1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/SCCIterator.h" 54 #include "llvm/ADT/SetVector.h" 55 #include "llvm/ADT/SmallPtrSet.h" 56 #include "llvm/ADT/SmallSet.h" 57 #include "llvm/ADT/SmallVector.h" 58 #include "llvm/ADT/Statistic.h" 59 #include "llvm/ADT/StringExtras.h" 60 #include "llvm/Analysis/CodeMetrics.h" 61 #include "llvm/Analysis/GlobalsModRef.h" 62 #include "llvm/Analysis/LoopInfo.h" 63 #include "llvm/Analysis/LoopIterator.h" 64 #include "llvm/Analysis/LoopPass.h" 65 #include "llvm/Analysis/ScalarEvolutionExpander.h" 66 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 67 #include "llvm/Analysis/ValueTracking.h" 68 #include "llvm/Analysis/VectorUtils.h" 69 #include "llvm/IR/Constants.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DebugInfo.h" 72 #include "llvm/IR/DerivedTypes.h" 73 #include "llvm/IR/DiagnosticInfo.h" 74 #include "llvm/IR/Dominators.h" 75 #include "llvm/IR/Function.h" 76 #include "llvm/IR/IRBuilder.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/PatternMatch.h" 82 #include "llvm/IR/Type.h" 83 #include "llvm/IR/Value.h" 84 #include "llvm/IR/ValueHandle.h" 85 #include "llvm/IR/Verifier.h" 86 #include "llvm/Pass.h" 87 #include "llvm/Support/BranchProbability.h" 88 #include "llvm/Support/CommandLine.h" 89 #include "llvm/Support/Debug.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Transforms/Scalar.h" 92 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 93 #include "llvm/Transforms/Utils/Local.h" 94 #include "llvm/Transforms/Utils/LoopUtils.h" 95 #include "llvm/Transforms/Utils/LoopVersioning.h" 96 #include "llvm/Transforms/Vectorize.h" 97 #include <algorithm> 98 #include <map> 99 #include <tuple> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 104 #define LV_NAME "loop-vectorize" 105 #define DEBUG_TYPE LV_NAME 106 107 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 108 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 109 110 static cl::opt<bool> 111 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 112 cl::desc("Enable if-conversion during vectorization.")); 113 114 /// We don't vectorize loops with a known constant trip count below this number. 115 static cl::opt<unsigned> TinyTripCountVectorThreshold( 116 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 117 cl::desc("Don't vectorize loops with a constant " 118 "trip count that is smaller than this " 119 "value.")); 120 121 static cl::opt<bool> MaximizeBandwidth( 122 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 123 cl::desc("Maximize bandwidth when selecting vectorization factor which " 124 "will be determined by the smallest type in loop.")); 125 126 static cl::opt<bool> EnableInterleavedMemAccesses( 127 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 128 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 129 130 /// Maximum factor for an interleaved memory access. 131 static cl::opt<unsigned> MaxInterleaveGroupFactor( 132 "max-interleave-group-factor", cl::Hidden, 133 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 134 cl::init(8)); 135 136 /// We don't interleave loops with a known constant trip count below this 137 /// number. 138 static const unsigned TinyTripCountInterleaveThreshold = 128; 139 140 static cl::opt<unsigned> ForceTargetNumScalarRegs( 141 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 142 cl::desc("A flag that overrides the target's number of scalar registers.")); 143 144 static cl::opt<unsigned> ForceTargetNumVectorRegs( 145 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 146 cl::desc("A flag that overrides the target's number of vector registers.")); 147 148 /// Maximum vectorization interleave count. 149 static const unsigned MaxInterleaveFactor = 16; 150 151 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 152 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 153 cl::desc("A flag that overrides the target's max interleave factor for " 154 "scalar loops.")); 155 156 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 157 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 158 cl::desc("A flag that overrides the target's max interleave factor for " 159 "vectorized loops.")); 160 161 static cl::opt<unsigned> ForceTargetInstructionCost( 162 "force-target-instruction-cost", cl::init(0), cl::Hidden, 163 cl::desc("A flag that overrides the target's expected cost for " 164 "an instruction to a single constant value. Mostly " 165 "useful for getting consistent testing.")); 166 167 static cl::opt<unsigned> SmallLoopCost( 168 "small-loop-cost", cl::init(20), cl::Hidden, 169 cl::desc( 170 "The cost of a loop that is considered 'small' by the interleaver.")); 171 172 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 173 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 174 cl::desc("Enable the use of the block frequency analysis to access PGO " 175 "heuristics minimizing code growth in cold regions and being more " 176 "aggressive in hot regions.")); 177 178 // Runtime interleave loops for load/store throughput. 179 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 180 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 181 cl::desc( 182 "Enable runtime interleaving until load/store ports are saturated")); 183 184 /// The number of stores in a loop that are allowed to need predication. 185 static cl::opt<unsigned> NumberOfStoresToPredicate( 186 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 187 cl::desc("Max number of stores to be predicated behind an if.")); 188 189 static cl::opt<bool> EnableIndVarRegisterHeur( 190 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 191 cl::desc("Count the induction variable only once when interleaving")); 192 193 static cl::opt<bool> EnableCondStoresVectorization( 194 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 195 cl::desc("Enable if predication of stores during vectorization.")); 196 197 static cl::opt<unsigned> MaxNestedScalarReductionIC( 198 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 199 cl::desc("The maximum interleave count to use when interleaving a scalar " 200 "reduction in a nested loop.")); 201 202 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 203 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 204 cl::desc("The maximum allowed number of runtime memory checks with a " 205 "vectorize(enable) pragma.")); 206 207 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 208 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 209 cl::desc("The maximum number of SCEV checks allowed.")); 210 211 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 212 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 213 cl::desc("The maximum number of SCEV checks allowed with a " 214 "vectorize(enable) pragma")); 215 216 namespace { 217 218 // Forward declarations. 219 class LoopVectorizeHints; 220 class LoopVectorizationLegality; 221 class LoopVectorizationCostModel; 222 class LoopVectorizationRequirements; 223 224 /// Returns true if the given loop body has a cycle, excluding the loop 225 /// itself. 226 static bool hasCyclesInLoopBody(const Loop &L) { 227 if (!L.empty()) 228 return true; 229 230 for (const auto &SCC : 231 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 232 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 233 if (SCC.size() > 1) { 234 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 235 DEBUG(L.dump()); 236 return true; 237 } 238 } 239 return false; 240 } 241 242 /// \brief This modifies LoopAccessReport to initialize message with 243 /// loop-vectorizer-specific part. 244 class VectorizationReport : public LoopAccessReport { 245 public: 246 VectorizationReport(Instruction *I = nullptr) 247 : LoopAccessReport("loop not vectorized: ", I) {} 248 249 /// \brief This allows promotion of the loop-access analysis report into the 250 /// loop-vectorizer report. It modifies the message to add the 251 /// loop-vectorizer-specific part of the message. 252 explicit VectorizationReport(const LoopAccessReport &R) 253 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 254 R.getInstr()) {} 255 }; 256 257 /// A helper function for converting Scalar types to vector types. 258 /// If the incoming type is void, we return void. If the VF is 1, we return 259 /// the scalar type. 260 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 261 if (Scalar->isVoidTy() || VF == 1) 262 return Scalar; 263 return VectorType::get(Scalar, VF); 264 } 265 266 /// A helper function that returns GEP instruction and knows to skip a 267 /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination 268 /// pointee types of the 'bitcast' have the same size. 269 /// For example: 270 /// bitcast double** %var to i64* - can be skipped 271 /// bitcast double** %var to i8* - can not 272 static GetElementPtrInst *getGEPInstruction(Value *Ptr) { 273 274 if (isa<GetElementPtrInst>(Ptr)) 275 return cast<GetElementPtrInst>(Ptr); 276 277 if (isa<BitCastInst>(Ptr) && 278 isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) { 279 Type *BitcastTy = Ptr->getType(); 280 Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy(); 281 if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy)) 282 return nullptr; 283 Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType(); 284 Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType(); 285 const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout(); 286 if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty)) 287 return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0)); 288 } 289 return nullptr; 290 } 291 292 /// A helper function that returns the pointer operand of a load or store 293 /// instruction. 294 static Value *getPointerOperand(Value *I) { 295 if (auto *LI = dyn_cast<LoadInst>(I)) 296 return LI->getPointerOperand(); 297 if (auto *SI = dyn_cast<StoreInst>(I)) 298 return SI->getPointerOperand(); 299 return nullptr; 300 } 301 302 /// InnerLoopVectorizer vectorizes loops which contain only one basic 303 /// block to a specified vectorization factor (VF). 304 /// This class performs the widening of scalars into vectors, or multiple 305 /// scalars. This class also implements the following features: 306 /// * It inserts an epilogue loop for handling loops that don't have iteration 307 /// counts that are known to be a multiple of the vectorization factor. 308 /// * It handles the code generation for reduction variables. 309 /// * Scalarization (implementation using scalars) of un-vectorizable 310 /// instructions. 311 /// InnerLoopVectorizer does not perform any vectorization-legality 312 /// checks, and relies on the caller to check for the different legality 313 /// aspects. The InnerLoopVectorizer relies on the 314 /// LoopVectorizationLegality class to provide information about the induction 315 /// and reduction variables that were found to a given vectorization factor. 316 class InnerLoopVectorizer { 317 public: 318 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 319 LoopInfo *LI, DominatorTree *DT, 320 const TargetLibraryInfo *TLI, 321 const TargetTransformInfo *TTI, AssumptionCache *AC, 322 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 323 unsigned UnrollFactor) 324 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 325 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 326 Builder(PSE.getSE()->getContext()), Induction(nullptr), 327 OldInduction(nullptr), VectorLoopValueMap(UnrollFactor, VecWidth), 328 TripCount(nullptr), VectorTripCount(nullptr), Legal(nullptr), 329 AddedSafetyChecks(false) {} 330 331 // Perform the actual loop widening (vectorization). 332 // MinimumBitWidths maps scalar integer values to the smallest bitwidth they 333 // can be validly truncated to. The cost model has assumed this truncation 334 // will happen when vectorizing. VecValuesToIgnore contains scalar values 335 // that the cost model has chosen to ignore because they will not be 336 // vectorized. 337 void vectorize(LoopVectorizationLegality *L, 338 const MapVector<Instruction *, uint64_t> &MinimumBitWidths) { 339 MinBWs = &MinimumBitWidths; 340 Legal = L; 341 // Create a new empty loop. Unlink the old loop and connect the new one. 342 createEmptyLoop(); 343 // Widen each instruction in the old loop to a new one in the new loop. 344 // Use the Legality module to find the induction and reduction variables. 345 vectorizeLoop(); 346 } 347 348 // Return true if any runtime check is added. 349 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 350 351 virtual ~InnerLoopVectorizer() {} 352 353 protected: 354 /// A small list of PHINodes. 355 typedef SmallVector<PHINode *, 4> PhiVector; 356 357 /// A type for vectorized values in the new loop. Each value from the 358 /// original loop, when vectorized, is represented by UF vector values in the 359 /// new unrolled loop, where UF is the unroll factor. 360 typedef SmallVector<Value *, 2> VectorParts; 361 362 /// A type for scalarized values in the new loop. Each value from the 363 /// original loop, when scalarized, is represented by UF x VF scalar values 364 /// in the new unrolled loop, where UF is the unroll factor and VF is the 365 /// vectorization factor. 366 typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts; 367 368 // When we if-convert we need to create edge masks. We have to cache values 369 // so that we don't end up with exponential recursion/IR. 370 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 371 EdgeMaskCache; 372 373 /// Create an empty loop, based on the loop ranges of the old loop. 374 void createEmptyLoop(); 375 376 /// Set up the values of the IVs correctly when exiting the vector loop. 377 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 378 Value *CountRoundDown, Value *EndValue, 379 BasicBlock *MiddleBlock); 380 381 /// Create a new induction variable inside L. 382 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 383 Value *Step, Instruction *DL); 384 /// Copy and widen the instructions from the old loop. 385 virtual void vectorizeLoop(); 386 387 /// Fix a first-order recurrence. This is the second phase of vectorizing 388 /// this phi node. 389 void fixFirstOrderRecurrence(PHINode *Phi); 390 391 /// \brief The Loop exit block may have single value PHI nodes where the 392 /// incoming value is 'Undef'. While vectorizing we only handled real values 393 /// that were defined inside the loop. Here we fix the 'undef case'. 394 /// See PR14725. 395 void fixLCSSAPHIs(); 396 397 /// Predicate conditional instructions that require predication on their 398 /// respective conditions. 399 void predicateInstructions(); 400 401 /// Shrinks vector element sizes based on information in "MinBWs". 402 void truncateToMinimalBitwidths(); 403 404 /// A helper function that computes the predicate of the block BB, assuming 405 /// that the header block of the loop is set to True. It returns the *entry* 406 /// mask for the block BB. 407 VectorParts createBlockInMask(BasicBlock *BB); 408 /// A helper function that computes the predicate of the edge between SRC 409 /// and DST. 410 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 411 412 /// A helper function to vectorize a single BB within the innermost loop. 413 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 414 415 /// Vectorize a single PHINode in a block. This method handles the induction 416 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 417 /// arbitrary length vectors. 418 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, unsigned UF, 419 unsigned VF, PhiVector *PV); 420 421 /// Insert the new loop to the loop hierarchy and pass manager 422 /// and update the analysis passes. 423 void updateAnalysis(); 424 425 /// This instruction is un-vectorizable. Implement it as a sequence 426 /// of scalars. If \p IfPredicateInstr is true we need to 'hide' each 427 /// scalarized instruction behind an if block predicated on the control 428 /// dependence of the instruction. 429 virtual void scalarizeInstruction(Instruction *Instr, 430 bool IfPredicateInstr = false); 431 432 /// Vectorize Load and Store instructions, 433 virtual void vectorizeMemoryInstruction(Instruction *Instr); 434 435 /// Create a broadcast instruction. This method generates a broadcast 436 /// instruction (shuffle) for loop invariant values and for the induction 437 /// value. If this is the induction variable then we extend it to N, N+1, ... 438 /// this is needed because each iteration in the loop corresponds to a SIMD 439 /// element. 440 virtual Value *getBroadcastInstrs(Value *V); 441 442 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 443 /// to each vector element of Val. The sequence starts at StartIndex. 444 /// \p Opcode is relevant for FP induction variable. 445 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 446 Instruction::BinaryOps Opcode = 447 Instruction::BinaryOpsEnd); 448 449 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 450 /// variable on which to base the steps, \p Step is the size of the step, and 451 /// \p EntryVal is the value from the original loop that maps to the steps. 452 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 453 /// can be a truncate instruction). 454 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal); 455 456 /// Create a vector induction phi node based on an existing scalar one. This 457 /// currently only works for integer induction variables with a constant 458 /// step. If \p TruncType is non-null, instead of widening the original IV, 459 /// we widen a version of the IV truncated to \p TruncType. 460 void createVectorIntInductionPHI(const InductionDescriptor &II, 461 VectorParts &Entry, IntegerType *TruncType); 462 463 /// Widen an integer induction variable \p IV. If \p Trunc is provided, the 464 /// induction variable will first be truncated to the corresponding type. The 465 /// widened values are placed in \p Entry. 466 void widenIntInduction(PHINode *IV, VectorParts &Entry, 467 TruncInst *Trunc = nullptr); 468 469 /// Returns true if we should generate a scalar version of \p IV. 470 bool needsScalarInduction(Instruction *IV) const; 471 472 /// Return a constant reference to the VectorParts corresponding to \p V from 473 /// the original loop. If the value has already been vectorized, the 474 /// corresponding vector entry in VectorLoopValueMap is returned. If, 475 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 476 /// new vector values on-demand by inserting the scalar values into vectors 477 /// with an insertelement sequence. If the value has been neither vectorized 478 /// nor scalarized, it must be loop invariant, so we simply broadcast the 479 /// value into vectors. 480 const VectorParts &getVectorValue(Value *V); 481 482 /// Return a value in the new loop corresponding to \p V from the original 483 /// loop at unroll index \p Part and vector index \p Lane. If the value has 484 /// been vectorized but not scalarized, the necessary extractelement 485 /// instruction will be generated. 486 Value *getScalarValue(Value *V, unsigned Part, unsigned Lane); 487 488 /// Try to vectorize the interleaved access group that \p Instr belongs to. 489 void vectorizeInterleaveGroup(Instruction *Instr); 490 491 /// Generate a shuffle sequence that will reverse the vector Vec. 492 virtual Value *reverseVector(Value *Vec); 493 494 /// Returns (and creates if needed) the original loop trip count. 495 Value *getOrCreateTripCount(Loop *NewLoop); 496 497 /// Returns (and creates if needed) the trip count of the widened loop. 498 Value *getOrCreateVectorTripCount(Loop *NewLoop); 499 500 /// Emit a bypass check to see if the trip count would overflow, or we 501 /// wouldn't have enough iterations to execute one vector loop. 502 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 503 /// Emit a bypass check to see if the vector trip count is nonzero. 504 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 505 /// Emit a bypass check to see if all of the SCEV assumptions we've 506 /// had to make are correct. 507 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 508 /// Emit bypass checks to check any memory assumptions we may have made. 509 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 510 511 /// Add additional metadata to \p To that was not present on \p Orig. 512 /// 513 /// Currently this is used to add the noalias annotations based on the 514 /// inserted memchecks. Use this for instructions that are *cloned* into the 515 /// vector loop. 516 void addNewMetadata(Instruction *To, const Instruction *Orig); 517 518 /// Add metadata from one instruction to another. 519 /// 520 /// This includes both the original MDs from \p From and additional ones (\see 521 /// addNewMetadata). Use this for *newly created* instructions in the vector 522 /// loop. 523 void addMetadata(Instruction *To, Instruction *From); 524 525 /// \brief Similar to the previous function but it adds the metadata to a 526 /// vector of instructions. 527 void addMetadata(ArrayRef<Value *> To, Instruction *From); 528 529 /// This is a helper class for maintaining vectorization state. It's used for 530 /// mapping values from the original loop to their corresponding values in 531 /// the new loop. Two mappings are maintained: one for vectorized values and 532 /// one for scalarized values. Vectorized values are represented with UF 533 /// vector values in the new loop, and scalarized values are represented with 534 /// UF x VF scalar values in the new loop. UF and VF are the unroll and 535 /// vectorization factors, respectively. 536 /// 537 /// Entries can be added to either map with initVector and initScalar, which 538 /// initialize and return a constant reference to the new entry. If a 539 /// non-constant reference to a vector entry is required, getVector can be 540 /// used to retrieve a mutable entry. We currently directly modify the mapped 541 /// values during "fix-up" operations that occur once the first phase of 542 /// widening is complete. These operations include type truncation and the 543 /// second phase of recurrence widening. 544 /// 545 /// Otherwise, entries from either map should be accessed using the 546 /// getVectorValue or getScalarValue functions from InnerLoopVectorizer. 547 /// getVectorValue and getScalarValue coordinate to generate a vector or 548 /// scalar value on-demand if one is not yet available. When vectorizing a 549 /// loop, we visit the definition of an instruction before its uses. When 550 /// visiting the definition, we either vectorize or scalarize the 551 /// instruction, creating an entry for it in the corresponding map. (In some 552 /// cases, such as induction variables, we will create both vector and scalar 553 /// entries.) Then, as we encounter uses of the definition, we derive values 554 /// for each scalar or vector use unless such a value is already available. 555 /// For example, if we scalarize a definition and one of its uses is vector, 556 /// we build the required vector on-demand with an insertelement sequence 557 /// when visiting the use. Otherwise, if the use is scalar, we can use the 558 /// existing scalar definition. 559 struct ValueMap { 560 561 /// Construct an empty map with the given unroll and vectorization factors. 562 ValueMap(unsigned UnrollFactor, unsigned VecWidth) 563 : UF(UnrollFactor), VF(VecWidth) { 564 // The unroll and vectorization factors are only used in asserts builds 565 // to verify map entries are sized appropriately. 566 (void)UF; 567 (void)VF; 568 } 569 570 /// \return True if the map has a vector entry for \p Key. 571 bool hasVector(Value *Key) const { return VectorMapStorage.count(Key); } 572 573 /// \return True if the map has a scalar entry for \p Key. 574 bool hasScalar(Value *Key) const { return ScalarMapStorage.count(Key); } 575 576 /// \brief Map \p Key to the given VectorParts \p Entry, and return a 577 /// constant reference to the new vector map entry. The given key should 578 /// not already be in the map, and the given VectorParts should be 579 /// correctly sized for the current unroll factor. 580 const VectorParts &initVector(Value *Key, const VectorParts &Entry) { 581 assert(!hasVector(Key) && "Vector entry already initialized"); 582 assert(Entry.size() == UF && "VectorParts has wrong dimensions"); 583 VectorMapStorage[Key] = Entry; 584 return VectorMapStorage[Key]; 585 } 586 587 /// \brief Map \p Key to the given ScalarParts \p Entry, and return a 588 /// constant reference to the new scalar map entry. The given key should 589 /// not already be in the map, and the given ScalarParts should be 590 /// correctly sized for the current unroll and vectorization factors. 591 const ScalarParts &initScalar(Value *Key, const ScalarParts &Entry) { 592 assert(!hasScalar(Key) && "Scalar entry already initialized"); 593 assert(Entry.size() == UF && 594 all_of(make_range(Entry.begin(), Entry.end()), 595 [&](const SmallVectorImpl<Value *> &Values) -> bool { 596 return Values.size() == VF; 597 }) && 598 "ScalarParts has wrong dimensions"); 599 ScalarMapStorage[Key] = Entry; 600 return ScalarMapStorage[Key]; 601 } 602 603 /// \return A reference to the vector map entry corresponding to \p Key. 604 /// The key should already be in the map. This function should only be used 605 /// when it's necessary to update values that have already been vectorized. 606 /// This is the case for "fix-up" operations including type truncation and 607 /// the second phase of recurrence vectorization. If a non-const reference 608 /// isn't required, getVectorValue should be used instead. 609 VectorParts &getVector(Value *Key) { 610 assert(hasVector(Key) && "Vector entry not initialized"); 611 return VectorMapStorage.find(Key)->second; 612 } 613 614 /// Retrieve an entry from the vector or scalar maps. The preferred way to 615 /// access an existing mapped entry is with getVectorValue or 616 /// getScalarValue from InnerLoopVectorizer. Until those functions can be 617 /// moved inside ValueMap, we have to declare them as friends. 618 friend const VectorParts &InnerLoopVectorizer::getVectorValue(Value *V); 619 friend Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 620 unsigned Lane); 621 622 private: 623 /// The unroll factor. Each entry in the vector map contains UF vector 624 /// values. 625 unsigned UF; 626 627 /// The vectorization factor. Each entry in the scalar map contains UF x VF 628 /// scalar values. 629 unsigned VF; 630 631 /// The vector and scalar map storage. We use std::map and not DenseMap 632 /// because insertions to DenseMap invalidate its iterators. 633 std::map<Value *, VectorParts> VectorMapStorage; 634 std::map<Value *, ScalarParts> ScalarMapStorage; 635 }; 636 637 /// The original loop. 638 Loop *OrigLoop; 639 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 640 /// dynamic knowledge to simplify SCEV expressions and converts them to a 641 /// more usable form. 642 PredicatedScalarEvolution &PSE; 643 /// Loop Info. 644 LoopInfo *LI; 645 /// Dominator Tree. 646 DominatorTree *DT; 647 /// Alias Analysis. 648 AliasAnalysis *AA; 649 /// Target Library Info. 650 const TargetLibraryInfo *TLI; 651 /// Target Transform Info. 652 const TargetTransformInfo *TTI; 653 /// Assumption Cache. 654 AssumptionCache *AC; 655 /// Interface to emit optimization remarks. 656 OptimizationRemarkEmitter *ORE; 657 658 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 659 /// used. 660 /// 661 /// This is currently only used to add no-alias metadata based on the 662 /// memchecks. The actually versioning is performed manually. 663 std::unique_ptr<LoopVersioning> LVer; 664 665 /// The vectorization SIMD factor to use. Each vector will have this many 666 /// vector elements. 667 unsigned VF; 668 669 protected: 670 /// The vectorization unroll factor to use. Each scalar is vectorized to this 671 /// many different vector instructions. 672 unsigned UF; 673 674 /// The builder that we use 675 IRBuilder<> Builder; 676 677 // --- Vectorization state --- 678 679 /// The vector-loop preheader. 680 BasicBlock *LoopVectorPreHeader; 681 /// The scalar-loop preheader. 682 BasicBlock *LoopScalarPreHeader; 683 /// Middle Block between the vector and the scalar. 684 BasicBlock *LoopMiddleBlock; 685 /// The ExitBlock of the scalar loop. 686 BasicBlock *LoopExitBlock; 687 /// The vector loop body. 688 BasicBlock *LoopVectorBody; 689 /// The scalar loop body. 690 BasicBlock *LoopScalarBody; 691 /// A list of all bypass blocks. The first block is the entry of the loop. 692 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 693 694 /// The new Induction variable which was added to the new block. 695 PHINode *Induction; 696 /// The induction variable of the old basic block. 697 PHINode *OldInduction; 698 699 /// Maps values from the original loop to their corresponding values in the 700 /// vectorized loop. A key value can map to either vector values, scalar 701 /// values or both kinds of values, depending on whether the key was 702 /// vectorized and scalarized. 703 ValueMap VectorLoopValueMap; 704 705 /// Store instructions that should be predicated, as a pair 706 /// <StoreInst, Predicate> 707 SmallVector<std::pair<Instruction *, Value *>, 4> PredicatedInstructions; 708 EdgeMaskCache MaskCache; 709 /// Trip count of the original loop. 710 Value *TripCount; 711 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 712 Value *VectorTripCount; 713 714 /// Map of scalar integer values to the smallest bitwidth they can be legally 715 /// represented as. The vector equivalents of these values should be truncated 716 /// to this type. 717 const MapVector<Instruction *, uint64_t> *MinBWs; 718 719 LoopVectorizationLegality *Legal; 720 721 // Record whether runtime checks are added. 722 bool AddedSafetyChecks; 723 }; 724 725 class InnerLoopUnroller : public InnerLoopVectorizer { 726 public: 727 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 728 LoopInfo *LI, DominatorTree *DT, 729 const TargetLibraryInfo *TLI, 730 const TargetTransformInfo *TTI, AssumptionCache *AC, 731 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor) 732 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 733 UnrollFactor) {} 734 735 private: 736 void scalarizeInstruction(Instruction *Instr, 737 bool IfPredicateInstr = false) override; 738 void vectorizeMemoryInstruction(Instruction *Instr) override; 739 Value *getBroadcastInstrs(Value *V) override; 740 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 741 Instruction::BinaryOps Opcode = 742 Instruction::BinaryOpsEnd) override; 743 Value *reverseVector(Value *Vec) override; 744 }; 745 746 /// \brief Look for a meaningful debug location on the instruction or it's 747 /// operands. 748 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 749 if (!I) 750 return I; 751 752 DebugLoc Empty; 753 if (I->getDebugLoc() != Empty) 754 return I; 755 756 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 757 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 758 if (OpInst->getDebugLoc() != Empty) 759 return OpInst; 760 } 761 762 return I; 763 } 764 765 /// \brief Set the debug location in the builder using the debug location in the 766 /// instruction. 767 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 768 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 769 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 770 else 771 B.SetCurrentDebugLocation(DebugLoc()); 772 } 773 774 #ifndef NDEBUG 775 /// \return string containing a file name and a line # for the given loop. 776 static std::string getDebugLocString(const Loop *L) { 777 std::string Result; 778 if (L) { 779 raw_string_ostream OS(Result); 780 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 781 LoopDbgLoc.print(OS); 782 else 783 // Just print the module name. 784 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 785 OS.flush(); 786 } 787 return Result; 788 } 789 #endif 790 791 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 792 const Instruction *Orig) { 793 // If the loop was versioned with memchecks, add the corresponding no-alias 794 // metadata. 795 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 796 LVer->annotateInstWithNoAlias(To, Orig); 797 } 798 799 void InnerLoopVectorizer::addMetadata(Instruction *To, 800 Instruction *From) { 801 propagateMetadata(To, From); 802 addNewMetadata(To, From); 803 } 804 805 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 806 Instruction *From) { 807 for (Value *V : To) { 808 if (Instruction *I = dyn_cast<Instruction>(V)) 809 addMetadata(I, From); 810 } 811 } 812 813 /// \brief The group of interleaved loads/stores sharing the same stride and 814 /// close to each other. 815 /// 816 /// Each member in this group has an index starting from 0, and the largest 817 /// index should be less than interleaved factor, which is equal to the absolute 818 /// value of the access's stride. 819 /// 820 /// E.g. An interleaved load group of factor 4: 821 /// for (unsigned i = 0; i < 1024; i+=4) { 822 /// a = A[i]; // Member of index 0 823 /// b = A[i+1]; // Member of index 1 824 /// d = A[i+3]; // Member of index 3 825 /// ... 826 /// } 827 /// 828 /// An interleaved store group of factor 4: 829 /// for (unsigned i = 0; i < 1024; i+=4) { 830 /// ... 831 /// A[i] = a; // Member of index 0 832 /// A[i+1] = b; // Member of index 1 833 /// A[i+2] = c; // Member of index 2 834 /// A[i+3] = d; // Member of index 3 835 /// } 836 /// 837 /// Note: the interleaved load group could have gaps (missing members), but 838 /// the interleaved store group doesn't allow gaps. 839 class InterleaveGroup { 840 public: 841 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 842 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 843 assert(Align && "The alignment should be non-zero"); 844 845 Factor = std::abs(Stride); 846 assert(Factor > 1 && "Invalid interleave factor"); 847 848 Reverse = Stride < 0; 849 Members[0] = Instr; 850 } 851 852 bool isReverse() const { return Reverse; } 853 unsigned getFactor() const { return Factor; } 854 unsigned getAlignment() const { return Align; } 855 unsigned getNumMembers() const { return Members.size(); } 856 857 /// \brief Try to insert a new member \p Instr with index \p Index and 858 /// alignment \p NewAlign. The index is related to the leader and it could be 859 /// negative if it is the new leader. 860 /// 861 /// \returns false if the instruction doesn't belong to the group. 862 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 863 assert(NewAlign && "The new member's alignment should be non-zero"); 864 865 int Key = Index + SmallestKey; 866 867 // Skip if there is already a member with the same index. 