1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/SetVector.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/Statistic.h" 58 #include "llvm/ADT/StringExtras.h" 59 #include "llvm/Analysis/AliasAnalysis.h" 60 #include "llvm/Analysis/BasicAliasAnalysis.h" 61 #include "llvm/Analysis/AliasSetTracker.h" 62 #include "llvm/Analysis/AssumptionCache.h" 63 #include "llvm/Analysis/BlockFrequencyInfo.h" 64 #include "llvm/Analysis/CodeMetrics.h" 65 #include "llvm/Analysis/DemandedBits.h" 66 #include "llvm/Analysis/GlobalsModRef.h" 67 #include "llvm/Analysis/LoopAccessAnalysis.h" 68 #include "llvm/Analysis/LoopInfo.h" 69 #include "llvm/Analysis/LoopIterator.h" 70 #include "llvm/Analysis/LoopPass.h" 71 #include "llvm/Analysis/ScalarEvolution.h" 72 #include "llvm/Analysis/ScalarEvolutionExpander.h" 73 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 74 #include "llvm/Analysis/TargetTransformInfo.h" 75 #include "llvm/Analysis/ValueTracking.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DebugInfo.h" 79 #include "llvm/IR/DerivedTypes.h" 80 #include "llvm/IR/DiagnosticInfo.h" 81 #include "llvm/IR/Dominators.h" 82 #include "llvm/IR/Function.h" 83 #include "llvm/IR/IRBuilder.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/LLVMContext.h" 87 #include "llvm/IR/Module.h" 88 #include "llvm/IR/PatternMatch.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/IR/ValueHandle.h" 92 #include "llvm/IR/Verifier.h" 93 #include "llvm/Pass.h" 94 #include "llvm/Support/BranchProbability.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/raw_ostream.h" 98 #include "llvm/Transforms/Scalar.h" 99 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 100 #include "llvm/Transforms/Utils/Local.h" 101 #include "llvm/Analysis/VectorUtils.h" 102 #include "llvm/Transforms/Utils/LoopUtils.h" 103 #include <algorithm> 104 #include <functional> 105 #include <map> 106 #include <tuple> 107 108 using namespace llvm; 109 using namespace llvm::PatternMatch; 110 111 #define LV_NAME "loop-vectorize" 112 #define DEBUG_TYPE LV_NAME 113 114 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 115 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 116 117 static cl::opt<bool> 118 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 119 cl::desc("Enable if-conversion during vectorization.")); 120 121 /// We don't vectorize loops with a known constant trip count below this number. 122 static cl::opt<unsigned> 123 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 124 cl::Hidden, 125 cl::desc("Don't vectorize loops with a constant " 126 "trip count that is smaller than this " 127 "value.")); 128 129 static cl::opt<bool> MaximizeBandwidth( 130 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 131 cl::desc("Maximize bandwidth when selecting vectorization factor which " 132 "will be determined by the smallest type in loop.")); 133 134 /// This enables versioning on the strides of symbolically striding memory 135 /// accesses in code like the following. 136 /// for (i = 0; i < N; ++i) 137 /// A[i * Stride1] += B[i * Stride2] ... 138 /// 139 /// Will be roughly translated to 140 /// if (Stride1 == 1 && Stride2 == 1) { 141 /// for (i = 0; i < N; i+=4) 142 /// A[i:i+3] += ... 143 /// } else 144 /// ... 145 static cl::opt<bool> EnableMemAccessVersioning( 146 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 147 cl::desc("Enable symbolic stride memory access versioning")); 148 149 static cl::opt<bool> EnableInterleavedMemAccesses( 150 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 151 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 152 153 /// Maximum factor for an interleaved memory access. 154 static cl::opt<unsigned> MaxInterleaveGroupFactor( 155 "max-interleave-group-factor", cl::Hidden, 156 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 157 cl::init(8)); 158 159 /// We don't interleave loops with a known constant trip count below this 160 /// number. 161 static const unsigned TinyTripCountInterleaveThreshold = 128; 162 163 static cl::opt<unsigned> ForceTargetNumScalarRegs( 164 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 165 cl::desc("A flag that overrides the target's number of scalar registers.")); 166 167 static cl::opt<unsigned> ForceTargetNumVectorRegs( 168 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 169 cl::desc("A flag that overrides the target's number of vector registers.")); 170 171 /// Maximum vectorization interleave count. 172 static const unsigned MaxInterleaveFactor = 16; 173 174 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 175 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 176 cl::desc("A flag that overrides the target's max interleave factor for " 177 "scalar loops.")); 178 179 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 180 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 181 cl::desc("A flag that overrides the target's max interleave factor for " 182 "vectorized loops.")); 183 184 static cl::opt<unsigned> ForceTargetInstructionCost( 185 "force-target-instruction-cost", cl::init(0), cl::Hidden, 186 cl::desc("A flag that overrides the target's expected cost for " 187 "an instruction to a single constant value. Mostly " 188 "useful for getting consistent testing.")); 189 190 static cl::opt<unsigned> SmallLoopCost( 191 "small-loop-cost", cl::init(20), cl::Hidden, 192 cl::desc( 193 "The cost of a loop that is considered 'small' by the interleaver.")); 194 195 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 196 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 197 cl::desc("Enable the use of the block frequency analysis to access PGO " 198 "heuristics minimizing code growth in cold regions and being more " 199 "aggressive in hot regions.")); 200 201 // Runtime interleave loops for load/store throughput. 202 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 203 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 204 cl::desc( 205 "Enable runtime interleaving until load/store ports are saturated")); 206 207 /// The number of stores in a loop that are allowed to need predication. 208 static cl::opt<unsigned> NumberOfStoresToPredicate( 209 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 210 cl::desc("Max number of stores to be predicated behind an if.")); 211 212 static cl::opt<bool> EnableIndVarRegisterHeur( 213 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 214 cl::desc("Count the induction variable only once when interleaving")); 215 216 static cl::opt<bool> EnableCondStoresVectorization( 217 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 218 cl::desc("Enable if predication of stores during vectorization.")); 219 220 static cl::opt<unsigned> MaxNestedScalarReductionIC( 221 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 222 cl::desc("The maximum interleave count to use when interleaving a scalar " 223 "reduction in a nested loop.")); 224 225 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 226 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 227 cl::desc("The maximum allowed number of runtime memory checks with a " 228 "vectorize(enable) pragma.")); 229 230 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 231 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 232 cl::desc("The maximum number of SCEV checks allowed.")); 233 234 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 235 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 236 cl::desc("The maximum number of SCEV checks allowed with a " 237 "vectorize(enable) pragma")); 238 239 namespace { 240 241 // Forward declarations. 242 class LoopVectorizeHints; 243 class LoopVectorizationLegality; 244 class LoopVectorizationCostModel; 245 class LoopVectorizationRequirements; 246 247 /// \brief This modifies LoopAccessReport to initialize message with 248 /// loop-vectorizer-specific part. 249 class VectorizationReport : public LoopAccessReport { 250 public: 251 VectorizationReport(Instruction *I = nullptr) 252 : LoopAccessReport("loop not vectorized: ", I) {} 253 254 /// \brief This allows promotion of the loop-access analysis report into the 255 /// loop-vectorizer report. It modifies the message to add the 256 /// loop-vectorizer-specific part of the message. 257 explicit VectorizationReport(const LoopAccessReport &R) 258 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 259 R.getInstr()) {} 260 }; 261 262 /// A helper function for converting Scalar types to vector types. 263 /// If the incoming type is void, we return void. If the VF is 1, we return 264 /// the scalar type. 265 static Type* ToVectorTy(Type *Scalar, unsigned VF) { 266 if (Scalar->isVoidTy() || VF == 1) 267 return Scalar; 268 return VectorType::get(Scalar, VF); 269 } 270 271 /// A helper function that returns GEP instruction and knows to skip a 272 /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination 273 /// pointee types of the 'bitcast' have the same size. 274 /// For example: 275 /// bitcast double** %var to i64* - can be skipped 276 /// bitcast double** %var to i8* - can not 277 static GetElementPtrInst *getGEPInstruction(Value *Ptr) { 278 279 if (isa<GetElementPtrInst>(Ptr)) 280 return cast<GetElementPtrInst>(Ptr); 281 282 if (isa<BitCastInst>(Ptr) && 283 isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) { 284 Type *BitcastTy = Ptr->getType(); 285 Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy(); 286 if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy)) 287 return nullptr; 288 Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType(); 289 Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType(); 290 const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout(); 291 if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty)) 292 return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0)); 293 } 294 return nullptr; 295 } 296 297 /// InnerLoopVectorizer vectorizes loops which contain only one basic 298 /// block to a specified vectorization factor (VF). 299 /// This class performs the widening of scalars into vectors, or multiple 300 /// scalars. This class also implements the following features: 301 /// * It inserts an epilogue loop for handling loops that don't have iteration 302 /// counts that are known to be a multiple of the vectorization factor. 303 /// * It handles the code generation for reduction variables. 304 /// * Scalarization (implementation using scalars) of un-vectorizable 305 /// instructions. 306 /// InnerLoopVectorizer does not perform any vectorization-legality 307 /// checks, and relies on the caller to check for the different legality 308 /// aspects. The InnerLoopVectorizer relies on the 309 /// LoopVectorizationLegality class to provide information about the induction 310 /// and reduction variables that were found to a given vectorization factor. 311 class InnerLoopVectorizer { 312 public: 313 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 314 LoopInfo *LI, DominatorTree *DT, 315 const TargetLibraryInfo *TLI, 316 const TargetTransformInfo *TTI, unsigned VecWidth, 317 unsigned UnrollFactor) 318 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 319 VF(VecWidth), UF(UnrollFactor), Builder(PSE.getSE()->getContext()), 320 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), 321 TripCount(nullptr), VectorTripCount(nullptr), Legal(nullptr), 322 AddedSafetyChecks(false) {} 323 324 // Perform the actual loop widening (vectorization). 325 // MinimumBitWidths maps scalar integer values to the smallest bitwidth they 326 // can be validly truncated to. The cost model has assumed this truncation 327 // will happen when vectorizing. 328 void vectorize(LoopVectorizationLegality *L, 329 MapVector<Instruction*,uint64_t> MinimumBitWidths) { 330 MinBWs = MinimumBitWidths; 331 Legal = L; 332 // Create a new empty loop. Unlink the old loop and connect the new one. 333 createEmptyLoop(); 334 // Widen each instruction in the old loop to a new one in the new loop. 335 // Use the Legality module to find the induction and reduction variables. 336 vectorizeLoop(); 337 } 338 339 // Return true if any runtime check is added. 340 bool IsSafetyChecksAdded() { 341 return AddedSafetyChecks; 342 } 343 344 virtual ~InnerLoopVectorizer() {} 345 346 protected: 347 /// A small list of PHINodes. 348 typedef SmallVector<PHINode*, 4> PhiVector; 349 /// When we unroll loops we have multiple vector values for each scalar. 350 /// This data structure holds the unrolled and vectorized values that 351 /// originated from one scalar instruction. 352 typedef SmallVector<Value*, 2> VectorParts; 353 354 // When we if-convert we need to create edge masks. We have to cache values 355 // so that we don't end up with exponential recursion/IR. 356 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 357 VectorParts> EdgeMaskCache; 358 359 /// Create an empty loop, based on the loop ranges of the old loop. 360 void createEmptyLoop(); 361 /// Create a new induction variable inside L. 362 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 363 Value *Step, Instruction *DL); 364 /// Copy and widen the instructions from the old loop. 365 virtual void vectorizeLoop(); 366 367 /// \brief The Loop exit block may have single value PHI nodes where the 368 /// incoming value is 'Undef'. While vectorizing we only handled real values 369 /// that were defined inside the loop. Here we fix the 'undef case'. 370 /// See PR14725. 371 void fixLCSSAPHIs(); 372 373 /// Shrinks vector element sizes based on information in "MinBWs". 374 void truncateToMinimalBitwidths(); 375 376 /// A helper function that computes the predicate of the block BB, assuming 377 /// that the header block of the loop is set to True. It returns the *entry* 378 /// mask for the block BB. 379 VectorParts createBlockInMask(BasicBlock *BB); 380 /// A helper function that computes the predicate of the edge between SRC 381 /// and DST. 382 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 383 384 /// A helper function to vectorize a single BB within the innermost loop. 385 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 386 387 /// Vectorize a single PHINode in a block. This method handles the induction 388 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 389 /// arbitrary length vectors. 390 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 391 unsigned UF, unsigned VF, PhiVector *PV); 392 393 /// Insert the new loop to the loop hierarchy and pass manager 394 /// and update the analysis passes. 395 void updateAnalysis(); 396 397 /// This instruction is un-vectorizable. Implement it as a sequence 398 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 399 /// scalarized instruction behind an if block predicated on the control 400 /// dependence of the instruction. 401 virtual void scalarizeInstruction(Instruction *Instr, 402 bool IfPredicateStore=false); 403 404 /// Vectorize Load and Store instructions, 405 virtual void vectorizeMemoryInstruction(Instruction *Instr); 406 407 /// Create a broadcast instruction. This method generates a broadcast 408 /// instruction (shuffle) for loop invariant values and for the induction 409 /// value. If this is the induction variable then we extend it to N, N+1, ... 410 /// this is needed because each iteration in the loop corresponds to a SIMD 411 /// element. 412 virtual Value *getBroadcastInstrs(Value *V); 413 414 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 415 /// to each vector element of Val. The sequence starts at StartIndex. 416 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step); 417 418 /// When we go over instructions in the basic block we rely on previous 419 /// values within the current basic block or on loop invariant values. 420 /// When we widen (vectorize) values we place them in the map. If the values 421 /// are not within the map, they have to be loop invariant, so we simply 422 /// broadcast them into a vector. 423 VectorParts &getVectorValue(Value *V); 424 425 /// Try to vectorize the interleaved access group that \p Instr belongs to. 426 void vectorizeInterleaveGroup(Instruction *Instr); 427 428 /// Generate a shuffle sequence that will reverse the vector Vec. 429 virtual Value *reverseVector(Value *Vec); 430 431 /// Returns (and creates if needed) the original loop trip count. 432 Value *getOrCreateTripCount(Loop *NewLoop); 433 434 /// Returns (and creates if needed) the trip count of the widened loop. 435 Value *getOrCreateVectorTripCount(Loop *NewLoop); 436 437 /// Emit a bypass check to see if the trip count would overflow, or we 438 /// wouldn't have enough iterations to execute one vector loop. 439 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 440 /// Emit a bypass check to see if the vector trip count is nonzero. 441 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 442 /// Emit a bypass check to see if all of the SCEV assumptions we've 443 /// had to make are correct. 444 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 445 /// Emit bypass checks to check any memory assumptions we may have made. 446 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 447 448 /// This is a helper class that holds the vectorizer state. It maps scalar 449 /// instructions to vector instructions. When the code is 'unrolled' then 450 /// then a single scalar value is mapped to multiple vector parts. The parts 451 /// are stored in the VectorPart type. 452 struct ValueMap { 453 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 454 /// are mapped. 455 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 456 457 /// \return True if 'Key' is saved in the Value Map. 458 bool has(Value *Key) const { return MapStorage.count(Key); } 459 460 /// Initializes a new entry in the map. Sets all of the vector parts to the 461 /// save value in 'Val'. 462 /// \return A reference to a vector with splat values. 463 VectorParts &splat(Value *Key, Value *Val) { 464 VectorParts &Entry = MapStorage[Key]; 465 Entry.assign(UF, Val); 466 return Entry; 467 } 468 469 ///\return A reference to the value that is stored at 'Key'. 470 VectorParts &get(Value *Key) { 471 VectorParts &Entry = MapStorage[Key]; 472 if (Entry.empty()) 473 Entry.resize(UF); 474 assert(Entry.size() == UF); 475 return Entry; 476 } 477 478 private: 479 /// The unroll factor. Each entry in the map stores this number of vector 480 /// elements. 481 unsigned UF; 482 483 /// Map storage. We use std::map and not DenseMap because insertions to a 484 /// dense map invalidates its iterators. 485 std::map<Value *, VectorParts> MapStorage; 486 }; 487 488 /// The original loop. 489 Loop *OrigLoop; 490 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 491 /// dynamic knowledge to simplify SCEV expressions and converts them to a 492 /// more usable form. 493 PredicatedScalarEvolution &PSE; 494 /// Loop Info. 495 LoopInfo *LI; 496 /// Dominator Tree. 497 DominatorTree *DT; 498 /// Alias Analysis. 499 AliasAnalysis *AA; 500 /// Target Library Info. 501 const TargetLibraryInfo *TLI; 502 /// Target Transform Info. 503 const TargetTransformInfo *TTI; 504 505 /// The vectorization SIMD factor to use. Each vector will have this many 506 /// vector elements. 507 unsigned VF; 508 509 protected: 510 /// The vectorization unroll factor to use. Each scalar is vectorized to this 511 /// many different vector instructions. 512 unsigned UF; 513 514 /// The builder that we use 515 IRBuilder<> Builder; 516 517 // --- Vectorization state --- 518 519 /// The vector-loop preheader. 520 BasicBlock *LoopVectorPreHeader; 521 /// The scalar-loop preheader. 522 BasicBlock *LoopScalarPreHeader; 523 /// Middle Block between the vector and the scalar. 524 BasicBlock *LoopMiddleBlock; 525 ///The ExitBlock of the scalar loop. 526 BasicBlock *LoopExitBlock; 527 ///The vector loop body. 528 SmallVector<BasicBlock *, 4> LoopVectorBody; 529 ///The scalar loop body. 530 BasicBlock *LoopScalarBody; 531 /// A list of all bypass blocks. The first block is the entry of the loop. 532 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 533 534 /// The new Induction variable which was added to the new block. 535 PHINode *Induction; 536 /// The induction variable of the old basic block. 537 PHINode *OldInduction; 538 /// Maps scalars to widened vectors. 539 ValueMap WidenMap; 540 /// Store instructions that should be predicated, as a pair 541 /// <StoreInst, Predicate> 542 SmallVector<std::pair<StoreInst*,Value*>, 4> PredicatedStores; 543 EdgeMaskCache MaskCache; 544 /// Trip count of the original loop. 545 Value *TripCount; 546 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 547 Value *VectorTripCount; 548 549 /// Map of scalar integer values to the smallest bitwidth they can be legally 550 /// represented as. The vector equivalents of these values should be truncated 551 /// to this type. 552 MapVector<Instruction*,uint64_t> MinBWs; 553 LoopVectorizationLegality *Legal; 554 555 // Record whether runtime check is added. 556 bool AddedSafetyChecks; 557 }; 558 559 class InnerLoopUnroller : public InnerLoopVectorizer { 560 public: 561 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 562 LoopInfo *LI, DominatorTree *DT, 563 const TargetLibraryInfo *TLI, 564 const TargetTransformInfo *TTI, unsigned UnrollFactor) 565 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, 1, UnrollFactor) {} 566 567 private: 568 void scalarizeInstruction(Instruction *Instr, 569 bool IfPredicateStore = false) override; 570 void vectorizeMemoryInstruction(Instruction *Instr) override; 571 Value *getBroadcastInstrs(Value *V) override; 572 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override; 573 Value *reverseVector(Value *Vec) override; 574 }; 575 576 /// \brief Look for a meaningful debug location on the instruction or it's 577 /// operands. 578 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 579 if (!I) 580 return I; 581 582 DebugLoc Empty; 583 if (I->getDebugLoc() != Empty) 584 return I; 585 586 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 587 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 588 if (OpInst->getDebugLoc() != Empty) 589 return OpInst; 590 } 591 592 return I; 593 } 594 595 /// \brief Set the debug location in the builder using the debug location in the 596 /// instruction. 597 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 598 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 599 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 600 else 601 B.SetCurrentDebugLocation(DebugLoc()); 602 } 603 604 #ifndef NDEBUG 605 /// \return string containing a file name and a line # for the given loop. 606 static std::string getDebugLocString(const Loop *L) { 607 std::string Result; 608 if (L) { 609 raw_string_ostream OS(Result); 610 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 611 LoopDbgLoc.print(OS); 612 else 613 // Just print the module name. 614 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 615 OS.flush(); 616 } 617 return Result; 618 } 619 #endif 620 621 /// \brief Propagate known metadata from one instruction to another. 622 static void propagateMetadata(Instruction *To, const Instruction *From) { 623 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 624 From->getAllMetadataOtherThanDebugLoc(Metadata); 625 626 for (auto M : Metadata) { 627 unsigned Kind = M.first; 628 629 // These are safe to transfer (this is safe for TBAA, even when we 630 // if-convert, because should that metadata have had a control dependency 631 // on the condition, and thus actually aliased with some other 632 // non-speculated memory access when the condition was false, this would be 633 // caught by the runtime overlap checks). 634 if (Kind != LLVMContext::MD_tbaa && 635 Kind != LLVMContext::MD_alias_scope && 636 Kind != LLVMContext::MD_noalias && 637 Kind != LLVMContext::MD_fpmath && 638 Kind != LLVMContext::MD_nontemporal) 639 continue; 640 641 To->setMetadata(Kind, M.second); 642 } 643 } 644 645 /// \brief Propagate known metadata from one instruction to a vector of others. 646 static void propagateMetadata(SmallVectorImpl<Value *> &To, 647 const Instruction *From) { 648 for (Value *V : To) 649 if (Instruction *I = dyn_cast<Instruction>(V)) 650 propagateMetadata(I, From); 651 } 652 653 /// \brief The group of interleaved loads/stores sharing the same stride and 654 /// close to each other. 655 /// 656 /// Each member in this group has an index starting from 0, and the largest 657 /// index should be less than interleaved factor, which is equal to the absolute 658 /// value of the access's stride. 659 /// 660 /// E.g. An interleaved load group of factor 4: 661 /// for (unsigned i = 0; i < 1024; i+=4) { 662 /// a = A[i]; // Member of index 0 663 /// b = A[i+1]; // Member of index 1 664 /// d = A[i+3]; // Member of index 3 665 /// ... 666 /// } 667 /// 668 /// An interleaved store group of factor 4: 669 /// for (unsigned i = 0; i < 1024; i+=4) { 670 /// ... 671 /// A[i] = a; // Member of index 0 672 /// A[i+1] = b; // Member of index 1 673 /// A[i+2] = c; // Member of index 2 674 /// A[i+3] = d; // Member of index 3 675 /// } 676 /// 677 /// Note: the interleaved load group could have gaps (missing members), but 678 /// the interleaved store group doesn't allow gaps. 679 class InterleaveGroup { 680 public: 681 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 682 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 683 assert(Align && "The alignment should be non-zero"); 684 685 Factor = std::abs(Stride); 686 assert(Factor > 1 && "Invalid interleave factor"); 687 688 Reverse = Stride < 0; 689 Members[0] = Instr; 690 } 691 692 bool isReverse() const { return Reverse; } 693 unsigned getFactor() const { return Factor; } 694 unsigned getAlignment() const { return Align; } 695 unsigned getNumMembers() const { return Members.size(); } 696 697 /// \brief Try to insert a new member \p Instr with index \p Index and 698 /// alignment \p NewAlign. The index is related to the leader and it could be 699 /// negative if it is the new leader. 700 /// 701 /// \returns false if the instruction doesn't belong to the group. 702 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 703 assert(NewAlign && "The new member's alignment should be non-zero"); 704 705 int Key = Index + SmallestKey; 706 707 // Skip if there is already a member with the same index. 708 if (Members.count(Key)) 709 return false; 710 711 if (Key > LargestKey) { 712 // The largest index is always less than the interleave factor. 713 if (Index >= static_cast<int>(Factor)) 714 return false; 715 716 LargestKey = Key; 717 } else if (Key < SmallestKey) { 718 // The largest index is always less than the interleave factor. 719 if (LargestKey - Key >= static_cast<int>(Factor)) 720 return false; 721 722 SmallestKey = Key; 723 } 724 725 // It's always safe to select the minimum alignment. 726 Align = std::min(Align, NewAlign); 727 Members[Key] = Instr; 728 return true; 729 } 730 731 /// \brief Get the member with the given index \p Index 732 /// 733 /// \returns nullptr if contains no such member. 