create a vector phi with no operands - the vector phi operands will be 4591 // set at the end of vector code generation. 4592 Type *VecTy = 4593 (VF.isScalar()) ? PN->getType() : VectorType::get(PN->getType(), VF); 4594 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4595 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 4596 OrigPHIsToFix.push_back(P); 4597 4598 return; 4599 } 4600 4601 assert(PN->getParent() == OrigLoop->getHeader() && 4602 "Non-header phis should have been handled elsewhere"); 4603 4604 // In order to support recurrences we need to be able to vectorize Phi nodes. 4605 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4606 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4607 // this value when we vectorize all of the instructions that use the PHI. 4608 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4609 for (unsigned Part = 0; Part < UF; ++Part) { 4610 // This is phase one of vectorizing PHIs. 4611 bool ScalarPHI = 4612 (VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN)); 4613 Type *VecTy = 4614 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), VF); 4615 Value *EntryPart = PHINode::Create( 4616 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4617 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4618 } 4619 return; 4620 } 4621 4622 setDebugLocFromInst(Builder, P); 4623 4624 // This PHINode must be an induction variable. 4625 // Make sure that we know about it. 4626 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4627 4628 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4629 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4630 4631 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4632 // which can be found from the original scalar operations. 4633 switch (II.getKind()) { 4634 case InductionDescriptor::IK_NoInduction: 4635 llvm_unreachable("Unknown induction"); 4636 case InductionDescriptor::IK_IntInduction: 4637 case InductionDescriptor::IK_FpInduction: 4638 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4639 case InductionDescriptor::IK_PtrInduction: { 4640 // Handle the pointer induction variable case. 4641 assert(P->getType()->isPointerTy() && "Unexpected type."); 4642 4643 if (Cost->isScalarAfterVectorization(P, VF)) { 4644 // This is the normalized GEP that starts counting at zero. 4645 Value *PtrInd = 4646 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4647 // Determine the number of scalars we need to generate for each unroll 4648 // iteration. If the instruction is uniform, we only need to generate the 4649 // first lane. Otherwise, we generate all VF values. 4650 unsigned Lanes = 4651 Cost->isUniformAfterVectorization(P, VF) ? 1 : VF.getKnownMinValue(); 4652 for (unsigned Part = 0; Part < UF; ++Part) { 4653 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4654 Constant *Idx = ConstantInt::get(PtrInd->getType(), 4655 Lane + Part * VF.getKnownMinValue()); 4656 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4657 Value *SclrGep = 4658 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4659 SclrGep->setName("next.gep"); 4660 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4661 } 4662 } 4663 return; 4664 } 4665 assert(isa<SCEVConstant>(II.getStep()) && 4666 "Induction step not a SCEV constant!"); 4667 Type *PhiType = II.getStep()->getType(); 4668 4669 // Build a pointer phi 4670 Value *ScalarStartValue = II.getStartValue(); 4671 Type *ScStValueType = ScalarStartValue->getType(); 4672 PHINode *NewPointerPhi = 4673 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4674 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4675 4676 // A pointer induction, performed by using a gep 4677 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4678 Instruction *InductionLoc = LoopLatch->getTerminator(); 4679 const SCEV *ScalarStep = II.getStep(); 4680 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4681 Value *ScalarStepValue = 4682 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4683 Value *InductionGEP = GetElementPtrInst::Create( 4684 ScStValueType->getPointerElementType(), NewPointerPhi, 4685 Builder.CreateMul( 4686 ScalarStepValue, 4687 ConstantInt::get(PhiType, VF.getKnownMinValue() * UF)), 4688 "ptr.ind", InductionLoc); 4689 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4690 4691 // Create UF many actual address geps that use the pointer 4692 // phi as base and a vectorized version of the step value 4693 // (<step*0, ..., step*N>) as offset. 4694 for (unsigned Part = 0; Part < UF; ++Part) { 4695 SmallVector<Constant *, 8> Indices; 4696 // Create a vector of consecutive numbers from zero to VF. 4697 for (unsigned i = 0; i < VF.getKnownMinValue(); ++i) 4698 Indices.push_back( 4699 ConstantInt::get(PhiType, i + Part * VF.getKnownMinValue())); 4700 Constant *StartOffset = ConstantVector::get(Indices); 4701 4702 Value *GEP = Builder.CreateGEP( 4703 ScStValueType->getPointerElementType(), NewPointerPhi, 4704 Builder.CreateMul( 4705 StartOffset, 4706 Builder.CreateVectorSplat(VF.getKnownMinValue(), ScalarStepValue), 4707 "vector.gep")); 4708 VectorLoopValueMap.setVectorValue(P, Part, GEP); 4709 } 4710 } 4711 } 4712 } 4713 4714 /// A helper function for checking whether an integer division-related 4715 /// instruction may divide by zero (in which case it must be predicated if 4716 /// executed conditionally in the scalar code). 4717 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4718 /// Non-zero divisors that are non compile-time constants will not be 4719 /// converted into multiplication, so we will still end up scalarizing 4720 /// the division, but can do so w/o predication. 4721 static bool mayDivideByZero(Instruction &I) { 4722 assert((I.getOpcode() == Instruction::UDiv || 4723 I.getOpcode() == Instruction::SDiv || 4724 I.getOpcode() == Instruction::URem || 4725 I.getOpcode() == Instruction::SRem) && 4726 "Unexpected instruction"); 4727 Value *Divisor = I.getOperand(1); 4728 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4729 return !CInt || CInt->isZero(); 4730 } 4731 4732 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4733 VPUser &User, 4734 VPTransformState &State) { 4735 switch (I.getOpcode()) { 4736 case Instruction::Call: 4737 case Instruction::Br: 4738 case Instruction::PHI: 4739 case Instruction::GetElementPtr: 4740 case Instruction::Select: 4741 llvm_unreachable("This instruction is handled by a different recipe."); 4742 case Instruction::UDiv: 4743 case Instruction::SDiv: 4744 case Instruction::SRem: 4745 case Instruction::URem: 4746 case Instruction::Add: 4747 case Instruction::FAdd: 4748 case Instruction::Sub: 4749 case Instruction::FSub: 4750 case Instruction::FNeg: 4751 case Instruction::Mul: 4752 case Instruction::FMul: 4753 case Instruction::FDiv: 4754 case Instruction::FRem: 4755 case Instruction::Shl: 4756 case Instruction::LShr: 4757 case Instruction::AShr: 4758 case Instruction::And: 4759 case Instruction::Or: 4760 case Instruction::Xor: { 4761 // Just widen unops and binops. 4762 setDebugLocFromInst(Builder, &I); 4763 4764 for (unsigned Part = 0; Part < UF; ++Part) { 4765 SmallVector<Value *, 2> Ops; 4766 for (VPValue *VPOp : User.operands()) 4767 Ops.push_back(State.get(VPOp, Part)); 4768 4769 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4770 4771 if (auto *VecOp = dyn_cast<Instruction>(V)) 4772 VecOp->copyIRFlags(&I); 4773 4774 // Use this vector value for all users of the original instruction. 4775 State.set(Def, &I, V, Part); 4776 addMetadata(V, &I); 4777 } 4778 4779 break; 4780 } 4781 case Instruction::ICmp: 4782 case Instruction::FCmp: { 4783 // Widen compares. Generate vector compares. 4784 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4785 auto *Cmp = cast<CmpInst>(&I); 4786 setDebugLocFromInst(Builder, Cmp); 4787 for (unsigned Part = 0; Part < UF; ++Part) { 4788 Value *A = State.get(User.getOperand(0), Part); 4789 Value *B = State.get(User.getOperand(1), Part); 4790 Value *C = nullptr; 4791 if (FCmp) { 4792 // Propagate fast math flags. 4793 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4794 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4795 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4796 } else { 4797 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4798 } 4799 State.set(Def, &I, C, Part); 4800 addMetadata(C, &I); 4801 } 4802 4803 break; 4804 } 4805 4806 case Instruction::ZExt: 4807 case Instruction::SExt: 4808 case Instruction::FPToUI: 4809 case Instruction::FPToSI: 4810 case Instruction::FPExt: 4811 case Instruction::PtrToInt: 4812 case Instruction::IntToPtr: 4813 case Instruction::SIToFP: 4814 case Instruction::UIToFP: 4815 case Instruction::Trunc: 4816 case Instruction::FPTrunc: 4817 case Instruction::BitCast: { 4818 auto *CI = cast<CastInst>(&I); 4819 setDebugLocFromInst(Builder, CI); 4820 4821 /// Vectorize casts. 4822 Type *DestTy = 4823 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 4824 4825 for (unsigned Part = 0; Part < UF; ++Part) { 4826 Value *A = State.get(User.getOperand(0), Part); 4827 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4828 State.set(Def, &I, Cast, Part); 4829 addMetadata(Cast, &I); 4830 } 4831 break; 4832 } 4833 default: 4834 // This instruction is not vectorized by simple widening. 4835 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4836 llvm_unreachable("Unhandled instruction!"); 4837 } // end of switch. 4838 } 4839 4840 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4841 VPUser &ArgOperands, 4842 VPTransformState &State) { 4843 assert(!isa<DbgInfoIntrinsic>(I) && 4844 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4845 setDebugLocFromInst(Builder, &I); 4846 4847 Module *M = I.getParent()->getParent()->getParent(); 4848 auto *CI = cast<CallInst>(&I); 4849 4850 SmallVector<Type *, 4> Tys; 4851 for (Value *ArgOperand : CI->arg_operands()) 4852 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4853 4854 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4855 4856 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4857 // version of the instruction. 4858 // Is it beneficial to perform intrinsic call compared to lib call? 4859 bool NeedToScalarize = false; 4860 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4861 bool UseVectorIntrinsic = 4862 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4863 assert((UseVectorIntrinsic || !NeedToScalarize) && 4864 "Instruction should be scalarized elsewhere."); 4865 4866 for (unsigned Part = 0; Part < UF; ++Part) { 4867 SmallVector<Value *, 4> Args; 4868 for (auto &I : enumerate(ArgOperands.operands())) { 4869 // Some intrinsics have a scalar argument - don't replace it with a 4870 // vector. 4871 Value *Arg; 4872 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4873 Arg = State.get(I.value(), Part); 4874 else 4875 Arg = State.get(I.value(), {0, 0}); 4876 Args.push_back(Arg); 4877 } 4878 4879 Function *VectorF; 4880 if (UseVectorIntrinsic) { 4881 // Use vector version of the intrinsic. 4882 Type *TysForDecl[] = {CI->getType()}; 4883 if (VF.isVector()) { 4884 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 4885 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4886 } 4887 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4888 assert(VectorF && "Can't retrieve vector intrinsic."); 4889 } else { 4890 // Use vector version of the function call. 4891 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4892 #ifndef NDEBUG 4893 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4894 "Can't create vector function."); 4895 #endif 4896 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4897 } 4898 SmallVector<OperandBundleDef, 1> OpBundles; 4899 CI->getOperandBundlesAsDefs(OpBundles); 4900 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4901 4902 if (isa<FPMathOperator>(V)) 4903 V->copyFastMathFlags(CI); 4904 4905 State.set(Def, &I, V, Part); 4906 addMetadata(V, &I); 4907 } 4908 } 4909 4910 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 4911 VPUser &Operands, 4912 bool InvariantCond, 4913 VPTransformState &State) { 4914 setDebugLocFromInst(Builder, &I); 4915 4916 // The condition can be loop invariant but still defined inside the 4917 // loop. This means that we can't just use the original 'cond' value. 4918 // We have to take the 'vectorized' value and pick the first lane. 4919 // Instcombine will make this a no-op. 4920 auto *InvarCond = 4921 InvariantCond ? State.get(Operands.getOperand(0), {0, 0}) : nullptr; 4922 4923 for (unsigned Part = 0; Part < UF; ++Part) { 4924 Value *Cond = 4925 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 4926 Value *Op0 = State.get(Operands.getOperand(1), Part); 4927 Value *Op1 = State.get(Operands.getOperand(2), Part); 4928 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 4929 State.set(VPDef, &I, Sel, Part); 4930 addMetadata(Sel, &I); 4931 } 4932 } 4933 4934 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4935 // We should not collect Scalars more than once per VF. Right now, this 4936 // function is called from collectUniformsAndScalars(), which already does 4937 // this check. Collecting Scalars for VF=1 does not make any sense. 4938 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4939 "This function should not be visited twice for the same VF"); 4940 4941 SmallSetVector<Instruction *, 8> Worklist; 4942 4943 // These sets are used to seed the analysis with pointers used by memory 4944 // accesses that will remain scalar. 4945 SmallSetVector<Instruction *, 8> ScalarPtrs; 4946 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4947 auto *Latch = TheLoop->getLoopLatch(); 4948 4949 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4950 // The pointer operands of loads and stores will be scalar as long as the 4951 // memory access is not a gather or scatter operation. The value operand of a 4952 // store will remain scalar if the store is scalarized. 4953 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4954 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4955 assert(WideningDecision != CM_Unknown && 4956 "Widening decision should be ready at this moment"); 4957 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4958 if (Ptr == Store->getValueOperand()) 4959 return WideningDecision == CM_Scalarize; 4960 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4961 "Ptr is neither a value or pointer operand"); 4962 return WideningDecision != CM_GatherScatter; 4963 }; 4964 4965 // A helper that returns true if the given value is a bitcast or 4966 // getelementptr instruction contained in the loop. 4967 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4968 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4969 isa<GetElementPtrInst>(V)) && 4970 !TheLoop->isLoopInvariant(V); 4971 }; 4972 4973 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 4974 if (!isa<PHINode>(Ptr) || 4975 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 4976 return false; 4977 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 4978 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 4979 return false; 4980 return isScalarUse(MemAccess, Ptr); 4981 }; 4982 4983 // A helper that evaluates a memory access's use of a pointer. If the 4984 // pointer is actually the pointer induction of a loop, it is being 4985 // inserted into Worklist. If the use will be a scalar use, and the 4986 // pointer is only used by memory accesses, we place the pointer in 4987 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 4988 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4989 if (isScalarPtrInduction(MemAccess, Ptr)) { 4990 Worklist.insert(cast<Instruction>(Ptr)); 4991 Instruction *Update = cast<Instruction>( 4992 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 4993 Worklist.insert(Update); 4994 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 4995 << "\n"); 4996 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 4997 << "\n"); 4998 return; 4999 } 5000 // We only care about bitcast and getelementptr instructions contained in 5001 // the loop. 5002 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5003 return; 5004 5005 // If the pointer has already been identified as scalar (e.g., if it was 5006 // also identified as uniform), there's nothing to do. 5007 auto *I = cast<Instruction>(Ptr); 5008 if (Worklist.count(I)) 5009 return; 5010 5011 // If the use of the pointer will be a scalar use, and all users of the 5012 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5013 // place the pointer in PossibleNonScalarPtrs. 5014 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5015 return isa<LoadInst>(U) || isa<StoreInst>(U); 5016 })) 5017 ScalarPtrs.insert(I); 5018 else 5019 PossibleNonScalarPtrs.insert(I); 5020 }; 5021 5022 // We seed the scalars analysis with three classes of instructions: (1) 5023 // instructions marked uniform-after-vectorization and (2) bitcast, 5024 // getelementptr and (pointer) phi instructions used by memory accesses 5025 // requiring a scalar use. 5026 // 5027 // (1) Add to the worklist all instructions that have been identified as 5028 // uniform-after-vectorization. 5029 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5030 5031 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5032 // memory accesses requiring a scalar use. The pointer operands of loads and 5033 // stores will be scalar as long as the memory accesses is not a gather or 5034 // scatter operation. The value operand of a store will remain scalar if the 5035 // store is scalarized. 5036 for (auto *BB : TheLoop->blocks()) 5037 for (auto &I : *BB) { 5038 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5039 evaluatePtrUse(Load, Load->getPointerOperand()); 5040 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5041 evaluatePtrUse(Store, Store->getPointerOperand()); 5042 evaluatePtrUse(Store, Store->getValueOperand()); 5043 } 5044 } 5045 for (auto *I : ScalarPtrs) 5046 if (!PossibleNonScalarPtrs.count(I)) { 5047 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5048 Worklist.insert(I); 5049 } 5050 5051 // Insert the forced scalars. 5052 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5053 // induction variable when the PHI user is scalarized. 5054 auto ForcedScalar = ForcedScalars.find(VF); 5055 if (ForcedScalar != ForcedScalars.end()) 5056 for (auto *I : ForcedScalar->second) 5057 Worklist.insert(I); 5058 5059 // Expand the worklist by looking through any bitcasts and getelementptr 5060 // instructions we've already identified as scalar. This is similar to the 5061 // expansion step in collectLoopUniforms(); however, here we're only 5062 // expanding to include additional bitcasts and getelementptr instructions. 5063 unsigned Idx = 0; 5064 while (Idx != Worklist.size()) { 5065 Instruction *Dst = Worklist[Idx++]; 5066 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5067 continue; 5068 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5069 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5070 auto *J = cast<Instruction>(U); 5071 return !TheLoop->contains(J) || Worklist.count(J) || 5072 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5073 isScalarUse(J, Src)); 5074 })) { 5075 Worklist.insert(Src); 5076 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5077 } 5078 } 5079 5080 // An induction variable will remain scalar if all users of the induction 5081 // variable and induction variable update remain scalar. 5082 for (auto &Induction : Legal->getInductionVars()) { 5083 auto *Ind = Induction.first; 5084 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5085 5086 // If tail-folding is applied, the primary induction variable will be used 5087 // to feed a vector compare. 5088 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 5089 continue; 5090 5091 // Determine if all users of the induction variable are scalar after 5092 // vectorization. 5093 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5094 auto *I = cast<Instruction>(U); 5095 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5096 }); 5097 if (!ScalarInd) 5098 continue; 5099 5100 // Determine if all users of the induction variable update instruction are 5101 // scalar after vectorization. 5102 auto ScalarIndUpdate = 5103 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5104 auto *I = cast<Instruction>(U); 5105 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5106 }); 5107 if (!ScalarIndUpdate) 5108 continue; 5109 5110 // The induction variable and its update instruction will remain scalar. 5111 Worklist.insert(Ind); 5112 Worklist.insert(IndUpdate); 5113 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5114 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 5115 << "\n"); 5116 } 5117 5118 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5119 } 5120 5121 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, 5122 ElementCount VF) { 5123 if (!blockNeedsPredication(I->getParent())) 5124 return false; 5125 switch(I->getOpcode()) { 5126 default: 5127 break; 5128 case Instruction::Load: 5129 case Instruction::Store: { 5130 if (!Legal->isMaskRequired(I)) 5131 return false; 5132 auto *Ptr = getLoadStorePointerOperand(I); 5133 auto *Ty = getMemInstValueType(I); 5134 // We have already decided how to vectorize this instruction, get that 5135 // result. 5136 if (VF.isVector()) { 5137 InstWidening WideningDecision = getWideningDecision(I, VF); 5138 assert(WideningDecision != CM_Unknown && 5139 "Widening decision should be ready at this moment"); 5140 return WideningDecision == CM_Scalarize; 5141 } 5142 const Align Alignment = getLoadStoreAlignment(I); 5143 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 5144 isLegalMaskedGather(Ty, Alignment)) 5145 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 5146 isLegalMaskedScatter(Ty, Alignment)); 5147 } 5148 case Instruction::UDiv: 5149 case Instruction::SDiv: 5150 case Instruction::SRem: 5151 case Instruction::URem: 5152 return mayDivideByZero(*I); 5153 } 5154 return false; 5155 } 5156 5157 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5158 Instruction *I, ElementCount VF) { 5159 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5160 assert(getWideningDecision(I, VF) == CM_Unknown && 5161 "Decision should not be set yet."); 5162 auto *Group = getInterleavedAccessGroup(I); 5163 assert(Group && "Must have a group."); 5164 5165 // If the instruction's allocated size doesn't equal it's type size, it 5166 // requires padding and will be scalarized. 5167 auto &DL = I->getModule()->getDataLayout(); 5168 auto *ScalarTy = getMemInstValueType(I); 5169 if (hasIrregularType(ScalarTy, DL, VF)) 5170 return false; 5171 5172 // Check if masking is required. 5173 // A Group may need masking for one of two reasons: it resides in a block that 5174 // needs predication, or it was decided to use masking to deal with gaps. 5175 bool PredicatedAccessRequiresMasking = 5176 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 5177 bool AccessWithGapsRequiresMasking = 5178 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5179 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 5180 return true; 5181 5182 // If masked interleaving is required, we expect that the user/target had 5183 // enabled it, because otherwise it either wouldn't have been created or 5184 // it should have been invalidated by the CostModel. 5185 assert(useMaskedInterleavedAccesses(TTI) && 5186 "Masked interleave-groups for predicated accesses are not enabled."); 5187 5188 auto *Ty = getMemInstValueType(I); 5189 const Align Alignment = getLoadStoreAlignment(I); 5190 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5191 : TTI.isLegalMaskedStore(Ty, Alignment); 5192 } 5193 5194 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5195 Instruction *I, ElementCount VF) { 5196 // Get and ensure we have a valid memory instruction. 