868 if (Members.count(Key)) 869 return false; 870 871 if (Key > LargestKey) { 872 // The largest index is always less than the interleave factor. 873 if (Index >= static_cast<int>(Factor)) 874 return false; 875 876 LargestKey = Key; 877 } else if (Key < SmallestKey) { 878 // The largest index is always less than the interleave factor. 879 if (LargestKey - Key >= static_cast<int>(Factor)) 880 return false; 881 882 SmallestKey = Key; 883 } 884 885 // It's always safe to select the minimum alignment. 886 Align = std::min(Align, NewAlign); 887 Members[Key] = Instr; 888 return true; 889 } 890 891 /// \brief Get the member with the given index \p Index 892 /// 893 /// \returns nullptr if contains no such member. 894 Instruction *getMember(unsigned Index) const { 895 int Key = SmallestKey + Index; 896 if (!Members.count(Key)) 897 return nullptr; 898 899 return Members.find(Key)->second; 900 } 901 902 /// \brief Get the index for the given member. Unlike the key in the member 903 /// map, the index starts from 0. 904 unsigned getIndex(Instruction *Instr) const { 905 for (auto I : Members) 906 if (I.second == Instr) 907 return I.first - SmallestKey; 908 909 llvm_unreachable("InterleaveGroup contains no such member"); 910 } 911 912 Instruction *getInsertPos() const { return InsertPos; } 913 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 914 915 private: 916 unsigned Factor; // Interleave Factor. 917 bool Reverse; 918 unsigned Align; 919 DenseMap<int, Instruction *> Members; 920 int SmallestKey; 921 int LargestKey; 922 923 // To avoid breaking dependences, vectorized instructions of an interleave 924 // group should be inserted at either the first load or the last store in 925 // program order. 926 // 927 // E.g. %even = load i32 // Insert Position 928 // %add = add i32 %even // Use of %even 929 // %odd = load i32 930 // 931 // store i32 %even 932 // %odd = add i32 // Def of %odd 933 // store i32 %odd // Insert Position 934 Instruction *InsertPos; 935 }; 936 937 /// \brief Drive the analysis of interleaved memory accesses in the loop. 938 /// 939 /// Use this class to analyze interleaved accesses only when we can vectorize 940 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 941 /// on interleaved accesses is unsafe. 942 /// 943 /// The analysis collects interleave groups and records the relationships 944 /// between the member and the group in a map. 945 class InterleavedAccessInfo { 946 public: 947 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 948 DominatorTree *DT, LoopInfo *LI) 949 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr), 950 RequiresScalarEpilogue(false) {} 951 952 ~InterleavedAccessInfo() { 953 SmallSet<InterleaveGroup *, 4> DelSet; 954 // Avoid releasing a pointer twice. 955 for (auto &I : InterleaveGroupMap) 956 DelSet.insert(I.second); 957 for (auto *Ptr : DelSet) 958 delete Ptr; 959 } 960 961 /// \brief Analyze the interleaved accesses and collect them in interleave 962 /// groups. Substitute symbolic strides using \p Strides. 963 void analyzeInterleaving(const ValueToValueMap &Strides); 964 965 /// \brief Check if \p Instr belongs to any interleave group. 966 bool isInterleaved(Instruction *Instr) const { 967 return InterleaveGroupMap.count(Instr); 968 } 969 970 /// \brief Return the maximum interleave factor of all interleaved groups. 971 unsigned getMaxInterleaveFactor() const { 972 unsigned MaxFactor = 1; 973 for (auto &Entry : InterleaveGroupMap) 974 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 975 return MaxFactor; 976 } 977 978 /// \brief Get the interleave group that \p Instr belongs to. 979 /// 980 /// \returns nullptr if doesn't have such group. 981 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 982 if (InterleaveGroupMap.count(Instr)) 983 return InterleaveGroupMap.find(Instr)->second; 984 return nullptr; 985 } 986 987 /// \brief Returns true if an interleaved group that may access memory 988 /// out-of-bounds requires a scalar epilogue iteration for correctness. 989 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 990 991 /// \brief Initialize the LoopAccessInfo used for dependence checking. 992 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 993 994 private: 995 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 996 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 997 /// The interleaved access analysis can also add new predicates (for example 998 /// by versioning strides of pointers). 999 PredicatedScalarEvolution &PSE; 1000 Loop *TheLoop; 1001 DominatorTree *DT; 1002 LoopInfo *LI; 1003 const LoopAccessInfo *LAI; 1004 1005 /// True if the loop may contain non-reversed interleaved groups with 1006 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1007 /// out-of-bounds by executing at least one scalar epilogue iteration. 1008 bool RequiresScalarEpilogue; 1009 1010 /// Holds the relationships between the members and the interleave group. 1011 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1012 1013 /// Holds dependences among the memory accesses in the loop. It maps a source 1014 /// access to a set of dependent sink accesses. 1015 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1016 1017 /// \brief The descriptor for a strided memory access. 1018 struct StrideDescriptor { 1019 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1020 unsigned Align) 1021 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1022 1023 StrideDescriptor() = default; 1024 1025 // The access's stride. It is negative for a reverse access. 1026 int64_t Stride = 0; 1027 const SCEV *Scev = nullptr; // The scalar expression of this access 1028 uint64_t Size = 0; // The size of the memory object. 1029 unsigned Align = 0; // The alignment of this access. 1030 }; 1031 1032 /// \brief A type for holding instructions and their stride descriptors. 1033 typedef std::pair<Instruction *, StrideDescriptor> StrideEntry; 1034 1035 /// \brief Create a new interleave group with the given instruction \p Instr, 1036 /// stride \p Stride and alignment \p Align. 1037 /// 1038 /// \returns the newly created interleave group. 1039 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1040 unsigned Align) { 1041 assert(!InterleaveGroupMap.count(Instr) && 1042 "Already in an interleaved access group"); 1043 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1044 return InterleaveGroupMap[Instr]; 1045 } 1046 1047 /// \brief Release the group and remove all the relationships. 1048 void releaseGroup(InterleaveGroup *Group) { 1049 for (unsigned i = 0; i < Group->getFactor(); i++) 1050 if (Instruction *Member = Group->getMember(i)) 1051 InterleaveGroupMap.erase(Member); 1052 1053 delete Group; 1054 } 1055 1056 /// \brief Collect all the accesses with a constant stride in program order. 1057 void collectConstStrideAccesses( 1058 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1059 const ValueToValueMap &Strides); 1060 1061 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1062 static bool isStrided(int Stride) { 1063 unsigned Factor = std::abs(Stride); 1064 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1065 } 1066 1067 /// \brief Returns true if \p BB is a predicated block. 1068 bool isPredicated(BasicBlock *BB) const { 1069 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1070 } 1071 1072 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1073 bool areDependencesValid() const { 1074 return LAI && LAI->getDepChecker().getDependences(); 1075 } 1076 1077 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1078 /// necessary, when constructing interleaved groups. 1079 /// 1080 /// \p A must precede \p B in program order. We return false if reordering is 1081 /// not necessary or is prevented because \p A and \p B may be dependent. 1082 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1083 StrideEntry *B) const { 1084 1085 // Code motion for interleaved accesses can potentially hoist strided loads 1086 // and sink strided stores. The code below checks the legality of the 1087 // following two conditions: 1088 // 1089 // 1. Potentially moving a strided load (B) before any store (A) that 1090 // precedes B, or 1091 // 1092 // 2. Potentially moving a strided store (A) after any load or store (B) 1093 // that A precedes. 1094 // 1095 // It's legal to reorder A and B if we know there isn't a dependence from A 1096 // to B. Note that this determination is conservative since some 1097 // dependences could potentially be reordered safely. 1098 1099 // A is potentially the source of a dependence. 1100 auto *Src = A->first; 1101 auto SrcDes = A->second; 1102 1103 // B is potentially the sink of a dependence. 1104 auto *Sink = B->first; 1105 auto SinkDes = B->second; 1106 1107 // Code motion for interleaved accesses can't violate WAR dependences. 1108 // Thus, reordering is legal if the source isn't a write. 1109 if (!Src->mayWriteToMemory()) 1110 return true; 1111 1112 // At least one of the accesses must be strided. 1113 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1114 return true; 1115 1116 // If dependence information is not available from LoopAccessInfo, 1117 // conservatively assume the instructions can't be reordered. 1118 if (!areDependencesValid()) 1119 return false; 1120 1121 // If we know there is a dependence from source to sink, assume the 1122 // instructions can't be reordered. Otherwise, reordering is legal. 1123 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1124 } 1125 1126 /// \brief Collect the dependences from LoopAccessInfo. 1127 /// 1128 /// We process the dependences once during the interleaved access analysis to 1129 /// enable constant-time dependence queries. 1130 void collectDependences() { 1131 if (!areDependencesValid()) 1132 return; 1133 auto *Deps = LAI->getDepChecker().getDependences(); 1134 for (auto Dep : *Deps) 1135 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1136 } 1137 }; 1138 1139 /// Utility class for getting and setting loop vectorizer hints in the form 1140 /// of loop metadata. 1141 /// This class keeps a number of loop annotations locally (as member variables) 1142 /// and can, upon request, write them back as metadata on the loop. It will 1143 /// initially scan the loop for existing metadata, and will update the local 1144 /// values based on information in the loop. 1145 /// We cannot write all values to metadata, as the mere presence of some info, 1146 /// for example 'force', means a decision has been made. So, we need to be 1147 /// careful NOT to add them if the user hasn't specifically asked so. 1148 class LoopVectorizeHints { 1149 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE }; 1150 1151 /// Hint - associates name and validation with the hint value. 1152 struct Hint { 1153 const char *Name; 1154 unsigned Value; // This may have to change for non-numeric values. 1155 HintKind Kind; 1156 1157 Hint(const char *Name, unsigned Value, HintKind Kind) 1158 : Name(Name), Value(Value), Kind(Kind) {} 1159 1160 bool validate(unsigned Val) { 1161 switch (Kind) { 1162 case HK_WIDTH: 1163 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1164 case HK_UNROLL: 1165 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1166 case HK_FORCE: 1167 return (Val <= 1); 1168 } 1169 return false; 1170 } 1171 }; 1172 1173 /// Vectorization width. 1174 Hint Width; 1175 /// Vectorization interleave factor. 1176 Hint Interleave; 1177 /// Vectorization forced 1178 Hint Force; 1179 1180 /// Return the loop metadata prefix. 1181 static StringRef Prefix() { return "llvm.loop."; } 1182 1183 /// True if there is any unsafe math in the loop. 1184 bool PotentiallyUnsafe; 1185 1186 public: 1187 enum ForceKind { 1188 FK_Undefined = -1, ///< Not selected. 1189 FK_Disabled = 0, ///< Forcing disabled. 1190 FK_Enabled = 1, ///< Forcing enabled. 1191 }; 1192 1193 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1194 OptimizationRemarkEmitter &ORE) 1195 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1196 HK_WIDTH), 1197 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1198 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1199 PotentiallyUnsafe(false), TheLoop(L), ORE(ORE) { 1200 // Populate values with existing loop metadata. 1201 getHintsFromMetadata(); 1202 1203 // force-vector-interleave overrides DisableInterleaving. 1204 if (VectorizerParams::isInterleaveForced()) 1205 Interleave.Value = VectorizerParams::VectorizationInterleave; 1206 1207 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1208 << "LV: Interleaving disabled by the pass manager\n"); 1209 } 1210 1211 /// Mark the loop L as already vectorized by setting the width to 1. 1212 void setAlreadyVectorized() { 1213 Width.Value = Interleave.Value = 1; 1214 Hint Hints[] = {Width, Interleave}; 1215 writeHintsToMetadata(Hints); 1216 } 1217 1218 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1219 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1220 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1221 ORE.emitOptimizationRemarkAnalysis(vectorizeAnalysisPassName(), L, 1222 emitRemark()); 1223 return false; 1224 } 1225 1226 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1227 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1228 ORE.emitOptimizationRemarkAnalysis(vectorizeAnalysisPassName(), L, 1229 emitRemark()); 1230 return false; 1231 } 1232 1233 if (getWidth() == 1 && getInterleave() == 1) { 1234 // FIXME: Add a separate metadata to indicate when the loop has already 1235 // been vectorized instead of setting width and count to 1. 1236 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1237 // FIXME: Add interleave.disable metadata. This will allow 1238 // vectorize.disable to be used without disabling the pass and errors 1239 // to differentiate between disabled vectorization and a width of 1. 1240 ORE.emitOptimizationRemarkAnalysis( 1241 vectorizeAnalysisPassName(), L, 1242 "loop not vectorized: vectorization and interleaving are explicitly " 1243 "disabled, or vectorize width and interleave count are both set to " 1244 "1"); 1245 return false; 1246 } 1247 1248 return true; 1249 } 1250 1251 /// Dumps all the hint information. 1252 std::string emitRemark() const { 1253 VectorizationReport R; 1254 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1255 R << "vectorization is explicitly disabled"; 1256 else { 1257 R << "use -Rpass-analysis=loop-vectorize for more info"; 1258 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1259 R << " (Force=true"; 1260 if (Width.Value != 0) 1261 R << ", Vector Width=" << Width.Value; 1262 if (Interleave.Value != 0) 1263 R << ", Interleave Count=" << Interleave.Value; 1264 R << ")"; 1265 } 1266 } 1267 1268 return R.str(); 1269 } 1270 1271 unsigned getWidth() const { return Width.Value; } 1272 unsigned getInterleave() const { return Interleave.Value; } 1273 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1274 1275 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1276 /// pass name to force the frontend to print the diagnostic. 1277 const char *vectorizeAnalysisPassName() const { 1278 if (getWidth() == 1) 1279 return LV_NAME; 1280 if (getForce() == LoopVectorizeHints::FK_Disabled) 1281 return LV_NAME; 1282 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1283 return LV_NAME; 1284 return DiagnosticInfoOptimizationRemarkAnalysis::AlwaysPrint; 1285 } 1286 1287 bool allowReordering() const { 1288 // When enabling loop hints are provided we allow the vectorizer to change 1289 // the order of operations that is given by the scalar loop. This is not 1290 // enabled by default because can be unsafe or inefficient. For example, 1291 // reordering floating-point operations will change the way round-off 1292 // error accumulates in the loop. 1293 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1294 } 1295 1296 bool isPotentiallyUnsafe() const { 1297 // Avoid FP vectorization if the target is unsure about proper support. 1298 // This may be related to the SIMD unit in the target not handling 1299 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1300 // Otherwise, a sequence of vectorized loops, even without reduction, 1301 // could lead to different end results on the destination vectors. 1302 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1303 } 1304 1305 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1306 1307 private: 1308 /// Find hints specified in the loop metadata and update local values. 1309 void getHintsFromMetadata() { 1310 MDNode *LoopID = TheLoop->getLoopID(); 1311 if (!LoopID) 1312 return; 1313 1314 // First operand should refer to the loop id itself. 1315 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1316 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1317 1318 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1319 const MDString *S = nullptr; 1320 SmallVector<Metadata *, 4> Args; 1321 1322 // The expected hint is either a MDString or a MDNode with the first 1323 // operand a MDString. 1324 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1325 if (!MD || MD->getNumOperands() == 0) 1326 continue; 1327 S = dyn_cast<MDString>(MD->getOperand(0)); 1328 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1329 Args.push_back(MD->getOperand(i)); 1330 } else { 1331 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1332 assert(Args.size() == 0 && "too many arguments for MDString"); 1333 } 1334 1335 if (!S) 1336 continue; 1337 1338 // Check if the hint starts with the loop metadata prefix. 1339 StringRef Name = S->getString(); 1340 if (Args.size() == 1) 1341 setHint(Name, Args[0]); 1342 } 1343 } 1344 1345 /// Checks string hint with one operand and set value if valid. 1346 void setHint(StringRef Name, Metadata *Arg) { 1347 if (!Name.startswith(Prefix())) 1348 return; 1349 Name = Name.substr(Prefix().size(), StringRef::npos); 1350 1351 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1352 if (!C) 1353 return; 1354 unsigned Val = C->getZExtValue(); 1355 1356 Hint *Hints[] = {&Width, &Interleave, &Force}; 1357 for (auto H : Hints) { 1358 if (Name == H->Name) { 1359 if (H->validate(Val)) 1360 H->Value = Val; 1361 else 1362 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1363 break; 1364 } 1365 } 1366 } 1367 1368 /// Create a new hint from name / value pair. 1369 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1370 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1371 Metadata *MDs[] = {MDString::get(Context, Name), 1372 ConstantAsMetadata::get( 1373 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1374 return MDNode::get(Context, MDs); 1375 } 1376 1377 /// Matches metadata with hint name. 1378 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1379 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1380 if (!Name) 1381 return false; 1382 1383 for (auto H : HintTypes) 1384 if (Name->getString().endswith(H.Name)) 1385 return true; 1386 return false; 1387 } 1388 1389 /// Sets current hints into loop metadata, keeping other values intact. 1390 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1391 if (HintTypes.size() == 0) 1392 return; 1393 1394 // Reserve the first element to LoopID (see below). 1395 SmallVector<Metadata *, 4> MDs(1); 1396 // If the loop already has metadata, then ignore the existing operands. 1397 MDNode *LoopID = TheLoop->getLoopID(); 1398 if (LoopID) { 1399 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1400 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1401 // If node in update list, ignore old value. 1402 if (!matchesHintMetadataName(Node, HintTypes)) 1403 MDs.push_back(Node); 1404 } 1405 } 1406 1407 // Now, add the missing hints. 1408 for (auto H : HintTypes) 1409 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1410 1411 // Replace current metadata node with new one. 1412 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1413 MDNode *NewLoopID = MDNode::get(Context, MDs); 1414 // Set operand 0 to refer to the loop id itself. 1415 NewLoopID->replaceOperandWith(0, NewLoopID); 1416 1417 TheLoop->setLoopID(NewLoopID); 1418 } 1419 1420 /// The loop these hints belong to. 1421 const Loop *TheLoop; 1422 1423 /// Interface to emit optimization remarks. 1424 OptimizationRemarkEmitter &ORE; 1425 }; 1426 1427 static void emitAnalysisDiag(const Loop *TheLoop, 1428 const LoopVectorizeHints &Hints, 1429 OptimizationRemarkEmitter &ORE, 1430 const LoopAccessReport &Message) { 1431 const char *Name = Hints.vectorizeAnalysisPassName(); 1432 LoopAccessReport::emitAnalysis(Message, TheLoop, Name, ORE); 1433 } 1434 1435 static void emitMissedWarning(Function *F, Loop *L, 1436 const LoopVectorizeHints &LH, 1437 OptimizationRemarkEmitter *ORE) { 1438 ORE->emitOptimizationRemarkMissed(LV_NAME, L, LH.emitRemark()); 1439 1440 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1441 if (LH.getWidth() != 1) 1442 emitLoopVectorizeWarning( 1443 F->getContext(), *F, L->getStartLoc(), 1444 "failed explicitly specified loop vectorization"); 1445 else if (LH.getInterleave() != 1) 1446 emitLoopInterleaveWarning( 1447 F->getContext(), *F, L->getStartLoc(), 1448 "failed explicitly specified loop interleaving"); 1449 } 1450 } 1451 1452 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1453 /// to what vectorization factor. 1454 /// This class does not look at the profitability of vectorization, only the 1455 /// legality. This class has two main kinds of checks: 1456 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1457 /// will change the order of memory accesses in a way that will change the 1458 /// correctness of the program. 1459 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1460 /// checks for a number of different conditions, such as the availability of a 1461 /// single induction variable, that all types are supported and vectorize-able, 1462 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1463 /// This class is also used by InnerLoopVectorizer for identifying 1464 /// induction variable and the different reduction variables. 1465 class LoopVectorizationLegality { 1466 public: 1467 LoopVectorizationLegality( 1468 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1469 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1470 const TargetTransformInfo *TTI, 1471 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1472 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1473 LoopVectorizeHints *H) 1474 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), 1475 GetLAA(GetLAA), LAI(nullptr), ORE(ORE), InterleaveInfo(PSE, L, DT, LI), 1476 Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1477 Requirements(R), Hints(H) {} 1478 1479 /// ReductionList contains the reduction descriptors for all 1480 /// of the reductions that were found in the loop. 1481 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1482 1483 /// InductionList saves induction variables and maps them to the 1484 /// induction descriptor. 1485 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1486 1487 /// RecurrenceSet contains the phi nodes that are recurrences other than 1488 /// inductions and reductions. 1489 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1490 1491 /// Returns true if it is legal to vectorize this loop. 1492 /// This does not mean that it is profitable to vectorize this 1493 /// loop, only that it is legal to do so. 1494 bool canVectorize(); 1495 1496 /// Returns the Induction variable. 1497 PHINode *getInduction() { return Induction; } 1498 1499 /// Returns the reduction variables found in the loop. 1500 ReductionList *getReductionVars() { return &Reductions; } 1501 1502 /// Returns the induction variables found in the loop. 1503 InductionList *getInductionVars() { return &Inductions; } 1504 1505 /// Return the first-order recurrences found in the loop. 1506 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1507 1508 /// Returns the widest induction type. 1509 Type *getWidestInductionType() { return WidestIndTy; } 1510 1511 /// Returns True if V is an induction variable in this loop. 1512 bool isInductionVariable(const Value *V); 1513 1514 /// Returns True if PN is a reduction variable in this loop. 1515 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1516 1517 /// Returns True if Phi is a first-order recurrence in this loop. 1518 bool isFirstOrderRecurrence(const PHINode *Phi); 1519 1520 /// Return true if the block BB needs to be predicated in order for the loop 1521 /// to be vectorized. 1522 bool blockNeedsPredication(BasicBlock *BB); 1523 1524 /// Check if this pointer is consecutive when vectorizing. This happens 1525 /// when the last index of the GEP is the induction variable, or that the 1526 /// pointer itself is an induction variable. 1527 /// This check allows us to vectorize A[idx] into a wide load/store. 1528 /// Returns: 1529 /// 0 - Stride is unknown or non-consecutive. 1530 /// 1 - Address is consecutive. 1531 /// -1 - Address is consecutive, and decreasing. 1532 int isConsecutivePtr(Value *Ptr); 1533 1534 /// Returns true if the value V is uniform within the loop. 1535 bool isUniform(Value *V); 1536 1537 /// Returns true if \p I is known to be uniform after vectorization. 1538 bool isUniformAfterVectorization(Instruction *I) { return Uniforms.count(I); } 1539 1540 /// Returns true if \p I is known to be scalar after vectorization. 1541 bool isScalarAfterVectorization(Instruction *I) { return Scalars.count(I); } 1542 1543 /// Returns the information that we collected about runtime memory check. 1544 const RuntimePointerChecking *getRuntimePointerChecking() const { 1545 return LAI->getRuntimePointerChecking(); 1546 } 1547 1548 const LoopAccessInfo *getLAI() const { return LAI; } 1549 1550 /// \brief Check if \p Instr belongs to any interleaved access group. 1551 bool isAccessInterleaved(Instruction *Instr) { 1552 return InterleaveInfo.isInterleaved(Instr); 1553 } 1554 1555 /// \brief Return the maximum interleave factor of all interleaved groups. 1556 unsigned getMaxInterleaveFactor() const { 1557 return InterleaveInfo.getMaxInterleaveFactor(); 1558 } 1559 1560 /// \brief Get the interleaved access group that \p Instr belongs to. 1561 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1562 return InterleaveInfo.getInterleaveGroup(Instr); 1563 } 1564 1565 /// \brief Returns true if an interleaved group requires a scalar iteration 1566 /// to handle accesses with gaps. 1567 bool requiresScalarEpilogue() const { 1568 return InterleaveInfo.requiresScalarEpilogue(); 1569 } 1570 1571 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1572 1573 bool hasStride(Value *V) { return LAI->hasStride(V); } 1574 1575 /// Returns true if the target machine supports masked store operation 1576 /// for the given \p DataType and kind of access to \p Ptr. 1577 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1578 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1579 } 1580 /// Returns true if the target machine supports masked load operation 1581 /// for the given \p DataType and kind of access to \p Ptr. 1582 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1583 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1584 } 1585 /// Returns true if the target machine supports masked scatter operation 1586 /// for the given \p DataType. 1587 bool isLegalMaskedScatter(Type *DataType) { 1588 return TTI->isLegalMaskedScatter(DataType); 1589 } 1590 /// Returns true if the target machine supports masked gather operation 1591 /// for the given \p DataType. 1592 bool isLegalMaskedGather(Type *DataType) { 1593 return TTI->isLegalMaskedGather(DataType); 1594 } 1595 /// Returns true if the target machine can represent \p V as a masked gather 1596 /// or scatter operation. 1597 bool isLegalGatherOrScatter(Value *V) { 1598 auto *LI = dyn_cast<LoadInst>(V); 1599 auto *SI = dyn_cast<StoreInst>(V); 1600 if (!LI && !SI) 1601 return false; 1602 auto *Ptr = getPointerOperand(V); 1603 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1604 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1605 } 1606 1607 /// Returns true if vector representation of the instruction \p I 1608 /// requires mask. 1609 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1610 unsigned getNumStores() const { return LAI->getNumStores(); } 1611 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1612 unsigned getNumPredStores() const { return NumPredStores; } 1613 1614 private: 1615 /// Check if a single basic block loop is vectorizable. 1616 /// At this point we know that this is a loop with a constant trip count 1617 /// and we only need to check individual instructions. 1618 bool canVectorizeInstrs(); 1619 1620 /// When we vectorize loops we may change the order in which 1621 /// we read and write from memory. This method checks if it is 1622 /// legal to vectorize the code, considering only memory constrains. 1623 /// Returns true if the loop is vectorizable 1624 bool canVectorizeMemory(); 1625 1626 /// Return true if we can vectorize this loop using the IF-conversion 1627 /// transformation. 1628 bool canVectorizeWithIfConvert(); 1629 1630 /// Collect the instructions that are uniform after vectorization. An 1631 /// instruction is uniform if we represent it with a single scalar value in 1632 /// the vectorized loop corresponding to each vector iteration. Examples of 1633 /// uniform instructions include pointer operands of consecutive or 1634 /// interleaved memory accesses. Note that although uniformity implies an 1635 /// instruction will be scalar, the reverse is not true. In general, a 1636 /// scalarized instruction will be represented by VF scalar values in the 1637 /// vectorized loop, each corresponding to an iteration of the original 1638 /// scalar loop. 1639 void collectLoopUniforms(); 1640 1641 /// Collect the instructions that are scalar after vectorization. An 1642 /// instruction is scalar if it is known to be uniform or will be scalarized 1643 /// during vectorization. Non-uniform scalarized instructions will be 1644 /// represented by VF values in the vectorized loop, each corresponding to an 1645 /// iteration of the original scalar loop. 1646 void collectLoopScalars(); 1647 1648 /// Return true if all of the instructions in the block can be speculatively 1649 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1650 /// and we know that we can read from them without segfault. 1651 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1652 1653 /// Updates the vectorization state by adding \p Phi to the inductions list. 1654 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1655 /// better choice for the main induction than the existing one. 1656 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1657 SmallPtrSetImpl<Value *> &AllowedExit); 1658 1659 /// Report an analysis message to assist the user in diagnosing loops that are 1660 /// not vectorized. These are handled as LoopAccessReport rather than 1661 /// VectorizationReport because the << operator of VectorizationReport returns 1662 /// LoopAccessReport. 1663 void emitAnalysis(const LoopAccessReport &Message) const { 1664 emitAnalysisDiag(TheLoop, *Hints, *ORE, Message); 1665 } 1666 1667 /// \brief If an access has a symbolic strides, this maps the pointer value to 1668 /// the stride symbol. 1669 const ValueToValueMap *getSymbolicStrides() { 1670 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1671 // it's collected. This happens from canVectorizeWithIfConvert, when the 1672 // pointer is checked to reference consecutive elements suitable for a 1673 // masked access. 1674 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1675 } 1676 1677 unsigned NumPredStores; 1678 1679 /// The loop that we evaluate. 1680 Loop *TheLoop; 1681 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1682 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1683 /// of existing SCEV assumptions. The analysis will also add a minimal set 1684 /// of new predicates if this is required to enable vectorization and 1685 /// unrolling. 1686 PredicatedScalarEvolution &PSE; 1687 /// Target Library Info. 1688 TargetLibraryInfo *TLI; 1689 /// Target Transform Info 1690 const TargetTransformInfo *TTI; 1691 /// Dominator Tree. 1692 DominatorTree *DT; 1693 // LoopAccess analysis. 1694 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1695 // And the loop-accesses info corresponding to this loop. This pointer is 1696 // null until canVectorizeMemory sets it up. 1697 const LoopAccessInfo *LAI; 1698 /// Interface to emit optimization remarks. 1699 OptimizationRemarkEmitter *ORE; 1700 1701 /// The interleave access information contains groups of interleaved accesses 1702 /// with the same stride and close to each other. 1703 InterleavedAccessInfo InterleaveInfo; 1704 1705 // --- vectorization state --- // 1706 1707 /// Holds the integer induction variable. This is the counter of the 1708 /// loop. 1709 PHINode *Induction; 1710 /// Holds the reduction variables. 1711 ReductionList Reductions; 1712 /// Holds all of the induction variables that we found in the loop. 1713 /// Notice that inductions don't need to start at zero and that induction 1714 /// variables can be pointers. 1715 InductionList Inductions; 1716 /// Holds the phi nodes that are first-order recurrences. 1717 RecurrenceSet FirstOrderRecurrences; 1718 /// Holds the widest induction type encountered. 1719 Type *WidestIndTy; 1720 1721 /// Allowed outside users. This holds the induction and reduction 1722 /// vars which can be accessed from outside the loop. 1723 SmallPtrSet<Value *, 4> AllowedExit; 1724 1725 /// Holds the instructions known to be uniform after vectorization. 1726 SmallPtrSet<Instruction *, 4> Uniforms; 1727 1728 /// Holds the instructions known to be scalar after vectorization. 1729 SmallPtrSet<Instruction *, 4> Scalars; 1730 1731 /// Can we assume the absence of NaNs. 1732 bool HasFunNoNaNAttr; 1733 1734 /// Vectorization requirements that will go through late-evaluation. 1735 LoopVectorizationRequirements *Requirements; 1736 1737 /// Used to emit an analysis of any legality issues. 1738 LoopVectorizeHints *Hints; 1739 1740 /// While vectorizing these instructions we have to generate a 1741 /// call to the appropriate masked intrinsic 1742 SmallPtrSet<const Instruction *, 8> MaskedOp; 1743 }; 1744 1745 /// LoopVectorizationCostModel - estimates the expected speedups due to 1746 /// vectorization. 1747 /// In many cases vectorization is not profitable. This can happen because of 1748 /// a number of reasons. In this class we mainly attempt to predict the 1749 /// expected speedup/slowdowns due to the supported instruction set. We use the 1750 /// TargetTransformInfo to query the different backends for the cost of 1751 /// different operations. 