1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpander.h" 95 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 96 #include "llvm/Analysis/TargetLibraryInfo.h" 97 #include "llvm/Analysis/TargetTransformInfo.h" 98 #include "llvm/Analysis/VectorUtils.h" 99 #include "llvm/IR/Attributes.h" 100 #include "llvm/IR/BasicBlock.h" 101 #include "llvm/IR/CFG.h" 102 #include "llvm/IR/Constant.h" 103 #include "llvm/IR/Constants.h" 104 #include "llvm/IR/DataLayout.h" 105 #include "llvm/IR/DebugInfoMetadata.h" 106 #include "llvm/IR/DebugLoc.h" 107 #include "llvm/IR/DerivedTypes.h" 108 #include "llvm/IR/DiagnosticInfo.h" 109 #include "llvm/IR/Dominators.h" 110 #include "llvm/IR/Function.h" 111 #include "llvm/IR/IRBuilder.h" 112 #include "llvm/IR/InstrTypes.h" 113 #include "llvm/IR/Instruction.h" 114 #include "llvm/IR/Instructions.h" 115 #include "llvm/IR/IntrinsicInst.h" 116 #include "llvm/IR/Intrinsics.h" 117 #include "llvm/IR/LLVMContext.h" 118 #include "llvm/IR/Metadata.h" 119 #include "llvm/IR/Module.h" 120 #include "llvm/IR/Operator.h" 121 #include "llvm/IR/Type.h" 122 #include "llvm/IR/Use.h" 123 #include "llvm/IR/User.h" 124 #include "llvm/IR/Value.h" 125 #include "llvm/IR/ValueHandle.h" 126 #include "llvm/IR/Verifier.h" 127 #include "llvm/InitializePasses.h" 128 #include "llvm/Pass.h" 129 #include "llvm/Support/Casting.h" 130 #include "llvm/Support/CommandLine.h" 131 #include "llvm/Support/Compiler.h" 132 #include "llvm/Support/Debug.h" 133 #include "llvm/Support/ErrorHandling.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <cstdlib> 147 #include <functional> 148 #include <iterator> 149 #include <limits> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 /// @{ 161 /// Metadata attribute names 162 static const char *const LLVMLoopVectorizeFollowupAll = 163 "llvm.loop.vectorize.followup_all"; 164 static const char *const LLVMLoopVectorizeFollowupVectorized = 165 "llvm.loop.vectorize.followup_vectorized"; 166 static const char *const LLVMLoopVectorizeFollowupEpilogue = 167 "llvm.loop.vectorize.followup_epilogue"; 168 /// @} 169 170 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 172 173 /// Loops with a known constant trip count below this number are vectorized only 174 /// if no scalar iteration overheads are incurred. 175 static cl::opt<unsigned> TinyTripCountVectorThreshold( 176 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 177 cl::desc("Loops with a constant trip count that is smaller than this " 178 "value are vectorized only if no scalar iteration overheads " 179 "are incurred.")); 180 181 // Indicates that an epilogue is undesired, predication is preferred. 182 // This means that the vectorizer will try to fold the loop-tail (epilogue) 183 // into the loop and predicate the loop body accordingly. 184 static cl::opt<bool> PreferPredicateOverEpilog( 185 "prefer-predicate-over-epilog", cl::init(false), cl::Hidden, 186 cl::desc("Indicate that an epilogue is undesired, predication should be " 187 "used instead.")); 188 189 static cl::opt<bool> MaximizeBandwidth( 190 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 191 cl::desc("Maximize bandwidth when selecting vectorization factor which " 192 "will be determined by the smallest type in loop.")); 193 194 static cl::opt<bool> EnableInterleavedMemAccesses( 195 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 196 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 197 198 /// An interleave-group may need masking if it resides in a block that needs 199 /// predication, or in order to mask away gaps. 200 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 201 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 202 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 203 204 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 205 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 206 cl::desc("We don't interleave loops with a estimated constant trip count " 207 "below this number")); 208 209 static cl::opt<unsigned> ForceTargetNumScalarRegs( 210 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 211 cl::desc("A flag that overrides the target's number of scalar registers.")); 212 213 static cl::opt<unsigned> ForceTargetNumVectorRegs( 214 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 215 cl::desc("A flag that overrides the target's number of vector registers.")); 216 217 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 218 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 219 cl::desc("A flag that overrides the target's max interleave factor for " 220 "scalar loops.")); 221 222 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 223 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 224 cl::desc("A flag that overrides the target's max interleave factor for " 225 "vectorized loops.")); 226 227 static cl::opt<unsigned> ForceTargetInstructionCost( 228 "force-target-instruction-cost", cl::init(0), cl::Hidden, 229 cl::desc("A flag that overrides the target's expected cost for " 230 "an instruction to a single constant value. Mostly " 231 "useful for getting consistent testing.")); 232 233 static cl::opt<unsigned> SmallLoopCost( 234 "small-loop-cost", cl::init(20), cl::Hidden, 235 cl::desc( 236 "The cost of a loop that is considered 'small' by the interleaver.")); 237 238 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 239 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 240 cl::desc("Enable the use of the block frequency analysis to access PGO " 241 "heuristics minimizing code growth in cold regions and being more " 242 "aggressive in hot regions.")); 243 244 // Runtime interleave loops for load/store throughput. 245 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 246 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 247 cl::desc( 248 "Enable runtime interleaving until load/store ports are saturated")); 249 250 /// The number of stores in a loop that are allowed to need predication. 251 static cl::opt<unsigned> NumberOfStoresToPredicate( 252 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 253 cl::desc("Max number of stores to be predicated behind an if.")); 254 255 static cl::opt<bool> EnableIndVarRegisterHeur( 256 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 257 cl::desc("Count the induction variable only once when interleaving")); 258 259 static cl::opt<bool> EnableCondStoresVectorization( 260 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 261 cl::desc("Enable if predication of stores during vectorization.")); 262 263 static cl::opt<unsigned> MaxNestedScalarReductionIC( 264 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 265 cl::desc("The maximum interleave count to use when interleaving a scalar " 266 "reduction in a nested loop.")); 267 268 cl::opt<bool> EnableVPlanNativePath( 269 "enable-vplan-native-path", cl::init(false), cl::Hidden, 270 cl::desc("Enable VPlan-native vectorization path with " 271 "support for outer loop vectorization.")); 272 273 // FIXME: Remove this switch once we have divergence analysis. Currently we 274 // assume divergent non-backedge branches when this switch is true. 275 cl::opt<bool> EnableVPlanPredication( 276 "enable-vplan-predication", cl::init(false), cl::Hidden, 277 cl::desc("Enable VPlan-native vectorization path predicator with " 278 "support for outer loop vectorization.")); 279 280 // This flag enables the stress testing of the VPlan H-CFG construction in the 281 // VPlan-native vectorization path. It must be used in conjuction with 282 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 283 // verification of the H-CFGs built. 284 static cl::opt<bool> VPlanBuildStressTest( 285 "vplan-build-stress-test", cl::init(false), cl::Hidden, 286 cl::desc( 287 "Build VPlan for every supported loop nest in the function and bail " 288 "out right after the build (stress test the VPlan H-CFG construction " 289 "in the VPlan-native vectorization path).")); 290 291 cl::opt<bool> llvm::EnableLoopInterleaving( 292 "interleave-loops", cl::init(true), cl::Hidden, 293 cl::desc("Enable loop interleaving in Loop vectorization passes")); 294 cl::opt<bool> llvm::EnableLoopVectorization( 295 "vectorize-loops", cl::init(true), cl::Hidden, 296 cl::desc("Run the Loop vectorization passes")); 297 298 /// A helper function for converting Scalar types to vector types. 299 /// If the incoming type is void, we return void. If the VF is 1, we return 300 /// the scalar type. 301 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 302 if (Scalar->isVoidTy() || VF == 1) 303 return Scalar; 304 return VectorType::get(Scalar, VF); 305 } 306 307 /// A helper function that returns the type of loaded or stored value. 308 static Type *getMemInstValueType(Value *I) { 309 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 310 "Expected Load or Store instruction"); 311 if (auto *LI = dyn_cast<LoadInst>(I)) 312 return LI->getType(); 313 return cast<StoreInst>(I)->getValueOperand()->getType(); 314 } 315 316 /// A helper function that returns true if the given type is irregular. The 317 /// type is irregular if its allocated size doesn't equal the store size of an 318 /// element of the corresponding vector type at the given vectorization factor. 319 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 320 // Determine if an array of VF elements of type Ty is "bitcast compatible" 321 // with a <VF x Ty> vector. 322 if (VF > 1) { 323 auto *VectorTy = VectorType::get(Ty, VF); 324 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 325 } 326 327 // If the vectorization factor is one, we just check if an array of type Ty 328 // requires padding between elements. 329 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 330 } 331 332 /// A helper function that returns the reciprocal of the block probability of 333 /// predicated blocks. If we return X, we are assuming the predicated block 334 /// will execute once for every X iterations of the loop header. 335 /// 336 /// TODO: We should use actual block probability here, if available. Currently, 337 /// we always assume predicated blocks have a 50% chance of executing. 338 static unsigned getReciprocalPredBlockProb() { return 2; } 339 340 /// A helper function that adds a 'fast' flag to floating-point operations. 341 static Value *addFastMathFlag(Value *V) { 342 if (isa<FPMathOperator>(V)) 343 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 344 return V; 345 } 346 347 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 348 if (isa<FPMathOperator>(V)) 349 cast<Instruction>(V)->setFastMathFlags(FMF); 350 return V; 351 } 352 353 /// A helper function that returns an integer or floating-point constant with 354 /// value C. 355 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 356 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 357 : ConstantFP::get(Ty, C); 358 } 359 360 /// Returns "best known" trip count for the specified loop \p L as defined by 361 /// the following procedure: 362 /// 1) Returns exact trip count if it is known. 363 /// 2) Returns expected trip count according to profile data if any. 364 /// 3) Returns upper bound estimate if it is known. 365 /// 4) Returns None if all of the above failed. 366 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 367 // Check if exact trip count is known. 368 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 369 return ExpectedTC; 370 371 // Check if there is an expected trip count available from profile data. 372 if (LoopVectorizeWithBlockFrequency) 373 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 374 return EstimatedTC; 375 376 // Check if upper bound estimate is known. 377 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 378 return ExpectedTC; 379 380 return None; 381 } 382 383 namespace llvm { 384 385 /// InnerLoopVectorizer vectorizes loops which contain only one basic 386 /// block to a specified vectorization factor (VF). 387 /// This class performs the widening of scalars into vectors, or multiple 388 /// scalars. This class also implements the following features: 389 /// * It inserts an epilogue loop for handling loops that don't have iteration 390 /// counts that are known to be a multiple of the vectorization factor. 391 /// * It handles the code generation for reduction variables. 392 /// * Scalarization (implementation using scalars) of un-vectorizable 393 /// instructions. 394 /// InnerLoopVectorizer does not perform any vectorization-legality 395 /// checks, and relies on the caller to check for the different legality 396 /// aspects. The InnerLoopVectorizer relies on the 397 /// LoopVectorizationLegality class to provide information about the induction 398 /// and reduction variables that were found to a given vectorization factor. 399 class InnerLoopVectorizer { 400 public: 401 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 402 LoopInfo *LI, DominatorTree *DT, 403 const TargetLibraryInfo *TLI, 404 const TargetTransformInfo *TTI, AssumptionCache *AC, 405 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 406 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 407 LoopVectorizationCostModel *CM) 408 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 409 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 410 Builder(PSE.getSE()->getContext()), 411 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 412 virtual ~InnerLoopVectorizer() = default; 413 414 /// Create a new empty loop. Unlink the old loop and connect the new one. 415 /// Return the pre-header block of the new loop. 416 BasicBlock *createVectorizedLoopSkeleton(); 417 418 /// Widen a single instruction within the innermost loop. 419 void widenInstruction(Instruction &I); 420 421 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 422 void fixVectorizedLoop(); 423 424 // Return true if any runtime check is added. 425 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 426 427 /// A type for vectorized values in the new loop. Each value from the 428 /// original loop, when vectorized, is represented by UF vector values in the 429 /// new unrolled loop, where UF is the unroll factor. 430 using VectorParts = SmallVector<Value *, 2>; 431 432 /// Vectorize a single GetElementPtrInst based on information gathered and 433 /// decisions taken during planning. 434 void widenGEP(GetElementPtrInst *GEP, unsigned UF, unsigned VF, 435 bool IsPtrLoopInvariant, SmallBitVector &IsIndexLoopInvariant); 436 437 /// Vectorize a single PHINode in a block. This method handles the induction 438 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 439 /// arbitrary length vectors. 440 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 441 442 /// A helper function to scalarize a single Instruction in the innermost loop. 443 /// Generates a sequence of scalar instances for each lane between \p MinLane 444 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 445 /// inclusive.. 446 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 447 bool IfPredicateInstr); 448 449 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 450 /// is provided, the integer induction variable will first be truncated to 451 /// the corresponding type. 452 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 453 454 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 455 /// vector or scalar value on-demand if one is not yet available. When 456 /// vectorizing a loop, we visit the definition of an instruction before its 457 /// uses. When visiting the definition, we either vectorize or scalarize the 458 /// instruction, creating an entry for it in the corresponding map. (In some 459 /// cases, such as induction variables, we will create both vector and scalar 460 /// entries.) Then, as we encounter uses of the definition, we derive values 461 /// for each scalar or vector use unless such a value is already available. 462 /// For example, if we scalarize a definition and one of its uses is vector, 463 /// we build the required vector on-demand with an insertelement sequence 464 /// when visiting the use. Otherwise, if the use is scalar, we can use the 465 /// existing scalar definition. 466 /// 467 /// Return a value in the new loop corresponding to \p V from the original 468 /// loop at unroll index \p Part. If the value has already been vectorized, 469 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 470 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 471 /// a new vector value on-demand by inserting the scalar values into a vector 472 /// with an insertelement sequence. If the value has been neither vectorized 473 /// nor scalarized, it must be loop invariant, so we simply broadcast the 474 /// value into a vector. 475 Value *getOrCreateVectorValue(Value *V, unsigned Part); 476 477 /// Return a value in the new loop corresponding to \p V from the original 478 /// loop at unroll and vector indices \p Instance. If the value has been 479 /// vectorized but not scalarized, the necessary extractelement instruction 480 /// will be generated. 481 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 482 483 /// Construct the vector value of a scalarized value \p V one lane at a time. 484 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 485 486 /// Try to vectorize the interleaved access group that \p Instr belongs to 487 /// with the base address given in \p Addr, optionally masking the vector 488 /// operations if \p BlockInMask is non-null. Use \p State to translate given 489 /// VPValues to IR values in the vectorized loop. 490 void vectorizeInterleaveGroup(Instruction *Instr, VPTransformState &State, 491 VPValue *Addr, VPValue *BlockInMask = nullptr); 492 493 /// Vectorize Load and Store instructions with the base address given in \p 494 /// Addr, optionally masking the vector operations if \p BlockInMask is 495 /// non-null. Use \p State to translate given VPValues to IR values in the 496 /// vectorized loop. 497 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 498 VPValue *Addr, 499 VPValue *BlockInMask = nullptr); 500 501 /// Set the debug location in the builder using the debug location in 502 /// the instruction. 503 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 504 505 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 506 void fixNonInductionPHIs(void); 507 508 protected: 509 friend class LoopVectorizationPlanner; 510 511 /// A small list of PHINodes. 512 using PhiVector = SmallVector<PHINode *, 4>; 513 514 /// A type for scalarized values in the new loop. Each value from the 515 /// original loop, when scalarized, is represented by UF x VF scalar values 516 /// in the new unrolled loop, where UF is the unroll factor and VF is the 517 /// vectorization factor. 518 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 519 520 /// Set up the values of the IVs correctly when exiting the vector loop. 521 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 522 Value *CountRoundDown, Value *EndValue, 523 BasicBlock *MiddleBlock); 524 525 /// Create a new induction variable inside L. 526 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 527 Value *Step, Instruction *DL); 528 529 /// Handle all cross-iteration phis in the header. 530 void fixCrossIterationPHIs(); 531 532 /// Fix a first-order recurrence. This is the second phase of vectorizing 533 /// this phi node. 534 void fixFirstOrderRecurrence(PHINode *Phi); 535 536 /// Fix a reduction cross-iteration phi. This is the second phase of 537 /// vectorizing this phi node. 538 void fixReduction(PHINode *Phi); 539 540 /// Clear NSW/NUW flags from reduction instructions if necessary. 541 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc); 542 543 /// The Loop exit block may have single value PHI nodes with some 544 /// incoming value. While vectorizing we only handled real values 545 /// that were defined inside the loop and we should have one value for 546 /// each predecessor of its parent basic block. See PR14725. 547 void fixLCSSAPHIs(); 548 549 /// Iteratively sink the scalarized operands of a predicated instruction into 550 /// the block that was created for it. 551 void sinkScalarOperands(Instruction *PredInst); 552 553 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 554 /// represented as. 555 void truncateToMinimalBitwidths(); 556 557 /// Create a broadcast instruction. This method generates a broadcast 558 /// instruction (shuffle) for loop invariant values and for the induction 559 /// value. If this is the induction variable then we extend it to N, N+1, ... 560 /// this is needed because each iteration in the loop corresponds to a SIMD 561 /// element. 562 virtual Value *getBroadcastInstrs(Value *V); 563 564 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 565 /// to each vector element of Val. The sequence starts at StartIndex. 566 /// \p Opcode is relevant for FP induction variable. 567 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 568 Instruction::BinaryOps Opcode = 569 Instruction::BinaryOpsEnd); 570 571 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 572 /// variable on which to base the steps, \p Step is the size of the step, and 573 /// \p EntryVal is the value from the original loop that maps to the steps. 574 /// Note that \p EntryVal doesn't have to be an induction variable - it 575 /// can also be a truncate instruction. 576 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 577 const InductionDescriptor &ID); 578 579 /// Create a vector induction phi node based on an existing scalar one. \p 580 /// EntryVal is the value from the original loop that maps to the vector phi 581 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 582 /// truncate instruction, instead of widening the original IV, we widen a 583 /// version of the IV truncated to \p EntryVal's type. 584 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 585 Value *Step, Instruction *EntryVal); 586 587 /// Returns true if an instruction \p I should be scalarized instead of 588 /// vectorized for the chosen vectorization factor. 589 bool shouldScalarizeInstruction(Instruction *I) const; 590 591 /// Returns true if we should generate a scalar version of \p IV. 592 bool needsScalarInduction(Instruction *IV) const; 593 594 /// If there is a cast involved in the induction variable \p ID, which should 595 /// be ignored in the vectorized loop body, this function records the 596 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 597 /// cast. We had already proved that the casted Phi is equal to the uncasted 598 /// Phi in the vectorized loop (under a runtime guard), and therefore 599 /// there is no need to vectorize the cast - the same value can be used in the 600 /// vector loop for both the Phi and the cast. 601 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 602 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 603 /// 604 /// \p EntryVal is the value from the original loop that maps to the vector 605 /// phi node and is used to distinguish what is the IV currently being 606 /// processed - original one (if \p EntryVal is a phi corresponding to the 607 /// original IV) or the "newly-created" one based on the proof mentioned above 608 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 609 /// latter case \p EntryVal is a TruncInst and we must not record anything for 610 /// that IV, but it's error-prone to expect callers of this routine to care 611 /// about that, hence this explicit parameter. 612 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 613 const Instruction *EntryVal, 614 Value *VectorLoopValue, 615 unsigned Part, 616 unsigned Lane = UINT_MAX); 617 618 /// Generate a shuffle sequence that will reverse the vector Vec. 619 virtual Value *reverseVector(Value *Vec); 620 621 /// Returns (and creates if needed) the original loop trip count. 622 Value *getOrCreateTripCount(Loop *NewLoop); 623 624 /// Returns (and creates if needed) the trip count of the widened loop. 625 Value *getOrCreateVectorTripCount(Loop *NewLoop); 626 627 /// Returns a bitcasted value to the requested vector type. 628 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 629 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 630 const DataLayout &DL); 631 632 /// Emit a bypass check to see if the vector trip count is zero, including if 633 /// it overflows. 634 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 635 636 /// Emit a bypass check to see if all of the SCEV assumptions we've 637 /// had to make are correct. 638 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 639 640 /// Emit bypass checks to check any memory assumptions we may have made. 641 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 642 643 /// Compute the transformed value of Index at offset StartValue using step 644 /// StepValue. 645 /// For integer induction, returns StartValue + Index * StepValue. 646 /// For pointer induction, returns StartValue[Index * StepValue]. 647 /// FIXME: The newly created binary instructions should contain nsw/nuw 648 /// flags, which can be found from the original scalar operations. 649 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 650 const DataLayout &DL, 651 const InductionDescriptor &ID) const; 652 653 /// Add additional metadata to \p To that was not present on \p Orig. 654 /// 655 /// Currently this is used to add the noalias annotations based on the 656 /// inserted memchecks. Use this for instructions that are *cloned* into the 657 /// vector loop. 658 void addNewMetadata(Instruction *To, const Instruction *Orig); 659 660 /// Add metadata from one instruction to another. 661 /// 662 /// This includes both the original MDs from \p From and additional ones (\see 663 /// addNewMetadata). Use this for *newly created* instructions in the vector 664 /// loop. 665 void addMetadata(Instruction *To, Instruction *From); 666 667 /// Similar to the previous function but it adds the metadata to a 668 /// vector of instructions. 669 void addMetadata(ArrayRef<Value *> To, Instruction *From); 670 671 /// The original loop. 672 Loop *OrigLoop; 673 674 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 675 /// dynamic knowledge to simplify SCEV expressions and converts them to a 676 /// more usable form. 677 PredicatedScalarEvolution &PSE; 678 679 /// Loop Info. 680 LoopInfo *LI; 681 682 /// Dominator Tree. 683 DominatorTree *DT; 684 685 /// Alias Analysis. 686 AliasAnalysis *AA; 687 688 /// Target Library Info. 689 const TargetLibraryInfo *TLI; 690 691 /// Target Transform Info. 692 const TargetTransformInfo *TTI; 693 694 /// Assumption Cache. 695 AssumptionCache *AC; 696 697 /// Interface to emit optimization remarks. 698 OptimizationRemarkEmitter *ORE; 699 700 /// LoopVersioning. It's only set up (non-null) if memchecks were 701 /// used. 702 /// 703 /// This is currently only used to add no-alias metadata based on the 704 /// memchecks. The actually versioning is performed manually. 705 std::unique_ptr<LoopVersioning> LVer; 706 707 /// The vectorization SIMD factor to use. Each vector will have this many 708 /// vector elements. 709 unsigned VF; 710 711 /// The vectorization unroll factor to use. Each scalar is vectorized to this 712 /// many different vector instructions. 713 unsigned UF; 714 715 /// The builder that we use 716 IRBuilder<> Builder; 717 718 // --- Vectorization state --- 719 720 /// The vector-loop preheader. 721 BasicBlock *LoopVectorPreHeader; 722 723 /// The scalar-loop preheader. 724 BasicBlock *LoopScalarPreHeader; 725 726 /// Middle Block between the vector and the scalar. 727 BasicBlock *LoopMiddleBlock; 728 729 /// The ExitBlock of the scalar loop. 730 BasicBlock *LoopExitBlock; 731 732 /// The vector loop body. 733 BasicBlock *LoopVectorBody; 734 735 /// The scalar loop body. 736 BasicBlock *LoopScalarBody; 737 738 /// A list of all bypass blocks. The first block is the entry of the loop. 739 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 740 741 /// The new Induction variable which was added to the new block. 742 PHINode *Induction = nullptr; 743 744 /// The induction variable of the old basic block. 745 PHINode *OldInduction = nullptr; 746 747 /// Maps values from the original loop to their corresponding values in the 748 /// vectorized loop. A key value can map to either vector values, scalar 749 /// values or both kinds of values, depending on whether the key was 750 /// vectorized and scalarized. 751 VectorizerValueMap VectorLoopValueMap; 752 753 /// Store instructions that were predicated. 754 SmallVector<Instruction *, 4> PredicatedInstructions; 755 756 /// Trip count of the original loop. 757 Value *TripCount = nullptr; 758 759 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 760 Value *VectorTripCount = nullptr; 761 762 /// The legality analysis. 763 LoopVectorizationLegality *Legal; 764 765 /// The profitablity analysis. 766 LoopVectorizationCostModel *Cost; 767 768 // Record whether runtime checks are added. 769 bool AddedSafetyChecks = false; 770 771 // Holds the end values for each induction variable. We save the end values 772 // so we can later fix-up the external users of the induction variables. 773 DenseMap<PHINode *, Value *> IVEndValues; 774 775 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 776 // fixed up at the end of vector code generation. 777 SmallVector<PHINode *, 8> OrigPHIsToFix; 778 }; 779 780 class InnerLoopUnroller : public InnerLoopVectorizer { 781 public: 782 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 783 LoopInfo *LI, DominatorTree *DT, 784 const TargetLibraryInfo *TLI, 785 const TargetTransformInfo *TTI, AssumptionCache *AC, 786 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 787 LoopVectorizationLegality *LVL, 788 LoopVectorizationCostModel *CM) 789 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 790 UnrollFactor, LVL, CM) {} 791 792 private: 793 Value *getBroadcastInstrs(Value *V) override; 794 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 795 Instruction::BinaryOps Opcode = 796 Instruction::BinaryOpsEnd) override; 797 Value *reverseVector(Value *Vec) override; 798 }; 799 800 } // end namespace llvm 801 802 /// Look for a meaningful debug location on the instruction or it's 803 /// operands. 804 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 805 if (!I) 806 return I; 807 808 DebugLoc Empty; 809 if (I->getDebugLoc() != Empty) 810 return I; 811 812 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 813 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 814 if (OpInst->getDebugLoc() != Empty) 815 return OpInst; 816 } 817 818 return I; 819 } 820 821 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 822 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 823 const DILocation *DIL = Inst->getDebugLoc(); 824 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 825 !isa<DbgInfoIntrinsic>(Inst)) { 826 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF); 827 if (NewDIL) 828 B.SetCurrentDebugLocation(NewDIL.getValue()); 829 else 830 LLVM_DEBUG(dbgs() 831 << "Failed to create new discriminator: " 832 << DIL->getFilename() << " Line: " << DIL->getLine()); 833 } 834 else 835 B.SetCurrentDebugLocation(DIL); 836 } else 837 B.SetCurrentDebugLocation(DebugLoc()); 838 } 839 840 /// Write a record \p DebugMsg about vectorization failure to the debug 841 /// output stream. If \p I is passed, it is an instruction that prevents 842 /// vectorization. 843 #ifndef NDEBUG 844 static void debugVectorizationFailure(const StringRef DebugMsg, 845 Instruction *I) { 846 dbgs() << "LV: Not vectorizing: " << DebugMsg; 847 if (I != nullptr) 848 dbgs() << " " << *I; 849 else 850 dbgs() << '.'; 851 dbgs() << '\n'; 852 } 853 #endif 854 855 /// Create an analysis remark that explains why vectorization failed 856 /// 857 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 858 /// RemarkName is the identifier for the remark. If \p I is passed it is an 859 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 860 /// the location of the remark. \return the remark object that can be 861 /// streamed to. 862 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 863 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 864 Value *CodeRegion = TheLoop->getHeader(); 865 DebugLoc DL = TheLoop->getStartLoc(); 866 867 if (I) { 868 CodeRegion = I->getParent(); 869 // If there is no debug location attached to the instruction, revert back to 870 // using the loop's. 871 if (I->getDebugLoc()) 872 DL = I->getDebugLoc(); 873 } 874 875 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 876 R << "loop not vectorized: "; 877 return R; 878 } 879 880 namespace llvm { 881 882 void reportVectorizationFailure(const StringRef DebugMsg, 883 const StringRef OREMsg, const StringRef ORETag, 884 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 885 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 886 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 887 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 888 ORETag, TheLoop, I) << OREMsg); 889 } 890 891 } // end namespace llvm 892 893 #ifndef NDEBUG 894 /// \return string containing a file name and a line # for the given loop. 895 static std::string getDebugLocString(const Loop *L) { 896 std::string Result; 897 if (L) { 898 raw_string_ostream OS(Result); 899 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 900 LoopDbgLoc.print(OS); 901 else 902 // Just print the module name. 903 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 904 OS.flush(); 905 } 906 return Result; 907 } 908 #endif 909 910 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 911 const Instruction *Orig) { 912 // If the loop was versioned with memchecks, add the corresponding no-alias 913 // metadata. 914 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 915 LVer->annotateInstWithNoAlias(To, Orig); 916 } 917 918 void InnerLoopVectorizer::addMetadata(Instruction *To, 919 Instruction *From) { 920 propagateMetadata(To, From); 921 addNewMetadata(To, From); 922 } 923 924 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 925 Instruction *From) { 926 for (Value *V : To) { 927 if (Instruction *I = dyn_cast<Instruction>(V)) 928 addMetadata(I, From); 929 } 930 } 931 932 namespace llvm { 933 934 // Loop vectorization cost-model hints how the scalar epilogue loop should be 935 // lowered. 936 enum ScalarEpilogueLowering { 937 938 // The default: allowing scalar epilogues. 939 CM_ScalarEpilogueAllowed, 940 941 // Vectorization with OptForSize: don't allow epilogues. 942 CM_ScalarEpilogueNotAllowedOptSize, 943 944 // A special case of vectorisation with OptForSize: loops with a very small 945 // trip count are considered for vectorization under OptForSize, thereby 946 // making sure the cost of their loop body is dominant, free of runtime 947 // guards and scalar iteration overheads. 948 CM_ScalarEpilogueNotAllowedLowTripLoop, 949 950 // Loop hint predicate indicating an epilogue is undesired. 951 CM_ScalarEpilogueNotNeededUsePredicate 952 }; 953 954 /// LoopVectorizationCostModel - estimates the expected speedups due to 955 /// vectorization. 956 /// In many cases vectorization is not profitable. This can happen because of 957 /// a number of reasons. In this class we mainly attempt to predict the 958 /// expected speedup/slowdowns due to the supported instruction set. We use the 959 /// TargetTransformInfo to query the different backends for the cost of 960 /// different operations. 961 class LoopVectorizationCostModel { 962 public: 963 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 964 PredicatedScalarEvolution &PSE, LoopInfo *LI, 965 LoopVectorizationLegality *Legal, 966 const TargetTransformInfo &TTI, 967 const TargetLibraryInfo *TLI, DemandedBits *DB, 968 AssumptionCache *AC, 969 OptimizationRemarkEmitter *ORE, const Function *F, 970 const LoopVectorizeHints *Hints, 971 InterleavedAccessInfo &IAI) 972 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 973 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 974 Hints(Hints), InterleaveInfo(IAI) {} 975 976 /// \return An upper bound for the vectorization factor, or None if 977 /// vectorization and interleaving should be avoided up front. 978 Optional<unsigned> computeMaxVF(); 979 980 /// \return True if runtime checks are required for vectorization, and false 981 /// otherwise. 982 bool runtimeChecksRequired(); 983 984 /// \return The most profitable vectorization factor and the cost of that VF. 985 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 986 /// then this vectorization factor will be selected if vectorization is 987 /// possible. 988 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 989 990 /// Setup cost-based decisions for user vectorization factor. 991 void selectUserVectorizationFactor(unsigned UserVF) { 992 collectUniformsAndScalars(UserVF); 993 collectInstsToScalarize(UserVF); 994 } 995 996 /// \return The size (in bits) of the smallest and widest types in the code 997 /// that needs to be vectorized. We ignore values that remain scalar such as 998 /// 64 bit loop indices. 999 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1000 1001 /// \return The desired interleave count. 1002 /// If interleave count has been specified by metadata it will be returned. 1003 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1004 /// are the selected vectorization factor and the cost of the selected VF. 1005 unsigned selectInterleaveCount(unsigned VF, unsigned LoopCost); 1006 1007 /// Memory access instruction may be vectorized in more than one way. 1008 /// Form of instruction after vectorization depends on cost. 1009 /// This function takes cost-based decisions for Load/Store instructions 1010 /// and collects them in a map. This decisions map is used for building 1011 /// the lists of loop-uniform and loop-scalar instructions. 1012 /// The calculated cost is saved with widening decision in order to 1013 /// avoid redundant calculations. 1014 void setCostBasedWideningDecision(unsigned VF); 1015 1016 /// A struct that represents some properties of the register usage 1017 /// of a loop. 1018 struct RegisterUsage { 1019 /// Holds the number of loop invariant values that are used in the loop. 1020 /// The key is ClassID of target-provided register class. 1021 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1022 /// Holds the maximum number of concurrent live intervals in the loop. 1023 /// The key is ClassID of target-provided register class. 1024 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1025 }; 1026 1027 /// \return Returns information about the register usages of the loop for the 1028 /// given vectorization factors. 1029 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1030 1031 /// Collect values we want to ignore in the cost model. 1032 void collectValuesToIgnore(); 1033 1034 /// \returns The smallest bitwidth each instruction can be represented with. 1035 /// The vector equivalents of these instructions should be truncated to this 1036 /// type. 1037 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1038 return MinBWs; 1039 } 1040 1041 /// \returns True if it is more profitable to scalarize instruction \p I for 1042 /// vectorization factor \p VF. 1043 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1044 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1045 1046 // Cost model is not run in the VPlan-native path - return conservative 1047 // result until this changes. 1048 if (EnableVPlanNativePath) 1049 return false; 1050 1051 auto Scalars = InstsToScalarize.find(VF); 1052 assert(Scalars != InstsToScalarize.end() && 1053 "VF not yet analyzed for scalarization profitability"); 1054 return Scalars->second.find(I) != Scalars->second.end(); 1055 } 1056 1057 /// Returns true if \p I is known to be uniform after vectorization. 1058 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1059 if (VF == 1) 1060 return true; 1061 1062 // Cost model is not run in the VPlan-native path - return conservative 1063 // result until this changes. 1064 if (EnableVPlanNativePath) 1065 return false; 1066 1067 auto UniformsPerVF = Uniforms.find(VF); 1068 assert(UniformsPerVF != Uniforms.end() && 1069 "VF not yet analyzed for uniformity"); 1070 return UniformsPerVF->second.find(I) != UniformsPerVF->second.end(); 1071 } 1072 1073 /// Returns true if \p I is known to be scalar after vectorization. 