5197 LoadInst *LI = dyn_cast<LoadInst>(I); 5198 StoreInst *SI = dyn_cast<StoreInst>(I); 5199 assert((LI || SI) && "Invalid memory instruction"); 5200 5201 auto *Ptr = getLoadStorePointerOperand(I); 5202 5203 // In order to be widened, the pointer should be consecutive, first of all. 5204 if (!Legal->isConsecutivePtr(Ptr)) 5205 return false; 5206 5207 // If the instruction is a store located in a predicated block, it will be 5208 // scalarized. 5209 if (isScalarWithPredication(I)) 5210 return false; 5211 5212 // If the instruction's allocated size doesn't equal it's type size, it 5213 // requires padding and will be scalarized. 5214 auto &DL = I->getModule()->getDataLayout(); 5215 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5216 if (hasIrregularType(ScalarTy, DL, VF)) 5217 return false; 5218 5219 return true; 5220 } 5221 5222 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5223 // We should not collect Uniforms more than once per VF. Right now, 5224 // this function is called from collectUniformsAndScalars(), which 5225 // already does this check. Collecting Uniforms for VF=1 does not make any 5226 // sense. 5227 5228 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5229 "This function should not be visited twice for the same VF"); 5230 5231 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5232 // not analyze again. Uniforms.count(VF) will return 1. 5233 Uniforms[VF].clear(); 5234 5235 // We now know that the loop is vectorizable! 5236 // Collect instructions inside the loop that will remain uniform after 5237 // vectorization. 5238 5239 // Global values, params and instructions outside of current loop are out of 5240 // scope. 5241 auto isOutOfScope = [&](Value *V) -> bool { 5242 Instruction *I = dyn_cast<Instruction>(V); 5243 return (!I || !TheLoop->contains(I)); 5244 }; 5245 5246 SetVector<Instruction *> Worklist; 5247 BasicBlock *Latch = TheLoop->getLoopLatch(); 5248 5249 // Instructions that are scalar with predication must not be considered 5250 // uniform after vectorization, because that would create an erroneous 5251 // replicating region where only a single instance out of VF should be formed. 5252 // TODO: optimize such seldom cases if found important, see PR40816. 5253 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5254 if (isOutOfScope(I)) { 5255 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5256 << *I << "\n"); 5257 return; 5258 } 5259 if (isScalarWithPredication(I, VF)) { 5260 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5261 << *I << "\n"); 5262 return; 5263 } 5264 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5265 Worklist.insert(I); 5266 }; 5267 5268 // Start with the conditional branch. If the branch condition is an 5269 // instruction contained in the loop that is only used by the branch, it is 5270 // uniform. 5271 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5272 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5273 addToWorklistIfAllowed(Cmp); 5274 5275 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5276 InstWidening WideningDecision = getWideningDecision(I, VF); 5277 assert(WideningDecision != CM_Unknown && 5278 "Widening decision should be ready at this moment"); 5279 5280 // A uniform memory op is itself uniform. We exclude uniform stores 5281 // here as they demand the last lane, not the first one. 5282 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5283 assert(WideningDecision == CM_Scalarize); 5284 return true; 5285 } 5286 5287 return (WideningDecision == CM_Widen || 5288 WideningDecision == CM_Widen_Reverse || 5289 WideningDecision == CM_Interleave); 5290 }; 5291 5292 5293 // Returns true if Ptr is the pointer operand of a memory access instruction 5294 // I, and I is known to not require scalarization. 5295 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5296 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5297 }; 5298 5299 // Holds a list of values which are known to have at least one uniform use. 5300 // Note that there may be other uses which aren't uniform. A "uniform use" 5301 // here is something which only demands lane 0 of the unrolled iterations; 5302 // it does not imply that all lanes produce the same value (e.g. this is not 5303 // the usual meaning of uniform) 5304 SmallPtrSet<Value *, 8> HasUniformUse; 5305 5306 // Scan the loop for instructions which are either a) known to have only 5307 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5308 for (auto *BB : TheLoop->blocks()) 5309 for (auto &I : *BB) { 5310 // If there's no pointer operand, there's nothing to do. 5311 auto *Ptr = getLoadStorePointerOperand(&I); 5312 if (!Ptr) 5313 continue; 5314 5315 // A uniform memory op is itself uniform. We exclude uniform stores 5316 // here as they demand the last lane, not the first one. 5317 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5318 addToWorklistIfAllowed(&I); 5319 5320 if (isUniformDecision(&I, VF)) { 5321 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5322 HasUniformUse.insert(Ptr); 5323 } 5324 } 5325 5326 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5327 // demanding) users. Since loops are assumed to be in LCSSA form, this 5328 // disallows uses outside the loop as well. 5329 for (auto *V : HasUniformUse) { 5330 if (isOutOfScope(V)) 5331 continue; 5332 auto *I = cast<Instruction>(V); 5333 auto UsersAreMemAccesses = 5334 llvm::all_of(I->users(), [&](User *U) -> bool { 5335 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5336 }); 5337 if (UsersAreMemAccesses) 5338 addToWorklistIfAllowed(I); 5339 } 5340 5341 // Expand Worklist in topological order: whenever a new instruction 5342 // is added , its users should be already inside Worklist. It ensures 5343 // a uniform instruction will only be used by uniform instructions. 5344 unsigned idx = 0; 5345 while (idx != Worklist.size()) { 5346 Instruction *I = Worklist[idx++]; 5347 5348 for (auto OV : I->operand_values()) { 5349 // isOutOfScope operands cannot be uniform instructions. 5350 if (isOutOfScope(OV)) 5351 continue; 5352 // First order recurrence Phi's should typically be considered 5353 // non-uniform. 5354 auto *OP = dyn_cast<PHINode>(OV); 5355 if (OP && Legal->isFirstOrderRecurrence(OP)) 5356 continue; 5357 // If all the users of the operand are uniform, then add the 5358 // operand into the uniform worklist. 5359 auto *OI = cast<Instruction>(OV); 5360 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5361 auto *J = cast<Instruction>(U); 5362 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5363 })) 5364 addToWorklistIfAllowed(OI); 5365 } 5366 } 5367 5368 // For an instruction to be added into Worklist above, all its users inside 5369 // the loop should also be in Worklist. However, this condition cannot be 5370 // true for phi nodes that form a cyclic dependence. We must process phi 5371 // nodes separately. An induction variable will remain uniform if all users 5372 // of the induction variable and induction variable update remain uniform. 5373 // The code below handles both pointer and non-pointer induction variables. 5374 for (auto &Induction : Legal->getInductionVars()) { 5375 auto *Ind = Induction.first; 5376 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5377 5378 // Determine if all users of the induction variable are uniform after 5379 // vectorization. 5380 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5381 auto *I = cast<Instruction>(U); 5382 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5383 isVectorizedMemAccessUse(I, Ind); 5384 }); 5385 if (!UniformInd) 5386 continue; 5387 5388 // Determine if all users of the induction variable update instruction are 5389 // uniform after vectorization. 5390 auto UniformIndUpdate = 5391 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5392 auto *I = cast<Instruction>(U); 5393 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5394 isVectorizedMemAccessUse(I, IndUpdate); 5395 }); 5396 if (!UniformIndUpdate) 5397 continue; 5398 5399 // The induction variable and its update instruction will remain uniform. 5400 addToWorklistIfAllowed(Ind); 5401 addToWorklistIfAllowed(IndUpdate); 5402 } 5403 5404 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5405 } 5406 5407 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5408 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5409 5410 if (Legal->getRuntimePointerChecking()->Need) { 5411 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5412 "runtime pointer checks needed. Enable vectorization of this " 5413 "loop with '#pragma clang loop vectorize(enable)' when " 5414 "compiling with -Os/-Oz", 5415 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5416 return true; 5417 } 5418 5419 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5420 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5421 "runtime SCEV checks needed. Enable vectorization of this " 5422 "loop with '#pragma clang loop vectorize(enable)' when " 5423 "compiling with -Os/-Oz", 5424 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5425 return true; 5426 } 5427 5428 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5429 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5430 reportVectorizationFailure("Runtime stride check for small trip count", 5431 "runtime stride == 1 checks needed. Enable vectorization of " 5432 "this loop without such check by compiling with -Os/-Oz", 5433 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5434 return true; 5435 } 5436 5437 return false; 5438 } 5439 5440 Optional<ElementCount> 5441 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5442 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5443 // TODO: It may by useful to do since it's still likely to be dynamically 5444 // uniform if the target can skip. 5445 reportVectorizationFailure( 5446 "Not inserting runtime ptr check for divergent target", 5447 "runtime pointer checks needed. Not enabled for divergent target", 5448 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5449 return None; 5450 } 5451 5452 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5453 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5454 if (TC == 1) { 5455 reportVectorizationFailure("Single iteration (non) loop", 5456 "loop trip count is one, irrelevant for vectorization", 5457 "SingleIterationLoop", ORE, TheLoop); 5458 return None; 5459 } 5460 5461 ElementCount MaxVF = computeFeasibleMaxVF(TC, UserVF); 5462 5463 switch (ScalarEpilogueStatus) { 5464 case CM_ScalarEpilogueAllowed: 5465 return MaxVF; 5466 case CM_ScalarEpilogueNotNeededUsePredicate: 5467 LLVM_DEBUG( 5468 dbgs() << "LV: vector predicate hint/switch found.\n" 5469 << "LV: Not allowing scalar epilogue, creating predicated " 5470 << "vector loop.\n"); 5471 break; 5472 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5473 // fallthrough as a special case of OptForSize 5474 case CM_ScalarEpilogueNotAllowedOptSize: 5475 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5476 LLVM_DEBUG( 5477 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5478 else 5479 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5480 << "count.\n"); 5481 5482 // Bail if runtime checks are required, which are not good when optimising 5483 // for size. 5484 if (runtimeChecksRequired()) 5485 return None; 5486 break; 5487 } 5488 5489 // Now try the tail folding 5490 5491 // Invalidate interleave groups that require an epilogue if we can't mask 5492 // the interleave-group. 5493 if (!useMaskedInterleavedAccesses(TTI)) { 5494 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5495 "No decisions should have been taken at this point"); 5496 // Note: There is no need to invalidate any cost modeling decisions here, as 5497 // non where taken so far. 5498 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5499 } 5500 5501 assert(!MaxVF.isScalable() && 5502 "Scalable vectors do not yet support tail folding"); 5503 assert((UserVF.isNonZero() || isPowerOf2_32(MaxVF.getFixedValue())) && 5504 "MaxVF must be a power of 2"); 5505 unsigned MaxVFtimesIC = 5506 UserIC ? MaxVF.getFixedValue() * UserIC : MaxVF.getFixedValue(); 5507 if (TC > 0 && TC % MaxVFtimesIC == 0) { 5508 // Accept MaxVF if we do not have a tail. 5509 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5510 return MaxVF; 5511 } 5512 5513 // If we don't know the precise trip count, or if the trip count that we 5514 // found modulo the vectorization factor is not zero, try to fold the tail 5515 // by masking. 5516 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5517 if (Legal->prepareToFoldTailByMasking()) { 5518 FoldTailByMasking = true; 5519 return MaxVF; 5520 } 5521 5522 // If there was a tail-folding hint/switch, but we can't fold the tail by 5523 // masking, fallback to a vectorization with a scalar epilogue. 5524 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5525 if (PreferPredicateOverEpilogue == PreferPredicateTy::PredicateOrDontVectorize) { 5526 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5527 return None; 5528 } 5529 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5530 "scalar epilogue instead.\n"); 5531 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5532 return MaxVF; 5533 } 5534 5535 if (TC == 0) { 5536 reportVectorizationFailure( 5537 "Unable to calculate the loop count due to complex control flow", 5538 "unable to calculate the loop count due to complex control flow", 5539 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5540 return None; 5541 } 5542 5543 reportVectorizationFailure( 5544 "Cannot optimize for size and vectorize at the same time.", 5545 "cannot optimize for size and vectorize at the same time. " 5546 "Enable vectorization of this loop with '#pragma clang loop " 5547 "vectorize(enable)' when compiling with -Os/-Oz", 5548 "NoTailLoopWithOptForSize", ORE, TheLoop); 5549 return None; 5550 } 5551 5552 ElementCount 5553 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5554 ElementCount UserVF) { 5555 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5556 unsigned SmallestType, WidestType; 5557 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5558 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5559 5560 // Get the maximum safe dependence distance in bits computed by LAA. 5561 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5562 // the memory accesses that is most restrictive (involved in the smallest 5563 // dependence distance). 5564 unsigned MaxSafeVectorWidthInBits = Legal->getMaxSafeVectorWidthInBits(); 5565 5566 if (UserVF.isNonZero()) { 5567 // For now, don't verify legality of scalable vectors. 5568 // This will be addressed properly in https://reviews.llvm.org/D91718. 5569 if (UserVF.isScalable()) 5570 return UserVF; 5571 5572 // If legally unsafe, clamp the user vectorization factor to a safe value. 5573 unsigned MaxSafeVF = PowerOf2Floor(MaxSafeVectorWidthInBits / WidestType); 5574 if (UserVF.getFixedValue() <= MaxSafeVF) 5575 return UserVF; 5576 5577 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5578 << " is unsafe, clamping to max safe VF=" << MaxSafeVF 5579 << ".\n"); 5580 ORE->emit([&]() { 5581 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5582 TheLoop->getStartLoc(), 5583 TheLoop->getHeader()) 5584 << "User-specified vectorization factor " 5585 << ore::NV("UserVectorizationFactor", UserVF) 5586 << " is unsafe, clamping to maximum safe vectorization factor " 5587 << ore::NV("VectorizationFactor", MaxSafeVF); 5588 }); 5589 return ElementCount::getFixed(MaxSafeVF); 5590 } 5591 5592 WidestRegister = std::min(WidestRegister, MaxSafeVectorWidthInBits); 5593 5594 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5595 // Note that both WidestRegister and WidestType may not be a powers of 2. 5596 unsigned MaxVectorSize = PowerOf2Floor(WidestRegister / WidestType); 5597 5598 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5599 << " / " << WidestType << " bits.\n"); 5600 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5601 << WidestRegister << " bits.\n"); 5602 5603 assert(MaxVectorSize <= WidestRegister && 5604 "Did not expect to pack so many elements" 5605 " into one vector!"); 5606 if (MaxVectorSize == 0) { 5607 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5608 MaxVectorSize = 1; 5609 return ElementCount::getFixed(MaxVectorSize); 5610 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 5611 isPowerOf2_32(ConstTripCount)) { 5612 // We need to clamp the VF to be the ConstTripCount. There is no point in 5613 // choosing a higher viable VF as done in the loop below. 5614 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5615 << ConstTripCount << "\n"); 5616 MaxVectorSize = ConstTripCount; 5617 return ElementCount::getFixed(MaxVectorSize); 5618 } 5619 5620 unsigned MaxVF = MaxVectorSize; 5621 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5622 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5623 // Collect all viable vectorization factors larger than the default MaxVF 5624 // (i.e. MaxVectorSize). 5625 SmallVector<ElementCount, 8> VFs; 5626 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5627 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5628 VFs.push_back(ElementCount::getFixed(VS)); 5629 5630 // For each VF calculate its register usage. 5631 auto RUs = calculateRegisterUsage(VFs); 5632 5633 // Select the largest VF which doesn't require more registers than existing 5634 // ones. 5635 for (int i = RUs.size() - 1; i >= 0; --i) { 5636 bool Selected = true; 5637 for (auto& pair : RUs[i].MaxLocalUsers) { 5638 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5639 if (pair.second > TargetNumRegisters) 5640 Selected = false; 5641 } 5642 if (Selected) { 5643 MaxVF = VFs[i].getKnownMinValue(); 5644 break; 5645 } 5646 } 5647 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5648 if (MaxVF < MinVF) { 5649 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5650 << ") with target's minimum: " << MinVF << '\n'); 5651 MaxVF = MinVF; 5652 } 5653 } 5654 } 5655 return ElementCount::getFixed(MaxVF); 5656 } 5657 5658 VectorizationFactor 5659 LoopVectorizationCostModel::selectVectorizationFactor(ElementCount MaxVF) { 5660 // FIXME: This can be fixed for scalable vectors later, because at this stage 5661 // the LoopVectorizer will only consider vectorizing a loop with scalable 5662 // vectors when the loop has a hint to enable vectorization for a given VF. 5663 assert(!MaxVF.isScalable() && "scalable vectors not yet supported"); 5664 5665 float Cost = expectedCost(ElementCount::getFixed(1)).first; 5666 const float ScalarCost = Cost; 5667 unsigned Width = 1; 5668 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5669 5670 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5671 if (ForceVectorization && MaxVF.isVector()) { 5672 // Ignore scalar width, because the user explicitly wants vectorization. 5673 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5674 // evaluation. 5675 Cost = std::numeric_limits<float>::max(); 5676 } 5677 5678 for (unsigned i = 2; i <= MaxVF.getFixedValue(); i *= 2) { 5679 // Notice that the vector loop needs to be executed less times, so 5680 // we need to divide the cost of the vector loops by the width of 5681 // the vector elements. 5682 VectorizationCostTy C = expectedCost(ElementCount::getFixed(i)); 5683 float VectorCost = C.first / (float)i; 5684 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5685 << " costs: " << (int)VectorCost << ".\n"); 5686 if (!C.second && !ForceVectorization) { 5687 LLVM_DEBUG( 5688 dbgs() << "LV: Not considering vector loop of width " << i 5689 << " because it will not generate any vector instructions.\n"); 5690 continue; 5691 } 5692 5693 // If profitable add it to ProfitableVF list. 5694 if (VectorCost < ScalarCost) { 5695 ProfitableVFs.push_back(VectorizationFactor( 5696 {ElementCount::getFixed(i), (unsigned)VectorCost})); 5697 } 5698 5699 if (VectorCost < Cost) { 5700 Cost = VectorCost; 5701 Width = i; 5702 } 5703 } 5704 5705 if (!EnableCondStoresVectorization && NumPredStores) { 5706 reportVectorizationFailure("There are conditional stores.", 5707 "store that is conditionally executed prevents vectorization", 5708 "ConditionalStore", ORE, TheLoop); 5709 Width = 1; 5710 Cost = ScalarCost; 5711 } 5712 5713 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5714 << "LV: Vectorization seems to be not beneficial, " 5715 << "but was forced by a user.\n"); 5716 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5717 VectorizationFactor Factor = {ElementCount::getFixed(Width), 5718 (unsigned)(Width * Cost)}; 5719 return Factor; 5720 } 5721 5722 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5723 const Loop &L, ElementCount VF) const { 5724 // Cross iteration phis such as reductions need special handling and are 5725 // currently unsupported. 5726 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 5727 return Legal->isFirstOrderRecurrence(&Phi) || 5728 Legal->isReductionVariable(&Phi); 5729 })) 5730 return false; 5731 5732 // Phis with uses outside of the loop require special handling and are 5733 // currently unsupported. 5734 for (auto &Entry : Legal->getInductionVars()) { 5735 // Look for uses of the value of the induction at the last iteration. 5736 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5737 for (User *U : PostInc->users()) 5738 if (!L.contains(cast<Instruction>(U))) 5739 return false; 5740 // Look for uses of penultimate value of the induction. 5741 for (User *U : Entry.first->users()) 5742 if (!L.contains(cast<Instruction>(U))) 5743 return false; 5744 } 5745 5746 // Induction variables that are widened require special handling that is 5747 // currently not supported. 5748 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5749 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5750 this->isProfitableToScalarize(Entry.first, VF)); 5751 })) 5752 return false; 5753 5754 return true; 5755 } 5756 5757 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5758 const ElementCount VF) const { 5759 // FIXME: We need a much better cost-model to take different parameters such 5760 // as register pressure, code size increase and cost of extra branches into 5761 // account. For now we apply a very crude heuristic and only consider loops 5762 // with vectorization factors larger than a certain value. 5763 // We also consider epilogue vectorization unprofitable for targets that don't 5764 // consider interleaving beneficial (eg. MVE). 5765 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5766 return false; 5767 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 5768 return true; 5769 return false; 5770 } 5771 5772 VectorizationFactor 5773 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5774 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5775 VectorizationFactor Result = VectorizationFactor::Disabled(); 5776 if (!EnableEpilogueVectorization) { 5777 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5778 return Result; 5779 } 5780 5781 if (!isScalarEpilogueAllowed()) { 5782 LLVM_DEBUG( 5783 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5784 "allowed.\n";); 5785 return Result; 5786 } 5787 5788 // Not really a cost consideration, but check for unsupported cases here to 5789 // simplify the logic. 5790 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5791 LLVM_DEBUG( 5792 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5793 "not a supported candidate.