734 Instruction *getMember(unsigned Index) const { 735 int Key = SmallestKey + Index; 736 if (!Members.count(Key)) 737 return nullptr; 738 739 return Members.find(Key)->second; 740 } 741 742 /// \brief Get the index for the given member. Unlike the key in the member 743 /// map, the index starts from 0. 744 unsigned getIndex(Instruction *Instr) const { 745 for (auto I : Members) 746 if (I.second == Instr) 747 return I.first - SmallestKey; 748 749 llvm_unreachable("InterleaveGroup contains no such member"); 750 } 751 752 Instruction *getInsertPos() const { return InsertPos; } 753 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 754 755 private: 756 unsigned Factor; // Interleave Factor. 757 bool Reverse; 758 unsigned Align; 759 DenseMap<int, Instruction *> Members; 760 int SmallestKey; 761 int LargestKey; 762 763 // To avoid breaking dependences, vectorized instructions of an interleave 764 // group should be inserted at either the first load or the last store in 765 // program order. 766 // 767 // E.g. %even = load i32 // Insert Position 768 // %add = add i32 %even // Use of %even 769 // %odd = load i32 770 // 771 // store i32 %even 772 // %odd = add i32 // Def of %odd 773 // store i32 %odd // Insert Position 774 Instruction *InsertPos; 775 }; 776 777 /// \brief Drive the analysis of interleaved memory accesses in the loop. 778 /// 779 /// Use this class to analyze interleaved accesses only when we can vectorize 780 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 781 /// on interleaved accesses is unsafe. 782 /// 783 /// The analysis collects interleave groups and records the relationships 784 /// between the member and the group in a map. 785 class InterleavedAccessInfo { 786 public: 787 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 788 DominatorTree *DT) 789 : PSE(PSE), TheLoop(L), DT(DT) {} 790 791 ~InterleavedAccessInfo() { 792 SmallSet<InterleaveGroup *, 4> DelSet; 793 // Avoid releasing a pointer twice. 794 for (auto &I : InterleaveGroupMap) 795 DelSet.insert(I.second); 796 for (auto *Ptr : DelSet) 797 delete Ptr; 798 } 799 800 /// \brief Analyze the interleaved accesses and collect them in interleave 801 /// groups. Substitute symbolic strides using \p Strides. 802 void analyzeInterleaving(const ValueToValueMap &Strides); 803 804 /// \brief Check if \p Instr belongs to any interleave group. 805 bool isInterleaved(Instruction *Instr) const { 806 return InterleaveGroupMap.count(Instr); 807 } 808 809 /// \brief Get the interleave group that \p Instr belongs to. 810 /// 811 /// \returns nullptr if doesn't have such group. 812 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 813 if (InterleaveGroupMap.count(Instr)) 814 return InterleaveGroupMap.find(Instr)->second; 815 return nullptr; 816 } 817 818 private: 819 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 820 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 821 /// The interleaved access analysis can also add new predicates (for example 822 /// by versioning strides of pointers). 823 PredicatedScalarEvolution &PSE; 824 Loop *TheLoop; 825 DominatorTree *DT; 826 827 /// Holds the relationships between the members and the interleave group. 828 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 829 830 /// \brief The descriptor for a strided memory access. 831 struct StrideDescriptor { 832 StrideDescriptor(int Stride, const SCEV *Scev, unsigned Size, 833 unsigned Align) 834 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 835 836 StrideDescriptor() : Stride(0), Scev(nullptr), Size(0), Align(0) {} 837 838 int Stride; // The access's stride. It is negative for a reverse access. 839 const SCEV *Scev; // The scalar expression of this access 840 unsigned Size; // The size of the memory object. 841 unsigned Align; // The alignment of this access. 842 }; 843 844 /// \brief Create a new interleave group with the given instruction \p Instr, 845 /// stride \p Stride and alignment \p Align. 846 /// 847 /// \returns the newly created interleave group. 848 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 849 unsigned Align) { 850 assert(!InterleaveGroupMap.count(Instr) && 851 "Already in an interleaved access group"); 852 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 853 return InterleaveGroupMap[Instr]; 854 } 855 856 /// \brief Release the group and remove all the relationships. 857 void releaseGroup(InterleaveGroup *Group) { 858 for (unsigned i = 0; i < Group->getFactor(); i++) 859 if (Instruction *Member = Group->getMember(i)) 860 InterleaveGroupMap.erase(Member); 861 862 delete Group; 863 } 864 865 /// \brief Collect all the accesses with a constant stride in program order. 866 void collectConstStridedAccesses( 867 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 868 const ValueToValueMap &Strides); 869 }; 870 871 /// Utility class for getting and setting loop vectorizer hints in the form 872 /// of loop metadata. 873 /// This class keeps a number of loop annotations locally (as member variables) 874 /// and can, upon request, write them back as metadata on the loop. It will 875 /// initially scan the loop for existing metadata, and will update the local 876 /// values based on information in the loop. 877 /// We cannot write all values to metadata, as the mere presence of some info, 878 /// for example 'force', means a decision has been made. So, we need to be 879 /// careful NOT to add them if the user hasn't specifically asked so. 880 class LoopVectorizeHints { 881 enum HintKind { 882 HK_WIDTH, 883 HK_UNROLL, 884 HK_FORCE 885 }; 886 887 /// Hint - associates name and validation with the hint value. 888 struct Hint { 889 const char * Name; 890 unsigned Value; // This may have to change for non-numeric values. 891 HintKind Kind; 892 893 Hint(const char * Name, unsigned Value, HintKind Kind) 894 : Name(Name), Value(Value), Kind(Kind) { } 895 896 bool validate(unsigned Val) { 897 switch (Kind) { 898 case HK_WIDTH: 899 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 900 case HK_UNROLL: 901 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 902 case HK_FORCE: 903 return (Val <= 1); 904 } 905 return false; 906 } 907 }; 908 909 /// Vectorization width. 910 Hint Width; 911 /// Vectorization interleave factor. 912 Hint Interleave; 913 /// Vectorization forced 914 Hint Force; 915 916 /// Return the loop metadata prefix. 917 static StringRef Prefix() { return "llvm.loop."; } 918 919 public: 920 enum ForceKind { 921 FK_Undefined = -1, ///< Not selected. 922 FK_Disabled = 0, ///< Forcing disabled. 923 FK_Enabled = 1, ///< Forcing enabled. 924 }; 925 926 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 927 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 928 HK_WIDTH), 929 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 930 Force("vectorize.enable", FK_Undefined, HK_FORCE), 931 TheLoop(L) { 932 // Populate values with existing loop metadata. 933 getHintsFromMetadata(); 934 935 // force-vector-interleave overrides DisableInterleaving. 936 if (VectorizerParams::isInterleaveForced()) 937 Interleave.Value = VectorizerParams::VectorizationInterleave; 938 939 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 940 << "LV: Interleaving disabled by the pass manager\n"); 941 } 942 943 /// Mark the loop L as already vectorized by setting the width to 1. 944 void setAlreadyVectorized() { 945 Width.Value = Interleave.Value = 1; 946 Hint Hints[] = {Width, Interleave}; 947 writeHintsToMetadata(Hints); 948 } 949 950 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 951 if (getForce() == LoopVectorizeHints::FK_Disabled) { 952 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 953 emitOptimizationRemarkAnalysis(F->getContext(), 954 vectorizeAnalysisPassName(), *F, 955 L->getStartLoc(), emitRemark()); 956 return false; 957 } 958 959 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 960 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 961 emitOptimizationRemarkAnalysis(F->getContext(), 962 vectorizeAnalysisPassName(), *F, 963 L->getStartLoc(), emitRemark()); 964 return false; 965 } 966 967 if (getWidth() == 1 && getInterleave() == 1) { 968 // FIXME: Add a separate metadata to indicate when the loop has already 969 // been vectorized instead of setting width and count to 1. 970 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 971 // FIXME: Add interleave.disable metadata. This will allow 972 // vectorize.disable to be used without disabling the pass and errors 973 // to differentiate between disabled vectorization and a width of 1. 974 emitOptimizationRemarkAnalysis( 975 F->getContext(), vectorizeAnalysisPassName(), *F, L->getStartLoc(), 976 "loop not vectorized: vectorization and interleaving are explicitly " 977 "disabled, or vectorize width and interleave count are both set to " 978 "1"); 979 return false; 980 } 981 982 return true; 983 } 984 985 /// Dumps all the hint information. 986 std::string emitRemark() const { 987 VectorizationReport R; 988 if (Force.Value == LoopVectorizeHints::FK_Disabled) 989 R << "vectorization is explicitly disabled"; 990 else { 991 R << "use -Rpass-analysis=loop-vectorize for more info"; 992 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 993 R << " (Force=true"; 994 if (Width.Value != 0) 995 R << ", Vector Width=" << Width.Value; 996 if (Interleave.Value != 0) 997 R << ", Interleave Count=" << Interleave.Value; 998 R << ")"; 999 } 1000 } 1001 1002 return R.str(); 1003 } 1004 1005 unsigned getWidth() const { return Width.Value; } 1006 unsigned getInterleave() const { return Interleave.Value; } 1007 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1008 const char *vectorizeAnalysisPassName() const { 1009 // If hints are provided that don't disable vectorization use the 1010 // AlwaysPrint pass name to force the frontend to print the diagnostic. 1011 if (getWidth() == 1) 1012 return LV_NAME; 1013 if (getForce() == LoopVectorizeHints::FK_Disabled) 1014 return LV_NAME; 1015 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1016 return LV_NAME; 1017 return DiagnosticInfo::AlwaysPrint; 1018 } 1019 1020 bool allowReordering() const { 1021 // When enabling loop hints are provided we allow the vectorizer to change 1022 // the order of operations that is given by the scalar loop. This is not 1023 // enabled by default because can be unsafe or inefficient. For example, 1024 // reordering floating-point operations will change the way round-off 1025 // error accumulates in the loop. 1026 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1027 } 1028 1029 private: 1030 /// Find hints specified in the loop metadata and update local values. 1031 void getHintsFromMetadata() { 1032 MDNode *LoopID = TheLoop->getLoopID(); 1033 if (!LoopID) 1034 return; 1035 1036 // First operand should refer to the loop id itself. 1037 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1038 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1039 1040 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1041 const MDString *S = nullptr; 1042 SmallVector<Metadata *, 4> Args; 1043 1044 // The expected hint is either a MDString or a MDNode with the first 1045 // operand a MDString. 1046 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1047 if (!MD || MD->getNumOperands() == 0) 1048 continue; 1049 S = dyn_cast<MDString>(MD->getOperand(0)); 1050 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1051 Args.push_back(MD->getOperand(i)); 1052 } else { 1053 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1054 assert(Args.size() == 0 && "too many arguments for MDString"); 1055 } 1056 1057 if (!S) 1058 continue; 1059 1060 // Check if the hint starts with the loop metadata prefix. 1061 StringRef Name = S->getString(); 1062 if (Args.size() == 1) 1063 setHint(Name, Args[0]); 1064 } 1065 } 1066 1067 /// Checks string hint with one operand and set value if valid. 1068 void setHint(StringRef Name, Metadata *Arg) { 1069 if (!Name.startswith(Prefix())) 1070 return; 1071 Name = Name.substr(Prefix().size(), StringRef::npos); 1072 1073 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1074 if (!C) return; 1075 unsigned Val = C->getZExtValue(); 1076 1077 Hint *Hints[] = {&Width, &Interleave, &Force}; 1078 for (auto H : Hints) { 1079 if (Name == H->Name) { 1080 if (H->validate(Val)) 1081 H->Value = Val; 1082 else 1083 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1084 break; 1085 } 1086 } 1087 } 1088 1089 /// Create a new hint from name / value pair. 1090 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1091 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1092 Metadata *MDs[] = {MDString::get(Context, Name), 1093 ConstantAsMetadata::get( 1094 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1095 return MDNode::get(Context, MDs); 1096 } 1097 1098 /// Matches metadata with hint name. 1099 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1100 MDString* Name = dyn_cast<MDString>(Node->getOperand(0)); 1101 if (!Name) 1102 return false; 1103 1104 for (auto H : HintTypes) 1105 if (Name->getString().endswith(H.Name)) 1106 return true; 1107 return false; 1108 } 1109 1110 /// Sets current hints into loop metadata, keeping other values intact. 1111 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1112 if (HintTypes.size() == 0) 1113 return; 1114 1115 // Reserve the first element to LoopID (see below). 1116 SmallVector<Metadata *, 4> MDs(1); 1117 // If the loop already has metadata, then ignore the existing operands. 1118 MDNode *LoopID = TheLoop->getLoopID(); 1119 if (LoopID) { 1120 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1121 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1122 // If node in update list, ignore old value. 1123 if (!matchesHintMetadataName(Node, HintTypes)) 1124 MDs.push_back(Node); 1125 } 1126 } 1127 1128 // Now, add the missing hints. 1129 for (auto H : HintTypes) 1130 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1131 1132 // Replace current metadata node with new one. 1133 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1134 MDNode *NewLoopID = MDNode::get(Context, MDs); 1135 // Set operand 0 to refer to the loop id itself. 1136 NewLoopID->replaceOperandWith(0, NewLoopID); 1137 1138 TheLoop->setLoopID(NewLoopID); 1139 } 1140 1141 /// The loop these hints belong to. 1142 const Loop *TheLoop; 1143 }; 1144 1145 static void emitAnalysisDiag(const Function *TheFunction, const Loop *TheLoop, 1146 const LoopVectorizeHints &Hints, 1147 const LoopAccessReport &Message) { 1148 const char *Name = Hints.vectorizeAnalysisPassName(); 1149 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, Name); 1150 } 1151 1152 static void emitMissedWarning(Function *F, Loop *L, 1153 const LoopVectorizeHints &LH) { 1154 emitOptimizationRemarkMissed(F->getContext(), LV_NAME, *F, L->getStartLoc(), 1155 LH.emitRemark()); 1156 1157 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1158 if (LH.getWidth() != 1) 1159 emitLoopVectorizeWarning( 1160 F->getContext(), *F, L->getStartLoc(), 1161 "failed explicitly specified loop vectorization"); 1162 else if (LH.getInterleave() != 1) 1163 emitLoopInterleaveWarning( 1164 F->getContext(), *F, L->getStartLoc(), 1165 "failed explicitly specified loop interleaving"); 1166 } 1167 } 1168 1169 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1170 /// to what vectorization factor. 1171 /// This class does not look at the profitability of vectorization, only the 1172 /// legality. This class has two main kinds of checks: 1173 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1174 /// will change the order of memory accesses in a way that will change the 1175 /// correctness of the program. 1176 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1177 /// checks for a number of different conditions, such as the availability of a 1178 /// single induction variable, that all types are supported and vectorize-able, 1179 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1180 /// This class is also used by InnerLoopVectorizer for identifying 1181 /// induction variable and the different reduction variables. 1182 class LoopVectorizationLegality { 1183 public: 1184 LoopVectorizationLegality(Loop *L, PredicatedScalarEvolution &PSE, 1185 DominatorTree *DT, TargetLibraryInfo *TLI, 1186 AliasAnalysis *AA, Function *F, 1187 const TargetTransformInfo *TTI, 1188 LoopAccessAnalysis *LAA, 1189 LoopVectorizationRequirements *R, 1190 const LoopVectorizeHints *H) 1191 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TheFunction(F), 1192 TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), InterleaveInfo(PSE, L, DT), 1193 Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1194 Requirements(R), Hints(H) {} 1195 1196 /// ReductionList contains the reduction descriptors for all 1197 /// of the reductions that were found in the loop. 1198 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1199 1200 /// InductionList saves induction variables and maps them to the 1201 /// induction descriptor. 1202 typedef MapVector<PHINode*, InductionDescriptor> InductionList; 1203 1204 /// Returns true if it is legal to vectorize this loop. 1205 /// This does not mean that it is profitable to vectorize this 1206 /// loop, only that it is legal to do so. 1207 bool canVectorize(); 1208 1209 /// Returns the Induction variable. 1210 PHINode *getInduction() { return Induction; } 1211 1212 /// Returns the reduction variables found in the loop. 1213 ReductionList *getReductionVars() { return &Reductions; } 1214 1215 /// Returns the induction variables found in the loop. 1216 InductionList *getInductionVars() { return &Inductions; } 1217 1218 /// Returns the widest induction type. 1219 Type *getWidestInductionType() { return WidestIndTy; } 1220 1221 /// Returns True if V is an induction variable in this loop. 1222 bool isInductionVariable(const Value *V); 1223 1224 /// Returns True if PN is a reduction variable in this loop. 1225 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1226 1227 /// Return true if the block BB needs to be predicated in order for the loop 1228 /// to be vectorized. 1229 bool blockNeedsPredication(BasicBlock *BB); 1230 1231 /// Check if this pointer is consecutive when vectorizing. This happens 1232 /// when the last index of the GEP is the induction variable, or that the 1233 /// pointer itself is an induction variable. 1234 /// This check allows us to vectorize A[idx] into a wide load/store. 1235 /// Returns: 1236 /// 0 - Stride is unknown or non-consecutive. 1237 /// 1 - Address is consecutive. 1238 /// -1 - Address is consecutive, and decreasing. 1239 int isConsecutivePtr(Value *Ptr); 1240 1241 /// Returns true if the value V is uniform within the loop. 1242 bool isUniform(Value *V); 1243 1244 /// Returns true if this instruction will remain scalar after vectorization. 1245 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 1246 1247 /// Returns the information that we collected about runtime memory check. 1248 const RuntimePointerChecking *getRuntimePointerChecking() const { 1249 return LAI->getRuntimePointerChecking(); 1250 } 1251 1252 const LoopAccessInfo *getLAI() const { 1253 return LAI; 1254 } 1255 1256 /// \brief Check if \p Instr belongs to any interleaved access group. 1257 bool isAccessInterleaved(Instruction *Instr) { 1258 return InterleaveInfo.isInterleaved(Instr); 1259 } 1260 1261 /// \brief Get the interleaved access group that \p Instr belongs to. 1262 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1263 return InterleaveInfo.getInterleaveGroup(Instr); 1264 } 1265 1266 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1267 1268 bool hasStride(Value *V) { return StrideSet.count(V); } 1269 bool mustCheckStrides() { return !StrideSet.empty(); } 1270 SmallPtrSet<Value *, 8>::iterator strides_begin() { 1271 return StrideSet.begin(); 1272 } 1273 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 1274 1275 /// Returns true if the target machine supports masked store operation 1276 /// for the given \p DataType and kind of access to \p Ptr. 1277 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1278 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1279 } 1280 /// Returns true if the target machine supports masked load operation 1281 /// for the given \p DataType and kind of access to \p Ptr. 1282 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1283 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1284 } 1285 /// Returns true if vector representation of the instruction \p I 1286 /// requires mask. 1287 bool isMaskRequired(const Instruction* I) { 1288 return (MaskedOp.count(I) != 0); 1289 } 1290 unsigned getNumStores() const { 1291 return LAI->getNumStores(); 1292 } 1293 unsigned getNumLoads() const { 1294 return LAI->getNumLoads(); 1295 } 1296 unsigned getNumPredStores() const { 1297 return NumPredStores; 1298 } 1299 private: 1300 /// Check if a single basic block loop is vectorizable. 1301 /// At this point we know that this is a loop with a constant trip count 1302 /// and we only need to check individual instructions. 1303 bool canVectorizeInstrs(); 1304 1305 /// When we vectorize loops we may change the order in which 1306 /// we read and write from memory. This method checks if it is 1307 /// legal to vectorize the code, considering only memory constrains. 1308 /// Returns true if the loop is vectorizable 1309 bool canVectorizeMemory(); 1310 1311 /// Return true if we can vectorize this loop using the IF-conversion 1312 /// transformation. 1313 bool canVectorizeWithIfConvert(); 1314 1315 /// Collect the variables that need to stay uniform after vectorization. 1316 void collectLoopUniforms(); 1317 1318 /// Return true if all of the instructions in the block can be speculatively 1319 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1320 /// and we know that we can read from them without segfault. 1321 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1322 1323 /// \brief Collect memory access with loop invariant strides. 1324 /// 1325 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 1326 /// invariant. 1327 void collectStridedAccess(Value *LoadOrStoreInst); 1328 1329 /// Report an analysis message to assist the user in diagnosing loops that are 1330 /// not vectorized. These are handled as LoopAccessReport rather than 1331 /// VectorizationReport because the << operator of VectorizationReport returns 1332 /// LoopAccessReport. 1333 void emitAnalysis(const LoopAccessReport &Message) const { 1334 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1335 } 1336 1337 unsigned NumPredStores; 1338 1339 /// The loop that we evaluate. 1340 Loop *TheLoop; 1341 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1342 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1343 /// of existing SCEV assumptions. The analysis will also add a minimal set 1344 /// of new predicates if this is required to enable vectorization and 1345 /// unrolling. 1346 PredicatedScalarEvolution &PSE; 1347 /// Target Library Info. 1348 TargetLibraryInfo *TLI; 1349 /// Parent function 1350 Function *TheFunction; 1351 /// Target Transform Info 1352 const TargetTransformInfo *TTI; 1353 /// Dominator Tree. 1354 DominatorTree *DT; 1355 // LoopAccess analysis. 1356 LoopAccessAnalysis *LAA; 1357 // And the loop-accesses info corresponding to this loop. This pointer is 1358 // null until canVectorizeMemory sets it up. 1359 const LoopAccessInfo *LAI; 1360 1361 /// The interleave access information contains groups of interleaved accesses 1362 /// with the same stride and close to each other. 1363 InterleavedAccessInfo InterleaveInfo; 1364 1365 // --- vectorization state --- // 1366 1367 /// Holds the integer induction variable. This is the counter of the 1368 /// loop. 1369 PHINode *Induction; 1370 /// Holds the reduction variables. 1371 ReductionList Reductions; 1372 /// Holds all of the induction variables that we found in the loop. 1373 /// Notice that inductions don't need to start at zero and that induction 1374 /// variables can be pointers. 1375 InductionList Inductions; 1376 /// Holds the widest induction type encountered. 1377 Type *WidestIndTy; 1378 1379 /// Allowed outside users. This holds the reduction 1380 /// vars which can be accessed from outside the loop. 1381 SmallPtrSet<Value*, 4> AllowedExit; 1382 /// This set holds the variables which are known to be uniform after 1383 /// vectorization. 1384 SmallPtrSet<Instruction*, 4> Uniforms; 1385 1386 /// Can we assume the absence of NaNs. 1387 bool HasFunNoNaNAttr; 1388 1389 /// Vectorization requirements that will go through late-evaluation. 1390 LoopVectorizationRequirements *Requirements; 1391 1392 /// Used to emit an analysis of any legality issues. 1393 const LoopVectorizeHints *Hints; 1394 1395 ValueToValueMap Strides; 1396 SmallPtrSet<Value *, 8> StrideSet; 1397 1398 /// While vectorizing these instructions we have to generate a 1399 /// call to the appropriate masked intrinsic 1400 SmallPtrSet<const Instruction *, 8> MaskedOp; 1401 }; 1402 1403 /// LoopVectorizationCostModel - estimates the expected speedups due to 1404 /// vectorization. 1405 /// In many cases vectorization is not profitable. This can happen because of 1406 /// a number of reasons. In this class we mainly attempt to predict the 1407 /// expected speedup/slowdowns due to the supported instruction set. We use the 1408 /// TargetTransformInfo to query the different backends for the cost of 1409 /// different operations. 1410 class LoopVectorizationCostModel { 1411 public: 1412 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 1413 LoopVectorizationLegality *Legal, 1414 const TargetTransformInfo &TTI, 1415 const TargetLibraryInfo *TLI, DemandedBits *DB, 1416 AssumptionCache *AC, const Function *F, 1417 const LoopVectorizeHints *Hints, 1418 SmallPtrSetImpl<const Value *> &ValuesToIgnore) 1419 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1420 TheFunction(F), Hints(Hints), ValuesToIgnore(ValuesToIgnore) {} 1421 1422 /// Information about vectorization costs 1423 struct VectorizationFactor { 1424 unsigned Width; // Vector width with best cost 1425 unsigned Cost; // Cost of the loop with that width 1426 }; 1427 /// \return The most profitable vectorization factor and the cost of that VF. 1428 /// This method checks every power of two up to VF. If UserVF is not ZERO 1429 /// then this vectorization factor will be selected if vectorization is 1430 /// possible. 1431 VectorizationFactor selectVectorizationFactor(bool OptForSize); 1432 1433 /// \return The size (in bits) of the smallest and widest types in the code 1434 /// that needs to be vectorized. We ignore values that remain scalar such as 1435 /// 64 bit loop indices. 1436 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1437 1438 /// \return The desired interleave count. 1439 /// If interleave count has been specified by metadata it will be returned. 1440 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1441 /// are the selected vectorization factor and the cost of the selected VF. 1442 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1443 unsigned LoopCost); 1444 1445 /// \return The most profitable unroll factor. 