1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 /// The number of stores in a loop that are allowed to need predication.
311 static cl::opt<unsigned> NumberOfStoresToPredicate(
312     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
313     cl::desc("Max number of stores to be predicated behind an if."));
314 
315 static cl::opt<bool> EnableIndVarRegisterHeur(
316     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
317     cl::desc("Count the induction variable only once when interleaving"));
318 
319 static cl::opt<bool> EnableCondStoresVectorization(
320     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
321     cl::desc("Enable if predication of stores during vectorization."));
322 
323 static cl::opt<unsigned> MaxNestedScalarReductionIC(
324     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
325     cl::desc("The maximum interleave count to use when interleaving a scalar "
326              "reduction in a nested loop."));
327 
328 static cl::opt<bool>
329     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
330                            cl::Hidden,
331                            cl::desc("Prefer in-loop vector reductions, "
332                                     "overriding the targets preference."));
333 
334 static cl::opt<bool> ForceOrderedReductions(
335     "force-ordered-reductions", cl::init(false), cl::Hidden,
336     cl::desc("Enable the vectorisation of loops with in-order (strict) "
337              "FP reductions"));
338 
339 static cl::opt<bool> PreferPredicatedReductionSelect(
340     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
341     cl::desc(
342         "Prefer predicating a reduction operation over an after loop select."));
343 
344 cl::opt<bool> EnableVPlanNativePath(
345     "enable-vplan-native-path", cl::init(false), cl::Hidden,
346     cl::desc("Enable VPlan-native vectorization path with "
347              "support for outer loop vectorization."));
348 
349 // FIXME: Remove this switch once we have divergence analysis. Currently we
350 // assume divergent non-backedge branches when this switch is true.
351 cl::opt<bool> EnableVPlanPredication(
352     "enable-vplan-predication", cl::init(false), cl::Hidden,
353     cl::desc("Enable VPlan-native vectorization path predicator with "
354              "support for outer loop vectorization."));
355 
356 // This flag enables the stress testing of the VPlan H-CFG construction in the
357 // VPlan-native vectorization path. It must be used in conjuction with
358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
359 // verification of the H-CFGs built.
360 static cl::opt<bool> VPlanBuildStressTest(
361     "vplan-build-stress-test", cl::init(false), cl::Hidden,
362     cl::desc(
363         "Build VPlan for every supported loop nest in the function and bail "
364         "out right after the build (stress test the VPlan H-CFG construction "
365         "in the VPlan-native vectorization path)."));
366 
367 cl::opt<bool> llvm::EnableLoopInterleaving(
368     "interleave-loops", cl::init(true), cl::Hidden,
369     cl::desc("Enable loop interleaving in Loop vectorization passes"));
370 cl::opt<bool> llvm::EnableLoopVectorization(
371     "vectorize-loops", cl::init(true), cl::Hidden,
372     cl::desc("Run the Loop vectorization passes"));
373 
374 cl::opt<bool> PrintVPlansInDotFormat(
375     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
376     cl::desc("Use dot format instead of plain text when dumping VPlans"));
377 
378 /// A helper function that returns true if the given type is irregular. The
379 /// type is irregular if its allocated size doesn't equal the store size of an
380 /// element of the corresponding vector type.
381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
382   // Determine if an array of N elements of type Ty is "bitcast compatible"
383   // with a <N x Ty> vector.
384   // This is only true if there is no padding between the array elements.
385   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
386 }
387 
388 /// A helper function that returns the reciprocal of the block probability of
389 /// predicated blocks. If we return X, we are assuming the predicated block
390 /// will execute once for every X iterations of the loop header.
391 ///
392 /// TODO: We should use actual block probability here, if available. Currently,
393 ///       we always assume predicated blocks have a 50% chance of executing.
394 static unsigned getReciprocalPredBlockProb() { return 2; }
395 
396 /// A helper function that returns an integer or floating-point constant with
397 /// value C.
398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
399   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
400                            : ConstantFP::get(Ty, C);
401 }
402 
403 /// Returns "best known" trip count for the specified loop \p L as defined by
404 /// the following procedure:
405 ///   1) Returns exact trip count if it is known.
406 ///   2) Returns expected trip count according to profile data if any.
407 ///   3) Returns upper bound estimate if it is known.
408 ///   4) Returns None if all of the above failed.
409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
410   // Check if exact trip count is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
412     return ExpectedTC;
413 
414   // Check if there is an expected trip count available from profile data.
415   if (LoopVectorizeWithBlockFrequency)
416     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
417       return EstimatedTC;
418 
419   // Check if upper bound estimate is known.
420   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
421     return ExpectedTC;
422 
423   return None;
424 }
425 
426 // Forward declare GeneratedRTChecks.
427 class GeneratedRTChecks;
428 
429 namespace llvm {
430 
431 /// InnerLoopVectorizer vectorizes loops which contain only one basic
432 /// block to a specified vectorization factor (VF).
433 /// This class performs the widening of scalars into vectors, or multiple
434 /// scalars. This class also implements the following features:
435 /// * It inserts an epilogue loop for handling loops that don't have iteration
436 ///   counts that are known to be a multiple of the vectorization factor.
437 /// * It handles the code generation for reduction variables.
438 /// * Scalarization (implementation using scalars) of un-vectorizable
439 ///   instructions.
440 /// InnerLoopVectorizer does not perform any vectorization-legality
441 /// checks, and relies on the caller to check for the different legality
442 /// aspects. The InnerLoopVectorizer relies on the
443 /// LoopVectorizationLegality class to provide information about the induction
444 /// and reduction variables that were found to a given vectorization factor.
445 class InnerLoopVectorizer {
446 public:
447   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
448                       LoopInfo *LI, DominatorTree *DT,
449                       const TargetLibraryInfo *TLI,
450                       const TargetTransformInfo *TTI, AssumptionCache *AC,
451                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
452                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
453                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
454                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
455       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
456         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
457         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
458         PSI(PSI), RTChecks(RTChecks) {
459     // Query this against the original loop and save it here because the profile
460     // of the original loop header may change as the transformation happens.
461     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
462         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
463   }
464 
465   virtual ~InnerLoopVectorizer() = default;
466 
467   /// Create a new empty loop that will contain vectorized instructions later
468   /// on, while the old loop will be used as the scalar remainder. Control flow
469   /// is generated around the vectorized (and scalar epilogue) loops consisting
470   /// of various checks and bypasses. Return the pre-header block of the new
471   /// loop.
472   /// In the case of epilogue vectorization, this function is overriden to
473   /// handle the more complex control flow around the loops.
474   virtual BasicBlock *createVectorizedLoopSkeleton();
475 
476   /// Widen a single instruction within the innermost loop.
477   void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
478                         VPTransformState &State);
479 
480   /// Widen a single call instruction within the innermost loop.
481   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
482                             VPTransformState &State);
483 
484   /// Widen a single select instruction within the innermost loop.
485   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
486                               bool InvariantCond, VPTransformState &State);
487 
488   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
489   void fixVectorizedLoop(VPTransformState &State);
490 
491   // Return true if any runtime check is added.
492   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
493 
494   /// A type for vectorized values in the new loop. Each value from the
495   /// original loop, when vectorized, is represented by UF vector values in the
496   /// new unrolled loop, where UF is the unroll factor.
497   using VectorParts = SmallVector<Value *, 2>;
498 
499   /// Vectorize a single GetElementPtrInst based on information gathered and
500   /// decisions taken during planning.
501   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
502                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
503                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
504 
505   /// Vectorize a single first-order recurrence or pointer induction PHINode in
506   /// a block. This method handles the induction variable canonicalization. It
507   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
508   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
509                            VPTransformState &State);
510 
511   /// A helper function to scalarize a single Instruction in the innermost loop.
512   /// Generates a sequence of scalar instances for each lane between \p MinLane
513   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
514   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
515   /// Instr's operands.
516   void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands,
517                             const VPIteration &Instance, bool IfPredicateInstr,
518                             VPTransformState &State);
519 
520   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
521   /// is provided, the integer induction variable will first be truncated to
522   /// the corresponding type.
523   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
524                              VPValue *Def, VPValue *CastDef,
525                              VPTransformState &State);
526 
527   /// Construct the vector value of a scalarized value \p V one lane at a time.
528   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
529                                  VPTransformState &State);
530 
531   /// Try to vectorize interleaved access group \p Group with the base address
532   /// given in \p Addr, optionally masking the vector operations if \p
533   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
534   /// values in the vectorized loop.
535   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
536                                 ArrayRef<VPValue *> VPDefs,
537                                 VPTransformState &State, VPValue *Addr,
538                                 ArrayRef<VPValue *> StoredValues,
539                                 VPValue *BlockInMask = nullptr);
540 
541   /// Vectorize Load and Store instructions with the base address given in \p
542   /// Addr, optionally masking the vector operations if \p BlockInMask is
543   /// non-null. Use \p State to translate given VPValues to IR values in the
544   /// vectorized loop.
545   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
546                                   VPValue *Def, VPValue *Addr,
547                                   VPValue *StoredValue, VPValue *BlockInMask,
548                                   bool ConsecutiveStride, bool Reverse);
549 
550   /// Set the debug location in the builder \p Ptr using the debug location in
551   /// \p V. If \p Ptr is None then it uses the class member's Builder.
552   void setDebugLocFromInst(const Value *V,
553                            Optional<IRBuilder<> *> CustomBuilder = None);
554 
555   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
556   void fixNonInductionPHIs(VPTransformState &State);
557 
558   /// Returns true if the reordering of FP operations is not allowed, but we are
559   /// able to vectorize with strict in-order reductions for the given RdxDesc.
560   bool useOrderedReductions(RecurrenceDescriptor &RdxDesc);
561 
562   /// Create a broadcast instruction. This method generates a broadcast
563   /// instruction (shuffle) for loop invariant values and for the induction
564   /// value. If this is the induction variable then we extend it to N, N+1, ...
565   /// this is needed because each iteration in the loop corresponds to a SIMD
566   /// element.
567   virtual Value *getBroadcastInstrs(Value *V);
568 
569 protected:
570   friend class LoopVectorizationPlanner;
571 
572   /// A small list of PHINodes.
573   using PhiVector = SmallVector<PHINode *, 4>;
574 
575   /// A type for scalarized values in the new loop. Each value from the
576   /// original loop, when scalarized, is represented by UF x VF scalar values
577   /// in the new unrolled loop, where UF is the unroll factor and VF is the
578   /// vectorization factor.
579   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
580 
581   /// Set up the values of the IVs correctly when exiting the vector loop.
582   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
583                     Value *CountRoundDown, Value *EndValue,
584                     BasicBlock *MiddleBlock);
585 
586   /// Create a new induction variable inside L.
587   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
588                                    Value *Step, Instruction *DL);
589 
590   /// Handle all cross-iteration phis in the header.
591   void fixCrossIterationPHIs(VPTransformState &State);
592 
593   /// Create the exit value of first order recurrences in the middle block and
594   /// update their users.
595   void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State);
596 
597   /// Create code for the loop exit value of the reduction.
598   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
599 
600   /// Clear NSW/NUW flags from reduction instructions if necessary.
601   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
602                                VPTransformState &State);
603 
604   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
605   /// means we need to add the appropriate incoming value from the middle
606   /// block as exiting edges from the scalar epilogue loop (if present) are
607   /// already in place, and we exit the vector loop exclusively to the middle
608   /// block.
609   void fixLCSSAPHIs(VPTransformState &State);
610 
611   /// Iteratively sink the scalarized operands of a predicated instruction into
612   /// the block that was created for it.
613   void sinkScalarOperands(Instruction *PredInst);
614 
615   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
616   /// represented as.
617   void truncateToMinimalBitwidths(VPTransformState &State);
618 
619   /// This function adds
620   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
621   /// to each vector element of Val. The sequence starts at StartIndex.
622   /// \p Opcode is relevant for FP induction variable.
623   virtual Value *
624   getStepVector(Value *Val, Value *StartIdx, Value *Step,
625                 Instruction::BinaryOps Opcode = Instruction::BinaryOpsEnd);
626 
627   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
628   /// variable on which to base the steps, \p Step is the size of the step, and
629   /// \p EntryVal is the value from the original loop that maps to the steps.
630   /// Note that \p EntryVal doesn't have to be an induction variable - it
631   /// can also be a truncate instruction.
632   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
633                         const InductionDescriptor &ID, VPValue *Def,
634                         VPValue *CastDef, VPTransformState &State);
635 
636   /// Create a vector induction phi node based on an existing scalar one. \p
637   /// EntryVal is the value from the original loop that maps to the vector phi
638   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
639   /// truncate instruction, instead of widening the original IV, we widen a
640   /// version of the IV truncated to \p EntryVal's type.
641   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
642                                        Value *Step, Value *Start,
643                                        Instruction *EntryVal, VPValue *Def,
644                                        VPValue *CastDef,
645                                        VPTransformState &State);
646 
647   /// Returns true if an instruction \p I should be scalarized instead of
648   /// vectorized for the chosen vectorization factor.
649   bool shouldScalarizeInstruction(Instruction *I) const;
650 
651   /// Returns true if we should generate a scalar version of \p IV.
652   bool needsScalarInduction(Instruction *IV) const;
653 
654   /// If there is a cast involved in the induction variable \p ID, which should
655   /// be ignored in the vectorized loop body, this function records the
656   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
657   /// cast. We had already proved that the casted Phi is equal to the uncasted
658   /// Phi in the vectorized loop (under a runtime guard), and therefore
659   /// there is no need to vectorize the cast - the same value can be used in the
660   /// vector loop for both the Phi and the cast.
661   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
662   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
663   ///
664   /// \p EntryVal is the value from the original loop that maps to the vector
665   /// phi node and is used to distinguish what is the IV currently being
666   /// processed - original one (if \p EntryVal is a phi corresponding to the
667   /// original IV) or the "newly-created" one based on the proof mentioned above
668   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
669   /// latter case \p EntryVal is a TruncInst and we must not record anything for
670   /// that IV, but it's error-prone to expect callers of this routine to care
671   /// about that, hence this explicit parameter.
672   void recordVectorLoopValueForInductionCast(
673       const InductionDescriptor &ID, const Instruction *EntryVal,
674       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
675       unsigned Part, unsigned Lane = UINT_MAX);
676 
677   /// Generate a shuffle sequence that will reverse the vector Vec.
678   virtual Value *reverseVector(Value *Vec);
679 
680   /// Returns (and creates if needed) the original loop trip count.
681   Value *getOrCreateTripCount(Loop *NewLoop);
682 
683   /// Returns (and creates if needed) the trip count of the widened loop.
684   Value *getOrCreateVectorTripCount(Loop *NewLoop);
685 
686   /// Returns a bitcasted value to the requested vector type.
687   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
688   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
689                                 const DataLayout &DL);
690 
691   /// Emit a bypass check to see if the vector trip count is zero, including if
692   /// it overflows.
693   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
694 
695   /// Emit a bypass check to see if all of the SCEV assumptions we've
696   /// had to make are correct. Returns the block containing the checks or
697   /// nullptr if no checks have been added.
698   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
699 
700   /// Emit bypass checks to check any memory assumptions we may have made.
701   /// Returns the block containing the checks or nullptr if no checks have been
702   /// added.
703   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
704 
705   /// Compute the transformed value of Index at offset StartValue using step
706   /// StepValue.
707   /// For integer induction, returns StartValue + Index * StepValue.
708   /// For pointer induction, returns StartValue[Index * StepValue].
709   /// FIXME: The newly created binary instructions should contain nsw/nuw
710   /// flags, which can be found from the original scalar operations.
711   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
712                               const DataLayout &DL,
713                               const InductionDescriptor &ID) const;
714 
715   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
716   /// vector loop preheader, middle block and scalar preheader. Also
717   /// allocate a loop object for the new vector loop and return it.
718   Loop *createVectorLoopSkeleton(StringRef Prefix);
719 
720   /// Create new phi nodes for the induction variables to resume iteration count
721   /// in the scalar epilogue, from where the vectorized loop left off (given by
722   /// \p VectorTripCount).
723   /// In cases where the loop skeleton is more complicated (eg. epilogue
724   /// vectorization) and the resume values can come from an additional bypass
725   /// block, the \p AdditionalBypass pair provides information about the bypass
726   /// block and the end value on the edge from bypass to this loop.
727   void createInductionResumeValues(
728       Loop *L, Value *VectorTripCount,
729       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
730 
731   /// Complete the loop skeleton by adding debug MDs, creating appropriate
732   /// conditional branches in the middle block, preparing the builder and
733   /// running the verifier. Take in the vector loop \p L as argument, and return
734   /// the preheader of the completed vector loop.
735   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
736 
737   /// Add additional metadata to \p To that was not present on \p Orig.
738   ///
739   /// Currently this is used to add the noalias annotations based on the
740   /// inserted memchecks.  Use this for instructions that are *cloned* into the
741   /// vector loop.
742   void addNewMetadata(Instruction *To, const Instruction *Orig);
743 
744   /// Add metadata from one instruction to another.
745   ///
746   /// This includes both the original MDs from \p From and additional ones (\see
747   /// addNewMetadata).  Use this for *newly created* instructions in the vector
748   /// loop.
749   void addMetadata(Instruction *To, Instruction *From);
750 
751   /// Similar to the previous function but it adds the metadata to a
752   /// vector of instructions.
753   void addMetadata(ArrayRef<Value *> To, Instruction *From);
754 
755   /// Allow subclasses to override and print debug traces before/after vplan
756   /// execution, when trace information is requested.
757   virtual void printDebugTracesAtStart(){};
758   virtual void printDebugTracesAtEnd(){};
759 
760   /// The original loop.
761   Loop *OrigLoop;
762 
763   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
764   /// dynamic knowledge to simplify SCEV expressions and converts them to a
765   /// more usable form.
766   PredicatedScalarEvolution &PSE;
767 
768   /// Loop Info.
769   LoopInfo *LI;
770 
771   /// Dominator Tree.
772   DominatorTree *DT;
773 
774   /// Alias Analysis.
775   AAResults *AA;
776 
777   /// Target Library Info.
778   const TargetLibraryInfo *TLI;
779 
780   /// Target Transform Info.
781   const TargetTransformInfo *TTI;
782 
783   /// Assumption Cache.
784   AssumptionCache *AC;
785 
786   /// Interface to emit optimization remarks.
787   OptimizationRemarkEmitter *ORE;
788 
789   /// LoopVersioning.  It's only set up (non-null) if memchecks were
790   /// used.
791   ///
792   /// This is currently only used to add no-alias metadata based on the
793   /// memchecks.  The actually versioning is performed manually.
794   std::unique_ptr<LoopVersioning> LVer;
795 
796   /// The vectorization SIMD factor to use. Each vector will have this many
797   /// vector elements.
798   ElementCount VF;
799 
800   /// The vectorization unroll factor to use. Each scalar is vectorized to this
801   /// many different vector instructions.
802   unsigned UF;
803 
804   /// The builder that we use
805   IRBuilder<> Builder;
806 
807   // --- Vectorization state ---
808 
809   /// The vector-loop preheader.
810   BasicBlock *LoopVectorPreHeader;
811 
812   /// The scalar-loop preheader.
813   BasicBlock *LoopScalarPreHeader;
814 
815   /// Middle Block between the vector and the scalar.
816   BasicBlock *LoopMiddleBlock;
817 
818   /// The unique ExitBlock of the scalar loop if one exists.  Note that
819   /// there can be multiple exiting edges reaching this block.
820   BasicBlock *LoopExitBlock;
821 
822   /// The vector loop body.
823   BasicBlock *LoopVectorBody;
824 
825   /// The scalar loop body.
826   BasicBlock *LoopScalarBody;
827 
828   /// A list of all bypass blocks. The first block is the entry of the loop.
829   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
830 
831   /// The new Induction variable which was added to the new block.
832   PHINode *Induction = nullptr;
833 
834   /// The induction variable of the old basic block.
835   PHINode *OldInduction = nullptr;
836 
837   /// Store instructions that were predicated.
838   SmallVector<Instruction *, 4> PredicatedInstructions;
839 
840   /// Trip count of the original loop.
841   Value *TripCount = nullptr;
842 
843   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
844   Value *VectorTripCount = nullptr;
845 
846   /// The legality analysis.
847   LoopVectorizationLegality *Legal;
848 
849   /// The profitablity analysis.
850   LoopVectorizationCostModel *Cost;
851 
852   // Record whether runtime checks are added.
853   bool AddedSafetyChecks = false;
854 
855   // Holds the end values for each induction variable. We save the end values
856   // so we can later fix-up the external users of the induction variables.
857   DenseMap<PHINode *, Value *> IVEndValues;
858 
859   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
860   // fixed up at the end of vector code generation.
861   SmallVector<PHINode *, 8> OrigPHIsToFix;
862 
863   /// BFI and PSI are used to check for profile guided size optimizations.
864   BlockFrequencyInfo *BFI;
865   ProfileSummaryInfo *PSI;
866 
867   // Whether this loop should be optimized for size based on profile guided size
868   // optimizatios.
869   bool OptForSizeBasedOnProfile;
870 
871   /// Structure to hold information about generated runtime checks, responsible
872   /// for cleaning the checks, if vectorization turns out unprofitable.
873   GeneratedRTChecks &RTChecks;
874 };
875 
876 class InnerLoopUnroller : public InnerLoopVectorizer {
877 public:
878   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
879                     LoopInfo *LI, DominatorTree *DT,
880                     const TargetLibraryInfo *TLI,
881                     const TargetTransformInfo *TTI, AssumptionCache *AC,
882                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
883                     LoopVectorizationLegality *LVL,
884                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
885                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
886       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
887                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
888                             BFI, PSI, Check) {}
889 
890 private:
891   Value *getBroadcastInstrs(Value *V) override;
892   Value *getStepVector(
893       Value *Val, Value *StartIdx, Value *Step,
894       Instruction::BinaryOps Opcode = Instruction::BinaryOpsEnd) override;
895   Value *reverseVector(Value *Vec) override;
896 };
897 
898 /// Encapsulate information regarding vectorization of a loop and its epilogue.
899 /// This information is meant to be updated and used across two stages of
900 /// epilogue vectorization.
901 struct EpilogueLoopVectorizationInfo {
902   ElementCount MainLoopVF = ElementCount::getFixed(0);
903   unsigned MainLoopUF = 0;
904   ElementCount EpilogueVF = ElementCount::getFixed(0);
905   unsigned EpilogueUF = 0;
906   BasicBlock *MainLoopIterationCountCheck = nullptr;
907   BasicBlock *EpilogueIterationCountCheck = nullptr;
908   BasicBlock *SCEVSafetyCheck = nullptr;
909   BasicBlock *MemSafetyCheck = nullptr;
910   Value *TripCount = nullptr;
911   Value *VectorTripCount = nullptr;
912 
913   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
914                                 ElementCount EVF, unsigned EUF)
915       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
916     assert(EUF == 1 &&
917            "A high UF for the epilogue loop is likely not beneficial.");
918   }
919 };
920 
921 /// An extension of the inner loop vectorizer that creates a skeleton for a
922 /// vectorized loop that has its epilogue (residual) also vectorized.
923 /// The idea is to run the vplan on a given loop twice, firstly to setup the
924 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
925 /// from the first step and vectorize the epilogue.  This is achieved by
926 /// deriving two concrete strategy classes from this base class and invoking
927 /// them in succession from the loop vectorizer planner.
928 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
929 public:
930   InnerLoopAndEpilogueVectorizer(
931       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
932       DominatorTree *DT, const TargetLibraryInfo *TLI,
933       const TargetTransformInfo *TTI, AssumptionCache *AC,
934       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
935       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
936       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
937       GeneratedRTChecks &Checks)
938       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
939                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
940                             Checks),
941         EPI(EPI) {}
942 
943   // Override this function to handle the more complex control flow around the
944   // three loops.
945   BasicBlock *createVectorizedLoopSkeleton() final override {
946     return createEpilogueVectorizedLoopSkeleton();
947   }
948 
949   /// The interface for creating a vectorized skeleton using one of two
950   /// different strategies, each corresponding to one execution of the vplan
951   /// as described above.
952   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
953 
954   /// Holds and updates state information required to vectorize the main loop
955   /// and its epilogue in two separate passes. This setup helps us avoid
956   /// regenerating and recomputing runtime safety checks. It also helps us to
957   /// shorten the iteration-count-check path length for the cases where the
958   /// iteration count of the loop is so small that the main vector loop is
959   /// completely skipped.
960   EpilogueLoopVectorizationInfo &EPI;
961 };
962 
963 /// A specialized derived class of inner loop vectorizer that performs
964 /// vectorization of *main* loops in the process of vectorizing loops and their
965 /// epilogues.
966 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
967 public:
968   EpilogueVectorizerMainLoop(
969       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
970       DominatorTree *DT, const TargetLibraryInfo *TLI,
971       const TargetTransformInfo *TTI, AssumptionCache *AC,
972       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
973       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
974       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
975       GeneratedRTChecks &Check)
976       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
977                                        EPI, LVL, CM, BFI, PSI, Check) {}
978   /// Implements the interface for creating a vectorized skeleton using the
979   /// *main loop* strategy (ie the first pass of vplan execution).
980   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
981 
982 protected:
983   /// Emits an iteration count bypass check once for the main loop (when \p
984   /// ForEpilogue is false) and once for the epilogue loop (when \p
985   /// ForEpilogue is true).
986   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
987                                              bool ForEpilogue);
988   void printDebugTracesAtStart() override;
989   void printDebugTracesAtEnd() override;
990 };
991 
992 // A specialized derived class of inner loop vectorizer that performs
993 // vectorization of *epilogue* loops in the process of vectorizing loops and
994 // their epilogues.
995 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
996 public:
997   EpilogueVectorizerEpilogueLoop(
998       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
999       DominatorTree *DT, const TargetLibraryInfo *TLI,
1000       const TargetTransformInfo *TTI, AssumptionCache *AC,
1001       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
1002       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
1003       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
1004       GeneratedRTChecks &Checks)
1005       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1006                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1007   /// Implements the interface for creating a vectorized skeleton using the
1008   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1009   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1010 
1011 protected:
1012   /// Emits an iteration count bypass check after the main vector loop has
1013   /// finished to see if there are any iterations left to execute by either
1014   /// the vector epilogue or the scalar epilogue.
1015   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1016                                                       BasicBlock *Bypass,
1017                                                       BasicBlock *Insert);
1018   void printDebugTracesAtStart() override;
1019   void printDebugTracesAtEnd() override;
1020 };
1021 } // end namespace llvm
1022 
1023 /// Look for a meaningful debug location on the instruction or it's
1024 /// operands.
1025 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1026   if (!I)
1027     return I;
1028 
1029   DebugLoc Empty;
1030   if (I->getDebugLoc() != Empty)
1031     return I;
1032 
1033   for (Use &Op : I->operands()) {
1034     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1035       if (OpInst->getDebugLoc() != Empty)
1036         return OpInst;
1037   }
1038 
1039   return I;
1040 }
1041 
1042 void InnerLoopVectorizer::setDebugLocFromInst(
1043     const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
1044   IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
1045   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
1046     const DILocation *DIL = Inst->getDebugLoc();
1047 
1048     // When a FSDiscriminator is enabled, we don't need to add the multiply
1049     // factors to the discriminators.
1050     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1051         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1052       // FIXME: For scalable vectors, assume vscale=1.
1053       auto NewDIL =
1054           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1055       if (NewDIL)
1056         B->SetCurrentDebugLocation(NewDIL.getValue());
1057       else
1058         LLVM_DEBUG(dbgs()
1059                    << "Failed to create new discriminator: "
1060                    << DIL->getFilename() << " Line: " << DIL->getLine());
1061     } else
1062       B->SetCurrentDebugLocation(DIL);
1063   } else
1064     B->SetCurrentDebugLocation(DebugLoc());
1065 }
1066 
1067 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1068 /// is passed, the message relates to that particular instruction.
1069 #ifndef NDEBUG
1070 static void debugVectorizationMessage(const StringRef Prefix,
1071                                       const StringRef DebugMsg,
1072                                       Instruction *I) {
1073   dbgs() << "LV: " << Prefix << DebugMsg;
1074   if (I != nullptr)
1075     dbgs() << " " << *I;
1076   else
1077     dbgs() << '.';
1078   dbgs() << '\n';
1079 }
1080 #endif
1081 
1082 /// Create an analysis remark that explains why vectorization failed
1083 ///
1084 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1085 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1086 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1087 /// the location of the remark.  \return the remark object that can be
1088 /// streamed to.
1089 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1090     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1091   Value *CodeRegion = TheLoop->getHeader();
1092   DebugLoc DL = TheLoop->getStartLoc();
1093 
1094   if (I) {
1095     CodeRegion = I->getParent();
1096     // If there is no debug location attached to the instruction, revert back to
1097     // using the loop's.
1098     if (I->getDebugLoc())
1099       DL = I->getDebugLoc();
1100   }
1101 
1102   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1103 }
1104 
1105 /// Return a value for Step multiplied by VF.
1106 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) {
1107   assert(isa<ConstantInt>(Step) && "Expected an integer step");
1108   Constant *StepVal = ConstantInt::get(
1109       Step->getType(),
1110       cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue());
1111   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1112 }
1113 
1114 namespace llvm {
1115 
1116 /// Return the runtime value for VF.
1117 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1118   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1119   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1120 }
1121 
1122 static Value *getRuntimeVFAsFloat(IRBuilder<> &B, Type *FTy, ElementCount VF) {
1123   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
1124   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
1125   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
1126   return B.CreateUIToFP(RuntimeVF, FTy);
1127 }
1128 
1129 void reportVectorizationFailure(const StringRef DebugMsg,
1130                                 const StringRef OREMsg, const StringRef ORETag,
1131                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1132                                 Instruction *I) {
1133   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1134   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1135   ORE->emit(
1136       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1137       << "loop not vectorized: " << OREMsg);
1138 }
1139 
1140 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1141                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1142                              Instruction *I) {
1143   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1144   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1145   ORE->emit(
1146       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1147       << Msg);
1148 }
1149 
1150 } // end namespace llvm
1151 
1152 #ifndef NDEBUG
1153 /// \return string containing a file name and a line # for the given loop.
1154 static std::string getDebugLocString(const Loop *L) {
1155   std::string Result;
1156   if (L) {
1157     raw_string_ostream OS(Result);
1158     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1159       LoopDbgLoc.print(OS);
1160     else
1161       // Just print the module name.
1162       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1163     OS.flush();
1164   }
1165   return Result;
1166 }
1167 #endif
1168 
1169 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1170                                          const Instruction *Orig) {
1171   // If the loop was versioned with memchecks, add the corresponding no-alias
1172   // metadata.
1173   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1174     LVer->annotateInstWithNoAlias(To, Orig);
1175 }
1176 
1177 void InnerLoopVectorizer::addMetadata(Instruction *To,
1178                                       Instruction *From) {
1179   propagateMetadata(To, From);
1180   addNewMetadata(To, From);
1181 }
1182 
1183 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1184                                       Instruction *From) {
1185   for (Value *V : To) {
1186     if (Instruction *I = dyn_cast<Instruction>(V))
1187       addMetadata(I, From);
1188   }
1189 }
1190 
1191 namespace llvm {
1192 
1193 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1194 // lowered.
1195 enum ScalarEpilogueLowering {
1196 
1197   // The default: allowing scalar epilogues.
1198   CM_ScalarEpilogueAllowed,
1199 
1200   // Vectorization with OptForSize: don't allow epilogues.
1201   CM_ScalarEpilogueNotAllowedOptSize,
1202 
1203   // A special case of vectorisation with OptForSize: loops with a very small
1204   // trip count are considered for vectorization under OptForSize, thereby
1205   // making sure the cost of their loop body is dominant, free of runtime
1206   // guards and scalar iteration overheads.
1207   CM_ScalarEpilogueNotAllowedLowTripLoop,
1208 
1209   // Loop hint predicate indicating an epilogue is undesired.
1210   CM_ScalarEpilogueNotNeededUsePredicate,
1211 
1212   // Directive indicating we must either tail fold or not vectorize
1213   CM_ScalarEpilogueNotAllowedUsePredicate
1214 };
1215 
1216 /// ElementCountComparator creates a total ordering for ElementCount
1217 /// for the purposes of using it in a set structure.
1218 struct ElementCountComparator {
1219   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1220     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1221            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1222   }
1223 };
1224 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1225 
1226 /// LoopVectorizationCostModel - estimates the expected speedups due to
1227 /// vectorization.
1228 /// In many cases vectorization is not profitable. This can happen because of
1229 /// a number of reasons. In this class we mainly attempt to predict the
1230 /// expected speedup/slowdowns due to the supported instruction set. We use the
1231 /// TargetTransformInfo to query the different backends for the cost of
1232 /// different operations.
1233 class LoopVectorizationCostModel {
1234 public:
1235   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1236                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1237                              LoopVectorizationLegality *Legal,
1238                              const TargetTransformInfo &TTI,
1239                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1240                              AssumptionCache *AC,
1241                              OptimizationRemarkEmitter *ORE, const Function *F,
1242                              const LoopVectorizeHints *Hints,
1243                              InterleavedAccessInfo &IAI)
1244       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1245         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1246         Hints(Hints), InterleaveInfo(IAI) {}
1247 
1248   /// \return An upper bound for the vectorization factors (both fixed and
1249   /// scalable). If the factors are 0, vectorization and interleaving should be
1250   /// avoided up front.
1251   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1252 
1253   /// \return True if runtime checks are required for vectorization, and false
1254   /// otherwise.
1255   bool runtimeChecksRequired();
1256 
1257   /// \return The most profitable vectorization factor and the cost of that VF.
1258   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1259   /// then this vectorization factor will be selected if vectorization is
1260   /// possible.
1261   VectorizationFactor
1262   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1263 
1264   VectorizationFactor
1265   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1266                                     const LoopVectorizationPlanner &LVP);
1267 
1268   /// Setup cost-based decisions for user vectorization factor.
1269   /// \return true if the UserVF is a feasible VF to be chosen.
1270   bool selectUserVectorizationFactor(ElementCount UserVF) {
1271     collectUniformsAndScalars(UserVF);
1272     collectInstsToScalarize(UserVF);
1273     return expectedCost(UserVF).first.isValid();
1274   }
1275 
1276   /// \return The size (in bits) of the smallest and widest types in the code
1277   /// that needs to be vectorized. We ignore values that remain scalar such as
1278   /// 64 bit loop indices.
1279   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1280 
1281   /// \return The desired interleave count.
1282   /// If interleave count has been specified by metadata it will be returned.
1283   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1284   /// are the selected vectorization factor and the cost of the selected VF.
1285   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1286 
1287   /// Memory access instruction may be vectorized in more than one way.
1288   /// Form of instruction after vectorization depends on cost.
1289   /// This function takes cost-based decisions for Load/Store instructions
1290   /// and collects them in a map. This decisions map is used for building
1291   /// the lists of loop-uniform and loop-scalar instructions.
1292   /// The calculated cost is saved with widening decision in order to
1293   /// avoid redundant calculations.
1294   void setCostBasedWideningDecision(ElementCount VF);
1295 
1296   /// A struct that represents some properties of the register usage
1297   /// of a loop.
1298   struct RegisterUsage {
1299     /// Holds the number of loop invariant values that are used in the loop.
1300     /// The key is ClassID of target-provided register class.
1301     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1302     /// Holds the maximum number of concurrent live intervals in the loop.
1303     /// The key is ClassID of target-provided register class.
1304     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1305   };
1306 
1307   /// \return Returns information about the register usages of the loop for the
1308   /// given vectorization factors.
1309   SmallVector<RegisterUsage, 8>
1310   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1311 
1312   /// Collect values we want to ignore in the cost model.
1313   void collectValuesToIgnore();
1314 
1315   /// Collect all element types in the loop for which widening is needed.
1316   void collectElementTypesForWidening();
1317 
1318   /// Split reductions into those that happen in the loop, and those that happen
1319   /// outside. In loop reductions are collected into InLoopReductionChains.
1320   void collectInLoopReductions();
1321 
1322   /// Returns true if we should use strict in-order reductions for the given
1323   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1324   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1325   /// of FP operations.
1326   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1327     return !Hints->allowReordering() && RdxDesc.isOrdered();
1328   }
1329 
1330   /// \returns The smallest bitwidth each instruction can be represented with.
1331   /// The vector equivalents of these instructions should be truncated to this
1332   /// type.
1333   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1334     return MinBWs;
1335   }
1336 
1337   /// \returns True if it is more profitable to scalarize instruction \p I for
1338   /// vectorization factor \p VF.
1339   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1340     assert(VF.isVector() &&
1341            "Profitable to scalarize relevant only for VF > 1.");
1342 
1343     // Cost model is not run in the VPlan-native path - return conservative
1344     // result until this changes.
1345     if (EnableVPlanNativePath)
1346       return false;
1347 
1348     auto Scalars = InstsToScalarize.find(VF);
1349     assert(Scalars != InstsToScalarize.end() &&
1350            "VF not yet analyzed for scalarization profitability");
1351     return Scalars->second.find(I) != Scalars->second.end();
1352   }
1353 
1354   /// Returns true if \p I is known to be uniform after vectorization.
1355   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1356     if (VF.isScalar())
1357       return true;
1358 
1359     // Cost model is not run in the VPlan-native path - return conservative
1360     // result until this changes.
1361     if (EnableVPlanNativePath)
1362       return false;
1363 
1364     auto UniformsPerVF = Uniforms.find(VF);
1365     assert(UniformsPerVF != Uniforms.end() &&
1366            "VF not yet analyzed for uniformity");
1367     return UniformsPerVF->second.count(I);
1368   }
1369 
1370   /// Returns true if \p I is known to be scalar after vectorization.
1371   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1372     if (VF.isScalar())
1373       return true;
1374 
1375     // Cost model is not run in the VPlan-native path - return conservative
1376     // result until this changes.
1377     if (EnableVPlanNativePath)
1378       return false;
1379 
1380     auto ScalarsPerVF = Scalars.find(VF);
1381     assert(ScalarsPerVF != Scalars.end() &&
1382            "Scalar values are not calculated for VF");
1383     return ScalarsPerVF->second.count(I);
1384   }
1385 
1386   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1387   /// for vectorization factor \p VF.
1388   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1389     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1390            !isProfitableToScalarize(I, VF) &&
1391            !isScalarAfterVectorization(I, VF);
1392   }
1393 
1394   /// Decision that was taken during cost calculation for memory instruction.
1395   enum InstWidening {
1396     CM_Unknown,
1397     CM_Widen,         // For consecutive accesses with stride +1.
1398     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1399     CM_Interleave,
1400     CM_GatherScatter,
1401     CM_Scalarize
1402   };
1403 
1404   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1405   /// instruction \p I and vector width \p VF.
1406   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1407                            InstructionCost Cost) {
1408     assert(VF.isVector() && "Expected VF >=2");
1409     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1410   }
1411 
1412   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1413   /// interleaving group \p Grp and vector width \p VF.
1414   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1415                            ElementCount VF, InstWidening W,
1416                            InstructionCost Cost) {
1417     assert(VF.isVector() && "Expected VF >=2");
1418     /// Broadcast this decicion to all instructions inside the group.
1419     /// But the cost will be assigned to one instruction only.
1420     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1421       if (auto *I = Grp->getMember(i)) {
1422         if (Grp->getInsertPos() == I)
1423           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1424         else
1425           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1426       }
1427     }
1428   }
1429 
1430   /// Return the cost model decision for the given instruction \p I and vector
1431   /// width \p VF. Return CM_Unknown if this instruction did not pass
1432   /// through the cost modeling.
1433   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1434     assert(VF.isVector() && "Expected VF to be a vector VF");
1435     // Cost model is not run in the VPlan-native path - return conservative
1436     // result until this changes.
1437     if (EnableVPlanNativePath)
1438       return CM_GatherScatter;
1439 
1440     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1441     auto Itr = WideningDecisions.find(InstOnVF);
1442     if (Itr == WideningDecisions.end())
1443       return CM_Unknown;
1444     return Itr->second.first;
1445   }
1446 
1447   /// Return the vectorization cost for the given instruction \p I and vector
1448   /// width \p VF.
1449   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1450     assert(VF.isVector() && "Expected VF >=2");
1451     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1452     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1453            "The cost is not calculated");
1454     return WideningDecisions[InstOnVF].second;
1455   }
1456 
1457   /// Return True if instruction \p I is an optimizable truncate whose operand
1458   /// is an induction variable. Such a truncate will be removed by adding a new
1459   /// induction variable with the destination type.
1460   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1461     // If the instruction is not a truncate, return false.
1462     auto *Trunc = dyn_cast<TruncInst>(I);
1463     if (!Trunc)
1464       return false;
1465 
1466     // Get the source and destination types of the truncate.
1467     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1468     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1469 
1470     // If the truncate is free for the given types, return false. Replacing a
1471     // free truncate with an induction variable would add an induction variable
1472     // update instruction to each iteration of the loop. We exclude from this
1473     // check the primary induction variable since it will need an update
1474     // instruction regardless.
1475     Value *Op = Trunc->getOperand(0);
1476     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1477       return false;
1478 
1479     // If the truncated value is not an induction variable, return false.
1480     return Legal->isInductionPhi(Op);
1481   }
1482 
1483   /// Collects the instructions to scalarize for each predicated instruction in
1484   /// the loop.
1485   void collectInstsToScalarize(ElementCount VF);
1486 
1487   /// Collect Uniform and Scalar values for the given \p VF.
1488   /// The sets depend on CM decision for Load/Store instructions
1489   /// that may be vectorized as interleave, gather-scatter or scalarized.
1490   void collectUniformsAndScalars(ElementCount VF) {
1491     // Do the analysis once.
1492     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1493       return;
1494     setCostBasedWideningDecision(VF);
1495     collectLoopUniforms(VF);
1496     collectLoopScalars(VF);
1497   }
1498 
1499   /// Returns true if the target machine supports masked store operation
1500   /// for the given \p DataType and kind of access to \p Ptr.
1501   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1502     return Legal->isConsecutivePtr(DataType, Ptr) &&
1503            TTI.isLegalMaskedStore(DataType, Alignment);
1504   }
1505 
1506   /// Returns true if the target machine supports masked load operation
1507   /// for the given \p DataType and kind of access to \p Ptr.
1508   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1509     return Legal->isConsecutivePtr(DataType, Ptr) &&
1510            TTI.isLegalMaskedLoad(DataType, Alignment);
1511   }
1512 
1513   /// Returns true if the target machine can represent \p V as a masked gather
1514   /// or scatter operation.
1515   bool isLegalGatherOrScatter(Value *V) {
1516     bool LI = isa<LoadInst>(V);
1517     bool SI = isa<StoreInst>(V);
1518     if (!LI && !SI)
1519       return false;
1520     auto *Ty = getLoadStoreType(V);
1521     Align Align = getLoadStoreAlignment(V);
1522     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1523            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1524   }
1525 
1526   /// Returns true if the target machine supports all of the reduction
1527   /// variables found for the given VF.
1528   bool canVectorizeReductions(ElementCount VF) const {
1529     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1530       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1531       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1532     }));
1533   }
1534 
1535   /// Returns true if \p I is an instruction that will be scalarized with
1536   /// predication. Such instructions include conditional stores and
1537   /// instructions that may divide by zero.
1538   /// If a non-zero VF has been calculated, we check if I will be scalarized
1539   /// predication for that VF.
1540   bool isScalarWithPredication(Instruction *I) const;
1541 
1542   // Returns true if \p I is an instruction that will be predicated either
1543   // through scalar predication or masked load/store or masked gather/scatter.
1544   // Superset of instructions that return true for isScalarWithPredication.
1545   bool isPredicatedInst(Instruction *I) {
1546     if (!blockNeedsPredication(I->getParent()))
1547       return false;
1548     // Loads and stores that need some form of masked operation are predicated
1549     // instructions.