\n";); 5794 return Result; 5795 } 5796 5797 if (EpilogueVectorizationForceVF > 1) { 5798 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5799 if (LVP.hasPlanWithVFs( 5800 {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)})) 5801 return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0}; 5802 else { 5803 LLVM_DEBUG( 5804 dbgs() 5805 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5806 return Result; 5807 } 5808 } 5809 5810 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5811 TheLoop->getHeader()->getParent()->hasMinSize()) { 5812 LLVM_DEBUG( 5813 dbgs() 5814 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5815 return Result; 5816 } 5817 5818 if (!isEpilogueVectorizationProfitable(MainLoopVF)) 5819 return Result; 5820 5821 for (auto &NextVF : ProfitableVFs) 5822 if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) && 5823 (Result.Width.getFixedValue() == 1 || NextVF.Cost < Result.Cost) && 5824 LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width})) 5825 Result = NextVF; 5826 5827 if (Result != VectorizationFactor::Disabled()) 5828 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5829 << Result.Width.getFixedValue() << "\n";); 5830 return Result; 5831 } 5832 5833 std::pair<unsigned, unsigned> 5834 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5835 unsigned MinWidth = -1U; 5836 unsigned MaxWidth = 8; 5837 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5838 5839 // For each block. 5840 for (BasicBlock *BB : TheLoop->blocks()) { 5841 // For each instruction in the loop. 5842 for (Instruction &I : BB->instructionsWithoutDebug()) { 5843 Type *T = I.getType(); 5844 5845 // Skip ignored values. 5846 if (ValuesToIgnore.count(&I)) 5847 continue; 5848 5849 // Only examine Loads, Stores and PHINodes. 5850 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5851 continue; 5852 5853 // Examine PHI nodes that are reduction variables. Update the type to 5854 // account for the recurrence type. 5855 if (auto *PN = dyn_cast<PHINode>(&I)) { 5856 if (!Legal->isReductionVariable(PN)) 5857 continue; 5858 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 5859 T = RdxDesc.getRecurrenceType(); 5860 } 5861 5862 // Examine the stored values. 5863 if (auto *ST = dyn_cast<StoreInst>(&I)) 5864 T = ST->getValueOperand()->getType(); 5865 5866 // Ignore loaded pointer types and stored pointer types that are not 5867 // vectorizable. 5868 // 5869 // FIXME: The check here attempts to predict whether a load or store will 5870 // be vectorized. We only know this for certain after a VF has 5871 // been selected. Here, we assume that if an access can be 5872 // vectorized, it will be. We should also look at extending this 5873 // optimization to non-pointer types. 5874 // 5875 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5876 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5877 continue; 5878 5879 MinWidth = std::min(MinWidth, 5880 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5881 MaxWidth = std::max(MaxWidth, 5882 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5883 } 5884 } 5885 5886 return {MinWidth, MaxWidth}; 5887 } 5888 5889 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5890 unsigned LoopCost) { 5891 // -- The interleave heuristics -- 5892 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5893 // There are many micro-architectural considerations that we can't predict 5894 // at this level. For example, frontend pressure (on decode or fetch) due to 5895 // code size, or the number and capabilities of the execution ports. 5896 // 5897 // We use the following heuristics to select the interleave count: 5898 // 1. If the code has reductions, then we interleave to break the cross 5899 // iteration dependency. 5900 // 2. If the loop is really small, then we interleave to reduce the loop 5901 // overhead. 5902 // 3. We don't interleave if we think that we will spill registers to memory 5903 // due to the increased register pressure. 5904 5905 if (!isScalarEpilogueAllowed()) 5906 return 1; 5907 5908 // We used the distance for the interleave count. 5909 if (Legal->getMaxSafeDepDistBytes() != -1U) 5910 return 1; 5911 5912 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5913 const bool HasReductions = !Legal->getReductionVars().empty(); 5914 // Do not interleave loops with a relatively small known or estimated trip 5915 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5916 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5917 // because with the above conditions interleaving can expose ILP and break 5918 // cross iteration dependences for reductions. 5919 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5920 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5921 return 1; 5922 5923 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5924 // We divide by these constants so assume that we have at least one 5925 // instruction that uses at least one register. 5926 for (auto& pair : R.MaxLocalUsers) { 5927 pair.second = std::max(pair.second, 1U); 5928 } 5929 5930 // We calculate the interleave count using the following formula. 5931 // Subtract the number of loop invariants from the number of available 5932 // registers. These registers are used by all of the interleaved instances. 5933 // Next, divide the remaining registers by the number of registers that is 5934 // required by the loop, in order to estimate how many parallel instances 5935 // fit without causing spills. All of this is rounded down if necessary to be 5936 // a power of two. We want power of two interleave count to simplify any 5937 // addressing operations or alignment considerations. 5938 // We also want power of two interleave counts to ensure that the induction 5939 // variable of the vector loop wraps to zero, when tail is folded by masking; 5940 // this currently happens when OptForSize, in which case IC is set to 1 above. 5941 unsigned IC = UINT_MAX; 5942 5943 for (auto& pair : R.MaxLocalUsers) { 5944 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5945 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5946 << " registers of " 5947 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5948 if (VF.isScalar()) { 5949 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5950 TargetNumRegisters = ForceTargetNumScalarRegs; 5951 } else { 5952 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5953 TargetNumRegisters = ForceTargetNumVectorRegs; 5954 } 5955 unsigned MaxLocalUsers = pair.second; 5956 unsigned LoopInvariantRegs = 0; 5957 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5958 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5959 5960 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5961 // Don't count the induction variable as interleaved. 5962 if (EnableIndVarRegisterHeur) { 5963 TmpIC = 5964 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5965 std::max(1U, (MaxLocalUsers - 1))); 5966 } 5967 5968 IC = std::min(IC, TmpIC); 5969 } 5970 5971 // Clamp the interleave ranges to reasonable counts. 5972 unsigned MaxInterleaveCount = 5973 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5974 5975 // Check if the user has overridden the max. 5976 if (VF.isScalar()) { 5977 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5978 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5979 } else { 5980 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5981 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5982 } 5983 5984 // If trip count is known or estimated compile time constant, limit the 5985 // interleave count to be less than the trip count divided by VF, provided it 5986 // is at least 1. 5987 // 5988 // For scalable vectors we can't know if interleaving is beneficial. It may 5989 // not be beneficial for small loops if none of the lanes in the second vector 5990 // iterations is enabled. However, for larger loops, there is likely to be a 5991 // similar benefit as for fixed-width vectors. For now, we choose to leave 5992 // the InterleaveCount as if vscale is '1', although if some information about 5993 // the vector is known (e.g. min vector size), we can make a better decision. 5994 if (BestKnownTC) { 5995 MaxInterleaveCount = 5996 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 5997 // Make sure MaxInterleaveCount is greater than 0. 5998 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 5999 } 6000 6001 assert(MaxInterleaveCount > 0 && 6002 "Maximum interleave count must be greater than 0"); 6003 6004 // Clamp the calculated IC to be between the 1 and the max interleave count 6005 // that the target and trip count allows. 6006 if (IC > MaxInterleaveCount) 6007 IC = MaxInterleaveCount; 6008 else 6009 // Make sure IC is greater than 0. 6010 IC = std::max(1u, IC); 6011 6012 assert(IC > 0 && "Interleave count must be greater than 0."); 6013 6014 // If we did not calculate the cost for VF (because the user selected the VF) 6015 // then we calculate the cost of VF here. 6016 if (LoopCost == 0) 6017 LoopCost = expectedCost(VF).first; 6018 6019 assert(LoopCost && "Non-zero loop cost expected"); 6020 6021 // Interleave if we vectorized this loop and there is a reduction that could 6022 // benefit from interleaving. 6023 if (VF.isVector() && HasReductions) { 6024 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6025 return IC; 6026 } 6027 6028 // Note that if we've already vectorized the loop we will have done the 6029 // runtime check and so interleaving won't require further checks. 6030 bool InterleavingRequiresRuntimePointerCheck = 6031 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6032 6033 // We want to interleave small loops in order to reduce the loop overhead and 6034 // potentially expose ILP opportunities. 6035 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6036 << "LV: IC is " << IC << '\n' 6037 << "LV: VF is " << VF << '\n'); 6038 const bool AggressivelyInterleaveReductions = 6039 TTI.enableAggressiveInterleaving(HasReductions); 6040 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6041 // We assume that the cost overhead is 1 and we use the cost model 6042 // to estimate the cost of the loop and interleave until the cost of the 6043 // loop overhead is about 5% of the cost of the loop. 6044 unsigned SmallIC = 6045 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6046 6047 // Interleave until store/load ports (estimated by max interleave count) are 6048 // saturated. 6049 unsigned NumStores = Legal->getNumStores(); 6050 unsigned NumLoads = Legal->getNumLoads(); 6051 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6052 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6053 6054 // If we have a scalar reduction (vector reductions are already dealt with 6055 // by this point), we can increase the critical path length if the loop 6056 // we're interleaving is inside another loop. Limit, by default to 2, so the 6057 // critical path only gets increased by one reduction operation. 6058 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6059 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6060 SmallIC = std::min(SmallIC, F); 6061 StoresIC = std::min(StoresIC, F); 6062 LoadsIC = std::min(LoadsIC, F); 6063 } 6064 6065 if (EnableLoadStoreRuntimeInterleave && 6066 std::max(StoresIC, LoadsIC) > SmallIC) { 6067 LLVM_DEBUG( 6068 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6069 return std::max(StoresIC, LoadsIC); 6070 } 6071 6072 // If there are scalar reductions and TTI has enabled aggressive 6073 // interleaving for reductions, we will interleave to expose ILP. 6074 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6075 AggressivelyInterleaveReductions) { 6076 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6077 // Interleave no less than SmallIC but not as aggressive as the normal IC 6078 // to satisfy the rare situation when resources are too limited. 6079 return std::max(IC / 2, SmallIC); 6080 } else { 6081 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6082 return SmallIC; 6083 } 6084 } 6085 6086 // Interleave if this is a large loop (small loops are already dealt with by 6087 // this point) that could benefit from interleaving. 6088 if (AggressivelyInterleaveReductions) { 6089 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6090 return IC; 6091 } 6092 6093 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6094 return 1; 6095 } 6096 6097 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6098 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6099 // This function calculates the register usage by measuring the highest number 6100 // of values that are alive at a single location. Obviously, this is a very 6101 // rough estimation. We scan the loop in a topological order in order and 6102 // assign a number to each instruction. We use RPO to ensure that defs are 6103 // met before their users. We assume that each instruction that has in-loop 6104 // users starts an interval. We record every time that an in-loop value is 6105 // used, so we have a list of the first and last occurrences of each 6106 // instruction. Next, we transpose this data structure into a multi map that 6107 // holds the list of intervals that *end* at a specific location. This multi 6108 // map allows us to perform a linear search. We scan the instructions linearly 6109 // and record each time that a new interval starts, by placing it in a set. 6110 // If we find this value in the multi-map then we remove it from the set. 6111 // The max register usage is the maximum size of the set. 6112 // We also search for instructions that are defined outside the loop, but are 6113 // used inside the loop. We need this number separately from the max-interval 6114 // usage number because when we unroll, loop-invariant values do not take 6115 // more register. 6116 LoopBlocksDFS DFS(TheLoop); 6117 DFS.perform(LI); 6118 6119 RegisterUsage RU; 6120 6121 // Each 'key' in the map opens a new interval. The values 6122 // of the map are the index of the 'last seen' usage of the 6123 // instruction that is the key. 6124 using IntervalMap = DenseMap<Instruction *, unsigned>; 6125 6126 // Maps instruction to its index. 6127 SmallVector<Instruction *, 64> IdxToInstr; 6128 // Marks the end of each interval. 6129 IntervalMap EndPoint; 6130 // Saves the list of instruction indices that are used in the loop. 6131 SmallPtrSet<Instruction *, 8> Ends; 6132 // Saves the list of values that are used in the loop but are 6133 // defined outside the loop, such as arguments and constants. 6134 SmallPtrSet<Value *, 8> LoopInvariants; 6135 6136 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6137 for (Instruction &I : BB->instructionsWithoutDebug()) { 6138 IdxToInstr.push_back(&I); 6139 6140 // Save the end location of each USE. 6141 for (Value *U : I.operands()) { 6142 auto *Instr = dyn_cast<Instruction>(U); 6143 6144 // Ignore non-instruction values such as arguments, constants, etc. 6145 if (!Instr) 6146 continue; 6147 6148 // If this instruction is outside the loop then record it and continue. 6149 if (!TheLoop->contains(Instr)) { 6150 LoopInvariants.insert(Instr); 6151 continue; 6152 } 6153 6154 // Overwrite previous end points. 6155 EndPoint[Instr] = IdxToInstr.size(); 6156 Ends.insert(Instr); 6157 } 6158 } 6159 } 6160 6161 // Saves the list of intervals that end with the index in 'key'. 6162 using InstrList = SmallVector<Instruction *, 2>; 6163 DenseMap<unsigned, InstrList> TransposeEnds; 6164 6165 // Transpose the EndPoints to a list of values that end at each index. 6166 for (auto &Interval : EndPoint) 6167 TransposeEnds[Interval.second].push_back(Interval.first); 6168 6169 SmallPtrSet<Instruction *, 8> OpenIntervals; 6170 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6171 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6172 6173 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6174 6175 // A lambda that gets the register usage for the given type and VF. 6176 const auto &TTICapture = TTI; 6177 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) { 6178 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6179 return 0U; 6180 return TTICapture.getRegUsageForType(VectorType::get(Ty, VF)); 6181 }; 6182 6183 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6184 Instruction *I = IdxToInstr[i]; 6185 6186 // Remove all of the instructions that end at this location. 6187 InstrList &List = TransposeEnds[i]; 6188 for (Instruction *ToRemove : List) 6189 OpenIntervals.erase(ToRemove); 6190 6191 // Ignore instructions that are never used within the loop. 6192 if (!Ends.count(I)) 6193 continue; 6194 6195 // Skip ignored values. 6196 if (ValuesToIgnore.count(I)) 6197 continue; 6198 6199 // For each VF find the maximum usage of registers. 6200 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6201 // Count the number of live intervals. 6202 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6203 6204 if (VFs[j].isScalar()) { 6205 for (auto Inst : OpenIntervals) { 6206 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6207 if (RegUsage.find(ClassID) == RegUsage.end()) 6208 RegUsage[ClassID] = 1; 6209 else 6210 RegUsage[ClassID] += 1; 6211 } 6212 } else { 6213 collectUniformsAndScalars(VFs[j]); 6214 for (auto Inst : OpenIntervals) { 6215 // Skip ignored values for VF > 1. 6216 if (VecValuesToIgnore.count(Inst)) 6217 continue; 6218 if (isScalarAfterVectorization(Inst, VFs[j])) { 6219 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6220 if (RegUsage.find(ClassID) == RegUsage.end()) 6221 RegUsage[ClassID] = 1; 6222 else 6223 RegUsage[ClassID] += 1; 6224 } else { 6225 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6226 if (RegUsage.find(ClassID) == RegUsage.end()) 6227 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6228 else 6229 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6230 } 6231 } 6232 } 6233 6234 for (auto& pair : RegUsage) { 6235 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6236 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6237 else 6238 MaxUsages[j][pair.first] = pair.second; 6239 } 6240 } 6241 6242 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6243 << OpenIntervals.size() << '\n'); 6244 6245 // Add the current instruction to the list of open intervals. 6246 OpenIntervals.insert(I); 6247 } 6248 6249 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6250 SmallMapVector<unsigned, unsigned, 4> Invariant; 6251 6252 for (auto Inst : LoopInvariants) { 6253 unsigned Usage = 6254 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6255 unsigned ClassID = 6256 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6257 if (Invariant.find(ClassID) == Invariant.end()) 6258 Invariant[ClassID] = Usage; 6259 else 6260 Invariant[ClassID] += Usage; 6261 } 6262 6263 LLVM_DEBUG({ 6264 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6265 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6266 << " item\n"; 6267 for (const auto &pair : MaxUsages[i]) { 6268 dbgs() << "LV(REG): RegisterClass: " 6269 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6270 << " registers\n"; 6271 } 6272 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6273 << " item\n"; 6274 for (const auto &pair : Invariant) { 6275 dbgs() << "LV(REG): RegisterClass: " 6276 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6277 << " registers\n"; 6278 } 6279 }); 6280 6281 RU.LoopInvariantRegs = Invariant; 6282 RU.MaxLocalUsers = MaxUsages[i]; 6283 RUs[i] = RU; 6284 } 6285 6286 return RUs; 6287 } 6288 6289 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6290 // TODO: Cost model for emulated masked load/store is completely 6291 // broken. This hack guides the cost model to use an artificially 6292 // high enough value to practically disable vectorization with such 6293 // operations, except where previously deployed legality hack allowed 6294 // using very low cost values. This is to avoid regressions coming simply 6295 // from moving "masked load/store" check from legality to cost model. 6296 // Masked Load/Gather emulation was previously never allowed. 6297 // Limited number of Masked Store/Scatter emulation was allowed. 6298 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 6299 return isa<LoadInst>(I) || 6300 (isa<StoreInst>(I) && 6301 NumPredStores > NumberOfStoresToPredicate); 6302 } 6303 6304 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6305 // If we aren't vectorizing the loop, or if we've already collected the 6306 // instructions to scalarize, there's nothing to do. Collection may already 6307 // have occurred if we have a user-selected VF and are now computing the 6308 // expected cost for interleaving. 6309 if (VF.isScalar() || VF.isZero() || 6310 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6311 return; 6312 6313 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6314 // not profitable to scalarize any instructions, the presence of VF in the 6315 // map will indicate that we've analyzed it already. 6316 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6317 6318 // Find all the instructions that are scalar with predication in the loop and 6319 // determine if it would be better to not if-convert the blocks they are in. 6320 // If so, we also record the instructions to scalarize. 6321 for (BasicBlock *BB : TheLoop->blocks()) { 6322 if (!blockNeedsPredication(BB)) 6323 continue; 6324 for (Instruction &I : *BB) 6325 if (isScalarWithPredication(&I)) { 6326 ScalarCostsTy ScalarCosts; 6327 // Do not apply discount logic if hacked cost is needed 6328 // for emulated masked memrefs. 6329 if (!useEmulatedMaskMemRefHack(&I) && 6330 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6331 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6332 // Remember that BB will remain after vectorization. 6333 PredicatedBBsAfterVectorization.insert(BB); 6334 } 6335 } 6336 } 6337 6338 int LoopVectorizationCostModel::computePredInstDiscount( 6339 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6340 ElementCount VF) { 6341 assert(!isUniformAfterVectorization(PredInst, VF) && 6342 "Instruction marked uniform-after-vectorization will be predicated"); 6343 6344 // Initialize the discount to zero, meaning that the scalar version and the 6345 // vector version cost the same. 6346 int Discount = 0; 6347 6348 // Holds instructions to analyze. The instructions we visit are mapped in 6349 // ScalarCosts. Those instructions are the ones that would be scalarized if 6350 // we find that the scalar version costs less. 6351 SmallVector<Instruction *, 8> Worklist; 6352 6353 // Returns true if the given instruction can be scalarized. 6354 auto canBeScalarized = [&](Instruction *I) -> bool { 6355 // We only attempt to scalarize instructions forming a single-use chain 6356 // from the original predicated block that would otherwise be vectorized. 6357 // Although not strictly necessary, we give up on instructions we know will 6358 // already be scalar to avoid traversing chains that are unlikely to be 6359 // beneficial. 6360 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6361 isScalarAfterVectorization(I, VF)) 6362 return false; 6363 6364 // If the instruction is scalar with predication, it will be analyzed 6365 // separately. We ignore it within the context of PredInst. 6366 if (isScalarWithPredication(I)) 6367 return false; 6368 6369 // If any of the instruction's operands are uniform after vectorization, 6370 // the instruction cannot be scalarized. This prevents, for example, a 6371 // masked load from being scalarized. 6372 // 6373 // We assume we will only emit a value for lane zero of an instruction 6374 // marked uniform after vectorization, rather than VF identical values. 6375 // Thus, if we scalarize an instruction that uses a uniform, we would 6376 // create uses of values corresponding to the lanes we aren't emitting code 6377 // for. This behavior can be changed by allowing getScalarValue to clone 6378 // the lane zero values for uniforms rather than asserting. 6379 for (Use &U : I->operands()) 6380 if (auto *J = dyn_cast<Instruction>(U.get())) 6381 if (isUniformAfterVectorization(J, VF)) 6382 return false; 6383 6384 // Otherwise, we can scalarize the instruction. 6385 return true; 6386 }; 6387 6388 // Compute the expected cost discount from scalarizing the entire expression 6389 // feeding the predicated instruction. We currently only consider expressions 6390 // that are single-use instruction chains. 6391 Worklist.push_back(PredInst); 6392 while (!Worklist.empty()) { 6393 Instruction *I = Worklist.pop_back_val(); 6394 6395 // If we've already analyzed the instruction, there's nothing to do. 6396 if (ScalarCosts.find(I) != ScalarCosts.end()) 6397 continue; 6398 6399 // Compute the cost of the vector instruction. Note that this cost already 6400 // includes the scalarization overhead of the predicated instruction. 