1446 /// This method finds the best unroll-factor based on register pressure and 1447 /// other parameters. VF and LoopCost are the selected vectorization factor 1448 /// and the cost of the selected VF. 1449 unsigned computeInterleaveCount(bool OptForSize, unsigned VF, 1450 unsigned LoopCost); 1451 1452 /// \brief A struct that represents some properties of the register usage 1453 /// of a loop. 1454 struct RegisterUsage { 1455 /// Holds the number of loop invariant values that are used in the loop. 1456 unsigned LoopInvariantRegs; 1457 /// Holds the maximum number of concurrent live intervals in the loop. 1458 unsigned MaxLocalUsers; 1459 /// Holds the number of instructions in the loop. 1460 unsigned NumInstructions; 1461 }; 1462 1463 /// \return Returns information about the register usages of the loop for the 1464 /// given vectorization factors. 1465 SmallVector<RegisterUsage, 8> 1466 calculateRegisterUsage(const SmallVector<unsigned, 8> &VFs); 1467 1468 private: 1469 /// Returns the expected execution cost. The unit of the cost does 1470 /// not matter because we use the 'cost' units to compare different 1471 /// vector widths. The cost that is returned is *not* normalized by 1472 /// the factor width. 1473 unsigned expectedCost(unsigned VF); 1474 1475 /// Returns the execution time cost of an instruction for a given vector 1476 /// width. Vector width of one means scalar. 1477 unsigned getInstructionCost(Instruction *I, unsigned VF); 1478 1479 /// Returns whether the instruction is a load or store and will be a emitted 1480 /// as a vector operation. 1481 bool isConsecutiveLoadOrStore(Instruction *I); 1482 1483 /// Report an analysis message to assist the user in diagnosing loops that are 1484 /// not vectorized. These are handled as LoopAccessReport rather than 1485 /// VectorizationReport because the << operator of VectorizationReport returns 1486 /// LoopAccessReport. 1487 void emitAnalysis(const LoopAccessReport &Message) const { 1488 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1489 } 1490 1491 public: 1492 /// Map of scalar integer values to the smallest bitwidth they can be legally 1493 /// represented as. The vector equivalents of these values should be truncated 1494 /// to this type. 1495 MapVector<Instruction*,uint64_t> MinBWs; 1496 1497 /// The loop that we evaluate. 1498 Loop *TheLoop; 1499 /// Scev analysis. 1500 ScalarEvolution *SE; 1501 /// Loop Info analysis. 1502 LoopInfo *LI; 1503 /// Vectorization legality. 1504 LoopVectorizationLegality *Legal; 1505 /// Vector target information. 1506 const TargetTransformInfo &TTI; 1507 /// Target Library Info. 1508 const TargetLibraryInfo *TLI; 1509 /// Demanded bits analysis 1510 DemandedBits *DB; 1511 const Function *TheFunction; 1512 // Loop Vectorize Hint. 1513 const LoopVectorizeHints *Hints; 1514 // Values to ignore in the cost model. 1515 const SmallPtrSetImpl<const Value *> &ValuesToIgnore; 1516 }; 1517 1518 /// \brief This holds vectorization requirements that must be verified late in 1519 /// the process. The requirements are set by legalize and costmodel. Once 1520 /// vectorization has been determined to be possible and profitable the 1521 /// requirements can be verified by looking for metadata or compiler options. 1522 /// For example, some loops require FP commutativity which is only allowed if 1523 /// vectorization is explicitly specified or if the fast-math compiler option 1524 /// has been provided. 1525 /// Late evaluation of these requirements allows helpful diagnostics to be 1526 /// composed that tells the user what need to be done to vectorize the loop. For 1527 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 1528 /// evaluation should be used only when diagnostics can generated that can be 1529 /// followed by a non-expert user. 1530 class LoopVectorizationRequirements { 1531 public: 1532 LoopVectorizationRequirements() 1533 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr) {} 1534 1535 void addUnsafeAlgebraInst(Instruction *I) { 1536 // First unsafe algebra instruction. 1537 if (!UnsafeAlgebraInst) 1538 UnsafeAlgebraInst = I; 1539 } 1540 1541 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 1542 1543 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 1544 const char *Name = Hints.vectorizeAnalysisPassName(); 1545 bool Failed = false; 1546 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 1547 emitOptimizationRemarkAnalysisFPCommute( 1548 F->getContext(), Name, *F, UnsafeAlgebraInst->getDebugLoc(), 1549 VectorizationReport() << "cannot prove it is safe to reorder " 1550 "floating-point operations"); 1551 Failed = true; 1552 } 1553 1554 // Test if runtime memcheck thresholds are exceeded. 1555 bool PragmaThresholdReached = 1556 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 1557 bool ThresholdReached = 1558 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 1559 if ((ThresholdReached && !Hints.allowReordering()) || 1560 PragmaThresholdReached) { 1561 emitOptimizationRemarkAnalysisAliasing( 1562 F->getContext(), Name, *F, L->getStartLoc(), 1563 VectorizationReport() 1564 << "cannot prove it is safe to reorder memory operations"); 1565 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 1566 Failed = true; 1567 } 1568 1569 return Failed; 1570 } 1571 1572 private: 1573 unsigned NumRuntimePointerChecks; 1574 Instruction *UnsafeAlgebraInst; 1575 }; 1576 1577 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1578 if (L.empty()) 1579 return V.push_back(&L); 1580 1581 for (Loop *InnerL : L) 1582 addInnerLoop(*InnerL, V); 1583 } 1584 1585 /// The LoopVectorize Pass. 1586 struct LoopVectorize : public FunctionPass { 1587 /// Pass identification, replacement for typeid 1588 static char ID; 1589 1590 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1591 : FunctionPass(ID), 1592 DisableUnrolling(NoUnrolling), 1593 AlwaysVectorize(AlwaysVectorize) { 1594 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1595 } 1596 1597 ScalarEvolution *SE; 1598 LoopInfo *LI; 1599 TargetTransformInfo *TTI; 1600 DominatorTree *DT; 1601 BlockFrequencyInfo *BFI; 1602 TargetLibraryInfo *TLI; 1603 DemandedBits *DB; 1604 AliasAnalysis *AA; 1605 AssumptionCache *AC; 1606 LoopAccessAnalysis *LAA; 1607 bool DisableUnrolling; 1608 bool AlwaysVectorize; 1609 1610 BlockFrequency ColdEntryFreq; 1611 1612 bool runOnFunction(Function &F) override { 1613 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1614 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1615 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1616 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1617 BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1618 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1619 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1620 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1621 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1622 LAA = &getAnalysis<LoopAccessAnalysis>(); 1623 DB = &getAnalysis<DemandedBits>(); 1624 1625 // Compute some weights outside of the loop over the loops. Compute this 1626 // using a BranchProbability to re-use its scaling math. 1627 const BranchProbability ColdProb(1, 5); // 20% 1628 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1629 1630 // Don't attempt if 1631 // 1. the target claims to have no vector registers, and 1632 // 2. interleaving won't help ILP. 1633 // 1634 // The second condition is necessary because, even if the target has no 1635 // vector registers, loop vectorization may still enable scalar 1636 // interleaving. 1637 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 1638 return false; 1639 1640 // Build up a worklist of inner-loops to vectorize. This is necessary as 1641 // the act of vectorizing or partially unrolling a loop creates new loops 1642 // and can invalidate iterators across the loops. 1643 SmallVector<Loop *, 8> Worklist; 1644 1645 for (Loop *L : *LI) 1646 addInnerLoop(*L, Worklist); 1647 1648 LoopsAnalyzed += Worklist.size(); 1649 1650 // Now walk the identified inner loops. 1651 bool Changed = false; 1652 while (!Worklist.empty()) 1653 Changed |= processLoop(Worklist.pop_back_val()); 1654 1655 // Process each loop nest in the function. 1656 return Changed; 1657 } 1658 1659 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 1660 SmallVector<Metadata *, 4> MDs; 1661 // Reserve first location for self reference to the LoopID metadata node. 1662 MDs.push_back(nullptr); 1663 bool IsUnrollMetadata = false; 1664 MDNode *LoopID = L->getLoopID(); 1665 if (LoopID) { 1666 // First find existing loop unrolling disable metadata. 1667 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1668 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1669 if (MD) { 1670 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1671 IsUnrollMetadata = 1672 S && S->getString().startswith("llvm.loop.unroll.disable"); 1673 } 1674 MDs.push_back(LoopID->getOperand(i)); 1675 } 1676 } 1677 1678 if (!IsUnrollMetadata) { 1679 // Add runtime unroll disable metadata. 1680 LLVMContext &Context = L->getHeader()->getContext(); 1681 SmallVector<Metadata *, 1> DisableOperands; 1682 DisableOperands.push_back( 1683 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 1684 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 1685 MDs.push_back(DisableNode); 1686 MDNode *NewLoopID = MDNode::get(Context, MDs); 1687 // Set operand 0 to refer to the loop id itself. 1688 NewLoopID->replaceOperandWith(0, NewLoopID); 1689 L->setLoopID(NewLoopID); 1690 } 1691 } 1692 1693 bool processLoop(Loop *L) { 1694 assert(L->empty() && "Only process inner loops."); 1695 1696 #ifndef NDEBUG 1697 const std::string DebugLocStr = getDebugLocString(L); 1698 #endif /* NDEBUG */ 1699 1700 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1701 << L->getHeader()->getParent()->getName() << "\" from " 1702 << DebugLocStr << "\n"); 1703 1704 LoopVectorizeHints Hints(L, DisableUnrolling); 1705 1706 DEBUG(dbgs() << "LV: Loop hints:" 1707 << " force=" 1708 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1709 ? "disabled" 1710 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1711 ? "enabled" 1712 : "?")) << " width=" << Hints.getWidth() 1713 << " unroll=" << Hints.getInterleave() << "\n"); 1714 1715 // Function containing loop 1716 Function *F = L->getHeader()->getParent(); 1717 1718 // Looking at the diagnostic output is the only way to determine if a loop 1719 // was vectorized (other than looking at the IR or machine code), so it 1720 // is important to generate an optimization remark for each loop. Most of 1721 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1722 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1723 // less verbose reporting vectorized loops and unvectorized loops that may 1724 // benefit from vectorization, respectively. 1725 1726 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 1727 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 1728 return false; 1729 } 1730 1731 // Check the loop for a trip count threshold: 1732 // do not vectorize loops with a tiny trip count. 1733 const unsigned TC = SE->getSmallConstantTripCount(L); 1734 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1735 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1736 << "This loop is not worth vectorizing."); 1737 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1738 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1739 else { 1740 DEBUG(dbgs() << "\n"); 1741 emitAnalysisDiag(F, L, Hints, VectorizationReport() 1742 << "vectorization is not beneficial " 1743 "and is not explicitly forced"); 1744 return false; 1745 } 1746 } 1747 1748 PredicatedScalarEvolution PSE(*SE); 1749 1750 // Check if it is legal to vectorize the loop. 1751 LoopVectorizationRequirements Requirements; 1752 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, LAA, 1753 &Requirements, &Hints); 1754 if (!LVL.canVectorize()) { 1755 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1756 emitMissedWarning(F, L, Hints); 1757 return false; 1758 } 1759 1760 // Collect values we want to ignore in the cost model. This includes 1761 // type-promoting instructions we identified during reduction detection. 1762 SmallPtrSet<const Value *, 32> ValuesToIgnore; 1763 CodeMetrics::collectEphemeralValues(L, AC, ValuesToIgnore); 1764 for (auto &Reduction : *LVL.getReductionVars()) { 1765 RecurrenceDescriptor &RedDes = Reduction.second; 1766 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 1767 ValuesToIgnore.insert(Casts.begin(), Casts.end()); 1768 } 1769 1770 // Use the cost model. 1771 LoopVectorizationCostModel CM(L, PSE.getSE(), LI, &LVL, *TTI, TLI, DB, AC, 1772 F, &Hints, ValuesToIgnore); 1773 1774 // Check the function attributes to find out if this function should be 1775 // optimized for size. 1776 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1777 F->optForSize(); 1778 1779 // Compute the weighted frequency of this loop being executed and see if it 1780 // is less than 20% of the function entry baseline frequency. Note that we 1781 // always have a canonical loop here because we think we *can* vectorize. 1782 // FIXME: This is hidden behind a flag due to pervasive problems with 1783 // exactly what block frequency models. 1784 if (LoopVectorizeWithBlockFrequency) { 1785 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1786 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1787 LoopEntryFreq < ColdEntryFreq) 1788 OptForSize = true; 1789 } 1790 1791 // Check the function attributes to see if implicit floats are allowed. 1792 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1793 // an integer loop and the vector instructions selected are purely integer 1794 // vector instructions? 1795 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1796 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1797 "attribute is used.\n"); 1798 emitAnalysisDiag( 1799 F, L, Hints, 1800 VectorizationReport() 1801 << "loop not vectorized due to NoImplicitFloat attribute"); 1802 emitMissedWarning(F, L, Hints); 1803 return false; 1804 } 1805 1806 // Select the optimal vectorization factor. 1807 const LoopVectorizationCostModel::VectorizationFactor VF = 1808 CM.selectVectorizationFactor(OptForSize); 1809 1810 // Select the interleave count. 1811 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 1812 1813 // Get user interleave count. 1814 unsigned UserIC = Hints.getInterleave(); 1815 1816 // Identify the diagnostic messages that should be produced. 1817 std::string VecDiagMsg, IntDiagMsg; 1818 bool VectorizeLoop = true, InterleaveLoop = true; 1819 1820 if (Requirements.doesNotMeet(F, L, Hints)) { 1821 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 1822 "requirements.\n"); 1823 emitMissedWarning(F, L, Hints); 1824 return false; 1825 } 1826 1827 if (VF.Width == 1) { 1828 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 1829 VecDiagMsg = 1830 "the cost-model indicates that vectorization is not beneficial"; 1831 VectorizeLoop = false; 1832 } 1833 1834 if (IC == 1 && UserIC <= 1) { 1835 // Tell the user interleaving is not beneficial. 1836 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 1837 IntDiagMsg = 1838 "the cost-model indicates that interleaving is not beneficial"; 1839 InterleaveLoop = false; 1840 if (UserIC == 1) 1841 IntDiagMsg += 1842 " and is explicitly disabled or interleave count is set to 1"; 1843 } else if (IC > 1 && UserIC == 1) { 1844 // Tell the user interleaving is beneficial, but it explicitly disabled. 1845 DEBUG(dbgs() 1846 << "LV: Interleaving is beneficial but is explicitly disabled."); 1847 IntDiagMsg = "the cost-model indicates that interleaving is beneficial " 1848 "but is explicitly disabled or interleave count is set to 1"; 1849 InterleaveLoop = false; 1850 } 1851 1852 // Override IC if user provided an interleave count. 1853 IC = UserIC > 0 ? UserIC : IC; 1854 1855 // Emit diagnostic messages, if any. 1856 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 1857 if (!VectorizeLoop && !InterleaveLoop) { 1858 // Do not vectorize or interleaving the loop. 1859 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 1860 L->getStartLoc(), VecDiagMsg); 1861 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 1862 L->getStartLoc(), IntDiagMsg); 1863 return false; 1864 } else if (!VectorizeLoop && InterleaveLoop) { 1865 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 1866 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 1867 L->getStartLoc(), VecDiagMsg); 1868 } else if (VectorizeLoop && !InterleaveLoop) { 1869 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1870 << DebugLocStr << '\n'); 1871 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 1872 L->getStartLoc(), IntDiagMsg); 1873 } else if (VectorizeLoop && InterleaveLoop) { 1874 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1875 << DebugLocStr << '\n'); 1876 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 1877 } 1878 1879 if (!VectorizeLoop) { 1880 assert(IC > 1 && "interleave count should not be 1 or 0"); 1881 // If we decided that it is not legal to vectorize the loop then 1882 // interleave it. 1883 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, IC); 1884 Unroller.vectorize(&LVL, CM.MinBWs); 1885 1886 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 1887 Twine("interleaved loop (interleaved count: ") + 1888 Twine(IC) + ")"); 1889 } else { 1890 // If we decided that it is *legal* to vectorize the loop then do it. 1891 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, VF.Width, IC); 1892 LB.vectorize(&LVL, CM.MinBWs); 1893 ++LoopsVectorized; 1894 1895 // Add metadata to disable runtime unrolling scalar loop when there's no 1896 // runtime check about strides and memory. Because at this situation, 1897 // scalar loop is rarely used not worthy to be unrolled. 1898 if (!LB.IsSafetyChecksAdded()) 1899 AddRuntimeUnrollDisableMetaData(L); 1900 1901 // Report the vectorization decision. 1902 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 1903 Twine("vectorized loop (vectorization width: ") + 1904 Twine(VF.Width) + ", interleaved count: " + 1905 Twine(IC) + ")"); 1906 } 1907 1908 // Mark the loop as already vectorized to avoid vectorizing again. 1909 Hints.setAlreadyVectorized(); 1910 1911 DEBUG(verifyFunction(*L->getHeader()->getParent())); 1912 return true; 1913 } 1914 1915 void getAnalysisUsage(AnalysisUsage &AU) const override { 1916 AU.addRequired<AssumptionCacheTracker>(); 1917 AU.addRequiredID(LoopSimplifyID); 1918 AU.addRequiredID(LCSSAID); 1919 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1920 AU.addRequired<DominatorTreeWrapperPass>(); 1921 AU.addRequired<LoopInfoWrapperPass>(); 1922 AU.addRequired<ScalarEvolutionWrapperPass>(); 1923 AU.addRequired<TargetTransformInfoWrapperPass>(); 1924 AU.addRequired<AAResultsWrapperPass>(); 1925 AU.addRequired<LoopAccessAnalysis>(); 1926 AU.addRequired<DemandedBits>(); 1927 AU.addPreserved<LoopInfoWrapperPass>(); 1928 AU.addPreserved<DominatorTreeWrapperPass>(); 1929 AU.addPreserved<BasicAAWrapperPass>(); 1930 AU.addPreserved<AAResultsWrapperPass>(); 1931 AU.addPreserved<GlobalsAAWrapperPass>(); 1932 } 1933 1934 }; 1935 1936 } // end anonymous namespace 1937 1938 //===----------------------------------------------------------------------===// 1939 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1940 // LoopVectorizationCostModel. 1941 //===----------------------------------------------------------------------===// 1942 1943 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1944 // We need to place the broadcast of invariant variables outside the loop. 1945 Instruction *Instr = dyn_cast<Instruction>(V); 1946 bool NewInstr = 1947 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 1948 Instr->getParent()) != LoopVectorBody.end()); 1949 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1950 1951 // Place the code for broadcasting invariant variables in the new preheader. 1952 IRBuilder<>::InsertPointGuard Guard(Builder); 1953 if (Invariant) 1954 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1955 1956 // Broadcast the scalar into all locations in the vector. 1957 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1958 1959 return Shuf; 1960 } 1961 1962 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 1963 Value *Step) { 1964 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1965 assert(Val->getType()->getScalarType()->isIntegerTy() && 1966 "Elem must be an integer"); 1967 assert(Step->getType() == Val->getType()->getScalarType() && 1968 "Step has wrong type"); 1969 // Create the types. 1970 Type *ITy = Val->getType()->getScalarType(); 1971 VectorType *Ty = cast<VectorType>(Val->getType()); 1972 int VLen = Ty->getNumElements(); 1973 SmallVector<Constant*, 8> Indices; 1974 1975 // Create a vector of consecutive numbers from zero to VF. 1976 for (int i = 0; i < VLen; ++i) 1977 Indices.push_back(ConstantInt::get(ITy, StartIdx + i)); 1978 1979 // Add the consecutive indices to the vector value. 1980 Constant *Cv = ConstantVector::get(Indices); 1981 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1982 Step = Builder.CreateVectorSplat(VLen, Step); 1983 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1984 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1985 // which can be found from the original scalar operations. 1986 Step = Builder.CreateMul(Cv, Step); 1987 return Builder.CreateAdd(Val, Step, "induction"); 1988 } 1989 1990 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1991 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 1992 auto *SE = PSE.getSE(); 1993 // Make sure that the pointer does not point to structs. 1994 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 1995 return 0; 1996 1997 // If this value is a pointer induction variable we know it is consecutive. 1998 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1999 if (Phi && Inductions.count(Phi)) { 2000 InductionDescriptor II = Inductions[Phi]; 2001 return II.getConsecutiveDirection(); 2002 } 2003 2004 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2005 if (!Gep) 2006 return 0; 2007 2008 unsigned NumOperands = Gep->getNumOperands(); 2009 Value *GpPtr = Gep->getPointerOperand(); 2010 // If this GEP value is a consecutive pointer induction variable and all of 2011 // the indices are constant then we know it is consecutive. We can 2012 Phi = dyn_cast<PHINode>(GpPtr); 2013 if (Phi && Inductions.count(Phi)) { 2014 2015 // Make sure that the pointer does not point to structs. 2016 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 2017 if (GepPtrType->getElementType()->isAggregateType()) 2018 return 0; 2019 2020 // Make sure that all of the index operands are loop invariant. 2021 for (unsigned i = 1; i < NumOperands; ++i) 2022 if (!SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2023 return 0; 2024 2025 InductionDescriptor II = Inductions[Phi]; 2026 return II.getConsecutiveDirection(); 2027 } 2028 2029 unsigned InductionOperand = getGEPInductionOperand(Gep); 2030 2031 // Check that all of the gep indices are uniform except for our induction 2032 // operand. 2033 for (unsigned i = 0; i != NumOperands; ++i) 2034 if (i != InductionOperand && 2035 !SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2036 return 0; 2037 2038 // We can emit wide load/stores only if the last non-zero index is the 2039 // induction variable. 2040 const SCEV *Last = nullptr; 2041 if (!Strides.count(Gep)) 2042 Last = PSE.getSCEV(Gep->getOperand(InductionOperand)); 2043 else { 2044 // Because of the multiplication by a stride we can have a s/zext cast. 2045 // We are going to replace this stride by 1 so the cast is safe to ignore. 2046 // 2047 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 2048 // %0 = trunc i64 %indvars.iv to i32 2049 // %mul = mul i32 %0, %Stride1 2050 // %idxprom = zext i32 %mul to i64 << Safe cast. 2051 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 2052 // 2053 Last = replaceSymbolicStrideSCEV(PSE, Strides, 2054 Gep->getOperand(InductionOperand), Gep); 2055 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 2056 Last = 2057 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 2058 ? C->getOperand() 2059 : Last; 2060 } 2061 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 2062 const SCEV *Step = AR->getStepRecurrence(*SE); 2063 2064 // The memory is consecutive because the last index is consecutive 2065 // and all other indices are loop invariant. 2066 if (Step->isOne()) 2067 return 1; 2068 if (Step->isAllOnesValue()) 2069 return -1; 2070 } 2071 2072 return 0; 2073 } 2074 2075 bool LoopVectorizationLegality::isUniform(Value *V) { 2076 return LAI->isUniform(V); 2077 } 2078 2079 InnerLoopVectorizer::VectorParts& 2080 InnerLoopVectorizer::getVectorValue(Value *V) { 2081 assert(V != Induction && "The new induction variable should not be used."); 2082 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2083 2084 // If we have a stride that is replaced by one, do it here. 2085 if (Legal->hasStride(V)) 2086 V = ConstantInt::get(V->getType(), 1); 2087 2088 // If we have this scalar in the map, return it. 2089 if (WidenMap.has(V)) 2090 return WidenMap.get(V); 2091 2092 // If this scalar is unknown, assume that it is a constant or that it is 2093 // loop invariant. Broadcast V and save the value for future uses. 2094 Value *B = getBroadcastInstrs(V); 2095 return WidenMap.splat(V, B); 2096 } 2097 2098 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2099 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2100 SmallVector<Constant*, 8> ShuffleMask; 2101 for (unsigned i = 0; i < VF; ++i) 2102 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2103 2104 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2105 ConstantVector::get(ShuffleMask), 2106 "reverse"); 2107 } 2108 2109 // Get a mask to interleave \p NumVec vectors into a wide vector. 2110 // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> 2111 // E.g. For 2 interleaved vectors, if VF is 4, the mask is: 2112 // <0, 4, 1, 5, 2, 6, 3, 7> 2113 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, 2114 unsigned NumVec) { 2115 SmallVector<Constant *, 16> Mask; 2116 for (unsigned i = 0; i < VF; i++) 2117 for (unsigned j = 0; j < NumVec; j++) 2118 Mask.push_back(Builder.getInt32(j * VF + i)); 2119 2120 return ConstantVector::get(Mask); 2121 } 2122 2123 // Get the strided mask starting from index \p Start. 2124 // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)> 2125 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, 2126 unsigned Stride, unsigned VF) { 2127 SmallVector<Constant *, 16> Mask; 2128 for (unsigned i = 0; i < VF; i++) 2129 Mask.push_back(Builder.getInt32(Start + i * Stride)); 2130 2131 return ConstantVector::get(Mask); 2132 } 2133 2134 // Get a mask of two parts: The first part consists of sequential integers 2135 // starting from 0, The second part consists of UNDEFs. 