1752 class LoopVectorizationCostModel { 1753 public: 1754 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1755 LoopInfo *LI, LoopVectorizationLegality *Legal, 1756 const TargetTransformInfo &TTI, 1757 const TargetLibraryInfo *TLI, DemandedBits *DB, 1758 AssumptionCache *AC, 1759 OptimizationRemarkEmitter *ORE, const Function *F, 1760 const LoopVectorizeHints *Hints) 1761 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1762 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1763 1764 /// Information about vectorization costs 1765 struct VectorizationFactor { 1766 unsigned Width; // Vector width with best cost 1767 unsigned Cost; // Cost of the loop with that width 1768 }; 1769 /// \return The most profitable vectorization factor and the cost of that VF. 1770 /// This method checks every power of two up to VF. If UserVF is not ZERO 1771 /// then this vectorization factor will be selected if vectorization is 1772 /// possible. 1773 VectorizationFactor selectVectorizationFactor(bool OptForSize); 1774 1775 /// \return The size (in bits) of the smallest and widest types in the code 1776 /// that needs to be vectorized. We ignore values that remain scalar such as 1777 /// 64 bit loop indices. 1778 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1779 1780 /// \return The desired interleave count. 1781 /// If interleave count has been specified by metadata it will be returned. 1782 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1783 /// are the selected vectorization factor and the cost of the selected VF. 1784 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1785 unsigned LoopCost); 1786 1787 /// \return The most profitable unroll factor. 1788 /// This method finds the best unroll-factor based on register pressure and 1789 /// other parameters. VF and LoopCost are the selected vectorization factor 1790 /// and the cost of the selected VF. 1791 unsigned computeInterleaveCount(bool OptForSize, unsigned VF, 1792 unsigned LoopCost); 1793 1794 /// \brief A struct that represents some properties of the register usage 1795 /// of a loop. 1796 struct RegisterUsage { 1797 /// Holds the number of loop invariant values that are used in the loop. 1798 unsigned LoopInvariantRegs; 1799 /// Holds the maximum number of concurrent live intervals in the loop. 1800 unsigned MaxLocalUsers; 1801 /// Holds the number of instructions in the loop. 1802 unsigned NumInstructions; 1803 }; 1804 1805 /// \return Returns information about the register usages of the loop for the 1806 /// given vectorization factors. 1807 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1808 1809 /// Collect values we want to ignore in the cost model. 1810 void collectValuesToIgnore(); 1811 1812 private: 1813 /// The vectorization cost is a combination of the cost itself and a boolean 1814 /// indicating whether any of the contributing operations will actually 1815 /// operate on 1816 /// vector values after type legalization in the backend. If this latter value 1817 /// is 1818 /// false, then all operations will be scalarized (i.e. no vectorization has 1819 /// actually taken place). 1820 typedef std::pair<unsigned, bool> VectorizationCostTy; 1821 1822 /// Returns the expected execution cost. The unit of the cost does 1823 /// not matter because we use the 'cost' units to compare different 1824 /// vector widths. The cost that is returned is *not* normalized by 1825 /// the factor width. 1826 VectorizationCostTy expectedCost(unsigned VF); 1827 1828 /// Returns the execution time cost of an instruction for a given vector 1829 /// width. Vector width of one means scalar. 1830 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1831 1832 /// The cost-computation logic from getInstructionCost which provides 1833 /// the vector type as an output parameter. 1834 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1835 1836 /// Returns whether the instruction is a load or store and will be a emitted 1837 /// as a vector operation. 1838 bool isConsecutiveLoadOrStore(Instruction *I); 1839 1840 /// Report an analysis message to assist the user in diagnosing loops that are 1841 /// not vectorized. These are handled as LoopAccessReport rather than 1842 /// VectorizationReport because the << operator of VectorizationReport returns 1843 /// LoopAccessReport. 1844 void emitAnalysis(const LoopAccessReport &Message) const { 1845 emitAnalysisDiag(TheLoop, *Hints, *ORE, Message); 1846 } 1847 1848 public: 1849 /// Map of scalar integer values to the smallest bitwidth they can be legally 1850 /// represented as. The vector equivalents of these values should be truncated 1851 /// to this type. 1852 MapVector<Instruction *, uint64_t> MinBWs; 1853 1854 /// The loop that we evaluate. 1855 Loop *TheLoop; 1856 /// Predicated scalar evolution analysis. 1857 PredicatedScalarEvolution &PSE; 1858 /// Loop Info analysis. 1859 LoopInfo *LI; 1860 /// Vectorization legality. 1861 LoopVectorizationLegality *Legal; 1862 /// Vector target information. 1863 const TargetTransformInfo &TTI; 1864 /// Target Library Info. 1865 const TargetLibraryInfo *TLI; 1866 /// Demanded bits analysis. 1867 DemandedBits *DB; 1868 /// Assumption cache. 1869 AssumptionCache *AC; 1870 /// Interface to emit optimization remarks. 1871 OptimizationRemarkEmitter *ORE; 1872 1873 const Function *TheFunction; 1874 /// Loop Vectorize Hint. 1875 const LoopVectorizeHints *Hints; 1876 /// Values to ignore in the cost model. 1877 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1878 /// Values to ignore in the cost model when VF > 1. 1879 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1880 }; 1881 1882 /// \brief This holds vectorization requirements that must be verified late in 1883 /// the process. The requirements are set by legalize and costmodel. Once 1884 /// vectorization has been determined to be possible and profitable the 1885 /// requirements can be verified by looking for metadata or compiler options. 1886 /// For example, some loops require FP commutativity which is only allowed if 1887 /// vectorization is explicitly specified or if the fast-math compiler option 1888 /// has been provided. 1889 /// Late evaluation of these requirements allows helpful diagnostics to be 1890 /// composed that tells the user what need to be done to vectorize the loop. For 1891 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 1892 /// evaluation should be used only when diagnostics can generated that can be 1893 /// followed by a non-expert user. 1894 class LoopVectorizationRequirements { 1895 public: 1896 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) 1897 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr), ORE(ORE) {} 1898 1899 void addUnsafeAlgebraInst(Instruction *I) { 1900 // First unsafe algebra instruction. 1901 if (!UnsafeAlgebraInst) 1902 UnsafeAlgebraInst = I; 1903 } 1904 1905 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 1906 1907 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 1908 const char *Name = Hints.vectorizeAnalysisPassName(); 1909 bool Failed = false; 1910 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 1911 ORE.emitOptimizationRemarkAnalysisFPCommute( 1912 Name, UnsafeAlgebraInst->getDebugLoc(), 1913 UnsafeAlgebraInst->getParent(), 1914 VectorizationReport() << "cannot prove it is safe to reorder " 1915 "floating-point operations"); 1916 Failed = true; 1917 } 1918 1919 // Test if runtime memcheck thresholds are exceeded. 1920 bool PragmaThresholdReached = 1921 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 1922 bool ThresholdReached = 1923 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 1924 if ((ThresholdReached && !Hints.allowReordering()) || 1925 PragmaThresholdReached) { 1926 ORE.emitOptimizationRemarkAnalysisAliasing( 1927 Name, L, 1928 VectorizationReport() 1929 << "cannot prove it is safe to reorder memory operations"); 1930 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 1931 Failed = true; 1932 } 1933 1934 return Failed; 1935 } 1936 1937 private: 1938 unsigned NumRuntimePointerChecks; 1939 Instruction *UnsafeAlgebraInst; 1940 1941 /// Interface to emit optimization remarks. 1942 OptimizationRemarkEmitter &ORE; 1943 }; 1944 1945 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1946 if (L.empty()) { 1947 if (!hasCyclesInLoopBody(L)) 1948 V.push_back(&L); 1949 return; 1950 } 1951 for (Loop *InnerL : L) 1952 addAcyclicInnerLoop(*InnerL, V); 1953 } 1954 1955 /// The LoopVectorize Pass. 1956 struct LoopVectorize : public FunctionPass { 1957 /// Pass identification, replacement for typeid 1958 static char ID; 1959 1960 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1961 : FunctionPass(ID) { 1962 Impl.DisableUnrolling = NoUnrolling; 1963 Impl.AlwaysVectorize = AlwaysVectorize; 1964 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1965 } 1966 1967 LoopVectorizePass Impl; 1968 1969 bool runOnFunction(Function &F) override { 1970 if (skipFunction(F)) 1971 return false; 1972 1973 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1974 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1975 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1976 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1977 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1978 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1979 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 1980 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1981 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1982 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1983 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1984 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1985 1986 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1987 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1988 1989 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1990 GetLAA, *ORE); 1991 } 1992 1993 void getAnalysisUsage(AnalysisUsage &AU) const override { 1994 AU.addRequired<AssumptionCacheTracker>(); 1995 AU.addRequiredID(LoopSimplifyID); 1996 AU.addRequiredID(LCSSAID); 1997 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1998 AU.addRequired<DominatorTreeWrapperPass>(); 1999 AU.addRequired<LoopInfoWrapperPass>(); 2000 AU.addRequired<ScalarEvolutionWrapperPass>(); 2001 AU.addRequired<TargetTransformInfoWrapperPass>(); 2002 AU.addRequired<AAResultsWrapperPass>(); 2003 AU.addRequired<LoopAccessLegacyAnalysis>(); 2004 AU.addRequired<DemandedBitsWrapperPass>(); 2005 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2006 AU.addPreserved<LoopInfoWrapperPass>(); 2007 AU.addPreserved<DominatorTreeWrapperPass>(); 2008 AU.addPreserved<BasicAAWrapperPass>(); 2009 AU.addPreserved<GlobalsAAWrapperPass>(); 2010 } 2011 }; 2012 2013 } // end anonymous namespace 2014 2015 //===----------------------------------------------------------------------===// 2016 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2017 // LoopVectorizationCostModel. 2018 //===----------------------------------------------------------------------===// 2019 2020 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2021 // We need to place the broadcast of invariant variables outside the loop. 2022 Instruction *Instr = dyn_cast<Instruction>(V); 2023 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2024 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2025 2026 // Place the code for broadcasting invariant variables in the new preheader. 2027 IRBuilder<>::InsertPointGuard Guard(Builder); 2028 if (Invariant) 2029 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2030 2031 // Broadcast the scalar into all locations in the vector. 2032 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2033 2034 return Shuf; 2035 } 2036 2037 void InnerLoopVectorizer::createVectorIntInductionPHI( 2038 const InductionDescriptor &II, VectorParts &Entry, IntegerType *TruncType) { 2039 Value *Start = II.getStartValue(); 2040 ConstantInt *Step = II.getConstIntStepValue(); 2041 assert(Step && "Can not widen an IV with a non-constant step"); 2042 2043 // Construct the initial value of the vector IV in the vector loop preheader 2044 auto CurrIP = Builder.saveIP(); 2045 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2046 if (TruncType) { 2047 Step = ConstantInt::getSigned(TruncType, Step->getSExtValue()); 2048 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2049 } 2050 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2051 Value *SteppedStart = getStepVector(SplatStart, 0, Step); 2052 Builder.restoreIP(CurrIP); 2053 2054 Value *SplatVF = 2055 ConstantVector::getSplat(VF, ConstantInt::getSigned(Start->getType(), 2056 VF * Step->getSExtValue())); 2057 // We may need to add the step a number of times, depending on the unroll 2058 // factor. The last of those goes into the PHI. 2059 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2060 &*LoopVectorBody->getFirstInsertionPt()); 2061 Instruction *LastInduction = VecInd; 2062 for (unsigned Part = 0; Part < UF; ++Part) { 2063 Entry[Part] = LastInduction; 2064 LastInduction = cast<Instruction>( 2065 Builder.CreateAdd(LastInduction, SplatVF, "step.add")); 2066 } 2067 2068 // Move the last step to the end of the latch block. This ensures consistent 2069 // placement of all induction updates. 2070 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2071 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2072 auto *ICmp = cast<Instruction>(Br->getCondition()); 2073 LastInduction->moveBefore(ICmp); 2074 LastInduction->setName("vec.ind.next"); 2075 2076 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2077 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2078 } 2079 2080 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2081 if (Legal->isScalarAfterVectorization(IV)) 2082 return true; 2083 auto isScalarInst = [&](User *U) -> bool { 2084 auto *I = cast<Instruction>(U); 2085 return (OrigLoop->contains(I) && Legal->isScalarAfterVectorization(I)); 2086 }; 2087 return any_of(IV->users(), isScalarInst); 2088 } 2089 2090 void InnerLoopVectorizer::widenIntInduction(PHINode *IV, VectorParts &Entry, 2091 TruncInst *Trunc) { 2092 2093 auto II = Legal->getInductionVars()->find(IV); 2094 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2095 2096 auto ID = II->second; 2097 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2098 2099 // If a truncate instruction was provided, get the smaller type. 2100 auto *TruncType = Trunc ? cast<IntegerType>(Trunc->getType()) : nullptr; 2101 2102 // The scalar value to broadcast. This will be derived from the canonical 2103 // induction variable. 2104 Value *ScalarIV = nullptr; 2105 2106 // The step of the induction. 2107 Value *Step = nullptr; 2108 2109 // The value from the original loop to which we are mapping the new induction 2110 // variable. 2111 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2112 2113 // True if we have vectorized the induction variable. 2114 auto VectorizedIV = false; 2115 2116 // Determine if we want a scalar version of the induction variable. This is 2117 // true if the induction variable itself is not widened, or if it has at 2118 // least one user in the loop that is not widened. 2119 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2120 2121 // If the induction variable has a constant integer step value, go ahead and 2122 // get it now. 2123 if (ID.getConstIntStepValue()) 2124 Step = ID.getConstIntStepValue(); 2125 2126 // Try to create a new independent vector induction variable. If we can't 2127 // create the phi node, we will splat the scalar induction variable in each 2128 // loop iteration. 2129 if (VF > 1 && IV->getType() == Induction->getType() && Step && 2130 !Legal->isScalarAfterVectorization(EntryVal)) { 2131 createVectorIntInductionPHI(ID, Entry, TruncType); 2132 VectorizedIV = true; 2133 } 2134 2135 // If we haven't yet vectorized the induction variable, or if we will create 2136 // a scalar one, we need to define the scalar induction variable and step 2137 // values. If we were given a truncation type, truncate the canonical 2138 // induction variable and constant step. Otherwise, derive these values from 2139 // the induction descriptor. 2140 if (!VectorizedIV || NeedsScalarIV) { 2141 if (TruncType) { 2142 assert(Step && "Truncation requires constant integer step"); 2143 auto StepInt = cast<ConstantInt>(Step)->getSExtValue(); 2144 ScalarIV = Builder.CreateCast(Instruction::Trunc, Induction, TruncType); 2145 Step = ConstantInt::getSigned(TruncType, StepInt); 2146 } else { 2147 ScalarIV = Induction; 2148 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2149 if (IV != OldInduction) { 2150 ScalarIV = Builder.CreateSExtOrTrunc(ScalarIV, IV->getType()); 2151 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2152 ScalarIV->setName("offset.idx"); 2153 } 2154 if (!Step) { 2155 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2156 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2157 &*Builder.GetInsertPoint()); 2158 } 2159 } 2160 } 2161 2162 // If we haven't yet vectorized the induction variable, splat the scalar 2163 // induction variable, and build the necessary step vectors. 2164 if (!VectorizedIV) { 2165 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2166 for (unsigned Part = 0; Part < UF; ++Part) 2167 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); 2168 } 2169 2170 // If an induction variable is only used for counting loop iterations or 2171 // calculating addresses, it doesn't need to be widened. Create scalar steps 2172 // that can be used by instructions we will later scalarize. Note that the 2173 // addition of the scalar steps will not increase the number of instructions 2174 // in the loop in the common case prior to InstCombine. We will be trading 2175 // one vector extract for each scalar step. 2176 if (NeedsScalarIV) 2177 buildScalarSteps(ScalarIV, Step, EntryVal); 2178 } 2179 2180 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2181 Instruction::BinaryOps BinOp) { 2182 // Create and check the types. 2183 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2184 int VLen = Val->getType()->getVectorNumElements(); 2185 2186 Type *STy = Val->getType()->getScalarType(); 2187 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2188 "Induction Step must be an integer or FP"); 2189 assert(Step->getType() == STy && "Step has wrong type"); 2190 2191 SmallVector<Constant *, 8> Indices; 2192 2193 if (STy->isIntegerTy()) { 2194 // Create a vector of consecutive numbers from zero to VF. 2195 for (int i = 0; i < VLen; ++i) 2196 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2197 2198 // Add the consecutive indices to the vector value. 2199 Constant *Cv = ConstantVector::get(Indices); 2200 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2201 Step = Builder.CreateVectorSplat(VLen, Step); 2202 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2203 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2204 // which can be found from the original scalar operations. 2205 Step = Builder.CreateMul(Cv, Step); 2206 return Builder.CreateAdd(Val, Step, "induction"); 2207 } 2208 2209 // Floating point induction. 2210 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2211 "Binary Opcode should be specified for FP induction"); 2212 // Create a vector of consecutive numbers from zero to VF. 2213 for (int i = 0; i < VLen; ++i) 2214 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2215 2216 // Add the consecutive indices to the vector value. 2217 Constant *Cv = ConstantVector::get(Indices); 2218 2219 Step = Builder.CreateVectorSplat(VLen, Step); 2220 2221 // Floating point operations had to be 'fast' to enable the induction. 2222 FastMathFlags Flags; 2223 Flags.setUnsafeAlgebra(); 2224 2225 Value *MulOp = Builder.CreateFMul(Cv, Step); 2226 if (isa<Instruction>(MulOp)) 2227 // Have to check, MulOp may be a constant 2228 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2229 2230 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2231 if (isa<Instruction>(BOp)) 2232 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2233 return BOp; 2234 } 2235 2236 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2237 Value *EntryVal) { 2238 2239 // We shouldn't have to build scalar steps if we aren't vectorizing. 2240 assert(VF > 1 && "VF should be greater than one"); 2241 2242 // Get the value type and ensure it and the step have the same integer type. 2243 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2244 assert(ScalarIVTy->isIntegerTy() && ScalarIVTy == Step->getType() && 2245 "Val and Step should have the same integer type"); 2246 2247 // Compute the scalar steps and save the results in VectorLoopValueMap. 2248 ScalarParts Entry(UF); 2249 for (unsigned Part = 0; Part < UF; ++Part) { 2250 Entry[Part].resize(VF); 2251 for (unsigned Lane = 0; Lane < VF; ++Lane) { 2252 auto *StartIdx = ConstantInt::get(ScalarIVTy, VF * Part + Lane); 2253 auto *Mul = Builder.CreateMul(StartIdx, Step); 2254 auto *Add = Builder.CreateAdd(ScalarIV, Mul); 2255 Entry[Part][Lane] = Add; 2256 } 2257 } 2258 VectorLoopValueMap.initScalar(EntryVal, Entry); 2259 } 2260 2261 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2262 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 2263 auto *SE = PSE.getSE(); 2264 // Make sure that the pointer does not point to structs. 2265 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 2266 return 0; 2267 2268 // If this value is a pointer induction variable, we know it is consecutive. 2269 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 2270 if (Phi && Inductions.count(Phi)) { 2271 InductionDescriptor II = Inductions[Phi]; 2272 return II.getConsecutiveDirection(); 2273 } 2274 2275 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2276 if (!Gep) 2277 return 0; 2278 2279 unsigned NumOperands = Gep->getNumOperands(); 2280 Value *GpPtr = Gep->getPointerOperand(); 2281 // If this GEP value is a consecutive pointer induction variable and all of 2282 // the indices are constant, then we know it is consecutive. 2283 Phi = dyn_cast<PHINode>(GpPtr); 2284 if (Phi && Inductions.count(Phi)) { 2285 2286 // Make sure that the pointer does not point to structs. 2287 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 2288 if (GepPtrType->getElementType()->isAggregateType()) 2289 return 0; 2290 2291 // Make sure that all of the index operands are loop invariant. 2292 for (unsigned i = 1; i < NumOperands; ++i) 2293 if (!SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2294 return 0; 2295 2296 InductionDescriptor II = Inductions[Phi]; 2297 return II.getConsecutiveDirection(); 2298 } 2299 2300 unsigned InductionOperand = getGEPInductionOperand(Gep); 2301 2302 // Check that all of the gep indices are uniform except for our induction 2303 // operand. 2304 for (unsigned i = 0; i != NumOperands; ++i) 2305 if (i != InductionOperand && 2306 !SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2307 return 0; 2308 2309 // We can emit wide load/stores only if the last non-zero index is the 2310 // induction variable. 2311 const SCEV *Last = nullptr; 2312 if (!getSymbolicStrides() || !getSymbolicStrides()->count(Gep)) 2313 Last = PSE.getSCEV(Gep->getOperand(InductionOperand)); 2314 else { 2315 // Because of the multiplication by a stride we can have a s/zext cast. 2316 // We are going to replace this stride by 1 so the cast is safe to ignore. 2317 // 2318 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 2319 // %0 = trunc i64 %indvars.iv to i32 2320 // %mul = mul i32 %0, %Stride1 2321 // %idxprom = zext i32 %mul to i64 << Safe cast. 2322 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 2323 // 2324 Last = replaceSymbolicStrideSCEV(PSE, *getSymbolicStrides(), 2325 Gep->getOperand(InductionOperand), Gep); 2326 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 2327 Last = 2328 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 2329 ? C->getOperand() 2330 : Last; 2331 } 2332 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 2333 const SCEV *Step = AR->getStepRecurrence(*SE); 2334 2335 // The memory is consecutive because the last index is consecutive 2336 // and all other indices are loop invariant. 2337 if (Step->isOne()) 2338 return 1; 2339 if (Step->isAllOnesValue()) 2340 return -1; 2341 } 2342 2343 return 0; 2344 } 2345 2346 bool LoopVectorizationLegality::isUniform(Value *V) { 2347 return LAI->isUniform(V); 2348 } 2349 2350 const InnerLoopVectorizer::VectorParts & 2351 InnerLoopVectorizer::getVectorValue(Value *V) { 2352 assert(V != Induction && "The new induction variable should not be used."); 2353 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2354 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2355 2356 // If we have a stride that is replaced by one, do it here. 2357 if (Legal->hasStride(V)) 2358 V = ConstantInt::get(V->getType(), 1); 2359 2360 // If we have this scalar in the map, return it. 2361 if (VectorLoopValueMap.hasVector(V)) 2362 return VectorLoopValueMap.VectorMapStorage[V]; 2363 2364 // If the value has not been vectorized, check if it has been scalarized 2365 // instead. If it has been scalarized, and we actually need the value in 2366 // vector form, we will construct the vector values on demand. 2367 if (VectorLoopValueMap.hasScalar(V)) { 2368 2369 // Initialize a new vector map entry. 2370 VectorParts Entry(UF); 2371 2372 // If we aren't vectorizing, we can just copy the scalar map values over to 2373 // the vector map. 2374 if (VF == 1) { 2375 for (unsigned Part = 0; Part < UF; ++Part) 2376 Entry[Part] = getScalarValue(V, Part, 0); 2377 return VectorLoopValueMap.initVector(V, Entry); 2378 } 2379 2380 // However, if we are vectorizing, we need to construct the vector values 2381 // using insertelement instructions. Since the resulting vectors are stored 2382 // in VectorLoopValueMap, we will only generate the insertelements once. 2383 for (unsigned Part = 0; Part < UF; ++Part) { 2384 Value *Insert = UndefValue::get(VectorType::get(V->getType(), VF)); 2385 for (unsigned Width = 0; Width < VF; ++Width) 2386 Insert = Builder.CreateInsertElement( 2387 Insert, getScalarValue(V, Part, Width), Builder.getInt32(Width)); 2388 Entry[Part] = Insert; 2389 } 2390 return VectorLoopValueMap.initVector(V, Entry); 2391 } 2392 2393 // If this scalar is unknown, assume that it is a constant or that it is 2394 // loop invariant. Broadcast V and save the value for future uses. 2395 Value *B = getBroadcastInstrs(V); 2396 return VectorLoopValueMap.initVector(V, VectorParts(UF, B)); 2397 } 2398 2399 Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 2400 unsigned Lane) { 2401 2402 // If the value is not an instruction contained in the loop, it should 2403 // already be scalar. 2404 if (OrigLoop->isLoopInvariant(V)) 2405 return V; 2406 2407 // If the value from the original loop has not been vectorized, it is 2408 // represented by UF x VF scalar values in the new loop. Return the requested 2409 // scalar value. 2410 if (VectorLoopValueMap.hasScalar(V)) 2411 return VectorLoopValueMap.ScalarMapStorage[V][Part][Lane]; 2412 2413 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2414 // for the given unroll part. If this entry is not a vector type (i.e., the 2415 // vectorization factor is one), there is no need to generate an 2416 // extractelement instruction. 2417 auto *U = getVectorValue(V)[Part]; 2418 if (!U->getType()->isVectorTy()) { 2419 assert(VF == 1 && "Value not scalarized has non-vector type"); 2420 return U; 2421 } 2422 2423 // Otherwise, the value from the original loop has been vectorized and is 2424 // represented by UF vector values. Extract and return the requested scalar 2425 // value from the appropriate vector lane. 2426 return Builder.CreateExtractElement(U, Builder.getInt32(Lane)); 2427 } 2428 2429 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2430 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2431 SmallVector<Constant *, 8> ShuffleMask; 2432 for (unsigned i = 0; i < VF; ++i) 2433 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2434 2435 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2436 ConstantVector::get(ShuffleMask), 2437 "reverse"); 2438 } 2439 2440 // Get a mask to interleave \p NumVec vectors into a wide vector. 2441 // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> 2442 // E.g. For 2 interleaved vectors, if VF is 4, the mask is: 2443 // <0, 4, 1, 5, 2, 6, 3, 7> 2444 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, 2445 unsigned NumVec) { 2446 SmallVector<Constant *, 16> Mask; 2447 for (unsigned i = 0; i < VF; i++) 2448 for (unsigned j = 0; j < NumVec; j++) 2449 Mask.push_back(Builder.getInt32(j * VF + i)); 2450 2451 return ConstantVector::get(Mask); 2452 } 2453 2454 // Get the strided mask starting from index \p Start. 2455 // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)> 2456 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, 2457 unsigned Stride, unsigned VF) { 2458 SmallVector<Constant *, 16> Mask; 2459 for (unsigned i = 0; i < VF; i++) 2460 Mask.push_back(Builder.getInt32(Start + i * Stride)); 2461 2462 return ConstantVector::get(Mask); 2463 } 2464 2465 // Get a mask of two parts: The first part consists of sequential integers 2466 // starting from 0, The second part consists of UNDEFs. 2467 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> 2468 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, 2469 unsigned NumUndef) { 2470 SmallVector<Constant *, 16> Mask; 2471 for (unsigned i = 0; i < NumInt; i++) 2472 Mask.push_back(Builder.getInt32(i)); 2473 2474 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 2475 for (unsigned i = 0; i < NumUndef; i++) 2476 Mask.push_back(Undef); 2477 2478 return ConstantVector::get(Mask); 2479 } 2480 2481 // Concatenate two vectors with the same element type. The 2nd vector should 2482 // not have more elements than the 1st vector. If the 2nd vector has less 2483 // elements, extend it with UNDEFs. 2484 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 2485 Value *V2) { 2486 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 2487 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 2488 assert(VecTy1 && VecTy2 && 2489 VecTy1->getScalarType() == VecTy2->getScalarType() && 2490 "Expect two vectors with the same element type"); 2491 2492 unsigned NumElts1 = VecTy1->getNumElements(); 2493 unsigned NumElts2 = VecTy2->getNumElements(); 2494 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 2495 2496 if (NumElts1 > NumElts2) { 2497 // Extend with UNDEFs. 2498 Constant *ExtMask = 2499 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); 2500 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 2501 } 2502 2503 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); 2504 return Builder.CreateShuffleVector(V1, V2, Mask); 2505 } 2506 2507 // Concatenate vectors in the given list. All vectors have the same type. 2508 static Value *ConcatenateVectors(IRBuilder<> &Builder, 2509 ArrayRef<Value *> InputList) { 2510 unsigned NumVec = InputList.size(); 2511 assert(NumVec > 1 && "Should be at least two vectors"); 2512 2513 SmallVector<Value *, 8> ResList; 2514 ResList.append(InputList.begin(), InputList.end()); 2515 do { 2516 SmallVector<Value *, 8> TmpList; 2517 for (unsigned i = 0; i < NumVec - 1; i += 2) { 2518 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 2519 assert((V0->getType() == V1->getType() || i == NumVec - 2) && 2520 "Only the last vector may have a different type"); 2521 2522 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); 2523 } 2524 2525 // Push the last vector if the total number of vectors is odd. 2526 if (NumVec % 2 != 0) 2527 TmpList.push_back(ResList[NumVec - 1]); 2528 2529 ResList = TmpList; 2530 NumVec = ResList.size(); 2531 } while (NumVec > 1); 2532 2533 return ResList[0]; 2534 } 2535 2536 // Try to vectorize the interleave group that \p Instr belongs to. 2537 // 2538 // E.g. Translate following interleaved load group (factor = 3): 2539 // for (i = 0; i < N; i+=3) { 2540 // R = Pic[i]; // Member of index 0 2541 // G = Pic[i+1]; // Member of index 1 2542 // B = Pic[i+2]; // Member of index 2 2543 // ... // do something to R, G, B 2544 // } 2545 // To: 2546 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2547 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2548 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2549 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2550 // 2551 // Or translate following interleaved store group (factor = 3): 2552 // for (i = 0; i < N; i+=3) { 2553 // ... do something to R, G, B 2554 // Pic[i] = R; // Member of index 0 2555 // Pic[i+1] = G; // Member of index 1 2556 // Pic[i+2] = B; // Member of index 2 2557 // } 2558 // To: 2559 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2560 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2561 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2562 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2563 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2564 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2565 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2566 assert(Group && "Fail to get an interleaved access group."); 2567 2568 // Skip if current instruction is not the insert position. 2569 if (Instr != Group->getInsertPos()) 2570 return; 2571 2572 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2573 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2574 Value *Ptr = getPointerOperand(Instr); 2575 2576 // Prepare for the vector type of the interleaved load/store. 2577 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2578 unsigned InterleaveFactor = Group->getFactor(); 2579 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2580 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); 2581 2582 // Prepare for the new pointers. 2583 setDebugLocFromInst(Builder, Ptr); 2584 SmallVector<Value *, 2> NewPtrs; 2585 unsigned Index = Group->getIndex(Instr); 2586 for (unsigned Part = 0; Part < UF; Part++) { 2587 Value *NewPtr = getScalarValue(Ptr, Part, Group->isReverse() ? VF - 1 : 0); 2588 2589 // Notice current instruction could be any index. Need to adjust the address 2590 // to the member of index 0. 2591 // 2592 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2593 // b = A[i]; // Member of index 0 2594 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2595 // 2596 // E.g. A[i+1] = a; // Member of index 1 2597 // A[i] = b; // Member of index 0 2598 // A[i+2] = c; // Member of index 2 (Current instruction) 2599 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2600 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2601 2602 // Cast to the vector pointer type. 2603 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2604 } 2605 2606 setDebugLocFromInst(Builder, Instr); 2607 Value *UndefVec = UndefValue::get(VecTy); 2608 2609 // Vectorize the interleaved load group. 