1074 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1075 if (VF == 1) 1076 return true; 1077 1078 // Cost model is not run in the VPlan-native path - return conservative 1079 // result until this changes. 1080 if (EnableVPlanNativePath) 1081 return false; 1082 1083 auto ScalarsPerVF = Scalars.find(VF); 1084 assert(ScalarsPerVF != Scalars.end() && 1085 "Scalar values are not calculated for VF"); 1086 return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end(); 1087 } 1088 1089 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1090 /// for vectorization factor \p VF. 1091 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1092 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 1093 !isProfitableToScalarize(I, VF) && 1094 !isScalarAfterVectorization(I, VF); 1095 } 1096 1097 /// Decision that was taken during cost calculation for memory instruction. 1098 enum InstWidening { 1099 CM_Unknown, 1100 CM_Widen, // For consecutive accesses with stride +1. 1101 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1102 CM_Interleave, 1103 CM_GatherScatter, 1104 CM_Scalarize 1105 }; 1106 1107 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1108 /// instruction \p I and vector width \p VF. 1109 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1110 unsigned Cost) { 1111 assert(VF >= 2 && "Expected VF >=2"); 1112 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1113 } 1114 1115 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1116 /// interleaving group \p Grp and vector width \p VF. 1117 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, 1118 InstWidening W, unsigned Cost) { 1119 assert(VF >= 2 && "Expected VF >=2"); 1120 /// Broadcast this decicion to all instructions inside the group. 1121 /// But the cost will be assigned to one instruction only. 1122 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1123 if (auto *I = Grp->getMember(i)) { 1124 if (Grp->getInsertPos() == I) 1125 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1126 else 1127 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1128 } 1129 } 1130 } 1131 1132 /// Return the cost model decision for the given instruction \p I and vector 1133 /// width \p VF. Return CM_Unknown if this instruction did not pass 1134 /// through the cost modeling. 1135 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1136 assert(VF >= 2 && "Expected VF >=2"); 1137 1138 // Cost model is not run in the VPlan-native path - return conservative 1139 // result until this changes. 1140 if (EnableVPlanNativePath) 1141 return CM_GatherScatter; 1142 1143 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1144 auto Itr = WideningDecisions.find(InstOnVF); 1145 if (Itr == WideningDecisions.end()) 1146 return CM_Unknown; 1147 return Itr->second.first; 1148 } 1149 1150 /// Return the vectorization cost for the given instruction \p I and vector 1151 /// width \p VF. 1152 unsigned getWideningCost(Instruction *I, unsigned VF) { 1153 assert(VF >= 2 && "Expected VF >=2"); 1154 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1155 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1156 "The cost is not calculated"); 1157 return WideningDecisions[InstOnVF].second; 1158 } 1159 1160 /// Return True if instruction \p I is an optimizable truncate whose operand 1161 /// is an induction variable. Such a truncate will be removed by adding a new 1162 /// induction variable with the destination type. 1163 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1164 // If the instruction is not a truncate, return false. 1165 auto *Trunc = dyn_cast<TruncInst>(I); 1166 if (!Trunc) 1167 return false; 1168 1169 // Get the source and destination types of the truncate. 1170 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1171 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1172 1173 // If the truncate is free for the given types, return false. Replacing a 1174 // free truncate with an induction variable would add an induction variable 1175 // update instruction to each iteration of the loop. We exclude from this 1176 // check the primary induction variable since it will need an update 1177 // instruction regardless. 1178 Value *Op = Trunc->getOperand(0); 1179 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1180 return false; 1181 1182 // If the truncated value is not an induction variable, return false. 1183 return Legal->isInductionPhi(Op); 1184 } 1185 1186 /// Collects the instructions to scalarize for each predicated instruction in 1187 /// the loop. 1188 void collectInstsToScalarize(unsigned VF); 1189 1190 /// Collect Uniform and Scalar values for the given \p VF. 1191 /// The sets depend on CM decision for Load/Store instructions 1192 /// that may be vectorized as interleave, gather-scatter or scalarized. 1193 void collectUniformsAndScalars(unsigned VF) { 1194 // Do the analysis once. 1195 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1196 return; 1197 setCostBasedWideningDecision(VF); 1198 collectLoopUniforms(VF); 1199 collectLoopScalars(VF); 1200 } 1201 1202 /// Returns true if the target machine supports masked store operation 1203 /// for the given \p DataType and kind of access to \p Ptr. 1204 bool isLegalMaskedStore(Type *DataType, Value *Ptr, MaybeAlign Alignment) { 1205 return Legal->isConsecutivePtr(Ptr) && 1206 TTI.isLegalMaskedStore(DataType, Alignment); 1207 } 1208 1209 /// Returns true if the target machine supports masked load operation 1210 /// for the given \p DataType and kind of access to \p Ptr. 1211 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, MaybeAlign Alignment) { 1212 return Legal->isConsecutivePtr(Ptr) && 1213 TTI.isLegalMaskedLoad(DataType, Alignment); 1214 } 1215 1216 /// Returns true if the target machine supports masked scatter operation 1217 /// for the given \p DataType. 1218 bool isLegalMaskedScatter(Type *DataType, MaybeAlign Alignment) { 1219 return TTI.isLegalMaskedScatter(DataType, Alignment); 1220 } 1221 1222 /// Returns true if the target machine supports masked gather operation 1223 /// for the given \p DataType. 1224 bool isLegalMaskedGather(Type *DataType, MaybeAlign Alignment) { 1225 return TTI.isLegalMaskedGather(DataType, Alignment); 1226 } 1227 1228 /// Returns true if the target machine can represent \p V as a masked gather 1229 /// or scatter operation. 1230 bool isLegalGatherOrScatter(Value *V) { 1231 bool LI = isa<LoadInst>(V); 1232 bool SI = isa<StoreInst>(V); 1233 if (!LI && !SI) 1234 return false; 1235 auto *Ty = getMemInstValueType(V); 1236 MaybeAlign Align = getLoadStoreAlignment(V); 1237 return (LI && isLegalMaskedGather(Ty, Align)) || 1238 (SI && isLegalMaskedScatter(Ty, Align)); 1239 } 1240 1241 /// Returns true if \p I is an instruction that will be scalarized with 1242 /// predication. Such instructions include conditional stores and 1243 /// instructions that may divide by zero. 1244 /// If a non-zero VF has been calculated, we check if I will be scalarized 1245 /// predication for that VF. 1246 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1247 1248 // Returns true if \p I is an instruction that will be predicated either 1249 // through scalar predication or masked load/store or masked gather/scatter. 1250 // Superset of instructions that return true for isScalarWithPredication. 1251 bool isPredicatedInst(Instruction *I) { 1252 if (!blockNeedsPredication(I->getParent())) 1253 return false; 1254 // Loads and stores that need some form of masked operation are predicated 1255 // instructions. 1256 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1257 return Legal->isMaskRequired(I); 1258 return isScalarWithPredication(I); 1259 } 1260 1261 /// Returns true if \p I is a memory instruction with consecutive memory 1262 /// access that can be widened. 1263 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1264 1265 /// Returns true if \p I is a memory instruction in an interleaved-group 1266 /// of memory accesses that can be vectorized with wide vector loads/stores 1267 /// and shuffles. 1268 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1269 1270 /// Check if \p Instr belongs to any interleaved access group. 1271 bool isAccessInterleaved(Instruction *Instr) { 1272 return InterleaveInfo.isInterleaved(Instr); 1273 } 1274 1275 /// Get the interleaved access group that \p Instr belongs to. 1276 const InterleaveGroup<Instruction> * 1277 getInterleavedAccessGroup(Instruction *Instr) { 1278 return InterleaveInfo.getInterleaveGroup(Instr); 1279 } 1280 1281 /// Returns true if an interleaved group requires a scalar iteration 1282 /// to handle accesses with gaps, and there is nothing preventing us from 1283 /// creating a scalar epilogue. 1284 bool requiresScalarEpilogue() const { 1285 return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue(); 1286 } 1287 1288 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1289 /// loop hint annotation. 1290 bool isScalarEpilogueAllowed() const { 1291 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1292 } 1293 1294 /// Returns true if all loop blocks should be masked to fold tail loop. 1295 bool foldTailByMasking() const { return FoldTailByMasking; } 1296 1297 bool blockNeedsPredication(BasicBlock *BB) { 1298 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1299 } 1300 1301 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1302 /// with factor VF. Return the cost of the instruction, including 1303 /// scalarization overhead if it's needed. 1304 unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF); 1305 1306 /// Estimate cost of a call instruction CI if it were vectorized with factor 1307 /// VF. Return the cost of the instruction, including scalarization overhead 1308 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1309 /// scalarized - 1310 /// i.e. either vector version isn't available, or is too expensive. 1311 unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize); 1312 1313 private: 1314 unsigned NumPredStores = 0; 1315 1316 /// \return An upper bound for the vectorization factor, larger than zero. 1317 /// One is returned if vectorization should best be avoided due to cost. 1318 unsigned computeFeasibleMaxVF(unsigned ConstTripCount); 1319 1320 /// The vectorization cost is a combination of the cost itself and a boolean 1321 /// indicating whether any of the contributing operations will actually 1322 /// operate on 1323 /// vector values after type legalization in the backend. If this latter value 1324 /// is 1325 /// false, then all operations will be scalarized (i.e. no vectorization has 1326 /// actually taken place). 1327 using VectorizationCostTy = std::pair<unsigned, bool>; 1328 1329 /// Returns the expected execution cost. The unit of the cost does 1330 /// not matter because we use the 'cost' units to compare different 1331 /// vector widths. The cost that is returned is *not* normalized by 1332 /// the factor width. 1333 VectorizationCostTy expectedCost(unsigned VF); 1334 1335 /// Returns the execution time cost of an instruction for a given vector 1336 /// width. Vector width of one means scalar. 1337 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1338 1339 /// The cost-computation logic from getInstructionCost which provides 1340 /// the vector type as an output parameter. 1341 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1342 1343 /// Calculate vectorization cost of memory instruction \p I. 1344 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1345 1346 /// The cost computation for scalarized memory instruction. 1347 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1348 1349 /// The cost computation for interleaving group of memory instructions. 1350 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1351 1352 /// The cost computation for Gather/Scatter instruction. 1353 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1354 1355 /// The cost computation for widening instruction \p I with consecutive 1356 /// memory access. 1357 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1358 1359 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1360 /// Load: scalar load + broadcast. 1361 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1362 /// element) 1363 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1364 1365 /// Estimate the overhead of scalarizing an instruction. This is a 1366 /// convenience wrapper for the type-based getScalarizationOverhead API. 1367 unsigned getScalarizationOverhead(Instruction *I, unsigned VF); 1368 1369 /// Returns whether the instruction is a load or store and will be a emitted 1370 /// as a vector operation. 1371 bool isConsecutiveLoadOrStore(Instruction *I); 1372 1373 /// Returns true if an artificially high cost for emulated masked memrefs 1374 /// should be used. 1375 bool useEmulatedMaskMemRefHack(Instruction *I); 1376 1377 /// Map of scalar integer values to the smallest bitwidth they can be legally 1378 /// represented as. The vector equivalents of these values should be truncated 1379 /// to this type. 1380 MapVector<Instruction *, uint64_t> MinBWs; 1381 1382 /// A type representing the costs for instructions if they were to be 1383 /// scalarized rather than vectorized. The entries are Instruction-Cost 1384 /// pairs. 1385 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1386 1387 /// A set containing all BasicBlocks that are known to present after 1388 /// vectorization as a predicated block. 1389 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1390 1391 /// Records whether it is allowed to have the original scalar loop execute at 1392 /// least once. This may be needed as a fallback loop in case runtime 1393 /// aliasing/dependence checks fail, or to handle the tail/remainder 1394 /// iterations when the trip count is unknown or doesn't divide by the VF, 1395 /// or as a peel-loop to handle gaps in interleave-groups. 1396 /// Under optsize and when the trip count is very small we don't allow any 1397 /// iterations to execute in the scalar loop. 1398 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1399 1400 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1401 bool FoldTailByMasking = false; 1402 1403 /// A map holding scalar costs for different vectorization factors. The 1404 /// presence of a cost for an instruction in the mapping indicates that the 1405 /// instruction will be scalarized when vectorizing with the associated 1406 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1407 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1408 1409 /// Holds the instructions known to be uniform after vectorization. 1410 /// The data is collected per VF. 1411 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1412 1413 /// Holds the instructions known to be scalar after vectorization. 1414 /// The data is collected per VF. 1415 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1416 1417 /// Holds the instructions (address computations) that are forced to be 1418 /// scalarized. 1419 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1420 1421 /// Returns the expected difference in cost from scalarizing the expression 1422 /// feeding a predicated instruction \p PredInst. The instructions to 1423 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1424 /// non-negative return value implies the expression will be scalarized. 1425 /// Currently, only single-use chains are considered for scalarization. 1426 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1427 unsigned VF); 1428 1429 /// Collect the instructions that are uniform after vectorization. An 1430 /// instruction is uniform if we represent it with a single scalar value in 1431 /// the vectorized loop corresponding to each vector iteration. Examples of 1432 /// uniform instructions include pointer operands of consecutive or 1433 /// interleaved memory accesses. Note that although uniformity implies an 1434 /// instruction will be scalar, the reverse is not true. In general, a 1435 /// scalarized instruction will be represented by VF scalar values in the 1436 /// vectorized loop, each corresponding to an iteration of the original 1437 /// scalar loop. 1438 void collectLoopUniforms(unsigned VF); 1439 1440 /// Collect the instructions that are scalar after vectorization. An 1441 /// instruction is scalar if it is known to be uniform or will be scalarized 1442 /// during vectorization. Non-uniform scalarized instructions will be 1443 /// represented by VF values in the vectorized loop, each corresponding to an 1444 /// iteration of the original scalar loop. 1445 void collectLoopScalars(unsigned VF); 1446 1447 /// Keeps cost model vectorization decision and cost for instructions. 1448 /// Right now it is used for memory instructions only. 1449 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1450 std::pair<InstWidening, unsigned>>; 1451 1452 DecisionList WideningDecisions; 1453 1454 /// Returns true if \p V is expected to be vectorized and it needs to be 1455 /// extracted. 1456 bool needsExtract(Value *V, unsigned VF) const { 1457 Instruction *I = dyn_cast<Instruction>(V); 1458 if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I)) 1459 return false; 1460 1461 // Assume we can vectorize V (and hence we need extraction) if the 1462 // scalars are not computed yet. This can happen, because it is called 1463 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1464 // the scalars are collected. That should be a safe assumption in most 1465 // cases, because we check if the operands have vectorizable types 1466 // beforehand in LoopVectorizationLegality. 1467 return Scalars.find(VF) == Scalars.end() || 1468 !isScalarAfterVectorization(I, VF); 1469 }; 1470 1471 /// Returns a range containing only operands needing to be extracted. 1472 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1473 unsigned VF) { 1474 return SmallVector<Value *, 4>(make_filter_range( 1475 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1476 } 1477 1478 public: 1479 /// The loop that we evaluate. 1480 Loop *TheLoop; 1481 1482 /// Predicated scalar evolution analysis. 1483 PredicatedScalarEvolution &PSE; 1484 1485 /// Loop Info analysis. 1486 LoopInfo *LI; 1487 1488 /// Vectorization legality. 1489 LoopVectorizationLegality *Legal; 1490 1491 /// Vector target information. 1492 const TargetTransformInfo &TTI; 1493 1494 /// Target Library Info. 1495 const TargetLibraryInfo *TLI; 1496 1497 /// Demanded bits analysis. 1498 DemandedBits *DB; 1499 1500 /// Assumption cache. 1501 AssumptionCache *AC; 1502 1503 /// Interface to emit optimization remarks. 1504 OptimizationRemarkEmitter *ORE; 1505 1506 const Function *TheFunction; 1507 1508 /// Loop Vectorize Hint. 1509 const LoopVectorizeHints *Hints; 1510 1511 /// The interleave access information contains groups of interleaved accesses 1512 /// with the same stride and close to each other. 1513 InterleavedAccessInfo &InterleaveInfo; 1514 1515 /// Values to ignore in the cost model. 1516 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1517 1518 /// Values to ignore in the cost model when VF > 1. 1519 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1520 }; 1521 1522 } // end namespace llvm 1523 1524 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1525 // vectorization. The loop needs to be annotated with #pragma omp simd 1526 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1527 // vector length information is not provided, vectorization is not considered 1528 // explicit. Interleave hints are not allowed either. These limitations will be 1529 // relaxed in the future. 1530 // Please, note that we are currently forced to abuse the pragma 'clang 1531 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1532 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1533 // provides *explicit vectorization hints* (LV can bypass legal checks and 1534 // assume that vectorization is legal). However, both hints are implemented 1535 // using the same metadata (llvm.loop.vectorize, processed by 1536 // LoopVectorizeHints). This will be fixed in the future when the native IR 1537 // representation for pragma 'omp simd' is introduced. 1538 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1539 OptimizationRemarkEmitter *ORE) { 1540 assert(!OuterLp->empty() && "This is not an outer loop"); 1541 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1542 1543 // Only outer loops with an explicit vectorization hint are supported. 1544 // Unannotated outer loops are ignored. 1545 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1546 return false; 1547 1548 Function *Fn = OuterLp->getHeader()->getParent(); 1549 if (!Hints.allowVectorization(Fn, OuterLp, 1550 true /*VectorizeOnlyWhenForced*/)) { 1551 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1552 return false; 1553 } 1554 1555 if (Hints.getInterleave() > 1) { 1556 // TODO: Interleave support is future work. 1557 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1558 "outer loops.\n"); 1559 Hints.emitRemarkWithHints(); 1560 return false; 1561 } 1562 1563 return true; 1564 } 1565 1566 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1567 OptimizationRemarkEmitter *ORE, 1568 SmallVectorImpl<Loop *> &V) { 1569 // Collect inner loops and outer loops without irreducible control flow. For 1570 // now, only collect outer loops that have explicit vectorization hints. If we 1571 // are stress testing the VPlan H-CFG construction, we collect the outermost 1572 // loop of every loop nest. 1573 if (L.empty() || VPlanBuildStressTest || 1574 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1575 LoopBlocksRPO RPOT(&L); 1576 RPOT.perform(LI); 1577 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1578 V.push_back(&L); 1579 // TODO: Collect inner loops inside marked outer loops in case 1580 // vectorization fails for the outer loop. Do not invoke 1581 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1582 // already known to be reducible. We can use an inherited attribute for 1583 // that. 1584 return; 1585 } 1586 } 1587 for (Loop *InnerL : L) 1588 collectSupportedLoops(*InnerL, LI, ORE, V); 1589 } 1590 1591 namespace { 1592 1593 /// The LoopVectorize Pass. 1594 struct LoopVectorize : public FunctionPass { 1595 /// Pass identification, replacement for typeid 1596 static char ID; 1597 1598 LoopVectorizePass Impl; 1599 1600 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1601 bool VectorizeOnlyWhenForced = false) 1602 : FunctionPass(ID) { 1603 Impl.InterleaveOnlyWhenForced = InterleaveOnlyWhenForced; 1604 Impl.VectorizeOnlyWhenForced = VectorizeOnlyWhenForced; 1605 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1606 } 1607 1608 bool runOnFunction(Function &F) override { 1609 if (skipFunction(F)) 1610 return false; 1611 1612 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1613 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1614 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1615 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1616 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1617 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1618 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1619 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1620 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1621 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1622 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1623 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1624 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1625 1626 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1627 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1628 1629 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1630 GetLAA, *ORE, PSI); 1631 } 1632 1633 void getAnalysisUsage(AnalysisUsage &AU) const override { 1634 AU.addRequired<AssumptionCacheTracker>(); 1635 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1636 AU.addRequired<DominatorTreeWrapperPass>(); 1637 AU.addRequired<LoopInfoWrapperPass>(); 1638 AU.addRequired<ScalarEvolutionWrapperPass>(); 1639 AU.addRequired<TargetTransformInfoWrapperPass>(); 1640 AU.addRequired<AAResultsWrapperPass>(); 1641 AU.addRequired<LoopAccessLegacyAnalysis>(); 1642 AU.addRequired<DemandedBitsWrapperPass>(); 1643 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1644 AU.addRequired<InjectTLIMappingsLegacy>(); 1645 1646 // We currently do not preserve loopinfo/dominator analyses with outer loop 1647 // vectorization. Until this is addressed, mark these analyses as preserved 1648 // only for non-VPlan-native path. 1649 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1650 if (!EnableVPlanNativePath) { 1651 AU.addPreserved<LoopInfoWrapperPass>(); 1652 AU.addPreserved<DominatorTreeWrapperPass>(); 1653 } 1654 1655 AU.addPreserved<BasicAAWrapperPass>(); 1656 AU.addPreserved<GlobalsAAWrapperPass>(); 1657 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1658 } 1659 }; 1660 1661 } // end anonymous namespace 1662 1663 //===----------------------------------------------------------------------===// 1664 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1665 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1666 //===----------------------------------------------------------------------===// 1667 1668 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1669 // We need to place the broadcast of invariant variables outside the loop, 1670 // but only if it's proven safe to do so. Else, broadcast will be inside 1671 // vector loop body. 1672 Instruction *Instr = dyn_cast<Instruction>(V); 1673 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1674 (!Instr || 1675 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1676 // Place the code for broadcasting invariant variables in the new preheader. 1677 IRBuilder<>::InsertPointGuard Guard(Builder); 1678 if (SafeToHoist) 1679 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1680 1681 // Broadcast the scalar into all locations in the vector. 1682 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1683 1684 return Shuf; 1685 } 1686 1687 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1688 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1689 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1690 "Expected either an induction phi-node or a truncate of it!"); 1691 Value *Start = II.getStartValue(); 1692 1693 // Construct the initial value of the vector IV in the vector loop preheader 1694 auto CurrIP = Builder.saveIP(); 1695 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1696 if (isa<TruncInst>(EntryVal)) { 1697 assert(Start->getType()->isIntegerTy() && 1698 "Truncation requires an integer type"); 1699 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1700 Step = Builder.CreateTrunc(Step, TruncType); 1701 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1702 } 1703 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1704 Value *SteppedStart = 1705 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1706 1707 // We create vector phi nodes for both integer and floating-point induction 1708 // variables. Here, we determine the kind of arithmetic we will perform. 1709 Instruction::BinaryOps AddOp; 1710 Instruction::BinaryOps MulOp; 1711 if (Step->getType()->isIntegerTy()) { 1712 AddOp = Instruction::Add; 1713 MulOp = Instruction::Mul; 1714 } else { 1715 AddOp = II.getInductionOpcode(); 1716 MulOp = Instruction::FMul; 1717 } 1718 1719 // Multiply the vectorization factor by the step using integer or 1720 // floating-point arithmetic as appropriate. 1721 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1722 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1723 1724 // Create a vector splat to use in the induction update. 1725 // 1726 // FIXME: If the step is non-constant, we create the vector splat with 1727 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1728 // handle a constant vector splat. 1729 Value *SplatVF = isa<Constant>(Mul) 1730 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1731 : Builder.CreateVectorSplat(VF, Mul); 1732 Builder.restoreIP(CurrIP); 1733 1734 // We may need to add the step a number of times, depending on the unroll 1735 // factor. The last of those goes into the PHI. 1736 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1737 &*LoopVectorBody->getFirstInsertionPt()); 1738 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1739 Instruction *LastInduction = VecInd; 1740 for (unsigned Part = 0; Part < UF; ++Part) { 1741 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1742 1743 if (isa<TruncInst>(EntryVal)) 1744 addMetadata(LastInduction, EntryVal); 1745 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1746 1747 LastInduction = cast<Instruction>(addFastMathFlag( 1748 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1749 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1750 } 1751 1752 // Move the last step to the end of the latch block. This ensures consistent 1753 // placement of all induction updates. 1754 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1755 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1756 auto *ICmp = cast<Instruction>(Br->getCondition()); 1757 LastInduction->moveBefore(ICmp); 1758 LastInduction->setName("vec.ind.next"); 1759 1760 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1761 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1762 } 1763 1764 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1765 return Cost->isScalarAfterVectorization(I, VF) || 1766 Cost->isProfitableToScalarize(I, VF); 1767 } 1768 1769 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1770 if (shouldScalarizeInstruction(IV)) 1771 return true; 1772 auto isScalarInst = [&](User *U) -> bool { 1773 auto *I = cast<Instruction>(U); 1774 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1775 }; 1776 return llvm::any_of(IV->users(), isScalarInst); 1777 } 1778 1779 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1780 const InductionDescriptor &ID, const Instruction *EntryVal, 1781 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1782 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1783 "Expected either an induction phi-node or a truncate of it!"); 1784 1785 // This induction variable is not the phi from the original loop but the 1786 // newly-created IV based on the proof that casted Phi is equal to the 1787 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1788 // re-uses the same InductionDescriptor that original IV uses but we don't 1789 // have to do any recording in this case - that is done when original IV is 1790 // processed. 1791 if (isa<TruncInst>(EntryVal)) 1792 return; 1793 1794 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1795 if (Casts.empty()) 1796 return; 1797 // Only the first Cast instruction in the Casts vector is of interest. 1798 // The rest of the Casts (if exist) have no uses outside the 1799 // induction update chain itself. 1800 Instruction *CastInst = *Casts.begin(); 1801 if (Lane < UINT_MAX) 1802 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1803 else 1804 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1805 } 1806 1807 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1808 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1809 "Primary induction variable must have an integer type"); 1810 1811 auto II = Legal->getInductionVars()->find(IV); 1812 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 1813 1814 auto ID = II->second; 1815 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1816 1817 // The scalar value to broadcast. This will be derived from the canonical 1818 // induction variable. 1819 Value *ScalarIV = nullptr; 1820 1821 // The value from the original loop to which we are mapping the new induction 1822 // variable. 1823 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1824 1825 // True if we have vectorized the induction variable. 1826 auto VectorizedIV = false; 1827 1828 // Determine if we want a scalar version of the induction variable. This is 1829 // true if the induction variable itself is not widened, or if it has at 1830 // least one user in the loop that is not widened. 1831 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 1832 1833 // Generate code for the induction step. Note that induction steps are 1834 // required to be loop-invariant 1835 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 1836 "Induction step should be loop invariant"); 1837 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1838 Value *Step = nullptr; 1839 if (PSE.getSE()->isSCEVable(IV->getType())) { 1840 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1841 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 1842 LoopVectorPreHeader->getTerminator()); 1843 } else { 1844 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 1845 } 1846 1847 // Try to create a new independent vector induction variable. If we can't 1848 // create the phi node, we will splat the scalar induction variable in each 1849 // loop iteration. 1850 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 1851 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1852 VectorizedIV = true; 1853 } 1854 1855 // If we haven't yet vectorized the induction variable, or if we will create 1856 // a scalar one, we need to define the scalar induction variable and step 1857 // values. If we were given a truncation type, truncate the canonical 1858 // induction variable and step. Otherwise, derive these values from the 1859 // induction descriptor. 1860 if (!VectorizedIV || NeedsScalarIV) { 1861 ScalarIV = Induction; 1862 if (IV != OldInduction) { 1863 ScalarIV = IV->getType()->isIntegerTy() 1864 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1865 : Builder.CreateCast(Instruction::SIToFP, Induction, 1866 IV->getType()); 1867 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1868 ScalarIV->setName("offset.idx"); 1869 } 1870 if (Trunc) { 1871 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1872 assert(Step->getType()->isIntegerTy() && 1873 "Truncation requires an integer step"); 1874 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1875 Step = Builder.CreateTrunc(Step, TruncType); 1876 } 1877 } 1878 1879 // If we haven't yet vectorized the induction variable, splat the scalar 1880 // induction variable, and build the necessary step vectors. 1881 // TODO: Don't do it unless the vectorized IV is really required. 1882 if (!VectorizedIV) { 1883 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1884 for (unsigned Part = 0; Part < UF; ++Part) { 1885 Value *EntryPart = 1886 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1887 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1888 if (Trunc) 1889 addMetadata(EntryPart, Trunc); 1890 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1891 } 1892 } 1893 1894 // If an induction variable is only used for counting loop iterations or 1895 // calculating addresses, it doesn't need to be widened. Create scalar steps 1896 // that can be used by instructions we will later scalarize. Note that the 1897 // addition of the scalar steps will not increase the number of instructions 1898 // in the loop in the common case prior to InstCombine. We will be trading 1899 // one vector extract for each scalar step. 1900 if (NeedsScalarIV) 1901 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1902 } 1903 1904 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1905 Instruction::BinaryOps BinOp) { 1906 // Create and check the types. 1907 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1908 int VLen = Val->getType()->getVectorNumElements(); 1909 1910 Type *STy = Val->getType()->getScalarType(); 1911 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1912 "Induction Step must be an integer or FP"); 1913 assert(Step->getType() == STy && "Step has wrong type"); 1914 1915 SmallVector<Constant *, 8> Indices; 1916 1917 if (STy->isIntegerTy()) { 1918 // Create a vector of consecutive numbers from zero to VF. 1919 for (int i = 0; i < VLen; ++i) 1920 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1921 1922 // Add the consecutive indices to the vector value. 1923 Constant *Cv = ConstantVector::get(Indices); 1924 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1925 Step = Builder.CreateVectorSplat(VLen, Step); 1926 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1927 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1928 // which can be found from the original scalar operations. 1929 Step = Builder.CreateMul(Cv, Step); 1930 return Builder.CreateAdd(Val, Step, "induction"); 1931 } 1932 1933 // Floating point induction. 1934 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1935 "Binary Opcode should be specified for FP induction"); 1936 // Create a vector of consecutive numbers from zero to VF. 1937 for (int i = 0; i < VLen; ++i) 1938 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1939 1940 // Add the consecutive indices to the vector value. 1941 Constant *Cv = ConstantVector::get(Indices); 1942 1943 Step = Builder.CreateVectorSplat(VLen, Step); 1944 1945 // Floating point operations had to be 'fast' to enable the induction. 1946 FastMathFlags Flags; 1947 Flags.setFast(); 1948 1949 Value *MulOp = Builder.CreateFMul(Cv, Step); 1950 if (isa<Instruction>(MulOp)) 1951 // Have to check, MulOp may be a constant 1952 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1953 1954 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1955 if (isa<Instruction>(BOp)) 1956 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1957 return BOp; 1958 } 1959 1960 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1961 Instruction *EntryVal, 1962 const InductionDescriptor &ID) { 1963 // We shouldn't have to build scalar steps if we aren't vectorizing. 1964 assert(VF > 1 && "VF should be greater than one"); 1965 1966 // Get the value type and ensure it and the step have the same integer type. 1967 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1968 assert(ScalarIVTy == Step->getType() && 1969 "Val and Step should have the same type"); 1970 1971 // We build scalar steps for both integer and floating-point induction 1972 // variables. Here, we determine the kind of arithmetic we will perform. 1973 Instruction::BinaryOps AddOp; 1974 Instruction::BinaryOps MulOp; 1975 if (ScalarIVTy->isIntegerTy()) { 1976 AddOp = Instruction::Add; 1977 MulOp = Instruction::Mul; 1978 } else { 1979 AddOp = ID.getInductionOpcode(); 1980 MulOp = Instruction::FMul; 1981 } 1982 1983 // Determine the number of scalars we need to generate for each unroll 1984 // iteration. If EntryVal is uniform, we only need to generate the first 1985 // lane. Otherwise, we generate all VF values. 1986 unsigned Lanes = 1987 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 1988 : VF; 1989 // Compute the scalar steps and save the results in VectorLoopValueMap. 1990 for (unsigned Part = 0; Part < UF; ++Part) { 1991 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 1992 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 1993 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 1994 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 1995 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 1996 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 1997 } 1998 } 1999 } 2000 2001 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2002 assert(V != Induction && "The new induction variable should not be used."); 2003 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2004 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2005 2006 // If we have a stride that is replaced by one, do it here. Defer this for 2007 // the VPlan-native path until we start running Legal checks in that path. 2008 if (!EnableVPlanNativePath && Legal->hasStride(V)) 2009 V = ConstantInt::get(V->getType(), 1); 2010 2011 // If we have a vector mapped to this value, return it. 2012 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2013 return VectorLoopValueMap.getVectorValue(V, Part); 2014 2015 // If the value has not been vectorized, check if it has been scalarized 2016 // instead. If it has been scalarized, and we actually need the value in 2017 // vector form, we will construct the vector values on demand. 