1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // Other ideas/concepts are from: 38 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 39 // 40 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 41 // Vectorizing Compilers. 42 // 43 //===----------------------------------------------------------------------===// 44 45 #include "llvm/Transforms/Vectorize.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/EquivalenceClasses.h" 48 #include "llvm/ADT/Hashing.h" 49 #include "llvm/ADT/MapVector.h" 50 #include "llvm/ADT/SetVector.h" 51 #include "llvm/ADT/SmallPtrSet.h" 52 #include "llvm/ADT/SmallSet.h" 53 #include "llvm/ADT/SmallVector.h" 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/ADT/StringExtras.h" 56 #include "llvm/Analysis/AliasAnalysis.h" 57 #include "llvm/Analysis/AliasSetTracker.h" 58 #include "llvm/Analysis/AssumptionCache.h" 59 #include "llvm/Analysis/BlockFrequencyInfo.h" 60 #include "llvm/Analysis/CodeMetrics.h" 61 #include "llvm/Analysis/LoopAccessAnalysis.h" 62 #include "llvm/Analysis/LoopInfo.h" 63 #include "llvm/Analysis/LoopIterator.h" 64 #include "llvm/Analysis/LoopPass.h" 65 #include "llvm/Analysis/ScalarEvolution.h" 66 #include "llvm/Analysis/ScalarEvolutionExpander.h" 67 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 68 #include "llvm/Analysis/TargetTransformInfo.h" 69 #include "llvm/Analysis/ValueTracking.h" 70 #include "llvm/IR/Constants.h" 71 #include "llvm/IR/DataLayout.h" 72 #include "llvm/IR/DebugInfo.h" 73 #include "llvm/IR/DerivedTypes.h" 74 #include "llvm/IR/DiagnosticInfo.h" 75 #include "llvm/IR/Dominators.h" 76 #include "llvm/IR/Function.h" 77 #include "llvm/IR/IRBuilder.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/IntrinsicInst.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/Value.h" 85 #include "llvm/IR/ValueHandle.h" 86 #include "llvm/IR/Verifier.h" 87 #include "llvm/Pass.h" 88 #include "llvm/Support/BranchProbability.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/Debug.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Transforms/Scalar.h" 93 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 94 #include "llvm/Transforms/Utils/Local.h" 95 #include "llvm/Transforms/Utils/VectorUtils.h" 96 #include "llvm/Transforms/Utils/LoopUtils.h" 97 #include <algorithm> 98 #include <map> 99 #include <tuple> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 104 #define LV_NAME "loop-vectorize" 105 #define DEBUG_TYPE LV_NAME 106 107 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 108 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 109 110 static cl::opt<bool> 111 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 112 cl::desc("Enable if-conversion during vectorization.")); 113 114 /// We don't vectorize loops with a known constant trip count below this number. 115 static cl::opt<unsigned> 116 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 117 cl::Hidden, 118 cl::desc("Don't vectorize loops with a constant " 119 "trip count that is smaller than this " 120 "value.")); 121 122 /// This enables versioning on the strides of symbolically striding memory 123 /// accesses in code like the following. 124 /// for (i = 0; i < N; ++i) 125 /// A[i * Stride1] += B[i * Stride2] ... 126 /// 127 /// Will be roughly translated to 128 /// if (Stride1 == 1 && Stride2 == 1) { 129 /// for (i = 0; i < N; i+=4) 130 /// A[i:i+3] += ... 131 /// } else 132 /// ... 133 static cl::opt<bool> EnableMemAccessVersioning( 134 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 135 cl::desc("Enable symblic stride memory access versioning")); 136 137 /// We don't unroll loops with a known constant trip count below this number. 138 static const unsigned TinyTripCountUnrollThreshold = 128; 139 140 static cl::opt<unsigned> ForceTargetNumScalarRegs( 141 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 142 cl::desc("A flag that overrides the target's number of scalar registers.")); 143 144 static cl::opt<unsigned> ForceTargetNumVectorRegs( 145 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 146 cl::desc("A flag that overrides the target's number of vector registers.")); 147 148 /// Maximum vectorization interleave count. 149 static const unsigned MaxInterleaveFactor = 16; 150 151 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 152 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 153 cl::desc("A flag that overrides the target's max interleave factor for " 154 "scalar loops.")); 155 156 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 157 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 158 cl::desc("A flag that overrides the target's max interleave factor for " 159 "vectorized loops.")); 160 161 static cl::opt<unsigned> ForceTargetInstructionCost( 162 "force-target-instruction-cost", cl::init(0), cl::Hidden, 163 cl::desc("A flag that overrides the target's expected cost for " 164 "an instruction to a single constant value. Mostly " 165 "useful for getting consistent testing.")); 166 167 static cl::opt<unsigned> SmallLoopCost( 168 "small-loop-cost", cl::init(20), cl::Hidden, 169 cl::desc("The cost of a loop that is considered 'small' by the unroller.")); 170 171 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 172 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 173 cl::desc("Enable the use of the block frequency analysis to access PGO " 174 "heuristics minimizing code growth in cold regions and being more " 175 "aggressive in hot regions.")); 176 177 // Runtime unroll loops for load/store throughput. 178 static cl::opt<bool> EnableLoadStoreRuntimeUnroll( 179 "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden, 180 cl::desc("Enable runtime unrolling until load/store ports are saturated")); 181 182 /// The number of stores in a loop that are allowed to need predication. 183 static cl::opt<unsigned> NumberOfStoresToPredicate( 184 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 185 cl::desc("Max number of stores to be predicated behind an if.")); 186 187 static cl::opt<bool> EnableIndVarRegisterHeur( 188 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 189 cl::desc("Count the induction variable only once when unrolling")); 190 191 static cl::opt<bool> EnableCondStoresVectorization( 192 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 193 cl::desc("Enable if predication of stores during vectorization.")); 194 195 static cl::opt<unsigned> MaxNestedScalarReductionUF( 196 "max-nested-scalar-reduction-unroll", cl::init(2), cl::Hidden, 197 cl::desc("The maximum unroll factor to use when unrolling a scalar " 198 "reduction in a nested loop.")); 199 200 namespace { 201 202 // Forward declarations. 203 class LoopVectorizationLegality; 204 class LoopVectorizationCostModel; 205 class LoopVectorizeHints; 206 207 /// \brief This modifies LoopAccessReport to initialize message with 208 /// loop-vectorizer-specific part. 209 class VectorizationReport : public LoopAccessReport { 210 public: 211 VectorizationReport(Instruction *I = nullptr) 212 : LoopAccessReport("loop not vectorized: ", I) {} 213 214 /// \brief This allows promotion of the loop-access analysis report into the 215 /// loop-vectorizer report. It modifies the message to add the 216 /// loop-vectorizer-specific part of the message. 217 explicit VectorizationReport(const LoopAccessReport &R) 218 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 219 R.getInstr()) {} 220 }; 221 222 /// A helper function for converting Scalar types to vector types. 223 /// If the incoming type is void, we return void. If the VF is 1, we return 224 /// the scalar type. 225 static Type* ToVectorTy(Type *Scalar, unsigned VF) { 226 if (Scalar->isVoidTy() || VF == 1) 227 return Scalar; 228 return VectorType::get(Scalar, VF); 229 } 230 231 /// InnerLoopVectorizer vectorizes loops which contain only one basic 232 /// block to a specified vectorization factor (VF). 233 /// This class performs the widening of scalars into vectors, or multiple 234 /// scalars. This class also implements the following features: 235 /// * It inserts an epilogue loop for handling loops that don't have iteration 236 /// counts that are known to be a multiple of the vectorization factor. 237 /// * It handles the code generation for reduction variables. 238 /// * Scalarization (implementation using scalars) of un-vectorizable 239 /// instructions. 240 /// InnerLoopVectorizer does not perform any vectorization-legality 241 /// checks, and relies on the caller to check for the different legality 242 /// aspects. The InnerLoopVectorizer relies on the 243 /// LoopVectorizationLegality class to provide information about the induction 244 /// and reduction variables that were found to a given vectorization factor. 245 class InnerLoopVectorizer { 246 public: 247 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 248 DominatorTree *DT, const TargetLibraryInfo *TLI, 249 const TargetTransformInfo *TTI, unsigned VecWidth, 250 unsigned UnrollFactor) 251 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 252 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), 253 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), 254 Legal(nullptr), AddedSafetyChecks(false) {} 255 256 // Perform the actual loop widening (vectorization). 257 void vectorize(LoopVectorizationLegality *L) { 258 Legal = L; 259 // Create a new empty loop. Unlink the old loop and connect the new one. 260 createEmptyLoop(); 261 // Widen each instruction in the old loop to a new one in the new loop. 262 // Use the Legality module to find the induction and reduction variables. 263 vectorizeLoop(); 264 // Register the new loop and update the analysis passes. 265 updateAnalysis(); 266 } 267 268 // Return true if any runtime check is added. 269 bool IsSafetyChecksAdded() { 270 return AddedSafetyChecks; 271 } 272 273 virtual ~InnerLoopVectorizer() {} 274 275 protected: 276 /// A small list of PHINodes. 277 typedef SmallVector<PHINode*, 4> PhiVector; 278 /// When we unroll loops we have multiple vector values for each scalar. 279 /// This data structure holds the unrolled and vectorized values that 280 /// originated from one scalar instruction. 281 typedef SmallVector<Value*, 2> VectorParts; 282 283 // When we if-convert we need create edge masks. We have to cache values so 284 // that we don't end up with exponential recursion/IR. 285 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 286 VectorParts> EdgeMaskCache; 287 288 /// \brief Add checks for strides that where assumed to be 1. 289 /// 290 /// Returns the last check instruction and the first check instruction in the 291 /// pair as (first, last). 292 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc); 293 294 /// Create an empty loop, based on the loop ranges of the old loop. 295 void createEmptyLoop(); 296 /// Copy and widen the instructions from the old loop. 297 virtual void vectorizeLoop(); 298 299 /// \brief The Loop exit block may have single value PHI nodes where the 300 /// incoming value is 'Undef'. While vectorizing we only handled real values 301 /// that were defined inside the loop. Here we fix the 'undef case'. 302 /// See PR14725. 303 void fixLCSSAPHIs(); 304 305 /// A helper function that computes the predicate of the block BB, assuming 306 /// that the header block of the loop is set to True. It returns the *entry* 307 /// mask for the block BB. 308 VectorParts createBlockInMask(BasicBlock *BB); 309 /// A helper function that computes the predicate of the edge between SRC 310 /// and DST. 311 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 312 313 /// A helper function to vectorize a single BB within the innermost loop. 314 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 315 316 /// Vectorize a single PHINode in a block. This method handles the induction 317 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 318 /// arbitrary length vectors. 319 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 320 unsigned UF, unsigned VF, PhiVector *PV); 321 322 /// Insert the new loop to the loop hierarchy and pass manager 323 /// and update the analysis passes. 324 void updateAnalysis(); 325 326 /// This instruction is un-vectorizable. Implement it as a sequence 327 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 328 /// scalarized instruction behind an if block predicated on the control 329 /// dependence of the instruction. 330 virtual void scalarizeInstruction(Instruction *Instr, 331 bool IfPredicateStore=false); 332 333 /// Vectorize Load and Store instructions, 334 virtual void vectorizeMemoryInstruction(Instruction *Instr); 335 336 /// Create a broadcast instruction. This method generates a broadcast 337 /// instruction (shuffle) for loop invariant values and for the induction 338 /// value. If this is the induction variable then we extend it to N, N+1, ... 339 /// this is needed because each iteration in the loop corresponds to a SIMD 340 /// element. 341 virtual Value *getBroadcastInstrs(Value *V); 342 343 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 344 /// to each vector element of Val. The sequence starts at StartIndex. 345 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step); 346 347 /// When we go over instructions in the basic block we rely on previous 348 /// values within the current basic block or on loop invariant values. 349 /// When we widen (vectorize) values we place them in the map. If the values 350 /// are not within the map, they have to be loop invariant, so we simply 351 /// broadcast them into a vector. 352 VectorParts &getVectorValue(Value *V); 353 354 /// Generate a shuffle sequence that will reverse the vector Vec. 355 virtual Value *reverseVector(Value *Vec); 356 357 /// This is a helper class that holds the vectorizer state. It maps scalar 358 /// instructions to vector instructions. When the code is 'unrolled' then 359 /// then a single scalar value is mapped to multiple vector parts. The parts 360 /// are stored in the VectorPart type. 361 struct ValueMap { 362 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 363 /// are mapped. 364 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 365 366 /// \return True if 'Key' is saved in the Value Map. 367 bool has(Value *Key) const { return MapStorage.count(Key); } 368 369 /// Initializes a new entry in the map. Sets all of the vector parts to the 370 /// save value in 'Val'. 371 /// \return A reference to a vector with splat values. 372 VectorParts &splat(Value *Key, Value *Val) { 373 VectorParts &Entry = MapStorage[Key]; 374 Entry.assign(UF, Val); 375 return Entry; 376 } 377 378 ///\return A reference to the value that is stored at 'Key'. 379 VectorParts &get(Value *Key) { 380 VectorParts &Entry = MapStorage[Key]; 381 if (Entry.empty()) 382 Entry.resize(UF); 383 assert(Entry.size() == UF); 384 return Entry; 385 } 386 387 private: 388 /// The unroll factor. Each entry in the map stores this number of vector 389 /// elements. 390 unsigned UF; 391 392 /// Map storage. We use std::map and not DenseMap because insertions to a 393 /// dense map invalidates its iterators. 394 std::map<Value *, VectorParts> MapStorage; 395 }; 396 397 /// The original loop. 398 Loop *OrigLoop; 399 /// Scev analysis to use. 400 ScalarEvolution *SE; 401 /// Loop Info. 402 LoopInfo *LI; 403 /// Dominator Tree. 404 DominatorTree *DT; 405 /// Alias Analysis. 406 AliasAnalysis *AA; 407 /// Target Library Info. 408 const TargetLibraryInfo *TLI; 409 /// Target Transform Info. 410 const TargetTransformInfo *TTI; 411 412 /// The vectorization SIMD factor to use. Each vector will have this many 413 /// vector elements. 414 unsigned VF; 415 416 protected: 417 /// The vectorization unroll factor to use. Each scalar is vectorized to this 418 /// many different vector instructions. 419 unsigned UF; 420 421 /// The builder that we use 422 IRBuilder<> Builder; 423 424 // --- Vectorization state --- 425 426 /// The vector-loop preheader. 427 BasicBlock *LoopVectorPreHeader; 428 /// The scalar-loop preheader. 429 BasicBlock *LoopScalarPreHeader; 430 /// Middle Block between the vector and the scalar. 431 BasicBlock *LoopMiddleBlock; 432 ///The ExitBlock of the scalar loop. 433 BasicBlock *LoopExitBlock; 434 ///The vector loop body. 435 SmallVector<BasicBlock *, 4> LoopVectorBody; 436 ///The scalar loop body. 437 BasicBlock *LoopScalarBody; 438 /// A list of all bypass blocks. The first block is the entry of the loop. 439 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 440 441 /// The new Induction variable which was added to the new block. 442 PHINode *Induction; 443 /// The induction variable of the old basic block. 444 PHINode *OldInduction; 445 /// Holds the extended (to the widest induction type) start index. 446 Value *ExtendedIdx; 447 /// Maps scalars to widened vectors. 448 ValueMap WidenMap; 449 EdgeMaskCache MaskCache; 450 451 LoopVectorizationLegality *Legal; 452 453 // Record whether runtime check is added. 454 bool AddedSafetyChecks; 455 }; 456 457 class InnerLoopUnroller : public InnerLoopVectorizer { 458 public: 459 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 460 DominatorTree *DT, const TargetLibraryInfo *TLI, 461 const TargetTransformInfo *TTI, unsigned UnrollFactor) 462 : InnerLoopVectorizer(OrigLoop, SE, LI, DT, TLI, TTI, 1, UnrollFactor) {} 463 464 private: 465 void scalarizeInstruction(Instruction *Instr, 466 bool IfPredicateStore = false) override; 467 void vectorizeMemoryInstruction(Instruction *Instr) override; 468 Value *getBroadcastInstrs(Value *V) override; 469 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override; 470 Value *reverseVector(Value *Vec) override; 471 }; 472 473 /// \brief Look for a meaningful debug location on the instruction or it's 474 /// operands. 475 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 476 if (!I) 477 return I; 478 479 DebugLoc Empty; 480 if (I->getDebugLoc() != Empty) 481 return I; 482 483 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 484 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 485 if (OpInst->getDebugLoc() != Empty) 486 return OpInst; 487 } 488 489 return I; 490 } 491 492 /// \brief Set the debug location in the builder using the debug location in the 493 /// instruction. 494 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 495 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 496 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 497 else 498 B.SetCurrentDebugLocation(DebugLoc()); 499 } 500 501 #ifndef NDEBUG 502 /// \return string containing a file name and a line # for the given loop. 503 static std::string getDebugLocString(const Loop *L) { 504 std::string Result; 505 if (L) { 506 raw_string_ostream OS(Result); 507 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 508 LoopDbgLoc.print(OS); 509 else 510 // Just print the module name. 511 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 512 OS.flush(); 513 } 514 return Result; 515 } 516 #endif 517 518 /// \brief Propagate known metadata from one instruction to another. 519 static void propagateMetadata(Instruction *To, const Instruction *From) { 520 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 521 From->getAllMetadataOtherThanDebugLoc(Metadata); 522 523 for (auto M : Metadata) { 524 unsigned Kind = M.first; 525 526 // These are safe to transfer (this is safe for TBAA, even when we 527 // if-convert, because should that metadata have had a control dependency 528 // on the condition, and thus actually aliased with some other 529 // non-speculated memory access when the condition was false, this would be 530 // caught by the runtime overlap checks). 531 if (Kind != LLVMContext::MD_tbaa && 532 Kind != LLVMContext::MD_alias_scope && 533 Kind != LLVMContext::MD_noalias && 534 Kind != LLVMContext::MD_fpmath) 535 continue; 536 537 To->setMetadata(Kind, M.second); 538 } 539 } 540 541 /// \brief Propagate known metadata from one instruction to a vector of others. 542 static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *From) { 543 for (Value *V : To) 544 if (Instruction *I = dyn_cast<Instruction>(V)) 545 propagateMetadata(I, From); 546 } 547 548 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 549 /// to what vectorization factor. 550 /// This class does not look at the profitability of vectorization, only the 551 /// legality. This class has two main kinds of checks: 552 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 553 /// will change the order of memory accesses in a way that will change the 554 /// correctness of the program. 555 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 556 /// checks for a number of different conditions, such as the availability of a 557 /// single induction variable, that all types are supported and vectorize-able, 558 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 559 /// This class is also used by InnerLoopVectorizer for identifying 560 /// induction variable and the different reduction variables. 561 class LoopVectorizationLegality { 562 public: 563 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DominatorTree *DT, 564 TargetLibraryInfo *TLI, AliasAnalysis *AA, 565 Function *F, const TargetTransformInfo *TTI, 566 LoopAccessAnalysis *LAA) 567 : NumPredStores(0), TheLoop(L), SE(SE), TLI(TLI), TheFunction(F), 568 TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), Induction(nullptr), 569 WidestIndTy(nullptr), HasFunNoNaNAttr(false) {} 570 571 /// This enum represents the kinds of reductions that we support. 572 enum ReductionKind { 573 RK_NoReduction, ///< Not a reduction. 574 RK_IntegerAdd, ///< Sum of integers. 575 RK_IntegerMult, ///< Product of integers. 576 RK_IntegerOr, ///< Bitwise or logical OR of numbers. 577 RK_IntegerAnd, ///< Bitwise or logical AND of numbers. 578 RK_IntegerXor, ///< Bitwise or logical XOR of numbers. 579 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()). 580 RK_FloatAdd, ///< Sum of floats. 581 RK_FloatMult, ///< Product of floats. 582 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()). 583 }; 584 585 /// This enum represents the kinds of inductions that we support. 586 enum InductionKind { 587 IK_NoInduction, ///< Not an induction variable. 588 IK_IntInduction, ///< Integer induction variable. Step = C. 589 IK_PtrInduction ///< Pointer induction var. Step = C / sizeof(elem). 590 }; 591 592 // This enum represents the kind of minmax reduction. 593 enum MinMaxReductionKind { 594 MRK_Invalid, 595 MRK_UIntMin, 596 MRK_UIntMax, 597 MRK_SIntMin, 598 MRK_SIntMax, 599 MRK_FloatMin, 600 MRK_FloatMax 601 }; 602 603 /// This struct holds information about reduction variables. 604 struct ReductionDescriptor { 605 ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr), 606 Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {} 607 608 ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K, 609 MinMaxReductionKind MK) 610 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {} 611 612 // The starting value of the reduction. 613 // It does not have to be zero! 614 TrackingVH<Value> StartValue; 615 // The instruction who's value is used outside the loop. 616 Instruction *LoopExitInstr; 617 // The kind of the reduction. 618 ReductionKind Kind; 619 // If this a min/max reduction the kind of reduction. 620 MinMaxReductionKind MinMaxKind; 621 }; 622 623 /// This POD struct holds information about a potential reduction operation. 624 struct ReductionInstDesc { 625 ReductionInstDesc(bool IsRedux, Instruction *I) : 626 IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {} 627 628 ReductionInstDesc(Instruction *I, MinMaxReductionKind K) : 629 IsReduction(true), PatternLastInst(I), MinMaxKind(K) {} 630 631 // Is this instruction a reduction candidate. 632 bool IsReduction; 633 // The last instruction in a min/max pattern (select of the select(icmp()) 634 // pattern), or the current reduction instruction otherwise. 635 Instruction *PatternLastInst; 636 // If this is a min/max pattern the comparison predicate. 637 MinMaxReductionKind MinMaxKind; 638 }; 639 640 /// A struct for saving information about induction variables. 641 struct InductionInfo { 642 InductionInfo(Value *Start, InductionKind K, ConstantInt *Step) 643 : StartValue(Start), IK(K), StepValue(Step) { 644 assert(IK != IK_NoInduction && "Not an induction"); 645 assert(StartValue && "StartValue is null"); 646 assert(StepValue && !StepValue->isZero() && "StepValue is zero"); 647 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 648 "StartValue is not a pointer for pointer induction"); 649 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 650 "StartValue is not an integer for integer induction"); 651 assert(StepValue->getType()->isIntegerTy() && 652 "StepValue is not an integer"); 653 } 654 InductionInfo() 655 : StartValue(nullptr), IK(IK_NoInduction), StepValue(nullptr) {} 656 657 /// Get the consecutive direction. Returns: 658 /// 0 - unknown or non-consecutive. 659 /// 1 - consecutive and increasing. 660 /// -1 - consecutive and decreasing. 661 int getConsecutiveDirection() const { 662 if (StepValue && (StepValue->isOne() || StepValue->isMinusOne())) 663 return StepValue->getSExtValue(); 664 return 0; 665 } 666 667 /// Compute the transformed value of Index at offset StartValue using step 668 /// StepValue. 