2136 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> 2137 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, 2138 unsigned NumUndef) { 2139 SmallVector<Constant *, 16> Mask; 2140 for (unsigned i = 0; i < NumInt; i++) 2141 Mask.push_back(Builder.getInt32(i)); 2142 2143 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 2144 for (unsigned i = 0; i < NumUndef; i++) 2145 Mask.push_back(Undef); 2146 2147 return ConstantVector::get(Mask); 2148 } 2149 2150 // Concatenate two vectors with the same element type. The 2nd vector should 2151 // not have more elements than the 1st vector. If the 2nd vector has less 2152 // elements, extend it with UNDEFs. 2153 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 2154 Value *V2) { 2155 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 2156 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 2157 assert(VecTy1 && VecTy2 && 2158 VecTy1->getScalarType() == VecTy2->getScalarType() && 2159 "Expect two vectors with the same element type"); 2160 2161 unsigned NumElts1 = VecTy1->getNumElements(); 2162 unsigned NumElts2 = VecTy2->getNumElements(); 2163 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 2164 2165 if (NumElts1 > NumElts2) { 2166 // Extend with UNDEFs. 2167 Constant *ExtMask = 2168 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); 2169 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 2170 } 2171 2172 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); 2173 return Builder.CreateShuffleVector(V1, V2, Mask); 2174 } 2175 2176 // Concatenate vectors in the given list. All vectors have the same type. 2177 static Value *ConcatenateVectors(IRBuilder<> &Builder, 2178 ArrayRef<Value *> InputList) { 2179 unsigned NumVec = InputList.size(); 2180 assert(NumVec > 1 && "Should be at least two vectors"); 2181 2182 SmallVector<Value *, 8> ResList; 2183 ResList.append(InputList.begin(), InputList.end()); 2184 do { 2185 SmallVector<Value *, 8> TmpList; 2186 for (unsigned i = 0; i < NumVec - 1; i += 2) { 2187 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 2188 assert((V0->getType() == V1->getType() || i == NumVec - 2) && 2189 "Only the last vector may have a different type"); 2190 2191 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); 2192 } 2193 2194 // Push the last vector if the total number of vectors is odd. 2195 if (NumVec % 2 != 0) 2196 TmpList.push_back(ResList[NumVec - 1]); 2197 2198 ResList = TmpList; 2199 NumVec = ResList.size(); 2200 } while (NumVec > 1); 2201 2202 return ResList[0]; 2203 } 2204 2205 // Try to vectorize the interleave group that \p Instr belongs to. 2206 // 2207 // E.g. Translate following interleaved load group (factor = 3): 2208 // for (i = 0; i < N; i+=3) { 2209 // R = Pic[i]; // Member of index 0 2210 // G = Pic[i+1]; // Member of index 1 2211 // B = Pic[i+2]; // Member of index 2 2212 // ... // do something to R, G, B 2213 // } 2214 // To: 2215 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2216 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2217 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2218 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2219 // 2220 // Or translate following interleaved store group (factor = 3): 2221 // for (i = 0; i < N; i+=3) { 2222 // ... do something to R, G, B 2223 // Pic[i] = R; // Member of index 0 2224 // Pic[i+1] = G; // Member of index 1 2225 // Pic[i+2] = B; // Member of index 2 2226 // } 2227 // To: 2228 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2229 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2230 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2231 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2232 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2233 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2234 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2235 assert(Group && "Fail to get an interleaved access group."); 2236 2237 // Skip if current instruction is not the insert position. 2238 if (Instr != Group->getInsertPos()) 2239 return; 2240 2241 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2242 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2243 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2244 2245 // Prepare for the vector type of the interleaved load/store. 2246 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2247 unsigned InterleaveFactor = Group->getFactor(); 2248 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2249 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); 2250 2251 // Prepare for the new pointers. 2252 setDebugLocFromInst(Builder, Ptr); 2253 VectorParts &PtrParts = getVectorValue(Ptr); 2254 SmallVector<Value *, 2> NewPtrs; 2255 unsigned Index = Group->getIndex(Instr); 2256 for (unsigned Part = 0; Part < UF; Part++) { 2257 // Extract the pointer for current instruction from the pointer vector. A 2258 // reverse access uses the pointer in the last lane. 2259 Value *NewPtr = Builder.CreateExtractElement( 2260 PtrParts[Part], 2261 Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0)); 2262 2263 // Notice current instruction could be any index. Need to adjust the address 2264 // to the member of index 0. 2265 // 2266 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2267 // b = A[i]; // Member of index 0 2268 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2269 // 2270 // E.g. A[i+1] = a; // Member of index 1 2271 // A[i] = b; // Member of index 0 2272 // A[i+2] = c; // Member of index 2 (Current instruction) 2273 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2274 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2275 2276 // Cast to the vector pointer type. 2277 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2278 } 2279 2280 setDebugLocFromInst(Builder, Instr); 2281 Value *UndefVec = UndefValue::get(VecTy); 2282 2283 // Vectorize the interleaved load group. 2284 if (LI) { 2285 for (unsigned Part = 0; Part < UF; Part++) { 2286 Instruction *NewLoadInstr = Builder.CreateAlignedLoad( 2287 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2288 2289 for (unsigned i = 0; i < InterleaveFactor; i++) { 2290 Instruction *Member = Group->getMember(i); 2291 2292 // Skip the gaps in the group. 2293 if (!Member) 2294 continue; 2295 2296 Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF); 2297 Value *StridedVec = Builder.CreateShuffleVector( 2298 NewLoadInstr, UndefVec, StrideMask, "strided.vec"); 2299 2300 // If this member has different type, cast the result type. 2301 if (Member->getType() != ScalarTy) { 2302 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2303 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2304 } 2305 2306 VectorParts &Entry = WidenMap.get(Member); 2307 Entry[Part] = 2308 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2309 } 2310 2311 propagateMetadata(NewLoadInstr, Instr); 2312 } 2313 return; 2314 } 2315 2316 // The sub vector type for current instruction. 2317 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2318 2319 // Vectorize the interleaved store group. 2320 for (unsigned Part = 0; Part < UF; Part++) { 2321 // Collect the stored vector from each member. 2322 SmallVector<Value *, 4> StoredVecs; 2323 for (unsigned i = 0; i < InterleaveFactor; i++) { 2324 // Interleaved store group doesn't allow a gap, so each index has a member 2325 Instruction *Member = Group->getMember(i); 2326 assert(Member && "Fail to get a member from an interleaved store group"); 2327 2328 Value *StoredVec = 2329 getVectorValue(dyn_cast<StoreInst>(Member)->getValueOperand())[Part]; 2330 if (Group->isReverse()) 2331 StoredVec = reverseVector(StoredVec); 2332 2333 // If this member has different type, cast it to an unified type. 2334 if (StoredVec->getType() != SubVT) 2335 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2336 2337 StoredVecs.push_back(StoredVec); 2338 } 2339 2340 // Concatenate all vectors into a wide vector. 2341 Value *WideVec = ConcatenateVectors(Builder, StoredVecs); 2342 2343 // Interleave the elements in the wide vector. 2344 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); 2345 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2346 "interleaved.vec"); 2347 2348 Instruction *NewStoreInstr = 2349 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2350 propagateMetadata(NewStoreInstr, Instr); 2351 } 2352 } 2353 2354 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2355 // Attempt to issue a wide load. 2356 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2357 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2358 2359 assert((LI || SI) && "Invalid Load/Store instruction"); 2360 2361 // Try to vectorize the interleave group if this access is interleaved. 2362 if (Legal->isAccessInterleaved(Instr)) 2363 return vectorizeInterleaveGroup(Instr); 2364 2365 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2366 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2367 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2368 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 2369 // An alignment of 0 means target abi alignment. We need to use the scalar's 2370 // target abi alignment in such a case. 2371 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2372 if (!Alignment) 2373 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2374 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2375 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy); 2376 unsigned VectorElementSize = DL.getTypeStoreSize(DataTy) / VF; 2377 2378 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 2379 !Legal->isMaskRequired(SI)) 2380 return scalarizeInstruction(Instr, true); 2381 2382 if (ScalarAllocatedSize != VectorElementSize) 2383 return scalarizeInstruction(Instr); 2384 2385 // If the pointer is loop invariant or if it is non-consecutive, 2386 // scalarize the load. 2387 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2388 bool Reverse = ConsecutiveStride < 0; 2389 bool UniformLoad = LI && Legal->isUniform(Ptr); 2390 if (!ConsecutiveStride || UniformLoad) 2391 return scalarizeInstruction(Instr); 2392 2393 Constant *Zero = Builder.getInt32(0); 2394 VectorParts &Entry = WidenMap.get(Instr); 2395 2396 // Handle consecutive loads/stores. 2397 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2398 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 2399 setDebugLocFromInst(Builder, Gep); 2400 Value *PtrOperand = Gep->getPointerOperand(); 2401 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 2402 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 2403 2404 // Create the new GEP with the new induction variable. 2405 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2406 Gep2->setOperand(0, FirstBasePtr); 2407 Gep2->setName("gep.indvar.base"); 2408 Ptr = Builder.Insert(Gep2); 2409 } else if (Gep) { 2410 setDebugLocFromInst(Builder, Gep); 2411 assert(PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getPointerOperand()), 2412 OrigLoop) && 2413 "Base ptr must be invariant"); 2414 2415 // The last index does not have to be the induction. It can be 2416 // consecutive and be a function of the index. For example A[I+1]; 2417 unsigned NumOperands = Gep->getNumOperands(); 2418 unsigned InductionOperand = getGEPInductionOperand(Gep); 2419 // Create the new GEP with the new induction variable. 2420 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2421 2422 for (unsigned i = 0; i < NumOperands; ++i) { 2423 Value *GepOperand = Gep->getOperand(i); 2424 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 2425 2426 // Update last index or loop invariant instruction anchored in loop. 2427 if (i == InductionOperand || 2428 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 2429 assert((i == InductionOperand || 2430 PSE.getSE()->isLoopInvariant(PSE.getSCEV(GepOperandInst), 2431 OrigLoop)) && 2432 "Must be last index or loop invariant"); 2433 2434 VectorParts &GEPParts = getVectorValue(GepOperand); 2435 Value *Index = GEPParts[0]; 2436 Index = Builder.CreateExtractElement(Index, Zero); 2437 Gep2->setOperand(i, Index); 2438 Gep2->setName("gep.indvar.idx"); 2439 } 2440 } 2441 Ptr = Builder.Insert(Gep2); 2442 } else { 2443 // Use the induction element ptr. 2444 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 2445 setDebugLocFromInst(Builder, Ptr); 2446 VectorParts &PtrVal = getVectorValue(Ptr); 2447 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 2448 } 2449 2450 VectorParts Mask = createBlockInMask(Instr->getParent()); 2451 // Handle Stores: 2452 if (SI) { 2453 assert(!Legal->isUniform(SI->getPointerOperand()) && 2454 "We do not allow storing to uniform addresses"); 2455 setDebugLocFromInst(Builder, SI); 2456 // We don't want to update the value in the map as it might be used in 2457 // another expression. So don't use a reference type for "StoredVal". 2458 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2459 2460 for (unsigned Part = 0; Part < UF; ++Part) { 2461 // Calculate the pointer for the specific unroll-part. 2462 Value *PartPtr = 2463 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2464 2465 if (Reverse) { 2466 // If we store to reverse consecutive memory locations, then we need 2467 // to reverse the order of elements in the stored value. 2468 StoredVal[Part] = reverseVector(StoredVal[Part]); 2469 // If the address is consecutive but reversed, then the 2470 // wide store needs to start at the last vector element. 2471 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2472 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2473 Mask[Part] = reverseVector(Mask[Part]); 2474 } 2475 2476 Value *VecPtr = Builder.CreateBitCast(PartPtr, 2477 DataTy->getPointerTo(AddressSpace)); 2478 2479 Instruction *NewSI; 2480 if (Legal->isMaskRequired(SI)) 2481 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 2482 Mask[Part]); 2483 else 2484 NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 2485 propagateMetadata(NewSI, SI); 2486 } 2487 return; 2488 } 2489 2490 // Handle loads. 2491 assert(LI && "Must have a load instruction"); 2492 setDebugLocFromInst(Builder, LI); 2493 for (unsigned Part = 0; Part < UF; ++Part) { 2494 // Calculate the pointer for the specific unroll-part. 2495 Value *PartPtr = 2496 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2497 2498 if (Reverse) { 2499 // If the address is consecutive but reversed, then the 2500 // wide load needs to start at the last vector element. 2501 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2502 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2503 Mask[Part] = reverseVector(Mask[Part]); 2504 } 2505 2506 Instruction* NewLI; 2507 Value *VecPtr = Builder.CreateBitCast(PartPtr, 2508 DataTy->getPointerTo(AddressSpace)); 2509 if (Legal->isMaskRequired(LI)) 2510 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2511 UndefValue::get(DataTy), 2512 "wide.masked.load"); 2513 else 2514 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2515 propagateMetadata(NewLI, LI); 2516 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 2517 } 2518 } 2519 2520 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2521 bool IfPredicateStore) { 2522 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2523 // Holds vector parameters or scalars, in case of uniform vals. 2524 SmallVector<VectorParts, 4> Params; 2525 2526 setDebugLocFromInst(Builder, Instr); 2527 2528 // Find all of the vectorized parameters. 2529 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2530 Value *SrcOp = Instr->getOperand(op); 2531 2532 // If we are accessing the old induction variable, use the new one. 2533 if (SrcOp == OldInduction) { 2534 Params.push_back(getVectorValue(SrcOp)); 2535 continue; 2536 } 2537 2538 // Try using previously calculated values. 2539 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 2540 2541 // If the src is an instruction that appeared earlier in the basic block, 2542 // then it should already be vectorized. 2543 if (SrcInst && OrigLoop->contains(SrcInst)) { 2544 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 2545 // The parameter is a vector value from earlier. 2546 Params.push_back(WidenMap.get(SrcInst)); 2547 } else { 2548 // The parameter is a scalar from outside the loop. Maybe even a constant. 2549 VectorParts Scalars; 2550 Scalars.append(UF, SrcOp); 2551 Params.push_back(Scalars); 2552 } 2553 } 2554 2555 assert(Params.size() == Instr->getNumOperands() && 2556 "Invalid number of operands"); 2557 2558 // Does this instruction return a value ? 2559 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2560 2561 Value *UndefVec = IsVoidRetTy ? nullptr : 2562 UndefValue::get(VectorType::get(Instr->getType(), VF)); 2563 // Create a new entry in the WidenMap and initialize it to Undef or Null. 2564 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 2565 2566 VectorParts Cond; 2567 if (IfPredicateStore) { 2568 assert(Instr->getParent()->getSinglePredecessor() && 2569 "Only support single predecessor blocks"); 2570 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 2571 Instr->getParent()); 2572 } 2573 2574 // For each vector unroll 'part': 2575 for (unsigned Part = 0; Part < UF; ++Part) { 2576 // For each scalar that we create: 2577 for (unsigned Width = 0; Width < VF; ++Width) { 2578 2579 // Start if-block. 2580 Value *Cmp = nullptr; 2581 if (IfPredicateStore) { 2582 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 2583 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 2584 ConstantInt::get(Cmp->getType(), 1)); 2585 } 2586 2587 Instruction *Cloned = Instr->clone(); 2588 if (!IsVoidRetTy) 2589 Cloned->setName(Instr->getName() + ".cloned"); 2590 // Replace the operands of the cloned instructions with extracted scalars. 2591 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2592 Value *Op = Params[op][Part]; 2593 // Param is a vector. Need to extract the right lane. 2594 if (Op->getType()->isVectorTy()) 2595 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 2596 Cloned->setOperand(op, Op); 2597 } 2598 2599 // Place the cloned scalar in the new loop. 2600 Builder.Insert(Cloned); 2601 2602 // If the original scalar returns a value we need to place it in a vector 2603 // so that future users will be able to use it. 2604 if (!IsVoidRetTy) 2605 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 2606 Builder.getInt32(Width)); 2607 // End if-block. 2608 if (IfPredicateStore) 2609 PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned), 2610 Cmp)); 2611 } 2612 } 2613 } 2614 2615 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2616 Value *End, Value *Step, 2617 Instruction *DL) { 2618 BasicBlock *Header = L->getHeader(); 2619 BasicBlock *Latch = L->getLoopLatch(); 2620 // As we're just creating this loop, it's possible no latch exists 2621 // yet. If so, use the header as this will be a single block loop. 2622 if (!Latch) 2623 Latch = Header; 2624 2625 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2626 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2627 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2628 2629 Builder.SetInsertPoint(Latch->getTerminator()); 2630 2631 // Create i+1 and fill the PHINode. 2632 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2633 Induction->addIncoming(Start, L->getLoopPreheader()); 2634 Induction->addIncoming(Next, Latch); 2635 // Create the compare. 2636 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2637 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2638 2639 // Now we have two terminators. Remove the old one from the block. 2640 Latch->getTerminator()->eraseFromParent(); 2641 2642 return Induction; 2643 } 2644 2645 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2646 if (TripCount) 2647 return TripCount; 2648 2649 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2650 // Find the loop boundaries. 2651 ScalarEvolution *SE = PSE.getSE(); 2652 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(OrigLoop); 2653 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2654 "Invalid loop count"); 2655 2656 Type *IdxTy = Legal->getWidestInductionType(); 2657 2658 // The exit count might have the type of i64 while the phi is i32. This can 2659 // happen if we have an induction variable that is sign extended before the 2660 // compare. The only way that we get a backedge taken count is that the 2661 // induction variable was signed and as such will not overflow. In such a case 2662 // truncation is legal. 2663 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2664 IdxTy->getPrimitiveSizeInBits()) 2665 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2666 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2667 2668 // Get the total trip count from the count by adding 1. 2669 const SCEV *ExitCount = SE->getAddExpr( 2670 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2671 2672 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2673 2674 // Expand the trip count and place the new instructions in the preheader. 2675 // Notice that the pre-header does not change, only the loop body. 2676 SCEVExpander Exp(*SE, DL, "induction"); 2677 2678 // Count holds the overall loop count (N). 2679 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2680 L->getLoopPreheader()->getTerminator()); 2681 2682 if (TripCount->getType()->isPointerTy()) 2683 TripCount = 2684 CastInst::CreatePointerCast(TripCount, IdxTy, 2685 "exitcount.ptrcnt.to.int", 2686 L->getLoopPreheader()->getTerminator()); 2687 2688 return TripCount; 2689 } 2690 2691 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2692 if (VectorTripCount) 2693 return VectorTripCount; 2694 2695 Value *TC = getOrCreateTripCount(L); 2696 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2697 2698 // Now we need to generate the expression for N - (N % VF), which is 2699 // the part that the vectorized body will execute. 2700 // The loop step is equal to the vectorization factor (num of SIMD elements) 2701 // times the unroll factor (num of SIMD instructions). 2702 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 2703 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2704 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2705 2706 return VectorTripCount; 2707 } 2708 2709 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2710 BasicBlock *Bypass) { 2711 Value *Count = getOrCreateTripCount(L); 2712 BasicBlock *BB = L->getLoopPreheader(); 2713 IRBuilder<> Builder(BB->getTerminator()); 2714 2715 // Generate code to check that the loop's trip count that we computed by 2716 // adding one to the backedge-taken count will not overflow. 2717 Value *CheckMinIters = 2718 Builder.CreateICmpULT(Count, 2719 ConstantInt::get(Count->getType(), VF * UF), 2720 "min.iters.check"); 2721 2722 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), 2723 "min.iters.checked"); 2724 if (L->getParentLoop()) 2725 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2726 ReplaceInstWithInst(BB->getTerminator(), 2727 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2728 LoopBypassBlocks.push_back(BB); 2729 } 2730 2731 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 2732 BasicBlock *Bypass) { 2733 Value *TC = getOrCreateVectorTripCount(L); 2734 BasicBlock *BB = L->getLoopPreheader(); 2735 IRBuilder<> Builder(BB->getTerminator()); 2736 2737 // Now, compare the new count to zero. If it is zero skip the vector loop and 2738 // jump to the scalar loop. 2739 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 2740 "cmp.zero"); 2741 2742 // Generate code to check that the loop's trip count that we computed by 2743 // adding one to the backedge-taken count will not overflow. 2744 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), 2745 "vector.ph"); 2746 if (L->getParentLoop()) 2747 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2748 ReplaceInstWithInst(BB->getTerminator(), 2749 BranchInst::Create(Bypass, NewBB, Cmp)); 2750 LoopBypassBlocks.push_back(BB); 2751 } 2752 2753 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2754 BasicBlock *BB = L->getLoopPreheader(); 2755 2756 // Generate the code to check that the SCEV assumptions that we made. 2757 // We want the new basic block to start at the first instruction in a 2758 // sequence of instructions that form a check. 2759 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2760 "scev.check"); 2761 Value *SCEVCheck = 2762 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2763 2764 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2765 if (C->isZero()) 2766 return; 2767 2768 // Create a new block containing the stride check. 2769 BB->setName("vector.scevcheck"); 2770 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2771 if (L->getParentLoop()) 2772 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2773 ReplaceInstWithInst(BB->getTerminator(), 2774 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2775 LoopBypassBlocks.push_back(BB); 2776 AddedSafetyChecks = true; 2777 } 2778 2779 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 2780 BasicBlock *Bypass) { 2781 BasicBlock *BB = L->getLoopPreheader(); 2782 2783 // Generate the code that checks in runtime if arrays overlap. We put the 2784 // checks into a separate block to make the more common case of few elements 2785 // faster. 2786 Instruction *FirstCheckInst; 2787 Instruction *MemRuntimeCheck; 2788 std::tie(FirstCheckInst, MemRuntimeCheck) = 2789 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2790 if (!MemRuntimeCheck) 2791 return; 2792 2793 // Create a new block containing the memory check. 2794 BB->setName("vector.memcheck"); 2795 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2796 if (L->getParentLoop()) 2797 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2798 ReplaceInstWithInst(BB->getTerminator(), 2799 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2800 LoopBypassBlocks.push_back(BB); 2801 AddedSafetyChecks = true; 2802 } 2803 2804 2805 void InnerLoopVectorizer::createEmptyLoop() { 2806 /* 2807 In this function we generate a new loop. The new loop will contain 2808 the vectorized instructions while the old loop will continue to run the 2809 scalar remainder. 2810 2811 [ ] <-- loop iteration number check. 2812 / | 2813 / v 2814 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2815 | / | 2816 | / v 2817 || [ ] <-- vector pre header. 2818 |/ | 2819 | v 2820 | [ ] \ 2821 | [ ]_| <-- vector loop. 2822 | | 2823 | v 2824 | -[ ] <--- middle-block. 2825 | / | 2826 | / v 2827 -|- >[ ] <--- new preheader. 2828 | | 2829 | v 2830 | [ ] \ 2831 | [ ]_| <-- old scalar loop to handle remainder. 2832 \ | 2833 \ v 2834 >[ ] <-- exit block. 2835 ... 2836 */ 2837 2838 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2839 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2840 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2841 assert(VectorPH && "Invalid loop structure"); 2842 assert(ExitBlock && "Must have an exit block"); 2843 2844 // Some loops have a single integer induction variable, while other loops 2845 // don't. One example is c++ iterators that often have multiple pointer 2846 // induction variables. In the code below we also support a case where we 2847 // don't have a single induction variable. 