2018 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2019 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2020 2021 // If we've scalarized a value, that value should be an instruction. 2022 auto *I = cast<Instruction>(V); 2023 2024 // If we aren't vectorizing, we can just copy the scalar map values over to 2025 // the vector map. 2026 if (VF == 1) { 2027 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2028 return ScalarValue; 2029 } 2030 2031 // Get the last scalar instruction we generated for V and Part. If the value 2032 // is known to be uniform after vectorization, this corresponds to lane zero 2033 // of the Part unroll iteration. Otherwise, the last instruction is the one 2034 // we created for the last vector lane of the Part unroll iteration. 2035 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2036 auto *LastInst = cast<Instruction>( 2037 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2038 2039 // Set the insert point after the last scalarized instruction. This ensures 2040 // the insertelement sequence will directly follow the scalar definitions. 2041 auto OldIP = Builder.saveIP(); 2042 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2043 Builder.SetInsertPoint(&*NewIP); 2044 2045 // However, if we are vectorizing, we need to construct the vector values. 2046 // If the value is known to be uniform after vectorization, we can just 2047 // broadcast the scalar value corresponding to lane zero for each unroll 2048 // iteration. Otherwise, we construct the vector values using insertelement 2049 // instructions. Since the resulting vectors are stored in 2050 // VectorLoopValueMap, we will only generate the insertelements once. 2051 Value *VectorValue = nullptr; 2052 if (Cost->isUniformAfterVectorization(I, VF)) { 2053 VectorValue = getBroadcastInstrs(ScalarValue); 2054 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2055 } else { 2056 // Initialize packing with insertelements to start from undef. 2057 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2058 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2059 for (unsigned Lane = 0; Lane < VF; ++Lane) 2060 packScalarIntoVectorValue(V, {Part, Lane}); 2061 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2062 } 2063 Builder.restoreIP(OldIP); 2064 return VectorValue; 2065 } 2066 2067 // If this scalar is unknown, assume that it is a constant or that it is 2068 // loop invariant. Broadcast V and save the value for future uses. 2069 Value *B = getBroadcastInstrs(V); 2070 VectorLoopValueMap.setVectorValue(V, Part, B); 2071 return B; 2072 } 2073 2074 Value * 2075 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2076 const VPIteration &Instance) { 2077 // If the value is not an instruction contained in the loop, it should 2078 // already be scalar. 2079 if (OrigLoop->isLoopInvariant(V)) 2080 return V; 2081 2082 assert(Instance.Lane > 0 2083 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2084 : true && "Uniform values only have lane zero"); 2085 2086 // If the value from the original loop has not been vectorized, it is 2087 // represented by UF x VF scalar values in the new loop. Return the requested 2088 // scalar value. 2089 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2090 return VectorLoopValueMap.getScalarValue(V, Instance); 2091 2092 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2093 // for the given unroll part. If this entry is not a vector type (i.e., the 2094 // vectorization factor is one), there is no need to generate an 2095 // extractelement instruction. 2096 auto *U = getOrCreateVectorValue(V, Instance.Part); 2097 if (!U->getType()->isVectorTy()) { 2098 assert(VF == 1 && "Value not scalarized has non-vector type"); 2099 return U; 2100 } 2101 2102 // Otherwise, the value from the original loop has been vectorized and is 2103 // represented by UF vector values. Extract and return the requested scalar 2104 // value from the appropriate vector lane. 2105 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2106 } 2107 2108 void InnerLoopVectorizer::packScalarIntoVectorValue( 2109 Value *V, const VPIteration &Instance) { 2110 assert(V != Induction && "The new induction variable should not be used."); 2111 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2112 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2113 2114 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2115 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2116 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2117 Builder.getInt32(Instance.Lane)); 2118 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2119 } 2120 2121 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2122 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2123 SmallVector<Constant *, 8> ShuffleMask; 2124 for (unsigned i = 0; i < VF; ++i) 2125 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2126 2127 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2128 ConstantVector::get(ShuffleMask), 2129 "reverse"); 2130 } 2131 2132 // Return whether we allow using masked interleave-groups (for dealing with 2133 // strided loads/stores that reside in predicated blocks, or for dealing 2134 // with gaps). 2135 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2136 // If an override option has been passed in for interleaved accesses, use it. 2137 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2138 return EnableMaskedInterleavedMemAccesses; 2139 2140 return TTI.enableMaskedInterleavedAccessVectorization(); 2141 } 2142 2143 // Try to vectorize the interleave group that \p Instr belongs to. 2144 // 2145 // E.g. Translate following interleaved load group (factor = 3): 2146 // for (i = 0; i < N; i+=3) { 2147 // R = Pic[i]; // Member of index 0 2148 // G = Pic[i+1]; // Member of index 1 2149 // B = Pic[i+2]; // Member of index 2 2150 // ... // do something to R, G, B 2151 // } 2152 // To: 2153 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2154 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2155 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2156 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2157 // 2158 // Or translate following interleaved store group (factor = 3): 2159 // for (i = 0; i < N; i+=3) { 2160 // ... do something to R, G, B 2161 // Pic[i] = R; // Member of index 0 2162 // Pic[i+1] = G; // Member of index 1 2163 // Pic[i+2] = B; // Member of index 2 2164 // } 2165 // To: 2166 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2167 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2168 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2169 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2170 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2171 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr, 2172 VPTransformState &State, 2173 VPValue *Addr, 2174 VPValue *BlockInMask) { 2175 const InterleaveGroup<Instruction> *Group = 2176 Cost->getInterleavedAccessGroup(Instr); 2177 assert(Group && "Fail to get an interleaved access group."); 2178 2179 // Skip if current instruction is not the insert position. 2180 if (Instr != Group->getInsertPos()) 2181 return; 2182 2183 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2184 2185 // Prepare for the vector type of the interleaved load/store. 2186 Type *ScalarTy = getMemInstValueType(Instr); 2187 unsigned InterleaveFactor = Group->getFactor(); 2188 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2189 2190 // Prepare for the new pointers. 2191 SmallVector<Value *, 2> AddrParts; 2192 unsigned Index = Group->getIndex(Instr); 2193 2194 // TODO: extend the masked interleaved-group support to reversed access. 2195 assert((!BlockInMask || !Group->isReverse()) && 2196 "Reversed masked interleave-group not supported."); 2197 2198 // If the group is reverse, adjust the index to refer to the last vector lane 2199 // instead of the first. We adjust the index from the first vector lane, 2200 // rather than directly getting the pointer for lane VF - 1, because the 2201 // pointer operand of the interleaved access is supposed to be uniform. For 2202 // uniform instructions, we're only required to generate a value for the 2203 // first vector lane in each unroll iteration. 2204 if (Group->isReverse()) 2205 Index += (VF - 1) * Group->getFactor(); 2206 2207 for (unsigned Part = 0; Part < UF; Part++) { 2208 Value *AddrPart = State.get(Addr, {Part, 0}); 2209 setDebugLocFromInst(Builder, AddrPart); 2210 2211 // Notice current instruction could be any index. Need to adjust the address 2212 // to the member of index 0. 2213 // 2214 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2215 // b = A[i]; // Member of index 0 2216 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2217 // 2218 // E.g. A[i+1] = a; // Member of index 1 2219 // A[i] = b; // Member of index 0 2220 // A[i+2] = c; // Member of index 2 (Current instruction) 2221 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2222 2223 bool InBounds = false; 2224 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2225 InBounds = gep->isInBounds(); 2226 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2227 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2228 2229 // Cast to the vector pointer type. 2230 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2231 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2232 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2233 } 2234 2235 setDebugLocFromInst(Builder, Instr); 2236 Value *UndefVec = UndefValue::get(VecTy); 2237 2238 Value *MaskForGaps = nullptr; 2239 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2240 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2241 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2242 } 2243 2244 // Vectorize the interleaved load group. 2245 if (isa<LoadInst>(Instr)) { 2246 // For each unroll part, create a wide load for the group. 2247 SmallVector<Value *, 2> NewLoads; 2248 for (unsigned Part = 0; Part < UF; Part++) { 2249 Instruction *NewLoad; 2250 if (BlockInMask || MaskForGaps) { 2251 assert(useMaskedInterleavedAccesses(*TTI) && 2252 "masked interleaved groups are not allowed."); 2253 Value *GroupMask = MaskForGaps; 2254 if (BlockInMask) { 2255 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2256 auto *Undefs = UndefValue::get(BlockInMaskPart->getType()); 2257 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2258 Value *ShuffledMask = Builder.CreateShuffleVector( 2259 BlockInMaskPart, Undefs, RepMask, "interleaved.mask"); 2260 GroupMask = MaskForGaps 2261 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2262 MaskForGaps) 2263 : ShuffledMask; 2264 } 2265 NewLoad = 2266 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2267 GroupMask, UndefVec, "wide.masked.vec"); 2268 } 2269 else 2270 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2271 Group->getAlign(), "wide.vec"); 2272 Group->addMetadata(NewLoad); 2273 NewLoads.push_back(NewLoad); 2274 } 2275 2276 // For each member in the group, shuffle out the appropriate data from the 2277 // wide loads. 2278 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2279 Instruction *Member = Group->getMember(I); 2280 2281 // Skip the gaps in the group. 2282 if (!Member) 2283 continue; 2284 2285 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2286 for (unsigned Part = 0; Part < UF; Part++) { 2287 Value *StridedVec = Builder.CreateShuffleVector( 2288 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2289 2290 // If this member has different type, cast the result type. 2291 if (Member->getType() != ScalarTy) { 2292 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2293 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2294 } 2295 2296 if (Group->isReverse()) 2297 StridedVec = reverseVector(StridedVec); 2298 2299 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2300 } 2301 } 2302 return; 2303 } 2304 2305 // The sub vector type for current instruction. 2306 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2307 2308 // Vectorize the interleaved store group. 2309 for (unsigned Part = 0; Part < UF; Part++) { 2310 // Collect the stored vector from each member. 2311 SmallVector<Value *, 4> StoredVecs; 2312 for (unsigned i = 0; i < InterleaveFactor; i++) { 2313 // Interleaved store group doesn't allow a gap, so each index has a member 2314 Instruction *Member = Group->getMember(i); 2315 assert(Member && "Fail to get a member from an interleaved store group"); 2316 2317 Value *StoredVec = getOrCreateVectorValue( 2318 cast<StoreInst>(Member)->getValueOperand(), Part); 2319 if (Group->isReverse()) 2320 StoredVec = reverseVector(StoredVec); 2321 2322 // If this member has different type, cast it to a unified type. 2323 2324 if (StoredVec->getType() != SubVT) 2325 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2326 2327 StoredVecs.push_back(StoredVec); 2328 } 2329 2330 // Concatenate all vectors into a wide vector. 2331 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2332 2333 // Interleave the elements in the wide vector. 2334 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2335 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2336 "interleaved.vec"); 2337 2338 Instruction *NewStoreInstr; 2339 if (BlockInMask) { 2340 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2341 auto *Undefs = UndefValue::get(BlockInMaskPart->getType()); 2342 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2343 Value *ShuffledMask = Builder.CreateShuffleVector( 2344 BlockInMaskPart, Undefs, RepMask, "interleaved.mask"); 2345 NewStoreInstr = Builder.CreateMaskedStore( 2346 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2347 } 2348 else 2349 NewStoreInstr = 2350 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2351 2352 Group->addMetadata(NewStoreInstr); 2353 } 2354 } 2355 2356 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2357 VPTransformState &State, 2358 VPValue *Addr, 2359 VPValue *BlockInMask) { 2360 // Attempt to issue a wide load. 2361 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2362 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2363 2364 assert((LI || SI) && "Invalid Load/Store instruction"); 2365 2366 LoopVectorizationCostModel::InstWidening Decision = 2367 Cost->getWideningDecision(Instr, VF); 2368 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2369 "CM decision should be taken at this point"); 2370 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2371 return vectorizeInterleaveGroup(Instr, State, Addr, BlockInMask); 2372 2373 Type *ScalarDataTy = getMemInstValueType(Instr); 2374 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2375 // An alignment of 0 means target abi alignment. We need to use the scalar's 2376 // target abi alignment in such a case. 2377 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2378 const Align Alignment = 2379 DL.getValueOrABITypeAlignment(getLoadStoreAlignment(Instr), ScalarDataTy); 2380 2381 // Determine if the pointer operand of the access is either consecutive or 2382 // reverse consecutive. 2383 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2384 bool ConsecutiveStride = 2385 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2386 bool CreateGatherScatter = 2387 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2388 2389 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2390 // gather/scatter. Otherwise Decision should have been to Scalarize. 2391 assert((ConsecutiveStride || CreateGatherScatter) && 2392 "The instruction should be scalarized"); 2393 (void)ConsecutiveStride; 2394 2395 VectorParts BlockInMaskParts(UF); 2396 bool isMaskRequired = BlockInMask; 2397 if (isMaskRequired) 2398 for (unsigned Part = 0; Part < UF; ++Part) 2399 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2400 2401 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2402 // Calculate the pointer for the specific unroll-part. 2403 GetElementPtrInst *PartPtr = nullptr; 2404 2405 bool InBounds = false; 2406 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2407 InBounds = gep->isInBounds(); 2408 2409 if (Reverse) { 2410 // If the address is consecutive but reversed, then the 2411 // wide store needs to start at the last vector element. 2412 PartPtr = cast<GetElementPtrInst>( 2413 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF))); 2414 PartPtr->setIsInBounds(InBounds); 2415 PartPtr = cast<GetElementPtrInst>( 2416 Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF))); 2417 PartPtr->setIsInBounds(InBounds); 2418 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2419 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2420 } else { 2421 PartPtr = cast<GetElementPtrInst>( 2422 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF))); 2423 PartPtr->setIsInBounds(InBounds); 2424 } 2425 2426 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2427 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2428 }; 2429 2430 // Handle Stores: 2431 if (SI) { 2432 setDebugLocFromInst(Builder, SI); 2433 2434 for (unsigned Part = 0; Part < UF; ++Part) { 2435 Instruction *NewSI = nullptr; 2436 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 2437 if (CreateGatherScatter) { 2438 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2439 Value *VectorGep = State.get(Addr, Part); 2440 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2441 MaskPart); 2442 } else { 2443 if (Reverse) { 2444 // If we store to reverse consecutive memory locations, then we need 2445 // to reverse the order of elements in the stored value. 2446 StoredVal = reverseVector(StoredVal); 2447 // We don't want to update the value in the map as it might be used in 2448 // another expression. So don't call resetVectorValue(StoredVal). 2449 } 2450 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2451 if (isMaskRequired) 2452 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2453 BlockInMaskParts[Part]); 2454 else 2455 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2456 } 2457 addMetadata(NewSI, SI); 2458 } 2459 return; 2460 } 2461 2462 // Handle loads. 2463 assert(LI && "Must have a load instruction"); 2464 setDebugLocFromInst(Builder, LI); 2465 for (unsigned Part = 0; Part < UF; ++Part) { 2466 Value *NewLI; 2467 if (CreateGatherScatter) { 2468 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2469 Value *VectorGep = State.get(Addr, Part); 2470 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2471 nullptr, "wide.masked.gather"); 2472 addMetadata(NewLI, LI); 2473 } else { 2474 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2475 if (isMaskRequired) 2476 NewLI = Builder.CreateMaskedLoad( 2477 VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy), 2478 "wide.masked.load"); 2479 else 2480 NewLI = 2481 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2482 2483 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2484 addMetadata(NewLI, LI); 2485 if (Reverse) 2486 NewLI = reverseVector(NewLI); 2487 } 2488 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2489 } 2490 } 2491 2492 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2493 const VPIteration &Instance, 2494 bool IfPredicateInstr) { 2495 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2496 2497 setDebugLocFromInst(Builder, Instr); 2498 2499 // Does this instruction return a value ? 2500 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2501 2502 Instruction *Cloned = Instr->clone(); 2503 if (!IsVoidRetTy) 2504 Cloned->setName(Instr->getName() + ".cloned"); 2505 2506 // Replace the operands of the cloned instructions with their scalar 2507 // equivalents in the new loop. 2508 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2509 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 2510 Cloned->setOperand(op, NewOp); 2511 } 2512 addNewMetadata(Cloned, Instr); 2513 2514 // Place the cloned scalar in the new loop. 2515 Builder.Insert(Cloned); 2516 2517 // Add the cloned scalar to the scalar map entry. 2518 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2519 2520 // If we just cloned a new assumption, add it the assumption cache. 2521 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2522 if (II->getIntrinsicID() == Intrinsic::assume) 2523 AC->registerAssumption(II); 2524 2525 // End if-block. 2526 if (IfPredicateInstr) 2527 PredicatedInstructions.push_back(Cloned); 2528 } 2529 2530 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2531 Value *End, Value *Step, 2532 Instruction *DL) { 2533 BasicBlock *Header = L->getHeader(); 2534 BasicBlock *Latch = L->getLoopLatch(); 2535 // As we're just creating this loop, it's possible no latch exists 2536 // yet. If so, use the header as this will be a single block loop. 2537 if (!Latch) 2538 Latch = Header; 2539 2540 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2541 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2542 setDebugLocFromInst(Builder, OldInst); 2543 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2544 2545 Builder.SetInsertPoint(Latch->getTerminator()); 2546 setDebugLocFromInst(Builder, OldInst); 2547 2548 // Create i+1 and fill the PHINode. 2549 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2550 Induction->addIncoming(Start, L->getLoopPreheader()); 2551 Induction->addIncoming(Next, Latch); 2552 // Create the compare. 2553 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2554 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2555 2556 // Now we have two terminators. Remove the old one from the block. 2557 Latch->getTerminator()->eraseFromParent(); 2558 2559 return Induction; 2560 } 2561 2562 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2563 if (TripCount) 2564 return TripCount; 2565 2566 assert(L && "Create Trip Count for null loop."); 2567 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2568 // Find the loop boundaries. 2569 ScalarEvolution *SE = PSE.getSE(); 2570 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2571 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2572 "Invalid loop count"); 2573 2574 Type *IdxTy = Legal->getWidestInductionType(); 2575 assert(IdxTy && "No type for induction"); 2576 2577 // The exit count might have the type of i64 while the phi is i32. This can 2578 // happen if we have an induction variable that is sign extended before the 2579 // compare. The only way that we get a backedge taken count is that the 2580 // induction variable was signed and as such will not overflow. In such a case 2581 // truncation is legal. 2582 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2583 IdxTy->getPrimitiveSizeInBits()) 2584 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2585 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2586 2587 // Get the total trip count from the count by adding 1. 2588 const SCEV *ExitCount = SE->getAddExpr( 2589 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2590 2591 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2592 2593 // Expand the trip count and place the new instructions in the preheader. 2594 // Notice that the pre-header does not change, only the loop body. 2595 SCEVExpander Exp(*SE, DL, "induction"); 2596 2597 // Count holds the overall loop count (N). 2598 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2599 L->getLoopPreheader()->getTerminator()); 2600 2601 if (TripCount->getType()->isPointerTy()) 2602 TripCount = 2603 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2604 L->getLoopPreheader()->getTerminator()); 2605 2606 return TripCount; 2607 } 2608 2609 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2610 if (VectorTripCount) 2611 return VectorTripCount; 2612 2613 Value *TC = getOrCreateTripCount(L); 2614 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2615 2616 Type *Ty = TC->getType(); 2617 Constant *Step = ConstantInt::get(Ty, VF * UF); 2618 2619 // If the tail is to be folded by masking, round the number of iterations N 2620 // up to a multiple of Step instead of rounding down. This is done by first 2621 // adding Step-1 and then rounding down. Note that it's ok if this addition 2622 // overflows: the vector induction variable will eventually wrap to zero given 2623 // that it starts at zero and its Step is a power of two; the loop will then 2624 // exit, with the last early-exit vector comparison also producing all-true. 2625 if (Cost->foldTailByMasking()) { 2626 assert(isPowerOf2_32(VF * UF) && 2627 "VF*UF must be a power of 2 when folding tail by masking"); 2628 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2629 } 2630 2631 // Now we need to generate the expression for the part of the loop that the 2632 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2633 // iterations are not required for correctness, or N - Step, otherwise. Step 2634 // is equal to the vectorization factor (number of SIMD elements) times the 2635 // unroll factor (number of SIMD instructions). 2636 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2637 2638 // If there is a non-reversed interleaved group that may speculatively access 2639 // memory out-of-bounds, we need to ensure that there will be at least one 2640 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2641 // the trip count, we set the remainder to be equal to the step. If the step 2642 // does not evenly divide the trip count, no adjustment is necessary since 2643 // there will already be scalar iterations. Note that the minimum iterations 2644 // check ensures that N >= Step. 2645 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2646 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2647 R = Builder.CreateSelect(IsZero, Step, R); 2648 } 2649 2650 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2651 2652 return VectorTripCount; 2653 } 2654 2655 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2656 const DataLayout &DL) { 2657 // Verify that V is a vector type with same number of elements as DstVTy. 2658 unsigned VF = DstVTy->getNumElements(); 2659 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2660 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2661 Type *SrcElemTy = SrcVecTy->getElementType(); 2662 Type *DstElemTy = DstVTy->getElementType(); 2663 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2664 "Vector elements must have same size"); 2665 2666 // Do a direct cast if element types are castable. 2667 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2668 return Builder.CreateBitOrPointerCast(V, DstVTy); 2669 } 2670 // V cannot be directly casted to desired vector type. 2671 // May happen when V is a floating point vector but DstVTy is a vector of 2672 // pointers or vice-versa. Handle this using a two-step bitcast using an 2673 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2674 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2675 "Only one type should be a pointer type"); 2676 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2677 "Only one type should be a floating point type"); 2678 Type *IntTy = 2679 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2680 VectorType *VecIntTy = VectorType::get(IntTy, VF); 2681 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2682 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2683 } 2684 2685 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2686 BasicBlock *Bypass) { 2687 Value *Count = getOrCreateTripCount(L); 2688 // Reuse existing vector loop preheader for TC checks. 2689 // Note that new preheader block is generated for vector loop. 2690 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2691 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2692 2693 // Generate code to check if the loop's trip count is less than VF * UF, or 2694 // equal to it in case a scalar epilogue is required; this implies that the 2695 // vector trip count is zero. This check also covers the case where adding one 2696 // to the backedge-taken count overflowed leading to an incorrect trip count 2697 // of zero. In this case we will also jump to the scalar loop. 2698 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2699 : ICmpInst::ICMP_ULT; 2700 2701 // If tail is to be folded, vector loop takes care of all iterations. 2702 Value *CheckMinIters = Builder.getFalse(); 2703 if (!Cost->foldTailByMasking()) 2704 CheckMinIters = Builder.CreateICmp( 2705 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2706 "min.iters.check"); 2707 2708 // Create new preheader for vector loop. 2709 LoopVectorPreHeader = 2710 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2711 "vector.ph"); 2712 2713 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2714 DT->getNode(Bypass)->getIDom()) && 2715 "TC check is expected to dominate Bypass"); 2716 2717 // Update dominator for Bypass & LoopExit. 2718 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2719 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2720 2721 ReplaceInstWithInst( 2722 TCCheckBlock->getTerminator(), 2723 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 2724 LoopBypassBlocks.push_back(TCCheckBlock); 2725 } 2726 2727 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2728 // Reuse existing vector loop preheader for SCEV checks. 2729 // Note that new preheader block is generated for vector loop. 2730 BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader; 2731 2732 // Generate the code to check that the SCEV assumptions that we made. 2733 // We want the new basic block to start at the first instruction in a 2734 // sequence of instructions that form a check. 2735 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2736 "scev.check"); 2737 Value *SCEVCheck = Exp.expandCodeForPredicate( 2738 &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator()); 2739 2740 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2741 if (C->isZero()) 2742 return; 2743 2744 assert(!SCEVCheckBlock->getParent()->hasOptSize() && 2745 "Cannot SCEV check stride or overflow when optimizing for size"); 2746 2747 SCEVCheckBlock->setName("vector.scevcheck"); 2748 // Create new preheader for vector loop. 2749 LoopVectorPreHeader = 2750 SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI, 2751 nullptr, "vector.ph"); 2752 2753 // Update dominator only if this is first RT check. 2754 if (LoopBypassBlocks.empty()) { 2755 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 2756 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 2757 } 2758 2759 ReplaceInstWithInst( 2760 SCEVCheckBlock->getTerminator(), 2761 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck)); 2762 LoopBypassBlocks.push_back(SCEVCheckBlock); 2763 AddedSafetyChecks = true; 2764 } 2765 2766 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2767 // VPlan-native path does not do any analysis for runtime checks currently. 2768 if (EnableVPlanNativePath) 2769 return; 2770 2771 // Reuse existing vector loop preheader for runtime memory checks. 2772 // Note that new preheader block is generated for vector loop. 2773 BasicBlock *const MemCheckBlock = L->getLoopPreheader(); 2774 2775 // Generate the code that checks in runtime if arrays overlap. We put the 2776 // checks into a separate block to make the more common case of few elements 2777 // faster. 2778 Instruction *FirstCheckInst; 2779 Instruction *MemRuntimeCheck; 2780 std::tie(FirstCheckInst, MemRuntimeCheck) = 2781 Legal->getLAI()->addRuntimeChecks(MemCheckBlock->getTerminator()); 2782 if (!MemRuntimeCheck) 2783 return; 2784 2785 if (MemCheckBlock->getParent()->hasOptSize()) { 2786 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 2787 "Cannot emit memory checks when optimizing for size, unless forced " 2788 "to vectorize."); 2789 ORE->emit([&]() { 2790 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 2791 L->getStartLoc(), L->getHeader()) 2792 << "Code-size may be reduced by not forcing " 2793 "vectorization, or by source-code modifications " 2794 "eliminating the need for runtime checks " 2795 "(e.g., adding 'restrict')."; 2796 }); 2797 } 2798 2799 MemCheckBlock->setName("vector.memcheck"); 2800 // Create new preheader for vector loop. 2801 LoopVectorPreHeader = 2802 SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr, 2803 "vector.ph"); 2804 2805 // Update dominator only if this is first RT check. 2806 if (LoopBypassBlocks.empty()) { 2807 DT->changeImmediateDominator(Bypass, MemCheckBlock); 2808 DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock); 2809 } 2810 2811 ReplaceInstWithInst( 2812 MemCheckBlock->getTerminator(), 2813 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheck)); 2814 LoopBypassBlocks.push_back(MemCheckBlock); 2815 AddedSafetyChecks = true; 2816 2817 // We currently don't use LoopVersioning for the actual loop cloning but we 2818 // still use it to add the noalias metadata. 2819 LVer = std::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2820 PSE.getSE()); 2821 LVer->prepareNoAliasMetadata(); 2822 } 2823 2824 Value *InnerLoopVectorizer::emitTransformedIndex( 2825 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2826 const InductionDescriptor &ID) const { 2827 2828 SCEVExpander Exp(*SE, DL, "induction"); 2829 auto Step = ID.getStep(); 2830 auto StartValue = ID.getStartValue(); 2831 assert(Index->getType() == Step->getType() && 2832 "Index type does not match StepValue type"); 2833 2834 // Note: the IR at this point is broken. We cannot use SE to create any new 2835 // SCEV and then expand it, hoping that SCEV's simplification will give us 2836 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2837 // lead to various SCEV crashes. So all we can do is to use builder and rely 2838 // on InstCombine for future simplifications. Here we handle some trivial 2839 // cases only. 2840 auto CreateAdd = [&B](Value *X, Value *Y) { 2841 assert(X->getType() == Y->getType() && "Types don't match!"); 2842 if (auto *CX = dyn_cast<ConstantInt>(X)) 2843 if (CX->isZero()) 2844 return Y; 2845 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2846 if (CY->isZero()) 2847 return X; 2848 return B.CreateAdd(X, Y); 2849 }; 2850 2851 auto CreateMul = [&B](Value *X, Value *Y) { 2852 assert(X->getType() == Y->getType() && "Types don't match!"); 2853 if (auto *CX = dyn_cast<ConstantInt>(X)) 2854 if (CX->isOne()) 2855 return Y; 2856 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2857 if (CY->isOne()) 2858 return X; 2859 return B.CreateMul(X, Y); 2860 }; 2861 2862 switch (ID.getKind()) { 2863 case InductionDescriptor::IK_IntInduction: { 2864 assert(Index->getType() == StartValue->getType() && 2865 "Index type does not match StartValue type"); 2866 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2867 return B.CreateSub(StartValue, Index); 2868 auto *Offset = CreateMul( 2869 Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint())); 2870 return CreateAdd(StartValue, Offset); 2871 } 2872 case InductionDescriptor::IK_PtrInduction: { 2873 assert(isa<SCEVConstant>(Step) && 2874 "Expected constant step for pointer induction"); 2875 return B.CreateGEP( 2876 StartValue->getType()->getPointerElementType(), StartValue, 2877 CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(), 2878 &*B.GetInsertPoint()))); 2879 } 2880 case InductionDescriptor::IK_FpInduction: { 2881 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2882 auto InductionBinOp = ID.getInductionBinOp(); 2883 assert(InductionBinOp && 2884 (InductionBinOp->getOpcode() == Instruction::FAdd || 2885 InductionBinOp->getOpcode() == Instruction::FSub) && 2886 "Original bin op should be defined for FP induction"); 2887 2888 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2889 2890 // Floating point operations had to be 'fast' to enable the induction. 2891 FastMathFlags Flags; 2892 Flags.setFast(); 2893 2894 Value *MulExp = B.CreateFMul(StepValue, Index); 2895 if (isa<Instruction>(MulExp)) 2896 // We have to check, the MulExp may be a constant. 2897 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2898 2899 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2900 "induction"); 2901 if (isa<Instruction>(BOp)) 2902 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2903 2904 return BOp; 2905 } 2906 case InductionDescriptor::IK_NoInduction: 2907 return nullptr; 2908 } 2909 llvm_unreachable("invalid enum"); 2910 } 2911 2912 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2913 /* 2914 In this function we generate a new loop. The new loop will contain 2915 the vectorized instructions while the old loop will continue to run the 2916 scalar remainder. 2917 2918 [ ] <-- loop iteration number check. 2919 / | 2920 / v 2921 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2922 | / | 2923 | / v 2924 || [ ] <-- vector pre header. 2925 |/ | 2926 | v 2927 | [ ] \ 2928 | [ ]_| <-- vector loop. 2929 | | 2930 | v 2931 | -[ ] <--- middle-block. 2932 | / | 2933 | / v 2934 -|- >[ ] <--- new preheader. 2935 | | 2936 | v 2937 | [ ] \ 2938 | [ ]_| <-- old scalar loop to handle remainder. 2939 \ | 2940 \ v 2941 >[ ] <-- exit block. 2942 ... 2943 */ 2944 2945 MDNode *OrigLoopID = OrigLoop->getLoopID(); 2946 2947 // Some loops have a single integer induction variable, while other loops 2948 // don't. One example is c++ iterators that often have multiple pointer 2949 // induction variables. In the code below we also support a case where we 2950 // don't have a single induction variable. 2951 // 2952 // We try to obtain an induction variable from the original loop as hard 2953 // as possible. However if we don't find one that: 2954 // - is an integer 2955 // - counts from zero, stepping by one 2956 // - is the size of the widest induction variable type 2957 // then we create a new one. 2958 OldInduction = Legal->getPrimaryInduction(); 2959 Type *IdxTy = Legal->getWidestInductionType(); 2960 2961 // Split the single block loop into the two loop structure described above. 2962 LoopScalarBody = OrigLoop->getHeader(); 2963 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 2964 LoopExitBlock = OrigLoop->getExitBlock(); 2965 assert(LoopExitBlock && "Must have an exit block"); 2966 assert(LoopVectorPreHeader && "Invalid loop structure"); 2967 2968 LoopMiddleBlock = 2969 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 2970 LI, nullptr, "middle.block"); 2971 LoopScalarPreHeader = 2972 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 2973 nullptr, "scalar.ph"); 2974 // We intentionally don't let SplitBlock to update LoopInfo since 2975 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 2976 // LoopVectorBody is explicitly added to the correct place few lines later. 2977 LoopVectorBody = 2978 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 2979 nullptr, nullptr, "vector.body"); 2980 2981 // Update dominator for loop exit. 2982 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 2983 2984 // Create and register the new vector loop. 2985 Loop *Lp = LI->AllocateLoop(); 2986 Loop *ParentLoop = OrigLoop->getParentLoop(); 2987 2988 // Insert the new loop into the loop nest and register the new basic blocks 2989 // before calling any utilities such as SCEV that require valid LoopInfo. 2990 if (ParentLoop) { 2991 ParentLoop->addChildLoop(Lp); 2992 } else { 2993 LI->addTopLevelLoop(Lp); 2994 } 2995 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 2996 2997 // Find the loop boundaries. 2998 Value *Count = getOrCreateTripCount(Lp); 2999 3000 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3001 3002 // Now, compare the new count to zero. If it is zero skip the vector loop and 3003 // jump to the scalar loop. This check also covers the case where the 3004 // backedge-taken count is uint##_max: adding one to it will overflow leading 3005 // to an incorrect trip count of zero. In this (rare) case we will also jump 3006 // to the scalar loop. 3007 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3008 3009 // Generate the code to check any assumptions that we've made for SCEV 3010 // expressions. 3011 emitSCEVChecks(Lp, LoopScalarPreHeader); 3012 3013 // Generate the code that checks in runtime if arrays overlap. We put the 3014 // checks into a separate block to make the more common case of few elements 3015 // faster. 