6401 unsigned VectorCost = getInstructionCost(I, VF).first; 6402 6403 // Compute the cost of the scalarized instruction. This cost is the cost of 6404 // the instruction as if it wasn't if-converted and instead remained in the 6405 // predicated block. We will scale this cost by block probability after 6406 // computing the scalarization overhead. 6407 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6408 unsigned ScalarCost = 6409 VF.getKnownMinValue() * 6410 getInstructionCost(I, ElementCount::getFixed(1)).first; 6411 6412 // Compute the scalarization overhead of needed insertelement instructions 6413 // and phi nodes. 6414 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6415 ScalarCost += TTI.getScalarizationOverhead( 6416 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6417 APInt::getAllOnesValue(VF.getKnownMinValue()), true, false); 6418 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6419 ScalarCost += 6420 VF.getKnownMinValue() * 6421 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6422 } 6423 6424 // Compute the scalarization overhead of needed extractelement 6425 // instructions. For each of the instruction's operands, if the operand can 6426 // be scalarized, add it to the worklist; otherwise, account for the 6427 // overhead. 6428 for (Use &U : I->operands()) 6429 if (auto *J = dyn_cast<Instruction>(U.get())) { 6430 assert(VectorType::isValidElementType(J->getType()) && 6431 "Instruction has non-scalar type"); 6432 if (canBeScalarized(J)) 6433 Worklist.push_back(J); 6434 else if (needsExtract(J, VF)) { 6435 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6436 ScalarCost += TTI.getScalarizationOverhead( 6437 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6438 APInt::getAllOnesValue(VF.getKnownMinValue()), false, true); 6439 } 6440 } 6441 6442 // Scale the total scalar cost by block probability. 6443 ScalarCost /= getReciprocalPredBlockProb(); 6444 6445 // Compute the discount. A non-negative discount means the vector version 6446 // of the instruction costs more, and scalarizing would be beneficial. 6447 Discount += VectorCost - ScalarCost; 6448 ScalarCosts[I] = ScalarCost; 6449 } 6450 6451 return Discount; 6452 } 6453 6454 LoopVectorizationCostModel::VectorizationCostTy 6455 LoopVectorizationCostModel::expectedCost(ElementCount VF) { 6456 VectorizationCostTy Cost; 6457 6458 // For each block. 6459 for (BasicBlock *BB : TheLoop->blocks()) { 6460 VectorizationCostTy BlockCost; 6461 6462 // For each instruction in the old loop. 6463 for (Instruction &I : BB->instructionsWithoutDebug()) { 6464 // Skip ignored values. 6465 if (ValuesToIgnore.count(&I) || 6466 (VF.isVector() && VecValuesToIgnore.count(&I))) 6467 continue; 6468 6469 VectorizationCostTy C = getInstructionCost(&I, VF); 6470 6471 // Check if we should override the cost. 6472 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6473 C.first = ForceTargetInstructionCost; 6474 6475 BlockCost.first += C.first; 6476 BlockCost.second |= C.second; 6477 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6478 << " for VF " << VF << " For instruction: " << I 6479 << '\n'); 6480 } 6481 6482 // If we are vectorizing a predicated block, it will have been 6483 // if-converted. This means that the block's instructions (aside from 6484 // stores and instructions that may divide by zero) will now be 6485 // unconditionally executed. For the scalar case, we may not always execute 6486 // the predicated block. Thus, scale the block's cost by the probability of 6487 // executing it. 6488 if (VF.isScalar() && blockNeedsPredication(BB)) 6489 BlockCost.first /= getReciprocalPredBlockProb(); 6490 6491 Cost.first += BlockCost.first; 6492 Cost.second |= BlockCost.second; 6493 } 6494 6495 return Cost; 6496 } 6497 6498 /// Gets Address Access SCEV after verifying that the access pattern 6499 /// is loop invariant except the induction variable dependence. 6500 /// 6501 /// This SCEV can be sent to the Target in order to estimate the address 6502 /// calculation cost. 6503 static const SCEV *getAddressAccessSCEV( 6504 Value *Ptr, 6505 LoopVectorizationLegality *Legal, 6506 PredicatedScalarEvolution &PSE, 6507 const Loop *TheLoop) { 6508 6509 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6510 if (!Gep) 6511 return nullptr; 6512 6513 // We are looking for a gep with all loop invariant indices except for one 6514 // which should be an induction variable. 6515 auto SE = PSE.getSE(); 6516 unsigned NumOperands = Gep->getNumOperands(); 6517 for (unsigned i = 1; i < NumOperands; ++i) { 6518 Value *Opd = Gep->getOperand(i); 6519 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6520 !Legal->isInductionVariable(Opd)) 6521 return nullptr; 6522 } 6523 6524 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6525 return PSE.getSCEV(Ptr); 6526 } 6527 6528 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6529 return Legal->hasStride(I->getOperand(0)) || 6530 Legal->hasStride(I->getOperand(1)); 6531 } 6532 6533 unsigned 6534 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6535 ElementCount VF) { 6536 assert(VF.isVector() && 6537 "Scalarization cost of instruction implies vectorization."); 6538 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6539 Type *ValTy = getMemInstValueType(I); 6540 auto SE = PSE.getSE(); 6541 6542 unsigned AS = getLoadStoreAddressSpace(I); 6543 Value *Ptr = getLoadStorePointerOperand(I); 6544 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6545 6546 // Figure out whether the access is strided and get the stride value 6547 // if it's known in compile time 6548 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6549 6550 // Get the cost of the scalar memory instruction and address computation. 6551 unsigned Cost = 6552 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6553 6554 // Don't pass *I here, since it is scalar but will actually be part of a 6555 // vectorized loop where the user of it is a vectorized instruction. 6556 const Align Alignment = getLoadStoreAlignment(I); 6557 Cost += VF.getKnownMinValue() * 6558 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6559 AS, TTI::TCK_RecipThroughput); 6560 6561 // Get the overhead of the extractelement and insertelement instructions 6562 // we might create due to scalarization. 6563 Cost += getScalarizationOverhead(I, VF); 6564 6565 // If we have a predicated store, it may not be executed for each vector 6566 // lane. Scale the cost by the probability of executing the predicated 6567 // block. 6568 if (isPredicatedInst(I)) { 6569 Cost /= getReciprocalPredBlockProb(); 6570 6571 if (useEmulatedMaskMemRefHack(I)) 6572 // Artificially setting to a high enough value to practically disable 6573 // vectorization with such operations. 6574 Cost = 3000000; 6575 } 6576 6577 return Cost; 6578 } 6579 6580 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6581 ElementCount VF) { 6582 Type *ValTy = getMemInstValueType(I); 6583 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6584 Value *Ptr = getLoadStorePointerOperand(I); 6585 unsigned AS = getLoadStoreAddressSpace(I); 6586 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6587 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6588 6589 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6590 "Stride should be 1 or -1 for consecutive memory access"); 6591 const Align Alignment = getLoadStoreAlignment(I); 6592 unsigned Cost = 0; 6593 if (Legal->isMaskRequired(I)) 6594 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6595 CostKind); 6596 else 6597 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6598 CostKind, I); 6599 6600 bool Reverse = ConsecutiveStride < 0; 6601 if (Reverse) 6602 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6603 return Cost; 6604 } 6605 6606 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6607 ElementCount VF) { 6608 assert(Legal->isUniformMemOp(*I)); 6609 6610 Type *ValTy = getMemInstValueType(I); 6611 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6612 const Align Alignment = getLoadStoreAlignment(I); 6613 unsigned AS = getLoadStoreAddressSpace(I); 6614 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6615 if (isa<LoadInst>(I)) { 6616 return TTI.getAddressComputationCost(ValTy) + 6617 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6618 CostKind) + 6619 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6620 } 6621 StoreInst *SI = cast<StoreInst>(I); 6622 6623 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6624 return TTI.getAddressComputationCost(ValTy) + 6625 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6626 CostKind) + 6627 (isLoopInvariantStoreValue 6628 ? 0 6629 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6630 VF.getKnownMinValue() - 1)); 6631 } 6632 6633 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6634 ElementCount VF) { 6635 Type *ValTy = getMemInstValueType(I); 6636 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6637 const Align Alignment = getLoadStoreAlignment(I); 6638 const Value *Ptr = getLoadStorePointerOperand(I); 6639 6640 return TTI.getAddressComputationCost(VectorTy) + 6641 TTI.getGatherScatterOpCost( 6642 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6643 TargetTransformInfo::TCK_RecipThroughput, I); 6644 } 6645 6646 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6647 ElementCount VF) { 6648 Type *ValTy = getMemInstValueType(I); 6649 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6650 unsigned AS = getLoadStoreAddressSpace(I); 6651 6652 auto Group = getInterleavedAccessGroup(I); 6653 assert(Group && "Fail to get an interleaved access group."); 6654 6655 unsigned InterleaveFactor = Group->getFactor(); 6656 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6657 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6658 6659 // Holds the indices of existing members in an interleaved load group. 6660 // An interleaved store group doesn't need this as it doesn't allow gaps. 6661 SmallVector<unsigned, 4> Indices; 6662 if (isa<LoadInst>(I)) { 6663 for (unsigned i = 0; i < InterleaveFactor; i++) 6664 if (Group->getMember(i)) 6665 Indices.push_back(i); 6666 } 6667 6668 // Calculate the cost of the whole interleaved group. 6669 bool UseMaskForGaps = 6670 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 6671 unsigned Cost = TTI.getInterleavedMemoryOpCost( 6672 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6673 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6674 6675 if (Group->isReverse()) { 6676 // TODO: Add support for reversed masked interleaved access. 6677 assert(!Legal->isMaskRequired(I) && 6678 "Reverse masked interleaved access not supported."); 6679 Cost += Group->getNumMembers() * 6680 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6681 } 6682 return Cost; 6683 } 6684 6685 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6686 ElementCount VF) { 6687 // Calculate scalar cost only. Vectorization cost should be ready at this 6688 // moment. 6689 if (VF.isScalar()) { 6690 Type *ValTy = getMemInstValueType(I); 6691 const Align Alignment = getLoadStoreAlignment(I); 6692 unsigned AS = getLoadStoreAddressSpace(I); 6693 6694 return TTI.getAddressComputationCost(ValTy) + 6695 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6696 TTI::TCK_RecipThroughput, I); 6697 } 6698 return getWideningCost(I, VF); 6699 } 6700 6701 LoopVectorizationCostModel::VectorizationCostTy 6702 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6703 ElementCount VF) { 6704 // If we know that this instruction will remain uniform, check the cost of 6705 // the scalar version. 6706 if (isUniformAfterVectorization(I, VF)) 6707 VF = ElementCount::getFixed(1); 6708 6709 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6710 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6711 6712 // Forced scalars do not have any scalarization overhead. 6713 auto ForcedScalar = ForcedScalars.find(VF); 6714 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6715 auto InstSet = ForcedScalar->second; 6716 if (InstSet.count(I)) 6717 return VectorizationCostTy( 6718 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6719 VF.getKnownMinValue()), 6720 false); 6721 } 6722 6723 Type *VectorTy; 6724 unsigned C = getInstructionCost(I, VF, VectorTy); 6725 6726 bool TypeNotScalarized = 6727 VF.isVector() && VectorTy->isVectorTy() && 6728 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 6729 return VectorizationCostTy(C, TypeNotScalarized); 6730 } 6731 6732 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6733 ElementCount VF) { 6734 6735 assert(!VF.isScalable() && 6736 "cannot compute scalarization overhead for scalable vectorization"); 6737 if (VF.isScalar()) 6738 return 0; 6739 6740 unsigned Cost = 0; 6741 Type *RetTy = ToVectorTy(I->getType(), VF); 6742 if (!RetTy->isVoidTy() && 6743 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6744 Cost += TTI.getScalarizationOverhead( 6745 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()), 6746 true, false); 6747 6748 // Some targets keep addresses scalar. 6749 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6750 return Cost; 6751 6752 // Some targets support efficient element stores. 6753 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6754 return Cost; 6755 6756 // Collect operands to consider. 6757 CallInst *CI = dyn_cast<CallInst>(I); 6758 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 6759 6760 // Skip operands that do not require extraction/scalarization and do not incur 6761 // any overhead. 6762 return Cost + TTI.getOperandsScalarizationOverhead( 6763 filterExtractingOperands(Ops, VF), VF.getKnownMinValue()); 6764 } 6765 6766 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6767 if (VF.isScalar()) 6768 return; 6769 NumPredStores = 0; 6770 for (BasicBlock *BB : TheLoop->blocks()) { 6771 // For each instruction in the old loop. 6772 for (Instruction &I : *BB) { 6773 Value *Ptr = getLoadStorePointerOperand(&I); 6774 if (!Ptr) 6775 continue; 6776 6777 // TODO: We should generate better code and update the cost model for 6778 // predicated uniform stores. Today they are treated as any other 6779 // predicated store (see added test cases in 6780 // invariant-store-vectorization.ll). 6781 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 6782 NumPredStores++; 6783 6784 if (Legal->isUniformMemOp(I)) { 6785 // TODO: Avoid replicating loads and stores instead of 6786 // relying on instcombine to remove them. 6787 // Load: Scalar load + broadcast 6788 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6789 unsigned Cost = getUniformMemOpCost(&I, VF); 6790 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6791 continue; 6792 } 6793 6794 // We assume that widening is the best solution when possible. 6795 if (memoryInstructionCanBeWidened(&I, VF)) { 6796 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 6797 int ConsecutiveStride = 6798 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 6799 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6800 "Expected consecutive stride."); 6801 InstWidening Decision = 6802 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6803 setWideningDecision(&I, VF, Decision, Cost); 6804 continue; 6805 } 6806 6807 // Choose between Interleaving, Gather/Scatter or Scalarization. 6808 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 6809 unsigned NumAccesses = 1; 6810 if (isAccessInterleaved(&I)) { 6811 auto Group = getInterleavedAccessGroup(&I); 6812 assert(Group && "Fail to get an interleaved access group."); 6813 6814 // Make one decision for the whole group. 6815 if (getWideningDecision(&I, VF) != CM_Unknown) 6816 continue; 6817 6818 NumAccesses = Group->getNumMembers(); 6819 if (interleavedAccessCanBeWidened(&I, VF)) 6820 InterleaveCost = getInterleaveGroupCost(&I, VF); 6821 } 6822 6823 unsigned GatherScatterCost = 6824 isLegalGatherOrScatter(&I) 6825 ? getGatherScatterCost(&I, VF) * NumAccesses 6826 : std::numeric_limits<unsigned>::max(); 6827 6828 unsigned ScalarizationCost = 6829 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6830 6831 // Choose better solution for the current VF, 6832 // write down this decision and use it during vectorization. 6833 unsigned Cost; 6834 InstWidening Decision; 6835 if (InterleaveCost <= GatherScatterCost && 6836 InterleaveCost < ScalarizationCost) { 6837 Decision = CM_Interleave; 6838 Cost = InterleaveCost; 6839 } else if (GatherScatterCost < ScalarizationCost) { 6840 Decision = CM_GatherScatter; 6841 Cost = GatherScatterCost; 6842 } else { 6843 Decision = CM_Scalarize; 6844 Cost = ScalarizationCost; 6845 } 6846 // If the instructions belongs to an interleave group, the whole group 6847 // receives the same decision. The whole group receives the cost, but 6848 // the cost will actually be assigned to one instruction. 6849 if (auto Group = getInterleavedAccessGroup(&I)) 6850 setWideningDecision(Group, VF, Decision, Cost); 6851 else 6852 setWideningDecision(&I, VF, Decision, Cost); 6853 } 6854 } 6855 6856 // Make sure that any load of address and any other address computation 6857 // remains scalar unless there is gather/scatter support. This avoids 6858 // inevitable extracts into address registers, and also has the benefit of 6859 // activating LSR more, since that pass can't optimize vectorized 6860 // addresses. 6861 if (TTI.prefersVectorizedAddressing()) 6862 return; 6863 6864 // Start with all scalar pointer uses. 6865 SmallPtrSet<Instruction *, 8> AddrDefs; 6866 for (BasicBlock *BB : TheLoop->blocks()) 6867 for (Instruction &I : *BB) { 6868 Instruction *PtrDef = 6869 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6870 if (PtrDef && TheLoop->contains(PtrDef) && 6871 getWideningDecision(&I, VF) != CM_GatherScatter) 6872 AddrDefs.insert(PtrDef); 6873 } 6874 6875 // Add all instructions used to generate the addresses. 6876 SmallVector<Instruction *, 4> Worklist; 6877 for (auto *I : AddrDefs) 6878 Worklist.push_back(I); 6879 while (!Worklist.empty()) { 6880 Instruction *I = Worklist.pop_back_val(); 6881 for (auto &Op : I->operands()) 6882 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6883 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6884 AddrDefs.insert(InstOp).second) 6885 Worklist.push_back(InstOp); 6886 } 6887 6888 for (auto *I : AddrDefs) { 6889 if (isa<LoadInst>(I)) { 6890 // Setting the desired widening decision should ideally be handled in 6891 // by cost functions, but since this involves the task of finding out 6892 // if the loaded register is involved in an address computation, it is 6893 // instead changed here when we know this is the case. 6894 InstWidening Decision = getWideningDecision(I, VF); 6895 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6896 // Scalarize a widened load of address. 6897 setWideningDecision( 6898 I, VF, CM_Scalarize, 6899 (VF.getKnownMinValue() * 6900 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 6901 else if (auto Group = getInterleavedAccessGroup(I)) { 6902 // Scalarize an interleave group of address loads. 6903 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6904 if (Instruction *Member = Group->getMember(I)) 6905 setWideningDecision( 6906 Member, VF, CM_Scalarize, 6907 (VF.getKnownMinValue() * 6908 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 6909 } 6910 } 6911 } else 6912 // Make sure I gets scalarized and a cost estimate without 6913 // scalarization overhead. 6914 ForcedScalars[VF].insert(I); 6915 } 6916 } 6917 6918 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6919 ElementCount VF, 6920 Type *&VectorTy) { 6921 Type *RetTy = I->getType(); 6922 if (canTruncateToMinimalBitwidth(I, VF)) 6923 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6924 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 6925 auto SE = PSE.getSE(); 6926 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6927 6928 // TODO: We need to estimate the cost of intrinsic calls. 6929 switch (I->getOpcode()) { 6930 case Instruction::GetElementPtr: 6931 // We mark this instruction as zero-cost because the cost of GEPs in 6932 // vectorized code depends on whether the corresponding memory instruction 6933 // is scalarized or not. Therefore, we handle GEPs with the memory 6934 // instruction cost. 6935 return 0; 6936 case Instruction::Br: { 6937 // In cases of scalarized and predicated instructions, there will be VF 6938 // predicated blocks in the vectorized loop. Each branch around these 6939 // blocks requires also an extract of its vector compare i1 element. 6940 bool ScalarPredicatedBB = false; 6941 BranchInst *BI = cast<BranchInst>(I); 6942 if (VF.isVector() && BI->isConditional() && 6943 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 6944 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 6945 ScalarPredicatedBB = true; 6946 6947 if (ScalarPredicatedBB) { 6948 // Return cost for branches around scalarized and predicated blocks. 6949 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6950 auto *Vec_i1Ty = 6951 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6952 return (TTI.getScalarizationOverhead( 6953 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 6954 false, true) + 6955 (TTI.getCFInstrCost(Instruction::Br, CostKind) * 6956 VF.getKnownMinValue())); 6957 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 6958 // The back-edge branch will remain, as will all scalar branches. 6959 return TTI.getCFInstrCost(Instruction::Br, CostKind); 6960 else 6961 // This branch will be eliminated by if-conversion. 6962 return 0; 6963 // Note: We currently assume zero cost for an unconditional branch inside 6964 // a predicated block since it will become a fall-through, although we 6965 // may decide in the future to call TTI for all branches. 6966 } 6967 case Instruction::PHI: { 6968 auto *Phi = cast<PHINode>(I); 6969 6970 // First-order recurrences are replaced by vector shuffles inside the loop. 6971 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 6972 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 6973 return TTI.getShuffleCost( 6974 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 6975 VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 6976 6977 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6978 // converted into select instructions. We require N - 1 selects per phi 6979 // node, where N is the number of incoming values. 6980 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 6981 return (Phi->getNumIncomingValues() - 1) * 6982 TTI.getCmpSelInstrCost( 6983 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6984 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 6985 CmpInst::BAD_ICMP_PREDICATE, CostKind); 6986 6987 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 6988 } 6989 case Instruction::UDiv: 6990 case Instruction::SDiv: 6991 case Instruction::URem: 6992 case Instruction::SRem: 6993 // If we have a predicated instruction, it may not be executed for each 6994 // vector lane. Get the scalarization cost and scale this amount by the 6995 // probability of executing the predicated block. If the instruction is not 6996 // predicated, we fall through to the next case. 6997 if (VF.isVector() && isScalarWithPredication(I)) { 6998 unsigned Cost = 0; 6999 7000 // These instructions have a non-void type, so account for the phi nodes 7001 // that we will create. This cost is likely to be zero. The phi node 7002 // cost, if any, should be scaled by the block probability because it 7003 // models a copy at the end of each predicated block. 7004 Cost += VF.getKnownMinValue() * 7005 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7006 7007 // The cost of the non-predicated instruction. 7008 Cost += VF.getKnownMinValue() * 7009 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7010 7011 // The cost of insertelement and extractelement instructions needed for 7012 // scalarization. 