2610 if (LI) { 2611 2612 // For each unroll part, create a wide load for the group. 2613 SmallVector<Value *, 2> NewLoads; 2614 for (unsigned Part = 0; Part < UF; Part++) { 2615 auto *NewLoad = Builder.CreateAlignedLoad( 2616 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2617 addMetadata(NewLoad, Instr); 2618 NewLoads.push_back(NewLoad); 2619 } 2620 2621 // For each member in the group, shuffle out the appropriate data from the 2622 // wide loads. 2623 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2624 Instruction *Member = Group->getMember(I); 2625 2626 // Skip the gaps in the group. 2627 if (!Member) 2628 continue; 2629 2630 VectorParts Entry(UF); 2631 Constant *StrideMask = getStridedMask(Builder, I, InterleaveFactor, VF); 2632 for (unsigned Part = 0; Part < UF; Part++) { 2633 Value *StridedVec = Builder.CreateShuffleVector( 2634 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2635 2636 // If this member has different type, cast the result type. 2637 if (Member->getType() != ScalarTy) { 2638 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2639 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2640 } 2641 2642 Entry[Part] = 2643 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2644 } 2645 VectorLoopValueMap.initVector(Member, Entry); 2646 } 2647 return; 2648 } 2649 2650 // The sub vector type for current instruction. 2651 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2652 2653 // Vectorize the interleaved store group. 2654 for (unsigned Part = 0; Part < UF; Part++) { 2655 // Collect the stored vector from each member. 2656 SmallVector<Value *, 4> StoredVecs; 2657 for (unsigned i = 0; i < InterleaveFactor; i++) { 2658 // Interleaved store group doesn't allow a gap, so each index has a member 2659 Instruction *Member = Group->getMember(i); 2660 assert(Member && "Fail to get a member from an interleaved store group"); 2661 2662 Value *StoredVec = 2663 getVectorValue(cast<StoreInst>(Member)->getValueOperand())[Part]; 2664 if (Group->isReverse()) 2665 StoredVec = reverseVector(StoredVec); 2666 2667 // If this member has different type, cast it to an unified type. 2668 if (StoredVec->getType() != SubVT) 2669 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2670 2671 StoredVecs.push_back(StoredVec); 2672 } 2673 2674 // Concatenate all vectors into a wide vector. 2675 Value *WideVec = ConcatenateVectors(Builder, StoredVecs); 2676 2677 // Interleave the elements in the wide vector. 2678 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); 2679 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2680 "interleaved.vec"); 2681 2682 Instruction *NewStoreInstr = 2683 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2684 addMetadata(NewStoreInstr, Instr); 2685 } 2686 } 2687 2688 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2689 // Attempt to issue a wide load. 2690 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2691 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2692 2693 assert((LI || SI) && "Invalid Load/Store instruction"); 2694 2695 // Try to vectorize the interleave group if this access is interleaved. 2696 if (Legal->isAccessInterleaved(Instr)) 2697 return vectorizeInterleaveGroup(Instr); 2698 2699 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2700 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2701 Value *Ptr = getPointerOperand(Instr); 2702 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 2703 // An alignment of 0 means target abi alignment. We need to use the scalar's 2704 // target abi alignment in such a case. 2705 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2706 if (!Alignment) 2707 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2708 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2709 uint64_t ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy); 2710 uint64_t VectorElementSize = DL.getTypeStoreSize(DataTy) / VF; 2711 2712 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 2713 !Legal->isMaskRequired(SI)) 2714 return scalarizeInstruction(Instr, true); 2715 2716 if (ScalarAllocatedSize != VectorElementSize) 2717 return scalarizeInstruction(Instr); 2718 2719 // If the pointer is loop invariant scalarize the load. 2720 if (LI && Legal->isUniform(Ptr)) 2721 return scalarizeInstruction(Instr); 2722 2723 // If the pointer is non-consecutive and gather/scatter is not supported 2724 // scalarize the instruction. 2725 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2726 bool Reverse = ConsecutiveStride < 0; 2727 bool CreateGatherScatter = 2728 !ConsecutiveStride && ((LI && Legal->isLegalMaskedGather(ScalarDataTy)) || 2729 (SI && Legal->isLegalMaskedScatter(ScalarDataTy))); 2730 2731 if (!ConsecutiveStride && !CreateGatherScatter) 2732 return scalarizeInstruction(Instr); 2733 2734 VectorParts VectorGep; 2735 2736 // Handle consecutive loads/stores. 2737 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2738 if (ConsecutiveStride) { 2739 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 2740 setDebugLocFromInst(Builder, Gep); 2741 auto *FirstBasePtr = getScalarValue(Gep->getPointerOperand(), 0, 0); 2742 2743 // Create the new GEP with the new induction variable. 2744 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2745 Gep2->setOperand(0, FirstBasePtr); 2746 Gep2->setName("gep.indvar.base"); 2747 Ptr = Builder.Insert(Gep2); 2748 } else if (Gep) { 2749 setDebugLocFromInst(Builder, Gep); 2750 assert(PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getPointerOperand()), 2751 OrigLoop) && 2752 "Base ptr must be invariant"); 2753 // The last index does not have to be the induction. It can be 2754 // consecutive and be a function of the index. For example A[I+1]; 2755 unsigned NumOperands = Gep->getNumOperands(); 2756 unsigned InductionOperand = getGEPInductionOperand(Gep); 2757 // Create the new GEP with the new induction variable. 2758 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2759 2760 for (unsigned i = 0; i < NumOperands; ++i) { 2761 Value *GepOperand = Gep->getOperand(i); 2762 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 2763 2764 // Update last index or loop invariant instruction anchored in loop. 2765 if (i == InductionOperand || 2766 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 2767 assert((i == InductionOperand || 2768 PSE.getSE()->isLoopInvariant(PSE.getSCEV(GepOperandInst), 2769 OrigLoop)) && 2770 "Must be last index or loop invariant"); 2771 2772 Gep2->setOperand(i, getScalarValue(GepOperand, 0, 0)); 2773 Gep2->setName("gep.indvar.idx"); 2774 } 2775 } 2776 Ptr = Builder.Insert(Gep2); 2777 } else { // No GEP 2778 // Use the induction element ptr. 2779 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 2780 setDebugLocFromInst(Builder, Ptr); 2781 Ptr = getScalarValue(Ptr, 0, 0); 2782 } 2783 } else { 2784 // At this point we should vector version of GEP for Gather or Scatter 2785 assert(CreateGatherScatter && "The instruction should be scalarized"); 2786 if (Gep) { 2787 // Vectorizing GEP, across UF parts. We want to get a vector value for base 2788 // and each index that's defined inside the loop, even if it is 2789 // loop-invariant but wasn't hoisted out. Otherwise we want to keep them 2790 // scalar. 2791 SmallVector<VectorParts, 4> OpsV; 2792 for (Value *Op : Gep->operands()) { 2793 Instruction *SrcInst = dyn_cast<Instruction>(Op); 2794 if (SrcInst && OrigLoop->contains(SrcInst)) 2795 OpsV.push_back(getVectorValue(Op)); 2796 else 2797 OpsV.push_back(VectorParts(UF, Op)); 2798 } 2799 for (unsigned Part = 0; Part < UF; ++Part) { 2800 SmallVector<Value *, 4> Ops; 2801 Value *GEPBasePtr = OpsV[0][Part]; 2802 for (unsigned i = 1; i < Gep->getNumOperands(); i++) 2803 Ops.push_back(OpsV[i][Part]); 2804 Value *NewGep = Builder.CreateGEP(GEPBasePtr, Ops, "VectorGep"); 2805 cast<GetElementPtrInst>(NewGep)->setIsInBounds(Gep->isInBounds()); 2806 assert(NewGep->getType()->isVectorTy() && "Expected vector GEP"); 2807 2808 NewGep = 2809 Builder.CreateBitCast(NewGep, VectorType::get(Ptr->getType(), VF)); 2810 VectorGep.push_back(NewGep); 2811 } 2812 } else 2813 VectorGep = getVectorValue(Ptr); 2814 } 2815 2816 VectorParts Mask = createBlockInMask(Instr->getParent()); 2817 // Handle Stores: 2818 if (SI) { 2819 assert(!Legal->isUniform(SI->getPointerOperand()) && 2820 "We do not allow storing to uniform addresses"); 2821 setDebugLocFromInst(Builder, SI); 2822 // We don't want to update the value in the map as it might be used in 2823 // another expression. So don't use a reference type for "StoredVal". 2824 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2825 2826 for (unsigned Part = 0; Part < UF; ++Part) { 2827 Instruction *NewSI = nullptr; 2828 if (CreateGatherScatter) { 2829 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 2830 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], 2831 Alignment, MaskPart); 2832 } else { 2833 // Calculate the pointer for the specific unroll-part. 2834 Value *PartPtr = 2835 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2836 2837 if (Reverse) { 2838 // If we store to reverse consecutive memory locations, then we need 2839 // to reverse the order of elements in the stored value. 2840 StoredVal[Part] = reverseVector(StoredVal[Part]); 2841 // If the address is consecutive but reversed, then the 2842 // wide store needs to start at the last vector element. 2843 PartPtr = 2844 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2845 PartPtr = 2846 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2847 Mask[Part] = reverseVector(Mask[Part]); 2848 } 2849 2850 Value *VecPtr = 2851 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2852 2853 if (Legal->isMaskRequired(SI)) 2854 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 2855 Mask[Part]); 2856 else 2857 NewSI = 2858 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 2859 } 2860 addMetadata(NewSI, SI); 2861 } 2862 return; 2863 } 2864 2865 // Handle loads. 2866 assert(LI && "Must have a load instruction"); 2867 setDebugLocFromInst(Builder, LI); 2868 VectorParts Entry(UF); 2869 for (unsigned Part = 0; Part < UF; ++Part) { 2870 Instruction *NewLI; 2871 if (CreateGatherScatter) { 2872 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 2873 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart, 2874 0, "wide.masked.gather"); 2875 Entry[Part] = NewLI; 2876 } else { 2877 // Calculate the pointer for the specific unroll-part. 2878 Value *PartPtr = 2879 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2880 2881 if (Reverse) { 2882 // If the address is consecutive but reversed, then the 2883 // wide load needs to start at the last vector element. 2884 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2885 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2886 Mask[Part] = reverseVector(Mask[Part]); 2887 } 2888 2889 Value *VecPtr = 2890 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2891 if (Legal->isMaskRequired(LI)) 2892 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2893 UndefValue::get(DataTy), 2894 "wide.masked.load"); 2895 else 2896 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2897 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 2898 } 2899 addMetadata(NewLI, LI); 2900 } 2901 VectorLoopValueMap.initVector(Instr, Entry); 2902 } 2903 2904 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2905 bool IfPredicateInstr) { 2906 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2907 DEBUG(dbgs() << "LV: Scalarizing" 2908 << (IfPredicateInstr ? " and predicating:" : ":") << *Instr 2909 << '\n'); 2910 // Holds vector parameters or scalars, in case of uniform vals. 2911 SmallVector<VectorParts, 4> Params; 2912 2913 setDebugLocFromInst(Builder, Instr); 2914 2915 // Does this instruction return a value ? 2916 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2917 2918 // Initialize a new scalar map entry. 2919 ScalarParts Entry(UF); 2920 2921 VectorParts Cond; 2922 if (IfPredicateInstr) { 2923 assert(Instr->getParent()->getSinglePredecessor() && 2924 "Only support single predecessor blocks"); 2925 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 2926 Instr->getParent()); 2927 } 2928 2929 // For each vector unroll 'part': 2930 for (unsigned Part = 0; Part < UF; ++Part) { 2931 Entry[Part].resize(VF); 2932 // For each scalar that we create: 2933 for (unsigned Width = 0; Width < VF; ++Width) { 2934 2935 // Start if-block. 2936 Value *Cmp = nullptr; 2937 if (IfPredicateInstr) { 2938 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 2939 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 2940 ConstantInt::get(Cmp->getType(), 1)); 2941 } 2942 2943 Instruction *Cloned = Instr->clone(); 2944 if (!IsVoidRetTy) 2945 Cloned->setName(Instr->getName() + ".cloned"); 2946 2947 // Replace the operands of the cloned instructions with their scalar 2948 // equivalents in the new loop. 2949 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2950 auto *NewOp = getScalarValue(Instr->getOperand(op), Part, Width); 2951 Cloned->setOperand(op, NewOp); 2952 } 2953 addNewMetadata(Cloned, Instr); 2954 2955 // Place the cloned scalar in the new loop. 2956 Builder.Insert(Cloned); 2957 2958 // Add the cloned scalar to the scalar map entry. 2959 Entry[Part][Width] = Cloned; 2960 2961 // If we just cloned a new assumption, add it the assumption cache. 2962 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2963 if (II->getIntrinsicID() == Intrinsic::assume) 2964 AC->registerAssumption(II); 2965 2966 // End if-block. 2967 if (IfPredicateInstr) 2968 PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp)); 2969 } 2970 } 2971 VectorLoopValueMap.initScalar(Instr, Entry); 2972 } 2973 2974 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2975 Value *End, Value *Step, 2976 Instruction *DL) { 2977 BasicBlock *Header = L->getHeader(); 2978 BasicBlock *Latch = L->getLoopLatch(); 2979 // As we're just creating this loop, it's possible no latch exists 2980 // yet. If so, use the header as this will be a single block loop. 2981 if (!Latch) 2982 Latch = Header; 2983 2984 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2985 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2986 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2987 2988 Builder.SetInsertPoint(Latch->getTerminator()); 2989 2990 // Create i+1 and fill the PHINode. 2991 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2992 Induction->addIncoming(Start, L->getLoopPreheader()); 2993 Induction->addIncoming(Next, Latch); 2994 // Create the compare. 2995 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2996 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2997 2998 // Now we have two terminators. Remove the old one from the block. 2999 Latch->getTerminator()->eraseFromParent(); 3000 3001 return Induction; 3002 } 3003 3004 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3005 if (TripCount) 3006 return TripCount; 3007 3008 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3009 // Find the loop boundaries. 3010 ScalarEvolution *SE = PSE.getSE(); 3011 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3012 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3013 "Invalid loop count"); 3014 3015 Type *IdxTy = Legal->getWidestInductionType(); 3016 3017 // The exit count might have the type of i64 while the phi is i32. This can 3018 // happen if we have an induction variable that is sign extended before the 3019 // compare. The only way that we get a backedge taken count is that the 3020 // induction variable was signed and as such will not overflow. In such a case 3021 // truncation is legal. 3022 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3023 IdxTy->getPrimitiveSizeInBits()) 3024 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3025 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3026 3027 // Get the total trip count from the count by adding 1. 3028 const SCEV *ExitCount = SE->getAddExpr( 3029 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3030 3031 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3032 3033 // Expand the trip count and place the new instructions in the preheader. 3034 // Notice that the pre-header does not change, only the loop body. 3035 SCEVExpander Exp(*SE, DL, "induction"); 3036 3037 // Count holds the overall loop count (N). 3038 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3039 L->getLoopPreheader()->getTerminator()); 3040 3041 if (TripCount->getType()->isPointerTy()) 3042 TripCount = 3043 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3044 L->getLoopPreheader()->getTerminator()); 3045 3046 return TripCount; 3047 } 3048 3049 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3050 if (VectorTripCount) 3051 return VectorTripCount; 3052 3053 Value *TC = getOrCreateTripCount(L); 3054 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3055 3056 // Now we need to generate the expression for the part of the loop that the 3057 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3058 // iterations are not required for correctness, or N - Step, otherwise. Step 3059 // is equal to the vectorization factor (number of SIMD elements) times the 3060 // unroll factor (number of SIMD instructions). 3061 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3062 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3063 3064 // If there is a non-reversed interleaved group that may speculatively access 3065 // memory out-of-bounds, we need to ensure that there will be at least one 3066 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3067 // the trip count, we set the remainder to be equal to the step. If the step 3068 // does not evenly divide the trip count, no adjustment is necessary since 3069 // there will already be scalar iterations. Note that the minimum iterations 3070 // check ensures that N >= Step. 3071 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3072 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3073 R = Builder.CreateSelect(IsZero, Step, R); 3074 } 3075 3076 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3077 3078 return VectorTripCount; 3079 } 3080 3081 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3082 BasicBlock *Bypass) { 3083 Value *Count = getOrCreateTripCount(L); 3084 BasicBlock *BB = L->getLoopPreheader(); 3085 IRBuilder<> Builder(BB->getTerminator()); 3086 3087 // Generate code to check that the loop's trip count that we computed by 3088 // adding one to the backedge-taken count will not overflow. 3089 Value *CheckMinIters = Builder.CreateICmpULT( 3090 Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3091 3092 BasicBlock *NewBB = 3093 BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked"); 3094 // Update dominator tree immediately if the generated block is a 3095 // LoopBypassBlock because SCEV expansions to generate loop bypass 3096 // checks may query it before the current function is finished. 3097 DT->addNewBlock(NewBB, BB); 3098 if (L->getParentLoop()) 3099 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3100 ReplaceInstWithInst(BB->getTerminator(), 3101 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3102 LoopBypassBlocks.push_back(BB); 3103 } 3104 3105 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 3106 BasicBlock *Bypass) { 3107 Value *TC = getOrCreateVectorTripCount(L); 3108 BasicBlock *BB = L->getLoopPreheader(); 3109 IRBuilder<> Builder(BB->getTerminator()); 3110 3111 // Now, compare the new count to zero. If it is zero skip the vector loop and 3112 // jump to the scalar loop. 3113 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 3114 "cmp.zero"); 3115 3116 // Generate code to check that the loop's trip count that we computed by 3117 // adding one to the backedge-taken count will not overflow. 3118 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3119 // Update dominator tree immediately if the generated block is a 3120 // LoopBypassBlock because SCEV expansions to generate loop bypass 3121 // checks may query it before the current function is finished. 3122 DT->addNewBlock(NewBB, BB); 3123 if (L->getParentLoop()) 3124 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3125 ReplaceInstWithInst(BB->getTerminator(), 3126 BranchInst::Create(Bypass, NewBB, Cmp)); 3127 LoopBypassBlocks.push_back(BB); 3128 } 3129 3130 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3131 BasicBlock *BB = L->getLoopPreheader(); 3132 3133 // Generate the code to check that the SCEV assumptions that we made. 3134 // We want the new basic block to start at the first instruction in a 3135 // sequence of instructions that form a check. 3136 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3137 "scev.check"); 3138 Value *SCEVCheck = 3139 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3140 3141 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3142 if (C->isZero()) 3143 return; 3144 3145 // Create a new block containing the stride check. 3146 BB->setName("vector.scevcheck"); 3147 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3148 // Update dominator tree immediately if the generated block is a 3149 // LoopBypassBlock because SCEV expansions to generate loop bypass 3150 // checks may query it before the current function is finished. 3151 DT->addNewBlock(NewBB, BB); 3152 if (L->getParentLoop()) 3153 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3154 ReplaceInstWithInst(BB->getTerminator(), 3155 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3156 LoopBypassBlocks.push_back(BB); 3157 AddedSafetyChecks = true; 3158 } 3159 3160 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3161 BasicBlock *BB = L->getLoopPreheader(); 3162 3163 // Generate the code that checks in runtime if arrays overlap. We put the 3164 // checks into a separate block to make the more common case of few elements 3165 // faster. 3166 Instruction *FirstCheckInst; 3167 Instruction *MemRuntimeCheck; 3168 std::tie(FirstCheckInst, MemRuntimeCheck) = 3169 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3170 if (!MemRuntimeCheck) 3171 return; 3172 3173 // Create a new block containing the memory check. 3174 BB->setName("vector.memcheck"); 3175 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3176 // Update dominator tree immediately if the generated block is a 3177 // LoopBypassBlock because SCEV expansions to generate loop bypass 3178 // checks may query it before the current function is finished. 3179 DT->addNewBlock(NewBB, BB); 3180 if (L->getParentLoop()) 3181 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3182 ReplaceInstWithInst(BB->getTerminator(), 3183 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3184 LoopBypassBlocks.push_back(BB); 3185 AddedSafetyChecks = true; 3186 3187 // We currently don't use LoopVersioning for the actual loop cloning but we 3188 // still use it to add the noalias metadata. 3189 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3190 PSE.getSE()); 3191 LVer->prepareNoAliasMetadata(); 3192 } 3193 3194 void InnerLoopVectorizer::createEmptyLoop() { 3195 /* 3196 In this function we generate a new loop. The new loop will contain 3197 the vectorized instructions while the old loop will continue to run the 3198 scalar remainder. 3199 3200 [ ] <-- loop iteration number check. 3201 / | 3202 / v 3203 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3204 | / | 3205 | / v 3206 || [ ] <-- vector pre header. 3207 |/ | 3208 | v 3209 | [ ] \ 3210 | [ ]_| <-- vector loop. 3211 | | 3212 | v 3213 | -[ ] <--- middle-block. 3214 | / | 3215 | / v 3216 -|- >[ ] <--- new preheader. 3217 | | 3218 | v 3219 | [ ] \ 3220 | [ ]_| <-- old scalar loop to handle remainder. 3221 \ | 3222 \ v 3223 >[ ] <-- exit block. 3224 ... 3225 */ 3226 3227 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3228 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3229 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3230 assert(VectorPH && "Invalid loop structure"); 3231 assert(ExitBlock && "Must have an exit block"); 3232 3233 // Some loops have a single integer induction variable, while other loops 3234 // don't. One example is c++ iterators that often have multiple pointer 3235 // induction variables. In the code below we also support a case where we 3236 // don't have a single induction variable. 3237 // 3238 // We try to obtain an induction variable from the original loop as hard 3239 // as possible. However if we don't find one that: 3240 // - is an integer 3241 // - counts from zero, stepping by one 3242 // - is the size of the widest induction variable type 3243 // then we create a new one. 3244 OldInduction = Legal->getInduction(); 3245 Type *IdxTy = Legal->getWidestInductionType(); 3246 3247 // Split the single block loop into the two loop structure described above. 3248 BasicBlock *VecBody = 3249 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3250 BasicBlock *MiddleBlock = 3251 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3252 BasicBlock *ScalarPH = 3253 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3254 3255 // Create and register the new vector loop. 3256 Loop *Lp = new Loop(); 3257 Loop *ParentLoop = OrigLoop->getParentLoop(); 3258 3259 // Insert the new loop into the loop nest and register the new basic blocks 3260 // before calling any utilities such as SCEV that require valid LoopInfo. 3261 if (ParentLoop) { 3262 ParentLoop->addChildLoop(Lp); 3263 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3264 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3265 } else { 3266 LI->addTopLevelLoop(Lp); 3267 } 3268 Lp->addBasicBlockToLoop(VecBody, *LI); 3269 3270 // Find the loop boundaries. 3271 Value *Count = getOrCreateTripCount(Lp); 3272 3273 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3274 3275 // We need to test whether the backedge-taken count is uint##_max. Adding one 3276 // to it will cause overflow and an incorrect loop trip count in the vector 3277 // body. In case of overflow we want to directly jump to the scalar remainder 3278 // loop. 3279 emitMinimumIterationCountCheck(Lp, ScalarPH); 3280 // Now, compare the new count to zero. If it is zero skip the vector loop and 3281 // jump to the scalar loop. 3282 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3283 // Generate the code to check any assumptions that we've made for SCEV 3284 // expressions. 3285 emitSCEVChecks(Lp, ScalarPH); 3286 3287 // Generate the code that checks in runtime if arrays overlap. We put the 3288 // checks into a separate block to make the more common case of few elements 3289 // faster. 3290 emitMemRuntimeChecks(Lp, ScalarPH); 3291 3292 // Generate the induction variable. 3293 // The loop step is equal to the vectorization factor (num of SIMD elements) 3294 // times the unroll factor (num of SIMD instructions). 3295 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3296 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3297 Induction = 3298 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3299 getDebugLocFromInstOrOperands(OldInduction)); 3300 3301 // We are going to resume the execution of the scalar loop. 3302 // Go over all of the induction variables that we found and fix the 3303 // PHIs that are left in the scalar version of the loop. 3304 // The starting values of PHI nodes depend on the counter of the last 3305 // iteration in the vectorized loop. 3306 // If we come from a bypass edge then we need to start from the original 3307 // start value. 3308 3309 // This variable saves the new starting index for the scalar loop. It is used 3310 // to test if there are any tail iterations left once the vector loop has 3311 // completed. 3312 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3313 for (auto &InductionEntry : *List) { 3314 PHINode *OrigPhi = InductionEntry.first; 3315 InductionDescriptor II = InductionEntry.second; 3316 3317 // Create phi nodes to merge from the backedge-taken check block. 3318 PHINode *BCResumeVal = PHINode::Create( 3319 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3320 Value *EndValue; 3321 if (OrigPhi == OldInduction) { 3322 // We know what the end value is. 3323 EndValue = CountRoundDown; 3324 } else { 3325 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3326 Type *StepType = II.getStep()->getType(); 3327 Instruction::CastOps CastOp = 3328 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3329 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3330 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3331 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3332 EndValue->setName("ind.end"); 3333 } 3334 3335 // The new PHI merges the original incoming value, in case of a bypass, 3336 // or the value at the end of the vectorized loop. 3337 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3338 3339 // Fix up external users of the induction variable. 3340 fixupIVUsers(OrigPhi, II, CountRoundDown, EndValue, MiddleBlock); 3341 3342 // Fix the scalar body counter (PHI node). 3343 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3344 3345 // The old induction's phi node in the scalar body needs the truncated 3346 // value. 3347 for (BasicBlock *BB : LoopBypassBlocks) 3348 BCResumeVal->addIncoming(II.getStartValue(), BB); 3349 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3350 } 3351 3352 // Add a check in the middle block to see if we have completed 3353 // all of the iterations in the first vector loop. 3354 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3355 Value *CmpN = 3356 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3357 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3358 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3359 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3360 3361 // Get ready to start creating new instructions into the vectorized body. 3362 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3363 3364 // Save the state. 3365 LoopVectorPreHeader = Lp->getLoopPreheader(); 3366 LoopScalarPreHeader = ScalarPH; 3367 LoopMiddleBlock = MiddleBlock; 3368 LoopExitBlock = ExitBlock; 3369 LoopVectorBody = VecBody; 3370 LoopScalarBody = OldBasicBlock; 3371 3372 // Keep all loop hints from the original loop on the vector loop (we'll 3373 // replace the vectorizer-specific hints below). 3374 if (MDNode *LID = OrigLoop->getLoopID()) 3375 Lp->setLoopID(LID); 3376 3377 LoopVectorizeHints Hints(Lp, true, *ORE); 3378 Hints.setAlreadyVectorized(); 3379 } 3380 3381 // Fix up external users of the induction variable. At this point, we are 3382 // in LCSSA form, with all external PHIs that use the IV having one input value, 3383 // coming from the remainder loop. We need those PHIs to also have a correct 3384 // value for the IV when arriving directly from the middle block. 3385 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3386 const InductionDescriptor &II, 3387 Value *CountRoundDown, Value *EndValue, 3388 BasicBlock *MiddleBlock) { 3389 // There are two kinds of external IV usages - those that use the value 3390 // computed in the last iteration (the PHI) and those that use the penultimate 3391 // value (the value that feeds into the phi from the loop latch). 3392 // We allow both, but they, obviously, have different values. 3393 3394 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3395 3396 DenseMap<Value *, Value *> MissingVals; 3397 3398 // An external user of the last iteration's value should see the value that 3399 // the remainder loop uses to initialize its own IV. 3400 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3401 for (User *U : PostInc->users()) { 3402 Instruction *UI = cast<Instruction>(U); 3403 if (!OrigLoop->contains(UI)) { 3404 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3405 MissingVals[UI] = EndValue; 3406 } 3407 } 3408 3409 // An external user of the penultimate value need to see EndValue - Step. 3410 // The simplest way to get this is to recompute it from the constituent SCEVs, 3411 // that is Start + (Step * (CRD - 1)). 3412 for (User *U : OrigPhi->users()) { 3413 auto *UI = cast<Instruction>(U); 3414 if (!OrigLoop->contains(UI)) { 3415 const DataLayout &DL = 3416 OrigLoop->getHeader()->getModule()->getDataLayout(); 3417 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3418 3419 IRBuilder<> B(MiddleBlock->getTerminator()); 3420 Value *CountMinusOne = B.CreateSub( 3421 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3422 Value *CMO = B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType(), 3423 "cast.cmo"); 3424 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3425 Escape->setName("ind.escape"); 3426 MissingVals[UI] = Escape; 3427 } 3428 } 3429 3430 for (auto &I : MissingVals) { 3431 PHINode *PHI = cast<PHINode>(I.first); 3432 // One corner case we have to handle is two IVs "chasing" each-other, 3433 // that is %IV2 = phi [...], [ %IV1, %latch ] 3434 // In this case, if IV1 has an external use, we need to avoid adding both 3435 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3436 // don't already have an incoming value for the middle block. 3437 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3438 PHI->addIncoming(I.second, MiddleBlock); 3439 } 3440 } 3441 3442 namespace { 3443 struct CSEDenseMapInfo { 3444 static bool canHandle(Instruction *I) { 3445 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3446 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3447 } 3448 static inline Instruction *getEmptyKey() { 3449 return DenseMapInfo<Instruction *>::getEmptyKey(); 3450 } 3451 static inline Instruction *getTombstoneKey() { 3452 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3453 } 3454 static unsigned getHashValue(Instruction *I) { 3455 assert(canHandle(I) && "Unknown instruction!"); 3456 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3457 I->value_op_end())); 3458 } 3459 static bool isEqual(Instruction *LHS, Instruction *RHS) { 3460 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3461 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3462 return LHS == RHS; 3463 return LHS->isIdenticalTo(RHS); 3464 } 3465 }; 3466 } 3467 3468 ///\brief Perform cse of induction variable instructions. 3469 static void cse(BasicBlock *BB) { 3470 // Perform simple cse. 3471 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3472 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3473 Instruction *In = &*I++; 3474 3475 if (!CSEDenseMapInfo::canHandle(In)) 3476 continue; 3477 3478 // Check if we can replace this instruction with any of the 3479 // visited instructions. 