669 /// For integer induction, returns StartValue + Index * StepValue. 670 /// For pointer induction, returns StartValue[Index * StepValue]. 671 /// FIXME: The newly created binary instructions should contain nsw/nuw 672 /// flags, which can be found from the original scalar operations. 673 Value *transform(IRBuilder<> &B, Value *Index) const { 674 switch (IK) { 675 case IK_IntInduction: 676 assert(Index->getType() == StartValue->getType() && 677 "Index type does not match StartValue type"); 678 if (StepValue->isMinusOne()) 679 return B.CreateSub(StartValue, Index); 680 if (!StepValue->isOne()) 681 Index = B.CreateMul(Index, StepValue); 682 return B.CreateAdd(StartValue, Index); 683 684 case IK_PtrInduction: 685 if (StepValue->isMinusOne()) 686 Index = B.CreateNeg(Index); 687 else if (!StepValue->isOne()) 688 Index = B.CreateMul(Index, StepValue); 689 return B.CreateGEP(StartValue, Index); 690 691 case IK_NoInduction: 692 return nullptr; 693 } 694 llvm_unreachable("invalid enum"); 695 } 696 697 /// Start value. 698 TrackingVH<Value> StartValue; 699 /// Induction kind. 700 InductionKind IK; 701 /// Step value. 702 ConstantInt *StepValue; 703 }; 704 705 /// ReductionList contains the reduction descriptors for all 706 /// of the reductions that were found in the loop. 707 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList; 708 709 /// InductionList saves induction variables and maps them to the 710 /// induction descriptor. 711 typedef MapVector<PHINode*, InductionInfo> InductionList; 712 713 /// Returns true if it is legal to vectorize this loop. 714 /// This does not mean that it is profitable to vectorize this 715 /// loop, only that it is legal to do so. 716 bool canVectorize(); 717 718 /// Returns the Induction variable. 719 PHINode *getInduction() { return Induction; } 720 721 /// Returns the reduction variables found in the loop. 722 ReductionList *getReductionVars() { return &Reductions; } 723 724 /// Returns the induction variables found in the loop. 725 InductionList *getInductionVars() { return &Inductions; } 726 727 /// Returns the widest induction type. 728 Type *getWidestInductionType() { return WidestIndTy; } 729 730 /// Returns True if V is an induction variable in this loop. 731 bool isInductionVariable(const Value *V); 732 733 /// Return true if the block BB needs to be predicated in order for the loop 734 /// to be vectorized. 735 bool blockNeedsPredication(BasicBlock *BB); 736 737 /// Check if this pointer is consecutive when vectorizing. This happens 738 /// when the last index of the GEP is the induction variable, or that the 739 /// pointer itself is an induction variable. 740 /// This check allows us to vectorize A[idx] into a wide load/store. 741 /// Returns: 742 /// 0 - Stride is unknown or non-consecutive. 743 /// 1 - Address is consecutive. 744 /// -1 - Address is consecutive, and decreasing. 745 int isConsecutivePtr(Value *Ptr); 746 747 /// Returns true if the value V is uniform within the loop. 748 bool isUniform(Value *V); 749 750 /// Returns true if this instruction will remain scalar after vectorization. 751 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 752 753 /// Returns the information that we collected about runtime memory check. 754 const LoopAccessInfo::RuntimePointerCheck *getRuntimePointerCheck() const { 755 return LAI->getRuntimePointerCheck(); 756 } 757 758 const LoopAccessInfo *getLAI() const { 759 return LAI; 760 } 761 762 /// This function returns the identity element (or neutral element) for 763 /// the operation K. 764 static Constant *getReductionIdentity(ReductionKind K, Type *Tp); 765 766 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 767 768 bool hasStride(Value *V) { return StrideSet.count(V); } 769 bool mustCheckStrides() { return !StrideSet.empty(); } 770 SmallPtrSet<Value *, 8>::iterator strides_begin() { 771 return StrideSet.begin(); 772 } 773 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 774 775 /// Returns true if the target machine supports masked store operation 776 /// for the given \p DataType and kind of access to \p Ptr. 777 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 778 return TTI->isLegalMaskedStore(DataType, isConsecutivePtr(Ptr)); 779 } 780 /// Returns true if the target machine supports masked load operation 781 /// for the given \p DataType and kind of access to \p Ptr. 782 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 783 return TTI->isLegalMaskedLoad(DataType, isConsecutivePtr(Ptr)); 784 } 785 /// Returns true if vector representation of the instruction \p I 786 /// requires mask. 787 bool isMaskRequired(const Instruction* I) { 788 return (MaskedOp.count(I) != 0); 789 } 790 unsigned getNumStores() const { 791 return LAI->getNumStores(); 792 } 793 unsigned getNumLoads() const { 794 return LAI->getNumLoads(); 795 } 796 unsigned getNumPredStores() const { 797 return NumPredStores; 798 } 799 private: 800 /// Check if a single basic block loop is vectorizable. 801 /// At this point we know that this is a loop with a constant trip count 802 /// and we only need to check individual instructions. 803 bool canVectorizeInstrs(); 804 805 /// When we vectorize loops we may change the order in which 806 /// we read and write from memory. This method checks if it is 807 /// legal to vectorize the code, considering only memory constrains. 808 /// Returns true if the loop is vectorizable 809 bool canVectorizeMemory(); 810 811 /// Return true if we can vectorize this loop using the IF-conversion 812 /// transformation. 813 bool canVectorizeWithIfConvert(); 814 815 /// Collect the variables that need to stay uniform after vectorization. 816 void collectLoopUniforms(); 817 818 /// Return true if all of the instructions in the block can be speculatively 819 /// executed. \p SafePtrs is a list of addresses that are known to be legal 820 /// and we know that we can read from them without segfault. 821 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 822 823 /// Returns True, if 'Phi' is the kind of reduction variable for type 824 /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. 825 bool AddReductionVar(PHINode *Phi, ReductionKind Kind); 826 /// Returns a struct describing if the instruction 'I' can be a reduction 827 /// variable of type 'Kind'. If the reduction is a min/max pattern of 828 /// select(icmp()) this function advances the instruction pointer 'I' from the 829 /// compare instruction to the select instruction and stores this pointer in 830 /// 'PatternLastInst' member of the returned struct. 831 ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind, 832 ReductionInstDesc &Desc); 833 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 834 /// pattern corresponding to a min(X, Y) or max(X, Y). 835 static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I, 836 ReductionInstDesc &Prev); 837 /// Returns the induction kind of Phi and record the step. This function may 838 /// return NoInduction if the PHI is not an induction variable. 839 InductionKind isInductionVariable(PHINode *Phi, ConstantInt *&StepValue); 840 841 /// \brief Collect memory access with loop invariant strides. 842 /// 843 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 844 /// invariant. 845 void collectStridedAccess(Value *LoadOrStoreInst); 846 847 /// Report an analysis message to assist the user in diagnosing loops that are 848 /// not vectorized. These are handled as LoopAccessReport rather than 849 /// VectorizationReport because the << operator of VectorizationReport returns 850 /// LoopAccessReport. 851 void emitAnalysis(const LoopAccessReport &Message) { 852 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, LV_NAME); 853 } 854 855 unsigned NumPredStores; 856 857 /// The loop that we evaluate. 858 Loop *TheLoop; 859 /// Scev analysis. 860 ScalarEvolution *SE; 861 /// Target Library Info. 862 TargetLibraryInfo *TLI; 863 /// Parent function 864 Function *TheFunction; 865 /// Target Transform Info 866 const TargetTransformInfo *TTI; 867 /// Dominator Tree. 868 DominatorTree *DT; 869 // LoopAccess analysis. 870 LoopAccessAnalysis *LAA; 871 // And the loop-accesses info corresponding to this loop. This pointer is 872 // null until canVectorizeMemory sets it up. 873 const LoopAccessInfo *LAI; 874 875 // --- vectorization state --- // 876 877 /// Holds the integer induction variable. This is the counter of the 878 /// loop. 879 PHINode *Induction; 880 /// Holds the reduction variables. 881 ReductionList Reductions; 882 /// Holds all of the induction variables that we found in the loop. 883 /// Notice that inductions don't need to start at zero and that induction 884 /// variables can be pointers. 885 InductionList Inductions; 886 /// Holds the widest induction type encountered. 887 Type *WidestIndTy; 888 889 /// Allowed outside users. This holds the reduction 890 /// vars which can be accessed from outside the loop. 891 SmallPtrSet<Value*, 4> AllowedExit; 892 /// This set holds the variables which are known to be uniform after 893 /// vectorization. 894 SmallPtrSet<Instruction*, 4> Uniforms; 895 896 /// Can we assume the absence of NaNs. 897 bool HasFunNoNaNAttr; 898 899 ValueToValueMap Strides; 900 SmallPtrSet<Value *, 8> StrideSet; 901 902 /// While vectorizing these instructions we have to generate a 903 /// call to the appropriate masked intrinsic 904 SmallPtrSet<const Instruction*, 8> MaskedOp; 905 }; 906 907 /// LoopVectorizationCostModel - estimates the expected speedups due to 908 /// vectorization. 909 /// In many cases vectorization is not profitable. This can happen because of 910 /// a number of reasons. In this class we mainly attempt to predict the 911 /// expected speedup/slowdowns due to the supported instruction set. We use the 912 /// TargetTransformInfo to query the different backends for the cost of 913 /// different operations. 914 class LoopVectorizationCostModel { 915 public: 916 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 917 LoopVectorizationLegality *Legal, 918 const TargetTransformInfo &TTI, 919 const TargetLibraryInfo *TLI, AssumptionCache *AC, 920 const Function *F, const LoopVectorizeHints *Hints) 921 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), 922 TheFunction(F), Hints(Hints) { 923 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 924 } 925 926 /// Information about vectorization costs 927 struct VectorizationFactor { 928 unsigned Width; // Vector width with best cost 929 unsigned Cost; // Cost of the loop with that width 930 }; 931 /// \return The most profitable vectorization factor and the cost of that VF. 932 /// This method checks every power of two up to VF. If UserVF is not ZERO 933 /// then this vectorization factor will be selected if vectorization is 934 /// possible. 935 VectorizationFactor selectVectorizationFactor(bool OptForSize); 936 937 /// \return The size (in bits) of the widest type in the code that 938 /// needs to be vectorized. We ignore values that remain scalar such as 939 /// 64 bit loop indices. 940 unsigned getWidestType(); 941 942 /// \return The most profitable unroll factor. 943 /// If UserUF is non-zero then this method finds the best unroll-factor 944 /// based on register pressure and other parameters. 945 /// VF and LoopCost are the selected vectorization factor and the cost of the 946 /// selected VF. 947 unsigned selectUnrollFactor(bool OptForSize, unsigned VF, unsigned LoopCost); 948 949 /// \brief A struct that represents some properties of the register usage 950 /// of a loop. 951 struct RegisterUsage { 952 /// Holds the number of loop invariant values that are used in the loop. 953 unsigned LoopInvariantRegs; 954 /// Holds the maximum number of concurrent live intervals in the loop. 955 unsigned MaxLocalUsers; 956 /// Holds the number of instructions in the loop. 957 unsigned NumInstructions; 958 }; 959 960 /// \return information about the register usage of the loop. 961 RegisterUsage calculateRegisterUsage(); 962 963 private: 964 /// Returns the expected execution cost. The unit of the cost does 965 /// not matter because we use the 'cost' units to compare different 966 /// vector widths. The cost that is returned is *not* normalized by 967 /// the factor width. 968 unsigned expectedCost(unsigned VF); 969 970 /// Returns the execution time cost of an instruction for a given vector 971 /// width. Vector width of one means scalar. 972 unsigned getInstructionCost(Instruction *I, unsigned VF); 973 974 /// Returns whether the instruction is a load or store and will be a emitted 975 /// as a vector operation. 976 bool isConsecutiveLoadOrStore(Instruction *I); 977 978 /// Report an analysis message to assist the user in diagnosing loops that are 979 /// not vectorized. These are handled as LoopAccessReport rather than 980 /// VectorizationReport because the << operator of VectorizationReport returns 981 /// LoopAccessReport. 982 void emitAnalysis(const LoopAccessReport &Message) { 983 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, LV_NAME); 984 } 985 986 /// Values used only by @llvm.assume calls. 987 SmallPtrSet<const Value *, 32> EphValues; 988 989 /// The loop that we evaluate. 990 Loop *TheLoop; 991 /// Scev analysis. 992 ScalarEvolution *SE; 993 /// Loop Info analysis. 994 LoopInfo *LI; 995 /// Vectorization legality. 996 LoopVectorizationLegality *Legal; 997 /// Vector target information. 998 const TargetTransformInfo &TTI; 999 /// Target Library Info. 1000 const TargetLibraryInfo *TLI; 1001 const Function *TheFunction; 1002 // Loop Vectorize Hint. 1003 const LoopVectorizeHints *Hints; 1004 }; 1005 1006 /// Utility class for getting and setting loop vectorizer hints in the form 1007 /// of loop metadata. 1008 /// This class keeps a number of loop annotations locally (as member variables) 1009 /// and can, upon request, write them back as metadata on the loop. It will 1010 /// initially scan the loop for existing metadata, and will update the local 1011 /// values based on information in the loop. 1012 /// We cannot write all values to metadata, as the mere presence of some info, 1013 /// for example 'force', means a decision has been made. So, we need to be 1014 /// careful NOT to add them if the user hasn't specifically asked so. 1015 class LoopVectorizeHints { 1016 enum HintKind { 1017 HK_WIDTH, 1018 HK_UNROLL, 1019 HK_FORCE 1020 }; 1021 1022 /// Hint - associates name and validation with the hint value. 1023 struct Hint { 1024 const char * Name; 1025 unsigned Value; // This may have to change for non-numeric values. 1026 HintKind Kind; 1027 1028 Hint(const char * Name, unsigned Value, HintKind Kind) 1029 : Name(Name), Value(Value), Kind(Kind) { } 1030 1031 bool validate(unsigned Val) { 1032 switch (Kind) { 1033 case HK_WIDTH: 1034 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1035 case HK_UNROLL: 1036 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1037 case HK_FORCE: 1038 return (Val <= 1); 1039 } 1040 return false; 1041 } 1042 }; 1043 1044 /// Vectorization width. 1045 Hint Width; 1046 /// Vectorization interleave factor. 1047 Hint Interleave; 1048 /// Vectorization forced 1049 Hint Force; 1050 1051 /// Return the loop metadata prefix. 1052 static StringRef Prefix() { return "llvm.loop."; } 1053 1054 public: 1055 enum ForceKind { 1056 FK_Undefined = -1, ///< Not selected. 1057 FK_Disabled = 0, ///< Forcing disabled. 1058 FK_Enabled = 1, ///< Forcing enabled. 1059 }; 1060 1061 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 1062 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1063 HK_WIDTH), 1064 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1065 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1066 TheLoop(L) { 1067 // Populate values with existing loop metadata. 1068 getHintsFromMetadata(); 1069 1070 // force-vector-interleave overrides DisableInterleaving. 1071 if (VectorizerParams::isInterleaveForced()) 1072 Interleave.Value = VectorizerParams::VectorizationInterleave; 1073 1074 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1075 << "LV: Interleaving disabled by the pass manager\n"); 1076 } 1077 1078 /// Mark the loop L as already vectorized by setting the width to 1. 1079 void setAlreadyVectorized() { 1080 Width.Value = Interleave.Value = 1; 1081 Hint Hints[] = {Width, Interleave}; 1082 writeHintsToMetadata(Hints); 1083 } 1084 1085 /// Dumps all the hint information. 1086 std::string emitRemark() const { 1087 VectorizationReport R; 1088 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1089 R << "vectorization is explicitly disabled"; 1090 else { 1091 R << "use -Rpass-analysis=loop-vectorize for more info"; 1092 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1093 R << " (Force=true"; 1094 if (Width.Value != 0) 1095 R << ", Vector Width=" << Width.Value; 1096 if (Interleave.Value != 0) 1097 R << ", Interleave Count=" << Interleave.Value; 1098 R << ")"; 1099 } 1100 } 1101 1102 return R.str(); 1103 } 1104 1105 unsigned getWidth() const { return Width.Value; } 1106 unsigned getInterleave() const { return Interleave.Value; } 1107 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1108 1109 private: 1110 /// Find hints specified in the loop metadata and update local values. 1111 void getHintsFromMetadata() { 1112 MDNode *LoopID = TheLoop->getLoopID(); 1113 if (!LoopID) 1114 return; 1115 1116 // First operand should refer to the loop id itself. 1117 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1118 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1119 1120 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1121 const MDString *S = nullptr; 1122 SmallVector<Metadata *, 4> Args; 1123 1124 // The expected hint is either a MDString or a MDNode with the first 1125 // operand a MDString. 1126 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1127 if (!MD || MD->getNumOperands() == 0) 1128 continue; 1129 S = dyn_cast<MDString>(MD->getOperand(0)); 1130 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1131 Args.push_back(MD->getOperand(i)); 1132 } else { 1133 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1134 assert(Args.size() == 0 && "too many arguments for MDString"); 1135 } 1136 1137 if (!S) 1138 continue; 1139 1140 // Check if the hint starts with the loop metadata prefix. 1141 StringRef Name = S->getString(); 1142 if (Args.size() == 1) 1143 setHint(Name, Args[0]); 1144 } 1145 } 1146 1147 /// Checks string hint with one operand and set value if valid. 1148 void setHint(StringRef Name, Metadata *Arg) { 1149 if (!Name.startswith(Prefix())) 1150 return; 1151 Name = Name.substr(Prefix().size(), StringRef::npos); 1152 1153 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1154 if (!C) return; 1155 unsigned Val = C->getZExtValue(); 1156 1157 Hint *Hints[] = {&Width, &Interleave, &Force}; 1158 for (auto H : Hints) { 1159 if (Name == H->Name) { 1160 if (H->validate(Val)) 1161 H->Value = Val; 1162 else 1163 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1164 break; 1165 } 1166 } 1167 } 1168 1169 /// Create a new hint from name / value pair. 1170 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1171 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1172 Metadata *MDs[] = {MDString::get(Context, Name), 1173 ConstantAsMetadata::get( 1174 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1175 return MDNode::get(Context, MDs); 1176 } 1177 1178 /// Matches metadata with hint name. 1179 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1180 MDString* Name = dyn_cast<MDString>(Node->getOperand(0)); 1181 if (!Name) 1182 return false; 1183 1184 for (auto H : HintTypes) 1185 if (Name->getString().endswith(H.Name)) 1186 return true; 1187 return false; 1188 } 1189 1190 /// Sets current hints into loop metadata, keeping other values intact. 1191 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1192 if (HintTypes.size() == 0) 1193 return; 1194 1195 // Reserve the first element to LoopID (see below). 1196 SmallVector<Metadata *, 4> MDs(1); 1197 // If the loop already has metadata, then ignore the existing operands. 1198 MDNode *LoopID = TheLoop->getLoopID(); 1199 if (LoopID) { 1200 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1201 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1202 // If node in update list, ignore old value. 1203 if (!matchesHintMetadataName(Node, HintTypes)) 1204 MDs.push_back(Node); 1205 } 1206 } 1207 1208 // Now, add the missing hints. 1209 for (auto H : HintTypes) 1210 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1211 1212 // Replace current metadata node with new one. 1213 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1214 MDNode *NewLoopID = MDNode::get(Context, MDs); 1215 // Set operand 0 to refer to the loop id itself. 1216 NewLoopID->replaceOperandWith(0, NewLoopID); 1217 1218 TheLoop->setLoopID(NewLoopID); 1219 } 1220 1221 /// The loop these hints belong to. 1222 const Loop *TheLoop; 1223 }; 1224 1225 static void emitMissedWarning(Function *F, Loop *L, 1226 const LoopVectorizeHints &LH) { 1227 emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F, 1228 L->getStartLoc(), LH.emitRemark()); 1229 1230 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1231 if (LH.getWidth() != 1) 1232 emitLoopVectorizeWarning( 1233 F->getContext(), *F, L->getStartLoc(), 1234 "failed explicitly specified loop vectorization"); 1235 else if (LH.getInterleave() != 1) 1236 emitLoopInterleaveWarning( 1237 F->getContext(), *F, L->getStartLoc(), 1238 "failed explicitly specified loop interleaving"); 1239 } 1240 } 1241 1242 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1243 if (L.empty()) 1244 return V.push_back(&L); 1245 1246 for (Loop *InnerL : L) 1247 addInnerLoop(*InnerL, V); 1248 } 1249 1250 /// The LoopVectorize Pass. 1251 struct LoopVectorize : public FunctionPass { 1252 /// Pass identification, replacement for typeid 1253 static char ID; 1254 1255 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1256 : FunctionPass(ID), 1257 DisableUnrolling(NoUnrolling), 1258 AlwaysVectorize(AlwaysVectorize) { 1259 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1260 } 1261 1262 ScalarEvolution *SE; 1263 LoopInfo *LI; 1264 TargetTransformInfo *TTI; 1265 DominatorTree *DT; 1266 BlockFrequencyInfo *BFI; 1267 TargetLibraryInfo *TLI; 1268 AliasAnalysis *AA; 1269 AssumptionCache *AC; 1270 LoopAccessAnalysis *LAA; 1271 bool DisableUnrolling; 1272 bool AlwaysVectorize; 1273 1274 BlockFrequency ColdEntryFreq; 1275 1276 bool runOnFunction(Function &F) override { 1277 SE = &getAnalysis<ScalarEvolution>(); 1278 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1279 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1280 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1281 BFI = &getAnalysis<BlockFrequencyInfo>(); 1282 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1283 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1284 AA = &getAnalysis<AliasAnalysis>(); 1285 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1286 LAA = &getAnalysis<LoopAccessAnalysis>(); 1287 1288 // Compute some weights outside of the loop over the loops. Compute this 1289 // using a BranchProbability to re-use its scaling math. 1290 const BranchProbability ColdProb(1, 5); // 20% 1291 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1292 1293 // If the target claims to have no vector registers don't attempt 1294 // vectorization. 1295 if (!TTI->getNumberOfRegisters(true)) 1296 return false; 1297 1298 // Build up a worklist of inner-loops to vectorize. This is necessary as 1299 // the act of vectorizing or partially unrolling a loop creates new loops 1300 // and can invalidate iterators across the loops. 1301 SmallVector<Loop *, 8> Worklist; 1302 1303 for (Loop *L : *LI) 1304 addInnerLoop(*L, Worklist); 1305 1306 LoopsAnalyzed += Worklist.size(); 1307 1308 // Now walk the identified inner loops. 1309 bool Changed = false; 1310 while (!Worklist.empty()) 1311 Changed |= processLoop(Worklist.pop_back_val()); 1312 1313 // Process each loop nest in the function. 1314 return Changed; 1315 } 1316 1317 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 1318 SmallVector<Metadata *, 4> MDs; 1319 // Reserve first location for self reference to the LoopID metadata node. 1320 MDs.push_back(nullptr); 1321 bool IsUnrollMetadata = false; 1322 MDNode *LoopID = L->getLoopID(); 1323 if (LoopID) { 1324 // First find existing loop unrolling disable metadata. 1325 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1326 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1327 if (MD) { 1328 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1329 IsUnrollMetadata = 1330 S && S->getString().startswith("llvm.loop.unroll.disable"); 1331 } 1332 MDs.push_back(LoopID->getOperand(i)); 1333 } 1334 } 1335 1336 if (!IsUnrollMetadata) { 1337 // Add runtime unroll disable metadata. 1338 LLVMContext &Context = L->getHeader()->getContext(); 1339 SmallVector<Metadata *, 1> DisableOperands; 1340 DisableOperands.push_back( 1341 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 1342 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 1343 MDs.push_back(DisableNode); 1344 MDNode *NewLoopID = MDNode::get(Context, MDs); 1345 // Set operand 0 to refer to the loop id itself. 