1550     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1551       return Legal->isMaskRequired(I);
1552     return isScalarWithPredication(I);
1553   }
1554 
1555   /// Returns true if \p I is a memory instruction with consecutive memory
1556   /// access that can be widened.
1557   bool
1558   memoryInstructionCanBeWidened(Instruction *I,
1559                                 ElementCount VF = ElementCount::getFixed(1));
1560 
1561   /// Returns true if \p I is a memory instruction in an interleaved-group
1562   /// of memory accesses that can be vectorized with wide vector loads/stores
1563   /// and shuffles.
1564   bool
1565   interleavedAccessCanBeWidened(Instruction *I,
1566                                 ElementCount VF = ElementCount::getFixed(1));
1567 
1568   /// Check if \p Instr belongs to any interleaved access group.
1569   bool isAccessInterleaved(Instruction *Instr) {
1570     return InterleaveInfo.isInterleaved(Instr);
1571   }
1572 
1573   /// Get the interleaved access group that \p Instr belongs to.
1574   const InterleaveGroup<Instruction> *
1575   getInterleavedAccessGroup(Instruction *Instr) {
1576     return InterleaveInfo.getInterleaveGroup(Instr);
1577   }
1578 
1579   /// Returns true if we're required to use a scalar epilogue for at least
1580   /// the final iteration of the original loop.
1581   bool requiresScalarEpilogue(ElementCount VF) const {
1582     if (!isScalarEpilogueAllowed())
1583       return false;
1584     // If we might exit from anywhere but the latch, must run the exiting
1585     // iteration in scalar form.
1586     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1587       return true;
1588     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1589   }
1590 
1591   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1592   /// loop hint annotation.
1593   bool isScalarEpilogueAllowed() const {
1594     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1595   }
1596 
1597   /// Returns true if all loop blocks should be masked to fold tail loop.
1598   bool foldTailByMasking() const { return FoldTailByMasking; }
1599 
1600   bool blockNeedsPredication(BasicBlock *BB) const {
1601     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1602   }
1603 
1604   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1605   /// nodes to the chain of instructions representing the reductions. Uses a
1606   /// MapVector to ensure deterministic iteration order.
1607   using ReductionChainMap =
1608       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1609 
1610   /// Return the chain of instructions representing an inloop reduction.
1611   const ReductionChainMap &getInLoopReductionChains() const {
1612     return InLoopReductionChains;
1613   }
1614 
1615   /// Returns true if the Phi is part of an inloop reduction.
1616   bool isInLoopReduction(PHINode *Phi) const {
1617     return InLoopReductionChains.count(Phi);
1618   }
1619 
1620   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1621   /// with factor VF.  Return the cost of the instruction, including
1622   /// scalarization overhead if it's needed.
1623   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1624 
1625   /// Estimate cost of a call instruction CI if it were vectorized with factor
1626   /// VF. Return the cost of the instruction, including scalarization overhead
1627   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1628   /// scalarized -
1629   /// i.e. either vector version isn't available, or is too expensive.
1630   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1631                                     bool &NeedToScalarize) const;
1632 
1633   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1634   /// that of B.
1635   bool isMoreProfitable(const VectorizationFactor &A,
1636                         const VectorizationFactor &B) const;
1637 
1638   /// Invalidates decisions already taken by the cost model.
1639   void invalidateCostModelingDecisions() {
1640     WideningDecisions.clear();
1641     Uniforms.clear();
1642     Scalars.clear();
1643   }
1644 
1645 private:
1646   unsigned NumPredStores = 0;
1647 
1648   /// \return An upper bound for the vectorization factors for both
1649   /// fixed and scalable vectorization, where the minimum-known number of
1650   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1651   /// disabled or unsupported, then the scalable part will be equal to
1652   /// ElementCount::getScalable(0).
1653   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1654                                            ElementCount UserVF);
1655 
1656   /// \return the maximized element count based on the targets vector
1657   /// registers and the loop trip-count, but limited to a maximum safe VF.
1658   /// This is a helper function of computeFeasibleMaxVF.
1659   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1660   /// issue that occurred on one of the buildbots which cannot be reproduced
1661   /// without having access to the properietary compiler (see comments on
1662   /// D98509). The issue is currently under investigation and this workaround
1663   /// will be removed as soon as possible.
1664   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1665                                        unsigned SmallestType,
1666                                        unsigned WidestType,
1667                                        const ElementCount &MaxSafeVF);
1668 
1669   /// \return the maximum legal scalable VF, based on the safe max number
1670   /// of elements.
1671   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1672 
1673   /// The vectorization cost is a combination of the cost itself and a boolean
1674   /// indicating whether any of the contributing operations will actually
1675   /// operate on vector values after type legalization in the backend. If this
1676   /// latter value is false, then all operations will be scalarized (i.e. no
1677   /// vectorization has actually taken place).
1678   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1679 
1680   /// Returns the expected execution cost. The unit of the cost does
1681   /// not matter because we use the 'cost' units to compare different
1682   /// vector widths. The cost that is returned is *not* normalized by
1683   /// the factor width. If \p Invalid is not nullptr, this function
1684   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1685   /// each instruction that has an Invalid cost for the given VF.
1686   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1687   VectorizationCostTy
1688   expectedCost(ElementCount VF,
1689                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1690 
1691   /// Returns the execution time cost of an instruction for a given vector
1692   /// width. Vector width of one means scalar.
1693   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1694 
1695   /// The cost-computation logic from getInstructionCost which provides
1696   /// the vector type as an output parameter.
1697   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1698                                      Type *&VectorTy);
1699 
1700   /// Return the cost of instructions in an inloop reduction pattern, if I is
1701   /// part of that pattern.
1702   Optional<InstructionCost>
1703   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1704                           TTI::TargetCostKind CostKind);
1705 
1706   /// Calculate vectorization cost of memory instruction \p I.
1707   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1708 
1709   /// The cost computation for scalarized memory instruction.
1710   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1711 
1712   /// The cost computation for interleaving group of memory instructions.
1713   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1714 
1715   /// The cost computation for Gather/Scatter instruction.
1716   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1717 
1718   /// The cost computation for widening instruction \p I with consecutive
1719   /// memory access.
1720   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1721 
1722   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1723   /// Load: scalar load + broadcast.
1724   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1725   /// element)
1726   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1727 
1728   /// Estimate the overhead of scalarizing an instruction. This is a
1729   /// convenience wrapper for the type-based getScalarizationOverhead API.
1730   InstructionCost getScalarizationOverhead(Instruction *I,
1731                                            ElementCount VF) const;
1732 
1733   /// Returns whether the instruction is a load or store and will be a emitted
1734   /// as a vector operation.
1735   bool isConsecutiveLoadOrStore(Instruction *I);
1736 
1737   /// Returns true if an artificially high cost for emulated masked memrefs
1738   /// should be used.
1739   bool useEmulatedMaskMemRefHack(Instruction *I);
1740 
1741   /// Map of scalar integer values to the smallest bitwidth they can be legally
1742   /// represented as. The vector equivalents of these values should be truncated
1743   /// to this type.
1744   MapVector<Instruction *, uint64_t> MinBWs;
1745 
1746   /// A type representing the costs for instructions if they were to be
1747   /// scalarized rather than vectorized. The entries are Instruction-Cost
1748   /// pairs.
1749   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1750 
1751   /// A set containing all BasicBlocks that are known to present after
1752   /// vectorization as a predicated block.
1753   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1754 
1755   /// Records whether it is allowed to have the original scalar loop execute at
1756   /// least once. This may be needed as a fallback loop in case runtime
1757   /// aliasing/dependence checks fail, or to handle the tail/remainder
1758   /// iterations when the trip count is unknown or doesn't divide by the VF,
1759   /// or as a peel-loop to handle gaps in interleave-groups.
1760   /// Under optsize and when the trip count is very small we don't allow any
1761   /// iterations to execute in the scalar loop.
1762   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1763 
1764   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1765   bool FoldTailByMasking = false;
1766 
1767   /// A map holding scalar costs for different vectorization factors. The
1768   /// presence of a cost for an instruction in the mapping indicates that the
1769   /// instruction will be scalarized when vectorizing with the associated
1770   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1771   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1772 
1773   /// Holds the instructions known to be uniform after vectorization.
1774   /// The data is collected per VF.
1775   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1776 
1777   /// Holds the instructions known to be scalar after vectorization.
1778   /// The data is collected per VF.
1779   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1780 
1781   /// Holds the instructions (address computations) that are forced to be
1782   /// scalarized.
1783   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1784 
1785   /// PHINodes of the reductions that should be expanded in-loop along with
1786   /// their associated chains of reduction operations, in program order from top
1787   /// (PHI) to bottom
1788   ReductionChainMap InLoopReductionChains;
1789 
1790   /// A Map of inloop reduction operations and their immediate chain operand.
1791   /// FIXME: This can be removed once reductions can be costed correctly in
1792   /// vplan. This was added to allow quick lookup to the inloop operations,
1793   /// without having to loop through InLoopReductionChains.
1794   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1795 
1796   /// Returns the expected difference in cost from scalarizing the expression
1797   /// feeding a predicated instruction \p PredInst. The instructions to
1798   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1799   /// non-negative return value implies the expression will be scalarized.
1800   /// Currently, only single-use chains are considered for scalarization.
1801   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1802                               ElementCount VF);
1803 
1804   /// Collect the instructions that are uniform after vectorization. An
1805   /// instruction is uniform if we represent it with a single scalar value in
1806   /// the vectorized loop corresponding to each vector iteration. Examples of
1807   /// uniform instructions include pointer operands of consecutive or
1808   /// interleaved memory accesses. Note that although uniformity implies an
1809   /// instruction will be scalar, the reverse is not true. In general, a
1810   /// scalarized instruction will be represented by VF scalar values in the
1811   /// vectorized loop, each corresponding to an iteration of the original
1812   /// scalar loop.
1813   void collectLoopUniforms(ElementCount VF);
1814 
1815   /// Collect the instructions that are scalar after vectorization. An
1816   /// instruction is scalar if it is known to be uniform or will be scalarized
1817   /// during vectorization. Non-uniform scalarized instructions will be
1818   /// represented by VF values in the vectorized loop, each corresponding to an
1819   /// iteration of the original scalar loop.
1820   void collectLoopScalars(ElementCount VF);
1821 
1822   /// Keeps cost model vectorization decision and cost for instructions.
1823   /// Right now it is used for memory instructions only.
1824   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1825                                 std::pair<InstWidening, InstructionCost>>;
1826 
1827   DecisionList WideningDecisions;
1828 
1829   /// Returns true if \p V is expected to be vectorized and it needs to be
1830   /// extracted.
1831   bool needsExtract(Value *V, ElementCount VF) const {
1832     Instruction *I = dyn_cast<Instruction>(V);
1833     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1834         TheLoop->isLoopInvariant(I))
1835       return false;
1836 
1837     // Assume we can vectorize V (and hence we need extraction) if the
1838     // scalars are not computed yet. This can happen, because it is called
1839     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1840     // the scalars are collected. That should be a safe assumption in most
1841     // cases, because we check if the operands have vectorizable types
1842     // beforehand in LoopVectorizationLegality.
1843     return Scalars.find(VF) == Scalars.end() ||
1844            !isScalarAfterVectorization(I, VF);
1845   };
1846 
1847   /// Returns a range containing only operands needing to be extracted.
1848   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1849                                                    ElementCount VF) const {
1850     return SmallVector<Value *, 4>(make_filter_range(
1851         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1852   }
1853 
1854   /// Determines if we have the infrastructure to vectorize loop \p L and its
1855   /// epilogue, assuming the main loop is vectorized by \p VF.
1856   bool isCandidateForEpilogueVectorization(const Loop &L,
1857                                            const ElementCount VF) const;
1858 
1859   /// Returns true if epilogue vectorization is considered profitable, and
1860   /// false otherwise.
1861   /// \p VF is the vectorization factor chosen for the original loop.
1862   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1863 
1864 public:
1865   /// The loop that we evaluate.
1866   Loop *TheLoop;
1867 
1868   /// Predicated scalar evolution analysis.
1869   PredicatedScalarEvolution &PSE;
1870 
1871   /// Loop Info analysis.
1872   LoopInfo *LI;
1873 
1874   /// Vectorization legality.
1875   LoopVectorizationLegality *Legal;
1876 
1877   /// Vector target information.
1878   const TargetTransformInfo &TTI;
1879 
1880   /// Target Library Info.
1881   const TargetLibraryInfo *TLI;
1882 
1883   /// Demanded bits analysis.
1884   DemandedBits *DB;
1885 
1886   /// Assumption cache.
1887   AssumptionCache *AC;
1888 
1889   /// Interface to emit optimization remarks.
1890   OptimizationRemarkEmitter *ORE;
1891 
1892   const Function *TheFunction;
1893 
1894   /// Loop Vectorize Hint.
1895   const LoopVectorizeHints *Hints;
1896 
1897   /// The interleave access information contains groups of interleaved accesses
1898   /// with the same stride and close to each other.
1899   InterleavedAccessInfo &InterleaveInfo;
1900 
1901   /// Values to ignore in the cost model.
1902   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1903 
1904   /// Values to ignore in the cost model when VF > 1.
1905   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1906 
1907   /// All element types found in the loop.
1908   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1909 
1910   /// Profitable vector factors.
1911   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1912 };
1913 } // end namespace llvm
1914 
1915 /// Helper struct to manage generating runtime checks for vectorization.
1916 ///
1917 /// The runtime checks are created up-front in temporary blocks to allow better
1918 /// estimating the cost and un-linked from the existing IR. After deciding to
1919 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1920 /// temporary blocks are completely removed.
1921 class GeneratedRTChecks {
1922   /// Basic block which contains the generated SCEV checks, if any.
1923   BasicBlock *SCEVCheckBlock = nullptr;
1924 
1925   /// The value representing the result of the generated SCEV checks. If it is
1926   /// nullptr, either no SCEV checks have been generated or they have been used.
1927   Value *SCEVCheckCond = nullptr;
1928 
1929   /// Basic block which contains the generated memory runtime checks, if any.
1930   BasicBlock *MemCheckBlock = nullptr;
1931 
1932   /// The value representing the result of the generated memory runtime checks.
1933   /// If it is nullptr, either no memory runtime checks have been generated or
1934   /// they have been used.
1935   Value *MemRuntimeCheckCond = nullptr;
1936 
1937   DominatorTree *DT;
1938   LoopInfo *LI;
1939 
1940   SCEVExpander SCEVExp;
1941   SCEVExpander MemCheckExp;
1942 
1943 public:
1944   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1945                     const DataLayout &DL)
1946       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1947         MemCheckExp(SE, DL, "scev.check") {}
1948 
1949   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1950   /// accurately estimate the cost of the runtime checks. The blocks are
1951   /// un-linked from the IR and is added back during vector code generation. If
1952   /// there is no vector code generation, the check blocks are removed
1953   /// completely.
1954   void Create(Loop *L, const LoopAccessInfo &LAI,
1955               const SCEVUnionPredicate &UnionPred) {
1956 
1957     BasicBlock *LoopHeader = L->getHeader();
1958     BasicBlock *Preheader = L->getLoopPreheader();
1959 
1960     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1961     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1962     // may be used by SCEVExpander. The blocks will be un-linked from their
1963     // predecessors and removed from LI & DT at the end of the function.
1964     if (!UnionPred.isAlwaysTrue()) {
1965       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1966                                   nullptr, "vector.scevcheck");
1967 
1968       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1969           &UnionPred, SCEVCheckBlock->getTerminator());
1970     }
1971 
1972     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1973     if (RtPtrChecking.Need) {
1974       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1975       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1976                                  "vector.memcheck");
1977 
1978       MemRuntimeCheckCond =
1979           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1980                            RtPtrChecking.getChecks(), MemCheckExp);
1981       assert(MemRuntimeCheckCond &&
1982              "no RT checks generated although RtPtrChecking "
1983              "claimed checks are required");
1984     }
1985 
1986     if (!MemCheckBlock && !SCEVCheckBlock)
1987       return;
1988 
1989     // Unhook the temporary block with the checks, update various places
1990     // accordingly.
1991     if (SCEVCheckBlock)
1992       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1993     if (MemCheckBlock)
1994       MemCheckBlock->replaceAllUsesWith(Preheader);
1995 
1996     if (SCEVCheckBlock) {
1997       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1998       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1999       Preheader->getTerminator()->eraseFromParent();
2000     }
2001     if (MemCheckBlock) {
2002       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2003       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2004       Preheader->getTerminator()->eraseFromParent();
2005     }
2006 
2007     DT->changeImmediateDominator(LoopHeader, Preheader);
2008     if (MemCheckBlock) {
2009       DT->eraseNode(MemCheckBlock);
2010       LI->removeBlock(MemCheckBlock);
2011     }
2012     if (SCEVCheckBlock) {
2013       DT->eraseNode(SCEVCheckBlock);
2014       LI->removeBlock(SCEVCheckBlock);
2015     }
2016   }
2017 
2018   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2019   /// unused.
2020   ~GeneratedRTChecks() {
2021     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
2022     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
2023     if (!SCEVCheckCond)
2024       SCEVCleaner.markResultUsed();
2025 
2026     if (!MemRuntimeCheckCond)
2027       MemCheckCleaner.markResultUsed();
2028 
2029     if (MemRuntimeCheckCond) {
2030       auto &SE = *MemCheckExp.getSE();
2031       // Memory runtime check generation creates compares that use expanded
2032       // values. Remove them before running the SCEVExpanderCleaners.
2033       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2034         if (MemCheckExp.isInsertedInstruction(&I))
2035           continue;
2036         SE.forgetValue(&I);
2037         I.eraseFromParent();
2038       }
2039     }
2040     MemCheckCleaner.cleanup();
2041     SCEVCleaner.cleanup();
2042 
2043     if (SCEVCheckCond)
2044       SCEVCheckBlock->eraseFromParent();
2045     if (MemRuntimeCheckCond)
2046       MemCheckBlock->eraseFromParent();
2047   }
2048 
2049   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2050   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2051   /// depending on the generated condition.
2052   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2053                              BasicBlock *LoopVectorPreHeader,
2054                              BasicBlock *LoopExitBlock) {
2055     if (!SCEVCheckCond)
2056       return nullptr;
2057     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2058       if (C->isZero())
2059         return nullptr;
2060 
2061     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2062 
2063     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2064     // Create new preheader for vector loop.
2065     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2066       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2067 
2068     SCEVCheckBlock->getTerminator()->eraseFromParent();
2069     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2070     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2071                                                 SCEVCheckBlock);
2072 
2073     DT->addNewBlock(SCEVCheckBlock, Pred);
2074     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2075 
2076     ReplaceInstWithInst(
2077         SCEVCheckBlock->getTerminator(),
2078         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2079     // Mark the check as used, to prevent it from being removed during cleanup.
2080     SCEVCheckCond = nullptr;
2081     return SCEVCheckBlock;
2082   }
2083 
2084   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2085   /// the branches to branch to the vector preheader or \p Bypass, depending on
2086   /// the generated condition.
2087   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2088                                    BasicBlock *LoopVectorPreHeader) {
2089     // Check if we generated code that checks in runtime if arrays overlap.
2090     if (!MemRuntimeCheckCond)
2091       return nullptr;
2092 
2093     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2094     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2095                                                 MemCheckBlock);
2096 
2097     DT->addNewBlock(MemCheckBlock, Pred);
2098     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2099     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2100 
2101     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2102       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2103 
2104     ReplaceInstWithInst(
2105         MemCheckBlock->getTerminator(),
2106         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2107     MemCheckBlock->getTerminator()->setDebugLoc(
2108         Pred->getTerminator()->getDebugLoc());
2109 
2110     // Mark the check as used, to prevent it from being removed during cleanup.
2111     MemRuntimeCheckCond = nullptr;
2112     return MemCheckBlock;
2113   }
2114 };
2115 
2116 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2117 // vectorization. The loop needs to be annotated with #pragma omp simd
2118 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2119 // vector length information is not provided, vectorization is not considered
2120 // explicit. Interleave hints are not allowed either. These limitations will be
2121 // relaxed in the future.
2122 // Please, note that we are currently forced to abuse the pragma 'clang
2123 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2124 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2125 // provides *explicit vectorization hints* (LV can bypass legal checks and
2126 // assume that vectorization is legal). However, both hints are implemented
2127 // using the same metadata (llvm.loop.vectorize, processed by
2128 // LoopVectorizeHints). This will be fixed in the future when the native IR
2129 // representation for pragma 'omp simd' is introduced.
2130 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2131                                    OptimizationRemarkEmitter *ORE) {
2132   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2133   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2134 
2135   // Only outer loops with an explicit vectorization hint are supported.
2136   // Unannotated outer loops are ignored.
2137   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2138     return false;
2139 
2140   Function *Fn = OuterLp->getHeader()->getParent();
2141   if (!Hints.allowVectorization(Fn, OuterLp,
2142                                 true /*VectorizeOnlyWhenForced*/)) {
2143     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2144     return false;
2145   }
2146 
2147   if (Hints.getInterleave() > 1) {
2148     // TODO: Interleave support is future work.
2149     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2150                          "outer loops.\n");
2151     Hints.emitRemarkWithHints();
2152     return false;
2153   }
2154 
2155   return true;
2156 }
2157 
2158 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2159                                   OptimizationRemarkEmitter *ORE,
2160                                   SmallVectorImpl<Loop *> &V) {
2161   // Collect inner loops and outer loops without irreducible control flow. For
2162   // now, only collect outer loops that have explicit vectorization hints. If we
2163   // are stress testing the VPlan H-CFG construction, we collect the outermost
2164   // loop of every loop nest.
2165   if (L.isInnermost() || VPlanBuildStressTest ||
2166       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2167     LoopBlocksRPO RPOT(&L);
2168     RPOT.perform(LI);
2169     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2170       V.push_back(&L);
2171       // TODO: Collect inner loops inside marked outer loops in case
2172       // vectorization fails for the outer loop. Do not invoke
2173       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2174       // already known to be reducible. We can use an inherited attribute for
2175       // that.
2176       return;
2177     }
2178   }
2179   for (Loop *InnerL : L)
2180     collectSupportedLoops(*InnerL, LI, ORE, V);
2181 }
2182 
2183 namespace {
2184 
2185 /// The LoopVectorize Pass.
2186 struct LoopVectorize : public FunctionPass {
2187   /// Pass identification, replacement for typeid
2188   static char ID;
2189 
2190   LoopVectorizePass Impl;
2191 
2192   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2193                          bool VectorizeOnlyWhenForced = false)
2194       : FunctionPass(ID),
2195         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2196     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2197   }
2198 
2199   bool runOnFunction(Function &F) override {
2200     if (skipFunction(F))
2201       return false;
2202 
2203     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2204     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2205     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2206     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2207     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2208     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2209     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2210     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2211     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2212     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2213     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2214     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2215     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2216 
2217     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2218         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2219 
2220     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2221                         GetLAA, *ORE, PSI).MadeAnyChange;
2222   }
2223 
2224   void getAnalysisUsage(AnalysisUsage &AU) const override {
2225     AU.addRequired<AssumptionCacheTracker>();
2226     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2227     AU.addRequired<DominatorTreeWrapperPass>();
2228     AU.addRequired<LoopInfoWrapperPass>();
2229     AU.addRequired<ScalarEvolutionWrapperPass>();
2230     AU.addRequired<TargetTransformInfoWrapperPass>();
2231     AU.addRequired<AAResultsWrapperPass>();
2232     AU.addRequired<LoopAccessLegacyAnalysis>();
2233     AU.addRequired<DemandedBitsWrapperPass>();
2234     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2235     AU.addRequired<InjectTLIMappingsLegacy>();
2236 
2237     // We currently do not preserve loopinfo/dominator analyses with outer loop
2238     // vectorization. Until this is addressed, mark these analyses as preserved
2239     // only for non-VPlan-native path.
2240     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2241     if (!EnableVPlanNativePath) {
2242       AU.addPreserved<LoopInfoWrapperPass>();
2243       AU.addPreserved<DominatorTreeWrapperPass>();
2244     }
2245 
2246     AU.addPreserved<BasicAAWrapperPass>();
2247     AU.addPreserved<GlobalsAAWrapperPass>();
2248     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2249   }
2250 };
2251 
2252 } // end anonymous namespace
2253 
2254 //===----------------------------------------------------------------------===//
2255 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2256 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2257 //===----------------------------------------------------------------------===//
2258 
2259 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2260   // We need to place the broadcast of invariant variables outside the loop,
2261   // but only if it's proven safe to do so. Else, broadcast will be inside
2262   // vector loop body.
2263   Instruction *Instr = dyn_cast<Instruction>(V);
2264   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2265                      (!Instr ||
2266                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2267   // Place the code for broadcasting invariant variables in the new preheader.
2268   IRBuilder<>::InsertPointGuard Guard(Builder);
2269   if (SafeToHoist)
2270     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2271 
2272   // Broadcast the scalar into all locations in the vector.
2273   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2274 
2275   return Shuf;
2276 }
2277 
2278 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2279     const InductionDescriptor &II, Value *Step, Value *Start,
2280     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2281     VPTransformState &State) {
2282   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2283          "Expected either an induction phi-node or a truncate of it!");
2284 
2285   // Construct the initial value of the vector IV in the vector loop preheader
2286   auto CurrIP = Builder.saveIP();
2287   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2288   if (isa<TruncInst>(EntryVal)) {
2289     assert(Start->getType()->isIntegerTy() &&
2290            "Truncation requires an integer type");
2291     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2292     Step = Builder.CreateTrunc(Step, TruncType);
2293     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2294   }
2295 
2296   Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
2297   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2298   Value *SteppedStart =
2299       getStepVector(SplatStart, Zero, Step, II.getInductionOpcode());
2300 
2301   // We create vector phi nodes for both integer and floating-point induction
2302   // variables. Here, we determine the kind of arithmetic we will perform.
2303   Instruction::BinaryOps AddOp;
2304   Instruction::BinaryOps MulOp;
2305   if (Step->getType()->isIntegerTy()) {
2306     AddOp = Instruction::Add;
2307     MulOp = Instruction::Mul;
2308   } else {
2309     AddOp = II.getInductionOpcode();
2310     MulOp = Instruction::FMul;
2311   }
2312 
2313   // Multiply the vectorization factor by the step using integer or
2314   // floating-point arithmetic as appropriate.
2315   Type *StepType = Step->getType();
2316   Value *RuntimeVF;
2317   if (Step->getType()->isFloatingPointTy())
2318     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, VF);
2319   else
2320     RuntimeVF = getRuntimeVF(Builder, StepType, VF);
2321   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2322 
2323   // Create a vector splat to use in the induction update.
2324   //
2325   // FIXME: If the step is non-constant, we create the vector splat with
2326   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2327   //        handle a constant vector splat.
2328   Value *SplatVF = isa<Constant>(Mul)
2329                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2330                        : Builder.CreateVectorSplat(VF, Mul);
2331   Builder.restoreIP(CurrIP);
2332 
2333   // We may need to add the step a number of times, depending on the unroll
2334   // factor. The last of those goes into the PHI.
2335   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2336                                     &*LoopVectorBody->getFirstInsertionPt());
2337   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2338   Instruction *LastInduction = VecInd;
2339   for (unsigned Part = 0; Part < UF; ++Part) {
2340     State.set(Def, LastInduction, Part);
2341 
2342     if (isa<TruncInst>(EntryVal))
2343       addMetadata(LastInduction, EntryVal);
2344     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2345                                           State, Part);
2346 
2347     LastInduction = cast<Instruction>(
2348         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2349     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2350   }
2351 
2352   // Move the last step to the end of the latch block. This ensures consistent
2353   // placement of all induction updates.
2354   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2355   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2356   auto *ICmp = cast<Instruction>(Br->getCondition());
2357   LastInduction->moveBefore(ICmp);
2358   LastInduction->setName("vec.ind.next");
2359 
2360   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2361   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2362 }
2363 
2364 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2365   return Cost->isScalarAfterVectorization(I, VF) ||
2366          Cost->isProfitableToScalarize(I, VF);
2367 }
2368 
2369 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2370   if (shouldScalarizeInstruction(IV))
2371     return true;
2372   auto isScalarInst = [&](User *U) -> bool {
2373     auto *I = cast<Instruction>(U);
2374     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2375   };
2376   return llvm::any_of(IV->users(), isScalarInst);
2377 }
2378 
2379 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2380     const InductionDescriptor &ID, const Instruction *EntryVal,
2381     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2382     unsigned Part, unsigned Lane) {
2383   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2384          "Expected either an induction phi-node or a truncate of it!");
2385 
2386   // This induction variable is not the phi from the original loop but the
2387   // newly-created IV based on the proof that casted Phi is equal to the
2388   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2389   // re-uses the same InductionDescriptor that original IV uses but we don't
2390   // have to do any recording in this case - that is done when original IV is
2391   // processed.
2392   if (isa<TruncInst>(EntryVal))
2393     return;
2394 
2395   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
2396   if (Casts.empty())
2397     return;
2398   // Only the first Cast instruction in the Casts vector is of interest.
2399   // The rest of the Casts (if exist) have no uses outside the
2400   // induction update chain itself.
2401   if (Lane < UINT_MAX)
2402     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2403   else
2404     State.set(CastDef, VectorLoopVal, Part);
2405 }
2406 
2407 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2408                                                 TruncInst *Trunc, VPValue *Def,
2409                                                 VPValue *CastDef,
2410                                                 VPTransformState &State) {
2411   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2412          "Primary induction variable must have an integer type");
2413 
2414   auto II = Legal->getInductionVars().find(IV);
2415   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2416 
2417   auto ID = II->second;
2418   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2419 
2420   // The value from the original loop to which we are mapping the new induction
2421   // variable.
2422   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2423 
2424   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2425 
2426   // Generate code for the induction step. Note that induction steps are
2427   // required to be loop-invariant
2428   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2429     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2430            "Induction step should be loop invariant");
2431     if (PSE.getSE()->isSCEVable(IV->getType())) {
2432       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2433       return Exp.expandCodeFor(Step, Step->getType(),
2434                                LoopVectorPreHeader->getTerminator());
2435     }
2436     return cast<SCEVUnknown>(Step)->getValue();
2437   };
2438 
2439   // The scalar value to broadcast. This is derived from the canonical
2440   // induction variable. If a truncation type is given, truncate the canonical
2441   // induction variable and step. Otherwise, derive these values from the
2442   // induction descriptor.
2443   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2444     Value *ScalarIV = Induction;
2445     if (IV != OldInduction) {
2446       ScalarIV = IV->getType()->isIntegerTy()
2447                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2448                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2449                                           IV->getType());
2450       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2451       ScalarIV->setName("offset.idx");
2452     }
2453     if (Trunc) {
2454       auto *TruncType = cast<IntegerType>(Trunc->getType());
2455       assert(Step->getType()->isIntegerTy() &&
2456              "Truncation requires an integer step");
2457       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2458       Step = Builder.CreateTrunc(Step, TruncType);
2459     }
2460     return ScalarIV;
2461   };
2462 
2463   // Create the vector values from the scalar IV, in the absence of creating a
2464   // vector IV.
2465   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2466     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2467     for (unsigned Part = 0; Part < UF; ++Part) {
2468       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2469       Value *StartIdx;
2470       if (Step->getType()->isFloatingPointTy())
2471         StartIdx = getRuntimeVFAsFloat(Builder, Step->getType(), VF * Part);
2472       else
2473         StartIdx = getRuntimeVF(Builder, Step->getType(), VF * Part);
2474 
2475       Value *EntryPart =
2476           getStepVector(Broadcasted, StartIdx, Step, ID.getInductionOpcode());
2477       State.set(Def, EntryPart, Part);
2478       if (Trunc)
2479         addMetadata(EntryPart, Trunc);
2480       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2481                                             State, Part);
2482     }
2483   };
2484 
2485   // Fast-math-flags propagate from the original induction instruction.
2486   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2487   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2488     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2489 
2490   // Now do the actual transformations, and start with creating the step value.
2491   Value *Step = CreateStepValue(ID.getStep());
2492   if (VF.isZero() || VF.isScalar()) {
2493     Value *ScalarIV = CreateScalarIV(Step);
2494     CreateSplatIV(ScalarIV, Step);
2495     return;
2496   }
2497 
2498   // Determine if we want a scalar version of the induction variable. This is
2499   // true if the induction variable itself is not widened, or if it has at
2500   // least one user in the loop that is not widened.
2501   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2502   if (!NeedsScalarIV) {
2503     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2504                                     State);
2505     return;
2506   }
2507 
2508   // Try to create a new independent vector induction variable. If we can't
2509   // create the phi node, we will splat the scalar induction variable in each
2510   // loop iteration.
2511   if (!shouldScalarizeInstruction(EntryVal)) {
2512     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2513                                     State);
2514     Value *ScalarIV = CreateScalarIV(Step);
2515     // Create scalar steps that can be used by instructions we will later
2516     // scalarize. Note that the addition of the scalar steps will not increase
2517     // the number of instructions in the loop in the common case prior to
2518     // InstCombine. We will be trading one vector extract for each scalar step.
2519     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2520     return;
2521   }
2522 
2523   // All IV users are scalar instructions, so only emit a scalar IV, not a
2524   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2525   // predicate used by the masked loads/stores.
2526   Value *ScalarIV = CreateScalarIV(Step);
2527   if (!Cost->isScalarEpilogueAllowed())
2528     CreateSplatIV(ScalarIV, Step);
2529   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2530 }
2531 
2532 Value *InnerLoopVectorizer::getStepVector(Value *Val, Value *StartIdx,
2533                                           Value *Step,
2534                                           Instruction::BinaryOps BinOp) {
2535   // Create and check the types.
2536   auto *ValVTy = cast<VectorType>(Val->getType());
2537   ElementCount VLen = ValVTy->getElementCount();
2538 
2539   Type *STy = Val->getType()->getScalarType();
2540   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2541          "Induction Step must be an integer or FP");
2542   assert(Step->getType() == STy && "Step has wrong type");
2543 
2544   SmallVector<Constant *, 8> Indices;
2545 
2546   // Create a vector of consecutive numbers from zero to VF.
2547   VectorType *InitVecValVTy = ValVTy;
2548   Type *InitVecValSTy = STy;
2549   if (STy->isFloatingPointTy()) {
2550     InitVecValSTy =
2551         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2552     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2553   }
2554   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2555 
2556   // Splat the StartIdx
2557   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2558 
2559   if (STy->isIntegerTy()) {
2560     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2561     Step = Builder.CreateVectorSplat(VLen, Step);
2562     assert(Step->getType() == Val->getType() && "Invalid step vec");
2563     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2564     // which can be found from the original scalar operations.
2565     Step = Builder.CreateMul(InitVec, Step);
2566     return Builder.CreateAdd(Val, Step, "induction");
2567   }
2568 
2569   // Floating point induction.
2570   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2571          "Binary Opcode should be specified for FP induction");
2572   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2573   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2574 
2575   Step = Builder.CreateVectorSplat(VLen, Step);
2576   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2577   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2578 }
2579 
2580 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2581                                            Instruction *EntryVal,
2582                                            const InductionDescriptor &ID,
2583                                            VPValue *Def, VPValue *CastDef,
2584                                            VPTransformState &State) {
2585   // We shouldn't have to build scalar steps if we aren't vectorizing.
2586   assert(VF.isVector() && "VF should be greater than one");
2587   // Get the value type and ensure it and the step have the same integer type.
2588   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2589   assert(ScalarIVTy == Step->getType() &&
2590          "Val and Step should have the same type");
2591 
2592   // We build scalar steps for both integer and floating-point induction
2593   // variables. Here, we determine the kind of arithmetic we will perform.
2594   Instruction::BinaryOps AddOp;
2595   Instruction::BinaryOps MulOp;
2596   if (ScalarIVTy->isIntegerTy()) {
2597     AddOp = Instruction::Add;
2598     MulOp = Instruction::Mul;
2599   } else {
2600     AddOp = ID.getInductionOpcode();
2601     MulOp = Instruction::FMul;
2602   }
2603 
2604   // Determine the number of scalars we need to generate for each unroll
2605   // iteration. If EntryVal is uniform, we only need to generate the first
2606   // lane. Otherwise, we generate all VF values.
2607   bool IsUniform =
2608       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
2609   unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
2610   // Compute the scalar steps and save the results in State.
2611   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2612                                      ScalarIVTy->getScalarSizeInBits());
2613   Type *VecIVTy = nullptr;
2614   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2615   if (!IsUniform && VF.isScalable()) {
2616     VecIVTy = VectorType::get(ScalarIVTy, VF);
2617     UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
2618     SplatStep = Builder.CreateVectorSplat(VF, Step);
2619     SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
2620   }
2621 
2622   for (unsigned Part = 0; Part < UF; ++Part) {
2623     Value *StartIdx0 =
2624         createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF);
2625 
2626     if (!IsUniform && VF.isScalable()) {
2627       auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
2628       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2629       if (ScalarIVTy->isFloatingPointTy())
2630         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2631       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2632       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2633       State.set(Def, Add, Part);
2634       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2635                                             Part);
2636       // It's useful to record the lane values too for the known minimum number
2637       // of elements so we do those below. This improves the code quality when
2638       // trying to extract the first element, for example.
2639     }
2640 
2641     if (ScalarIVTy->isFloatingPointTy())
2642       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2643 
2644     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2645       Value *StartIdx = Builder.CreateBinOp(
2646           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2647       // The step returned by `createStepForVF` is a runtime-evaluated value
2648       // when VF is scalable. Otherwise, it should be folded into a Constant.
2649       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2650              "Expected StartIdx to be folded to a constant when VF is not "
2651              "scalable");
2652       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2653       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2654       State.set(Def, Add, VPIteration(Part, Lane));
2655       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2656                                             Part, Lane);
2657     }
2658   }
2659 }
2660 
2661 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2662                                                     const VPIteration &Instance,
2663                                                     VPTransformState &State) {
2664   Value *ScalarInst = State.get(Def, Instance);
2665   Value *VectorValue = State.get(Def, Instance.Part);
2666   VectorValue = Builder.CreateInsertElement(
2667       VectorValue, ScalarInst,
2668       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2669   State.set(Def, VectorValue, Instance.Part);
2670 }
2671 
2672 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2673   assert(Vec->getType()->isVectorTy() && "Invalid type");
2674   return Builder.CreateVectorReverse(Vec, "reverse");
2675 }
2676 
2677 // Return whether we allow using masked interleave-groups (for dealing with
2678 // strided loads/stores that reside in predicated blocks, or for dealing
2679 // with gaps).
2680 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2681   // If an override option has been passed in for interleaved accesses, use it.
2682   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2683     return EnableMaskedInterleavedMemAccesses;
2684 
2685   return TTI.enableMaskedInterleavedAccessVectorization();
2686 }
2687 
2688 // Try to vectorize the interleave group that \p Instr belongs to.
2689 //
2690 // E.g. Translate following interleaved load group (factor = 3):
2691 //   for (i = 0; i < N; i+=3) {
2692 //     R = Pic[i];             // Member of index 0
2693 //     G = Pic[i+1];           // Member of index 1
2694 //     B = Pic[i+2];           // Member of index 2
2695 //     ... // do something to R, G, B
2696 //   }
2697 // To:
2698 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2699 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2700 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2701 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2702 //
2703 // Or translate following interleaved store group (factor = 3):
2704 //   for (i = 0; i < N; i+=3) {
2705 //     ... do something to R, G, B
2706 //     Pic[i]   = R;           // Member of index 0
2707 //     Pic[i+1] = G;           // Member of index 1
2708 //     Pic[i+2] = B;           // Member of index 2
2709 //   }
2710 // To:
2711 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2712 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2713 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2714 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2715 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2716 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2717     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2718     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2719     VPValue *BlockInMask) {
2720   Instruction *Instr = Group->getInsertPos();
2721   const DataLayout &DL = Instr->getModule()->getDataLayout();
2722 
2723   // Prepare for the vector type of the interleaved load/store.
2724   Type *ScalarTy = getLoadStoreType(Instr);
2725   unsigned InterleaveFactor = Group->getFactor();
2726   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2727   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2728 
2729   // Prepare for the new pointers.
2730   SmallVector<Value *, 2> AddrParts;
2731   unsigned Index = Group->getIndex(Instr);
2732 
2733   // TODO: extend the masked interleaved-group support to reversed access.
2734   assert((!BlockInMask || !Group->isReverse()) &&
2735          "Reversed masked interleave-group not supported.");
2736 
2737   // If the group is reverse, adjust the index to refer to the last vector lane
2738   // instead of the first. We adjust the index from the first vector lane,
2739   // rather than directly getting the pointer for lane VF - 1, because the
2740   // pointer operand of the interleaved access is supposed to be uniform. For
2741   // uniform instructions, we're only required to generate a value for the
2742   // first vector lane in each unroll iteration.
2743   if (Group->isReverse())
2744     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2745 
2746   for (unsigned Part = 0; Part < UF; Part++) {
2747     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2748     setDebugLocFromInst(AddrPart);
2749 
2750     // Notice current instruction could be any index. Need to adjust the address
2751     // to the member of index 0.
2752     //
2753     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2754     //       b = A[i];       // Member of index 0
2755     // Current pointer is pointed to A[i+1], adjust it to A[i].
2756     //
2757     // E.g.  A[i+1] = a;     // Member of index 1
2758     //       A[i]   = b;     // Member of index 0
2759     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2760     // Current pointer is pointed to A[i+2], adjust it to A[i].
2761 
2762     bool InBounds = false;
2763     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2764       InBounds = gep->isInBounds();
2765     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2766     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2767 
2768     // Cast to the vector pointer type.
2769     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2770     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2771     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2772   }
2773 
2774   setDebugLocFromInst(Instr);
2775   Value *PoisonVec = PoisonValue::get(VecTy);
2776 
2777   Value *MaskForGaps = nullptr;
2778   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2779     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2780     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2781   }
2782 
2783   // Vectorize the interleaved load group.
2784   if (isa<LoadInst>(Instr)) {
2785     // For each unroll part, create a wide load for the group.
2786     SmallVector<Value *, 2> NewLoads;
2787     for (unsigned Part = 0; Part < UF; Part++) {
2788       Instruction *NewLoad;
2789       if (BlockInMask || MaskForGaps) {
2790         assert(useMaskedInterleavedAccesses(*TTI) &&
2791                "masked interleaved groups are not allowed.");
2792         Value *GroupMask = MaskForGaps;
2793         if (BlockInMask) {
2794           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2795           Value *ShuffledMask = Builder.CreateShuffleVector(
2796               BlockInMaskPart,
2797               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2798               "interleaved.mask");
2799           GroupMask = MaskForGaps
2800                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2801                                                 MaskForGaps)
2802                           : ShuffledMask;
2803         }
2804         NewLoad =
2805             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2806                                      GroupMask, PoisonVec, "wide.masked.vec");
2807       }
2808       else
2809         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2810                                             Group->getAlign(), "wide.vec");
2811       Group->addMetadata(NewLoad);
2812       NewLoads.push_back(NewLoad);
2813     }
2814 
2815     // For each member in the group, shuffle out the appropriate data from the
2816     // wide loads.
2817     unsigned J = 0;
2818     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2819       Instruction *Member = Group->getMember(I);
2820 
2821       // Skip the gaps in the group.
2822       if (!Member)
2823         continue;
2824 
2825       auto StrideMask =
2826           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2827       for (unsigned Part = 0; Part < UF; Part++) {
2828         Value *StridedVec = Builder.CreateShuffleVector(
2829             NewLoads[Part], StrideMask, "strided.vec");
2830 
2831         // If this member has different type, cast the result type.
2832         if (Member->getType() != ScalarTy) {
2833           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2834           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2835           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2836         }
2837 
2838         if (Group->isReverse())
2839           StridedVec = reverseVector(StridedVec);
2840 
2841         State.set(VPDefs[J], StridedVec, Part);
2842       }
2843       ++J;
2844     }
2845     return;
2846   }
2847 
2848   // The sub vector type for current instruction.