3480 if (Instruction *V = CSEMap.lookup(In)) { 3481 In->replaceAllUsesWith(V); 3482 In->eraseFromParent(); 3483 continue; 3484 } 3485 3486 CSEMap[In] = In; 3487 } 3488 } 3489 3490 /// \brief Adds a 'fast' flag to floating point operations. 3491 static Value *addFastMathFlag(Value *V) { 3492 if (isa<FPMathOperator>(V)) { 3493 FastMathFlags Flags; 3494 Flags.setUnsafeAlgebra(); 3495 cast<Instruction>(V)->setFastMathFlags(Flags); 3496 } 3497 return V; 3498 } 3499 3500 /// \brief Estimate the overhead of scalarizing a value based on its type. 3501 /// Insert and Extract are set if the result needs to be inserted and/or 3502 /// extracted from vectors. 3503 /// If the instruction is also to be predicated, add the cost of a PHI 3504 /// node to the insertion cost. 3505 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, 3506 bool Predicated, 3507 const TargetTransformInfo &TTI) { 3508 if (Ty->isVoidTy()) 3509 return 0; 3510 3511 assert(Ty->isVectorTy() && "Can only scalarize vectors"); 3512 unsigned Cost = 0; 3513 3514 for (unsigned I = 0, E = Ty->getVectorNumElements(); I < E; ++I) { 3515 if (Extract) 3516 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, I); 3517 if (Insert) { 3518 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, I); 3519 if (Predicated) 3520 Cost += TTI.getCFInstrCost(Instruction::PHI); 3521 } 3522 } 3523 3524 // We assume that if-converted blocks have a 50% chance of being executed. 3525 // Predicated scalarized instructions are avoided due to the CF that bypasses 3526 // turned off lanes. The extracts and inserts will be sinked/hoisted to the 3527 // predicated basic-block and are subjected to the same assumption. 3528 if (Predicated) 3529 Cost /= 2; 3530 3531 return Cost; 3532 } 3533 3534 /// \brief Estimate the overhead of scalarizing an Instruction based on the 3535 /// types of its operands and return value. 3536 static unsigned getScalarizationOverhead(SmallVectorImpl<Type *> &OpTys, 3537 Type *RetTy, bool Predicated, 3538 const TargetTransformInfo &TTI) { 3539 unsigned ScalarizationCost = 3540 getScalarizationOverhead(RetTy, true, false, Predicated, TTI); 3541 3542 for (Type *Ty : OpTys) 3543 ScalarizationCost += 3544 getScalarizationOverhead(Ty, false, true, Predicated, TTI); 3545 3546 return ScalarizationCost; 3547 } 3548 3549 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3550 /// convenience wrapper for the type-based getScalarizationOverhead API. 3551 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3552 bool Predicated, 3553 const TargetTransformInfo &TTI) { 3554 if (VF == 1) 3555 return 0; 3556 3557 Type *RetTy = ToVectorTy(I->getType(), VF); 3558 3559 SmallVector<Type *, 4> OpTys; 3560 unsigned OperandsNum = I->getNumOperands(); 3561 for (unsigned OpInd = 0; OpInd < OperandsNum; ++OpInd) 3562 OpTys.push_back(ToVectorTy(I->getOperand(OpInd)->getType(), VF)); 3563 3564 return getScalarizationOverhead(OpTys, RetTy, Predicated, TTI); 3565 } 3566 3567 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3568 // Return the cost of the instruction, including scalarization overhead if it's 3569 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3570 // i.e. either vector version isn't available, or is too expensive. 3571 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3572 const TargetTransformInfo &TTI, 3573 const TargetLibraryInfo *TLI, 3574 bool &NeedToScalarize) { 3575 Function *F = CI->getCalledFunction(); 3576 StringRef FnName = CI->getCalledFunction()->getName(); 3577 Type *ScalarRetTy = CI->getType(); 3578 SmallVector<Type *, 4> Tys, ScalarTys; 3579 for (auto &ArgOp : CI->arg_operands()) 3580 ScalarTys.push_back(ArgOp->getType()); 3581 3582 // Estimate cost of scalarized vector call. The source operands are assumed 3583 // to be vectors, so we need to extract individual elements from there, 3584 // execute VF scalar calls, and then gather the result into the vector return 3585 // value. 3586 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3587 if (VF == 1) 3588 return ScalarCallCost; 3589 3590 // Compute corresponding vector type for return value and arguments. 3591 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3592 for (Type *ScalarTy : ScalarTys) 3593 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3594 3595 // Compute costs of unpacking argument values for the scalar calls and 3596 // packing the return values to a vector. 3597 unsigned ScalarizationCost = getScalarizationOverhead(Tys, RetTy, false, TTI); 3598 3599 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3600 3601 // If we can't emit a vector call for this function, then the currently found 3602 // cost is the cost we need to return. 3603 NeedToScalarize = true; 3604 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3605 return Cost; 3606 3607 // If the corresponding vector cost is cheaper, return its cost. 3608 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3609 if (VectorCallCost < Cost) { 3610 NeedToScalarize = false; 3611 return VectorCallCost; 3612 } 3613 return Cost; 3614 } 3615 3616 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3617 // factor VF. Return the cost of the instruction, including scalarization 3618 // overhead if it's needed. 3619 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3620 const TargetTransformInfo &TTI, 3621 const TargetLibraryInfo *TLI) { 3622 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3623 assert(ID && "Expected intrinsic call!"); 3624 3625 Type *RetTy = ToVectorTy(CI->getType(), VF); 3626 SmallVector<Type *, 4> Tys; 3627 for (Value *ArgOperand : CI->arg_operands()) 3628 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 3629 3630 FastMathFlags FMF; 3631 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3632 FMF = FPMO->getFastMathFlags(); 3633 3634 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys, FMF); 3635 } 3636 3637 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3638 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3639 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3640 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3641 } 3642 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3643 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3644 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3645 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3646 } 3647 3648 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3649 // For every instruction `I` in MinBWs, truncate the operands, create a 3650 // truncated version of `I` and reextend its result. InstCombine runs 3651 // later and will remove any ext/trunc pairs. 3652 // 3653 SmallPtrSet<Value *, 4> Erased; 3654 for (const auto &KV : *MinBWs) { 3655 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3656 for (Value *&I : Parts) { 3657 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3658 continue; 3659 Type *OriginalTy = I->getType(); 3660 Type *ScalarTruncatedTy = 3661 IntegerType::get(OriginalTy->getContext(), KV.second); 3662 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3663 OriginalTy->getVectorNumElements()); 3664 if (TruncatedTy == OriginalTy) 3665 continue; 3666 3667 IRBuilder<> B(cast<Instruction>(I)); 3668 auto ShrinkOperand = [&](Value *V) -> Value * { 3669 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3670 if (ZI->getSrcTy() == TruncatedTy) 3671 return ZI->getOperand(0); 3672 return B.CreateZExtOrTrunc(V, TruncatedTy); 3673 }; 3674 3675 // The actual instruction modification depends on the instruction type, 3676 // unfortunately. 3677 Value *NewI = nullptr; 3678 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3679 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3680 ShrinkOperand(BO->getOperand(1))); 3681 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3682 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3683 NewI = 3684 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3685 ShrinkOperand(CI->getOperand(1))); 3686 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3687 NewI = B.CreateSelect(SI->getCondition(), 3688 ShrinkOperand(SI->getTrueValue()), 3689 ShrinkOperand(SI->getFalseValue())); 3690 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3691 switch (CI->getOpcode()) { 3692 default: 3693 llvm_unreachable("Unhandled cast!"); 3694 case Instruction::Trunc: 3695 NewI = ShrinkOperand(CI->getOperand(0)); 3696 break; 3697 case Instruction::SExt: 3698 NewI = B.CreateSExtOrTrunc( 3699 CI->getOperand(0), 3700 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3701 break; 3702 case Instruction::ZExt: 3703 NewI = B.CreateZExtOrTrunc( 3704 CI->getOperand(0), 3705 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3706 break; 3707 } 3708 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3709 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3710 auto *O0 = B.CreateZExtOrTrunc( 3711 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3712 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3713 auto *O1 = B.CreateZExtOrTrunc( 3714 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3715 3716 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3717 } else if (isa<LoadInst>(I)) { 3718 // Don't do anything with the operands, just extend the result. 3719 continue; 3720 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3721 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3722 auto *O0 = B.CreateZExtOrTrunc( 3723 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3724 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3725 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3726 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3727 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3728 auto *O0 = B.CreateZExtOrTrunc( 3729 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3730 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3731 } else { 3732 llvm_unreachable("Unhandled instruction type!"); 3733 } 3734 3735 // Lastly, extend the result. 3736 NewI->takeName(cast<Instruction>(I)); 3737 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3738 I->replaceAllUsesWith(Res); 3739 cast<Instruction>(I)->eraseFromParent(); 3740 Erased.insert(I); 3741 I = Res; 3742 } 3743 } 3744 3745 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3746 for (const auto &KV : *MinBWs) { 3747 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3748 for (Value *&I : Parts) { 3749 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3750 if (Inst && Inst->use_empty()) { 3751 Value *NewI = Inst->getOperand(0); 3752 Inst->eraseFromParent(); 3753 I = NewI; 3754 } 3755 } 3756 } 3757 } 3758 3759 void InnerLoopVectorizer::vectorizeLoop() { 3760 //===------------------------------------------------===// 3761 // 3762 // Notice: any optimization or new instruction that go 3763 // into the code below should be also be implemented in 3764 // the cost-model. 3765 // 3766 //===------------------------------------------------===// 3767 Constant *Zero = Builder.getInt32(0); 3768 3769 // In order to support recurrences we need to be able to vectorize Phi nodes. 3770 // Phi nodes have cycles, so we need to vectorize them in two stages. First, 3771 // we create a new vector PHI node with no incoming edges. We use this value 3772 // when we vectorize all of the instructions that use the PHI. Next, after 3773 // all of the instructions in the block are complete we add the new incoming 3774 // edges to the PHI. At this point all of the instructions in the basic block 3775 // are vectorized, so we can use them to construct the PHI. 3776 PhiVector PHIsToFix; 3777 3778 // Scan the loop in a topological order to ensure that defs are vectorized 3779 // before users. 3780 LoopBlocksDFS DFS(OrigLoop); 3781 DFS.perform(LI); 3782 3783 // Vectorize all of the blocks in the original loop. 3784 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 3785 vectorizeBlockInLoop(BB, &PHIsToFix); 3786 3787 // Insert truncates and extends for any truncated instructions as hints to 3788 // InstCombine. 3789 if (VF > 1) 3790 truncateToMinimalBitwidths(); 3791 3792 // At this point every instruction in the original loop is widened to a 3793 // vector form. Now we need to fix the recurrences in PHIsToFix. These PHI 3794 // nodes are currently empty because we did not want to introduce cycles. 3795 // This is the second stage of vectorizing recurrences. 3796 for (PHINode *Phi : PHIsToFix) { 3797 assert(Phi && "Unable to recover vectorized PHI"); 3798 3799 // Handle first-order recurrences that need to be fixed. 3800 if (Legal->isFirstOrderRecurrence(Phi)) { 3801 fixFirstOrderRecurrence(Phi); 3802 continue; 3803 } 3804 3805 // If the phi node is not a first-order recurrence, it must be a reduction. 3806 // Get it's reduction variable descriptor. 3807 assert(Legal->isReductionVariable(Phi) && 3808 "Unable to find the reduction variable"); 3809 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3810 3811 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3812 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3813 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3814 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3815 RdxDesc.getMinMaxRecurrenceKind(); 3816 setDebugLocFromInst(Builder, ReductionStartValue); 3817 3818 // We need to generate a reduction vector from the incoming scalar. 3819 // To do so, we need to generate the 'identity' vector and override 3820 // one of the elements with the incoming scalar reduction. We need 3821 // to do it in the vector-loop preheader. 3822 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 3823 3824 // This is the vector-clone of the value that leaves the loop. 3825 const VectorParts &VectorExit = getVectorValue(LoopExitInst); 3826 Type *VecTy = VectorExit[0]->getType(); 3827 3828 // Find the reduction identity variable. Zero for addition, or, xor, 3829 // one for multiplication, -1 for And. 3830 Value *Identity; 3831 Value *VectorStart; 3832 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3833 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3834 // MinMax reduction have the start value as their identify. 3835 if (VF == 1) { 3836 VectorStart = Identity = ReductionStartValue; 3837 } else { 3838 VectorStart = Identity = 3839 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3840 } 3841 } else { 3842 // Handle other reduction kinds: 3843 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3844 RK, VecTy->getScalarType()); 3845 if (VF == 1) { 3846 Identity = Iden; 3847 // This vector is the Identity vector where the first element is the 3848 // incoming scalar reduction. 3849 VectorStart = ReductionStartValue; 3850 } else { 3851 Identity = ConstantVector::getSplat(VF, Iden); 3852 3853 // This vector is the Identity vector where the first element is the 3854 // incoming scalar reduction. 3855 VectorStart = 3856 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3857 } 3858 } 3859 3860 // Fix the vector-loop phi. 3861 3862 // Reductions do not have to start at zero. They can start with 3863 // any loop invariant values. 3864 const VectorParts &VecRdxPhi = getVectorValue(Phi); 3865 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3866 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3867 const VectorParts &Val = getVectorValue(LoopVal); 3868 for (unsigned part = 0; part < UF; ++part) { 3869 // Make sure to add the reduction stat value only to the 3870 // first unroll part. 3871 Value *StartVal = (part == 0) ? VectorStart : Identity; 3872 cast<PHINode>(VecRdxPhi[part]) 3873 ->addIncoming(StartVal, LoopVectorPreHeader); 3874 cast<PHINode>(VecRdxPhi[part]) 3875 ->addIncoming(Val[part], LoopVectorBody); 3876 } 3877 3878 // Before each round, move the insertion point right between 3879 // the PHIs and the values we are going to write. 3880 // This allows us to write both PHINodes and the extractelement 3881 // instructions. 3882 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3883 3884 VectorParts &RdxParts = VectorLoopValueMap.getVector(LoopExitInst); 3885 setDebugLocFromInst(Builder, LoopExitInst); 3886 3887 // If the vector reduction can be performed in a smaller type, we truncate 3888 // then extend the loop exit value to enable InstCombine to evaluate the 3889 // entire expression in the smaller type. 3890 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3891 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3892 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 3893 for (unsigned part = 0; part < UF; ++part) { 3894 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3895 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3896 : Builder.CreateZExt(Trunc, VecTy); 3897 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 3898 UI != RdxParts[part]->user_end();) 3899 if (*UI != Trunc) { 3900 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 3901 RdxParts[part] = Extnd; 3902 } else { 3903 ++UI; 3904 } 3905 } 3906 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3907 for (unsigned part = 0; part < UF; ++part) 3908 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3909 } 3910 3911 // Reduce all of the unrolled parts into a single vector. 3912 Value *ReducedPartRdx = RdxParts[0]; 3913 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3914 setDebugLocFromInst(Builder, ReducedPartRdx); 3915 for (unsigned part = 1; part < UF; ++part) { 3916 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3917 // Floating point operations had to be 'fast' to enable the reduction. 3918 ReducedPartRdx = addFastMathFlag( 3919 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 3920 ReducedPartRdx, "bin.rdx")); 3921 else 3922 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3923 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 3924 } 3925 3926 if (VF > 1) { 3927 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 3928 // and vector ops, reducing the set of values being computed by half each 3929 // round. 3930 assert(isPowerOf2_32(VF) && 3931 "Reduction emission only supported for pow2 vectors!"); 3932 Value *TmpVec = ReducedPartRdx; 3933 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 3934 for (unsigned i = VF; i != 1; i >>= 1) { 3935 // Move the upper half of the vector to the lower half. 3936 for (unsigned j = 0; j != i / 2; ++j) 3937 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 3938 3939 // Fill the rest of the mask with undef. 3940 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 3941 UndefValue::get(Builder.getInt32Ty())); 3942 3943 Value *Shuf = Builder.CreateShuffleVector( 3944 TmpVec, UndefValue::get(TmpVec->getType()), 3945 ConstantVector::get(ShuffleMask), "rdx.shuf"); 3946 3947 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3948 // Floating point operations had to be 'fast' to enable the reduction. 3949 TmpVec = addFastMathFlag(Builder.CreateBinOp( 3950 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 3951 else 3952 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 3953 TmpVec, Shuf); 3954 } 3955 3956 // The result is in the first element of the vector. 3957 ReducedPartRdx = 3958 Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 3959 3960 // If the reduction can be performed in a smaller type, we need to extend 3961 // the reduction to the wider type before we branch to the original loop. 3962 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3963 ReducedPartRdx = 3964 RdxDesc.isSigned() 3965 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3966 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3967 } 3968 3969 // Create a phi node that merges control-flow from the backedge-taken check 3970 // block and the middle block. 3971 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3972 LoopScalarPreHeader->getTerminator()); 3973 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3974 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3975 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3976 3977 // Now, we need to fix the users of the reduction variable 3978 // inside and outside of the scalar remainder loop. 3979 // We know that the loop is in LCSSA form. We need to update the 3980 // PHI nodes in the exit blocks. 3981 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3982 LEE = LoopExitBlock->end(); 3983 LEI != LEE; ++LEI) { 3984 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3985 if (!LCSSAPhi) 3986 break; 3987 3988 // All PHINodes need to have a single entry edge, or two if 3989 // we already fixed them. 3990 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3991 3992 // We found our reduction value exit-PHI. Update it with the 3993 // incoming bypass edge. 3994 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { 3995 // Add an edge coming from the bypass. 3996 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3997 break; 3998 } 3999 } // end of the LCSSA phi scan. 4000 4001 // Fix the scalar loop reduction variable with the incoming reduction sum 4002 // from the vector body and from the backedge value. 4003 int IncomingEdgeBlockIdx = 4004 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4005 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4006 // Pick the other block. 4007 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4008 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4009 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4010 } // end of for each Phi in PHIsToFix. 4011 4012 fixLCSSAPHIs(); 4013 4014 // Make sure DomTree is updated. 4015 updateAnalysis(); 4016 4017 predicateInstructions(); 4018 4019 // Remove redundant induction instructions. 4020 cse(LoopVectorBody); 4021 } 4022 4023 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 4024 4025 // This is the second phase of vectorizing first-order recurrences. An 4026 // overview of the transformation is described below. Suppose we have the 4027 // following loop. 4028 // 4029 // for (int i = 0; i < n; ++i) 4030 // b[i] = a[i] - a[i - 1]; 4031 // 4032 // There is a first-order recurrence on "a". For this loop, the shorthand 4033 // scalar IR looks like: 4034 // 4035 // scalar.ph: 4036 // s_init = a[-1] 4037 // br scalar.body 4038 // 4039 // scalar.body: 4040 // i = phi [0, scalar.ph], [i+1, scalar.body] 4041 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4042 // s2 = a[i] 4043 // b[i] = s2 - s1 4044 // br cond, scalar.body, ... 4045 // 4046 // In this example, s1 is a recurrence because it's value depends on the 4047 // previous iteration. In the first phase of vectorization, we created a 4048 // temporary value for s1. We now complete the vectorization and produce the 4049 // shorthand vector IR shown below (for VF = 4, UF = 1). 4050 // 4051 // vector.ph: 4052 // v_init = vector(..., ..., ..., a[-1]) 4053 // br vector.body 4054 // 4055 // vector.body 4056 // i = phi [0, vector.ph], [i+4, vector.body] 4057 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4058 // v2 = a[i, i+1, i+2, i+3]; 4059 // v3 = vector(v1(3), v2(0, 1, 2)) 4060 // b[i, i+1, i+2, i+3] = v2 - v3 4061 // br cond, vector.body, middle.block 4062 // 4063 // middle.block: 4064 // x = v2(3) 4065 // br scalar.ph 4066 // 4067 // scalar.ph: 4068 // s_init = phi [x, middle.block], [a[-1], otherwise] 4069 // br scalar.body 4070 // 4071 // After execution completes the vector loop, we extract the next value of 4072 // the recurrence (x) to use as the initial value in the scalar loop. 4073 4074 // Get the original loop preheader and single loop latch. 4075 auto *Preheader = OrigLoop->getLoopPreheader(); 4076 auto *Latch = OrigLoop->getLoopLatch(); 4077 4078 // Get the initial and previous values of the scalar recurrence. 4079 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4080 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4081 4082 // Create a vector from the initial value. 4083 auto *VectorInit = ScalarInit; 4084 if (VF > 1) { 4085 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4086 VectorInit = Builder.CreateInsertElement( 4087 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4088 Builder.getInt32(VF - 1), "vector.recur.init"); 4089 } 4090 4091 // We constructed a temporary phi node in the first phase of vectorization. 4092 // This phi node will eventually be deleted. 4093 VectorParts &PhiParts = VectorLoopValueMap.getVector(Phi); 4094 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0])); 4095 4096 // Create a phi node for the new recurrence. The current value will either be 4097 // the initial value inserted into a vector or loop-varying vector value. 4098 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4099 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4100 4101 // Get the vectorized previous value. We ensured the previous values was an 4102 // instruction when detecting the recurrence. 4103 auto &PreviousParts = getVectorValue(Previous); 4104 4105 // Set the insertion point to be after this instruction. We ensured the 4106 // previous value dominated all uses of the phi when detecting the 4107 // recurrence. 4108 Builder.SetInsertPoint( 4109 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1]))); 4110 4111 // We will construct a vector for the recurrence by combining the values for 4112 // the current and previous iterations. This is the required shuffle mask. 4113 SmallVector<Constant *, 8> ShuffleMask(VF); 4114 ShuffleMask[0] = Builder.getInt32(VF - 1); 4115 for (unsigned I = 1; I < VF; ++I) 4116 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4117 4118 // The vector from which to take the initial value for the current iteration 4119 // (actual or unrolled). Initially, this is the vector phi node. 4120 Value *Incoming = VecPhi; 4121 4122 // Shuffle the current and previous vector and update the vector parts. 4123 for (unsigned Part = 0; Part < UF; ++Part) { 4124 auto *Shuffle = 4125 VF > 1 4126 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], 4127 ConstantVector::get(ShuffleMask)) 4128 : Incoming; 4129 PhiParts[Part]->replaceAllUsesWith(Shuffle); 4130 cast<Instruction>(PhiParts[Part])->eraseFromParent(); 4131 PhiParts[Part] = Shuffle; 4132 Incoming = PreviousParts[Part]; 4133 } 4134 4135 // Fix the latch value of the new recurrence in the vector loop. 4136 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4137 4138 // Extract the last vector element in the middle block. This will be the 4139 // initial value for the recurrence when jumping to the scalar loop. 4140 auto *Extract = Incoming; 4141 if (VF > 1) { 4142 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4143 Extract = Builder.CreateExtractElement(Extract, Builder.getInt32(VF - 1), 4144 "vector.recur.extract"); 4145 } 4146 4147 // Fix the initial value of the original recurrence in the scalar loop. 4148 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4149 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4150 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4151 auto *Incoming = BB == LoopMiddleBlock ? Extract : ScalarInit; 4152 Start->addIncoming(Incoming, BB); 4153 } 4154 4155 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4156 Phi->setName("scalar.recur"); 4157 4158 // Finally, fix users of the recurrence outside the loop. The users will need 4159 // either the last value of the scalar recurrence or the last value of the 4160 // vector recurrence we extracted in the middle block. Since the loop is in 4161 // LCSSA form, we just need to find the phi node for the original scalar 4162 // recurrence in the exit block, and then add an edge for the middle block. 4163 for (auto &I : *LoopExitBlock) { 4164 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4165 if (!LCSSAPhi) 4166 break; 4167 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4168 LCSSAPhi->addIncoming(Extract, LoopMiddleBlock); 4169 break; 4170 } 4171 } 4172 } 4173 4174 void InnerLoopVectorizer::fixLCSSAPHIs() { 4175 for (Instruction &LEI : *LoopExitBlock) { 4176 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI); 4177 if (!LCSSAPhi) 4178 break; 4179 if (LCSSAPhi->getNumIncomingValues() == 1) 4180 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 4181 LoopMiddleBlock); 4182 } 4183 } 4184 4185 void InnerLoopVectorizer::predicateInstructions() { 4186 4187 // For each instruction I marked for predication on value C, split I into its 4188 // own basic block to form an if-then construct over C. 4189 // Since I may be fed by extractelement and/or be feeding an insertelement 4190 // generated during scalarization we try to move such instructions into the 4191 // predicated basic block as well. For the insertelement this also means that 4192 // the PHI will be created for the resulting vector rather than for the 4193 // scalar instruction. 4194 // So for some predicated instruction, e.g. the conditional sdiv in: 4195 // 4196 // for.body: 4197 // ... 4198 // %add = add nsw i32 %mul, %0 4199 // %cmp5 = icmp sgt i32 %2, 7 4200 // br i1 %cmp5, label %if.then, label %if.end 4201 // 4202 // if.then: 4203 // %div = sdiv i32 %0, %1 4204 // br label %if.end 4205 // 4206 // if.end: 4207 // %x.0 = phi i32 [ %div, %if.then ], [ %add, %for.body ] 4208 // 4209 // the sdiv at this point is scalarized and if-converted using a select. 4210 // The inactive elements in the vector are not used, but the predicated 4211 // instruction is still executed for all vector elements, essentially: 4212 // 4213 // vector.body: 4214 // ... 4215 // %17 = add nsw <2 x i32> %16, %wide.load 4216 // %29 = extractelement <2 x i32> %wide.load, i32 0 4217 // %30 = extractelement <2 x i32> %wide.load51, i32 0 4218 // %31 = sdiv i32 %29, %30 4219 // %32 = insertelement <2 x i32> undef, i32 %31, i32 0 4220 // %35 = extractelement <2 x i32> %wide.load, i32 1 4221 // %36 = extractelement <2 x i32> %wide.load51, i32 1 4222 // %37 = sdiv i32 %35, %36 4223 // %38 = insertelement <2 x i32> %32, i32 %37, i32 1 4224 // %predphi = select <2 x i1> %26, <2 x i32> %38, <2 x i32> %17 4225 // 4226 // Predication will now re-introduce the original control flow to avoid false 4227 // side-effects by the sdiv instructions on the inactive elements, yielding 4228 // (after cleanup): 4229 // 4230 // vector.body: 4231 // ... 4232 // %5 = add nsw <2 x i32> %4, %wide.load 4233 // %8 = icmp sgt <2 x i32> %wide.load52, <i32 7, i32 7> 4234 // %9 = extractelement <2 x i1> %8, i32 0 4235 // br i1 %9, label %pred.sdiv.if, label %pred.sdiv.continue 4236 // 4237 // pred.sdiv.if: 4238 // %10 = extractelement <2 x i32> %wide.load, i32 0 4239 // %11 = extractelement <2 x i32> %wide.load51, i32 0 4240 // %12 = sdiv i32 %10, %11 4241 // %13 = insertelement <2 x i32> undef, i32 %12, i32 0 4242 // br label %pred.sdiv.continue 4243 // 4244 // pred.sdiv.continue: 4245 // %14 = phi <2 x i32> [ undef, %vector.body ], [ %13, %pred.sdiv.if ] 4246 // %15 = extractelement <2 x i1> %8, i32 1 4247 // br i1 %15, label %pred.sdiv.if54, label %pred.sdiv.continue55 4248 // 4249 // pred.sdiv.if54: 4250 // %16 = extractelement <2 x i32> %wide.load, i32 1 4251 // %17 = extractelement <2 x i32> %wide.load51, i32 1 4252 // %18 = sdiv i32 %16, %17 4253 // %19 = insertelement <2 x i32> %14, i32 %18, i32 1 4254 // br label %pred.sdiv.continue55 4255 // 4256 // pred.sdiv.continue55: 4257 // %20 = phi <2 x i32> [ %14, %pred.sdiv.continue ], [ %19, %pred.sdiv.if54 ] 4258 // %predphi = select <2 x i1> %8, <2 x i32> %20, <2 x i32> %5 4259 4260 for (auto KV : PredicatedInstructions) { 4261 BasicBlock::iterator I(KV.first); 4262 BasicBlock *Head = I->getParent(); 4263 auto *BB = SplitBlock(Head, &*std::next(I), DT, LI); 4264 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 4265 /*BranchWeights=*/nullptr, DT, LI); 4266 I->moveBefore(T); 4267 // Try to move any extractelement we may have created for the predicated 4268 // instruction into the Then block. 4269 for (Use &Op : I->operands()) { 4270 auto *OpInst = dyn_cast<ExtractElementInst>(&*Op); 4271 if (OpInst && OpInst->hasOneUse()) // TODO: more accurately - hasOneUser() 4272 OpInst->moveBefore(&*I); 4273 } 4274 4275 I->getParent()->setName(Twine("pred.") + I->getOpcodeName() + ".if"); 4276 BB->setName(Twine("pred.") + I->getOpcodeName() + ".continue"); 4277 4278 // If the instruction is non-void create a Phi node at reconvergence point. 4279 if (!I->getType()->isVoidTy()) { 4280 Value *IncomingTrue = nullptr; 4281 Value *IncomingFalse = nullptr; 4282 4283 if (I->hasOneUse() && isa<InsertElementInst>(*I->user_begin())) { 4284 // If the predicated instruction is feeding an insert-element, move it 4285 // into the Then block; Phi node will be created for the vector. 4286 InsertElementInst *IEI = cast<InsertElementInst>(*I->user_begin()); 4287 IEI->moveBefore(T); 4288 IncomingTrue = IEI; // the new vector with the inserted element. 4289 IncomingFalse = IEI->getOperand(0); // the unmodified vector 4290 } else { 4291 // Phi node will be created for the scalar predicated instruction. 4292 IncomingTrue = &*I; 4293 IncomingFalse = UndefValue::get(I->getType()); 4294 } 4295 4296 BasicBlock *PostDom = I->getParent()->getSingleSuccessor(); 4297 assert(PostDom && "Then block has multiple successors"); 4298 PHINode *Phi = 4299 PHINode::Create(IncomingTrue->getType(), 2, "", &PostDom->front()); 4300 IncomingTrue->replaceAllUsesWith(Phi); 4301 Phi->addIncoming(IncomingFalse, Head); 4302 Phi->addIncoming(IncomingTrue, I->getParent()); 4303 } 4304 } 4305 4306 DEBUG(DT->verifyDomTree()); 4307 } 4308 4309 InnerLoopVectorizer::VectorParts 4310 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 4311 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 4312 4313 // Look for cached value. 4314 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 4315 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 4316 if (ECEntryIt != MaskCache.end()) 4317 return ECEntryIt->second; 4318 4319 VectorParts SrcMask = createBlockInMask(Src); 4320 4321 // The terminator has to be a branch inst! 4322 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 4323 assert(BI && "Unexpected terminator found"); 4324 4325 if (BI->isConditional()) { 4326 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 4327 4328 if (BI->getSuccessor(0) != Dst) 4329 for (unsigned part = 0; part < UF; ++part) 4330 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 4331 4332 for (unsigned part = 0; part < UF; ++part) 4333 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 4334 4335 MaskCache[Edge] = EdgeMask; 4336 return EdgeMask; 4337 } 4338 4339 MaskCache[Edge] = SrcMask; 4340 return SrcMask; 4341 } 4342 4343 InnerLoopVectorizer::VectorParts 4344 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4345 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4346 4347 // Loop incoming mask is all-one. 4348 if (OrigLoop->getHeader() == BB) { 4349 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 4350 return getVectorValue(C); 4351 } 4352 4353 // This is the block mask. We OR all incoming edges, and with zero. 4354 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 4355 VectorParts BlockMask = getVectorValue(Zero); 4356 4357 // For each pred: 4358 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 4359 VectorParts EM = createEdgeMask(*it, BB); 4360 for (unsigned part = 0; part < UF; ++part) 4361 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 4362 } 4363 4364 return BlockMask; 4365 } 4366 4367 void InnerLoopVectorizer::widenPHIInstruction( 4368 Instruction *PN, InnerLoopVectorizer::VectorParts &Entry, unsigned UF, 4369 unsigned VF, PhiVector *PV) { 4370 PHINode *P = cast<PHINode>(PN); 4371 // Handle recurrences. 