1346 NewLoopID->replaceOperandWith(0, NewLoopID); 1347 L->setLoopID(NewLoopID); 1348 } 1349 } 1350 1351 bool processLoop(Loop *L) { 1352 assert(L->empty() && "Only process inner loops."); 1353 1354 #ifndef NDEBUG 1355 const std::string DebugLocStr = getDebugLocString(L); 1356 #endif /* NDEBUG */ 1357 1358 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1359 << L->getHeader()->getParent()->getName() << "\" from " 1360 << DebugLocStr << "\n"); 1361 1362 LoopVectorizeHints Hints(L, DisableUnrolling); 1363 1364 DEBUG(dbgs() << "LV: Loop hints:" 1365 << " force=" 1366 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1367 ? "disabled" 1368 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1369 ? "enabled" 1370 : "?")) << " width=" << Hints.getWidth() 1371 << " unroll=" << Hints.getInterleave() << "\n"); 1372 1373 // Function containing loop 1374 Function *F = L->getHeader()->getParent(); 1375 1376 // Looking at the diagnostic output is the only way to determine if a loop 1377 // was vectorized (other than looking at the IR or machine code), so it 1378 // is important to generate an optimization remark for each loop. Most of 1379 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1380 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1381 // less verbose reporting vectorized loops and unvectorized loops that may 1382 // benefit from vectorization, respectively. 1383 1384 if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) { 1385 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1386 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1387 L->getStartLoc(), Hints.emitRemark()); 1388 return false; 1389 } 1390 1391 if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) { 1392 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1393 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1394 L->getStartLoc(), Hints.emitRemark()); 1395 return false; 1396 } 1397 1398 if (Hints.getWidth() == 1 && Hints.getInterleave() == 1) { 1399 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1400 emitOptimizationRemarkAnalysis( 1401 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1402 "loop not vectorized: vector width and interleave count are " 1403 "explicitly set to 1"); 1404 return false; 1405 } 1406 1407 // Check the loop for a trip count threshold: 1408 // do not vectorize loops with a tiny trip count. 1409 const unsigned TC = SE->getSmallConstantTripCount(L); 1410 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1411 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1412 << "This loop is not worth vectorizing."); 1413 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1414 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1415 else { 1416 DEBUG(dbgs() << "\n"); 1417 emitOptimizationRemarkAnalysis( 1418 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1419 "vectorization is not beneficial and is not explicitly forced"); 1420 return false; 1421 } 1422 } 1423 1424 // Check if it is legal to vectorize the loop. 1425 LoopVectorizationLegality LVL(L, SE, DT, TLI, AA, F, TTI, LAA); 1426 if (!LVL.canVectorize()) { 1427 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1428 emitMissedWarning(F, L, Hints); 1429 return false; 1430 } 1431 1432 // Use the cost model. 1433 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, TLI, AC, F, &Hints); 1434 1435 // Check the function attributes to find out if this function should be 1436 // optimized for size. 1437 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1438 F->hasFnAttribute(Attribute::OptimizeForSize); 1439 1440 // Compute the weighted frequency of this loop being executed and see if it 1441 // is less than 20% of the function entry baseline frequency. Note that we 1442 // always have a canonical loop here because we think we *can* vectoriez. 1443 // FIXME: This is hidden behind a flag due to pervasive problems with 1444 // exactly what block frequency models. 1445 if (LoopVectorizeWithBlockFrequency) { 1446 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1447 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1448 LoopEntryFreq < ColdEntryFreq) 1449 OptForSize = true; 1450 } 1451 1452 // Check the function attributes to see if implicit floats are allowed.a 1453 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1454 // an integer loop and the vector instructions selected are purely integer 1455 // vector instructions? 1456 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1457 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1458 "attribute is used.\n"); 1459 emitOptimizationRemarkAnalysis( 1460 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1461 "loop not vectorized due to NoImplicitFloat attribute"); 1462 emitMissedWarning(F, L, Hints); 1463 return false; 1464 } 1465 1466 // Select the optimal vectorization factor. 1467 const LoopVectorizationCostModel::VectorizationFactor VF = 1468 CM.selectVectorizationFactor(OptForSize); 1469 1470 // Select the unroll factor. 1471 const unsigned UF = 1472 CM.selectUnrollFactor(OptForSize, VF.Width, VF.Cost); 1473 1474 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1475 << DebugLocStr << '\n'); 1476 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n'); 1477 1478 if (VF.Width == 1) { 1479 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n"); 1480 1481 if (UF == 1) { 1482 emitOptimizationRemarkAnalysis( 1483 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1484 "not beneficial to vectorize and user disabled interleaving"); 1485 return false; 1486 } 1487 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n"); 1488 1489 // Report the unrolling decision. 1490 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1491 Twine("unrolled with interleaving factor " + 1492 Twine(UF) + 1493 " (vectorization not beneficial)")); 1494 1495 // We decided not to vectorize, but we may want to unroll. 1496 1497 InnerLoopUnroller Unroller(L, SE, LI, DT, TLI, TTI, UF); 1498 Unroller.vectorize(&LVL); 1499 } else { 1500 // If we decided that it is *legal* to vectorize the loop then do it. 1501 InnerLoopVectorizer LB(L, SE, LI, DT, TLI, TTI, VF.Width, UF); 1502 LB.vectorize(&LVL); 1503 ++LoopsVectorized; 1504 1505 // Add metadata to disable runtime unrolling scalar loop when there's no 1506 // runtime check about strides and memory. Because at this situation, 1507 // scalar loop is rarely used not worthy to be unrolled. 1508 if (!LB.IsSafetyChecksAdded()) 1509 AddRuntimeUnrollDisableMetaData(L); 1510 1511 // Report the vectorization decision. 1512 emitOptimizationRemark( 1513 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1514 Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) + 1515 ", unrolling interleave factor: " + Twine(UF) + ")"); 1516 } 1517 1518 // Mark the loop as already vectorized to avoid vectorizing again. 1519 Hints.setAlreadyVectorized(); 1520 1521 DEBUG(verifyFunction(*L->getHeader()->getParent())); 1522 return true; 1523 } 1524 1525 void getAnalysisUsage(AnalysisUsage &AU) const override { 1526 AU.addRequired<AssumptionCacheTracker>(); 1527 AU.addRequiredID(LoopSimplifyID); 1528 AU.addRequiredID(LCSSAID); 1529 AU.addRequired<BlockFrequencyInfo>(); 1530 AU.addRequired<DominatorTreeWrapperPass>(); 1531 AU.addRequired<LoopInfoWrapperPass>(); 1532 AU.addRequired<ScalarEvolution>(); 1533 AU.addRequired<TargetTransformInfoWrapperPass>(); 1534 AU.addRequired<AliasAnalysis>(); 1535 AU.addRequired<LoopAccessAnalysis>(); 1536 AU.addPreserved<LoopInfoWrapperPass>(); 1537 AU.addPreserved<DominatorTreeWrapperPass>(); 1538 AU.addPreserved<AliasAnalysis>(); 1539 } 1540 1541 }; 1542 1543 } // end anonymous namespace 1544 1545 //===----------------------------------------------------------------------===// 1546 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1547 // LoopVectorizationCostModel. 1548 //===----------------------------------------------------------------------===// 1549 1550 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1551 // We need to place the broadcast of invariant variables outside the loop. 1552 Instruction *Instr = dyn_cast<Instruction>(V); 1553 bool NewInstr = 1554 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 1555 Instr->getParent()) != LoopVectorBody.end()); 1556 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1557 1558 // Place the code for broadcasting invariant variables in the new preheader. 1559 IRBuilder<>::InsertPointGuard Guard(Builder); 1560 if (Invariant) 1561 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1562 1563 // Broadcast the scalar into all locations in the vector. 1564 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1565 1566 return Shuf; 1567 } 1568 1569 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 1570 Value *Step) { 1571 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1572 assert(Val->getType()->getScalarType()->isIntegerTy() && 1573 "Elem must be an integer"); 1574 assert(Step->getType() == Val->getType()->getScalarType() && 1575 "Step has wrong type"); 1576 // Create the types. 1577 Type *ITy = Val->getType()->getScalarType(); 1578 VectorType *Ty = cast<VectorType>(Val->getType()); 1579 int VLen = Ty->getNumElements(); 1580 SmallVector<Constant*, 8> Indices; 1581 1582 // Create a vector of consecutive numbers from zero to VF. 1583 for (int i = 0; i < VLen; ++i) 1584 Indices.push_back(ConstantInt::get(ITy, StartIdx + i)); 1585 1586 // Add the consecutive indices to the vector value. 1587 Constant *Cv = ConstantVector::get(Indices); 1588 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1589 Step = Builder.CreateVectorSplat(VLen, Step); 1590 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1591 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1592 // which can be found from the original scalar operations. 1593 Step = Builder.CreateMul(Cv, Step); 1594 return Builder.CreateAdd(Val, Step, "induction"); 1595 } 1596 1597 /// \brief Find the operand of the GEP that should be checked for consecutive 1598 /// stores. This ignores trailing indices that have no effect on the final 1599 /// pointer. 1600 static unsigned getGEPInductionOperand(const GetElementPtrInst *Gep) { 1601 const DataLayout &DL = Gep->getModule()->getDataLayout(); 1602 unsigned LastOperand = Gep->getNumOperands() - 1; 1603 unsigned GEPAllocSize = DL.getTypeAllocSize( 1604 cast<PointerType>(Gep->getType()->getScalarType())->getElementType()); 1605 1606 // Walk backwards and try to peel off zeros. 1607 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 1608 // Find the type we're currently indexing into. 1609 gep_type_iterator GEPTI = gep_type_begin(Gep); 1610 std::advance(GEPTI, LastOperand - 1); 1611 1612 // If it's a type with the same allocation size as the result of the GEP we 1613 // can peel off the zero index. 1614 if (DL.getTypeAllocSize(*GEPTI) != GEPAllocSize) 1615 break; 1616 --LastOperand; 1617 } 1618 1619 return LastOperand; 1620 } 1621 1622 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1623 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 1624 // Make sure that the pointer does not point to structs. 1625 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 1626 return 0; 1627 1628 // If this value is a pointer induction variable we know it is consecutive. 1629 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1630 if (Phi && Inductions.count(Phi)) { 1631 InductionInfo II = Inductions[Phi]; 1632 return II.getConsecutiveDirection(); 1633 } 1634 1635 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); 1636 if (!Gep) 1637 return 0; 1638 1639 unsigned NumOperands = Gep->getNumOperands(); 1640 Value *GpPtr = Gep->getPointerOperand(); 1641 // If this GEP value is a consecutive pointer induction variable and all of 1642 // the indices are constant then we know it is consecutive. We can 1643 Phi = dyn_cast<PHINode>(GpPtr); 1644 if (Phi && Inductions.count(Phi)) { 1645 1646 // Make sure that the pointer does not point to structs. 1647 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 1648 if (GepPtrType->getElementType()->isAggregateType()) 1649 return 0; 1650 1651 // Make sure that all of the index operands are loop invariant. 1652 for (unsigned i = 1; i < NumOperands; ++i) 1653 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1654 return 0; 1655 1656 InductionInfo II = Inductions[Phi]; 1657 return II.getConsecutiveDirection(); 1658 } 1659 1660 unsigned InductionOperand = getGEPInductionOperand(Gep); 1661 1662 // Check that all of the gep indices are uniform except for our induction 1663 // operand. 1664 for (unsigned i = 0; i != NumOperands; ++i) 1665 if (i != InductionOperand && 1666 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1667 return 0; 1668 1669 // We can emit wide load/stores only if the last non-zero index is the 1670 // induction variable. 1671 const SCEV *Last = nullptr; 1672 if (!Strides.count(Gep)) 1673 Last = SE->getSCEV(Gep->getOperand(InductionOperand)); 1674 else { 1675 // Because of the multiplication by a stride we can have a s/zext cast. 1676 // We are going to replace this stride by 1 so the cast is safe to ignore. 1677 // 1678 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 1679 // %0 = trunc i64 %indvars.iv to i32 1680 // %mul = mul i32 %0, %Stride1 1681 // %idxprom = zext i32 %mul to i64 << Safe cast. 1682 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 1683 // 1684 Last = replaceSymbolicStrideSCEV(SE, Strides, 1685 Gep->getOperand(InductionOperand), Gep); 1686 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 1687 Last = 1688 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 1689 ? C->getOperand() 1690 : Last; 1691 } 1692 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 1693 const SCEV *Step = AR->getStepRecurrence(*SE); 1694 1695 // The memory is consecutive because the last index is consecutive 1696 // and all other indices are loop invariant. 1697 if (Step->isOne()) 1698 return 1; 1699 if (Step->isAllOnesValue()) 1700 return -1; 1701 } 1702 1703 return 0; 1704 } 1705 1706 bool LoopVectorizationLegality::isUniform(Value *V) { 1707 return LAI->isUniform(V); 1708 } 1709 1710 InnerLoopVectorizer::VectorParts& 1711 InnerLoopVectorizer::getVectorValue(Value *V) { 1712 assert(V != Induction && "The new induction variable should not be used."); 1713 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1714 1715 // If we have a stride that is replaced by one, do it here. 1716 if (Legal->hasStride(V)) 1717 V = ConstantInt::get(V->getType(), 1); 1718 1719 // If we have this scalar in the map, return it. 1720 if (WidenMap.has(V)) 1721 return WidenMap.get(V); 1722 1723 // If this scalar is unknown, assume that it is a constant or that it is 1724 // loop invariant. Broadcast V and save the value for future uses. 1725 Value *B = getBroadcastInstrs(V); 1726 return WidenMap.splat(V, B); 1727 } 1728 1729 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1730 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1731 SmallVector<Constant*, 8> ShuffleMask; 1732 for (unsigned i = 0; i < VF; ++i) 1733 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1734 1735 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1736 ConstantVector::get(ShuffleMask), 1737 "reverse"); 1738 } 1739 1740 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 1741 // Attempt to issue a wide load. 1742 LoadInst *LI = dyn_cast<LoadInst>(Instr); 1743 StoreInst *SI = dyn_cast<StoreInst>(Instr); 1744 1745 assert((LI || SI) && "Invalid Load/Store instruction"); 1746 1747 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 1748 Type *DataTy = VectorType::get(ScalarDataTy, VF); 1749 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 1750 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 1751 // An alignment of 0 means target abi alignment. We need to use the scalar's 1752 // target abi alignment in such a case. 1753 const DataLayout &DL = Instr->getModule()->getDataLayout(); 1754 if (!Alignment) 1755 Alignment = DL.getABITypeAlignment(ScalarDataTy); 1756 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 1757 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy); 1758 unsigned VectorElementSize = DL.getTypeStoreSize(DataTy) / VF; 1759 1760 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 1761 !Legal->isMaskRequired(SI)) 1762 return scalarizeInstruction(Instr, true); 1763 1764 if (ScalarAllocatedSize != VectorElementSize) 1765 return scalarizeInstruction(Instr); 1766 1767 // If the pointer is loop invariant or if it is non-consecutive, 1768 // scalarize the load. 1769 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 1770 bool Reverse = ConsecutiveStride < 0; 1771 bool UniformLoad = LI && Legal->isUniform(Ptr); 1772 if (!ConsecutiveStride || UniformLoad) 1773 return scalarizeInstruction(Instr); 1774 1775 Constant *Zero = Builder.getInt32(0); 1776 VectorParts &Entry = WidenMap.get(Instr); 1777 1778 // Handle consecutive loads/stores. 1779 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 1780 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 1781 setDebugLocFromInst(Builder, Gep); 1782 Value *PtrOperand = Gep->getPointerOperand(); 1783 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 1784 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 1785 1786 // Create the new GEP with the new induction variable. 1787 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1788 Gep2->setOperand(0, FirstBasePtr); 1789 Gep2->setName("gep.indvar.base"); 1790 Ptr = Builder.Insert(Gep2); 1791 } else if (Gep) { 1792 setDebugLocFromInst(Builder, Gep); 1793 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 1794 OrigLoop) && "Base ptr must be invariant"); 1795 1796 // The last index does not have to be the induction. It can be 1797 // consecutive and be a function of the index. For example A[I+1]; 1798 unsigned NumOperands = Gep->getNumOperands(); 1799 unsigned InductionOperand = getGEPInductionOperand(Gep); 1800 // Create the new GEP with the new induction variable. 1801 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1802 1803 for (unsigned i = 0; i < NumOperands; ++i) { 1804 Value *GepOperand = Gep->getOperand(i); 1805 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 1806 1807 // Update last index or loop invariant instruction anchored in loop. 1808 if (i == InductionOperand || 1809 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 1810 assert((i == InductionOperand || 1811 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && 1812 "Must be last index or loop invariant"); 1813 1814 VectorParts &GEPParts = getVectorValue(GepOperand); 1815 Value *Index = GEPParts[0]; 1816 Index = Builder.CreateExtractElement(Index, Zero); 1817 Gep2->setOperand(i, Index); 1818 Gep2->setName("gep.indvar.idx"); 1819 } 1820 } 1821 Ptr = Builder.Insert(Gep2); 1822 } else { 1823 // Use the induction element ptr. 1824 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 1825 setDebugLocFromInst(Builder, Ptr); 1826 VectorParts &PtrVal = getVectorValue(Ptr); 1827 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 1828 } 1829 1830 VectorParts Mask = createBlockInMask(Instr->getParent()); 1831 // Handle Stores: 1832 if (SI) { 1833 assert(!Legal->isUniform(SI->getPointerOperand()) && 1834 "We do not allow storing to uniform addresses"); 1835 setDebugLocFromInst(Builder, SI); 1836 // We don't want to update the value in the map as it might be used in 1837 // another expression. So don't use a reference type for "StoredVal". 1838 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 1839 1840 for (unsigned Part = 0; Part < UF; ++Part) { 1841 // Calculate the pointer for the specific unroll-part. 1842 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1843 1844 if (Reverse) { 1845 // If we store to reverse consecutive memory locations then we need 1846 // to reverse the order of elements in the stored value. 1847 StoredVal[Part] = reverseVector(StoredVal[Part]); 1848 // If the address is consecutive but reversed, then the 1849 // wide store needs to start at the last vector element. 1850 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1851 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1852 Mask[Part] = reverseVector(Mask[Part]); 1853 } 1854 1855 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1856 DataTy->getPointerTo(AddressSpace)); 1857 1858 Instruction *NewSI; 1859 if (Legal->isMaskRequired(SI)) 1860 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 1861 Mask[Part]); 1862 else 1863 NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 1864 propagateMetadata(NewSI, SI); 1865 } 1866 return; 1867 } 1868 1869 // Handle loads. 1870 assert(LI && "Must have a load instruction"); 1871 setDebugLocFromInst(Builder, LI); 1872 for (unsigned Part = 0; Part < UF; ++Part) { 1873 // Calculate the pointer for the specific unroll-part. 1874 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1875 1876 if (Reverse) { 1877 // If the address is consecutive but reversed, then the 1878 // wide load needs to start at the last vector element. 1879 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1880 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1881 Mask[Part] = reverseVector(Mask[Part]); 1882 } 1883 1884 Instruction* NewLI; 1885 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1886 DataTy->getPointerTo(AddressSpace)); 1887 if (Legal->isMaskRequired(LI)) 1888 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 1889 UndefValue::get(DataTy), 1890 "wide.masked.load"); 1891 else 1892 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 1893 propagateMetadata(NewLI, LI); 1894 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 1895 } 1896 } 1897 1898 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { 1899 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 1900 // Holds vector parameters or scalars, in case of uniform vals. 1901 SmallVector<VectorParts, 4> Params; 1902 1903 setDebugLocFromInst(Builder, Instr); 1904 1905 // Find all of the vectorized parameters. 1906 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1907 Value *SrcOp = Instr->getOperand(op); 1908 1909 // If we are accessing the old induction variable, use the new one. 1910 if (SrcOp == OldInduction) { 1911 Params.push_back(getVectorValue(SrcOp)); 1912 continue; 1913 } 1914 1915 // Try using previously calculated values. 1916 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 1917 1918 // If the src is an instruction that appeared earlier in the basic block 1919 // then it should already be vectorized. 1920 if (SrcInst && OrigLoop->contains(SrcInst)) { 1921 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 1922 // The parameter is a vector value from earlier. 1923 Params.push_back(WidenMap.get(SrcInst)); 1924 } else { 1925 // The parameter is a scalar from outside the loop. Maybe even a constant. 1926 VectorParts Scalars; 1927 Scalars.append(UF, SrcOp); 1928 Params.push_back(Scalars); 1929 } 1930 } 1931 1932 assert(Params.size() == Instr->getNumOperands() && 1933 "Invalid number of operands"); 1934 1935 // Does this instruction return a value ? 1936 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 1937 1938 Value *UndefVec = IsVoidRetTy ? nullptr : 1939 UndefValue::get(VectorType::get(Instr->getType(), VF)); 1940 // Create a new entry in the WidenMap and initialize it to Undef or Null. 1941 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 1942 1943 Instruction *InsertPt = Builder.GetInsertPoint(); 1944 BasicBlock *IfBlock = Builder.GetInsertBlock(); 1945 BasicBlock *CondBlock = nullptr; 1946 1947 VectorParts Cond; 1948 Loop *VectorLp = nullptr; 1949 if (IfPredicateStore) { 1950 assert(Instr->getParent()->getSinglePredecessor() && 1951 "Only support single predecessor blocks"); 1952 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 1953 Instr->getParent()); 1954 VectorLp = LI->getLoopFor(IfBlock); 1955 assert(VectorLp && "Must have a loop for this block"); 1956 } 1957 1958 // For each vector unroll 'part': 1959 for (unsigned Part = 0; Part < UF; ++Part) { 1960 // For each scalar that we create: 1961 for (unsigned Width = 0; Width < VF; ++Width) { 1962 1963 // Start if-block. 1964 Value *Cmp = nullptr; 1965 if (IfPredicateStore) { 1966 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 1967 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1)); 1968 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1969 LoopVectorBody.push_back(CondBlock); 1970 VectorLp->addBasicBlockToLoop(CondBlock, *LI); 1971 // Update Builder with newly created basic block. 1972 Builder.SetInsertPoint(InsertPt); 1973 } 1974 1975 Instruction *Cloned = Instr->clone(); 1976 if (!IsVoidRetTy) 1977 Cloned->setName(Instr->getName() + ".cloned"); 1978 // Replace the operands of the cloned instructions with extracted scalars. 1979 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1980 Value *Op = Params[op][Part]; 1981 // Param is a vector. Need to extract the right lane. 1982 if (Op->getType()->isVectorTy()) 1983 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 1984 Cloned->setOperand(op, Op); 1985 } 1986 1987 // Place the cloned scalar in the new loop. 1988 Builder.Insert(Cloned); 1989 1990 // If the original scalar returns a value we need to place it in a vector 1991 // so that future users will be able to use it. 1992 if (!IsVoidRetTy) 1993 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 1994 Builder.getInt32(Width)); 1995 // End if-block. 