2849   auto *SubVT = VectorType::get(ScalarTy, VF);
2850 
2851   // Vectorize the interleaved store group.
2852   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2853   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2854          "masked interleaved groups are not allowed.");
2855   assert((!MaskForGaps || !VF.isScalable()) &&
2856          "masking gaps for scalable vectors is not yet supported.");
2857   for (unsigned Part = 0; Part < UF; Part++) {
2858     // Collect the stored vector from each member.
2859     SmallVector<Value *, 4> StoredVecs;
2860     for (unsigned i = 0; i < InterleaveFactor; i++) {
2861       assert((Group->getMember(i) || MaskForGaps) &&
2862              "Fail to get a member from an interleaved store group");
2863       Instruction *Member = Group->getMember(i);
2864 
2865       // Skip the gaps in the group.
2866       if (!Member) {
2867         Value *Undef = PoisonValue::get(SubVT);
2868         StoredVecs.push_back(Undef);
2869         continue;
2870       }
2871 
2872       Value *StoredVec = State.get(StoredValues[i], Part);
2873 
2874       if (Group->isReverse())
2875         StoredVec = reverseVector(StoredVec);
2876 
2877       // If this member has different type, cast it to a unified type.
2878 
2879       if (StoredVec->getType() != SubVT)
2880         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2881 
2882       StoredVecs.push_back(StoredVec);
2883     }
2884 
2885     // Concatenate all vectors into a wide vector.
2886     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2887 
2888     // Interleave the elements in the wide vector.
2889     Value *IVec = Builder.CreateShuffleVector(
2890         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2891         "interleaved.vec");
2892 
2893     Instruction *NewStoreInstr;
2894     if (BlockInMask || MaskForGaps) {
2895       Value *GroupMask = MaskForGaps;
2896       if (BlockInMask) {
2897         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2898         Value *ShuffledMask = Builder.CreateShuffleVector(
2899             BlockInMaskPart,
2900             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2901             "interleaved.mask");
2902         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2903                                                       ShuffledMask, MaskForGaps)
2904                                 : ShuffledMask;
2905       }
2906       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2907                                                 Group->getAlign(), GroupMask);
2908     } else
2909       NewStoreInstr =
2910           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2911 
2912     Group->addMetadata(NewStoreInstr);
2913   }
2914 }
2915 
2916 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2917     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2918     VPValue *StoredValue, VPValue *BlockInMask, bool ConsecutiveStride,
2919     bool Reverse) {
2920   // Attempt to issue a wide load.
2921   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2922   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2923 
2924   assert((LI || SI) && "Invalid Load/Store instruction");
2925   assert((!SI || StoredValue) && "No stored value provided for widened store");
2926   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2927 
2928   Type *ScalarDataTy = getLoadStoreType(Instr);
2929 
2930   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2931   const Align Alignment = getLoadStoreAlignment(Instr);
2932   bool CreateGatherScatter = !ConsecutiveStride;
2933 
2934   VectorParts BlockInMaskParts(UF);
2935   bool isMaskRequired = BlockInMask;
2936   if (isMaskRequired)
2937     for (unsigned Part = 0; Part < UF; ++Part)
2938       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2939 
2940   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2941     // Calculate the pointer for the specific unroll-part.
2942     GetElementPtrInst *PartPtr = nullptr;
2943 
2944     bool InBounds = false;
2945     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2946       InBounds = gep->isInBounds();
2947     if (Reverse) {
2948       // If the address is consecutive but reversed, then the
2949       // wide store needs to start at the last vector element.
2950       // RunTimeVF =  VScale * VF.getKnownMinValue()
2951       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
2952       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
2953       // NumElt = -Part * RunTimeVF
2954       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
2955       // LastLane = 1 - RunTimeVF
2956       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
2957       PartPtr =
2958           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
2959       PartPtr->setIsInBounds(InBounds);
2960       PartPtr = cast<GetElementPtrInst>(
2961           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
2962       PartPtr->setIsInBounds(InBounds);
2963       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2964         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2965     } else {
2966       Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF);
2967       PartPtr = cast<GetElementPtrInst>(
2968           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
2969       PartPtr->setIsInBounds(InBounds);
2970     }
2971 
2972     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2973     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2974   };
2975 
2976   // Handle Stores:
2977   if (SI) {
2978     setDebugLocFromInst(SI);
2979 
2980     for (unsigned Part = 0; Part < UF; ++Part) {
2981       Instruction *NewSI = nullptr;
2982       Value *StoredVal = State.get(StoredValue, Part);
2983       if (CreateGatherScatter) {
2984         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2985         Value *VectorGep = State.get(Addr, Part);
2986         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2987                                             MaskPart);
2988       } else {
2989         if (Reverse) {
2990           // If we store to reverse consecutive memory locations, then we need
2991           // to reverse the order of elements in the stored value.
2992           StoredVal = reverseVector(StoredVal);
2993           // We don't want to update the value in the map as it might be used in
2994           // another expression. So don't call resetVectorValue(StoredVal).
2995         }
2996         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
2997         if (isMaskRequired)
2998           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
2999                                             BlockInMaskParts[Part]);
3000         else
3001           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
3002       }
3003       addMetadata(NewSI, SI);
3004     }
3005     return;
3006   }
3007 
3008   // Handle loads.
3009   assert(LI && "Must have a load instruction");
3010   setDebugLocFromInst(LI);
3011   for (unsigned Part = 0; Part < UF; ++Part) {
3012     Value *NewLI;
3013     if (CreateGatherScatter) {
3014       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
3015       Value *VectorGep = State.get(Addr, Part);
3016       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
3017                                          nullptr, "wide.masked.gather");
3018       addMetadata(NewLI, LI);
3019     } else {
3020       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3021       if (isMaskRequired)
3022         NewLI = Builder.CreateMaskedLoad(
3023             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
3024             PoisonValue::get(DataTy), "wide.masked.load");
3025       else
3026         NewLI =
3027             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
3028 
3029       // Add metadata to the load, but setVectorValue to the reverse shuffle.
3030       addMetadata(NewLI, LI);
3031       if (Reverse)
3032         NewLI = reverseVector(NewLI);
3033     }
3034 
3035     State.set(Def, NewLI, Part);
3036   }
3037 }
3038 
3039 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def,
3040                                                VPUser &User,
3041                                                const VPIteration &Instance,
3042                                                bool IfPredicateInstr,
3043                                                VPTransformState &State) {
3044   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
3045 
3046   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
3047   // the first lane and part.
3048   if (isa<NoAliasScopeDeclInst>(Instr))
3049     if (!Instance.isFirstIteration())
3050       return;
3051 
3052   setDebugLocFromInst(Instr);
3053 
3054   // Does this instruction return a value ?
3055   bool IsVoidRetTy = Instr->getType()->isVoidTy();
3056 
3057   Instruction *Cloned = Instr->clone();
3058   if (!IsVoidRetTy)
3059     Cloned->setName(Instr->getName() + ".cloned");
3060 
3061   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3062                                Builder.GetInsertPoint());
3063   // Replace the operands of the cloned instructions with their scalar
3064   // equivalents in the new loop.
3065   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
3066     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
3067     auto InputInstance = Instance;
3068     if (!Operand || !OrigLoop->contains(Operand) ||
3069         (Cost->isUniformAfterVectorization(Operand, State.VF)))
3070       InputInstance.Lane = VPLane::getFirstLane();
3071     auto *NewOp = State.get(User.getOperand(op), InputInstance);
3072     Cloned->setOperand(op, NewOp);
3073   }
3074   addNewMetadata(Cloned, Instr);
3075 
3076   // Place the cloned scalar in the new loop.
3077   Builder.Insert(Cloned);
3078 
3079   State.set(Def, Cloned, Instance);
3080 
3081   // If we just cloned a new assumption, add it the assumption cache.
3082   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3083     AC->registerAssumption(II);
3084 
3085   // End if-block.
3086   if (IfPredicateInstr)
3087     PredicatedInstructions.push_back(Cloned);
3088 }
3089 
3090 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3091                                                       Value *End, Value *Step,
3092                                                       Instruction *DL) {
3093   BasicBlock *Header = L->getHeader();
3094   BasicBlock *Latch = L->getLoopLatch();
3095   // As we're just creating this loop, it's possible no latch exists
3096   // yet. If so, use the header as this will be a single block loop.
3097   if (!Latch)
3098     Latch = Header;
3099 
3100   IRBuilder<> B(&*Header->getFirstInsertionPt());
3101   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3102   setDebugLocFromInst(OldInst, &B);
3103   auto *Induction = B.CreatePHI(Start->getType(), 2, "index");
3104 
3105   B.SetInsertPoint(Latch->getTerminator());
3106   setDebugLocFromInst(OldInst, &B);
3107 
3108   // Create i+1 and fill the PHINode.
3109   //
3110   // If the tail is not folded, we know that End - Start >= Step (either
3111   // statically or through the minimum iteration checks). We also know that both
3112   // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
3113   // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned
3114   // overflows and we can mark the induction increment as NUW.
3115   Value *Next = B.CreateAdd(Induction, Step, "index.next",
3116                             /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false);
3117   Induction->addIncoming(Start, L->getLoopPreheader());
3118   Induction->addIncoming(Next, Latch);
3119   // Create the compare.
3120   Value *ICmp = B.CreateICmpEQ(Next, End);
3121   B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3122 
3123   // Now we have two terminators. Remove the old one from the block.
3124   Latch->getTerminator()->eraseFromParent();
3125 
3126   return Induction;
3127 }
3128 
3129 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3130   if (TripCount)
3131     return TripCount;
3132 
3133   assert(L && "Create Trip Count for null loop.");
3134   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3135   // Find the loop boundaries.
3136   ScalarEvolution *SE = PSE.getSE();
3137   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3138   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3139          "Invalid loop count");
3140 
3141   Type *IdxTy = Legal->getWidestInductionType();
3142   assert(IdxTy && "No type for induction");
3143 
3144   // The exit count might have the type of i64 while the phi is i32. This can
3145   // happen if we have an induction variable that is sign extended before the
3146   // compare. The only way that we get a backedge taken count is that the
3147   // induction variable was signed and as such will not overflow. In such a case
3148   // truncation is legal.
3149   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3150       IdxTy->getPrimitiveSizeInBits())
3151     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3152   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3153 
3154   // Get the total trip count from the count by adding 1.
3155   const SCEV *ExitCount = SE->getAddExpr(
3156       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3157 
3158   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3159 
3160   // Expand the trip count and place the new instructions in the preheader.
3161   // Notice that the pre-header does not change, only the loop body.
3162   SCEVExpander Exp(*SE, DL, "induction");
3163 
3164   // Count holds the overall loop count (N).
3165   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3166                                 L->getLoopPreheader()->getTerminator());
3167 
3168   if (TripCount->getType()->isPointerTy())
3169     TripCount =
3170         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3171                                     L->getLoopPreheader()->getTerminator());
3172 
3173   return TripCount;
3174 }
3175 
3176 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3177   if (VectorTripCount)
3178     return VectorTripCount;
3179 
3180   Value *TC = getOrCreateTripCount(L);
3181   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3182 
3183   Type *Ty = TC->getType();
3184   // This is where we can make the step a runtime constant.
3185   Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF);
3186 
3187   // If the tail is to be folded by masking, round the number of iterations N
3188   // up to a multiple of Step instead of rounding down. This is done by first
3189   // adding Step-1 and then rounding down. Note that it's ok if this addition
3190   // overflows: the vector induction variable will eventually wrap to zero given
3191   // that it starts at zero and its Step is a power of two; the loop will then
3192   // exit, with the last early-exit vector comparison also producing all-true.
3193   if (Cost->foldTailByMasking()) {
3194     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3195            "VF*UF must be a power of 2 when folding tail by masking");
3196     assert(!VF.isScalable() &&
3197            "Tail folding not yet supported for scalable vectors");
3198     TC = Builder.CreateAdd(
3199         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3200   }
3201 
3202   // Now we need to generate the expression for the part of the loop that the
3203   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3204   // iterations are not required for correctness, or N - Step, otherwise. Step
3205   // is equal to the vectorization factor (number of SIMD elements) times the
3206   // unroll factor (number of SIMD instructions).
3207   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3208 
3209   // There are cases where we *must* run at least one iteration in the remainder
3210   // loop.  See the cost model for when this can happen.  If the step evenly
3211   // divides the trip count, we set the remainder to be equal to the step. If
3212   // the step does not evenly divide the trip count, no adjustment is necessary
3213   // since there will already be scalar iterations. Note that the minimum
3214   // iterations check ensures that N >= Step.
3215   if (Cost->requiresScalarEpilogue(VF)) {
3216     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3217     R = Builder.CreateSelect(IsZero, Step, R);
3218   }
3219 
3220   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3221 
3222   return VectorTripCount;
3223 }
3224 
3225 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3226                                                    const DataLayout &DL) {
3227   // Verify that V is a vector type with same number of elements as DstVTy.
3228   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3229   unsigned VF = DstFVTy->getNumElements();
3230   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3231   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3232   Type *SrcElemTy = SrcVecTy->getElementType();
3233   Type *DstElemTy = DstFVTy->getElementType();
3234   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3235          "Vector elements must have same size");
3236 
3237   // Do a direct cast if element types are castable.
3238   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3239     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3240   }
3241   // V cannot be directly casted to desired vector type.
3242   // May happen when V is a floating point vector but DstVTy is a vector of
3243   // pointers or vice-versa. Handle this using a two-step bitcast using an
3244   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3245   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3246          "Only one type should be a pointer type");
3247   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3248          "Only one type should be a floating point type");
3249   Type *IntTy =
3250       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3251   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3252   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3253   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3254 }
3255 
3256 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3257                                                          BasicBlock *Bypass) {
3258   Value *Count = getOrCreateTripCount(L);
3259   // Reuse existing vector loop preheader for TC checks.
3260   // Note that new preheader block is generated for vector loop.
3261   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3262   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3263 
3264   // Generate code to check if the loop's trip count is less than VF * UF, or
3265   // equal to it in case a scalar epilogue is required; this implies that the
3266   // vector trip count is zero. This check also covers the case where adding one
3267   // to the backedge-taken count overflowed leading to an incorrect trip count
3268   // of zero. In this case we will also jump to the scalar loop.
3269   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3270                                             : ICmpInst::ICMP_ULT;
3271 
3272   // If tail is to be folded, vector loop takes care of all iterations.
3273   Value *CheckMinIters = Builder.getFalse();
3274   if (!Cost->foldTailByMasking()) {
3275     Value *Step =
3276         createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF);
3277     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3278   }
3279   // Create new preheader for vector loop.
3280   LoopVectorPreHeader =
3281       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3282                  "vector.ph");
3283 
3284   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3285                                DT->getNode(Bypass)->getIDom()) &&
3286          "TC check is expected to dominate Bypass");
3287 
3288   // Update dominator for Bypass & LoopExit (if needed).
3289   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3290   if (!Cost->requiresScalarEpilogue(VF))
3291     // If there is an epilogue which must run, there's no edge from the
3292     // middle block to exit blocks  and thus no need to update the immediate
3293     // dominator of the exit blocks.
3294     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3295 
3296   ReplaceInstWithInst(
3297       TCCheckBlock->getTerminator(),
3298       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3299   LoopBypassBlocks.push_back(TCCheckBlock);
3300 }
3301 
3302 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3303 
3304   BasicBlock *const SCEVCheckBlock =
3305       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3306   if (!SCEVCheckBlock)
3307     return nullptr;
3308 
3309   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3310            (OptForSizeBasedOnProfile &&
3311             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3312          "Cannot SCEV check stride or overflow when optimizing for size");
3313 
3314 
3315   // Update dominator only if this is first RT check.
3316   if (LoopBypassBlocks.empty()) {
3317     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3318     if (!Cost->requiresScalarEpilogue(VF))
3319       // If there is an epilogue which must run, there's no edge from the
3320       // middle block to exit blocks  and thus no need to update the immediate
3321       // dominator of the exit blocks.
3322       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3323   }
3324 
3325   LoopBypassBlocks.push_back(SCEVCheckBlock);
3326   AddedSafetyChecks = true;
3327   return SCEVCheckBlock;
3328 }
3329 
3330 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3331                                                       BasicBlock *Bypass) {
3332   // VPlan-native path does not do any analysis for runtime checks currently.
3333   if (EnableVPlanNativePath)
3334     return nullptr;
3335 
3336   BasicBlock *const MemCheckBlock =
3337       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3338 
3339   // Check if we generated code that checks in runtime if arrays overlap. We put
3340   // the checks into a separate block to make the more common case of few
3341   // elements faster.
3342   if (!MemCheckBlock)
3343     return nullptr;
3344 
3345   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3346     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3347            "Cannot emit memory checks when optimizing for size, unless forced "
3348            "to vectorize.");
3349     ORE->emit([&]() {
3350       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3351                                         L->getStartLoc(), L->getHeader())
3352              << "Code-size may be reduced by not forcing "
3353                 "vectorization, or by source-code modifications "
3354                 "eliminating the need for runtime checks "
3355                 "(e.g., adding 'restrict').";
3356     });
3357   }
3358 
3359   LoopBypassBlocks.push_back(MemCheckBlock);
3360 
3361   AddedSafetyChecks = true;
3362 
3363   // We currently don't use LoopVersioning for the actual loop cloning but we
3364   // still use it to add the noalias metadata.
3365   LVer = std::make_unique<LoopVersioning>(
3366       *Legal->getLAI(),
3367       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3368       DT, PSE.getSE());
3369   LVer->prepareNoAliasMetadata();
3370   return MemCheckBlock;
3371 }
3372 
3373 Value *InnerLoopVectorizer::emitTransformedIndex(
3374     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3375     const InductionDescriptor &ID) const {
3376 
3377   SCEVExpander Exp(*SE, DL, "induction");
3378   auto Step = ID.getStep();
3379   auto StartValue = ID.getStartValue();
3380   assert(Index->getType()->getScalarType() == Step->getType() &&
3381          "Index scalar type does not match StepValue type");
3382 
3383   // Note: the IR at this point is broken. We cannot use SE to create any new
3384   // SCEV and then expand it, hoping that SCEV's simplification will give us
3385   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3386   // lead to various SCEV crashes. So all we can do is to use builder and rely
3387   // on InstCombine for future simplifications. Here we handle some trivial
3388   // cases only.
3389   auto CreateAdd = [&B](Value *X, Value *Y) {
3390     assert(X->getType() == Y->getType() && "Types don't match!");
3391     if (auto *CX = dyn_cast<ConstantInt>(X))
3392       if (CX->isZero())
3393         return Y;
3394     if (auto *CY = dyn_cast<ConstantInt>(Y))
3395       if (CY->isZero())
3396         return X;
3397     return B.CreateAdd(X, Y);
3398   };
3399 
3400   // We allow X to be a vector type, in which case Y will potentially be
3401   // splatted into a vector with the same element count.
3402   auto CreateMul = [&B](Value *X, Value *Y) {
3403     assert(X->getType()->getScalarType() == Y->getType() &&
3404            "Types don't match!");
3405     if (auto *CX = dyn_cast<ConstantInt>(X))
3406       if (CX->isOne())
3407         return Y;
3408     if (auto *CY = dyn_cast<ConstantInt>(Y))
3409       if (CY->isOne())
3410         return X;
3411     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3412     if (XVTy && !isa<VectorType>(Y->getType()))
3413       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3414     return B.CreateMul(X, Y);
3415   };
3416 
3417   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3418   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3419   // the DomTree is not kept up-to-date for additional blocks generated in the
3420   // vector loop. By using the header as insertion point, we guarantee that the
3421   // expanded instructions dominate all their uses.
3422   auto GetInsertPoint = [this, &B]() {
3423     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3424     if (InsertBB != LoopVectorBody &&
3425         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3426       return LoopVectorBody->getTerminator();
3427     return &*B.GetInsertPoint();
3428   };
3429 
3430   switch (ID.getKind()) {
3431   case InductionDescriptor::IK_IntInduction: {
3432     assert(!isa<VectorType>(Index->getType()) &&
3433            "Vector indices not supported for integer inductions yet");
3434     assert(Index->getType() == StartValue->getType() &&
3435            "Index type does not match StartValue type");
3436     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3437       return B.CreateSub(StartValue, Index);
3438     auto *Offset = CreateMul(
3439         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3440     return CreateAdd(StartValue, Offset);
3441   }
3442   case InductionDescriptor::IK_PtrInduction: {
3443     assert(isa<SCEVConstant>(Step) &&
3444            "Expected constant step for pointer induction");
3445     return B.CreateGEP(
3446         ID.getElementType(), StartValue,
3447         CreateMul(Index,
3448                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3449                                     GetInsertPoint())));
3450   }
3451   case InductionDescriptor::IK_FpInduction: {
3452     assert(!isa<VectorType>(Index->getType()) &&
3453            "Vector indices not supported for FP inductions yet");
3454     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3455     auto InductionBinOp = ID.getInductionBinOp();
3456     assert(InductionBinOp &&
3457            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3458             InductionBinOp->getOpcode() == Instruction::FSub) &&
3459            "Original bin op should be defined for FP induction");
3460 
3461     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3462     Value *MulExp = B.CreateFMul(StepValue, Index);
3463     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3464                          "induction");
3465   }
3466   case InductionDescriptor::IK_NoInduction:
3467     return nullptr;
3468   }
3469   llvm_unreachable("invalid enum");
3470 }
3471 
3472 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3473   LoopScalarBody = OrigLoop->getHeader();
3474   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3475   assert(LoopVectorPreHeader && "Invalid loop structure");
3476   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3477   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3478          "multiple exit loop without required epilogue?");
3479 
3480   LoopMiddleBlock =
3481       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3482                  LI, nullptr, Twine(Prefix) + "middle.block");
3483   LoopScalarPreHeader =
3484       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3485                  nullptr, Twine(Prefix) + "scalar.ph");
3486 
3487   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3488 
3489   // Set up the middle block terminator.  Two cases:
3490   // 1) If we know that we must execute the scalar epilogue, emit an
3491   //    unconditional branch.
3492   // 2) Otherwise, we must have a single unique exit block (due to how we
3493   //    implement the multiple exit case).  In this case, set up a conditonal
3494   //    branch from the middle block to the loop scalar preheader, and the
3495   //    exit block.  completeLoopSkeleton will update the condition to use an
3496   //    iteration check, if required to decide whether to execute the remainder.
3497   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3498     BranchInst::Create(LoopScalarPreHeader) :
3499     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3500                        Builder.getTrue());
3501   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3502   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3503 
3504   // We intentionally don't let SplitBlock to update LoopInfo since
3505   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3506   // LoopVectorBody is explicitly added to the correct place few lines later.
3507   LoopVectorBody =
3508       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3509                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3510 
3511   // Update dominator for loop exit.
3512   if (!Cost->requiresScalarEpilogue(VF))
3513     // If there is an epilogue which must run, there's no edge from the
3514     // middle block to exit blocks  and thus no need to update the immediate
3515     // dominator of the exit blocks.
3516     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3517 
3518   // Create and register the new vector loop.
3519   Loop *Lp = LI->AllocateLoop();
3520   Loop *ParentLoop = OrigLoop->getParentLoop();
3521 
3522   // Insert the new loop into the loop nest and register the new basic blocks
3523   // before calling any utilities such as SCEV that require valid LoopInfo.
3524   if (ParentLoop) {
3525     ParentLoop->addChildLoop(Lp);
3526   } else {
3527     LI->addTopLevelLoop(Lp);
3528   }
3529   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3530   return Lp;
3531 }
3532 
3533 void InnerLoopVectorizer::createInductionResumeValues(
3534     Loop *L, Value *VectorTripCount,
3535     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3536   assert(VectorTripCount && L && "Expected valid arguments");
3537   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3538           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3539          "Inconsistent information about additional bypass.");
3540   // We are going to resume the execution of the scalar loop.
3541   // Go over all of the induction variables that we found and fix the
3542   // PHIs that are left in the scalar version of the loop.
3543   // The starting values of PHI nodes depend on the counter of the last
3544   // iteration in the vectorized loop.
3545   // If we come from a bypass edge then we need to start from the original
3546   // start value.
3547   for (auto &InductionEntry : Legal->getInductionVars()) {
3548     PHINode *OrigPhi = InductionEntry.first;
3549     InductionDescriptor II = InductionEntry.second;
3550 
3551     // Create phi nodes to merge from the  backedge-taken check block.
3552     PHINode *BCResumeVal =
3553         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3554                         LoopScalarPreHeader->getTerminator());
3555     // Copy original phi DL over to the new one.
3556     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3557     Value *&EndValue = IVEndValues[OrigPhi];
3558     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3559     if (OrigPhi == OldInduction) {
3560       // We know what the end value is.
3561       EndValue = VectorTripCount;
3562     } else {
3563       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3564 
3565       // Fast-math-flags propagate from the original induction instruction.
3566       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3567         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3568 
3569       Type *StepType = II.getStep()->getType();
3570       Instruction::CastOps CastOp =
3571           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3572       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3573       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3574       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3575       EndValue->setName("ind.end");
3576 
3577       // Compute the end value for the additional bypass (if applicable).
3578       if (AdditionalBypass.first) {
3579         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3580         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3581                                          StepType, true);
3582         CRD =
3583             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3584         EndValueFromAdditionalBypass =
3585             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3586         EndValueFromAdditionalBypass->setName("ind.end");
3587       }
3588     }
3589     // The new PHI merges the original incoming value, in case of a bypass,
3590     // or the value at the end of the vectorized loop.
3591     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3592 
3593     // Fix the scalar body counter (PHI node).
3594     // The old induction's phi node in the scalar body needs the truncated
3595     // value.
3596     for (BasicBlock *BB : LoopBypassBlocks)
3597       BCResumeVal->addIncoming(II.getStartValue(), BB);
3598 
3599     if (AdditionalBypass.first)
3600       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3601                                             EndValueFromAdditionalBypass);
3602 
3603     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3604   }
3605 }
3606 
3607 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3608                                                       MDNode *OrigLoopID) {
3609   assert(L && "Expected valid loop.");
3610 
3611   // The trip counts should be cached by now.
3612   Value *Count = getOrCreateTripCount(L);
3613   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3614 
3615   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3616 
3617   // Add a check in the middle block to see if we have completed
3618   // all of the iterations in the first vector loop.  Three cases:
3619   // 1) If we require a scalar epilogue, there is no conditional branch as
3620   //    we unconditionally branch to the scalar preheader.  Do nothing.
3621   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3622   //    Thus if tail is to be folded, we know we don't need to run the
3623   //    remainder and we can use the previous value for the condition (true).
3624   // 3) Otherwise, construct a runtime check.
3625   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3626     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3627                                         Count, VectorTripCount, "cmp.n",
3628                                         LoopMiddleBlock->getTerminator());
3629 
3630     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3631     // of the corresponding compare because they may have ended up with
3632     // different line numbers and we want to avoid awkward line stepping while
3633     // debugging. Eg. if the compare has got a line number inside the loop.
3634     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3635     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3636   }
3637 
3638   // Get ready to start creating new instructions into the vectorized body.
3639   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3640          "Inconsistent vector loop preheader");
3641   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3642 
3643   Optional<MDNode *> VectorizedLoopID =
3644       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3645                                       LLVMLoopVectorizeFollowupVectorized});
3646   if (VectorizedLoopID.hasValue()) {
3647     L->setLoopID(VectorizedLoopID.getValue());
3648 
3649     // Do not setAlreadyVectorized if loop attributes have been defined
3650     // explicitly.
3651     return LoopVectorPreHeader;
3652   }
3653 
3654   // Keep all loop hints from the original loop on the vector loop (we'll
3655   // replace the vectorizer-specific hints below).
3656   if (MDNode *LID = OrigLoop->getLoopID())
3657     L->setLoopID(LID);
3658 
3659   LoopVectorizeHints Hints(L, true, *ORE);
3660   Hints.setAlreadyVectorized();
3661 
3662 #ifdef EXPENSIVE_CHECKS
3663   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3664   LI->verify(*DT);
3665 #endif
3666 
3667   return LoopVectorPreHeader;
3668 }
3669 
3670 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3671   /*
3672    In this function we generate a new loop. The new loop will contain
3673    the vectorized instructions while the old loop will continue to run the
3674    scalar remainder.
3675 
3676        [ ] <-- loop iteration number check.
3677     /   |
3678    /    v
3679   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3680   |  /  |
3681   | /   v
3682   ||   [ ]     <-- vector pre header.
3683   |/    |
3684   |     v
3685   |    [  ] \
3686   |    [  ]_|   <-- vector loop.
3687   |     |
3688   |     v
3689   \   -[ ]   <--- middle-block.
3690    \/   |
3691    /\   v
3692    | ->[ ]     <--- new preheader.
3693    |    |
3694  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3695    |   [ ] \
3696    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3697     \   |
3698      \  v
3699       >[ ]     <-- exit block(s).
3700    ...
3701    */
3702 
3703   // Get the metadata of the original loop before it gets modified.
3704   MDNode *OrigLoopID = OrigLoop->getLoopID();
3705 
3706   // Workaround!  Compute the trip count of the original loop and cache it
3707   // before we start modifying the CFG.  This code has a systemic problem
3708   // wherein it tries to run analysis over partially constructed IR; this is
3709   // wrong, and not simply for SCEV.  The trip count of the original loop
3710   // simply happens to be prone to hitting this in practice.  In theory, we
3711   // can hit the same issue for any SCEV, or ValueTracking query done during
3712   // mutation.  See PR49900.
3713   getOrCreateTripCount(OrigLoop);
3714 
3715   // Create an empty vector loop, and prepare basic blocks for the runtime
3716   // checks.
3717   Loop *Lp = createVectorLoopSkeleton("");
3718 
3719   // Now, compare the new count to zero. If it is zero skip the vector loop and
3720   // jump to the scalar loop. This check also covers the case where the
3721   // backedge-taken count is uint##_max: adding one to it will overflow leading
3722   // to an incorrect trip count of zero. In this (rare) case we will also jump
3723   // to the scalar loop.
3724   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3725 
3726   // Generate the code to check any assumptions that we've made for SCEV
3727   // expressions.
3728   emitSCEVChecks(Lp, LoopScalarPreHeader);
3729 
3730   // Generate the code that checks in runtime if arrays overlap. We put the
3731   // checks into a separate block to make the more common case of few elements
3732   // faster.
3733   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3734 
3735   // Some loops have a single integer induction variable, while other loops
3736   // don't. One example is c++ iterators that often have multiple pointer
3737   // induction variables. In the code below we also support a case where we
3738   // don't have a single induction variable.
3739   //
3740   // We try to obtain an induction variable from the original loop as hard
3741   // as possible. However if we don't find one that:
3742   //   - is an integer
3743   //   - counts from zero, stepping by one
3744   //   - is the size of the widest induction variable type
3745   // then we create a new one.
3746   OldInduction = Legal->getPrimaryInduction();
3747   Type *IdxTy = Legal->getWidestInductionType();
3748   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3749   // The loop step is equal to the vectorization factor (num of SIMD elements)
3750   // times the unroll factor (num of SIMD instructions).
3751   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3752   Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF);
3753   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3754   Induction =
3755       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3756                               getDebugLocFromInstOrOperands(OldInduction));
3757 
3758   // Emit phis for the new starting index of the scalar loop.
3759   createInductionResumeValues(Lp, CountRoundDown);
3760 
3761   return completeLoopSkeleton(Lp, OrigLoopID);
3762 }
3763 
3764 // Fix up external users of the induction variable. At this point, we are
3765 // in LCSSA form, with all external PHIs that use the IV having one input value,
3766 // coming from the remainder loop. We need those PHIs to also have a correct
3767 // value for the IV when arriving directly from the middle block.
3768 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3769                                        const InductionDescriptor &II,
3770                                        Value *CountRoundDown, Value *EndValue,
3771                                        BasicBlock *MiddleBlock) {
3772   // There are two kinds of external IV usages - those that use the value
3773   // computed in the last iteration (the PHI) and those that use the penultimate
3774   // value (the value that feeds into the phi from the loop latch).
3775   // We allow both, but they, obviously, have different values.
3776 
3777   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3778 
3779   DenseMap<Value *, Value *> MissingVals;
3780 
3781   // An external user of the last iteration's value should see the value that
3782   // the remainder loop uses to initialize its own IV.
3783   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3784   for (User *U : PostInc->users()) {
3785     Instruction *UI = cast<Instruction>(U);
3786     if (!OrigLoop->contains(UI)) {
3787       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3788       MissingVals[UI] = EndValue;
3789     }
3790   }
3791 
3792   // An external user of the penultimate value need to see EndValue - Step.
3793   // The simplest way to get this is to recompute it from the constituent SCEVs,
3794   // that is Start + (Step * (CRD - 1)).
3795   for (User *U : OrigPhi->users()) {
3796     auto *UI = cast<Instruction>(U);
3797     if (!OrigLoop->contains(UI)) {
3798       const DataLayout &DL =
3799           OrigLoop->getHeader()->getModule()->getDataLayout();
3800       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3801 
3802       IRBuilder<> B(MiddleBlock->getTerminator());
3803 
3804       // Fast-math-flags propagate from the original induction instruction.
3805       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3806         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3807 
3808       Value *CountMinusOne = B.CreateSub(
3809           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3810       Value *CMO =
3811           !II.getStep()->getType()->isIntegerTy()
3812               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3813                              II.getStep()->getType())
3814               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3815       CMO->setName("cast.cmo");
3816       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3817       Escape->setName("ind.escape");
3818       MissingVals[UI] = Escape;
3819     }
3820   }
3821 
3822   for (auto &I : MissingVals) {
3823     PHINode *PHI = cast<PHINode>(I.first);
3824     // One corner case we have to handle is two IVs "chasing" each-other,
3825     // that is %IV2 = phi [...], [ %IV1, %latch ]
3826     // In this case, if IV1 has an external use, we need to avoid adding both
3827     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3828     // don't already have an incoming value for the middle block.
3829     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3830       PHI->addIncoming(I.second, MiddleBlock);
3831   }
3832 }
3833 
3834 namespace {
3835 
3836 struct CSEDenseMapInfo {
3837   static bool canHandle(const Instruction *I) {
3838     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3839            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3840   }
3841 
3842   static inline Instruction *getEmptyKey() {
3843     return DenseMapInfo<Instruction *>::getEmptyKey();
3844   }
3845 
3846   static inline Instruction *getTombstoneKey() {
3847     return DenseMapInfo<Instruction *>::getTombstoneKey();
3848   }
3849 
3850   static unsigned getHashValue(const Instruction *I) {
3851     assert(canHandle(I) && "Unknown instruction!");
3852     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3853                                                            I->value_op_end()));
3854   }
3855 
3856   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3857     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3858         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3859       return LHS == RHS;
3860     return LHS->isIdenticalTo(RHS);
3861   }
3862 };
3863 
3864 } // end anonymous namespace
3865 
3866 ///Perform cse of induction variable instructions.
3867 static void cse(BasicBlock *BB) {
3868   // Perform simple cse.
3869   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3870   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3871     if (!CSEDenseMapInfo::canHandle(&In))
3872       continue;
3873 
3874     // Check if we can replace this instruction with any of the
3875     // visited instructions.
3876     if (Instruction *V = CSEMap.lookup(&In)) {
3877       In.replaceAllUsesWith(V);
3878       In.eraseFromParent();
3879       continue;
3880     }
3881 
3882     CSEMap[&In] = &In;
3883   }
3884 }
3885 
3886 InstructionCost
3887 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3888                                               bool &NeedToScalarize) const {
3889   Function *F = CI->getCalledFunction();
3890   Type *ScalarRetTy = CI->getType();
3891   SmallVector<Type *, 4> Tys, ScalarTys;
3892   for (auto &ArgOp : CI->args())
3893     ScalarTys.push_back(ArgOp->getType());
3894 
3895   // Estimate cost of scalarized vector call. The source operands are assumed
3896   // to be vectors, so we need to extract individual elements from there,
3897   // execute VF scalar calls, and then gather the result into the vector return
3898   // value.
3899   InstructionCost ScalarCallCost =
3900       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3901   if (VF.isScalar())
3902     return ScalarCallCost;
3903 
3904   // Compute corresponding vector type for return value and arguments.
3905   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3906   for (Type *ScalarTy : ScalarTys)
3907     Tys.push_back(ToVectorTy(ScalarTy, VF));
3908 
3909   // Compute costs of unpacking argument values for the scalar calls and
3910   // packing the return values to a vector.
3911   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3912 
3913   InstructionCost Cost =
3914       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3915 
3916   // If we can't emit a vector call for this function, then the currently found
3917   // cost is the cost we need to return.
3918   NeedToScalarize = true;
3919   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3920   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3921 
3922   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3923     return Cost;
3924 
3925   // If the corresponding vector cost is cheaper, return its cost.
3926   InstructionCost VectorCallCost =
3927       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3928   if (VectorCallCost < Cost) {
3929     NeedToScalarize = false;
3930     Cost = VectorCallCost;
3931   }
3932   return Cost;
3933 }
3934 
3935 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3936   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3937     return Elt;
3938   return VectorType::get(Elt, VF);
3939 }
3940 
3941 InstructionCost
3942 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3943                                                    ElementCount VF) const {
3944   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3945   assert(ID && "Expected intrinsic call!");
3946   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3947   FastMathFlags FMF;
3948   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3949     FMF = FPMO->getFastMathFlags();
3950 
3951   SmallVector<const Value *> Arguments(CI->args());
3952   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3953   SmallVector<Type *> ParamTys;
3954   std::transform(FTy->param_begin(), FTy->param_end(),
3955                  std::back_inserter(ParamTys),
3956                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3957 
3958   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3959                                     dyn_cast<IntrinsicInst>(CI));
3960   return TTI.getIntrinsicInstrCost(CostAttrs,
3961                                    TargetTransformInfo::TCK_RecipThroughput);
3962 }
3963 
3964 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3965   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3966   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3967   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3968 }
3969 
3970 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3971   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3972   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3973   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3974 }
3975 
3976 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3977   // For every instruction `I` in MinBWs, truncate the operands, create a
3978   // truncated version of `I` and reextend its result. InstCombine runs
3979   // later and will remove any ext/trunc pairs.
3980   SmallPtrSet<Value *, 4> Erased;
3981   for (const auto &KV : Cost->getMinimalBitwidths()) {
3982     // If the value wasn't vectorized, we must maintain the original scalar
3983     // type. The absence of the value from State indicates that it
3984     // wasn't vectorized.
3985     // FIXME: Should not rely on getVPValue at this point.
3986     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3987     if (!State.hasAnyVectorValue(Def))
3988       continue;
3989     for (unsigned Part = 0; Part < UF; ++Part) {
3990       Value *I = State.get(Def, Part);
3991       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3992         continue;
3993       Type *OriginalTy = I->getType();
3994       Type *ScalarTruncatedTy =
3995           IntegerType::get(OriginalTy->getContext(), KV.second);
3996       auto *TruncatedTy = VectorType::get(
3997           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3998       if (TruncatedTy == OriginalTy)
3999         continue;
4000 
4001       IRBuilder<> B(cast<Instruction>(I));
4002       auto ShrinkOperand = [&](Value *V) -> Value * {
4003         if (auto *ZI = dyn_cast<ZExtInst>(V))
4004           if (ZI->getSrcTy() == TruncatedTy)
4005             return ZI->getOperand(0);
4006         return B.CreateZExtOrTrunc(V, TruncatedTy);
4007       };
4008 
4009       // The actual instruction modification depends on the instruction type,
4010       // unfortunately.
4011       Value *NewI = nullptr;
4012       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
4013         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
4014                              ShrinkOperand(BO->getOperand(1)));
4015 
4016         // Any wrapping introduced by shrinking this operation shouldn't be
4017         // considered undefined behavior. So, we can't unconditionally copy
4018         // arithmetic wrapping flags to NewI.
4019         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
4020       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
4021         NewI =
4022             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
4023                          ShrinkOperand(CI->getOperand(1)));
4024       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
4025         NewI = B.CreateSelect(SI->getCondition(),
4026                               ShrinkOperand(SI->getTrueValue()),
4027                               ShrinkOperand(SI->getFalseValue()));
4028       } else if (auto *CI = dyn_cast<CastInst>(I)) {
4029         switch (CI->getOpcode()) {
4030         default:
4031           llvm_unreachable("Unhandled cast!");
4032         case Instruction::Trunc:
4033           NewI = ShrinkOperand(CI->getOperand(0));
4034           break;
4035         case Instruction::SExt:
4036           NewI = B.CreateSExtOrTrunc(
4037               CI->getOperand(0),
4038               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4039           break;
4040         case Instruction::ZExt:
4041           NewI = B.CreateZExtOrTrunc(
4042               CI->getOperand(0),
4043               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4044           break;
4045         }
4046       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
4047         auto Elements0 =
4048             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
4049         auto *O0 = B.CreateZExtOrTrunc(
4050             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
4051         auto Elements1 =
4052             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
4053         auto *O1 = B.CreateZExtOrTrunc(
4054             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
4055 
4056         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
4057       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
4058         // Don't do anything with the operands, just extend the result.
4059         continue;
4060       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
4061         auto Elements =
4062             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
4063         auto *O0 = B.CreateZExtOrTrunc(
4064             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4065         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
4066         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
4067       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
4068         auto Elements =
4069             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
4070         auto *O0 = B.CreateZExtOrTrunc(
4071             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4072         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
4073       } else {
4074         // If we don't know what to do, be conservative and don't do anything.
4075         continue;
4076       }
4077 
4078       // Lastly, extend the result.
4079       NewI->takeName(cast<Instruction>(I));
4080       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
4081       I->replaceAllUsesWith(Res);
4082       cast<Instruction>(I)->eraseFromParent();
4083       Erased.insert(I);
4084       State.reset(Def, Res, Part);
4085     }
4086   }
4087 
4088   // We'll have created a bunch of ZExts that are now parentless. Clean up.
4089   for (const auto &KV : Cost->getMinimalBitwidths()) {
4090     // If the value wasn't vectorized, we must maintain the original scalar
4091     // type. The absence of the value from State indicates that it
4092     // wasn't vectorized.
4093     // FIXME: Should not rely on getVPValue at this point.
4094     VPValue *Def = State.Plan->getVPValue(KV.first, true);
4095     if (!State.hasAnyVectorValue(Def))
4096       continue;
4097     for (unsigned Part = 0; Part < UF; ++Part) {
4098       Value *I = State.get(Def, Part);
4099       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
4100       if (Inst && Inst->use_empty()) {
4101         Value *NewI = Inst->getOperand(0);
4102         Inst->eraseFromParent();
4103         State.reset(Def, NewI, Part);
4104       }
4105     }
4106   }
4107 }
4108 
4109 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
4110   // Insert truncates and extends for any truncated instructions as hints to
4111   // InstCombine.
4112   if (VF.isVector())
4113     truncateToMinimalBitwidths(State);
4114 
4115   // Fix widened non-induction PHIs by setting up the PHI operands.
4116   if (OrigPHIsToFix.size()) {
4117     assert(EnableVPlanNativePath &&
4118            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
4119     fixNonInductionPHIs(State);
4120   }
4121 
4122   // At this point every instruction in the original loop is widened to a
4123   // vector form. Now we need to fix the recurrences in the loop. These PHI
4124   // nodes are currently empty because we did not want to introduce cycles.
4125   // This is the second stage of vectorizing recurrences.
4126   fixCrossIterationPHIs(State);
4127 
4128   // Forget the original basic block.
4129   PSE.getSE()->forgetLoop(OrigLoop);
4130 
4131   // If we inserted an edge from the middle block to the unique exit block,
4132   // update uses outside the loop (phis) to account for the newly inserted
4133   // edge.
4134   if (!Cost->requiresScalarEpilogue(VF)) {
4135     // Fix-up external users of the induction variables.