4372 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4373 for (unsigned part = 0; part < UF; ++part) { 4374 // This is phase one of vectorizing PHIs. 4375 Type *VecTy = 4376 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4377 Entry[part] = PHINode::Create( 4378 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4379 } 4380 PV->push_back(P); 4381 return; 4382 } 4383 4384 setDebugLocFromInst(Builder, P); 4385 // Check for PHI nodes that are lowered to vector selects. 4386 if (P->getParent() != OrigLoop->getHeader()) { 4387 // We know that all PHIs in non-header blocks are converted into 4388 // selects, so we don't have to worry about the insertion order and we 4389 // can just use the builder. 4390 // At this point we generate the predication tree. There may be 4391 // duplications since this is a simple recursive scan, but future 4392 // optimizations will clean it up. 4393 4394 unsigned NumIncoming = P->getNumIncomingValues(); 4395 4396 // Generate a sequence of selects of the form: 4397 // SELECT(Mask3, In3, 4398 // SELECT(Mask2, In2, 4399 // ( ...))) 4400 for (unsigned In = 0; In < NumIncoming; In++) { 4401 VectorParts Cond = 4402 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4403 const VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 4404 4405 for (unsigned part = 0; part < UF; ++part) { 4406 // We might have single edge PHIs (blocks) - use an identity 4407 // 'select' for the first PHI operand. 4408 if (In == 0) 4409 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]); 4410 else 4411 // Select between the current value and the previous incoming edge 4412 // based on the incoming mask. 4413 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part], 4414 "predphi"); 4415 } 4416 } 4417 return; 4418 } 4419 4420 // This PHINode must be an induction variable. 4421 // Make sure that we know about it. 4422 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4423 4424 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4425 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4426 4427 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4428 // which can be found from the original scalar operations. 4429 switch (II.getKind()) { 4430 case InductionDescriptor::IK_NoInduction: 4431 llvm_unreachable("Unknown induction"); 4432 case InductionDescriptor::IK_IntInduction: 4433 return widenIntInduction(P, Entry); 4434 case InductionDescriptor::IK_PtrInduction: { 4435 // Handle the pointer induction variable case. 4436 assert(P->getType()->isPointerTy() && "Unexpected type."); 4437 // This is the normalized GEP that starts counting at zero. 4438 Value *PtrInd = Induction; 4439 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4440 // This is the vector of results. Notice that we don't generate 4441 // vector geps because scalar geps result in better code. 4442 for (unsigned part = 0; part < UF; ++part) { 4443 if (VF == 1) { 4444 int EltIndex = part; 4445 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 4446 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4447 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4448 SclrGep->setName("next.gep"); 4449 Entry[part] = SclrGep; 4450 continue; 4451 } 4452 4453 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 4454 for (unsigned int i = 0; i < VF; ++i) { 4455 int EltIndex = i + part * VF; 4456 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 4457 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4458 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4459 SclrGep->setName("next.gep"); 4460 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 4461 Builder.getInt32(i), "insert.gep"); 4462 } 4463 Entry[part] = VecVal; 4464 } 4465 return; 4466 } 4467 case InductionDescriptor::IK_FpInduction: { 4468 assert(P->getType() == II.getStartValue()->getType() && 4469 "Types must match"); 4470 // Handle other induction variables that are now based on the 4471 // canonical one. 4472 assert(P != OldInduction && "Primary induction can be integer only"); 4473 4474 Value *V = Builder.CreateCast(Instruction::SIToFP, Induction, P->getType()); 4475 V = II.transform(Builder, V, PSE.getSE(), DL); 4476 V->setName("fp.offset.idx"); 4477 4478 // Now we have scalar op: %fp.offset.idx = StartVal +/- Induction*StepVal 4479 4480 Value *Broadcasted = getBroadcastInstrs(V); 4481 // After broadcasting the induction variable we need to make the vector 4482 // consecutive by adding StepVal*0, StepVal*1, StepVal*2, etc. 4483 Value *StepVal = cast<SCEVUnknown>(II.getStep())->getValue(); 4484 for (unsigned part = 0; part < UF; ++part) 4485 Entry[part] = getStepVector(Broadcasted, VF * part, StepVal, 4486 II.getInductionOpcode()); 4487 return; 4488 } 4489 } 4490 } 4491 4492 /// A helper function for checking whether an integer division-related 4493 /// instruction may divide by zero (in which case it must be predicated if 4494 /// executed conditionally in the scalar code). 4495 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4496 /// Non-zero divisors that are non compile-time constants will not be 4497 /// converted into multiplication, so we will still end up scalarizing 4498 /// the division, but can do so w/o predication. 4499 static bool mayDivideByZero(Instruction &I) { 4500 assert((I.getOpcode() == Instruction::UDiv || 4501 I.getOpcode() == Instruction::SDiv || 4502 I.getOpcode() == Instruction::URem || 4503 I.getOpcode() == Instruction::SRem) && 4504 "Unexpected instruction"); 4505 Value *Divisor = I.getOperand(1); 4506 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4507 return !CInt || CInt->isZero(); 4508 } 4509 4510 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 4511 // For each instruction in the old loop. 4512 for (Instruction &I : *BB) { 4513 switch (I.getOpcode()) { 4514 case Instruction::Br: 4515 // Nothing to do for PHIs and BR, since we already took care of the 4516 // loop control flow instructions. 4517 continue; 4518 case Instruction::PHI: { 4519 // Vectorize PHINodes. 4520 VectorParts Entry(UF); 4521 widenPHIInstruction(&I, Entry, UF, VF, PV); 4522 VectorLoopValueMap.initVector(&I, Entry); 4523 continue; 4524 } // End of PHI. 4525 4526 case Instruction::UDiv: 4527 case Instruction::SDiv: 4528 case Instruction::SRem: 4529 case Instruction::URem: 4530 // Scalarize with predication if this instruction may divide by zero and 4531 // block execution is conditional, otherwise fallthrough. 4532 if (mayDivideByZero(I) && Legal->blockNeedsPredication(I.getParent())) { 4533 scalarizeInstruction(&I, true); 4534 continue; 4535 } 4536 case Instruction::Add: 4537 case Instruction::FAdd: 4538 case Instruction::Sub: 4539 case Instruction::FSub: 4540 case Instruction::Mul: 4541 case Instruction::FMul: 4542 case Instruction::FDiv: 4543 case Instruction::FRem: 4544 case Instruction::Shl: 4545 case Instruction::LShr: 4546 case Instruction::AShr: 4547 case Instruction::And: 4548 case Instruction::Or: 4549 case Instruction::Xor: { 4550 // Just widen binops. 4551 auto *BinOp = cast<BinaryOperator>(&I); 4552 setDebugLocFromInst(Builder, BinOp); 4553 const VectorParts &A = getVectorValue(BinOp->getOperand(0)); 4554 const VectorParts &B = getVectorValue(BinOp->getOperand(1)); 4555 4556 // Use this vector value for all users of the original instruction. 4557 VectorParts Entry(UF); 4558 for (unsigned Part = 0; Part < UF; ++Part) { 4559 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 4560 4561 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4562 VecOp->copyIRFlags(BinOp); 4563 4564 Entry[Part] = V; 4565 } 4566 4567 VectorLoopValueMap.initVector(&I, Entry); 4568 addMetadata(Entry, BinOp); 4569 break; 4570 } 4571 case Instruction::Select: { 4572 // Widen selects. 4573 // If the selector is loop invariant we can create a select 4574 // instruction with a scalar condition. Otherwise, use vector-select. 4575 auto *SE = PSE.getSE(); 4576 bool InvariantCond = 4577 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4578 setDebugLocFromInst(Builder, &I); 4579 4580 // The condition can be loop invariant but still defined inside the 4581 // loop. This means that we can't just use the original 'cond' value. 4582 // We have to take the 'vectorized' value and pick the first lane. 4583 // Instcombine will make this a no-op. 4584 const VectorParts &Cond = getVectorValue(I.getOperand(0)); 4585 const VectorParts &Op0 = getVectorValue(I.getOperand(1)); 4586 const VectorParts &Op1 = getVectorValue(I.getOperand(2)); 4587 4588 auto *ScalarCond = getScalarValue(I.getOperand(0), 0, 0); 4589 4590 VectorParts Entry(UF); 4591 for (unsigned Part = 0; Part < UF; ++Part) { 4592 Entry[Part] = Builder.CreateSelect( 4593 InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]); 4594 } 4595 4596 VectorLoopValueMap.initVector(&I, Entry); 4597 addMetadata(Entry, &I); 4598 break; 4599 } 4600 4601 case Instruction::ICmp: 4602 case Instruction::FCmp: { 4603 // Widen compares. Generate vector compares. 4604 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4605 auto *Cmp = dyn_cast<CmpInst>(&I); 4606 setDebugLocFromInst(Builder, Cmp); 4607 const VectorParts &A = getVectorValue(Cmp->getOperand(0)); 4608 const VectorParts &B = getVectorValue(Cmp->getOperand(1)); 4609 VectorParts Entry(UF); 4610 for (unsigned Part = 0; Part < UF; ++Part) { 4611 Value *C = nullptr; 4612 if (FCmp) { 4613 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 4614 cast<FCmpInst>(C)->copyFastMathFlags(Cmp); 4615 } else { 4616 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 4617 } 4618 Entry[Part] = C; 4619 } 4620 4621 VectorLoopValueMap.initVector(&I, Entry); 4622 addMetadata(Entry, &I); 4623 break; 4624 } 4625 4626 case Instruction::Store: 4627 case Instruction::Load: 4628 vectorizeMemoryInstruction(&I); 4629 break; 4630 case Instruction::ZExt: 4631 case Instruction::SExt: 4632 case Instruction::FPToUI: 4633 case Instruction::FPToSI: 4634 case Instruction::FPExt: 4635 case Instruction::PtrToInt: 4636 case Instruction::IntToPtr: 4637 case Instruction::SIToFP: 4638 case Instruction::UIToFP: 4639 case Instruction::Trunc: 4640 case Instruction::FPTrunc: 4641 case Instruction::BitCast: { 4642 auto *CI = dyn_cast<CastInst>(&I); 4643 setDebugLocFromInst(Builder, CI); 4644 VectorParts Entry(UF); 4645 4646 // Optimize the special case where the source is a constant integer 4647 // induction variable. Notice that we can only optimize the 'trunc' case 4648 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 4649 // (c) other casts depend on pointer size. 4650 auto ID = Legal->getInductionVars()->lookup(OldInduction); 4651 if (isa<TruncInst>(CI) && CI->getOperand(0) == OldInduction && 4652 ID.getConstIntStepValue()) { 4653 widenIntInduction(OldInduction, Entry, cast<TruncInst>(CI)); 4654 VectorLoopValueMap.initVector(&I, Entry); 4655 addMetadata(Entry, &I); 4656 break; 4657 } 4658 4659 /// Vectorize casts. 4660 Type *DestTy = 4661 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4662 4663 const VectorParts &A = getVectorValue(CI->getOperand(0)); 4664 for (unsigned Part = 0; Part < UF; ++Part) 4665 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 4666 VectorLoopValueMap.initVector(&I, Entry); 4667 addMetadata(Entry, &I); 4668 break; 4669 } 4670 4671 case Instruction::Call: { 4672 // Ignore dbg intrinsics. 4673 if (isa<DbgInfoIntrinsic>(I)) 4674 break; 4675 setDebugLocFromInst(Builder, &I); 4676 4677 Module *M = BB->getParent()->getParent(); 4678 auto *CI = cast<CallInst>(&I); 4679 4680 StringRef FnName = CI->getCalledFunction()->getName(); 4681 Function *F = CI->getCalledFunction(); 4682 Type *RetTy = ToVectorTy(CI->getType(), VF); 4683 SmallVector<Type *, 4> Tys; 4684 for (Value *ArgOperand : CI->arg_operands()) 4685 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4686 4687 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4688 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4689 ID == Intrinsic::lifetime_start)) { 4690 scalarizeInstruction(&I); 4691 break; 4692 } 4693 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4694 // version of the instruction. 4695 // Is it beneficial to perform intrinsic call compared to lib call? 4696 bool NeedToScalarize; 4697 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4698 bool UseVectorIntrinsic = 4699 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4700 if (!UseVectorIntrinsic && NeedToScalarize) { 4701 scalarizeInstruction(&I); 4702 break; 4703 } 4704 4705 VectorParts Entry(UF); 4706 for (unsigned Part = 0; Part < UF; ++Part) { 4707 SmallVector<Value *, 4> Args; 4708 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4709 Value *Arg = CI->getArgOperand(i); 4710 // Some intrinsics have a scalar argument - don't replace it with a 4711 // vector. 4712 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 4713 const VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 4714 Arg = VectorArg[Part]; 4715 } 4716 Args.push_back(Arg); 4717 } 4718 4719 Function *VectorF; 4720 if (UseVectorIntrinsic) { 4721 // Use vector version of the intrinsic. 4722 Type *TysForDecl[] = {CI->getType()}; 4723 if (VF > 1) 4724 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4725 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4726 } else { 4727 // Use vector version of the library call. 4728 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4729 assert(!VFnName.empty() && "Vector function name is empty."); 4730 VectorF = M->getFunction(VFnName); 4731 if (!VectorF) { 4732 // Generate a declaration 4733 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4734 VectorF = 4735 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4736 VectorF->copyAttributesFrom(F); 4737 } 4738 } 4739 assert(VectorF && "Can't create vector function."); 4740 4741 SmallVector<OperandBundleDef, 1> OpBundles; 4742 CI->getOperandBundlesAsDefs(OpBundles); 4743 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4744 4745 if (isa<FPMathOperator>(V)) 4746 V->copyFastMathFlags(CI); 4747 4748 Entry[Part] = V; 4749 } 4750 4751 VectorLoopValueMap.initVector(&I, Entry); 4752 addMetadata(Entry, &I); 4753 break; 4754 } 4755 4756 default: 4757 // All other instructions are unsupported. Scalarize them. 4758 scalarizeInstruction(&I); 4759 break; 4760 } // end of switch. 4761 } // end of for_each instr. 4762 } 4763 4764 void InnerLoopVectorizer::updateAnalysis() { 4765 // Forget the original basic block. 4766 PSE.getSE()->forgetLoop(OrigLoop); 4767 4768 // Update the dominator tree information. 4769 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4770 "Entry does not dominate exit."); 4771 4772 // We don't predicate stores by this point, so the vector body should be a 4773 // single loop. 4774 DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader); 4775 4776 DT->addNewBlock(LoopMiddleBlock, LoopVectorBody); 4777 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4778 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4779 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4780 4781 DEBUG(DT->verifyDomTree()); 4782 } 4783 4784 /// \brief Check whether it is safe to if-convert this phi node. 4785 /// 4786 /// Phi nodes with constant expressions that can trap are not safe to if 4787 /// convert. 4788 static bool canIfConvertPHINodes(BasicBlock *BB) { 4789 for (Instruction &I : *BB) { 4790 auto *Phi = dyn_cast<PHINode>(&I); 4791 if (!Phi) 4792 return true; 4793 for (Value *V : Phi->incoming_values()) 4794 if (auto *C = dyn_cast<Constant>(V)) 4795 if (C->canTrap()) 4796 return false; 4797 } 4798 return true; 4799 } 4800 4801 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4802 if (!EnableIfConversion) { 4803 emitAnalysis(VectorizationReport() << "if-conversion is disabled"); 4804 return false; 4805 } 4806 4807 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4808 4809 // A list of pointers that we can safely read and write to. 4810 SmallPtrSet<Value *, 8> SafePointes; 4811 4812 // Collect safe addresses. 4813 for (BasicBlock *BB : TheLoop->blocks()) { 4814 if (blockNeedsPredication(BB)) 4815 continue; 4816 4817 for (Instruction &I : *BB) 4818 if (auto *Ptr = getPointerOperand(&I)) 4819 SafePointes.insert(Ptr); 4820 } 4821 4822 // Collect the blocks that need predication. 4823 BasicBlock *Header = TheLoop->getHeader(); 4824 for (BasicBlock *BB : TheLoop->blocks()) { 4825 // We don't support switch statements inside loops. 4826 if (!isa<BranchInst>(BB->getTerminator())) { 4827 emitAnalysis(VectorizationReport(BB->getTerminator()) 4828 << "loop contains a switch statement"); 4829 return false; 4830 } 4831 4832 // We must be able to predicate all blocks that need to be predicated. 4833 if (blockNeedsPredication(BB)) { 4834 if (!blockCanBePredicated(BB, SafePointes)) { 4835 emitAnalysis(VectorizationReport(BB->getTerminator()) 4836 << "control flow cannot be substituted for a select"); 4837 return false; 4838 } 4839 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4840 emitAnalysis(VectorizationReport(BB->getTerminator()) 4841 << "control flow cannot be substituted for a select"); 4842 return false; 4843 } 4844 } 4845 4846 // We can if-convert this loop. 4847 return true; 4848 } 4849 4850 bool LoopVectorizationLegality::canVectorize() { 4851 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4852 // be canonicalized. 4853 if (!TheLoop->getLoopPreheader()) { 4854 emitAnalysis(VectorizationReport() 4855 << "loop control flow is not understood by vectorizer"); 4856 return false; 4857 } 4858 4859 // FIXME: The code is currently dead, since the loop gets sent to 4860 // LoopVectorizationLegality is already an innermost loop. 4861 // 4862 // We can only vectorize innermost loops. 4863 if (!TheLoop->empty()) { 4864 emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); 4865 return false; 4866 } 4867 4868 // We must have a single backedge. 4869 if (TheLoop->getNumBackEdges() != 1) { 4870 emitAnalysis(VectorizationReport() 4871 << "loop control flow is not understood by vectorizer"); 4872 return false; 4873 } 4874 4875 // We must have a single exiting block. 4876 if (!TheLoop->getExitingBlock()) { 4877 emitAnalysis(VectorizationReport() 4878 << "loop control flow is not understood by vectorizer"); 4879 return false; 4880 } 4881 4882 // We only handle bottom-tested loops, i.e. loop in which the condition is 4883 // checked at the end of each iteration. With that we can assume that all 4884 // instructions in the loop are executed the same number of times. 4885 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 4886 emitAnalysis(VectorizationReport() 4887 << "loop control flow is not understood by vectorizer"); 4888 return false; 4889 } 4890 4891 // We need to have a loop header. 4892 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 4893 << '\n'); 4894 4895 // Check if we can if-convert non-single-bb loops. 4896 unsigned NumBlocks = TheLoop->getNumBlocks(); 4897 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 4898 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 4899 return false; 4900 } 4901 4902 // ScalarEvolution needs to be able to find the exit count. 4903 const SCEV *ExitCount = PSE.getBackedgeTakenCount(); 4904 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 4905 emitAnalysis(VectorizationReport() 4906 << "could not determine number of loop iterations"); 4907 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 4908 return false; 4909 } 4910 4911 // Check if we can vectorize the instructions and CFG in this loop. 4912 if (!canVectorizeInstrs()) { 4913 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 4914 return false; 4915 } 4916 4917 // Go over each instruction and look at memory deps. 4918 if (!canVectorizeMemory()) { 4919 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 4920 return false; 4921 } 4922 4923 DEBUG(dbgs() << "LV: We can vectorize this loop" 4924 << (LAI->getRuntimePointerChecking()->Need 4925 ? " (with a runtime bound check)" 4926 : "") 4927 << "!\n"); 4928 4929 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 4930 4931 // If an override option has been passed in for interleaved accesses, use it. 4932 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 4933 UseInterleaved = EnableInterleavedMemAccesses; 4934 4935 // Analyze interleaved memory accesses. 4936 if (UseInterleaved) 4937 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 4938 4939 // Collect all instructions that are known to be uniform after vectorization. 4940 collectLoopUniforms(); 4941 4942 // Collect all instructions that are known to be scalar after vectorization. 4943 collectLoopScalars(); 4944 4945 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 4946 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 4947 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 4948 4949 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 4950 emitAnalysis(VectorizationReport() 4951 << "Too many SCEV assumptions need to be made and checked " 4952 << "at runtime"); 4953 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 4954 return false; 4955 } 4956 4957 // Okay! We can vectorize. At this point we don't have any other mem analysis 4958 // which may limit our maximum vectorization factor, so just return true with 4959 // no restrictions. 4960 return true; 4961 } 4962 4963 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 4964 if (Ty->isPointerTy()) 4965 return DL.getIntPtrType(Ty); 4966 4967 // It is possible that char's or short's overflow when we ask for the loop's 4968 // trip count, work around this by changing the type size. 4969 if (Ty->getScalarSizeInBits() < 32) 4970 return Type::getInt32Ty(Ty->getContext()); 4971 4972 return Ty; 4973 } 4974 4975 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 4976 Ty0 = convertPointerToIntegerType(DL, Ty0); 4977 Ty1 = convertPointerToIntegerType(DL, Ty1); 4978 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 4979 return Ty0; 4980 return Ty1; 4981 } 4982 4983 /// \brief Check that the instruction has outside loop users and is not an 4984 /// identified reduction variable. 4985 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 4986 SmallPtrSetImpl<Value *> &AllowedExit) { 4987 // Reduction and Induction instructions are allowed to have exit users. All 4988 // other instructions must not have external users. 4989 if (!AllowedExit.count(Inst)) 4990 // Check that all of the users of the loop are inside the BB. 4991 for (User *U : Inst->users()) { 4992 Instruction *UI = cast<Instruction>(U); 4993 // This user may be a reduction exit value. 4994 if (!TheLoop->contains(UI)) { 4995 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 4996 return true; 4997 } 4998 } 4999 return false; 5000 } 5001 5002 void LoopVectorizationLegality::addInductionPhi( 5003 PHINode *Phi, const InductionDescriptor &ID, 5004 SmallPtrSetImpl<Value *> &AllowedExit) { 5005 Inductions[Phi] = ID; 5006 Type *PhiTy = Phi->getType(); 5007 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5008 5009 // Get the widest type. 5010 if (!PhiTy->isFloatingPointTy()) { 5011 if (!WidestIndTy) 5012 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5013 else 5014 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5015 } 5016 5017 // Int inductions are special because we only allow one IV. 5018 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5019 ID.getConstIntStepValue() && 5020 ID.getConstIntStepValue()->isOne() && 5021 isa<Constant>(ID.getStartValue()) && 5022 cast<Constant>(ID.getStartValue())->isNullValue()) { 5023 5024 // Use the phi node with the widest type as induction. Use the last 5025 // one if there are multiple (no good reason for doing this other 5026 // than it is expedient). We've checked that it begins at zero and 5027 // steps by one, so this is a canonical induction variable. 5028 if (!Induction || PhiTy == WidestIndTy) 5029 Induction = Phi; 5030 } 5031 5032 // Both the PHI node itself, and the "post-increment" value feeding 5033 // back into the PHI node may have external users. 5034 AllowedExit.insert(Phi); 5035 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5036 5037 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5038 return; 5039 } 5040 5041 bool LoopVectorizationLegality::canVectorizeInstrs() { 5042 BasicBlock *Header = TheLoop->getHeader(); 5043 5044 // Look for the attribute signaling the absence of NaNs. 5045 Function &F = *Header->getParent(); 5046 HasFunNoNaNAttr = 5047 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5048 5049 // For each block in the loop. 5050 for (BasicBlock *BB : TheLoop->blocks()) { 5051 // Scan the instructions in the block and look for hazards. 5052 for (Instruction &I : *BB) { 5053 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5054 Type *PhiTy = Phi->getType(); 5055 // Check that this PHI type is allowed. 5056 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5057 !PhiTy->isPointerTy()) { 5058 emitAnalysis(VectorizationReport(Phi) 5059 << "loop control flow is not understood by vectorizer"); 5060 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5061 return false; 5062 } 5063 5064 // If this PHINode is not in the header block, then we know that we 5065 // can convert it to select during if-conversion. No need to check if 5066 // the PHIs in this block are induction or reduction variables. 5067 if (BB != Header) { 5068 // Check that this instruction has no outside users or is an 5069 // identified reduction value with an outside user. 5070 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5071 continue; 5072 emitAnalysis(VectorizationReport(Phi) 5073 << "value could not be identified as " 5074 "an induction or reduction variable"); 5075 return false; 5076 } 5077 5078 // We only allow if-converted PHIs with exactly two incoming values. 5079 if (Phi->getNumIncomingValues() != 2) { 5080 emitAnalysis(VectorizationReport(Phi) 5081 << "control flow not understood by vectorizer"); 5082 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5083 return false; 5084 } 5085 5086 RecurrenceDescriptor RedDes; 5087 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 5088 if (RedDes.hasUnsafeAlgebra()) 5089 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5090 AllowedExit.insert(RedDes.getLoopExitInstr()); 5091 Reductions[Phi] = RedDes; 5092 continue; 5093 } 5094 5095 InductionDescriptor ID; 5096 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5097 addInductionPhi(Phi, ID, AllowedExit); 5098 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5099 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5100 continue; 5101 } 5102 5103 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { 5104 FirstOrderRecurrences.insert(Phi); 5105 continue; 5106 } 5107 5108 // As a last resort, coerce the PHI to a AddRec expression 5109 // and re-try classifying it a an induction PHI. 5110 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5111 addInductionPhi(Phi, ID, AllowedExit); 5112 continue; 5113 } 5114 5115 emitAnalysis(VectorizationReport(Phi) 5116 << "value that could not be identified as " 5117 "reduction is used outside the loop"); 5118 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5119 return false; 5120 } // end of PHI handling 5121 5122 // We handle calls that: 5123 // * Are debug info intrinsics. 5124 // * Have a mapping to an IR intrinsic. 5125 // * Have a vector version available. 5126 auto *CI = dyn_cast<CallInst>(&I); 5127 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5128 !isa<DbgInfoIntrinsic>(CI) && 5129 !(CI->getCalledFunction() && TLI && 5130 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5131 emitAnalysis(VectorizationReport(CI) 5132 << "call instruction cannot be vectorized"); 5133 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5134 return false; 5135 } 5136 5137 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5138 // second argument is the same (i.e. loop invariant) 5139 if (CI && hasVectorInstrinsicScalarOpd( 5140 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5141 auto *SE = PSE.getSE(); 5142 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5143 emitAnalysis(VectorizationReport(CI) 5144 << "intrinsic instruction cannot be vectorized"); 5145 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5146 return false; 5147 } 5148 } 5149 5150 // Check that the instruction return type is vectorizable. 5151 // Also, we can't vectorize extractelement instructions. 5152 if ((!VectorType::isValidElementType(I.getType()) && 5153 !I.getType()->isVoidTy()) || 5154 isa<ExtractElementInst>(I)) { 5155 emitAnalysis(VectorizationReport(&I) 5156 << "instruction return type cannot be vectorized"); 5157 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5158 return false; 5159 } 5160 5161 // Check that the stored type is vectorizable. 5162 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5163 Type *T = ST->getValueOperand()->getType(); 5164 if (!VectorType::isValidElementType(T)) { 5165 emitAnalysis(VectorizationReport(ST) 5166 << "store instruction cannot be vectorized"); 5167 return false; 5168 } 5169 5170 // FP instructions can allow unsafe algebra, thus vectorizable by 5171 // non-IEEE-754 compliant SIMD units. 5172 // This applies to floating-point math operations and calls, not memory 5173 // operations, shuffles, or casts, as they don't change precision or 5174 // semantics. 5175 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5176 !I.hasUnsafeAlgebra()) { 5177 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5178 Hints->setPotentiallyUnsafe(); 5179 } 5180 5181 // Reduction instructions are allowed to have exit users. 5182 // All other instructions must not have external users. 5183 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5184 emitAnalysis(VectorizationReport(&I) 5185 << "value cannot be used outside the loop"); 5186 return false; 5187 } 5188 5189 } // next instr. 5190 } 5191 5192 if (!Induction) { 5193 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5194 if (Inductions.empty()) { 5195 emitAnalysis(VectorizationReport() 5196 << "loop induction variable could not be identified"); 5197 return false; 5198 } 5199 } 5200 5201 // Now we know the widest induction type, check if our found induction 5202 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5203 // will create another. 5204 if (Induction && WidestIndTy != Induction->getType()) 5205 Induction = nullptr; 5206 5207 return true; 5208 } 5209 5210 void LoopVectorizationLegality::collectLoopScalars() { 5211 5212 // If an instruction is uniform after vectorization, it will remain scalar. 5213 Scalars.insert(Uniforms.begin(), Uniforms.end()); 5214 5215 // Collect the getelementptr instructions that will not be vectorized. A 5216 // getelementptr instruction is only vectorized if it is used for a legal 5217 // gather or scatter operation. 5218 for (auto *BB : TheLoop->blocks()) 5219 for (auto &I : *BB) { 5220 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5221 Scalars.insert(GEP); 5222 continue; 5223 } 5224 auto *Ptr = getPointerOperand(&I); 5225 if (!Ptr) 5226 continue; 5227 auto *GEP = getGEPInstruction(Ptr); 5228 if (GEP && isLegalGatherOrScatter(&I)) 5229 Scalars.erase(GEP); 5230 } 5231 5232 // An induction variable will remain scalar if all users of the induction 5233 // variable and induction variable update remain scalar. 5234 auto *Latch = TheLoop->getLoopLatch(); 5235 for (auto &Induction : *getInductionVars()) { 5236 auto *Ind = Induction.first; 5237 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5238 5239 // Determine if all users of the induction variable are scalar after 5240 // vectorization. 5241 auto ScalarInd = all_of(Ind->users(), [&](User *U) -> bool { 5242 auto *I = cast<Instruction>(U); 5243 return I == IndUpdate || !TheLoop->contains(I) || Scalars.count(I); 5244 }); 5245 if (!ScalarInd) 5246 continue; 5247 5248 // Determine if all users of the induction variable update instruction are 5249 // scalar after vectorization. 5250 auto ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5251 auto *I = cast<Instruction>(U); 5252 return I == Ind || !TheLoop->contains(I) || Scalars.count(I); 5253 }); 5254 if (!ScalarIndUpdate) 5255 continue; 5256 5257 // The induction variable and its update instruction will remain scalar. 5258 Scalars.insert(Ind); 5259 Scalars.insert(IndUpdate); 5260 } 5261 } 5262 5263 void LoopVectorizationLegality::collectLoopUniforms() { 5264 // We now know that the loop is vectorizable! 5265 // Collect instructions inside the loop that will remain uniform after 5266 // vectorization. 5267 5268 // Global values, params and instructions outside of current loop are out of 5269 // scope. 5270 auto isOutOfScope = [&](Value *V) -> bool { 5271 Instruction *I = dyn_cast<Instruction>(V); 5272 return (!I || !TheLoop->contains(I)); 5273 }; 5274 5275 SetVector<Instruction *> Worklist; 5276 BasicBlock *Latch = TheLoop->getLoopLatch(); 5277 // Start with the conditional branch. 5278 if (!isOutOfScope(Latch->getTerminator()->getOperand(0))) { 5279 Instruction *Cmp = cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5280 Worklist.insert(Cmp); 5281 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5282 } 5283 5284 // Add all consecutive pointer values; these values will be uniform after 5285 // vectorization (and subsequent cleanup). Although non-consecutive, we also 5286 // add the pointer operands of interleaved accesses since they are treated 5287 // like consecutive pointers during vectorization. 5288 for (auto *BB : TheLoop->blocks()) 5289 for (auto &I : *BB) { 5290 Instruction *Ptr = nullptr; 5291 if (I.getType()->isPointerTy() && isConsecutivePtr(&I)) 5292 Ptr = &I; 5293 else if (isAccessInterleaved(&I)) 5294 Ptr = cast<Instruction>(getPointerOperand(&I)); 5295 else 5296 continue; 5297 Worklist.insert(Ptr); 5298 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ptr << "\n"); 5299 } 5300 5301 // Expand Worklist in topological order: whenever a new instruction 5302 // is added , its users should be either already inside Worklist, or 5303 // out of scope. It ensures a uniform instruction will only be used 5304 // by uniform instructions or out of scope instructions. 