7013 Cost += getScalarizationOverhead(I, VF); 7014 7015 // Scale the cost by the probability of executing the predicated blocks. 7016 // This assumes the predicated block for each vector lane is equally 7017 // likely. 7018 return Cost / getReciprocalPredBlockProb(); 7019 } 7020 LLVM_FALLTHROUGH; 7021 case Instruction::Add: 7022 case Instruction::FAdd: 7023 case Instruction::Sub: 7024 case Instruction::FSub: 7025 case Instruction::Mul: 7026 case Instruction::FMul: 7027 case Instruction::FDiv: 7028 case Instruction::FRem: 7029 case Instruction::Shl: 7030 case Instruction::LShr: 7031 case Instruction::AShr: 7032 case Instruction::And: 7033 case Instruction::Or: 7034 case Instruction::Xor: { 7035 // Since we will replace the stride by 1 the multiplication should go away. 7036 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7037 return 0; 7038 // Certain instructions can be cheaper to vectorize if they have a constant 7039 // second vector operand. One example of this are shifts on x86. 7040 Value *Op2 = I->getOperand(1); 7041 TargetTransformInfo::OperandValueProperties Op2VP; 7042 TargetTransformInfo::OperandValueKind Op2VK = 7043 TTI.getOperandInfo(Op2, Op2VP); 7044 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7045 Op2VK = TargetTransformInfo::OK_UniformValue; 7046 7047 SmallVector<const Value *, 4> Operands(I->operand_values()); 7048 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 7049 return N * TTI.getArithmeticInstrCost( 7050 I->getOpcode(), VectorTy, CostKind, 7051 TargetTransformInfo::OK_AnyValue, 7052 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7053 } 7054 case Instruction::FNeg: { 7055 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 7056 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 7057 return N * TTI.getArithmeticInstrCost( 7058 I->getOpcode(), VectorTy, CostKind, 7059 TargetTransformInfo::OK_AnyValue, 7060 TargetTransformInfo::OK_AnyValue, 7061 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 7062 I->getOperand(0), I); 7063 } 7064 case Instruction::Select: { 7065 SelectInst *SI = cast<SelectInst>(I); 7066 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7067 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7068 Type *CondTy = SI->getCondition()->getType(); 7069 if (!ScalarCond) { 7070 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 7071 CondTy = VectorType::get(CondTy, VF); 7072 } 7073 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 7074 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7075 } 7076 case Instruction::ICmp: 7077 case Instruction::FCmp: { 7078 Type *ValTy = I->getOperand(0)->getType(); 7079 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7080 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7081 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7082 VectorTy = ToVectorTy(ValTy, VF); 7083 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7084 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7085 } 7086 case Instruction::Store: 7087 case Instruction::Load: { 7088 ElementCount Width = VF; 7089 if (Width.isVector()) { 7090 InstWidening Decision = getWideningDecision(I, Width); 7091 assert(Decision != CM_Unknown && 7092 "CM decision should be taken at this point"); 7093 if (Decision == CM_Scalarize) 7094 Width = ElementCount::getFixed(1); 7095 } 7096 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7097 return getMemoryInstructionCost(I, VF); 7098 } 7099 case Instruction::ZExt: 7100 case Instruction::SExt: 7101 case Instruction::FPToUI: 7102 case Instruction::FPToSI: 7103 case Instruction::FPExt: 7104 case Instruction::PtrToInt: 7105 case Instruction::IntToPtr: 7106 case Instruction::SIToFP: 7107 case Instruction::UIToFP: 7108 case Instruction::Trunc: 7109 case Instruction::FPTrunc: 7110 case Instruction::BitCast: { 7111 // Computes the CastContextHint from a Load/Store instruction. 7112 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7113 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7114 "Expected a load or a store!"); 7115 7116 if (VF.isScalar() || !TheLoop->contains(I)) 7117 return TTI::CastContextHint::Normal; 7118 7119 switch (getWideningDecision(I, VF)) { 7120 case LoopVectorizationCostModel::CM_GatherScatter: 7121 return TTI::CastContextHint::GatherScatter; 7122 case LoopVectorizationCostModel::CM_Interleave: 7123 return TTI::CastContextHint::Interleave; 7124 case LoopVectorizationCostModel::CM_Scalarize: 7125 case LoopVectorizationCostModel::CM_Widen: 7126 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7127 : TTI::CastContextHint::Normal; 7128 case LoopVectorizationCostModel::CM_Widen_Reverse: 7129 return TTI::CastContextHint::Reversed; 7130 case LoopVectorizationCostModel::CM_Unknown: 7131 llvm_unreachable("Instr did not go through cost modelling?"); 7132 } 7133 7134 llvm_unreachable("Unhandled case!"); 7135 }; 7136 7137 unsigned Opcode = I->getOpcode(); 7138 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7139 // For Trunc, the context is the only user, which must be a StoreInst. 7140 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7141 if (I->hasOneUse()) 7142 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7143 CCH = ComputeCCH(Store); 7144 } 7145 // For Z/Sext, the context is the operand, which must be a LoadInst. 7146 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7147 Opcode == Instruction::FPExt) { 7148 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7149 CCH = ComputeCCH(Load); 7150 } 7151 7152 // We optimize the truncation of induction variables having constant 7153 // integer steps. The cost of these truncations is the same as the scalar 7154 // operation. 7155 if (isOptimizableIVTruncate(I, VF)) { 7156 auto *Trunc = cast<TruncInst>(I); 7157 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7158 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7159 } 7160 7161 Type *SrcScalarTy = I->getOperand(0)->getType(); 7162 Type *SrcVecTy = 7163 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7164 if (canTruncateToMinimalBitwidth(I, VF)) { 7165 // This cast is going to be shrunk. This may remove the cast or it might 7166 // turn it into slightly different cast. For example, if MinBW == 16, 7167 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7168 // 7169 // Calculate the modified src and dest types. 7170 Type *MinVecTy = VectorTy; 7171 if (Opcode == Instruction::Trunc) { 7172 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7173 VectorTy = 7174 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7175 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7176 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7177 VectorTy = 7178 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7179 } 7180 } 7181 7182 assert(!VF.isScalable() && "VF is assumed to be non scalable"); 7183 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 7184 return N * 7185 TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7186 } 7187 case Instruction::Call: { 7188 bool NeedToScalarize; 7189 CallInst *CI = cast<CallInst>(I); 7190 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7191 if (getVectorIntrinsicIDForCall(CI, TLI)) 7192 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 7193 return CallCost; 7194 } 7195 case Instruction::ExtractValue: { 7196 InstructionCost ExtractCost = 7197 TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7198 assert(ExtractCost.isValid() && "Invalid cost for ExtractValue"); 7199 return *(ExtractCost.getValue()); 7200 } 7201 default: 7202 // The cost of executing VF copies of the scalar instruction. This opcode 7203 // is unknown. Assume that it is the same as 'mul'. 7204 return VF.getKnownMinValue() * TTI.getArithmeticInstrCost( 7205 Instruction::Mul, VectorTy, CostKind) + 7206 getScalarizationOverhead(I, VF); 7207 } // end of switch. 7208 } 7209 7210 char LoopVectorize::ID = 0; 7211 7212 static const char lv_name[] = "Loop Vectorization"; 7213 7214 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7215 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7216 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7217 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7218 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7219 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7220 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7221 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7222 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7223 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7224 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7225 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7226 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7227 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7228 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7229 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7230 7231 namespace llvm { 7232 7233 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7234 7235 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7236 bool VectorizeOnlyWhenForced) { 7237 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7238 } 7239 7240 } // end namespace llvm 7241 7242 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7243 // Check if the pointer operand of a load or store instruction is 7244 // consecutive. 7245 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7246 return Legal->isConsecutivePtr(Ptr); 7247 return false; 7248 } 7249 7250 void LoopVectorizationCostModel::collectValuesToIgnore() { 7251 // Ignore ephemeral values. 7252 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7253 7254 // Ignore type-promoting instructions we identified during reduction 7255 // detection. 7256 for (auto &Reduction : Legal->getReductionVars()) { 7257 RecurrenceDescriptor &RedDes = Reduction.second; 7258 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7259 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7260 } 7261 // Ignore type-casting instructions we identified during induction 7262 // detection. 7263 for (auto &Induction : Legal->getInductionVars()) { 7264 InductionDescriptor &IndDes = Induction.second; 7265 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7266 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7267 } 7268 } 7269 7270 void LoopVectorizationCostModel::collectInLoopReductions() { 7271 for (auto &Reduction : Legal->getReductionVars()) { 7272 PHINode *Phi = Reduction.first; 7273 RecurrenceDescriptor &RdxDesc = Reduction.second; 7274 7275 // We don't collect reductions that are type promoted (yet). 7276 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7277 continue; 7278 7279 // If the target would prefer this reduction to happen "in-loop", then we 7280 // want to record it as such. 7281 unsigned Opcode = RdxDesc.getRecurrenceBinOp(); 7282 if (!PreferInLoopReductions && 7283 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7284 TargetTransformInfo::ReductionFlags())) 7285 continue; 7286 7287 // Check that we can correctly put the reductions into the loop, by 7288 // finding the chain of operations that leads from the phi to the loop 7289 // exit value. 7290 SmallVector<Instruction *, 4> ReductionOperations = 7291 RdxDesc.getReductionOpChain(Phi, TheLoop); 7292 bool InLoop = !ReductionOperations.empty(); 7293 if (InLoop) 7294 InLoopReductionChains[Phi] = ReductionOperations; 7295 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7296 << " reduction for phi: " << *Phi << "\n"); 7297 } 7298 } 7299 7300 // TODO: we could return a pair of values that specify the max VF and 7301 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7302 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7303 // doesn't have a cost model that can choose which plan to execute if 7304 // more than one is generated. 7305 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7306 LoopVectorizationCostModel &CM) { 7307 unsigned WidestType; 7308 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7309 return WidestVectorRegBits / WidestType; 7310 } 7311 7312 VectorizationFactor 7313 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7314 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7315 ElementCount VF = UserVF; 7316 // Outer loop handling: They may require CFG and instruction level 7317 // transformations before even evaluating whether vectorization is profitable. 7318 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7319 // the vectorization pipeline. 7320 if (!OrigLoop->isInnermost()) { 7321 // If the user doesn't provide a vectorization factor, determine a 7322 // reasonable one. 7323 if (UserVF.isZero()) { 7324 VF = ElementCount::getFixed( 7325 determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM)); 7326 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7327 7328 // Make sure we have a VF > 1 for stress testing. 7329 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7330 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7331 << "overriding computed VF.\n"); 7332 VF = ElementCount::getFixed(4); 7333 } 7334 } 7335 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7336 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7337 "VF needs to be a power of two"); 7338 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7339 << "VF " << VF << " to build VPlans.\n"); 7340 buildVPlans(VF, VF); 7341 7342 // For VPlan build stress testing, we bail out after VPlan construction. 7343 if (VPlanBuildStressTest) 7344 return VectorizationFactor::Disabled(); 7345 7346 return {VF, 0 /*Cost*/}; 7347 } 7348 7349 LLVM_DEBUG( 7350 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7351 "VPlan-native path.\n"); 7352 return VectorizationFactor::Disabled(); 7353 } 7354 7355 Optional<VectorizationFactor> 7356 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7357 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7358 Optional<ElementCount> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC); 7359 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 7360 return None; 7361 7362 // Invalidate interleave groups if all blocks of loop will be predicated. 7363 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 7364 !useMaskedInterleavedAccesses(*TTI)) { 7365 LLVM_DEBUG( 7366 dbgs() 7367 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7368 "which requires masked-interleaved support.\n"); 7369 if (CM.InterleaveInfo.invalidateGroups()) 7370 // Invalidating interleave groups also requires invalidating all decisions 7371 // based on them, which includes widening decisions and uniform and scalar 7372 // values. 7373 CM.invalidateCostModelingDecisions(); 7374 } 7375 7376 ElementCount MaxVF = MaybeMaxVF.getValue(); 7377 assert(MaxVF.isNonZero() && "MaxVF is zero."); 7378 7379 if (!UserVF.isZero() && ElementCount::isKnownLE(UserVF, MaxVF)) { 7380 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7381 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7382 "VF needs to be a power of two"); 7383 // Collect the instructions (and their associated costs) that will be more 7384 // profitable to scalarize. 7385 CM.selectUserVectorizationFactor(UserVF); 7386 CM.collectInLoopReductions(); 7387 buildVPlansWithVPRecipes(UserVF, UserVF); 7388 LLVM_DEBUG(printPlans(dbgs())); 7389 return {{UserVF, 0}}; 7390 } 7391 7392 assert(!MaxVF.isScalable() && 7393 "Scalable vectors not yet supported beyond this point"); 7394 7395 for (ElementCount VF = ElementCount::getFixed(1); 7396 ElementCount::isKnownLE(VF, MaxVF); VF *= 2) { 7397 // Collect Uniform and Scalar instructions after vectorization with VF. 7398 CM.collectUniformsAndScalars(VF); 7399 7400 // Collect the instructions (and their associated costs) that will be more 7401 // profitable to scalarize. 7402 if (VF.isVector()) 7403 CM.collectInstsToScalarize(VF); 7404 } 7405 7406 CM.collectInLoopReductions(); 7407 7408 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxVF); 7409 LLVM_DEBUG(printPlans(dbgs())); 7410 if (MaxVF.isScalar()) 7411 return VectorizationFactor::Disabled(); 7412 7413 // Select the optimal vectorization factor. 7414 return CM.selectVectorizationFactor(MaxVF); 7415 } 7416 7417 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 7418 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 7419 << '\n'); 7420 BestVF = VF; 7421 BestUF = UF; 7422 7423 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 7424 return !Plan->hasVF(VF); 7425 }); 7426 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7427 } 7428 7429 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7430 DominatorTree *DT) { 7431 // Perform the actual loop transformation. 7432 7433 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7434 VPCallbackILV CallbackILV(ILV); 7435 7436 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 7437 7438 VPTransformState State{*BestVF, BestUF, LI, 7439 DT, ILV.Builder, ILV.VectorLoopValueMap, 7440 &ILV, CallbackILV}; 7441 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7442 State.TripCount = ILV.getOrCreateTripCount(nullptr); 7443 State.CanonicalIV = ILV.Induction; 7444 7445 ILV.printDebugTracesAtStart(); 7446 7447 //===------------------------------------------------===// 7448 // 7449 // Notice: any optimization or new instruction that go 7450 // into the code below should also be implemented in 7451 // the cost-model. 7452 // 7453 //===------------------------------------------------===// 7454 7455 // 2. Copy and widen instructions from the old loop into the new loop. 7456 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7457 VPlans.front()->execute(&State); 7458 7459 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7460 // predication, updating analyses. 7461 ILV.fixVectorizedLoop(); 7462 7463 ILV.printDebugTracesAtEnd(); 7464 } 7465 7466 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7467 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7468 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7469 7470 // We create new control-flow for the vectorized loop, so the original 7471 // condition will be dead after vectorization if it's only used by the 7472 // branch. 7473 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7474 if (Cmp && Cmp->hasOneUse()) { 7475 DeadInstructions.insert(Cmp); 7476 7477 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7478 for (Value *Op : Cmp->operands()) { 7479 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7480 DeadInstructions.insert(cast<Instruction>(Op)); 7481 } 7482 } 7483 7484 // We create new "steps" for induction variable updates to which the original 7485 // induction variables map. An original update instruction will be dead if 7486 // all its users except the induction variable are dead. 7487 for (auto &Induction : Legal->getInductionVars()) { 7488 PHINode *Ind = Induction.first; 7489 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7490 7491 // If the tail is to be folded by masking, the primary induction variable, 7492 // if exists, isn't dead: it will be used for masking. Don't kill it. 7493 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 7494 continue; 7495 7496 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7497 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7498 })) 7499 DeadInstructions.insert(IndUpdate); 7500 7501 // We record as "Dead" also the type-casting instructions we had identified 7502 // during induction analysis. We don't need any handling for them in the 7503 // vectorized loop because we have proven that, under a proper runtime 7504 // test guarding the vectorized loop, the value of the phi, and the casted 7505 // value of the phi, are the same. The last instruction in this casting chain 7506 // will get its scalar/vector/widened def from the scalar/vector/widened def 7507 // of the respective phi node. Any other casts in the induction def-use chain 7508 // have no other uses outside the phi update chain, and will be ignored. 7509 InductionDescriptor &IndDes = Induction.second; 7510 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7511 DeadInstructions.insert(Casts.begin(), Casts.end()); 7512 } 7513 } 7514 7515 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7516 7517 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7518 7519 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7520 Instruction::BinaryOps BinOp) { 7521 // When unrolling and the VF is 1, we only need to add a simple scalar. 7522 Type *Ty = Val->getType(); 7523 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7524 7525 if (Ty->isFloatingPointTy()) { 7526 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7527 7528 // Floating point operations had to be 'fast' to enable the unrolling. 7529 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7530 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7531 } 7532 Constant *C = ConstantInt::get(Ty, StartIdx); 7533 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7534 } 7535 7536 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7537 SmallVector<Metadata *, 4> MDs; 7538 // Reserve first location for self reference to the LoopID metadata node. 7539 MDs.push_back(nullptr); 7540 bool IsUnrollMetadata = false; 7541 MDNode *LoopID = L->getLoopID(); 7542 if (LoopID) { 7543 // First find existing loop unrolling disable metadata. 7544 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7545 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7546 if (MD) { 7547 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7548 IsUnrollMetadata = 7549 S && S->getString().startswith("llvm.loop.unroll.disable"); 7550 } 7551 MDs.push_back(LoopID->getOperand(i)); 7552 } 7553 } 7554 7555 if (!IsUnrollMetadata) { 7556 // Add runtime unroll disable metadata. 7557 LLVMContext &Context = L->getHeader()->getContext(); 7558 SmallVector<Metadata *, 1> DisableOperands; 7559 DisableOperands.push_back( 7560 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7561 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7562 MDs.push_back(DisableNode); 7563 MDNode *NewLoopID = MDNode::get(Context, MDs); 7564 // Set operand 0 to refer to the loop id itself. 7565 NewLoopID->replaceOperandWith(0, NewLoopID); 7566 L->setLoopID(NewLoopID); 7567 } 7568 } 7569 7570 //===--------------------------------------------------------------------===// 7571 // EpilogueVectorizerMainLoop 7572 //===--------------------------------------------------------------------===// 7573 7574 /// This function is partially responsible for generating the control flow 7575 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7576 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 7577 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7578 Loop *Lp = createVectorLoopSkeleton(""); 7579 7580 // Generate the code to check the minimum iteration count of the vector 7581 // epilogue (see below). 7582 EPI.EpilogueIterationCountCheck = 7583 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 7584 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7585 7586 // Generate the code to check any assumptions that we've made for SCEV 7587 // expressions. 7588 BasicBlock *SavedPreHeader = LoopVectorPreHeader; 7589 emitSCEVChecks(Lp, LoopScalarPreHeader); 7590 7591 // If a safety check was generated save it. 7592 if (SavedPreHeader != LoopVectorPreHeader) 7593 EPI.SCEVSafetyCheck = SavedPreHeader; 7594 7595 // Generate the code that checks at runtime if arrays overlap. We put the 7596 // checks into a separate block to make the more common case of few elements 7597 // faster. 7598 SavedPreHeader = LoopVectorPreHeader; 7599 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 7600 7601 // If a safety check was generated save/overwite it. 7602 if (SavedPreHeader != LoopVectorPreHeader) 7603 EPI.MemSafetyCheck = SavedPreHeader; 7604 7605 // Generate the iteration count check for the main loop, *after* the check 7606 // for the epilogue loop, so that the path-length is shorter for the case 7607 // that goes directly through the vector epilogue. The longer-path length for 7608 // the main loop is compensated for, by the gain from vectorizing the larger 7609 // trip count. Note: the branch will get updated later on when we vectorize 7610 // the epilogue. 