4136     for (auto &Entry : Legal->getInductionVars())
4137       fixupIVUsers(Entry.first, Entry.second,
4138                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4139                    IVEndValues[Entry.first], LoopMiddleBlock);
4140 
4141     fixLCSSAPHIs(State);
4142   }
4143 
4144   for (Instruction *PI : PredicatedInstructions)
4145     sinkScalarOperands(&*PI);
4146 
4147   // Remove redundant induction instructions.
4148   cse(LoopVectorBody);
4149 
4150   // Set/update profile weights for the vector and remainder loops as original
4151   // loop iterations are now distributed among them. Note that original loop
4152   // represented by LoopScalarBody becomes remainder loop after vectorization.
4153   //
4154   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4155   // end up getting slightly roughened result but that should be OK since
4156   // profile is not inherently precise anyway. Note also possible bypass of
4157   // vector code caused by legality checks is ignored, assigning all the weight
4158   // to the vector loop, optimistically.
4159   //
4160   // For scalable vectorization we can't know at compile time how many iterations
4161   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4162   // vscale of '1'.
4163   setProfileInfoAfterUnrolling(
4164       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4165       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4166 }
4167 
4168 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4169   // In order to support recurrences we need to be able to vectorize Phi nodes.
4170   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4171   // stage #2: We now need to fix the recurrences by adding incoming edges to
4172   // the currently empty PHI nodes. At this point every instruction in the
4173   // original loop is widened to a vector form so we can use them to construct
4174   // the incoming edges.
4175   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
4176   for (VPRecipeBase &R : Header->phis()) {
4177     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
4178       fixReduction(ReductionPhi, State);
4179     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
4180       fixFirstOrderRecurrence(FOR, State);
4181   }
4182 }
4183 
4184 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR,
4185                                                   VPTransformState &State) {
4186   // This is the second phase of vectorizing first-order recurrences. An
4187   // overview of the transformation is described below. Suppose we have the
4188   // following loop.
4189   //
4190   //   for (int i = 0; i < n; ++i)
4191   //     b[i] = a[i] - a[i - 1];
4192   //
4193   // There is a first-order recurrence on "a". For this loop, the shorthand
4194   // scalar IR looks like:
4195   //
4196   //   scalar.ph:
4197   //     s_init = a[-1]
4198   //     br scalar.body
4199   //
4200   //   scalar.body:
4201   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4202   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4203   //     s2 = a[i]
4204   //     b[i] = s2 - s1
4205   //     br cond, scalar.body, ...
4206   //
4207   // In this example, s1 is a recurrence because it's value depends on the
4208   // previous iteration. In the first phase of vectorization, we created a
4209   // vector phi v1 for s1. We now complete the vectorization and produce the
4210   // shorthand vector IR shown below (for VF = 4, UF = 1).
4211   //
4212   //   vector.ph:
4213   //     v_init = vector(..., ..., ..., a[-1])
4214   //     br vector.body
4215   //
4216   //   vector.body
4217   //     i = phi [0, vector.ph], [i+4, vector.body]
4218   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4219   //     v2 = a[i, i+1, i+2, i+3];
4220   //     v3 = vector(v1(3), v2(0, 1, 2))
4221   //     b[i, i+1, i+2, i+3] = v2 - v3
4222   //     br cond, vector.body, middle.block
4223   //
4224   //   middle.block:
4225   //     x = v2(3)
4226   //     br scalar.ph
4227   //
4228   //   scalar.ph:
4229   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4230   //     br scalar.body
4231   //
4232   // After execution completes the vector loop, we extract the next value of
4233   // the recurrence (x) to use as the initial value in the scalar loop.
4234 
4235   // Extract the last vector element in the middle block. This will be the
4236   // initial value for the recurrence when jumping to the scalar loop.
4237   VPValue *PreviousDef = PhiR->getBackedgeValue();
4238   Value *Incoming = State.get(PreviousDef, UF - 1);
4239   auto *ExtractForScalar = Incoming;
4240   auto *IdxTy = Builder.getInt32Ty();
4241   if (VF.isVector()) {
4242     auto *One = ConstantInt::get(IdxTy, 1);
4243     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4244     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4245     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4246     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4247                                                     "vector.recur.extract");
4248   }
4249   // Extract the second last element in the middle block if the
4250   // Phi is used outside the loop. We need to extract the phi itself
4251   // and not the last element (the phi update in the current iteration). This
4252   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4253   // when the scalar loop is not run at all.
4254   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4255   if (VF.isVector()) {
4256     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4257     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4258     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4259         Incoming, Idx, "vector.recur.extract.for.phi");
4260   } else if (UF > 1)
4261     // When loop is unrolled without vectorizing, initialize
4262     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4263     // of `Incoming`. This is analogous to the vectorized case above: extracting
4264     // the second last element when VF > 1.
4265     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4266 
4267   // Fix the initial value of the original recurrence in the scalar loop.
4268   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4269   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4270   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4271   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4272   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4273     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4274     Start->addIncoming(Incoming, BB);
4275   }
4276 
4277   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4278   Phi->setName("scalar.recur");
4279 
4280   // Finally, fix users of the recurrence outside the loop. The users will need
4281   // either the last value of the scalar recurrence or the last value of the
4282   // vector recurrence we extracted in the middle block. Since the loop is in
4283   // LCSSA form, we just need to find all the phi nodes for the original scalar
4284   // recurrence in the exit block, and then add an edge for the middle block.
4285   // Note that LCSSA does not imply single entry when the original scalar loop
4286   // had multiple exiting edges (as we always run the last iteration in the
4287   // scalar epilogue); in that case, there is no edge from middle to exit and
4288   // and thus no phis which needed updated.
4289   if (!Cost->requiresScalarEpilogue(VF))
4290     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4291       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi))
4292         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4293 }
4294 
4295 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4296                                        VPTransformState &State) {
4297   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4298   // Get it's reduction variable descriptor.
4299   assert(Legal->isReductionVariable(OrigPhi) &&
4300          "Unable to find the reduction variable");
4301   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4302 
4303   RecurKind RK = RdxDesc.getRecurrenceKind();
4304   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4305   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4306   setDebugLocFromInst(ReductionStartValue);
4307 
4308   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
4309   // This is the vector-clone of the value that leaves the loop.
4310   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4311 
4312   // Wrap flags are in general invalid after vectorization, clear them.
4313   clearReductionWrapFlags(RdxDesc, State);
4314 
4315   // Before each round, move the insertion point right between
4316   // the PHIs and the values we are going to write.
4317   // This allows us to write both PHINodes and the extractelement
4318   // instructions.
4319   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4320 
4321   setDebugLocFromInst(LoopExitInst);
4322 
4323   Type *PhiTy = OrigPhi->getType();
4324   // If tail is folded by masking, the vector value to leave the loop should be
4325   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4326   // instead of the former. For an inloop reduction the reduction will already
4327   // be predicated, and does not need to be handled here.
4328   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4329     for (unsigned Part = 0; Part < UF; ++Part) {
4330       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4331       Value *Sel = nullptr;
4332       for (User *U : VecLoopExitInst->users()) {
4333         if (isa<SelectInst>(U)) {
4334           assert(!Sel && "Reduction exit feeding two selects");
4335           Sel = U;
4336         } else
4337           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4338       }
4339       assert(Sel && "Reduction exit feeds no select");
4340       State.reset(LoopExitInstDef, Sel, Part);
4341 
4342       // If the target can create a predicated operator for the reduction at no
4343       // extra cost in the loop (for example a predicated vadd), it can be
4344       // cheaper for the select to remain in the loop than be sunk out of it,
4345       // and so use the select value for the phi instead of the old
4346       // LoopExitValue.
4347       if (PreferPredicatedReductionSelect ||
4348           TTI->preferPredicatedReductionSelect(
4349               RdxDesc.getOpcode(), PhiTy,
4350               TargetTransformInfo::ReductionFlags())) {
4351         auto *VecRdxPhi =
4352             cast<PHINode>(State.get(PhiR, Part));
4353         VecRdxPhi->setIncomingValueForBlock(
4354             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4355       }
4356     }
4357   }
4358 
4359   // If the vector reduction can be performed in a smaller type, we truncate
4360   // then extend the loop exit value to enable InstCombine to evaluate the
4361   // entire expression in the smaller type.
4362   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4363     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4364     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4365     Builder.SetInsertPoint(
4366         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4367     VectorParts RdxParts(UF);
4368     for (unsigned Part = 0; Part < UF; ++Part) {
4369       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4370       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4371       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4372                                         : Builder.CreateZExt(Trunc, VecTy);
4373       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4374            UI != RdxParts[Part]->user_end();)
4375         if (*UI != Trunc) {
4376           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4377           RdxParts[Part] = Extnd;
4378         } else {
4379           ++UI;
4380         }
4381     }
4382     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4383     for (unsigned Part = 0; Part < UF; ++Part) {
4384       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4385       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4386     }
4387   }
4388 
4389   // Reduce all of the unrolled parts into a single vector.
4390   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4391   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4392 
4393   // The middle block terminator has already been assigned a DebugLoc here (the
4394   // OrigLoop's single latch terminator). We want the whole middle block to
4395   // appear to execute on this line because: (a) it is all compiler generated,
4396   // (b) these instructions are always executed after evaluating the latch
4397   // conditional branch, and (c) other passes may add new predecessors which
4398   // terminate on this line. This is the easiest way to ensure we don't
4399   // accidentally cause an extra step back into the loop while debugging.
4400   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4401   if (PhiR->isOrdered())
4402     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4403   else {
4404     // Floating-point operations should have some FMF to enable the reduction.
4405     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4406     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4407     for (unsigned Part = 1; Part < UF; ++Part) {
4408       Value *RdxPart = State.get(LoopExitInstDef, Part);
4409       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4410         ReducedPartRdx = Builder.CreateBinOp(
4411             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4412       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
4413         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
4414                                            ReducedPartRdx, RdxPart);
4415       else
4416         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4417     }
4418   }
4419 
4420   // Create the reduction after the loop. Note that inloop reductions create the
4421   // target reduction in the loop using a Reduction recipe.
4422   if (VF.isVector() && !PhiR->isInLoop()) {
4423     ReducedPartRdx =
4424         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
4425     // If the reduction can be performed in a smaller type, we need to extend
4426     // the reduction to the wider type before we branch to the original loop.
4427     if (PhiTy != RdxDesc.getRecurrenceType())
4428       ReducedPartRdx = RdxDesc.isSigned()
4429                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4430                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4431   }
4432 
4433   // Create a phi node that merges control-flow from the backedge-taken check
4434   // block and the middle block.
4435   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4436                                         LoopScalarPreHeader->getTerminator());
4437   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4438     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4439   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4440 
4441   // Now, we need to fix the users of the reduction variable
4442   // inside and outside of the scalar remainder loop.
4443 
4444   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4445   // in the exit blocks.  See comment on analogous loop in
4446   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4447   if (!Cost->requiresScalarEpilogue(VF))
4448     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4449       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst))
4450         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4451 
4452   // Fix the scalar loop reduction variable with the incoming reduction sum
4453   // from the vector body and from the backedge value.
4454   int IncomingEdgeBlockIdx =
4455       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4456   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4457   // Pick the other block.
4458   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4459   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4460   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4461 }
4462 
4463 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4464                                                   VPTransformState &State) {
4465   RecurKind RK = RdxDesc.getRecurrenceKind();
4466   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4467     return;
4468 
4469   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4470   assert(LoopExitInstr && "null loop exit instruction");
4471   SmallVector<Instruction *, 8> Worklist;
4472   SmallPtrSet<Instruction *, 8> Visited;
4473   Worklist.push_back(LoopExitInstr);
4474   Visited.insert(LoopExitInstr);
4475 
4476   while (!Worklist.empty()) {
4477     Instruction *Cur = Worklist.pop_back_val();
4478     if (isa<OverflowingBinaryOperator>(Cur))
4479       for (unsigned Part = 0; Part < UF; ++Part) {
4480         // FIXME: Should not rely on getVPValue at this point.
4481         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4482         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4483       }
4484 
4485     for (User *U : Cur->users()) {
4486       Instruction *UI = cast<Instruction>(U);
4487       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4488           Visited.insert(UI).second)
4489         Worklist.push_back(UI);
4490     }
4491   }
4492 }
4493 
4494 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4495   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4496     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4497       // Some phis were already hand updated by the reduction and recurrence
4498       // code above, leave them alone.
4499       continue;
4500 
4501     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4502     // Non-instruction incoming values will have only one value.
4503 
4504     VPLane Lane = VPLane::getFirstLane();
4505     if (isa<Instruction>(IncomingValue) &&
4506         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4507                                            VF))
4508       Lane = VPLane::getLastLaneForVF(VF);
4509 
4510     // Can be a loop invariant incoming value or the last scalar value to be
4511     // extracted from the vectorized loop.
4512     // FIXME: Should not rely on getVPValue at this point.
4513     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4514     Value *lastIncomingValue =
4515         OrigLoop->isLoopInvariant(IncomingValue)
4516             ? IncomingValue
4517             : State.get(State.Plan->getVPValue(IncomingValue, true),
4518                         VPIteration(UF - 1, Lane));
4519     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4520   }
4521 }
4522 
4523 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4524   // The basic block and loop containing the predicated instruction.
4525   auto *PredBB = PredInst->getParent();
4526   auto *VectorLoop = LI->getLoopFor(PredBB);
4527 
4528   // Initialize a worklist with the operands of the predicated instruction.
4529   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4530 
4531   // Holds instructions that we need to analyze again. An instruction may be
4532   // reanalyzed if we don't yet know if we can sink it or not.
4533   SmallVector<Instruction *, 8> InstsToReanalyze;
4534 
4535   // Returns true if a given use occurs in the predicated block. Phi nodes use
4536   // their operands in their corresponding predecessor blocks.
4537   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4538     auto *I = cast<Instruction>(U.getUser());
4539     BasicBlock *BB = I->getParent();
4540     if (auto *Phi = dyn_cast<PHINode>(I))
4541       BB = Phi->getIncomingBlock(
4542           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4543     return BB == PredBB;
4544   };
4545 
4546   // Iteratively sink the scalarized operands of the predicated instruction
4547   // into the block we created for it. When an instruction is sunk, it's
4548   // operands are then added to the worklist. The algorithm ends after one pass
4549   // through the worklist doesn't sink a single instruction.
4550   bool Changed;
4551   do {
4552     // Add the instructions that need to be reanalyzed to the worklist, and
4553     // reset the changed indicator.
4554     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4555     InstsToReanalyze.clear();
4556     Changed = false;
4557 
4558     while (!Worklist.empty()) {
4559       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4560 
4561       // We can't sink an instruction if it is a phi node, is not in the loop,
4562       // or may have side effects.
4563       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4564           I->mayHaveSideEffects())
4565         continue;
4566 
4567       // If the instruction is already in PredBB, check if we can sink its
4568       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4569       // sinking the scalar instruction I, hence it appears in PredBB; but it
4570       // may have failed to sink I's operands (recursively), which we try
4571       // (again) here.
4572       if (I->getParent() == PredBB) {
4573         Worklist.insert(I->op_begin(), I->op_end());
4574         continue;
4575       }
4576 
4577       // It's legal to sink the instruction if all its uses occur in the
4578       // predicated block. Otherwise, there's nothing to do yet, and we may
4579       // need to reanalyze the instruction.
4580       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4581         InstsToReanalyze.push_back(I);
4582         continue;
4583       }
4584 
4585       // Move the instruction to the beginning of the predicated block, and add
4586       // it's operands to the worklist.
4587       I->moveBefore(&*PredBB->getFirstInsertionPt());
4588       Worklist.insert(I->op_begin(), I->op_end());
4589 
4590       // The sinking may have enabled other instructions to be sunk, so we will
4591       // need to iterate.
4592       Changed = true;
4593     }
4594   } while (Changed);
4595 }
4596 
4597 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4598   for (PHINode *OrigPhi : OrigPHIsToFix) {
4599     VPWidenPHIRecipe *VPPhi =
4600         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4601     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4602     // Make sure the builder has a valid insert point.
4603     Builder.SetInsertPoint(NewPhi);
4604     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4605       VPValue *Inc = VPPhi->getIncomingValue(i);
4606       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4607       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4608     }
4609   }
4610 }
4611 
4612 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) {
4613   return Cost->useOrderedReductions(RdxDesc);
4614 }
4615 
4616 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4617                                    VPUser &Operands, unsigned UF,
4618                                    ElementCount VF, bool IsPtrLoopInvariant,
4619                                    SmallBitVector &IsIndexLoopInvariant,
4620                                    VPTransformState &State) {
4621   // Construct a vector GEP by widening the operands of the scalar GEP as
4622   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4623   // results in a vector of pointers when at least one operand of the GEP
4624   // is vector-typed. Thus, to keep the representation compact, we only use
4625   // vector-typed operands for loop-varying values.
4626 
4627   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4628     // If we are vectorizing, but the GEP has only loop-invariant operands,
4629     // the GEP we build (by only using vector-typed operands for
4630     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4631     // produce a vector of pointers, we need to either arbitrarily pick an
4632     // operand to broadcast, or broadcast a clone of the original GEP.
4633     // Here, we broadcast a clone of the original.
4634     //
4635     // TODO: If at some point we decide to scalarize instructions having
4636     //       loop-invariant operands, this special case will no longer be
4637     //       required. We would add the scalarization decision to
4638     //       collectLoopScalars() and teach getVectorValue() to broadcast
4639     //       the lane-zero scalar value.
4640     auto *Clone = Builder.Insert(GEP->clone());
4641     for (unsigned Part = 0; Part < UF; ++Part) {
4642       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4643       State.set(VPDef, EntryPart, Part);
4644       addMetadata(EntryPart, GEP);
4645     }
4646   } else {
4647     // If the GEP has at least one loop-varying operand, we are sure to
4648     // produce a vector of pointers. But if we are only unrolling, we want
4649     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4650     // produce with the code below will be scalar (if VF == 1) or vector
4651     // (otherwise). Note that for the unroll-only case, we still maintain
4652     // values in the vector mapping with initVector, as we do for other
4653     // instructions.
4654     for (unsigned Part = 0; Part < UF; ++Part) {
4655       // The pointer operand of the new GEP. If it's loop-invariant, we
4656       // won't broadcast it.
4657       auto *Ptr = IsPtrLoopInvariant
4658                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4659                       : State.get(Operands.getOperand(0), Part);
4660 
4661       // Collect all the indices for the new GEP. If any index is
4662       // loop-invariant, we won't broadcast it.
4663       SmallVector<Value *, 4> Indices;
4664       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4665         VPValue *Operand = Operands.getOperand(I);
4666         if (IsIndexLoopInvariant[I - 1])
4667           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4668         else
4669           Indices.push_back(State.get(Operand, Part));
4670       }
4671 
4672       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4673       // but it should be a vector, otherwise.
4674       auto *NewGEP =
4675           GEP->isInBounds()
4676               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4677                                           Indices)
4678               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4679       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4680              "NewGEP is not a pointer vector");
4681       State.set(VPDef, NewGEP, Part);
4682       addMetadata(NewGEP, GEP);
4683     }
4684   }
4685 }
4686 
4687 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4688                                               VPWidenPHIRecipe *PhiR,
4689                                               VPTransformState &State) {
4690   PHINode *P = cast<PHINode>(PN);
4691   if (EnableVPlanNativePath) {
4692     // Currently we enter here in the VPlan-native path for non-induction
4693     // PHIs where all control flow is uniform. We simply widen these PHIs.
4694     // Create a vector phi with no operands - the vector phi operands will be
4695     // set at the end of vector code generation.
4696     Type *VecTy = (State.VF.isScalar())
4697                       ? PN->getType()
4698                       : VectorType::get(PN->getType(), State.VF);
4699     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4700     State.set(PhiR, VecPhi, 0);
4701     OrigPHIsToFix.push_back(P);
4702 
4703     return;
4704   }
4705 
4706   assert(PN->getParent() == OrigLoop->getHeader() &&
4707          "Non-header phis should have been handled elsewhere");
4708 
4709   // In order to support recurrences we need to be able to vectorize Phi nodes.
4710   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4711   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4712   // this value when we vectorize all of the instructions that use the PHI.
4713 
4714   assert(!Legal->isReductionVariable(P) &&
4715          "reductions should be handled elsewhere");
4716 
4717   setDebugLocFromInst(P);
4718 
4719   // This PHINode must be an induction variable.
4720   // Make sure that we know about it.
4721   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4722 
4723   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4724   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4725 
4726   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4727   // which can be found from the original scalar operations.
4728   switch (II.getKind()) {
4729   case InductionDescriptor::IK_NoInduction:
4730     llvm_unreachable("Unknown induction");
4731   case InductionDescriptor::IK_IntInduction:
4732   case InductionDescriptor::IK_FpInduction:
4733     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4734   case InductionDescriptor::IK_PtrInduction: {
4735     // Handle the pointer induction variable case.
4736     assert(P->getType()->isPointerTy() && "Unexpected type.");
4737 
4738     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4739       // This is the normalized GEP that starts counting at zero.
4740       Value *PtrInd =
4741           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4742       // Determine the number of scalars we need to generate for each unroll
4743       // iteration. If the instruction is uniform, we only need to generate the
4744       // first lane. Otherwise, we generate all VF values.
4745       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4746       unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue();
4747 
4748       bool NeedsVectorIndex = !IsUniform && VF.isScalable();
4749       Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr;
4750       if (NeedsVectorIndex) {
4751         Type *VecIVTy = VectorType::get(PtrInd->getType(), VF);
4752         UnitStepVec = Builder.CreateStepVector(VecIVTy);
4753         PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd);
4754       }
4755 
4756       for (unsigned Part = 0; Part < UF; ++Part) {
4757         Value *PartStart = createStepForVF(
4758             Builder, ConstantInt::get(PtrInd->getType(), Part), VF);
4759 
4760         if (NeedsVectorIndex) {
4761           // Here we cache the whole vector, which means we can support the
4762           // extraction of any lane. However, in some cases the extractelement
4763           // instruction that is generated for scalar uses of this vector (e.g.
4764           // a load instruction) is not folded away. Therefore we still
4765           // calculate values for the first n lanes to avoid redundant moves
4766           // (when extracting the 0th element) and to produce scalar code (i.e.
4767           // additional add/gep instructions instead of expensive extractelement
4768           // instructions) when extracting higher-order elements.
4769           Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart);
4770           Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec);
4771           Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices);
4772           Value *SclrGep =
4773               emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II);
4774           SclrGep->setName("next.gep");
4775           State.set(PhiR, SclrGep, Part);
4776         }
4777 
4778         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4779           Value *Idx = Builder.CreateAdd(
4780               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4781           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4782           Value *SclrGep =
4783               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4784           SclrGep->setName("next.gep");
4785           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4786         }
4787       }
4788       return;
4789     }
4790     assert(isa<SCEVConstant>(II.getStep()) &&
4791            "Induction step not a SCEV constant!");
4792     Type *PhiType = II.getStep()->getType();
4793 
4794     // Build a pointer phi
4795     Value *ScalarStartValue = II.getStartValue();
4796     Type *ScStValueType = ScalarStartValue->getType();
4797     PHINode *NewPointerPhi =
4798         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4799     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4800 
4801     // A pointer induction, performed by using a gep
4802     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4803     Instruction *InductionLoc = LoopLatch->getTerminator();
4804     const SCEV *ScalarStep = II.getStep();
4805     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4806     Value *ScalarStepValue =
4807         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4808     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4809     Value *NumUnrolledElems =
4810         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4811     Value *InductionGEP = GetElementPtrInst::Create(
4812         II.getElementType(), NewPointerPhi,
4813         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4814         InductionLoc);
4815     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4816 
4817     // Create UF many actual address geps that use the pointer
4818     // phi as base and a vectorized version of the step value
4819     // (<step*0, ..., step*N>) as offset.
4820     for (unsigned Part = 0; Part < State.UF; ++Part) {
4821       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4822       Value *StartOffsetScalar =
4823           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4824       Value *StartOffset =
4825           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4826       // Create a vector of consecutive numbers from zero to VF.
4827       StartOffset =
4828           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4829 
4830       Value *GEP = Builder.CreateGEP(
4831           II.getElementType(), NewPointerPhi,
4832           Builder.CreateMul(
4833               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4834               "vector.gep"));
4835       State.set(PhiR, GEP, Part);
4836     }
4837   }
4838   }
4839 }
4840 
4841 /// A helper function for checking whether an integer division-related
4842 /// instruction may divide by zero (in which case it must be predicated if
4843 /// executed conditionally in the scalar code).
4844 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4845 /// Non-zero divisors that are non compile-time constants will not be
4846 /// converted into multiplication, so we will still end up scalarizing
4847 /// the division, but can do so w/o predication.
4848 static bool mayDivideByZero(Instruction &I) {
4849   assert((I.getOpcode() == Instruction::UDiv ||
4850           I.getOpcode() == Instruction::SDiv ||
4851           I.getOpcode() == Instruction::URem ||
4852           I.getOpcode() == Instruction::SRem) &&
4853          "Unexpected instruction");
4854   Value *Divisor = I.getOperand(1);
4855   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4856   return !CInt || CInt->isZero();
4857 }
4858 
4859 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
4860                                            VPUser &User,
4861                                            VPTransformState &State) {
4862   switch (I.getOpcode()) {
4863   case Instruction::Call:
4864   case Instruction::Br:
4865   case Instruction::PHI:
4866   case Instruction::GetElementPtr:
4867   case Instruction::Select:
4868     llvm_unreachable("This instruction is handled by a different recipe.");
4869   case Instruction::UDiv:
4870   case Instruction::SDiv:
4871   case Instruction::SRem:
4872   case Instruction::URem:
4873   case Instruction::Add:
4874   case Instruction::FAdd:
4875   case Instruction::Sub:
4876   case Instruction::FSub:
4877   case Instruction::FNeg:
4878   case Instruction::Mul:
4879   case Instruction::FMul:
4880   case Instruction::FDiv:
4881   case Instruction::FRem:
4882   case Instruction::Shl:
4883   case Instruction::LShr:
4884   case Instruction::AShr:
4885   case Instruction::And:
4886   case Instruction::Or:
4887   case Instruction::Xor: {
4888     // Just widen unops and binops.
4889     setDebugLocFromInst(&I);
4890 
4891     for (unsigned Part = 0; Part < UF; ++Part) {
4892       SmallVector<Value *, 2> Ops;
4893       for (VPValue *VPOp : User.operands())
4894         Ops.push_back(State.get(VPOp, Part));
4895 
4896       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4897 
4898       if (auto *VecOp = dyn_cast<Instruction>(V))
4899         VecOp->copyIRFlags(&I);
4900 
4901       // Use this vector value for all users of the original instruction.
4902       State.set(Def, V, Part);
4903       addMetadata(V, &I);
4904     }
4905 
4906     break;
4907   }
4908   case Instruction::ICmp:
4909   case Instruction::FCmp: {
4910     // Widen compares. Generate vector compares.
4911     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4912     auto *Cmp = cast<CmpInst>(&I);
4913     setDebugLocFromInst(Cmp);
4914     for (unsigned Part = 0; Part < UF; ++Part) {
4915       Value *A = State.get(User.getOperand(0), Part);
4916       Value *B = State.get(User.getOperand(1), Part);
4917       Value *C = nullptr;
4918       if (FCmp) {
4919         // Propagate fast math flags.
4920         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4921         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4922         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4923       } else {
4924         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4925       }
4926       State.set(Def, C, Part);
4927       addMetadata(C, &I);
4928     }
4929 
4930     break;
4931   }
4932 
4933   case Instruction::ZExt:
4934   case Instruction::SExt:
4935   case Instruction::FPToUI:
4936   case Instruction::FPToSI:
4937   case Instruction::FPExt:
4938   case Instruction::PtrToInt:
4939   case Instruction::IntToPtr:
4940   case Instruction::SIToFP:
4941   case Instruction::UIToFP:
4942   case Instruction::Trunc:
4943   case Instruction::FPTrunc:
4944   case Instruction::BitCast: {
4945     auto *CI = cast<CastInst>(&I);
4946     setDebugLocFromInst(CI);
4947 
4948     /// Vectorize casts.
4949     Type *DestTy =
4950         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
4951 
4952     for (unsigned Part = 0; Part < UF; ++Part) {
4953       Value *A = State.get(User.getOperand(0), Part);
4954       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4955       State.set(Def, Cast, Part);
4956       addMetadata(Cast, &I);
4957     }
4958     break;
4959   }
4960   default:
4961     // This instruction is not vectorized by simple widening.
4962     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4963     llvm_unreachable("Unhandled instruction!");
4964   } // end of switch.
4965 }
4966 
4967 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4968                                                VPUser &ArgOperands,
4969                                                VPTransformState &State) {
4970   assert(!isa<DbgInfoIntrinsic>(I) &&
4971          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4972   setDebugLocFromInst(&I);
4973 
4974   Module *M = I.getParent()->getParent()->getParent();
4975   auto *CI = cast<CallInst>(&I);
4976 
4977   SmallVector<Type *, 4> Tys;
4978   for (Value *ArgOperand : CI->args())
4979     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4980 
4981   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4982 
4983   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4984   // version of the instruction.
4985   // Is it beneficial to perform intrinsic call compared to lib call?
4986   bool NeedToScalarize = false;
4987   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4988   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4989   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4990   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4991          "Instruction should be scalarized elsewhere.");
4992   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4993          "Either the intrinsic cost or vector call cost must be valid");
4994 
4995   for (unsigned Part = 0; Part < UF; ++Part) {
4996     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4997     SmallVector<Value *, 4> Args;
4998     for (auto &I : enumerate(ArgOperands.operands())) {
4999       // Some intrinsics have a scalar argument - don't replace it with a
5000       // vector.
5001       Value *Arg;
5002       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
5003         Arg = State.get(I.value(), Part);
5004       else {
5005         Arg = State.get(I.value(), VPIteration(0, 0));
5006         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
5007           TysForDecl.push_back(Arg->getType());
5008       }
5009       Args.push_back(Arg);
5010     }
5011 
5012     Function *VectorF;
5013     if (UseVectorIntrinsic) {
5014       // Use vector version of the intrinsic.
5015       if (VF.isVector())
5016         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
5017       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
5018       assert(VectorF && "Can't retrieve vector intrinsic.");
5019     } else {
5020       // Use vector version of the function call.
5021       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
5022 #ifndef NDEBUG
5023       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
5024              "Can't create vector function.");
5025 #endif
5026         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
5027     }
5028       SmallVector<OperandBundleDef, 1> OpBundles;
5029       CI->getOperandBundlesAsDefs(OpBundles);
5030       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
5031 
5032       if (isa<FPMathOperator>(V))
5033         V->copyFastMathFlags(CI);
5034 
5035       State.set(Def, V, Part);
5036       addMetadata(V, &I);
5037   }
5038 }
5039 
5040 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
5041                                                  VPUser &Operands,
5042                                                  bool InvariantCond,
5043                                                  VPTransformState &State) {
5044   setDebugLocFromInst(&I);
5045 
5046   // The condition can be loop invariant  but still defined inside the
5047   // loop. This means that we can't just use the original 'cond' value.
5048   // We have to take the 'vectorized' value and pick the first lane.
5049   // Instcombine will make this a no-op.
5050   auto *InvarCond = InvariantCond
5051                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5052                         : nullptr;
5053 
5054   for (unsigned Part = 0; Part < UF; ++Part) {
5055     Value *Cond =
5056         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5057     Value *Op0 = State.get(Operands.getOperand(1), Part);
5058     Value *Op1 = State.get(Operands.getOperand(2), Part);
5059     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5060     State.set(VPDef, Sel, Part);
5061     addMetadata(Sel, &I);
5062   }
5063 }
5064 
5065 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5066   // We should not collect Scalars more than once per VF. Right now, this
5067   // function is called from collectUniformsAndScalars(), which already does
5068   // this check. Collecting Scalars for VF=1 does not make any sense.
5069   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5070          "This function should not be visited twice for the same VF");
5071 
5072   SmallSetVector<Instruction *, 8> Worklist;
5073 
5074   // These sets are used to seed the analysis with pointers used by memory
5075   // accesses that will remain scalar.
5076   SmallSetVector<Instruction *, 8> ScalarPtrs;
5077   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5078   auto *Latch = TheLoop->getLoopLatch();
5079 
5080   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5081   // The pointer operands of loads and stores will be scalar as long as the
5082   // memory access is not a gather or scatter operation. The value operand of a
5083   // store will remain scalar if the store is scalarized.
5084   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5085     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5086     assert(WideningDecision != CM_Unknown &&
5087            "Widening decision should be ready at this moment");
5088     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5089       if (Ptr == Store->getValueOperand())
5090         return WideningDecision == CM_Scalarize;
5091     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5092            "Ptr is neither a value or pointer operand");
5093     return WideningDecision != CM_GatherScatter;
5094   };
5095 
5096   // A helper that returns true if the given value is a bitcast or
5097   // getelementptr instruction contained in the loop.
5098   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5099     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5100             isa<GetElementPtrInst>(V)) &&
5101            !TheLoop->isLoopInvariant(V);
5102   };
5103 
5104   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5105     if (!isa<PHINode>(Ptr) ||
5106         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5107       return false;
5108     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5109     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5110       return false;
5111     return isScalarUse(MemAccess, Ptr);
5112   };
5113 
5114   // A helper that evaluates a memory access's use of a pointer. If the
5115   // pointer is actually the pointer induction of a loop, it is being
5116   // inserted into Worklist. If the use will be a scalar use, and the
5117   // pointer is only used by memory accesses, we place the pointer in
5118   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5119   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5120     if (isScalarPtrInduction(MemAccess, Ptr)) {
5121       Worklist.insert(cast<Instruction>(Ptr));
5122       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5123                         << "\n");
5124 
5125       Instruction *Update = cast<Instruction>(
5126           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5127 
5128       // If there is more than one user of Update (Ptr), we shouldn't assume it
5129       // will be scalar after vectorisation as other users of the instruction
5130       // may require widening. Otherwise, add it to ScalarPtrs.
5131       if (Update->hasOneUse() && cast<Value>(*Update->user_begin()) == Ptr) {
5132         ScalarPtrs.insert(Update);
5133         return;
5134       }
5135     }
5136     // We only care about bitcast and getelementptr instructions contained in
5137     // the loop.
5138     if (!isLoopVaryingBitCastOrGEP(Ptr))
5139       return;
5140 
5141     // If the pointer has already been identified as scalar (e.g., if it was
5142     // also identified as uniform), there's nothing to do.
5143     auto *I = cast<Instruction>(Ptr);
5144     if (Worklist.count(I))
5145       return;
5146 
5147     // If the use of the pointer will be a scalar use, and all users of the
5148     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5149     // place the pointer in PossibleNonScalarPtrs.
5150     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5151           return isa<LoadInst>(U) || isa<StoreInst>(U);
5152         }))
5153       ScalarPtrs.insert(I);
5154     else
5155       PossibleNonScalarPtrs.insert(I);
5156   };
5157 
5158   // We seed the scalars analysis with three classes of instructions: (1)
5159   // instructions marked uniform-after-vectorization and (2) bitcast,
5160   // getelementptr and (pointer) phi instructions used by memory accesses
5161   // requiring a scalar use.
5162   //
5163   // (1) Add to the worklist all instructions that have been identified as
5164   // uniform-after-vectorization.
5165   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5166 
5167   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5168   // memory accesses requiring a scalar use. The pointer operands of loads and
5169   // stores will be scalar as long as the memory accesses is not a gather or
5170   // scatter operation. The value operand of a store will remain scalar if the
5171   // store is scalarized.
5172   for (auto *BB : TheLoop->blocks())
5173     for (auto &I : *BB) {
5174       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5175         evaluatePtrUse(Load, Load->getPointerOperand());
5176       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5177         evaluatePtrUse(Store, Store->getPointerOperand());
5178         evaluatePtrUse(Store, Store->getValueOperand());
5179       }
5180     }
5181   for (auto *I : ScalarPtrs)
5182     if (!PossibleNonScalarPtrs.count(I)) {
5183       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5184       Worklist.insert(I);
5185     }
5186 
5187   // Insert the forced scalars.
5188   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5189   // induction variable when the PHI user is scalarized.
5190   auto ForcedScalar = ForcedScalars.find(VF);
5191   if (ForcedScalar != ForcedScalars.end())
5192     for (auto *I : ForcedScalar->second)
5193       Worklist.insert(I);
5194 
5195   // Expand the worklist by looking through any bitcasts and getelementptr
5196   // instructions we've already identified as scalar. This is similar to the
5197   // expansion step in collectLoopUniforms(); however, here we're only
5198   // expanding to include additional bitcasts and getelementptr instructions.
5199   unsigned Idx = 0;
5200   while (Idx != Worklist.size()) {
5201     Instruction *Dst = Worklist[Idx++];
5202     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5203       continue;
5204     auto *Src = cast<Instruction>(Dst->getOperand(0));
5205     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5206           auto *J = cast<Instruction>(U);
5207           return !TheLoop->contains(J) || Worklist.count(J) ||
5208                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5209                   isScalarUse(J, Src));
5210         })) {
5211       Worklist.insert(Src);
5212       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5213     }
5214   }
5215 
5216   // An induction variable will remain scalar if all users of the induction
5217   // variable and induction variable update remain scalar.
5218   for (auto &Induction : Legal->getInductionVars()) {
5219     auto *Ind = Induction.first;
5220     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5221 
5222     // If tail-folding is applied, the primary induction variable will be used
5223     // to feed a vector compare.
5224     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5225       continue;
5226 
5227     // Determine if all users of the induction variable are scalar after
5228     // vectorization.
5229     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5230       auto *I = cast<Instruction>(U);
5231       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5232     });
5233     if (!ScalarInd)
5234       continue;
5235 
5236     // Determine if all users of the induction variable update instruction are
5237     // scalar after vectorization.
5238     auto ScalarIndUpdate =
5239         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5240           auto *I = cast<Instruction>(U);
5241           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5242         });
5243     if (!ScalarIndUpdate)
5244       continue;
5245 
5246     // The induction variable and its update instruction will remain scalar.
5247     Worklist.insert(Ind);
5248     Worklist.insert(IndUpdate);
5249     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5250     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5251                       << "\n");
5252   }
5253 
5254   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5255 }
5256 
5257 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const {
5258   if (!blockNeedsPredication(I->getParent()))
5259     return false;
5260   switch(I->getOpcode()) {
5261   default:
5262     break;
5263   case Instruction::Load:
5264   case Instruction::Store: {
5265     if (!Legal->isMaskRequired(I))
5266       return false;
5267     auto *Ptr = getLoadStorePointerOperand(I);
5268     auto *Ty = getLoadStoreType(I);
5269     const Align Alignment = getLoadStoreAlignment(I);
5270     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5271                                 TTI.isLegalMaskedGather(Ty, Alignment))
5272                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5273                                 TTI.isLegalMaskedScatter(Ty, Alignment));
5274   }
5275   case Instruction::UDiv:
5276   case Instruction::SDiv:
5277   case Instruction::SRem:
5278   case Instruction::URem:
5279     return mayDivideByZero(*I);
5280   }
5281   return false;
5282 }
5283 
5284 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5285     Instruction *I, ElementCount VF) {
5286   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5287   assert(getWideningDecision(I, VF) == CM_Unknown &&
5288          "Decision should not be set yet.");
5289   auto *Group = getInterleavedAccessGroup(I);
5290   assert(Group && "Must have a group.");
5291 
5292   // If the instruction's allocated size doesn't equal it's type size, it
5293   // requires padding and will be scalarized.
5294   auto &DL = I->getModule()->getDataLayout();
5295   auto *ScalarTy = getLoadStoreType(I);
5296   if (hasIrregularType(ScalarTy, DL))
5297     return false;
5298 
5299   // Check if masking is required.
5300   // A Group may need masking for one of two reasons: it resides in a block that
5301   // needs predication, or it was decided to use masking to deal with gaps
5302   // (either a gap at the end of a load-access that may result in a speculative
5303   // load, or any gaps in a store-access).
5304   bool PredicatedAccessRequiresMasking =
5305       blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
5306   bool LoadAccessWithGapsRequiresEpilogMasking =
5307       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
5308       !isScalarEpilogueAllowed();
5309   bool StoreAccessWithGapsRequiresMasking =
5310       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
5311   if (!PredicatedAccessRequiresMasking &&
5312       !LoadAccessWithGapsRequiresEpilogMasking &&
5313       !StoreAccessWithGapsRequiresMasking)
5314     return true;
5315 
5316   // If masked interleaving is required, we expect that the user/target had
5317   // enabled it, because otherwise it either wouldn't have been created or
5318   // it should have been invalidated by the CostModel.
5319   assert(useMaskedInterleavedAccesses(TTI) &&
5320          "Masked interleave-groups for predicated accesses are not enabled.");
5321 
5322   if (Group->isReverse())
5323     return false;
5324 
5325   auto *Ty = getLoadStoreType(I);
5326   const Align Alignment = getLoadStoreAlignment(I);
5327   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5328                           : TTI.isLegalMaskedStore(Ty, Alignment);
5329 }
5330 
5331 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5332     Instruction *I, ElementCount VF) {
5333   // Get and ensure we have a valid memory instruction.
5334   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
5335 
5336   auto *Ptr = getLoadStorePointerOperand(I);
5337   auto *ScalarTy = getLoadStoreType(I);
5338 
5339   // In order to be widened, the pointer should be consecutive, first of all.
5340   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
5341     return false;
5342 
5343   // If the instruction is a store located in a predicated block, it will be
5344   // scalarized.
5345   if (isScalarWithPredication(I))
5346     return false;
5347 
5348   // If the instruction's allocated size doesn't equal it's type size, it
5349   // requires padding and will be scalarized.
5350   auto &DL = I->getModule()->getDataLayout();
5351   if (hasIrregularType(ScalarTy, DL))
5352     return false;
5353 
5354   return true;
5355 }
5356 
5357 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5358   // We should not collect Uniforms more than once per VF. Right now,
5359   // this function is called from collectUniformsAndScalars(), which
5360   // already does this check. Collecting Uniforms for VF=1 does not make any
5361   // sense.
5362 
5363   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5364          "This function should not be visited twice for the same VF");
5365 
5366   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5367   // not analyze again.  Uniforms.count(VF) will return 1.
5368   Uniforms[VF].clear();
5369 
5370   // We now know that the loop is vectorizable!
5371   // Collect instructions inside the loop that will remain uniform after
5372   // vectorization.
5373 
5374   // Global values, params and instructions outside of current loop are out of
5375   // scope.
5376   auto isOutOfScope = [&](Value *V) -> bool {
5377     Instruction *I = dyn_cast<Instruction>(V);
5378     return (!I || !TheLoop->contains(I));
5379   };
5380 
5381   // Worklist containing uniform instructions demanding lane 0.
5382   SetVector<Instruction *> Worklist;
5383   BasicBlock *Latch = TheLoop->getLoopLatch();
5384 
5385   // Add uniform instructions demanding lane 0 to the worklist. Instructions
5386   // that are scalar with predication must not be considered uniform after
5387   // vectorization, because that would create an erroneous replicating region
5388   // where only a single instance out of VF should be formed.
5389   // TODO: optimize such seldom cases if found important, see PR40816.
5390   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5391     if (isOutOfScope(I)) {
5392       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5393                         << *I << "\n");
5394       return;
5395     }
5396     if (isScalarWithPredication(I)) {
5397       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5398                         << *I << "\n");
5399       return;
5400     }
5401     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5402     Worklist.insert(I);
5403   };
5404 
5405   // Start with the conditional branch. If the branch condition is an
5406   // instruction contained in the loop that is only used by the branch, it is
5407   // uniform.
5408   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5409   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5410     addToWorklistIfAllowed(Cmp);
5411 
5412   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5413     InstWidening WideningDecision = getWideningDecision(I, VF);
5414     assert(WideningDecision != CM_Unknown &&
5415            "Widening decision should be ready at this moment");
5416 
5417     // A uniform memory op is itself uniform.  We exclude uniform stores
5418     // here as they demand the last lane, not the first one.