5305 unsigned idx = 0; 5306 while (idx != Worklist.size()) { 5307 Instruction *I = Worklist[idx++]; 5308 5309 for (auto OV : I->operand_values()) { 5310 if (isOutOfScope(OV)) 5311 continue; 5312 auto *OI = cast<Instruction>(OV); 5313 if (all_of(OI->users(), [&](User *U) -> bool { 5314 return isOutOfScope(U) || Worklist.count(cast<Instruction>(U)); 5315 })) { 5316 Worklist.insert(OI); 5317 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5318 } 5319 } 5320 } 5321 5322 // For an instruction to be added into Worklist above, all its users inside 5323 // the current loop should be already added into Worklist. This condition 5324 // cannot be true for phi instructions which is always in a dependence loop. 5325 // Because any instruction in the dependence cycle always depends on others 5326 // in the cycle to be added into Worklist first, the result is no ones in 5327 // the cycle will be added into Worklist in the end. 5328 // That is why we process PHI separately. 5329 for (auto &Induction : *getInductionVars()) { 5330 auto *PN = Induction.first; 5331 auto *UpdateV = PN->getIncomingValueForBlock(TheLoop->getLoopLatch()); 5332 if (all_of(PN->users(), 5333 [&](User *U) -> bool { 5334 return U == UpdateV || isOutOfScope(U) || 5335 Worklist.count(cast<Instruction>(U)); 5336 }) && 5337 all_of(UpdateV->users(), [&](User *U) -> bool { 5338 return U == PN || isOutOfScope(U) || 5339 Worklist.count(cast<Instruction>(U)); 5340 })) { 5341 Worklist.insert(cast<Instruction>(PN)); 5342 Worklist.insert(cast<Instruction>(UpdateV)); 5343 DEBUG(dbgs() << "LV: Found uniform instruction: " << *PN << "\n"); 5344 DEBUG(dbgs() << "LV: Found uniform instruction: " << *UpdateV << "\n"); 5345 } 5346 } 5347 5348 Uniforms.insert(Worklist.begin(), Worklist.end()); 5349 } 5350 5351 bool LoopVectorizationLegality::canVectorizeMemory() { 5352 LAI = &(*GetLAA)(*TheLoop); 5353 InterleaveInfo.setLAI(LAI); 5354 auto &OptionalReport = LAI->getReport(); 5355 if (OptionalReport) 5356 emitAnalysis(VectorizationReport(*OptionalReport)); 5357 if (!LAI->canVectorizeMemory()) 5358 return false; 5359 5360 if (LAI->hasStoreToLoopInvariantAddress()) { 5361 emitAnalysis( 5362 VectorizationReport() 5363 << "write to a loop invariant address could not be vectorized"); 5364 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5365 return false; 5366 } 5367 5368 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5369 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5370 5371 return true; 5372 } 5373 5374 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5375 Value *In0 = const_cast<Value *>(V); 5376 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5377 if (!PN) 5378 return false; 5379 5380 return Inductions.count(PN); 5381 } 5382 5383 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5384 return FirstOrderRecurrences.count(Phi); 5385 } 5386 5387 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5388 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5389 } 5390 5391 bool LoopVectorizationLegality::blockCanBePredicated( 5392 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5393 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5394 5395 for (Instruction &I : *BB) { 5396 // Check that we don't have a constant expression that can trap as operand. 5397 for (Value *Operand : I.operands()) { 5398 if (auto *C = dyn_cast<Constant>(Operand)) 5399 if (C->canTrap()) 5400 return false; 5401 } 5402 // We might be able to hoist the load. 5403 if (I.mayReadFromMemory()) { 5404 auto *LI = dyn_cast<LoadInst>(&I); 5405 if (!LI) 5406 return false; 5407 if (!SafePtrs.count(LI->getPointerOperand())) { 5408 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5409 isLegalMaskedGather(LI->getType())) { 5410 MaskedOp.insert(LI); 5411 continue; 5412 } 5413 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5414 if (IsAnnotatedParallel) 5415 continue; 5416 return false; 5417 } 5418 } 5419 5420 if (I.mayWriteToMemory()) { 5421 auto *SI = dyn_cast<StoreInst>(&I); 5422 // We only support predication of stores in basic blocks with one 5423 // predecessor. 5424 if (!SI) 5425 return false; 5426 5427 // Build a masked store if it is legal for the target. 5428 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5429 SI->getPointerOperand()) || 5430 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5431 MaskedOp.insert(SI); 5432 continue; 5433 } 5434 5435 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5436 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5437 5438 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5439 !isSinglePredecessor) 5440 return false; 5441 } 5442 if (I.mayThrow()) 5443 return false; 5444 } 5445 5446 return true; 5447 } 5448 5449 void InterleavedAccessInfo::collectConstStrideAccesses( 5450 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5451 const ValueToValueMap &Strides) { 5452 5453 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5454 5455 // Since it's desired that the load/store instructions be maintained in 5456 // "program order" for the interleaved access analysis, we have to visit the 5457 // blocks in the loop in reverse postorder (i.e., in a topological order). 5458 // Such an ordering will ensure that any load/store that may be executed 5459 // before a second load/store will precede the second load/store in 5460 // AccessStrideInfo. 5461 LoopBlocksDFS DFS(TheLoop); 5462 DFS.perform(LI); 5463 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5464 for (auto &I : *BB) { 5465 auto *LI = dyn_cast<LoadInst>(&I); 5466 auto *SI = dyn_cast<StoreInst>(&I); 5467 if (!LI && !SI) 5468 continue; 5469 5470 Value *Ptr = getPointerOperand(&I); 5471 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides); 5472 5473 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5474 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5475 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5476 5477 // An alignment of 0 means target ABI alignment. 5478 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); 5479 if (!Align) 5480 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5481 5482 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 5483 } 5484 } 5485 5486 // Analyze interleaved accesses and collect them into interleaved load and 5487 // store groups. 5488 // 5489 // When generating code for an interleaved load group, we effectively hoist all 5490 // loads in the group to the location of the first load in program order. When 5491 // generating code for an interleaved store group, we sink all stores to the 5492 // location of the last store. This code motion can change the order of load 5493 // and store instructions and may break dependences. 5494 // 5495 // The code generation strategy mentioned above ensures that we won't violate 5496 // any write-after-read (WAR) dependences. 5497 // 5498 // E.g., for the WAR dependence: a = A[i]; // (1) 5499 // A[i] = b; // (2) 5500 // 5501 // The store group of (2) is always inserted at or below (2), and the load 5502 // group of (1) is always inserted at or above (1). Thus, the instructions will 5503 // never be reordered. All other dependences are checked to ensure the 5504 // correctness of the instruction reordering. 5505 // 5506 // The algorithm visits all memory accesses in the loop in bottom-up program 5507 // order. Program order is established by traversing the blocks in the loop in 5508 // reverse postorder when collecting the accesses. 5509 // 5510 // We visit the memory accesses in bottom-up order because it can simplify the 5511 // construction of store groups in the presence of write-after-write (WAW) 5512 // dependences. 5513 // 5514 // E.g., for the WAW dependence: A[i] = a; // (1) 5515 // A[i] = b; // (2) 5516 // A[i + 1] = c; // (3) 5517 // 5518 // We will first create a store group with (3) and (2). (1) can't be added to 5519 // this group because it and (2) are dependent. However, (1) can be grouped 5520 // with other accesses that may precede it in program order. Note that a 5521 // bottom-up order does not imply that WAW dependences should not be checked. 5522 void InterleavedAccessInfo::analyzeInterleaving( 5523 const ValueToValueMap &Strides) { 5524 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5525 5526 // Holds all accesses with a constant stride. 5527 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 5528 collectConstStrideAccesses(AccessStrideInfo, Strides); 5529 5530 if (AccessStrideInfo.empty()) 5531 return; 5532 5533 // Collect the dependences in the loop. 5534 collectDependences(); 5535 5536 // Holds all interleaved store groups temporarily. 5537 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5538 // Holds all interleaved load groups temporarily. 5539 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5540 5541 // Search in bottom-up program order for pairs of accesses (A and B) that can 5542 // form interleaved load or store groups. In the algorithm below, access A 5543 // precedes access B in program order. We initialize a group for B in the 5544 // outer loop of the algorithm, and then in the inner loop, we attempt to 5545 // insert each A into B's group if: 5546 // 5547 // 1. A and B have the same stride, 5548 // 2. A and B have the same memory object size, and 5549 // 3. A belongs in B's group according to its distance from B. 5550 // 5551 // Special care is taken to ensure group formation will not break any 5552 // dependences. 5553 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 5554 BI != E; ++BI) { 5555 Instruction *B = BI->first; 5556 StrideDescriptor DesB = BI->second; 5557 5558 // Initialize a group for B if it has an allowable stride. Even if we don't 5559 // create a group for B, we continue with the bottom-up algorithm to ensure 5560 // we don't break any of B's dependences. 5561 InterleaveGroup *Group = nullptr; 5562 if (isStrided(DesB.Stride)) { 5563 Group = getInterleaveGroup(B); 5564 if (!Group) { 5565 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 5566 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 5567 } 5568 if (B->mayWriteToMemory()) 5569 StoreGroups.insert(Group); 5570 else 5571 LoadGroups.insert(Group); 5572 } 5573 5574 for (auto AI = std::next(BI); AI != E; ++AI) { 5575 Instruction *A = AI->first; 5576 StrideDescriptor DesA = AI->second; 5577 5578 // Our code motion strategy implies that we can't have dependences 5579 // between accesses in an interleaved group and other accesses located 5580 // between the first and last member of the group. Note that this also 5581 // means that a group can't have more than one member at a given offset. 5582 // The accesses in a group can have dependences with other accesses, but 5583 // we must ensure we don't extend the boundaries of the group such that 5584 // we encompass those dependent accesses. 5585 // 5586 // For example, assume we have the sequence of accesses shown below in a 5587 // stride-2 loop: 5588 // 5589 // (1, 2) is a group | A[i] = a; // (1) 5590 // | A[i-1] = b; // (2) | 5591 // A[i-3] = c; // (3) 5592 // A[i] = d; // (4) | (2, 4) is not a group 5593 // 5594 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 5595 // but not with (4). If we did, the dependent access (3) would be within 5596 // the boundaries of the (2, 4) group. 5597 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 5598 5599 // If a dependence exists and A is already in a group, we know that A 5600 // must be a store since A precedes B and WAR dependences are allowed. 5601 // Thus, A would be sunk below B. We release A's group to prevent this 5602 // illegal code motion. A will then be free to form another group with 5603 // instructions that precede it. 5604 if (isInterleaved(A)) { 5605 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 5606 StoreGroups.remove(StoreGroup); 5607 releaseGroup(StoreGroup); 5608 } 5609 5610 // If a dependence exists and A is not already in a group (or it was 5611 // and we just released it), B might be hoisted above A (if B is a 5612 // load) or another store might be sunk below A (if B is a store). In 5613 // either case, we can't add additional instructions to B's group. B 5614 // will only form a group with instructions that it precedes. 5615 break; 5616 } 5617 5618 // At this point, we've checked for illegal code motion. If either A or B 5619 // isn't strided, there's nothing left to do. 5620 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 5621 continue; 5622 5623 // Ignore A if it's already in a group or isn't the same kind of memory 5624 // operation as B. 5625 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 5626 continue; 5627 5628 // Check rules 1 and 2. Ignore A if its stride or size is different from 5629 // that of B. 5630 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 5631 continue; 5632 5633 // Calculate the distance from A to B. 5634 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 5635 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 5636 if (!DistToB) 5637 continue; 5638 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 5639 5640 // Check rule 3. Ignore A if its distance to B is not a multiple of the 5641 // size. 5642 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 5643 continue; 5644 5645 // Ignore A if either A or B is in a predicated block. Although we 5646 // currently prevent group formation for predicated accesses, we may be 5647 // able to relax this limitation in the future once we handle more 5648 // complicated blocks. 5649 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 5650 continue; 5651 5652 // The index of A is the index of B plus A's distance to B in multiples 5653 // of the size. 5654 int IndexA = 5655 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 5656 5657 // Try to insert A into B's group. 5658 if (Group->insertMember(A, IndexA, DesA.Align)) { 5659 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 5660 << " into the interleave group with" << *B << '\n'); 5661 InterleaveGroupMap[A] = Group; 5662 5663 // Set the first load in program order as the insert position. 5664 if (A->mayReadFromMemory()) 5665 Group->setInsertPos(A); 5666 } 5667 } // Iteration over A accesses. 5668 } // Iteration over B accesses. 5669 5670 // Remove interleaved store groups with gaps. 5671 for (InterleaveGroup *Group : StoreGroups) 5672 if (Group->getNumMembers() != Group->getFactor()) 5673 releaseGroup(Group); 5674 5675 // If there is a non-reversed interleaved load group with gaps, we will need 5676 // to execute at least one scalar epilogue iteration. This will ensure that 5677 // we don't speculatively access memory out-of-bounds. Note that we only need 5678 // to look for a member at index factor - 1, since every group must have a 5679 // member at index zero. 5680 for (InterleaveGroup *Group : LoadGroups) 5681 if (!Group->getMember(Group->getFactor() - 1)) { 5682 if (Group->isReverse()) { 5683 releaseGroup(Group); 5684 } else { 5685 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 5686 RequiresScalarEpilogue = true; 5687 } 5688 } 5689 } 5690 5691 LoopVectorizationCostModel::VectorizationFactor 5692 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 5693 // Width 1 means no vectorize 5694 VectorizationFactor Factor = {1U, 0U}; 5695 if (OptForSize && Legal->getRuntimePointerChecking()->Need) { 5696 emitAnalysis( 5697 VectorizationReport() 5698 << "runtime pointer checks needed. Enable vectorization of this " 5699 "loop with '#pragma clang loop vectorize(enable)' when " 5700 "compiling with -Os/-Oz"); 5701 DEBUG(dbgs() 5702 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 5703 return Factor; 5704 } 5705 5706 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 5707 emitAnalysis( 5708 VectorizationReport() 5709 << "store that is conditionally executed prevents vectorization"); 5710 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5711 return Factor; 5712 } 5713 5714 // Find the trip count. 5715 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5716 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5717 5718 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5719 unsigned SmallestType, WidestType; 5720 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5721 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5722 unsigned MaxSafeDepDist = -1U; 5723 5724 // Get the maximum safe dependence distance in bits computed by LAA. If the 5725 // loop contains any interleaved accesses, we divide the dependence distance 5726 // by the maximum interleave factor of all interleaved groups. Note that 5727 // although the division ensures correctness, this is a fairly conservative 5728 // computation because the maximum distance computed by LAA may not involve 5729 // any of the interleaved accesses. 5730 if (Legal->getMaxSafeDepDistBytes() != -1U) 5731 MaxSafeDepDist = 5732 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 5733 5734 WidestRegister = 5735 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 5736 unsigned MaxVectorSize = WidestRegister / WidestType; 5737 5738 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 5739 << WidestType << " bits.\n"); 5740 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 5741 << " bits.\n"); 5742 5743 if (MaxVectorSize == 0) { 5744 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5745 MaxVectorSize = 1; 5746 } 5747 5748 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 5749 " into one vector!"); 5750 5751 unsigned VF = MaxVectorSize; 5752 if (MaximizeBandwidth && !OptForSize) { 5753 // Collect all viable vectorization factors. 5754 SmallVector<unsigned, 8> VFs; 5755 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5756 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 5757 VFs.push_back(VS); 5758 5759 // For each VF calculate its register usage. 5760 auto RUs = calculateRegisterUsage(VFs); 5761 5762 // Select the largest VF which doesn't require more registers than existing 5763 // ones. 5764 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 5765 for (int i = RUs.size() - 1; i >= 0; --i) { 5766 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 5767 VF = VFs[i]; 5768 break; 5769 } 5770 } 5771 } 5772 5773 // If we optimize the program for size, avoid creating the tail loop. 5774 if (OptForSize) { 5775 // If we are unable to calculate the trip count then don't try to vectorize. 5776 if (TC < 2) { 5777 emitAnalysis( 5778 VectorizationReport() 5779 << "unable to calculate the loop count due to complex control flow"); 5780 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5781 return Factor; 5782 } 5783 5784 // Find the maximum SIMD width that can fit within the trip count. 5785 VF = TC % MaxVectorSize; 5786 5787 if (VF == 0) 5788 VF = MaxVectorSize; 5789 else { 5790 // If the trip count that we found modulo the vectorization factor is not 5791 // zero then we require a tail. 5792 emitAnalysis(VectorizationReport() 5793 << "cannot optimize for size and vectorize at the " 5794 "same time. Enable vectorization of this loop " 5795 "with '#pragma clang loop vectorize(enable)' " 5796 "when compiling with -Os/-Oz"); 5797 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5798 return Factor; 5799 } 5800 } 5801 5802 int UserVF = Hints->getWidth(); 5803 if (UserVF != 0) { 5804 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5805 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5806 5807 Factor.Width = UserVF; 5808 return Factor; 5809 } 5810 5811 float Cost = expectedCost(1).first; 5812 #ifndef NDEBUG 5813 const float ScalarCost = Cost; 5814 #endif /* NDEBUG */ 5815 unsigned Width = 1; 5816 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5817 5818 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5819 // Ignore scalar width, because the user explicitly wants vectorization. 5820 if (ForceVectorization && VF > 1) { 5821 Width = 2; 5822 Cost = expectedCost(Width).first / (float)Width; 5823 } 5824 5825 for (unsigned i = 2; i <= VF; i *= 2) { 5826 // Notice that the vector loop needs to be executed less times, so 5827 // we need to divide the cost of the vector loops by the width of 5828 // the vector elements. 5829 VectorizationCostTy C = expectedCost(i); 5830 float VectorCost = C.first / (float)i; 5831 DEBUG(dbgs() << "LV: Vector loop of width " << i 5832 << " costs: " << (int)VectorCost << ".\n"); 5833 if (!C.second && !ForceVectorization) { 5834 DEBUG( 5835 dbgs() << "LV: Not considering vector loop of width " << i 5836 << " because it will not generate any vector instructions.\n"); 5837 continue; 5838 } 5839 if (VectorCost < Cost) { 5840 Cost = VectorCost; 5841 Width = i; 5842 } 5843 } 5844 5845 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5846 << "LV: Vectorization seems to be not beneficial, " 5847 << "but was forced by a user.\n"); 5848 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5849 Factor.Width = Width; 5850 Factor.Cost = Width * Cost; 5851 return Factor; 5852 } 5853 5854 std::pair<unsigned, unsigned> 5855 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5856 unsigned MinWidth = -1U; 5857 unsigned MaxWidth = 8; 5858 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5859 5860 // For each block. 5861 for (BasicBlock *BB : TheLoop->blocks()) { 5862 // For each instruction in the loop. 5863 for (Instruction &I : *BB) { 5864 Type *T = I.getType(); 5865 5866 // Skip ignored values. 5867 if (ValuesToIgnore.count(&I)) 5868 continue; 5869 5870 // Only examine Loads, Stores and PHINodes. 5871 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5872 continue; 5873 5874 // Examine PHI nodes that are reduction variables. Update the type to 5875 // account for the recurrence type. 5876 if (auto *PN = dyn_cast<PHINode>(&I)) { 5877 if (!Legal->isReductionVariable(PN)) 5878 continue; 5879 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 5880 T = RdxDesc.getRecurrenceType(); 5881 } 5882 5883 // Examine the stored values. 5884 if (auto *ST = dyn_cast<StoreInst>(&I)) 5885 T = ST->getValueOperand()->getType(); 5886 5887 // Ignore loaded pointer types and stored pointer types that are not 5888 // consecutive. However, we do want to take consecutive stores/loads of 5889 // pointer vectors into account. 5890 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I)) 5891 continue; 5892 5893 MinWidth = std::min(MinWidth, 5894 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5895 MaxWidth = std::max(MaxWidth, 5896 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5897 } 5898 } 5899 5900 return {MinWidth, MaxWidth}; 5901 } 5902 5903 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 5904 unsigned VF, 5905 unsigned LoopCost) { 5906 5907 // -- The interleave heuristics -- 5908 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5909 // There are many micro-architectural considerations that we can't predict 5910 // at this level. For example, frontend pressure (on decode or fetch) due to 5911 // code size, or the number and capabilities of the execution ports. 5912 // 5913 // We use the following heuristics to select the interleave count: 5914 // 1. If the code has reductions, then we interleave to break the cross 5915 // iteration dependency. 5916 // 2. If the loop is really small, then we interleave to reduce the loop 5917 // overhead. 5918 // 3. We don't interleave if we think that we will spill registers to memory 5919 // due to the increased register pressure. 5920 5921 // When we optimize for size, we don't interleave. 5922 if (OptForSize) 5923 return 1; 5924 5925 // We used the distance for the interleave count. 5926 if (Legal->getMaxSafeDepDistBytes() != -1U) 5927 return 1; 5928 5929 // Do not interleave loops with a relatively small trip count. 5930 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5931 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 5932 return 1; 5933 5934 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5935 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5936 << " registers\n"); 5937 5938 if (VF == 1) { 5939 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5940 TargetNumRegisters = ForceTargetNumScalarRegs; 5941 } else { 5942 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5943 TargetNumRegisters = ForceTargetNumVectorRegs; 5944 } 5945 5946 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5947 // We divide by these constants so assume that we have at least one 5948 // instruction that uses at least one register. 5949 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5950 R.NumInstructions = std::max(R.NumInstructions, 1U); 5951 5952 // We calculate the interleave count using the following formula. 5953 // Subtract the number of loop invariants from the number of available 5954 // registers. These registers are used by all of the interleaved instances. 5955 // Next, divide the remaining registers by the number of registers that is 5956 // required by the loop, in order to estimate how many parallel instances 5957 // fit without causing spills. All of this is rounded down if necessary to be 5958 // a power of two. We want power of two interleave count to simplify any 5959 // addressing operations or alignment considerations. 5960 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5961 R.MaxLocalUsers); 5962 5963 // Don't count the induction variable as interleaved. 5964 if (EnableIndVarRegisterHeur) 5965 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5966 std::max(1U, (R.MaxLocalUsers - 1))); 5967 5968 // Clamp the interleave ranges to reasonable counts. 5969 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5970 5971 // Check if the user has overridden the max. 5972 if (VF == 1) { 5973 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5974 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5975 } else { 5976 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5977 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5978 } 5979 5980 // If we did not calculate the cost for VF (because the user selected the VF) 5981 // then we calculate the cost of VF here. 5982 if (LoopCost == 0) 5983 LoopCost = expectedCost(VF).first; 5984 5985 // Clamp the calculated IC to be between the 1 and the max interleave count 5986 // that the target allows. 5987 if (IC > MaxInterleaveCount) 5988 IC = MaxInterleaveCount; 5989 else if (IC < 1) 5990 IC = 1; 5991 5992 // Interleave if we vectorized this loop and there is a reduction that could 5993 // benefit from interleaving. 5994 if (VF > 1 && Legal->getReductionVars()->size()) { 5995 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5996 return IC; 5997 } 5998 5999 // Note that if we've already vectorized the loop we will have done the 6000 // runtime check and so interleaving won't require further checks. 6001 bool InterleavingRequiresRuntimePointerCheck = 6002 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6003 6004 // We want to interleave small loops in order to reduce the loop overhead and 6005 // potentially expose ILP opportunities. 6006 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6007 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6008 // We assume that the cost overhead is 1 and we use the cost model 6009 // to estimate the cost of the loop and interleave until the cost of the 6010 // loop overhead is about 5% of the cost of the loop. 6011 unsigned SmallIC = 6012 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6013 6014 // Interleave until store/load ports (estimated by max interleave count) are 6015 // saturated. 6016 unsigned NumStores = Legal->getNumStores(); 6017 unsigned NumLoads = Legal->getNumLoads(); 6018 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6019 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6020 6021 // If we have a scalar reduction (vector reductions are already dealt with 6022 // by this point), we can increase the critical path length if the loop 6023 // we're interleaving is inside another loop. Limit, by default to 2, so the 6024 // critical path only gets increased by one reduction operation. 6025 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 6026 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6027 SmallIC = std::min(SmallIC, F); 6028 StoresIC = std::min(StoresIC, F); 6029 LoadsIC = std::min(LoadsIC, F); 6030 } 6031 6032 if (EnableLoadStoreRuntimeInterleave && 6033 std::max(StoresIC, LoadsIC) > SmallIC) { 6034 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6035 return std::max(StoresIC, LoadsIC); 6036 } 6037 6038 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6039 return SmallIC; 6040 } 6041 6042 // Interleave if this is a large loop (small loops are already dealt with by 6043 // this point) that could benefit from interleaving. 6044 bool HasReductions = (Legal->getReductionVars()->size() > 0); 6045 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6046 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6047 return IC; 6048 } 6049 6050 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6051 return 1; 6052 } 6053 6054 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6055 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6056 // This function calculates the register usage by measuring the highest number 6057 // of values that are alive at a single location. Obviously, this is a very 6058 // rough estimation. We scan the loop in a topological order in order and 6059 // assign a number to each instruction. We use RPO to ensure that defs are 6060 // met before their users. We assume that each instruction that has in-loop 6061 // users starts an interval. We record every time that an in-loop value is 6062 // used, so we have a list of the first and last occurrences of each 6063 // instruction. Next, we transpose this data structure into a multi map that 6064 // holds the list of intervals that *end* at a specific location. This multi 6065 // map allows us to perform a linear search. We scan the instructions linearly 6066 // and record each time that a new interval starts, by placing it in a set. 6067 // If we find this value in the multi-map then we remove it from the set. 6068 // The max register usage is the maximum size of the set. 6069 // We also search for instructions that are defined outside the loop, but are 6070 // used inside the loop. We need this number separately from the max-interval 6071 // usage number because when we unroll, loop-invariant values do not take 6072 // more register. 6073 LoopBlocksDFS DFS(TheLoop); 6074 DFS.perform(LI); 6075 6076 RegisterUsage RU; 6077 RU.NumInstructions = 0; 6078 6079 // Each 'key' in the map opens a new interval. The values 6080 // of the map are the index of the 'last seen' usage of the 6081 // instruction that is the key. 6082 typedef DenseMap<Instruction *, unsigned> IntervalMap; 6083 // Maps instruction to its index. 6084 DenseMap<unsigned, Instruction *> IdxToInstr; 6085 // Marks the end of each interval. 6086 IntervalMap EndPoint; 6087 // Saves the list of instruction indices that are used in the loop. 6088 SmallSet<Instruction *, 8> Ends; 6089 // Saves the list of values that are used in the loop but are 6090 // defined outside the loop, such as arguments and constants. 6091 SmallPtrSet<Value *, 8> LoopInvariants; 6092 6093 unsigned Index = 0; 6094 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6095 RU.NumInstructions += BB->size(); 6096 for (Instruction &I : *BB) { 6097 IdxToInstr[Index++] = &I; 6098 6099 // Save the end location of each USE. 6100 for (Value *U : I.operands()) { 6101 auto *Instr = dyn_cast<Instruction>(U); 6102 6103 // Ignore non-instruction values such as arguments, constants, etc. 6104 if (!Instr) 6105 continue; 6106 6107 // If this instruction is outside the loop then record it and continue. 6108 if (!TheLoop->contains(Instr)) { 6109 LoopInvariants.insert(Instr); 6110 continue; 6111 } 6112 6113 // Overwrite previous end points. 6114 EndPoint[Instr] = Index; 6115 Ends.insert(Instr); 6116 } 6117 } 6118 } 6119 6120 // Saves the list of intervals that end with the index in 'key'. 6121 typedef SmallVector<Instruction *, 2> InstrList; 6122 DenseMap<unsigned, InstrList> TransposeEnds; 6123 6124 // Transpose the EndPoints to a list of values that end at each index. 6125 for (auto &Interval : EndPoint) 6126 TransposeEnds[Interval.second].push_back(Interval.first); 6127 6128 SmallSet<Instruction *, 8> OpenIntervals; 6129 6130 // Get the size of the widest register. 6131 unsigned MaxSafeDepDist = -1U; 6132 if (Legal->getMaxSafeDepDistBytes() != -1U) 6133 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6134 unsigned WidestRegister = 6135 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6136 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6137 6138 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6139 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6140 6141 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6142 6143 // A lambda that gets the register usage for the given type and VF. 6144 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6145 if (Ty->isTokenTy()) 6146 return 0U; 6147 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6148 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6149 }; 6150 6151 for (unsigned int i = 0; i < Index; ++i) { 6152 Instruction *I = IdxToInstr[i]; 6153 // Ignore instructions that are never used within the loop. 6154 if (!Ends.count(I)) 6155 continue; 6156 6157 // Remove all of the instructions that end at this location. 6158 InstrList &List = TransposeEnds[i]; 6159 for (Instruction *ToRemove : List) 6160 OpenIntervals.erase(ToRemove); 6161 6162 // Skip ignored values. 6163 if (ValuesToIgnore.count(I)) 6164 continue; 6165 6166 // For each VF find the maximum usage of registers. 6167 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6168 if (VFs[j] == 1) { 6169 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6170 continue; 6171 } 6172 6173 // Count the number of live intervals. 6174 unsigned RegUsage = 0; 6175 for (auto Inst : OpenIntervals) { 6176 // Skip ignored values for VF > 1. 6177 if (VecValuesToIgnore.count(Inst)) 6178 continue; 6179 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6180 } 6181 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6182 } 6183 6184 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6185 << OpenIntervals.size() << '\n'); 6186 6187 // Add the current instruction to the list of open intervals. 