1996 if (IfPredicateStore) { 1997 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1998 LoopVectorBody.push_back(NewIfBlock); 1999 VectorLp->addBasicBlockToLoop(NewIfBlock, *LI); 2000 Builder.SetInsertPoint(InsertPt); 2001 Instruction *OldBr = IfBlock->getTerminator(); 2002 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 2003 OldBr->eraseFromParent(); 2004 IfBlock = NewIfBlock; 2005 } 2006 } 2007 } 2008 } 2009 2010 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 2011 Instruction *Loc) { 2012 if (FirstInst) 2013 return FirstInst; 2014 if (Instruction *I = dyn_cast<Instruction>(V)) 2015 return I->getParent() == Loc->getParent() ? I : nullptr; 2016 return nullptr; 2017 } 2018 2019 std::pair<Instruction *, Instruction *> 2020 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) { 2021 Instruction *tnullptr = nullptr; 2022 if (!Legal->mustCheckStrides()) 2023 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 2024 2025 IRBuilder<> ChkBuilder(Loc); 2026 2027 // Emit checks. 2028 Value *Check = nullptr; 2029 Instruction *FirstInst = nullptr; 2030 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(), 2031 SE = Legal->strides_end(); 2032 SI != SE; ++SI) { 2033 Value *Ptr = stripIntegerCast(*SI); 2034 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1), 2035 "stride.chk"); 2036 // Store the first instruction we create. 2037 FirstInst = getFirstInst(FirstInst, C, Loc); 2038 if (Check) 2039 Check = ChkBuilder.CreateOr(Check, C); 2040 else 2041 Check = C; 2042 } 2043 2044 // We have to do this trickery because the IRBuilder might fold the check to a 2045 // constant expression in which case there is no Instruction anchored in a 2046 // the block. 2047 LLVMContext &Ctx = Loc->getContext(); 2048 Instruction *TheCheck = 2049 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx)); 2050 ChkBuilder.Insert(TheCheck, "stride.not.one"); 2051 FirstInst = getFirstInst(FirstInst, TheCheck, Loc); 2052 2053 return std::make_pair(FirstInst, TheCheck); 2054 } 2055 2056 void InnerLoopVectorizer::createEmptyLoop() { 2057 /* 2058 In this function we generate a new loop. The new loop will contain 2059 the vectorized instructions while the old loop will continue to run the 2060 scalar remainder. 2061 2062 [ ] <-- Back-edge taken count overflow check. 2063 / | 2064 / v 2065 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2066 | / | 2067 | / v 2068 || [ ] <-- vector pre header. 2069 || | 2070 || v 2071 || [ ] \ 2072 || [ ]_| <-- vector loop. 2073 || | 2074 | \ v 2075 | >[ ] <--- middle-block. 2076 | / | 2077 | / v 2078 -|- >[ ] <--- new preheader. 2079 | | 2080 | v 2081 | [ ] \ 2082 | [ ]_| <-- old scalar loop to handle remainder. 2083 \ | 2084 \ v 2085 >[ ] <-- exit block. 2086 ... 2087 */ 2088 2089 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2090 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); 2091 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2092 assert(BypassBlock && "Invalid loop structure"); 2093 assert(ExitBlock && "Must have an exit block"); 2094 2095 // Some loops have a single integer induction variable, while other loops 2096 // don't. One example is c++ iterators that often have multiple pointer 2097 // induction variables. In the code below we also support a case where we 2098 // don't have a single induction variable. 2099 OldInduction = Legal->getInduction(); 2100 Type *IdxTy = Legal->getWidestInductionType(); 2101 2102 // Find the loop boundaries. 2103 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop); 2104 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); 2105 2106 // The exit count might have the type of i64 while the phi is i32. This can 2107 // happen if we have an induction variable that is sign extended before the 2108 // compare. The only way that we get a backedge taken count is that the 2109 // induction variable was signed and as such will not overflow. In such a case 2110 // truncation is legal. 2111 if (ExitCount->getType()->getPrimitiveSizeInBits() > 2112 IdxTy->getPrimitiveSizeInBits()) 2113 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy); 2114 2115 const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy); 2116 // Get the total trip count from the count by adding 1. 2117 ExitCount = SE->getAddExpr(BackedgeTakeCount, 2118 SE->getConstant(BackedgeTakeCount->getType(), 1)); 2119 2120 const DataLayout &DL = OldBasicBlock->getModule()->getDataLayout(); 2121 2122 // Expand the trip count and place the new instructions in the preheader. 2123 // Notice that the pre-header does not change, only the loop body. 2124 SCEVExpander Exp(*SE, DL, "induction"); 2125 2126 // We need to test whether the backedge-taken count is uint##_max. Adding one 2127 // to it will cause overflow and an incorrect loop trip count in the vector 2128 // body. In case of overflow we want to directly jump to the scalar remainder 2129 // loop. 2130 Value *BackedgeCount = 2131 Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(), 2132 BypassBlock->getTerminator()); 2133 if (BackedgeCount->getType()->isPointerTy()) 2134 BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy, 2135 "backedge.ptrcnt.to.int", 2136 BypassBlock->getTerminator()); 2137 Instruction *CheckBCOverflow = 2138 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount, 2139 Constant::getAllOnesValue(BackedgeCount->getType()), 2140 "backedge.overflow", BypassBlock->getTerminator()); 2141 2142 // The loop index does not have to start at Zero. Find the original start 2143 // value from the induction PHI node. If we don't have an induction variable 2144 // then we know that it starts at zero. 2145 Builder.SetInsertPoint(BypassBlock->getTerminator()); 2146 Value *StartIdx = ExtendedIdx = OldInduction ? 2147 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock), 2148 IdxTy): 2149 ConstantInt::get(IdxTy, 0); 2150 2151 // We need an instruction to anchor the overflow check on. StartIdx needs to 2152 // be defined before the overflow check branch. Because the scalar preheader 2153 // is going to merge the start index and so the overflow branch block needs to 2154 // contain a definition of the start index. 2155 Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd( 2156 StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor", 2157 BypassBlock->getTerminator()); 2158 2159 // Count holds the overall loop count (N). 2160 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2161 BypassBlock->getTerminator()); 2162 2163 LoopBypassBlocks.push_back(BypassBlock); 2164 2165 // Split the single block loop into the two loop structure described above. 2166 BasicBlock *VectorPH = 2167 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); 2168 BasicBlock *VecBody = 2169 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2170 BasicBlock *MiddleBlock = 2171 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2172 BasicBlock *ScalarPH = 2173 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2174 2175 // Create and register the new vector loop. 2176 Loop* Lp = new Loop(); 2177 Loop *ParentLoop = OrigLoop->getParentLoop(); 2178 2179 // Insert the new loop into the loop nest and register the new basic blocks 2180 // before calling any utilities such as SCEV that require valid LoopInfo. 2181 if (ParentLoop) { 2182 ParentLoop->addChildLoop(Lp); 2183 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2184 ParentLoop->addBasicBlockToLoop(VectorPH, *LI); 2185 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2186 } else { 2187 LI->addTopLevelLoop(Lp); 2188 } 2189 Lp->addBasicBlockToLoop(VecBody, *LI); 2190 2191 // Use this IR builder to create the loop instructions (Phi, Br, Cmp) 2192 // inside the loop. 2193 Builder.SetInsertPoint(VecBody->getFirstNonPHI()); 2194 2195 // Generate the induction variable. 2196 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2197 Induction = Builder.CreatePHI(IdxTy, 2, "index"); 2198 // The loop step is equal to the vectorization factor (num of SIMD elements) 2199 // times the unroll factor (num of SIMD instructions). 2200 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2201 2202 // This is the IR builder that we use to add all of the logic for bypassing 2203 // the new vector loop. 2204 IRBuilder<> BypassBuilder(BypassBlock->getTerminator()); 2205 setDebugLocFromInst(BypassBuilder, 2206 getDebugLocFromInstOrOperands(OldInduction)); 2207 2208 // We may need to extend the index in case there is a type mismatch. 2209 // We know that the count starts at zero and does not overflow. 2210 if (Count->getType() != IdxTy) { 2211 // The exit count can be of pointer type. Convert it to the correct 2212 // integer type. 2213 if (ExitCount->getType()->isPointerTy()) 2214 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); 2215 else 2216 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); 2217 } 2218 2219 // Add the start index to the loop count to get the new end index. 2220 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); 2221 2222 // Now we need to generate the expression for N - (N % VF), which is 2223 // the part that the vectorized body will execute. 2224 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); 2225 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); 2226 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, 2227 "end.idx.rnd.down"); 2228 2229 // Now, compare the new count to zero. If it is zero skip the vector loop and 2230 // jump to the scalar loop. 2231 Value *Cmp = 2232 BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero"); 2233 2234 BasicBlock *LastBypassBlock = BypassBlock; 2235 2236 // Generate code to check that the loops trip count that we computed by adding 2237 // one to the backedge-taken count will not overflow. 2238 { 2239 auto PastOverflowCheck = 2240 std::next(BasicBlock::iterator(OverflowCheckAnchor)); 2241 BasicBlock *CheckBlock = 2242 LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked"); 2243 if (ParentLoop) 2244 ParentLoop->addBasicBlockToLoop(CheckBlock, *LI); 2245 LoopBypassBlocks.push_back(CheckBlock); 2246 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2247 BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm); 2248 OldTerm->eraseFromParent(); 2249 LastBypassBlock = CheckBlock; 2250 } 2251 2252 // Generate the code to check that the strides we assumed to be one are really 2253 // one. We want the new basic block to start at the first instruction in a 2254 // sequence of instructions that form a check. 2255 Instruction *StrideCheck; 2256 Instruction *FirstCheckInst; 2257 std::tie(FirstCheckInst, StrideCheck) = 2258 addStrideCheck(LastBypassBlock->getTerminator()); 2259 if (StrideCheck) { 2260 AddedSafetyChecks = true; 2261 // Create a new block containing the stride check. 2262 BasicBlock *CheckBlock = 2263 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck"); 2264 if (ParentLoop) 2265 ParentLoop->addBasicBlockToLoop(CheckBlock, *LI); 2266 LoopBypassBlocks.push_back(CheckBlock); 2267 2268 // Replace the branch into the memory check block with a conditional branch 2269 // for the "few elements case". 2270 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2271 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2272 OldTerm->eraseFromParent(); 2273 2274 Cmp = StrideCheck; 2275 LastBypassBlock = CheckBlock; 2276 } 2277 2278 // Generate the code that checks in runtime if arrays overlap. We put the 2279 // checks into a separate block to make the more common case of few elements 2280 // faster. 2281 Instruction *MemRuntimeCheck; 2282 std::tie(FirstCheckInst, MemRuntimeCheck) = 2283 Legal->getLAI()->addRuntimeCheck(LastBypassBlock->getTerminator()); 2284 if (MemRuntimeCheck) { 2285 AddedSafetyChecks = true; 2286 // Create a new block containing the memory check. 2287 BasicBlock *CheckBlock = 2288 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.memcheck"); 2289 if (ParentLoop) 2290 ParentLoop->addBasicBlockToLoop(CheckBlock, *LI); 2291 LoopBypassBlocks.push_back(CheckBlock); 2292 2293 // Replace the branch into the memory check block with a conditional branch 2294 // for the "few elements case". 2295 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2296 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2297 OldTerm->eraseFromParent(); 2298 2299 Cmp = MemRuntimeCheck; 2300 LastBypassBlock = CheckBlock; 2301 } 2302 2303 LastBypassBlock->getTerminator()->eraseFromParent(); 2304 BranchInst::Create(MiddleBlock, VectorPH, Cmp, 2305 LastBypassBlock); 2306 2307 // We are going to resume the execution of the scalar loop. 2308 // Go over all of the induction variables that we found and fix the 2309 // PHIs that are left in the scalar version of the loop. 2310 // The starting values of PHI nodes depend on the counter of the last 2311 // iteration in the vectorized loop. 2312 // If we come from a bypass edge then we need to start from the original 2313 // start value. 2314 2315 // This variable saves the new starting index for the scalar loop. 2316 PHINode *ResumeIndex = nullptr; 2317 LoopVectorizationLegality::InductionList::iterator I, E; 2318 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2319 // Set builder to point to last bypass block. 2320 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator()); 2321 for (I = List->begin(), E = List->end(); I != E; ++I) { 2322 PHINode *OrigPhi = I->first; 2323 LoopVectorizationLegality::InductionInfo II = I->second; 2324 2325 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType(); 2326 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val", 2327 MiddleBlock->getTerminator()); 2328 // We might have extended the type of the induction variable but we need a 2329 // truncated version for the scalar loop. 2330 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ? 2331 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val", 2332 MiddleBlock->getTerminator()) : nullptr; 2333 2334 // Create phi nodes to merge from the backedge-taken check block. 2335 PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val", 2336 ScalarPH->getTerminator()); 2337 BCResumeVal->addIncoming(ResumeVal, MiddleBlock); 2338 2339 PHINode *BCTruncResumeVal = nullptr; 2340 if (OrigPhi == OldInduction) { 2341 BCTruncResumeVal = 2342 PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val", 2343 ScalarPH->getTerminator()); 2344 BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock); 2345 } 2346 2347 Value *EndValue = nullptr; 2348 switch (II.IK) { 2349 case LoopVectorizationLegality::IK_NoInduction: 2350 llvm_unreachable("Unknown induction"); 2351 case LoopVectorizationLegality::IK_IntInduction: { 2352 // Handle the integer induction counter. 2353 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); 2354 2355 // We have the canonical induction variable. 2356 if (OrigPhi == OldInduction) { 2357 // Create a truncated version of the resume value for the scalar loop, 2358 // we might have promoted the type to a larger width. 2359 EndValue = 2360 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType()); 2361 // The new PHI merges the original incoming value, in case of a bypass, 2362 // or the value at the end of the vectorized loop. 2363 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2364 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2365 TruncResumeVal->addIncoming(EndValue, VecBody); 2366 2367 BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2368 2369 // We know what the end value is. 2370 EndValue = IdxEndRoundDown; 2371 // We also know which PHI node holds it. 2372 ResumeIndex = ResumeVal; 2373 break; 2374 } 2375 2376 // Not the canonical induction variable - add the vector loop count to the 2377 // start value. 2378 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2379 II.StartValue->getType(), 2380 "cast.crd"); 2381 EndValue = II.transform(BypassBuilder, CRD); 2382 EndValue->setName("ind.end"); 2383 break; 2384 } 2385 case LoopVectorizationLegality::IK_PtrInduction: { 2386 EndValue = II.transform(BypassBuilder, CountRoundDown); 2387 EndValue->setName("ptr.ind.end"); 2388 break; 2389 } 2390 }// end of case 2391 2392 // The new PHI merges the original incoming value, in case of a bypass, 2393 // or the value at the end of the vectorized loop. 2394 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) { 2395 if (OrigPhi == OldInduction) 2396 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]); 2397 else 2398 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2399 } 2400 ResumeVal->addIncoming(EndValue, VecBody); 2401 2402 // Fix the scalar body counter (PHI node). 2403 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2404 2405 // The old induction's phi node in the scalar body needs the truncated 2406 // value. 2407 if (OrigPhi == OldInduction) { 2408 BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]); 2409 OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal); 2410 } else { 2411 BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2412 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2413 } 2414 } 2415 2416 // If we are generating a new induction variable then we also need to 2417 // generate the code that calculates the exit value. This value is not 2418 // simply the end of the counter because we may skip the vectorized body 2419 // in case of a runtime check. 2420 if (!OldInduction){ 2421 assert(!ResumeIndex && "Unexpected resume value found"); 2422 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", 2423 MiddleBlock->getTerminator()); 2424 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2425 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); 2426 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); 2427 } 2428 2429 // Make sure that we found the index where scalar loop needs to continue. 2430 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && 2431 "Invalid resume Index"); 2432 2433 // Add a check in the middle block to see if we have completed 2434 // all of the iterations in the first vector loop. 2435 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2436 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, 2437 ResumeIndex, "cmp.n", 2438 MiddleBlock->getTerminator()); 2439 2440 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); 2441 // Remove the old terminator. 2442 MiddleBlock->getTerminator()->eraseFromParent(); 2443 2444 // Create i+1 and fill the PHINode. 2445 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); 2446 Induction->addIncoming(StartIdx, VectorPH); 2447 Induction->addIncoming(NextIdx, VecBody); 2448 // Create the compare. 2449 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); 2450 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); 2451 2452 // Now we have two terminators. Remove the old one from the block. 2453 VecBody->getTerminator()->eraseFromParent(); 2454 2455 // Get ready to start creating new instructions into the vectorized body. 2456 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 2457 2458 // Save the state. 2459 LoopVectorPreHeader = VectorPH; 2460 LoopScalarPreHeader = ScalarPH; 2461 LoopMiddleBlock = MiddleBlock; 2462 LoopExitBlock = ExitBlock; 2463 LoopVectorBody.push_back(VecBody); 2464 LoopScalarBody = OldBasicBlock; 2465 2466 LoopVectorizeHints Hints(Lp, true); 2467 Hints.setAlreadyVectorized(); 2468 } 2469 2470 /// This function returns the identity element (or neutral element) for 2471 /// the operation K. 2472 Constant* 2473 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) { 2474 switch (K) { 2475 case RK_IntegerXor: 2476 case RK_IntegerAdd: 2477 case RK_IntegerOr: 2478 // Adding, Xoring, Oring zero to a number does not change it. 2479 return ConstantInt::get(Tp, 0); 2480 case RK_IntegerMult: 2481 // Multiplying a number by 1 does not change it. 2482 return ConstantInt::get(Tp, 1); 2483 case RK_IntegerAnd: 2484 // AND-ing a number with an all-1 value does not change it. 2485 return ConstantInt::get(Tp, -1, true); 2486 case RK_FloatMult: 2487 // Multiplying a number by 1 does not change it. 2488 return ConstantFP::get(Tp, 1.0L); 2489 case RK_FloatAdd: 2490 // Adding zero to a number does not change it. 2491 return ConstantFP::get(Tp, 0.0L); 2492 default: 2493 llvm_unreachable("Unknown reduction kind"); 2494 } 2495 } 2496 2497 /// This function translates the reduction kind to an LLVM binary operator. 2498 static unsigned 2499 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) { 2500 switch (Kind) { 2501 case LoopVectorizationLegality::RK_IntegerAdd: 2502 return Instruction::Add; 2503 case LoopVectorizationLegality::RK_IntegerMult: 2504 return Instruction::Mul; 2505 case LoopVectorizationLegality::RK_IntegerOr: 2506 return Instruction::Or; 2507 case LoopVectorizationLegality::RK_IntegerAnd: 2508 return Instruction::And; 2509 case LoopVectorizationLegality::RK_IntegerXor: 2510 return Instruction::Xor; 2511 case LoopVectorizationLegality::RK_FloatMult: 2512 return Instruction::FMul; 2513 case LoopVectorizationLegality::RK_FloatAdd: 2514 return Instruction::FAdd; 2515 case LoopVectorizationLegality::RK_IntegerMinMax: 2516 return Instruction::ICmp; 2517 case LoopVectorizationLegality::RK_FloatMinMax: 2518 return Instruction::FCmp; 2519 default: 2520 llvm_unreachable("Unknown reduction operation"); 2521 } 2522 } 2523 2524 static Value *createMinMaxOp(IRBuilder<> &Builder, 2525 LoopVectorizationLegality::MinMaxReductionKind RK, 2526 Value *Left, Value *Right) { 2527 CmpInst::Predicate P = CmpInst::ICMP_NE; 2528 switch (RK) { 2529 default: 2530 llvm_unreachable("Unknown min/max reduction kind"); 2531 case LoopVectorizationLegality::MRK_UIntMin: 2532 P = CmpInst::ICMP_ULT; 2533 break; 2534 case LoopVectorizationLegality::MRK_UIntMax: 2535 P = CmpInst::ICMP_UGT; 2536 break; 2537 case LoopVectorizationLegality::MRK_SIntMin: 2538 P = CmpInst::ICMP_SLT; 2539 break; 2540 case LoopVectorizationLegality::MRK_SIntMax: 2541 P = CmpInst::ICMP_SGT; 2542 break; 2543 case LoopVectorizationLegality::MRK_FloatMin: 2544 P = CmpInst::FCMP_OLT; 2545 break; 2546 case LoopVectorizationLegality::MRK_FloatMax: 2547 P = CmpInst::FCMP_OGT; 2548 break; 2549 } 2550 2551 Value *Cmp; 2552 if (RK == LoopVectorizationLegality::MRK_FloatMin || 2553 RK == LoopVectorizationLegality::MRK_FloatMax) 2554 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 2555 else 2556 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 2557 2558 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 2559 return Select; 2560 } 2561 2562 namespace { 2563 struct CSEDenseMapInfo { 2564 static bool canHandle(Instruction *I) { 2565 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2566 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2567 } 2568 static inline Instruction *getEmptyKey() { 2569 return DenseMapInfo<Instruction *>::getEmptyKey(); 2570 } 2571 static inline Instruction *getTombstoneKey() { 2572 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2573 } 2574 static unsigned getHashValue(Instruction *I) { 2575 assert(canHandle(I) && "Unknown instruction!"); 2576 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2577 I->value_op_end())); 2578 } 2579 static bool isEqual(Instruction *LHS, Instruction *RHS) { 2580 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2581 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2582 return LHS == RHS; 2583 return LHS->isIdenticalTo(RHS); 2584 } 2585 }; 2586 } 2587 2588 /// \brief Check whether this block is a predicated block. 2589 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 2590 /// = ...; " blocks. We start with one vectorized basic block. For every 2591 /// conditional block we split this vectorized block. Therefore, every second 2592 /// block will be a predicated one. 2593 static bool isPredicatedBlock(unsigned BlockNum) { 2594 return BlockNum % 2; 2595 } 2596 2597 ///\brief Perform cse of induction variable instructions. 2598 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 2599 // Perform simple cse. 2600 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2601 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 2602 BasicBlock *BB = BBs[i]; 2603 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2604 Instruction *In = I++; 2605 2606 if (!CSEDenseMapInfo::canHandle(In)) 2607 continue; 2608 2609 // Check if we can replace this instruction with any of the 2610 // visited instructions. 2611 if (Instruction *V = CSEMap.lookup(In)) { 2612 In->replaceAllUsesWith(V); 2613 In->eraseFromParent(); 2614 continue; 2615 } 2616 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 2617 // ...;" blocks for predicated stores. Every second block is a predicated 2618 // block. 2619 if (isPredicatedBlock(i)) 2620 continue; 2621 2622 CSEMap[In] = In; 2623 } 2624 } 2625 } 2626 2627 /// \brief Adds a 'fast' flag to floating point operations. 2628 static Value *addFastMathFlag(Value *V) { 2629 if (isa<FPMathOperator>(V)){ 2630 FastMathFlags Flags; 2631 Flags.setUnsafeAlgebra(); 2632 cast<Instruction>(V)->setFastMathFlags(Flags); 2633 } 2634 return V; 2635 } 2636 2637 /// Estimate the overhead of scalarizing a value. Insert and Extract are set if 2638 /// the result needs to be inserted and/or extracted from vectors. 