5419     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5420       assert(WideningDecision == CM_Scalarize);
5421       return true;
5422     }
5423 
5424     return (WideningDecision == CM_Widen ||
5425             WideningDecision == CM_Widen_Reverse ||
5426             WideningDecision == CM_Interleave);
5427   };
5428 
5429 
5430   // Returns true if Ptr is the pointer operand of a memory access instruction
5431   // I, and I is known to not require scalarization.
5432   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5433     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5434   };
5435 
5436   // Holds a list of values which are known to have at least one uniform use.
5437   // Note that there may be other uses which aren't uniform.  A "uniform use"
5438   // here is something which only demands lane 0 of the unrolled iterations;
5439   // it does not imply that all lanes produce the same value (e.g. this is not
5440   // the usual meaning of uniform)
5441   SetVector<Value *> HasUniformUse;
5442 
5443   // Scan the loop for instructions which are either a) known to have only
5444   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5445   for (auto *BB : TheLoop->blocks())
5446     for (auto &I : *BB) {
5447       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
5448         switch (II->getIntrinsicID()) {
5449         case Intrinsic::sideeffect:
5450         case Intrinsic::experimental_noalias_scope_decl:
5451         case Intrinsic::assume:
5452         case Intrinsic::lifetime_start:
5453         case Intrinsic::lifetime_end:
5454           if (TheLoop->hasLoopInvariantOperands(&I))
5455             addToWorklistIfAllowed(&I);
5456           break;
5457         default:
5458           break;
5459         }
5460       }
5461 
5462       // ExtractValue instructions must be uniform, because the operands are
5463       // known to be loop-invariant.
5464       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
5465         assert(isOutOfScope(EVI->getAggregateOperand()) &&
5466                "Expected aggregate value to be loop invariant");
5467         addToWorklistIfAllowed(EVI);
5468         continue;
5469       }
5470 
5471       // If there's no pointer operand, there's nothing to do.
5472       auto *Ptr = getLoadStorePointerOperand(&I);
5473       if (!Ptr)
5474         continue;
5475 
5476       // A uniform memory op is itself uniform.  We exclude uniform stores
5477       // here as they demand the last lane, not the first one.
5478       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5479         addToWorklistIfAllowed(&I);
5480 
5481       if (isUniformDecision(&I, VF)) {
5482         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5483         HasUniformUse.insert(Ptr);
5484       }
5485     }
5486 
5487   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5488   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5489   // disallows uses outside the loop as well.
5490   for (auto *V : HasUniformUse) {
5491     if (isOutOfScope(V))
5492       continue;
5493     auto *I = cast<Instruction>(V);
5494     auto UsersAreMemAccesses =
5495       llvm::all_of(I->users(), [&](User *U) -> bool {
5496         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5497       });
5498     if (UsersAreMemAccesses)
5499       addToWorklistIfAllowed(I);
5500   }
5501 
5502   // Expand Worklist in topological order: whenever a new instruction
5503   // is added , its users should be already inside Worklist.  It ensures
5504   // a uniform instruction will only be used by uniform instructions.
5505   unsigned idx = 0;
5506   while (idx != Worklist.size()) {
5507     Instruction *I = Worklist[idx++];
5508 
5509     for (auto OV : I->operand_values()) {
5510       // isOutOfScope operands cannot be uniform instructions.
5511       if (isOutOfScope(OV))
5512         continue;
5513       // First order recurrence Phi's should typically be considered
5514       // non-uniform.
5515       auto *OP = dyn_cast<PHINode>(OV);
5516       if (OP && Legal->isFirstOrderRecurrence(OP))
5517         continue;
5518       // If all the users of the operand are uniform, then add the
5519       // operand into the uniform worklist.
5520       auto *OI = cast<Instruction>(OV);
5521       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5522             auto *J = cast<Instruction>(U);
5523             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5524           }))
5525         addToWorklistIfAllowed(OI);
5526     }
5527   }
5528 
5529   // For an instruction to be added into Worklist above, all its users inside
5530   // the loop should also be in Worklist. However, this condition cannot be
5531   // true for phi nodes that form a cyclic dependence. We must process phi
5532   // nodes separately. An induction variable will remain uniform if all users
5533   // of the induction variable and induction variable update remain uniform.
5534   // The code below handles both pointer and non-pointer induction variables.
5535   for (auto &Induction : Legal->getInductionVars()) {
5536     auto *Ind = Induction.first;
5537     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5538 
5539     // Determine if all users of the induction variable are uniform after
5540     // vectorization.
5541     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5542       auto *I = cast<Instruction>(U);
5543       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5544              isVectorizedMemAccessUse(I, Ind);
5545     });
5546     if (!UniformInd)
5547       continue;
5548 
5549     // Determine if all users of the induction variable update instruction are
5550     // uniform after vectorization.
5551     auto UniformIndUpdate =
5552         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5553           auto *I = cast<Instruction>(U);
5554           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5555                  isVectorizedMemAccessUse(I, IndUpdate);
5556         });
5557     if (!UniformIndUpdate)
5558       continue;
5559 
5560     // The induction variable and its update instruction will remain uniform.
5561     addToWorklistIfAllowed(Ind);
5562     addToWorklistIfAllowed(IndUpdate);
5563   }
5564 
5565   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5566 }
5567 
5568 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5569   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5570 
5571   if (Legal->getRuntimePointerChecking()->Need) {
5572     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5573         "runtime pointer checks needed. Enable vectorization of this "
5574         "loop with '#pragma clang loop vectorize(enable)' when "
5575         "compiling with -Os/-Oz",
5576         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5577     return true;
5578   }
5579 
5580   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5581     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5582         "runtime SCEV checks needed. Enable vectorization of this "
5583         "loop with '#pragma clang loop vectorize(enable)' when "
5584         "compiling with -Os/-Oz",
5585         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5586     return true;
5587   }
5588 
5589   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5590   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5591     reportVectorizationFailure("Runtime stride check for small trip count",
5592         "runtime stride == 1 checks needed. Enable vectorization of "
5593         "this loop without such check by compiling with -Os/-Oz",
5594         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5595     return true;
5596   }
5597 
5598   return false;
5599 }
5600 
5601 ElementCount
5602 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5603   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
5604     return ElementCount::getScalable(0);
5605 
5606   if (Hints->isScalableVectorizationDisabled()) {
5607     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5608                             "ScalableVectorizationDisabled", ORE, TheLoop);
5609     return ElementCount::getScalable(0);
5610   }
5611 
5612   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
5613 
5614   auto MaxScalableVF = ElementCount::getScalable(
5615       std::numeric_limits<ElementCount::ScalarTy>::max());
5616 
5617   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5618   // FIXME: While for scalable vectors this is currently sufficient, this should
5619   // be replaced by a more detailed mechanism that filters out specific VFs,
5620   // instead of invalidating vectorization for a whole set of VFs based on the
5621   // MaxVF.
5622 
5623   // Disable scalable vectorization if the loop contains unsupported reductions.
5624   if (!canVectorizeReductions(MaxScalableVF)) {
5625     reportVectorizationInfo(
5626         "Scalable vectorization not supported for the reduction "
5627         "operations found in this loop.",
5628         "ScalableVFUnfeasible", ORE, TheLoop);
5629     return ElementCount::getScalable(0);
5630   }
5631 
5632   // Disable scalable vectorization if the loop contains any instructions
5633   // with element types not supported for scalable vectors.
5634   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5635         return !Ty->isVoidTy() &&
5636                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5637       })) {
5638     reportVectorizationInfo("Scalable vectorization is not supported "
5639                             "for all element types found in this loop.",
5640                             "ScalableVFUnfeasible", ORE, TheLoop);
5641     return ElementCount::getScalable(0);
5642   }
5643 
5644   if (Legal->isSafeForAnyVectorWidth())
5645     return MaxScalableVF;
5646 
5647   // Limit MaxScalableVF by the maximum safe dependence distance.
5648   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5649   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5650     unsigned VScaleMax = TheFunction->getFnAttribute(Attribute::VScaleRange)
5651                              .getVScaleRangeArgs()
5652                              .second;
5653     if (VScaleMax > 0)
5654       MaxVScale = VScaleMax;
5655   }
5656   MaxScalableVF = ElementCount::getScalable(
5657       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5658   if (!MaxScalableVF)
5659     reportVectorizationInfo(
5660         "Max legal vector width too small, scalable vectorization "
5661         "unfeasible.",
5662         "ScalableVFUnfeasible", ORE, TheLoop);
5663 
5664   return MaxScalableVF;
5665 }
5666 
5667 FixedScalableVFPair
5668 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5669                                                  ElementCount UserVF) {
5670   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5671   unsigned SmallestType, WidestType;
5672   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5673 
5674   // Get the maximum safe dependence distance in bits computed by LAA.
5675   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5676   // the memory accesses that is most restrictive (involved in the smallest
5677   // dependence distance).
5678   unsigned MaxSafeElements =
5679       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5680 
5681   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5682   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5683 
5684   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5685                     << ".\n");
5686   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5687                     << ".\n");
5688 
5689   // First analyze the UserVF, fall back if the UserVF should be ignored.
5690   if (UserVF) {
5691     auto MaxSafeUserVF =
5692         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5693 
5694     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5695       // If `VF=vscale x N` is safe, then so is `VF=N`
5696       if (UserVF.isScalable())
5697         return FixedScalableVFPair(
5698             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5699       else
5700         return UserVF;
5701     }
5702 
5703     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5704 
5705     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5706     // is better to ignore the hint and let the compiler choose a suitable VF.
5707     if (!UserVF.isScalable()) {
5708       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5709                         << " is unsafe, clamping to max safe VF="
5710                         << MaxSafeFixedVF << ".\n");
5711       ORE->emit([&]() {
5712         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5713                                           TheLoop->getStartLoc(),
5714                                           TheLoop->getHeader())
5715                << "User-specified vectorization factor "
5716                << ore::NV("UserVectorizationFactor", UserVF)
5717                << " is unsafe, clamping to maximum safe vectorization factor "
5718                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5719       });
5720       return MaxSafeFixedVF;
5721     }
5722 
5723     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5724       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5725                         << " is ignored because scalable vectors are not "
5726                            "available.\n");
5727       ORE->emit([&]() {
5728         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5729                                           TheLoop->getStartLoc(),
5730                                           TheLoop->getHeader())
5731                << "User-specified vectorization factor "
5732                << ore::NV("UserVectorizationFactor", UserVF)
5733                << " is ignored because the target does not support scalable "
5734                   "vectors. The compiler will pick a more suitable value.";
5735       });
5736     } else {
5737       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5738                         << " is unsafe. Ignoring scalable UserVF.\n");
5739       ORE->emit([&]() {
5740         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5741                                           TheLoop->getStartLoc(),
5742                                           TheLoop->getHeader())
5743                << "User-specified vectorization factor "
5744                << ore::NV("UserVectorizationFactor", UserVF)
5745                << " is unsafe. Ignoring the hint to let the compiler pick a "
5746                   "more suitable value.";
5747       });
5748     }
5749   }
5750 
5751   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5752                     << " / " << WidestType << " bits.\n");
5753 
5754   FixedScalableVFPair Result(ElementCount::getFixed(1),
5755                              ElementCount::getScalable(0));
5756   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5757                                            WidestType, MaxSafeFixedVF))
5758     Result.FixedVF = MaxVF;
5759 
5760   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5761                                            WidestType, MaxSafeScalableVF))
5762     if (MaxVF.isScalable()) {
5763       Result.ScalableVF = MaxVF;
5764       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5765                         << "\n");
5766     }
5767 
5768   return Result;
5769 }
5770 
5771 FixedScalableVFPair
5772 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5773   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5774     // TODO: It may by useful to do since it's still likely to be dynamically
5775     // uniform if the target can skip.
5776     reportVectorizationFailure(
5777         "Not inserting runtime ptr check for divergent target",
5778         "runtime pointer checks needed. Not enabled for divergent target",
5779         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5780     return FixedScalableVFPair::getNone();
5781   }
5782 
5783   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5784   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5785   if (TC == 1) {
5786     reportVectorizationFailure("Single iteration (non) loop",
5787         "loop trip count is one, irrelevant for vectorization",
5788         "SingleIterationLoop", ORE, TheLoop);
5789     return FixedScalableVFPair::getNone();
5790   }
5791 
5792   switch (ScalarEpilogueStatus) {
5793   case CM_ScalarEpilogueAllowed:
5794     return computeFeasibleMaxVF(TC, UserVF);
5795   case CM_ScalarEpilogueNotAllowedUsePredicate:
5796     LLVM_FALLTHROUGH;
5797   case CM_ScalarEpilogueNotNeededUsePredicate:
5798     LLVM_DEBUG(
5799         dbgs() << "LV: vector predicate hint/switch found.\n"
5800                << "LV: Not allowing scalar epilogue, creating predicated "
5801                << "vector loop.\n");
5802     break;
5803   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5804     // fallthrough as a special case of OptForSize
5805   case CM_ScalarEpilogueNotAllowedOptSize:
5806     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5807       LLVM_DEBUG(
5808           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5809     else
5810       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5811                         << "count.\n");
5812 
5813     // Bail if runtime checks are required, which are not good when optimising
5814     // for size.
5815     if (runtimeChecksRequired())
5816       return FixedScalableVFPair::getNone();
5817 
5818     break;
5819   }
5820 
5821   // The only loops we can vectorize without a scalar epilogue, are loops with
5822   // a bottom-test and a single exiting block. We'd have to handle the fact
5823   // that not every instruction executes on the last iteration.  This will
5824   // require a lane mask which varies through the vector loop body.  (TODO)
5825   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5826     // If there was a tail-folding hint/switch, but we can't fold the tail by
5827     // masking, fallback to a vectorization with a scalar epilogue.
5828     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5829       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5830                            "scalar epilogue instead.\n");
5831       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5832       return computeFeasibleMaxVF(TC, UserVF);
5833     }
5834     return FixedScalableVFPair::getNone();
5835   }
5836 
5837   // Now try the tail folding
5838 
5839   // Invalidate interleave groups that require an epilogue if we can't mask
5840   // the interleave-group.
5841   if (!useMaskedInterleavedAccesses(TTI)) {
5842     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5843            "No decisions should have been taken at this point");
5844     // Note: There is no need to invalidate any cost modeling decisions here, as
5845     // non where taken so far.
5846     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5847   }
5848 
5849   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF);
5850   // Avoid tail folding if the trip count is known to be a multiple of any VF
5851   // we chose.
5852   // FIXME: The condition below pessimises the case for fixed-width vectors,
5853   // when scalable VFs are also candidates for vectorization.
5854   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5855     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5856     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5857            "MaxFixedVF must be a power of 2");
5858     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5859                                    : MaxFixedVF.getFixedValue();
5860     ScalarEvolution *SE = PSE.getSE();
5861     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5862     const SCEV *ExitCount = SE->getAddExpr(
5863         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5864     const SCEV *Rem = SE->getURemExpr(
5865         SE->applyLoopGuards(ExitCount, TheLoop),
5866         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5867     if (Rem->isZero()) {
5868       // Accept MaxFixedVF if we do not have a tail.
5869       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5870       return MaxFactors;
5871     }
5872   }
5873 
5874   // For scalable vectors, don't use tail folding as this is currently not yet
5875   // supported. The code is likely to have ended up here if the tripcount is
5876   // low, in which case it makes sense not to use scalable vectors.
5877   if (MaxFactors.ScalableVF.isVector())
5878     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5879 
5880   // If we don't know the precise trip count, or if the trip count that we
5881   // found modulo the vectorization factor is not zero, try to fold the tail
5882   // by masking.
5883   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5884   if (Legal->prepareToFoldTailByMasking()) {
5885     FoldTailByMasking = true;
5886     return MaxFactors;
5887   }
5888 
5889   // If there was a tail-folding hint/switch, but we can't fold the tail by
5890   // masking, fallback to a vectorization with a scalar epilogue.
5891   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5892     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5893                          "scalar epilogue instead.\n");
5894     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5895     return MaxFactors;
5896   }
5897 
5898   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5899     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5900     return FixedScalableVFPair::getNone();
5901   }
5902 
5903   if (TC == 0) {
5904     reportVectorizationFailure(
5905         "Unable to calculate the loop count due to complex control flow",
5906         "unable to calculate the loop count due to complex control flow",
5907         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5908     return FixedScalableVFPair::getNone();
5909   }
5910 
5911   reportVectorizationFailure(
5912       "Cannot optimize for size and vectorize at the same time.",
5913       "cannot optimize for size and vectorize at the same time. "
5914       "Enable vectorization of this loop with '#pragma clang loop "
5915       "vectorize(enable)' when compiling with -Os/-Oz",
5916       "NoTailLoopWithOptForSize", ORE, TheLoop);
5917   return FixedScalableVFPair::getNone();
5918 }
5919 
5920 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5921     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5922     const ElementCount &MaxSafeVF) {
5923   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5924   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5925       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5926                            : TargetTransformInfo::RGK_FixedWidthVector);
5927 
5928   // Convenience function to return the minimum of two ElementCounts.
5929   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5930     assert((LHS.isScalable() == RHS.isScalable()) &&
5931            "Scalable flags must match");
5932     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5933   };
5934 
5935   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5936   // Note that both WidestRegister and WidestType may not be a powers of 2.
5937   auto MaxVectorElementCount = ElementCount::get(
5938       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5939       ComputeScalableMaxVF);
5940   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5941   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5942                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5943 
5944   if (!MaxVectorElementCount) {
5945     LLVM_DEBUG(dbgs() << "LV: The target has no "
5946                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5947                       << " vector registers.\n");
5948     return ElementCount::getFixed(1);
5949   }
5950 
5951   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5952   if (ConstTripCount &&
5953       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5954       isPowerOf2_32(ConstTripCount)) {
5955     // We need to clamp the VF to be the ConstTripCount. There is no point in
5956     // choosing a higher viable VF as done in the loop below. If
5957     // MaxVectorElementCount is scalable, we only fall back on a fixed VF when
5958     // the TC is less than or equal to the known number of lanes.
5959     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5960                       << ConstTripCount << "\n");
5961     return TripCountEC;
5962   }
5963 
5964   ElementCount MaxVF = MaxVectorElementCount;
5965   if (TTI.shouldMaximizeVectorBandwidth() ||
5966       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5967     auto MaxVectorElementCountMaxBW = ElementCount::get(
5968         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5969         ComputeScalableMaxVF);
5970     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5971 
5972     // Collect all viable vectorization factors larger than the default MaxVF
5973     // (i.e. MaxVectorElementCount).
5974     SmallVector<ElementCount, 8> VFs;
5975     for (ElementCount VS = MaxVectorElementCount * 2;
5976          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5977       VFs.push_back(VS);
5978 
5979     // For each VF calculate its register usage.
5980     auto RUs = calculateRegisterUsage(VFs);
5981 
5982     // Select the largest VF which doesn't require more registers than existing
5983     // ones.
5984     for (int i = RUs.size() - 1; i >= 0; --i) {
5985       bool Selected = true;
5986       for (auto &pair : RUs[i].MaxLocalUsers) {
5987         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5988         if (pair.second > TargetNumRegisters)
5989           Selected = false;
5990       }
5991       if (Selected) {
5992         MaxVF = VFs[i];
5993         break;
5994       }
5995     }
5996     if (ElementCount MinVF =
5997             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5998       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5999         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
6000                           << ") with target's minimum: " << MinVF << '\n');
6001         MaxVF = MinVF;
6002       }
6003     }
6004   }
6005   return MaxVF;
6006 }
6007 
6008 bool LoopVectorizationCostModel::isMoreProfitable(
6009     const VectorizationFactor &A, const VectorizationFactor &B) const {
6010   InstructionCost CostA = A.Cost;
6011   InstructionCost CostB = B.Cost;
6012 
6013   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
6014 
6015   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
6016       MaxTripCount) {
6017     // If we are folding the tail and the trip count is a known (possibly small)
6018     // constant, the trip count will be rounded up to an integer number of
6019     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
6020     // which we compare directly. When not folding the tail, the total cost will
6021     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
6022     // approximated with the per-lane cost below instead of using the tripcount
6023     // as here.
6024     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
6025     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
6026     return RTCostA < RTCostB;
6027   }
6028 
6029   // When set to preferred, for now assume vscale may be larger than 1, so
6030   // that scalable vectorization is slightly favorable over fixed-width
6031   // vectorization.
6032   if (Hints->isScalableVectorizationPreferred())
6033     if (A.Width.isScalable() && !B.Width.isScalable())
6034       return (CostA * B.Width.getKnownMinValue()) <=
6035              (CostB * A.Width.getKnownMinValue());
6036 
6037   // To avoid the need for FP division:
6038   //      (CostA / A.Width) < (CostB / B.Width)
6039   // <=>  (CostA * B.Width) < (CostB * A.Width)
6040   return (CostA * B.Width.getKnownMinValue()) <
6041          (CostB * A.Width.getKnownMinValue());
6042 }
6043 
6044 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
6045     const ElementCountSet &VFCandidates) {
6046   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
6047   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
6048   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
6049   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
6050          "Expected Scalar VF to be a candidate");
6051 
6052   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
6053   VectorizationFactor ChosenFactor = ScalarCost;
6054 
6055   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
6056   if (ForceVectorization && VFCandidates.size() > 1) {
6057     // Ignore scalar width, because the user explicitly wants vectorization.
6058     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
6059     // evaluation.
6060     ChosenFactor.Cost = InstructionCost::getMax();
6061   }
6062 
6063   SmallVector<InstructionVFPair> InvalidCosts;
6064   for (const auto &i : VFCandidates) {
6065     // The cost for scalar VF=1 is already calculated, so ignore it.
6066     if (i.isScalar())
6067       continue;
6068 
6069     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
6070     VectorizationFactor Candidate(i, C.first);
6071     LLVM_DEBUG(
6072         dbgs() << "LV: Vector loop of width " << i << " costs: "
6073                << (Candidate.Cost / Candidate.Width.getKnownMinValue())
6074                << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "")
6075                << ".\n");
6076 
6077     if (!C.second && !ForceVectorization) {
6078       LLVM_DEBUG(
6079           dbgs() << "LV: Not considering vector loop of width " << i
6080                  << " because it will not generate any vector instructions.\n");
6081       continue;
6082     }
6083 
6084     // If profitable add it to ProfitableVF list.
6085     if (isMoreProfitable(Candidate, ScalarCost))
6086       ProfitableVFs.push_back(Candidate);
6087 
6088     if (isMoreProfitable(Candidate, ChosenFactor))
6089       ChosenFactor = Candidate;
6090   }
6091 
6092   // Emit a report of VFs with invalid costs in the loop.
6093   if (!InvalidCosts.empty()) {
6094     // Group the remarks per instruction, keeping the instruction order from
6095     // InvalidCosts.
6096     std::map<Instruction *, unsigned> Numbering;
6097     unsigned I = 0;
6098     for (auto &Pair : InvalidCosts)
6099       if (!Numbering.count(Pair.first))
6100         Numbering[Pair.first] = I++;
6101 
6102     // Sort the list, first on instruction(number) then on VF.
6103     llvm::sort(InvalidCosts,
6104                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
6105                  if (Numbering[A.first] != Numbering[B.first])
6106                    return Numbering[A.first] < Numbering[B.first];
6107                  ElementCountComparator ECC;
6108                  return ECC(A.second, B.second);
6109                });
6110 
6111     // For a list of ordered instruction-vf pairs:
6112     //   [(load, vf1), (load, vf2), (store, vf1)]
6113     // Group the instructions together to emit separate remarks for:
6114     //   load  (vf1, vf2)
6115     //   store (vf1)
6116     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
6117     auto Subset = ArrayRef<InstructionVFPair>();
6118     do {
6119       if (Subset.empty())
6120         Subset = Tail.take_front(1);
6121 
6122       Instruction *I = Subset.front().first;
6123 
6124       // If the next instruction is different, or if there are no other pairs,
6125       // emit a remark for the collated subset. e.g.
6126       //   [(load, vf1), (load, vf2))]
6127       // to emit:
6128       //  remark: invalid costs for 'load' at VF=(vf, vf2)
6129       if (Subset == Tail || Tail[Subset.size()].first != I) {
6130         std::string OutString;
6131         raw_string_ostream OS(OutString);
6132         assert(!Subset.empty() && "Unexpected empty range");
6133         OS << "Instruction with invalid costs prevented vectorization at VF=(";
6134         for (auto &Pair : Subset)
6135           OS << (Pair.second == Subset.front().second ? "" : ", ")
6136              << Pair.second;
6137         OS << "):";
6138         if (auto *CI = dyn_cast<CallInst>(I))
6139           OS << " call to " << CI->getCalledFunction()->getName();
6140         else
6141           OS << " " << I->getOpcodeName();
6142         OS.flush();
6143         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
6144         Tail = Tail.drop_front(Subset.size());
6145         Subset = {};
6146       } else
6147         // Grow the subset by one element
6148         Subset = Tail.take_front(Subset.size() + 1);
6149     } while (!Tail.empty());
6150   }
6151 
6152   if (!EnableCondStoresVectorization && NumPredStores) {
6153     reportVectorizationFailure("There are conditional stores.",
6154         "store that is conditionally executed prevents vectorization",
6155         "ConditionalStore", ORE, TheLoop);
6156     ChosenFactor = ScalarCost;
6157   }
6158 
6159   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
6160                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
6161              << "LV: Vectorization seems to be not beneficial, "
6162              << "but was forced by a user.\n");
6163   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
6164   return ChosenFactor;
6165 }
6166 
6167 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
6168     const Loop &L, ElementCount VF) const {
6169   // Cross iteration phis such as reductions need special handling and are
6170   // currently unsupported.
6171   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
6172         return Legal->isFirstOrderRecurrence(&Phi) ||
6173                Legal->isReductionVariable(&Phi);
6174       }))
6175     return false;
6176 
6177   // Phis with uses outside of the loop require special handling and are
6178   // currently unsupported.
6179   for (auto &Entry : Legal->getInductionVars()) {
6180     // Look for uses of the value of the induction at the last iteration.
6181     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
6182     for (User *U : PostInc->users())
6183       if (!L.contains(cast<Instruction>(U)))
6184         return false;
6185     // Look for uses of penultimate value of the induction.
6186     for (User *U : Entry.first->users())
6187       if (!L.contains(cast<Instruction>(U)))
6188         return false;
6189   }
6190 
6191   // Induction variables that are widened require special handling that is
6192   // currently not supported.
6193   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
6194         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
6195                  this->isProfitableToScalarize(Entry.first, VF));
6196       }))
6197     return false;
6198 
6199   // Epilogue vectorization code has not been auditted to ensure it handles
6200   // non-latch exits properly.  It may be fine, but it needs auditted and
6201   // tested.
6202   if (L.getExitingBlock() != L.getLoopLatch())
6203     return false;
6204 
6205   return true;
6206 }
6207 
6208 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
6209     const ElementCount VF) const {
6210   // FIXME: We need a much better cost-model to take different parameters such
6211   // as register pressure, code size increase and cost of extra branches into
6212   // account. For now we apply a very crude heuristic and only consider loops
6213   // with vectorization factors larger than a certain value.
6214   // We also consider epilogue vectorization unprofitable for targets that don't
6215   // consider interleaving beneficial (eg. MVE).
6216   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
6217     return false;
6218   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
6219     return true;
6220   return false;
6221 }
6222 
6223 VectorizationFactor
6224 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
6225     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
6226   VectorizationFactor Result = VectorizationFactor::Disabled();
6227   if (!EnableEpilogueVectorization) {
6228     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
6229     return Result;
6230   }
6231 
6232   if (!isScalarEpilogueAllowed()) {
6233     LLVM_DEBUG(
6234         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
6235                   "allowed.\n";);
6236     return Result;
6237   }
6238 
6239   // FIXME: This can be fixed for scalable vectors later, because at this stage
6240   // the LoopVectorizer will only consider vectorizing a loop with scalable
6241   // vectors when the loop has a hint to enable vectorization for a given VF.
6242   if (MainLoopVF.isScalable()) {
6243     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not "
6244                          "yet supported.\n");
6245     return Result;
6246   }
6247 
6248   // Not really a cost consideration, but check for unsupported cases here to
6249   // simplify the logic.
6250   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
6251     LLVM_DEBUG(
6252         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
6253                   "not a supported candidate.\n";);
6254     return Result;
6255   }
6256 
6257   if (EpilogueVectorizationForceVF > 1) {
6258     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
6259     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
6260     if (LVP.hasPlanWithVFs({MainLoopVF, ForcedEC}))
6261       return {ForcedEC, 0};
6262     else {
6263       LLVM_DEBUG(
6264           dbgs()
6265               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
6266       return Result;
6267     }
6268   }
6269 
6270   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
6271       TheLoop->getHeader()->getParent()->hasMinSize()) {
6272     LLVM_DEBUG(
6273         dbgs()
6274             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6275     return Result;
6276   }
6277 
6278   if (!isEpilogueVectorizationProfitable(MainLoopVF))
6279     return Result;
6280 
6281   for (auto &NextVF : ProfitableVFs)
6282     if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) &&
6283         (Result.Width.getFixedValue() == 1 ||
6284          isMoreProfitable(NextVF, Result)) &&
6285         LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width}))
6286       Result = NextVF;
6287 
6288   if (Result != VectorizationFactor::Disabled())
6289     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6290                       << Result.Width.getFixedValue() << "\n";);
6291   return Result;
6292 }
6293 
6294 std::pair<unsigned, unsigned>
6295 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6296   unsigned MinWidth = -1U;
6297   unsigned MaxWidth = 8;
6298   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6299   for (Type *T : ElementTypesInLoop) {
6300     MinWidth = std::min<unsigned>(
6301         MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6302     MaxWidth = std::max<unsigned>(
6303         MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6304   }
6305   return {MinWidth, MaxWidth};
6306 }
6307 
6308 void LoopVectorizationCostModel::collectElementTypesForWidening() {
6309   ElementTypesInLoop.clear();
6310   // For each block.
6311   for (BasicBlock *BB : TheLoop->blocks()) {
6312     // For each instruction in the loop.
6313     for (Instruction &I : BB->instructionsWithoutDebug()) {
6314       Type *T = I.getType();
6315 
6316       // Skip ignored values.
6317       if (ValuesToIgnore.count(&I))
6318         continue;
6319 
6320       // Only examine Loads, Stores and PHINodes.
6321       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6322         continue;
6323 
6324       // Examine PHI nodes that are reduction variables. Update the type to
6325       // account for the recurrence type.
6326       if (auto *PN = dyn_cast<PHINode>(&I)) {
6327         if (!Legal->isReductionVariable(PN))
6328           continue;
6329         const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN];
6330         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6331             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6332                                       RdxDesc.getRecurrenceType(),
6333                                       TargetTransformInfo::ReductionFlags()))
6334           continue;
6335         T = RdxDesc.getRecurrenceType();
6336       }
6337 
6338       // Examine the stored values.
6339       if (auto *ST = dyn_cast<StoreInst>(&I))
6340         T = ST->getValueOperand()->getType();
6341 
6342       // Ignore loaded pointer types and stored pointer types that are not
6343       // vectorizable.
6344       //
6345       // FIXME: The check here attempts to predict whether a load or store will
6346       //        be vectorized. We only know this for certain after a VF has
6347       //        been selected. Here, we assume that if an access can be
6348       //        vectorized, it will be. We should also look at extending this
6349       //        optimization to non-pointer types.
6350       //
6351       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6352           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6353         continue;
6354 
6355       ElementTypesInLoop.insert(T);
6356     }
6357   }
6358 }
6359 
6360 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6361                                                            unsigned LoopCost) {
6362   // -- The interleave heuristics --
6363   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6364   // There are many micro-architectural considerations that we can't predict
6365   // at this level. For example, frontend pressure (on decode or fetch) due to
6366   // code size, or the number and capabilities of the execution ports.
6367   //
6368   // We use the following heuristics to select the interleave count:
6369   // 1. If the code has reductions, then we interleave to break the cross
6370   // iteration dependency.
6371   // 2. If the loop is really small, then we interleave to reduce the loop
6372   // overhead.
6373   // 3. We don't interleave if we think that we will spill registers to memory
6374   // due to the increased register pressure.
6375 
6376   if (!isScalarEpilogueAllowed())
6377     return 1;
6378 
6379   // We used the distance for the interleave count.
6380   if (Legal->getMaxSafeDepDistBytes() != -1U)
6381     return 1;
6382 
6383   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6384   const bool HasReductions = !Legal->getReductionVars().empty();
6385   // Do not interleave loops with a relatively small known or estimated trip
6386   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6387   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6388   // because with the above conditions interleaving can expose ILP and break
6389   // cross iteration dependences for reductions.
6390   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6391       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6392     return 1;
6393 
6394   RegisterUsage R = calculateRegisterUsage({VF})[0];
6395   // We divide by these constants so assume that we have at least one
6396   // instruction that uses at least one register.
6397   for (auto& pair : R.MaxLocalUsers) {
6398     pair.second = std::max(pair.second, 1U);
6399   }
6400 
6401   // We calculate the interleave count using the following formula.
6402   // Subtract the number of loop invariants from the number of available
6403   // registers. These registers are used by all of the interleaved instances.
6404   // Next, divide the remaining registers by the number of registers that is
6405   // required by the loop, in order to estimate how many parallel instances
6406   // fit without causing spills. All of this is rounded down if necessary to be
6407   // a power of two. We want power of two interleave count to simplify any
6408   // addressing operations or alignment considerations.
6409   // We also want power of two interleave counts to ensure that the induction
6410   // variable of the vector loop wraps to zero, when tail is folded by masking;
6411   // this currently happens when OptForSize, in which case IC is set to 1 above.
6412   unsigned IC = UINT_MAX;
6413 
6414   for (auto& pair : R.MaxLocalUsers) {
6415     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6416     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6417                       << " registers of "
6418                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6419     if (VF.isScalar()) {
6420       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6421         TargetNumRegisters = ForceTargetNumScalarRegs;
6422     } else {
6423       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6424         TargetNumRegisters = ForceTargetNumVectorRegs;
6425     }
6426     unsigned MaxLocalUsers = pair.second;
6427     unsigned LoopInvariantRegs = 0;
6428     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6429       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6430 
6431     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6432     // Don't count the induction variable as interleaved.
6433     if (EnableIndVarRegisterHeur) {
6434       TmpIC =
6435           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6436                         std::max(1U, (MaxLocalUsers - 1)));
6437     }
6438 
6439     IC = std::min(IC, TmpIC);
6440   }
6441 
6442   // Clamp the interleave ranges to reasonable counts.
6443   unsigned MaxInterleaveCount =
6444       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6445 
6446   // Check if the user has overridden the max.
6447   if (VF.isScalar()) {
6448     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6449       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6450   } else {
6451     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6452       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6453   }
6454 
6455   // If trip count is known or estimated compile time constant, limit the
6456   // interleave count to be less than the trip count divided by VF, provided it
6457   // is at least 1.
6458   //
6459   // For scalable vectors we can't know if interleaving is beneficial. It may
6460   // not be beneficial for small loops if none of the lanes in the second vector
6461   // iterations is enabled. However, for larger loops, there is likely to be a
6462   // similar benefit as for fixed-width vectors. For now, we choose to leave
6463   // the InterleaveCount as if vscale is '1', although if some information about
6464   // the vector is known (e.g. min vector size), we can make a better decision.
6465   if (BestKnownTC) {
6466     MaxInterleaveCount =
6467         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6468     // Make sure MaxInterleaveCount is greater than 0.
6469     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6470   }
6471 
6472   assert(MaxInterleaveCount > 0 &&
6473          "Maximum interleave count must be greater than 0");
6474 
6475   // Clamp the calculated IC to be between the 1 and the max interleave count
6476   // that the target and trip count allows.
6477   if (IC > MaxInterleaveCount)
6478     IC = MaxInterleaveCount;
6479   else
6480     // Make sure IC is greater than 0.
6481     IC = std::max(1u, IC);
6482 
6483   assert(IC > 0 && "Interleave count must be greater than 0.");
6484 
6485   // If we did not calculate the cost for VF (because the user selected the VF)
6486   // then we calculate the cost of VF here.
6487   if (LoopCost == 0) {
6488     InstructionCost C = expectedCost(VF).first;
6489     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6490     LoopCost = *C.getValue();
6491   }
6492 
6493   assert(LoopCost && "Non-zero loop cost expected");
6494 
6495   // Interleave if we vectorized this loop and there is a reduction that could
6496   // benefit from interleaving.
6497   if (VF.isVector() && HasReductions) {
6498     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6499     return IC;
6500   }
6501 
6502   // Note that if we've already vectorized the loop we will have done the
6503   // runtime check and so interleaving won't require further checks.
6504   bool InterleavingRequiresRuntimePointerCheck =
6505       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6506 
6507   // We want to interleave small loops in order to reduce the loop overhead and
6508   // potentially expose ILP opportunities.
6509   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6510                     << "LV: IC is " << IC << '\n'
6511                     << "LV: VF is " << VF << '\n');
6512   const bool AggressivelyInterleaveReductions =
6513       TTI.enableAggressiveInterleaving(HasReductions);
6514   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6515     // We assume that the cost overhead is 1 and we use the cost model
6516     // to estimate the cost of the loop and interleave until the cost of the
6517     // loop overhead is about 5% of the cost of the loop.
6518     unsigned SmallIC =
6519         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6520 
6521     // Interleave until store/load ports (estimated by max interleave count) are
6522     // saturated.
6523     unsigned NumStores = Legal->getNumStores();
6524     unsigned NumLoads = Legal->getNumLoads();
6525     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6526     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6527 
6528     // There is little point in interleaving for reductions containing selects
6529     // and compares when VF=1 since it may just create more overhead than it's
6530     // worth for loops with small trip counts. This is because we still have to
6531     // do the final reduction after the loop.
6532     bool HasSelectCmpReductions =
6533         HasReductions &&
6534         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6535           const RecurrenceDescriptor &RdxDesc = Reduction.second;
6536           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
6537               RdxDesc.getRecurrenceKind());
6538         });
6539     if (HasSelectCmpReductions) {
6540       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
6541       return 1;
6542     }
6543 
6544     // If we have a scalar reduction (vector reductions are already dealt with
6545     // by this point), we can increase the critical path length if the loop
6546     // we're interleaving is inside another loop. For tree-wise reductions
6547     // set the limit to 2, and for ordered reductions it's best to disable
6548     // interleaving entirely.
6549     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6550       bool HasOrderedReductions =
6551           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6552             const RecurrenceDescriptor &RdxDesc = Reduction.second;
6553             return RdxDesc.isOrdered();
6554           });
6555       if (HasOrderedReductions) {
6556         LLVM_DEBUG(
6557             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
6558         return 1;
6559       }
6560 
6561       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6562       SmallIC = std::min(SmallIC, F);
6563       StoresIC = std::min(StoresIC, F);
6564       LoadsIC = std::min(LoadsIC, F);
6565     }
6566 
6567     if (EnableLoadStoreRuntimeInterleave &&
6568         std::max(StoresIC, LoadsIC) > SmallIC) {
6569       LLVM_DEBUG(
6570           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6571       return std::max(StoresIC, LoadsIC);
6572     }
6573 
6574     // If there are scalar reductions and TTI has enabled aggressive
6575     // interleaving for reductions, we will interleave to expose ILP.
6576     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6577         AggressivelyInterleaveReductions) {
6578       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6579       // Interleave no less than SmallIC but not as aggressive as the normal IC
6580       // to satisfy the rare situation when resources are too limited.
6581       return std::max(IC / 2, SmallIC);
6582     } else {
6583       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6584       return SmallIC;
6585     }
6586   }
6587 
6588   // Interleave if this is a large loop (small loops are already dealt with by
6589   // this point) that could benefit from interleaving.
6590   if (AggressivelyInterleaveReductions) {
6591     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6592     return IC;
6593   }
6594 
6595   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6596   return 1;
6597 }
6598 
6599 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6600 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6601   // This function calculates the register usage by measuring the highest number
6602   // of values that are alive at a single location. Obviously, this is a very
6603   // rough estimation. We scan the loop in a topological order in order and
6604   // assign a number to each instruction. We use RPO to ensure that defs are
6605   // met before their users. We assume that each instruction that has in-loop
6606   // users starts an interval. We record every time that an in-loop value is
6607   // used, so we have a list of the first and last occurrences of each
6608   // instruction. Next, we transpose this data structure into a multi map that
6609   // holds the list of intervals that *end* at a specific location. This multi
6610   // map allows us to perform a linear search. We scan the instructions linearly
6611   // and record each time that a new interval starts, by placing it in a set.
6612   // If we find this value in the multi-map then we remove it from the set.
6613   // The max register usage is the maximum size of the set.
6614   // We also search for instructions that are defined outside the loop, but are
6615   // used inside the loop. We need this number separately from the max-interval
6616   // usage number because when we unroll, loop-invariant values do not take
6617   // more register.
6618   LoopBlocksDFS DFS(TheLoop);
6619   DFS.perform(LI);
6620 
6621   RegisterUsage RU;
6622 
6623   // Each 'key' in the map opens a new interval. The values
6624   // of the map are the index of the 'last seen' usage of the
6625   // instruction that is the key.
6626   using IntervalMap = DenseMap<Instruction *, unsigned>;
6627 
6628   // Maps instruction to its index.
6629   SmallVector<Instruction *, 64> IdxToInstr;
6630   // Marks the end of each interval.
6631   IntervalMap EndPoint;
6632   // Saves the list of instruction indices that are used in the loop.
6633   SmallPtrSet<Instruction *, 8> Ends;
6634   // Saves the list of values that are used in the loop but are
6635   // defined outside the loop, such as arguments and constants.
6636   SmallPtrSet<Value *, 8> LoopInvariants;
6637 
6638   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6639     for (Instruction &I : BB->instructionsWithoutDebug()) {
6640       IdxToInstr.push_back(&I);
6641 
6642       // Save the end location of each USE.
6643       for (Value *U : I.operands()) {
6644         auto *Instr = dyn_cast<Instruction>(U);
6645 
6646         // Ignore non-instruction values such as arguments, constants, etc.
6647         if (!Instr)
6648           continue;
6649 
6650         // If this instruction is outside the loop then record it and continue.
6651         if (!TheLoop->contains(Instr)) {
6652           LoopInvariants.insert(Instr);
6653           continue;
6654         }
6655 
6656         // Overwrite previous end points.
6657         EndPoint[Instr] = IdxToInstr.size();
6658         Ends.insert(Instr);
6659       }
6660     }
6661   }
6662 
6663   // Saves the list of intervals that end with the index in 'key'.
6664   using InstrList = SmallVector<Instruction *, 2>;
6665   DenseMap<unsigned, InstrList> TransposeEnds;
6666 
6667   // Transpose the EndPoints to a list of values that end at each index.
6668   for (auto &Interval : EndPoint)
6669     TransposeEnds[Interval.second].push_back(Interval.first);
6670 
6671   SmallPtrSet<Instruction *, 8> OpenIntervals;
6672   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6673   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6674 
6675   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6676 
6677   // A lambda that gets the register usage for the given type and VF.
6678   const auto &TTICapture = TTI;
6679   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6680     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6681       return 0;
6682     InstructionCost::CostType RegUsage =
6683         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6684     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6685            "Nonsensical values for register usage.");
6686     return RegUsage;
6687   };
6688 
6689   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6690     Instruction *I = IdxToInstr[i];
6691 
6692     // Remove all of the instructions that end at this location.
6693     InstrList &List = TransposeEnds[i];
6694     for (Instruction *ToRemove : List)
6695       OpenIntervals.erase(ToRemove);
6696 
6697     // Ignore instructions that are never used within the loop.
6698     if (!Ends.count(I))
6699       continue;
6700 
6701     // Skip ignored values.
6702     if (ValuesToIgnore.count(I))
6703       continue;
6704 
6705     // For each VF find the maximum usage of registers.