6188 OpenIntervals.insert(I); 6189 } 6190 6191 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6192 unsigned Invariant = 0; 6193 if (VFs[i] == 1) 6194 Invariant = LoopInvariants.size(); 6195 else { 6196 for (auto Inst : LoopInvariants) 6197 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6198 } 6199 6200 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6201 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6202 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6203 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6204 6205 RU.LoopInvariantRegs = Invariant; 6206 RU.MaxLocalUsers = MaxUsages[i]; 6207 RUs[i] = RU; 6208 } 6209 6210 return RUs; 6211 } 6212 6213 LoopVectorizationCostModel::VectorizationCostTy 6214 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6215 VectorizationCostTy Cost; 6216 6217 // For each block. 6218 for (BasicBlock *BB : TheLoop->blocks()) { 6219 VectorizationCostTy BlockCost; 6220 6221 // For each instruction in the old loop. 6222 for (Instruction &I : *BB) { 6223 // Skip dbg intrinsics. 6224 if (isa<DbgInfoIntrinsic>(I)) 6225 continue; 6226 6227 // Skip ignored values. 6228 if (ValuesToIgnore.count(&I)) 6229 continue; 6230 6231 VectorizationCostTy C = getInstructionCost(&I, VF); 6232 6233 // Check if we should override the cost. 6234 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6235 C.first = ForceTargetInstructionCost; 6236 6237 BlockCost.first += C.first; 6238 BlockCost.second |= C.second; 6239 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6240 << VF << " For instruction: " << I << '\n'); 6241 } 6242 6243 // We assume that if-converted blocks have a 50% chance of being executed. 6244 // When the code is scalar then some of the blocks are avoided due to CF. 6245 // When the code is vectorized we execute all code paths. 6246 if (VF == 1 && Legal->blockNeedsPredication(BB)) 6247 BlockCost.first /= 2; 6248 6249 Cost.first += BlockCost.first; 6250 Cost.second |= BlockCost.second; 6251 } 6252 6253 return Cost; 6254 } 6255 6256 /// \brief Check whether the address computation for a non-consecutive memory 6257 /// access looks like an unlikely candidate for being merged into the indexing 6258 /// mode. 6259 /// 6260 /// We look for a GEP which has one index that is an induction variable and all 6261 /// other indices are loop invariant. If the stride of this access is also 6262 /// within a small bound we decide that this address computation can likely be 6263 /// merged into the addressing mode. 6264 /// In all other cases, we identify the address computation as complex. 6265 static bool isLikelyComplexAddressComputation(Value *Ptr, 6266 LoopVectorizationLegality *Legal, 6267 ScalarEvolution *SE, 6268 const Loop *TheLoop) { 6269 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6270 if (!Gep) 6271 return true; 6272 6273 // We are looking for a gep with all loop invariant indices except for one 6274 // which should be an induction variable. 6275 unsigned NumOperands = Gep->getNumOperands(); 6276 for (unsigned i = 1; i < NumOperands; ++i) { 6277 Value *Opd = Gep->getOperand(i); 6278 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6279 !Legal->isInductionVariable(Opd)) 6280 return true; 6281 } 6282 6283 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 6284 // can likely be merged into the address computation. 6285 unsigned MaxMergeDistance = 64; 6286 6287 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 6288 if (!AddRec) 6289 return true; 6290 6291 // Check the step is constant. 6292 const SCEV *Step = AddRec->getStepRecurrence(*SE); 6293 // Calculate the pointer stride and check if it is consecutive. 6294 const auto *C = dyn_cast<SCEVConstant>(Step); 6295 if (!C) 6296 return true; 6297 6298 const APInt &APStepVal = C->getAPInt(); 6299 6300 // Huge step value - give up. 6301 if (APStepVal.getBitWidth() > 64) 6302 return true; 6303 6304 int64_t StepVal = APStepVal.getSExtValue(); 6305 6306 return StepVal > MaxMergeDistance; 6307 } 6308 6309 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6310 return Legal->hasStride(I->getOperand(0)) || 6311 Legal->hasStride(I->getOperand(1)); 6312 } 6313 6314 LoopVectorizationCostModel::VectorizationCostTy 6315 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 6316 // If we know that this instruction will remain uniform, check the cost of 6317 // the scalar version. 6318 if (Legal->isUniformAfterVectorization(I)) 6319 VF = 1; 6320 6321 Type *VectorTy; 6322 unsigned C = getInstructionCost(I, VF, VectorTy); 6323 6324 bool TypeNotScalarized = 6325 VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF; 6326 return VectorizationCostTy(C, TypeNotScalarized); 6327 } 6328 6329 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6330 unsigned VF, 6331 Type *&VectorTy) { 6332 Type *RetTy = I->getType(); 6333 if (VF > 1 && MinBWs.count(I)) 6334 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6335 VectorTy = ToVectorTy(RetTy, VF); 6336 auto SE = PSE.getSE(); 6337 6338 // TODO: We need to estimate the cost of intrinsic calls. 6339 switch (I->getOpcode()) { 6340 case Instruction::GetElementPtr: 6341 // We mark this instruction as zero-cost because the cost of GEPs in 6342 // vectorized code depends on whether the corresponding memory instruction 6343 // is scalarized or not. Therefore, we handle GEPs with the memory 6344 // instruction cost. 6345 return 0; 6346 case Instruction::Br: { 6347 return TTI.getCFInstrCost(I->getOpcode()); 6348 } 6349 case Instruction::PHI: { 6350 auto *Phi = cast<PHINode>(I); 6351 6352 // First-order recurrences are replaced by vector shuffles inside the loop. 6353 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6354 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6355 VectorTy, VF - 1, VectorTy); 6356 6357 // TODO: IF-converted IFs become selects. 6358 return 0; 6359 } 6360 case Instruction::UDiv: 6361 case Instruction::SDiv: 6362 case Instruction::URem: 6363 case Instruction::SRem: 6364 // We assume that if-converted blocks have a 50% chance of being executed. 6365 // Predicated scalarized instructions are avoided due to the CF that 6366 // bypasses turned off lanes. If we are not predicating, fallthrough. 6367 if (VF > 1 && mayDivideByZero(*I) && 6368 Legal->blockNeedsPredication(I->getParent())) 6369 return VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy) / 2 + 6370 getScalarizationOverhead(I, VF, true, TTI); 6371 case Instruction::Add: 6372 case Instruction::FAdd: 6373 case Instruction::Sub: 6374 case Instruction::FSub: 6375 case Instruction::Mul: 6376 case Instruction::FMul: 6377 case Instruction::FDiv: 6378 case Instruction::FRem: 6379 case Instruction::Shl: 6380 case Instruction::LShr: 6381 case Instruction::AShr: 6382 case Instruction::And: 6383 case Instruction::Or: 6384 case Instruction::Xor: { 6385 // Since we will replace the stride by 1 the multiplication should go away. 6386 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6387 return 0; 6388 // Certain instructions can be cheaper to vectorize if they have a constant 6389 // second vector operand. One example of this are shifts on x86. 6390 TargetTransformInfo::OperandValueKind Op1VK = 6391 TargetTransformInfo::OK_AnyValue; 6392 TargetTransformInfo::OperandValueKind Op2VK = 6393 TargetTransformInfo::OK_AnyValue; 6394 TargetTransformInfo::OperandValueProperties Op1VP = 6395 TargetTransformInfo::OP_None; 6396 TargetTransformInfo::OperandValueProperties Op2VP = 6397 TargetTransformInfo::OP_None; 6398 Value *Op2 = I->getOperand(1); 6399 6400 // Check for a splat or for a non uniform vector of constants. 6401 if (isa<ConstantInt>(Op2)) { 6402 ConstantInt *CInt = cast<ConstantInt>(Op2); 6403 if (CInt && CInt->getValue().isPowerOf2()) 6404 Op2VP = TargetTransformInfo::OP_PowerOf2; 6405 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6406 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 6407 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 6408 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 6409 if (SplatValue) { 6410 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 6411 if (CInt && CInt->getValue().isPowerOf2()) 6412 Op2VP = TargetTransformInfo::OP_PowerOf2; 6413 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6414 } 6415 } else if (Legal->isUniform(Op2)) { 6416 Op2VK = TargetTransformInfo::OK_UniformValue; 6417 } 6418 6419 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 6420 Op1VP, Op2VP); 6421 } 6422 case Instruction::Select: { 6423 SelectInst *SI = cast<SelectInst>(I); 6424 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6425 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6426 Type *CondTy = SI->getCondition()->getType(); 6427 if (!ScalarCond) 6428 CondTy = VectorType::get(CondTy, VF); 6429 6430 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 6431 } 6432 case Instruction::ICmp: 6433 case Instruction::FCmp: { 6434 Type *ValTy = I->getOperand(0)->getType(); 6435 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6436 auto It = MinBWs.find(Op0AsInstruction); 6437 if (VF > 1 && It != MinBWs.end()) 6438 ValTy = IntegerType::get(ValTy->getContext(), It->second); 6439 VectorTy = ToVectorTy(ValTy, VF); 6440 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 6441 } 6442 case Instruction::Store: 6443 case Instruction::Load: { 6444 StoreInst *SI = dyn_cast<StoreInst>(I); 6445 LoadInst *LI = dyn_cast<LoadInst>(I); 6446 Type *ValTy = (SI ? SI->getValueOperand()->getType() : LI->getType()); 6447 VectorTy = ToVectorTy(ValTy, VF); 6448 6449 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 6450 unsigned AS = 6451 SI ? SI->getPointerAddressSpace() : LI->getPointerAddressSpace(); 6452 Value *Ptr = getPointerOperand(I); 6453 // We add the cost of address computation here instead of with the gep 6454 // instruction because only here we know whether the operation is 6455 // scalarized. 6456 if (VF == 1) 6457 return TTI.getAddressComputationCost(VectorTy) + 6458 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6459 6460 if (LI && Legal->isUniform(Ptr)) { 6461 // Scalar load + broadcast 6462 unsigned Cost = TTI.getAddressComputationCost(ValTy->getScalarType()); 6463 Cost += TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6464 Alignment, AS); 6465 return Cost + 6466 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, ValTy); 6467 } 6468 6469 // For an interleaved access, calculate the total cost of the whole 6470 // interleave group. 6471 if (Legal->isAccessInterleaved(I)) { 6472 auto Group = Legal->getInterleavedAccessGroup(I); 6473 assert(Group && "Fail to get an interleaved access group."); 6474 6475 // Only calculate the cost once at the insert position. 6476 if (Group->getInsertPos() != I) 6477 return 0; 6478 6479 unsigned InterleaveFactor = Group->getFactor(); 6480 Type *WideVecTy = 6481 VectorType::get(VectorTy->getVectorElementType(), 6482 VectorTy->getVectorNumElements() * InterleaveFactor); 6483 6484 // Holds the indices of existing members in an interleaved load group. 6485 // An interleaved store group doesn't need this as it doesn't allow gaps. 6486 SmallVector<unsigned, 4> Indices; 6487 if (LI) { 6488 for (unsigned i = 0; i < InterleaveFactor; i++) 6489 if (Group->getMember(i)) 6490 Indices.push_back(i); 6491 } 6492 6493 // Calculate the cost of the whole interleaved group. 6494 unsigned Cost = TTI.getInterleavedMemoryOpCost( 6495 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 6496 Group->getAlignment(), AS); 6497 6498 if (Group->isReverse()) 6499 Cost += 6500 Group->getNumMembers() * 6501 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6502 6503 // FIXME: The interleaved load group with a huge gap could be even more 6504 // expensive than scalar operations. Then we could ignore such group and 6505 // use scalar operations instead. 6506 return Cost; 6507 } 6508 6509 // Scalarized loads/stores. 6510 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6511 bool UseGatherOrScatter = 6512 (ConsecutiveStride == 0) && Legal->isLegalGatherOrScatter(I); 6513 6514 bool Reverse = ConsecutiveStride < 0; 6515 const DataLayout &DL = I->getModule()->getDataLayout(); 6516 uint64_t ScalarAllocatedSize = DL.getTypeAllocSize(ValTy); 6517 uint64_t VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF; 6518 if ((!ConsecutiveStride && !UseGatherOrScatter) || 6519 ScalarAllocatedSize != VectorElementSize) { 6520 bool IsComplexComputation = 6521 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 6522 unsigned Cost = 0; 6523 // The cost of extracting from the value vector and pointer vector. 6524 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6525 for (unsigned i = 0; i < VF; ++i) { 6526 // The cost of extracting the pointer operand. 6527 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 6528 // In case of STORE, the cost of ExtractElement from the vector. 6529 // In case of LOAD, the cost of InsertElement into the returned 6530 // vector. 6531 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement 6532 : Instruction::InsertElement, 6533 VectorTy, i); 6534 } 6535 6536 // The cost of the scalar loads/stores. 6537 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 6538 Cost += VF * 6539 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6540 Alignment, AS); 6541 return Cost; 6542 } 6543 6544 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 6545 if (UseGatherOrScatter) { 6546 assert(ConsecutiveStride == 0 && 6547 "Gather/Scatter are not used for consecutive stride"); 6548 return Cost + 6549 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 6550 Legal->isMaskRequired(I), Alignment); 6551 } 6552 // Wide load/stores. 6553 if (Legal->isMaskRequired(I)) 6554 Cost += 6555 TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6556 else 6557 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6558 6559 if (Reverse) 6560 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6561 return Cost; 6562 } 6563 case Instruction::ZExt: 6564 case Instruction::SExt: 6565 case Instruction::FPToUI: 6566 case Instruction::FPToSI: 6567 case Instruction::FPExt: 6568 case Instruction::PtrToInt: 6569 case Instruction::IntToPtr: 6570 case Instruction::SIToFP: 6571 case Instruction::UIToFP: 6572 case Instruction::Trunc: 6573 case Instruction::FPTrunc: 6574 case Instruction::BitCast: { 6575 // We optimize the truncation of induction variable. 6576 // The cost of these is the same as the scalar operation. 6577 if (I->getOpcode() == Instruction::Trunc && 6578 Legal->isInductionVariable(I->getOperand(0))) 6579 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 6580 I->getOperand(0)->getType()); 6581 6582 Type *SrcScalarTy = I->getOperand(0)->getType(); 6583 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 6584 if (VF > 1 && MinBWs.count(I)) { 6585 // This cast is going to be shrunk. This may remove the cast or it might 6586 // turn it into slightly different cast. For example, if MinBW == 16, 6587 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6588 // 6589 // Calculate the modified src and dest types. 6590 Type *MinVecTy = VectorTy; 6591 if (I->getOpcode() == Instruction::Trunc) { 6592 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6593 VectorTy = 6594 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6595 } else if (I->getOpcode() == Instruction::ZExt || 6596 I->getOpcode() == Instruction::SExt) { 6597 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6598 VectorTy = 6599 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6600 } 6601 } 6602 6603 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 6604 } 6605 case Instruction::Call: { 6606 bool NeedToScalarize; 6607 CallInst *CI = cast<CallInst>(I); 6608 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 6609 if (getVectorIntrinsicIDForCall(CI, TLI)) 6610 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 6611 return CallCost; 6612 } 6613 default: 6614 // The cost of executing VF copies of the scalar instruction. This opcode 6615 // is unknown. Assume that it is the same as 'mul'. 6616 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 6617 getScalarizationOverhead(I, VF, false, TTI); 6618 } // end of switch. 6619 } 6620 6621 char LoopVectorize::ID = 0; 6622 static const char lv_name[] = "Loop Vectorization"; 6623 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6624 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6625 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6626 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6627 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6628 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6629 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6630 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6631 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6632 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 6633 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6634 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6635 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6636 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6637 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6638 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6639 6640 namespace llvm { 6641 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6642 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6643 } 6644 } 6645 6646 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6647 6648 // Check if the pointer operand of a load or store instruction is 6649 // consecutive. 6650 if (auto *Ptr = getPointerOperand(Inst)) 6651 return Legal->isConsecutivePtr(Ptr); 6652 return false; 6653 } 6654 6655 void LoopVectorizationCostModel::collectValuesToIgnore() { 6656 // Ignore ephemeral values. 6657 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6658 6659 // Ignore type-promoting instructions we identified during reduction 6660 // detection. 6661 for (auto &Reduction : *Legal->getReductionVars()) { 6662 RecurrenceDescriptor &RedDes = Reduction.second; 6663 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6664 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6665 } 6666 6667 // Insert values known to be scalar into VecValuesToIgnore. 6668 for (auto *BB : TheLoop->getBlocks()) 6669 for (auto &I : *BB) 6670 if (Legal->isScalarAfterVectorization(&I)) 6671 VecValuesToIgnore.insert(&I); 6672 } 6673 6674 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 6675 bool IfPredicateInstr) { 6676 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 6677 // Holds vector parameters or scalars, in case of uniform vals. 6678 SmallVector<VectorParts, 4> Params; 6679 6680 setDebugLocFromInst(Builder, Instr); 6681 6682 // Does this instruction return a value ? 6683 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 6684 6685 // Initialize a new scalar map entry. 6686 ScalarParts Entry(UF); 6687 6688 VectorParts Cond; 6689 if (IfPredicateInstr) { 6690 assert(Instr->getParent()->getSinglePredecessor() && 6691 "Only support single predecessor blocks"); 6692 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 6693 Instr->getParent()); 6694 } 6695 6696 // For each vector unroll 'part': 6697 for (unsigned Part = 0; Part < UF; ++Part) { 6698 Entry[Part].resize(1); 6699 // For each scalar that we create: 6700 6701 // Start an "if (pred) a[i] = ..." block. 6702 Value *Cmp = nullptr; 6703 if (IfPredicateInstr) { 6704 if (Cond[Part]->getType()->isVectorTy()) 6705 Cond[Part] = 6706 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 6707 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 6708 ConstantInt::get(Cond[Part]->getType(), 1)); 6709 } 6710 6711 Instruction *Cloned = Instr->clone(); 6712 if (!IsVoidRetTy) 6713 Cloned->setName(Instr->getName() + ".cloned"); 6714 6715 // Replace the operands of the cloned instructions with their scalar 6716 // equivalents in the new loop. 6717 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6718 auto *NewOp = getScalarValue(Instr->getOperand(op), Part, 0); 6719 Cloned->setOperand(op, NewOp); 6720 } 6721 6722 // Place the cloned scalar in the new loop. 6723 Builder.Insert(Cloned); 6724 6725 // Add the cloned scalar to the scalar map entry. 6726 Entry[Part][0] = Cloned; 6727 6728 // If we just cloned a new assumption, add it the assumption cache. 6729 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 6730 if (II->getIntrinsicID() == Intrinsic::assume) 6731 AC->registerAssumption(II); 6732 6733 // End if-block. 6734 if (IfPredicateInstr) 6735 PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp)); 6736 } 6737 VectorLoopValueMap.initScalar(Instr, Entry); 6738 } 6739 6740 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 6741 auto *SI = dyn_cast<StoreInst>(Instr); 6742 bool IfPredicateInstr = (SI && Legal->blockNeedsPredication(SI->getParent())); 6743 6744 return scalarizeInstruction(Instr, IfPredicateInstr); 6745 } 6746 6747 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6748 6749 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6750 6751 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6752 Instruction::BinaryOps BinOp) { 6753 // When unrolling and the VF is 1, we only need to add a simple scalar. 6754 Type *Ty = Val->getType(); 6755 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6756 6757 if (Ty->isFloatingPointTy()) { 6758 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6759 6760 // Floating point operations had to be 'fast' to enable the unrolling. 6761 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6762 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6763 } 6764 Constant *C = ConstantInt::get(Ty, StartIdx); 6765 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6766 } 6767 6768 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6769 SmallVector<Metadata *, 4> MDs; 6770 // Reserve first location for self reference to the LoopID metadata node. 6771 MDs.push_back(nullptr); 6772 bool IsUnrollMetadata = false; 6773 MDNode *LoopID = L->getLoopID(); 6774 if (LoopID) { 6775 // First find existing loop unrolling disable metadata. 6776 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6777 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6778 if (MD) { 6779 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6780 IsUnrollMetadata = 6781 S && S->getString().startswith("llvm.loop.unroll.disable"); 6782 } 6783 MDs.push_back(LoopID->getOperand(i)); 6784 } 6785 } 6786 6787 if (!IsUnrollMetadata) { 6788 // Add runtime unroll disable metadata. 6789 LLVMContext &Context = L->getHeader()->getContext(); 6790 SmallVector<Metadata *, 1> DisableOperands; 6791 DisableOperands.push_back( 6792 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6793 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6794 MDs.push_back(DisableNode); 6795 MDNode *NewLoopID = MDNode::get(Context, MDs); 6796 // Set operand 0 to refer to the loop id itself. 6797 NewLoopID->replaceOperandWith(0, NewLoopID); 6798 L->setLoopID(NewLoopID); 6799 } 6800 } 6801 6802 bool LoopVectorizePass::processLoop(Loop *L) { 6803 assert(L->empty() && "Only process inner loops."); 6804 6805 #ifndef NDEBUG 6806 const std::string DebugLocStr = getDebugLocString(L); 6807 #endif /* NDEBUG */ 6808 6809 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 6810 << L->getHeader()->getParent()->getName() << "\" from " 6811 << DebugLocStr << "\n"); 6812 6813 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 6814 6815 DEBUG(dbgs() << "LV: Loop hints:" 6816 << " force=" 6817 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 6818 ? "disabled" 6819 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 6820 ? "enabled" 6821 : "?")) 6822 << " width=" << Hints.getWidth() 6823 << " unroll=" << Hints.getInterleave() << "\n"); 6824 6825 // Function containing loop 6826 Function *F = L->getHeader()->getParent(); 6827 6828 // Looking at the diagnostic output is the only way to determine if a loop 6829 // was vectorized (other than looking at the IR or machine code), so it 6830 // is important to generate an optimization remark for each loop. Most of 6831 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 6832 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 6833 // less verbose reporting vectorized loops and unvectorized loops that may 6834 // benefit from vectorization, respectively. 6835 6836 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 6837 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 6838 return false; 6839 } 6840 6841 // Check the loop for a trip count threshold: 6842 // do not vectorize loops with a tiny trip count. 6843 const unsigned TC = SE->getSmallConstantTripCount(L); 6844 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 6845 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 6846 << "This loop is not worth vectorizing."); 6847 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 6848 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 6849 else { 6850 DEBUG(dbgs() << "\n"); 6851 emitAnalysisDiag(L, Hints, *ORE, VectorizationReport() 6852 << "vectorization is not beneficial " 6853 "and is not explicitly forced"); 6854 return false; 6855 } 6856 } 6857 6858 PredicatedScalarEvolution PSE(*SE, *L); 6859 6860 // Check if it is legal to vectorize the loop. 6861 LoopVectorizationRequirements Requirements(*ORE); 6862 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 6863 &Requirements, &Hints); 6864 if (!LVL.canVectorize()) { 6865 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 6866 emitMissedWarning(F, L, Hints, ORE); 6867 return false; 6868 } 6869 6870 // Use the cost model. 6871 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 6872 &Hints); 6873 CM.collectValuesToIgnore(); 6874 6875 // Check the function attributes to find out if this function should be 6876 // optimized for size. 6877 bool OptForSize = 6878 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 6879 6880 // Compute the weighted frequency of this loop being executed and see if it 6881 // is less than 20% of the function entry baseline frequency. Note that we 6882 // always have a canonical loop here because we think we *can* vectorize. 6883 // FIXME: This is hidden behind a flag due to pervasive problems with 6884 // exactly what block frequency models. 6885 if (LoopVectorizeWithBlockFrequency) { 6886 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 6887 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 6888 LoopEntryFreq < ColdEntryFreq) 6889 OptForSize = true; 6890 } 6891 6892 // Check the function attributes to see if implicit floats are allowed. 6893 // FIXME: This check doesn't seem possibly correct -- what if the loop is 6894 // an integer loop and the vector instructions selected are purely integer 6895 // vector instructions? 6896 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 6897 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 6898 "attribute is used.\n"); 6899 emitAnalysisDiag( 6900 L, Hints, *ORE, 6901 VectorizationReport() 6902 << "loop not vectorized due to NoImplicitFloat attribute"); 6903 emitMissedWarning(F, L, Hints, ORE); 6904 return false; 6905 } 6906 6907 // Check if the target supports potentially unsafe FP vectorization. 6908 // FIXME: Add a check for the type of safety issue (denormal, signaling) 6909 // for the target we're vectorizing for, to make sure none of the 6910 // additional fp-math flags can help. 6911 if (Hints.isPotentiallyUnsafe() && 6912 TTI->isFPVectorizationPotentiallyUnsafe()) { 6913 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 6914 emitAnalysisDiag(L, Hints, *ORE, 6915 VectorizationReport() 6916 << "loop not vectorized due to unsafe FP support."); 6917 emitMissedWarning(F, L, Hints, ORE); 6918 return false; 6919 } 6920 6921 // Select the optimal vectorization factor. 6922 const LoopVectorizationCostModel::VectorizationFactor VF = 6923 CM.selectVectorizationFactor(OptForSize); 6924 6925 // Select the interleave count. 6926 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 6927 6928 // Get user interleave count. 6929 unsigned UserIC = Hints.getInterleave(); 6930 6931 // Identify the diagnostic messages that should be produced. 6932 std::string VecDiagMsg, IntDiagMsg; 6933 bool VectorizeLoop = true, InterleaveLoop = true; 6934 if (Requirements.doesNotMeet(F, L, Hints)) { 6935 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 6936 "requirements.\n"); 6937 emitMissedWarning(F, L, Hints, ORE); 6938 return false; 6939 } 6940 6941 if (VF.Width == 1) { 6942 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 6943 VecDiagMsg = 6944 "the cost-model indicates that vectorization is not beneficial"; 6945 VectorizeLoop = false; 6946 } 6947 6948 if (IC == 1 && UserIC <= 1) { 6949 // Tell the user interleaving is not beneficial. 6950 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 6951 IntDiagMsg = 6952 "the cost-model indicates that interleaving is not beneficial"; 6953 InterleaveLoop = false; 6954 if (UserIC == 1) 6955 IntDiagMsg += 6956 " and is explicitly disabled or interleave count is set to 1"; 6957 } else if (IC > 1 && UserIC == 1) { 6958 // Tell the user interleaving is beneficial, but it explicitly disabled. 6959 DEBUG(dbgs() 6960 << "LV: Interleaving is beneficial but is explicitly disabled."); 6961 IntDiagMsg = "the cost-model indicates that interleaving is beneficial " 6962 "but is explicitly disabled or interleave count is set to 1"; 6963 InterleaveLoop = false; 6964 } 6965 6966 // Override IC if user provided an interleave count. 6967 IC = UserIC > 0 ? UserIC : IC; 6968 6969 // Emit diagnostic messages, if any. 6970 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 6971 if (!VectorizeLoop && !InterleaveLoop) { 6972 // Do not vectorize or interleaving the loop. 6973 ORE->emitOptimizationRemarkAnalysis(VAPassName, L, VecDiagMsg); 6974 ORE->emitOptimizationRemarkAnalysis(LV_NAME, L, IntDiagMsg); 6975 return false; 6976 } else if (!VectorizeLoop && InterleaveLoop) { 6977 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 6978 ORE->emitOptimizationRemarkAnalysis(VAPassName, L, VecDiagMsg); 6979 } else if (VectorizeLoop && !InterleaveLoop) { 6980 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 6981 << DebugLocStr << '\n'); 6982 ORE->emitOptimizationRemarkAnalysis(LV_NAME, L, IntDiagMsg); 6983 } else if (VectorizeLoop && InterleaveLoop) { 6984 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 6985 << DebugLocStr << '\n'); 6986 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 6987 } 6988 6989 if (!VectorizeLoop) { 6990 assert(IC > 1 && "interleave count should not be 1 or 0"); 6991 // If we decided that it is not legal to vectorize the loop, then 6992 // interleave it. 6993 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC); 6994 Unroller.vectorize(&LVL, CM.MinBWs); 6995 6996 ORE->emitOptimizationRemark(LV_NAME, L, 6997 Twine("interleaved loop (interleaved count: ") + 6998 Twine(IC) + ")"); 6999 } else { 7000 // If we decided that it is *legal* to vectorize the loop, then do it. 7001 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC); 7002 LB.vectorize(&LVL, CM.MinBWs); 7003 ++LoopsVectorized; 7004 7005 // Add metadata to disable runtime unrolling a scalar loop when there are 7006 // no runtime checks about strides and memory. A scalar loop that is 7007 // rarely used is not worth unrolling. 7008 if (!LB.areSafetyChecksAdded()) 7009 AddRuntimeUnrollDisableMetaData(L); 7010 7011 // Report the vectorization decision. 7012 ORE->emitOptimizationRemark( 7013 LV_NAME, L, Twine("vectorized loop (vectorization width: ") + 7014 Twine(VF.Width) + ", interleaved count: " + Twine(IC) + 7015 ")"); 7016 } 7017 7018 // Mark the loop as already vectorized to avoid vectorizing again. 7019 Hints.setAlreadyVectorized(); 7020 7021 DEBUG(verifyFunction(*L->getHeader()->getParent())); 7022 return true; 7023 } 7024 7025 bool LoopVectorizePass::runImpl( 7026 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7027 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7028 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7029 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7030 OptimizationRemarkEmitter &ORE_) { 7031 7032 SE = &SE_; 7033 LI = &LI_; 7034 TTI = &TTI_; 7035 DT = &DT_; 7036 BFI = &BFI_; 7037 TLI = TLI_; 7038 AA = &AA_; 7039 AC = &AC_; 7040 GetLAA = &GetLAA_; 7041 DB = &DB_; 7042 ORE = &ORE_; 7043 7044 // Compute some weights outside of the loop over the loops. Compute this 7045 // using a BranchProbability to re-use its scaling math. 7046 const BranchProbability ColdProb(1, 5); // 20% 7047 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 7048 7049 // Don't attempt if 7050 // 1. the target claims to have no vector registers, and 7051 // 2. interleaving won't help ILP. 7052 // 7053 // The second condition is necessary because, even if the target has no 7054 // vector registers, loop vectorization may still enable scalar 7055 // interleaving. 7056 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7057 return false; 7058 7059 // Build up a worklist of inner-loops to vectorize. This is necessary as 7060 // the act of vectorizing or partially unrolling a loop creates new loops 7061 // and can invalidate iterators across the loops. 7062 SmallVector<Loop *, 8> Worklist; 7063 7064 for (Loop *L : *LI) 7065 addAcyclicInnerLoop(*L, Worklist); 7066 7067 LoopsAnalyzed += Worklist.size(); 7068 7069 // Now walk the identified inner loops. 7070 bool Changed = false; 7071 while (!Worklist.empty()) 7072 Changed |= processLoop(Worklist.pop_back_val()); 7073 7074 // Process each loop nest in the function. 7075 return Changed; 7076 7077 } 7078 7079 7080 PreservedAnalyses LoopVectorizePass::run(Function &F, 7081 FunctionAnalysisManager &AM) { 7082 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7083 auto &LI = AM.getResult<LoopAnalysis>(F); 7084 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7085 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7086 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7087 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 7088 auto &AA = AM.getResult<AAManager>(F); 7089 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7090 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7091 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7092 7093 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7094 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7095 [&](Loop &L) -> const LoopAccessInfo & { 7096 return LAM.getResult<LoopAccessAnalysis>(L); 7097 }; 7098 bool Changed = 7099 runImpl(F, SE, LI, TTI, DT, BFI, TLI, DB, AA, AC, GetLAA, ORE); 7100 if (!Changed) 7101 return PreservedAnalyses::all(); 7102 PreservedAnalyses PA; 7103 PA.preserve<LoopAnalysis>(); 7104 PA.preserve<DominatorTreeAnalysis>(); 7105 PA.preserve<BasicAA>(); 7106 PA.preserve<GlobalsAA>(); 7107 return PA; 7108 } 7109