2848 // 2849 // We try to obtain an induction variable from the original loop as hard 2850 // as possible. However if we don't find one that: 2851 // - is an integer 2852 // - counts from zero, stepping by one 2853 // - is the size of the widest induction variable type 2854 // then we create a new one. 2855 OldInduction = Legal->getInduction(); 2856 Type *IdxTy = Legal->getWidestInductionType(); 2857 2858 // Split the single block loop into the two loop structure described above. 2859 BasicBlock *VecBody = 2860 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2861 BasicBlock *MiddleBlock = 2862 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2863 BasicBlock *ScalarPH = 2864 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2865 2866 // Create and register the new vector loop. 2867 Loop* Lp = new Loop(); 2868 Loop *ParentLoop = OrigLoop->getParentLoop(); 2869 2870 // Insert the new loop into the loop nest and register the new basic blocks 2871 // before calling any utilities such as SCEV that require valid LoopInfo. 2872 if (ParentLoop) { 2873 ParentLoop->addChildLoop(Lp); 2874 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2875 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2876 } else { 2877 LI->addTopLevelLoop(Lp); 2878 } 2879 Lp->addBasicBlockToLoop(VecBody, *LI); 2880 2881 // Find the loop boundaries. 2882 Value *Count = getOrCreateTripCount(Lp); 2883 2884 Value *StartIdx = ConstantInt::get(IdxTy, 0); 2885 2886 // We need to test whether the backedge-taken count is uint##_max. Adding one 2887 // to it will cause overflow and an incorrect loop trip count in the vector 2888 // body. In case of overflow we want to directly jump to the scalar remainder 2889 // loop. 2890 emitMinimumIterationCountCheck(Lp, ScalarPH); 2891 // Now, compare the new count to zero. If it is zero skip the vector loop and 2892 // jump to the scalar loop. 2893 emitVectorLoopEnteredCheck(Lp, ScalarPH); 2894 // Generate the code to check any assumptions that we've made for SCEV 2895 // expressions. 2896 emitSCEVChecks(Lp, ScalarPH); 2897 2898 // Generate the code that checks in runtime if arrays overlap. We put the 2899 // checks into a separate block to make the more common case of few elements 2900 // faster. 2901 emitMemRuntimeChecks(Lp, ScalarPH); 2902 2903 // Generate the induction variable. 2904 // The loop step is equal to the vectorization factor (num of SIMD elements) 2905 // times the unroll factor (num of SIMD instructions). 2906 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 2907 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2908 Induction = 2909 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 2910 getDebugLocFromInstOrOperands(OldInduction)); 2911 2912 // We are going to resume the execution of the scalar loop. 2913 // Go over all of the induction variables that we found and fix the 2914 // PHIs that are left in the scalar version of the loop. 2915 // The starting values of PHI nodes depend on the counter of the last 2916 // iteration in the vectorized loop. 2917 // If we come from a bypass edge then we need to start from the original 2918 // start value. 2919 2920 // This variable saves the new starting index for the scalar loop. It is used 2921 // to test if there are any tail iterations left once the vector loop has 2922 // completed. 2923 LoopVectorizationLegality::InductionList::iterator I, E; 2924 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2925 for (I = List->begin(), E = List->end(); I != E; ++I) { 2926 PHINode *OrigPhi = I->first; 2927 InductionDescriptor II = I->second; 2928 2929 // Create phi nodes to merge from the backedge-taken check block. 2930 PHINode *BCResumeVal = PHINode::Create(OrigPhi->getType(), 3, 2931 "bc.resume.val", 2932 ScalarPH->getTerminator()); 2933 Value *EndValue; 2934 if (OrigPhi == OldInduction) { 2935 // We know what the end value is. 2936 EndValue = CountRoundDown; 2937 } else { 2938 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 2939 Value *CRD = B.CreateSExtOrTrunc(CountRoundDown, 2940 II.getStepValue()->getType(), 2941 "cast.crd"); 2942 EndValue = II.transform(B, CRD); 2943 EndValue->setName("ind.end"); 2944 } 2945 2946 // The new PHI merges the original incoming value, in case of a bypass, 2947 // or the value at the end of the vectorized loop. 2948 BCResumeVal->addIncoming(EndValue, MiddleBlock); 2949 2950 // Fix the scalar body counter (PHI node). 2951 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2952 2953 // The old induction's phi node in the scalar body needs the truncated 2954 // value. 2955 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 2956 BCResumeVal->addIncoming(II.getStartValue(), LoopBypassBlocks[I]); 2957 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2958 } 2959 2960 // Add a check in the middle block to see if we have completed 2961 // all of the iterations in the first vector loop. 2962 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2963 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 2964 CountRoundDown, "cmp.n", 2965 MiddleBlock->getTerminator()); 2966 ReplaceInstWithInst(MiddleBlock->getTerminator(), 2967 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 2968 2969 // Get ready to start creating new instructions into the vectorized body. 2970 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 2971 2972 // Save the state. 2973 LoopVectorPreHeader = Lp->getLoopPreheader(); 2974 LoopScalarPreHeader = ScalarPH; 2975 LoopMiddleBlock = MiddleBlock; 2976 LoopExitBlock = ExitBlock; 2977 LoopVectorBody.push_back(VecBody); 2978 LoopScalarBody = OldBasicBlock; 2979 2980 LoopVectorizeHints Hints(Lp, true); 2981 Hints.setAlreadyVectorized(); 2982 } 2983 2984 namespace { 2985 struct CSEDenseMapInfo { 2986 static bool canHandle(Instruction *I) { 2987 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2988 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2989 } 2990 static inline Instruction *getEmptyKey() { 2991 return DenseMapInfo<Instruction *>::getEmptyKey(); 2992 } 2993 static inline Instruction *getTombstoneKey() { 2994 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2995 } 2996 static unsigned getHashValue(Instruction *I) { 2997 assert(canHandle(I) && "Unknown instruction!"); 2998 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2999 I->value_op_end())); 3000 } 3001 static bool isEqual(Instruction *LHS, Instruction *RHS) { 3002 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3003 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3004 return LHS == RHS; 3005 return LHS->isIdenticalTo(RHS); 3006 } 3007 }; 3008 } 3009 3010 /// \brief Check whether this block is a predicated block. 3011 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 3012 /// = ...; " blocks. We start with one vectorized basic block. For every 3013 /// conditional block we split this vectorized block. Therefore, every second 3014 /// block will be a predicated one. 3015 static bool isPredicatedBlock(unsigned BlockNum) { 3016 return BlockNum % 2; 3017 } 3018 3019 ///\brief Perform cse of induction variable instructions. 3020 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 3021 // Perform simple cse. 3022 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3023 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 3024 BasicBlock *BB = BBs[i]; 3025 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3026 Instruction *In = &*I++; 3027 3028 if (!CSEDenseMapInfo::canHandle(In)) 3029 continue; 3030 3031 // Check if we can replace this instruction with any of the 3032 // visited instructions. 3033 if (Instruction *V = CSEMap.lookup(In)) { 3034 In->replaceAllUsesWith(V); 3035 In->eraseFromParent(); 3036 continue; 3037 } 3038 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 3039 // ...;" blocks for predicated stores. Every second block is a predicated 3040 // block. 3041 if (isPredicatedBlock(i)) 3042 continue; 3043 3044 CSEMap[In] = In; 3045 } 3046 } 3047 } 3048 3049 /// \brief Adds a 'fast' flag to floating point operations. 3050 static Value *addFastMathFlag(Value *V) { 3051 if (isa<FPMathOperator>(V)){ 3052 FastMathFlags Flags; 3053 Flags.setUnsafeAlgebra(); 3054 cast<Instruction>(V)->setFastMathFlags(Flags); 3055 } 3056 return V; 3057 } 3058 3059 /// Estimate the overhead of scalarizing a value. Insert and Extract are set if 3060 /// the result needs to be inserted and/or extracted from vectors. 3061 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, 3062 const TargetTransformInfo &TTI) { 3063 if (Ty->isVoidTy()) 3064 return 0; 3065 3066 assert(Ty->isVectorTy() && "Can only scalarize vectors"); 3067 unsigned Cost = 0; 3068 3069 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { 3070 if (Insert) 3071 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, i); 3072 if (Extract) 3073 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, i); 3074 } 3075 3076 return Cost; 3077 } 3078 3079 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3080 // Return the cost of the instruction, including scalarization overhead if it's 3081 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3082 // i.e. either vector version isn't available, or is too expensive. 3083 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3084 const TargetTransformInfo &TTI, 3085 const TargetLibraryInfo *TLI, 3086 bool &NeedToScalarize) { 3087 Function *F = CI->getCalledFunction(); 3088 StringRef FnName = CI->getCalledFunction()->getName(); 3089 Type *ScalarRetTy = CI->getType(); 3090 SmallVector<Type *, 4> Tys, ScalarTys; 3091 for (auto &ArgOp : CI->arg_operands()) 3092 ScalarTys.push_back(ArgOp->getType()); 3093 3094 // Estimate cost of scalarized vector call. The source operands are assumed 3095 // to be vectors, so we need to extract individual elements from there, 3096 // execute VF scalar calls, and then gather the result into the vector return 3097 // value. 3098 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3099 if (VF == 1) 3100 return ScalarCallCost; 3101 3102 // Compute corresponding vector type for return value and arguments. 3103 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3104 for (unsigned i = 0, ie = ScalarTys.size(); i != ie; ++i) 3105 Tys.push_back(ToVectorTy(ScalarTys[i], VF)); 3106 3107 // Compute costs of unpacking argument values for the scalar calls and 3108 // packing the return values to a vector. 3109 unsigned ScalarizationCost = 3110 getScalarizationOverhead(RetTy, true, false, TTI); 3111 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) 3112 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true, TTI); 3113 3114 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3115 3116 // If we can't emit a vector call for this function, then the currently found 3117 // cost is the cost we need to return. 3118 NeedToScalarize = true; 3119 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3120 return Cost; 3121 3122 // If the corresponding vector cost is cheaper, return its cost. 3123 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3124 if (VectorCallCost < Cost) { 3125 NeedToScalarize = false; 3126 return VectorCallCost; 3127 } 3128 return Cost; 3129 } 3130 3131 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3132 // factor VF. Return the cost of the instruction, including scalarization 3133 // overhead if it's needed. 3134 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3135 const TargetTransformInfo &TTI, 3136 const TargetLibraryInfo *TLI) { 3137 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3138 assert(ID && "Expected intrinsic call!"); 3139 3140 Type *RetTy = ToVectorTy(CI->getType(), VF); 3141 SmallVector<Type *, 4> Tys; 3142 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 3143 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 3144 3145 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 3146 } 3147 3148 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3149 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType()); 3150 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType()); 3151 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3152 } 3153 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3154 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType()); 3155 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType()); 3156 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3157 } 3158 3159 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3160 // For every instruction `I` in MinBWs, truncate the operands, create a 3161 // truncated version of `I` and reextend its result. InstCombine runs 3162 // later and will remove any ext/trunc pairs. 3163 // 3164 for (auto &KV : MinBWs) { 3165 VectorParts &Parts = WidenMap.get(KV.first); 3166 for (Value *&I : Parts) { 3167 if (I->use_empty()) 3168 continue; 3169 Type *OriginalTy = I->getType(); 3170 Type *ScalarTruncatedTy = IntegerType::get(OriginalTy->getContext(), 3171 KV.second); 3172 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3173 OriginalTy->getVectorNumElements()); 3174 if (TruncatedTy == OriginalTy) 3175 continue; 3176 3177 IRBuilder<> B(cast<Instruction>(I)); 3178 auto ShrinkOperand = [&](Value *V) -> Value* { 3179 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3180 if (ZI->getSrcTy() == TruncatedTy) 3181 return ZI->getOperand(0); 3182 return B.CreateZExtOrTrunc(V, TruncatedTy); 3183 }; 3184 3185 // The actual instruction modification depends on the instruction type, 3186 // unfortunately. 3187 Value *NewI = nullptr; 3188 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 3189 NewI = B.CreateBinOp(BO->getOpcode(), 3190 ShrinkOperand(BO->getOperand(0)), 3191 ShrinkOperand(BO->getOperand(1))); 3192 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3193 } else if (ICmpInst *CI = dyn_cast<ICmpInst>(I)) { 3194 NewI = B.CreateICmp(CI->getPredicate(), 3195 ShrinkOperand(CI->getOperand(0)), 3196 ShrinkOperand(CI->getOperand(1))); 3197 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 3198 NewI = B.CreateSelect(SI->getCondition(), 3199 ShrinkOperand(SI->getTrueValue()), 3200 ShrinkOperand(SI->getFalseValue())); 3201 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 3202 switch (CI->getOpcode()) { 3203 default: llvm_unreachable("Unhandled cast!"); 3204 case Instruction::Trunc: 3205 NewI = ShrinkOperand(CI->getOperand(0)); 3206 break; 3207 case Instruction::SExt: 3208 NewI = B.CreateSExtOrTrunc(CI->getOperand(0), 3209 smallestIntegerVectorType(OriginalTy, 3210 TruncatedTy)); 3211 break; 3212 case Instruction::ZExt: 3213 NewI = B.CreateZExtOrTrunc(CI->getOperand(0), 3214 smallestIntegerVectorType(OriginalTy, 3215 TruncatedTy)); 3216 break; 3217 } 3218 } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) { 3219 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3220 auto *O0 = 3221 B.CreateZExtOrTrunc(SI->getOperand(0), 3222 VectorType::get(ScalarTruncatedTy, Elements0)); 3223 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3224 auto *O1 = 3225 B.CreateZExtOrTrunc(SI->getOperand(1), 3226 VectorType::get(ScalarTruncatedTy, Elements1)); 3227 3228 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3229 } else if (isa<LoadInst>(I)) { 3230 // Don't do anything with the operands, just extend the result. 3231 continue; 3232 } else { 3233 llvm_unreachable("Unhandled instruction type!"); 3234 } 3235 3236 // Lastly, extend the result. 3237 NewI->takeName(cast<Instruction>(I)); 3238 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3239 I->replaceAllUsesWith(Res); 3240 cast<Instruction>(I)->eraseFromParent(); 3241 I = Res; 3242 } 3243 } 3244 3245 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3246 for (auto &KV : MinBWs) { 3247 VectorParts &Parts = WidenMap.get(KV.first); 3248 for (Value *&I : Parts) { 3249 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3250 if (Inst && Inst->use_empty()) { 3251 Value *NewI = Inst->getOperand(0); 3252 Inst->eraseFromParent(); 3253 I = NewI; 3254 } 3255 } 3256 } 3257 } 3258 3259 void InnerLoopVectorizer::vectorizeLoop() { 3260 //===------------------------------------------------===// 3261 // 3262 // Notice: any optimization or new instruction that go 3263 // into the code below should be also be implemented in 3264 // the cost-model. 3265 // 3266 //===------------------------------------------------===// 3267 Constant *Zero = Builder.getInt32(0); 3268 3269 // In order to support reduction variables we need to be able to vectorize 3270 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 3271 // stages. First, we create a new vector PHI node with no incoming edges. 3272 // We use this value when we vectorize all of the instructions that use the 3273 // PHI. Next, after all of the instructions in the block are complete we 3274 // add the new incoming edges to the PHI. At this point all of the 3275 // instructions in the basic block are vectorized, so we can use them to 3276 // construct the PHI. 3277 PhiVector RdxPHIsToFix; 3278 3279 // Scan the loop in a topological order to ensure that defs are vectorized 3280 // before users. 3281 LoopBlocksDFS DFS(OrigLoop); 3282 DFS.perform(LI); 3283 3284 // Vectorize all of the blocks in the original loop. 3285 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 3286 be = DFS.endRPO(); bb != be; ++bb) 3287 vectorizeBlockInLoop(*bb, &RdxPHIsToFix); 3288 3289 // Insert truncates and extends for any truncated instructions as hints to 3290 // InstCombine. 3291 if (VF > 1) 3292 truncateToMinimalBitwidths(); 3293 3294 // At this point every instruction in the original loop is widened to 3295 // a vector form. We are almost done. Now, we need to fix the PHI nodes 3296 // that we vectorized. The PHI nodes are currently empty because we did 3297 // not want to introduce cycles. Notice that the remaining PHI nodes 3298 // that we need to fix are reduction variables. 3299 3300 // Create the 'reduced' values for each of the induction vars. 3301 // The reduced values are the vector values that we scalarize and combine 3302 // after the loop is finished. 3303 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 3304 it != e; ++it) { 3305 PHINode *RdxPhi = *it; 3306 assert(RdxPhi && "Unable to recover vectorized PHI"); 3307 3308 // Find the reduction variable descriptor. 3309 assert(Legal->isReductionVariable(RdxPhi) && 3310 "Unable to find the reduction variable"); 3311 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[RdxPhi]; 3312 3313 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3314 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3315 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3316 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3317 RdxDesc.getMinMaxRecurrenceKind(); 3318 setDebugLocFromInst(Builder, ReductionStartValue); 3319 3320 // We need to generate a reduction vector from the incoming scalar. 3321 // To do so, we need to generate the 'identity' vector and override 3322 // one of the elements with the incoming scalar reduction. We need 3323 // to do it in the vector-loop preheader. 3324 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 3325 3326 // This is the vector-clone of the value that leaves the loop. 3327 VectorParts &VectorExit = getVectorValue(LoopExitInst); 3328 Type *VecTy = VectorExit[0]->getType(); 3329 3330 // Find the reduction identity variable. Zero for addition, or, xor, 3331 // one for multiplication, -1 for And. 3332 Value *Identity; 3333 Value *VectorStart; 3334 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3335 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3336 // MinMax reduction have the start value as their identify. 3337 if (VF == 1) { 3338 VectorStart = Identity = ReductionStartValue; 3339 } else { 3340 VectorStart = Identity = 3341 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3342 } 3343 } else { 3344 // Handle other reduction kinds: 3345 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3346 RK, VecTy->getScalarType()); 3347 if (VF == 1) { 3348 Identity = Iden; 3349 // This vector is the Identity vector where the first element is the 3350 // incoming scalar reduction. 3351 VectorStart = ReductionStartValue; 3352 } else { 3353 Identity = ConstantVector::getSplat(VF, Iden); 3354 3355 // This vector is the Identity vector where the first element is the 3356 // incoming scalar reduction. 3357 VectorStart = 3358 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3359 } 3360 } 3361 3362 // Fix the vector-loop phi. 3363 3364 // Reductions do not have to start at zero. They can start with 3365 // any loop invariant values. 3366 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 3367 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3368 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 3369 VectorParts &Val = getVectorValue(LoopVal); 3370 for (unsigned part = 0; part < UF; ++part) { 3371 // Make sure to add the reduction stat value only to the 3372 // first unroll part. 3373 Value *StartVal = (part == 0) ? VectorStart : Identity; 3374 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, 3375 LoopVectorPreHeader); 3376 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 3377 LoopVectorBody.back()); 3378 } 3379 3380 // Before each round, move the insertion point right between 3381 // the PHIs and the values we are going to write. 3382 // This allows us to write both PHINodes and the extractelement 3383 // instructions. 3384 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3385 3386 VectorParts RdxParts = getVectorValue(LoopExitInst); 3387 setDebugLocFromInst(Builder, LoopExitInst); 3388 3389 // If the vector reduction can be performed in a smaller type, we truncate 3390 // then extend the loop exit value to enable InstCombine to evaluate the 3391 // entire expression in the smaller type. 3392 if (VF > 1 && RdxPhi->getType() != RdxDesc.getRecurrenceType()) { 3393 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3394 Builder.SetInsertPoint(LoopVectorBody.back()->getTerminator()); 3395 for (unsigned part = 0; part < UF; ++part) { 3396 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3397 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3398 : Builder.CreateZExt(Trunc, VecTy); 3399 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 3400 UI != RdxParts[part]->user_end();) 3401 if (*UI != Trunc) { 3402 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 3403 RdxParts[part] = Extnd; 3404 } else { 3405 ++UI; 3406 } 3407 } 3408 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3409 for (unsigned part = 0; part < UF; ++part) 3410 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3411 } 3412 3413 // Reduce all of the unrolled parts into a single vector. 3414 Value *ReducedPartRdx = RdxParts[0]; 3415 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3416 setDebugLocFromInst(Builder, ReducedPartRdx); 3417 for (unsigned part = 1; part < UF; ++part) { 3418 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3419 // Floating point operations had to be 'fast' to enable the reduction. 3420 ReducedPartRdx = addFastMathFlag( 3421 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 3422 ReducedPartRdx, "bin.rdx")); 3423 else 3424 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3425 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 3426 } 3427 3428 if (VF > 1) { 3429 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 3430 // and vector ops, reducing the set of values being computed by half each 3431 // round. 3432 assert(isPowerOf2_32(VF) && 3433 "Reduction emission only supported for pow2 vectors!"); 3434 Value *TmpVec = ReducedPartRdx; 3435 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 3436 for (unsigned i = VF; i != 1; i >>= 1) { 3437 // Move the upper half of the vector to the lower half. 3438 for (unsigned j = 0; j != i/2; ++j) 3439 ShuffleMask[j] = Builder.getInt32(i/2 + j); 3440 3441 // Fill the rest of the mask with undef. 3442 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 3443 UndefValue::get(Builder.getInt32Ty())); 3444 3445 Value *Shuf = 3446 Builder.CreateShuffleVector(TmpVec, 3447 UndefValue::get(TmpVec->getType()), 3448 ConstantVector::get(ShuffleMask), 3449 "rdx.shuf"); 3450 3451 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3452 // Floating point operations had to be 'fast' to enable the reduction. 3453 TmpVec = addFastMathFlag(Builder.CreateBinOp( 3454 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 3455 else 3456 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 3457 TmpVec, Shuf); 3458 } 3459 3460 // The result is in the first element of the vector. 3461 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 3462 Builder.getInt32(0)); 3463 3464 // If the reduction can be performed in a smaller type, we need to extend 3465 // the reduction to the wider type before we branch to the original loop. 3466 if (RdxPhi->getType() != RdxDesc.getRecurrenceType()) 3467 ReducedPartRdx = 3468 RdxDesc.isSigned() 3469 ? Builder.CreateSExt(ReducedPartRdx, RdxPhi->getType()) 3470 : Builder.CreateZExt(ReducedPartRdx, RdxPhi->getType()); 3471 } 3472 3473 // Create a phi node that merges control-flow from the backedge-taken check 3474 // block and the middle block. 3475 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx", 3476 LoopScalarPreHeader->getTerminator()); 3477 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3478 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3479 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3480 3481 // Now, we need to fix the users of the reduction variable 3482 // inside and outside of the scalar remainder loop. 3483 // We know that the loop is in LCSSA form. We need to update the 3484 // PHI nodes in the exit blocks. 3485 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3486 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 3487 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3488 if (!LCSSAPhi) break; 3489 3490 // All PHINodes need to have a single entry edge, or two if 3491 // we already fixed them. 3492 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3493 3494 // We found our reduction value exit-PHI. Update it with the 3495 // incoming bypass edge. 3496 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { 3497 // Add an edge coming from the bypass. 3498 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3499 break; 3500 } 3501 }// end of the LCSSA phi scan. 3502 3503 // Fix the scalar loop reduction variable with the incoming reduction sum 3504 // from the vector body and from the backedge value. 3505 int IncomingEdgeBlockIdx = 3506 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3507 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3508 // Pick the other block. 3509 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3510 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3511 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3512 }// end of for each redux variable. 3513 3514 fixLCSSAPHIs(); 3515 3516 // Make sure DomTree is updated. 3517 updateAnalysis(); 3518 3519 // Predicate any stores. 3520 for (auto KV : PredicatedStores) { 3521 BasicBlock::iterator I(KV.first); 3522 auto *BB = SplitBlock(I->getParent(), &*std::next(I), DT, LI); 3523 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 3524 /*BranchWeights=*/nullptr, DT); 3525 I->moveBefore(T); 3526 I->getParent()->setName("pred.store.if"); 3527 BB->setName("pred.store.continue"); 3528 } 3529 DEBUG(DT->verifyDomTree()); 3530 // Remove redundant induction instructions. 