6706     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6707       // Count the number of live intervals.
6708       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6709 
6710       if (VFs[j].isScalar()) {
6711         for (auto Inst : OpenIntervals) {
6712           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6713           if (RegUsage.find(ClassID) == RegUsage.end())
6714             RegUsage[ClassID] = 1;
6715           else
6716             RegUsage[ClassID] += 1;
6717         }
6718       } else {
6719         collectUniformsAndScalars(VFs[j]);
6720         for (auto Inst : OpenIntervals) {
6721           // Skip ignored values for VF > 1.
6722           if (VecValuesToIgnore.count(Inst))
6723             continue;
6724           if (isScalarAfterVectorization(Inst, VFs[j])) {
6725             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6726             if (RegUsage.find(ClassID) == RegUsage.end())
6727               RegUsage[ClassID] = 1;
6728             else
6729               RegUsage[ClassID] += 1;
6730           } else {
6731             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6732             if (RegUsage.find(ClassID) == RegUsage.end())
6733               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6734             else
6735               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6736           }
6737         }
6738       }
6739 
6740       for (auto& pair : RegUsage) {
6741         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6742           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6743         else
6744           MaxUsages[j][pair.first] = pair.second;
6745       }
6746     }
6747 
6748     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6749                       << OpenIntervals.size() << '\n');
6750 
6751     // Add the current instruction to the list of open intervals.
6752     OpenIntervals.insert(I);
6753   }
6754 
6755   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6756     SmallMapVector<unsigned, unsigned, 4> Invariant;
6757 
6758     for (auto Inst : LoopInvariants) {
6759       unsigned Usage =
6760           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6761       unsigned ClassID =
6762           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6763       if (Invariant.find(ClassID) == Invariant.end())
6764         Invariant[ClassID] = Usage;
6765       else
6766         Invariant[ClassID] += Usage;
6767     }
6768 
6769     LLVM_DEBUG({
6770       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6771       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6772              << " item\n";
6773       for (const auto &pair : MaxUsages[i]) {
6774         dbgs() << "LV(REG): RegisterClass: "
6775                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6776                << " registers\n";
6777       }
6778       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6779              << " item\n";
6780       for (const auto &pair : Invariant) {
6781         dbgs() << "LV(REG): RegisterClass: "
6782                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6783                << " registers\n";
6784       }
6785     });
6786 
6787     RU.LoopInvariantRegs = Invariant;
6788     RU.MaxLocalUsers = MaxUsages[i];
6789     RUs[i] = RU;
6790   }
6791 
6792   return RUs;
6793 }
6794 
6795 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6796   // TODO: Cost model for emulated masked load/store is completely
6797   // broken. This hack guides the cost model to use an artificially
6798   // high enough value to practically disable vectorization with such
6799   // operations, except where previously deployed legality hack allowed
6800   // using very low cost values. This is to avoid regressions coming simply
6801   // from moving "masked load/store" check from legality to cost model.
6802   // Masked Load/Gather emulation was previously never allowed.
6803   // Limited number of Masked Store/Scatter emulation was allowed.
6804   assert(isPredicatedInst(I) &&
6805          "Expecting a scalar emulated instruction");
6806   return isa<LoadInst>(I) ||
6807          (isa<StoreInst>(I) &&
6808           NumPredStores > NumberOfStoresToPredicate);
6809 }
6810 
6811 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6812   // If we aren't vectorizing the loop, or if we've already collected the
6813   // instructions to scalarize, there's nothing to do. Collection may already
6814   // have occurred if we have a user-selected VF and are now computing the
6815   // expected cost for interleaving.
6816   if (VF.isScalar() || VF.isZero() ||
6817       InstsToScalarize.find(VF) != InstsToScalarize.end())
6818     return;
6819 
6820   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6821   // not profitable to scalarize any instructions, the presence of VF in the
6822   // map will indicate that we've analyzed it already.
6823   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6824 
6825   // Find all the instructions that are scalar with predication in the loop and
6826   // determine if it would be better to not if-convert the blocks they are in.
6827   // If so, we also record the instructions to scalarize.
6828   for (BasicBlock *BB : TheLoop->blocks()) {
6829     if (!blockNeedsPredication(BB))
6830       continue;
6831     for (Instruction &I : *BB)
6832       if (isScalarWithPredication(&I)) {
6833         ScalarCostsTy ScalarCosts;
6834         // Do not apply discount if scalable, because that would lead to
6835         // invalid scalarization costs.
6836         // Do not apply discount logic if hacked cost is needed
6837         // for emulated masked memrefs.
6838         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) &&
6839             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6840           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6841         // Remember that BB will remain after vectorization.
6842         PredicatedBBsAfterVectorization.insert(BB);
6843       }
6844   }
6845 }
6846 
6847 int LoopVectorizationCostModel::computePredInstDiscount(
6848     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6849   assert(!isUniformAfterVectorization(PredInst, VF) &&
6850          "Instruction marked uniform-after-vectorization will be predicated");
6851 
6852   // Initialize the discount to zero, meaning that the scalar version and the
6853   // vector version cost the same.
6854   InstructionCost Discount = 0;
6855 
6856   // Holds instructions to analyze. The instructions we visit are mapped in
6857   // ScalarCosts. Those instructions are the ones that would be scalarized if
6858   // we find that the scalar version costs less.
6859   SmallVector<Instruction *, 8> Worklist;
6860 
6861   // Returns true if the given instruction can be scalarized.
6862   auto canBeScalarized = [&](Instruction *I) -> bool {
6863     // We only attempt to scalarize instructions forming a single-use chain
6864     // from the original predicated block that would otherwise be vectorized.
6865     // Although not strictly necessary, we give up on instructions we know will
6866     // already be scalar to avoid traversing chains that are unlikely to be
6867     // beneficial.
6868     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6869         isScalarAfterVectorization(I, VF))
6870       return false;
6871 
6872     // If the instruction is scalar with predication, it will be analyzed
6873     // separately. We ignore it within the context of PredInst.
6874     if (isScalarWithPredication(I))
6875       return false;
6876 
6877     // If any of the instruction's operands are uniform after vectorization,
6878     // the instruction cannot be scalarized. This prevents, for example, a
6879     // masked load from being scalarized.
6880     //
6881     // We assume we will only emit a value for lane zero of an instruction
6882     // marked uniform after vectorization, rather than VF identical values.
6883     // Thus, if we scalarize an instruction that uses a uniform, we would
6884     // create uses of values corresponding to the lanes we aren't emitting code
6885     // for. This behavior can be changed by allowing getScalarValue to clone
6886     // the lane zero values for uniforms rather than asserting.
6887     for (Use &U : I->operands())
6888       if (auto *J = dyn_cast<Instruction>(U.get()))
6889         if (isUniformAfterVectorization(J, VF))
6890           return false;
6891 
6892     // Otherwise, we can scalarize the instruction.
6893     return true;
6894   };
6895 
6896   // Compute the expected cost discount from scalarizing the entire expression
6897   // feeding the predicated instruction. We currently only consider expressions
6898   // that are single-use instruction chains.
6899   Worklist.push_back(PredInst);
6900   while (!Worklist.empty()) {
6901     Instruction *I = Worklist.pop_back_val();
6902 
6903     // If we've already analyzed the instruction, there's nothing to do.
6904     if (ScalarCosts.find(I) != ScalarCosts.end())
6905       continue;
6906 
6907     // Compute the cost of the vector instruction. Note that this cost already
6908     // includes the scalarization overhead of the predicated instruction.
6909     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6910 
6911     // Compute the cost of the scalarized instruction. This cost is the cost of
6912     // the instruction as if it wasn't if-converted and instead remained in the
6913     // predicated block. We will scale this cost by block probability after
6914     // computing the scalarization overhead.
6915     InstructionCost ScalarCost =
6916         VF.getFixedValue() *
6917         getInstructionCost(I, ElementCount::getFixed(1)).first;
6918 
6919     // Compute the scalarization overhead of needed insertelement instructions
6920     // and phi nodes.
6921     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6922       ScalarCost += TTI.getScalarizationOverhead(
6923           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6924           APInt::getAllOnes(VF.getFixedValue()), true, false);
6925       ScalarCost +=
6926           VF.getFixedValue() *
6927           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6928     }
6929 
6930     // Compute the scalarization overhead of needed extractelement
6931     // instructions. For each of the instruction's operands, if the operand can
6932     // be scalarized, add it to the worklist; otherwise, account for the
6933     // overhead.
6934     for (Use &U : I->operands())
6935       if (auto *J = dyn_cast<Instruction>(U.get())) {
6936         assert(VectorType::isValidElementType(J->getType()) &&
6937                "Instruction has non-scalar type");
6938         if (canBeScalarized(J))
6939           Worklist.push_back(J);
6940         else if (needsExtract(J, VF)) {
6941           ScalarCost += TTI.getScalarizationOverhead(
6942               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6943               APInt::getAllOnes(VF.getFixedValue()), false, true);
6944         }
6945       }
6946 
6947     // Scale the total scalar cost by block probability.
6948     ScalarCost /= getReciprocalPredBlockProb();
6949 
6950     // Compute the discount. A non-negative discount means the vector version
6951     // of the instruction costs more, and scalarizing would be beneficial.
6952     Discount += VectorCost - ScalarCost;
6953     ScalarCosts[I] = ScalarCost;
6954   }
6955 
6956   return *Discount.getValue();
6957 }
6958 
6959 LoopVectorizationCostModel::VectorizationCostTy
6960 LoopVectorizationCostModel::expectedCost(
6961     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6962   VectorizationCostTy Cost;
6963 
6964   // For each block.
6965   for (BasicBlock *BB : TheLoop->blocks()) {
6966     VectorizationCostTy BlockCost;
6967 
6968     // For each instruction in the old loop.
6969     for (Instruction &I : BB->instructionsWithoutDebug()) {
6970       // Skip ignored values.
6971       if (ValuesToIgnore.count(&I) ||
6972           (VF.isVector() && VecValuesToIgnore.count(&I)))
6973         continue;
6974 
6975       VectorizationCostTy C = getInstructionCost(&I, VF);
6976 
6977       // Check if we should override the cost.
6978       if (C.first.isValid() &&
6979           ForceTargetInstructionCost.getNumOccurrences() > 0)
6980         C.first = InstructionCost(ForceTargetInstructionCost);
6981 
6982       // Keep a list of instructions with invalid costs.
6983       if (Invalid && !C.first.isValid())
6984         Invalid->emplace_back(&I, VF);
6985 
6986       BlockCost.first += C.first;
6987       BlockCost.second |= C.second;
6988       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6989                         << " for VF " << VF << " For instruction: " << I
6990                         << '\n');
6991     }
6992 
6993     // If we are vectorizing a predicated block, it will have been
6994     // if-converted. This means that the block's instructions (aside from
6995     // stores and instructions that may divide by zero) will now be
6996     // unconditionally executed. For the scalar case, we may not always execute
6997     // the predicated block, if it is an if-else block. Thus, scale the block's
6998     // cost by the probability of executing it. blockNeedsPredication from
6999     // Legal is used so as to not include all blocks in tail folded loops.
7000     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
7001       BlockCost.first /= getReciprocalPredBlockProb();
7002 
7003     Cost.first += BlockCost.first;
7004     Cost.second |= BlockCost.second;
7005   }
7006 
7007   return Cost;
7008 }
7009 
7010 /// Gets Address Access SCEV after verifying that the access pattern
7011 /// is loop invariant except the induction variable dependence.
7012 ///
7013 /// This SCEV can be sent to the Target in order to estimate the address
7014 /// calculation cost.
7015 static const SCEV *getAddressAccessSCEV(
7016               Value *Ptr,
7017               LoopVectorizationLegality *Legal,
7018               PredicatedScalarEvolution &PSE,
7019               const Loop *TheLoop) {
7020 
7021   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
7022   if (!Gep)
7023     return nullptr;
7024 
7025   // We are looking for a gep with all loop invariant indices except for one
7026   // which should be an induction variable.
7027   auto SE = PSE.getSE();
7028   unsigned NumOperands = Gep->getNumOperands();
7029   for (unsigned i = 1; i < NumOperands; ++i) {
7030     Value *Opd = Gep->getOperand(i);
7031     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
7032         !Legal->isInductionVariable(Opd))
7033       return nullptr;
7034   }
7035 
7036   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
7037   return PSE.getSCEV(Ptr);
7038 }
7039 
7040 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
7041   return Legal->hasStride(I->getOperand(0)) ||
7042          Legal->hasStride(I->getOperand(1));
7043 }
7044 
7045 InstructionCost
7046 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
7047                                                         ElementCount VF) {
7048   assert(VF.isVector() &&
7049          "Scalarization cost of instruction implies vectorization.");
7050   if (VF.isScalable())
7051     return InstructionCost::getInvalid();
7052 
7053   Type *ValTy = getLoadStoreType(I);
7054   auto SE = PSE.getSE();
7055 
7056   unsigned AS = getLoadStoreAddressSpace(I);
7057   Value *Ptr = getLoadStorePointerOperand(I);
7058   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
7059 
7060   // Figure out whether the access is strided and get the stride value
7061   // if it's known in compile time
7062   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
7063 
7064   // Get the cost of the scalar memory instruction and address computation.
7065   InstructionCost Cost =
7066       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
7067 
7068   // Don't pass *I here, since it is scalar but will actually be part of a
7069   // vectorized loop where the user of it is a vectorized instruction.
7070   const Align Alignment = getLoadStoreAlignment(I);
7071   Cost += VF.getKnownMinValue() *
7072           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
7073                               AS, TTI::TCK_RecipThroughput);
7074 
7075   // Get the overhead of the extractelement and insertelement instructions
7076   // we might create due to scalarization.
7077   Cost += getScalarizationOverhead(I, VF);
7078 
7079   // If we have a predicated load/store, it will need extra i1 extracts and
7080   // conditional branches, but may not be executed for each vector lane. Scale
7081   // the cost by the probability of executing the predicated block.
7082   if (isPredicatedInst(I)) {
7083     Cost /= getReciprocalPredBlockProb();
7084 
7085     // Add the cost of an i1 extract and a branch
7086     auto *Vec_i1Ty =
7087         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
7088     Cost += TTI.getScalarizationOverhead(
7089         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
7090         /*Insert=*/false, /*Extract=*/true);
7091     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
7092 
7093     if (useEmulatedMaskMemRefHack(I))
7094       // Artificially setting to a high enough value to practically disable
7095       // vectorization with such operations.
7096       Cost = 3000000;
7097   }
7098 
7099   return Cost;
7100 }
7101 
7102 InstructionCost
7103 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
7104                                                     ElementCount VF) {
7105   Type *ValTy = getLoadStoreType(I);
7106   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7107   Value *Ptr = getLoadStorePointerOperand(I);
7108   unsigned AS = getLoadStoreAddressSpace(I);
7109   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
7110   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7111 
7112   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7113          "Stride should be 1 or -1 for consecutive memory access");
7114   const Align Alignment = getLoadStoreAlignment(I);
7115   InstructionCost Cost = 0;
7116   if (Legal->isMaskRequired(I))
7117     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7118                                       CostKind);
7119   else
7120     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7121                                 CostKind, I);
7122 
7123   bool Reverse = ConsecutiveStride < 0;
7124   if (Reverse)
7125     Cost +=
7126         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7127   return Cost;
7128 }
7129 
7130 InstructionCost
7131 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
7132                                                 ElementCount VF) {
7133   assert(Legal->isUniformMemOp(*I));
7134 
7135   Type *ValTy = getLoadStoreType(I);
7136   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7137   const Align Alignment = getLoadStoreAlignment(I);
7138   unsigned AS = getLoadStoreAddressSpace(I);
7139   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7140   if (isa<LoadInst>(I)) {
7141     return TTI.getAddressComputationCost(ValTy) +
7142            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
7143                                CostKind) +
7144            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
7145   }
7146   StoreInst *SI = cast<StoreInst>(I);
7147 
7148   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
7149   return TTI.getAddressComputationCost(ValTy) +
7150          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
7151                              CostKind) +
7152          (isLoopInvariantStoreValue
7153               ? 0
7154               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
7155                                        VF.getKnownMinValue() - 1));
7156 }
7157 
7158 InstructionCost
7159 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
7160                                                  ElementCount VF) {
7161   Type *ValTy = getLoadStoreType(I);
7162   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7163   const Align Alignment = getLoadStoreAlignment(I);
7164   const Value *Ptr = getLoadStorePointerOperand(I);
7165 
7166   return TTI.getAddressComputationCost(VectorTy) +
7167          TTI.getGatherScatterOpCost(
7168              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
7169              TargetTransformInfo::TCK_RecipThroughput, I);
7170 }
7171 
7172 InstructionCost
7173 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
7174                                                    ElementCount VF) {
7175   // TODO: Once we have support for interleaving with scalable vectors
7176   // we can calculate the cost properly here.
7177   if (VF.isScalable())
7178     return InstructionCost::getInvalid();
7179 
7180   Type *ValTy = getLoadStoreType(I);
7181   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7182   unsigned AS = getLoadStoreAddressSpace(I);
7183 
7184   auto Group = getInterleavedAccessGroup(I);
7185   assert(Group && "Fail to get an interleaved access group.");
7186 
7187   unsigned InterleaveFactor = Group->getFactor();
7188   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
7189 
7190   // Holds the indices of existing members in the interleaved group.
7191   SmallVector<unsigned, 4> Indices;
7192   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
7193     if (Group->getMember(IF))
7194       Indices.push_back(IF);
7195 
7196   // Calculate the cost of the whole interleaved group.
7197   bool UseMaskForGaps =
7198       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
7199       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
7200   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
7201       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
7202       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
7203 
7204   if (Group->isReverse()) {
7205     // TODO: Add support for reversed masked interleaved access.
7206     assert(!Legal->isMaskRequired(I) &&
7207            "Reverse masked interleaved access not supported.");
7208     Cost +=
7209         Group->getNumMembers() *
7210         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7211   }
7212   return Cost;
7213 }
7214 
7215 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
7216     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
7217   using namespace llvm::PatternMatch;
7218   // Early exit for no inloop reductions
7219   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
7220     return None;
7221   auto *VectorTy = cast<VectorType>(Ty);
7222 
7223   // We are looking for a pattern of, and finding the minimal acceptable cost:
7224   //  reduce(mul(ext(A), ext(B))) or
7225   //  reduce(mul(A, B)) or
7226   //  reduce(ext(A)) or
7227   //  reduce(A).
7228   // The basic idea is that we walk down the tree to do that, finding the root
7229   // reduction instruction in InLoopReductionImmediateChains. From there we find
7230   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
7231   // of the components. If the reduction cost is lower then we return it for the
7232   // reduction instruction and 0 for the other instructions in the pattern. If
7233   // it is not we return an invalid cost specifying the orignal cost method
7234   // should be used.
7235   Instruction *RetI = I;
7236   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
7237     if (!RetI->hasOneUser())
7238       return None;
7239     RetI = RetI->user_back();
7240   }
7241   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
7242       RetI->user_back()->getOpcode() == Instruction::Add) {
7243     if (!RetI->hasOneUser())
7244       return None;
7245     RetI = RetI->user_back();
7246   }
7247 
7248   // Test if the found instruction is a reduction, and if not return an invalid
7249   // cost specifying the parent to use the original cost modelling.
7250   if (!InLoopReductionImmediateChains.count(RetI))
7251     return None;
7252 
7253   // Find the reduction this chain is a part of and calculate the basic cost of
7254   // the reduction on its own.
7255   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
7256   Instruction *ReductionPhi = LastChain;
7257   while (!isa<PHINode>(ReductionPhi))
7258     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
7259 
7260   const RecurrenceDescriptor &RdxDesc =
7261       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
7262 
7263   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
7264       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
7265 
7266   // If we're using ordered reductions then we can just return the base cost
7267   // here, since getArithmeticReductionCost calculates the full ordered
7268   // reduction cost when FP reassociation is not allowed.
7269   if (useOrderedReductions(RdxDesc))
7270     return BaseCost;
7271 
7272   // Get the operand that was not the reduction chain and match it to one of the
7273   // patterns, returning the better cost if it is found.
7274   Instruction *RedOp = RetI->getOperand(1) == LastChain
7275                            ? dyn_cast<Instruction>(RetI->getOperand(0))
7276                            : dyn_cast<Instruction>(RetI->getOperand(1));
7277 
7278   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
7279 
7280   Instruction *Op0, *Op1;
7281   if (RedOp &&
7282       match(RedOp,
7283             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
7284       match(Op0, m_ZExtOrSExt(m_Value())) &&
7285       Op0->getOpcode() == Op1->getOpcode() &&
7286       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7287       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
7288       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
7289 
7290     // Matched reduce(ext(mul(ext(A), ext(B)))
7291     // Note that the extend opcodes need to all match, or if A==B they will have
7292     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
7293     // which is equally fine.
7294     bool IsUnsigned = isa<ZExtInst>(Op0);
7295     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7296     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
7297 
7298     InstructionCost ExtCost =
7299         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
7300                              TTI::CastContextHint::None, CostKind, Op0);
7301     InstructionCost MulCost =
7302         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
7303     InstructionCost Ext2Cost =
7304         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
7305                              TTI::CastContextHint::None, CostKind, RedOp);
7306 
7307     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7308         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7309         CostKind);
7310 
7311     if (RedCost.isValid() &&
7312         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
7313       return I == RetI ? RedCost : 0;
7314   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
7315              !TheLoop->isLoopInvariant(RedOp)) {
7316     // Matched reduce(ext(A))
7317     bool IsUnsigned = isa<ZExtInst>(RedOp);
7318     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
7319     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7320         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7321         CostKind);
7322 
7323     InstructionCost ExtCost =
7324         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
7325                              TTI::CastContextHint::None, CostKind, RedOp);
7326     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
7327       return I == RetI ? RedCost : 0;
7328   } else if (RedOp &&
7329              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
7330     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
7331         Op0->getOpcode() == Op1->getOpcode() &&
7332         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7333         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7334       bool IsUnsigned = isa<ZExtInst>(Op0);
7335       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7336       // Matched reduce(mul(ext, ext))
7337       InstructionCost ExtCost =
7338           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
7339                                TTI::CastContextHint::None, CostKind, Op0);
7340       InstructionCost MulCost =
7341           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7342 
7343       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7344           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7345           CostKind);
7346 
7347       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
7348         return I == RetI ? RedCost : 0;
7349     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
7350       // Matched reduce(mul())
7351       InstructionCost MulCost =
7352           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7353 
7354       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7355           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7356           CostKind);
7357 
7358       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7359         return I == RetI ? RedCost : 0;
7360     }
7361   }
7362 
7363   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7364 }
7365 
7366 InstructionCost
7367 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7368                                                      ElementCount VF) {
7369   // Calculate scalar cost only. Vectorization cost should be ready at this
7370   // moment.
7371   if (VF.isScalar()) {
7372     Type *ValTy = getLoadStoreType(I);
7373     const Align Alignment = getLoadStoreAlignment(I);
7374     unsigned AS = getLoadStoreAddressSpace(I);
7375 
7376     return TTI.getAddressComputationCost(ValTy) +
7377            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7378                                TTI::TCK_RecipThroughput, I);
7379   }
7380   return getWideningCost(I, VF);
7381 }
7382 
7383 LoopVectorizationCostModel::VectorizationCostTy
7384 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7385                                                ElementCount VF) {
7386   // If we know that this instruction will remain uniform, check the cost of
7387   // the scalar version.
7388   if (isUniformAfterVectorization(I, VF))
7389     VF = ElementCount::getFixed(1);
7390 
7391   if (VF.isVector() && isProfitableToScalarize(I, VF))
7392     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7393 
7394   // Forced scalars do not have any scalarization overhead.
7395   auto ForcedScalar = ForcedScalars.find(VF);
7396   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7397     auto InstSet = ForcedScalar->second;
7398     if (InstSet.count(I))
7399       return VectorizationCostTy(
7400           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7401            VF.getKnownMinValue()),
7402           false);
7403   }
7404 
7405   Type *VectorTy;
7406   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7407 
7408   bool TypeNotScalarized =
7409       VF.isVector() && VectorTy->isVectorTy() &&
7410       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
7411   return VectorizationCostTy(C, TypeNotScalarized);
7412 }
7413 
7414 InstructionCost
7415 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7416                                                      ElementCount VF) const {
7417 
7418   // There is no mechanism yet to create a scalable scalarization loop,
7419   // so this is currently Invalid.
7420   if (VF.isScalable())
7421     return InstructionCost::getInvalid();
7422 
7423   if (VF.isScalar())
7424     return 0;
7425 
7426   InstructionCost Cost = 0;
7427   Type *RetTy = ToVectorTy(I->getType(), VF);
7428   if (!RetTy->isVoidTy() &&
7429       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7430     Cost += TTI.getScalarizationOverhead(
7431         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
7432         false);
7433 
7434   // Some targets keep addresses scalar.
7435   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7436     return Cost;
7437 
7438   // Some targets support efficient element stores.
7439   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7440     return Cost;
7441 
7442   // Collect operands to consider.
7443   CallInst *CI = dyn_cast<CallInst>(I);
7444   Instruction::op_range Ops = CI ? CI->args() : I->operands();
7445 
7446   // Skip operands that do not require extraction/scalarization and do not incur
7447   // any overhead.
7448   SmallVector<Type *> Tys;
7449   for (auto *V : filterExtractingOperands(Ops, VF))
7450     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7451   return Cost + TTI.getOperandsScalarizationOverhead(
7452                     filterExtractingOperands(Ops, VF), Tys);
7453 }
7454 
7455 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7456   if (VF.isScalar())
7457     return;
7458   NumPredStores = 0;
7459   for (BasicBlock *BB : TheLoop->blocks()) {
7460     // For each instruction in the old loop.
7461     for (Instruction &I : *BB) {
7462       Value *Ptr =  getLoadStorePointerOperand(&I);
7463       if (!Ptr)
7464         continue;
7465 
7466       // TODO: We should generate better code and update the cost model for
7467       // predicated uniform stores. Today they are treated as any other
7468       // predicated store (see added test cases in
7469       // invariant-store-vectorization.ll).
7470       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7471         NumPredStores++;
7472 
7473       if (Legal->isUniformMemOp(I)) {
7474         // TODO: Avoid replicating loads and stores instead of
7475         // relying on instcombine to remove them.
7476         // Load: Scalar load + broadcast
7477         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7478         InstructionCost Cost;
7479         if (isa<StoreInst>(&I) && VF.isScalable() &&
7480             isLegalGatherOrScatter(&I)) {
7481           Cost = getGatherScatterCost(&I, VF);
7482           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7483         } else {
7484           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7485                  "Cannot yet scalarize uniform stores");
7486           Cost = getUniformMemOpCost(&I, VF);
7487           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7488         }
7489         continue;
7490       }
7491 
7492       // We assume that widening is the best solution when possible.
7493       if (memoryInstructionCanBeWidened(&I, VF)) {
7494         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7495         int ConsecutiveStride = Legal->isConsecutivePtr(
7496             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
7497         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7498                "Expected consecutive stride.");
7499         InstWidening Decision =
7500             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7501         setWideningDecision(&I, VF, Decision, Cost);
7502         continue;
7503       }
7504 
7505       // Choose between Interleaving, Gather/Scatter or Scalarization.
7506       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7507       unsigned NumAccesses = 1;
7508       if (isAccessInterleaved(&I)) {
7509         auto Group = getInterleavedAccessGroup(&I);
7510         assert(Group && "Fail to get an interleaved access group.");
7511 
7512         // Make one decision for the whole group.
7513         if (getWideningDecision(&I, VF) != CM_Unknown)
7514           continue;
7515 
7516         NumAccesses = Group->getNumMembers();
7517         if (interleavedAccessCanBeWidened(&I, VF))
7518           InterleaveCost = getInterleaveGroupCost(&I, VF);
7519       }
7520 
7521       InstructionCost GatherScatterCost =
7522           isLegalGatherOrScatter(&I)
7523               ? getGatherScatterCost(&I, VF) * NumAccesses
7524               : InstructionCost::getInvalid();
7525 
7526       InstructionCost ScalarizationCost =
7527           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7528 
7529       // Choose better solution for the current VF,
7530       // write down this decision and use it during vectorization.
7531       InstructionCost Cost;
7532       InstWidening Decision;
7533       if (InterleaveCost <= GatherScatterCost &&
7534           InterleaveCost < ScalarizationCost) {
7535         Decision = CM_Interleave;
7536         Cost = InterleaveCost;
7537       } else if (GatherScatterCost < ScalarizationCost) {
7538         Decision = CM_GatherScatter;
7539         Cost = GatherScatterCost;
7540       } else {
7541         Decision = CM_Scalarize;
7542         Cost = ScalarizationCost;
7543       }
7544       // If the instructions belongs to an interleave group, the whole group
7545       // receives the same decision. The whole group receives the cost, but
7546       // the cost will actually be assigned to one instruction.
7547       if (auto Group = getInterleavedAccessGroup(&I))
7548         setWideningDecision(Group, VF, Decision, Cost);
7549       else
7550         setWideningDecision(&I, VF, Decision, Cost);
7551     }
7552   }
7553 
7554   // Make sure that any load of address and any other address computation
7555   // remains scalar unless there is gather/scatter support. This avoids
7556   // inevitable extracts into address registers, and also has the benefit of
7557   // activating LSR more, since that pass can't optimize vectorized
7558   // addresses.
7559   if (TTI.prefersVectorizedAddressing())
7560     return;
7561 
7562   // Start with all scalar pointer uses.
7563   SmallPtrSet<Instruction *, 8> AddrDefs;
7564   for (BasicBlock *BB : TheLoop->blocks())
7565     for (Instruction &I : *BB) {
7566       Instruction *PtrDef =
7567         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7568       if (PtrDef && TheLoop->contains(PtrDef) &&
7569           getWideningDecision(&I, VF) != CM_GatherScatter)
7570         AddrDefs.insert(PtrDef);
7571     }
7572 
7573   // Add all instructions used to generate the addresses.
7574   SmallVector<Instruction *, 4> Worklist;
7575   append_range(Worklist, AddrDefs);
7576   while (!Worklist.empty()) {
7577     Instruction *I = Worklist.pop_back_val();
7578     for (auto &Op : I->operands())
7579       if (auto *InstOp = dyn_cast<Instruction>(Op))
7580         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7581             AddrDefs.insert(InstOp).second)
7582           Worklist.push_back(InstOp);
7583   }
7584 
7585   for (auto *I : AddrDefs) {
7586     if (isa<LoadInst>(I)) {
7587       // Setting the desired widening decision should ideally be handled in
7588       // by cost functions, but since this involves the task of finding out
7589       // if the loaded register is involved in an address computation, it is
7590       // instead changed here when we know this is the case.
7591       InstWidening Decision = getWideningDecision(I, VF);
7592       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7593         // Scalarize a widened load of address.
7594         setWideningDecision(
7595             I, VF, CM_Scalarize,
7596             (VF.getKnownMinValue() *
7597              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7598       else if (auto Group = getInterleavedAccessGroup(I)) {
7599         // Scalarize an interleave group of address loads.
7600         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7601           if (Instruction *Member = Group->getMember(I))
7602             setWideningDecision(
7603                 Member, VF, CM_Scalarize,
7604                 (VF.getKnownMinValue() *
7605                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7606         }
7607       }
7608     } else
7609       // Make sure I gets scalarized and a cost estimate without
7610       // scalarization overhead.
7611       ForcedScalars[VF].insert(I);
7612   }
7613 }
7614 
7615 InstructionCost
7616 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7617                                                Type *&VectorTy) {
7618   Type *RetTy = I->getType();
7619   if (canTruncateToMinimalBitwidth(I, VF))
7620     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7621   auto SE = PSE.getSE();
7622   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7623 
7624   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7625                                                 ElementCount VF) -> bool {
7626     if (VF.isScalar())
7627       return true;
7628 
7629     auto Scalarized = InstsToScalarize.find(VF);
7630     assert(Scalarized != InstsToScalarize.end() &&
7631            "VF not yet analyzed for scalarization profitability");
7632     return !Scalarized->second.count(I) &&
7633            llvm::all_of(I->users(), [&](User *U) {
7634              auto *UI = cast<Instruction>(U);
7635              return !Scalarized->second.count(UI);
7636            });
7637   };
7638   (void) hasSingleCopyAfterVectorization;
7639 
7640   if (isScalarAfterVectorization(I, VF)) {
7641     // With the exception of GEPs and PHIs, after scalarization there should
7642     // only be one copy of the instruction generated in the loop. This is
7643     // because the VF is either 1, or any instructions that need scalarizing
7644     // have already been dealt with by the the time we get here. As a result,
7645     // it means we don't have to multiply the instruction cost by VF.
7646     assert(I->getOpcode() == Instruction::GetElementPtr ||
7647            I->getOpcode() == Instruction::PHI ||
7648            (I->getOpcode() == Instruction::BitCast &&
7649             I->getType()->isPointerTy()) ||
7650            hasSingleCopyAfterVectorization(I, VF));
7651     VectorTy = RetTy;
7652   } else
7653     VectorTy = ToVectorTy(RetTy, VF);
7654 
7655   // TODO: We need to estimate the cost of intrinsic calls.
7656   switch (I->getOpcode()) {
7657   case Instruction::GetElementPtr:
7658     // We mark this instruction as zero-cost because the cost of GEPs in
7659     // vectorized code depends on whether the corresponding memory instruction
7660     // is scalarized or not. Therefore, we handle GEPs with the memory
7661     // instruction cost.
7662     return 0;
7663   case Instruction::Br: {
7664     // In cases of scalarized and predicated instructions, there will be VF
7665     // predicated blocks in the vectorized loop. Each branch around these
7666     // blocks requires also an extract of its vector compare i1 element.
7667     bool ScalarPredicatedBB = false;
7668     BranchInst *BI = cast<BranchInst>(I);
7669     if (VF.isVector() && BI->isConditional() &&
7670         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7671          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7672       ScalarPredicatedBB = true;
7673 
7674     if (ScalarPredicatedBB) {
7675       // Not possible to scalarize scalable vector with predicated instructions.
7676       if (VF.isScalable())
7677         return InstructionCost::getInvalid();
7678       // Return cost for branches around scalarized and predicated blocks.
7679       auto *Vec_i1Ty =
7680           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7681       return (
7682           TTI.getScalarizationOverhead(
7683               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7684           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7685     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7686       // The back-edge branch will remain, as will all scalar branches.
7687       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7688     else
7689       // This branch will be eliminated by if-conversion.
7690       return 0;
7691     // Note: We currently assume zero cost for an unconditional branch inside
7692     // a predicated block since it will become a fall-through, although we
7693     // may decide in the future to call TTI for all branches.
7694   }
7695   case Instruction::PHI: {
7696     auto *Phi = cast<PHINode>(I);
7697 
7698     // First-order recurrences are replaced by vector shuffles inside the loop.
7699     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7700     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7701       return TTI.getShuffleCost(
7702           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7703           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7704 
7705     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7706     // converted into select instructions. We require N - 1 selects per phi
7707     // node, where N is the number of incoming values.
7708     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7709       return (Phi->getNumIncomingValues() - 1) *
7710              TTI.getCmpSelInstrCost(
7711                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7712                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7713                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7714 
7715     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7716   }
7717   case Instruction::UDiv:
7718   case Instruction::SDiv:
7719   case Instruction::URem:
7720   case Instruction::SRem:
7721     // If we have a predicated instruction, it may not be executed for each
7722     // vector lane. Get the scalarization cost and scale this amount by the
7723     // probability of executing the predicated block. If the instruction is not
7724     // predicated, we fall through to the next case.
7725     if (VF.isVector() && isScalarWithPredication(I)) {
7726       InstructionCost Cost = 0;
7727 
7728       // These instructions have a non-void type, so account for the phi nodes
7729       // that we will create. This cost is likely to be zero. The phi node
7730       // cost, if any, should be scaled by the block probability because it
7731       // models a copy at the end of each predicated block.
7732       Cost += VF.getKnownMinValue() *
7733               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7734 
7735       // The cost of the non-predicated instruction.
7736       Cost += VF.getKnownMinValue() *
7737               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7738 
7739       // The cost of insertelement and extractelement instructions needed for
7740       // scalarization.
7741       Cost += getScalarizationOverhead(I, VF);
7742 
7743       // Scale the cost by the probability of executing the predicated blocks.
7744       // This assumes the predicated block for each vector lane is equally
7745       // likely.
7746       return Cost / getReciprocalPredBlockProb();
7747     }
7748     LLVM_FALLTHROUGH;
7749   case Instruction::Add:
7750   case Instruction::FAdd:
7751   case Instruction::Sub:
7752   case Instruction::FSub:
7753   case Instruction::Mul:
7754   case Instruction::FMul:
7755   case Instruction::FDiv:
7756   case Instruction::FRem:
7757   case Instruction::Shl:
7758   case Instruction::LShr:
7759   case Instruction::AShr:
7760   case Instruction::And:
7761   case Instruction::Or:
7762   case Instruction::Xor: {
7763     // Since we will replace the stride by 1 the multiplication should go away.
7764     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7765       return 0;
7766 
7767     // Detect reduction patterns
7768     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7769       return *RedCost;
7770 
7771     // Certain instructions can be cheaper to vectorize if they have a constant
7772     // second vector operand. One example of this are shifts on x86.
7773     Value *Op2 = I->getOperand(1);
7774     TargetTransformInfo::OperandValueProperties Op2VP;
7775     TargetTransformInfo::OperandValueKind Op2VK =
7776         TTI.getOperandInfo(Op2, Op2VP);
7777     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7778       Op2VK = TargetTransformInfo::OK_UniformValue;
7779 
7780     SmallVector<const Value *, 4> Operands(I->operand_values());
7781     return TTI.getArithmeticInstrCost(
7782         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7783         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7784   }
7785   case Instruction::FNeg: {
7786     return TTI.getArithmeticInstrCost(
7787         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7788         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7789         TargetTransformInfo::OP_None, I->getOperand(0), I);
7790   }
7791   case Instruction::Select: {
7792     SelectInst *SI = cast<SelectInst>(I);
7793     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7794     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7795 
7796     const Value *Op0, *Op1;
7797     using namespace llvm::PatternMatch;
7798     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7799                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7800       // select x, y, false --> x & y
7801       // select x, true, y --> x | y
7802       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7803       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7804       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7805       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7806       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7807               Op1->getType()->getScalarSizeInBits() == 1);
7808 
7809       SmallVector<const Value *, 2> Operands{Op0, Op1};
7810       return TTI.getArithmeticInstrCost(
7811           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7812           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7813     }
7814 
7815     Type *CondTy = SI->getCondition()->getType();
7816     if (!ScalarCond)
7817       CondTy = VectorType::get(CondTy, VF);
7818     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7819                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7820   }
7821   case Instruction::ICmp:
7822   case Instruction::FCmp: {
7823     Type *ValTy = I->getOperand(0)->getType();
7824     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7825     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7826       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7827     VectorTy = ToVectorTy(ValTy, VF);
7828     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7829                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7830   }
7831   case Instruction::Store:
7832   case Instruction::Load: {
7833     ElementCount Width = VF;
7834     if (Width.isVector()) {
7835       InstWidening Decision = getWideningDecision(I, Width);
7836       assert(Decision != CM_Unknown &&
7837              "CM decision should be taken at this point");
7838       if (Decision == CM_Scalarize)
7839         Width = ElementCount::getFixed(1);
7840     }
7841     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7842     return getMemoryInstructionCost(I, VF);
7843   }
7844   case Instruction::BitCast:
7845     if (I->getType()->isPointerTy())
7846       return 0;
7847     LLVM_FALLTHROUGH;
7848   case Instruction::ZExt:
7849   case Instruction::SExt:
7850   case Instruction::FPToUI:
7851   case Instruction::FPToSI:
7852   case Instruction::FPExt:
7853   case Instruction::PtrToInt:
7854   case Instruction::IntToPtr:
7855   case Instruction::SIToFP:
7856   case Instruction::UIToFP:
7857   case Instruction::Trunc:
7858   case Instruction::FPTrunc: {
7859     // Computes the CastContextHint from a Load/Store instruction.
7860     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7861       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7862              "Expected a load or a store!");
7863 
7864       if (VF.isScalar() || !TheLoop->contains(I))
7865         return TTI::CastContextHint::Normal;
7866 
7867       switch (getWideningDecision(I, VF)) {
7868       case LoopVectorizationCostModel::CM_GatherScatter:
7869         return TTI::CastContextHint::GatherScatter;
7870       case LoopVectorizationCostModel::CM_Interleave:
7871         return TTI::CastContextHint::Interleave;
7872       case LoopVectorizationCostModel::CM_Scalarize:
7873       case LoopVectorizationCostModel::CM_Widen:
7874         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7875                                         : TTI::CastContextHint::Normal;
7876       case LoopVectorizationCostModel::CM_Widen_Reverse:
7877         return TTI::CastContextHint::Reversed;
7878       case LoopVectorizationCostModel::CM_Unknown:
7879         llvm_unreachable("Instr did not go through cost modelling?");
7880       }
7881 
7882       llvm_unreachable("Unhandled case!");
7883     };
7884 
7885     unsigned Opcode = I->getOpcode();
7886     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7887     // For Trunc, the context is the only user, which must be a StoreInst.
7888     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7889       if (I->hasOneUse())
7890         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7891           CCH = ComputeCCH(Store);
7892     }
7893     // For Z/Sext, the context is the operand, which must be a LoadInst.
7894     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7895              Opcode == Instruction::FPExt) {
7896       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7897         CCH = ComputeCCH(Load);
7898     }
7899 
7900     // We optimize the truncation of induction variables having constant
7901     // integer steps. The cost of these truncations is the same as the scalar
7902     // operation.
7903     if (isOptimizableIVTruncate(I, VF)) {
7904       auto *Trunc = cast<TruncInst>(I);
7905       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7906                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7907     }
7908 
7909     // Detect reduction patterns
7910     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7911       return *RedCost;
7912 
7913     Type *SrcScalarTy = I->getOperand(0)->getType();
7914     Type *SrcVecTy =
7915         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7916     if (canTruncateToMinimalBitwidth(I, VF)) {
7917       // This cast is going to be shrunk. This may remove the cast or it might
7918       // turn it into slightly different cast. For example, if MinBW == 16,
7919       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7920       //
7921       // Calculate the modified src and dest types.
7922       Type *MinVecTy = VectorTy;
7923       if (Opcode == Instruction::Trunc) {
7924         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7925         VectorTy =
7926             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7927       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7928         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7929         VectorTy =
7930             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7931       }
7932     }
7933 
7934     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7935   }
7936   case Instruction::Call: {
7937     bool NeedToScalarize;
7938     CallInst *CI = cast<CallInst>(I);
7939     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7940     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7941       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7942       return std::min(CallCost, IntrinsicCost);
7943     }
7944     return CallCost;
7945   }
7946   case Instruction::ExtractValue:
7947     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7948   case Instruction::Alloca:
7949     // We cannot easily widen alloca to a scalable alloca, as
7950     // the result would need to be a vector of pointers.
7951     if (VF.isScalable())
7952       return InstructionCost::getInvalid();
7953     LLVM_FALLTHROUGH;
7954   default:
7955     // This opcode is unknown. Assume that it is the same as 'mul'.
7956     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7957   } // end of switch.
7958 }
7959 
7960 char LoopVectorize::ID = 0;
7961 
7962 static const char lv_name[] = "Loop Vectorization";
7963 
7964 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7965 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7966 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7967 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7968 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7969 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7970 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7971 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7972 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7973 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7974 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7975 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7976 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7977 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7978 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7979 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7980 
7981 namespace llvm {
7982 
7983 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7984 
7985 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7986                               bool VectorizeOnlyWhenForced) {
7987   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7988 }
7989 
7990 } // end namespace llvm
7991 
7992 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7993   // Check if the pointer operand of a load or store instruction is
7994   // consecutive.