3016 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3017 3018 // Generate the induction variable. 3019 // The loop step is equal to the vectorization factor (num of SIMD elements) 3020 // times the unroll factor (num of SIMD instructions). 3021 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3022 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3023 Induction = 3024 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3025 getDebugLocFromInstOrOperands(OldInduction)); 3026 3027 // We are going to resume the execution of the scalar loop. 3028 // Go over all of the induction variables that we found and fix the 3029 // PHIs that are left in the scalar version of the loop. 3030 // The starting values of PHI nodes depend on the counter of the last 3031 // iteration in the vectorized loop. 3032 // If we come from a bypass edge then we need to start from the original 3033 // start value. 3034 3035 // This variable saves the new starting index for the scalar loop. It is used 3036 // to test if there are any tail iterations left once the vector loop has 3037 // completed. 3038 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3039 for (auto &InductionEntry : *List) { 3040 PHINode *OrigPhi = InductionEntry.first; 3041 InductionDescriptor II = InductionEntry.second; 3042 3043 // Create phi nodes to merge from the backedge-taken check block. 3044 PHINode *BCResumeVal = 3045 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3046 LoopScalarPreHeader->getTerminator()); 3047 // Copy original phi DL over to the new one. 3048 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3049 Value *&EndValue = IVEndValues[OrigPhi]; 3050 if (OrigPhi == OldInduction) { 3051 // We know what the end value is. 3052 EndValue = CountRoundDown; 3053 } else { 3054 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3055 Type *StepType = II.getStep()->getType(); 3056 Instruction::CastOps CastOp = 3057 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3058 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3059 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3060 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3061 EndValue->setName("ind.end"); 3062 } 3063 3064 // The new PHI merges the original incoming value, in case of a bypass, 3065 // or the value at the end of the vectorized loop. 3066 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3067 3068 // Fix the scalar body counter (PHI node). 3069 // The old induction's phi node in the scalar body needs the truncated 3070 // value. 3071 for (BasicBlock *BB : LoopBypassBlocks) 3072 BCResumeVal->addIncoming(II.getStartValue(), BB); 3073 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3074 } 3075 3076 // We need the OrigLoop (scalar loop part) latch terminator to help 3077 // produce correct debug info for the middle block BB instructions. 3078 // The legality check stage guarantees that the loop will have a single 3079 // latch. 3080 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 3081 "Scalar loop latch terminator isn't a branch"); 3082 BranchInst *ScalarLatchBr = 3083 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 3084 3085 // Add a check in the middle block to see if we have completed 3086 // all of the iterations in the first vector loop. 3087 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3088 // If tail is to be folded, we know we don't need to run the remainder. 3089 Value *CmpN = Builder.getTrue(); 3090 if (!Cost->foldTailByMasking()) { 3091 CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3092 CountRoundDown, "cmp.n", 3093 LoopMiddleBlock->getTerminator()); 3094 3095 // Here we use the same DebugLoc as the scalar loop latch branch instead 3096 // of the corresponding compare because they may have ended up with 3097 // different line numbers and we want to avoid awkward line stepping while 3098 // debugging. Eg. if the compare has got a line number inside the loop. 3099 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3100 } 3101 3102 BranchInst *BrInst = 3103 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN); 3104 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3105 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3106 3107 // Get ready to start creating new instructions into the vectorized body. 3108 assert(LoopVectorPreHeader == Lp->getLoopPreheader() && 3109 "Inconsistent vector loop preheader"); 3110 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3111 3112 Optional<MDNode *> VectorizedLoopID = 3113 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3114 LLVMLoopVectorizeFollowupVectorized}); 3115 if (VectorizedLoopID.hasValue()) { 3116 Lp->setLoopID(VectorizedLoopID.getValue()); 3117 3118 // Do not setAlreadyVectorized if loop attributes have been defined 3119 // explicitly. 3120 return LoopVectorPreHeader; 3121 } 3122 3123 // Keep all loop hints from the original loop on the vector loop (we'll 3124 // replace the vectorizer-specific hints below). 3125 if (MDNode *LID = OrigLoop->getLoopID()) 3126 Lp->setLoopID(LID); 3127 3128 LoopVectorizeHints Hints(Lp, true, *ORE); 3129 Hints.setAlreadyVectorized(); 3130 3131 #ifdef EXPENSIVE_CHECKS 3132 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3133 LI->verify(*DT); 3134 #endif 3135 3136 return LoopVectorPreHeader; 3137 } 3138 3139 // Fix up external users of the induction variable. At this point, we are 3140 // in LCSSA form, with all external PHIs that use the IV having one input value, 3141 // coming from the remainder loop. We need those PHIs to also have a correct 3142 // value for the IV when arriving directly from the middle block. 3143 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3144 const InductionDescriptor &II, 3145 Value *CountRoundDown, Value *EndValue, 3146 BasicBlock *MiddleBlock) { 3147 // There are two kinds of external IV usages - those that use the value 3148 // computed in the last iteration (the PHI) and those that use the penultimate 3149 // value (the value that feeds into the phi from the loop latch). 3150 // We allow both, but they, obviously, have different values. 3151 3152 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3153 3154 DenseMap<Value *, Value *> MissingVals; 3155 3156 // An external user of the last iteration's value should see the value that 3157 // the remainder loop uses to initialize its own IV. 3158 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3159 for (User *U : PostInc->users()) { 3160 Instruction *UI = cast<Instruction>(U); 3161 if (!OrigLoop->contains(UI)) { 3162 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3163 MissingVals[UI] = EndValue; 3164 } 3165 } 3166 3167 // An external user of the penultimate value need to see EndValue - Step. 3168 // The simplest way to get this is to recompute it from the constituent SCEVs, 3169 // that is Start + (Step * (CRD - 1)). 3170 for (User *U : OrigPhi->users()) { 3171 auto *UI = cast<Instruction>(U); 3172 if (!OrigLoop->contains(UI)) { 3173 const DataLayout &DL = 3174 OrigLoop->getHeader()->getModule()->getDataLayout(); 3175 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3176 3177 IRBuilder<> B(MiddleBlock->getTerminator()); 3178 Value *CountMinusOne = B.CreateSub( 3179 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3180 Value *CMO = 3181 !II.getStep()->getType()->isIntegerTy() 3182 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3183 II.getStep()->getType()) 3184 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3185 CMO->setName("cast.cmo"); 3186 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3187 Escape->setName("ind.escape"); 3188 MissingVals[UI] = Escape; 3189 } 3190 } 3191 3192 for (auto &I : MissingVals) { 3193 PHINode *PHI = cast<PHINode>(I.first); 3194 // One corner case we have to handle is two IVs "chasing" each-other, 3195 // that is %IV2 = phi [...], [ %IV1, %latch ] 3196 // In this case, if IV1 has an external use, we need to avoid adding both 3197 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3198 // don't already have an incoming value for the middle block. 3199 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3200 PHI->addIncoming(I.second, MiddleBlock); 3201 } 3202 } 3203 3204 namespace { 3205 3206 struct CSEDenseMapInfo { 3207 static bool canHandle(const Instruction *I) { 3208 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3209 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3210 } 3211 3212 static inline Instruction *getEmptyKey() { 3213 return DenseMapInfo<Instruction *>::getEmptyKey(); 3214 } 3215 3216 static inline Instruction *getTombstoneKey() { 3217 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3218 } 3219 3220 static unsigned getHashValue(const Instruction *I) { 3221 assert(canHandle(I) && "Unknown instruction!"); 3222 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3223 I->value_op_end())); 3224 } 3225 3226 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3227 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3228 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3229 return LHS == RHS; 3230 return LHS->isIdenticalTo(RHS); 3231 } 3232 }; 3233 3234 } // end anonymous namespace 3235 3236 ///Perform cse of induction variable instructions. 3237 static void cse(BasicBlock *BB) { 3238 // Perform simple cse. 3239 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3240 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3241 Instruction *In = &*I++; 3242 3243 if (!CSEDenseMapInfo::canHandle(In)) 3244 continue; 3245 3246 // Check if we can replace this instruction with any of the 3247 // visited instructions. 3248 if (Instruction *V = CSEMap.lookup(In)) { 3249 In->replaceAllUsesWith(V); 3250 In->eraseFromParent(); 3251 continue; 3252 } 3253 3254 CSEMap[In] = In; 3255 } 3256 } 3257 3258 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3259 unsigned VF, 3260 bool &NeedToScalarize) { 3261 Function *F = CI->getCalledFunction(); 3262 Type *ScalarRetTy = CI->getType(); 3263 SmallVector<Type *, 4> Tys, ScalarTys; 3264 for (auto &ArgOp : CI->arg_operands()) 3265 ScalarTys.push_back(ArgOp->getType()); 3266 3267 // Estimate cost of scalarized vector call. The source operands are assumed 3268 // to be vectors, so we need to extract individual elements from there, 3269 // execute VF scalar calls, and then gather the result into the vector return 3270 // value. 3271 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3272 if (VF == 1) 3273 return ScalarCallCost; 3274 3275 // Compute corresponding vector type for return value and arguments. 3276 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3277 for (Type *ScalarTy : ScalarTys) 3278 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3279 3280 // Compute costs of unpacking argument values for the scalar calls and 3281 // packing the return values to a vector. 3282 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3283 3284 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3285 3286 // If we can't emit a vector call for this function, then the currently found 3287 // cost is the cost we need to return. 3288 NeedToScalarize = true; 3289 if (!TLI || CI->isNoBuiltin() || VFDatabase::getMappings(*CI).empty()) 3290 return Cost; 3291 3292 // If the corresponding vector cost is cheaper, return its cost. 3293 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3294 if (VectorCallCost < Cost) { 3295 NeedToScalarize = false; 3296 return VectorCallCost; 3297 } 3298 return Cost; 3299 } 3300 3301 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3302 unsigned VF) { 3303 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3304 assert(ID && "Expected intrinsic call!"); 3305 3306 FastMathFlags FMF; 3307 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3308 FMF = FPMO->getFastMathFlags(); 3309 3310 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3311 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3312 } 3313 3314 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3315 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3316 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3317 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3318 } 3319 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3320 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3321 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3322 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3323 } 3324 3325 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3326 // For every instruction `I` in MinBWs, truncate the operands, create a 3327 // truncated version of `I` and reextend its result. InstCombine runs 3328 // later and will remove any ext/trunc pairs. 3329 SmallPtrSet<Value *, 4> Erased; 3330 for (const auto &KV : Cost->getMinimalBitwidths()) { 3331 // If the value wasn't vectorized, we must maintain the original scalar 3332 // type. The absence of the value from VectorLoopValueMap indicates that it 3333 // wasn't vectorized. 3334 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3335 continue; 3336 for (unsigned Part = 0; Part < UF; ++Part) { 3337 Value *I = getOrCreateVectorValue(KV.first, Part); 3338 if (Erased.find(I) != Erased.end() || I->use_empty() || 3339 !isa<Instruction>(I)) 3340 continue; 3341 Type *OriginalTy = I->getType(); 3342 Type *ScalarTruncatedTy = 3343 IntegerType::get(OriginalTy->getContext(), KV.second); 3344 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3345 OriginalTy->getVectorNumElements()); 3346 if (TruncatedTy == OriginalTy) 3347 continue; 3348 3349 IRBuilder<> B(cast<Instruction>(I)); 3350 auto ShrinkOperand = [&](Value *V) -> Value * { 3351 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3352 if (ZI->getSrcTy() == TruncatedTy) 3353 return ZI->getOperand(0); 3354 return B.CreateZExtOrTrunc(V, TruncatedTy); 3355 }; 3356 3357 // The actual instruction modification depends on the instruction type, 3358 // unfortunately. 3359 Value *NewI = nullptr; 3360 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3361 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3362 ShrinkOperand(BO->getOperand(1))); 3363 3364 // Any wrapping introduced by shrinking this operation shouldn't be 3365 // considered undefined behavior. So, we can't unconditionally copy 3366 // arithmetic wrapping flags to NewI. 3367 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3368 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3369 NewI = 3370 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3371 ShrinkOperand(CI->getOperand(1))); 3372 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3373 NewI = B.CreateSelect(SI->getCondition(), 3374 ShrinkOperand(SI->getTrueValue()), 3375 ShrinkOperand(SI->getFalseValue())); 3376 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3377 switch (CI->getOpcode()) { 3378 default: 3379 llvm_unreachable("Unhandled cast!"); 3380 case Instruction::Trunc: 3381 NewI = ShrinkOperand(CI->getOperand(0)); 3382 break; 3383 case Instruction::SExt: 3384 NewI = B.CreateSExtOrTrunc( 3385 CI->getOperand(0), 3386 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3387 break; 3388 case Instruction::ZExt: 3389 NewI = B.CreateZExtOrTrunc( 3390 CI->getOperand(0), 3391 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3392 break; 3393 } 3394 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3395 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3396 auto *O0 = B.CreateZExtOrTrunc( 3397 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3398 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3399 auto *O1 = B.CreateZExtOrTrunc( 3400 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3401 3402 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3403 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3404 // Don't do anything with the operands, just extend the result. 3405 continue; 3406 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3407 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3408 auto *O0 = B.CreateZExtOrTrunc( 3409 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3410 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3411 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3412 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3413 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3414 auto *O0 = B.CreateZExtOrTrunc( 3415 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3416 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3417 } else { 3418 // If we don't know what to do, be conservative and don't do anything. 3419 continue; 3420 } 3421 3422 // Lastly, extend the result. 3423 NewI->takeName(cast<Instruction>(I)); 3424 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3425 I->replaceAllUsesWith(Res); 3426 cast<Instruction>(I)->eraseFromParent(); 3427 Erased.insert(I); 3428 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3429 } 3430 } 3431 3432 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3433 for (const auto &KV : Cost->getMinimalBitwidths()) { 3434 // If the value wasn't vectorized, we must maintain the original scalar 3435 // type. The absence of the value from VectorLoopValueMap indicates that it 3436 // wasn't vectorized. 3437 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3438 continue; 3439 for (unsigned Part = 0; Part < UF; ++Part) { 3440 Value *I = getOrCreateVectorValue(KV.first, Part); 3441 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3442 if (Inst && Inst->use_empty()) { 3443 Value *NewI = Inst->getOperand(0); 3444 Inst->eraseFromParent(); 3445 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3446 } 3447 } 3448 } 3449 } 3450 3451 void InnerLoopVectorizer::fixVectorizedLoop() { 3452 // Insert truncates and extends for any truncated instructions as hints to 3453 // InstCombine. 3454 if (VF > 1) 3455 truncateToMinimalBitwidths(); 3456 3457 // Fix widened non-induction PHIs by setting up the PHI operands. 3458 if (OrigPHIsToFix.size()) { 3459 assert(EnableVPlanNativePath && 3460 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3461 fixNonInductionPHIs(); 3462 } 3463 3464 // At this point every instruction in the original loop is widened to a 3465 // vector form. Now we need to fix the recurrences in the loop. These PHI 3466 // nodes are currently empty because we did not want to introduce cycles. 3467 // This is the second stage of vectorizing recurrences. 3468 fixCrossIterationPHIs(); 3469 3470 // Forget the original basic block. 3471 PSE.getSE()->forgetLoop(OrigLoop); 3472 3473 // Fix-up external users of the induction variables. 3474 for (auto &Entry : *Legal->getInductionVars()) 3475 fixupIVUsers(Entry.first, Entry.second, 3476 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3477 IVEndValues[Entry.first], LoopMiddleBlock); 3478 3479 fixLCSSAPHIs(); 3480 for (Instruction *PI : PredicatedInstructions) 3481 sinkScalarOperands(&*PI); 3482 3483 // Remove redundant induction instructions. 3484 cse(LoopVectorBody); 3485 3486 // Set/update profile weights for the vector and remainder loops as original 3487 // loop iterations are now distributed among them. Note that original loop 3488 // represented by LoopScalarBody becomes remainder loop after vectorization. 3489 // 3490 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3491 // end up getting slightly roughened result but that should be OK since 3492 // profile is not inherently precise anyway. Note also possible bypass of 3493 // vector code caused by legality checks is ignored, assigning all the weight 3494 // to the vector loop, optimistically. 3495 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), 3496 LI->getLoopFor(LoopVectorBody), 3497 LI->getLoopFor(LoopScalarBody), VF * UF); 3498 } 3499 3500 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3501 // In order to support recurrences we need to be able to vectorize Phi nodes. 3502 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3503 // stage #2: We now need to fix the recurrences by adding incoming edges to 3504 // the currently empty PHI nodes. At this point every instruction in the 3505 // original loop is widened to a vector form so we can use them to construct 3506 // the incoming edges. 3507 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3508 // Handle first-order recurrences and reductions that need to be fixed. 3509 if (Legal->isFirstOrderRecurrence(&Phi)) 3510 fixFirstOrderRecurrence(&Phi); 3511 else if (Legal->isReductionVariable(&Phi)) 3512 fixReduction(&Phi); 3513 } 3514 } 3515 3516 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3517 // This is the second phase of vectorizing first-order recurrences. An 3518 // overview of the transformation is described below. Suppose we have the 3519 // following loop. 3520 // 3521 // for (int i = 0; i < n; ++i) 3522 // b[i] = a[i] - a[i - 1]; 3523 // 3524 // There is a first-order recurrence on "a". For this loop, the shorthand 3525 // scalar IR looks like: 3526 // 3527 // scalar.ph: 3528 // s_init = a[-1] 3529 // br scalar.body 3530 // 3531 // scalar.body: 3532 // i = phi [0, scalar.ph], [i+1, scalar.body] 3533 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3534 // s2 = a[i] 3535 // b[i] = s2 - s1 3536 // br cond, scalar.body, ... 3537 // 3538 // In this example, s1 is a recurrence because it's value depends on the 3539 // previous iteration. In the first phase of vectorization, we created a 3540 // temporary value for s1. We now complete the vectorization and produce the 3541 // shorthand vector IR shown below (for VF = 4, UF = 1). 3542 // 3543 // vector.ph: 3544 // v_init = vector(..., ..., ..., a[-1]) 3545 // br vector.body 3546 // 3547 // vector.body 3548 // i = phi [0, vector.ph], [i+4, vector.body] 3549 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3550 // v2 = a[i, i+1, i+2, i+3]; 3551 // v3 = vector(v1(3), v2(0, 1, 2)) 3552 // b[i, i+1, i+2, i+3] = v2 - v3 3553 // br cond, vector.body, middle.block 3554 // 3555 // middle.block: 3556 // x = v2(3) 3557 // br scalar.ph 3558 // 3559 // scalar.ph: 3560 // s_init = phi [x, middle.block], [a[-1], otherwise] 3561 // br scalar.body 3562 // 3563 // After execution completes the vector loop, we extract the next value of 3564 // the recurrence (x) to use as the initial value in the scalar loop. 3565 3566 // Get the original loop preheader and single loop latch. 3567 auto *Preheader = OrigLoop->getLoopPreheader(); 3568 auto *Latch = OrigLoop->getLoopLatch(); 3569 3570 // Get the initial and previous values of the scalar recurrence. 3571 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3572 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3573 3574 // Create a vector from the initial value. 3575 auto *VectorInit = ScalarInit; 3576 if (VF > 1) { 3577 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3578 VectorInit = Builder.CreateInsertElement( 3579 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3580 Builder.getInt32(VF - 1), "vector.recur.init"); 3581 } 3582 3583 // We constructed a temporary phi node in the first phase of vectorization. 3584 // This phi node will eventually be deleted. 3585 Builder.SetInsertPoint( 3586 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3587 3588 // Create a phi node for the new recurrence. The current value will either be 3589 // the initial value inserted into a vector or loop-varying vector value. 3590 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3591 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3592 3593 // Get the vectorized previous value of the last part UF - 1. It appears last 3594 // among all unrolled iterations, due to the order of their construction. 3595 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3596 3597 // Find and set the insertion point after the previous value if it is an 3598 // instruction. 3599 BasicBlock::iterator InsertPt; 3600 // Note that the previous value may have been constant-folded so it is not 3601 // guaranteed to be an instruction in the vector loop. 3602 // FIXME: Loop invariant values do not form recurrences. We should deal with 3603 // them earlier. 3604 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 3605 InsertPt = LoopVectorBody->getFirstInsertionPt(); 3606 else { 3607 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 3608 if (isa<PHINode>(PreviousLastPart)) 3609 // If the previous value is a phi node, we should insert after all the phi 3610 // nodes in the block containing the PHI to avoid breaking basic block 3611 // verification. Note that the basic block may be different to 3612 // LoopVectorBody, in case we predicate the loop. 3613 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 3614 else 3615 InsertPt = ++PreviousInst->getIterator(); 3616 } 3617 Builder.SetInsertPoint(&*InsertPt); 3618 3619 // We will construct a vector for the recurrence by combining the values for 3620 // the current and previous iterations. This is the required shuffle mask. 3621 SmallVector<Constant *, 8> ShuffleMask(VF); 3622 ShuffleMask[0] = Builder.getInt32(VF - 1); 3623 for (unsigned I = 1; I < VF; ++I) 3624 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3625 3626 // The vector from which to take the initial value for the current iteration 3627 // (actual or unrolled). Initially, this is the vector phi node. 3628 Value *Incoming = VecPhi; 3629 3630 // Shuffle the current and previous vector and update the vector parts. 3631 for (unsigned Part = 0; Part < UF; ++Part) { 3632 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3633 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3634 auto *Shuffle = 3635 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3636 ConstantVector::get(ShuffleMask)) 3637 : Incoming; 3638 PhiPart->replaceAllUsesWith(Shuffle); 3639 cast<Instruction>(PhiPart)->eraseFromParent(); 3640 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3641 Incoming = PreviousPart; 3642 } 3643 3644 // Fix the latch value of the new recurrence in the vector loop. 3645 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3646 3647 // Extract the last vector element in the middle block. This will be the 3648 // initial value for the recurrence when jumping to the scalar loop. 3649 auto *ExtractForScalar = Incoming; 3650 if (VF > 1) { 3651 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3652 ExtractForScalar = Builder.CreateExtractElement( 3653 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3654 } 3655 // Extract the second last element in the middle block if the 3656 // Phi is used outside the loop. We need to extract the phi itself 3657 // and not the last element (the phi update in the current iteration). This 3658 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3659 // when the scalar loop is not run at all. 3660 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3661 if (VF > 1) 3662 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3663 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3664 // When loop is unrolled without vectorizing, initialize 3665 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3666 // `Incoming`. This is analogous to the vectorized case above: extracting the 3667 // second last element when VF > 1. 3668 else if (UF > 1) 3669 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3670 3671 // Fix the initial value of the original recurrence in the scalar loop. 3672 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3673 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3674 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3675 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3676 Start->addIncoming(Incoming, BB); 3677 } 3678 3679 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3680 Phi->setName("scalar.recur"); 3681 3682 // Finally, fix users of the recurrence outside the loop. The users will need 3683 // either the last value of the scalar recurrence or the last value of the 3684 // vector recurrence we extracted in the middle block. Since the loop is in 3685 // LCSSA form, we just need to find all the phi nodes for the original scalar 3686 // recurrence in the exit block, and then add an edge for the middle block. 3687 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3688 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3689 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3690 } 3691 } 3692 } 3693 3694 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3695 Constant *Zero = Builder.getInt32(0); 3696 3697 // Get it's reduction variable descriptor. 3698 assert(Legal->isReductionVariable(Phi) && 3699 "Unable to find the reduction variable"); 3700 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3701 3702 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3703 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3704 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3705 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3706 RdxDesc.getMinMaxRecurrenceKind(); 3707 setDebugLocFromInst(Builder, ReductionStartValue); 3708 3709 // We need to generate a reduction vector from the incoming scalar. 3710 // To do so, we need to generate the 'identity' vector and override 3711 // one of the elements with the incoming scalar reduction. We need 3712 // to do it in the vector-loop preheader. 3713 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3714 3715 // This is the vector-clone of the value that leaves the loop. 3716 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3717 3718 // Find the reduction identity variable. Zero for addition, or, xor, 3719 // one for multiplication, -1 for And. 3720 Value *Identity; 3721 Value *VectorStart; 3722 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3723 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3724 // MinMax reduction have the start value as their identify. 3725 if (VF == 1) { 3726 VectorStart = Identity = ReductionStartValue; 3727 } else { 3728 VectorStart = Identity = 3729 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3730 } 3731 } else { 3732 // Handle other reduction kinds: 3733 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3734 RK, VecTy->getScalarType()); 3735 if (VF == 1) { 3736 Identity = Iden; 3737 // This vector is the Identity vector where the first element is the 3738 // incoming scalar reduction. 3739 VectorStart = ReductionStartValue; 3740 } else { 3741 Identity = ConstantVector::getSplat(VF, Iden); 3742 3743 // This vector is the Identity vector where the first element is the 3744 // incoming scalar reduction. 3745 VectorStart = 3746 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3747 } 3748 } 3749 3750 // Wrap flags are in general invalid after vectorization, clear them. 3751 clearReductionWrapFlags(RdxDesc); 3752 3753 // Fix the vector-loop phi. 3754 3755 // Reductions do not have to start at zero. They can start with 3756 // any loop invariant values. 3757 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3758 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3759 3760 for (unsigned Part = 0; Part < UF; ++Part) { 3761 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3762 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3763 // Make sure to add the reduction start value only to the 3764 // first unroll part. 3765 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3766 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3767 cast<PHINode>(VecRdxPhi) 3768 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3769 } 3770 3771 // Before each round, move the insertion point right between 3772 // the PHIs and the values we are going to write. 3773 // This allows us to write both PHINodes and the extractelement 3774 // instructions. 3775 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3776 3777 setDebugLocFromInst(Builder, LoopExitInst); 3778 3779 // If tail is folded by masking, the vector value to leave the loop should be 3780 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3781 // instead of the former. 3782 if (Cost->foldTailByMasking()) { 3783 for (unsigned Part = 0; Part < UF; ++Part) { 3784 Value *VecLoopExitInst = 3785 VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3786 Value *Sel = nullptr; 3787 for (User *U : VecLoopExitInst->users()) { 3788 if (isa<SelectInst>(U)) { 3789 assert(!Sel && "Reduction exit feeding two selects"); 3790 Sel = U; 3791 } else 3792 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3793 } 3794 assert(Sel && "Reduction exit feeds no select"); 3795 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel); 3796 } 3797 } 3798 3799 // If the vector reduction can be performed in a smaller type, we truncate 3800 // then extend the loop exit value to enable InstCombine to evaluate the 3801 // entire expression in the smaller type. 3802 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3803 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3804 Builder.SetInsertPoint( 3805 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3806 VectorParts RdxParts(UF); 3807 for (unsigned Part = 0; Part < UF; ++Part) { 3808 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3809 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3810 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3811 : Builder.CreateZExt(Trunc, VecTy); 3812 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3813 UI != RdxParts[Part]->user_end();) 3814 if (*UI != Trunc) { 3815 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3816 RdxParts[Part] = Extnd; 3817 } else { 3818 ++UI; 3819 } 3820 } 3821 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3822 for (unsigned Part = 0; Part < UF; ++Part) { 3823 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3824 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3825 } 3826 } 3827 3828 // Reduce all of the unrolled parts into a single vector. 3829 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3830 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3831 3832 // The middle block terminator has already been assigned a DebugLoc here (the 3833 // OrigLoop's single latch terminator). We want the whole middle block to 3834 // appear to execute on this line because: (a) it is all compiler generated, 3835 // (b) these instructions are always executed after evaluating the latch 3836 // conditional branch, and (c) other passes may add new predecessors which 3837 // terminate on this line. This is the easiest way to ensure we don't 3838 // accidentally cause an extra step back into the loop while debugging. 3839 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 3840 for (unsigned Part = 1; Part < UF; ++Part) { 3841 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3842 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3843 // Floating point operations had to be 'fast' to enable the reduction. 3844 ReducedPartRdx = addFastMathFlag( 3845 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3846 ReducedPartRdx, "bin.rdx"), 3847 RdxDesc.getFastMathFlags()); 3848 else 3849 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3850 RdxPart); 3851 } 3852 3853 if (VF > 1) { 3854 bool NoNaN = Legal->hasFunNoNaNAttr(); 3855 ReducedPartRdx = 3856 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3857 // If the reduction can be performed in a smaller type, we need to extend 3858 // the reduction to the wider type before we branch to the original loop. 3859 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3860 ReducedPartRdx = 3861 RdxDesc.isSigned() 3862 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3863 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3864 } 3865 3866 // Create a phi node that merges control-flow from the backedge-taken check 3867 // block and the middle block. 3868 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3869 LoopScalarPreHeader->getTerminator()); 3870 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3871 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3872 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3873 3874 // Now, we need to fix the users of the reduction variable 3875 // inside and outside of the scalar remainder loop. 3876 // We know that the loop is in LCSSA form. We need to update the 3877 // PHI nodes in the exit blocks. 3878 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3879 // All PHINodes need to have a single entry edge, or two if 3880 // we already fixed them. 3881 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3882 3883 // We found a reduction value exit-PHI. Update it with the 3884 // incoming bypass edge. 3885 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3886 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3887 } // end of the LCSSA phi scan. 3888 3889 // Fix the scalar loop reduction variable with the incoming reduction sum 3890 // from the vector body and from the backedge value. 3891 int IncomingEdgeBlockIdx = 3892 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3893 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3894 // Pick the other block. 3895 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3896 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3897 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3898 } 3899 3900 void InnerLoopVectorizer::clearReductionWrapFlags( 3901 RecurrenceDescriptor &RdxDesc) { 3902 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3903 if (RK != RecurrenceDescriptor::RK_IntegerAdd && 3904 RK != RecurrenceDescriptor::RK_IntegerMult) 3905 return; 3906 3907 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 3908 assert(LoopExitInstr && "null loop exit instruction"); 3909 SmallVector<Instruction *, 8> Worklist; 3910 SmallPtrSet<Instruction *, 8> Visited; 3911 Worklist.push_back(LoopExitInstr); 3912 Visited.insert(LoopExitInstr); 3913 3914 while (!Worklist.empty()) { 3915 Instruction *Cur = Worklist.pop_back_val(); 3916 if (isa<OverflowingBinaryOperator>(Cur)) 3917 for (unsigned Part = 0; Part < UF; ++Part) { 3918 Value *V = getOrCreateVectorValue(Cur, Part); 3919 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 3920 } 3921 3922 for (User *U : Cur->users()) { 3923 Instruction *UI = cast<Instruction>(U); 3924 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 3925 Visited.insert(UI).second) 3926 Worklist.push_back(UI); 3927 } 3928 } 3929 } 3930 3931 void InnerLoopVectorizer::fixLCSSAPHIs() { 3932 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3933 if (LCSSAPhi.getNumIncomingValues() == 1) { 3934 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3935 // Non-instruction incoming values will have only one value. 3936 unsigned LastLane = 0; 3937 if (isa<Instruction>(IncomingValue)) 3938 LastLane = Cost->isUniformAfterVectorization( 3939 cast<Instruction>(IncomingValue), VF) 3940 ? 0 3941 : VF - 1; 3942 // Can be a loop invariant incoming value or the last scalar value to be 3943 // extracted from the vectorized loop. 3944 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3945 Value *lastIncomingValue = 3946 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3947 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3948 } 3949 } 3950 } 3951 3952 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3953 // The basic block and loop containing the predicated instruction. 3954 auto *PredBB = PredInst->getParent(); 3955 auto *VectorLoop = LI->getLoopFor(PredBB); 3956 3957 // Initialize a worklist with the operands of the predicated instruction. 3958 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3959 3960 // Holds instructions that we need to analyze again. An instruction may be 3961 // reanalyzed if we don't yet know if we can sink it or not. 3962 SmallVector<Instruction *, 8> InstsToReanalyze; 3963 3964 // Returns true if a given use occurs in the predicated block. Phi nodes use 3965 // their operands in their corresponding predecessor blocks. 3966 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3967 auto *I = cast<Instruction>(U.getUser()); 3968 BasicBlock *BB = I->getParent(); 3969 if (auto *Phi = dyn_cast<PHINode>(I)) 3970 BB = Phi->getIncomingBlock( 3971 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3972 return BB == PredBB; 3973 }; 3974 3975 // Iteratively sink the scalarized operands of the predicated instruction 3976 // into the block we created for it. When an instruction is sunk, it's 3977 // operands are then added to the worklist. The algorithm ends after one pass 3978 // through the worklist doesn't sink a single instruction. 