3531 cse(LoopVectorBody); 3532 } 3533 3534 void InnerLoopVectorizer::fixLCSSAPHIs() { 3535 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3536 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 3537 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3538 if (!LCSSAPhi) break; 3539 if (LCSSAPhi->getNumIncomingValues() == 1) 3540 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 3541 LoopMiddleBlock); 3542 } 3543 } 3544 3545 InnerLoopVectorizer::VectorParts 3546 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 3547 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 3548 "Invalid edge"); 3549 3550 // Look for cached value. 3551 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 3552 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 3553 if (ECEntryIt != MaskCache.end()) 3554 return ECEntryIt->second; 3555 3556 VectorParts SrcMask = createBlockInMask(Src); 3557 3558 // The terminator has to be a branch inst! 3559 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 3560 assert(BI && "Unexpected terminator found"); 3561 3562 if (BI->isConditional()) { 3563 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 3564 3565 if (BI->getSuccessor(0) != Dst) 3566 for (unsigned part = 0; part < UF; ++part) 3567 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 3568 3569 for (unsigned part = 0; part < UF; ++part) 3570 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 3571 3572 MaskCache[Edge] = EdgeMask; 3573 return EdgeMask; 3574 } 3575 3576 MaskCache[Edge] = SrcMask; 3577 return SrcMask; 3578 } 3579 3580 InnerLoopVectorizer::VectorParts 3581 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 3582 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 3583 3584 // Loop incoming mask is all-one. 3585 if (OrigLoop->getHeader() == BB) { 3586 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 3587 return getVectorValue(C); 3588 } 3589 3590 // This is the block mask. We OR all incoming edges, and with zero. 3591 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 3592 VectorParts BlockMask = getVectorValue(Zero); 3593 3594 // For each pred: 3595 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 3596 VectorParts EM = createEdgeMask(*it, BB); 3597 for (unsigned part = 0; part < UF; ++part) 3598 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 3599 } 3600 3601 return BlockMask; 3602 } 3603 3604 void InnerLoopVectorizer::widenPHIInstruction( 3605 Instruction *PN, InnerLoopVectorizer::VectorParts &Entry, unsigned UF, 3606 unsigned VF, PhiVector *PV) { 3607 PHINode* P = cast<PHINode>(PN); 3608 // Handle reduction variables: 3609 if (Legal->isReductionVariable(P)) { 3610 for (unsigned part = 0; part < UF; ++part) { 3611 // This is phase one of vectorizing PHIs. 3612 Type *VecTy = (VF == 1) ? PN->getType() : 3613 VectorType::get(PN->getType(), VF); 3614 Entry[part] = PHINode::Create( 3615 VecTy, 2, "vec.phi", &*LoopVectorBody.back()->getFirstInsertionPt()); 3616 } 3617 PV->push_back(P); 3618 return; 3619 } 3620 3621 setDebugLocFromInst(Builder, P); 3622 // Check for PHI nodes that are lowered to vector selects. 3623 if (P->getParent() != OrigLoop->getHeader()) { 3624 // We know that all PHIs in non-header blocks are converted into 3625 // selects, so we don't have to worry about the insertion order and we 3626 // can just use the builder. 3627 // At this point we generate the predication tree. There may be 3628 // duplications since this is a simple recursive scan, but future 3629 // optimizations will clean it up. 3630 3631 unsigned NumIncoming = P->getNumIncomingValues(); 3632 3633 // Generate a sequence of selects of the form: 3634 // SELECT(Mask3, In3, 3635 // SELECT(Mask2, In2, 3636 // ( ...))) 3637 for (unsigned In = 0; In < NumIncoming; In++) { 3638 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 3639 P->getParent()); 3640 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 3641 3642 for (unsigned part = 0; part < UF; ++part) { 3643 // We might have single edge PHIs (blocks) - use an identity 3644 // 'select' for the first PHI operand. 3645 if (In == 0) 3646 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3647 In0[part]); 3648 else 3649 // Select between the current value and the previous incoming edge 3650 // based on the incoming mask. 3651 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3652 Entry[part], "predphi"); 3653 } 3654 } 3655 return; 3656 } 3657 3658 // This PHINode must be an induction variable. 3659 // Make sure that we know about it. 3660 assert(Legal->getInductionVars()->count(P) && 3661 "Not an induction variable"); 3662 3663 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 3664 3665 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 3666 // which can be found from the original scalar operations. 3667 switch (II.getKind()) { 3668 case InductionDescriptor::IK_NoInduction: 3669 llvm_unreachable("Unknown induction"); 3670 case InductionDescriptor::IK_IntInduction: { 3671 assert(P->getType() == II.getStartValue()->getType() && 3672 "Types must match"); 3673 // Handle other induction variables that are now based on the 3674 // canonical one. 3675 Value *V = Induction; 3676 if (P != OldInduction) { 3677 V = Builder.CreateSExtOrTrunc(Induction, P->getType()); 3678 V = II.transform(Builder, V); 3679 V->setName("offset.idx"); 3680 } 3681 Value *Broadcasted = getBroadcastInstrs(V); 3682 // After broadcasting the induction variable we need to make the vector 3683 // consecutive by adding 0, 1, 2, etc. 3684 for (unsigned part = 0; part < UF; ++part) 3685 Entry[part] = getStepVector(Broadcasted, VF * part, II.getStepValue()); 3686 return; 3687 } 3688 case InductionDescriptor::IK_PtrInduction: 3689 // Handle the pointer induction variable case. 3690 assert(P->getType()->isPointerTy() && "Unexpected type."); 3691 // This is the normalized GEP that starts counting at zero. 3692 Value *PtrInd = Induction; 3693 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStepValue()->getType()); 3694 // This is the vector of results. Notice that we don't generate 3695 // vector geps because scalar geps result in better code. 3696 for (unsigned part = 0; part < UF; ++part) { 3697 if (VF == 1) { 3698 int EltIndex = part; 3699 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 3700 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 3701 Value *SclrGep = II.transform(Builder, GlobalIdx); 3702 SclrGep->setName("next.gep"); 3703 Entry[part] = SclrGep; 3704 continue; 3705 } 3706 3707 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 3708 for (unsigned int i = 0; i < VF; ++i) { 3709 int EltIndex = i + part * VF; 3710 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 3711 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 3712 Value *SclrGep = II.transform(Builder, GlobalIdx); 3713 SclrGep->setName("next.gep"); 3714 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 3715 Builder.getInt32(i), 3716 "insert.gep"); 3717 } 3718 Entry[part] = VecVal; 3719 } 3720 return; 3721 } 3722 } 3723 3724 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 3725 // For each instruction in the old loop. 3726 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 3727 VectorParts &Entry = WidenMap.get(&*it); 3728 3729 switch (it->getOpcode()) { 3730 case Instruction::Br: 3731 // Nothing to do for PHIs and BR, since we already took care of the 3732 // loop control flow instructions. 3733 continue; 3734 case Instruction::PHI: { 3735 // Vectorize PHINodes. 3736 widenPHIInstruction(&*it, Entry, UF, VF, PV); 3737 continue; 3738 }// End of PHI. 3739 3740 case Instruction::Add: 3741 case Instruction::FAdd: 3742 case Instruction::Sub: 3743 case Instruction::FSub: 3744 case Instruction::Mul: 3745 case Instruction::FMul: 3746 case Instruction::UDiv: 3747 case Instruction::SDiv: 3748 case Instruction::FDiv: 3749 case Instruction::URem: 3750 case Instruction::SRem: 3751 case Instruction::FRem: 3752 case Instruction::Shl: 3753 case Instruction::LShr: 3754 case Instruction::AShr: 3755 case Instruction::And: 3756 case Instruction::Or: 3757 case Instruction::Xor: { 3758 // Just widen binops. 3759 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 3760 setDebugLocFromInst(Builder, BinOp); 3761 VectorParts &A = getVectorValue(it->getOperand(0)); 3762 VectorParts &B = getVectorValue(it->getOperand(1)); 3763 3764 // Use this vector value for all users of the original instruction. 3765 for (unsigned Part = 0; Part < UF; ++Part) { 3766 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 3767 3768 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3769 VecOp->copyIRFlags(BinOp); 3770 3771 Entry[Part] = V; 3772 } 3773 3774 propagateMetadata(Entry, &*it); 3775 break; 3776 } 3777 case Instruction::Select: { 3778 // Widen selects. 3779 // If the selector is loop invariant we can create a select 3780 // instruction with a scalar condition. Otherwise, use vector-select. 3781 auto *SE = PSE.getSE(); 3782 bool InvariantCond = 3783 SE->isLoopInvariant(PSE.getSCEV(it->getOperand(0)), OrigLoop); 3784 setDebugLocFromInst(Builder, &*it); 3785 3786 // The condition can be loop invariant but still defined inside the 3787 // loop. This means that we can't just use the original 'cond' value. 3788 // We have to take the 'vectorized' value and pick the first lane. 3789 // Instcombine will make this a no-op. 3790 VectorParts &Cond = getVectorValue(it->getOperand(0)); 3791 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 3792 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 3793 3794 Value *ScalarCond = (VF == 1) ? Cond[0] : 3795 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 3796 3797 for (unsigned Part = 0; Part < UF; ++Part) { 3798 Entry[Part] = Builder.CreateSelect( 3799 InvariantCond ? ScalarCond : Cond[Part], 3800 Op0[Part], 3801 Op1[Part]); 3802 } 3803 3804 propagateMetadata(Entry, &*it); 3805 break; 3806 } 3807 3808 case Instruction::ICmp: 3809 case Instruction::FCmp: { 3810 // Widen compares. Generate vector compares. 3811 bool FCmp = (it->getOpcode() == Instruction::FCmp); 3812 CmpInst *Cmp = dyn_cast<CmpInst>(it); 3813 setDebugLocFromInst(Builder, &*it); 3814 VectorParts &A = getVectorValue(it->getOperand(0)); 3815 VectorParts &B = getVectorValue(it->getOperand(1)); 3816 for (unsigned Part = 0; Part < UF; ++Part) { 3817 Value *C = nullptr; 3818 if (FCmp) { 3819 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 3820 cast<FCmpInst>(C)->copyFastMathFlags(&*it); 3821 } else { 3822 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 3823 } 3824 Entry[Part] = C; 3825 } 3826 3827 propagateMetadata(Entry, &*it); 3828 break; 3829 } 3830 3831 case Instruction::Store: 3832 case Instruction::Load: 3833 vectorizeMemoryInstruction(&*it); 3834 break; 3835 case Instruction::ZExt: 3836 case Instruction::SExt: 3837 case Instruction::FPToUI: 3838 case Instruction::FPToSI: 3839 case Instruction::FPExt: 3840 case Instruction::PtrToInt: 3841 case Instruction::IntToPtr: 3842 case Instruction::SIToFP: 3843 case Instruction::UIToFP: 3844 case Instruction::Trunc: 3845 case Instruction::FPTrunc: 3846 case Instruction::BitCast: { 3847 CastInst *CI = dyn_cast<CastInst>(it); 3848 setDebugLocFromInst(Builder, &*it); 3849 /// Optimize the special case where the source is the induction 3850 /// variable. Notice that we can only optimize the 'trunc' case 3851 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 3852 /// c. other casts depend on pointer size. 3853 if (CI->getOperand(0) == OldInduction && 3854 it->getOpcode() == Instruction::Trunc) { 3855 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 3856 CI->getType()); 3857 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 3858 InductionDescriptor II = 3859 Legal->getInductionVars()->lookup(OldInduction); 3860 Constant *Step = ConstantInt::getSigned( 3861 CI->getType(), II.getStepValue()->getSExtValue()); 3862 for (unsigned Part = 0; Part < UF; ++Part) 3863 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); 3864 propagateMetadata(Entry, &*it); 3865 break; 3866 } 3867 /// Vectorize casts. 3868 Type *DestTy = (VF == 1) ? CI->getType() : 3869 VectorType::get(CI->getType(), VF); 3870 3871 VectorParts &A = getVectorValue(it->getOperand(0)); 3872 for (unsigned Part = 0; Part < UF; ++Part) 3873 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 3874 propagateMetadata(Entry, &*it); 3875 break; 3876 } 3877 3878 case Instruction::Call: { 3879 // Ignore dbg intrinsics. 3880 if (isa<DbgInfoIntrinsic>(it)) 3881 break; 3882 setDebugLocFromInst(Builder, &*it); 3883 3884 Module *M = BB->getParent()->getParent(); 3885 CallInst *CI = cast<CallInst>(it); 3886 3887 StringRef FnName = CI->getCalledFunction()->getName(); 3888 Function *F = CI->getCalledFunction(); 3889 Type *RetTy = ToVectorTy(CI->getType(), VF); 3890 SmallVector<Type *, 4> Tys; 3891 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 3892 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 3893 3894 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3895 if (ID && 3896 (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 3897 ID == Intrinsic::lifetime_start)) { 3898 scalarizeInstruction(&*it); 3899 break; 3900 } 3901 // The flag shows whether we use Intrinsic or a usual Call for vectorized 3902 // version of the instruction. 3903 // Is it beneficial to perform intrinsic call compared to lib call? 3904 bool NeedToScalarize; 3905 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 3906 bool UseVectorIntrinsic = 3907 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 3908 if (!UseVectorIntrinsic && NeedToScalarize) { 3909 scalarizeInstruction(&*it); 3910 break; 3911 } 3912 3913 for (unsigned Part = 0; Part < UF; ++Part) { 3914 SmallVector<Value *, 4> Args; 3915 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 3916 Value *Arg = CI->getArgOperand(i); 3917 // Some intrinsics have a scalar argument - don't replace it with a 3918 // vector. 3919 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 3920 VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 3921 Arg = VectorArg[Part]; 3922 } 3923 Args.push_back(Arg); 3924 } 3925 3926 Function *VectorF; 3927 if (UseVectorIntrinsic) { 3928 // Use vector version of the intrinsic. 3929 Type *TysForDecl[] = {CI->getType()}; 3930 if (VF > 1) 3931 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 3932 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 3933 } else { 3934 // Use vector version of the library call. 3935 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 3936 assert(!VFnName.empty() && "Vector function name is empty."); 3937 VectorF = M->getFunction(VFnName); 3938 if (!VectorF) { 3939 // Generate a declaration 3940 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 3941 VectorF = 3942 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 3943 VectorF->copyAttributesFrom(F); 3944 } 3945 } 3946 assert(VectorF && "Can't create vector function."); 3947 Entry[Part] = Builder.CreateCall(VectorF, Args); 3948 } 3949 3950 propagateMetadata(Entry, &*it); 3951 break; 3952 } 3953 3954 default: 3955 // All other instructions are unsupported. Scalarize them. 3956 scalarizeInstruction(&*it); 3957 break; 3958 }// end of switch. 3959 }// end of for_each instr. 3960 } 3961 3962 void InnerLoopVectorizer::updateAnalysis() { 3963 // Forget the original basic block. 3964 PSE.getSE()->forgetLoop(OrigLoop); 3965 3966 // Update the dominator tree information. 3967 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 3968 "Entry does not dominate exit."); 3969 3970 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3971 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 3972 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 3973 3974 // We don't predicate stores by this point, so the vector body should be a 3975 // single loop. 3976 assert(LoopVectorBody.size() == 1 && "Expected single block loop!"); 3977 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 3978 3979 DT->addNewBlock(LoopMiddleBlock, LoopVectorBody.back()); 3980 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 3981 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 3982 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 3983 3984 DEBUG(DT->verifyDomTree()); 3985 } 3986 3987 /// \brief Check whether it is safe to if-convert this phi node. 3988 /// 3989 /// Phi nodes with constant expressions that can trap are not safe to if 3990 /// convert. 3991 static bool canIfConvertPHINodes(BasicBlock *BB) { 3992 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3993 PHINode *Phi = dyn_cast<PHINode>(I); 3994 if (!Phi) 3995 return true; 3996 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 3997 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 3998 if (C->canTrap()) 3999 return false; 4000 } 4001 return true; 4002 } 4003 4004 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4005 if (!EnableIfConversion) { 4006 emitAnalysis(VectorizationReport() << "if-conversion is disabled"); 4007 return false; 4008 } 4009 4010 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4011 4012 // A list of pointers that we can safely read and write to. 4013 SmallPtrSet<Value *, 8> SafePointes; 4014 4015 // Collect safe addresses. 4016 for (Loop::block_iterator BI = TheLoop->block_begin(), 4017 BE = TheLoop->block_end(); BI != BE; ++BI) { 4018 BasicBlock *BB = *BI; 4019 4020 if (blockNeedsPredication(BB)) 4021 continue; 4022 4023 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 4024 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 4025 SafePointes.insert(LI->getPointerOperand()); 4026 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 4027 SafePointes.insert(SI->getPointerOperand()); 4028 } 4029 } 4030 4031 // Collect the blocks that need predication. 4032 BasicBlock *Header = TheLoop->getHeader(); 4033 for (Loop::block_iterator BI = TheLoop->block_begin(), 4034 BE = TheLoop->block_end(); BI != BE; ++BI) { 4035 BasicBlock *BB = *BI; 4036 4037 // We don't support switch statements inside loops. 4038 if (!isa<BranchInst>(BB->getTerminator())) { 4039 emitAnalysis(VectorizationReport(BB->getTerminator()) 4040 << "loop contains a switch statement"); 4041 return false; 4042 } 4043 4044 // We must be able to predicate all blocks that need to be predicated. 4045 if (blockNeedsPredication(BB)) { 4046 if (!blockCanBePredicated(BB, SafePointes)) { 4047 emitAnalysis(VectorizationReport(BB->getTerminator()) 4048 << "control flow cannot be substituted for a select"); 4049 return false; 4050 } 4051 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4052 emitAnalysis(VectorizationReport(BB->getTerminator()) 4053 << "control flow cannot be substituted for a select"); 4054 return false; 4055 } 4056 } 4057 4058 // We can if-convert this loop. 4059 return true; 4060 } 4061 4062 bool LoopVectorizationLegality::canVectorize() { 4063 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4064 // be canonicalized. 4065 if (!TheLoop->getLoopPreheader()) { 4066 emitAnalysis( 4067 VectorizationReport() << 4068 "loop control flow is not understood by vectorizer"); 4069 return false; 4070 } 4071 4072 // We can only vectorize innermost loops. 4073 if (!TheLoop->empty()) { 4074 emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); 4075 return false; 4076 } 4077 4078 // We must have a single backedge. 4079 if (TheLoop->getNumBackEdges() != 1) { 4080 emitAnalysis( 4081 VectorizationReport() << 4082 "loop control flow is not understood by vectorizer"); 4083 return false; 4084 } 4085 4086 // We must have a single exiting block. 4087 if (!TheLoop->getExitingBlock()) { 4088 emitAnalysis( 4089 VectorizationReport() << 4090 "loop control flow is not understood by vectorizer"); 4091 return false; 4092 } 4093 4094 // We only handle bottom-tested loops, i.e. loop in which the condition is 4095 // checked at the end of each iteration. With that we can assume that all 4096 // instructions in the loop are executed the same number of times. 4097 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 4098 emitAnalysis( 4099 VectorizationReport() << 4100 "loop control flow is not understood by vectorizer"); 4101 return false; 4102 } 4103 4104 // We need to have a loop header. 4105 DEBUG(dbgs() << "LV: Found a loop: " << 4106 TheLoop->getHeader()->getName() << '\n'); 4107 4108 // Check if we can if-convert non-single-bb loops. 4109 unsigned NumBlocks = TheLoop->getNumBlocks(); 4110 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 4111 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 4112 return false; 4113 } 4114 4115 // ScalarEvolution needs to be able to find the exit count. 4116 const SCEV *ExitCount = PSE.getSE()->getBackedgeTakenCount(TheLoop); 4117 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 4118 emitAnalysis(VectorizationReport() 4119 << "could not determine number of loop iterations"); 4120 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 4121 return false; 4122 } 4123 4124 // Check if we can vectorize the instructions and CFG in this loop. 4125 if (!canVectorizeInstrs()) { 4126 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 4127 return false; 4128 } 4129 4130 // Go over each instruction and look at memory deps. 4131 if (!canVectorizeMemory()) { 4132 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 4133 return false; 4134 } 4135 4136 // Collect all of the variables that remain uniform after vectorization. 4137 collectLoopUniforms(); 4138 4139 DEBUG(dbgs() << "LV: We can vectorize this loop" 4140 << (LAI->getRuntimePointerChecking()->Need 4141 ? " (with a runtime bound check)" 4142 : "") 4143 << "!\n"); 4144 4145 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 4146 4147 // If an override option has been passed in for interleaved accesses, use it. 4148 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 4149 UseInterleaved = EnableInterleavedMemAccesses; 4150 4151 // Analyze interleaved memory accesses. 4152 if (UseInterleaved) 4153 InterleaveInfo.analyzeInterleaving(Strides); 4154 4155 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 4156 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 4157 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 4158 4159 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 4160 emitAnalysis(VectorizationReport() 4161 << "Too many SCEV assumptions need to be made and checked " 4162 << "at runtime"); 4163 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 4164 return false; 4165 } 4166 4167 // Okay! We can vectorize. At this point we don't have any other mem analysis 4168 // which may limit our maximum vectorization factor, so just return true with 4169 // no restrictions. 4170 return true; 4171 } 4172 4173 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 4174 if (Ty->isPointerTy()) 4175 return DL.getIntPtrType(Ty); 4176 4177 // It is possible that char's or short's overflow when we ask for the loop's 4178 // trip count, work around this by changing the type size. 4179 if (Ty->getScalarSizeInBits() < 32) 4180 return Type::getInt32Ty(Ty->getContext()); 4181 4182 return Ty; 4183 } 4184 4185 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 4186 Ty0 = convertPointerToIntegerType(DL, Ty0); 4187 Ty1 = convertPointerToIntegerType(DL, Ty1); 4188 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 4189 return Ty0; 4190 return Ty1; 4191 } 4192 4193 /// \brief Check that the instruction has outside loop users and is not an 4194 /// identified reduction variable. 4195 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 4196 SmallPtrSetImpl<Value *> &Reductions) { 4197 // Reduction instructions are allowed to have exit users. All other 4198 // instructions must not have external users. 4199 if (!Reductions.count(Inst)) 4200 //Check that all of the users of the loop are inside the BB. 4201 for (User *U : Inst->users()) { 4202 Instruction *UI = cast<Instruction>(U); 4203 // This user may be a reduction exit value. 4204 if (!TheLoop->contains(UI)) { 4205 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 4206 return true; 4207 } 4208 } 4209 return false; 4210 } 4211 4212 bool LoopVectorizationLegality::canVectorizeInstrs() { 4213 BasicBlock *Header = TheLoop->getHeader(); 4214 4215 // Look for the attribute signaling the absence of NaNs. 4216 Function &F = *Header->getParent(); 4217 const DataLayout &DL = F.getParent()->getDataLayout(); 4218 if (F.hasFnAttribute("no-nans-fp-math")) 4219 HasFunNoNaNAttr = 4220 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 4221 4222 // For each block in the loop. 4223 for (Loop::block_iterator bb = TheLoop->block_begin(), 4224 be = TheLoop->block_end(); bb != be; ++bb) { 4225 4226 // Scan the instructions in the block and look for hazards. 4227 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4228 ++it) { 4229 4230 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 4231 Type *PhiTy = Phi->getType(); 4232 // Check that this PHI type is allowed. 4233 if (!PhiTy->isIntegerTy() && 4234 !PhiTy->isFloatingPointTy() && 4235 !PhiTy->isPointerTy()) { 4236 emitAnalysis(VectorizationReport(&*it) 4237 << "loop control flow is not understood by vectorizer"); 4238 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 4239 return false; 4240 } 4241 4242 // If this PHINode is not in the header block, then we know that we 4243 // can convert it to select during if-conversion. No need to check if 4244 // the PHIs in this block are induction or reduction variables. 4245 if (*bb != Header) { 4246 // Check that this instruction has no outside users or is an 4247 // identified reduction value with an outside user. 4248 if (!hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) 4249 continue; 4250 emitAnalysis(VectorizationReport(&*it) << 4251 "value could not be identified as " 4252 "an induction or reduction variable"); 4253 return false; 4254 } 4255 4256 // We only allow if-converted PHIs with exactly two incoming values. 4257 if (Phi->getNumIncomingValues() != 2) { 4258 emitAnalysis(VectorizationReport(&*it) 4259 << "control flow not understood by vectorizer"); 4260 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 4261 return false; 4262 } 4263 4264 InductionDescriptor ID; 4265 if (InductionDescriptor::isInductionPHI(Phi, PSE.getSE(), ID)) { 4266 Inductions[Phi] = ID; 4267 // Get the widest type. 4268 if (!WidestIndTy) 4269 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 4270 else 4271 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 4272 4273 // Int inductions are special because we only allow one IV. 4274 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 4275 ID.getStepValue()->isOne() && 4276 isa<Constant>(ID.getStartValue()) && 4277 cast<Constant>(ID.getStartValue())->isNullValue()) { 4278 // Use the phi node with the widest type as induction. Use the last 4279 // one if there are multiple (no good reason for doing this other 4280 // than it is expedient). We've checked that it begins at zero and 4281 // steps by one, so this is a canonical induction variable. 