7995   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7996     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7997   return false;
7998 }
7999 
8000 void LoopVectorizationCostModel::collectValuesToIgnore() {
8001   // Ignore ephemeral values.
8002   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
8003 
8004   // Ignore type-promoting instructions we identified during reduction
8005   // detection.
8006   for (auto &Reduction : Legal->getReductionVars()) {
8007     RecurrenceDescriptor &RedDes = Reduction.second;
8008     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
8009     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
8010   }
8011   // Ignore type-casting instructions we identified during induction
8012   // detection.
8013   for (auto &Induction : Legal->getInductionVars()) {
8014     InductionDescriptor &IndDes = Induction.second;
8015     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8016     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
8017   }
8018 }
8019 
8020 void LoopVectorizationCostModel::collectInLoopReductions() {
8021   for (auto &Reduction : Legal->getReductionVars()) {
8022     PHINode *Phi = Reduction.first;
8023     RecurrenceDescriptor &RdxDesc = Reduction.second;
8024 
8025     // We don't collect reductions that are type promoted (yet).
8026     if (RdxDesc.getRecurrenceType() != Phi->getType())
8027       continue;
8028 
8029     // If the target would prefer this reduction to happen "in-loop", then we
8030     // want to record it as such.
8031     unsigned Opcode = RdxDesc.getOpcode();
8032     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
8033         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
8034                                    TargetTransformInfo::ReductionFlags()))
8035       continue;
8036 
8037     // Check that we can correctly put the reductions into the loop, by
8038     // finding the chain of operations that leads from the phi to the loop
8039     // exit value.
8040     SmallVector<Instruction *, 4> ReductionOperations =
8041         RdxDesc.getReductionOpChain(Phi, TheLoop);
8042     bool InLoop = !ReductionOperations.empty();
8043     if (InLoop) {
8044       InLoopReductionChains[Phi] = ReductionOperations;
8045       // Add the elements to InLoopReductionImmediateChains for cost modelling.
8046       Instruction *LastChain = Phi;
8047       for (auto *I : ReductionOperations) {
8048         InLoopReductionImmediateChains[I] = LastChain;
8049         LastChain = I;
8050       }
8051     }
8052     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
8053                       << " reduction for phi: " << *Phi << "\n");
8054   }
8055 }
8056 
8057 // TODO: we could return a pair of values that specify the max VF and
8058 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
8059 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
8060 // doesn't have a cost model that can choose which plan to execute if
8061 // more than one is generated.
8062 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
8063                                  LoopVectorizationCostModel &CM) {
8064   unsigned WidestType;
8065   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
8066   return WidestVectorRegBits / WidestType;
8067 }
8068 
8069 VectorizationFactor
8070 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
8071   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
8072   ElementCount VF = UserVF;
8073   // Outer loop handling: They may require CFG and instruction level
8074   // transformations before even evaluating whether vectorization is profitable.
8075   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
8076   // the vectorization pipeline.
8077   if (!OrigLoop->isInnermost()) {
8078     // If the user doesn't provide a vectorization factor, determine a
8079     // reasonable one.
8080     if (UserVF.isZero()) {
8081       VF = ElementCount::getFixed(determineVPlanVF(
8082           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
8083               .getFixedSize(),
8084           CM));
8085       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
8086 
8087       // Make sure we have a VF > 1 for stress testing.
8088       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
8089         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
8090                           << "overriding computed VF.\n");
8091         VF = ElementCount::getFixed(4);
8092       }
8093     }
8094     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
8095     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
8096            "VF needs to be a power of two");
8097     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
8098                       << "VF " << VF << " to build VPlans.\n");
8099     buildVPlans(VF, VF);
8100 
8101     // For VPlan build stress testing, we bail out after VPlan construction.
8102     if (VPlanBuildStressTest)
8103       return VectorizationFactor::Disabled();
8104 
8105     return {VF, 0 /*Cost*/};
8106   }
8107 
8108   LLVM_DEBUG(
8109       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
8110                 "VPlan-native path.\n");
8111   return VectorizationFactor::Disabled();
8112 }
8113 
8114 Optional<VectorizationFactor>
8115 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
8116   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8117   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
8118   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
8119     return None;
8120 
8121   // Invalidate interleave groups if all blocks of loop will be predicated.
8122   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
8123       !useMaskedInterleavedAccesses(*TTI)) {
8124     LLVM_DEBUG(
8125         dbgs()
8126         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
8127            "which requires masked-interleaved support.\n");
8128     if (CM.InterleaveInfo.invalidateGroups())
8129       // Invalidating interleave groups also requires invalidating all decisions
8130       // based on them, which includes widening decisions and uniform and scalar
8131       // values.
8132       CM.invalidateCostModelingDecisions();
8133   }
8134 
8135   ElementCount MaxUserVF =
8136       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
8137   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
8138   if (!UserVF.isZero() && UserVFIsLegal) {
8139     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
8140            "VF needs to be a power of two");
8141     // Collect the instructions (and their associated costs) that will be more
8142     // profitable to scalarize.
8143     if (CM.selectUserVectorizationFactor(UserVF)) {
8144       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
8145       CM.collectInLoopReductions();
8146       buildVPlansWithVPRecipes(UserVF, UserVF);
8147       LLVM_DEBUG(printPlans(dbgs()));
8148       return {{UserVF, 0}};
8149     } else
8150       reportVectorizationInfo("UserVF ignored because of invalid costs.",
8151                               "InvalidCost", ORE, OrigLoop);
8152   }
8153 
8154   // Populate the set of Vectorization Factor Candidates.
8155   ElementCountSet VFCandidates;
8156   for (auto VF = ElementCount::getFixed(1);
8157        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
8158     VFCandidates.insert(VF);
8159   for (auto VF = ElementCount::getScalable(1);
8160        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
8161     VFCandidates.insert(VF);
8162 
8163   for (const auto &VF : VFCandidates) {
8164     // Collect Uniform and Scalar instructions after vectorization with VF.
8165     CM.collectUniformsAndScalars(VF);
8166 
8167     // Collect the instructions (and their associated costs) that will be more
8168     // profitable to scalarize.
8169     if (VF.isVector())
8170       CM.collectInstsToScalarize(VF);
8171   }
8172 
8173   CM.collectInLoopReductions();
8174   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
8175   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
8176 
8177   LLVM_DEBUG(printPlans(dbgs()));
8178   if (!MaxFactors.hasVector())
8179     return VectorizationFactor::Disabled();
8180 
8181   // Select the optimal vectorization factor.
8182   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
8183 
8184   // Check if it is profitable to vectorize with runtime checks.
8185   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
8186   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
8187     bool PragmaThresholdReached =
8188         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
8189     bool ThresholdReached =
8190         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
8191     if ((ThresholdReached && !Hints.allowReordering()) ||
8192         PragmaThresholdReached) {
8193       ORE->emit([&]() {
8194         return OptimizationRemarkAnalysisAliasing(
8195                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
8196                    OrigLoop->getHeader())
8197                << "loop not vectorized: cannot prove it is safe to reorder "
8198                   "memory operations";
8199       });
8200       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
8201       Hints.emitRemarkWithHints();
8202       return VectorizationFactor::Disabled();
8203     }
8204   }
8205   return SelectedVF;
8206 }
8207 
8208 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
8209   assert(count_if(VPlans,
8210                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
8211              1 &&
8212          "Best VF has not a single VPlan.");
8213 
8214   for (const VPlanPtr &Plan : VPlans) {
8215     if (Plan->hasVF(VF))
8216       return *Plan.get();
8217   }
8218   llvm_unreachable("No plan found!");
8219 }
8220 
8221 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
8222                                            VPlan &BestVPlan,
8223                                            InnerLoopVectorizer &ILV,
8224                                            DominatorTree *DT) {
8225   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
8226                     << '\n');
8227 
8228   // Perform the actual loop transformation.
8229 
8230   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
8231   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
8232   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
8233   State.TripCount = ILV.getOrCreateTripCount(nullptr);
8234   State.CanonicalIV = ILV.Induction;
8235 
8236   ILV.printDebugTracesAtStart();
8237 
8238   //===------------------------------------------------===//
8239   //
8240   // Notice: any optimization or new instruction that go
8241   // into the code below should also be implemented in
8242   // the cost-model.
8243   //
8244   //===------------------------------------------------===//
8245 
8246   // 2. Copy and widen instructions from the old loop into the new loop.
8247   BestVPlan.execute(&State);
8248 
8249   // 3. Fix the vectorized code: take care of header phi's, live-outs,
8250   //    predication, updating analyses.
8251   ILV.fixVectorizedLoop(State);
8252 
8253   ILV.printDebugTracesAtEnd();
8254 }
8255 
8256 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
8257 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
8258   for (const auto &Plan : VPlans)
8259     if (PrintVPlansInDotFormat)
8260       Plan->printDOT(O);
8261     else
8262       Plan->print(O);
8263 }
8264 #endif
8265 
8266 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
8267     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
8268 
8269   // We create new control-flow for the vectorized loop, so the original exit
8270   // conditions will be dead after vectorization if it's only used by the
8271   // terminator
8272   SmallVector<BasicBlock*> ExitingBlocks;
8273   OrigLoop->getExitingBlocks(ExitingBlocks);
8274   for (auto *BB : ExitingBlocks) {
8275     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
8276     if (!Cmp || !Cmp->hasOneUse())
8277       continue;
8278 
8279     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8280     if (!DeadInstructions.insert(Cmp).second)
8281       continue;
8282 
8283     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8284     // TODO: can recurse through operands in general
8285     for (Value *Op : Cmp->operands()) {
8286       if (isa<TruncInst>(Op) && Op->hasOneUse())
8287           DeadInstructions.insert(cast<Instruction>(Op));
8288     }
8289   }
8290 
8291   // We create new "steps" for induction variable updates to which the original
8292   // induction variables map. An original update instruction will be dead if
8293   // all its users except the induction variable are dead.
8294   auto *Latch = OrigLoop->getLoopLatch();
8295   for (auto &Induction : Legal->getInductionVars()) {
8296     PHINode *Ind = Induction.first;
8297     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8298 
8299     // If the tail is to be folded by masking, the primary induction variable,
8300     // if exists, isn't dead: it will be used for masking. Don't kill it.
8301     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8302       continue;
8303 
8304     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8305           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8306         }))
8307       DeadInstructions.insert(IndUpdate);
8308 
8309     // We record as "Dead" also the type-casting instructions we had identified
8310     // during induction analysis. We don't need any handling for them in the
8311     // vectorized loop because we have proven that, under a proper runtime
8312     // test guarding the vectorized loop, the value of the phi, and the casted
8313     // value of the phi, are the same. The last instruction in this casting chain
8314     // will get its scalar/vector/widened def from the scalar/vector/widened def
8315     // of the respective phi node. Any other casts in the induction def-use chain
8316     // have no other uses outside the phi update chain, and will be ignored.
8317     InductionDescriptor &IndDes = Induction.second;
8318     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8319     DeadInstructions.insert(Casts.begin(), Casts.end());
8320   }
8321 }
8322 
8323 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
8324 
8325 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8326 
8327 Value *InnerLoopUnroller::getStepVector(Value *Val, Value *StartIdx,
8328                                         Value *Step,
8329                                         Instruction::BinaryOps BinOp) {
8330   // When unrolling and the VF is 1, we only need to add a simple scalar.
8331   Type *Ty = Val->getType();
8332   assert(!Ty->isVectorTy() && "Val must be a scalar");
8333 
8334   if (Ty->isFloatingPointTy()) {
8335     // Floating-point operations inherit FMF via the builder's flags.
8336     Value *MulOp = Builder.CreateFMul(StartIdx, Step);
8337     return Builder.CreateBinOp(BinOp, Val, MulOp);
8338   }
8339   return Builder.CreateAdd(Val, Builder.CreateMul(StartIdx, Step), "induction");
8340 }
8341 
8342 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
8343   SmallVector<Metadata *, 4> MDs;
8344   // Reserve first location for self reference to the LoopID metadata node.
8345   MDs.push_back(nullptr);
8346   bool IsUnrollMetadata = false;
8347   MDNode *LoopID = L->getLoopID();
8348   if (LoopID) {
8349     // First find existing loop unrolling disable metadata.
8350     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
8351       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
8352       if (MD) {
8353         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
8354         IsUnrollMetadata =
8355             S && S->getString().startswith("llvm.loop.unroll.disable");
8356       }
8357       MDs.push_back(LoopID->getOperand(i));
8358     }
8359   }
8360 
8361   if (!IsUnrollMetadata) {
8362     // Add runtime unroll disable metadata.
8363     LLVMContext &Context = L->getHeader()->getContext();
8364     SmallVector<Metadata *, 1> DisableOperands;
8365     DisableOperands.push_back(
8366         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
8367     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
8368     MDs.push_back(DisableNode);
8369     MDNode *NewLoopID = MDNode::get(Context, MDs);
8370     // Set operand 0 to refer to the loop id itself.
8371     NewLoopID->replaceOperandWith(0, NewLoopID);
8372     L->setLoopID(NewLoopID);
8373   }
8374 }
8375 
8376 //===--------------------------------------------------------------------===//
8377 // EpilogueVectorizerMainLoop
8378 //===--------------------------------------------------------------------===//
8379 
8380 /// This function is partially responsible for generating the control flow
8381 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8382 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8383   MDNode *OrigLoopID = OrigLoop->getLoopID();
8384   Loop *Lp = createVectorLoopSkeleton("");
8385 
8386   // Generate the code to check the minimum iteration count of the vector
8387   // epilogue (see below).
8388   EPI.EpilogueIterationCountCheck =
8389       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8390   EPI.EpilogueIterationCountCheck->setName("iter.check");
8391 
8392   // Generate the code to check any assumptions that we've made for SCEV
8393   // expressions.
8394   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8395 
8396   // Generate the code that checks at runtime if arrays overlap. We put the
8397   // checks into a separate block to make the more common case of few elements
8398   // faster.
8399   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8400 
8401   // Generate the iteration count check for the main loop, *after* the check
8402   // for the epilogue loop, so that the path-length is shorter for the case
8403   // that goes directly through the vector epilogue. The longer-path length for
8404   // the main loop is compensated for, by the gain from vectorizing the larger
8405   // trip count. Note: the branch will get updated later on when we vectorize
8406   // the epilogue.
8407   EPI.MainLoopIterationCountCheck =
8408       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8409 
8410   // Generate the induction variable.
8411   OldInduction = Legal->getPrimaryInduction();
8412   Type *IdxTy = Legal->getWidestInductionType();
8413   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8414   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8415   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8416   EPI.VectorTripCount = CountRoundDown;
8417   Induction =
8418       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8419                               getDebugLocFromInstOrOperands(OldInduction));
8420 
8421   // Skip induction resume value creation here because they will be created in
8422   // the second pass. If we created them here, they wouldn't be used anyway,
8423   // because the vplan in the second pass still contains the inductions from the
8424   // original loop.
8425 
8426   return completeLoopSkeleton(Lp, OrigLoopID);
8427 }
8428 
8429 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8430   LLVM_DEBUG({
8431     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8432            << "Main Loop VF:" << EPI.MainLoopVF
8433            << ", Main Loop UF:" << EPI.MainLoopUF
8434            << ", Epilogue Loop VF:" << EPI.EpilogueVF
8435            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8436   });
8437 }
8438 
8439 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8440   DEBUG_WITH_TYPE(VerboseDebug, {
8441     dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
8442   });
8443 }
8444 
8445 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8446     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8447   assert(L && "Expected valid Loop.");
8448   assert(Bypass && "Expected valid bypass basic block.");
8449   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
8450   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8451   Value *Count = getOrCreateTripCount(L);
8452   // Reuse existing vector loop preheader for TC checks.
8453   // Note that new preheader block is generated for vector loop.
8454   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8455   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8456 
8457   // Generate code to check if the loop's trip count is less than VF * UF of the
8458   // main vector loop.
8459   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8460       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8461 
8462   Value *CheckMinIters = Builder.CreateICmp(
8463       P, Count, getRuntimeVF(Builder, Count->getType(), VFactor * UFactor),
8464       "min.iters.check");
8465 
8466   if (!ForEpilogue)
8467     TCCheckBlock->setName("vector.main.loop.iter.check");
8468 
8469   // Create new preheader for vector loop.
8470   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8471                                    DT, LI, nullptr, "vector.ph");
8472 
8473   if (ForEpilogue) {
8474     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8475                                  DT->getNode(Bypass)->getIDom()) &&
8476            "TC check is expected to dominate Bypass");
8477 
8478     // Update dominator for Bypass & LoopExit.
8479     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8480     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8481       // For loops with multiple exits, there's no edge from the middle block
8482       // to exit blocks (as the epilogue must run) and thus no need to update
8483       // the immediate dominator of the exit blocks.
8484       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8485 
8486     LoopBypassBlocks.push_back(TCCheckBlock);
8487 
8488     // Save the trip count so we don't have to regenerate it in the
8489     // vec.epilog.iter.check. This is safe to do because the trip count
8490     // generated here dominates the vector epilog iter check.
8491     EPI.TripCount = Count;
8492   }
8493 
8494   ReplaceInstWithInst(
8495       TCCheckBlock->getTerminator(),
8496       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8497 
8498   return TCCheckBlock;
8499 }
8500 
8501 //===--------------------------------------------------------------------===//
8502 // EpilogueVectorizerEpilogueLoop
8503 //===--------------------------------------------------------------------===//
8504 
8505 /// This function is partially responsible for generating the control flow
8506 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8507 BasicBlock *
8508 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8509   MDNode *OrigLoopID = OrigLoop->getLoopID();
8510   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8511 
8512   // Now, compare the remaining count and if there aren't enough iterations to
8513   // execute the vectorized epilogue skip to the scalar part.
8514   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8515   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8516   LoopVectorPreHeader =
8517       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8518                  LI, nullptr, "vec.epilog.ph");
8519   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8520                                           VecEpilogueIterationCountCheck);
8521 
8522   // Adjust the control flow taking the state info from the main loop
8523   // vectorization into account.
8524   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8525          "expected this to be saved from the previous pass.");
8526   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8527       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8528 
8529   DT->changeImmediateDominator(LoopVectorPreHeader,
8530                                EPI.MainLoopIterationCountCheck);
8531 
8532   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8533       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8534 
8535   if (EPI.SCEVSafetyCheck)
8536     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8537         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8538   if (EPI.MemSafetyCheck)
8539     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8540         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8541 
8542   DT->changeImmediateDominator(
8543       VecEpilogueIterationCountCheck,
8544       VecEpilogueIterationCountCheck->getSinglePredecessor());
8545 
8546   DT->changeImmediateDominator(LoopScalarPreHeader,
8547                                EPI.EpilogueIterationCountCheck);
8548   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8549     // If there is an epilogue which must run, there's no edge from the
8550     // middle block to exit blocks  and thus no need to update the immediate
8551     // dominator of the exit blocks.
8552     DT->changeImmediateDominator(LoopExitBlock,
8553                                  EPI.EpilogueIterationCountCheck);
8554 
8555   // Keep track of bypass blocks, as they feed start values to the induction
8556   // phis in the scalar loop preheader.
8557   if (EPI.SCEVSafetyCheck)
8558     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8559   if (EPI.MemSafetyCheck)
8560     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8561   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8562 
8563   // Generate a resume induction for the vector epilogue and put it in the
8564   // vector epilogue preheader
8565   Type *IdxTy = Legal->getWidestInductionType();
8566   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8567                                          LoopVectorPreHeader->getFirstNonPHI());
8568   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8569   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8570                            EPI.MainLoopIterationCountCheck);
8571 
8572   // Generate the induction variable.
8573   OldInduction = Legal->getPrimaryInduction();
8574   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8575   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8576   Value *StartIdx = EPResumeVal;
8577   Induction =
8578       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8579                               getDebugLocFromInstOrOperands(OldInduction));
8580 
8581   // Generate induction resume values. These variables save the new starting
8582   // indexes for the scalar loop. They are used to test if there are any tail
8583   // iterations left once the vector loop has completed.
8584   // Note that when the vectorized epilogue is skipped due to iteration count
8585   // check, then the resume value for the induction variable comes from
8586   // the trip count of the main vector loop, hence passing the AdditionalBypass
8587   // argument.
8588   createInductionResumeValues(Lp, CountRoundDown,
8589                               {VecEpilogueIterationCountCheck,
8590                                EPI.VectorTripCount} /* AdditionalBypass */);
8591 
8592   AddRuntimeUnrollDisableMetaData(Lp);
8593   return completeLoopSkeleton(Lp, OrigLoopID);
8594 }
8595 
8596 BasicBlock *
8597 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8598     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8599 
8600   assert(EPI.TripCount &&
8601          "Expected trip count to have been safed in the first pass.");
8602   assert(
8603       (!isa<Instruction>(EPI.TripCount) ||
8604        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8605       "saved trip count does not dominate insertion point.");
8606   Value *TC = EPI.TripCount;
8607   IRBuilder<> Builder(Insert->getTerminator());
8608   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8609 
8610   // Generate code to check if the loop's trip count is less than VF * UF of the
8611   // vector epilogue loop.
8612   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8613       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8614 
8615   Value *CheckMinIters = Builder.CreateICmp(
8616       P, Count,
8617       getRuntimeVF(Builder, Count->getType(), EPI.EpilogueVF * EPI.EpilogueUF),
8618       "min.epilog.iters.check");
8619 
8620   ReplaceInstWithInst(
8621       Insert->getTerminator(),
8622       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8623 
8624   LoopBypassBlocks.push_back(Insert);
8625   return Insert;
8626 }
8627 
8628 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8629   LLVM_DEBUG({
8630     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8631            << "Epilogue Loop VF:" << EPI.EpilogueVF
8632            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8633   });
8634 }
8635 
8636 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8637   DEBUG_WITH_TYPE(VerboseDebug, {
8638     dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
8639   });
8640 }
8641 
8642 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8643     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8644   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8645   bool PredicateAtRangeStart = Predicate(Range.Start);
8646 
8647   for (ElementCount TmpVF = Range.Start * 2;
8648        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8649     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8650       Range.End = TmpVF;
8651       break;
8652     }
8653 
8654   return PredicateAtRangeStart;
8655 }
8656 
8657 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8658 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8659 /// of VF's starting at a given VF and extending it as much as possible. Each
8660 /// vectorization decision can potentially shorten this sub-range during
8661 /// buildVPlan().
8662 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8663                                            ElementCount MaxVF) {
8664   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8665   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8666     VFRange SubRange = {VF, MaxVFPlusOne};
8667     VPlans.push_back(buildVPlan(SubRange));
8668     VF = SubRange.End;
8669   }
8670 }
8671 
8672 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8673                                          VPlanPtr &Plan) {
8674   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8675 
8676   // Look for cached value.
8677   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8678   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8679   if (ECEntryIt != EdgeMaskCache.end())
8680     return ECEntryIt->second;
8681 
8682   VPValue *SrcMask = createBlockInMask(Src, Plan);
8683 
8684   // The terminator has to be a branch inst!
8685   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8686   assert(BI && "Unexpected terminator found");
8687 
8688   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8689     return EdgeMaskCache[Edge] = SrcMask;
8690 
8691   // If source is an exiting block, we know the exit edge is dynamically dead
8692   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8693   // adding uses of an otherwise potentially dead instruction.
8694   if (OrigLoop->isLoopExiting(Src))
8695     return EdgeMaskCache[Edge] = SrcMask;
8696 
8697   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8698   assert(EdgeMask && "No Edge Mask found for condition");
8699 
8700   if (BI->getSuccessor(0) != Dst)
8701     EdgeMask = Builder.createNot(EdgeMask);
8702 
8703   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8704     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8705     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8706     // The select version does not introduce new UB if SrcMask is false and
8707     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8708     VPValue *False = Plan->getOrAddVPValue(
8709         ConstantInt::getFalse(BI->getCondition()->getType()));
8710     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8711   }
8712 
8713   return EdgeMaskCache[Edge] = EdgeMask;
8714 }
8715 
8716 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8717   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8718 
8719   // Look for cached value.
8720   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8721   if (BCEntryIt != BlockMaskCache.end())
8722     return BCEntryIt->second;
8723 
8724   // All-one mask is modelled as no-mask following the convention for masked
8725   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8726   VPValue *BlockMask = nullptr;
8727 
8728   if (OrigLoop->getHeader() == BB) {
8729     if (!CM.blockNeedsPredication(BB))
8730       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8731 
8732     // Create the block in mask as the first non-phi instruction in the block.
8733     VPBuilder::InsertPointGuard Guard(Builder);
8734     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8735     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8736 
8737     // Introduce the early-exit compare IV <= BTC to form header block mask.
8738     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8739     // Start by constructing the desired canonical IV.
8740     VPValue *IV = nullptr;
8741     if (Legal->getPrimaryInduction())
8742       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8743     else {
8744       auto *IVRecipe = new VPWidenCanonicalIVRecipe();
8745       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8746       IV = IVRecipe;
8747     }
8748     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8749     bool TailFolded = !CM.isScalarEpilogueAllowed();
8750 
8751     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8752       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8753       // as a second argument, we only pass the IV here and extract the
8754       // tripcount from the transform state where codegen of the VP instructions
8755       // happen.
8756       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8757     } else {
8758       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8759     }
8760     return BlockMaskCache[BB] = BlockMask;
8761   }
8762 
8763   // This is the block mask. We OR all incoming edges.
8764   for (auto *Predecessor : predecessors(BB)) {
8765     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8766     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8767       return BlockMaskCache[BB] = EdgeMask;
8768 
8769     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8770       BlockMask = EdgeMask;
8771       continue;
8772     }
8773 
8774     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8775   }
8776 
8777   return BlockMaskCache[BB] = BlockMask;
8778 }
8779 
8780 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8781                                                 ArrayRef<VPValue *> Operands,
8782                                                 VFRange &Range,
8783                                                 VPlanPtr &Plan) {
8784   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8785          "Must be called with either a load or store");
8786 
8787   auto willWiden = [&](ElementCount VF) -> bool {
8788     if (VF.isScalar())
8789       return false;
8790     LoopVectorizationCostModel::InstWidening Decision =
8791         CM.getWideningDecision(I, VF);
8792     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8793            "CM decision should be taken at this point.");
8794     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8795       return true;
8796     if (CM.isScalarAfterVectorization(I, VF) ||
8797         CM.isProfitableToScalarize(I, VF))
8798       return false;
8799     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8800   };
8801 
8802   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8803     return nullptr;
8804 
8805   VPValue *Mask = nullptr;
8806   if (Legal->isMaskRequired(I))
8807     Mask = createBlockInMask(I->getParent(), Plan);
8808 
8809   // Determine if the pointer operand of the access is either consecutive or
8810   // reverse consecutive.
8811   LoopVectorizationCostModel::InstWidening Decision =
8812       CM.getWideningDecision(I, Range.Start);
8813   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8814   bool Consecutive =
8815       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8816 
8817   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8818     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8819                                               Consecutive, Reverse);
8820 
8821   StoreInst *Store = cast<StoreInst>(I);
8822   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8823                                             Mask, Consecutive, Reverse);
8824 }
8825 
8826 VPWidenIntOrFpInductionRecipe *
8827 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8828                                            ArrayRef<VPValue *> Operands) const {
8829   // Check if this is an integer or fp induction. If so, build the recipe that
8830   // produces its scalar and vector values.
8831   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8832   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8833       II.getKind() == InductionDescriptor::IK_FpInduction) {
8834     assert(II.getStartValue() ==
8835            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8836     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8837     return new VPWidenIntOrFpInductionRecipe(
8838         Phi, Operands[0], Casts.empty() ? nullptr : Casts.front());
8839   }
8840 
8841   return nullptr;
8842 }
8843 
8844 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8845     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8846     VPlan &Plan) const {
8847   // Optimize the special case where the source is a constant integer
8848   // induction variable. Notice that we can only optimize the 'trunc' case
8849   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8850   // (c) other casts depend on pointer size.
8851 
8852   // Determine whether \p K is a truncation based on an induction variable that
8853   // can be optimized.
8854   auto isOptimizableIVTruncate =
8855       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8856     return [=](ElementCount VF) -> bool {
8857       return CM.isOptimizableIVTruncate(K, VF);
8858     };
8859   };
8860 
8861   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8862           isOptimizableIVTruncate(I), Range)) {
8863 
8864     InductionDescriptor II =
8865         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
8866     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8867     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
8868                                              Start, nullptr, I);
8869   }
8870   return nullptr;
8871 }
8872 
8873 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8874                                                 ArrayRef<VPValue *> Operands,
8875                                                 VPlanPtr &Plan) {
8876   // If all incoming values are equal, the incoming VPValue can be used directly
8877   // instead of creating a new VPBlendRecipe.
8878   VPValue *FirstIncoming = Operands[0];
8879   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8880         return FirstIncoming == Inc;
8881       })) {
8882     return Operands[0];
8883   }
8884 
8885   // We know that all PHIs in non-header blocks are converted into selects, so
8886   // we don't have to worry about the insertion order and we can just use the
8887   // builder. At this point we generate the predication tree. There may be
8888   // duplications since this is a simple recursive scan, but future
8889   // optimizations will clean it up.
8890   SmallVector<VPValue *, 2> OperandsWithMask;
8891   unsigned NumIncoming = Phi->getNumIncomingValues();
8892 
8893   for (unsigned In = 0; In < NumIncoming; In++) {
8894     VPValue *EdgeMask =
8895       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8896     assert((EdgeMask || NumIncoming == 1) &&
8897            "Multiple predecessors with one having a full mask");
8898     OperandsWithMask.push_back(Operands[In]);
8899     if (EdgeMask)
8900       OperandsWithMask.push_back(EdgeMask);
8901   }
8902   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8903 }
8904 
8905 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8906                                                    ArrayRef<VPValue *> Operands,
8907                                                    VFRange &Range) const {
8908 
8909   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8910       [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); },
8911       Range);
8912 
8913   if (IsPredicated)
8914     return nullptr;
8915 
8916   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8917   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8918              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8919              ID == Intrinsic::pseudoprobe ||
8920              ID == Intrinsic::experimental_noalias_scope_decl))
8921     return nullptr;
8922 
8923   auto willWiden = [&](ElementCount VF) -> bool {
8924     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8925     // The following case may be scalarized depending on the VF.
8926     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8927     // version of the instruction.
8928     // Is it beneficial to perform intrinsic call compared to lib call?
8929     bool NeedToScalarize = false;
8930     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8931     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8932     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8933     return UseVectorIntrinsic || !NeedToScalarize;
8934   };
8935 
8936   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8937     return nullptr;
8938 
8939   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8940   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8941 }
8942 
8943 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8944   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8945          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8946   // Instruction should be widened, unless it is scalar after vectorization,
8947   // scalarization is profitable or it is predicated.
8948   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8949     return CM.isScalarAfterVectorization(I, VF) ||
8950            CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I);
8951   };
8952   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8953                                                              Range);
8954 }
8955 
8956 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8957                                            ArrayRef<VPValue *> Operands) const {
8958   auto IsVectorizableOpcode = [](unsigned Opcode) {
8959     switch (Opcode) {
8960     case Instruction::Add:
8961     case Instruction::And:
8962     case Instruction::AShr:
8963     case Instruction::BitCast:
8964     case Instruction::FAdd:
8965     case Instruction::FCmp:
8966     case Instruction::FDiv:
8967     case Instruction::FMul:
8968     case Instruction::FNeg:
8969     case Instruction::FPExt:
8970     case Instruction::FPToSI:
8971     case Instruction::FPToUI:
8972     case Instruction::FPTrunc:
8973     case Instruction::FRem:
8974     case Instruction::FSub:
8975     case Instruction::ICmp:
8976     case Instruction::IntToPtr:
8977     case Instruction::LShr:
8978     case Instruction::Mul:
8979     case Instruction::Or:
8980     case Instruction::PtrToInt:
8981     case Instruction::SDiv:
8982     case Instruction::Select:
8983     case Instruction::SExt:
8984     case Instruction::Shl:
8985     case Instruction::SIToFP:
8986     case Instruction::SRem:
8987     case Instruction::Sub:
8988     case Instruction::Trunc:
8989     case Instruction::UDiv:
8990     case Instruction::UIToFP:
8991     case Instruction::URem:
8992     case Instruction::Xor:
8993     case Instruction::ZExt:
8994       return true;
8995     }
8996     return false;
8997   };
8998 
8999   if (!IsVectorizableOpcode(I->getOpcode()))
9000     return nullptr;
9001 
9002   // Success: widen this instruction.
9003   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
9004 }
9005 
9006 void VPRecipeBuilder::fixHeaderPhis() {
9007   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
9008   for (VPWidenPHIRecipe *R : PhisToFix) {
9009     auto *PN = cast<PHINode>(R->getUnderlyingValue());
9010     VPRecipeBase *IncR =
9011         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
9012     R->addOperand(IncR->getVPSingleValue());
9013   }
9014 }
9015 
9016 VPBasicBlock *VPRecipeBuilder::handleReplication(
9017     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
9018     VPlanPtr &Plan) {
9019   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
9020       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
9021       Range);
9022 
9023   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
9024       [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range);
9025 
9026   // Even if the instruction is not marked as uniform, there are certain
9027   // intrinsic calls that can be effectively treated as such, so we check for
9028   // them here. Conservatively, we only do this for scalable vectors, since
9029   // for fixed-width VFs we can always fall back on full scalarization.
9030   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
9031     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
9032     case Intrinsic::assume:
9033     case Intrinsic::lifetime_start:
9034     case Intrinsic::lifetime_end:
9035       // For scalable vectors if one of the operands is variant then we still
9036       // want to mark as uniform, which will generate one instruction for just
9037       // the first lane of the vector. We can't scalarize the call in the same
9038       // way as for fixed-width vectors because we don't know how many lanes
9039       // there are.
9040       //
9041       // The reasons for doing it this way for scalable vectors are:
9042       //   1. For the assume intrinsic generating the instruction for the first
9043       //      lane is still be better than not generating any at all. For
9044       //      example, the input may be a splat across all lanes.
9045       //   2. For the lifetime start/end intrinsics the pointer operand only
9046       //      does anything useful when the input comes from a stack object,
9047       //      which suggests it should always be uniform. For non-stack objects
9048       //      the effect is to poison the object, which still allows us to
9049       //      remove the call.
9050       IsUniform = true;
9051       break;
9052     default:
9053       break;
9054     }
9055   }
9056 
9057   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
9058                                        IsUniform, IsPredicated);
9059   setRecipe(I, Recipe);
9060   Plan->addVPValue(I, Recipe);
9061 
9062   // Find if I uses a predicated instruction. If so, it will use its scalar
9063   // value. Avoid hoisting the insert-element which packs the scalar value into
9064   // a vector value, as that happens iff all users use the vector value.
9065   for (VPValue *Op : Recipe->operands()) {
9066     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
9067     if (!PredR)
9068       continue;
9069     auto *RepR =
9070         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
9071     assert(RepR->isPredicated() &&
9072            "expected Replicate recipe to be predicated");
9073     RepR->setAlsoPack(false);
9074   }
9075 
9076   // Finalize the recipe for Instr, first if it is not predicated.
9077   if (!IsPredicated) {
9078     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
9079     VPBB->appendRecipe(Recipe);
9080     return VPBB;
9081   }
9082   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
9083   assert(VPBB->getSuccessors().empty() &&
9084          "VPBB has successors when handling predicated replication.");
9085   // Record predicated instructions for above packing optimizations.
9086   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
9087   VPBlockUtils::insertBlockAfter(Region, VPBB);
9088   auto *RegSucc = new VPBasicBlock();
9089   VPBlockUtils::insertBlockAfter(RegSucc, Region);
9090   return RegSucc;
9091 }
9092 
9093 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
9094                                                       VPRecipeBase *PredRecipe,
9095                                                       VPlanPtr &Plan) {
9096   // Instructions marked for predication are replicated and placed under an
9097   // if-then construct to prevent side-effects.
9098 
9099   // Generate recipes to compute the block mask for this region.
9100   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
9101 
9102   // Build the triangular if-then region.
9103   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
9104   assert(Instr->getParent() && "Predicated instruction not in any basic block");
9105   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
9106   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
9107   auto *PHIRecipe = Instr->getType()->isVoidTy()
9108                         ? nullptr
9109                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
9110   if (PHIRecipe) {
9111     Plan->removeVPValueFor(Instr);
9112     Plan->addVPValue(Instr, PHIRecipe);
9113   }
9114   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
9115   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
9116   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
9117 
9118   // Note: first set Entry as region entry and then connect successors starting
9119   // from it in order, to propagate the "parent" of each VPBasicBlock.
9120   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
9121   VPBlockUtils::connectBlocks(Pred, Exit);
9122 
9123   return Region;
9124 }
9125 
9126 VPRecipeOrVPValueTy
9127 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
9128                                         ArrayRef<VPValue *> Operands,
9129                                         VFRange &Range, VPlanPtr &Plan) {
9130   // First, check for specific widening recipes that deal with calls, memory
9131   // operations, inductions and Phi nodes.
9132   if (auto *CI = dyn_cast<CallInst>(Instr))
9133     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
9134 
9135   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
9136     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
9137 
9138   VPRecipeBase *Recipe;
9139   if (auto Phi = dyn_cast<PHINode>(Instr)) {
9140     if (Phi->getParent() != OrigLoop->getHeader())
9141       return tryToBlend(Phi, Operands, Plan);
9142     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
9143       return toVPRecipeResult(Recipe);
9144 
9145     VPWidenPHIRecipe *PhiRecipe = nullptr;
9146     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
9147       VPValue *StartV = Operands[0];
9148       if (Legal->isReductionVariable(Phi)) {
9149         RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9150         assert(RdxDesc.getRecurrenceStartValue() ==
9151                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
9152         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
9153                                              CM.isInLoopReduction(Phi),
9154                                              CM.useOrderedReductions(RdxDesc));
9155       } else {
9156         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
9157       }
9158 
9159       // Record the incoming value from the backedge, so we can add the incoming
9160       // value from the backedge after all recipes have been created.
9161       recordRecipeOf(cast<Instruction>(
9162           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
9163       PhisToFix.push_back(PhiRecipe);
9164     } else {
9165       // TODO: record start and backedge value for remaining pointer induction
9166       // phis.
9167       assert(Phi->getType()->isPointerTy() &&
9168              "only pointer phis should be handled here");
9169       PhiRecipe = new VPWidenPHIRecipe(Phi);
9170     }
9171 
9172     return toVPRecipeResult(PhiRecipe);
9173   }
9174 
9175   if (isa<TruncInst>(Instr) &&
9176       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
9177                                                Range, *Plan)))
9178     return toVPRecipeResult(Recipe);
9179 
9180   if (!shouldWiden(Instr, Range))
9181     return nullptr;
9182 
9183   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
9184     return toVPRecipeResult(new VPWidenGEPRecipe(
9185         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
9186 
9187   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
9188     bool InvariantCond =
9189         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
9190     return toVPRecipeResult(new VPWidenSelectRecipe(
9191         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
9192   }
9193 
9194   return toVPRecipeResult(tryToWiden(Instr, Operands));
9195 }
9196 
9197 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
9198                                                         ElementCount MaxVF) {
9199   assert(OrigLoop->isInnermost() && "Inner loop expected.");
9200 
9201   // Collect instructions from the original loop that will become trivially dead
9202   // in the vectorized loop. We don't need to vectorize these instructions. For
9203   // example, original induction update instructions can become dead because we
9204   // separately emit induction "steps" when generating code for the new loop.
9205   // Similarly, we create a new latch condition when setting up the structure
9206   // of the new loop, so the old one can become dead.
9207   SmallPtrSet<Instruction *, 4> DeadInstructions;
9208   collectTriviallyDeadInstructions(DeadInstructions);
9209 
9210   // Add assume instructions we need to drop to DeadInstructions, to prevent
9211   // them from being added to the VPlan.
9212   // TODO: We only need to drop assumes in blocks that get flattend. If the
9213   // control flow is preserved, we should keep them.
9214   auto &ConditionalAssumes = Legal->getConditionalAssumes();
9215   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
9216 
9217   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
9218   // Dead instructions do not need sinking. Remove them from SinkAfter.
9219   for (Instruction *I : DeadInstructions)
9220     SinkAfter.erase(I);
9221 
9222   // Cannot sink instructions after dead instructions (there won't be any
9223   // recipes for them). Instead, find the first non-dead previous instruction.
9224   for (auto &P : Legal->getSinkAfter()) {
9225     Instruction *SinkTarget = P.second;
9226     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
9227     (void)FirstInst;
9228     while (DeadInstructions.contains(SinkTarget)) {
9229       assert(
9230           SinkTarget != FirstInst &&
9231           "Must find a live instruction (at least the one feeding the "
9232           "first-order recurrence PHI) before reaching beginning of the block");
9233       SinkTarget = SinkTarget->getPrevNode();
9234       assert(SinkTarget != P.first &&
9235              "sink source equals target, no sinking required");
9236     }
9237     P.second = SinkTarget;
9238   }
9239 
9240   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
9241   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
9242     VFRange SubRange = {VF, MaxVFPlusOne};
9243     VPlans.push_back(
9244         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
9245     VF = SubRange.End;
9246   }
9247 }
9248 
9249 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
9250     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
9251     const MapVector<Instruction *, Instruction *> &SinkAfter) {
9252 
9253   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
9254 
9255   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
9256 
9257   // ---------------------------------------------------------------------------
9258   // Pre-construction: record ingredients whose recipes we'll need to further
9259   // process after constructing the initial VPlan.
9260   // ---------------------------------------------------------------------------
9261 
9262   // Mark instructions we'll need to sink later and their targets as
9263   // ingredients whose recipe we'll need to record.
9264   for (auto &Entry : SinkAfter) {
9265     RecipeBuilder.recordRecipeOf(Entry.first);
9266     RecipeBuilder.recordRecipeOf(Entry.second);
9267   }
9268   for (auto &Reduction : CM.getInLoopReductionChains()) {
9269     PHINode *Phi = Reduction.first;
9270     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
9271     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9272 
9273     RecipeBuilder.recordRecipeOf(Phi);
9274     for (auto &R : ReductionOperations) {
9275       RecipeBuilder.recordRecipeOf(R);
9276       // For min/max reducitons, where we have a pair of icmp/select, we also
9277       // need to record the ICmp recipe, so it can be removed later.
9278       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9279              "Only min/max recurrences allowed for inloop reductions");
9280       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9281         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9282     }
9283   }
9284 
9285   // For each interleave group which is relevant for this (possibly trimmed)
9286   // Range, add it to the set of groups to be later applied to the VPlan and add
9287   // placeholders for its members' Recipes which we'll be replacing with a
9288   // single VPInterleaveRecipe.
9289   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9290     auto applyIG = [IG, this](ElementCount VF) -> bool {
9291       return (VF.isVector() && // Query is illegal for VF == 1
9292               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9293                   LoopVectorizationCostModel::CM_Interleave);
9294     };
9295     if (!getDecisionAndClampRange(applyIG, Range))
9296       continue;
9297     InterleaveGroups.insert(IG);
9298     for (unsigned i = 0; i < IG->getFactor(); i++)
9299       if (Instruction *Member = IG->getMember(i))
9300         RecipeBuilder.recordRecipeOf(Member);
9301   };
9302 
9303   // ---------------------------------------------------------------------------
9304   // Build initial VPlan: Scan the body of the loop in a topological order to
9305   // visit each basic block after having visited its predecessor basic blocks.
9306   // ---------------------------------------------------------------------------
9307 
9308   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
9309   auto Plan = std::make_unique<VPlan>();
9310 
9311   // Scan the body of the loop in a topological order to visit each basic block
9312   // after having visited its predecessor basic blocks.
9313   LoopBlocksDFS DFS(OrigLoop);
9314   DFS.perform(LI);
9315 
9316   VPBasicBlock *VPBB = nullptr;
9317   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9318     // Relevant instructions from basic block BB will be grouped into VPRecipe
9319     // ingredients and fill a new VPBasicBlock.