3979 bool Changed; 3980 do { 3981 // Add the instructions that need to be reanalyzed to the worklist, and 3982 // reset the changed indicator. 3983 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 3984 InstsToReanalyze.clear(); 3985 Changed = false; 3986 3987 while (!Worklist.empty()) { 3988 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 3989 3990 // We can't sink an instruction if it is a phi node, is already in the 3991 // predicated block, is not in the loop, or may have side effects. 3992 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 3993 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 3994 continue; 3995 3996 // It's legal to sink the instruction if all its uses occur in the 3997 // predicated block. Otherwise, there's nothing to do yet, and we may 3998 // need to reanalyze the instruction. 3999 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4000 InstsToReanalyze.push_back(I); 4001 continue; 4002 } 4003 4004 // Move the instruction to the beginning of the predicated block, and add 4005 // it's operands to the worklist. 4006 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4007 Worklist.insert(I->op_begin(), I->op_end()); 4008 4009 // The sinking may have enabled other instructions to be sunk, so we will 4010 // need to iterate. 4011 Changed = true; 4012 } 4013 } while (Changed); 4014 } 4015 4016 void InnerLoopVectorizer::fixNonInductionPHIs() { 4017 for (PHINode *OrigPhi : OrigPHIsToFix) { 4018 PHINode *NewPhi = 4019 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 4020 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 4021 4022 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 4023 predecessors(OrigPhi->getParent())); 4024 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 4025 predecessors(NewPhi->getParent())); 4026 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 4027 "Scalar and Vector BB should have the same number of predecessors"); 4028 4029 // The insertion point in Builder may be invalidated by the time we get 4030 // here. Force the Builder insertion point to something valid so that we do 4031 // not run into issues during insertion point restore in 4032 // getOrCreateVectorValue calls below. 4033 Builder.SetInsertPoint(NewPhi); 4034 4035 // The predecessor order is preserved and we can rely on mapping between 4036 // scalar and vector block predecessors. 4037 for (unsigned i = 0; i < NumIncomingValues; ++i) { 4038 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 4039 4040 // When looking up the new scalar/vector values to fix up, use incoming 4041 // values from original phi. 4042 Value *ScIncV = 4043 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 4044 4045 // Scalar incoming value may need a broadcast 4046 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 4047 NewPhi->addIncoming(NewIncV, NewPredBB); 4048 } 4049 } 4050 } 4051 4052 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, unsigned UF, 4053 unsigned VF, bool IsPtrLoopInvariant, 4054 SmallBitVector &IsIndexLoopInvariant) { 4055 // Construct a vector GEP by widening the operands of the scalar GEP as 4056 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4057 // results in a vector of pointers when at least one operand of the GEP 4058 // is vector-typed. Thus, to keep the representation compact, we only use 4059 // vector-typed operands for loop-varying values. 4060 4061 if (VF > 1 && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4062 // If we are vectorizing, but the GEP has only loop-invariant operands, 4063 // the GEP we build (by only using vector-typed operands for 4064 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4065 // produce a vector of pointers, we need to either arbitrarily pick an 4066 // operand to broadcast, or broadcast a clone of the original GEP. 4067 // Here, we broadcast a clone of the original. 4068 // 4069 // TODO: If at some point we decide to scalarize instructions having 4070 // loop-invariant operands, this special case will no longer be 4071 // required. We would add the scalarization decision to 4072 // collectLoopScalars() and teach getVectorValue() to broadcast 4073 // the lane-zero scalar value. 4074 auto *Clone = Builder.Insert(GEP->clone()); 4075 for (unsigned Part = 0; Part < UF; ++Part) { 4076 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4077 VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart); 4078 addMetadata(EntryPart, GEP); 4079 } 4080 } else { 4081 // If the GEP has at least one loop-varying operand, we are sure to 4082 // produce a vector of pointers. But if we are only unrolling, we want 4083 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4084 // produce with the code below will be scalar (if VF == 1) or vector 4085 // (otherwise). Note that for the unroll-only case, we still maintain 4086 // values in the vector mapping with initVector, as we do for other 4087 // instructions. 4088 for (unsigned Part = 0; Part < UF; ++Part) { 4089 // The pointer operand of the new GEP. If it's loop-invariant, we 4090 // won't broadcast it. 4091 auto *Ptr = IsPtrLoopInvariant 4092 ? GEP->getPointerOperand() 4093 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 4094 4095 // Collect all the indices for the new GEP. If any index is 4096 // loop-invariant, we won't broadcast it. 4097 SmallVector<Value *, 4> Indices; 4098 for (auto Index : enumerate(GEP->indices())) { 4099 Value *User = Index.value().get(); 4100 if (IsIndexLoopInvariant[Index.index()]) 4101 Indices.push_back(User); 4102 else 4103 Indices.push_back(getOrCreateVectorValue(User, Part)); 4104 } 4105 4106 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4107 // but it should be a vector, otherwise. 4108 auto *NewGEP = 4109 GEP->isInBounds() 4110 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4111 Indices) 4112 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4113 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4114 "NewGEP is not a pointer vector"); 4115 VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP); 4116 addMetadata(NewGEP, GEP); 4117 } 4118 } 4119 } 4120 4121 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4122 unsigned VF) { 4123 PHINode *P = cast<PHINode>(PN); 4124 if (EnableVPlanNativePath) { 4125 // Currently we enter here in the VPlan-native path for non-induction 4126 // PHIs where all control flow is uniform. We simply widen these PHIs. 4127 // Create a vector phi with no operands - the vector phi operands will be 4128 // set at the end of vector code generation. 4129 Type *VecTy = 4130 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4131 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4132 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 4133 OrigPHIsToFix.push_back(P); 4134 4135 return; 4136 } 4137 4138 assert(PN->getParent() == OrigLoop->getHeader() && 4139 "Non-header phis should have been handled elsewhere"); 4140 4141 // In order to support recurrences we need to be able to vectorize Phi nodes. 4142 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4143 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4144 // this value when we vectorize all of the instructions that use the PHI. 4145 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4146 for (unsigned Part = 0; Part < UF; ++Part) { 4147 // This is phase one of vectorizing PHIs. 4148 Type *VecTy = 4149 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4150 Value *EntryPart = PHINode::Create( 4151 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4152 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4153 } 4154 return; 4155 } 4156 4157 setDebugLocFromInst(Builder, P); 4158 4159 // This PHINode must be an induction variable. 4160 // Make sure that we know about it. 4161 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4162 4163 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4164 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4165 4166 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4167 // which can be found from the original scalar operations. 4168 switch (II.getKind()) { 4169 case InductionDescriptor::IK_NoInduction: 4170 llvm_unreachable("Unknown induction"); 4171 case InductionDescriptor::IK_IntInduction: 4172 case InductionDescriptor::IK_FpInduction: 4173 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4174 case InductionDescriptor::IK_PtrInduction: { 4175 // Handle the pointer induction variable case. 4176 assert(P->getType()->isPointerTy() && "Unexpected type."); 4177 // This is the normalized GEP that starts counting at zero. 4178 Value *PtrInd = Induction; 4179 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4180 // Determine the number of scalars we need to generate for each unroll 4181 // iteration. If the instruction is uniform, we only need to generate the 4182 // first lane. Otherwise, we generate all VF values. 4183 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4184 // These are the scalar results. Notice that we don't generate vector GEPs 4185 // because scalar GEPs result in better code. 4186 for (unsigned Part = 0; Part < UF; ++Part) { 4187 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4188 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4189 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4190 Value *SclrGep = 4191 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4192 SclrGep->setName("next.gep"); 4193 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4194 } 4195 } 4196 return; 4197 } 4198 } 4199 } 4200 4201 /// A helper function for checking whether an integer division-related 4202 /// instruction may divide by zero (in which case it must be predicated if 4203 /// executed conditionally in the scalar code). 4204 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4205 /// Non-zero divisors that are non compile-time constants will not be 4206 /// converted into multiplication, so we will still end up scalarizing 4207 /// the division, but can do so w/o predication. 4208 static bool mayDivideByZero(Instruction &I) { 4209 assert((I.getOpcode() == Instruction::UDiv || 4210 I.getOpcode() == Instruction::SDiv || 4211 I.getOpcode() == Instruction::URem || 4212 I.getOpcode() == Instruction::SRem) && 4213 "Unexpected instruction"); 4214 Value *Divisor = I.getOperand(1); 4215 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4216 return !CInt || CInt->isZero(); 4217 } 4218 4219 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 4220 switch (I.getOpcode()) { 4221 case Instruction::Br: 4222 case Instruction::PHI: 4223 case Instruction::GetElementPtr: 4224 llvm_unreachable("This instruction is handled by a different recipe."); 4225 case Instruction::UDiv: 4226 case Instruction::SDiv: 4227 case Instruction::SRem: 4228 case Instruction::URem: 4229 case Instruction::Add: 4230 case Instruction::FAdd: 4231 case Instruction::Sub: 4232 case Instruction::FSub: 4233 case Instruction::FNeg: 4234 case Instruction::Mul: 4235 case Instruction::FMul: 4236 case Instruction::FDiv: 4237 case Instruction::FRem: 4238 case Instruction::Shl: 4239 case Instruction::LShr: 4240 case Instruction::AShr: 4241 case Instruction::And: 4242 case Instruction::Or: 4243 case Instruction::Xor: { 4244 // Just widen unops and binops. 4245 setDebugLocFromInst(Builder, &I); 4246 4247 for (unsigned Part = 0; Part < UF; ++Part) { 4248 SmallVector<Value *, 2> Ops; 4249 for (Value *Op : I.operands()) 4250 Ops.push_back(getOrCreateVectorValue(Op, Part)); 4251 4252 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4253 4254 if (auto *VecOp = dyn_cast<Instruction>(V)) 4255 VecOp->copyIRFlags(&I); 4256 4257 // Use this vector value for all users of the original instruction. 4258 VectorLoopValueMap.setVectorValue(&I, Part, V); 4259 addMetadata(V, &I); 4260 } 4261 4262 break; 4263 } 4264 case Instruction::Select: { 4265 // Widen selects. 4266 // If the selector is loop invariant we can create a select 4267 // instruction with a scalar condition. Otherwise, use vector-select. 4268 auto *SE = PSE.getSE(); 4269 bool InvariantCond = 4270 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4271 setDebugLocFromInst(Builder, &I); 4272 4273 // The condition can be loop invariant but still defined inside the 4274 // loop. This means that we can't just use the original 'cond' value. 4275 // We have to take the 'vectorized' value and pick the first lane. 4276 // Instcombine will make this a no-op. 4277 4278 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4279 4280 for (unsigned Part = 0; Part < UF; ++Part) { 4281 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4282 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4283 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4284 Value *Sel = 4285 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4286 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4287 addMetadata(Sel, &I); 4288 } 4289 4290 break; 4291 } 4292 4293 case Instruction::ICmp: 4294 case Instruction::FCmp: { 4295 // Widen compares. Generate vector compares. 4296 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4297 auto *Cmp = cast<CmpInst>(&I); 4298 setDebugLocFromInst(Builder, Cmp); 4299 for (unsigned Part = 0; Part < UF; ++Part) { 4300 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4301 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4302 Value *C = nullptr; 4303 if (FCmp) { 4304 // Propagate fast math flags. 4305 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4306 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4307 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4308 } else { 4309 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4310 } 4311 VectorLoopValueMap.setVectorValue(&I, Part, C); 4312 addMetadata(C, &I); 4313 } 4314 4315 break; 4316 } 4317 4318 case Instruction::ZExt: 4319 case Instruction::SExt: 4320 case Instruction::FPToUI: 4321 case Instruction::FPToSI: 4322 case Instruction::FPExt: 4323 case Instruction::PtrToInt: 4324 case Instruction::IntToPtr: 4325 case Instruction::SIToFP: 4326 case Instruction::UIToFP: 4327 case Instruction::Trunc: 4328 case Instruction::FPTrunc: 4329 case Instruction::BitCast: { 4330 auto *CI = cast<CastInst>(&I); 4331 setDebugLocFromInst(Builder, CI); 4332 4333 /// Vectorize casts. 4334 Type *DestTy = 4335 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4336 4337 for (unsigned Part = 0; Part < UF; ++Part) { 4338 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4339 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4340 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4341 addMetadata(Cast, &I); 4342 } 4343 break; 4344 } 4345 4346 case Instruction::Call: { 4347 // Ignore dbg intrinsics. 4348 if (isa<DbgInfoIntrinsic>(I)) 4349 break; 4350 setDebugLocFromInst(Builder, &I); 4351 4352 Module *M = I.getParent()->getParent()->getParent(); 4353 auto *CI = cast<CallInst>(&I); 4354 4355 SmallVector<Type *, 4> Tys; 4356 for (Value *ArgOperand : CI->arg_operands()) 4357 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4358 4359 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4360 4361 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4362 // version of the instruction. 4363 // Is it beneficial to perform intrinsic call compared to lib call? 4364 bool NeedToScalarize; 4365 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4366 bool UseVectorIntrinsic = 4367 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4368 assert((UseVectorIntrinsic || !NeedToScalarize) && 4369 "Instruction should be scalarized elsewhere."); 4370 4371 for (unsigned Part = 0; Part < UF; ++Part) { 4372 SmallVector<Value *, 4> Args; 4373 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4374 Value *Arg = CI->getArgOperand(i); 4375 // Some intrinsics have a scalar argument - don't replace it with a 4376 // vector. 4377 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4378 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4379 Args.push_back(Arg); 4380 } 4381 4382 Function *VectorF; 4383 if (UseVectorIntrinsic) { 4384 // Use vector version of the intrinsic. 4385 Type *TysForDecl[] = {CI->getType()}; 4386 if (VF > 1) 4387 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4388 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4389 } else { 4390 // Use vector version of the function call. 4391 const VFShape Shape = 4392 VFShape::get(*CI, {VF, false} /*EC*/, false /*HasGlobalPred*/); 4393 #ifndef NDEBUG 4394 const SmallVector<VFInfo, 8> Infos = VFDatabase::getMappings(*CI); 4395 assert(std::find_if(Infos.begin(), Infos.end(), 4396 [&Shape](const VFInfo &Info) { 4397 return Info.Shape == Shape; 4398 }) != Infos.end() && 4399 "Vector function shape is missing from the database."); 4400 #endif 4401 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4402 } 4403 assert(VectorF && "Can't create vector function."); 4404 4405 SmallVector<OperandBundleDef, 1> OpBundles; 4406 CI->getOperandBundlesAsDefs(OpBundles); 4407 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4408 4409 if (isa<FPMathOperator>(V)) 4410 V->copyFastMathFlags(CI); 4411 4412 VectorLoopValueMap.setVectorValue(&I, Part, V); 4413 addMetadata(V, &I); 4414 } 4415 4416 break; 4417 } 4418 4419 default: 4420 // This instruction is not vectorized by simple widening. 4421 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4422 llvm_unreachable("Unhandled instruction!"); 4423 } // end of switch. 4424 } 4425 4426 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4427 // We should not collect Scalars more than once per VF. Right now, this 4428 // function is called from collectUniformsAndScalars(), which already does 4429 // this check. Collecting Scalars for VF=1 does not make any sense. 4430 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4431 "This function should not be visited twice for the same VF"); 4432 4433 SmallSetVector<Instruction *, 8> Worklist; 4434 4435 // These sets are used to seed the analysis with pointers used by memory 4436 // accesses that will remain scalar. 4437 SmallSetVector<Instruction *, 8> ScalarPtrs; 4438 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4439 4440 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4441 // The pointer operands of loads and stores will be scalar as long as the 4442 // memory access is not a gather or scatter operation. The value operand of a 4443 // store will remain scalar if the store is scalarized. 4444 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4445 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4446 assert(WideningDecision != CM_Unknown && 4447 "Widening decision should be ready at this moment"); 4448 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4449 if (Ptr == Store->getValueOperand()) 4450 return WideningDecision == CM_Scalarize; 4451 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4452 "Ptr is neither a value or pointer operand"); 4453 return WideningDecision != CM_GatherScatter; 4454 }; 4455 4456 // A helper that returns true if the given value is a bitcast or 4457 // getelementptr instruction contained in the loop. 4458 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4459 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4460 isa<GetElementPtrInst>(V)) && 4461 !TheLoop->isLoopInvariant(V); 4462 }; 4463 4464 // A helper that evaluates a memory access's use of a pointer. If the use 4465 // will be a scalar use, and the pointer is only used by memory accesses, we 4466 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4467 // PossibleNonScalarPtrs. 4468 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4469 // We only care about bitcast and getelementptr instructions contained in 4470 // the loop. 4471 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4472 return; 4473 4474 // If the pointer has already been identified as scalar (e.g., if it was 4475 // also identified as uniform), there's nothing to do. 4476 auto *I = cast<Instruction>(Ptr); 4477 if (Worklist.count(I)) 4478 return; 4479 4480 // If the use of the pointer will be a scalar use, and all users of the 4481 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4482 // place the pointer in PossibleNonScalarPtrs. 4483 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4484 return isa<LoadInst>(U) || isa<StoreInst>(U); 4485 })) 4486 ScalarPtrs.insert(I); 4487 else 4488 PossibleNonScalarPtrs.insert(I); 4489 }; 4490 4491 // We seed the scalars analysis with three classes of instructions: (1) 4492 // instructions marked uniform-after-vectorization, (2) bitcast and 4493 // getelementptr instructions used by memory accesses requiring a scalar use, 4494 // and (3) pointer induction variables and their update instructions (we 4495 // currently only scalarize these). 4496 // 4497 // (1) Add to the worklist all instructions that have been identified as 4498 // uniform-after-vectorization. 4499 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4500 4501 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4502 // memory accesses requiring a scalar use. The pointer operands of loads and 4503 // stores will be scalar as long as the memory accesses is not a gather or 4504 // scatter operation. The value operand of a store will remain scalar if the 4505 // store is scalarized. 4506 for (auto *BB : TheLoop->blocks()) 4507 for (auto &I : *BB) { 4508 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4509 evaluatePtrUse(Load, Load->getPointerOperand()); 4510 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4511 evaluatePtrUse(Store, Store->getPointerOperand()); 4512 evaluatePtrUse(Store, Store->getValueOperand()); 4513 } 4514 } 4515 for (auto *I : ScalarPtrs) 4516 if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) { 4517 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4518 Worklist.insert(I); 4519 } 4520 4521 // (3) Add to the worklist all pointer induction variables and their update 4522 // instructions. 4523 // 4524 // TODO: Once we are able to vectorize pointer induction variables we should 4525 // no longer insert them into the worklist here. 4526 auto *Latch = TheLoop->getLoopLatch(); 4527 for (auto &Induction : *Legal->getInductionVars()) { 4528 auto *Ind = Induction.first; 4529 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4530 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4531 continue; 4532 Worklist.insert(Ind); 4533 Worklist.insert(IndUpdate); 4534 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4535 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4536 << "\n"); 4537 } 4538 4539 // Insert the forced scalars. 4540 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4541 // induction variable when the PHI user is scalarized. 4542 auto ForcedScalar = ForcedScalars.find(VF); 4543 if (ForcedScalar != ForcedScalars.end()) 4544 for (auto *I : ForcedScalar->second) 4545 Worklist.insert(I); 4546 4547 // Expand the worklist by looking through any bitcasts and getelementptr 4548 // instructions we've already identified as scalar. This is similar to the 4549 // expansion step in collectLoopUniforms(); however, here we're only 4550 // expanding to include additional bitcasts and getelementptr instructions. 4551 unsigned Idx = 0; 4552 while (Idx != Worklist.size()) { 4553 Instruction *Dst = Worklist[Idx++]; 4554 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4555 continue; 4556 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4557 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4558 auto *J = cast<Instruction>(U); 4559 return !TheLoop->contains(J) || Worklist.count(J) || 4560 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4561 isScalarUse(J, Src)); 4562 })) { 4563 Worklist.insert(Src); 4564 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4565 } 4566 } 4567 4568 // An induction variable will remain scalar if all users of the induction 4569 // variable and induction variable update remain scalar. 4570 for (auto &Induction : *Legal->getInductionVars()) { 4571 auto *Ind = Induction.first; 4572 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4573 4574 // We already considered pointer induction variables, so there's no reason 4575 // to look at their users again. 4576 // 4577 // TODO: Once we are able to vectorize pointer induction variables we 4578 // should no longer skip over them here. 4579 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4580 continue; 4581 4582 // Determine if all users of the induction variable are scalar after 4583 // vectorization. 4584 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4585 auto *I = cast<Instruction>(U); 4586 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4587 }); 4588 if (!ScalarInd) 4589 continue; 4590 4591 // Determine if all users of the induction variable update instruction are 4592 // scalar after vectorization. 4593 auto ScalarIndUpdate = 4594 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4595 auto *I = cast<Instruction>(U); 4596 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4597 }); 4598 if (!ScalarIndUpdate) 4599 continue; 4600 4601 // The induction variable and its update instruction will remain scalar. 4602 Worklist.insert(Ind); 4603 Worklist.insert(IndUpdate); 4604 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4605 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4606 << "\n"); 4607 } 4608 4609 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4610 } 4611 4612 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4613 if (!blockNeedsPredication(I->getParent())) 4614 return false; 4615 switch(I->getOpcode()) { 4616 default: 4617 break; 4618 case Instruction::Load: 4619 case Instruction::Store: { 4620 if (!Legal->isMaskRequired(I)) 4621 return false; 4622 auto *Ptr = getLoadStorePointerOperand(I); 4623 auto *Ty = getMemInstValueType(I); 4624 // We have already decided how to vectorize this instruction, get that 4625 // result. 4626 if (VF > 1) { 4627 InstWidening WideningDecision = getWideningDecision(I, VF); 4628 assert(WideningDecision != CM_Unknown && 4629 "Widening decision should be ready at this moment"); 4630 return WideningDecision == CM_Scalarize; 4631 } 4632 const MaybeAlign Alignment = getLoadStoreAlignment(I); 4633 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4634 isLegalMaskedGather(Ty, Alignment)) 4635 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4636 isLegalMaskedScatter(Ty, Alignment)); 4637 } 4638 case Instruction::UDiv: 4639 case Instruction::SDiv: 4640 case Instruction::SRem: 4641 case Instruction::URem: 4642 return mayDivideByZero(*I); 4643 } 4644 return false; 4645 } 4646 4647 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4648 unsigned VF) { 4649 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4650 assert(getWideningDecision(I, VF) == CM_Unknown && 4651 "Decision should not be set yet."); 4652 auto *Group = getInterleavedAccessGroup(I); 4653 assert(Group && "Must have a group."); 4654 4655 // If the instruction's allocated size doesn't equal it's type size, it 4656 // requires padding and will be scalarized. 4657 auto &DL = I->getModule()->getDataLayout(); 4658 auto *ScalarTy = getMemInstValueType(I); 4659 if (hasIrregularType(ScalarTy, DL, VF)) 4660 return false; 4661 4662 // Check if masking is required. 4663 // A Group may need masking for one of two reasons: it resides in a block that 4664 // needs predication, or it was decided to use masking to deal with gaps. 4665 bool PredicatedAccessRequiresMasking = 4666 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4667 bool AccessWithGapsRequiresMasking = 4668 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 4669 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4670 return true; 4671 4672 // If masked interleaving is required, we expect that the user/target had 4673 // enabled it, because otherwise it either wouldn't have been created or 4674 // it should have been invalidated by the CostModel. 4675 assert(useMaskedInterleavedAccesses(TTI) && 4676 "Masked interleave-groups for predicated accesses are not enabled."); 4677 4678 auto *Ty = getMemInstValueType(I); 4679 const MaybeAlign Alignment = getLoadStoreAlignment(I); 4680 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4681 : TTI.isLegalMaskedStore(Ty, Alignment); 4682 } 4683 4684 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4685 unsigned VF) { 4686 // Get and ensure we have a valid memory instruction. 4687 LoadInst *LI = dyn_cast<LoadInst>(I); 4688 StoreInst *SI = dyn_cast<StoreInst>(I); 4689 assert((LI || SI) && "Invalid memory instruction"); 4690 4691 auto *Ptr = getLoadStorePointerOperand(I); 4692 4693 // In order to be widened, the pointer should be consecutive, first of all. 4694 if (!Legal->isConsecutivePtr(Ptr)) 4695 return false; 4696 4697 // If the instruction is a store located in a predicated block, it will be 4698 // scalarized. 4699 if (isScalarWithPredication(I)) 4700 return false; 4701 4702 // If the instruction's allocated size doesn't equal it's type size, it 4703 // requires padding and will be scalarized. 4704 auto &DL = I->getModule()->getDataLayout(); 4705 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4706 if (hasIrregularType(ScalarTy, DL, VF)) 4707 return false; 4708 4709 return true; 4710 } 4711 4712 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4713 // We should not collect Uniforms more than once per VF. Right now, 4714 // this function is called from collectUniformsAndScalars(), which 4715 // already does this check. Collecting Uniforms for VF=1 does not make any 4716 // sense. 4717 4718 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4719 "This function should not be visited twice for the same VF"); 4720 4721 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4722 // not analyze again. Uniforms.count(VF) will return 1. 4723 Uniforms[VF].clear(); 4724 4725 // We now know that the loop is vectorizable! 4726 // Collect instructions inside the loop that will remain uniform after 4727 // vectorization. 4728 4729 // Global values, params and instructions outside of current loop are out of 4730 // scope. 4731 auto isOutOfScope = [&](Value *V) -> bool { 4732 Instruction *I = dyn_cast<Instruction>(V); 4733 return (!I || !TheLoop->contains(I)); 4734 }; 4735 4736 SetVector<Instruction *> Worklist; 4737 BasicBlock *Latch = TheLoop->getLoopLatch(); 4738 4739 // Instructions that are scalar with predication must not be considered 4740 // uniform after vectorization, because that would create an erroneous 4741 // replicating region where only a single instance out of VF should be formed. 4742 // TODO: optimize such seldom cases if found important, see PR40816. 4743 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4744 if (isScalarWithPredication(I, VF)) { 4745 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4746 << *I << "\n"); 4747 return; 4748 } 4749 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4750 Worklist.insert(I); 4751 }; 4752 4753 // Start with the conditional branch. If the branch condition is an 4754 // instruction contained in the loop that is only used by the branch, it is 4755 // uniform. 4756 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4757 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4758 addToWorklistIfAllowed(Cmp); 4759 4760 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4761 // are pointers that are treated like consecutive pointers during 4762 // vectorization. The pointer operands of interleaved accesses are an 4763 // example. 4764 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4765 4766 // Holds pointer operands of instructions that are possibly non-uniform. 4767 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4768 4769 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4770 InstWidening WideningDecision = getWideningDecision(I, VF); 4771 assert(WideningDecision != CM_Unknown && 4772 "Widening decision should be ready at this moment"); 4773 4774 return (WideningDecision == CM_Widen || 4775 WideningDecision == CM_Widen_Reverse || 4776 WideningDecision == CM_Interleave); 4777 }; 4778 // Iterate over the instructions in the loop, and collect all 4779 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4780 // that a consecutive-like pointer operand will be scalarized, we collect it 4781 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4782 // getelementptr instruction can be used by both vectorized and scalarized 4783 // memory instructions. For example, if a loop loads and stores from the same 4784 // location, but the store is conditional, the store will be scalarized, and 4785 // the getelementptr won't remain uniform. 4786 for (auto *BB : TheLoop->blocks()) 4787 for (auto &I : *BB) { 4788 // If there's no pointer operand, there's nothing to do. 4789 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4790 if (!Ptr) 4791 continue; 4792 4793 // True if all users of Ptr are memory accesses that have Ptr as their 4794 // pointer operand. 4795 auto UsersAreMemAccesses = 4796 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4797 return getLoadStorePointerOperand(U) == Ptr; 4798 }); 4799 4800 // Ensure the memory instruction will not be scalarized or used by 4801 // gather/scatter, making its pointer operand non-uniform. If the pointer 4802 // operand is used by any instruction other than a memory access, we 4803 // conservatively assume the pointer operand may be non-uniform. 4804 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4805 PossibleNonUniformPtrs.insert(Ptr); 4806 4807 // If the memory instruction will be vectorized and its pointer operand 4808 // is consecutive-like, or interleaving - the pointer operand should 4809 // remain uniform. 4810 else 4811 ConsecutiveLikePtrs.insert(Ptr); 4812 } 4813 4814 // Add to the Worklist all consecutive and consecutive-like pointers that 4815 // aren't also identified as possibly non-uniform. 4816 for (auto *V : ConsecutiveLikePtrs) 4817 if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) 4818 addToWorklistIfAllowed(V); 4819 4820 // Expand Worklist in topological order: whenever a new instruction 4821 // is added , its users should be already inside Worklist. It ensures 4822 // a uniform instruction will only be used by uniform instructions. 4823 unsigned idx = 0; 4824 while (idx != Worklist.size()) { 4825 Instruction *I = Worklist[idx++]; 4826 4827 for (auto OV : I->operand_values()) { 4828 // isOutOfScope operands cannot be uniform instructions. 4829 if (isOutOfScope(OV)) 4830 continue; 4831 // First order recurrence Phi's should typically be considered 4832 // non-uniform. 4833 auto *OP = dyn_cast<PHINode>(OV); 4834 if (OP && Legal->isFirstOrderRecurrence(OP)) 4835 continue; 4836 // If all the users of the operand are uniform, then add the 4837 // operand into the uniform worklist. 4838 auto *OI = cast<Instruction>(OV); 4839 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4840 auto *J = cast<Instruction>(U); 4841 return Worklist.count(J) || 4842 (OI == getLoadStorePointerOperand(J) && 4843 isUniformDecision(J, VF)); 4844 })) 4845 addToWorklistIfAllowed(OI); 4846 } 4847 } 4848 4849 // Returns true if Ptr is the pointer operand of a memory access instruction 4850 // I, and I is known to not require scalarization. 4851 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4852 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4853 }; 4854 4855 // For an instruction to be added into Worklist above, all its users inside 4856 // the loop should also be in Worklist. However, this condition cannot be 4857 // true for phi nodes that form a cyclic dependence. We must process phi 4858 // nodes separately. An induction variable will remain uniform if all users 4859 // of the induction variable and induction variable update remain uniform. 4860 // The code below handles both pointer and non-pointer induction variables. 4861 for (auto &Induction : *Legal->getInductionVars()) { 4862 auto *Ind = Induction.first; 4863 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4864 4865 // Determine if all users of the induction variable are uniform after 4866 // vectorization. 4867 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4868 auto *I = cast<Instruction>(U); 4869 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4870 isVectorizedMemAccessUse(I, Ind); 4871 }); 4872 if (!UniformInd) 4873 continue; 4874 4875 // Determine if all users of the induction variable update instruction are 4876 // uniform after vectorization. 4877 auto UniformIndUpdate = 4878 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4879 auto *I = cast<Instruction>(U); 4880 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4881 isVectorizedMemAccessUse(I, IndUpdate); 4882 }); 4883 if (!UniformIndUpdate) 4884 continue; 4885 4886 // The induction variable and its update instruction will remain uniform. 4887 addToWorklistIfAllowed(Ind); 4888 addToWorklistIfAllowed(IndUpdate); 4889 } 4890 4891 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4892 } 4893 4894 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4895 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4896 4897 if (Legal->getRuntimePointerChecking()->Need) { 4898 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4899 "runtime pointer checks needed. Enable vectorization of this " 4900 "loop with '#pragma clang loop vectorize(enable)' when " 4901 "compiling with -Os/-Oz", 4902 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4903 return true; 4904 } 4905 4906 if (!PSE.getUnionPredicate().getPredicates().empty()) { 4907 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4908 "runtime SCEV checks needed. Enable vectorization of this " 4909 "loop with '#pragma clang loop vectorize(enable)' when " 4910 "compiling with -Os/-Oz", 4911 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4912 return true; 4913 } 4914 4915 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4916 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4917 reportVectorizationFailure("Runtime stride check is required with -Os/-Oz", 4918 "runtime stride == 1 checks needed. Enable vectorization of " 4919 "this loop with '#pragma clang loop vectorize(enable)' when " 4920 "compiling with -Os/-Oz", 4921 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4922 return true; 4923 } 4924 4925 return false; 4926 } 4927 4928 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF() { 4929 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4930 // TODO: It may by useful to do since it's still likely to be dynamically 4931 // uniform if the target can skip. 4932 reportVectorizationFailure( 4933 "Not inserting runtime ptr check for divergent target", 4934 "runtime pointer checks needed. Not enabled for divergent target", 4935 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 4936 return None; 4937 } 4938 4939 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4940 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4941 if (TC == 1) { 4942 reportVectorizationFailure("Single iteration (non) loop", 4943 "loop trip count is one, irrelevant for vectorization", 4944 "SingleIterationLoop", ORE, TheLoop); 4945 return None; 4946 } 4947 4948 switch (ScalarEpilogueStatus) { 4949 case CM_ScalarEpilogueAllowed: 4950 return computeFeasibleMaxVF(TC); 4951 case CM_ScalarEpilogueNotNeededUsePredicate: 4952 LLVM_DEBUG( 4953 dbgs() << "LV: vector predicate hint/switch found.\n" 4954 << "LV: Not allowing scalar epilogue, creating predicated " 4955 << "vector loop.\n"); 4956 break; 4957 case CM_ScalarEpilogueNotAllowedLowTripLoop: 4958 // fallthrough as a special case of OptForSize 4959 case CM_ScalarEpilogueNotAllowedOptSize: 4960 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 4961 LLVM_DEBUG( 4962 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 4963 else 4964 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 4965 << "count.