4282 if (!Induction || PhiTy == WidestIndTy) 4283 Induction = Phi; 4284 } 4285 4286 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 4287 4288 // Until we explicitly handle the case of an induction variable with 4289 // an outside loop user we have to give up vectorizing this loop. 4290 if (hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) { 4291 emitAnalysis(VectorizationReport(&*it) << 4292 "use of induction value outside of the " 4293 "loop is not handled by vectorizer"); 4294 return false; 4295 } 4296 4297 continue; 4298 } 4299 4300 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, 4301 Reductions[Phi])) { 4302 if (Reductions[Phi].hasUnsafeAlgebra()) 4303 Requirements->addUnsafeAlgebraInst( 4304 Reductions[Phi].getUnsafeAlgebraInst()); 4305 AllowedExit.insert(Reductions[Phi].getLoopExitInstr()); 4306 continue; 4307 } 4308 4309 emitAnalysis(VectorizationReport(&*it) << 4310 "value that could not be identified as " 4311 "reduction is used outside the loop"); 4312 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 4313 return false; 4314 }// end of PHI handling 4315 4316 // We handle calls that: 4317 // * Are debug info intrinsics. 4318 // * Have a mapping to an IR intrinsic. 4319 // * Have a vector version available. 4320 CallInst *CI = dyn_cast<CallInst>(it); 4321 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI) && 4322 !(CI->getCalledFunction() && TLI && 4323 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 4324 emitAnalysis(VectorizationReport(&*it) 4325 << "call instruction cannot be vectorized"); 4326 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 4327 return false; 4328 } 4329 4330 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 4331 // second argument is the same (i.e. loop invariant) 4332 if (CI && 4333 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) { 4334 auto *SE = PSE.getSE(); 4335 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 4336 emitAnalysis(VectorizationReport(&*it) 4337 << "intrinsic instruction cannot be vectorized"); 4338 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 4339 return false; 4340 } 4341 } 4342 4343 // Check that the instruction return type is vectorizable. 4344 // Also, we can't vectorize extractelement instructions. 4345 if ((!VectorType::isValidElementType(it->getType()) && 4346 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 4347 emitAnalysis(VectorizationReport(&*it) 4348 << "instruction return type cannot be vectorized"); 4349 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 4350 return false; 4351 } 4352 4353 // Check that the stored type is vectorizable. 4354 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 4355 Type *T = ST->getValueOperand()->getType(); 4356 if (!VectorType::isValidElementType(T)) { 4357 emitAnalysis(VectorizationReport(ST) << 4358 "store instruction cannot be vectorized"); 4359 return false; 4360 } 4361 if (EnableMemAccessVersioning) 4362 collectStridedAccess(ST); 4363 } 4364 4365 if (EnableMemAccessVersioning) 4366 if (LoadInst *LI = dyn_cast<LoadInst>(it)) 4367 collectStridedAccess(LI); 4368 4369 // Reduction instructions are allowed to have exit users. 4370 // All other instructions must not have external users. 4371 if (hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) { 4372 emitAnalysis(VectorizationReport(&*it) << 4373 "value cannot be used outside the loop"); 4374 return false; 4375 } 4376 4377 } // next instr. 4378 4379 } 4380 4381 if (!Induction) { 4382 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 4383 if (Inductions.empty()) { 4384 emitAnalysis(VectorizationReport() 4385 << "loop induction variable could not be identified"); 4386 return false; 4387 } 4388 } 4389 4390 // Now we know the widest induction type, check if our found induction 4391 // is the same size. If it's not, unset it here and InnerLoopVectorizer 4392 // will create another. 4393 if (Induction && WidestIndTy != Induction->getType()) 4394 Induction = nullptr; 4395 4396 return true; 4397 } 4398 4399 void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) { 4400 Value *Ptr = nullptr; 4401 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 4402 Ptr = LI->getPointerOperand(); 4403 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 4404 Ptr = SI->getPointerOperand(); 4405 else 4406 return; 4407 4408 Value *Stride = getStrideFromPointer(Ptr, PSE.getSE(), TheLoop); 4409 if (!Stride) 4410 return; 4411 4412 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 4413 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 4414 Strides[Ptr] = Stride; 4415 StrideSet.insert(Stride); 4416 } 4417 4418 void LoopVectorizationLegality::collectLoopUniforms() { 4419 // We now know that the loop is vectorizable! 4420 // Collect variables that will remain uniform after vectorization. 4421 std::vector<Value*> Worklist; 4422 BasicBlock *Latch = TheLoop->getLoopLatch(); 4423 4424 // Start with the conditional branch and walk up the block. 4425 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 4426 4427 // Also add all consecutive pointer values; these values will be uniform 4428 // after vectorization (and subsequent cleanup) and, until revectorization is 4429 // supported, all dependencies must also be uniform. 4430 for (Loop::block_iterator B = TheLoop->block_begin(), 4431 BE = TheLoop->block_end(); B != BE; ++B) 4432 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 4433 I != IE; ++I) 4434 if (I->getType()->isPointerTy() && isConsecutivePtr(&*I)) 4435 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4436 4437 while (!Worklist.empty()) { 4438 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 4439 Worklist.pop_back(); 4440 4441 // Look at instructions inside this loop. 4442 // Stop when reaching PHI nodes. 4443 // TODO: we need to follow values all over the loop, not only in this block. 4444 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 4445 continue; 4446 4447 // This is a known uniform. 4448 Uniforms.insert(I); 4449 4450 // Insert all operands. 4451 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4452 } 4453 } 4454 4455 bool LoopVectorizationLegality::canVectorizeMemory() { 4456 LAI = &LAA->getInfo(TheLoop, Strides); 4457 auto &OptionalReport = LAI->getReport(); 4458 if (OptionalReport) 4459 emitAnalysis(VectorizationReport(*OptionalReport)); 4460 if (!LAI->canVectorizeMemory()) 4461 return false; 4462 4463 if (LAI->hasStoreToLoopInvariantAddress()) { 4464 emitAnalysis( 4465 VectorizationReport() 4466 << "write to a loop invariant address could not be vectorized"); 4467 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4468 return false; 4469 } 4470 4471 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 4472 PSE.addPredicate(LAI->PSE.getUnionPredicate()); 4473 4474 return true; 4475 } 4476 4477 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 4478 Value *In0 = const_cast<Value*>(V); 4479 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 4480 if (!PN) 4481 return false; 4482 4483 return Inductions.count(PN); 4484 } 4485 4486 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 4487 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4488 } 4489 4490 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 4491 SmallPtrSetImpl<Value *> &SafePtrs) { 4492 4493 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4494 // Check that we don't have a constant expression that can trap as operand. 4495 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 4496 OI != OE; ++OI) { 4497 if (Constant *C = dyn_cast<Constant>(*OI)) 4498 if (C->canTrap()) 4499 return false; 4500 } 4501 // We might be able to hoist the load. 4502 if (it->mayReadFromMemory()) { 4503 LoadInst *LI = dyn_cast<LoadInst>(it); 4504 if (!LI) 4505 return false; 4506 if (!SafePtrs.count(LI->getPointerOperand())) { 4507 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand())) { 4508 MaskedOp.insert(LI); 4509 continue; 4510 } 4511 return false; 4512 } 4513 } 4514 4515 // We don't predicate stores at the moment. 4516 if (it->mayWriteToMemory()) { 4517 StoreInst *SI = dyn_cast<StoreInst>(it); 4518 // We only support predication of stores in basic blocks with one 4519 // predecessor. 4520 if (!SI) 4521 return false; 4522 4523 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 4524 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 4525 4526 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 4527 !isSinglePredecessor) { 4528 // Build a masked store if it is legal for the target, otherwise 4529 // scalarize the block. 4530 bool isLegalMaskedOp = 4531 isLegalMaskedStore(SI->getValueOperand()->getType(), 4532 SI->getPointerOperand()); 4533 if (isLegalMaskedOp) { 4534 --NumPredStores; 4535 MaskedOp.insert(SI); 4536 continue; 4537 } 4538 return false; 4539 } 4540 } 4541 if (it->mayThrow()) 4542 return false; 4543 4544 // The instructions below can trap. 4545 switch (it->getOpcode()) { 4546 default: continue; 4547 case Instruction::UDiv: 4548 case Instruction::SDiv: 4549 case Instruction::URem: 4550 case Instruction::SRem: 4551 return false; 4552 } 4553 } 4554 4555 return true; 4556 } 4557 4558 void InterleavedAccessInfo::collectConstStridedAccesses( 4559 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 4560 const ValueToValueMap &Strides) { 4561 // Holds load/store instructions in program order. 4562 SmallVector<Instruction *, 16> AccessList; 4563 4564 for (auto *BB : TheLoop->getBlocks()) { 4565 bool IsPred = LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4566 4567 for (auto &I : *BB) { 4568 if (!isa<LoadInst>(&I) && !isa<StoreInst>(&I)) 4569 continue; 4570 // FIXME: Currently we can't handle mixed accesses and predicated accesses 4571 if (IsPred) 4572 return; 4573 4574 AccessList.push_back(&I); 4575 } 4576 } 4577 4578 if (AccessList.empty()) 4579 return; 4580 4581 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 4582 for (auto I : AccessList) { 4583 LoadInst *LI = dyn_cast<LoadInst>(I); 4584 StoreInst *SI = dyn_cast<StoreInst>(I); 4585 4586 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 4587 int Stride = isStridedPtr(PSE, Ptr, TheLoop, Strides); 4588 4589 // The factor of the corresponding interleave group. 4590 unsigned Factor = std::abs(Stride); 4591 4592 // Ignore the access if the factor is too small or too large. 4593 if (Factor < 2 || Factor > MaxInterleaveGroupFactor) 4594 continue; 4595 4596 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 4597 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 4598 unsigned Size = DL.getTypeAllocSize(PtrTy->getElementType()); 4599 4600 // An alignment of 0 means target ABI alignment. 4601 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); 4602 if (!Align) 4603 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 4604 4605 StrideAccesses[I] = StrideDescriptor(Stride, Scev, Size, Align); 4606 } 4607 } 4608 4609 // Analyze interleaved accesses and collect them into interleave groups. 4610 // 4611 // Notice that the vectorization on interleaved groups will change instruction 4612 // orders and may break dependences. But the memory dependence check guarantees 4613 // that there is no overlap between two pointers of different strides, element 4614 // sizes or underlying bases. 4615 // 4616 // For pointers sharing the same stride, element size and underlying base, no 4617 // need to worry about Read-After-Write dependences and Write-After-Read 4618 // dependences. 4619 // 4620 // E.g. The RAW dependence: A[i] = a; 4621 // b = A[i]; 4622 // This won't exist as it is a store-load forwarding conflict, which has 4623 // already been checked and forbidden in the dependence check. 4624 // 4625 // E.g. The WAR dependence: a = A[i]; // (1) 4626 // A[i] = b; // (2) 4627 // The store group of (2) is always inserted at or below (2), and the load group 4628 // of (1) is always inserted at or above (1). The dependence is safe. 4629 void InterleavedAccessInfo::analyzeInterleaving( 4630 const ValueToValueMap &Strides) { 4631 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 4632 4633 // Holds all the stride accesses. 4634 MapVector<Instruction *, StrideDescriptor> StrideAccesses; 4635 collectConstStridedAccesses(StrideAccesses, Strides); 4636 4637 if (StrideAccesses.empty()) 4638 return; 4639 4640 // Holds all interleaved store groups temporarily. 4641 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 4642 4643 // Search the load-load/write-write pair B-A in bottom-up order and try to 4644 // insert B into the interleave group of A according to 3 rules: 4645 // 1. A and B have the same stride. 4646 // 2. A and B have the same memory object size. 4647 // 3. B belongs to the group according to the distance. 4648 // 4649 // The bottom-up order can avoid breaking the Write-After-Write dependences 4650 // between two pointers of the same base. 4651 // E.g. A[i] = a; (1) 4652 // A[i] = b; (2) 4653 // A[i+1] = c (3) 4654 // We form the group (2)+(3) in front, so (1) has to form groups with accesses 4655 // above (1), which guarantees that (1) is always above (2). 4656 for (auto I = StrideAccesses.rbegin(), E = StrideAccesses.rend(); I != E; 4657 ++I) { 4658 Instruction *A = I->first; 4659 StrideDescriptor DesA = I->second; 4660 4661 InterleaveGroup *Group = getInterleaveGroup(A); 4662 if (!Group) { 4663 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *A << '\n'); 4664 Group = createInterleaveGroup(A, DesA.Stride, DesA.Align); 4665 } 4666 4667 if (A->mayWriteToMemory()) 4668 StoreGroups.insert(Group); 4669 4670 for (auto II = std::next(I); II != E; ++II) { 4671 Instruction *B = II->first; 4672 StrideDescriptor DesB = II->second; 4673 4674 // Ignore if B is already in a group or B is a different memory operation. 4675 if (isInterleaved(B) || A->mayReadFromMemory() != B->mayReadFromMemory()) 4676 continue; 4677 4678 // Check the rule 1 and 2. 4679 if (DesB.Stride != DesA.Stride || DesB.Size != DesA.Size) 4680 continue; 4681 4682 // Calculate the distance and prepare for the rule 3. 4683 const SCEVConstant *DistToA = dyn_cast<SCEVConstant>( 4684 PSE.getSE()->getMinusSCEV(DesB.Scev, DesA.Scev)); 4685 if (!DistToA) 4686 continue; 4687 4688 int DistanceToA = DistToA->getValue()->getValue().getSExtValue(); 4689 4690 // Skip if the distance is not multiple of size as they are not in the 4691 // same group. 4692 if (DistanceToA % static_cast<int>(DesA.Size)) 4693 continue; 4694 4695 // The index of B is the index of A plus the related index to A. 4696 int IndexB = 4697 Group->getIndex(A) + DistanceToA / static_cast<int>(DesA.Size); 4698 4699 // Try to insert B into the group. 4700 if (Group->insertMember(B, IndexB, DesB.Align)) { 4701 DEBUG(dbgs() << "LV: Inserted:" << *B << '\n' 4702 << " into the interleave group with" << *A << '\n'); 4703 InterleaveGroupMap[B] = Group; 4704 4705 // Set the first load in program order as the insert position. 4706 if (B->mayReadFromMemory()) 4707 Group->setInsertPos(B); 4708 } 4709 } // Iteration on instruction B 4710 } // Iteration on instruction A 4711 4712 // Remove interleaved store groups with gaps. 4713 for (InterleaveGroup *Group : StoreGroups) 4714 if (Group->getNumMembers() != Group->getFactor()) 4715 releaseGroup(Group); 4716 } 4717 4718 LoopVectorizationCostModel::VectorizationFactor 4719 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 4720 // Width 1 means no vectorize 4721 VectorizationFactor Factor = { 1U, 0U }; 4722 if (OptForSize && Legal->getRuntimePointerChecking()->Need) { 4723 emitAnalysis(VectorizationReport() << 4724 "runtime pointer checks needed. Enable vectorization of this " 4725 "loop with '#pragma clang loop vectorize(enable)' when " 4726 "compiling with -Os/-Oz"); 4727 DEBUG(dbgs() << 4728 "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 4729 return Factor; 4730 } 4731 4732 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 4733 emitAnalysis(VectorizationReport() << 4734 "store that is conditionally executed prevents vectorization"); 4735 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 4736 return Factor; 4737 } 4738 4739 // Find the trip count. 4740 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 4741 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4742 4743 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4744 unsigned SmallestType, WidestType; 4745 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4746 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4747 unsigned MaxSafeDepDist = -1U; 4748 if (Legal->getMaxSafeDepDistBytes() != -1U) 4749 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 4750 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 4751 WidestRegister : MaxSafeDepDist); 4752 unsigned MaxVectorSize = WidestRegister / WidestType; 4753 4754 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 4755 << WidestType << " bits.\n"); 4756 DEBUG(dbgs() << "LV: The Widest register is: " 4757 << WidestRegister << " bits.\n"); 4758 4759 if (MaxVectorSize == 0) { 4760 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4761 MaxVectorSize = 1; 4762 } 4763 4764 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 4765 " into one vector!"); 4766 4767 unsigned VF = MaxVectorSize; 4768 if (MaximizeBandwidth && !OptForSize) { 4769 // Collect all viable vectorization factors. 4770 SmallVector<unsigned, 8> VFs; 4771 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 4772 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 4773 VFs.push_back(VS); 4774 4775 // For each VF calculate its register usage. 4776 auto RUs = calculateRegisterUsage(VFs); 4777 4778 // Select the largest VF which doesn't require more registers than existing 4779 // ones. 4780 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 4781 for (int i = RUs.size() - 1; i >= 0; --i) { 4782 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 4783 VF = VFs[i]; 4784 break; 4785 } 4786 } 4787 } 4788 4789 // If we optimize the program for size, avoid creating the tail loop. 4790 if (OptForSize) { 4791 // If we are unable to calculate the trip count then don't try to vectorize. 4792 if (TC < 2) { 4793 emitAnalysis 4794 (VectorizationReport() << 4795 "unable to calculate the loop count due to complex control flow"); 4796 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 4797 return Factor; 4798 } 4799 4800 // Find the maximum SIMD width that can fit within the trip count. 4801 VF = TC % MaxVectorSize; 4802 4803 if (VF == 0) 4804 VF = MaxVectorSize; 4805 else { 4806 // If the trip count that we found modulo the vectorization factor is not 4807 // zero then we require a tail. 4808 emitAnalysis(VectorizationReport() << 4809 "cannot optimize for size and vectorize at the " 4810 "same time. Enable vectorization of this loop " 4811 "with '#pragma clang loop vectorize(enable)' " 4812 "when compiling with -Os/-Oz"); 4813 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 4814 return Factor; 4815 } 4816 } 4817 4818 int UserVF = Hints->getWidth(); 4819 if (UserVF != 0) { 4820 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 4821 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 4822 4823 Factor.Width = UserVF; 4824 return Factor; 4825 } 4826 4827 float Cost = expectedCost(1); 4828 #ifndef NDEBUG 4829 const float ScalarCost = Cost; 4830 #endif /* NDEBUG */ 4831 unsigned Width = 1; 4832 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 4833 4834 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 4835 // Ignore scalar width, because the user explicitly wants vectorization. 4836 if (ForceVectorization && VF > 1) { 4837 Width = 2; 4838 Cost = expectedCost(Width) / (float)Width; 4839 } 4840 4841 for (unsigned i=2; i <= VF; i*=2) { 4842 // Notice that the vector loop needs to be executed less times, so 4843 // we need to divide the cost of the vector loops by the width of 4844 // the vector elements. 4845 float VectorCost = expectedCost(i) / (float)i; 4846 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 4847 (int)VectorCost << ".\n"); 4848 if (VectorCost < Cost) { 4849 Cost = VectorCost; 4850 Width = i; 4851 } 4852 } 4853 4854 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 4855 << "LV: Vectorization seems to be not beneficial, " 4856 << "but was forced by a user.\n"); 4857 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 4858 Factor.Width = Width; 4859 Factor.Cost = Width * Cost; 4860 return Factor; 4861 } 4862 4863 std::pair<unsigned, unsigned> 4864 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 4865 unsigned MinWidth = -1U; 4866 unsigned MaxWidth = 8; 4867 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 4868 4869 // For each block. 4870 for (Loop::block_iterator bb = TheLoop->block_begin(), 4871 be = TheLoop->block_end(); bb != be; ++bb) { 4872 BasicBlock *BB = *bb; 4873 4874 // For each instruction in the loop. 4875 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4876 Type *T = it->getType(); 4877 4878 // Skip ignored values. 4879 if (ValuesToIgnore.count(&*it)) 4880 continue; 4881 4882 // Only examine Loads, Stores and PHINodes. 4883 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 4884 continue; 4885 4886 // Examine PHI nodes that are reduction variables. Update the type to 4887 // account for the recurrence type. 4888 if (PHINode *PN = dyn_cast<PHINode>(it)) { 4889 if (!Legal->isReductionVariable(PN)) 4890 continue; 4891 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 4892 T = RdxDesc.getRecurrenceType(); 4893 } 4894 4895 // Examine the stored values. 4896 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 4897 T = ST->getValueOperand()->getType(); 4898 4899 // Ignore loaded pointer types and stored pointer types that are not 4900 // consecutive. However, we do want to take consecutive stores/loads of 4901 // pointer vectors into account. 4902 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&*it)) 4903 continue; 4904 4905 MinWidth = std::min(MinWidth, 4906 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4907 MaxWidth = std::max(MaxWidth, 4908 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4909 } 4910 } 4911 4912 return {MinWidth, MaxWidth}; 4913 } 4914 4915 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 4916 unsigned VF, 4917 unsigned LoopCost) { 4918 4919 // -- The interleave heuristics -- 4920 // We interleave the loop in order to expose ILP and reduce the loop overhead. 4921 // There are many micro-architectural considerations that we can't predict 4922 // at this level. For example, frontend pressure (on decode or fetch) due to 4923 // code size, or the number and capabilities of the execution ports. 4924 // 4925 // We use the following heuristics to select the interleave count: 4926 // 1. If the code has reductions, then we interleave to break the cross 4927 // iteration dependency. 4928 // 2. If the loop is really small, then we interleave to reduce the loop 4929 // overhead. 4930 // 3. We don't interleave if we think that we will spill registers to memory 4931 // due to the increased register pressure. 4932 4933 // When we optimize for size, we don't interleave. 4934 if (OptForSize) 4935 return 1; 4936 4937 // We used the distance for the interleave count. 4938 if (Legal->getMaxSafeDepDistBytes() != -1U) 4939 return 1; 4940 4941 // Do not interleave loops with a relatively small trip count. 4942 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 4943 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 4944 return 1; 4945 4946 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 4947 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 4948 " registers\n"); 4949 4950 if (VF == 1) { 4951 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 4952 TargetNumRegisters = ForceTargetNumScalarRegs; 4953 } else { 4954 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 4955 TargetNumRegisters = ForceTargetNumVectorRegs; 4956 } 4957 4958 RegisterUsage R = calculateRegisterUsage({VF})[0]; 4959 // We divide by these constants so assume that we have at least one 4960 // instruction that uses at least one register. 4961 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 4962 R.NumInstructions = std::max(R.NumInstructions, 1U); 4963 4964 // We calculate the interleave count using the following formula. 4965 // Subtract the number of loop invariants from the number of available 4966 // registers. These registers are used by all of the interleaved instances. 4967 // Next, divide the remaining registers by the number of registers that is 4968 // required by the loop, in order to estimate how many parallel instances 4969 // fit without causing spills. All of this is rounded down if necessary to be 4970 // a power of two. We want power of two interleave count to simplify any 4971 // addressing operations or alignment considerations. 4972 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 4973 R.MaxLocalUsers); 4974 4975 // Don't count the induction variable as interleaved. 4976 if (EnableIndVarRegisterHeur) 4977 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 4978 std::max(1U, (R.MaxLocalUsers - 1))); 4979 4980 // Clamp the interleave ranges to reasonable counts. 4981 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 4982 4983 // Check if the user has overridden the max. 4984 if (VF == 1) { 4985 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 4986 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 4987 } else { 4988 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 4989 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 4990 } 4991 4992 // If we did not calculate the cost for VF (because the user selected the VF) 4993 // then we calculate the cost of VF here. 4994 if (LoopCost == 0) 4995 LoopCost = expectedCost(VF); 4996 4997 // Clamp the calculated IC to be between the 1 and the max interleave count 4998 // that the target allows. 4999 if (IC > MaxInterleaveCount) 5000 IC = MaxInterleaveCount; 5001 else if (IC < 1) 5002 IC = 1; 5003 5004 // Interleave if we vectorized this loop and there is a reduction that could 5005 // benefit from interleaving. 5006 if (VF > 1 && Legal->getReductionVars()->size()) { 5007 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5008 return IC; 5009 } 5010 5011 // Note that if we've already vectorized the loop we will have done the 5012 // runtime check and so interleaving won't require further checks. 5013 bool InterleavingRequiresRuntimePointerCheck = 5014 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5015 5016 // We want to interleave small loops in order to reduce the loop overhead and 5017 // potentially expose ILP opportunities. 5018 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5019 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5020 // We assume that the cost overhead is 1 and we use the cost model 5021 // to estimate the cost of the loop and interleave until the cost of the 5022 // loop overhead is about 5% of the cost of the loop. 5023 unsigned SmallIC = 5024 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5025 5026 // Interleave until store/load ports (estimated by max interleave count) are 5027 // saturated. 