7611 EPI.MainLoopIterationCountCheck = 7612 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 7613 7614 // Generate the induction variable. 7615 OldInduction = Legal->getPrimaryInduction(); 7616 Type *IdxTy = Legal->getWidestInductionType(); 7617 Value *StartIdx = ConstantInt::get(IdxTy, 0); 7618 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 7619 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 7620 EPI.VectorTripCount = CountRoundDown; 7621 Induction = 7622 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 7623 getDebugLocFromInstOrOperands(OldInduction)); 7624 7625 // Skip induction resume value creation here because they will be created in 7626 // the second pass. If we created them here, they wouldn't be used anyway, 7627 // because the vplan in the second pass still contains the inductions from the 7628 // original loop. 7629 7630 return completeLoopSkeleton(Lp, OrigLoopID); 7631 } 7632 7633 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 7634 LLVM_DEBUG({ 7635 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 7636 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 7637 << ", Main Loop UF:" << EPI.MainLoopUF 7638 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 7639 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7640 }); 7641 } 7642 7643 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 7644 DEBUG_WITH_TYPE(VerboseDebug, { 7645 dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n"; 7646 }); 7647 } 7648 7649 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 7650 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 7651 assert(L && "Expected valid Loop."); 7652 assert(Bypass && "Expected valid bypass basic block."); 7653 unsigned VFactor = 7654 ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue(); 7655 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 7656 Value *Count = getOrCreateTripCount(L); 7657 // Reuse existing vector loop preheader for TC checks. 7658 // Note that new preheader block is generated for vector loop. 7659 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 7660 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 7661 7662 // Generate code to check if the loop's trip count is less than VF * UF of the 7663 // main vector loop. 7664 auto P = 7665 Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7666 7667 Value *CheckMinIters = Builder.CreateICmp( 7668 P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor), 7669 "min.iters.check"); 7670 7671 if (!ForEpilogue) 7672 TCCheckBlock->setName("vector.main.loop.iter.check"); 7673 7674 // Create new preheader for vector loop. 7675 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 7676 DT, LI, nullptr, "vector.ph"); 7677 7678 if (ForEpilogue) { 7679 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 7680 DT->getNode(Bypass)->getIDom()) && 7681 "TC check is expected to dominate Bypass"); 7682 7683 // Update dominator for Bypass & LoopExit. 7684 DT->changeImmediateDominator(Bypass, TCCheckBlock); 7685 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 7686 7687 LoopBypassBlocks.push_back(TCCheckBlock); 7688 7689 // Save the trip count so we don't have to regenerate it in the 7690 // vec.epilog.iter.check. This is safe to do because the trip count 7691 // generated here dominates the vector epilog iter check. 7692 EPI.TripCount = Count; 7693 } 7694 7695 ReplaceInstWithInst( 7696 TCCheckBlock->getTerminator(), 7697 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7698 7699 return TCCheckBlock; 7700 } 7701 7702 //===--------------------------------------------------------------------===// 7703 // EpilogueVectorizerEpilogueLoop 7704 //===--------------------------------------------------------------------===// 7705 7706 /// This function is partially responsible for generating the control flow 7707 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7708 BasicBlock * 7709 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 7710 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7711 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 7712 7713 // Now, compare the remaining count and if there aren't enough iterations to 7714 // execute the vectorized epilogue skip to the scalar part. 7715 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 7716 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 7717 LoopVectorPreHeader = 7718 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 7719 LI, nullptr, "vec.epilog.ph"); 7720 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 7721 VecEpilogueIterationCountCheck); 7722 7723 // Adjust the control flow taking the state info from the main loop 7724 // vectorization into account. 7725 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 7726 "expected this to be saved from the previous pass."); 7727 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 7728 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 7729 7730 DT->changeImmediateDominator(LoopVectorPreHeader, 7731 EPI.MainLoopIterationCountCheck); 7732 7733 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 7734 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7735 7736 if (EPI.SCEVSafetyCheck) 7737 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 7738 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7739 if (EPI.MemSafetyCheck) 7740 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 7741 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7742 7743 DT->changeImmediateDominator( 7744 VecEpilogueIterationCountCheck, 7745 VecEpilogueIterationCountCheck->getSinglePredecessor()); 7746 7747 DT->changeImmediateDominator(LoopScalarPreHeader, 7748 EPI.EpilogueIterationCountCheck); 7749 DT->changeImmediateDominator(LoopExitBlock, EPI.EpilogueIterationCountCheck); 7750 7751 // Keep track of bypass blocks, as they feed start values to the induction 7752 // phis in the scalar loop preheader. 7753 if (EPI.SCEVSafetyCheck) 7754 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 7755 if (EPI.MemSafetyCheck) 7756 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 7757 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 7758 7759 // Generate a resume induction for the vector epilogue and put it in the 7760 // vector epilogue preheader 7761 Type *IdxTy = Legal->getWidestInductionType(); 7762 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 7763 LoopVectorPreHeader->getFirstNonPHI()); 7764 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 7765 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 7766 EPI.MainLoopIterationCountCheck); 7767 7768 // Generate the induction variable. 7769 OldInduction = Legal->getPrimaryInduction(); 7770 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 7771 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 7772 Value *StartIdx = EPResumeVal; 7773 Induction = 7774 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 7775 getDebugLocFromInstOrOperands(OldInduction)); 7776 7777 // Generate induction resume values. These variables save the new starting 7778 // indexes for the scalar loop. They are used to test if there are any tail 7779 // iterations left once the vector loop has completed. 7780 // Note that when the vectorized epilogue is skipped due to iteration count 7781 // check, then the resume value for the induction variable comes from 7782 // the trip count of the main vector loop, hence passing the AdditionalBypass 7783 // argument. 7784 createInductionResumeValues(Lp, CountRoundDown, 7785 {VecEpilogueIterationCountCheck, 7786 EPI.VectorTripCount} /* AdditionalBypass */); 7787 7788 AddRuntimeUnrollDisableMetaData(Lp); 7789 return completeLoopSkeleton(Lp, OrigLoopID); 7790 } 7791 7792 BasicBlock * 7793 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 7794 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 7795 7796 assert(EPI.TripCount && 7797 "Expected trip count to have been safed in the first pass."); 7798 assert( 7799 (!isa<Instruction>(EPI.TripCount) || 7800 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 7801 "saved trip count does not dominate insertion point."); 7802 Value *TC = EPI.TripCount; 7803 IRBuilder<> Builder(Insert->getTerminator()); 7804 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 7805 7806 // Generate code to check if the loop's trip count is less than VF * UF of the 7807 // vector epilogue loop. 7808 auto P = 7809 Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7810 7811 Value *CheckMinIters = Builder.CreateICmp( 7812 P, Count, 7813 ConstantInt::get(Count->getType(), 7814 EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF), 7815 "min.epilog.iters.check"); 7816 7817 ReplaceInstWithInst( 7818 Insert->getTerminator(), 7819 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7820 7821 LoopBypassBlocks.push_back(Insert); 7822 return Insert; 7823 } 7824 7825 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 7826 LLVM_DEBUG({ 7827 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 7828 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 7829 << ", Main Loop UF:" << EPI.MainLoopUF 7830 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 7831 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7832 }); 7833 } 7834 7835 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 7836 DEBUG_WITH_TYPE(VerboseDebug, { 7837 dbgs() << "final fn:\n" << *Induction->getFunction() << "\n"; 7838 }); 7839 } 7840 7841 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7842 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 7843 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 7844 bool PredicateAtRangeStart = Predicate(Range.Start); 7845 7846 for (ElementCount TmpVF = Range.Start * 2; 7847 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 7848 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7849 Range.End = TmpVF; 7850 break; 7851 } 7852 7853 return PredicateAtRangeStart; 7854 } 7855 7856 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7857 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7858 /// of VF's starting at a given VF and extending it as much as possible. Each 7859 /// vectorization decision can potentially shorten this sub-range during 7860 /// buildVPlan(). 7861 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 7862 ElementCount MaxVF) { 7863 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 7864 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 7865 VFRange SubRange = {VF, MaxVFPlusOne}; 7866 VPlans.push_back(buildVPlan(SubRange)); 7867 VF = SubRange.End; 7868 } 7869 } 7870 7871 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 7872 VPlanPtr &Plan) { 7873 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 7874 7875 // Look for cached value. 7876 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 7877 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 7878 if (ECEntryIt != EdgeMaskCache.end()) 7879 return ECEntryIt->second; 7880 7881 VPValue *SrcMask = createBlockInMask(Src, Plan); 7882 7883 // The terminator has to be a branch inst! 7884 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 7885 assert(BI && "Unexpected terminator found"); 7886 7887 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 7888 return EdgeMaskCache[Edge] = SrcMask; 7889 7890 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 7891 assert(EdgeMask && "No Edge Mask found for condition"); 7892 7893 if (BI->getSuccessor(0) != Dst) 7894 EdgeMask = Builder.createNot(EdgeMask); 7895 7896 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 7897 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 7898 7899 return EdgeMaskCache[Edge] = EdgeMask; 7900 } 7901 7902 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 7903 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 7904 7905 // Look for cached value. 7906 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 7907 if (BCEntryIt != BlockMaskCache.end()) 7908 return BCEntryIt->second; 7909 7910 // All-one mask is modelled as no-mask following the convention for masked 7911 // load/store/gather/scatter. Initialize BlockMask to no-mask. 7912 VPValue *BlockMask = nullptr; 7913 7914 if (OrigLoop->getHeader() == BB) { 7915 if (!CM.blockNeedsPredication(BB)) 7916 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 7917 7918 // Create the block in mask as the first non-phi instruction in the block. 7919 VPBuilder::InsertPointGuard Guard(Builder); 7920 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 7921 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 7922 7923 // Introduce the early-exit compare IV <= BTC to form header block mask. 7924 // This is used instead of IV < TC because TC may wrap, unlike BTC. 7925 // Start by constructing the desired canonical IV. 7926 VPValue *IV = nullptr; 7927 if (Legal->getPrimaryInduction()) 7928 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 7929 else { 7930 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 7931 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 7932 IV = IVRecipe->getVPValue(); 7933 } 7934 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 7935 bool TailFolded = !CM.isScalarEpilogueAllowed(); 7936 7937 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 7938 // While ActiveLaneMask is a binary op that consumes the loop tripcount 7939 // as a second argument, we only pass the IV here and extract the 7940 // tripcount from the transform state where codegen of the VP instructions 7941 // happen. 7942 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 7943 } else { 7944 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 7945 } 7946 return BlockMaskCache[BB] = BlockMask; 7947 } 7948 7949 // This is the block mask. We OR all incoming edges. 7950 for (auto *Predecessor : predecessors(BB)) { 7951 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 7952 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 7953 return BlockMaskCache[BB] = EdgeMask; 7954 7955 if (!BlockMask) { // BlockMask has its initialized nullptr value. 7956 BlockMask = EdgeMask; 7957 continue; 7958 } 7959 7960 BlockMask = Builder.createOr(BlockMask, EdgeMask); 7961 } 7962 7963 return BlockMaskCache[BB] = BlockMask; 7964 } 7965 7966 VPWidenMemoryInstructionRecipe * 7967 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 7968 VPlanPtr &Plan) { 7969 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7970 "Must be called with either a load or store"); 7971 7972 auto willWiden = [&](ElementCount VF) -> bool { 7973 if (VF.isScalar()) 7974 return false; 7975 LoopVectorizationCostModel::InstWidening Decision = 7976 CM.getWideningDecision(I, VF); 7977 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 7978 "CM decision should be taken at this point."); 7979 if (Decision == LoopVectorizationCostModel::CM_Interleave) 7980 return true; 7981 if (CM.isScalarAfterVectorization(I, VF) || 7982 CM.isProfitableToScalarize(I, VF)) 7983 return false; 7984 return Decision != LoopVectorizationCostModel::CM_Scalarize; 7985 }; 7986 7987 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 7988 return nullptr; 7989 7990 VPValue *Mask = nullptr; 7991 if (Legal->isMaskRequired(I)) 7992 Mask = createBlockInMask(I->getParent(), Plan); 7993 7994 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I)); 7995 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 7996 return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask); 7997 7998 StoreInst *Store = cast<StoreInst>(I); 7999 VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand()); 8000 return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask); 8001 } 8002 8003 VPWidenIntOrFpInductionRecipe * 8004 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi) const { 8005 // Check if this is an integer or fp induction. If so, build the recipe that 8006 // produces its scalar and vector values. 8007 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8008 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8009 II.getKind() == InductionDescriptor::IK_FpInduction) 8010 return new VPWidenIntOrFpInductionRecipe(Phi); 8011 8012 return nullptr; 8013 } 8014 8015 VPWidenIntOrFpInductionRecipe * 8016 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I, 8017 VFRange &Range) const { 8018 // Optimize the special case where the source is a constant integer 8019 // induction variable. Notice that we can only optimize the 'trunc' case 8020 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8021 // (c) other casts depend on pointer size. 8022 8023 // Determine whether \p K is a truncation based on an induction variable that 8024 // can be optimized. 8025 auto isOptimizableIVTruncate = 8026 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8027 return [=](ElementCount VF) -> bool { 8028 return CM.isOptimizableIVTruncate(K, VF); 8029 }; 8030 }; 8031 8032 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8033 isOptimizableIVTruncate(I), Range)) 8034 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8035 I); 8036 return nullptr; 8037 } 8038 8039 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) { 8040 // We know that all PHIs in non-header blocks are converted into selects, so 8041 // we don't have to worry about the insertion order and we can just use the 8042 // builder. At this point we generate the predication tree. There may be 8043 // duplications since this is a simple recursive scan, but future 8044 // optimizations will clean it up. 8045 8046 SmallVector<VPValue *, 2> Operands; 8047 unsigned NumIncoming = Phi->getNumIncomingValues(); 8048 for (unsigned In = 0; In < NumIncoming; In++) { 8049 VPValue *EdgeMask = 8050 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8051 assert((EdgeMask || NumIncoming == 1) && 8052 "Multiple predecessors with one having a full mask"); 8053 Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In))); 8054 if (EdgeMask) 8055 Operands.push_back(EdgeMask); 8056 } 8057 return new VPBlendRecipe(Phi, Operands); 8058 } 8059 8060 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range, 8061 VPlan &Plan) const { 8062 8063 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8064 [this, CI](ElementCount VF) { 8065 return CM.isScalarWithPredication(CI, VF); 8066 }, 8067 Range); 8068 8069 if (IsPredicated) 8070 return nullptr; 8071 8072 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8073 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8074 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8075 ID == Intrinsic::pseudoprobe)) 8076 return nullptr; 8077 8078 auto willWiden = [&](ElementCount VF) -> bool { 8079 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8080 // The following case may be scalarized depending on the VF. 8081 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8082 // version of the instruction. 8083 // Is it beneficial to perform intrinsic call compared to lib call? 8084 bool NeedToScalarize = false; 8085 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8086 bool UseVectorIntrinsic = 8087 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 8088 return UseVectorIntrinsic || !NeedToScalarize; 8089 }; 8090 8091 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8092 return nullptr; 8093 8094 return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands())); 8095 } 8096 8097 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8098 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8099 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8100 // Instruction should be widened, unless it is scalar after vectorization, 8101 // scalarization is profitable or it is predicated. 8102 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8103 return CM.isScalarAfterVectorization(I, VF) || 8104 CM.isProfitableToScalarize(I, VF) || 8105 CM.isScalarWithPredication(I, VF); 8106 }; 8107 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8108 Range); 8109 } 8110 8111 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const { 8112 auto IsVectorizableOpcode = [](unsigned Opcode) { 8113 switch (Opcode) { 8114 case Instruction::Add: 8115 case Instruction::And: 8116 case Instruction::AShr: 8117 case Instruction::BitCast: 8118 case Instruction::FAdd: 8119 case Instruction::FCmp: 8120 case Instruction::FDiv: 8121 case Instruction::FMul: 8122 case Instruction::FNeg: 8123 case Instruction::FPExt: 8124 case Instruction::FPToSI: 8125 case Instruction::FPToUI: 8126 case Instruction::FPTrunc: 8127 case Instruction::FRem: 8128 case Instruction::FSub: 8129 case Instruction::ICmp: 8130 case Instruction::IntToPtr: 8131 case Instruction::LShr: 8132 case Instruction::Mul: 8133 case Instruction::Or: 8134 case Instruction::PtrToInt: 8135 case Instruction::SDiv: 8136 case Instruction::Select: 8137 case Instruction::SExt: 8138 case Instruction::Shl: 8139 case Instruction::SIToFP: 8140 case Instruction::SRem: 8141 case Instruction::Sub: 8142 case Instruction::Trunc: 8143 case Instruction::UDiv: 8144 case Instruction::UIToFP: 8145 case Instruction::URem: 8146 case Instruction::Xor: 8147 case Instruction::ZExt: 8148 return true; 8149 } 8150 return false; 8151 }; 8152 8153 if (!IsVectorizableOpcode(I->getOpcode())) 8154 return nullptr; 8155 8156 // Success: widen this instruction. 8157 return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands())); 8158 } 8159 8160 VPBasicBlock *VPRecipeBuilder::handleReplication( 8161 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8162 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 8163 VPlanPtr &Plan) { 8164 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8165 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8166 Range); 8167 8168 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8169 [&](ElementCount VF) { return CM.isScalarWithPredication(I, VF); }, 8170 Range); 8171 8172 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8173 IsUniform, IsPredicated); 8174 setRecipe(I, Recipe); 8175 Plan->addVPValue(I, Recipe); 8176 8177 // Find if I uses a predicated instruction. If so, it will use its scalar 8178 // value. Avoid hoisting the insert-element which packs the scalar value into 8179 // a vector value, as that happens iff all users use the vector value. 8180 for (auto &Op : I->operands()) 8181 if (auto *PredInst = dyn_cast<Instruction>(Op)) 8182 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 8183 PredInst2Recipe[PredInst]->setAlsoPack(false); 8184 8185 // Finalize the recipe for Instr, first if it is not predicated. 8186 if (!IsPredicated) { 8187 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8188 VPBB->appendRecipe(Recipe); 8189 return VPBB; 8190 } 8191 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8192 assert(VPBB->getSuccessors().empty() && 8193 "VPBB has successors when handling predicated replication."); 8194 // Record predicated instructions for above packing optimizations. 8195 PredInst2Recipe[I] = Recipe; 8196 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8197 VPBlockUtils::insertBlockAfter(Region, VPBB); 8198 auto *RegSucc = new VPBasicBlock(); 8199 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8200 return RegSucc; 8201 } 8202 8203 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8204 VPRecipeBase *PredRecipe, 8205 VPlanPtr &Plan) { 8206 // Instructions marked for predication are replicated and placed under an 8207 // if-then construct to prevent side-effects. 8208 8209 // Generate recipes to compute the block mask for this region. 8210 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8211 8212 // Build the triangular if-then region. 