2639 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, 2640 const TargetTransformInfo &TTI) { 2641 if (Ty->isVoidTy()) 2642 return 0; 2643 2644 assert(Ty->isVectorTy() && "Can only scalarize vectors"); 2645 unsigned Cost = 0; 2646 2647 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { 2648 if (Insert) 2649 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, i); 2650 if (Extract) 2651 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, i); 2652 } 2653 2654 return Cost; 2655 } 2656 2657 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 2658 // Return the cost of the instruction, including scalarization overhead if it's 2659 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 2660 // i.e. either vector version isn't available, or is too expensive. 2661 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 2662 const TargetTransformInfo &TTI, 2663 const TargetLibraryInfo *TLI, 2664 bool &NeedToScalarize) { 2665 Function *F = CI->getCalledFunction(); 2666 StringRef FnName = CI->getCalledFunction()->getName(); 2667 Type *ScalarRetTy = CI->getType(); 2668 SmallVector<Type *, 4> Tys, ScalarTys; 2669 for (auto &ArgOp : CI->arg_operands()) 2670 ScalarTys.push_back(ArgOp->getType()); 2671 2672 // Estimate cost of scalarized vector call. The source operands are assumed 2673 // to be vectors, so we need to extract individual elements from there, 2674 // execute VF scalar calls, and then gather the result into the vector return 2675 // value. 2676 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 2677 if (VF == 1) 2678 return ScalarCallCost; 2679 2680 // Compute corresponding vector type for return value and arguments. 2681 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 2682 for (unsigned i = 0, ie = ScalarTys.size(); i != ie; ++i) 2683 Tys.push_back(ToVectorTy(ScalarTys[i], VF)); 2684 2685 // Compute costs of unpacking argument values for the scalar calls and 2686 // packing the return values to a vector. 2687 unsigned ScalarizationCost = 2688 getScalarizationOverhead(RetTy, true, false, TTI); 2689 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) 2690 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true, TTI); 2691 2692 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 2693 2694 // If we can't emit a vector call for this function, then the currently found 2695 // cost is the cost we need to return. 2696 NeedToScalarize = true; 2697 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 2698 return Cost; 2699 2700 // If the corresponding vector cost is cheaper, return its cost. 2701 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 2702 if (VectorCallCost < Cost) { 2703 NeedToScalarize = false; 2704 return VectorCallCost; 2705 } 2706 return Cost; 2707 } 2708 2709 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 2710 // factor VF. Return the cost of the instruction, including scalarization 2711 // overhead if it's needed. 2712 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 2713 const TargetTransformInfo &TTI, 2714 const TargetLibraryInfo *TLI) { 2715 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 2716 assert(ID && "Expected intrinsic call!"); 2717 2718 Type *RetTy = ToVectorTy(CI->getType(), VF); 2719 SmallVector<Type *, 4> Tys; 2720 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 2721 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 2722 2723 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 2724 } 2725 2726 void InnerLoopVectorizer::vectorizeLoop() { 2727 //===------------------------------------------------===// 2728 // 2729 // Notice: any optimization or new instruction that go 2730 // into the code below should be also be implemented in 2731 // the cost-model. 2732 // 2733 //===------------------------------------------------===// 2734 Constant *Zero = Builder.getInt32(0); 2735 2736 // In order to support reduction variables we need to be able to vectorize 2737 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 2738 // stages. First, we create a new vector PHI node with no incoming edges. 2739 // We use this value when we vectorize all of the instructions that use the 2740 // PHI. Next, after all of the instructions in the block are complete we 2741 // add the new incoming edges to the PHI. At this point all of the 2742 // instructions in the basic block are vectorized, so we can use them to 2743 // construct the PHI. 2744 PhiVector RdxPHIsToFix; 2745 2746 // Scan the loop in a topological order to ensure that defs are vectorized 2747 // before users. 2748 LoopBlocksDFS DFS(OrigLoop); 2749 DFS.perform(LI); 2750 2751 // Vectorize all of the blocks in the original loop. 2752 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 2753 be = DFS.endRPO(); bb != be; ++bb) 2754 vectorizeBlockInLoop(*bb, &RdxPHIsToFix); 2755 2756 // At this point every instruction in the original loop is widened to 2757 // a vector form. We are almost done. Now, we need to fix the PHI nodes 2758 // that we vectorized. The PHI nodes are currently empty because we did 2759 // not want to introduce cycles. Notice that the remaining PHI nodes 2760 // that we need to fix are reduction variables. 2761 2762 // Create the 'reduced' values for each of the induction vars. 2763 // The reduced values are the vector values that we scalarize and combine 2764 // after the loop is finished. 2765 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 2766 it != e; ++it) { 2767 PHINode *RdxPhi = *it; 2768 assert(RdxPhi && "Unable to recover vectorized PHI"); 2769 2770 // Find the reduction variable descriptor. 2771 assert(Legal->getReductionVars()->count(RdxPhi) && 2772 "Unable to find the reduction variable"); 2773 LoopVectorizationLegality::ReductionDescriptor RdxDesc = 2774 (*Legal->getReductionVars())[RdxPhi]; 2775 2776 setDebugLocFromInst(Builder, RdxDesc.StartValue); 2777 2778 // We need to generate a reduction vector from the incoming scalar. 2779 // To do so, we need to generate the 'identity' vector and override 2780 // one of the elements with the incoming scalar reduction. We need 2781 // to do it in the vector-loop preheader. 2782 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 2783 2784 // This is the vector-clone of the value that leaves the loop. 2785 VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr); 2786 Type *VecTy = VectorExit[0]->getType(); 2787 2788 // Find the reduction identity variable. Zero for addition, or, xor, 2789 // one for multiplication, -1 for And. 2790 Value *Identity; 2791 Value *VectorStart; 2792 if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax || 2793 RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) { 2794 // MinMax reduction have the start value as their identify. 2795 if (VF == 1) { 2796 VectorStart = Identity = RdxDesc.StartValue; 2797 } else { 2798 VectorStart = Identity = Builder.CreateVectorSplat(VF, 2799 RdxDesc.StartValue, 2800 "minmax.ident"); 2801 } 2802 } else { 2803 // Handle other reduction kinds: 2804 Constant *Iden = 2805 LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind, 2806 VecTy->getScalarType()); 2807 if (VF == 1) { 2808 Identity = Iden; 2809 // This vector is the Identity vector where the first element is the 2810 // incoming scalar reduction. 2811 VectorStart = RdxDesc.StartValue; 2812 } else { 2813 Identity = ConstantVector::getSplat(VF, Iden); 2814 2815 // This vector is the Identity vector where the first element is the 2816 // incoming scalar reduction. 2817 VectorStart = Builder.CreateInsertElement(Identity, 2818 RdxDesc.StartValue, Zero); 2819 } 2820 } 2821 2822 // Fix the vector-loop phi. 2823 2824 // Reductions do not have to start at zero. They can start with 2825 // any loop invariant values. 2826 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 2827 BasicBlock *Latch = OrigLoop->getLoopLatch(); 2828 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 2829 VectorParts &Val = getVectorValue(LoopVal); 2830 for (unsigned part = 0; part < UF; ++part) { 2831 // Make sure to add the reduction stat value only to the 2832 // first unroll part. 2833 Value *StartVal = (part == 0) ? VectorStart : Identity; 2834 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, 2835 LoopVectorPreHeader); 2836 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 2837 LoopVectorBody.back()); 2838 } 2839 2840 // Before each round, move the insertion point right between 2841 // the PHIs and the values we are going to write. 2842 // This allows us to write both PHINodes and the extractelement 2843 // instructions. 2844 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); 2845 2846 VectorParts RdxParts; 2847 setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr); 2848 for (unsigned part = 0; part < UF; ++part) { 2849 // This PHINode contains the vectorized reduction variable, or 2850 // the initial value vector, if we bypass the vector loop. 2851 VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr); 2852 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); 2853 Value *StartVal = (part == 0) ? VectorStart : Identity; 2854 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2855 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); 2856 NewPhi->addIncoming(RdxExitVal[part], 2857 LoopVectorBody.back()); 2858 RdxParts.push_back(NewPhi); 2859 } 2860 2861 // Reduce all of the unrolled parts into a single vector. 2862 Value *ReducedPartRdx = RdxParts[0]; 2863 unsigned Op = getReductionBinOp(RdxDesc.Kind); 2864 setDebugLocFromInst(Builder, ReducedPartRdx); 2865 for (unsigned part = 1; part < UF; ++part) { 2866 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2867 // Floating point operations had to be 'fast' to enable the reduction. 2868 ReducedPartRdx = addFastMathFlag( 2869 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 2870 ReducedPartRdx, "bin.rdx")); 2871 else 2872 ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind, 2873 ReducedPartRdx, RdxParts[part]); 2874 } 2875 2876 if (VF > 1) { 2877 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 2878 // and vector ops, reducing the set of values being computed by half each 2879 // round. 2880 assert(isPowerOf2_32(VF) && 2881 "Reduction emission only supported for pow2 vectors!"); 2882 Value *TmpVec = ReducedPartRdx; 2883 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 2884 for (unsigned i = VF; i != 1; i >>= 1) { 2885 // Move the upper half of the vector to the lower half. 2886 for (unsigned j = 0; j != i/2; ++j) 2887 ShuffleMask[j] = Builder.getInt32(i/2 + j); 2888 2889 // Fill the rest of the mask with undef. 2890 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 2891 UndefValue::get(Builder.getInt32Ty())); 2892 2893 Value *Shuf = 2894 Builder.CreateShuffleVector(TmpVec, 2895 UndefValue::get(TmpVec->getType()), 2896 ConstantVector::get(ShuffleMask), 2897 "rdx.shuf"); 2898 2899 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2900 // Floating point operations had to be 'fast' to enable the reduction. 2901 TmpVec = addFastMathFlag(Builder.CreateBinOp( 2902 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 2903 else 2904 TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf); 2905 } 2906 2907 // The result is in the first element of the vector. 2908 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 2909 Builder.getInt32(0)); 2910 } 2911 2912 // Create a phi node that merges control-flow from the backedge-taken check 2913 // block and the middle block. 2914 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx", 2915 LoopScalarPreHeader->getTerminator()); 2916 BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]); 2917 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2918 2919 // Now, we need to fix the users of the reduction variable 2920 // inside and outside of the scalar remainder loop. 2921 // We know that the loop is in LCSSA form. We need to update the 2922 // PHI nodes in the exit blocks. 2923 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2924 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2925 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2926 if (!LCSSAPhi) break; 2927 2928 // All PHINodes need to have a single entry edge, or two if 2929 // we already fixed them. 2930 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 2931 2932 // We found our reduction value exit-PHI. Update it with the 2933 // incoming bypass edge. 2934 if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) { 2935 // Add an edge coming from the bypass. 2936 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2937 break; 2938 } 2939 }// end of the LCSSA phi scan. 2940 2941 // Fix the scalar loop reduction variable with the incoming reduction sum 2942 // from the vector body and from the backedge value. 2943 int IncomingEdgeBlockIdx = 2944 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 2945 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 2946 // Pick the other block. 2947 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 2948 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 2949 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr); 2950 }// end of for each redux variable. 2951 2952 fixLCSSAPHIs(); 2953 2954 // Remove redundant induction instructions. 2955 cse(LoopVectorBody); 2956 } 2957 2958 void InnerLoopVectorizer::fixLCSSAPHIs() { 2959 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2960 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2961 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2962 if (!LCSSAPhi) break; 2963 if (LCSSAPhi->getNumIncomingValues() == 1) 2964 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 2965 LoopMiddleBlock); 2966 } 2967 } 2968 2969 InnerLoopVectorizer::VectorParts 2970 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 2971 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 2972 "Invalid edge"); 2973 2974 // Look for cached value. 2975 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 2976 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 2977 if (ECEntryIt != MaskCache.end()) 2978 return ECEntryIt->second; 2979 2980 VectorParts SrcMask = createBlockInMask(Src); 2981 2982 // The terminator has to be a branch inst! 2983 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 2984 assert(BI && "Unexpected terminator found"); 2985 2986 if (BI->isConditional()) { 2987 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 2988 2989 if (BI->getSuccessor(0) != Dst) 2990 for (unsigned part = 0; part < UF; ++part) 2991 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 2992 2993 for (unsigned part = 0; part < UF; ++part) 2994 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 2995 2996 MaskCache[Edge] = EdgeMask; 2997 return EdgeMask; 2998 } 2999 3000 MaskCache[Edge] = SrcMask; 3001 return SrcMask; 3002 } 3003 3004 InnerLoopVectorizer::VectorParts 3005 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 3006 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 3007 3008 // Loop incoming mask is all-one. 3009 if (OrigLoop->getHeader() == BB) { 3010 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 3011 return getVectorValue(C); 3012 } 3013 3014 // This is the block mask. We OR all incoming edges, and with zero. 3015 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 3016 VectorParts BlockMask = getVectorValue(Zero); 3017 3018 // For each pred: 3019 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 3020 VectorParts EM = createEdgeMask(*it, BB); 3021 for (unsigned part = 0; part < UF; ++part) 3022 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 3023 } 3024 3025 return BlockMask; 3026 } 3027 3028 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 3029 InnerLoopVectorizer::VectorParts &Entry, 3030 unsigned UF, unsigned VF, PhiVector *PV) { 3031 PHINode* P = cast<PHINode>(PN); 3032 // Handle reduction variables: 3033 if (Legal->getReductionVars()->count(P)) { 3034 for (unsigned part = 0; part < UF; ++part) { 3035 // This is phase one of vectorizing PHIs. 3036 Type *VecTy = (VF == 1) ? PN->getType() : 3037 VectorType::get(PN->getType(), VF); 3038 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", 3039 LoopVectorBody.back()-> getFirstInsertionPt()); 3040 } 3041 PV->push_back(P); 3042 return; 3043 } 3044 3045 setDebugLocFromInst(Builder, P); 3046 // Check for PHI nodes that are lowered to vector selects. 3047 if (P->getParent() != OrigLoop->getHeader()) { 3048 // We know that all PHIs in non-header blocks are converted into 3049 // selects, so we don't have to worry about the insertion order and we 3050 // can just use the builder. 3051 // At this point we generate the predication tree. There may be 3052 // duplications since this is a simple recursive scan, but future 3053 // optimizations will clean it up. 3054 3055 unsigned NumIncoming = P->getNumIncomingValues(); 3056 3057 // Generate a sequence of selects of the form: 3058 // SELECT(Mask3, In3, 3059 // SELECT(Mask2, In2, 3060 // ( ...))) 3061 for (unsigned In = 0; In < NumIncoming; In++) { 3062 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 3063 P->getParent()); 3064 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 3065 3066 for (unsigned part = 0; part < UF; ++part) { 3067 // We might have single edge PHIs (blocks) - use an identity 3068 // 'select' for the first PHI operand. 3069 if (In == 0) 3070 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3071 In0[part]); 3072 else 3073 // Select between the current value and the previous incoming edge 3074 // based on the incoming mask. 3075 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3076 Entry[part], "predphi"); 3077 } 3078 } 3079 return; 3080 } 3081 3082 // This PHINode must be an induction variable. 3083 // Make sure that we know about it. 3084 assert(Legal->getInductionVars()->count(P) && 3085 "Not an induction variable"); 3086 3087 LoopVectorizationLegality::InductionInfo II = 3088 Legal->getInductionVars()->lookup(P); 3089 3090 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 3091 // which can be found from the original scalar operations. 3092 switch (II.IK) { 3093 case LoopVectorizationLegality::IK_NoInduction: 3094 llvm_unreachable("Unknown induction"); 3095 case LoopVectorizationLegality::IK_IntInduction: { 3096 assert(P->getType() == II.StartValue->getType() && "Types must match"); 3097 Type *PhiTy = P->getType(); 3098 Value *Broadcasted; 3099 if (P == OldInduction) { 3100 // Handle the canonical induction variable. We might have had to 3101 // extend the type. 3102 Broadcasted = Builder.CreateTrunc(Induction, PhiTy); 3103 } else { 3104 // Handle other induction variables that are now based on the 3105 // canonical one. 3106 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, 3107 "normalized.idx"); 3108 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy); 3109 Broadcasted = II.transform(Builder, NormalizedIdx); 3110 Broadcasted->setName("offset.idx"); 3111 } 3112 Broadcasted = getBroadcastInstrs(Broadcasted); 3113 // After broadcasting the induction variable we need to make the vector 3114 // consecutive by adding 0, 1, 2, etc. 3115 for (unsigned part = 0; part < UF; ++part) 3116 Entry[part] = getStepVector(Broadcasted, VF * part, II.StepValue); 3117 return; 3118 } 3119 case LoopVectorizationLegality::IK_PtrInduction: 3120 // Handle the pointer induction variable case. 3121 assert(P->getType()->isPointerTy() && "Unexpected type."); 3122 // This is the normalized GEP that starts counting at zero. 3123 Value *NormalizedIdx = 3124 Builder.CreateSub(Induction, ExtendedIdx, "normalized.idx"); 3125 // This is the vector of results. Notice that we don't generate 3126 // vector geps because scalar geps result in better code. 3127 for (unsigned part = 0; part < UF; ++part) { 3128 if (VF == 1) { 3129 int EltIndex = part; 3130 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3131 Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx); 3132 Value *SclrGep = II.transform(Builder, GlobalIdx); 3133 SclrGep->setName("next.gep"); 3134 Entry[part] = SclrGep; 3135 continue; 3136 } 3137 3138 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 3139 for (unsigned int i = 0; i < VF; ++i) { 3140 int EltIndex = i + part * VF; 3141 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3142 Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx); 3143 Value *SclrGep = II.transform(Builder, GlobalIdx); 3144 SclrGep->setName("next.gep"); 3145 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 3146 Builder.getInt32(i), 3147 "insert.gep"); 3148 } 3149 Entry[part] = VecVal; 3150 } 3151 return; 3152 } 3153 } 3154 3155 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 3156 // For each instruction in the old loop. 3157 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 3158 VectorParts &Entry = WidenMap.get(it); 3159 switch (it->getOpcode()) { 3160 case Instruction::Br: 3161 // Nothing to do for PHIs and BR, since we already took care of the 3162 // loop control flow instructions. 3163 continue; 3164 case Instruction::PHI: { 3165 // Vectorize PHINodes. 3166 widenPHIInstruction(it, Entry, UF, VF, PV); 3167 continue; 3168 }// End of PHI. 3169 3170 case Instruction::Add: 3171 case Instruction::FAdd: 3172 case Instruction::Sub: 3173 case Instruction::FSub: 3174 case Instruction::Mul: 3175 case Instruction::FMul: 3176 case Instruction::UDiv: 3177 case Instruction::SDiv: 3178 case Instruction::FDiv: 3179 case Instruction::URem: 3180 case Instruction::SRem: 3181 case Instruction::FRem: 3182 case Instruction::Shl: 3183 case Instruction::LShr: 3184 case Instruction::AShr: 3185 case Instruction::And: 3186 case Instruction::Or: 3187 case Instruction::Xor: { 3188 // Just widen binops. 3189 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 3190 setDebugLocFromInst(Builder, BinOp); 3191 VectorParts &A = getVectorValue(it->getOperand(0)); 3192 VectorParts &B = getVectorValue(it->getOperand(1)); 3193 3194 // Use this vector value for all users of the original instruction. 3195 for (unsigned Part = 0; Part < UF; ++Part) { 3196 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 3197 3198 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3199 VecOp->copyIRFlags(BinOp); 3200 3201 Entry[Part] = V; 3202 } 3203 3204 propagateMetadata(Entry, it); 3205 break; 3206 } 3207 case Instruction::Select: { 3208 // Widen selects. 3209 // If the selector is loop invariant we can create a select 3210 // instruction with a scalar condition. Otherwise, use vector-select. 3211 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 3212 OrigLoop); 3213 setDebugLocFromInst(Builder, it); 3214 3215 // The condition can be loop invariant but still defined inside the 3216 // loop. This means that we can't just use the original 'cond' value. 3217 // We have to take the 'vectorized' value and pick the first lane. 3218 // Instcombine will make this a no-op. 3219 VectorParts &Cond = getVectorValue(it->getOperand(0)); 3220 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 3221 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 3222 3223 Value *ScalarCond = (VF == 1) ? Cond[0] : 3224 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 3225 3226 for (unsigned Part = 0; Part < UF; ++Part) { 3227 Entry[Part] = Builder.CreateSelect( 3228 InvariantCond ? ScalarCond : Cond[Part], 3229 Op0[Part], 3230 Op1[Part]); 3231 } 3232 3233 propagateMetadata(Entry, it); 3234 break; 3235 } 3236 3237 case Instruction::ICmp: 3238 case Instruction::FCmp: { 3239 // Widen compares. Generate vector compares. 3240 bool FCmp = (it->getOpcode() == Instruction::FCmp); 3241 CmpInst *Cmp = dyn_cast<CmpInst>(it); 3242 setDebugLocFromInst(Builder, it); 3243 VectorParts &A = getVectorValue(it->getOperand(0)); 3244 VectorParts &B = getVectorValue(it->getOperand(1)); 3245 for (unsigned Part = 0; Part < UF; ++Part) { 3246 Value *C = nullptr; 3247 if (FCmp) 3248 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 3249 else 3250 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 3251 Entry[Part] = C; 3252 } 3253 3254 propagateMetadata(Entry, it); 3255 break; 3256 } 3257 3258 case Instruction::Store: 3259 case Instruction::Load: 3260 vectorizeMemoryInstruction(it); 3261 break; 3262 case Instruction::ZExt: 3263 case Instruction::SExt: 3264 case Instruction::FPToUI: 3265 case Instruction::FPToSI: 3266 case Instruction::FPExt: 3267 case Instruction::PtrToInt: 3268 case Instruction::IntToPtr: 3269 case Instruction::SIToFP: 3270 case Instruction::UIToFP: 3271 case Instruction::Trunc: 3272 case Instruction::FPTrunc: 3273 case Instruction::BitCast: { 3274 CastInst *CI = dyn_cast<CastInst>(it); 3275 setDebugLocFromInst(Builder, it); 3276 /// Optimize the special case where the source is the induction 3277 /// variable. Notice that we can only optimize the 'trunc' case 3278 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 3279 /// c. other casts depend on pointer size. 3280 if (CI->getOperand(0) == OldInduction && 3281 it->getOpcode() == Instruction::Trunc) { 3282 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 3283 CI->getType()); 3284 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 3285 LoopVectorizationLegality::InductionInfo II = 3286 Legal->getInductionVars()->lookup(OldInduction); 3287 Constant *Step = 3288 ConstantInt::getSigned(CI->getType(), II.StepValue->getSExtValue()); 3289 for (unsigned Part = 0; Part < UF; ++Part) 3290 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); 3291 propagateMetadata(Entry, it); 3292 break; 3293 } 3294 /// Vectorize casts. 