9320     unsigned VPBBsForBB = 0;
9321     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
9322     if (VPBB)
9323       VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
9324     else
9325       Plan->setEntry(FirstVPBBForBB);
9326     VPBB = FirstVPBBForBB;
9327     Builder.setInsertPoint(VPBB);
9328 
9329     // Introduce each ingredient into VPlan.
9330     // TODO: Model and preserve debug instrinsics in VPlan.
9331     for (Instruction &I : BB->instructionsWithoutDebug()) {
9332       Instruction *Instr = &I;
9333 
9334       // First filter out irrelevant instructions, to ensure no recipes are
9335       // built for them.
9336       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9337         continue;
9338 
9339       SmallVector<VPValue *, 4> Operands;
9340       auto *Phi = dyn_cast<PHINode>(Instr);
9341       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9342         Operands.push_back(Plan->getOrAddVPValue(
9343             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9344       } else {
9345         auto OpRange = Plan->mapToVPValues(Instr->operands());
9346         Operands = {OpRange.begin(), OpRange.end()};
9347       }
9348       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9349               Instr, Operands, Range, Plan)) {
9350         // If Instr can be simplified to an existing VPValue, use it.
9351         if (RecipeOrValue.is<VPValue *>()) {
9352           auto *VPV = RecipeOrValue.get<VPValue *>();
9353           Plan->addVPValue(Instr, VPV);
9354           // If the re-used value is a recipe, register the recipe for the
9355           // instruction, in case the recipe for Instr needs to be recorded.
9356           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9357             RecipeBuilder.setRecipe(Instr, R);
9358           continue;
9359         }
9360         // Otherwise, add the new recipe.
9361         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9362         for (auto *Def : Recipe->definedValues()) {
9363           auto *UV = Def->getUnderlyingValue();
9364           Plan->addVPValue(UV, Def);
9365         }
9366 
9367         RecipeBuilder.setRecipe(Instr, Recipe);
9368         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe)) {
9369           // Make sure induction recipes are all kept in the header block.
9370           // VPWidenIntOrFpInductionRecipe may be generated when reaching a
9371           // Trunc of an induction Phi, where Trunc may not be in the header.
9372           auto *Header = Plan->getEntry()->getEntryBasicBlock();
9373           Header->insert(Recipe, Header->getFirstNonPhi());
9374         } else
9375           VPBB->appendRecipe(Recipe);
9376         continue;
9377       }
9378 
9379       // Otherwise, if all widening options failed, Instruction is to be
9380       // replicated. This may create a successor for VPBB.
9381       VPBasicBlock *NextVPBB =
9382           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9383       if (NextVPBB != VPBB) {
9384         VPBB = NextVPBB;
9385         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9386                                     : "");
9387       }
9388     }
9389   }
9390 
9391   assert(isa<VPBasicBlock>(Plan->getEntry()) &&
9392          !Plan->getEntry()->getEntryBasicBlock()->empty() &&
9393          "entry block must be set to a non-empty VPBasicBlock");
9394   RecipeBuilder.fixHeaderPhis();
9395 
9396   // ---------------------------------------------------------------------------
9397   // Transform initial VPlan: Apply previously taken decisions, in order, to
9398   // bring the VPlan to its final state.
9399   // ---------------------------------------------------------------------------
9400 
9401   // Apply Sink-After legal constraints.
9402   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9403     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9404     if (Region && Region->isReplicator()) {
9405       assert(Region->getNumSuccessors() == 1 &&
9406              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9407       assert(R->getParent()->size() == 1 &&
9408              "A recipe in an original replicator region must be the only "
9409              "recipe in its block");
9410       return Region;
9411     }
9412     return nullptr;
9413   };
9414   for (auto &Entry : SinkAfter) {
9415     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9416     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9417 
9418     auto *TargetRegion = GetReplicateRegion(Target);
9419     auto *SinkRegion = GetReplicateRegion(Sink);
9420     if (!SinkRegion) {
9421       // If the sink source is not a replicate region, sink the recipe directly.
9422       if (TargetRegion) {
9423         // The target is in a replication region, make sure to move Sink to
9424         // the block after it, not into the replication region itself.
9425         VPBasicBlock *NextBlock =
9426             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9427         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9428       } else
9429         Sink->moveAfter(Target);
9430       continue;
9431     }
9432 
9433     // The sink source is in a replicate region. Unhook the region from the CFG.
9434     auto *SinkPred = SinkRegion->getSinglePredecessor();
9435     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9436     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9437     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9438     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9439 
9440     if (TargetRegion) {
9441       // The target recipe is also in a replicate region, move the sink region
9442       // after the target region.
9443       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9444       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9445       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9446       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9447     } else {
9448       // The sink source is in a replicate region, we need to move the whole
9449       // replicate region, which should only contain a single recipe in the
9450       // main block.
9451       auto *SplitBlock =
9452           Target->getParent()->splitAt(std::next(Target->getIterator()));
9453 
9454       auto *SplitPred = SplitBlock->getSinglePredecessor();
9455 
9456       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9457       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9458       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9459       if (VPBB == SplitPred)
9460         VPBB = SplitBlock;
9461     }
9462   }
9463 
9464   // Adjust the recipes for any inloop reductions.
9465   adjustRecipesForReductions(VPBB, Plan, RecipeBuilder, Range.Start);
9466 
9467   // Introduce a recipe to combine the incoming and previous values of a
9468   // first-order recurrence.
9469   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9470     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9471     if (!RecurPhi)
9472       continue;
9473 
9474     auto *RecurSplice = cast<VPInstruction>(
9475         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9476                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9477 
9478     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9479     if (auto *Region = GetReplicateRegion(PrevRecipe)) {
9480       VPBasicBlock *Succ = cast<VPBasicBlock>(Region->getSingleSuccessor());
9481       RecurSplice->moveBefore(*Succ, Succ->getFirstNonPhi());
9482     } else
9483       RecurSplice->moveAfter(PrevRecipe);
9484     RecurPhi->replaceAllUsesWith(RecurSplice);
9485     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9486     // all users.
9487     RecurSplice->setOperand(0, RecurPhi);
9488   }
9489 
9490   // Interleave memory: for each Interleave Group we marked earlier as relevant
9491   // for this VPlan, replace the Recipes widening its memory instructions with a
9492   // single VPInterleaveRecipe at its insertion point.
9493   for (auto IG : InterleaveGroups) {
9494     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9495         RecipeBuilder.getRecipe(IG->getInsertPos()));
9496     SmallVector<VPValue *, 4> StoredValues;
9497     for (unsigned i = 0; i < IG->getFactor(); ++i)
9498       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9499         auto *StoreR =
9500             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9501         StoredValues.push_back(StoreR->getStoredValue());
9502       }
9503 
9504     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9505                                         Recipe->getMask());
9506     VPIG->insertBefore(Recipe);
9507     unsigned J = 0;
9508     for (unsigned i = 0; i < IG->getFactor(); ++i)
9509       if (Instruction *Member = IG->getMember(i)) {
9510         if (!Member->getType()->isVoidTy()) {
9511           VPValue *OriginalV = Plan->getVPValue(Member);
9512           Plan->removeVPValueFor(Member);
9513           Plan->addVPValue(Member, VPIG->getVPValue(J));
9514           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9515           J++;
9516         }
9517         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9518       }
9519   }
9520 
9521   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9522   // in ways that accessing values using original IR values is incorrect.
9523   Plan->disableValue2VPValue();
9524 
9525   VPlanTransforms::sinkScalarOperands(*Plan);
9526   VPlanTransforms::mergeReplicateRegions(*Plan);
9527 
9528   std::string PlanName;
9529   raw_string_ostream RSO(PlanName);
9530   ElementCount VF = Range.Start;
9531   Plan->addVF(VF);
9532   RSO << "Initial VPlan for VF={" << VF;
9533   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9534     Plan->addVF(VF);
9535     RSO << "," << VF;
9536   }
9537   RSO << "},UF>=1";
9538   RSO.flush();
9539   Plan->setName(PlanName);
9540 
9541   return Plan;
9542 }
9543 
9544 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9545   // Outer loop handling: They may require CFG and instruction level
9546   // transformations before even evaluating whether vectorization is profitable.
9547   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9548   // the vectorization pipeline.
9549   assert(!OrigLoop->isInnermost());
9550   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9551 
9552   // Create new empty VPlan
9553   auto Plan = std::make_unique<VPlan>();
9554 
9555   // Build hierarchical CFG
9556   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9557   HCFGBuilder.buildHierarchicalCFG();
9558 
9559   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9560        VF *= 2)
9561     Plan->addVF(VF);
9562 
9563   if (EnableVPlanPredication) {
9564     VPlanPredicator VPP(*Plan);
9565     VPP.predicate();
9566 
9567     // Avoid running transformation to recipes until masked code generation in
9568     // VPlan-native path is in place.
9569     return Plan;
9570   }
9571 
9572   SmallPtrSet<Instruction *, 1> DeadInstructions;
9573   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
9574                                              Legal->getInductionVars(),
9575                                              DeadInstructions, *PSE.getSE());
9576   return Plan;
9577 }
9578 
9579 // Adjust the recipes for reductions. For in-loop reductions the chain of
9580 // instructions leading from the loop exit instr to the phi need to be converted
9581 // to reductions, with one operand being vector and the other being the scalar
9582 // reduction chain. For other reductions, a select is introduced between the phi
9583 // and live-out recipes when folding the tail.
9584 void LoopVectorizationPlanner::adjustRecipesForReductions(
9585     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9586     ElementCount MinVF) {
9587   for (auto &Reduction : CM.getInLoopReductionChains()) {
9588     PHINode *Phi = Reduction.first;
9589     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9590     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9591 
9592     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9593       continue;
9594 
9595     // ReductionOperations are orders top-down from the phi's use to the
9596     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9597     // which of the two operands will remain scalar and which will be reduced.
9598     // For minmax the chain will be the select instructions.
9599     Instruction *Chain = Phi;
9600     for (Instruction *R : ReductionOperations) {
9601       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9602       RecurKind Kind = RdxDesc.getRecurrenceKind();
9603 
9604       VPValue *ChainOp = Plan->getVPValue(Chain);
9605       unsigned FirstOpId;
9606       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9607              "Only min/max recurrences allowed for inloop reductions");
9608       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9609         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9610                "Expected to replace a VPWidenSelectSC");
9611         FirstOpId = 1;
9612       } else {
9613         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) &&
9614                "Expected to replace a VPWidenSC");
9615         FirstOpId = 0;
9616       }
9617       unsigned VecOpId =
9618           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9619       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9620 
9621       auto *CondOp = CM.foldTailByMasking()
9622                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9623                          : nullptr;
9624       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
9625           &RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9626       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9627       Plan->removeVPValueFor(R);
9628       Plan->addVPValue(R, RedRecipe);
9629       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9630       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9631       WidenRecipe->eraseFromParent();
9632 
9633       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9634         VPRecipeBase *CompareRecipe =
9635             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9636         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9637                "Expected to replace a VPWidenSC");
9638         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9639                "Expected no remaining users");
9640         CompareRecipe->eraseFromParent();
9641       }
9642       Chain = R;
9643     }
9644   }
9645 
9646   // If tail is folded by masking, introduce selects between the phi
9647   // and the live-out instruction of each reduction, at the end of the latch.
9648   if (CM.foldTailByMasking()) {
9649     for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9650       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9651       if (!PhiR || PhiR->isInLoop())
9652         continue;
9653       Builder.setInsertPoint(LatchVPBB);
9654       VPValue *Cond =
9655           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9656       VPValue *Red = PhiR->getBackedgeValue();
9657       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9658     }
9659   }
9660 }
9661 
9662 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9663 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9664                                VPSlotTracker &SlotTracker) const {
9665   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9666   IG->getInsertPos()->printAsOperand(O, false);
9667   O << ", ";
9668   getAddr()->printAsOperand(O, SlotTracker);
9669   VPValue *Mask = getMask();
9670   if (Mask) {
9671     O << ", ";
9672     Mask->printAsOperand(O, SlotTracker);
9673   }
9674 
9675   unsigned OpIdx = 0;
9676   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9677     if (!IG->getMember(i))
9678       continue;
9679     if (getNumStoreOperands() > 0) {
9680       O << "\n" << Indent << "  store ";
9681       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9682       O << " to index " << i;
9683     } else {
9684       O << "\n" << Indent << "  ";
9685       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9686       O << " = load from index " << i;
9687     }
9688     ++OpIdx;
9689   }
9690 }
9691 #endif
9692 
9693 void VPWidenCallRecipe::execute(VPTransformState &State) {
9694   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9695                                   *this, State);
9696 }
9697 
9698 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9699   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9700                                     this, *this, InvariantCond, State);
9701 }
9702 
9703 void VPWidenRecipe::execute(VPTransformState &State) {
9704   State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
9705 }
9706 
9707 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9708   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9709                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9710                       IsIndexLoopInvariant, State);
9711 }
9712 
9713 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9714   assert(!State.Instance && "Int or FP induction being replicated.");
9715   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9716                                    getTruncInst(), getVPValue(0),
9717                                    getCastValue(), State);
9718 }
9719 
9720 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9721   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9722                                  State);
9723 }
9724 
9725 void VPBlendRecipe::execute(VPTransformState &State) {
9726   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9727   // We know that all PHIs in non-header blocks are converted into
9728   // selects, so we don't have to worry about the insertion order and we
9729   // can just use the builder.
9730   // At this point we generate the predication tree. There may be
9731   // duplications since this is a simple recursive scan, but future
9732   // optimizations will clean it up.
9733 
9734   unsigned NumIncoming = getNumIncomingValues();
9735 
9736   // Generate a sequence of selects of the form:
9737   // SELECT(Mask3, In3,
9738   //        SELECT(Mask2, In2,
9739   //               SELECT(Mask1, In1,
9740   //                      In0)))
9741   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9742   // are essentially undef are taken from In0.
9743   InnerLoopVectorizer::VectorParts Entry(State.UF);
9744   for (unsigned In = 0; In < NumIncoming; ++In) {
9745     for (unsigned Part = 0; Part < State.UF; ++Part) {
9746       // We might have single edge PHIs (blocks) - use an identity
9747       // 'select' for the first PHI operand.
9748       Value *In0 = State.get(getIncomingValue(In), Part);
9749       if (In == 0)
9750         Entry[Part] = In0; // Initialize with the first incoming value.
9751       else {
9752         // Select between the current value and the previous incoming edge
9753         // based on the incoming mask.
9754         Value *Cond = State.get(getMask(In), Part);
9755         Entry[Part] =
9756             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9757       }
9758     }
9759   }
9760   for (unsigned Part = 0; Part < State.UF; ++Part)
9761     State.set(this, Entry[Part], Part);
9762 }
9763 
9764 void VPInterleaveRecipe::execute(VPTransformState &State) {
9765   assert(!State.Instance && "Interleave group being replicated.");
9766   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9767                                       getStoredValues(), getMask());
9768 }
9769 
9770 void VPReductionRecipe::execute(VPTransformState &State) {
9771   assert(!State.Instance && "Reduction being replicated.");
9772   Value *PrevInChain = State.get(getChainOp(), 0);
9773   RecurKind Kind = RdxDesc->getRecurrenceKind();
9774   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9775   // Propagate the fast-math flags carried by the underlying instruction.
9776   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
9777   State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
9778   for (unsigned Part = 0; Part < State.UF; ++Part) {
9779     Value *NewVecOp = State.get(getVecOp(), Part);
9780     if (VPValue *Cond = getCondOp()) {
9781       Value *NewCond = State.get(Cond, Part);
9782       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9783       Value *Iden = RdxDesc->getRecurrenceIdentity(
9784           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9785       Value *IdenVec =
9786           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9787       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9788       NewVecOp = Select;
9789     }
9790     Value *NewRed;
9791     Value *NextInChain;
9792     if (IsOrdered) {
9793       if (State.VF.isVector())
9794         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9795                                         PrevInChain);
9796       else
9797         NewRed = State.Builder.CreateBinOp(
9798             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9799             NewVecOp);
9800       PrevInChain = NewRed;
9801     } else {
9802       PrevInChain = State.get(getChainOp(), Part);
9803       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9804     }
9805     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9806       NextInChain =
9807           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9808                          NewRed, PrevInChain);
9809     } else if (IsOrdered)
9810       NextInChain = NewRed;
9811     else
9812       NextInChain = State.Builder.CreateBinOp(
9813           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
9814           PrevInChain);
9815     State.set(this, NextInChain, Part);
9816   }
9817 }
9818 
9819 void VPReplicateRecipe::execute(VPTransformState &State) {
9820   if (State.Instance) { // Generate a single instance.
9821     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9822     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9823                                     *State.Instance, IsPredicated, State);
9824     // Insert scalar instance packing it into a vector.
9825     if (AlsoPack && State.VF.isVector()) {
9826       // If we're constructing lane 0, initialize to start from poison.
9827       if (State.Instance->Lane.isFirstLane()) {
9828         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9829         Value *Poison = PoisonValue::get(
9830             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9831         State.set(this, Poison, State.Instance->Part);
9832       }
9833       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9834     }
9835     return;
9836   }
9837 
9838   // Generate scalar instances for all VF lanes of all UF parts, unless the
9839   // instruction is uniform inwhich case generate only the first lane for each
9840   // of the UF parts.
9841   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9842   assert((!State.VF.isScalable() || IsUniform) &&
9843          "Can't scalarize a scalable vector");
9844   for (unsigned Part = 0; Part < State.UF; ++Part)
9845     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9846       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9847                                       VPIteration(Part, Lane), IsPredicated,
9848                                       State);
9849 }
9850 
9851 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9852   assert(State.Instance && "Branch on Mask works only on single instance.");
9853 
9854   unsigned Part = State.Instance->Part;
9855   unsigned Lane = State.Instance->Lane.getKnownLane();
9856 
9857   Value *ConditionBit = nullptr;
9858   VPValue *BlockInMask = getMask();
9859   if (BlockInMask) {
9860     ConditionBit = State.get(BlockInMask, Part);
9861     if (ConditionBit->getType()->isVectorTy())
9862       ConditionBit = State.Builder.CreateExtractElement(
9863           ConditionBit, State.Builder.getInt32(Lane));
9864   } else // Block in mask is all-one.
9865     ConditionBit = State.Builder.getTrue();
9866 
9867   // Replace the temporary unreachable terminator with a new conditional branch,
9868   // whose two destinations will be set later when they are created.
9869   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9870   assert(isa<UnreachableInst>(CurrentTerminator) &&
9871          "Expected to replace unreachable terminator with conditional branch.");
9872   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9873   CondBr->setSuccessor(0, nullptr);
9874   ReplaceInstWithInst(CurrentTerminator, CondBr);
9875 }
9876 
9877 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9878   assert(State.Instance && "Predicated instruction PHI works per instance.");
9879   Instruction *ScalarPredInst =
9880       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9881   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9882   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9883   assert(PredicatingBB && "Predicated block has no single predecessor.");
9884   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9885          "operand must be VPReplicateRecipe");
9886 
9887   // By current pack/unpack logic we need to generate only a single phi node: if
9888   // a vector value for the predicated instruction exists at this point it means
9889   // the instruction has vector users only, and a phi for the vector value is
9890   // needed. In this case the recipe of the predicated instruction is marked to
9891   // also do that packing, thereby "hoisting" the insert-element sequence.
9892   // Otherwise, a phi node for the scalar value is needed.
9893   unsigned Part = State.Instance->Part;
9894   if (State.hasVectorValue(getOperand(0), Part)) {
9895     Value *VectorValue = State.get(getOperand(0), Part);
9896     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9897     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9898     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9899     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9900     if (State.hasVectorValue(this, Part))
9901       State.reset(this, VPhi, Part);
9902     else
9903       State.set(this, VPhi, Part);
9904     // NOTE: Currently we need to update the value of the operand, so the next
9905     // predicated iteration inserts its generated value in the correct vector.
9906     State.reset(getOperand(0), VPhi, Part);
9907   } else {
9908     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9909     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9910     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9911                      PredicatingBB);
9912     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9913     if (State.hasScalarValue(this, *State.Instance))
9914       State.reset(this, Phi, *State.Instance);
9915     else
9916       State.set(this, Phi, *State.Instance);
9917     // NOTE: Currently we need to update the value of the operand, so the next
9918     // predicated iteration inserts its generated value in the correct vector.
9919     State.reset(getOperand(0), Phi, *State.Instance);
9920   }
9921 }
9922 
9923 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9924   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9925   State.ILV->vectorizeMemoryInstruction(
9926       &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(),
9927       StoredValue, getMask(), Consecutive, Reverse);
9928 }
9929 
9930 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9931 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9932 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9933 // for predication.
9934 static ScalarEpilogueLowering getScalarEpilogueLowering(
9935     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9936     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9937     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9938     LoopVectorizationLegality &LVL) {
9939   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9940   // don't look at hints or options, and don't request a scalar epilogue.
9941   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9942   // LoopAccessInfo (due to code dependency and not being able to reliably get
9943   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9944   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9945   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9946   // back to the old way and vectorize with versioning when forced. See D81345.)
9947   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9948                                                       PGSOQueryType::IRPass) &&
9949                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9950     return CM_ScalarEpilogueNotAllowedOptSize;
9951 
9952   // 2) If set, obey the directives
9953   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9954     switch (PreferPredicateOverEpilogue) {
9955     case PreferPredicateTy::ScalarEpilogue:
9956       return CM_ScalarEpilogueAllowed;
9957     case PreferPredicateTy::PredicateElseScalarEpilogue:
9958       return CM_ScalarEpilogueNotNeededUsePredicate;
9959     case PreferPredicateTy::PredicateOrDontVectorize:
9960       return CM_ScalarEpilogueNotAllowedUsePredicate;
9961     };
9962   }
9963 
9964   // 3) If set, obey the hints
9965   switch (Hints.getPredicate()) {
9966   case LoopVectorizeHints::FK_Enabled:
9967     return CM_ScalarEpilogueNotNeededUsePredicate;
9968   case LoopVectorizeHints::FK_Disabled:
9969     return CM_ScalarEpilogueAllowed;
9970   };
9971 
9972   // 4) if the TTI hook indicates this is profitable, request predication.
9973   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
9974                                        LVL.getLAI()))
9975     return CM_ScalarEpilogueNotNeededUsePredicate;
9976 
9977   return CM_ScalarEpilogueAllowed;
9978 }
9979 
9980 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
9981   // If Values have been set for this Def return the one relevant for \p Part.
9982   if (hasVectorValue(Def, Part))
9983     return Data.PerPartOutput[Def][Part];
9984 
9985   if (!hasScalarValue(Def, {Part, 0})) {
9986     Value *IRV = Def->getLiveInIRValue();
9987     Value *B = ILV->getBroadcastInstrs(IRV);
9988     set(Def, B, Part);
9989     return B;
9990   }
9991 
9992   Value *ScalarValue = get(Def, {Part, 0});
9993   // If we aren't vectorizing, we can just copy the scalar map values over
9994   // to the vector map.
9995   if (VF.isScalar()) {
9996     set(Def, ScalarValue, Part);
9997     return ScalarValue;
9998   }
9999 
10000   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
10001   bool IsUniform = RepR && RepR->isUniform();
10002 
10003   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
10004   // Check if there is a scalar value for the selected lane.
10005   if (!hasScalarValue(Def, {Part, LastLane})) {
10006     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
10007     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
10008            "unexpected recipe found to be invariant");
10009     IsUniform = true;
10010     LastLane = 0;
10011   }
10012 
10013   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
10014   // Set the insert point after the last scalarized instruction or after the
10015   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
10016   // will directly follow the scalar definitions.
10017   auto OldIP = Builder.saveIP();
10018   auto NewIP =
10019       isa<PHINode>(LastInst)
10020           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10021           : std::next(BasicBlock::iterator(LastInst));
10022   Builder.SetInsertPoint(&*NewIP);
10023 
10024   // However, if we are vectorizing, we need to construct the vector values.
10025   // If the value is known to be uniform after vectorization, we can just
10026   // broadcast the scalar value corresponding to lane zero for each unroll
10027   // iteration. Otherwise, we construct the vector values using
10028   // insertelement instructions. Since the resulting vectors are stored in
10029   // State, we will only generate the insertelements once.
10030   Value *VectorValue = nullptr;
10031   if (IsUniform) {
10032     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10033     set(Def, VectorValue, Part);
10034   } else {
10035     // Initialize packing with insertelements to start from undef.
10036     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10037     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10038     set(Def, Undef, Part);
10039     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10040       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10041     VectorValue = get(Def, Part);
10042   }
10043   Builder.restoreIP(OldIP);
10044   return VectorValue;
10045 }
10046 
10047 // Process the loop in the VPlan-native vectorization path. This path builds
10048 // VPlan upfront in the vectorization pipeline, which allows to apply
10049 // VPlan-to-VPlan transformations from the very beginning without modifying the
10050 // input LLVM IR.
10051 static bool processLoopInVPlanNativePath(
10052     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10053     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10054     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10055     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10056     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10057     LoopVectorizationRequirements &Requirements) {
10058 
10059   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10060     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10061     return false;
10062   }
10063   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10064   Function *F = L->getHeader()->getParent();
10065   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10066 
10067   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10068       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10069 
10070   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10071                                 &Hints, IAI);
10072   // Use the planner for outer loop vectorization.
10073   // TODO: CM is not used at this point inside the planner. Turn CM into an
10074   // optional argument if we don't need it in the future.
10075   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10076                                Requirements, ORE);
10077 
10078   // Get user vectorization factor.
10079   ElementCount UserVF = Hints.getWidth();
10080 
10081   CM.collectElementTypesForWidening();
10082 
10083   // Plan how to best vectorize, return the best VF and its cost.
10084   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10085 
10086   // If we are stress testing VPlan builds, do not attempt to generate vector
10087   // code. Masked vector code generation support will follow soon.
10088   // Also, do not attempt to vectorize if no vector code will be produced.
10089   if (VPlanBuildStressTest || EnableVPlanPredication ||
10090       VectorizationFactor::Disabled() == VF)
10091     return false;
10092 
10093   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10094 
10095   {
10096     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10097                              F->getParent()->getDataLayout());
10098     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10099                            &CM, BFI, PSI, Checks);
10100     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10101                       << L->getHeader()->getParent()->getName() << "\"\n");
10102     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT);
10103   }
10104 
10105   // Mark the loop as already vectorized to avoid vectorizing again.
10106   Hints.setAlreadyVectorized();
10107   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10108   return true;
10109 }
10110 
10111 // Emit a remark if there are stores to floats that required a floating point
10112 // extension. If the vectorized loop was generated with floating point there
10113 // will be a performance penalty from the conversion overhead and the change in
10114 // the vector width.
10115 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10116   SmallVector<Instruction *, 4> Worklist;
10117   for (BasicBlock *BB : L->getBlocks()) {
10118     for (Instruction &Inst : *BB) {
10119       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10120         if (S->getValueOperand()->getType()->isFloatTy())
10121           Worklist.push_back(S);
10122       }
10123     }
10124   }
10125 
10126   // Traverse the floating point stores upwards searching, for floating point
10127   // conversions.
10128   SmallPtrSet<const Instruction *, 4> Visited;
10129   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10130   while (!Worklist.empty()) {
10131     auto *I = Worklist.pop_back_val();
10132     if (!L->contains(I))
10133       continue;
10134     if (!Visited.insert(I).second)
10135       continue;
10136 
10137     // Emit a remark if the floating point store required a floating
10138     // point conversion.
10139     // TODO: More work could be done to identify the root cause such as a
10140     // constant or a function return type and point the user to it.
10141     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10142       ORE->emit([&]() {
10143         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10144                                           I->getDebugLoc(), L->getHeader())
10145                << "floating point conversion changes vector width. "
10146                << "Mixed floating point precision requires an up/down "
10147                << "cast that will negatively impact performance.";
10148       });
10149 
10150     for (Use &Op : I->operands())
10151       if (auto *OpI = dyn_cast<Instruction>(Op))
10152         Worklist.push_back(OpI);
10153   }
10154 }
10155 
10156 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10157     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10158                                !EnableLoopInterleaving),
10159       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10160                               !EnableLoopVectorization) {}
10161 
10162 bool LoopVectorizePass::processLoop(Loop *L) {
10163   assert((EnableVPlanNativePath || L->isInnermost()) &&
10164          "VPlan-native path is not enabled. Only process inner loops.");
10165 
10166 #ifndef NDEBUG
10167   const std::string DebugLocStr = getDebugLocString(L);
10168 #endif /* NDEBUG */
10169 
10170   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
10171                     << L->getHeader()->getParent()->getName() << "\" from "
10172                     << DebugLocStr << "\n");
10173 
10174   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
10175 
10176   LLVM_DEBUG(
10177       dbgs() << "LV: Loop hints:"
10178              << " force="
10179              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10180                      ? "disabled"
10181                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10182                             ? "enabled"
10183                             : "?"))
10184              << " width=" << Hints.getWidth()
10185              << " interleave=" << Hints.getInterleave() << "\n");
10186 
10187   // Function containing loop
10188   Function *F = L->getHeader()->getParent();
10189 
10190   // Looking at the diagnostic output is the only way to determine if a loop
10191   // was vectorized (other than looking at the IR or machine code), so it
10192   // is important to generate an optimization remark for each loop. Most of
10193   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10194   // generated as OptimizationRemark and OptimizationRemarkMissed are
10195   // less verbose reporting vectorized loops and unvectorized loops that may
10196   // benefit from vectorization, respectively.
10197 
10198   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10199     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10200     return false;
10201   }
10202 
10203   PredicatedScalarEvolution PSE(*SE, *L);
10204 
10205   // Check if it is legal to vectorize the loop.
10206   LoopVectorizationRequirements Requirements;
10207   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10208                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10209   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10210     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10211     Hints.emitRemarkWithHints();
10212     return false;
10213   }
10214 
10215   // Check the function attributes and profiles to find out if this function
10216   // should be optimized for size.
10217   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10218       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10219 
10220   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10221   // here. They may require CFG and instruction level transformations before
10222   // even evaluating whether vectorization is profitable. Since we cannot modify
10223   // the incoming IR, we need to build VPlan upfront in the vectorization
10224   // pipeline.
10225   if (!L->isInnermost())
10226     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10227                                         ORE, BFI, PSI, Hints, Requirements);
10228 
10229   assert(L->isInnermost() && "Inner loop expected.");
10230 
10231   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10232   // count by optimizing for size, to minimize overheads.
10233   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10234   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10235     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10236                       << "This loop is worth vectorizing only if no scalar "
10237                       << "iteration overheads are incurred.");
10238     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10239       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10240     else {
10241       LLVM_DEBUG(dbgs() << "\n");
10242       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10243     }
10244   }
10245 
10246   // Check the function attributes to see if implicit floats are allowed.
10247   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10248   // an integer loop and the vector instructions selected are purely integer
10249   // vector instructions?
10250   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10251     reportVectorizationFailure(
10252         "Can't vectorize when the NoImplicitFloat attribute is used",
10253         "loop not vectorized due to NoImplicitFloat attribute",
10254         "NoImplicitFloat", ORE, L);
10255     Hints.emitRemarkWithHints();
10256     return false;
10257   }
10258 
10259   // Check if the target supports potentially unsafe FP vectorization.
10260   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10261   // for the target we're vectorizing for, to make sure none of the
10262   // additional fp-math flags can help.
10263   if (Hints.isPotentiallyUnsafe() &&
10264       TTI->isFPVectorizationPotentiallyUnsafe()) {
10265     reportVectorizationFailure(
10266         "Potentially unsafe FP op prevents vectorization",
10267         "loop not vectorized due to unsafe FP support.",
10268         "UnsafeFP", ORE, L);
10269     Hints.emitRemarkWithHints();
10270     return false;
10271   }
10272 
10273   bool AllowOrderedReductions;
10274   // If the flag is set, use that instead and override the TTI behaviour.
10275   if (ForceOrderedReductions.getNumOccurrences() > 0)
10276     AllowOrderedReductions = ForceOrderedReductions;
10277   else
10278     AllowOrderedReductions = TTI->enableOrderedReductions();
10279   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10280     ORE->emit([&]() {
10281       auto *ExactFPMathInst = Requirements.getExactFPInst();
10282       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10283                                                  ExactFPMathInst->getDebugLoc(),
10284                                                  ExactFPMathInst->getParent())
10285              << "loop not vectorized: cannot prove it is safe to reorder "
10286                 "floating-point operations";
10287     });
10288     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10289                          "reorder floating-point operations\n");
10290     Hints.emitRemarkWithHints();
10291     return false;
10292   }
10293 
10294   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10295   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10296 
10297   // If an override option has been passed in for interleaved accesses, use it.
10298   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10299     UseInterleaved = EnableInterleavedMemAccesses;
10300 
10301   // Analyze interleaved memory accesses.
10302   if (UseInterleaved) {
10303     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10304   }
10305 
10306   // Use the cost model.
10307   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10308                                 F, &Hints, IAI);
10309   CM.collectValuesToIgnore();
10310   CM.collectElementTypesForWidening();
10311 
10312   // Use the planner for vectorization.
10313   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10314                                Requirements, ORE);
10315 
10316   // Get user vectorization factor and interleave count.
10317   ElementCount UserVF = Hints.getWidth();
10318   unsigned UserIC = Hints.getInterleave();
10319 
10320   // Plan how to best vectorize, return the best VF and its cost.
10321   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10322 
10323   VectorizationFactor VF = VectorizationFactor::Disabled();
10324   unsigned IC = 1;
10325 
10326   if (MaybeVF) {
10327     VF = *MaybeVF;
10328     // Select the interleave count.
10329     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10330   }
10331 
10332   // Identify the diagnostic messages that should be produced.
10333   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10334   bool VectorizeLoop = true, InterleaveLoop = true;
10335   if (VF.Width.isScalar()) {
10336     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10337     VecDiagMsg = std::make_pair(
10338         "VectorizationNotBeneficial",
10339         "the cost-model indicates that vectorization is not beneficial");
10340     VectorizeLoop = false;
10341   }
10342 
10343   if (!MaybeVF && UserIC > 1) {
10344     // Tell the user interleaving was avoided up-front, despite being explicitly
10345     // requested.
10346     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10347                          "interleaving should be avoided up front\n");
10348     IntDiagMsg = std::make_pair(
10349         "InterleavingAvoided",
10350         "Ignoring UserIC, because interleaving was avoided up front");
10351     InterleaveLoop = false;
10352   } else if (IC == 1 && UserIC <= 1) {
10353     // Tell the user interleaving is not beneficial.
10354     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10355     IntDiagMsg = std::make_pair(
10356         "InterleavingNotBeneficial",
10357         "the cost-model indicates that interleaving is not beneficial");
10358     InterleaveLoop = false;
10359     if (UserIC == 1) {
10360       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10361       IntDiagMsg.second +=
10362           " and is explicitly disabled or interleave count is set to 1";
10363     }
10364   } else if (IC > 1 && UserIC == 1) {
10365     // Tell the user interleaving is beneficial, but it explicitly disabled.
10366     LLVM_DEBUG(
10367         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10368     IntDiagMsg = std::make_pair(
10369         "InterleavingBeneficialButDisabled",
10370         "the cost-model indicates that interleaving is beneficial "
10371         "but is explicitly disabled or interleave count is set to 1");
10372     InterleaveLoop = false;
10373   }
10374 
10375   // Override IC if user provided an interleave count.
10376   IC = UserIC > 0 ? UserIC : IC;
10377 
10378   // Emit diagnostic messages, if any.
10379   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10380   if (!VectorizeLoop && !InterleaveLoop) {
10381     // Do not vectorize or interleaving the loop.
10382     ORE->emit([&]() {
10383       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10384                                       L->getStartLoc(), L->getHeader())
10385              << VecDiagMsg.second;
10386     });
10387     ORE->emit([&]() {
10388       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10389                                       L->getStartLoc(), L->getHeader())
10390              << IntDiagMsg.second;
10391     });
10392     return false;
10393   } else if (!VectorizeLoop && InterleaveLoop) {
10394     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10395     ORE->emit([&]() {
10396       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10397                                         L->getStartLoc(), L->getHeader())
10398              << VecDiagMsg.second;
10399     });
10400   } else if (VectorizeLoop && !InterleaveLoop) {
10401     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10402                       << ") in " << DebugLocStr << '\n');
10403     ORE->emit([&]() {
10404       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10405                                         L->getStartLoc(), L->getHeader())
10406              << IntDiagMsg.second;
10407     });
10408   } else if (VectorizeLoop && InterleaveLoop) {
10409     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10410                       << ") in " << DebugLocStr << '\n');
10411     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10412   }
10413 
10414   bool DisableRuntimeUnroll = false;
10415   MDNode *OrigLoopID = L->getLoopID();
10416   {
10417     // Optimistically generate runtime checks. Drop them if they turn out to not
10418     // be profitable. Limit the scope of Checks, so the cleanup happens
10419     // immediately after vector codegeneration is done.
10420     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10421                              F->getParent()->getDataLayout());
10422     if (!VF.Width.isScalar() || IC > 1)
10423       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10424     VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10425 
10426     using namespace ore;
10427     if (!VectorizeLoop) {
10428       assert(IC > 1 && "interleave count should not be 1 or 0");
10429       // If we decided that it is not legal to vectorize the loop, then
10430       // interleave it.
10431       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10432                                  &CM, BFI, PSI, Checks);
10433       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT);
10434 
10435       ORE->emit([&]() {
10436         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10437                                   L->getHeader())
10438                << "interleaved loop (interleaved count: "
10439                << NV("InterleaveCount", IC) << ")";
10440       });
10441     } else {
10442       // If we decided that it is *legal* to vectorize the loop, then do it.
10443 
10444       // Consider vectorizing the epilogue too if it's profitable.
10445       VectorizationFactor EpilogueVF =
10446           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10447       if (EpilogueVF.Width.isVector()) {
10448 
10449         // The first pass vectorizes the main loop and creates a scalar epilogue
10450         // to be vectorized by executing the plan (potentially with a different
10451         // factor) again shortly afterwards.
10452         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10453         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10454                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10455 
10456         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestPlan, MainILV, DT);
10457         ++LoopsVectorized;
10458 
10459         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10460         formLCSSARecursively(*L, *DT, LI, SE);
10461 
10462         // Second pass vectorizes the epilogue and adjusts the control flow
10463         // edges from the first pass.
10464         EPI.MainLoopVF = EPI.EpilogueVF;
10465         EPI.MainLoopUF = EPI.EpilogueUF;
10466         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10467                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10468                                                  Checks);
10469         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestPlan, EpilogILV,
10470                         DT);
10471         ++LoopsEpilogueVectorized;
10472 
10473         if (!MainILV.areSafetyChecksAdded())
10474           DisableRuntimeUnroll = true;
10475       } else {
10476         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10477                                &LVL, &CM, BFI, PSI, Checks);
10478         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT);
10479         ++LoopsVectorized;
10480 
10481         // Add metadata to disable runtime unrolling a scalar loop when there
10482         // are no runtime checks about strides and memory. A scalar loop that is
10483         // rarely used is not worth unrolling.
10484         if (!LB.areSafetyChecksAdded())
10485           DisableRuntimeUnroll = true;
10486       }
10487       // Report the vectorization decision.
10488       ORE->emit([&]() {
10489         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10490                                   L->getHeader())
10491                << "vectorized loop (vectorization width: "
10492                << NV("VectorizationFactor", VF.Width)
10493                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10494       });
10495     }
10496 
10497     if (ORE->allowExtraAnalysis(LV_NAME))
10498       checkMixedPrecision(L, ORE);
10499   }
10500 
10501   Optional<MDNode *> RemainderLoopID =
10502       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10503                                       LLVMLoopVectorizeFollowupEpilogue});
10504   if (RemainderLoopID.hasValue()) {
10505     L->setLoopID(RemainderLoopID.getValue());
10506   } else {
10507     if (DisableRuntimeUnroll)
10508       AddRuntimeUnrollDisableMetaData(L);
10509 
10510     // Mark the loop as already vectorized to avoid vectorizing again.
10511     Hints.setAlreadyVectorized();
10512   }
10513 
10514   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10515   return true;
10516 }
10517 
10518 LoopVectorizeResult LoopVectorizePass::runImpl(
10519     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10520     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10521     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10522     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10523     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10524   SE = &SE_;
10525   LI = &LI_;
10526   TTI = &TTI_;
10527   DT = &DT_;
10528   BFI = &BFI_;
10529   TLI = TLI_;
10530   AA = &AA_;
10531   AC = &AC_;
10532   GetLAA = &GetLAA_;
10533   DB = &DB_;
10534   ORE = &ORE_;
10535   PSI = PSI_;
10536 
10537   // Don't attempt if
10538   // 1. the target claims to have no vector registers, and
10539   // 2. interleaving won't help ILP.
10540   //
10541   // The second condition is necessary because, even if the target has no
10542   // vector registers, loop vectorization may still enable scalar
10543   // interleaving.
10544   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10545       TTI->getMaxInterleaveFactor(1) < 2)
10546     return LoopVectorizeResult(false, false);
10547 
10548   bool Changed = false, CFGChanged = false;
10549 
10550   // The vectorizer requires loops to be in simplified form.
10551   // Since simplification may add new inner loops, it has to run before the
10552   // legality and profitability checks. This means running the loop vectorizer
10553   // will simplify all loops, regardless of whether anything end up being
10554   // vectorized.
10555   for (auto &L : *LI)
10556     Changed |= CFGChanged |=
10557         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10558 
10559   // Build up a worklist of inner-loops to vectorize. This is necessary as
10560   // the act of vectorizing or partially unrolling a loop creates new loops
10561   // and can invalidate iterators across the loops.
10562   SmallVector<Loop *, 8> Worklist;
10563 
10564   for (Loop *L : *LI)
10565     collectSupportedLoops(*L, LI, ORE, Worklist);
10566 
10567   LoopsAnalyzed += Worklist.size();
10568 
10569   // Now walk the identified inner loops.
10570   while (!Worklist.empty()) {
10571     Loop *L = Worklist.pop_back_val();
10572 
10573     // For the inner loops we actually process, form LCSSA to simplify the
10574     // transform.
10575     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10576 
10577     Changed |= CFGChanged |= processLoop(L);
10578   }
10579 
10580   // Process each loop nest in the function.
10581   return LoopVectorizeResult(Changed, CFGChanged);
10582 }
10583 
10584 PreservedAnalyses LoopVectorizePass::run(Function &F,
10585                                          FunctionAnalysisManager &AM) {
10586     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10587     auto &LI = AM.getResult<LoopAnalysis>(F);
10588     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10589     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10590     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10591     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10592     auto &AA = AM.getResult<AAManager>(F);
10593     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10594     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10595     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10596 
10597     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10598     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10599         [&](Loop &L) -> const LoopAccessInfo & {
10600       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10601                                         TLI, TTI, nullptr, nullptr, nullptr};
10602       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10603     };
10604     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10605     ProfileSummaryInfo *PSI =
10606         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10607     LoopVectorizeResult Result =
10608         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10609     if (!Result.MadeAnyChange)
10610       return PreservedAnalyses::all();
10611     PreservedAnalyses PA;
10612 
10613     // We currently do not preserve loopinfo/dominator analyses with outer loop
10614     // vectorization. Until this is addressed, mark these analyses as preserved
10615     // only for non-VPlan-native path.
10616     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10617     if (!EnableVPlanNativePath) {
10618       PA.preserve<LoopAnalysis>();
10619       PA.preserve<DominatorTreeAnalysis>();
10620     }
10621     if (!Result.MadeCFGChange)
10622       PA.preserveSet<CFGAnalyses>();
10623     return PA;
10624 }
10625 
10626 void LoopVectorizePass::printPipeline(
10627     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10628   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10629       OS, MapClassName2PassName);
10630 
10631   OS << "<";
10632   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10633   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10634   OS << ">";
10635 }
10636