\n"); 4966 4967 // Bail if runtime checks are required, which are not good when optimising 4968 // for size. 4969 if (runtimeChecksRequired()) 4970 return None; 4971 break; 4972 } 4973 4974 // Now try the tail folding 4975 4976 // Invalidate interleave groups that require an epilogue if we can't mask 4977 // the interleave-group. 4978 if (!useMaskedInterleavedAccesses(TTI)) 4979 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 4980 4981 unsigned MaxVF = computeFeasibleMaxVF(TC); 4982 if (TC > 0 && TC % MaxVF == 0) { 4983 // Accept MaxVF if we do not have a tail. 4984 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 4985 return MaxVF; 4986 } 4987 4988 // If we don't know the precise trip count, or if the trip count that we 4989 // found modulo the vectorization factor is not zero, try to fold the tail 4990 // by masking. 4991 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 4992 if (Legal->prepareToFoldTailByMasking()) { 4993 FoldTailByMasking = true; 4994 return MaxVF; 4995 } 4996 4997 if (TC == 0) { 4998 reportVectorizationFailure( 4999 "Unable to calculate the loop count due to complex control flow", 5000 "unable to calculate the loop count due to complex control flow", 5001 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5002 return None; 5003 } 5004 5005 reportVectorizationFailure( 5006 "Cannot optimize for size and vectorize at the same time.", 5007 "cannot optimize for size and vectorize at the same time. " 5008 "Enable vectorization of this loop with '#pragma clang loop " 5009 "vectorize(enable)' when compiling with -Os/-Oz", 5010 "NoTailLoopWithOptForSize", ORE, TheLoop); 5011 return None; 5012 } 5013 5014 unsigned 5015 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) { 5016 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5017 unsigned SmallestType, WidestType; 5018 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5019 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5020 5021 // Get the maximum safe dependence distance in bits computed by LAA. 5022 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5023 // the memory accesses that is most restrictive (involved in the smallest 5024 // dependence distance). 5025 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 5026 5027 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 5028 5029 unsigned MaxVectorSize = WidestRegister / WidestType; 5030 5031 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5032 << " / " << WidestType << " bits.\n"); 5033 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5034 << WidestRegister << " bits.\n"); 5035 5036 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 5037 " into one vector!"); 5038 if (MaxVectorSize == 0) { 5039 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5040 MaxVectorSize = 1; 5041 return MaxVectorSize; 5042 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 5043 isPowerOf2_32(ConstTripCount)) { 5044 // We need to clamp the VF to be the ConstTripCount. There is no point in 5045 // choosing a higher viable VF as done in the loop below. 5046 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5047 << ConstTripCount << "\n"); 5048 MaxVectorSize = ConstTripCount; 5049 return MaxVectorSize; 5050 } 5051 5052 unsigned MaxVF = MaxVectorSize; 5053 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5054 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5055 // Collect all viable vectorization factors larger than the default MaxVF 5056 // (i.e. MaxVectorSize). 5057 SmallVector<unsigned, 8> VFs; 5058 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5059 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5060 VFs.push_back(VS); 5061 5062 // For each VF calculate its register usage. 5063 auto RUs = calculateRegisterUsage(VFs); 5064 5065 // Select the largest VF which doesn't require more registers than existing 5066 // ones. 5067 for (int i = RUs.size() - 1; i >= 0; --i) { 5068 bool Selected = true; 5069 for (auto& pair : RUs[i].MaxLocalUsers) { 5070 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5071 if (pair.second > TargetNumRegisters) 5072 Selected = false; 5073 } 5074 if (Selected) { 5075 MaxVF = VFs[i]; 5076 break; 5077 } 5078 } 5079 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5080 if (MaxVF < MinVF) { 5081 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5082 << ") with target's minimum: " << MinVF << '\n'); 5083 MaxVF = MinVF; 5084 } 5085 } 5086 } 5087 return MaxVF; 5088 } 5089 5090 VectorizationFactor 5091 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 5092 float Cost = expectedCost(1).first; 5093 const float ScalarCost = Cost; 5094 unsigned Width = 1; 5095 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5096 5097 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5098 if (ForceVectorization && MaxVF > 1) { 5099 // Ignore scalar width, because the user explicitly wants vectorization. 5100 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5101 // evaluation. 5102 Cost = std::numeric_limits<float>::max(); 5103 } 5104 5105 for (unsigned i = 2; i <= MaxVF; i *= 2) { 5106 // Notice that the vector loop needs to be executed less times, so 5107 // we need to divide the cost of the vector loops by the width of 5108 // the vector elements. 5109 VectorizationCostTy C = expectedCost(i); 5110 float VectorCost = C.first / (float)i; 5111 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5112 << " costs: " << (int)VectorCost << ".\n"); 5113 if (!C.second && !ForceVectorization) { 5114 LLVM_DEBUG( 5115 dbgs() << "LV: Not considering vector loop of width " << i 5116 << " because it will not generate any vector instructions.\n"); 5117 continue; 5118 } 5119 if (VectorCost < Cost) { 5120 Cost = VectorCost; 5121 Width = i; 5122 } 5123 } 5124 5125 if (!EnableCondStoresVectorization && NumPredStores) { 5126 reportVectorizationFailure("There are conditional stores.", 5127 "store that is conditionally executed prevents vectorization", 5128 "ConditionalStore", ORE, TheLoop); 5129 Width = 1; 5130 Cost = ScalarCost; 5131 } 5132 5133 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5134 << "LV: Vectorization seems to be not beneficial, " 5135 << "but was forced by a user.\n"); 5136 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5137 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 5138 return Factor; 5139 } 5140 5141 std::pair<unsigned, unsigned> 5142 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5143 unsigned MinWidth = -1U; 5144 unsigned MaxWidth = 8; 5145 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5146 5147 // For each block. 5148 for (BasicBlock *BB : TheLoop->blocks()) { 5149 // For each instruction in the loop. 5150 for (Instruction &I : BB->instructionsWithoutDebug()) { 5151 Type *T = I.getType(); 5152 5153 // Skip ignored values. 5154 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end()) 5155 continue; 5156 5157 // Only examine Loads, Stores and PHINodes. 5158 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5159 continue; 5160 5161 // Examine PHI nodes that are reduction variables. Update the type to 5162 // account for the recurrence type. 5163 if (auto *PN = dyn_cast<PHINode>(&I)) { 5164 if (!Legal->isReductionVariable(PN)) 5165 continue; 5166 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 5167 T = RdxDesc.getRecurrenceType(); 5168 } 5169 5170 // Examine the stored values. 5171 if (auto *ST = dyn_cast<StoreInst>(&I)) 5172 T = ST->getValueOperand()->getType(); 5173 5174 // Ignore loaded pointer types and stored pointer types that are not 5175 // vectorizable. 5176 // 5177 // FIXME: The check here attempts to predict whether a load or store will 5178 // be vectorized. We only know this for certain after a VF has 5179 // been selected. Here, we assume that if an access can be 5180 // vectorized, it will be. We should also look at extending this 5181 // optimization to non-pointer types. 5182 // 5183 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5184 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5185 continue; 5186 5187 MinWidth = std::min(MinWidth, 5188 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5189 MaxWidth = std::max(MaxWidth, 5190 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5191 } 5192 } 5193 5194 return {MinWidth, MaxWidth}; 5195 } 5196 5197 unsigned LoopVectorizationCostModel::selectInterleaveCount(unsigned VF, 5198 unsigned LoopCost) { 5199 // -- The interleave heuristics -- 5200 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5201 // There are many micro-architectural considerations that we can't predict 5202 // at this level. For example, frontend pressure (on decode or fetch) due to 5203 // code size, or the number and capabilities of the execution ports. 5204 // 5205 // We use the following heuristics to select the interleave count: 5206 // 1. If the code has reductions, then we interleave to break the cross 5207 // iteration dependency. 5208 // 2. If the loop is really small, then we interleave to reduce the loop 5209 // overhead. 5210 // 3. We don't interleave if we think that we will spill registers to memory 5211 // due to the increased register pressure. 5212 5213 if (!isScalarEpilogueAllowed()) 5214 return 1; 5215 5216 // We used the distance for the interleave count. 5217 if (Legal->getMaxSafeDepDistBytes() != -1U) 5218 return 1; 5219 5220 // Do not interleave loops with a relatively small known or estimated trip 5221 // count. 5222 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5223 if (BestKnownTC && *BestKnownTC < TinyTripCountInterleaveThreshold) 5224 return 1; 5225 5226 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5227 // We divide by these constants so assume that we have at least one 5228 // instruction that uses at least one register. 5229 for (auto& pair : R.MaxLocalUsers) { 5230 pair.second = std::max(pair.second, 1U); 5231 } 5232 5233 // We calculate the interleave count using the following formula. 5234 // Subtract the number of loop invariants from the number of available 5235 // registers. These registers are used by all of the interleaved instances. 5236 // Next, divide the remaining registers by the number of registers that is 5237 // required by the loop, in order to estimate how many parallel instances 5238 // fit without causing spills. All of this is rounded down if necessary to be 5239 // a power of two. We want power of two interleave count to simplify any 5240 // addressing operations or alignment considerations. 5241 // We also want power of two interleave counts to ensure that the induction 5242 // variable of the vector loop wraps to zero, when tail is folded by masking; 5243 // this currently happens when OptForSize, in which case IC is set to 1 above. 5244 unsigned IC = UINT_MAX; 5245 5246 for (auto& pair : R.MaxLocalUsers) { 5247 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5248 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5249 << " registers of " 5250 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5251 if (VF == 1) { 5252 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5253 TargetNumRegisters = ForceTargetNumScalarRegs; 5254 } else { 5255 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5256 TargetNumRegisters = ForceTargetNumVectorRegs; 5257 } 5258 unsigned MaxLocalUsers = pair.second; 5259 unsigned LoopInvariantRegs = 0; 5260 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5261 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5262 5263 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5264 // Don't count the induction variable as interleaved. 5265 if (EnableIndVarRegisterHeur) { 5266 TmpIC = 5267 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5268 std::max(1U, (MaxLocalUsers - 1))); 5269 } 5270 5271 IC = std::min(IC, TmpIC); 5272 } 5273 5274 // Clamp the interleave ranges to reasonable counts. 5275 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5276 5277 // Check if the user has overridden the max. 5278 if (VF == 1) { 5279 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5280 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5281 } else { 5282 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5283 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5284 } 5285 5286 // If trip count is known or estimated compile time constant, limit the 5287 // interleave count to be less than the trip count divided by VF. 5288 if (BestKnownTC) { 5289 MaxInterleaveCount = std::min(*BestKnownTC / VF, MaxInterleaveCount); 5290 } 5291 5292 // If we did not calculate the cost for VF (because the user selected the VF) 5293 // then we calculate the cost of VF here. 5294 if (LoopCost == 0) 5295 LoopCost = expectedCost(VF).first; 5296 5297 assert(LoopCost && "Non-zero loop cost expected"); 5298 5299 // Clamp the calculated IC to be between the 1 and the max interleave count 5300 // that the target and trip count allows. 5301 if (IC > MaxInterleaveCount) 5302 IC = MaxInterleaveCount; 5303 else if (IC < 1) 5304 IC = 1; 5305 5306 // Interleave if we vectorized this loop and there is a reduction that could 5307 // benefit from interleaving. 5308 if (VF > 1 && !Legal->getReductionVars()->empty()) { 5309 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5310 return IC; 5311 } 5312 5313 // Note that if we've already vectorized the loop we will have done the 5314 // runtime check and so interleaving won't require further checks. 5315 bool InterleavingRequiresRuntimePointerCheck = 5316 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5317 5318 // We want to interleave small loops in order to reduce the loop overhead and 5319 // potentially expose ILP opportunities. 5320 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5321 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5322 // We assume that the cost overhead is 1 and we use the cost model 5323 // to estimate the cost of the loop and interleave until the cost of the 5324 // loop overhead is about 5% of the cost of the loop. 5325 unsigned SmallIC = 5326 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5327 5328 // Interleave until store/load ports (estimated by max interleave count) are 5329 // saturated. 5330 unsigned NumStores = Legal->getNumStores(); 5331 unsigned NumLoads = Legal->getNumLoads(); 5332 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5333 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5334 5335 // If we have a scalar reduction (vector reductions are already dealt with 5336 // by this point), we can increase the critical path length if the loop 5337 // we're interleaving is inside another loop. Limit, by default to 2, so the 5338 // critical path only gets increased by one reduction operation. 5339 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 5340 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5341 SmallIC = std::min(SmallIC, F); 5342 StoresIC = std::min(StoresIC, F); 5343 LoadsIC = std::min(LoadsIC, F); 5344 } 5345 5346 if (EnableLoadStoreRuntimeInterleave && 5347 std::max(StoresIC, LoadsIC) > SmallIC) { 5348 LLVM_DEBUG( 5349 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5350 return std::max(StoresIC, LoadsIC); 5351 } 5352 5353 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5354 return SmallIC; 5355 } 5356 5357 // Interleave if this is a large loop (small loops are already dealt with by 5358 // this point) that could benefit from interleaving. 5359 bool HasReductions = !Legal->getReductionVars()->empty(); 5360 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5361 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5362 return IC; 5363 } 5364 5365 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5366 return 1; 5367 } 5368 5369 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5370 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5371 // This function calculates the register usage by measuring the highest number 5372 // of values that are alive at a single location. Obviously, this is a very 5373 // rough estimation. We scan the loop in a topological order in order and 5374 // assign a number to each instruction. We use RPO to ensure that defs are 5375 // met before their users. We assume that each instruction that has in-loop 5376 // users starts an interval. We record every time that an in-loop value is 5377 // used, so we have a list of the first and last occurrences of each 5378 // instruction. Next, we transpose this data structure into a multi map that 5379 // holds the list of intervals that *end* at a specific location. This multi 5380 // map allows us to perform a linear search. We scan the instructions linearly 5381 // and record each time that a new interval starts, by placing it in a set. 5382 // If we find this value in the multi-map then we remove it from the set. 5383 // The max register usage is the maximum size of the set. 5384 // We also search for instructions that are defined outside the loop, but are 5385 // used inside the loop. We need this number separately from the max-interval 5386 // usage number because when we unroll, loop-invariant values do not take 5387 // more register. 5388 LoopBlocksDFS DFS(TheLoop); 5389 DFS.perform(LI); 5390 5391 RegisterUsage RU; 5392 5393 // Each 'key' in the map opens a new interval. The values 5394 // of the map are the index of the 'last seen' usage of the 5395 // instruction that is the key. 5396 using IntervalMap = DenseMap<Instruction *, unsigned>; 5397 5398 // Maps instruction to its index. 5399 SmallVector<Instruction *, 64> IdxToInstr; 5400 // Marks the end of each interval. 5401 IntervalMap EndPoint; 5402 // Saves the list of instruction indices that are used in the loop. 5403 SmallPtrSet<Instruction *, 8> Ends; 5404 // Saves the list of values that are used in the loop but are 5405 // defined outside the loop, such as arguments and constants. 5406 SmallPtrSet<Value *, 8> LoopInvariants; 5407 5408 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5409 for (Instruction &I : BB->instructionsWithoutDebug()) { 5410 IdxToInstr.push_back(&I); 5411 5412 // Save the end location of each USE. 5413 for (Value *U : I.operands()) { 5414 auto *Instr = dyn_cast<Instruction>(U); 5415 5416 // Ignore non-instruction values such as arguments, constants, etc. 5417 if (!Instr) 5418 continue; 5419 5420 // If this instruction is outside the loop then record it and continue. 5421 if (!TheLoop->contains(Instr)) { 5422 LoopInvariants.insert(Instr); 5423 continue; 5424 } 5425 5426 // Overwrite previous end points. 5427 EndPoint[Instr] = IdxToInstr.size(); 5428 Ends.insert(Instr); 5429 } 5430 } 5431 } 5432 5433 // Saves the list of intervals that end with the index in 'key'. 5434 using InstrList = SmallVector<Instruction *, 2>; 5435 DenseMap<unsigned, InstrList> TransposeEnds; 5436 5437 // Transpose the EndPoints to a list of values that end at each index. 5438 for (auto &Interval : EndPoint) 5439 TransposeEnds[Interval.second].push_back(Interval.first); 5440 5441 SmallPtrSet<Instruction *, 8> OpenIntervals; 5442 5443 // Get the size of the widest register. 5444 unsigned MaxSafeDepDist = -1U; 5445 if (Legal->getMaxSafeDepDistBytes() != -1U) 5446 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5447 unsigned WidestRegister = 5448 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5449 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5450 5451 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5452 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5453 5454 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5455 5456 // A lambda that gets the register usage for the given type and VF. 5457 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5458 if (Ty->isTokenTy()) 5459 return 0U; 5460 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5461 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5462 }; 5463 5464 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5465 Instruction *I = IdxToInstr[i]; 5466 5467 // Remove all of the instructions that end at this location. 5468 InstrList &List = TransposeEnds[i]; 5469 for (Instruction *ToRemove : List) 5470 OpenIntervals.erase(ToRemove); 5471 5472 // Ignore instructions that are never used within the loop. 5473 if (Ends.find(I) == Ends.end()) 5474 continue; 5475 5476 // Skip ignored values. 5477 if (ValuesToIgnore.find(I) != ValuesToIgnore.end()) 5478 continue; 5479 5480 // For each VF find the maximum usage of registers. 5481 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5482 // Count the number of live intervals. 5483 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5484 5485 if (VFs[j] == 1) { 5486 for (auto Inst : OpenIntervals) { 5487 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5488 if (RegUsage.find(ClassID) == RegUsage.end()) 5489 RegUsage[ClassID] = 1; 5490 else 5491 RegUsage[ClassID] += 1; 5492 } 5493 } else { 5494 collectUniformsAndScalars(VFs[j]); 5495 for (auto Inst : OpenIntervals) { 5496 // Skip ignored values for VF > 1. 5497 if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end()) 5498 continue; 5499 if (isScalarAfterVectorization(Inst, VFs[j])) { 5500 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5501 if (RegUsage.find(ClassID) == RegUsage.end()) 5502 RegUsage[ClassID] = 1; 5503 else 5504 RegUsage[ClassID] += 1; 5505 } else { 5506 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 5507 if (RegUsage.find(ClassID) == RegUsage.end()) 5508 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 5509 else 5510 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 5511 } 5512 } 5513 } 5514 5515 for (auto& pair : RegUsage) { 5516 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 5517 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 5518 else 5519 MaxUsages[j][pair.first] = pair.second; 5520 } 5521 } 5522 5523 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5524 << OpenIntervals.size() << '\n'); 5525 5526 // Add the current instruction to the list of open intervals. 5527 OpenIntervals.insert(I); 5528 } 5529 5530 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5531 SmallMapVector<unsigned, unsigned, 4> Invariant; 5532 5533 for (auto Inst : LoopInvariants) { 5534 unsigned Usage = VFs[i] == 1 ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 5535 unsigned ClassID = TTI.getRegisterClassForType(VFs[i] > 1, Inst->getType()); 5536 if (Invariant.find(ClassID) == Invariant.end()) 5537 Invariant[ClassID] = Usage; 5538 else 5539 Invariant[ClassID] += Usage; 5540 } 5541 5542 LLVM_DEBUG({ 5543 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 5544 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 5545 << " item\n"; 5546 for (const auto &pair : MaxUsages[i]) { 5547 dbgs() << "LV(REG): RegisterClass: " 5548 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5549 << " registers\n"; 5550 } 5551 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 5552 << " item\n"; 5553 for (const auto &pair : Invariant) { 5554 dbgs() << "LV(REG): RegisterClass: " 5555 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5556 << " registers\n"; 5557 } 5558 }); 5559 5560 RU.LoopInvariantRegs = Invariant; 5561 RU.MaxLocalUsers = MaxUsages[i]; 5562 RUs[i] = RU; 5563 } 5564 5565 return RUs; 5566 } 5567 5568 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5569 // TODO: Cost model for emulated masked load/store is completely 5570 // broken. This hack guides the cost model to use an artificially 5571 // high enough value to practically disable vectorization with such 5572 // operations, except where previously deployed legality hack allowed 5573 // using very low cost values. This is to avoid regressions coming simply 5574 // from moving "masked load/store" check from legality to cost model. 5575 // Masked Load/Gather emulation was previously never allowed. 5576 // Limited number of Masked Store/Scatter emulation was allowed. 5577 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5578 return isa<LoadInst>(I) || 5579 (isa<StoreInst>(I) && 5580 NumPredStores > NumberOfStoresToPredicate); 5581 } 5582 5583 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5584 // If we aren't vectorizing the loop, or if we've already collected the 5585 // instructions to scalarize, there's nothing to do. Collection may already 5586 // have occurred if we have a user-selected VF and are now computing the 5587 // expected cost for interleaving. 5588 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5589 return; 5590 5591 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5592 // not profitable to scalarize any instructions, the presence of VF in the 5593 // map will indicate that we've analyzed it already. 5594 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5595 5596 // Find all the instructions that are scalar with predication in the loop and 5597 // determine if it would be better to not if-convert the blocks they are in. 5598 // If so, we also record the instructions to scalarize. 5599 for (BasicBlock *BB : TheLoop->blocks()) { 5600 if (!blockNeedsPredication(BB)) 5601 continue; 5602 for (Instruction &I : *BB) 5603 if (isScalarWithPredication(&I)) { 5604 ScalarCostsTy ScalarCosts; 5605 // Do not apply discount logic if hacked cost is needed 5606 // for emulated masked memrefs. 5607 if (!useEmulatedMaskMemRefHack(&I) && 5608 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5609 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5610 // Remember that BB will remain after vectorization. 5611 PredicatedBBsAfterVectorization.insert(BB); 5612 } 5613 } 5614 } 5615 5616 int LoopVectorizationCostModel::computePredInstDiscount( 5617 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5618 unsigned VF) { 5619 assert(!isUniformAfterVectorization(PredInst, VF) && 5620 "Instruction marked uniform-after-vectorization will be predicated"); 5621 5622 // Initialize the discount to zero, meaning that the scalar version and the 5623 // vector version cost the same. 5624 int Discount = 0; 5625 5626 // Holds instructions to analyze. The instructions we visit are mapped in 5627 // ScalarCosts. Those instructions are the ones that would be scalarized if 5628 // we find that the scalar version costs less. 5629 SmallVector<Instruction *, 8> Worklist; 5630 5631 // Returns true if the given instruction can be scalarized. 5632 auto canBeScalarized = [&](Instruction *I) -> bool { 5633 // We only attempt to scalarize instructions forming a single-use chain 5634 // from the original predicated block that would otherwise be vectorized. 5635 // Although not strictly necessary, we give up on instructions we know will 5636 // already be scalar to avoid traversing chains that are unlikely to be 5637 // beneficial. 5638 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5639 isScalarAfterVectorization(I, VF)) 5640 return false; 5641 5642 // If the instruction is scalar with predication, it will be analyzed 5643 // separately. We ignore it within the context of PredInst. 5644 if (isScalarWithPredication(I)) 5645 return false; 5646 5647 // If any of the instruction's operands are uniform after vectorization, 5648 // the instruction cannot be scalarized. This prevents, for example, a 5649 // masked load from being scalarized. 5650 // 5651 // We assume we will only emit a value for lane zero of an instruction 5652 // marked uniform after vectorization, rather than VF identical values. 5653 // Thus, if we scalarize an instruction that uses a uniform, we would 5654 // create uses of values corresponding to the lanes we aren't emitting code 5655 // for. This behavior can be changed by allowing getScalarValue to clone 5656 // the lane zero values for uniforms rather than asserting. 5657 for (Use &U : I->operands()) 5658 if (auto *J = dyn_cast<Instruction>(U.get())) 5659 if (isUniformAfterVectorization(J, VF)) 5660 return false; 5661 5662 // Otherwise, we can scalarize the instruction. 5663 return true; 5664 }; 5665 5666 // Compute the expected cost discount from scalarizing the entire expression 5667 // feeding the predicated instruction. We currently only consider expressions 5668 // that are single-use instruction chains. 5669 Worklist.push_back(PredInst); 5670 while (!Worklist.empty()) { 5671 Instruction *I = Worklist.pop_back_val(); 5672 5673 // If we've already analyzed the instruction, there's nothing to do. 5674 if (ScalarCosts.find(I) != ScalarCosts.end()) 5675 continue; 5676 5677 // Compute the cost of the vector instruction. Note that this cost already 5678 // includes the scalarization overhead of the predicated instruction. 5679 unsigned VectorCost = getInstructionCost(I, VF).first; 5680 5681 // Compute the cost of the scalarized instruction. This cost is the cost of 5682 // the instruction as if it wasn't if-converted and instead remained in the 5683 // predicated block. We will scale this cost by block probability after 5684 // computing the scalarization overhead. 5685 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5686 5687 // Compute the scalarization overhead of needed insertelement instructions 5688 // and phi nodes. 5689 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5690 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 5691 true, false); 5692 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 5693 } 5694 5695 // Compute the scalarization overhead of needed extractelement 5696 // instructions. For each of the instruction's operands, if the operand can 5697 // be scalarized, add it to the worklist; otherwise, account for the 5698 // overhead. 5699 for (Use &U : I->operands()) 5700 if (auto *J = dyn_cast<Instruction>(U.get())) { 5701 assert(VectorType::isValidElementType(J->getType()) && 5702 "Instruction has non-scalar type"); 5703 if (canBeScalarized(J)) 5704 Worklist.push_back(J); 5705 else if (needsExtract(J, VF)) 5706 ScalarCost += TTI.getScalarizationOverhead( 5707 ToVectorTy(J->getType(),VF), false, true); 5708 } 5709 5710 // Scale the total scalar cost by block probability. 5711 ScalarCost /= getReciprocalPredBlockProb(); 5712 5713 // Compute the discount. A non-negative discount means the vector version 5714 // of the instruction costs more, and scalarizing would be beneficial. 5715 Discount += VectorCost - ScalarCost; 5716 ScalarCosts[I] = ScalarCost; 5717 } 5718 5719 return Discount; 5720 } 5721 5722 LoopVectorizationCostModel::VectorizationCostTy 5723 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5724 VectorizationCostTy Cost; 5725 5726 // For each block. 5727 for (BasicBlock *BB : TheLoop->blocks()) { 5728 VectorizationCostTy BlockCost; 5729 5730 // For each instruction in the old loop. 5731 for (Instruction &I : BB->instructionsWithoutDebug()) { 5732 // Skip ignored values. 5733 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() || 5734 (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end())) 5735 continue; 5736 5737 VectorizationCostTy C = getInstructionCost(&I, VF); 5738 5739 // Check if we should override the cost. 5740 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5741 C.first = ForceTargetInstructionCost; 5742 5743 BlockCost.first += C.first; 5744 BlockCost.second |= C.second; 5745 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5746 << " for VF " << VF << " For instruction: " << I 5747 << '\n'); 5748 } 5749 5750 // If we are vectorizing a predicated block, it will have been 5751 // if-converted. This means that the block's instructions (aside from 5752 // stores and instructions that may divide by zero) will now be 5753 // unconditionally executed. For the scalar case, we may not always execute 5754 // the predicated block. Thus, scale the block's cost by the probability of 5755 // executing it. 5756 if (VF == 1 && blockNeedsPredication(BB)) 5757 BlockCost.first /= getReciprocalPredBlockProb(); 5758 5759 Cost.first += BlockCost.first; 5760 Cost.second |= BlockCost.second; 5761 } 5762 5763 return Cost; 5764 } 5765 5766 /// Gets Address Access SCEV after verifying that the access pattern 5767 /// is loop invariant except the induction variable dependence. 5768 /// 5769 /// This SCEV can be sent to the Target in order to estimate the address 5770 /// calculation cost. 5771 static const SCEV *getAddressAccessSCEV( 5772 Value *Ptr, 5773 LoopVectorizationLegality *Legal, 5774 PredicatedScalarEvolution &PSE, 5775 const Loop *TheLoop) { 5776 5777 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5778 if (!Gep) 5779 return nullptr; 5780 5781 // We are looking for a gep with all loop invariant indices except for one 5782 // which should be an induction variable. 5783 auto SE = PSE.getSE(); 5784 unsigned NumOperands = Gep->getNumOperands(); 5785 for (unsigned i = 1; i < NumOperands; ++i) { 5786 Value *Opd = Gep->getOperand(i); 5787 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5788 !Legal->isInductionVariable(Opd)) 5789 return nullptr; 5790 } 5791 5792 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5793 return PSE.getSCEV(Ptr); 5794 } 5795 5796 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5797 return Legal->hasStride(I->getOperand(0)) || 5798 Legal->hasStride(I->getOperand(1)); 5799 } 5800 5801 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5802 unsigned VF) { 5803 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5804 Type *ValTy = getMemInstValueType(I); 5805 auto SE = PSE.getSE(); 5806 5807 unsigned AS = getLoadStoreAddressSpace(I); 5808 Value *Ptr = getLoadStorePointerOperand(I); 5809 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5810 5811 // Figure out whether the access is strided and get the stride value 5812 // if it's known in compile time 5813 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5814 5815 // Get the cost of the scalar memory instruction and address computation. 5816 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5817 5818 // Don't pass *I here, since it is scalar but will actually be part of a 5819 // vectorized loop where the user of it is a vectorized instruction. 5820 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5821 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5822 Alignment, AS); 5823 5824 // Get the overhead of the extractelement and insertelement instructions 5825 // we might create due to scalarization. 5826 Cost += getScalarizationOverhead(I, VF); 5827 5828 // If we have a predicated store, it may not be executed for each vector 5829 // lane. Scale the cost by the probability of executing the predicated 5830 // block. 5831 if (isPredicatedInst(I)) { 5832 Cost /= getReciprocalPredBlockProb(); 5833 5834 if (useEmulatedMaskMemRefHack(I)) 5835 // Artificially setting to a high enough value to practically disable 5836 // vectorization with such operations. 5837 Cost = 3000000; 5838 } 5839 5840 return Cost; 5841 } 5842 5843 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5844 unsigned VF) { 5845 Type *ValTy = getMemInstValueType(I); 5846 Type *VectorTy = ToVectorTy(ValTy, VF); 5847 Value *Ptr = getLoadStorePointerOperand(I); 5848 unsigned AS = getLoadStoreAddressSpace(I); 5849 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5850 5851 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5852 "Stride should be 1 or -1 for consecutive memory access"); 5853 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5854 unsigned Cost = 0; 5855 if (Legal->isMaskRequired(I)) 5856 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, 5857 Alignment ? Alignment->value() : 0, AS); 5858 else 5859 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 5860 5861 bool Reverse = ConsecutiveStride < 0; 5862 if (Reverse) 5863 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5864 return Cost; 5865 } 5866 5867 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5868 unsigned VF) { 5869 Type *ValTy = getMemInstValueType(I); 5870 Type *VectorTy = ToVectorTy(ValTy, VF); 5871 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5872 unsigned AS = getLoadStoreAddressSpace(I); 5873 if (isa<LoadInst>(I)) { 5874 return TTI.getAddressComputationCost(ValTy) + 5875 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 5876 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5877 } 5878 StoreInst *SI = cast<StoreInst>(I); 5879 5880 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5881 return TTI.getAddressComputationCost(ValTy) + 5882 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS) + 5883 (isLoopInvariantStoreValue 5884 ? 0 5885 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 5886 VF - 1)); 5887 } 5888 5889 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5890 unsigned VF) { 5891 Type *ValTy = getMemInstValueType(I); 5892 Type *VectorTy = ToVectorTy(ValTy, VF); 5893 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5894 Value *Ptr = getLoadStorePointerOperand(I); 5895 5896 return TTI.getAddressComputationCost(VectorTy) + 5897 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5898 Legal->isMaskRequired(I), 5899 Alignment ? Alignment->value() : 0); 5900 } 5901 5902 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5903 unsigned VF) { 5904 Type *ValTy = getMemInstValueType(I); 5905 Type *VectorTy = ToVectorTy(ValTy, VF); 5906 unsigned AS = getLoadStoreAddressSpace(I); 5907 5908 auto Group = getInterleavedAccessGroup(I); 5909 assert(Group && "Fail to get an interleaved access group."); 5910 5911 unsigned InterleaveFactor = Group->getFactor(); 5912 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5913 5914 // Holds the indices of existing members in an interleaved load group. 5915 // An interleaved store group doesn't need this as it doesn't allow gaps. 5916 SmallVector<unsigned, 4> Indices; 5917 if (isa<LoadInst>(I)) { 5918 for (unsigned i = 0; i < InterleaveFactor; i++) 5919 if (Group->getMember(i)) 5920 Indices.push_back(i); 5921 } 5922 5923 // Calculate the cost of the whole interleaved group. 5924 bool UseMaskForGaps = 5925 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5926 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5927 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5928 Group->getAlignment(), AS, Legal->isMaskRequired(I), UseMaskForGaps); 5929 5930 if (Group->isReverse()) { 5931 // TODO: Add support for reversed masked interleaved access. 5932 assert(!Legal->isMaskRequired(I) && 5933 "Reverse masked interleaved access not supported."); 5934 Cost += Group->getNumMembers() * 5935 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5936 } 5937 return Cost; 5938 } 5939 5940 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5941 unsigned VF) { 5942 // Calculate scalar cost only. Vectorization cost should be ready at this 5943 // moment. 5944 if (VF == 1) { 5945 Type *ValTy = getMemInstValueType(I); 5946 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5947 unsigned AS = getLoadStoreAddressSpace(I); 5948 5949 return TTI.getAddressComputationCost(ValTy) + 5950 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 5951 } 5952 return getWideningCost(I, VF); 5953 } 5954 5955 LoopVectorizationCostModel::VectorizationCostTy 5956 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5957 // If we know that this instruction will remain uniform, check the cost of 5958 // the scalar version. 5959 if (isUniformAfterVectorization(I, VF)) 5960 VF = 1; 5961 5962 if (VF > 1 && isProfitableToScalarize(I, VF)) 5963 return VectorizationCostTy(InstsToScalarize[VF][I], false); 5964 5965 // Forced scalars do not have any scalarization overhead. 5966 auto ForcedScalar = ForcedScalars.find(VF); 5967 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 5968 auto InstSet = ForcedScalar->second; 5969 if (InstSet.find(I) != InstSet.end()) 5970 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 5971 } 5972 5973 Type *VectorTy; 5974 unsigned C = getInstructionCost(I, VF, VectorTy); 5975 5976 bool TypeNotScalarized = 5977 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 5978 return VectorizationCostTy(C, TypeNotScalarized); 5979 } 5980 5981 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 5982 unsigned VF) { 5983 5984 if (VF == 1) 5985 return 0; 5986 5987 unsigned Cost = 0; 5988 Type *RetTy = ToVectorTy(I->getType(), VF); 5989 if (!RetTy->isVoidTy() && 5990 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 5991 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 5992 5993 // Some targets keep addresses scalar. 