5028 unsigned NumStores = Legal->getNumStores(); 5029 unsigned NumLoads = Legal->getNumLoads(); 5030 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5031 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5032 5033 // If we have a scalar reduction (vector reductions are already dealt with 5034 // by this point), we can increase the critical path length if the loop 5035 // we're interleaving is inside another loop. Limit, by default to 2, so the 5036 // critical path only gets increased by one reduction operation. 5037 if (Legal->getReductionVars()->size() && 5038 TheLoop->getLoopDepth() > 1) { 5039 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5040 SmallIC = std::min(SmallIC, F); 5041 StoresIC = std::min(StoresIC, F); 5042 LoadsIC = std::min(LoadsIC, F); 5043 } 5044 5045 if (EnableLoadStoreRuntimeInterleave && 5046 std::max(StoresIC, LoadsIC) > SmallIC) { 5047 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5048 return std::max(StoresIC, LoadsIC); 5049 } 5050 5051 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5052 return SmallIC; 5053 } 5054 5055 // Interleave if this is a large loop (small loops are already dealt with by 5056 // this point) that could benefit from interleaving. 5057 bool HasReductions = (Legal->getReductionVars()->size() > 0); 5058 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5059 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5060 return IC; 5061 } 5062 5063 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5064 return 1; 5065 } 5066 5067 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5068 LoopVectorizationCostModel::calculateRegisterUsage( 5069 const SmallVector<unsigned, 8> &VFs) { 5070 // This function calculates the register usage by measuring the highest number 5071 // of values that are alive at a single location. Obviously, this is a very 5072 // rough estimation. We scan the loop in a topological order in order and 5073 // assign a number to each instruction. We use RPO to ensure that defs are 5074 // met before their users. We assume that each instruction that has in-loop 5075 // users starts an interval. We record every time that an in-loop value is 5076 // used, so we have a list of the first and last occurrences of each 5077 // instruction. Next, we transpose this data structure into a multi map that 5078 // holds the list of intervals that *end* at a specific location. This multi 5079 // map allows us to perform a linear search. We scan the instructions linearly 5080 // and record each time that a new interval starts, by placing it in a set. 5081 // If we find this value in the multi-map then we remove it from the set. 5082 // The max register usage is the maximum size of the set. 5083 // We also search for instructions that are defined outside the loop, but are 5084 // used inside the loop. We need this number separately from the max-interval 5085 // usage number because when we unroll, loop-invariant values do not take 5086 // more register. 5087 LoopBlocksDFS DFS(TheLoop); 5088 DFS.perform(LI); 5089 5090 RegisterUsage RU; 5091 RU.NumInstructions = 0; 5092 5093 // Each 'key' in the map opens a new interval. The values 5094 // of the map are the index of the 'last seen' usage of the 5095 // instruction that is the key. 5096 typedef DenseMap<Instruction*, unsigned> IntervalMap; 5097 // Maps instruction to its index. 5098 DenseMap<unsigned, Instruction*> IdxToInstr; 5099 // Marks the end of each interval. 5100 IntervalMap EndPoint; 5101 // Saves the list of instruction indices that are used in the loop. 5102 SmallSet<Instruction*, 8> Ends; 5103 // Saves the list of values that are used in the loop but are 5104 // defined outside the loop, such as arguments and constants. 5105 SmallPtrSet<Value*, 8> LoopInvariants; 5106 5107 unsigned Index = 0; 5108 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 5109 be = DFS.endRPO(); bb != be; ++bb) { 5110 RU.NumInstructions += (*bb)->size(); 5111 for (Instruction &I : **bb) { 5112 IdxToInstr[Index++] = &I; 5113 5114 // Save the end location of each USE. 5115 for (unsigned i = 0; i < I.getNumOperands(); ++i) { 5116 Value *U = I.getOperand(i); 5117 Instruction *Instr = dyn_cast<Instruction>(U); 5118 5119 // Ignore non-instruction values such as arguments, constants, etc. 5120 if (!Instr) continue; 5121 5122 // If this instruction is outside the loop then record it and continue. 5123 if (!TheLoop->contains(Instr)) { 5124 LoopInvariants.insert(Instr); 5125 continue; 5126 } 5127 5128 // Overwrite previous end points. 5129 EndPoint[Instr] = Index; 5130 Ends.insert(Instr); 5131 } 5132 } 5133 } 5134 5135 // Saves the list of intervals that end with the index in 'key'. 5136 typedef SmallVector<Instruction*, 2> InstrList; 5137 DenseMap<unsigned, InstrList> TransposeEnds; 5138 5139 // Transpose the EndPoints to a list of values that end at each index. 5140 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 5141 it != e; ++it) 5142 TransposeEnds[it->second].push_back(it->first); 5143 5144 SmallSet<Instruction*, 8> OpenIntervals; 5145 5146 // Get the size of the widest register. 5147 unsigned MaxSafeDepDist = -1U; 5148 if (Legal->getMaxSafeDepDistBytes() != -1U) 5149 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5150 unsigned WidestRegister = 5151 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5152 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5153 5154 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5155 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5156 5157 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5158 5159 // A lambda that gets the register usage for the given type and VF. 5160 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5161 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5162 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5163 }; 5164 5165 for (unsigned int i = 0; i < Index; ++i) { 5166 Instruction *I = IdxToInstr[i]; 5167 // Ignore instructions that are never used within the loop. 5168 if (!Ends.count(I)) continue; 5169 5170 // Skip ignored values. 5171 if (ValuesToIgnore.count(I)) 5172 continue; 5173 5174 // Remove all of the instructions that end at this location. 5175 InstrList &List = TransposeEnds[i]; 5176 for (unsigned int j = 0, e = List.size(); j < e; ++j) 5177 OpenIntervals.erase(List[j]); 5178 5179 // For each VF find the maximum usage of registers. 5180 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5181 if (VFs[j] == 1) { 5182 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5183 continue; 5184 } 5185 5186 // Count the number of live intervals. 5187 unsigned RegUsage = 0; 5188 for (auto Inst : OpenIntervals) 5189 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5190 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5191 } 5192 5193 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5194 << OpenIntervals.size() << '\n'); 5195 5196 // Add the current instruction to the list of open intervals. 5197 OpenIntervals.insert(I); 5198 } 5199 5200 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5201 unsigned Invariant = 0; 5202 if (VFs[i] == 1) 5203 Invariant = LoopInvariants.size(); 5204 else { 5205 for (auto Inst : LoopInvariants) 5206 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5207 } 5208 5209 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5210 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5211 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5212 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 5213 5214 RU.LoopInvariantRegs = Invariant; 5215 RU.MaxLocalUsers = MaxUsages[i]; 5216 RUs[i] = RU; 5217 } 5218 5219 return RUs; 5220 } 5221 5222 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 5223 unsigned Cost = 0; 5224 5225 // For each block. 5226 for (Loop::block_iterator bb = TheLoop->block_begin(), 5227 be = TheLoop->block_end(); bb != be; ++bb) { 5228 unsigned BlockCost = 0; 5229 BasicBlock *BB = *bb; 5230 5231 // For each instruction in the old loop. 5232 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5233 // Skip dbg intrinsics. 5234 if (isa<DbgInfoIntrinsic>(it)) 5235 continue; 5236 5237 // Skip ignored values. 5238 if (ValuesToIgnore.count(&*it)) 5239 continue; 5240 5241 unsigned C = getInstructionCost(&*it, VF); 5242 5243 // Check if we should override the cost. 5244 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5245 C = ForceTargetInstructionCost; 5246 5247 BlockCost += C; 5248 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 5249 VF << " For instruction: " << *it << '\n'); 5250 } 5251 5252 // We assume that if-converted blocks have a 50% chance of being executed. 5253 // When the code is scalar then some of the blocks are avoided due to CF. 5254 // When the code is vectorized we execute all code paths. 5255 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5256 BlockCost /= 2; 5257 5258 Cost += BlockCost; 5259 } 5260 5261 return Cost; 5262 } 5263 5264 /// \brief Check whether the address computation for a non-consecutive memory 5265 /// access looks like an unlikely candidate for being merged into the indexing 5266 /// mode. 5267 /// 5268 /// We look for a GEP which has one index that is an induction variable and all 5269 /// other indices are loop invariant. If the stride of this access is also 5270 /// within a small bound we decide that this address computation can likely be 5271 /// merged into the addressing mode. 5272 /// In all other cases, we identify the address computation as complex. 5273 static bool isLikelyComplexAddressComputation(Value *Ptr, 5274 LoopVectorizationLegality *Legal, 5275 ScalarEvolution *SE, 5276 const Loop *TheLoop) { 5277 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5278 if (!Gep) 5279 return true; 5280 5281 // We are looking for a gep with all loop invariant indices except for one 5282 // which should be an induction variable. 5283 unsigned NumOperands = Gep->getNumOperands(); 5284 for (unsigned i = 1; i < NumOperands; ++i) { 5285 Value *Opd = Gep->getOperand(i); 5286 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5287 !Legal->isInductionVariable(Opd)) 5288 return true; 5289 } 5290 5291 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5292 // can likely be merged into the address computation. 5293 unsigned MaxMergeDistance = 64; 5294 5295 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5296 if (!AddRec) 5297 return true; 5298 5299 // Check the step is constant. 5300 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5301 // Calculate the pointer stride and check if it is consecutive. 5302 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5303 if (!C) 5304 return true; 5305 5306 const APInt &APStepVal = C->getValue()->getValue(); 5307 5308 // Huge step value - give up. 5309 if (APStepVal.getBitWidth() > 64) 5310 return true; 5311 5312 int64_t StepVal = APStepVal.getSExtValue(); 5313 5314 return StepVal > MaxMergeDistance; 5315 } 5316 5317 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5318 return Legal->hasStride(I->getOperand(0)) || 5319 Legal->hasStride(I->getOperand(1)); 5320 } 5321 5322 unsigned 5323 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5324 // If we know that this instruction will remain uniform, check the cost of 5325 // the scalar version. 5326 if (Legal->isUniformAfterVectorization(I)) 5327 VF = 1; 5328 5329 Type *RetTy = I->getType(); 5330 if (VF > 1 && MinBWs.count(I)) 5331 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5332 Type *VectorTy = ToVectorTy(RetTy, VF); 5333 5334 // TODO: We need to estimate the cost of intrinsic calls. 5335 switch (I->getOpcode()) { 5336 case Instruction::GetElementPtr: 5337 // We mark this instruction as zero-cost because the cost of GEPs in 5338 // vectorized code depends on whether the corresponding memory instruction 5339 // is scalarized or not. Therefore, we handle GEPs with the memory 5340 // instruction cost. 5341 return 0; 5342 case Instruction::Br: { 5343 return TTI.getCFInstrCost(I->getOpcode()); 5344 } 5345 case Instruction::PHI: 5346 //TODO: IF-converted IFs become selects. 5347 return 0; 5348 case Instruction::Add: 5349 case Instruction::FAdd: 5350 case Instruction::Sub: 5351 case Instruction::FSub: 5352 case Instruction::Mul: 5353 case Instruction::FMul: 5354 case Instruction::UDiv: 5355 case Instruction::SDiv: 5356 case Instruction::FDiv: 5357 case Instruction::URem: 5358 case Instruction::SRem: 5359 case Instruction::FRem: 5360 case Instruction::Shl: 5361 case Instruction::LShr: 5362 case Instruction::AShr: 5363 case Instruction::And: 5364 case Instruction::Or: 5365 case Instruction::Xor: { 5366 // Since we will replace the stride by 1 the multiplication should go away. 5367 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5368 return 0; 5369 // Certain instructions can be cheaper to vectorize if they have a constant 5370 // second vector operand. One example of this are shifts on x86. 5371 TargetTransformInfo::OperandValueKind Op1VK = 5372 TargetTransformInfo::OK_AnyValue; 5373 TargetTransformInfo::OperandValueKind Op2VK = 5374 TargetTransformInfo::OK_AnyValue; 5375 TargetTransformInfo::OperandValueProperties Op1VP = 5376 TargetTransformInfo::OP_None; 5377 TargetTransformInfo::OperandValueProperties Op2VP = 5378 TargetTransformInfo::OP_None; 5379 Value *Op2 = I->getOperand(1); 5380 5381 // Check for a splat of a constant or for a non uniform vector of constants. 5382 if (isa<ConstantInt>(Op2)) { 5383 ConstantInt *CInt = cast<ConstantInt>(Op2); 5384 if (CInt && CInt->getValue().isPowerOf2()) 5385 Op2VP = TargetTransformInfo::OP_PowerOf2; 5386 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5387 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 5388 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5389 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 5390 if (SplatValue) { 5391 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 5392 if (CInt && CInt->getValue().isPowerOf2()) 5393 Op2VP = TargetTransformInfo::OP_PowerOf2; 5394 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5395 } 5396 } 5397 5398 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 5399 Op1VP, Op2VP); 5400 } 5401 case Instruction::Select: { 5402 SelectInst *SI = cast<SelectInst>(I); 5403 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5404 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5405 Type *CondTy = SI->getCondition()->getType(); 5406 if (!ScalarCond) 5407 CondTy = VectorType::get(CondTy, VF); 5408 5409 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 5410 } 5411 case Instruction::ICmp: 5412 case Instruction::FCmp: { 5413 Type *ValTy = I->getOperand(0)->getType(); 5414 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 5415 auto It = MinBWs.find(Op0AsInstruction); 5416 if (VF > 1 && It != MinBWs.end()) 5417 ValTy = IntegerType::get(ValTy->getContext(), It->second); 5418 VectorTy = ToVectorTy(ValTy, VF); 5419 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 5420 } 5421 case Instruction::Store: 5422 case Instruction::Load: { 5423 StoreInst *SI = dyn_cast<StoreInst>(I); 5424 LoadInst *LI = dyn_cast<LoadInst>(I); 5425 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 5426 LI->getType()); 5427 VectorTy = ToVectorTy(ValTy, VF); 5428 5429 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 5430 unsigned AS = SI ? SI->getPointerAddressSpace() : 5431 LI->getPointerAddressSpace(); 5432 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 5433 // We add the cost of address computation here instead of with the gep 5434 // instruction because only here we know whether the operation is 5435 // scalarized. 5436 if (VF == 1) 5437 return TTI.getAddressComputationCost(VectorTy) + 5438 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5439 5440 // For an interleaved access, calculate the total cost of the whole 5441 // interleave group. 5442 if (Legal->isAccessInterleaved(I)) { 5443 auto Group = Legal->getInterleavedAccessGroup(I); 5444 assert(Group && "Fail to get an interleaved access group."); 5445 5446 // Only calculate the cost once at the insert position. 5447 if (Group->getInsertPos() != I) 5448 return 0; 5449 5450 unsigned InterleaveFactor = Group->getFactor(); 5451 Type *WideVecTy = 5452 VectorType::get(VectorTy->getVectorElementType(), 5453 VectorTy->getVectorNumElements() * InterleaveFactor); 5454 5455 // Holds the indices of existing members in an interleaved load group. 5456 // An interleaved store group doesn't need this as it dones't allow gaps. 5457 SmallVector<unsigned, 4> Indices; 5458 if (LI) { 5459 for (unsigned i = 0; i < InterleaveFactor; i++) 5460 if (Group->getMember(i)) 5461 Indices.push_back(i); 5462 } 5463 5464 // Calculate the cost of the whole interleaved group. 5465 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5466 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5467 Group->getAlignment(), AS); 5468 5469 if (Group->isReverse()) 5470 Cost += 5471 Group->getNumMembers() * 5472 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5473 5474 // FIXME: The interleaved load group with a huge gap could be even more 5475 // expensive than scalar operations. Then we could ignore such group and 5476 // use scalar operations instead. 5477 return Cost; 5478 } 5479 5480 // Scalarized loads/stores. 5481 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5482 bool Reverse = ConsecutiveStride < 0; 5483 const DataLayout &DL = I->getModule()->getDataLayout(); 5484 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ValTy); 5485 unsigned VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF; 5486 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 5487 bool IsComplexComputation = 5488 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 5489 unsigned Cost = 0; 5490 // The cost of extracting from the value vector and pointer vector. 5491 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5492 for (unsigned i = 0; i < VF; ++i) { 5493 // The cost of extracting the pointer operand. 5494 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 5495 // In case of STORE, the cost of ExtractElement from the vector. 5496 // In case of LOAD, the cost of InsertElement into the returned 5497 // vector. 5498 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 5499 Instruction::InsertElement, 5500 VectorTy, i); 5501 } 5502 5503 // The cost of the scalar loads/stores. 5504 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 5505 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5506 Alignment, AS); 5507 return Cost; 5508 } 5509 5510 // Wide load/stores. 5511 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 5512 if (Legal->isMaskRequired(I)) 5513 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, 5514 AS); 5515 else 5516 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5517 5518 if (Reverse) 5519 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 5520 VectorTy, 0); 5521 return Cost; 5522 } 5523 case Instruction::ZExt: 5524 case Instruction::SExt: 5525 case Instruction::FPToUI: 5526 case Instruction::FPToSI: 5527 case Instruction::FPExt: 5528 case Instruction::PtrToInt: 5529 case Instruction::IntToPtr: 5530 case Instruction::SIToFP: 5531 case Instruction::UIToFP: 5532 case Instruction::Trunc: 5533 case Instruction::FPTrunc: 5534 case Instruction::BitCast: { 5535 // We optimize the truncation of induction variable. 5536 // The cost of these is the same as the scalar operation. 5537 if (I->getOpcode() == Instruction::Trunc && 5538 Legal->isInductionVariable(I->getOperand(0))) 5539 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 5540 I->getOperand(0)->getType()); 5541 5542 Type *SrcScalarTy = I->getOperand(0)->getType(); 5543 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 5544 if (VF > 1 && MinBWs.count(I)) { 5545 // This cast is going to be shrunk. This may remove the cast or it might 5546 // turn it into slightly different cast. For example, if MinBW == 16, 5547 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 5548 // 5549 // Calculate the modified src and dest types. 5550 Type *MinVecTy = VectorTy; 5551 if (I->getOpcode() == Instruction::Trunc) { 5552 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 5553 VectorTy = largestIntegerVectorType(ToVectorTy(I->getType(), VF), 5554 MinVecTy); 5555 } else if (I->getOpcode() == Instruction::ZExt || 5556 I->getOpcode() == Instruction::SExt) { 5557 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 5558 VectorTy = smallestIntegerVectorType(ToVectorTy(I->getType(), VF), 5559 MinVecTy); 5560 } 5561 } 5562 5563 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 5564 } 5565 case Instruction::Call: { 5566 bool NeedToScalarize; 5567 CallInst *CI = cast<CallInst>(I); 5568 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 5569 if (getIntrinsicIDForCall(CI, TLI)) 5570 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 5571 return CallCost; 5572 } 5573 default: { 5574 // We are scalarizing the instruction. Return the cost of the scalar 5575 // instruction, plus the cost of insert and extract into vector 5576 // elements, times the vector width. 5577 unsigned Cost = 0; 5578 5579 if (!RetTy->isVoidTy() && VF != 1) { 5580 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 5581 VectorTy); 5582 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 5583 VectorTy); 5584 5585 // The cost of inserting the results plus extracting each one of the 5586 // operands. 5587 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 5588 } 5589 5590 // The cost of executing VF copies of the scalar instruction. This opcode 5591 // is unknown. Assume that it is the same as 'mul'. 5592 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 5593 return Cost; 5594 } 5595 }// end of switch. 5596 } 5597 5598 char LoopVectorize::ID = 0; 5599 static const char lv_name[] = "Loop Vectorization"; 5600 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 5601 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5602 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 5603 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 5604 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 5605 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 5606 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 5607 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5608 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5609 INITIALIZE_PASS_DEPENDENCY(LCSSA) 5610 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5611 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5612 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis) 5613 INITIALIZE_PASS_DEPENDENCY(DemandedBits) 5614 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 5615 5616 namespace llvm { 5617 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 5618 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 5619 } 5620 } 5621 5622 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 5623 // Check for a store. 5624 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 5625 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 5626 5627 // Check for a load. 5628 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 5629 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 5630 5631 return false; 5632 } 5633 5634 5635 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 5636 bool IfPredicateStore) { 5637 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 5638 // Holds vector parameters or scalars, in case of uniform vals. 5639 SmallVector<VectorParts, 4> Params; 5640 5641 setDebugLocFromInst(Builder, Instr); 5642 5643 // Find all of the vectorized parameters. 5644 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5645 Value *SrcOp = Instr->getOperand(op); 5646 5647 // If we are accessing the old induction variable, use the new one. 5648 if (SrcOp == OldInduction) { 5649 Params.push_back(getVectorValue(SrcOp)); 5650 continue; 5651 } 5652 5653 // Try using previously calculated values. 5654 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 5655 5656 // If the src is an instruction that appeared earlier in the basic block 5657 // then it should already be vectorized. 5658 if (SrcInst && OrigLoop->contains(SrcInst)) { 5659 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 5660 // The parameter is a vector value from earlier. 5661 Params.push_back(WidenMap.get(SrcInst)); 5662 } else { 5663 // The parameter is a scalar from outside the loop. Maybe even a constant. 5664 VectorParts Scalars; 5665 Scalars.append(UF, SrcOp); 5666 Params.push_back(Scalars); 5667 } 5668 } 5669 5670 assert(Params.size() == Instr->getNumOperands() && 5671 "Invalid number of operands"); 5672 5673 // Does this instruction return a value ? 5674 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 5675 5676 Value *UndefVec = IsVoidRetTy ? nullptr : 5677 UndefValue::get(Instr->getType()); 5678 // Create a new entry in the WidenMap and initialize it to Undef or Null. 5679 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 5680 5681 VectorParts Cond; 5682 if (IfPredicateStore) { 5683 assert(Instr->getParent()->getSinglePredecessor() && 5684 "Only support single predecessor blocks"); 5685 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 5686 Instr->getParent()); 5687 } 5688 5689 // For each vector unroll 'part': 5690 for (unsigned Part = 0; Part < UF; ++Part) { 5691 // For each scalar that we create: 5692 5693 // Start an "if (pred) a[i] = ..." block. 5694 Value *Cmp = nullptr; 5695 if (IfPredicateStore) { 5696 if (Cond[Part]->getType()->isVectorTy()) 5697 Cond[Part] = 5698 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 5699 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 5700 ConstantInt::get(Cond[Part]->getType(), 1)); 5701 } 5702 5703 Instruction *Cloned = Instr->clone(); 5704 if (!IsVoidRetTy) 5705 Cloned->setName(Instr->getName() + ".cloned"); 5706 // Replace the operands of the cloned instructions with extracted scalars. 5707 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5708 Value *Op = Params[op][Part]; 5709 Cloned->setOperand(op, Op); 5710 } 5711 5712 // Place the cloned scalar in the new loop. 5713 Builder.Insert(Cloned); 5714 5715 // If the original scalar returns a value we need to place it in a vector 5716 // so that future users will be able to use it. 5717 if (!IsVoidRetTy) 5718 VecResults[Part] = Cloned; 5719 5720 // End if-block. 5721 if (IfPredicateStore) 5722 PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned), 5723 Cmp)); 5724 } 5725 } 5726 5727 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 5728 StoreInst *SI = dyn_cast<StoreInst>(Instr); 5729 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 5730 5731 return scalarizeInstruction(Instr, IfPredicateStore); 5732 } 5733 5734 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 5735 return Vec; 5736 } 5737 5738 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 5739 return V; 5740 } 5741 5742 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) { 5743 // When unrolling and the VF is 1, we only need to add a simple scalar. 5744 Type *ITy = Val->getType(); 5745 assert(!ITy->isVectorTy() && "Val must be a scalar"); 5746 Constant *C = ConstantInt::get(ITy, StartIdx); 5747 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 5748 } 5749