3295 Type *DestTy = (VF == 1) ? CI->getType() : 3296 VectorType::get(CI->getType(), VF); 3297 3298 VectorParts &A = getVectorValue(it->getOperand(0)); 3299 for (unsigned Part = 0; Part < UF; ++Part) 3300 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 3301 propagateMetadata(Entry, it); 3302 break; 3303 } 3304 3305 case Instruction::Call: { 3306 // Ignore dbg intrinsics. 3307 if (isa<DbgInfoIntrinsic>(it)) 3308 break; 3309 setDebugLocFromInst(Builder, it); 3310 3311 Module *M = BB->getParent()->getParent(); 3312 CallInst *CI = cast<CallInst>(it); 3313 3314 StringRef FnName = CI->getCalledFunction()->getName(); 3315 Function *F = CI->getCalledFunction(); 3316 Type *RetTy = ToVectorTy(CI->getType(), VF); 3317 SmallVector<Type *, 4> Tys; 3318 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 3319 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 3320 3321 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3322 if (ID && 3323 (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 3324 ID == Intrinsic::lifetime_start)) { 3325 scalarizeInstruction(it); 3326 break; 3327 } 3328 // The flag shows whether we use Intrinsic or a usual Call for vectorized 3329 // version of the instruction. 3330 // Is it beneficial to perform intrinsic call compared to lib call? 3331 bool NeedToScalarize; 3332 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 3333 bool UseVectorIntrinsic = 3334 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 3335 if (!UseVectorIntrinsic && NeedToScalarize) { 3336 scalarizeInstruction(it); 3337 break; 3338 } 3339 3340 for (unsigned Part = 0; Part < UF; ++Part) { 3341 SmallVector<Value *, 4> Args; 3342 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 3343 Value *Arg = CI->getArgOperand(i); 3344 // Some intrinsics have a scalar argument - don't replace it with a 3345 // vector. 3346 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 3347 VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 3348 Arg = VectorArg[Part]; 3349 } 3350 Args.push_back(Arg); 3351 } 3352 3353 Function *VectorF; 3354 if (UseVectorIntrinsic) { 3355 // Use vector version of the intrinsic. 3356 Type *TysForDecl[] = {CI->getType()}; 3357 if (VF > 1) 3358 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 3359 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 3360 } else { 3361 // Use vector version of the library call. 3362 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 3363 assert(!VFnName.empty() && "Vector function name is empty."); 3364 VectorF = M->getFunction(VFnName); 3365 if (!VectorF) { 3366 // Generate a declaration 3367 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 3368 VectorF = 3369 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 3370 VectorF->copyAttributesFrom(F); 3371 } 3372 } 3373 assert(VectorF && "Can't create vector function."); 3374 Entry[Part] = Builder.CreateCall(VectorF, Args); 3375 } 3376 3377 propagateMetadata(Entry, it); 3378 break; 3379 } 3380 3381 default: 3382 // All other instructions are unsupported. Scalarize them. 3383 scalarizeInstruction(it); 3384 break; 3385 }// end of switch. 3386 }// end of for_each instr. 3387 } 3388 3389 void InnerLoopVectorizer::updateAnalysis() { 3390 // Forget the original basic block. 3391 SE->forgetLoop(OrigLoop); 3392 3393 // Update the dominator tree information. 3394 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 3395 "Entry does not dominate exit."); 3396 3397 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3398 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 3399 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 3400 3401 // Due to if predication of stores we might create a sequence of "if(pred) 3402 // a[i] = ...; " blocks. 3403 for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) { 3404 if (i == 0) 3405 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 3406 else if (isPredicatedBlock(i)) { 3407 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]); 3408 } else { 3409 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]); 3410 } 3411 } 3412 3413 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]); 3414 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 3415 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 3416 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 3417 3418 DEBUG(DT->verifyDomTree()); 3419 } 3420 3421 /// \brief Check whether it is safe to if-convert this phi node. 3422 /// 3423 /// Phi nodes with constant expressions that can trap are not safe to if 3424 /// convert. 3425 static bool canIfConvertPHINodes(BasicBlock *BB) { 3426 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3427 PHINode *Phi = dyn_cast<PHINode>(I); 3428 if (!Phi) 3429 return true; 3430 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 3431 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 3432 if (C->canTrap()) 3433 return false; 3434 } 3435 return true; 3436 } 3437 3438 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 3439 if (!EnableIfConversion) { 3440 emitAnalysis(VectorizationReport() << "if-conversion is disabled"); 3441 return false; 3442 } 3443 3444 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 3445 3446 // A list of pointers that we can safely read and write to. 3447 SmallPtrSet<Value *, 8> SafePointes; 3448 3449 // Collect safe addresses. 3450 for (Loop::block_iterator BI = TheLoop->block_begin(), 3451 BE = TheLoop->block_end(); BI != BE; ++BI) { 3452 BasicBlock *BB = *BI; 3453 3454 if (blockNeedsPredication(BB)) 3455 continue; 3456 3457 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3458 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3459 SafePointes.insert(LI->getPointerOperand()); 3460 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 3461 SafePointes.insert(SI->getPointerOperand()); 3462 } 3463 } 3464 3465 // Collect the blocks that need predication. 3466 BasicBlock *Header = TheLoop->getHeader(); 3467 for (Loop::block_iterator BI = TheLoop->block_begin(), 3468 BE = TheLoop->block_end(); BI != BE; ++BI) { 3469 BasicBlock *BB = *BI; 3470 3471 // We don't support switch statements inside loops. 3472 if (!isa<BranchInst>(BB->getTerminator())) { 3473 emitAnalysis(VectorizationReport(BB->getTerminator()) 3474 << "loop contains a switch statement"); 3475 return false; 3476 } 3477 3478 // We must be able to predicate all blocks that need to be predicated. 3479 if (blockNeedsPredication(BB)) { 3480 if (!blockCanBePredicated(BB, SafePointes)) { 3481 emitAnalysis(VectorizationReport(BB->getTerminator()) 3482 << "control flow cannot be substituted for a select"); 3483 return false; 3484 } 3485 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 3486 emitAnalysis(VectorizationReport(BB->getTerminator()) 3487 << "control flow cannot be substituted for a select"); 3488 return false; 3489 } 3490 } 3491 3492 // We can if-convert this loop. 3493 return true; 3494 } 3495 3496 bool LoopVectorizationLegality::canVectorize() { 3497 // We must have a loop in canonical form. Loops with indirectbr in them cannot 3498 // be canonicalized. 3499 if (!TheLoop->getLoopPreheader()) { 3500 emitAnalysis( 3501 VectorizationReport() << 3502 "loop control flow is not understood by vectorizer"); 3503 return false; 3504 } 3505 3506 // We can only vectorize innermost loops. 3507 if (!TheLoop->getSubLoopsVector().empty()) { 3508 emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); 3509 return false; 3510 } 3511 3512 // We must have a single backedge. 3513 if (TheLoop->getNumBackEdges() != 1) { 3514 emitAnalysis( 3515 VectorizationReport() << 3516 "loop control flow is not understood by vectorizer"); 3517 return false; 3518 } 3519 3520 // We must have a single exiting block. 3521 if (!TheLoop->getExitingBlock()) { 3522 emitAnalysis( 3523 VectorizationReport() << 3524 "loop control flow is not understood by vectorizer"); 3525 return false; 3526 } 3527 3528 // We only handle bottom-tested loops, i.e. loop in which the condition is 3529 // checked at the end of each iteration. With that we can assume that all 3530 // instructions in the loop are executed the same number of times. 3531 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 3532 emitAnalysis( 3533 VectorizationReport() << 3534 "loop control flow is not understood by vectorizer"); 3535 return false; 3536 } 3537 3538 // We need to have a loop header. 3539 DEBUG(dbgs() << "LV: Found a loop: " << 3540 TheLoop->getHeader()->getName() << '\n'); 3541 3542 // Check if we can if-convert non-single-bb loops. 3543 unsigned NumBlocks = TheLoop->getNumBlocks(); 3544 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 3545 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 3546 return false; 3547 } 3548 3549 // ScalarEvolution needs to be able to find the exit count. 3550 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 3551 if (ExitCount == SE->getCouldNotCompute()) { 3552 emitAnalysis(VectorizationReport() << 3553 "could not determine number of loop iterations"); 3554 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 3555 return false; 3556 } 3557 3558 // Check if we can vectorize the instructions and CFG in this loop. 3559 if (!canVectorizeInstrs()) { 3560 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 3561 return false; 3562 } 3563 3564 // Go over each instruction and look at memory deps. 3565 if (!canVectorizeMemory()) { 3566 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 3567 return false; 3568 } 3569 3570 // Collect all of the variables that remain uniform after vectorization. 3571 collectLoopUniforms(); 3572 3573 DEBUG(dbgs() << "LV: We can vectorize this loop" << 3574 (LAI->getRuntimePointerCheck()->Need ? " (with a runtime bound check)" : 3575 "") 3576 <<"!\n"); 3577 3578 // Okay! We can vectorize. At this point we don't have any other mem analysis 3579 // which may limit our maximum vectorization factor, so just return true with 3580 // no restrictions. 3581 return true; 3582 } 3583 3584 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 3585 if (Ty->isPointerTy()) 3586 return DL.getIntPtrType(Ty); 3587 3588 // It is possible that char's or short's overflow when we ask for the loop's 3589 // trip count, work around this by changing the type size. 3590 if (Ty->getScalarSizeInBits() < 32) 3591 return Type::getInt32Ty(Ty->getContext()); 3592 3593 return Ty; 3594 } 3595 3596 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 3597 Ty0 = convertPointerToIntegerType(DL, Ty0); 3598 Ty1 = convertPointerToIntegerType(DL, Ty1); 3599 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 3600 return Ty0; 3601 return Ty1; 3602 } 3603 3604 /// \brief Check that the instruction has outside loop users and is not an 3605 /// identified reduction variable. 3606 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 3607 SmallPtrSetImpl<Value *> &Reductions) { 3608 // Reduction instructions are allowed to have exit users. All other 3609 // instructions must not have external users. 3610 if (!Reductions.count(Inst)) 3611 //Check that all of the users of the loop are inside the BB. 3612 for (User *U : Inst->users()) { 3613 Instruction *UI = cast<Instruction>(U); 3614 // This user may be a reduction exit value. 3615 if (!TheLoop->contains(UI)) { 3616 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 3617 return true; 3618 } 3619 } 3620 return false; 3621 } 3622 3623 bool LoopVectorizationLegality::canVectorizeInstrs() { 3624 BasicBlock *PreHeader = TheLoop->getLoopPreheader(); 3625 BasicBlock *Header = TheLoop->getHeader(); 3626 3627 // Look for the attribute signaling the absence of NaNs. 3628 Function &F = *Header->getParent(); 3629 const DataLayout &DL = F.getParent()->getDataLayout(); 3630 if (F.hasFnAttribute("no-nans-fp-math")) 3631 HasFunNoNaNAttr = 3632 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 3633 3634 // For each block in the loop. 3635 for (Loop::block_iterator bb = TheLoop->block_begin(), 3636 be = TheLoop->block_end(); bb != be; ++bb) { 3637 3638 // Scan the instructions in the block and look for hazards. 3639 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 3640 ++it) { 3641 3642 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 3643 Type *PhiTy = Phi->getType(); 3644 // Check that this PHI type is allowed. 3645 if (!PhiTy->isIntegerTy() && 3646 !PhiTy->isFloatingPointTy() && 3647 !PhiTy->isPointerTy()) { 3648 emitAnalysis(VectorizationReport(it) 3649 << "loop control flow is not understood by vectorizer"); 3650 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 3651 return false; 3652 } 3653 3654 // If this PHINode is not in the header block, then we know that we 3655 // can convert it to select during if-conversion. No need to check if 3656 // the PHIs in this block are induction or reduction variables. 3657 if (*bb != Header) { 3658 // Check that this instruction has no outside users or is an 3659 // identified reduction value with an outside user. 3660 if (!hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3661 continue; 3662 emitAnalysis(VectorizationReport(it) << 3663 "value could not be identified as " 3664 "an induction or reduction variable"); 3665 return false; 3666 } 3667 3668 // We only allow if-converted PHIs with exactly two incoming values. 3669 if (Phi->getNumIncomingValues() != 2) { 3670 emitAnalysis(VectorizationReport(it) 3671 << "control flow not understood by vectorizer"); 3672 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 3673 return false; 3674 } 3675 3676 // This is the value coming from the preheader. 3677 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); 3678 ConstantInt *StepValue = nullptr; 3679 // Check if this is an induction variable. 3680 InductionKind IK = isInductionVariable(Phi, StepValue); 3681 3682 if (IK_NoInduction != IK) { 3683 // Get the widest type. 3684 if (!WidestIndTy) 3685 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 3686 else 3687 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 3688 3689 // Int inductions are special because we only allow one IV. 3690 if (IK == IK_IntInduction && StepValue->isOne()) { 3691 // Use the phi node with the widest type as induction. Use the last 3692 // one if there are multiple (no good reason for doing this other 3693 // than it is expedient). 3694 if (!Induction || PhiTy == WidestIndTy) 3695 Induction = Phi; 3696 } 3697 3698 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 3699 Inductions[Phi] = InductionInfo(StartValue, IK, StepValue); 3700 3701 // Until we explicitly handle the case of an induction variable with 3702 // an outside loop user we have to give up vectorizing this loop. 3703 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3704 emitAnalysis(VectorizationReport(it) << 3705 "use of induction value outside of the " 3706 "loop is not handled by vectorizer"); 3707 return false; 3708 } 3709 3710 continue; 3711 } 3712 3713 if (AddReductionVar(Phi, RK_IntegerAdd)) { 3714 DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n"); 3715 continue; 3716 } 3717 if (AddReductionVar(Phi, RK_IntegerMult)) { 3718 DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n"); 3719 continue; 3720 } 3721 if (AddReductionVar(Phi, RK_IntegerOr)) { 3722 DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n"); 3723 continue; 3724 } 3725 if (AddReductionVar(Phi, RK_IntegerAnd)) { 3726 DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n"); 3727 continue; 3728 } 3729 if (AddReductionVar(Phi, RK_IntegerXor)) { 3730 DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n"); 3731 continue; 3732 } 3733 if (AddReductionVar(Phi, RK_IntegerMinMax)) { 3734 DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n"); 3735 continue; 3736 } 3737 if (AddReductionVar(Phi, RK_FloatMult)) { 3738 DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n"); 3739 continue; 3740 } 3741 if (AddReductionVar(Phi, RK_FloatAdd)) { 3742 DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n"); 3743 continue; 3744 } 3745 if (AddReductionVar(Phi, RK_FloatMinMax)) { 3746 DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi << 3747 "\n"); 3748 continue; 3749 } 3750 3751 emitAnalysis(VectorizationReport(it) << 3752 "value that could not be identified as " 3753 "reduction is used outside the loop"); 3754 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 3755 return false; 3756 }// end of PHI handling 3757 3758 // We handle calls that: 3759 // * Are debug info intrinsics. 3760 // * Have a mapping to an IR intrinsic. 3761 // * Have a vector version available. 3762 CallInst *CI = dyn_cast<CallInst>(it); 3763 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI) && 3764 !(CI->getCalledFunction() && TLI && 3765 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 3766 emitAnalysis(VectorizationReport(it) << 3767 "call instruction cannot be vectorized"); 3768 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 3769 return false; 3770 } 3771 3772 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 3773 // second argument is the same (i.e. loop invariant) 3774 if (CI && 3775 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) { 3776 if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) { 3777 emitAnalysis(VectorizationReport(it) 3778 << "intrinsic instruction cannot be vectorized"); 3779 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 3780 return false; 3781 } 3782 } 3783 3784 // Check that the instruction return type is vectorizable. 3785 // Also, we can't vectorize extractelement instructions. 3786 if ((!VectorType::isValidElementType(it->getType()) && 3787 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 3788 emitAnalysis(VectorizationReport(it) 3789 << "instruction return type cannot be vectorized"); 3790 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 3791 return false; 3792 } 3793 3794 // Check that the stored type is vectorizable. 3795 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 3796 Type *T = ST->getValueOperand()->getType(); 3797 if (!VectorType::isValidElementType(T)) { 3798 emitAnalysis(VectorizationReport(ST) << 3799 "store instruction cannot be vectorized"); 3800 return false; 3801 } 3802 if (EnableMemAccessVersioning) 3803 collectStridedAccess(ST); 3804 } 3805 3806 if (EnableMemAccessVersioning) 3807 if (LoadInst *LI = dyn_cast<LoadInst>(it)) 3808 collectStridedAccess(LI); 3809 3810 // Reduction instructions are allowed to have exit users. 3811 // All other instructions must not have external users. 3812 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3813 emitAnalysis(VectorizationReport(it) << 3814 "value cannot be used outside the loop"); 3815 return false; 3816 } 3817 3818 } // next instr. 3819 3820 } 3821 3822 if (!Induction) { 3823 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 3824 if (Inductions.empty()) { 3825 emitAnalysis(VectorizationReport() 3826 << "loop induction variable could not be identified"); 3827 return false; 3828 } 3829 } 3830 3831 return true; 3832 } 3833 3834 ///\brief Remove GEPs whose indices but the last one are loop invariant and 3835 /// return the induction operand of the gep pointer. 3836 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 3837 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3838 if (!GEP) 3839 return Ptr; 3840 3841 unsigned InductionOperand = getGEPInductionOperand(GEP); 3842 3843 // Check that all of the gep indices are uniform except for our induction 3844 // operand. 3845 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 3846 if (i != InductionOperand && 3847 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 3848 return Ptr; 3849 return GEP->getOperand(InductionOperand); 3850 } 3851 3852 ///\brief Look for a cast use of the passed value. 3853 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 3854 Value *UniqueCast = nullptr; 3855 for (User *U : Ptr->users()) { 3856 CastInst *CI = dyn_cast<CastInst>(U); 3857 if (CI && CI->getType() == Ty) { 3858 if (!UniqueCast) 3859 UniqueCast = CI; 3860 else 3861 return nullptr; 3862 } 3863 } 3864 return UniqueCast; 3865 } 3866 3867 ///\brief Get the stride of a pointer access in a loop. 3868 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a 3869 /// pointer to the Value, or null otherwise. 3870 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 3871 const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 3872 if (!PtrTy || PtrTy->isAggregateType()) 3873 return nullptr; 3874 3875 // Try to remove a gep instruction to make the pointer (actually index at this 3876 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the 3877 // pointer, otherwise, we are analyzing the index. 3878 Value *OrigPtr = Ptr; 3879 3880 // The size of the pointer access. 3881 int64_t PtrAccessSize = 1; 3882 3883 Ptr = stripGetElementPtr(Ptr, SE, Lp); 3884 const SCEV *V = SE->getSCEV(Ptr); 3885 3886 if (Ptr != OrigPtr) 3887 // Strip off casts. 3888 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 3889 V = C->getOperand(); 3890 3891 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 3892 if (!S) 3893 return nullptr; 3894 3895 V = S->getStepRecurrence(*SE); 3896 if (!V) 3897 return nullptr; 3898 3899 // Strip off the size of access multiplication if we are still analyzing the 3900 // pointer. 3901 if (OrigPtr == Ptr) { 3902 const DataLayout &DL = Lp->getHeader()->getModule()->getDataLayout(); 3903 DL.getTypeAllocSize(PtrTy->getElementType()); 3904 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 3905 if (M->getOperand(0)->getSCEVType() != scConstant) 3906 return nullptr; 3907 3908 const APInt &APStepVal = 3909 cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue(); 3910 3911 // Huge step value - give up. 3912 if (APStepVal.getBitWidth() > 64) 3913 return nullptr; 3914 3915 int64_t StepVal = APStepVal.getSExtValue(); 3916 if (PtrAccessSize != StepVal) 3917 return nullptr; 3918 V = M->getOperand(1); 3919 } 3920 } 3921 3922 // Strip off casts. 3923 Type *StripedOffRecurrenceCast = nullptr; 3924 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 3925 StripedOffRecurrenceCast = C->getType(); 3926 V = C->getOperand(); 3927 } 3928 3929 // Look for the loop invariant symbolic value. 3930 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 3931 if (!U) 3932 return nullptr; 3933 3934 Value *Stride = U->getValue(); 3935 if (!Lp->isLoopInvariant(Stride)) 3936 return nullptr; 3937 3938 // If we have stripped off the recurrence cast we have to make sure that we 3939 // return the value that is used in this loop so that we can replace it later. 3940 if (StripedOffRecurrenceCast) 3941 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 3942 3943 return Stride; 3944 } 3945 3946 void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) { 3947 Value *Ptr = nullptr; 3948 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 3949 Ptr = LI->getPointerOperand(); 3950 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 3951 Ptr = SI->getPointerOperand(); 3952 else 3953 return; 3954 3955 Value *Stride = getStrideFromPointer(Ptr, SE, TheLoop); 3956 if (!Stride) 3957 return; 3958 3959 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 3960 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 3961 Strides[Ptr] = Stride; 3962 StrideSet.insert(Stride); 3963 } 3964 3965 void LoopVectorizationLegality::collectLoopUniforms() { 3966 // We now know that the loop is vectorizable! 3967 // Collect variables that will remain uniform after vectorization. 3968 std::vector<Value*> Worklist; 3969 BasicBlock *Latch = TheLoop->getLoopLatch(); 3970 3971 // Start with the conditional branch and walk up the block. 3972 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 3973 3974 // Also add all consecutive pointer values; these values will be uniform 3975 // after vectorization (and subsequent cleanup) and, until revectorization is 3976 // supported, all dependencies must also be uniform. 3977 for (Loop::block_iterator B = TheLoop->block_begin(), 3978 BE = TheLoop->block_end(); B != BE; ++B) 3979 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 3980 I != IE; ++I) 3981 if (I->getType()->isPointerTy() && isConsecutivePtr(I)) 3982 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3983 3984 while (!Worklist.empty()) { 3985 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 3986 Worklist.pop_back(); 3987 3988 // Look at instructions inside this loop. 3989 // Stop when reaching PHI nodes. 3990 // TODO: we need to follow values all over the loop, not only in this block. 3991 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 3992 continue; 3993 3994 // This is a known uniform. 3995 Uniforms.insert(I); 3996 3997 // Insert all operands. 