8213 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8214 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8215 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8216 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8217 auto *PHIRecipe = Instr->getType()->isVoidTy() 8218 ? nullptr 8219 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8220 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8221 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8222 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8223 8224 // Note: first set Entry as region entry and then connect successors starting 8225 // from it in order, to propagate the "parent" of each VPBasicBlock. 8226 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8227 VPBlockUtils::connectBlocks(Pred, Exit); 8228 8229 return Region; 8230 } 8231 8232 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8233 VFRange &Range, 8234 VPlanPtr &Plan) { 8235 // First, check for specific widening recipes that deal with calls, memory 8236 // operations, inductions and Phi nodes. 8237 if (auto *CI = dyn_cast<CallInst>(Instr)) 8238 return tryToWidenCall(CI, Range, *Plan); 8239 8240 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8241 return tryToWidenMemory(Instr, Range, Plan); 8242 8243 VPRecipeBase *Recipe; 8244 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8245 if (Phi->getParent() != OrigLoop->getHeader()) 8246 return tryToBlend(Phi, Plan); 8247 if ((Recipe = tryToOptimizeInductionPHI(Phi))) 8248 return Recipe; 8249 return new VPWidenPHIRecipe(Phi); 8250 } 8251 8252 if (isa<TruncInst>(Instr) && 8253 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Range))) 8254 return Recipe; 8255 8256 if (!shouldWiden(Instr, Range)) 8257 return nullptr; 8258 8259 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8260 return new VPWidenGEPRecipe(GEP, Plan->mapToVPValues(GEP->operands()), 8261 OrigLoop); 8262 8263 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8264 bool InvariantCond = 8265 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8266 return new VPWidenSelectRecipe(*SI, Plan->mapToVPValues(SI->operands()), 8267 InvariantCond); 8268 } 8269 8270 return tryToWiden(Instr, *Plan); 8271 } 8272 8273 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8274 ElementCount MaxVF) { 8275 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8276 8277 // Collect instructions from the original loop that will become trivially dead 8278 // in the vectorized loop. We don't need to vectorize these instructions. For 8279 // example, original induction update instructions can become dead because we 8280 // separately emit induction "steps" when generating code for the new loop. 8281 // Similarly, we create a new latch condition when setting up the structure 8282 // of the new loop, so the old one can become dead. 8283 SmallPtrSet<Instruction *, 4> DeadInstructions; 8284 collectTriviallyDeadInstructions(DeadInstructions); 8285 8286 // Add assume instructions we need to drop to DeadInstructions, to prevent 8287 // them from being added to the VPlan. 8288 // TODO: We only need to drop assumes in blocks that get flattend. If the 8289 // control flow is preserved, we should keep them. 8290 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8291 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8292 8293 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8294 // Dead instructions do not need sinking. Remove them from SinkAfter. 8295 for (Instruction *I : DeadInstructions) 8296 SinkAfter.erase(I); 8297 8298 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8299 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8300 VFRange SubRange = {VF, MaxVFPlusOne}; 8301 VPlans.push_back( 8302 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8303 VF = SubRange.End; 8304 } 8305 } 8306 8307 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8308 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8309 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 8310 8311 // Hold a mapping from predicated instructions to their recipes, in order to 8312 // fix their AlsoPack behavior if a user is determined to replicate and use a 8313 // scalar instead of vector value. 8314 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 8315 8316 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8317 8318 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8319 8320 // --------------------------------------------------------------------------- 8321 // Pre-construction: record ingredients whose recipes we'll need to further 8322 // process after constructing the initial VPlan. 8323 // --------------------------------------------------------------------------- 8324 8325 // Mark instructions we'll need to sink later and their targets as 8326 // ingredients whose recipe we'll need to record. 8327 for (auto &Entry : SinkAfter) { 8328 RecipeBuilder.recordRecipeOf(Entry.first); 8329 RecipeBuilder.recordRecipeOf(Entry.second); 8330 } 8331 for (auto &Reduction : CM.getInLoopReductionChains()) { 8332 PHINode *Phi = Reduction.first; 8333 RecurrenceDescriptor::RecurrenceKind Kind = 8334 Legal->getReductionVars()[Phi].getRecurrenceKind(); 8335 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8336 8337 RecipeBuilder.recordRecipeOf(Phi); 8338 for (auto &R : ReductionOperations) { 8339 RecipeBuilder.recordRecipeOf(R); 8340 // For min/max reducitons, where we have a pair of icmp/select, we also 8341 // need to record the ICmp recipe, so it can be removed later. 8342 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 8343 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 8344 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8345 } 8346 } 8347 } 8348 8349 // For each interleave group which is relevant for this (possibly trimmed) 8350 // Range, add it to the set of groups to be later applied to the VPlan and add 8351 // placeholders for its members' Recipes which we'll be replacing with a 8352 // single VPInterleaveRecipe. 8353 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8354 auto applyIG = [IG, this](ElementCount VF) -> bool { 8355 return (VF.isVector() && // Query is illegal for VF == 1 8356 CM.getWideningDecision(IG->getInsertPos(), VF) == 8357 LoopVectorizationCostModel::CM_Interleave); 8358 }; 8359 if (!getDecisionAndClampRange(applyIG, Range)) 8360 continue; 8361 InterleaveGroups.insert(IG); 8362 for (unsigned i = 0; i < IG->getFactor(); i++) 8363 if (Instruction *Member = IG->getMember(i)) 8364 RecipeBuilder.recordRecipeOf(Member); 8365 }; 8366 8367 // --------------------------------------------------------------------------- 8368 // Build initial VPlan: Scan the body of the loop in a topological order to 8369 // visit each basic block after having visited its predecessor basic blocks. 8370 // --------------------------------------------------------------------------- 8371 8372 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 8373 auto Plan = std::make_unique<VPlan>(); 8374 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 8375 Plan->setEntry(VPBB); 8376 8377 // Scan the body of the loop in a topological order to visit each basic block 8378 // after having visited its predecessor basic blocks. 8379 LoopBlocksDFS DFS(OrigLoop); 8380 DFS.perform(LI); 8381 8382 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8383 // Relevant instructions from basic block BB will be grouped into VPRecipe 8384 // ingredients and fill a new VPBasicBlock. 8385 unsigned VPBBsForBB = 0; 8386 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 8387 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 8388 VPBB = FirstVPBBForBB; 8389 Builder.setInsertPoint(VPBB); 8390 8391 // Introduce each ingredient into VPlan. 8392 // TODO: Model and preserve debug instrinsics in VPlan. 8393 for (Instruction &I : BB->instructionsWithoutDebug()) { 8394 Instruction *Instr = &I; 8395 8396 // First filter out irrelevant instructions, to ensure no recipes are 8397 // built for them. 8398 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 8399 continue; 8400 8401 if (auto Recipe = 8402 RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) { 8403 // Check if the recipe can be converted to a VPValue. We need the extra 8404 // down-casting step until VPRecipeBase inherits from VPValue. 8405 VPValue *MaybeVPValue = Recipe->toVPValue(); 8406 if (!Instr->getType()->isVoidTy() && MaybeVPValue) 8407 Plan->addVPValue(Instr, MaybeVPValue); 8408 8409 RecipeBuilder.setRecipe(Instr, Recipe); 8410 VPBB->appendRecipe(Recipe); 8411 continue; 8412 } 8413 8414 // Otherwise, if all widening options failed, Instruction is to be 8415 // replicated. This may create a successor for VPBB. 8416 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 8417 Instr, Range, VPBB, PredInst2Recipe, Plan); 8418 if (NextVPBB != VPBB) { 8419 VPBB = NextVPBB; 8420 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8421 : ""); 8422 } 8423 } 8424 } 8425 8426 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 8427 // may also be empty, such as the last one VPBB, reflecting original 8428 // basic-blocks with no recipes. 8429 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 8430 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 8431 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 8432 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 8433 delete PreEntry; 8434 8435 // --------------------------------------------------------------------------- 8436 // Transform initial VPlan: Apply previously taken decisions, in order, to 8437 // bring the VPlan to its final state. 8438 // --------------------------------------------------------------------------- 8439 8440 // Apply Sink-After legal constraints. 8441 for (auto &Entry : SinkAfter) { 8442 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 8443 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 8444 Sink->moveAfter(Target); 8445 } 8446 8447 // Interleave memory: for each Interleave Group we marked earlier as relevant 8448 // for this VPlan, replace the Recipes widening its memory instructions with a 8449 // single VPInterleaveRecipe at its insertion point. 8450 for (auto IG : InterleaveGroups) { 8451 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 8452 RecipeBuilder.getRecipe(IG->getInsertPos())); 8453 SmallVector<VPValue *, 4> StoredValues; 8454 for (unsigned i = 0; i < IG->getFactor(); ++i) 8455 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) 8456 StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0))); 8457 8458 (new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 8459 Recipe->getMask())) 8460 ->insertBefore(Recipe); 8461 8462 for (unsigned i = 0; i < IG->getFactor(); ++i) 8463 if (Instruction *Member = IG->getMember(i)) { 8464 if (!Member->getType()->isVoidTy()) { 8465 VPValue *OriginalV = Plan->getVPValue(Member); 8466 Plan->removeVPValueFor(Member); 8467 OriginalV->replaceAllUsesWith(Plan->getOrAddVPValue(Member)); 8468 } 8469 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 8470 } 8471 } 8472 8473 // Adjust the recipes for any inloop reductions. 8474 if (Range.Start.isVector()) 8475 adjustRecipesForInLoopReductions(Plan, RecipeBuilder); 8476 8477 // Finally, if tail is folded by masking, introduce selects between the phi 8478 // and the live-out instruction of each reduction, at the end of the latch. 8479 if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) { 8480 Builder.setInsertPoint(VPBB); 8481 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 8482 for (auto &Reduction : Legal->getReductionVars()) { 8483 if (CM.isInLoopReduction(Reduction.first)) 8484 continue; 8485 VPValue *Phi = Plan->getOrAddVPValue(Reduction.first); 8486 VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr()); 8487 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 8488 } 8489 } 8490 8491 std::string PlanName; 8492 raw_string_ostream RSO(PlanName); 8493 ElementCount VF = Range.Start; 8494 Plan->addVF(VF); 8495 RSO << "Initial VPlan for VF={" << VF; 8496 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 8497 Plan->addVF(VF); 8498 RSO << "," << VF; 8499 } 8500 RSO << "},UF>=1"; 8501 RSO.flush(); 8502 Plan->setName(PlanName); 8503 8504 return Plan; 8505 } 8506 8507 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 8508 // Outer loop handling: They may require CFG and instruction level 8509 // transformations before even evaluating whether vectorization is profitable. 8510 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 8511 // the vectorization pipeline. 8512 assert(!OrigLoop->isInnermost()); 8513 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 8514 8515 // Create new empty VPlan 8516 auto Plan = std::make_unique<VPlan>(); 8517 8518 // Build hierarchical CFG 8519 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 8520 HCFGBuilder.buildHierarchicalCFG(); 8521 8522 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 8523 VF *= 2) 8524 Plan->addVF(VF); 8525 8526 if (EnableVPlanPredication) { 8527 VPlanPredicator VPP(*Plan); 8528 VPP.predicate(); 8529 8530 // Avoid running transformation to recipes until masked code generation in 8531 // VPlan-native path is in place. 8532 return Plan; 8533 } 8534 8535 SmallPtrSet<Instruction *, 1> DeadInstructions; 8536 VPlanTransforms::VPInstructionsToVPRecipes( 8537 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 8538 return Plan; 8539 } 8540 8541 // Adjust the recipes for any inloop reductions. The chain of instructions 8542 // leading from the loop exit instr to the phi need to be converted to 8543 // reductions, with one operand being vector and the other being the scalar 8544 // reduction chain. 8545 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions( 8546 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) { 8547 for (auto &Reduction : CM.getInLoopReductionChains()) { 8548 PHINode *Phi = Reduction.first; 8549 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 8550 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8551 8552 // ReductionOperations are orders top-down from the phi's use to the 8553 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 8554 // which of the two operands will remain scalar and which will be reduced. 8555 // For minmax the chain will be the select instructions. 8556 Instruction *Chain = Phi; 8557 for (Instruction *R : ReductionOperations) { 8558 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 8559 RecurrenceDescriptor::RecurrenceKind Kind = RdxDesc.getRecurrenceKind(); 8560 8561 VPValue *ChainOp = Plan->getVPValue(Chain); 8562 unsigned FirstOpId; 8563 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 8564 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 8565 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 8566 "Expected to replace a VPWidenSelectSC"); 8567 FirstOpId = 1; 8568 } else { 8569 assert(isa<VPWidenRecipe>(WidenRecipe) && 8570 "Expected to replace a VPWidenSC"); 8571 FirstOpId = 0; 8572 } 8573 unsigned VecOpId = 8574 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 8575 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 8576 8577 auto *CondOp = CM.foldTailByMasking() 8578 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 8579 : nullptr; 8580 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 8581 &RdxDesc, R, ChainOp, VecOp, CondOp, Legal->hasFunNoNaNAttr(), TTI); 8582 WidenRecipe->toVPValue()->replaceAllUsesWith(RedRecipe); 8583 Plan->removeVPValueFor(R); 8584 Plan->addVPValue(R, RedRecipe); 8585 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 8586 WidenRecipe->eraseFromParent(); 8587 8588 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 8589 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 8590 VPRecipeBase *CompareRecipe = 8591 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 8592 assert(isa<VPWidenRecipe>(CompareRecipe) && 8593 "Expected to replace a VPWidenSC"); 8594 assert(CompareRecipe->toVPValue()->getNumUsers() == 0 && 8595 "Expected no remaining users"); 8596 CompareRecipe->eraseFromParent(); 8597 } 8598 Chain = R; 8599 } 8600 } 8601 } 8602 8603 Value* LoopVectorizationPlanner::VPCallbackILV:: 8604 getOrCreateVectorValues(Value *V, unsigned Part) { 8605 return ILV.getOrCreateVectorValue(V, Part); 8606 } 8607 8608 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue( 8609 Value *V, const VPIteration &Instance) { 8610 return ILV.getOrCreateScalarValue(V, Instance); 8611 } 8612 8613 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 8614 VPSlotTracker &SlotTracker) const { 8615 O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 8616 IG->getInsertPos()->printAsOperand(O, false); 8617 O << ", "; 8618 getAddr()->printAsOperand(O, SlotTracker); 8619 VPValue *Mask = getMask(); 8620 if (Mask) { 8621 O << ", "; 8622 Mask->printAsOperand(O, SlotTracker); 8623 } 8624 for (unsigned i = 0; i < IG->getFactor(); ++i) 8625 if (Instruction *I = IG->getMember(i)) 8626 O << "\\l\" +\n" << Indent << "\" " << VPlanIngredient(I) << " " << i; 8627 } 8628 8629 void VPWidenCallRecipe::execute(VPTransformState &State) { 8630 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 8631 *this, State); 8632 } 8633 8634 void VPWidenSelectRecipe::execute(VPTransformState &State) { 8635 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 8636 this, *this, InvariantCond, State); 8637 } 8638 8639 void VPWidenRecipe::execute(VPTransformState &State) { 8640 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 8641 } 8642 8643 void VPWidenGEPRecipe::execute(VPTransformState &State) { 8644 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 8645 *this, State.UF, State.VF, IsPtrLoopInvariant, 8646 IsIndexLoopInvariant, State); 8647 } 8648 8649 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 8650 assert(!State.Instance && "Int or FP induction being replicated."); 8651 State.ILV->widenIntOrFpInduction(IV, Trunc); 8652 } 8653 8654 void VPWidenPHIRecipe::execute(VPTransformState &State) { 8655 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 8656 } 8657 8658 void VPBlendRecipe::execute(VPTransformState &State) { 8659 State.ILV->setDebugLocFromInst(State.Builder, Phi); 8660 // We know that all PHIs in non-header blocks are converted into 8661 // selects, so we don't have to worry about the insertion order and we 8662 // can just use the builder. 8663 // At this point we generate the predication tree. There may be 8664 // duplications since this is a simple recursive scan, but future 8665 // optimizations will clean it up. 8666 8667 unsigned NumIncoming = getNumIncomingValues(); 8668 8669 // Generate a sequence of selects of the form: 8670 // SELECT(Mask3, In3, 8671 // SELECT(Mask2, In2, 8672 // SELECT(Mask1, In1, 8673 // In0))) 8674 // Note that Mask0 is never used: lanes for which no path reaches this phi and 8675 // are essentially undef are taken from In0. 8676 InnerLoopVectorizer::VectorParts Entry(State.UF); 8677 for (unsigned In = 0; In < NumIncoming; ++In) { 8678 for (unsigned Part = 0; Part < State.UF; ++Part) { 8679 // We might have single edge PHIs (blocks) - use an identity 8680 // 'select' for the first PHI operand. 8681 Value *In0 = State.get(getIncomingValue(In), Part); 8682 if (In == 0) 8683 Entry[Part] = In0; // Initialize with the first incoming value. 8684 else { 8685 // Select between the current value and the previous incoming edge 8686 // based on the incoming mask. 8687 Value *Cond = State.get(getMask(In), Part); 8688 Entry[Part] = 8689 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 8690 } 8691 } 8692 } 8693 for (unsigned Part = 0; Part < State.UF; ++Part) 8694 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 8695 } 8696 8697 void VPInterleaveRecipe::execute(VPTransformState &State) { 8698 assert(!State.Instance && "Interleave group being replicated."); 8699 State.ILV->vectorizeInterleaveGroup(IG, State, getAddr(), getStoredValues(), 8700 getMask()); 8701 } 8702 8703 void VPReductionRecipe::execute(VPTransformState &State) { 8704 assert(!State.Instance && "Reduction being replicated."); 8705 for (unsigned Part = 0; Part < State.UF; ++Part) { 8706 RecurrenceDescriptor::RecurrenceKind Kind = RdxDesc->getRecurrenceKind(); 8707 Value *NewVecOp = State.get(getVecOp(), Part); 8708 if (VPValue *Cond = getCondOp()) { 8709 Value *NewCond = State.get(Cond, Part); 8710 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 8711 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 8712 Kind, RdxDesc->getMinMaxRecurrenceKind(), VecTy->getElementType()); 8713 Constant *IdenVec = 8714 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 8715 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 8716 NewVecOp = Select; 8717 } 8718 Value *NewRed = 8719 createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp, NoNaN); 8720 Value *PrevInChain = State.get(getChainOp(), Part); 8721 Value *NextInChain; 8722 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 8723 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 8724 NextInChain = 8725 createMinMaxOp(State.Builder, RdxDesc->getMinMaxRecurrenceKind(), 8726 NewRed, PrevInChain); 8727 } else { 8728 NextInChain = State.Builder.CreateBinOp( 8729 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed, 8730 PrevInChain); 8731 } 8732 State.set(this, getUnderlyingInstr(), NextInChain, Part); 8733 } 8734 } 8735 8736 void VPReplicateRecipe::execute(VPTransformState &State) { 8737 if (State.Instance) { // Generate a single instance. 8738 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 8739 State.ILV->scalarizeInstruction(getUnderlyingInstr(), *this, 8740 *State.Instance, IsPredicated, State); 8741 // Insert scalar instance packing it into a vector. 8742 if (AlsoPack && State.VF.isVector()) { 8743 // If we're constructing lane 0, initialize to start from undef. 8744 if (State.Instance->Lane == 0) { 8745 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 8746 Value *Undef = UndefValue::get( 8747 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 8748 State.ValueMap.setVectorValue(getUnderlyingInstr(), 8749 State.Instance->Part, Undef); 8750 } 8751 State.ILV->packScalarIntoVectorValue(getUnderlyingInstr(), 8752 *State.Instance); 8753 } 8754 return; 8755 } 8756 8757 // Generate scalar instances for all VF lanes of all UF parts, unless the 8758 // instruction is uniform inwhich case generate only the first lane for each 8759 // of the UF parts. 8760 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 8761 assert((!State.VF.isScalable() || IsUniform) && 8762 "Can't scalarize a scalable vector"); 8763 for (unsigned Part = 0; Part < State.UF; ++Part) 8764 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 8765 State.ILV->scalarizeInstruction(getUnderlyingInstr(), *this, {Part, Lane}, 8766 IsPredicated, State); 8767 } 8768 8769 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 8770 assert(State.Instance && "Branch on Mask works only on single instance."); 8771 8772 unsigned Part = State.Instance->Part; 8773 unsigned Lane = State.Instance->Lane; 8774 8775 Value *ConditionBit = nullptr; 8776 VPValue *BlockInMask = getMask(); 8777 if (BlockInMask) { 8778 ConditionBit = State.get(BlockInMask, Part); 8779 if (ConditionBit->getType()->isVectorTy()) 8780 ConditionBit = State.Builder.CreateExtractElement( 8781 ConditionBit, State.Builder.getInt32(Lane)); 8782 } else // Block in mask is all-one. 8783 ConditionBit = State.Builder.getTrue(); 8784 8785 // Replace the temporary unreachable terminator with a new conditional branch, 8786 // whose two destinations will be set later when they are created. 8787 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 8788 assert(isa<UnreachableInst>(CurrentTerminator) && 8789 "Expected to replace unreachable terminator with conditional branch."); 8790 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 8791 CondBr->setSuccessor(0, nullptr); 8792 ReplaceInstWithInst(CurrentTerminator, CondBr); 8793 } 8794 8795 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 8796 assert(State.Instance && "Predicated instruction PHI works per instance."); 8797 Instruction *ScalarPredInst = 8798 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 8799 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 8800 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 8801 assert(PredicatingBB && "Predicated block has no single predecessor."); 8802 8803 // By current pack/unpack logic we need to generate only a single phi node: if 8804 // a vector value for the predicated instruction exists at this point it means 8805 // the instruction has vector users only, and a phi for the vector value is 8806 // needed. In this case the recipe of the predicated instruction is marked to 8807 // also do that packing, thereby "hoisting" the insert-element sequence. 