5994 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 5995 return Cost; 5996 5997 // Some targets support efficient element stores. 5998 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 5999 return Cost; 6000 6001 // Collect operands to consider. 6002 CallInst *CI = dyn_cast<CallInst>(I); 6003 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 6004 6005 // Skip operands that do not require extraction/scalarization and do not incur 6006 // any overhead. 6007 return Cost + TTI.getOperandsScalarizationOverhead( 6008 filterExtractingOperands(Ops, VF), VF); 6009 } 6010 6011 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 6012 if (VF == 1) 6013 return; 6014 NumPredStores = 0; 6015 for (BasicBlock *BB : TheLoop->blocks()) { 6016 // For each instruction in the old loop. 6017 for (Instruction &I : *BB) { 6018 Value *Ptr = getLoadStorePointerOperand(&I); 6019 if (!Ptr) 6020 continue; 6021 6022 // TODO: We should generate better code and update the cost model for 6023 // predicated uniform stores. Today they are treated as any other 6024 // predicated store (see added test cases in 6025 // invariant-store-vectorization.ll). 6026 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 6027 NumPredStores++; 6028 6029 if (Legal->isUniform(Ptr) && 6030 // Conditional loads and stores should be scalarized and predicated. 6031 // isScalarWithPredication cannot be used here since masked 6032 // gather/scatters are not considered scalar with predication. 6033 !Legal->blockNeedsPredication(I.getParent())) { 6034 // TODO: Avoid replicating loads and stores instead of 6035 // relying on instcombine to remove them. 6036 // Load: Scalar load + broadcast 6037 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6038 unsigned Cost = getUniformMemOpCost(&I, VF); 6039 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6040 continue; 6041 } 6042 6043 // We assume that widening is the best solution when possible. 6044 if (memoryInstructionCanBeWidened(&I, VF)) { 6045 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 6046 int ConsecutiveStride = 6047 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 6048 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6049 "Expected consecutive stride."); 6050 InstWidening Decision = 6051 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6052 setWideningDecision(&I, VF, Decision, Cost); 6053 continue; 6054 } 6055 6056 // Choose between Interleaving, Gather/Scatter or Scalarization. 6057 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 6058 unsigned NumAccesses = 1; 6059 if (isAccessInterleaved(&I)) { 6060 auto Group = getInterleavedAccessGroup(&I); 6061 assert(Group && "Fail to get an interleaved access group."); 6062 6063 // Make one decision for the whole group. 6064 if (getWideningDecision(&I, VF) != CM_Unknown) 6065 continue; 6066 6067 NumAccesses = Group->getNumMembers(); 6068 if (interleavedAccessCanBeWidened(&I, VF)) 6069 InterleaveCost = getInterleaveGroupCost(&I, VF); 6070 } 6071 6072 unsigned GatherScatterCost = 6073 isLegalGatherOrScatter(&I) 6074 ? getGatherScatterCost(&I, VF) * NumAccesses 6075 : std::numeric_limits<unsigned>::max(); 6076 6077 unsigned ScalarizationCost = 6078 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6079 6080 // Choose better solution for the current VF, 6081 // write down this decision and use it during vectorization. 6082 unsigned Cost; 6083 InstWidening Decision; 6084 if (InterleaveCost <= GatherScatterCost && 6085 InterleaveCost < ScalarizationCost) { 6086 Decision = CM_Interleave; 6087 Cost = InterleaveCost; 6088 } else if (GatherScatterCost < ScalarizationCost) { 6089 Decision = CM_GatherScatter; 6090 Cost = GatherScatterCost; 6091 } else { 6092 Decision = CM_Scalarize; 6093 Cost = ScalarizationCost; 6094 } 6095 // If the instructions belongs to an interleave group, the whole group 6096 // receives the same decision. The whole group receives the cost, but 6097 // the cost will actually be assigned to one instruction. 6098 if (auto Group = getInterleavedAccessGroup(&I)) 6099 setWideningDecision(Group, VF, Decision, Cost); 6100 else 6101 setWideningDecision(&I, VF, Decision, Cost); 6102 } 6103 } 6104 6105 // Make sure that any load of address and any other address computation 6106 // remains scalar unless there is gather/scatter support. This avoids 6107 // inevitable extracts into address registers, and also has the benefit of 6108 // activating LSR more, since that pass can't optimize vectorized 6109 // addresses. 6110 if (TTI.prefersVectorizedAddressing()) 6111 return; 6112 6113 // Start with all scalar pointer uses. 6114 SmallPtrSet<Instruction *, 8> AddrDefs; 6115 for (BasicBlock *BB : TheLoop->blocks()) 6116 for (Instruction &I : *BB) { 6117 Instruction *PtrDef = 6118 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6119 if (PtrDef && TheLoop->contains(PtrDef) && 6120 getWideningDecision(&I, VF) != CM_GatherScatter) 6121 AddrDefs.insert(PtrDef); 6122 } 6123 6124 // Add all instructions used to generate the addresses. 6125 SmallVector<Instruction *, 4> Worklist; 6126 for (auto *I : AddrDefs) 6127 Worklist.push_back(I); 6128 while (!Worklist.empty()) { 6129 Instruction *I = Worklist.pop_back_val(); 6130 for (auto &Op : I->operands()) 6131 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6132 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6133 AddrDefs.insert(InstOp).second) 6134 Worklist.push_back(InstOp); 6135 } 6136 6137 for (auto *I : AddrDefs) { 6138 if (isa<LoadInst>(I)) { 6139 // Setting the desired widening decision should ideally be handled in 6140 // by cost functions, but since this involves the task of finding out 6141 // if the loaded register is involved in an address computation, it is 6142 // instead changed here when we know this is the case. 6143 InstWidening Decision = getWideningDecision(I, VF); 6144 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6145 // Scalarize a widened load of address. 6146 setWideningDecision(I, VF, CM_Scalarize, 6147 (VF * getMemoryInstructionCost(I, 1))); 6148 else if (auto Group = getInterleavedAccessGroup(I)) { 6149 // Scalarize an interleave group of address loads. 6150 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6151 if (Instruction *Member = Group->getMember(I)) 6152 setWideningDecision(Member, VF, CM_Scalarize, 6153 (VF * getMemoryInstructionCost(Member, 1))); 6154 } 6155 } 6156 } else 6157 // Make sure I gets scalarized and a cost estimate without 6158 // scalarization overhead. 6159 ForcedScalars[VF].insert(I); 6160 } 6161 } 6162 6163 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6164 unsigned VF, 6165 Type *&VectorTy) { 6166 Type *RetTy = I->getType(); 6167 if (canTruncateToMinimalBitwidth(I, VF)) 6168 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6169 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 6170 auto SE = PSE.getSE(); 6171 6172 // TODO: We need to estimate the cost of intrinsic calls. 6173 switch (I->getOpcode()) { 6174 case Instruction::GetElementPtr: 6175 // We mark this instruction as zero-cost because the cost of GEPs in 6176 // vectorized code depends on whether the corresponding memory instruction 6177 // is scalarized or not. Therefore, we handle GEPs with the memory 6178 // instruction cost. 6179 return 0; 6180 case Instruction::Br: { 6181 // In cases of scalarized and predicated instructions, there will be VF 6182 // predicated blocks in the vectorized loop. Each branch around these 6183 // blocks requires also an extract of its vector compare i1 element. 6184 bool ScalarPredicatedBB = false; 6185 BranchInst *BI = cast<BranchInst>(I); 6186 if (VF > 1 && BI->isConditional() && 6187 (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) != 6188 PredicatedBBsAfterVectorization.end() || 6189 PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) != 6190 PredicatedBBsAfterVectorization.end())) 6191 ScalarPredicatedBB = true; 6192 6193 if (ScalarPredicatedBB) { 6194 // Return cost for branches around scalarized and predicated blocks. 6195 Type *Vec_i1Ty = 6196 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6197 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 6198 (TTI.getCFInstrCost(Instruction::Br) * VF)); 6199 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 6200 // The back-edge branch will remain, as will all scalar branches. 6201 return TTI.getCFInstrCost(Instruction::Br); 6202 else 6203 // This branch will be eliminated by if-conversion. 6204 return 0; 6205 // Note: We currently assume zero cost for an unconditional branch inside 6206 // a predicated block since it will become a fall-through, although we 6207 // may decide in the future to call TTI for all branches. 6208 } 6209 case Instruction::PHI: { 6210 auto *Phi = cast<PHINode>(I); 6211 6212 // First-order recurrences are replaced by vector shuffles inside the loop. 6213 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 6214 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6215 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6216 VectorTy, VF - 1, VectorType::get(RetTy, 1)); 6217 6218 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6219 // converted into select instructions. We require N - 1 selects per phi 6220 // node, where N is the number of incoming values. 6221 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 6222 return (Phi->getNumIncomingValues() - 1) * 6223 TTI.getCmpSelInstrCost( 6224 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6225 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 6226 6227 return TTI.getCFInstrCost(Instruction::PHI); 6228 } 6229 case Instruction::UDiv: 6230 case Instruction::SDiv: 6231 case Instruction::URem: 6232 case Instruction::SRem: 6233 // If we have a predicated instruction, it may not be executed for each 6234 // vector lane. Get the scalarization cost and scale this amount by the 6235 // probability of executing the predicated block. If the instruction is not 6236 // predicated, we fall through to the next case. 6237 if (VF > 1 && isScalarWithPredication(I)) { 6238 unsigned Cost = 0; 6239 6240 // These instructions have a non-void type, so account for the phi nodes 6241 // that we will create. This cost is likely to be zero. The phi node 6242 // cost, if any, should be scaled by the block probability because it 6243 // models a copy at the end of each predicated block. 6244 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 6245 6246 // The cost of the non-predicated instruction. 6247 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 6248 6249 // The cost of insertelement and extractelement instructions needed for 6250 // scalarization. 6251 Cost += getScalarizationOverhead(I, VF); 6252 6253 // Scale the cost by the probability of executing the predicated blocks. 6254 // This assumes the predicated block for each vector lane is equally 6255 // likely. 6256 return Cost / getReciprocalPredBlockProb(); 6257 } 6258 LLVM_FALLTHROUGH; 6259 case Instruction::Add: 6260 case Instruction::FAdd: 6261 case Instruction::Sub: 6262 case Instruction::FSub: 6263 case Instruction::Mul: 6264 case Instruction::FMul: 6265 case Instruction::FDiv: 6266 case Instruction::FRem: 6267 case Instruction::Shl: 6268 case Instruction::LShr: 6269 case Instruction::AShr: 6270 case Instruction::And: 6271 case Instruction::Or: 6272 case Instruction::Xor: { 6273 // Since we will replace the stride by 1 the multiplication should go away. 6274 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6275 return 0; 6276 // Certain instructions can be cheaper to vectorize if they have a constant 6277 // second vector operand. One example of this are shifts on x86. 6278 Value *Op2 = I->getOperand(1); 6279 TargetTransformInfo::OperandValueProperties Op2VP; 6280 TargetTransformInfo::OperandValueKind Op2VK = 6281 TTI.getOperandInfo(Op2, Op2VP); 6282 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 6283 Op2VK = TargetTransformInfo::OK_UniformValue; 6284 6285 SmallVector<const Value *, 4> Operands(I->operand_values()); 6286 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6287 return N * TTI.getArithmeticInstrCost( 6288 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 6289 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 6290 } 6291 case Instruction::FNeg: { 6292 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6293 return N * TTI.getArithmeticInstrCost( 6294 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 6295 TargetTransformInfo::OK_AnyValue, 6296 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 6297 I->getOperand(0), I); 6298 } 6299 case Instruction::Select: { 6300 SelectInst *SI = cast<SelectInst>(I); 6301 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6302 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6303 Type *CondTy = SI->getCondition()->getType(); 6304 if (!ScalarCond) 6305 CondTy = VectorType::get(CondTy, VF); 6306 6307 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 6308 } 6309 case Instruction::ICmp: 6310 case Instruction::FCmp: { 6311 Type *ValTy = I->getOperand(0)->getType(); 6312 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6313 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6314 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6315 VectorTy = ToVectorTy(ValTy, VF); 6316 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 6317 } 6318 case Instruction::Store: 6319 case Instruction::Load: { 6320 unsigned Width = VF; 6321 if (Width > 1) { 6322 InstWidening Decision = getWideningDecision(I, Width); 6323 assert(Decision != CM_Unknown && 6324 "CM decision should be taken at this point"); 6325 if (Decision == CM_Scalarize) 6326 Width = 1; 6327 } 6328 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6329 return getMemoryInstructionCost(I, VF); 6330 } 6331 case Instruction::ZExt: 6332 case Instruction::SExt: 6333 case Instruction::FPToUI: 6334 case Instruction::FPToSI: 6335 case Instruction::FPExt: 6336 case Instruction::PtrToInt: 6337 case Instruction::IntToPtr: 6338 case Instruction::SIToFP: 6339 case Instruction::UIToFP: 6340 case Instruction::Trunc: 6341 case Instruction::FPTrunc: 6342 case Instruction::BitCast: { 6343 // We optimize the truncation of induction variables having constant 6344 // integer steps. The cost of these truncations is the same as the scalar 6345 // operation. 6346 if (isOptimizableIVTruncate(I, VF)) { 6347 auto *Trunc = cast<TruncInst>(I); 6348 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6349 Trunc->getSrcTy(), Trunc); 6350 } 6351 6352 Type *SrcScalarTy = I->getOperand(0)->getType(); 6353 Type *SrcVecTy = 6354 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6355 if (canTruncateToMinimalBitwidth(I, VF)) { 6356 // This cast is going to be shrunk. This may remove the cast or it might 6357 // turn it into slightly different cast. For example, if MinBW == 16, 6358 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6359 // 6360 // Calculate the modified src and dest types. 6361 Type *MinVecTy = VectorTy; 6362 if (I->getOpcode() == Instruction::Trunc) { 6363 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6364 VectorTy = 6365 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6366 } else if (I->getOpcode() == Instruction::ZExt || 6367 I->getOpcode() == Instruction::SExt) { 6368 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6369 VectorTy = 6370 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6371 } 6372 } 6373 6374 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6375 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 6376 } 6377 case Instruction::Call: { 6378 bool NeedToScalarize; 6379 CallInst *CI = cast<CallInst>(I); 6380 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6381 if (getVectorIntrinsicIDForCall(CI, TLI)) 6382 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6383 return CallCost; 6384 } 6385 default: 6386 // The cost of executing VF copies of the scalar instruction. This opcode 6387 // is unknown. Assume that it is the same as 'mul'. 6388 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 6389 getScalarizationOverhead(I, VF); 6390 } // end of switch. 6391 } 6392 6393 char LoopVectorize::ID = 0; 6394 6395 static const char lv_name[] = "Loop Vectorization"; 6396 6397 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6398 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6399 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6400 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6401 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6402 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6403 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6404 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6405 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6406 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6407 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6408 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6409 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6410 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6411 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 6412 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6413 6414 namespace llvm { 6415 6416 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6417 6418 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6419 bool VectorizeOnlyWhenForced) { 6420 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6421 } 6422 6423 } // end namespace llvm 6424 6425 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6426 // Check if the pointer operand of a load or store instruction is 6427 // consecutive. 6428 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6429 return Legal->isConsecutivePtr(Ptr); 6430 return false; 6431 } 6432 6433 void LoopVectorizationCostModel::collectValuesToIgnore() { 6434 // Ignore ephemeral values. 6435 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6436 6437 // Ignore type-promoting instructions we identified during reduction 6438 // detection. 6439 for (auto &Reduction : *Legal->getReductionVars()) { 6440 RecurrenceDescriptor &RedDes = Reduction.second; 6441 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6442 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6443 } 6444 // Ignore type-casting instructions we identified during induction 6445 // detection. 6446 for (auto &Induction : *Legal->getInductionVars()) { 6447 InductionDescriptor &IndDes = Induction.second; 6448 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6449 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6450 } 6451 } 6452 6453 // TODO: we could return a pair of values that specify the max VF and 6454 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6455 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6456 // doesn't have a cost model that can choose which plan to execute if 6457 // more than one is generated. 6458 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6459 LoopVectorizationCostModel &CM) { 6460 unsigned WidestType; 6461 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6462 return WidestVectorRegBits / WidestType; 6463 } 6464 6465 VectorizationFactor 6466 LoopVectorizationPlanner::planInVPlanNativePath(unsigned UserVF) { 6467 unsigned VF = UserVF; 6468 // Outer loop handling: They may require CFG and instruction level 6469 // transformations before even evaluating whether vectorization is profitable. 6470 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6471 // the vectorization pipeline. 6472 if (!OrigLoop->empty()) { 6473 // If the user doesn't provide a vectorization factor, determine a 6474 // reasonable one. 6475 if (!UserVF) { 6476 VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM); 6477 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 6478 6479 // Make sure we have a VF > 1 for stress testing. 6480 if (VPlanBuildStressTest && VF < 2) { 6481 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 6482 << "overriding computed VF.\n"); 6483 VF = 4; 6484 } 6485 } 6486 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6487 assert(isPowerOf2_32(VF) && "VF needs to be a power of two"); 6488 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF 6489 << " to build VPlans.\n"); 6490 buildVPlans(VF, VF); 6491 6492 // For VPlan build stress testing, we bail out after VPlan construction. 6493 if (VPlanBuildStressTest) 6494 return VectorizationFactor::Disabled(); 6495 6496 return {VF, 0}; 6497 } 6498 6499 LLVM_DEBUG( 6500 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6501 "VPlan-native path.\n"); 6502 return VectorizationFactor::Disabled(); 6503 } 6504 6505 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(unsigned UserVF) { 6506 assert(OrigLoop->empty() && "Inner loop expected."); 6507 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(); 6508 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6509 return None; 6510 6511 // Invalidate interleave groups if all blocks of loop will be predicated. 6512 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6513 !useMaskedInterleavedAccesses(*TTI)) { 6514 LLVM_DEBUG( 6515 dbgs() 6516 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6517 "which requires masked-interleaved support.\n"); 6518 CM.InterleaveInfo.reset(); 6519 } 6520 6521 if (UserVF) { 6522 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6523 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6524 // Collect the instructions (and their associated costs) that will be more 6525 // profitable to scalarize. 6526 CM.selectUserVectorizationFactor(UserVF); 6527 buildVPlansWithVPRecipes(UserVF, UserVF); 6528 LLVM_DEBUG(printPlans(dbgs())); 6529 return {{UserVF, 0}}; 6530 } 6531 6532 unsigned MaxVF = MaybeMaxVF.getValue(); 6533 assert(MaxVF != 0 && "MaxVF is zero."); 6534 6535 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6536 // Collect Uniform and Scalar instructions after vectorization with VF. 6537 CM.collectUniformsAndScalars(VF); 6538 6539 // Collect the instructions (and their associated costs) that will be more 6540 // profitable to scalarize. 6541 if (VF > 1) 6542 CM.collectInstsToScalarize(VF); 6543 } 6544 6545 buildVPlansWithVPRecipes(1, MaxVF); 6546 LLVM_DEBUG(printPlans(dbgs())); 6547 if (MaxVF == 1) 6548 return VectorizationFactor::Disabled(); 6549 6550 // Select the optimal vectorization factor. 6551 return CM.selectVectorizationFactor(MaxVF); 6552 } 6553 6554 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6555 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6556 << '\n'); 6557 BestVF = VF; 6558 BestUF = UF; 6559 6560 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6561 return !Plan->hasVF(VF); 6562 }); 6563 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6564 } 6565 6566 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6567 DominatorTree *DT) { 6568 // Perform the actual loop transformation. 6569 6570 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6571 VPCallbackILV CallbackILV(ILV); 6572 6573 VPTransformState State{BestVF, BestUF, LI, 6574 DT, ILV.Builder, ILV.VectorLoopValueMap, 6575 &ILV, CallbackILV}; 6576 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6577 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6578 6579 //===------------------------------------------------===// 6580 // 6581 // Notice: any optimization or new instruction that go 6582 // into the code below should also be implemented in 6583 // the cost-model. 6584 // 6585 //===------------------------------------------------===// 6586 6587 // 2. Copy and widen instructions from the old loop into the new loop. 6588 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6589 VPlans.front()->execute(&State); 6590 6591 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6592 // predication, updating analyses. 6593 ILV.fixVectorizedLoop(); 6594 } 6595 6596 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6597 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6598 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6599 6600 // We create new control-flow for the vectorized loop, so the original 6601 // condition will be dead after vectorization if it's only used by the 6602 // branch. 6603 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6604 if (Cmp && Cmp->hasOneUse()) 6605 DeadInstructions.insert(Cmp); 6606 6607 // We create new "steps" for induction variable updates to which the original 6608 // induction variables map. An original update instruction will be dead if 6609 // all its users except the induction variable are dead. 6610 for (auto &Induction : *Legal->getInductionVars()) { 6611 PHINode *Ind = Induction.first; 6612 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6613 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6614 return U == Ind || DeadInstructions.find(cast<Instruction>(U)) != 6615 DeadInstructions.end(); 6616 })) 6617 DeadInstructions.insert(IndUpdate); 6618 6619 // We record as "Dead" also the type-casting instructions we had identified 6620 // during induction analysis. We don't need any handling for them in the 6621 // vectorized loop because we have proven that, under a proper runtime 6622 // test guarding the vectorized loop, the value of the phi, and the casted 6623 // value of the phi, are the same. The last instruction in this casting chain 6624 // will get its scalar/vector/widened def from the scalar/vector/widened def 6625 // of the respective phi node. Any other casts in the induction def-use chain 6626 // have no other uses outside the phi update chain, and will be ignored. 6627 InductionDescriptor &IndDes = Induction.second; 6628 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6629 DeadInstructions.insert(Casts.begin(), Casts.end()); 6630 } 6631 } 6632 6633 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6634 6635 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6636 6637 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6638 Instruction::BinaryOps BinOp) { 6639 // When unrolling and the VF is 1, we only need to add a simple scalar. 6640 Type *Ty = Val->getType(); 6641 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6642 6643 if (Ty->isFloatingPointTy()) { 6644 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6645 6646 // Floating point operations had to be 'fast' to enable the unrolling. 6647 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6648 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6649 } 6650 Constant *C = ConstantInt::get(Ty, StartIdx); 6651 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6652 } 6653 6654 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6655 SmallVector<Metadata *, 4> MDs; 6656 // Reserve first location for self reference to the LoopID metadata node. 6657 MDs.push_back(nullptr); 6658 bool IsUnrollMetadata = false; 6659 MDNode *LoopID = L->getLoopID(); 6660 if (LoopID) { 6661 // First find existing loop unrolling disable metadata. 6662 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6663 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6664 if (MD) { 6665 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6666 IsUnrollMetadata = 6667 S && S->getString().startswith("llvm.loop.unroll.disable"); 6668 } 6669 MDs.push_back(LoopID->getOperand(i)); 6670 } 6671 } 6672 6673 if (!IsUnrollMetadata) { 6674 // Add runtime unroll disable metadata. 6675 LLVMContext &Context = L->getHeader()->getContext(); 6676 SmallVector<Metadata *, 1> DisableOperands; 6677 DisableOperands.push_back( 6678 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6679 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6680 MDs.push_back(DisableNode); 6681 MDNode *NewLoopID = MDNode::get(Context, MDs); 6682 // Set operand 0 to refer to the loop id itself. 6683 NewLoopID->replaceOperandWith(0, NewLoopID); 6684 L->setLoopID(NewLoopID); 6685 } 6686 } 6687 6688 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6689 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6690 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6691 bool PredicateAtRangeStart = Predicate(Range.Start); 6692 6693 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6694 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6695 Range.End = TmpVF; 6696 break; 6697 } 6698 6699 return PredicateAtRangeStart; 6700 } 6701 6702 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6703 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6704 /// of VF's starting at a given VF and extending it as much as possible. Each 6705 /// vectorization decision can potentially shorten this sub-range during 6706 /// buildVPlan(). 6707 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6708 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6709 VFRange SubRange = {VF, MaxVF + 1}; 6710 VPlans.push_back(buildVPlan(SubRange)); 6711 VF = SubRange.End; 6712 } 6713 } 6714 6715 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6716 VPlanPtr &Plan) { 6717 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6718 6719 // Look for cached value. 6720 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6721 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6722 if (ECEntryIt != EdgeMaskCache.end()) 6723 return ECEntryIt->second; 6724 6725 VPValue *SrcMask = createBlockInMask(Src, Plan); 6726 6727 // The terminator has to be a branch inst! 6728 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6729 assert(BI && "Unexpected terminator found"); 6730 6731 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 6732 return EdgeMaskCache[Edge] = SrcMask; 6733 6734 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6735 assert(EdgeMask && "No Edge Mask found for condition"); 6736 6737 if (BI->getSuccessor(0) != Dst) 6738 EdgeMask = Builder.createNot(EdgeMask); 6739 6740 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6741 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6742 6743 return EdgeMaskCache[Edge] = EdgeMask; 6744 } 6745 6746 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6747 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6748 6749 // Look for cached value. 6750 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6751 if (BCEntryIt != BlockMaskCache.end()) 6752 return BCEntryIt->second; 6753 6754 // All-one mask is modelled as no-mask following the convention for masked 6755 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6756 VPValue *BlockMask = nullptr; 6757 6758 if (OrigLoop->getHeader() == BB) { 6759 if (!CM.blockNeedsPredication(BB)) 6760 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6761 6762 // Introduce the early-exit compare IV <= BTC to form header block mask. 6763 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6764 VPValue *IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6765 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6766 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6767 return BlockMaskCache[BB] = BlockMask; 6768 } 6769 6770 // This is the block mask. We OR all incoming edges. 6771 for (auto *Predecessor : predecessors(BB)) { 6772 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6773 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6774 return BlockMaskCache[BB] = EdgeMask; 6775 6776 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6777 BlockMask = EdgeMask; 6778 continue; 6779 } 6780 6781 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6782 } 6783 6784 return BlockMaskCache[BB] = BlockMask; 6785 } 6786 6787 VPWidenMemoryInstructionRecipe * 6788 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6789 VPlanPtr &Plan) { 6790 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 6791 return nullptr; 6792 6793 auto willWiden = [&](unsigned VF) -> bool { 6794 if (VF == 1) 6795 return false; 6796 LoopVectorizationCostModel::InstWidening Decision = 6797 CM.getWideningDecision(I, VF); 6798 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6799 "CM decision should be taken at this point."); 6800 if (Decision == LoopVectorizationCostModel::CM_Interleave) 6801 return true; 6802 if (CM.isScalarAfterVectorization(I, VF) || 6803 CM.isProfitableToScalarize(I, VF)) 6804 return false; 6805 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6806 }; 6807 6808 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6809 return nullptr; 6810 6811 VPValue *Mask = nullptr; 6812 if (Legal->isMaskRequired(I)) 6813 Mask = createBlockInMask(I->getParent(), Plan); 6814 6815 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I)); 6816 return new VPWidenMemoryInstructionRecipe(*I, Addr, Mask); 6817 } 6818 6819 VPWidenIntOrFpInductionRecipe * 6820 VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) { 6821 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 6822 // Check if this is an integer or fp induction. If so, build the recipe that 6823 // produces its scalar and vector values. 6824 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 6825 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6826 II.getKind() == InductionDescriptor::IK_FpInduction) 6827 return new VPWidenIntOrFpInductionRecipe(Phi); 6828 6829 return nullptr; 6830 } 6831 6832 // Optimize the special case where the source is a constant integer 6833 // induction variable. Notice that we can only optimize the 'trunc' case 6834 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6835 // (c) other casts depend on pointer size. 6836 6837 // Determine whether \p K is a truncation based on an induction variable that 6838 // can be optimized. 6839 auto isOptimizableIVTruncate = 6840 [&](Instruction *K) -> std::function<bool(unsigned)> { 6841 return 6842 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6843 }; 6844 6845 if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange( 6846 isOptimizableIVTruncate(I), Range)) 6847 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6848 cast<TruncInst>(I)); 6849 return nullptr; 6850 } 6851 6852 VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) { 6853 PHINode *Phi = dyn_cast<PHINode>(I); 6854 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 6855 return nullptr; 6856 6857 // We know that all PHIs in non-header blocks are converted into selects, so 6858 // we don't have to worry about the insertion order and we can just use the 6859 // builder. At this point we generate the predication tree. There may be 6860 // duplications since this is a simple recursive scan, but future 6861 // optimizations will clean it up. 6862 6863 SmallVector<VPValue *, 2> Masks; 6864 unsigned NumIncoming = Phi->getNumIncomingValues(); 6865 for (unsigned In = 0; In < NumIncoming; In++) { 6866 VPValue *EdgeMask = 6867 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6868 assert((EdgeMask || NumIncoming == 1) && 6869 "Multiple predecessors with one having a full mask"); 6870 if (EdgeMask) 6871 Masks.push_back(EdgeMask); 6872 } 6873 return new VPBlendRecipe(Phi, Masks); 6874 } 6875 6876 bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 6877 VFRange &Range) { 6878 6879 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6880 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6881 6882 if (IsPredicated) 6883 return false; 6884 6885 auto IsVectorizableOpcode = [](unsigned Opcode) { 6886 switch (Opcode) { 6887 case Instruction::Add: 6888 case Instruction::And: 6889 case Instruction::AShr: 6890 case Instruction::BitCast: 6891 case Instruction::Br: 6892 case Instruction::Call: 6893 case Instruction::FAdd: 6894 case Instruction::FCmp: 6895 case Instruction::FDiv: 6896 case Instruction::FMul: 6897 case Instruction::FNeg: 6898 case Instruction::FPExt: 6899 case Instruction::FPToSI: 6900 case Instruction::FPToUI: 6901 case Instruction::FPTrunc: 6902 case Instruction::FRem: 6903 case Instruction::FSub: 6904 case Instruction::ICmp: 6905 case Instruction::IntToPtr: 6906 case Instruction::Load: 6907 case Instruction::LShr: 6908 case Instruction::Mul: 6909 case Instruction::Or: 6910 case Instruction::PHI: 6911 case Instruction::PtrToInt: 6912 case Instruction::SDiv: 6913 case Instruction::Select: 6914 case Instruction::SExt: 6915 case Instruction::Shl: 6916 case Instruction::SIToFP: 6917 case Instruction::SRem: 6918 case Instruction::Store: 6919 case Instruction::Sub: 6920 case Instruction::Trunc: 6921 case Instruction::UDiv: 6922 case Instruction::UIToFP: 6923 case Instruction::URem: 6924 case Instruction::Xor: 6925 case Instruction::ZExt: 6926 return true; 6927 } 6928 return false; 6929 }; 6930 6931 if (!IsVectorizableOpcode(I->getOpcode())) 6932 return false; 6933 6934 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6935 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6936 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6937 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6938 return false; 6939 } 6940 6941 auto willWiden = [&](unsigned VF) -> bool { 6942 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 6943 CM.isProfitableToScalarize(I, VF))) 6944 return false; 6945 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6946 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6947 // The following case may be scalarized depending on the VF. 6948 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6949 // version of the instruction. 6950 // Is it beneficial to perform intrinsic call compared to lib call? 6951 bool NeedToScalarize; 6952 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 6953 bool UseVectorIntrinsic = 6954 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 6955 return UseVectorIntrinsic || !NeedToScalarize; 6956 } 6957 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 6958 assert(CM.getWideningDecision(I, VF) == 6959 LoopVectorizationCostModel::CM_Scalarize && 6960 "Memory widening decisions should have been taken care by now"); 6961 return false; 6962 } 6963 return true; 6964 }; 6965 6966 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6967 return false; 6968 // If this ingredient's recipe is to be recorded, keep its recipe a singleton 6969 // to avoid having to split recipes later. 6970 bool IsSingleton = Ingredient2Recipe.count(I); 6971 6972 // Success: widen this instruction. 6973 6974 // Use the default widening recipe. We optimize the common case where 6975 // consecutive instructions can be represented by a single recipe. 6976 if (!IsSingleton && !VPBB->empty() && LastExtensibleRecipe == &VPBB->back() && 6977 LastExtensibleRecipe->appendInstruction(I)) 6978 return true; 6979 6980 VPWidenRecipe *WidenRecipe = new VPWidenRecipe(I); 6981 if (!IsSingleton) 6982 LastExtensibleRecipe = WidenRecipe; 6983 setRecipe(I, WidenRecipe); 6984 VPBB->appendRecipe(WidenRecipe); 6985 return true; 6986 } 6987 6988 VPBasicBlock *VPRecipeBuilder::handleReplication( 6989 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 6990 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 6991 VPlanPtr &Plan) { 6992 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 6993 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 6994 Range); 6995 6996 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6997 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6998 6999 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 7000 setRecipe(I, Recipe); 7001 7002 // Find if I uses a predicated instruction. If so, it will use its scalar 7003 // value. Avoid hoisting the insert-element which packs the scalar value into 7004 // a vector value, as that happens iff all users use the vector value. 7005 for (auto &Op : I->operands()) 7006 if (auto *PredInst = dyn_cast<Instruction>(Op)) 7007 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 7008 PredInst2Recipe[PredInst]->setAlsoPack(false); 7009 7010 // Finalize the recipe for Instr, first if it is not predicated. 7011 if (!IsPredicated) { 7012 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 7013 VPBB->appendRecipe(Recipe); 7014 return VPBB; 7015 } 7016 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 7017 assert(VPBB->getSuccessors().empty() && 7018 "VPBB has successors when handling predicated replication."); 7019 // Record predicated instructions for above packing optimizations. 