3998 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3999 } 4000 } 4001 4002 bool LoopVectorizationLegality::canVectorizeMemory() { 4003 LAI = &LAA->getInfo(TheLoop, Strides); 4004 auto &OptionalReport = LAI->getReport(); 4005 if (OptionalReport) 4006 emitAnalysis(VectorizationReport(*OptionalReport)); 4007 if (!LAI->canVectorizeMemory()) 4008 return false; 4009 4010 if (LAI->getNumRuntimePointerChecks() > 4011 VectorizerParams::RuntimeMemoryCheckThreshold) { 4012 emitAnalysis(VectorizationReport() 4013 << LAI->getNumRuntimePointerChecks() << " exceeds limit of " 4014 << VectorizerParams::RuntimeMemoryCheckThreshold 4015 << " dependent memory operations checked at runtime"); 4016 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 4017 return false; 4018 } 4019 return true; 4020 } 4021 4022 static bool hasMultipleUsesOf(Instruction *I, 4023 SmallPtrSetImpl<Instruction *> &Insts) { 4024 unsigned NumUses = 0; 4025 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) { 4026 if (Insts.count(dyn_cast<Instruction>(*Use))) 4027 ++NumUses; 4028 if (NumUses > 1) 4029 return true; 4030 } 4031 4032 return false; 4033 } 4034 4035 static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set) { 4036 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 4037 if (!Set.count(dyn_cast<Instruction>(*Use))) 4038 return false; 4039 return true; 4040 } 4041 4042 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi, 4043 ReductionKind Kind) { 4044 if (Phi->getNumIncomingValues() != 2) 4045 return false; 4046 4047 // Reduction variables are only found in the loop header block. 4048 if (Phi->getParent() != TheLoop->getHeader()) 4049 return false; 4050 4051 // Obtain the reduction start value from the value that comes from the loop 4052 // preheader. 4053 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 4054 4055 // ExitInstruction is the single value which is used outside the loop. 4056 // We only allow for a single reduction value to be used outside the loop. 4057 // This includes users of the reduction, variables (which form a cycle 4058 // which ends in the phi node). 4059 Instruction *ExitInstruction = nullptr; 4060 // Indicates that we found a reduction operation in our scan. 4061 bool FoundReduxOp = false; 4062 4063 // We start with the PHI node and scan for all of the users of this 4064 // instruction. All users must be instructions that can be used as reduction 4065 // variables (such as ADD). We must have a single out-of-block user. The cycle 4066 // must include the original PHI. 4067 bool FoundStartPHI = false; 4068 4069 // To recognize min/max patterns formed by a icmp select sequence, we store 4070 // the number of instruction we saw from the recognized min/max pattern, 4071 // to make sure we only see exactly the two instructions. 4072 unsigned NumCmpSelectPatternInst = 0; 4073 ReductionInstDesc ReduxDesc(false, nullptr); 4074 4075 SmallPtrSet<Instruction *, 8> VisitedInsts; 4076 SmallVector<Instruction *, 8> Worklist; 4077 Worklist.push_back(Phi); 4078 VisitedInsts.insert(Phi); 4079 4080 // A value in the reduction can be used: 4081 // - By the reduction: 4082 // - Reduction operation: 4083 // - One use of reduction value (safe). 4084 // - Multiple use of reduction value (not safe). 4085 // - PHI: 4086 // - All uses of the PHI must be the reduction (safe). 4087 // - Otherwise, not safe. 4088 // - By one instruction outside of the loop (safe). 4089 // - By further instructions outside of the loop (not safe). 4090 // - By an instruction that is not part of the reduction (not safe). 4091 // This is either: 4092 // * An instruction type other than PHI or the reduction operation. 4093 // * A PHI in the header other than the initial PHI. 4094 while (!Worklist.empty()) { 4095 Instruction *Cur = Worklist.back(); 4096 Worklist.pop_back(); 4097 4098 // No Users. 4099 // If the instruction has no users then this is a broken chain and can't be 4100 // a reduction variable. 4101 if (Cur->use_empty()) 4102 return false; 4103 4104 bool IsAPhi = isa<PHINode>(Cur); 4105 4106 // A header PHI use other than the original PHI. 4107 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 4108 return false; 4109 4110 // Reductions of instructions such as Div, and Sub is only possible if the 4111 // LHS is the reduction variable. 4112 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 4113 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 4114 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 4115 return false; 4116 4117 // Any reduction instruction must be of one of the allowed kinds. 4118 ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc); 4119 if (!ReduxDesc.IsReduction) 4120 return false; 4121 4122 // A reduction operation must only have one use of the reduction value. 4123 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 4124 hasMultipleUsesOf(Cur, VisitedInsts)) 4125 return false; 4126 4127 // All inputs to a PHI node must be a reduction value. 4128 if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 4129 return false; 4130 4131 if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) || 4132 isa<SelectInst>(Cur))) 4133 ++NumCmpSelectPatternInst; 4134 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || 4135 isa<SelectInst>(Cur))) 4136 ++NumCmpSelectPatternInst; 4137 4138 // Check whether we found a reduction operator. 4139 FoundReduxOp |= !IsAPhi; 4140 4141 // Process users of current instruction. Push non-PHI nodes after PHI nodes 4142 // onto the stack. This way we are going to have seen all inputs to PHI 4143 // nodes once we get to them. 4144 SmallVector<Instruction *, 8> NonPHIs; 4145 SmallVector<Instruction *, 8> PHIs; 4146 for (User *U : Cur->users()) { 4147 Instruction *UI = cast<Instruction>(U); 4148 4149 // Check if we found the exit user. 4150 BasicBlock *Parent = UI->getParent(); 4151 if (!TheLoop->contains(Parent)) { 4152 // Exit if you find multiple outside users or if the header phi node is 4153 // being used. In this case the user uses the value of the previous 4154 // iteration, in which case we would loose "VF-1" iterations of the 4155 // reduction operation if we vectorize. 4156 if (ExitInstruction != nullptr || Cur == Phi) 4157 return false; 4158 4159 // The instruction used by an outside user must be the last instruction 4160 // before we feed back to the reduction phi. Otherwise, we loose VF-1 4161 // operations on the value. 4162 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) 4163 return false; 4164 4165 ExitInstruction = Cur; 4166 continue; 4167 } 4168 4169 // Process instructions only once (termination). Each reduction cycle 4170 // value must only be used once, except by phi nodes and min/max 4171 // reductions which are represented as a cmp followed by a select. 4172 ReductionInstDesc IgnoredVal(false, nullptr); 4173 if (VisitedInsts.insert(UI).second) { 4174 if (isa<PHINode>(UI)) 4175 PHIs.push_back(UI); 4176 else 4177 NonPHIs.push_back(UI); 4178 } else if (!isa<PHINode>(UI) && 4179 ((!isa<FCmpInst>(UI) && 4180 !isa<ICmpInst>(UI) && 4181 !isa<SelectInst>(UI)) || 4182 !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction)) 4183 return false; 4184 4185 // Remember that we completed the cycle. 4186 if (UI == Phi) 4187 FoundStartPHI = true; 4188 } 4189 Worklist.append(PHIs.begin(), PHIs.end()); 4190 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 4191 } 4192 4193 // This means we have seen one but not the other instruction of the 4194 // pattern or more than just a select and cmp. 4195 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 4196 NumCmpSelectPatternInst != 2) 4197 return false; 4198 4199 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 4200 return false; 4201 4202 // We found a reduction var if we have reached the original phi node and we 4203 // only have a single instruction with out-of-loop users. 4204 4205 // This instruction is allowed to have out-of-loop users. 4206 AllowedExit.insert(ExitInstruction); 4207 4208 // Save the description of this reduction variable. 4209 ReductionDescriptor RD(RdxStart, ExitInstruction, Kind, 4210 ReduxDesc.MinMaxKind); 4211 Reductions[Phi] = RD; 4212 // We've ended the cycle. This is a reduction variable if we have an 4213 // outside user and it has a binary op. 4214 4215 return true; 4216 } 4217 4218 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 4219 /// pattern corresponding to a min(X, Y) or max(X, Y). 4220 LoopVectorizationLegality::ReductionInstDesc 4221 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I, 4222 ReductionInstDesc &Prev) { 4223 4224 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 4225 "Expect a select instruction"); 4226 Instruction *Cmp = nullptr; 4227 SelectInst *Select = nullptr; 4228 4229 // We must handle the select(cmp()) as a single instruction. Advance to the 4230 // select. 4231 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 4232 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 4233 return ReductionInstDesc(false, I); 4234 return ReductionInstDesc(Select, Prev.MinMaxKind); 4235 } 4236 4237 // Only handle single use cases for now. 4238 if (!(Select = dyn_cast<SelectInst>(I))) 4239 return ReductionInstDesc(false, I); 4240 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 4241 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 4242 return ReductionInstDesc(false, I); 4243 if (!Cmp->hasOneUse()) 4244 return ReductionInstDesc(false, I); 4245 4246 Value *CmpLeft; 4247 Value *CmpRight; 4248 4249 // Look for a min/max pattern. 4250 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4251 return ReductionInstDesc(Select, MRK_UIntMin); 4252 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4253 return ReductionInstDesc(Select, MRK_UIntMax); 4254 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4255 return ReductionInstDesc(Select, MRK_SIntMax); 4256 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4257 return ReductionInstDesc(Select, MRK_SIntMin); 4258 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4259 return ReductionInstDesc(Select, MRK_FloatMin); 4260 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4261 return ReductionInstDesc(Select, MRK_FloatMax); 4262 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4263 return ReductionInstDesc(Select, MRK_FloatMin); 4264 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4265 return ReductionInstDesc(Select, MRK_FloatMax); 4266 4267 return ReductionInstDesc(false, I); 4268 } 4269 4270 LoopVectorizationLegality::ReductionInstDesc 4271 LoopVectorizationLegality::isReductionInstr(Instruction *I, 4272 ReductionKind Kind, 4273 ReductionInstDesc &Prev) { 4274 bool FP = I->getType()->isFloatingPointTy(); 4275 bool FastMath = FP && I->hasUnsafeAlgebra(); 4276 switch (I->getOpcode()) { 4277 default: 4278 return ReductionInstDesc(false, I); 4279 case Instruction::PHI: 4280 if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd && 4281 Kind != RK_FloatMinMax)) 4282 return ReductionInstDesc(false, I); 4283 return ReductionInstDesc(I, Prev.MinMaxKind); 4284 case Instruction::Sub: 4285 case Instruction::Add: 4286 return ReductionInstDesc(Kind == RK_IntegerAdd, I); 4287 case Instruction::Mul: 4288 return ReductionInstDesc(Kind == RK_IntegerMult, I); 4289 case Instruction::And: 4290 return ReductionInstDesc(Kind == RK_IntegerAnd, I); 4291 case Instruction::Or: 4292 return ReductionInstDesc(Kind == RK_IntegerOr, I); 4293 case Instruction::Xor: 4294 return ReductionInstDesc(Kind == RK_IntegerXor, I); 4295 case Instruction::FMul: 4296 return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I); 4297 case Instruction::FSub: 4298 case Instruction::FAdd: 4299 return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I); 4300 case Instruction::FCmp: 4301 case Instruction::ICmp: 4302 case Instruction::Select: 4303 if (Kind != RK_IntegerMinMax && 4304 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 4305 return ReductionInstDesc(false, I); 4306 return isMinMaxSelectCmpPattern(I, Prev); 4307 } 4308 } 4309 4310 bool llvm::isInductionPHI(PHINode *Phi, ScalarEvolution *SE, 4311 ConstantInt *&StepValue) { 4312 Type *PhiTy = Phi->getType(); 4313 // We only handle integer and pointer inductions variables. 4314 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 4315 return false; 4316 4317 // Check that the PHI is consecutive. 4318 const SCEV *PhiScev = SE->getSCEV(Phi); 4319 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 4320 if (!AR) { 4321 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 4322 return false; 4323 } 4324 4325 const SCEV *Step = AR->getStepRecurrence(*SE); 4326 // Calculate the pointer stride and check if it is consecutive. 4327 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4328 if (!C) 4329 return false; 4330 4331 ConstantInt *CV = C->getValue(); 4332 if (PhiTy->isIntegerTy()) { 4333 StepValue = CV; 4334 return true; 4335 } 4336 4337 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 4338 Type *PointerElementType = PhiTy->getPointerElementType(); 4339 // The pointer stride cannot be determined if the pointer element type is not 4340 // sized. 4341 if (!PointerElementType->isSized()) 4342 return false; 4343 4344 const DataLayout &DL = Phi->getModule()->getDataLayout(); 4345 int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType)); 4346 int64_t CVSize = CV->getSExtValue(); 4347 if (CVSize % Size) 4348 return false; 4349 StepValue = ConstantInt::getSigned(CV->getType(), CVSize / Size); 4350 return true; 4351 } 4352 4353 LoopVectorizationLegality::InductionKind 4354 LoopVectorizationLegality::isInductionVariable(PHINode *Phi, 4355 ConstantInt *&StepValue) { 4356 if (!isInductionPHI(Phi, SE, StepValue)) 4357 return IK_NoInduction; 4358 4359 Type *PhiTy = Phi->getType(); 4360 // Found an Integer induction variable. 4361 if (PhiTy->isIntegerTy()) 4362 return IK_IntInduction; 4363 // Found an Pointer induction variable. 4364 return IK_PtrInduction; 4365 } 4366 4367 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 4368 Value *In0 = const_cast<Value*>(V); 4369 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 4370 if (!PN) 4371 return false; 4372 4373 return Inductions.count(PN); 4374 } 4375 4376 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 4377 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4378 } 4379 4380 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 4381 SmallPtrSetImpl<Value *> &SafePtrs) { 4382 4383 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4384 // Check that we don't have a constant expression that can trap as operand. 4385 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 4386 OI != OE; ++OI) { 4387 if (Constant *C = dyn_cast<Constant>(*OI)) 4388 if (C->canTrap()) 4389 return false; 4390 } 4391 // We might be able to hoist the load. 4392 if (it->mayReadFromMemory()) { 4393 LoadInst *LI = dyn_cast<LoadInst>(it); 4394 if (!LI) 4395 return false; 4396 if (!SafePtrs.count(LI->getPointerOperand())) { 4397 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand())) { 4398 MaskedOp.insert(LI); 4399 continue; 4400 } 4401 return false; 4402 } 4403 } 4404 4405 // We don't predicate stores at the moment. 4406 if (it->mayWriteToMemory()) { 4407 StoreInst *SI = dyn_cast<StoreInst>(it); 4408 // We only support predication of stores in basic blocks with one 4409 // predecessor. 4410 if (!SI) 4411 return false; 4412 4413 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 4414 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 4415 4416 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 4417 !isSinglePredecessor) { 4418 // Build a masked store if it is legal for the target, otherwise scalarize 4419 // the block. 4420 bool isLegalMaskedOp = 4421 isLegalMaskedStore(SI->getValueOperand()->getType(), 4422 SI->getPointerOperand()); 4423 if (isLegalMaskedOp) { 4424 --NumPredStores; 4425 MaskedOp.insert(SI); 4426 continue; 4427 } 4428 return false; 4429 } 4430 } 4431 if (it->mayThrow()) 4432 return false; 4433 4434 // The instructions below can trap. 4435 switch (it->getOpcode()) { 4436 default: continue; 4437 case Instruction::UDiv: 4438 case Instruction::SDiv: 4439 case Instruction::URem: 4440 case Instruction::SRem: 4441 return false; 4442 } 4443 } 4444 4445 return true; 4446 } 4447 4448 LoopVectorizationCostModel::VectorizationFactor 4449 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 4450 // Width 1 means no vectorize 4451 VectorizationFactor Factor = { 1U, 0U }; 4452 if (OptForSize && Legal->getRuntimePointerCheck()->Need) { 4453 emitAnalysis(VectorizationReport() << 4454 "runtime pointer checks needed. Enable vectorization of this " 4455 "loop with '#pragma clang loop vectorize(enable)' when " 4456 "compiling with -Os"); 4457 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); 4458 return Factor; 4459 } 4460 4461 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 4462 emitAnalysis(VectorizationReport() << 4463 "store that is conditionally executed prevents vectorization"); 4464 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 4465 return Factor; 4466 } 4467 4468 // Find the trip count. 4469 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 4470 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4471 4472 unsigned WidestType = getWidestType(); 4473 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4474 unsigned MaxSafeDepDist = -1U; 4475 if (Legal->getMaxSafeDepDistBytes() != -1U) 4476 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 4477 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 4478 WidestRegister : MaxSafeDepDist); 4479 unsigned MaxVectorSize = WidestRegister / WidestType; 4480 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); 4481 DEBUG(dbgs() << "LV: The Widest register is: " 4482 << WidestRegister << " bits.\n"); 4483 4484 if (MaxVectorSize == 0) { 4485 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4486 MaxVectorSize = 1; 4487 } 4488 4489 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 4490 " into one vector!"); 4491 4492 unsigned VF = MaxVectorSize; 4493 4494 // If we optimize the program for size, avoid creating the tail loop. 4495 if (OptForSize) { 4496 // If we are unable to calculate the trip count then don't try to vectorize. 4497 if (TC < 2) { 4498 emitAnalysis 4499 (VectorizationReport() << 4500 "unable to calculate the loop count due to complex control flow"); 4501 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 4502 return Factor; 4503 } 4504 4505 // Find the maximum SIMD width that can fit within the trip count. 4506 VF = TC % MaxVectorSize; 4507 4508 if (VF == 0) 4509 VF = MaxVectorSize; 4510 4511 // If the trip count that we found modulo the vectorization factor is not 4512 // zero then we require a tail. 4513 if (VF < 2) { 4514 emitAnalysis(VectorizationReport() << 4515 "cannot optimize for size and vectorize at the " 4516 "same time. Enable vectorization of this loop " 4517 "with '#pragma clang loop vectorize(enable)' " 4518 "when compiling with -Os"); 4519 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 4520 return Factor; 4521 } 4522 } 4523 4524 int UserVF = Hints->getWidth(); 4525 if (UserVF != 0) { 4526 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 4527 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 4528 4529 Factor.Width = UserVF; 4530 return Factor; 4531 } 4532 4533 float Cost = expectedCost(1); 4534 #ifndef NDEBUG 4535 const float ScalarCost = Cost; 4536 #endif /* NDEBUG */ 4537 unsigned Width = 1; 4538 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 4539 4540 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 4541 // Ignore scalar width, because the user explicitly wants vectorization. 4542 if (ForceVectorization && VF > 1) { 4543 Width = 2; 4544 Cost = expectedCost(Width) / (float)Width; 4545 } 4546 4547 for (unsigned i=2; i <= VF; i*=2) { 4548 // Notice that the vector loop needs to be executed less times, so 4549 // we need to divide the cost of the vector loops by the width of 4550 // the vector elements. 4551 float VectorCost = expectedCost(i) / (float)i; 4552 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 4553 (int)VectorCost << ".\n"); 4554 if (VectorCost < Cost) { 4555 Cost = VectorCost; 4556 Width = i; 4557 } 4558 } 4559 4560 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 4561 << "LV: Vectorization seems to be not beneficial, " 4562 << "but was forced by a user.\n"); 4563 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 4564 Factor.Width = Width; 4565 Factor.Cost = Width * Cost; 4566 return Factor; 4567 } 4568 4569 unsigned LoopVectorizationCostModel::getWidestType() { 4570 unsigned MaxWidth = 8; 4571 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 4572 4573 // For each block. 4574 for (Loop::block_iterator bb = TheLoop->block_begin(), 4575 be = TheLoop->block_end(); bb != be; ++bb) { 4576 BasicBlock *BB = *bb; 4577 4578 // For each instruction in the loop. 4579 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4580 Type *T = it->getType(); 4581 4582 // Ignore ephemeral values. 4583 if (EphValues.count(it)) 4584 continue; 4585 4586 // Only examine Loads, Stores and PHINodes. 4587 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 4588 continue; 4589 4590 // Examine PHI nodes that are reduction variables. 4591 if (PHINode *PN = dyn_cast<PHINode>(it)) 4592 if (!Legal->getReductionVars()->count(PN)) 4593 continue; 4594 4595 // Examine the stored values. 4596 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 4597 T = ST->getValueOperand()->getType(); 4598 4599 // Ignore loaded pointer types and stored pointer types that are not 4600 // consecutive. However, we do want to take consecutive stores/loads of 4601 // pointer vectors into account. 4602 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) 4603 continue; 4604 4605 MaxWidth = std::max(MaxWidth, 4606 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4607 } 4608 } 4609 4610 return MaxWidth; 4611 } 4612 4613 unsigned 4614 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize, 4615 unsigned VF, 4616 unsigned LoopCost) { 4617 4618 // -- The unroll heuristics -- 4619 // We unroll the loop in order to expose ILP and reduce the loop overhead. 4620 // There are many micro-architectural considerations that we can't predict 4621 // at this level. For example, frontend pressure (on decode or fetch) due to 4622 // code size, or the number and capabilities of the execution ports. 4623 // 4624 // We use the following heuristics to select the unroll factor: 4625 // 1. If the code has reductions, then we unroll in order to break the cross 4626 // iteration dependency. 4627 // 2. If the loop is really small, then we unroll in order to reduce the loop 4628 // overhead. 4629 // 3. We don't unroll if we think that we will spill registers to memory due 4630 // to the increased register pressure. 4631 4632 // Use the user preference, unless 'auto' is selected. 4633 int UserUF = Hints->getInterleave(); 4634 if (UserUF != 0) 4635 return UserUF; 4636 4637 // When we optimize for size, we don't unroll. 4638 if (OptForSize) 4639 return 1; 4640 4641 // We used the distance for the unroll factor. 4642 if (Legal->getMaxSafeDepDistBytes() != -1U) 4643 return 1; 4644 4645 // Do not unroll loops with a relatively small trip count. 4646 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 4647 if (TC > 1 && TC < TinyTripCountUnrollThreshold) 4648 return 1; 4649 4650 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 4651 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 4652 " registers\n"); 4653 4654 if (VF == 1) { 4655 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 4656 TargetNumRegisters = ForceTargetNumScalarRegs; 4657 } else { 4658 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 4659 TargetNumRegisters = ForceTargetNumVectorRegs; 4660 } 4661 4662 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); 4663 // We divide by these constants so assume that we have at least one 4664 // instruction that uses at least one register. 4665 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 4666 R.NumInstructions = std::max(R.NumInstructions, 1U); 4667 4668 // We calculate the unroll factor using the following formula. 4669 // Subtract the number of loop invariants from the number of available 4670 // registers. These registers are used by all of the unrolled instances. 4671 // Next, divide the remaining registers by the number of registers that is 4672 // required by the loop, in order to estimate how many parallel instances 4673 // fit without causing spills. All of this is rounded down if necessary to be 4674 // a power of two. We want power of two unroll factors to simplify any 4675 // addressing operations or alignment considerations. 4676 unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 4677 R.MaxLocalUsers); 4678 4679 // Don't count the induction variable as unrolled. 4680 if (EnableIndVarRegisterHeur) 4681 UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 4682 std::max(1U, (R.MaxLocalUsers - 1))); 4683 4684 // Clamp the unroll factor ranges to reasonable factors. 4685 unsigned MaxInterleaveSize = TTI.getMaxInterleaveFactor(); 4686 4687 // Check if the user has overridden the unroll max. 4688 if (VF == 1) { 4689 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 4690 MaxInterleaveSize = ForceTargetMaxScalarInterleaveFactor; 4691 } else { 4692 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 4693 MaxInterleaveSize = ForceTargetMaxVectorInterleaveFactor; 4694 } 4695 4696 // If we did not calculate the cost for VF (because the user selected the VF) 4697 // then we calculate the cost of VF here. 4698 if (LoopCost == 0) 4699 LoopCost = expectedCost(VF); 4700 4701 // Clamp the calculated UF to be between the 1 and the max unroll factor 4702 // that the target allows. 