8808 // Otherwise, a phi node for the scalar value is needed. 8809 unsigned Part = State.Instance->Part; 8810 Instruction *PredInst = 8811 cast<Instruction>(getOperand(0)->getUnderlyingValue()); 8812 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 8813 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 8814 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 8815 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 8816 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 8817 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 8818 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 8819 } else { 8820 Type *PredInstType = PredInst->getType(); 8821 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 8822 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 8823 Phi->addIncoming(ScalarPredInst, PredicatedBB); 8824 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 8825 } 8826 } 8827 8828 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 8829 Instruction *Instr = getUnderlyingInstr(); 8830 VPValue *StoredValue = isa<StoreInst>(Instr) ? getStoredValue() : nullptr; 8831 State.ILV->vectorizeMemoryInstruction(Instr, State, 8832 StoredValue ? nullptr : this, getAddr(), 8833 StoredValue, getMask()); 8834 } 8835 8836 // Determine how to lower the scalar epilogue, which depends on 1) optimising 8837 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 8838 // predication, and 4) a TTI hook that analyses whether the loop is suitable 8839 // for predication. 8840 static ScalarEpilogueLowering getScalarEpilogueLowering( 8841 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 8842 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 8843 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 8844 LoopVectorizationLegality &LVL) { 8845 // 1) OptSize takes precedence over all other options, i.e. if this is set, 8846 // don't look at hints or options, and don't request a scalar epilogue. 8847 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 8848 // LoopAccessInfo (due to code dependency and not being able to reliably get 8849 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 8850 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 8851 // versioning when the vectorization is forced, unlike hasOptSize. So revert 8852 // back to the old way and vectorize with versioning when forced. See D81345.) 8853 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 8854 PGSOQueryType::IRPass) && 8855 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 8856 return CM_ScalarEpilogueNotAllowedOptSize; 8857 8858 bool PredicateOptDisabled = PreferPredicateOverEpilogue.getNumOccurrences() && 8859 !PreferPredicateOverEpilogue; 8860 8861 // 2) Next, if disabling predication is requested on the command line, honour 8862 // this and request a scalar epilogue. 8863 if (PredicateOptDisabled) 8864 return CM_ScalarEpilogueAllowed; 8865 8866 // 3) and 4) look if enabling predication is requested on the command line, 8867 // with a loop hint, or if the TTI hook indicates this is profitable, request 8868 // predication. 8869 if (PreferPredicateOverEpilogue || 8870 Hints.getPredicate() == LoopVectorizeHints::FK_Enabled || 8871 (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 8872 LVL.getLAI()) && 8873 Hints.getPredicate() != LoopVectorizeHints::FK_Disabled)) 8874 return CM_ScalarEpilogueNotNeededUsePredicate; 8875 8876 return CM_ScalarEpilogueAllowed; 8877 } 8878 8879 void VPTransformState::set(VPValue *Def, Value *IRDef, Value *V, 8880 unsigned Part) { 8881 set(Def, V, Part); 8882 ILV->setVectorValue(IRDef, Part, V); 8883 } 8884 8885 // Process the loop in the VPlan-native vectorization path. This path builds 8886 // VPlan upfront in the vectorization pipeline, which allows to apply 8887 // VPlan-to-VPlan transformations from the very beginning without modifying the 8888 // input LLVM IR. 8889 static bool processLoopInVPlanNativePath( 8890 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 8891 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 8892 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 8893 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 8894 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 8895 8896 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 8897 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 8898 return false; 8899 } 8900 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 8901 Function *F = L->getHeader()->getParent(); 8902 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 8903 8904 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 8905 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 8906 8907 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 8908 &Hints, IAI); 8909 // Use the planner for outer loop vectorization. 8910 // TODO: CM is not used at this point inside the planner. Turn CM into an 8911 // optional argument if we don't need it in the future. 8912 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE); 8913 8914 // Get user vectorization factor. 8915 ElementCount UserVF = Hints.getWidth(); 8916 8917 // Plan how to best vectorize, return the best VF and its cost. 8918 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 8919 8920 // If we are stress testing VPlan builds, do not attempt to generate vector 8921 // code. Masked vector code generation support will follow soon. 8922 // Also, do not attempt to vectorize if no vector code will be produced. 8923 if (VPlanBuildStressTest || EnableVPlanPredication || 8924 VectorizationFactor::Disabled() == VF) 8925 return false; 8926 8927 LVP.setBestPlan(VF.Width, 1); 8928 8929 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 8930 &CM, BFI, PSI); 8931 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 8932 << L->getHeader()->getParent()->getName() << "\"\n"); 8933 LVP.executePlan(LB, DT); 8934 8935 // Mark the loop as already vectorized to avoid vectorizing again. 8936 Hints.setAlreadyVectorized(); 8937 8938 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 8939 return true; 8940 } 8941 8942 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 8943 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 8944 !EnableLoopInterleaving), 8945 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 8946 !EnableLoopVectorization) {} 8947 8948 bool LoopVectorizePass::processLoop(Loop *L) { 8949 assert((EnableVPlanNativePath || L->isInnermost()) && 8950 "VPlan-native path is not enabled. Only process inner loops."); 8951 8952 #ifndef NDEBUG 8953 const std::string DebugLocStr = getDebugLocString(L); 8954 #endif /* NDEBUG */ 8955 8956 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 8957 << L->getHeader()->getParent()->getName() << "\" from " 8958 << DebugLocStr << "\n"); 8959 8960 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 8961 8962 LLVM_DEBUG( 8963 dbgs() << "LV: Loop hints:" 8964 << " force=" 8965 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 8966 ? "disabled" 8967 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 8968 ? "enabled" 8969 : "?")) 8970 << " width=" << Hints.getWidth() 8971 << " unroll=" << Hints.getInterleave() << "\n"); 8972 8973 // Function containing loop 8974 Function *F = L->getHeader()->getParent(); 8975 8976 // Looking at the diagnostic output is the only way to determine if a loop 8977 // was vectorized (other than looking at the IR or machine code), so it 8978 // is important to generate an optimization remark for each loop. Most of 8979 // these messages are generated as OptimizationRemarkAnalysis. Remarks 8980 // generated as OptimizationRemark and OptimizationRemarkMissed are 8981 // less verbose reporting vectorized loops and unvectorized loops that may 8982 // benefit from vectorization, respectively. 8983 8984 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 8985 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 8986 return false; 8987 } 8988 8989 PredicatedScalarEvolution PSE(*SE, *L); 8990 8991 // Check if it is legal to vectorize the loop. 8992 LoopVectorizationRequirements Requirements(*ORE); 8993 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 8994 &Requirements, &Hints, DB, AC, BFI, PSI); 8995 if (!LVL.canVectorize(EnableVPlanNativePath)) { 8996 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 8997 Hints.emitRemarkWithHints(); 8998 return false; 8999 } 9000 9001 // Check the function attributes and profiles to find out if this function 9002 // should be optimized for size. 9003 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9004 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 9005 9006 // Entrance to the VPlan-native vectorization path. Outer loops are processed 9007 // here. They may require CFG and instruction level transformations before 9008 // even evaluating whether vectorization is profitable. Since we cannot modify 9009 // the incoming IR, we need to build VPlan upfront in the vectorization 9010 // pipeline. 9011 if (!L->isInnermost()) 9012 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 9013 ORE, BFI, PSI, Hints); 9014 9015 assert(L->isInnermost() && "Inner loop expected."); 9016 9017 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 9018 // count by optimizing for size, to minimize overheads. 9019 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 9020 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 9021 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 9022 << "This loop is worth vectorizing only if no scalar " 9023 << "iteration overheads are incurred."); 9024 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 9025 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 9026 else { 9027 LLVM_DEBUG(dbgs() << "\n"); 9028 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 9029 } 9030 } 9031 9032 // Check the function attributes to see if implicit floats are allowed. 9033 // FIXME: This check doesn't seem possibly correct -- what if the loop is 9034 // an integer loop and the vector instructions selected are purely integer 9035 // vector instructions? 9036 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 9037 reportVectorizationFailure( 9038 "Can't vectorize when the NoImplicitFloat attribute is used", 9039 "loop not vectorized due to NoImplicitFloat attribute", 9040 "NoImplicitFloat", ORE, L); 9041 Hints.emitRemarkWithHints(); 9042 return false; 9043 } 9044 9045 // Check if the target supports potentially unsafe FP vectorization. 9046 // FIXME: Add a check for the type of safety issue (denormal, signaling) 9047 // for the target we're vectorizing for, to make sure none of the 9048 // additional fp-math flags can help. 9049 if (Hints.isPotentiallyUnsafe() && 9050 TTI->isFPVectorizationPotentiallyUnsafe()) { 9051 reportVectorizationFailure( 9052 "Potentially unsafe FP op prevents vectorization", 9053 "loop not vectorized due to unsafe FP support.", 9054 "UnsafeFP", ORE, L); 9055 Hints.emitRemarkWithHints(); 9056 return false; 9057 } 9058 9059 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 9060 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 9061 9062 // If an override option has been passed in for interleaved accesses, use it. 9063 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 9064 UseInterleaved = EnableInterleavedMemAccesses; 9065 9066 // Analyze interleaved memory accesses. 9067 if (UseInterleaved) { 9068 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 9069 } 9070 9071 // Use the cost model. 9072 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 9073 F, &Hints, IAI); 9074 CM.collectValuesToIgnore(); 9075 9076 // Use the planner for vectorization. 9077 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE); 9078 9079 // Get user vectorization factor and interleave count. 9080 ElementCount UserVF = Hints.getWidth(); 9081 unsigned UserIC = Hints.getInterleave(); 9082 9083 // Plan how to best vectorize, return the best VF and its cost. 9084 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 9085 9086 VectorizationFactor VF = VectorizationFactor::Disabled(); 9087 unsigned IC = 1; 9088 9089 if (MaybeVF) { 9090 VF = *MaybeVF; 9091 // Select the interleave count. 9092 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 9093 } 9094 9095 // Identify the diagnostic messages that should be produced. 9096 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 9097 bool VectorizeLoop = true, InterleaveLoop = true; 9098 if (Requirements.doesNotMeet(F, L, Hints)) { 9099 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 9100 "requirements.\n"); 9101 Hints.emitRemarkWithHints(); 9102 return false; 9103 } 9104 9105 if (VF.Width.isScalar()) { 9106 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 9107 VecDiagMsg = std::make_pair( 9108 "VectorizationNotBeneficial", 9109 "the cost-model indicates that vectorization is not beneficial"); 9110 VectorizeLoop = false; 9111 } 9112 9113 if (!MaybeVF && UserIC > 1) { 9114 // Tell the user interleaving was avoided up-front, despite being explicitly 9115 // requested. 9116 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 9117 "interleaving should be avoided up front\n"); 9118 IntDiagMsg = std::make_pair( 9119 "InterleavingAvoided", 9120 "Ignoring UserIC, because interleaving was avoided up front"); 9121 InterleaveLoop = false; 9122 } else if (IC == 1 && UserIC <= 1) { 9123 // Tell the user interleaving is not beneficial. 9124 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 9125 IntDiagMsg = std::make_pair( 9126 "InterleavingNotBeneficial", 9127 "the cost-model indicates that interleaving is not beneficial"); 9128 InterleaveLoop = false; 9129 if (UserIC == 1) { 9130 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 9131 IntDiagMsg.second += 9132 " and is explicitly disabled or interleave count is set to 1"; 9133 } 9134 } else if (IC > 1 && UserIC == 1) { 9135 // Tell the user interleaving is beneficial, but it explicitly disabled. 9136 LLVM_DEBUG( 9137 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 9138 IntDiagMsg = std::make_pair( 9139 "InterleavingBeneficialButDisabled", 9140 "the cost-model indicates that interleaving is beneficial " 9141 "but is explicitly disabled or interleave count is set to 1"); 9142 InterleaveLoop = false; 9143 } 9144 9145 // Override IC if user provided an interleave count. 9146 IC = UserIC > 0 ? UserIC : IC; 9147 9148 // Emit diagnostic messages, if any. 9149 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 9150 if (!VectorizeLoop && !InterleaveLoop) { 9151 // Do not vectorize or interleaving the loop. 9152 ORE->emit([&]() { 9153 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 9154 L->getStartLoc(), L->getHeader()) 9155 << VecDiagMsg.second; 9156 }); 9157 ORE->emit([&]() { 9158 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 9159 L->getStartLoc(), L->getHeader()) 9160 << IntDiagMsg.second; 9161 }); 9162 return false; 9163 } else if (!VectorizeLoop && InterleaveLoop) { 9164 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 9165 ORE->emit([&]() { 9166 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 9167 L->getStartLoc(), L->getHeader()) 9168 << VecDiagMsg.second; 9169 }); 9170 } else if (VectorizeLoop && !InterleaveLoop) { 9171 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 9172 << ") in " << DebugLocStr << '\n'); 9173 ORE->emit([&]() { 9174 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 9175 L->getStartLoc(), L->getHeader()) 9176 << IntDiagMsg.second; 9177 }); 9178 } else if (VectorizeLoop && InterleaveLoop) { 9179 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 9180 << ") in " << DebugLocStr << '\n'); 9181 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 9182 } 9183 9184 LVP.setBestPlan(VF.Width, IC); 9185 9186 using namespace ore; 9187 bool DisableRuntimeUnroll = false; 9188 MDNode *OrigLoopID = L->getLoopID(); 9189 9190 if (!VectorizeLoop) { 9191 assert(IC > 1 && "interleave count should not be 1 or 0"); 9192 // If we decided that it is not legal to vectorize the loop, then 9193 // interleave it. 9194 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, &CM, 9195 BFI, PSI); 9196 LVP.executePlan(Unroller, DT); 9197 9198 ORE->emit([&]() { 9199 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 9200 L->getHeader()) 9201 << "interleaved loop (interleaved count: " 9202 << NV("InterleaveCount", IC) << ")"; 9203 }); 9204 } else { 9205 // If we decided that it is *legal* to vectorize the loop, then do it. 9206 9207 // Consider vectorizing the epilogue too if it's profitable. 9208 VectorizationFactor EpilogueVF = 9209 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 9210 if (EpilogueVF.Width.isVector()) { 9211 9212 // The first pass vectorizes the main loop and creates a scalar epilogue 9213 // to be vectorized by executing the plan (potentially with a different 9214 // factor) again shortly afterwards. 9215 EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC, 9216 EpilogueVF.Width.getKnownMinValue(), 1); 9217 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, EPI, 9218 &LVL, &CM, BFI, PSI); 9219 9220 LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF); 9221 LVP.executePlan(MainILV, DT); 9222 ++LoopsVectorized; 9223 9224 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 9225 formLCSSARecursively(*L, *DT, LI, SE); 9226 9227 // Second pass vectorizes the epilogue and adjusts the control flow 9228 // edges from the first pass. 9229 LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF); 9230 EPI.MainLoopVF = EPI.EpilogueVF; 9231 EPI.MainLoopUF = EPI.EpilogueUF; 9232 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 9233 ORE, EPI, &LVL, &CM, BFI, PSI); 9234 LVP.executePlan(EpilogILV, DT); 9235 ++LoopsEpilogueVectorized; 9236 9237 if (!MainILV.areSafetyChecksAdded()) 9238 DisableRuntimeUnroll = true; 9239 } else { 9240 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 9241 &LVL, &CM, BFI, PSI); 9242 LVP.executePlan(LB, DT); 9243 ++LoopsVectorized; 9244 9245 // Add metadata to disable runtime unrolling a scalar loop when there are 9246 // no runtime checks about strides and memory. A scalar loop that is 9247 // rarely used is not worth unrolling. 9248 if (!LB.areSafetyChecksAdded()) 9249 DisableRuntimeUnroll = true; 9250 } 9251 9252 // Report the vectorization decision. 9253 ORE->emit([&]() { 9254 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 9255 L->getHeader()) 9256 << "vectorized loop (vectorization width: " 9257 << NV("VectorizationFactor", VF.Width) 9258 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 9259 }); 9260 } 9261 9262 Optional<MDNode *> RemainderLoopID = 9263 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 9264 LLVMLoopVectorizeFollowupEpilogue}); 9265 if (RemainderLoopID.hasValue()) { 9266 L->setLoopID(RemainderLoopID.getValue()); 9267 } else { 9268 if (DisableRuntimeUnroll) 9269 AddRuntimeUnrollDisableMetaData(L); 9270 9271 // Mark the loop as already vectorized to avoid vectorizing again. 9272 Hints.setAlreadyVectorized(); 9273 } 9274 9275 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9276 return true; 9277 } 9278 9279 LoopVectorizeResult LoopVectorizePass::runImpl( 9280 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 9281 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 9282 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 9283 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 9284 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 9285 SE = &SE_; 9286 LI = &LI_; 9287 TTI = &TTI_; 9288 DT = &DT_; 9289 BFI = &BFI_; 9290 TLI = TLI_; 9291 AA = &AA_; 9292 AC = &AC_; 9293 GetLAA = &GetLAA_; 9294 DB = &DB_; 9295 ORE = &ORE_; 9296 PSI = PSI_; 9297 9298 // Don't attempt if 9299 // 1. the target claims to have no vector registers, and 9300 // 2. interleaving won't help ILP. 9301 // 9302 // The second condition is necessary because, even if the target has no 9303 // vector registers, loop vectorization may still enable scalar 9304 // interleaving. 9305 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 9306 TTI->getMaxInterleaveFactor(1) < 2) 9307 return LoopVectorizeResult(false, false); 9308 9309 bool Changed = false, CFGChanged = false; 9310 9311 // The vectorizer requires loops to be in simplified form. 9312 // Since simplification may add new inner loops, it has to run before the 9313 // legality and profitability checks. This means running the loop vectorizer 9314 // will simplify all loops, regardless of whether anything end up being 9315 // vectorized. 9316 for (auto &L : *LI) 9317 Changed |= CFGChanged |= 9318 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 9319 9320 // Build up a worklist of inner-loops to vectorize. This is necessary as 9321 // the act of vectorizing or partially unrolling a loop creates new loops 9322 // and can invalidate iterators across the loops. 9323 SmallVector<Loop *, 8> Worklist; 9324 9325 for (Loop *L : *LI) 9326 collectSupportedLoops(*L, LI, ORE, Worklist); 9327 9328 LoopsAnalyzed += Worklist.size(); 9329 9330 // Now walk the identified inner loops. 9331 while (!Worklist.empty()) { 9332 Loop *L = Worklist.pop_back_val(); 9333 9334 // For the inner loops we actually process, form LCSSA to simplify the 9335 // transform. 9336 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 9337 9338 Changed |= CFGChanged |= processLoop(L); 9339 } 9340 9341 // Process each loop nest in the function. 9342 return LoopVectorizeResult(Changed, CFGChanged); 9343 } 9344 9345 PreservedAnalyses LoopVectorizePass::run(Function &F, 9346 FunctionAnalysisManager &AM) { 9347 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 9348 auto &LI = AM.getResult<LoopAnalysis>(F); 9349 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 9350 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 9351 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 9352 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 9353 auto &AA = AM.getResult<AAManager>(F); 9354 auto &AC = AM.getResult<AssumptionAnalysis>(F); 9355 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 9356 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 9357 MemorySSA *MSSA = EnableMSSALoopDependency 9358 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 9359 : nullptr; 9360 9361 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 9362 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 9363 [&](Loop &L) -> const LoopAccessInfo & { 9364 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 9365 TLI, TTI, nullptr, MSSA}; 9366 return LAM.getResult<LoopAccessAnalysis>(L, AR); 9367 }; 9368 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 9369 ProfileSummaryInfo *PSI = 9370 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 9371 LoopVectorizeResult Result = 9372 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 9373 if (!Result.MadeAnyChange) 9374 return PreservedAnalyses::all(); 9375 PreservedAnalyses PA; 9376 9377 // We currently do not preserve loopinfo/dominator analyses with outer loop 9378 // vectorization. Until this is addressed, mark these analyses as preserved 9379 // only for non-VPlan-native path. 9380 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 9381 if (!EnableVPlanNativePath) { 9382 PA.preserve<LoopAnalysis>(); 9383 PA.preserve<DominatorTreeAnalysis>(); 9384 } 9385 PA.preserve<BasicAA>(); 9386 PA.preserve<GlobalsAA>(); 9387 if (!Result.MadeCFGChange) 9388 PA.preserveSet<CFGAnalyses>(); 9389 return PA; 9390 } 9391