7020 PredInst2Recipe[I] = Recipe; 7021 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 7022 VPBlockUtils::insertBlockAfter(Region, VPBB); 7023 auto *RegSucc = new VPBasicBlock(); 7024 VPBlockUtils::insertBlockAfter(RegSucc, Region); 7025 return RegSucc; 7026 } 7027 7028 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 7029 VPRecipeBase *PredRecipe, 7030 VPlanPtr &Plan) { 7031 // Instructions marked for predication are replicated and placed under an 7032 // if-then construct to prevent side-effects. 7033 7034 // Generate recipes to compute the block mask for this region. 7035 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 7036 7037 // Build the triangular if-then region. 7038 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 7039 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 7040 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 7041 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 7042 auto *PHIRecipe = 7043 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 7044 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 7045 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 7046 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 7047 7048 // Note: first set Entry as region entry and then connect successors starting 7049 // from it in order, to propagate the "parent" of each VPBasicBlock. 7050 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 7051 VPBlockUtils::connectBlocks(Pred, Exit); 7052 7053 return Region; 7054 } 7055 7056 bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range, 7057 VPlanPtr &Plan, VPBasicBlock *VPBB) { 7058 VPRecipeBase *Recipe = nullptr; 7059 7060 // First, check for specific widening recipes that deal with memory 7061 // operations, inductions and Phi nodes. 7062 if ((Recipe = tryToWidenMemory(Instr, Range, Plan)) || 7063 (Recipe = tryToOptimizeInduction(Instr, Range)) || 7064 (Recipe = tryToBlend(Instr, Plan)) || 7065 (isa<PHINode>(Instr) && 7066 (Recipe = new VPWidenPHIRecipe(cast<PHINode>(Instr))))) { 7067 setRecipe(Instr, Recipe); 7068 VPBB->appendRecipe(Recipe); 7069 return true; 7070 } 7071 7072 // Handle GEP widening. 7073 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 7074 auto Scalarize = [&](unsigned VF) { 7075 return CM.isScalarWithPredication(Instr, VF) || 7076 CM.isScalarAfterVectorization(Instr, VF) || 7077 CM.isProfitableToScalarize(Instr, VF); 7078 }; 7079 if (LoopVectorizationPlanner::getDecisionAndClampRange(Scalarize, Range)) 7080 return false; 7081 VPWidenGEPRecipe *Recipe = new VPWidenGEPRecipe(GEP, OrigLoop); 7082 setRecipe(Instr, Recipe); 7083 VPBB->appendRecipe(Recipe); 7084 return true; 7085 } 7086 7087 // Check if Instr is to be widened by a general VPWidenRecipe, after 7088 // having first checked for specific widening recipes. 7089 if (tryToWiden(Instr, VPBB, Range)) 7090 return true; 7091 7092 return false; 7093 } 7094 7095 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 7096 unsigned MaxVF) { 7097 assert(OrigLoop->empty() && "Inner loop expected."); 7098 7099 // Collect conditions feeding internal conditional branches; they need to be 7100 // represented in VPlan for it to model masking. 7101 SmallPtrSet<Value *, 1> NeedDef; 7102 7103 auto *Latch = OrigLoop->getLoopLatch(); 7104 for (BasicBlock *BB : OrigLoop->blocks()) { 7105 if (BB == Latch) 7106 continue; 7107 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7108 if (Branch && Branch->isConditional()) 7109 NeedDef.insert(Branch->getCondition()); 7110 } 7111 7112 // If the tail is to be folded by masking, the primary induction variable 7113 // needs to be represented in VPlan for it to model early-exit masking. 7114 // Also, both the Phi and the live-out instruction of each reduction are 7115 // required in order to introduce a select between them in VPlan. 7116 if (CM.foldTailByMasking()) { 7117 NeedDef.insert(Legal->getPrimaryInduction()); 7118 for (auto &Reduction : *Legal->getReductionVars()) { 7119 NeedDef.insert(Reduction.first); 7120 NeedDef.insert(Reduction.second.getLoopExitInstr()); 7121 } 7122 } 7123 7124 // Collect instructions from the original loop that will become trivially dead 7125 // in the vectorized loop. We don't need to vectorize these instructions. For 7126 // example, original induction update instructions can become dead because we 7127 // separately emit induction "steps" when generating code for the new loop. 7128 // Similarly, we create a new latch condition when setting up the structure 7129 // of the new loop, so the old one can become dead. 7130 SmallPtrSet<Instruction *, 4> DeadInstructions; 7131 collectTriviallyDeadInstructions(DeadInstructions); 7132 7133 // Add assume instructions we need to drop to DeadInstructions, to prevent 7134 // them from being added to the VPlan. 7135 // TODO: We only need to drop assumes in blocks that get flattend. If the 7136 // control flow is preserved, we should keep them. 7137 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 7138 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 7139 7140 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7141 // Dead instructions do not need sinking. Remove them from SinkAfter. 7142 for (Instruction *I : DeadInstructions) 7143 SinkAfter.erase(I); 7144 7145 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7146 VFRange SubRange = {VF, MaxVF + 1}; 7147 VPlans.push_back(buildVPlanWithVPRecipes(SubRange, NeedDef, 7148 DeadInstructions, SinkAfter)); 7149 VF = SubRange.End; 7150 } 7151 } 7152 7153 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 7154 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 7155 SmallPtrSetImpl<Instruction *> &DeadInstructions, 7156 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 7157 7158 // Hold a mapping from predicated instructions to their recipes, in order to 7159 // fix their AlsoPack behavior if a user is determined to replicate and use a 7160 // scalar instead of vector value. 7161 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7162 7163 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 7164 7165 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, Builder); 7166 7167 // --------------------------------------------------------------------------- 7168 // Pre-construction: record ingredients whose recipes we'll need to further 7169 // process after constructing the initial VPlan. 7170 // --------------------------------------------------------------------------- 7171 7172 // Mark instructions we'll need to sink later and their targets as 7173 // ingredients whose recipe we'll need to record. 7174 for (auto &Entry : SinkAfter) { 7175 RecipeBuilder.recordRecipeOf(Entry.first); 7176 RecipeBuilder.recordRecipeOf(Entry.second); 7177 } 7178 7179 // For each interleave group which is relevant for this (possibly trimmed) 7180 // Range, add it to the set of groups to be later applied to the VPlan and add 7181 // placeholders for its members' Recipes which we'll be replacing with a 7182 // single VPInterleaveRecipe. 7183 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 7184 auto applyIG = [IG, this](unsigned VF) -> bool { 7185 return (VF >= 2 && // Query is illegal for VF == 1 7186 CM.getWideningDecision(IG->getInsertPos(), VF) == 7187 LoopVectorizationCostModel::CM_Interleave); 7188 }; 7189 if (!getDecisionAndClampRange(applyIG, Range)) 7190 continue; 7191 InterleaveGroups.insert(IG); 7192 for (unsigned i = 0; i < IG->getFactor(); i++) 7193 if (Instruction *Member = IG->getMember(i)) 7194 RecipeBuilder.recordRecipeOf(Member); 7195 }; 7196 7197 // --------------------------------------------------------------------------- 7198 // Build initial VPlan: Scan the body of the loop in a topological order to 7199 // visit each basic block after having visited its predecessor basic blocks. 7200 // --------------------------------------------------------------------------- 7201 7202 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7203 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7204 auto Plan = std::make_unique<VPlan>(VPBB); 7205 7206 // Represent values that will have defs inside VPlan. 7207 for (Value *V : NeedDef) 7208 Plan->addVPValue(V); 7209 7210 // Scan the body of the loop in a topological order to visit each basic block 7211 // after having visited its predecessor basic blocks. 7212 LoopBlocksDFS DFS(OrigLoop); 7213 DFS.perform(LI); 7214 7215 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 7216 // Relevant instructions from basic block BB will be grouped into VPRecipe 7217 // ingredients and fill a new VPBasicBlock. 7218 unsigned VPBBsForBB = 0; 7219 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 7220 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 7221 VPBB = FirstVPBBForBB; 7222 Builder.setInsertPoint(VPBB); 7223 7224 // Introduce each ingredient into VPlan. 7225 for (Instruction &I : BB->instructionsWithoutDebug()) { 7226 Instruction *Instr = &I; 7227 7228 // First filter out irrelevant instructions, to ensure no recipes are 7229 // built for them. 7230 if (isa<BranchInst>(Instr) || 7231 DeadInstructions.find(Instr) != DeadInstructions.end()) 7232 continue; 7233 7234 if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB)) 7235 continue; 7236 7237 // Otherwise, if all widening options failed, Instruction is to be 7238 // replicated. This may create a successor for VPBB. 7239 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 7240 Instr, Range, VPBB, PredInst2Recipe, Plan); 7241 if (NextVPBB != VPBB) { 7242 VPBB = NextVPBB; 7243 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 7244 : ""); 7245 } 7246 } 7247 } 7248 7249 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 7250 // may also be empty, such as the last one VPBB, reflecting original 7251 // basic-blocks with no recipes. 7252 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 7253 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 7254 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 7255 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 7256 delete PreEntry; 7257 7258 // --------------------------------------------------------------------------- 7259 // Transform initial VPlan: Apply previously taken decisions, in order, to 7260 // bring the VPlan to its final state. 7261 // --------------------------------------------------------------------------- 7262 7263 // Apply Sink-After legal constraints. 7264 for (auto &Entry : SinkAfter) { 7265 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 7266 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 7267 Sink->moveAfter(Target); 7268 } 7269 7270 // Interleave memory: for each Interleave Group we marked earlier as relevant 7271 // for this VPlan, replace the Recipes widening its memory instructions with a 7272 // single VPInterleaveRecipe at its insertion point. 7273 for (auto IG : InterleaveGroups) { 7274 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 7275 RecipeBuilder.getRecipe(IG->getInsertPos())); 7276 (new VPInterleaveRecipe(IG, Recipe->getAddr(), Recipe->getMask())) 7277 ->insertBefore(Recipe); 7278 7279 for (unsigned i = 0; i < IG->getFactor(); ++i) 7280 if (Instruction *Member = IG->getMember(i)) { 7281 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 7282 } 7283 } 7284 7285 // Finally, if tail is folded by masking, introduce selects between the phi 7286 // and the live-out instruction of each reduction, at the end of the latch. 7287 if (CM.foldTailByMasking()) { 7288 Builder.setInsertPoint(VPBB); 7289 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 7290 for (auto &Reduction : *Legal->getReductionVars()) { 7291 VPValue *Phi = Plan->getVPValue(Reduction.first); 7292 VPValue *Red = Plan->getVPValue(Reduction.second.getLoopExitInstr()); 7293 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 7294 } 7295 } 7296 7297 std::string PlanName; 7298 raw_string_ostream RSO(PlanName); 7299 unsigned VF = Range.Start; 7300 Plan->addVF(VF); 7301 RSO << "Initial VPlan for VF={" << VF; 7302 for (VF *= 2; VF < Range.End; VF *= 2) { 7303 Plan->addVF(VF); 7304 RSO << "," << VF; 7305 } 7306 RSO << "},UF>=1"; 7307 RSO.flush(); 7308 Plan->setName(PlanName); 7309 7310 return Plan; 7311 } 7312 7313 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 7314 // Outer loop handling: They may require CFG and instruction level 7315 // transformations before even evaluating whether vectorization is profitable. 7316 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7317 // the vectorization pipeline. 7318 assert(!OrigLoop->empty()); 7319 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7320 7321 // Create new empty VPlan 7322 auto Plan = std::make_unique<VPlan>(); 7323 7324 // Build hierarchical CFG 7325 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7326 HCFGBuilder.buildHierarchicalCFG(); 7327 7328 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 7329 Plan->addVF(VF); 7330 7331 if (EnableVPlanPredication) { 7332 VPlanPredicator VPP(*Plan); 7333 VPP.predicate(); 7334 7335 // Avoid running transformation to recipes until masked code generation in 7336 // VPlan-native path is in place. 7337 return Plan; 7338 } 7339 7340 SmallPtrSet<Instruction *, 1> DeadInstructions; 7341 VPlanTransforms::VPInstructionsToVPRecipes( 7342 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 7343 return Plan; 7344 } 7345 7346 Value* LoopVectorizationPlanner::VPCallbackILV:: 7347 getOrCreateVectorValues(Value *V, unsigned Part) { 7348 return ILV.getOrCreateVectorValue(V, Part); 7349 } 7350 7351 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue( 7352 Value *V, const VPIteration &Instance) { 7353 return ILV.getOrCreateScalarValue(V, Instance); 7354 } 7355 7356 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 7357 O << " +\n" 7358 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7359 IG->getInsertPos()->printAsOperand(O, false); 7360 O << ", "; 7361 getAddr()->printAsOperand(O); 7362 VPValue *Mask = getMask(); 7363 if (Mask) { 7364 O << ", "; 7365 Mask->printAsOperand(O); 7366 } 7367 O << "\\l\""; 7368 for (unsigned i = 0; i < IG->getFactor(); ++i) 7369 if (Instruction *I = IG->getMember(i)) 7370 O << " +\n" 7371 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 7372 } 7373 7374 void VPWidenRecipe::execute(VPTransformState &State) { 7375 for (auto &Instr : make_range(Begin, End)) 7376 State.ILV->widenInstruction(Instr); 7377 } 7378 7379 void VPWidenGEPRecipe::execute(VPTransformState &State) { 7380 State.ILV->widenGEP(GEP, State.UF, State.VF, IsPtrLoopInvariant, 7381 IsIndexLoopInvariant); 7382 } 7383 7384 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7385 assert(!State.Instance && "Int or FP induction being replicated."); 7386 State.ILV->widenIntOrFpInduction(IV, Trunc); 7387 } 7388 7389 void VPWidenPHIRecipe::execute(VPTransformState &State) { 7390 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7391 } 7392 7393 void VPBlendRecipe::execute(VPTransformState &State) { 7394 State.ILV->setDebugLocFromInst(State.Builder, Phi); 7395 // We know that all PHIs in non-header blocks are converted into 7396 // selects, so we don't have to worry about the insertion order and we 7397 // can just use the builder. 7398 // At this point we generate the predication tree. There may be 7399 // duplications since this is a simple recursive scan, but future 7400 // optimizations will clean it up. 7401 7402 unsigned NumIncoming = Phi->getNumIncomingValues(); 7403 7404 assert((User || NumIncoming == 1) && 7405 "Multiple predecessors with predecessors having a full mask"); 7406 // Generate a sequence of selects of the form: 7407 // SELECT(Mask3, In3, 7408 // SELECT(Mask2, In2, 7409 // ( ...))) 7410 InnerLoopVectorizer::VectorParts Entry(State.UF); 7411 for (unsigned In = 0; In < NumIncoming; ++In) { 7412 for (unsigned Part = 0; Part < State.UF; ++Part) { 7413 // We might have single edge PHIs (blocks) - use an identity 7414 // 'select' for the first PHI operand. 7415 Value *In0 = 7416 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 7417 if (In == 0) 7418 Entry[Part] = In0; // Initialize with the first incoming value. 7419 else { 7420 // Select between the current value and the previous incoming edge 7421 // based on the incoming mask. 7422 Value *Cond = State.get(User->getOperand(In), Part); 7423 Entry[Part] = 7424 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7425 } 7426 } 7427 } 7428 for (unsigned Part = 0; Part < State.UF; ++Part) 7429 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7430 } 7431 7432 void VPInterleaveRecipe::execute(VPTransformState &State) { 7433 assert(!State.Instance && "Interleave group being replicated."); 7434 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos(), State, getAddr(), 7435 getMask()); 7436 } 7437 7438 void VPReplicateRecipe::execute(VPTransformState &State) { 7439 if (State.Instance) { // Generate a single instance. 7440 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 7441 // Insert scalar instance packing it into a vector. 7442 if (AlsoPack && State.VF > 1) { 7443 // If we're constructing lane 0, initialize to start from undef. 7444 if (State.Instance->Lane == 0) { 7445 Value *Undef = 7446 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 7447 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7448 } 7449 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7450 } 7451 return; 7452 } 7453 7454 // Generate scalar instances for all VF lanes of all UF parts, unless the 7455 // instruction is uniform inwhich case generate only the first lane for each 7456 // of the UF parts. 7457 unsigned EndLane = IsUniform ? 1 : State.VF; 7458 for (unsigned Part = 0; Part < State.UF; ++Part) 7459 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7460 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 7461 } 7462 7463 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7464 assert(State.Instance && "Branch on Mask works only on single instance."); 7465 7466 unsigned Part = State.Instance->Part; 7467 unsigned Lane = State.Instance->Lane; 7468 7469 Value *ConditionBit = nullptr; 7470 if (!User) // Block in mask is all-one. 7471 ConditionBit = State.Builder.getTrue(); 7472 else { 7473 VPValue *BlockInMask = User->getOperand(0); 7474 ConditionBit = State.get(BlockInMask, Part); 7475 if (ConditionBit->getType()->isVectorTy()) 7476 ConditionBit = State.Builder.CreateExtractElement( 7477 ConditionBit, State.Builder.getInt32(Lane)); 7478 } 7479 7480 // Replace the temporary unreachable terminator with a new conditional branch, 7481 // whose two destinations will be set later when they are created. 7482 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7483 assert(isa<UnreachableInst>(CurrentTerminator) && 7484 "Expected to replace unreachable terminator with conditional branch."); 7485 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7486 CondBr->setSuccessor(0, nullptr); 7487 ReplaceInstWithInst(CurrentTerminator, CondBr); 7488 } 7489 7490 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7491 assert(State.Instance && "Predicated instruction PHI works per instance."); 7492 Instruction *ScalarPredInst = cast<Instruction>( 7493 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7494 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7495 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7496 assert(PredicatingBB && "Predicated block has no single predecessor."); 7497 7498 // By current pack/unpack logic we need to generate only a single phi node: if 7499 // a vector value for the predicated instruction exists at this point it means 7500 // the instruction has vector users only, and a phi for the vector value is 7501 // needed. In this case the recipe of the predicated instruction is marked to 7502 // also do that packing, thereby "hoisting" the insert-element sequence. 7503 // Otherwise, a phi node for the scalar value is needed. 7504 unsigned Part = State.Instance->Part; 7505 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7506 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7507 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7508 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7509 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7510 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7511 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7512 } else { 7513 Type *PredInstType = PredInst->getType(); 7514 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7515 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7516 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7517 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7518 } 7519 } 7520 7521 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7522 State.ILV->vectorizeMemoryInstruction(&Instr, State, getAddr(), getMask()); 7523 } 7524 7525 // Determine how to lower the scalar epilogue, which depends on 1) optimising 7526 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 7527 // predication, and 4) a TTI hook that analyses whether the loop is suitable 7528 // for predication. 7529 static ScalarEpilogueLowering getScalarEpilogueLowering( 7530 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 7531 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 7532 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 7533 LoopVectorizationLegality &LVL) { 7534 bool OptSize = 7535 F->hasOptSize() || llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 7536 PGSOQueryType::IRPass); 7537 // 1) OptSize takes precedence over all other options, i.e. if this is set, 7538 // don't look at hints or options, and don't request a scalar epilogue. 7539 if (OptSize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) 7540 return CM_ScalarEpilogueNotAllowedOptSize; 7541 7542 bool PredicateOptDisabled = PreferPredicateOverEpilog.getNumOccurrences() && 7543 !PreferPredicateOverEpilog; 7544 7545 // 2) Next, if disabling predication is requested on the command line, honour 7546 // this and request a scalar epilogue. Also do this if we don't have a 7547 // primary induction variable, which is required for predication. 7548 if (PredicateOptDisabled || !LVL.getPrimaryInduction()) 7549 return CM_ScalarEpilogueAllowed; 7550 7551 // 3) and 4) look if enabling predication is requested on the command line, 7552 // with a loop hint, or if the TTI hook indicates this is profitable, request 7553 // predication . 7554 if (PreferPredicateOverEpilog || 7555 Hints.getPredicate() == LoopVectorizeHints::FK_Enabled || 7556 (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 7557 LVL.getLAI()) && 7558 Hints.getPredicate() != LoopVectorizeHints::FK_Disabled)) 7559 return CM_ScalarEpilogueNotNeededUsePredicate; 7560 7561 return CM_ScalarEpilogueAllowed; 7562 } 7563 7564 // Process the loop in the VPlan-native vectorization path. This path builds 7565 // VPlan upfront in the vectorization pipeline, which allows to apply 7566 // VPlan-to-VPlan transformations from the very beginning without modifying the 7567 // input LLVM IR. 7568 static bool processLoopInVPlanNativePath( 7569 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7570 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7571 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7572 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 7573 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 7574 7575 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7576 Function *F = L->getHeader()->getParent(); 7577 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7578 7579 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 7580 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 7581 7582 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7583 &Hints, IAI); 7584 // Use the planner for outer loop vectorization. 7585 // TODO: CM is not used at this point inside the planner. Turn CM into an 7586 // optional argument if we don't need it in the future. 7587 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI); 7588 7589 // Get user vectorization factor. 7590 const unsigned UserVF = Hints.getWidth(); 7591 7592 // Plan how to best vectorize, return the best VF and its cost. 7593 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 7594 7595 // If we are stress testing VPlan builds, do not attempt to generate vector 7596 // code. Masked vector code generation support will follow soon. 7597 // Also, do not attempt to vectorize if no vector code will be produced. 7598 if (VPlanBuildStressTest || EnableVPlanPredication || 7599 VectorizationFactor::Disabled() == VF) 7600 return false; 7601 7602 LVP.setBestPlan(VF.Width, 1); 7603 7604 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 7605 &CM); 7606 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7607 << L->getHeader()->getParent()->getName() << "\"\n"); 7608 LVP.executePlan(LB, DT); 7609 7610 // Mark the loop as already vectorized to avoid vectorizing again. 7611 Hints.setAlreadyVectorized(); 7612 7613 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7614 return true; 7615 } 7616 7617 bool LoopVectorizePass::processLoop(Loop *L) { 7618 assert((EnableVPlanNativePath || L->empty()) && 7619 "VPlan-native path is not enabled. Only process inner loops."); 7620 7621 #ifndef NDEBUG 7622 const std::string DebugLocStr = getDebugLocString(L); 7623 #endif /* NDEBUG */ 7624 7625 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7626 << L->getHeader()->getParent()->getName() << "\" from " 7627 << DebugLocStr << "\n"); 7628 7629 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 7630 7631 LLVM_DEBUG( 7632 dbgs() << "LV: Loop hints:" 7633 << " force=" 7634 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7635 ? "disabled" 7636 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7637 ? "enabled" 7638 : "?")) 7639 << " width=" << Hints.getWidth() 7640 << " unroll=" << Hints.getInterleave() << "\n"); 7641 7642 // Function containing loop 7643 Function *F = L->getHeader()->getParent(); 7644 7645 // Looking at the diagnostic output is the only way to determine if a loop 7646 // was vectorized (other than looking at the IR or machine code), so it 7647 // is important to generate an optimization remark for each loop. Most of 7648 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7649 // generated as OptimizationRemark and OptimizationRemarkMissed are 7650 // less verbose reporting vectorized loops and unvectorized loops that may 7651 // benefit from vectorization, respectively. 7652 7653 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 7654 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7655 return false; 7656 } 7657 7658 PredicatedScalarEvolution PSE(*SE, *L); 7659 7660 // Check if it is legal to vectorize the loop. 7661 LoopVectorizationRequirements Requirements(*ORE); 7662 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 7663 &Requirements, &Hints, DB, AC); 7664 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7665 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7666 Hints.emitRemarkWithHints(); 7667 return false; 7668 } 7669 7670 // Check the function attributes and profiles to find out if this function 7671 // should be optimized for size. 7672 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 7673 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 7674 7675 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7676 // here. They may require CFG and instruction level transformations before 7677 // even evaluating whether vectorization is profitable. Since we cannot modify 7678 // the incoming IR, we need to build VPlan upfront in the vectorization 7679 // pipeline. 7680 if (!L->empty()) 7681 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7682 ORE, BFI, PSI, Hints); 7683 7684 assert(L->empty() && "Inner loop expected."); 7685 7686 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7687 // count by optimizing for size, to minimize overheads. 7688 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 7689 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 7690 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7691 << "This loop is worth vectorizing only if no scalar " 7692 << "iteration overheads are incurred."); 7693 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7694 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7695 else { 7696 LLVM_DEBUG(dbgs() << "\n"); 7697 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 7698 } 7699 } 7700 7701 // Check the function attributes to see if implicit floats are allowed. 7702 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7703 // an integer loop and the vector instructions selected are purely integer 7704 // vector instructions? 7705 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7706 reportVectorizationFailure( 7707 "Can't vectorize when the NoImplicitFloat attribute is used", 7708 "loop not vectorized due to NoImplicitFloat attribute", 7709 "NoImplicitFloat", ORE, L); 7710 Hints.emitRemarkWithHints(); 7711 return false; 7712 } 7713 7714 // Check if the target supports potentially unsafe FP vectorization. 7715 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7716 // for the target we're vectorizing for, to make sure none of the 7717 // additional fp-math flags can help. 7718 if (Hints.isPotentiallyUnsafe() && 7719 TTI->isFPVectorizationPotentiallyUnsafe()) { 7720 reportVectorizationFailure( 7721 "Potentially unsafe FP op prevents vectorization", 7722 "loop not vectorized due to unsafe FP support.", 7723 "UnsafeFP", ORE, L); 7724 Hints.emitRemarkWithHints(); 7725 return false; 7726 } 7727 7728 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7729 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7730 7731 // If an override option has been passed in for interleaved accesses, use it. 7732 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7733 UseInterleaved = EnableInterleavedMemAccesses; 7734 7735 // Analyze interleaved memory accesses. 7736 if (UseInterleaved) { 7737 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7738 } 7739 7740 // Use the cost model. 7741 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 7742 F, &Hints, IAI); 7743 CM.collectValuesToIgnore(); 7744 7745 // Use the planner for vectorization. 7746 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI); 7747 7748 // Get user vectorization factor. 7749 unsigned UserVF = Hints.getWidth(); 7750 7751 // Plan how to best vectorize, return the best VF and its cost. 7752 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF); 7753 7754 VectorizationFactor VF = VectorizationFactor::Disabled(); 7755 unsigned IC = 1; 7756 unsigned UserIC = Hints.getInterleave(); 7757 7758 if (MaybeVF) { 7759 VF = *MaybeVF; 7760 // Select the interleave count. 7761 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 7762 } 7763 7764 // Identify the diagnostic messages that should be produced. 7765 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7766 bool VectorizeLoop = true, InterleaveLoop = true; 7767 if (Requirements.doesNotMeet(F, L, Hints)) { 7768 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7769 "requirements.\n"); 7770 Hints.emitRemarkWithHints(); 7771 return false; 7772 } 7773 7774 if (VF.Width == 1) { 7775 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7776 VecDiagMsg = std::make_pair( 7777 "VectorizationNotBeneficial", 7778 "the cost-model indicates that vectorization is not beneficial"); 7779 VectorizeLoop = false; 7780 } 7781 7782 if (!MaybeVF && UserIC > 1) { 7783 // Tell the user interleaving was avoided up-front, despite being explicitly 7784 // requested. 7785 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 7786 "interleaving should be avoided up front\n"); 7787 IntDiagMsg = std::make_pair( 7788 "InterleavingAvoided", 7789 "Ignoring UserIC, because interleaving was avoided up front"); 7790 InterleaveLoop = false; 7791 } else if (IC == 1 && UserIC <= 1) { 7792 // Tell the user interleaving is not beneficial. 7793 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7794 IntDiagMsg = std::make_pair( 7795 "InterleavingNotBeneficial", 7796 "the cost-model indicates that interleaving is not beneficial"); 7797 InterleaveLoop = false; 7798 if (UserIC == 1) { 7799 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7800 IntDiagMsg.second += 7801 " and is explicitly disabled or interleave count is set to 1"; 7802 } 7803 } else if (IC > 1 && UserIC == 1) { 7804 // Tell the user interleaving is beneficial, but it explicitly disabled. 7805 LLVM_DEBUG( 7806 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7807 IntDiagMsg = std::make_pair( 7808 "InterleavingBeneficialButDisabled", 7809 "the cost-model indicates that interleaving is beneficial " 7810 "but is explicitly disabled or interleave count is set to 1"); 7811 InterleaveLoop = false; 7812 } 7813 7814 // Override IC if user provided an interleave count. 7815 IC = UserIC > 0 ? UserIC : IC; 7816 7817 // Emit diagnostic messages, if any. 7818 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7819 if (!VectorizeLoop && !InterleaveLoop) { 7820 // Do not vectorize or interleaving the loop. 7821 ORE->emit([&]() { 7822 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7823 L->getStartLoc(), L->getHeader()) 7824 << VecDiagMsg.second; 7825 }); 7826 ORE->emit([&]() { 7827 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7828 L->getStartLoc(), L->getHeader()) 7829 << IntDiagMsg.second; 7830 }); 7831 return false; 7832 } else if (!VectorizeLoop && InterleaveLoop) { 7833 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7834 ORE->emit([&]() { 7835 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7836 L->getStartLoc(), L->getHeader()) 7837 << VecDiagMsg.second; 7838 }); 7839 } else if (VectorizeLoop && !InterleaveLoop) { 7840 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7841 << ") in " << DebugLocStr << '\n'); 7842 ORE->emit([&]() { 7843 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7844 L->getStartLoc(), L->getHeader()) 7845 << IntDiagMsg.second; 7846 }); 7847 } else if (VectorizeLoop && InterleaveLoop) { 7848 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7849 << ") in " << DebugLocStr << '\n'); 7850 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7851 } 7852 7853 LVP.setBestPlan(VF.Width, IC); 7854 7855 using namespace ore; 7856 bool DisableRuntimeUnroll = false; 7857 MDNode *OrigLoopID = L->getLoopID(); 7858 7859 if (!VectorizeLoop) { 7860 assert(IC > 1 && "interleave count should not be 1 or 0"); 7861 // If we decided that it is not legal to vectorize the loop, then 7862 // interleave it. 7863 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7864 &CM); 7865 LVP.executePlan(Unroller, DT); 7866 7867 ORE->emit([&]() { 7868 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7869 L->getHeader()) 7870 << "interleaved loop (interleaved count: " 7871 << NV("InterleaveCount", IC) << ")"; 7872 }); 7873 } else { 7874 // If we decided that it is *legal* to vectorize the loop, then do it. 7875 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7876 &LVL, &CM); 7877 LVP.executePlan(LB, DT); 7878 ++LoopsVectorized; 7879 7880 // Add metadata to disable runtime unrolling a scalar loop when there are 7881 // no runtime checks about strides and memory. A scalar loop that is 7882 // rarely used is not worth unrolling. 7883 if (!LB.areSafetyChecksAdded()) 7884 DisableRuntimeUnroll = true; 7885 7886 // Report the vectorization decision. 7887 ORE->emit([&]() { 7888 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7889 L->getHeader()) 7890 << "vectorized loop (vectorization width: " 7891 << NV("VectorizationFactor", VF.Width) 7892 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7893 }); 7894 } 7895 7896 Optional<MDNode *> RemainderLoopID = 7897 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7898 LLVMLoopVectorizeFollowupEpilogue}); 7899 if (RemainderLoopID.hasValue()) { 7900 L->setLoopID(RemainderLoopID.getValue()); 7901 } else { 7902 if (DisableRuntimeUnroll) 7903 AddRuntimeUnrollDisableMetaData(L); 7904 7905 // Mark the loop as already vectorized to avoid vectorizing again. 7906 Hints.setAlreadyVectorized(); 7907 } 7908 7909 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7910 return true; 7911 } 7912 7913 bool LoopVectorizePass::runImpl( 7914 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7915 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7916 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7917 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7918 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 7919 SE = &SE_; 7920 LI = &LI_; 7921 TTI = &TTI_; 7922 DT = &DT_; 7923 BFI = &BFI_; 7924 TLI = TLI_; 7925 AA = &AA_; 7926 AC = &AC_; 7927 GetLAA = &GetLAA_; 7928 DB = &DB_; 7929 ORE = &ORE_; 7930 PSI = PSI_; 7931 7932 // Don't attempt if 7933 // 1. the target claims to have no vector registers, and 7934 // 2. interleaving won't help ILP. 7935 // 7936 // The second condition is necessary because, even if the target has no 7937 // vector registers, loop vectorization may still enable scalar 7938 // interleaving. 7939 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 7940 TTI->getMaxInterleaveFactor(1) < 2) 7941 return false; 7942 7943 bool Changed = false; 7944 7945 // The vectorizer requires loops to be in simplified form. 7946 // Since simplification may add new inner loops, it has to run before the 7947 // legality and profitability checks. This means running the loop vectorizer 7948 // will simplify all loops, regardless of whether anything end up being 7949 // vectorized. 7950 for (auto &L : *LI) 7951 Changed |= 7952 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 7953 7954 // Build up a worklist of inner-loops to vectorize. This is necessary as 7955 // the act of vectorizing or partially unrolling a loop creates new loops 7956 // and can invalidate iterators across the loops. 7957 SmallVector<Loop *, 8> Worklist; 7958 7959 for (Loop *L : *LI) 7960 collectSupportedLoops(*L, LI, ORE, Worklist); 7961 7962 LoopsAnalyzed += Worklist.size(); 7963 7964 // Now walk the identified inner loops. 7965 while (!Worklist.empty()) { 7966 Loop *L = Worklist.pop_back_val(); 7967 7968 // For the inner loops we actually process, form LCSSA to simplify the 7969 // transform. 7970 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7971 7972 Changed |= processLoop(L); 7973 } 7974 7975 // Process each loop nest in the function. 7976 return Changed; 7977 } 7978 7979 PreservedAnalyses LoopVectorizePass::run(Function &F, 7980 FunctionAnalysisManager &AM) { 7981 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7982 auto &LI = AM.getResult<LoopAnalysis>(F); 7983 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7984 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7985 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7986 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7987 auto &AA = AM.getResult<AAManager>(F); 7988 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7989 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7990 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7991 MemorySSA *MSSA = EnableMSSALoopDependency 7992 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 7993 : nullptr; 7994 7995 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7996 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7997 [&](Loop &L) -> const LoopAccessInfo & { 7998 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA}; 7999 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8000 }; 8001 const ModuleAnalysisManager &MAM = 8002 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 8003 ProfileSummaryInfo *PSI = 8004 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 8005 bool Changed = 8006 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 8007 if (!Changed) 8008 return PreservedAnalyses::all(); 8009 PreservedAnalyses PA; 8010 8011 // We currently do not preserve loopinfo/dominator analyses with outer loop 8012 // vectorization. Until this is addressed, mark these analyses as preserved 8013 // only for non-VPlan-native path. 8014 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 8015 if (!EnableVPlanNativePath) { 8016 PA.preserve<LoopAnalysis>(); 8017 PA.preserve<DominatorTreeAnalysis>(); 8018 } 8019 PA.preserve<BasicAA>(); 8020 PA.preserve<GlobalsAA>(); 8021 return PA; 8022 } 8023