4703 if (UF > MaxInterleaveSize) 4704 UF = MaxInterleaveSize; 4705 else if (UF < 1) 4706 UF = 1; 4707 4708 // Unroll if we vectorized this loop and there is a reduction that could 4709 // benefit from unrolling. 4710 if (VF > 1 && Legal->getReductionVars()->size()) { 4711 DEBUG(dbgs() << "LV: Unrolling because of reductions.\n"); 4712 return UF; 4713 } 4714 4715 // Note that if we've already vectorized the loop we will have done the 4716 // runtime check and so unrolling won't require further checks. 4717 bool UnrollingRequiresRuntimePointerCheck = 4718 (VF == 1 && Legal->getRuntimePointerCheck()->Need); 4719 4720 // We want to unroll small loops in order to reduce the loop overhead and 4721 // potentially expose ILP opportunities. 4722 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 4723 if (!UnrollingRequiresRuntimePointerCheck && 4724 LoopCost < SmallLoopCost) { 4725 // We assume that the cost overhead is 1 and we use the cost model 4726 // to estimate the cost of the loop and unroll until the cost of the 4727 // loop overhead is about 5% of the cost of the loop. 4728 unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 4729 4730 // Unroll until store/load ports (estimated by max unroll factor) are 4731 // saturated. 4732 unsigned NumStores = Legal->getNumStores(); 4733 unsigned NumLoads = Legal->getNumLoads(); 4734 unsigned StoresUF = UF / (NumStores ? NumStores : 1); 4735 unsigned LoadsUF = UF / (NumLoads ? NumLoads : 1); 4736 4737 // If we have a scalar reduction (vector reductions are already dealt with 4738 // by this point), we can increase the critical path length if the loop 4739 // we're unrolling is inside another loop. Limit, by default to 2, so the 4740 // critical path only gets increased by one reduction operation. 4741 if (Legal->getReductionVars()->size() && 4742 TheLoop->getLoopDepth() > 1) { 4743 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionUF); 4744 SmallUF = std::min(SmallUF, F); 4745 StoresUF = std::min(StoresUF, F); 4746 LoadsUF = std::min(LoadsUF, F); 4747 } 4748 4749 if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) { 4750 DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n"); 4751 return std::max(StoresUF, LoadsUF); 4752 } 4753 4754 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n"); 4755 return SmallUF; 4756 } 4757 4758 // Unroll if this is a large loop (small loops are already dealt with by this 4759 // point) that could benefit from interleaved unrolling. 4760 bool HasReductions = (Legal->getReductionVars()->size() > 0); 4761 if (TTI.enableAggressiveInterleaving(HasReductions)) { 4762 DEBUG(dbgs() << "LV: Unrolling to expose ILP.\n"); 4763 return UF; 4764 } 4765 4766 DEBUG(dbgs() << "LV: Not Unrolling.\n"); 4767 return 1; 4768 } 4769 4770 LoopVectorizationCostModel::RegisterUsage 4771 LoopVectorizationCostModel::calculateRegisterUsage() { 4772 // This function calculates the register usage by measuring the highest number 4773 // of values that are alive at a single location. Obviously, this is a very 4774 // rough estimation. We scan the loop in a topological order in order and 4775 // assign a number to each instruction. We use RPO to ensure that defs are 4776 // met before their users. We assume that each instruction that has in-loop 4777 // users starts an interval. We record every time that an in-loop value is 4778 // used, so we have a list of the first and last occurrences of each 4779 // instruction. Next, we transpose this data structure into a multi map that 4780 // holds the list of intervals that *end* at a specific location. This multi 4781 // map allows us to perform a linear search. We scan the instructions linearly 4782 // and record each time that a new interval starts, by placing it in a set. 4783 // If we find this value in the multi-map then we remove it from the set. 4784 // The max register usage is the maximum size of the set. 4785 // We also search for instructions that are defined outside the loop, but are 4786 // used inside the loop. We need this number separately from the max-interval 4787 // usage number because when we unroll, loop-invariant values do not take 4788 // more register. 4789 LoopBlocksDFS DFS(TheLoop); 4790 DFS.perform(LI); 4791 4792 RegisterUsage R; 4793 R.NumInstructions = 0; 4794 4795 // Each 'key' in the map opens a new interval. The values 4796 // of the map are the index of the 'last seen' usage of the 4797 // instruction that is the key. 4798 typedef DenseMap<Instruction*, unsigned> IntervalMap; 4799 // Maps instruction to its index. 4800 DenseMap<unsigned, Instruction*> IdxToInstr; 4801 // Marks the end of each interval. 4802 IntervalMap EndPoint; 4803 // Saves the list of instruction indices that are used in the loop. 4804 SmallSet<Instruction*, 8> Ends; 4805 // Saves the list of values that are used in the loop but are 4806 // defined outside the loop, such as arguments and constants. 4807 SmallPtrSet<Value*, 8> LoopInvariants; 4808 4809 unsigned Index = 0; 4810 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 4811 be = DFS.endRPO(); bb != be; ++bb) { 4812 R.NumInstructions += (*bb)->size(); 4813 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4814 ++it) { 4815 Instruction *I = it; 4816 IdxToInstr[Index++] = I; 4817 4818 // Save the end location of each USE. 4819 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 4820 Value *U = I->getOperand(i); 4821 Instruction *Instr = dyn_cast<Instruction>(U); 4822 4823 // Ignore non-instruction values such as arguments, constants, etc. 4824 if (!Instr) continue; 4825 4826 // If this instruction is outside the loop then record it and continue. 4827 if (!TheLoop->contains(Instr)) { 4828 LoopInvariants.insert(Instr); 4829 continue; 4830 } 4831 4832 // Overwrite previous end points. 4833 EndPoint[Instr] = Index; 4834 Ends.insert(Instr); 4835 } 4836 } 4837 } 4838 4839 // Saves the list of intervals that end with the index in 'key'. 4840 typedef SmallVector<Instruction*, 2> InstrList; 4841 DenseMap<unsigned, InstrList> TransposeEnds; 4842 4843 // Transpose the EndPoints to a list of values that end at each index. 4844 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 4845 it != e; ++it) 4846 TransposeEnds[it->second].push_back(it->first); 4847 4848 SmallSet<Instruction*, 8> OpenIntervals; 4849 unsigned MaxUsage = 0; 4850 4851 4852 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 4853 for (unsigned int i = 0; i < Index; ++i) { 4854 Instruction *I = IdxToInstr[i]; 4855 // Ignore instructions that are never used within the loop. 4856 if (!Ends.count(I)) continue; 4857 4858 // Ignore ephemeral values. 4859 if (EphValues.count(I)) 4860 continue; 4861 4862 // Remove all of the instructions that end at this location. 4863 InstrList &List = TransposeEnds[i]; 4864 for (unsigned int j=0, e = List.size(); j < e; ++j) 4865 OpenIntervals.erase(List[j]); 4866 4867 // Count the number of live interals. 4868 MaxUsage = std::max(MaxUsage, OpenIntervals.size()); 4869 4870 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << 4871 OpenIntervals.size() << '\n'); 4872 4873 // Add the current instruction to the list of open intervals. 4874 OpenIntervals.insert(I); 4875 } 4876 4877 unsigned Invariant = LoopInvariants.size(); 4878 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n'); 4879 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 4880 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n'); 4881 4882 R.LoopInvariantRegs = Invariant; 4883 R.MaxLocalUsers = MaxUsage; 4884 return R; 4885 } 4886 4887 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 4888 unsigned Cost = 0; 4889 4890 // For each block. 4891 for (Loop::block_iterator bb = TheLoop->block_begin(), 4892 be = TheLoop->block_end(); bb != be; ++bb) { 4893 unsigned BlockCost = 0; 4894 BasicBlock *BB = *bb; 4895 4896 // For each instruction in the old loop. 4897 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4898 // Skip dbg intrinsics. 4899 if (isa<DbgInfoIntrinsic>(it)) 4900 continue; 4901 4902 // Ignore ephemeral values. 4903 if (EphValues.count(it)) 4904 continue; 4905 4906 unsigned C = getInstructionCost(it, VF); 4907 4908 // Check if we should override the cost. 4909 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 4910 C = ForceTargetInstructionCost; 4911 4912 BlockCost += C; 4913 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 4914 VF << " For instruction: " << *it << '\n'); 4915 } 4916 4917 // We assume that if-converted blocks have a 50% chance of being executed. 4918 // When the code is scalar then some of the blocks are avoided due to CF. 4919 // When the code is vectorized we execute all code paths. 4920 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 4921 BlockCost /= 2; 4922 4923 Cost += BlockCost; 4924 } 4925 4926 return Cost; 4927 } 4928 4929 /// \brief Check whether the address computation for a non-consecutive memory 4930 /// access looks like an unlikely candidate for being merged into the indexing 4931 /// mode. 4932 /// 4933 /// We look for a GEP which has one index that is an induction variable and all 4934 /// other indices are loop invariant. If the stride of this access is also 4935 /// within a small bound we decide that this address computation can likely be 4936 /// merged into the addressing mode. 4937 /// In all other cases, we identify the address computation as complex. 4938 static bool isLikelyComplexAddressComputation(Value *Ptr, 4939 LoopVectorizationLegality *Legal, 4940 ScalarEvolution *SE, 4941 const Loop *TheLoop) { 4942 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 4943 if (!Gep) 4944 return true; 4945 4946 // We are looking for a gep with all loop invariant indices except for one 4947 // which should be an induction variable. 4948 unsigned NumOperands = Gep->getNumOperands(); 4949 for (unsigned i = 1; i < NumOperands; ++i) { 4950 Value *Opd = Gep->getOperand(i); 4951 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 4952 !Legal->isInductionVariable(Opd)) 4953 return true; 4954 } 4955 4956 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 4957 // can likely be merged into the address computation. 4958 unsigned MaxMergeDistance = 64; 4959 4960 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 4961 if (!AddRec) 4962 return true; 4963 4964 // Check the step is constant. 4965 const SCEV *Step = AddRec->getStepRecurrence(*SE); 4966 // Calculate the pointer stride and check if it is consecutive. 4967 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4968 if (!C) 4969 return true; 4970 4971 const APInt &APStepVal = C->getValue()->getValue(); 4972 4973 // Huge step value - give up. 4974 if (APStepVal.getBitWidth() > 64) 4975 return true; 4976 4977 int64_t StepVal = APStepVal.getSExtValue(); 4978 4979 return StepVal > MaxMergeDistance; 4980 } 4981 4982 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 4983 if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1))) 4984 return true; 4985 return false; 4986 } 4987 4988 unsigned 4989 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 4990 // If we know that this instruction will remain uniform, check the cost of 4991 // the scalar version. 4992 if (Legal->isUniformAfterVectorization(I)) 4993 VF = 1; 4994 4995 Type *RetTy = I->getType(); 4996 Type *VectorTy = ToVectorTy(RetTy, VF); 4997 4998 // TODO: We need to estimate the cost of intrinsic calls. 4999 switch (I->getOpcode()) { 5000 case Instruction::GetElementPtr: 5001 // We mark this instruction as zero-cost because the cost of GEPs in 5002 // vectorized code depends on whether the corresponding memory instruction 5003 // is scalarized or not. Therefore, we handle GEPs with the memory 5004 // instruction cost. 5005 return 0; 5006 case Instruction::Br: { 5007 return TTI.getCFInstrCost(I->getOpcode()); 5008 } 5009 case Instruction::PHI: 5010 //TODO: IF-converted IFs become selects. 5011 return 0; 5012 case Instruction::Add: 5013 case Instruction::FAdd: 5014 case Instruction::Sub: 5015 case Instruction::FSub: 5016 case Instruction::Mul: 5017 case Instruction::FMul: 5018 case Instruction::UDiv: 5019 case Instruction::SDiv: 5020 case Instruction::FDiv: 5021 case Instruction::URem: 5022 case Instruction::SRem: 5023 case Instruction::FRem: 5024 case Instruction::Shl: 5025 case Instruction::LShr: 5026 case Instruction::AShr: 5027 case Instruction::And: 5028 case Instruction::Or: 5029 case Instruction::Xor: { 5030 // Since we will replace the stride by 1 the multiplication should go away. 5031 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5032 return 0; 5033 // Certain instructions can be cheaper to vectorize if they have a constant 5034 // second vector operand. One example of this are shifts on x86. 5035 TargetTransformInfo::OperandValueKind Op1VK = 5036 TargetTransformInfo::OK_AnyValue; 5037 TargetTransformInfo::OperandValueKind Op2VK = 5038 TargetTransformInfo::OK_AnyValue; 5039 TargetTransformInfo::OperandValueProperties Op1VP = 5040 TargetTransformInfo::OP_None; 5041 TargetTransformInfo::OperandValueProperties Op2VP = 5042 TargetTransformInfo::OP_None; 5043 Value *Op2 = I->getOperand(1); 5044 5045 // Check for a splat of a constant or for a non uniform vector of constants. 5046 if (isa<ConstantInt>(Op2)) { 5047 ConstantInt *CInt = cast<ConstantInt>(Op2); 5048 if (CInt && CInt->getValue().isPowerOf2()) 5049 Op2VP = TargetTransformInfo::OP_PowerOf2; 5050 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5051 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 5052 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5053 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 5054 if (SplatValue) { 5055 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 5056 if (CInt && CInt->getValue().isPowerOf2()) 5057 Op2VP = TargetTransformInfo::OP_PowerOf2; 5058 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5059 } 5060 } 5061 5062 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 5063 Op1VP, Op2VP); 5064 } 5065 case Instruction::Select: { 5066 SelectInst *SI = cast<SelectInst>(I); 5067 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5068 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5069 Type *CondTy = SI->getCondition()->getType(); 5070 if (!ScalarCond) 5071 CondTy = VectorType::get(CondTy, VF); 5072 5073 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 5074 } 5075 case Instruction::ICmp: 5076 case Instruction::FCmp: { 5077 Type *ValTy = I->getOperand(0)->getType(); 5078 VectorTy = ToVectorTy(ValTy, VF); 5079 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 5080 } 5081 case Instruction::Store: 5082 case Instruction::Load: { 5083 StoreInst *SI = dyn_cast<StoreInst>(I); 5084 LoadInst *LI = dyn_cast<LoadInst>(I); 5085 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 5086 LI->getType()); 5087 VectorTy = ToVectorTy(ValTy, VF); 5088 5089 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 5090 unsigned AS = SI ? SI->getPointerAddressSpace() : 5091 LI->getPointerAddressSpace(); 5092 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 5093 // We add the cost of address computation here instead of with the gep 5094 // instruction because only here we know whether the operation is 5095 // scalarized. 5096 if (VF == 1) 5097 return TTI.getAddressComputationCost(VectorTy) + 5098 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5099 5100 // Scalarized loads/stores. 5101 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5102 bool Reverse = ConsecutiveStride < 0; 5103 const DataLayout &DL = I->getModule()->getDataLayout(); 5104 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ValTy); 5105 unsigned VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF; 5106 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 5107 bool IsComplexComputation = 5108 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 5109 unsigned Cost = 0; 5110 // The cost of extracting from the value vector and pointer vector. 5111 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5112 for (unsigned i = 0; i < VF; ++i) { 5113 // The cost of extracting the pointer operand. 5114 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 5115 // In case of STORE, the cost of ExtractElement from the vector. 5116 // In case of LOAD, the cost of InsertElement into the returned 5117 // vector. 5118 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 5119 Instruction::InsertElement, 5120 VectorTy, i); 5121 } 5122 5123 // The cost of the scalar loads/stores. 5124 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 5125 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5126 Alignment, AS); 5127 return Cost; 5128 } 5129 5130 // Wide load/stores. 5131 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 5132 if (Legal->isMaskRequired(I)) 5133 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, 5134 AS); 5135 else 5136 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5137 5138 if (Reverse) 5139 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 5140 VectorTy, 0); 5141 return Cost; 5142 } 5143 case Instruction::ZExt: 5144 case Instruction::SExt: 5145 case Instruction::FPToUI: 5146 case Instruction::FPToSI: 5147 case Instruction::FPExt: 5148 case Instruction::PtrToInt: 5149 case Instruction::IntToPtr: 5150 case Instruction::SIToFP: 5151 case Instruction::UIToFP: 5152 case Instruction::Trunc: 5153 case Instruction::FPTrunc: 5154 case Instruction::BitCast: { 5155 // We optimize the truncation of induction variable. 5156 // The cost of these is the same as the scalar operation. 5157 if (I->getOpcode() == Instruction::Trunc && 5158 Legal->isInductionVariable(I->getOperand(0))) 5159 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 5160 I->getOperand(0)->getType()); 5161 5162 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); 5163 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 5164 } 5165 case Instruction::Call: { 5166 bool NeedToScalarize; 5167 CallInst *CI = cast<CallInst>(I); 5168 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 5169 if (getIntrinsicIDForCall(CI, TLI)) 5170 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 5171 return CallCost; 5172 } 5173 default: { 5174 // We are scalarizing the instruction. Return the cost of the scalar 5175 // instruction, plus the cost of insert and extract into vector 5176 // elements, times the vector width. 5177 unsigned Cost = 0; 5178 5179 if (!RetTy->isVoidTy() && VF != 1) { 5180 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 5181 VectorTy); 5182 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 5183 VectorTy); 5184 5185 // The cost of inserting the results plus extracting each one of the 5186 // operands. 5187 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 5188 } 5189 5190 // The cost of executing VF copies of the scalar instruction. This opcode 5191 // is unknown. Assume that it is the same as 'mul'. 5192 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 5193 return Cost; 5194 } 5195 }// end of switch. 5196 } 5197 5198 char LoopVectorize::ID = 0; 5199 static const char lv_name[] = "Loop Vectorization"; 5200 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 5201 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5202 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 5203 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 5204 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo) 5205 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5206 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 5207 INITIALIZE_PASS_DEPENDENCY(LCSSA) 5208 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5209 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5210 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis) 5211 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 5212 5213 namespace llvm { 5214 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 5215 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 5216 } 5217 } 5218 5219 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 5220 // Check for a store. 5221 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 5222 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 5223 5224 // Check for a load. 5225 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 5226 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 5227 5228 return false; 5229 } 5230 5231 5232 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 5233 bool IfPredicateStore) { 5234 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 5235 // Holds vector parameters or scalars, in case of uniform vals. 5236 SmallVector<VectorParts, 4> Params; 5237 5238 setDebugLocFromInst(Builder, Instr); 5239 5240 // Find all of the vectorized parameters. 5241 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5242 Value *SrcOp = Instr->getOperand(op); 5243 5244 // If we are accessing the old induction variable, use the new one. 5245 if (SrcOp == OldInduction) { 5246 Params.push_back(getVectorValue(SrcOp)); 5247 continue; 5248 } 5249 5250 // Try using previously calculated values. 5251 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 5252 5253 // If the src is an instruction that appeared earlier in the basic block 5254 // then it should already be vectorized. 5255 if (SrcInst && OrigLoop->contains(SrcInst)) { 5256 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 5257 // The parameter is a vector value from earlier. 5258 Params.push_back(WidenMap.get(SrcInst)); 5259 } else { 5260 // The parameter is a scalar from outside the loop. Maybe even a constant. 5261 VectorParts Scalars; 5262 Scalars.append(UF, SrcOp); 5263 Params.push_back(Scalars); 5264 } 5265 } 5266 5267 assert(Params.size() == Instr->getNumOperands() && 5268 "Invalid number of operands"); 5269 5270 // Does this instruction return a value ? 5271 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 5272 5273 Value *UndefVec = IsVoidRetTy ? nullptr : 5274 UndefValue::get(Instr->getType()); 5275 // Create a new entry in the WidenMap and initialize it to Undef or Null. 5276 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 5277 5278 Instruction *InsertPt = Builder.GetInsertPoint(); 5279 BasicBlock *IfBlock = Builder.GetInsertBlock(); 5280 BasicBlock *CondBlock = nullptr; 5281 5282 VectorParts Cond; 5283 Loop *VectorLp = nullptr; 5284 if (IfPredicateStore) { 5285 assert(Instr->getParent()->getSinglePredecessor() && 5286 "Only support single predecessor blocks"); 5287 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 5288 Instr->getParent()); 5289 VectorLp = LI->getLoopFor(IfBlock); 5290 assert(VectorLp && "Must have a loop for this block"); 5291 } 5292 5293 // For each vector unroll 'part': 5294 for (unsigned Part = 0; Part < UF; ++Part) { 5295 // For each scalar that we create: 5296 5297 // Start an "if (pred) a[i] = ..." block. 5298 Value *Cmp = nullptr; 5299 if (IfPredicateStore) { 5300 if (Cond[Part]->getType()->isVectorTy()) 5301 Cond[Part] = 5302 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 5303 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 5304 ConstantInt::get(Cond[Part]->getType(), 1)); 5305 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 5306 LoopVectorBody.push_back(CondBlock); 5307 VectorLp->addBasicBlockToLoop(CondBlock, *LI); 5308 // Update Builder with newly created basic block. 5309 Builder.SetInsertPoint(InsertPt); 5310 } 5311 5312 Instruction *Cloned = Instr->clone(); 5313 if (!IsVoidRetTy) 5314 Cloned->setName(Instr->getName() + ".cloned"); 5315 // Replace the operands of the cloned instructions with extracted scalars. 5316 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5317 Value *Op = Params[op][Part]; 5318 Cloned->setOperand(op, Op); 5319 } 5320 5321 // Place the cloned scalar in the new loop. 5322 Builder.Insert(Cloned); 5323 5324 // If the original scalar returns a value we need to place it in a vector 5325 // so that future users will be able to use it. 5326 if (!IsVoidRetTy) 5327 VecResults[Part] = Cloned; 5328 5329 // End if-block. 5330 if (IfPredicateStore) { 5331 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 5332 LoopVectorBody.push_back(NewIfBlock); 5333 VectorLp->addBasicBlockToLoop(NewIfBlock, *LI); 5334 Builder.SetInsertPoint(InsertPt); 5335 Instruction *OldBr = IfBlock->getTerminator(); 5336 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 5337 OldBr->eraseFromParent(); 5338 IfBlock = NewIfBlock; 5339 } 5340 } 5341 } 5342 5343 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 5344 StoreInst *SI = dyn_cast<StoreInst>(Instr); 5345 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 5346 5347 return scalarizeInstruction(Instr, IfPredicateStore); 5348 } 5349 5350 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 5351 return Vec; 5352 } 5353 5354 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 5355 return V; 5356 } 5357 5358 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) { 5359 // When unrolling and the VF is 1, we only need to add a simple scalar. 5360 Type *ITy = Val->getType(); 5361 assert(!ITy->isVectorTy() && "Val must be a scalar"); 5362 Constant *C = ConstantInt::get(ITy, StartIdx); 5363 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 5364 } 5365